

Kurauchi778950_bapp01.indd 438 23-03-2023 19:30:47

AWS®
Certified Database

Study Guide

Specialty (DBS- C01) Exam

Matheus Arrais
Rene Martinez Bravet

Leonardo Ciccone
Angie Nobre Cocharero

Érika Kurauchi
Hugo Rozestraten

Copyright © 2023 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada and the United Kingdom.

ISBN: 978- 1- 119- 77895- 0
ISBN: 978- 1- 119- 77896- 7 (ebk.)
ISBN: 978- 1- 119- 77897- 4 (ebk.)

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under
Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the
Publisher, or authorization through payment of the appropriate per- copy fee to the Copyright Clearance Center,
Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750- 8400, fax (978) 750- 4470, or on the web at www
.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department,
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748- 6011, fax (201) 748- 6008, or online at
www.wiley.com/go/permission.

Trademarks: WILEY, the Wiley logo, and the Sybex logo are trademarks or registered trademarks of John Wiley
& Sons, Inc. and/or its affiliates, in the United States and other countries, and may not be used without written
permission. AWS is a registered trademark of Amazon Technologies, Inc. All other trademarks are the property
of their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in
this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing
this book, they make no representations or warranties with respect to the accuracy or completeness of the contents
of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose.
No warranty may be created or extended by sales representatives or written sales materials. The advice and
strategies contained herein may not be suitable for your situation. You should consult with a professional where
appropriate. Further, readers should be aware that websites listed in this work may have changed or disappeared
between when this work was written and when it is read. Neither the publisher nor authors shall be liable for any
loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or
other damages.

For general information on our other products and services or for technical support, please contact our Customer
Care Department within the United States at (800) 762- 2974, outside the United States at (317) 572- 3993 or fax
(317) 572- 4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Control Number: 2023932626

Cover image: © Jeremy Woodhouse/Getty Images
Cover design: Wiley

http://www.copyright.com
http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com

I dedicate this book to my two funny and witty daughters and my lovely

husband, who were always supportive throughout the journey.

— Angie Nobre

I dedicate this book to my family and friends who supported and inspired me

in this fantastic journey.

— Érika Kurauchi

I dedicate this book to my wife and son, who support me in all adventures.

— Hugo Rozestraten

To my family: Erika, Antonio, Clelia, and Leandro, your love and support made

this book a reality.

— Leonardo Ciccone

I dedicate this book to my wife, my daughter Helena, my parents, and my

sister, who are the foundation of my life, for supporting me since I started to be

curious about technology.

— Matheus Arrais

To my wife, my son, my daughters, and my parents. Specially to my dad who

also wrote a database book but couldn’t get it published.

— Rene Martinez

Acknowledgments
First, we would like to thank our wonderful families for supporting us and encouraging
us to start this amazing journey. We needed to focus hours on writing and reviewing, and
their understanding was key for the team to work together and to succeed on finishing this
study guide.

Also, we would like to show our appreciation for Amazon Web Services (AWS) for
providing cloud- computing platforms, APIs, and the Specialty (DBS- C01) exam to a world-
wide audience.

We’d also like to thank acquisitions editor Ken Brown for entrusting us to create this
study guide for Wiley. We also appreciate the assistance of John Sleeva, the project editor,
and the entire team at Wiley for their guidance in creating this book.

A special thanks to Murilo Nascimento for the detailed reviews and guidance, who agreed
to work with our team as the technical editor, after having been a product manager of the
AWS Database Blog for years.

Our sincere thanks to Gus Santana, who wrote the AWS Certified Security Study Guide
years ago, for bringing the team together and showing us by example that the challenge
could be met.

Finally, thanks to our readers for trusting us to guide and prepare you for this incredible
learning journey.

— The Authors

About the Authors
Matheus Arrais is a World Wide Cross Service Specialist Solutions Architect at Amazon
Web Services focusing in cloud foundational and operations services. Prior to his tenure at
AWS, he worked for a consulting company as a cloud engineer and networking adminis-
trator, accumulating more than 14 years of experience. He has worked in infrastructure,
experienced networking, databases, and migrations processes. Matheus holds a dozen AWS
certifications and is a frequent speaker at summits, webinars, and re:invent.

Rene Martinez Bravet is principal solutions architect at AWS, focused on enterprise
and financial services customers. Before AWS, he worked as an Authorized Google Cloud
Platform trainer and as a solutions architect at Ericsson. Rene has more than 15 years of
experience in IT and has worked in different roles, including as a software architect, DevOps
engineer, and database administrator.

Leonardo Ciccone is a senior database migration specialist at Amazon Web Services, with
a focus on database migration and modernization. Leonardo started his career working with
embedded hardware, networks, and Linux administration. In 2006, he switched his focus to
databases and has never stopped since. He is a certified professional with eight AWS certifi-
cations, Google Cloud Architect, Oracle Database, and Oracle Exadata. Leonardo’s technical
interests include databases, data engineering, cloud, and security.

Angie Nobre Cocharero has been a database specialist solution architect at Amazon Web
Services for Latin America since 2020. She has worked for more than 20 years in database
implementations, supporting multiple customers in architecting database environments. She
has experience with high availability and disaster recovery and has supported migrations and
provided best practices for deploying databases.

Érika Kurauchi is the specialist solution architecture manager at Amazon Web Services
Latin America, has 20 years of experience in the IT industry. Prior to her tenure at AWS, she
worked for Itaú bank for almost 12 years. She has extensive experience in migrations and
mergers of large institutions in the financial market and Itaú. She collaborated with Itaú’s
data-driven journey, leading the enterprise Data Governance Foundation, and became an
SME in data management, quality, and protection. Érika holds a degree in data processing,
an MBA in business management from FVG with an advanced certificate from UC Irvine
international extension, certification in negotiation and leadership from Harvard Law
School, and two AWS certifications.

Hugo Rozestraten is a principal data strategy solutions architect and author of several
AWS blog posts. Hugo has worked for Google, IBM, Oracle, and ZUP as a data expert.
Starting as a developer in 2001, Hugo quickly moved his career toward databases, becoming
a certified DBA (Oracle 8i OCP) in 2003 and diving deep into databases ever since. Hugo
has a set of content creation and is a frequent presenter in summits and webinars.

Kurauchi778950_ffirs.indd 7Kurauchi778950_ffirs.indd 7 07-04-2023 15:13:3807-04-2023 15:13:38

About the Technical Editor
Murilo Cerone Nascimento has experience with a variety of relational and nonrelational
databases. He has been working with databases for the past 13 years, most of the time as
a consultant in private companies. Murilo holds a bachelor’s degree in engineering with a
specialization in computer engineering from Escola Politécnica de São Paulo. He currently
works as a product manager at Amazon Web Services Brazil.

Contents at a Glance

Introduction xxv

Assessment Test xxxv

Part I Workload- Specific Database Design 1

Chapter 1 Databases— from Your Server to AWS Cloud 3

Chapter 2 Basic AWS Concepts 13

Chapter 3 Purpose- Built Databases 35

Part II Management and Operations, Database
Security, Monitoring and Troubleshooting
per Workload 51

Chapter 4 Relational Databases on AWS 53

Chapter 5 Low- Latency Response Time for Your Apps and APIs 109

Chapter 6 Document Databases in the Cloud 165

Chapter 7 Better Places Than Databases to Store Large Objects 195

Chapter 8 Deliver Valuable Information at the Speed Your
Business Needs 225

Chapter 9 Discovering Relationships Using Graph Databases 275

Chapter 10 Immutable Database and Traceable Transactions 295

Chapter 11 Caching Data with In- Memory Databases 313

Part III Deployment and Migration 337

Chapter 12 Migrating Your Data to AWS 339

Chapter 13 Disaster Recovery 369

Chapter 14 Save Time and Reduce Errors Automating Your
Infrastructure 389

Appendix Answers to Review Questions 421

Index 439

Contents

Introduction xxv

Assessment Test xxxv

Part I Workload- Specific Database Design 1

Chapter 1 Databases— from Your Server to AWS Cloud 3

Databases from the Beginning 4
1960s 5
1970s 5
1980s 6
1990s 7
2000–2010 7
2010–Today 8

Databases on Premises 9
Basic Infrastructure 9
Complex Infrastructure and Resiliency 9
Management 10

Databases in the Cloud 10
Data Remains Data 11
DBAs Are the Initial DevOps 11
DBA Career— Now What? 11

Summary 12

Chapter 2 Basic AWS Concepts 13

AWS Global Infrastructure 14
AWS Regions 14
AWS Availability Zones 14
AWS Local Zones 15
AWS Wavelength Zones 15
Points of Prescence 16

Networking 16
IP Addressing 17
Subnets 17
VPC Routing 17
Gateways and Connectivity Options 18

Security 21
Network Security 21
AWS Shared Responsibility Model 22
Identity and Access Management 24

xiv Contents

Data Encryption 25
Storage at AWS 26

Amazon Elastic Block Storage 27
Amazon Elastic File System 28
Amazon Simple Storage Service 29

Operations 31
Monitoring and Logging 32

Amazon CloudWatch 32
AWS CloudTrail 33

Summary 34

Chapter 3 Purpose- Built Databases 35

Data store Concepts 36
Data Access Patterns 37
Latency 37
Scaling 37
Transaction Support 38
Consistency 38
Volume 38
Durability 39
Availability 39
Security/Compliance 39
Business Logic 39
Cost 40

Purpose- Built Databases on AWS 40
Relational Databases 40
Nonrelational Databases 42

Summary 46
Exam Essentials 46
Review Questions 48

Part II Management and Operations, Database
Security, Monitoring and Troubleshooting
per Workload 51

Chapter 4 Relational Databases on AWS 53

Relational Databases 54
Structured Query Language 55
Install and Manage Databases Yourself 57

I/O Requirement 58
Managing Databases on EC2 60
Monitoring Databases on EC2 60
Scaling Databases 61
Upgrading Databases 61

Contents xv

Managed Services for Relational Databases 62
Launching an RDS Instance 63
Managing High Availability and Scalability 72
Configuring RDS Parameter Groups 74
Configuring RDS Option Groups 76
Deletion Protection 78
RDS Pricing Model 79

Amazon Aurora Cloud- Native Relational Database 79
Amazon Aurora Storage 80
Amazon Aurora DB Clusters 81
Amazon Aurora High Availability 82
Amazon Aurora Global Database 82
Amazon Aurora Read Replica Across Regions 84
Amazon Aurora Serverless 84
Amazon Aurora Multi- master 85
Patch Management and Upgrade 86
Monitoring and Performance Management 86
Backup and Restore 90
Backtrack 94
Cloning an Amazon Aurora DB Cluster Volume 94
Auditing 97
Database Activity Stream in Amazon Aurora 98
Security 98
Migrating Databases 101

Summary 101
Exam Essentials 101
Exercises 102
Review Questions 106

Chapter 5 Low- Latency Response Time for Your Apps
and APIs 109

Getting Started with Modern Applications and
NoSQL Databases 110

Amazon DynamoDB 112
Design Considerations 112
Migrating Your Data into DynamoDB 114
Query Considerations 116
Amazon DynamoDB Index Options 120
DynamoDB Capacity Modes 122
Other Features of DynamoDB 124
Backup/Restore 134
Scalability 136
Security 139
Monitoring 143

xvi Contents

Amazon Keyspaces 148
Design Considerations 148
Migrating Your Data into Keyspaces 149
Query Considerations 150
Keyspaces Capacity Modes 151
Consistency Models 152
Uses Cases 153
Best Practices 153
Backups 154
Scalability 155
Security 155
Monitoring 157

Summary 158
Exam Essentials 159
Exercises 159
Review Questions 162

Chapter 6 Document Databases in the Cloud 165

Introducing Document Databases 166
Getting Started with Amazon DocumentDB 170
Creating an Amazon DocumentDB

Cluster 174
Amazon DocumentDB Architecture 175
Security 177

Access Control 177
Data Protection 178
Other Features 179

Backup and Restore 180
Performance and Scaling 182
Compatibility between Amazon DocumentDB and MongoDB 182
Migrating from MongoDB to Amazon DocumentDB 183
Amazon DocumentDB Monitoring 184
Developing with Amazon DocumentDB 187
When to Use DynamoDB vs. DocumentDB 187
Amazon DocumentDB Pricing 188
Summary 189
Exam Essentials 189
Exercises 190
Review Questions 192

Chapter 7 Better Places Than Databases to Store
Large Objects 195

Databases and Large Objects 196
Introducing Amazon S3 198

Contents xvii

Costs of Amazon S3 vs. Elastic Block Storage 200
Moving LOBs to Amazon S3 204

Creating an S3 Bucket 204
Putting or Uploading Objects 206

Indexing LOBs in Amazon S3 208
Additional S3 Features 211

Backup and Dump Files 211
Other Use Cases 211
Pay per Usage and Scalability 212
Availability and Durability 213

Security 214
Access Control 214
Data Encryption 215

Summary 216
Exam Essentials 216
Exercises 217
Review Questions 219

Chapter 8 Deliver Valuable Information at the
Speed Your Business Needs 225

Information Latency 226
Data Warehouses 229

Database Engines for Data Warehouses 231
Migrating Data Warehouses to Amazon Redshift Using

AWS SCT 233
Amazon Redshift 235

Redshift Cluster Architecture 235
Table Design in Redshift 235
Loading Data into Redshift 240
Data Lakes in AWS 241
Redshift Spectrum 242
Redshift Federated Queries 242
Data Lakehouse 242
Redshift Cluster Node Types 243
Redshift Monitoring 244
Redshift Scalability 245
Redshift Security 246
Redshift Data Resilience and Backup 247

Time- Series Databases 249
Amazon Timestream 251

Amazon Timestream Architecture 252
Loading Data into Amazon Timestream 253
Querying Data from Amazon Timestream 254
Amazon Timestream Monitoring 255

xviii Contents

Amazon Timestream Scalability 255
Amazon Timestream Security 256
Amazon Timestream Data Resilience and Backup 257

Amazon OpenSearch Service 257
Amazon OpenSearch Service Domain Architecture 257
Loading Data to Amazon OpenSearch Service 257
Searching for Data in Amazon OpenSearch Service 258
Amazon OpenSearch Service Monitoring 259
Amazon OpenSearch Service Scalability 259
Amazon OpenSearch Service Security 259
Amazon OpenSearch Service Data Resilience and Backup 259

Summary 260
Exam Essentials 261
Exercises 261
Review Questions 271

Chapter 9 Discovering Relationships Using Graph Databases 275

Graph Databases 276
When to Use Graph Databases 277
Common Use Cases 278

Amazon Neptune 279
High- Level Architecture 279
Graph Models and Query Languages 280
Using and Extracting Data from Amazon Neptune 282
Storage Architecture 284
Data Resilience 284
Read Replicas 284
Scalability 286
Availability 287
Failover Policy 287
Security 288
Automatic Backup and Restore 289
Monitoring 290

Summary 291
Exam Essentials 291
Review Questions 292

Chapter 10 Immutable Database and Traceable Transactions 295

Amazon Quantum Ledger Database 296
Amazon QLDB Components 297
Working with Amazon QLDB 300
Backup and Durability 303
Performance and Scalability 304

Contents xix

Security 305
Monitoring 306
Best Practices 307

Summary 307
Exam Essentials 308
Exercises 308
Review Questions 311

Chapter 11 Caching Data with In- Memory Databases 313

Built- in Database Cache 314
Local Application Cache 315
In- Memory Databases 315
Caching Use Cases 315
Remote Cache Strategies 316
Caching Data in AWS 317
Caching Data with ElastiCache 319

Memcached or Redis? 319
Memcached Architecture on Amazon

ElastiCache Service 320
Redis Architecture on the Amazon

ElastiCache Service 321
Backup and Restore 324
Security 324
Monitoring 325

Amazon MemoryDB for Redis 325
Summary 326
Exam Essentials 326
Exercises 327
Review Questions 334

Part III Deployment and Migration 337

Chapter 12 Migrating Your Data to AWS 339

Network Communication and Data Migration 340
Optimizing Bandwidth Usage 343

Database Migration to AWS 343
AWS Schema Conversion Tool 344
AWS Data Migration Service 347

Setting Up AWS DMS 350
AWS DMS Continuous Replication 352
AWS DMS Best Practices 353
AWS DMS Security 356
AWS DMS Resilience 356

xx Contents

Other AWS Services for Data Migration 357
AWS DataSync 357
AWS Snow Family 357
AWS Storage Gateway 358

Choosing the Migration Path 358
One or Many Target Databases 358
Small, Noncritical Databases 359
Very Large Databases 359

Summary 360
Exam Essentials 360
Exercises 361
Review Questions 365

Chapter 13 Disaster Recovery 369

Understanding and Planning Disaster Recovery Requirements 370
Recovery Point Objective and Recovery Time Objective 371
Challenges in Disaster Recovery 371
Managing Disaster Recovery Strategies 373

Backup and Recovery Strategy 373
Database Replication Methods: Multi- AZ and

Cross- Region Replication 373
Databases Deployed on EC2 374
Amazon RDS 375
Amazon Aurora 378
Amazon Neptune 383

Summary 384
Exam Essentials 384
Review Questions 386

Chapter 14 Save Time and Reduce Errors Automating Your
Infrastructure 389

AWS CloudFormation 390
Components 393
Important Concepts 400
Updating AWS CloudFormation Stacks 403
Deleting AWS CloudFormation Stacks 408

AWS Systems Manager Parameter Store 409
AWS Secrets Manager 411
Summary 415
Exam Essentials 415
Review Questions 416

Contents xxi

Appendix Answers to Review Questions 421

Chapter 3: Purpose- Built Databases 422
Chapter 4: Relational Databases on AWS 422
Chapter 5: Low- Latency Response Time for Your Apps

and APIs 424
Chapter 6: Document Databases in the Cloud 425
Chapter 7: Better Places Other Than Databases to Store

Large Objects 426
Chapter 8: Deliver Valuable Information at the Speed

Your Business Needs 427
Chapter 9: Discovering Relationships Using Graph

Databases 429
Chapter 10: Immutable Database and Traceable

Transactions 431
Chapter 11: Caching Data with In- Memory Databases 432
Chapter 12: Migrating Your Data to AWS 433
Chapter 13: Disaster Recovery 434
Chapter 14: Save Time and Reduce Errors Automating

Your Infrastructure 436

Index 439

Table of Exercises
Exercise 4.1 Create an Amazon RDS MySQL and enable multi- AZ 103

Exercise 4.2 Create an Amazon Aurora cluster . 104

Exercise 4.3 Add an Amazon Aurora replica and modify the priority 105

Exercise 5.1 Create a DynamoDB Table and Populate It . 160

Exercise 5.2 Create a Global Secondary Index . 160

Exercise 5.3 Query the Data on Your Table . 161

Exercise 5.4 Clean Up the Created Resources . 161

Exercise 6.1 Create a Secure Amazon DocumentDB Cluster . 190

Exercise 6.2 Apply a Custom Parameter Group in Your Cluster 190

Exercise 7.1 Create a Secure S3 Bucket for Your LOBs . 217

Exercise 7.2 Create a Lifecycle Rule for Your S3 Bucket . 218

Exercise 7.3 Enable Versioning for S3 . 218

Exercise 8.1 Create an Amazon Redshift Cluster . 262

Exercise 8.2 Use the Query Editor to Create and Interact with a Table 262

Exercise 8.3 Use the Query Editor to Insert Data and Export Resultset 264

Exercise 8.4 Take a Manual Snapshot of Your Cluster . 265

Exercise 8.5 Explore the Resize Options for Your Cluster . 266

Exercise 8.6 Destroy Your Cluster . 266

Exercise 8.7 Create an Amazon Timestream Database . 267

Exercise 8.8 Run Sample Queries on Amazon Timestream . 267

Exercise 8.9 Delete Your Amazon Timestream Database . 268

Exercise 8.10 Create an Amazon OpenSearch Service Domain . 268

Exercise 8.11 Log In to Your Amazon OpenSearch Service Domain 269

Exercise 8.12 Delete Your Amazon OpenSearch Service Domain 270

Exercise 10.1 Create a New Amazon QLDB Ledger Database . 309

Exercise 10.2 Load the Sample Data . 309

Exercise 10.3 Query the Data . 309

Exercise 10.4 Request a Digest and Perform a Document Revision 310

Exercise 11.1 Create an Amazon Linux EC2 Machine to Be Your Bastion Host 327

Exercise 11.2 Create a Memcached Cluster . 328

Exercise 11.3 Cache Data with the pymemcache Python Library 330

Exercise 11.4 Create a Redis Cluster . 331

Exercise 11.5 Cache Data with the Redis Library for the Python Library 332

xxiv Table of Exercises

Exercise 11.6 Delete the Resources to Avoid Unnecessary Costs 333

Exercise 12.1 Create a MariaDB RDS . 361

Exercise 12.2 Create an Aurora PostgreSQL Target Database . 361

Exercise 12.3 Create an EC2 Bastion Host to Install the AWS SCT 362

Exercise 12.4 Set Up JDBC Drivers and Schema in EC2 . 362

Exercise 12.5 Convert the Schema . 363

Exercise 12.6 Migrate the Data . 363

Exercise 12.7 Delete the AWS Resources . 364

Introduction
In 2022, 97 zettabytes of data were created, copied, captured, and consumed, and 181 zet-
tabytes are projected by 2025. Databases play a crucial role in this data world. Over the last
decade, database technologies matured: from tiime series to graph, from ledger to key- value,
from relational to nonrelational. It’s undeniable: the database field is flourishing. Under-
standing and applying the concepts covered in this book will improve your contributions
and impact as a DBA, developer, architect, or analyst.

The purpose of this book is to help you pass the AWS Certified Database – Specialty
exam. As of the writing of this book, the exam is composed of 65 questions, either multiple
response or multiple choice, with a total length of 180 minutes.

Don’t just study the questions and answers! The questions on the actual
exam will be different from the practice questions included in this book.
The exam is designed to test your knowledge of a concept or objective,
so use this book to learn the objectives behind the questions.

Non-native English speakers can request a 30- minute exam
extension when taking the exam in English. For more information,
check https://aws.amazon.com/certification/policies/
before- testing.

When reading exam questions, try to outline the key requirements, and
work backwards from the responses. This will help you eliminate wrong
responses from the start, saving time.

What Does This Book Cover?
This book covers the topics outlined in the AWS Certified Database – Specialty (DBS- C01)
exam guide available here:

https://d1.awsstatic.com/training- and- certification/docs- database-
specialty/AWS- Certified- Database- Specialty_Exam- Guide.pdf

Chapters follow a logical evolution of the workload- specific types of databases and their
use cases, and they cover monitoring, troubleshooting and security features.

Chapter 1: Databases—From Your Server to AWS Cloud This chapter presents an evo-
lution of databases and the differences of managing databases on premises and in the

https://aws.amazon.com/certification/policies/before-testing
https://aws.amazon.com/certification/policies/before-testing
https://d1.awsstatic.com/training-and-certification/docs-database-specialty/AWS-Certified-Database-Specialty_Exam-Guide.pdf
https://d1.awsstatic.com/training-and-certification/docs-database-specialty/AWS-Certified-Database-Specialty_Exam-Guide.pdf

xxvi Introduction

AWS cloud. It presents important concepts and features of a self- managed database in
AWS, configuring a database using Amazon EC2, and understanding the limitations. It
also introduces database options in AWS.

Chapter 2: Basic AWS Concepts This chapter introduces the basics of AWS infrastruc-
ture, networking, security, storage, and operations, which are important to understand
when designing database solutions in AWS. If you are very experienced with AWS com-
ponents, you may want to skip this chapter; otherwise, take your time to learn more
about AWS regions, availability zones, edge locations, VPC, VPN, direct connect, net-
work connectivity, network security, security model, identity and access management,
data encryption, block storage, file storage, object storage, monitoring, logging, and
auditing.

Chapter 3: Purpose- Built Databases This chapter discusses workload- specific database
design. It introduces how to evaluate application requirements and datastore character-
istics, taking into consideration several important aspects: data access patterns, latency,
scaling, transaction support, consistency, volume, durability, availability, security and
compliance, business logic, and cost. It concludes by presenting a comprehensive way to
compare the requirements with AWS managed services for databases.

Chapter 4: Relational Databases on AWS This chapter presents transactional data-
bases in AWS with a focus on relational databases, which are mostly used to support
transactional environments using concepts of ACID transactions. It presents options
for managing and installing relational databases on Amazon EC2, storage requirements
and options on AWS, and monitoring, updating, and scale options for this type of instal-
lation. A large part of this chapter is dedicated to Amazon RDS, including the engine
options and a deep dive into Amazon Aurora, covering all the topics related to RDS:
deployment, migration options, management, operations, monitoring, troubleshooting,
and database security.

Chapter 5: Low- Latency Response Time for Your Apps and APIs This chapter intro-
duces the concepts of low- latency and NoSQL databases, presenting two low- latency
database services on AWS: Amazon DynamoDB and Amazon Keyspaces (for Apache
Cassandra). It details Amazon DynamoDB table design tenets as well as partition and
sort key definitions, indexing options, queries, scans, transactions, caching, and global
options. For Amazon Keyspaces (for Apache Cassandra) it presents partitions, clustering
keys, and static columns concepts. It also covers all the topics related to DynamoDB and
Keyspaces: capacity, deployment, scalability, migration options, management, opera-
tions, monitoring, troubleshooting, and database security.

Chapter 6: Document Databases in the Cloud This chapter discusses document
database concepts and options in AWS. It presents Amazon DocumentDB (with
MongoDB compatibility) with its resilient storage layer and the key architecture com-
ponents such as cluster, instance, and reader endpoints. The chapter covers details of
the topics related to Amazon DocumentDB: capacity, deployment, scalability, migration
options, management, operations, monitoring, troubleshooting, and database security.

Introduction xxvii

Chapter 7: Better Places Than Databases to Store Large Objects This chapter presents
the concept of large objects and how they were handled before AWS and how they are
handled with the availability of AWS options. It introduces Amazon S3, compares it to
other AWS storage options, and goes into the details of S3 storage classes, data load and
retrieval, life- cycle management, operations, monitoring, access control, and security.

Chapter 8: Deliver Valuable Information at the Speed Your Business Needs This
chapter describes how to store and use analytics and time series and operational data,
with purpose- built databases in AWS to extract value for business. It introduces the
information latency concept, presents Amazon Redshift and Amazon Timestream in
detail, and also mentions Amazon OpenSearch, a topic that is not covered on the exam.
For Amazon Redshift, the chapter goes into the details of table design, loading data,
cluster architecture, and cluster options. For Amazon Timestream, it also covers the
architecture and loading data options. For Amazon Redshift and Amazon Timestream, it
goes into detail on deployment, scalability, migration options, management, operations,
monitoring, troubleshooting, and database security.

Chapter 9: Discovering Relationships Using Graph Databases This chapter discusses
the concepts of graph databases and their usage to handle relationships between data
items. It presents the basic concepts of graph databases and then goes deep into Amazon
Neptune data loading and query options, cluster architecture, scalability, migration
options, management, operations, monitoring, troubleshooting, and database security.

Chapter 10: Immutable Database and Traceable Transactions This chapter introduces
the concept of immutable databases and the AWS service Amazon Quantum Ledger
Database (QLDB). It goes into the details of Amazon QLDB and how it ensures no data
can be modified or deleted after it is inserted, using an immutable transaction log. It dis-
cusses the Amazon QLDB components: ledger, table, document, journal, query engine,
and cryptographic verification. It also presents how to load data to and query data from
Amazon QLDB, as well as service scalability, management, operations, monitoring, trou-
bleshooting, and database security.

Chapter 11: Caching Data with In- Memory Databases This chapter presents caching
strategies and how AWS services can help to implement them. It introduces Amazon
ElastiCache service for Redis and Memcached and also Amazon MemoryDB, discussing
their features and how they can handle caching requirements and strategies. It also dis-
cusses in detail how to distribute data in each engine and how to address deployment,
scalability, migration options, management, operations, monitoring, troubleshooting,
and database security.

Chapter 12: Migrating Your Data to AWS This chapter presents the options to migrate
data to AWS database services. It discusses network communication and specialized
database migration services like AWS SCT and AWS DMS, which are native database
tools that help in data migration for each engine, including AWS DataSync, AWS Snow
Family, and AWS Storage Gateway. It also details database migration strategy and
downtime minimization along with security and resilience options and requirements.

xxviii Introduction

Chapter 13: Disaster Recovery This chapter discusses disaster recovery requirements
and strategies for database applications in AWS. It presents the concepts of RTO and
RPO and how they are affected by the deployment and replication strategies. It also
explores how AWS managed services for databases handle data resilience and replication
using Multi- AZ and global database options.

Chapter 14: Save Time and Reduce Errors Automating Your Infrastructure This
chapter introduces the concept of infrastructure as code (IaC) and how this relates to
database deployment and management. It presents AWS CloudFormation and goes
into the details of how to simplify infrastructure management using templates, stacks,
and change sets. It also discusses best practices related to database security and access
management, using AWS System Manager Parameter and AWS Secrets Manager.

Interactive Online Learning
Environment and Test Bank
Studying the material in the AWS® Certified Database Study Guide: Specialty (DBS- C01)
Exam is an important part of preparing for the AWS Certified Database Specialty (DBS-
C01) certification exam, but we provide additional tools to help you prepare. The online test
bank helps you understand the types of questions that appear on the certification exam. The
online test bank runs on multiple devices.

 ■ Sample tests: The sample tests in the test bank include all the questions at the end of
each chapter as well as the questions from the assessment test. In addition, there are two
practice exams with 50 questions each. You can use these tests to evaluate your under-
standing and identify areas that may require additional study.

 ■ Flashcards: The flashcards in the test bank will push the limits of what you should know
for the certification exam. There are 100 questions that are provided in digital format.
Each flashcard has one question and one correct answer.

 ■ Glossary: The online glossary is a searchable list of key terms introduced in this exam
guide that you should know for the AWS Certified Database Specialty (DBS- C01)
certification exam.

Visit www.wiley.com/go/sybextestprep to register and gain access to this interac-
tive online learning environment and test bank with study tools. To start using these tools to
study for the AWS Certified Database Specialty (DBS- C01) exam, go to www.wiley.com/
go/sybextestprep, register your book to receive your unique PIN, and once you have the

http://www.wiley.com/go/sybextestprep
www.wiley.com/go/sybextestprep
www.wiley.com/go/sybextestprep

Introduction xxix

PIN, return to www.wiley.com/go/sybextestprep, find your book, and click register or
log in and follow the link to register a new account or add this book to an existing account.

Like all exams, the Certified Database – Specialty certification from AWS
is updated periodically and may eventually be retired or replaced. At
some point after AWS is no longer offering this exam, the old editions of
our books and online tools will be retired. If you have purchased this book
after the exam was retired, or are attempting to register in the Sybex
online learning environment after the exam was retired, please know that
we make no guarantees that this exam’s online Sybex tools will be avail-
able once the exam is no longer available.

AWS Certified Database Study Guide –
Specialty (DBS- C01) Exam Objectives
This study guide has been written to cover every AWS Certified Database – Specialty (DBS-
C01) exam objective at a level appropriate to its exam weighting. The domains, subdomains,
and objectives are taken from the AWS guide that’s available here:

https://d1.awsstatic.com/training- and- certification/docs- database-
specialty/AWS- Certified- Database- Specialty_Exam- Guide.pdf

The following table provides a breakdown of this book’s exam coverage, showing you the
weighting of each section and the chapter where each objective or subobjective is covered:

Subject Area % of Examination

Domain 1: Workload- Specific Database Design 26%

Domain 2: Deployment and Migration 20%

Domain 3: Management and Operations 18%

Domain 4: Monitoring and Troubleshooting 18%

Domain 5: Database Security 18%

Total 100%

www.wiley.com/go/sybextestprep
https://d1.awsstatic.com/training-and-certification/docs-database-specialty/AWS-Certified-Database-Specialty_Exam-Guide.pdf
https://d1.awsstatic.com/training-and-certification/docs-database-specialty/AWS-Certified-Database-Specialty_Exam-Guide.pdf

xxx Introduction

Exam domains and objectives are subject to change at any time without
prior notice and at AWS Certified Database – Specialty (DBS- C01)’s
sole discretion. Please visit the website (https://d1.awsstatic.com/
training- and- certification/docs- database- specialty/AWS-
Certified- Database- Specialty_Exam- Guide.pdf) for the most
current information.

Objective Map

Objective Chapter

Domain 1: Workload- Specific Database Design

1.1: Select appropriate database services for specific types
of data and workloads.

Differentiate between ACID and BASE workloads 3, 4, 5, 6, and 10

Explain appropriate uses of types of databases (e.g.,
relational, key- value, document, in- memory, graph, time
series, ledger)

3

Identify use cases for persisted data vs. ephemeral data 3 and 14

1.2: Determine strategies for disaster recovery and high
availability.

Select Region and Availability Zone placement to optimize
database performance

2

Determine implications of Regions and Availability Zones on
disaster recovery/high availability strategies

2 and 13

Differentiate use cases for read replicas and Multi- AZ
deployments

4 and 6

1.3: Design database solutions for performance, compliance,
and scalability.

Recommend serverless vs. instance- based database
architecture

2, 4, 5, and 10

Evaluate requirements for scaling read replicas 4 and 6

Define database caching solutions 14

Evaluate the implications of partitioning, sharding, and
indexing

4, 5, 6, 8, and 14

https://d1.awsstatic.com/training-and-certification/docs-database-specialty/AWS-Certified-Database-Specialty_Exam-Guide.pdf
https://d1.awsstatic.com/training-and-certification/docs-database-specialty/AWS-Certified-Database-Specialty_Exam-Guide.pdf
https://d1.awsstatic.com/training-and-certification/docs-database-specialty/AWS-Certified-Database-Specialty_Exam-Guide.pdf

Introduction xxxi

Objective Chapter

Determine appropriate instance types and storage options 4, 6, and 8

Determine auto- scaling capabilities for relational and NoSQL
databases

5

Determine the implications of Amazon DynamoDB adaptive
capacity

5

Determine data locality based on compliance requirements 2 and 13

1.4: Compare the costs of database solutions.

Determine cost implications of Amazon DynamoDB capacity
units, including on- demand vs. provisioned capacity

5

Determine costs associated with instance types and automatic
scaling

4, 6, 8, 9, 13, and 14

Design for costs including high availability, backups,
multiregion, Multi- AZ, and storage type options

4, 5, 6, 7, 8, 9, 13, and 14

Compare data access costs 4, 5, 6, 7, 8, and 14

Domain 2: Deployment and Migration

2.1: Automate database solution deployments.

Evaluate application requirements to determine components
to deploy

3

Choose appropriate deployment tools and services (e.g., AWS
CloudFormation, AWS CLI)

4, 5, 6, 7, 8, 9, 10, 11,
and 14

2.2: Determine data preparation and migration strategies.

Determine the data migration method (e.g., snapshots, repli-
cation, restore)

12

Evaluate database migration tools and services (e.g., AWS
DMS, native database tools)

12

Prepare data sources and targets 12

Determine schema conversion methods (e.g., AWS Schema
Conversion Tool)

12

Determine heterogeneous vs. homogeneous migration
strategies

12

2.3: Execute and validate data migration.

xxxii Introduction

Objective Chapter

Design and script data migration 12

Run data extraction and migration scripts 12

Verify the successful load of data 12

Domain 3: Management and Operations

3.1: Determine maintenance tasks and processes.

Account for the AWS shared responsibility model for
database services

2

Determine appropriate maintenance window strategies 4 and 13

Differentiate between major and minor engine upgrades 4

3.2: Determine backup and restore strategies.

Identify the need for automatic and manual backups/
snapshots

4, 5, 6, 7, 8, 9, 10, 13,
and 14

Differentiate backup and restore strategies (e.g., full backup,
point- in- time, encrypting backups cross- region)

4, 5, 6, 7, 8, 9, 10, 13,
and 14

Define retention policies 4, 5, 6, 7, 8, 9, 10, 11, 13,
and 14

Correlate the backup and restore to recovery point objective
(RPO) and recovery time objective (RTO) requirements

4, 5, 6, 7, 8, 9, 10, 13,
and 14

3.3: Manage the operational environment of a database
solution.

Orchestrate the refresh of lower environments 4

Implement configuration changes (e.g., in Amazon RDS
option/parameter groups or Amazon DynamoDB indexing
changes)

4, 5, 6, 8, 9, and 14

Automate operational tasks 4, 5, 6, 8, and 11

Take action based on AWS Trusted Advisor reports (topic
addressed on monitoring, cost, performance, resilience, and
security configurations of each chapter)

4, 5, 6, 8, 10, 11, 13,
and 14

Domain 4: Monitoring and Troubleshooting

4.1: Determine monitoring and alerting strategies.

Introduction xxxiii

Objective Chapter

Evaluate monitoring tools (e.g., Amazon CloudWatch,
Amazon RDS Performance Insights, database native)

4, 5, 6, 8, 9, 10, and 14

Determine appropriate parameters and thresholds for alert
conditions

4, 5, 6, 8, 9, 10, and 14

Use tools to notify users when thresholds are breached
(e.g., Amazon SNS, Amazon SQS, Amazon CloudWatch
dashboards)

2, 4, 6, 8, and 14

4.2: Troubleshoot and resolve common database issues.

Identify, evaluate, and respond to categories of failures (e.g.,
troubleshoot connectivity; instance, storage, and partitioning
issues)

4, 5, 6, 8, 10, 11, and 14

Automate responses when possible 2, 4, 6, 8, and 14

4.3: Optimize database performance.

Troubleshoot database performance issues 4, 5, 6, 8, 9, 10, and 14

Identify appropriate AWS tools and services for database
optimization

4, 5, 6, 8, 9, 10, and 14

Evaluate the configuration, schema design, queries, and
infrastructure to improve performance

4, 5, 6, 8, 9, 10, and 14

Domain 5: Database Security

5.1: Encrypt data at rest and in transit.

Encrypt data in relational and NoSQL databases 4, 5, 6, 7, 8, 9, 10, and 14

Apply SSL/TLS connectivity to databases 4, 5, 6, 7, 8, 9, 10, and 12

Implement key management (e.g., AWS KMS, AWS
CloudHSM)

4, 5, 6, 7, 8, 9, 10, 11, 12,
and 14

5.2: Evaluate auditing solutions.

Determine auditing strategies for structural/schema changes
(e.g., DDL)

4, 6, 8, and 10

Determine auditing strategies for data changes (e.g., DML) 4, 6, 8, and 10

Determine auditing strategies for data access (e.g., queries) 4, 6, 8, and 10

Determine auditing strategies for infrastructure changes
(e.g., AWS CloudTrail)

2, 5, 6, 8, 10, and 11

xxxiv Introduction

Objective Chapter

Enable the export of database logs to Amazon CloudWatch
Logs

2, 4, 6, 8, and 10

5.3: Determine access control and authentication mechanisms.

Recommend authentication controls for users and roles (e.g.,
IAM, native credentials, Active Directory)

2, 4, 5, 6, 7, 8, 10, and 14

Recommend authorization controls for users (e.g., policies) 2, 4, 5, 6, 7, 8, and 10

5.4: Recognize potential security vulnerabilities within data-
base solutions.

Determine security group rules and NACLs for database
access

2, 4, 6, 8, 9, and 14

Identify relevant VPC configurations (e.g., VPC endpoints,
public vs. private subnets, demilitarized zone)

2, 4, 5, 6, 8, 9, and 14

Determine appropriate storage methods for sensitive data 2, 5, 7, and 11

How to Contact the Publisher
If you believe you’ve found a mistake in this book, please bring it to our attention. At John
Wiley & Sons, we understand how important it is to provide our customers with accurate
content, but even with our best efforts an error may occur.

To submit your possible errata, please email it to our Customer Service Team at
wileysupport@wiley.com with the subject line “Possible Book Errata Submission.”

mailto:wileysupport@wiley.com

Assessment Test xxxv

Assessment Test
1. Understanding an application’s data access patterns is important to define the best database

for each workload.

A. True

B. False

2. Nonrelational databases don’t offer transactions with ACID compliance.

A. True

B. False

3. AWS offers a fully managed graph database.

A. True

B. False

4. You are the database specialist for a financial company, and the database is hosted on
Amazon RDS for PostgreSQL. You receive complaints from the app team that at some
specific moments, the application is unable to respond to any requests. They have asked for
your support to investigate what is going on. What action can you take to support this tuning
process with minimal effort and minimal cost? (Choose two.)

A. Enable database encryption.

B. Enable Performance Insights for seven days.

C. Enable Performance Insights for two years.

D. Enable enhanced monitoring, setting an appropriate granularity.

5. You are in charge of developing an application for an online store, with RDS for PostgreSQL
database for data persistence. For security reasons, the application development team does
not want to use a password to connect to the database. Which authentication method avail-
able in RDS PostgreSQL will best meet the described requirement?

A. Require that passwords are needed to authenticate logins to all relational databases.

B. IAM database authentication.

C. Kerberos authentication.

D. Store the password in an S3 file with encryption enabled and write the app code to
check the file for the information that’s required to connect to the database.

6. You work for a utility company and have been informed that to meet regulatory require-
ments, backups generated at the end of each month must be kept secure for one year. The
database must be able to be restored on the same engine that originated this backup. How
can you best meet this requirement with minimal effort?

A. Modify the RDS database’s automated backup to retain backups for one year.

B. Use manual snapshots so you can handle the retention period differently than the
automated backup.

C. Export the database snapshot to Amazon S3.

D. Use mysqldump for RDS for MySQL and pg_dump for RDS for PostgreSQL, and store
the dump in Amazon S3.

xxxvi Assessment Test

7. Which of the following AWS database services implements a NoSQL database engine?

A. Amazon DynamoDB

B. Amazon Aurora

C. Amazon Quantum Ledger Database (QLDB)

D. Amazon Keyspaces

8. You can design a DynamoDB table with a multi- attribute partition key.

A. True

B. False

9. How can you handle Amazon DynamoDB scalability?

A. You can leverage the Application Auto Scaling service to automatically adjust the provi-
sioned capacity units.

B. You need to configure the minimum and maximum DynamoDB data processing units
(DPUs) so the service will automatically scale accordingly.

C. You can enable the DynamoDB on- demand capacity mode so the service will automati-
cally scale to support the demands of your application.

D. You can scale up and down the DynamoDB instance compute capacity, and you can also
scale out by adding read replicas.

10. What are the access options available in DynamoDB?

A. You can connect to DynamoDB via TCP with the JDBC driver for DynamoDB.

B. You can access Amazon DynamoDB using the AWS Management Console, the AWS
Command Line Interface (AWS CLI), or the DynamoDB API.

C. You can download and use the NoSQL Workbench for data plane and data visualization
operations.

D. DynamoDB is accessible only via Amazon Virtual Private Cloud by using the
DynamoDB API.

11. A company is looking for a centralized blockchain solution for a digital car passport applica-
tion. What AWS service can fulfill the customer requirement?

A. LedgerDB running on Amazon EC2

B. Amazon Managed Blockchain with Ethereum

C. Amazon Managed Blockchain with Hyperledger Fabric

D. Amazon Quantum Ledger Database (QLDB)

12. How can you handle Amazon QLDB scalability?

A. You can leverage the Application Auto Scaling service.

B. You need to configure the QLDB read and write capacity units so the service will
automatically scale accordingly.

C. QLDB automatically scales to support the demands of your application.

D. You can scale up and down the Amazon QLDB instance compute capacity, and you can
also scale out by adding read replicas.

Assessment Test xxxvii

13. In AWS you can use multiple managed database services, but when you have large objects
like videos, pictures, and binary files to store, you should consider using Amazon S3 to store
them and use a database only to index the files with their metadata.

A. True

B. False

14. For storage options for large objects in AWS, verify which of the following statements is
correct:

A. Amazon S3 and Amazon EBS have the same cost per gigabyte, so it makes no difference
which one you use to store large objects.

B. Amazon S3 and Amazon EBS have APIs to put and retrieve objects directly.

15. To protect the data for security reasons, you should always consider encryption for database
services, in transit and at rest. This also applies to storage services like Amazon S3.

A. True

B. False

16. Amazon Redshift is a managed database service that can handle analytics queries of any
complexity for historical data analysis, with an information latency from minutes to hours.

A. True

B. False

17. When considering a time- series dataset from sensor measurements and storing the data and
making comparisons between different periods of time, you should use Amazon
DocumentDB, which has time-series built- in functions using real- time and historical data.

A. True

B. False

18. When considering databases with analytics capabilities in AWS, evaluate which of the follow-
ing options is true.

A. Amazon Redshift offers a full data warehouse, plus a flexible way to join internal data
with data lake data.

B. Amazon Timestream doesn’t provide a fast, near real- time ingestion and analysis of time-
series data.

19. You are the solution architect responsible for the deployment of a fraud detection solution on
Amazon Neptune. You have been informed that all audit information, including information
such as the timestamp, IP address, and payload, must be available to enterprise security audi-
tors. How can you best meet this requirement with minimal effort?

A. Modify the Amazon Neptune cluster to export the audit log, so the logs will be pub-
lished on Amazon CloudWatch Logs.

B. Write a Lambda function that will store the required information in Amazon S3 in CSV
files, so the auditors will be able to query the information using Amazon Athena.

C. Use Amazon CloudWatch to monitor database activity.

D. Use AWS CloudTrail to track database activity.

xxxviii Assessment Test

20. Which graph model represents graph elements by vertices and edges?

A. Resource Description Framework (RDF)

B. Relational database model

C. Property graph

D. openCypher

21. Which statement uses the Gremlin language to perform a lookup for John’s friends?

A.

select name from friendship_table

where friend_of = 'john';
B.

select ?names where {
?howard :name "john" .
?howard :friend/:friend/:name ?names .
}
C.

MATCH (user:User {name: 'john'})- [r1:FRIEND]- ()- [r2:FRIEND]
- (friend_of_a_friend)
RETURN friend_of_a_friend.name AS fofName
D.

g.V().has('name', john).out('friend').out('friend').values('name')

22. You are the solution architect responsible for recommending an engine solution deployment.
The team is concerned about storage scalability. Which statement is true? (Choose two.)

A. Amazon Neptune Storage grows automatically up to 128 TiB.

B. Issuing drop commands like g.V().drop() will reduce the allocated storage.

C. Amazon Neptune Storage grows automatically up to 64 TiB.

D. Neptune automatically extends the cluster volume by adding new segments of 10 GB.

23. For large database migration from on- premises databases to AWS, check which of the follow-
ing options is true:

A. Use an AWS Site- to- Site VPN, as it supports up to 100 Gbps.

B. Use an AWS Direct Connect connection that can support up to 100 Gbps.

24. AWS DMS and AWS SCT can’t be used together for a database migration where the source
and target databases are from different database engines.

A. True

B. False

Assessment Test xxxix

25. AWS provides tools to minimize downtime when migrating from on- premises MySQL data-
bases to Amazon RDS for MySQL, using AWS DMS for existing data migration and ongoing
replication.

A. True

B. False

26. You are the database specialist at ABC Bank and are tasked with architecting a cross- region
database replication with the following requirements:

 ■ High throughput rates

 ■ Low replica lag

 ■ Fast recovery

 ■ Replicate the database to three remote regions

Which database deployment will be most appropriate?

A. Deploy an Amazon Aurora cluster with three replicas.

B. Deploy an RDS for PostgreSQL with Multi- AZ enabled.

C. Deploy an RDS for PostgreSQL with cross- region read replica in a remote region.

D. Deploy an Aurora global database, with the primary cluster in the main region and three
secondary clusters in three remote regions.

27. Your company has deployed the database on RDS for Oracle and requires replicating the
database to a second region for disaster recovery. It must be available for read operations,
and some replication lag is acceptable. Which replication alternative will allow the replica-
tion with the least effort?

A. Launch an Aurora global database in a second region and replicate using AWS DMS.

B. Deploy a cross- region read replica of RDS for Oracle in a second region.

C. Launch a new RDS for Oracle in a second region and replicate using AWS DMS.

D. Enable backup replication for a second region.

28. You are the solution architect responsible for developing an application that will be avail-
able in two AWS regions. The tables must be available for reading and writing in the primary
region and available for reading in the second region. The database must allow graph model
deployment and can be promoted in the second region for both planned and unplanned
failover. Which solution will best meet these requirements?

A. Amazon Aurora global database with write forwarding

B. Amazon DynamoDB

C. Amazon Neptune global database

D. Amazon RDS PostgreSQL with cross- region read replica

xl Assessment Test

29. If you need to provide an extremely low- latency response time query, caching data in AWS,
you will have to install and manage software for cache, like Redis and Memcached, as AWS
doesn’t have managed services for this purpose.

A. True

B. False

30. The Memcached option for Amazon ElastiCache distributes the data across cluster nodes to
scale your environment, so you can control how data is distributed using a hash algorithm.

A. True

B. False

31. Amazon ElastiCache for Redis can be set in cluster mode disabled only, which limits it to one
node group (a single shard) per cluster.

A. True

B. False

Answers to Assessment Test xli

Answers to Assessment Test
1. A. Knowing which types of queries will be performed on the database is crucial to find the

right tool for the job, such as if the application needs simple key- value queries or aggregation
and multiple joins. For more information, please see Chapter 3.

2. B. Nonrelational databases have evolved through the past decade, and some engines offer
ACID- compatible transactions. For more information, please see Chapter 3 and Chapter 5.

3. A. Amazon Neptune is a fully managed graph database that supports graph queries using
SPARQL, Apache Gremlin, and openCypher. For more information, see Chapter 3 and
Chapter 9.

4. B, D. Enabling Performance Insights will allow you to see the database load and top queries
you want to start investigating; you can enable this feature for seven days at no additional
cost. By enabling enhanced monitoring, you can define the granularity to be collected
for easier analysis. Encryption will enable protection, but it will not be useful for tuning.
You cannot modify the database to enable it; you can enable encryption only at creation
time. Enabling Performance Insights for two years will incur an additional cost. For more
information, see Chapter 4.

5. B. By using IAM database authentication, the user will connect using an authentication
token; it won’t require a password. The password authentication method is wrong, as it is
not the only one available in the RDS for PostgreSQL. Depending on the method chosen to
connect to the database, it is subject to exposing the password. The Kerberos authentication
method is wrong, because it is more appropriate when you need to integrate with Active
Directory. Storing the password in an S3 file is wrong, as RDS for PostgreSQL already has a
more secure native alternative. Please see Chapter 4.

6. B. Manual snapshot backups never expire, and they are recommended for long- term
backups. The RDS database automated backup allows retention for 1 to 35 days but will
not meet the one-year retention requirement. Exporting a database snapshot to Amazon S3
is available for RDS for MySQL and RDS for PostgreSQL and will store the data in Apache
Parquet format. You will be able to read the data using Amazon Athena or Redshift, but
you will not be able to natively restore to the same database engine. RDS for MySQL sup-
ports the mysqldump utility, and RDS for PostgreSQL supports the pg_dump utility. While
it is possible, it will take a lot more effort to set up and automate the process. Please see
Chapter 4.

7. A, C, D. Amazon DynamoDB is a fully managed, serverless, key- value NoSQL database
designed to run high- performance applications at any scale. Amazon QLDB is a fully
managed NoSQL ledger database that provides a transparent, immutable, and cryptograph-
ically verifiable transaction log. Amazon Keyspaces (for Apache Cassandra) is a scalable,
highly available, and managed NoSQL wide- column database. Amazon Aurora is a relational
database management system (RDBMS) built for the cloud with full MySQL and PostgreSQL
compatibility. For more information, please see Chapter 5.

xlii Answers to Assessment Test

8. B. DynamoDB supports two kinds of primary keys:

1. Partition key is a simple primary key, composed of one attribute known as the parti-
tion key.

2. A partition key and sort key, also known as a composite primary key, is a type of key that
is composed of two attributes. The first attribute is the partition key, and the second attribute
is the sort key.

9. A, C. DynamoDB has two capacity modes: on- demand and provisioned. When you choose
on- demand mode, DynamoDB instantly accommodates your workloads traffic. With pro-
visioned mode, you specify the number of reads and writes per second that you require for
your application and use auto scaling to adjust your table’s provisioned capacity automati-
cally in response to traffic changes. Data processing units are used in AWS Glue. DynamoDB
is serverless; you don’t need to configure compute capacity or read replicas.

10. B, C. You can access Amazon DynamoDB using the AWS Management Console, the AWS
Command Line Interface (AWS CLI), or the DynamoDB API. You can also use the NoSQL
Workbench for Amazon DynamoDB. The NoSQL Workbench is a multiplatform GUI appli-
cation that you can use for modern database development and operations. There is no JDBC
driver for DynamoDB, and the access via VPC is optional; the DynamoDB API is publicly
accessible by default.

11. D. Hyperledger Fabric and Ethereum are centralized blockchains. Amazon (QLDB) is a fully
managed ledger database that provides a transparent, immutable, and cryptographically veri-
fiable transaction log.

12. C. Application Auto Scaling doesn’t support Amazon QLDB. With Amazon QLDB, you
don’t have to worry about provisioning capacity or configuring read and write limits.
Amazon QLDB is serverless; you don’t need to configure compute capacity or read replicas.

13. A. Amazon S3 is a fully managed object store service that is easy to integrate with the
command line and SDK. It also has life- cycle policies and encryption features that make it
easy and secure to use. For more information, please see Chapter 7.

14. A = False; B = False. Amazon S3 costs from 5 to 20 times less than Amazon EBS, depend-
ing on the S3 storage class in use. Also, only Amazon S3 has API commands through
the command line and the SDK to put and retrieve objects, while Amazon EBS needs to
be mounted as a filesystem in an operating system to receive and serve files. For more
information, please see Chapter 7.

15. A. When you need to protect sensitive data, you should consider encryption in transit, usu-
ally provided with TLS encryption for most AWS database services, and encryption at rest,
which can be easy to set up using AWS KMS. Both are supported by Amazon S3. For more
information, please see Chapter 7.

16. A. Amazon Redshift is a managed data warehouse system that uses columnar format and is
optimized to handle a large amount of data and aggregated queries. Redshift is not optimized
for near real time, as you should load the data in groups of records instead of performing

Answers to Assessment Test xliii

single records inserts, loading batches or records every 5 to 60 minutes, for example. It can
handle complex queries and deliver their results in milliseconds using a massive parallel
processing architecture. For more information, please see Chapter 8.

17. B. Amazon DocumentDB is a fully managed JSON document database, and although it can
store time- series data, it is not optimized for this use case and queries. Amazon Timestream
is a managed database service specialized in handling time- series datasets. It has built- in
times series functionality using views and functions that make it easier and faster to handle
complex queries for measurements or metrics data over time, compared to relational data-
bases. It can handle near real- time data, as it supports optimized inserts operation. For more
information, please see Chapter 8.

18. A = True; B = False. Amazon Redshift is a managed data warehouse system and can use Red-
shift Spectrum to work with external tables in a data lake on Amazon S3, joining them with
Redshift internal tables and extending its functionality. Amazon Timestream provides a fast,
near real- time ingestion and analysis of time- series data as a fully managed service with built-
 in functions and views specialized in time- series analysis. For more information, please see
Chapter 8.

19. A. You can enable the audit logs, which have the necessary information, and export them to
Amazon CloudWatch Logs. Writing code will take a lot more effort to implement. Amazon
CloudWatch demonstrates performance information such as CPU utilization and average
number of I/O writes, but not audit logs. AWS CloudTrail exclusively logs events for the
Neptune Management API, such as creating an instance or a cluster. Please see Chapter 9.

20. C. The property graph model represents elements by vertices and edges. The Resource
Description Framework (RDF) encodes the resource descriptions in subject- predicate- object
triples format. The relational database model represents tables with columns and rows.
openCypher is a property- graph query language, not a graph model. Please see Chapter 9.

21. D. Option D is the correct option because it represents the use of the Gremlin language.
Option A is wrong because it is using the SQL language. Option B is wrong because it is
using SPARQL. Option C is wrong because it is using openCypher. See Chapter 9.

22. A, D. Option A is correct because Amazon Neptune Storage grows up to 128 TiB. Option D
is correct because the storage extends in 10 GB blocks. Option B is wrong because when data
is removed using the drop command, the overall allocated space remains the same. Unused
allocated space is then reused automatically when the amount of data increases in the future.
Option C is wrong because Amazon Neptune Storage grows up to 128 TiB, which has been
true since February 2022. Please see Chapter 9.

23. A = False; B = True. AWS Site- to- Site has a limit of 1.25 Gbps per channel, so it doesn’t
support 100 Gbps connection throughput, while an AWS Direct Connect connection can be
established from 50 Mbps to 100 Gbps, which provides a faster way to migrate large data-
bases to AWS. You should also consider AWS Snow Family devices for very large database
migrations. For more information, please see Chapter 12.

24. B. AWS SCT facilitates heterogenous database migration, where the source and target
databases are from different database engines, converting the schemas from source to

xliv Answers to Assessment Test

target engine. AWS DMS migrates the data from source database tables to target database
tables and can be used with AWS SCT. For more information, please see Chapter 12.

25. A. AWS DMS has a migrate existing data and ongoing replication option that migrates exist-
ing data for tables, captures and applies changes that occur during and after the existing
data migration time, and synchronizes data from source to target until the time you decide to
complete the migration. MySQL and Amazon RDS for MySQL are supported as the target
and source for AWS DMS. For more information, please see Chapter 12.

26. D. The Aurora global database is capable of meeting all the described requirements. It
supports up to 200,000 writes/sec, the replica lag is less than one second, it allows you to
recover in less than one minute of downtime after a region’s unavailability, and it allows up
to five remote regions. Options A and B are wrong, because they don’t replicate to a remote
region; it is highly available in only one region. Option C is wrong because the cross- region
read replicas are subject to replication lag. Please see Chapter 13.

27. B. RDS allows you to create read replicas in a different AWS region for Amazon RDS Mari-
aDB, MySQL, Oracle, and PostgreSQL. Using a cross- region read replica, the database is
available for read operations, and you can promote the replicated instance to primary in a
failure situation. Option A is wrong, because it will take significant effort to set up. Option
C is wrong because it will also require significant effort to set up. Option D is wrong because
the backup replication will not keep the database available for read operations. Please see
Chapter 13.

28. C. Option C is correct because Amazon Neptune is a graph database and allows cross- region
replication via an Amazon Neptune global database. You can perform managed planned
failover for planned operational activities or promote the secondary region to recover from
an unplanned outage in the primary region. Option A is wrong because Amazon Aurora is
a relational database, which is not suitable for a graph model. Option B is wrong because
Amazon DynamoDB is suitable for a key value, but not a graph model. Option D is wrong
because Amazon RDS PostgreSQL is a relational database and not suitable for a graph
model. Please see Chapter 13.

29. B. Amazon ElastiCache is an AWS managed service for caching data, compatible with
Redis and Memcached. It can deliver submillisecond- range response time, is easy for API
integration, can distribute data within nodes, and has many other features specific to each
version. For more information, please see Chapter 11.

30. A. Amazon ElastiCache for a Memcached cluster can scale from 1 to 40 nodes to distribute
and serve the data, which you control with a data partition strategy. You can use autodiscov-
ery to automatically tell your client application when you add and remove nodes from the
cluster. For more information, please see Chapter 11.

31. B. Amazon ElastiCache for Redis can be set in cluster mode disabled or cluster mode
enabled, which allows the cluster to have up to 500 node groups (one per shard), providing
large horizontal scalability and online resharding. For more information, please see
Chapter 11.

PART

I
Workload-

Specific
Database Design

Chapter 1: Databases— from Your Server to AWS Cloud

Chapter 2: AWS Basic Concepts

Chapter 3: Purpose- Built Databases

2 Part I ■ Workload- Specific Database Design

Databases—from Your
Server to AWS Cloud

Chapter

1

The year 1960 was a year full of great historic events. NASA
launched the Pioneer 5 space probe to gather information
about the deep space between Earth and Venus, making it the
first space probe to venture 20 million miles away from Earth.

Charles W. Backman introduced the design of the first database system, starting a trajec-
tory that probably brought you here to read this book decades later.

This chapter won’t cover any particular domain of the AWS Certified
Database – Specialty exam, but it will help you set up a baseline
knowledge of core database concepts. Feel free to skip this chapter if
you are comfortable with this subject.

Databases from the Beginning
Every story must begin somewhere. Databases are no different. The grouping of data into
logical constructs first appeared in technical articles in 1960 written by Backman. As he
explained, a database management system (DBMS) describes how data can be gathered,
guided, and protected. Before that, persistence layers for applications usually were repre-
sented by flat- file databases on mainframes. Back then, the most popular flat- file types were
the Indexed Sequential Access Method (ISAM) and Virtual Storage Access Method (VSAM).
Flat- file databases, however, have several disadvantages. They cannot link data from one file
into another, so this task is the responsibility of the software developer. This task includes
opening each file, accessing the data in each file by coding data access paths, and loading the
dataset of interest in volatile memory.

Flat- file databases are fixed- form files, so any change to their structure creates a huge
effort for the developers because of the absence of an abstraction layer between the software
and its data. All programs consuming the modified flat file need to be updated to avoid the
wrong data being pulled into memory and the corruption of the data residing in the flat file.
Data redundancy was achieved by replicating it in multiple flat files, but the problem was
maintaining consistency between the copies.

DBMSs were developed to address this need and improve the overall functionality of all
sorts of applications. DBMSs were more expensive than flat files, they demanded more spe-
cialized professionals, and, at that time, most companies needed to invest in the professional

Databases from the Beginning 5

development of their workforce. The costs of licensing, infrastructure, and personnel
imposed a barrier on the initial adoption of DBMSs.

But, as with any new and improved technology, the benefits of database systems out-
weighed older flat- file solutions, increasing adoption drastically.

1960s
Bachman’s job paved the way for the creation of the CODASYL Data Model, created by
a consortium of companies to develop data processing capabilities for COBOL. This data
model introduced the concept of DDL (Data Definition Language) and DML (Data Manipu-
lation Language). File management systems flourished, enabling easier ways to access data
at rest. IBM developed the database management system ICS (later renamed IMS). IMS was
responsible for the persistence layer of the Apollo project and was directly involved in the
Apollo 11 mission’s computerized systems.

The SABRE system, developed by IBM and American Airlines, allowed user access to data
over the network, enabling American Airlines to automate reservation booking. It was first
in the industry to achieve such automation.

1970s
Database technologies experienced rapid growth. E. F. Codd’s relational database model
introduced the core concepts of database theory, including the entity- relation model in 1976.
Codd presented key definitions still in use until today, such as tables, columns, primary keys
(PKs), and foreign keys (FKs).

According to Codd, a table is a representation of a relation— for example, products, users,
offices, and departments— and each relation is composed of several data domains, as col-
umns. For example, a relation of “offices” consists of the following data domains: address,
available space, available facilities, and number of employees. Each data domain in this
example has its own numeric relation— for example, available space should be a number
representing the area in a specific metric system. All these domains should be previously
defined in order to avoid, for example, multiple metric systems generating data discrepancies.
The allowed values for a specific domain are fixed in type, size, and expected data allowed
to be stored in that particular column. One or more columns that could uniquely identify a
tuple (row) define a primary key, which also enforces that no duplicate or NULL values exist
in primary key columns. Each relation can have only one primary key.

A common requirement for relational databases is the ability of elements in a table to ref-
erence elements of other tables. For example, columns, or a composition of columns from
relation R, that are the values of a primary key of relation S form a foreign key in table
R. Foreign keys enforce referential integrity by ensuring that the data present in the domains
of a foreign key exists in the primary key domains of the referring relation.

Codd also defined indexes as performance- oriented components of a relation, composed
of one or multiple domains. When well defined, indexes improve the response time of selects

6 Chapter 1 ■ Databases—from Your Server to AWS Cloud

and updates, but they cause additional overhead for inserts and updates due to the redun-
dant nature of the data represented in the index.

Another crucial concept introduced by Codd is what later was named schema- on- write.
Before writing data into a relational database, you should first prepare the schema, including
the table definition and column types. An error will be raised if you try to insert data in a
column not defined in a table definition. This fixed schema behavior also enforces the rule
that only data formatted as designed should be stored in a relational database. For instance,
suppose you have a table called Customers and one column of this table is CustomerName
with a maximum length of 40 characters. If you try to insert a name that is more than 40
characters, an error will be raised.

Other DBMSs were developed in the 1970s. Ingres was developed at the University of
California, Berkeley, and Adabas was developed by the University of Darmstadt. Query lan-
guages were also developed, including Square, QBE, QUEL, and the well- known Structured
Query Language (SQL).

1980s
In the 1980s, databases like dBASE and Paradox were developed to run on personal
 computers, enabling smaller companies and industry verticals to adopt database
technologies.

Commercial relational databases, such as Db2, Oracle, Sybase, and Informix, were also
released. The SQL standard was published by ANSI. The era of the commercial relational
databases began.

The ACID transaction concept was introduced in 1983 by Andreas Reuter and Theo
Härder as an evolution based on the work of Jim Gray. ACID transactions must guarantee
four basic principles: atomicity, consistency, isolation, and durability. These core principles
define the basic function of a relational database and its structures.

 ■ Atomicity means that there is no partially modified data. A transaction is either success-
ful, with all the data of interest modified, or unsuccessful, with no data modified at all,
rolling back to the immediate prior state. A transaction can be a single statement or a
conjunction of statements. Atomicity means that all statements must be successful. An
example scenario for atomicity is a financial transaction: money needs to flow from one
account into another, and if anything fails, it should not move at all.

 ■ Consistency means that every transaction is bound to constraints on a table and across
tables. Any violations in consistency— such as duplicated values on a unique column,
inserting data on a missing column, or inserting values not allowed by the column
definition— should be reported immediately so the operator can resolve the inconsis-
tency and submit the transaction again.

 ■ Isolation is implemented by a queuing system. To ensure isolation, database systems
developed over the years have complex locking mechanisms at the row, block, page, and
memory levels. By ensuring isolation, we create a discrete transaction order mechanism

Databases from the Beginning 7

that makes sure transactions can read data being manipulated by other transactions.
Deadlocks, locks, mutexes, and latches are all queuing mechanisms to ensure isolation.

 ■ Durability is the ability to persist changes committed successfully to the database, even
during failure scenarios, outages, and corruptions. Data will remain saved and persisted
until another transaction, with the right privileges, manipulates it.

Relational databases deliver ACID transactions, referential integrity, and schema- on- write.
In AWS, these capabilities are delivered by Amazon Relational Database Service (Amazon
RDS), including engines like Oracle, SQL Server, PostgreSQL, MySQL, MariaDB, and
Amazon Aurora.

Amazon RDS will be covered in depth in Chapter 4, “Transactional Databases on AWS.”

1990s
Relational databases evolved from new application types and programming languages, like
spatial and multimedia data, to deliver new and needed capabilities. Data is read by multiple
sources and applications. The performance of relational databases was drastically improved,
and the concept of massively parallel processing (MPP) was born to address the increasing
size of datasets, improving performance by spreading parallel operations in several units
composed by CPU, memory, and storage slices. With MPP architectures, scalability and
performance could be improved by simply adding units (slices).

The Internet boom of the late 1990s demanded evolutions in database theory and func-
tionality, especially in web connectors for modern programming languages. Open- source
database solutions started to flourish, including MySQL and Postgres95 (which later became
PostgreSQL).

Databases became a critical piece in online and offline stores, powering point- of- sales
(POS) transactions, transaction processing systems, and online analytics platforms.

2000–2010
The first decade of the 20th century was the golden decade for commercial relational data-
bases, consolidating three main players in the market as leading database technologies:
Microsoft, Oracle, and IBM.

The CAP theorem, introduced by Eric Brewer of the University of California, Berkeley, in
2000 during the Symposium on Principles of Distributed Computing (PODC), stated that a
distributed database system could guarantee only two of three characteristics: consistency,
availability, and partition tolerance. This concept was developed over the following years
and helps developers choose a particular database engine and philosophy to use.

The definition of consistency in the CAP theorem is that data should be the same, no
matter which node clients are connecting to. This implies that a synchronous commit should
be executed on all remote nodes prior to releasing the commit on the primary node. Data
should be consistent across the distributed database persistence.

8 Chapter 1 ■ Databases—from Your Server to AWS Cloud

Availability implies that data should be available to satisfy client requests even with the
failure of multiple nodes. Modern database systems achieve that by horizontally scaling
database persistence across multiple nodes.

Partition tolerance states that the distributed database system must be resilient even if
nodes are not reachable over the network.

Amazon Elastic Block Store (EBS) is a block- storage service designed for Amazon
Elastic Compute Cloud (Amazon EC2). Amazon EBS volumes can be added on demand in
EC2 instances, thus providing storage for application and database filesystems. With tech-
nological advancements like Multi-Attach Amazon EBS volumes, which enable a single EBS
volume to be added in multiple EC2 instances, the CAP theorem tends not to be a definitive
rule, enabling further evolutions of distributed data persistence layers.

Amazon EBS volumes will be covered in depth in Chapter 2, “Basic Concepts of AWS.”

2010–Today
New database paradigms have appeared, being rapidly leveraged in modern applications.

Not Only SQL (NoSQL) databases have gained traction and evolved, being used in
countless production deployments by Internet giants such as Twitter, Facebook, and Google.
NoSQL databases are a great choice for semistructured and unstructured data, having scal-
ability and distributed processing as main features, thus leading to higher resiliency and
delivering schema- on- write, meaning that the table structure can be changed and columns
(attributes) can be added during insert- like operations. As opposed to relational databases,
NoSQL databases in general do not require uniform table definition among rows.

Over the years, several types of NoSQL databases have arisen to solve specific chal-
lenges, with different vendors and solutions for each database type. NoSQL databases will
be covered in depth in this book, including key- value databases like Amazon DynamoDB
(Chapter 5, “Low Latency Response Time for Your Apps and APIs”), wide- column data-
bases like Amazon Keyspaces for Apache Cassandra (Chapter 5), document databases like
Amazon DocumentDB with MongoDB Compatibility (Chapter 6, “Document Databases
in the Cloud”), graph databases like Amazon Neptune (Chapter 9, “Discover Relationships
Between Objects or People Faster Than a Traditional RDBMS”), and ledger databases like
Amazon QLDB (Chapter 10, “Immutable Database and Traceable Transactions”).

It is always important to understand where databases came from, because this makes it
easier to understand where they are going. The thinking about organized data structures in
the form of stacks, lists, arrays, and databases has evolved rapidly over the years. Certainly,
for the makers of SQL, it would have been impossible to achieve data volumes that for
us today are trivial, such as petabytes of data. Query optimization systems, in various
formats, have been created to execute queries with the best performance possible, touching
the smallest number of blocks on disk as possible.

For decades, relational databases were able to satisfy the new types of applications that
emerged, being positioned as the technology for the persistence layer. However, with multiple
dataset types and different needs now, the relational database isn’t the only response avail-
able anymore.

Databases on Premises 9

The history of databases is closely linked to the evolution of computational structures.
With the advancement in the areas of processors, volatile memory, and persistent memory,
new optimization and query execution strategies have been created to enable modern appli-
cations and to satisfy new requirements.

Databases on Premises
Databases historically are components hungry for compute resources such as CPU, memory,
and disk. Over the years, several vendors have optimized their hardware to answer the need
for performant databases. With solid- state drives (SSD) and nonvolatile memory express
(NVME) disks, InfiniBand networks, RDMA over converged Ethernet (RoCE) protocol, and
high- density processors with multiple cores and threads, the hardware evolution is evident.

Basic Infrastructure
The building blocks of a database architecture have changed drastically over the years. In
the early 2000s, clustered deployments were rare, and single- instance databases running on
top of a single machine with directly attached SCSI disks built in RAID were common. With
exponential dataset growth comes the need to use external storage systems with dedicated
storage area networks (SANs), thus decoupling compute and storage capacity. By adopting
external storage systems, it was possible to develop the ability to build clustered filesystems
like GPFS (General Parallel File System) from IBM, CSV (Cluster Shared Volumes) from
Microsoft, and Cluster File System from Veritas. By using these clustered filesystems, data-
base architects could span their databases across multiple nodes in an active- passive or
active- active fashion.

Networks have always played a main part in database architectures. By adopting faster
transport layers, database fetches could become bigger and bigger following the dataset
growth observed. Without faster and reliable networks, databases would be a beautiful albeit
isolated island.

Several types of virtualizations have been created to address an increasing need for faster
and software- defined deployments. Virtualized compute became the new normal for database
deployments, in various flavors, from IBM AIX Logical Partitions to VMware and Hyper- V
virtual machines. Virtualization systems enabled faster deployments, standardization, and less
dependency on physical hardware and the lengthy process of procurement.

Complex Infrastructure and Resiliency
Now that you understand the basic building blocks of database systems, let’s dive a little
deeper into the complex infrastructure and architectures. Over the years databases have
become a critical component of every company architecture. If the database system is down,

10 Chapter 1 ■ Databases—from Your Server to AWS Cloud

it doesn’t matter how many application servers, load balancers, network links, and datacen-
ters you have. So, the development of more resilient database architectures was needed. For
each RDBMS, there are several solutions, such as Oracle Real Application Clusters (Oracle
RAC), Oracle Clusterware, MS SQL Failover Cluster, MS SQL Always On, PostgreSQL, and
MySQL Clustered Solutions, ranging from shared-disk to shared- nothing architectures. The
ability to span multiple servers drastically reduced the recovery time objective (RTO) and
improved resiliency by introducing bulkhead architectures and multiple copies of the dataset.

All these clustering solutions are highly dependent on reliable storage and reliable net-
works. To increase the resiliency even more, all the clustering solutions developed mech-
anisms to avoid split- brain and cascade failover scenarios. Today all these clustering
techniques are mature and adopted in several database architectures across all industries.

RDBMS vendors have best practices and reference architectures such as the Oracle
Maximum Availability Architecture (MAA). In these reference architectures, vendors have
adopted several solutions and techniques to improve RTO and recovery point objective
(RPO) metrics.

Management
Database management comprehends all facets of database operations, ranging from moni-
toring, patching, and backup to performance- related issues, data load and extraction, sched-
uled jobs, upgrades, and migrations.

For each of these operational tasks, several vendors have dedicated time and effort to
build products to address in full or partially these operational needs. In an on- premises envi-
ronment, it was normal to have multiple tools from distinct vendors, each tool with its own
application stack, architecture, and responsible team.

Additionally, for each database system vendor it was normal to have specific tools, so
an Oracle database administrator (DBA), for example, would use Oracle Grid Control to
check the database load and execute administrative tasks at scale; a Microsoft SQL DBA, on
the other hand, would use SQL Server Management Studio; and a MySQL DBA would use
MySQL Workbench. All these tools, in most advanced setups, could be centralized in one
tool with dashboards to monitor critical database key performance indicators (KPIs).

Backups performed with specific tools also demand specific setups to perform restore
operations. An on- premises DBA should be familiar with several different tools and their
operational details to manage the company’s database ecosystem.

Databases in the Cloud
Amazon Elastic Compute Cloud (EC2), a service crafted to deliver compute capacity in
the form of resizable virtual machines (instances), was launched in August 2006. With the
advent of cloud computing, the following question arises: can I leverage the cloud as the
infrastructure basis for my database deployments?

Databases in the Cloud 11

Data Remains Data
Humans tend to replicate actions and paradigms and opt always for the safer, already trav-
eled road. Data is changing the world, but data itself isn’t changing— the way we use data
is. In the past, a database was a data repository for several applications, rapidly becoming
a critical and intricate piece of the applications architecture. Datasets were tied to a specific
application, and when needed, integrations via database links and linked servers were the
norm. These integrations aren’t feasible or reliable enough for modern application demands,
so new technologies emerged from this need, enabling data pipelines, more complex extract
transform load (ETL) and extract load transform (ELT), real- time data messaging and
queueing, and distributed data patterns.

But data remains data. We are storing larger and larger datasets, using these datasets to
train machine learning models, better understand customer needs, and better position our
products. At the end of the day, however, the ability to satisfy data requests in a secure and
performant way is more important than ever.

DBAs Are the Initial DevOps
DBAs work exactly in the middle of software and hardware, between developers and opera-
tors and between applications and infrastructure. This position provides DBAs with all sorts
of challenges, from a badly written SQL statement from developers to storage bottlenecks,
from network latency problems to metadata definition, and from coding database proce-
dures to defining hardware requirements for a new database.

The connection between developers and operational teams, such as system administrators,
network administrators and storage administrators, is usually done through DBAs. When
developers claim that the database is slow, the cause could reside in code itself, but also in
the infrastructure, like an underperformant storage, a bug in the Operational System or
packets being dropped on the network due a bad cable.

With the ever- increasing number of databases and larger datasets, automated
administrative tasks are the new norm. DBAs have developed scripts, procedures, functions,
packages, and even graphical interfaces to facilitate daily activities, thus reducing the need
for manual intervention on the database and enabling rapid database deployments through
automated code. By leveraging response files and configuration management tools like
Ansible, Puppet, and Chef, DBAs have reduced drastically the time needed to deploy a new
solution, keeping security and best practices standardized.

DBA Career— Now What?
Some say DBA careers are almost over. We disagree. The DBA career is changing to keep
up with technological advancements and new paradigms, but the demand for reliable, fast,
secure, and cost- effective databases has never been higher.

12 Chapter 1 ■ Databases—from Your Server to AWS Cloud

The DBA career is evolving. Skills, tools, and processes are being improved, enabling
lower time to market but keeping systems stable. DBAs are lifelong learners, always learning
new database features and ways to make day- to- day activities easier and faster.

Keeping this learning curve rising is essential. For example, you should learn new data-
base types, such as when to use graph databases and when not to use them, and how to
leverage new services and features. Be a protagonist of your career!

Summary
This chapter provided an overview of the history of DBMSs and how this disruptive
technology affects our lives today.

We covered how database architectures were built on premises, presenting core concepts
such as disks, networks, database clustering, and database management. We also talked
about careers in database administration.

Basic AWS Concepts

IN THIS CHAPTER, YOU WILL LEARN THE
BASIC CONCEPTS RELATED TO THE CLOUD,
ESPECIALLY AWS. THIS CONTENT WILL
HELP YOU PASS NOT ONLY THE DATABASE
SPECIALTY CERTIFICATION EXAM, BUT
ALL OTHER AWS CERTIFICATIONS AS WELL.

THE CHAPTER WILL FAMILIARIZE YOU WITH
THE FOLLOWING IT TOPICS AND HOW THEY
TRANSLATE TO CLOUD SERVICES AND
COMPONENTS:

 ✓ Global infrastructure: Regions, availability zones, edge loca-
tions, and points of presence.

 ✓ Networking: Virtual private clouds, virtual private networks,
AWS Direct Connect, and networking connectivity.

 ✓ Security: Network security, security model, identity and
access management, and data encryption.

 ✓ Storage: Block storage, file storage, and object storage and
its relation to database services.

 ✓ Operations: Monitoring, logging, and auditing.

Chapter

2

This chapter won’t cover any particular domain of the AWS Certified
Database – Specialty certification, but it will provide you with a baseline
knowledge of cloud computing and AWS.

AWS Global Infrastructure
The AWS global infrastructure is composed of regions, availability zones, data centers, points
of presence, local zones, and wavelength zones.

AWS Regions
An AWS region consists of multiple availability zones— typically three but up to six, as in the
case of us- east- 1, also known as N. Virginia. At the time of writing, there are 25 launched
regions, and 5 have been announced. Visit the official AWS Global Infrastructure landing
page (aws.amazon.com/about- aws/global- infrastructure) for the updated
information.

AWS Availability Zones
An availability zone (AZ) is a data center with redundant power and networking connec-
tivity at full scale; it can include hundreds of thousands of servers. Each AZ is separated
from the others by the necessary distance to be isolated from natural disasters or local out-
ages but close enough to keep high network throughput and single- digit latency (<10 mil-
liseconds). This data center distribution within the AWS infrastructure gives customers the
ability to deploy production applications that are more scalable, highly available, and fault
tolerant than would be possible from a single data center on premises.

Figure 2.1 shows an example AWS region comprising three availability zones with four
data centers each.

http://aws.amazon.com/about-aws/global-infrastructure

AWS Global Infrastructure 15

Besides the traditional AWS regions and availability zones, there is a new player in AWS
infrastructure: local zones.

AWS Local Zones
AWS local zones are an extension of AWS regions where customers can run latency- sensitive
applications closer to their end users using AWS services. AWS local zones provide a secure
high- bandwidth connection between the workloads running on them and those running in
the region. These zones offer a subset of the same services, APIs, and tools available in the
parent AWS region, allowing customers to easily build, deploy, and operate their applications
and providing them with a consistent AWS experience. The AWS local zones are completely
managed by AWS, giving customers the same benefits regarding elasticity, scalability, and
security of the cloud.

AWS Wavelength Zones
If the workload is mainly mobile or edge computing, there is another infrastructure deploy-
ment to consider: the AWS wavelength zone. A wavelength zone is an AWS infrastructure
that integrates AWS compute and storage services with the data centers of a given telecom-
munication company (telco) at the edge of the 5G network. The traffic originating from
applications on 5G devices can reach application servers running in wavelength zones
without leaving the communication services provider network. By using an AWS wavelength,
customer applications running on end- user devices can take full advantages of 5G latency
and bandwidth by not having to traverse multiple hops across the Internet to reach their
destination.

Data
center

Data
center

Data
center

Data
center

Data
center

Data
center

Data
center

Data
center

Data
center

Data
center

Data
center

Data
center

Availability zone 1 Availability zone 2 Availability zone 3

AWS Cloud

Transit Center
1

Transit Center
2

F IGURE 2 .1 An AWS region

16 Chapter 2 ■ Basic AWS Concepts

Points of Prescence
The last concept of the global infrastructure is the AWS point of presence. AWS points of
presence are also data centers but are not directly related to an availability zone. They are
located in most of the major cities around the world and are used by Amazon CloudFront
as a content delivery network (CDN) to cache and distribute content to end users at low
latencies regardless of where the content is originally stored.

Networking
This is an extensive topic that requires an entire book itself. In this section, we cover only
the basic concepts that you will find on the database certification exam and that are also
required to understand the rest of the topics and chapters in this book.

To use AWS services, customers need an AWS account that acts as a container for their
resources. Some of the AWS services are public and can be accessed directly from the Inter-
net; the others are private and need to be deployed on Amazon Virtual Private Cloud (VPC).
Amazon VPC is a special service that acts as a network container and is the main component
of all cloud- related networking features. As shown in Figure 2.2, virtual private clouds are
composed of subnets in a similar way that a region is composed of availability zones.

F IGURE 2 .2 Amazon VPC

Networking 17

IP Addressing
The Amazon VPC service supports two types of IP addresses, private and public.

 ■ The internal IP address: As the name suggests, these IP addresses are only internal to
that virtual private cloud, and the addressing is from the private or shared IP spaces.
(See RFC 1918 and RFC 6598 for more information.) An important point about virtual
private clouds is that their CIDR cannot be modified once created and must go from /16
(up to 65,536 IP addresses) to /28 (up to 16 IP addresses).

 ■ The external IP address: These are the ones that can be accessed from the public Inter-
net. These IP addresses support bring- your- own IP (BYOIP), IPv4, and IPv6. An elastic
IP address is a static, special type of external IP address that supports only IPv4. An
elastic IP is dynamically assigned to your AWS account and can be remapped to another
instance within the same. These IP addresses are free as long as they are attached to
some network interface of a running instance.

Subnets
A subnet is a range of IP addresses within the Amazon VPC CIDR and is where the actual
private AWS resource, such as the EC2 instance or the RDS DB instance, is deployed. While
a virtual private cloud spans an entire AWS region, a subnet belongs to a single availability
zone. The subnets can be private or public, and you can create multiple subnets per virtual
private cloud and per availability zone. The subnets’ IP addresses are allocated from the par-
ent virtual private cloud CIDR and cannot overlap each other.

AWS reserves the first four and the last IP addresses, for each subnet, in a way that
they cannot be assigned to a network interface. For example, in a subnet with a CIDR like
10.1.1.0/24, the following five IP addresses are not available:

10.1.1.0— The network address

10.1.1.1— Reserved by AWS for the VPC router

10.1.1.2— Reserved by AWS for the DNS server

10.1.0.3— Reserved by AWS for other future uses

10.1.0.255— Network broadcast address

VPC Routing
Each subnet has an associated routing table that can be exclusive to it or be inherited from
the main VPC routing table. Each routing table can be associated with multiple subnets. The
same thing happens on premises: the route tables direct traffic from one host to another. In
AWS, this traffic can point toward many destinations (as shown in Figure 2.3), the more
important of which are the following:

 ■ Internet gateway

 ■ NAT gateway

18 Chapter 2 ■ Basic AWS Concepts

 ■ VPC peering

 ■ AWS Transit Gateway attachment

 ■ Virtual private network

 ■ AWS Direct Connect interface

 ■ Network interface

The subnets are referred to as public when there is a route to an Internet gateway. This
route will allow not just outbound traffic but also inbound.

Gateways and Connectivity Options
There are several types of gateways and route targets available with Amazon VPC.

Internet Gateway An Internet gateway is a horizontally scaled, redundant, and highly
available VPC component used to connect each VPC subnet to the Internet and per-
form a one- to- one network address translation (NAT) between the public and private IP
addresses. This kind of gateway is free, but there is a fee for the outbound traffic going
through it.

F IGURE 2 .3 Route table destinations

Networking 19

NAT Gateway A NAT gateway allows Internet traffic to the subnet, but only with
outbound traffic; it does not allow incoming connections. This is useful to keep your
environment isolated from the public Internet without losing the ability to get operating
system and software packages and consume public web services. In contrast with an
Internet gateway, a NAT gateway supports 5 Gbps of bandwidth and automatically
scales up to 45 Gbps. If you require more bandwidth, you can split your resources into
multiple subnets and create a NAT gateway in each subnet.

VPC Peering VPC peering is a scalable and highly available solution used to connect
two virtual private clouds. The connection can be done across AWS accounts and AWS
regions at the same time and allows bidirectional traffic. There are two caveats of this
kind of connectivity: there can’t be IP address overlapping between the two VPCs, and
transitive routing to a third VPC is not allowed.

Transit Gateway AWS Transit Gateway is a highly available fully managed service
that provides a hub- and- spoke connecting pattern for virtual private networks and on-
premises networks without requiring you to provision virtual appliances. AWS Transit
Gateway (see Figure 2.4) manages how traffic is routed among all the connected net-
work components using route tables. This hub- and- spoke design simplifies operations
and reduces management costs. AWS manages the availability and scalability of the solu-
tion up to 50 Gbps per attachment.

F IGURE 2 .4 AWS Transit Gateway service

20 Chapter 2 ■ Basic AWS Concepts

Virtual private network The site- to- site VPN (see Figure 2.5) on AWS is an IPSec con-
nection compatible with AES 256- bit and SHA- 2 algorithms between the customer fire-
wall (customer gateway) and a fully managed endpoint device on the AWS side (virtual
private gateway). Each virtual private gateway can be associated with only one VPC. If
connectivity with more than one virtual private cloud is necessary, the connection can
be established with a transit gateway instead. The VPN connections can be configured in
high availability with two tunnels and support dynamic (BGP) and static routing.

Direct Connect AWS Direct Connect is the other choice of private connectivity
with the customer on- premises data centers. The direct connection can be one of the
following:

Dedicated: Directly with AWS with bandwidth ranging from 1 to 10 Gbps and
supports multiple virtual interfaces (VIF)

Hosted: Through an AWS partner from 50 Mbps to 10 Gbps and a single VIF

There are three kinds of virtual interfaces:

Private VIF: A private connection between the customer data center and the
resources within a VPC.

Public VIF: A private connection between the customer data center and the
AWS public IP address space.

Transit VIF: A private connection between the customer data center and a tran-
sit gateway. This simplifies the network architecture and enables a hub- and-
spoke mode that spans multiple VPC, AWS accounts, and regions.

Figure 2.6 shows a Direct Connect location linked to two different AWS transit gateways.

F IGURE 2 .5 Site- to- site VPN

Security 21

VPC endpoints VPC endpoints (see Figure 2.7) are used to privately connect an
Amazon VPC with the supported services that lie outside a VPC, such as Amazon S3,
AWS KMS, or even a load balancer that is deployed on a different VPC. When using
PrivateLink, VPC endpoints can access publicly available AWS services without needing
a public IP address or Internet connection, so the traffic going through that link never
leaves the AWS network. These endpoints scale horizontally and are redundant and
highly available.

Security
Like networking, security is a broad and important topic. This chapter will cover only basic
concepts.

Network Security
The network security on AWS mostly relies on the security of the VPCs. AWS provides two
types of firewall for the virtual private clouds:

F IGURE 2 .6 AWS Direct Connect location

22 Chapter 2 ■ Basic AWS Concepts

 ■ Network access control list (NACL): This is a stateless IP firewall that allows inbound
and outbound rules and operates at a subnet level. By default, it allows all traffic, so it’s
an optional level of security. The NACL rules can be written using IP addresses and TCP
and UDP ports and support deny rules as well.

 ■ Security group (SG): This is a stateful resource firewall that also allows inbound and
outbound rules and operates at an interface level. By default, it denies all traffic, so it’s a
mandatory resource. All VPC- related services must have an SG associated with them. SG
supports cross- references among each other, which enables the customer to perform net-
work segmentation (as shown in Figure 2.8) by using different security groups for each
application layer.

AWS Shared Responsibility Model
All AWS security white papers, presentations, and documents mention the AWS Shared
Responsibility Model. As the name suggests, the compliance objectives in the AWS cloud are
accomplished by both AWS and the customers. AWS takes care of the security of the cloud,
and the customer takes care of the security in the cloud. Table 2.1 illustrates how this works.

If the customer chooses to use more abstract and managed services up or serverless
ones, the responsibility bar moves up, restricting customers’ responsibilities to the access
management and the source code itself.

F IGURE 2 .7 VPC endpoints

Security 23

F IGURE 2 .8 Security group network segmentation

TABLE 2 .1 Security Responsibility Distribution

AWS Customer

Facilities Network configuration

Physical security Security groups

Compute infrastructure OS firewalls

Storage infrastructure Operating system

Network infrastructure Applications

Virtualization layer Proper service configuration

Hardened service endpoints AuthN and account management

Rich IAM capabilities Authorization policies

24 Chapter 2 ■ Basic AWS Concepts

Identity and Access Management
Identity and access management allows AWS customers to implement a comprehensive
access control on each AWS resource. It provides the ability to authenticate, authorize, and
audit all access to AWS no matter the interface used to interact with AWS.

 ■ Authentication: To authenticate a user in the console or API by using regular credentials
or strong authentication options; also, to authenticate other AWS accounts or even trust
other identity providers.

 ■ Authorize: To specify, with high granularity, which user can do what action. Therefore,
you can implement the least privilege and segregation of duties patterns.

 ■ Audit: Every action executed against any IAM resources is recorded on CloudTrail, for
troubleshooting or audit purposes. The IAM Access Analyzer feature lets customers
identify unintended access to their resources and data.

There are three kinds of principals on AWS:

 ■ The account owner ID or root account: This principal has unlimited access to all AWS
subscribed services, the billing console, and customer support. Because of the impor-
tance of this user and the access level it has, it is strongly recommended to delete its pro-
grammatic access keys and enable multifactor authentication at once. AWS recommends
not using this account for administration tasks unless strictly necessary.

 ■ IAM users, groups, and roles: These are entities that you create in AWS. They represent
persons or services that use their access to perform actions in AWS. The main purpose of
an IAM user is to give people the ability to sign in to the AWS Management Console for
interactive tasks via GUI or to make programmatic requests to AWS services using the
API or CLI.

 ■ Temporary security credentials: Temporary security credentials are used together with
IAM roles. Customers can request temporary credentials with a more restricted set of
permissions than the standard IAM user. This prevents customers from accidentally
performing actions that are not permitted. A benefit of temporary credentials is that, as
the name suggests, they expire automatically after a configurable period of time.

AWS uses policies and permissions to accomplish every principal’s authorization. There
are six kinds of policy in total, but we will cover the two main ones:

 ■ Identity- based policies: Identity- based policies are represented by JSON documents that
control what actions a principal can perform, on which resources, and under what con-
ditions. They can be categorized in two groups:

 ■ Inline policies: Can be added directly to a single user, group, or role. This policy type
maintains a strict one- to- one relationship between the policy and the identity.

 ■ Managed policies: Stand- alone identity- based policies managed by AWS or the cus-
tomer, which can be attached to multiple users, groups, and roles in the AWS account.

 ■ Resource- based policies: Resource- based policies are also represented by JSON docu-
ments but, in this case, can be attached to a resource like Amazon S3 instead of an IAM

Security 25

principal. These policies grant the principal specified in the policy permission to
perform a specific action on the resource that it was attached to under a given condition.
Resource- based policies are only the inline policy type.

Other services related to IAM are the AWS single sign- on (SSO) and AWS Directory
Service.

AWS SSO, as the name suggests, allows users to use a single set of credentials to access
all the AWS accounts within an AWS organization. The AWS Organization service helps
you manage multi- account environments by enabling centralized governance and seam-
less resources sharing. You can keep the user identities and groups in AWS SSO or within
their current identity providers, such as Microsoft Active Directory Domain Services, Okta
Universal Directory, Azure AD, or another. Users can access AWS with their existing cor-
porate credentials, and the administrators can continue to manage users and groups in the
existing identity source.

There are three flavors of the Active Directory service on AWS:

 ■ AWS Managed Microsoft Active Directory: Based on Microsoft Active Directory in
Windows Server 2012 R2. This supports adding trust relationships with on- premises
domains.

 ■ Simple AD: A Microsoft Active Directory–compatible directory powered by Samba 4.

 ■ AD Connector: Connects to your on- premises Active Directory. This integrates with
existing RADIUS MFA solutions.

Data Encryption
AWS provides customers with the ability to encrypt their data as it sits and flows in/out of
their environment, but it also provides many services and features that make it easier.

At- Rest Encryption Customers can encrypt data at rest by following one of these
approaches:

Volume encryption: Amazon EBS volume, filesystem tools, AWS Marketplace,
or third- party partner vendors.

Object encryption: Amazon S3 server- side encryption with AWS managed keys
or customer- managed keys and client- side encryption.

Database encryption: Besides the database volume encryption, Amazon RDS
also supports encrypting an Oracle or SQL Server DB instance with
Transparent Data Encryption (TDE).

Besides those ways, there are several other layers of security to the data at rest in
the cloud, each of which provides scalable and efficient encryption capabilities like
key management features with AWS Key Management Service (AWS KMS). AWS
KMS enables customers to choose whether to have AWS manage the encryption
keys or do it on their own. Customers can also use a dedicated hardware- based
cryptographic key storage service with AWS CloudHSM, allowing compliance with
stricter regulatory requirements.

26 Chapter 2 ■ Basic AWS Concepts

In- Transit Encryption In- transit encryption on AWS can be done using a multilevel
approach. All the traffic between AWS data centers is encrypted at the physical layer
by default. All traffic across AWS regions between peered VPCs is encrypted at the net-
work layer when using AWS Nitro–based Amazon EC2 instance types. At the applica-
tion layer, customers are able to use their defined encryption protocol, such as Transport
Layer Security (TLS). All AWS service endpoints support TLS to make API requests.

AWS has three key services to help customers to encrypt their data and secure their
credentials:

AWS Certificate Manager AWS Certificate Manager (ACM) allows customers to easily
provision, manage, deploy, and renew SSL/TLS certificates and use them with their
applications endpoints on AWS or download its private certificate to use on premises or
on another provider with the private certificate authority (CA) feature.

AWS Key Management Service AWS Key Management Service (AWS KMS) is a
managed service that makes it easy to create, rotate, delete, and manage access to the
keys used to encrypt the data. AWS KMS uses Hardware Security Modules (HSMs)
to protect the security of those keys. This service is integrated with most AWS data–
related services to help protect the customer data within each one of them. AWS Key
Management Service is also integrated with AWS CloudTrail to provide customers with
audit capabilities for all key usage in order to help them meet any regulatory and com-
pliance requirements.

AWS Secrets Manager AWS Secrets Manager helps customers to meet their security
and compliance requirements by protecting the secrets needed to access their data-
bases, applications, services, and other IT resources. AWS Secrets Manager enables cus-
tomers to easily rotate, manage, and retrieve database credentials, API keys, and other
secrets throughout their life cycles. Those secrets can be retrieved with a request to the
Secrets Manager APIs, eliminating the need to hard- code sensitive information in plain
text. Secrets Manager offers secret rotation with built- in integration for Amazon RDS,
Amazon Redshift, and Amazon DocumentDB.

In addition, AWS provides APIs to integrate encryption and data protection with any of
the AWS services the customer might use.

Storage at AWS
This section discusses the three storage types on AWS and how they relate to databases.

File storage File storage consists of unrelated data blocks managed by a file (serving)
system like NFS, FXs, or Lustre. Examples of this storage type can be the network-
attached storage (NAS) appliances or Windows File Servers. This storage type is repre-
sented in AWS by the services Amazon Elastic File System (EFS) and Amazon FSx.

Storage at AWS 27

Object storage Object storage consists of virtual containers that encapsulate the data,
data attributes, metadata, and object IDs. It’s a metadata- driven storage system that uses
policies to grant access and provides API access to the objects. The service related to this
storage type is Amazon Simple Storage Service (Amazon S3).

Block storage Block storage is a raw storage type that organizes data as an array
of unrelated blocks. This storage is used to host filesystem-related data on disk, for
example, like the hard drives and storage area network (SAN) appliances. The block
storage type is represented by Amazon Elastic Block Storage (EBS), and it’s mostly used
as virtual machine data and operating system volumes.

Each storage option has a unique combination of performance, durability, cost, and
interface:

 ■ Durability: Measure of expected data loss

 ■ Availability: Measure of expected downtime

 ■ Security: Security measures for at- rest and in- transit data

 ■ Cost: Amount per storage unit, e.g., money per gigabyte

 ■ Scalability: Upward flexibility, storage size, number of users

 ■ Performance: Performance metrics (bandwidth)

Durability and availability percentages are often confusing. Table 2.2 illustrates how
those values translate to real- life examples.

Amazon Elastic Block Storage
EBS volumes are network- attached storage volumes that are dynamically resized, can be
detached and attached to different instances, and can also dynamically change their type
without the need to restart the instances that are using them. Amazon EBS provides the fol-
lowing volume types: General Purpose SSD, Provisioned IOPS SSD, Throughput Optimized
HDD, and Cold HDD.

TABLE 2 .2 Storage Durability and Availability in Data Loss in Downtime

Percentage Availability Durability

99.999 5 minutes 15 seconds 1 in 100,000

99.9999 31 seconds 1 in 1,000,000

99.99999 3 seconds 1 in 10,000,000

99.999999999 300 uSeconds 1 in 100,000,000,000

28 Chapter 2 ■ Basic AWS Concepts

The Throughput Optimized HDD volumes are good candidates for Big Data and ana-
lytics workloads (such as Apache Kafka, Splunk, and Hadoop) and data warehousing in
general. They are also useful for file sharing and media applications such as transcoding,
encoding, and rendering. The common factor is high- throughput applications.

The Cold HDD storage is better suited for block- based data archiving and infrequently
accessed data.

The General Purpose SSD storage balances price and performance in a way that can
handle most transactional use cases such as application servers, boot disks, and medium- size
single- instance databases.

The IOPS SSD volumes are best suited for high IOPS workloads, such as relational data-
bases like PostgreSQL, MySQL, SQL Server, Oracle, and SAP HANA. They are even better
for NoSQL databases like Cassandra, MongoDB, and CouchDB.

Table 2.3 shows the storage dimensions of the two EBS volume types.

Amazon Elastic File System
Amazon Elastic File System (Amazon EFS) provides a simple, petabyte- scale, fully managed
elastic NFS filesystem to be used by other AWS services or on- premises resources. Amazon
EFS is considered a serverless service because customers don’t need to provision storage or
performance capacity; it’s capable of shrinking and growing automatically as the users add
or remove files from it. The pricing model also complies with serverless, and the customers
pay only for the amount of storage used without minimum fees.

TABLE 2 .3 EBS Volume Storage Dimensions

Volume
Type

Base
IOPS

Burst
IOPS Throughput Latency Capacity

HDD sc1 N/A N/A 12 MB/s per TB; up to
250 MB/s

N/A 500 GB to

16 TB

HDD st1 N/A N/A 40 MB/s per TB; up to
500 MB/s

N/A 500 GB to

16 TB

SSD gp2 100–
16.000

3000 Up to 250 MB/s Single- digit
ms

1 GB to 16
TB

SSD io1 100–
64.000

N/A Up to 1.000 MB/s Single- digit
ms

4 GB to 16
TB

Storage at AWS 29

Amazon EFS enables applications running on AWS to leverage a massively parallel shared
filesystem as the storage layer. Amazon EFS provides high levels of aggregate throughput and
IOPS with consistent low latencies at any scale. Those features make it perfect for workloads
such as the following:

 ■ Content management

 ■ Web serving

 ■ Big Data analytics

 ■ Home directories

 ■ Media workflow processing

That being said, there is a scenario when Amazon EFS can be useful for database work-
loads. Amazon EFS can be easily mounted using NFSv4 protocol in a database server and
then be used as storage layer for the database backups. Customers running their databases
on EC2 could take advantage of the flexibility of storing database backups in the cloud
either for temporary protection during updates or for development and testing purposes.

Amazon Simple Storage Service
Object storage is the last but not least storage type we are going to cover, and it’s represented
by Amazon Simple Storage Service (Amazon S3). Amazon S3 was the second AWS service
released after Amazon SQS in March 2006 and today is one of the most used and important
services of the cloud in general. Why? Basically because of its unmatched features.

 ■ Web accessible object store (through API or HTTPS)

 ■ Highly durable (99.999999999 percent design)

 ■ Highly available (99.99 percent design)

 ■ Limitless capacity

 ■ Limitless performance (3,500 puts and 5,500 gets per prefix)

 ■ Multiple tiers to match your workload

 ■ Data life- cycle rules

 ■ Static website hosting

 ■ Security, compliance, and audit capabilities

 ■ Strong read- after- write and list consistency

 ■ Standard Storage Pricing (us- east- 1): $0.023 per GB

Table 2.4 shows the main characteristics of each Amazon S3 available tier. Prices may be
different in each region.

30 Chapter 2 ■ Basic AWS Concepts

TABLE 2 .4 Amazon S3 Storage Classes

Class Characteristics

S3 Standard Active, frequently accessed data

Millisecond access

> 3 AZ replication

$0.0210 to 0.0230/GB

S3 Intelligent Tiering

Data with changing access patterns

Millisecond access

> 3 AZ replication

$0.0210 to $0.0125/GB

Monitoring fee per object

Infrequently accessed data

Millisecond access

> 3 AZ replication

S3 Standard Infrequent Access $0.0125/GB

Retrieval fee per gigabyte

Minimum storage duration

Minimum object size

S3 One Zone Infrequent Access

Reproducible, less accessed data

Millisecond access

Only one AZ copy

$0.0100/GB

Retrieval fee per gigabyte

Minimum storage duration

Minimum object size

S3 Glacier

Archive data

Select minutes or hours

> 3 AZ replication

$0.0040/GB

Retrieval fee per gigabyte

Minimum storage duration

Minimum object size

Operations 31

There are several ways in which databases can take advantage of Amazon S3, but the two
most important are data loading/migration and backups/archiving.

Data loading and migration Most AWS database and analytics–related services can
use S3 as a source for data loading. Some services can use these features directly via
AWS CLI, and others depend on data movement services like AWS Data Pipeline and
AWS Glue.

Backups and archive Amazon S3 is the perfect place to store database backups and
snapshots for short and long periods of time due to its durability, low cost, and data
life- cycle features. AWS customers can use the S3 Intelligent Tiering class to monitor
data access patterns and identify objects that should be moved to a more cost- effective
storage class.

This is why Amazon RDS, Amazon DynamoDB, and Amazon DocumentDB, to name
three database services, store their automated incremental snapshots on S3. If the customer
wants to see and manage the snapshots on their own, they can choose to copy these snap-
shots to the desired S3 buckets. Amazon S3 is also the place where AWS Backup stores the
backups for each service it controls, including, of course, the database backups.

Operations
Monitoring and logging can be challenging in many on- premise environments due to the
manual configuration of physical and logical resources. Monitoring data, if even avail-
able, may span multiple systems and processes, which further complicates things. In AWS,
resources are software defined, and changes to them are tracked as API calls. The current
and past states of your environment can be monitored and acted on in real time. In this

Class Characteristics

S3 Deep Archive

Archive data

Select 12 or 48 hours

> 3 AZ replication

$0.00099/GB

Retrieval fee per GB

Minimum storage duration

Minimum object size

32 Chapter 2 ■ Basic AWS Concepts

final topic of the chapter, we will introduce the core monitoring and logging capabilities you
should be aware of as you begin operating database workloads on AWS.

There are two core services to cover this requirement: Amazon CloudWatch, which
handles monitoring and logging activities, and AWS CloudTrail, which handles traces and
auditing.

Monitoring and Logging
Why is monitoring important? There are five main reasons:

 ■ Customer experience: Are the database users (people, applications, or services) getting a
good experience?

 ■ Performance and cost: How do changes in the database impact the overall performance
and cost?

 ■ Trends: When and how should the database scale?

 ■ Troubleshooting: Where and why do the errors occur?

 ■ Learning and improvement: How can the problem be avoided in the future?

It is not possible to talk about monitoring in AWS without mentioning Amazon Cloud-
Watch. It is the one service to monitor them all.

Amazon CloudWatch
Customers can use Amazon CloudWatch to gain visibility into each AWS resource utiliza-
tion, deployed application performance, and system- wide operational health. The customers
can use these insights to react and keep their application running smoothly. CloudWatch also
monitors every AWS cloud database along with every cloud- powered application. It tracks
all the necessary metrics so that customers can visualize and review them in a timely manner.
Customers can also set alarms that will fire when given metrics go beyond a specified
threshold. CloudWatch gives you visibility into resource utilization, application performance,
and operational health.

Amazon CloudWatch comprises the following main components:

Metrics A metric is a fundamental concept in CloudWatch. It represents a set of data
points that are published to CloudWatch in a time- ordered manner. These data points
can be either AWS defaults or custom metrics created by the customers. Customers can
retrieve statistics about those metrics as time- series data. These are the most common
CloudWatch metrics available for databases in AWS today:

 ■ The amount of memory and CPU being used for a database

 ■ The number of connections to a database

Monitoring and Logging 33

 ■ The amount of storage that a database is currently using

 ■ The amount of network traffic to and from a database

 ■ The number of read and write operations to a database

Alarms CloudWatch alarms are triggered automatically on the customers’ behalf,
based on specified thresholds. An alarm watches a single metric over a given period
of time and performs one or more actions based on the value of the metric relative to
defined parameters.

Events Because of the importance of this feature, a new service was created just to
cover the Amazon CloudWatch event features: Amazon EventBridge. It delivers a near
real- time stream of system events that describe changes in AWS resources. Events are
delivered through resource state changes, CloudTrail API calls, or custom publica-
tions, or they are scheduled using cron expressions. The Event Bridge rules match
incoming events and route them to one or more targets for processing. Targets include
AWS Lambda functions, Amazon SNS topics, Amazon SQS queues, streams in Amazon
Kinesis Streams, or built- in targets.

Logs Amazon CloudWatch Logs collects infrastructure, services, and host- based log
information from all of the systems, applications, and AWS services in a single central-
ized location. CloudWatch Logs enables you to search all the logs, regardless of their
source, as a single and consistent flow of events ordered by time. Customers can use
CloudWatch Logs to watch the logs for specific phrases, values, or patterns and execute
an action if any are found. For example, customers could set up an alarm on the number
of errors that occur in the system logs. Then, customers can view the original log data
and attempt to identify the source of the problem if needed. Log data can be stored and
accessed for as long as the customers need using highly durable, low- cost storage.

Dashboards Amazon CloudWatch Dashboards creates a single consolidated view of
all your resources across AWS regions and accounts. It is a highly customizable service
that lets you put together in one place all the desired metrics from the default available
for each service of custom metrics created by you. It provides a common view of critical
resource and application measurements that can be shared by team members for faster
communication flow during operational events.

AWS CloudTrail
The same way Amazon CloudWatch is meant to monitor and log everything in the cloud,
AWS CloudTrail is for auditing and recording. It records AWS API usage in the AWS
account, and by recording the APIs, it also includes actions taken through command- line
tools, the SDKs, the AWS Management Console, or other AWS services. The event history
simplifies audit analysis, troubleshooting, and resource change tracking. In addition, cus-
tomers can use AWS CloudTrail to detect anomalous activity in all the AWS accounts. These
features make AWS CloudTrail the perfect tool for governance, compliance, and auditing.

34 Chapter 2 ■ Basic AWS Concepts

A CloudTrail event enables you to answer the following questions:

 ■ Who made the API call?

 ■ When was the API call made?

 ■ What was the API call?

 ■ Which resources were acted upon in the API call?

 ■ Where was the API call made from?

For a native AWS database service like Amazon DynamoDB, AWS CloudTrail itself is
enough for auditing purposes because every action happens through an API call. But this
might not be the case for relational databases on Amazon RDS. By using just AWS Cloud-
Trail, you won’t be able to know who accessed or modified the data or when the data was
accessed or modified, or how a specific user gained access to the data. In those cases, you
need to leverage the native database engine auditing capabilities, like the MySQL Audit Plu-
gin, Oracle Audit log, or SQL Server Audit option. For each one of those cases, you will be
able to see the audit logs either directly on Amazon RDS console, in CloudWatch Logs, or in
Amazon S3, respectively.

CloudTrail is a useful tool for auditing but is not the only one; there is another key player
in the cloud auditing landscape: AWS Config.

AWS Config provides customers with a detailed inventory of each AWS resource and its
current configuration on each AWS account. It continuously listens for configuration changes
to these resources (e.g., DynamoDB- provisioned capacities, RDS instance status, Docu-
mentDB scaling events, etc.). It also identifies how a resource was configured at any point in
time and sends a notification via Amazon SNS whenever a resource becomes noncompliant.
Customers can also trigger automatic remediations via AWS System Manager automation
documents or AWS Lambda functions.

You can define your ideal configuration of AWS by applying AWS Config rules. AWS Con-
fig provides customizable, predefined rules to help you get started, but you can also create
rules of your own. If a resource violates a rule, AWS Config flags the resource and the rule
as noncompliant and notifies you through Amazon SNS. You can use dashboards for visual-
izing compliance and identifying offending changes.

Summary
This chapter covered the basic concepts of the AWS cloud, such as its global footprint, net-
working, security, storage, and operations related to database services. This foundation
will help you understand the following chapters and let you stitch together your current IT
knowledge and the cloud world.

Purpose- Built
Databases

THE AWS CERTIFIED DATABASE – SPECIALTY
EXAM OBJECTIVES COVERED IN THIS
CHAPTER MAY INCLUDE, BUT ARE NOT
LIMITED TO, THE FOLLOWING:

 ✓ Domain 1.0: Workload- Specific Database Design

 ■ 1.1 Select appropriate database services for specific types of

data and workloads.

 ■ 1.3 Design database solutions for performance, compliance,

and scalability.

 ■ 1.4 Compare the costs of database solutions.

Chapter

3

In this chapter, we will cover data store characteristics: access
patterns, latency, scaling, transaction support, consistency,
volume, durability, availability, security/compliance, business

logic, and cost. We will also cover how these characteristics correlate with each other to
help identify the best purpose- built database for specific uses. Then, we will present the fully
managed database services available today in AWS, comparing their characteristics.

Data store Concepts
The history of databases is closely linked to the evolution of computational structures. With
advances in the areas of processors, volatile memory, and persistent memory, new optimiza-
tion and query execution strategies were created.

You can think about the evolution of database systems as being similar to the evolution
of animal species. In the mammal family, to which we all belong, there are beings that fly,
beings that swim, and beings that walk— vast is the myriad of data types. It would not be
interesting, nor even practical, to subject a mammal that has evolved to fly— with lighter
bone structures— to swim and dive in the deepest parts of the ocean. This flying mammal did
not evolve to possess the respiratory structures necessary to withstand long dives, and it does
not have the thermal protection to withstand the low temperatures of the oceans.

In the same way that animal species have evolved and become specialized to have a more
harmonious and efficient relationship with their habitat, applications have evolved over the
decades, demanding specialization to achieve greater efficiency. As systems and applications
have evolved, whether in the adoption of new programming paradoxes or in the creation of
new design patterns, it has created a need for specialized data structures.

Before you can understand what purpose- built databases are, you must first understand
the main characteristics of a data store. We say data store instead of database purposely so
that we can analyze the data without any particular bias.

This section details the data store characteristics that drive purpose- built database
decisions. We selected these characteristics and have applied them in the field successfully
over time— but this isn’t a definitive list. As database engines evolve, new functionalities and
limits arise, requiring revision of these characteristics to ensure effectiveness. By analyzing
these characteristics together, it’s possible to work backward to the purpose- built database
that fits your requirements.

Data store Concepts 37

Data Access Patterns
Understanding an application’s data access patterns is crucial to determining whether the
data store is a best fit for relational or nonrelational engines. Data access patterns are the
conjunction of requests that will be executed in the database by users or applications. This
concept is defined by the PIE theorem— the iron triangle of purpose.

 ■ P stands for pattern flexibility. Pattern flexibility enables random access patterns and
ad hoc queries, leveraging the database optimizer mechanism to find the best access
path possible. Ad hoc queries are requests executed on demand by users or independent
processes, not mapped to defined data access patterns.

 ■ I stands for infinite scale. A data store can increase throughput without practical limits.

 ■ E stands for efficiency. A data store will predictably deliver required latency at all times.

Like the CAP theorem (consistency, availability, partition— explained in detail in
Chapter 1, “Databases—from Your Server to AWS Cloud”), data store characteristics are
defined in pairs. PE (pattern flexibility and efficiency) represents relational databases, IE
(infinite scale and efficiency) represents nonrelational databases, and PI (pattern flexibility
and infinite scale) represents relational analytical data warehouse databases. If the data
access patterns are known, it’s possible to create an efficient nonrelational data model by
preparing the access path— for example, picking the right indexes and preparing the data-
set to be queried. If the application design needs to give users pattern flexibility and the
ability to perform any query, even inefficient ones, most likely you will have a relational
data store in front of you. On the other hand, if you have a well- defined set of queries being
performed by the application, the data store could be either relational or nonrelational.
 Analyzing data access patterns in conjunction with the characteristics of the following
 sections will help you identify the right data store based on the workload requirements.

Latency
Ask yourself these questions: What are the latency requirements for this data store? Should
queries be satisfied in microseconds, milliseconds, seconds, or even minutes? Can the latency
requirements be relaxed as the data store grows, or must we provide predictable latency
levels despite data store growth? What is the expected latency for reads and writes?

Scaling
If the data store request rate is not evenly distributed through the day, the data store must be
able to scale— either on compute or on storage capacity (reads per second, writes per
second). We have two subdimensions of scaling: throughput and concurrency.

 ■ Throughput: What are the expected queries per second (QPS) or transactions per
second (TPS) for this data store over a period of time? Does the data store need to with-
stand abrupt variations in throughput, from low (few queries per second) to very high

38 Chapter 3 ■ Purpose- Built Databases

(thousands or even millions of queries per second) in a matter of milliseconds? Is the
throughput evenly distributed through the day?

 ■ Concurrency: Does the data store need to provide concurrency mechanisms for the
application? What happens when different database calls request to update the same
item or row or document at the same time? To address this requirement, relational data
stores implement a combination of concurrency mechanisms such as two- phase locking
(2PL) and timestamp ordering (TO), which derives multiversion concurrency control
(MVCC) and optimistic concurrency control (OCC). It is important to understand the
concurrency requirements of the data store versus what mechanisms are provided by
each purpose- built database. Amazon DynamoDB, for example, uses the OCC method.

Transaction Support
Should the data store be able to deliver ACID- compliant transactions? (We defined ACID in
Chapter 1.) Over time, more and more nonrelational databases have started offering ACID
transaction support as an alternative to BASE transactions (basically available, soft state,
eventual consistency), which were available in the first implementations of nonrelational
databases. It’s crucial also to understand the isolation- level requirements for the data store,
meaning the levels defined as read committed, read uncommitted, repeatable reads, and
serializable— with the last two related to MVCC and 2PL, respectively, as explained previ-
ously with concurrency.

Consistency
Eventual consistency does not guarantee 100 percent effective availability. Amazon
DynamoDB, for instance, offers a 99.99 percent SLA for standard tables, using consistent
reads or eventual consistent reads and thus not improving availability. Eventual consistency
tends to be less complex to achieve, which leads to more cost- effective designs. If a data store
can accommodate eventual consistency, consider adopting it. For example, caching data can
become stale, serving a previous version of data manipulated until the change propagates to
the cache. Caching strategies deliver, in the majority of scenarios, eventual consistency.

Volume
What is the expected volume to be stored on the data store, per item or row or document? By
understanding volume requirements, you can identify possible target engines. For example,
as of the writing of this book, Amazon DynamoDB has a limit per item size of 400 KB, and
Amazon Keyspaces has a maximum item size of 1 MB. After denormalizing the data, if
each item is bigger than 400 KB, Amazon Keyspaces becomes a better candidate to host this
data store. What are the column data type requirements? Each engine has its set of supported

Data store Concepts 39

data types. Validating this data store requirement against the available options is crucial to
identify the best suited purpose- built database. Dimensions of volume include the following:

 ■ Item: What is the size of each individual item, document, or row?

 ■ Pagination: What is the maximum amount of data fetched from the database to the
application on each application call?

 ■ Data store: What is the designed size of the entire data store?

Durability
Does the data store hold ephemeral data? Ephemeral data could be reinstated with minimal
effort, like application parameters applied on the data store as an artifact of a development
pipeline or data that will exist only during the lifespan of a session or business process, like
the “move to cart” function on an e- commerce website. By understanding this data store
characteristic, you can leverage specific purpose- built database features, such as Amazon
DynamoDB time- to- live (TTL) or caching services like Amazon ElastiCache. If durability is
crucial for the application, does the data store support storage multiplexing, sustaining reli-
ability in the case of hard- drive failure, node failure, or even availability zone failures? For
example, Amazon Aurora delivers high durability, replicating data six times in three avail-
ability zones.

Availability
What are the recovery point objective (RPO) and recovery time objective (RTO) require-
ments for this data store? Does the data store need to be available in different AWS regions
supporting reads or reads and writes?

Security/Compliance
Does the data store need to comply with specific regulations or standards like PCI DSS,
HIPAA, SOC, or FedRAMP? Does the data store need to integrate with external authori-
zation, authentication, or protocols like Kerberos? As an example, as of the writing of this
book, ElastiCache for Memcached is not compliant with PCI standards. If a caching strategy
must be adopted, ElastiCache for Redis must be used instead.

Business Logic
Does the data store need to store or run application code such as functions, procedures, and
packages? Can this business logic be decoupled from the data store, leveraging external com-
pute environments such as AWS Lambda, Amazon ECS, Amazon Elastic Kubernetes Service,
or even AWS Step Functions?

40 Chapter 3 ■ Purpose- Built Databases

Cost
Cost is an important part of any real architecture. However, it should be considered after
reviewing the other characteristics, introducing the possibility to relax a previous data store
requirement in favor of cost. For example, if low throughput (few accesses per day), high
availability, and very low latency (microseconds) are required from the data store, Amazon
ElastiCache for Redis is an interesting choice. If this latency requirement could be relaxed
in favor of cost, Amazon DynamoDB could be a better solution, leveraging its serverless
architecture and consumption models.

Purpose- Built Databases on AWS
Now that you understand the main characteristics of data stores and the diverse require-
ments they have to address, thinking about database specialization becomes natural as a
means to create more efficient data stores, enabling support to ever- evolving application
requirements.

This section presents a nonexhaustive list of these main purpose- built database charac-
teristics, and its details and use cases will be given through the next chapters of this book.
Note that some characteristics will change over time as a result of product innovations and
improvements, so always check the latest documentation for each database service.

In the field, reassessing the best data store for application requirements usually happens in
the following scenarios:

 ■ A compelling event or recurrent issue demanding application revision

 ■ A new product or service being built from scratch

 ■ A refactoring of legacy applications

 ■ Benefits of the data store outweighing required application changes and operational
learning curve

Relational Databases
In the relational database category, the following database services are presented (see
Table 3.1):

 ■ Amazon Relational Database Service (RDS): This offers a choice of popular relational
database engines: PostgreSQL, MySQL, Oracle, SQL Server, and MariaDB.

 ■ Amazon Aurora: Available in PostgreSQL- compatible and MySQL- compatible versions,
Aurora offers scalability, elasticity, durability, high availability, and disaster recovery
features.

 ■ Amazon Redshift: This is a columnar relational database built for analytical and data
warehousing workloads.

Purpose- Built Databases on AWS 41

TABLE 3 .1 AWS Relational Database Services

Amazon RDS Amazon Aurora Amazon Redshift

Access
Patterns

Flexible, using SQL queries.

Latency Milliseconds to minutes. Milliseconds to minutes. Seconds to hours.

Scaling Scale writes vertically; reads
horizontally in minutes (up
to 5 replicas). Throughput
very low to high

Strong concurrency
mechanisms.

Scale writes vertically; reads
horizontally in seconds using
Aurora Auto Scaling (up to
15 replicas). Throughput very
low to high.

Strong concurrency
mechanisms.

Scale writes and
reads; elastic resize
with concurrency
scaling in minutes.

Throughput very low
to high.

Strong concurrency
mechanisms.

Trans-
action
Support

Fully ACID compatible.

Consis-
tency

Strong consistency.

Volume GB to TB (64 TB max). GB to TB (128 TB max). GB to PB.

Durability High. Very high (six copies). Very high (three
copies).

Avail-
ability

Multi- AZ for one additional
AZ + read replicas.

Could span multiple AZs in a
region with Aurora replicas;
could span multiple regions
with the Aurora global
database.

Redshift Cluster
could be relocated to
another AZ in case of
AZ failure.

Security
and
Compli-
ance

Support for encryption in transit and at rest; compliant with PCI, HIPAA, and SOC,
among others (details at aws.amazon.com/compliance/services- in- scope).

Business
Logic

The application logic could be hosted at the database level.

(continues)

http://aws.amazon.com/compliance/services-in-scope

42 Chapter 3 ■ Purpose- Built Databases

Nonrelational Databases
In the nonrelational database category, the following database services are available (see
Table 3.2):

 ■ Amazon DynamoDB: Serverless key- value database; ideal for mission- critical, low-
latency workloads at any scale

 ■ Amazon DocumentDB (with MongoDB compatibility): JSON document database with
scalability, elasticity, and high availability

 ■ Amazon Keyspaces (for Apache Cassandra): Serverless wide- column database, which
delivers low latency at any scale

 ■ Amazon Neptune: Reliable graph database compatible with Gremlin and
SPARQL queries

 ■ Amazon Timestream: Serverless time- series database; ideal for massive ingestion work-
loads ordered by time

 ■ Amazon QLDB: Serverless ledger database, which delivers immutability and crypto-
graphically verifiable data manipulations

 ■ Amazon ElastiCache: In- memory key- value database; available in Memcached and
Redis versions

 ■ Amazon MemoryDB: In- memory key- value database; based on Redis, with persistence
layer embedded

Amazon RDS Amazon Aurora Amazon Redshift

Cost Cost based on the following:

 ■ Number and type of
nodes

 ■ Amount and type of
storage

 ■ Licensing for
commercial engines

 ■ High- availability
options (multi- AZ and
read replicas)

 ■ Storage consumed by
backups

Cost based on the following:

 ■ Number and type of
nodes

 ■ Amount of storage
 ■ Amount of I/O

operations
 ■ Storage consumed by

backups
 ■ Aurora capacity units

(ACUs) consumed for
Aurora Serverless

Cost based on the
following:

 ■ Number and
type of nodes

 ■ Amount of
storage

 ■ Storage con-
sumed by
backups

 ■ Data scanned
by Redshift
Spectrum

TABLE 3 .1 AWS Relational Database Services (continued)

Purpose- Built Databases on AWS 43

TABLE 3 .2 AWS Nonrelational Database Services

Amazon DynamoDB
Amazon DocumentDB (with
MongoDB Compatibility)

Amazon Keyspaces
(for Apache
Cassandra)

Access
Patterns

Known and predefined
during application design,
programmatically access
through API calls.

Known and predefined during
application design, flexible
access patterns enabled by
database optimizer, access
through libraries and drivers
connecting to the database
endpoint.

Known and pre-
defined during
application design,
programmatically
access through API
calls and Cassandra
Query Language
(CQL).

Latency Milliseconds. Milliseconds to minutes. Milliseconds.

Scaling Scale writes and reads in
milliseconds without prac-
tical limits. Throughput
very low to very high.

Light concurrency mech-
anisms using ordered
timestamps.

Scale writes vertically and
reads horizontally in minutes
using DocumentDB replica
instances (up to 15).

Throughput very low to high.

Strong concurrency
mechanisms.

Scale writes and
reads in milli-
seconds without
practical limits.
Throughput very
low to very high.

Light concurrency
mechanisms using
ordered timestamps.

Transaction
Support

ACID support in
transactions.

ACID support in transactions. Limited ACID
compatibility.

Consistency Eventual and strong consistency options, depending on used isolation levels.

Volume GB to TB. Maximum item
size 400 KB. Maximum
fetch per call 1 MB; pag-
inated for larger than
1 MB.

GB to TB (64 TB Max).
Maximum item size 16 MB.

GB to TB. Maximum
item size 1 MB.
Maximum fetch per
call 1 MB; paginated
for larger than 1 MB.

Durability Very high. Very high (six copies). Very high (three
copies).

Availability Regional service— available
in multiple AZs after
deployment. Multi-
regional service using
DynamoDB global tables.

Could span multiple AZs in
a region with DocumentDB
replicas; could span multiple
regions with DocumentDB
global clusters.

Regional service—
available in mul-
tiple AZs after
deployment.

(continues)

44 Chapter 3 ■ Purpose- Built Databases

Amazon Neptune Amazon Timestream Amazon QLDB

Access
Patterns

Known and predefined
during application design,
access through API calls
and tools like Neptune
Workbench and Lan-
guages like Gremlin and
SPARQL.

Known and predefined
during application design for
ingestion, flexible for analyt-
ical queries using SQL Lan-
guage. Access through API
calls.

Known and pre-
defined during
application design,
access through API
calls and tools like
PartiQL and Amazon
QLDB Shell.

Latency Milliseconds to minutes. Milliseconds to minutes. Milliseconds to
seconds.

Scaling Scale writes vertically and
reads horizontally in
seconds using Neptune
replicas (up to 15).
Throughput very low
to high.

Strong concurrency
mechanisms.

Scale writes and reads in
milliseconds without
practical limits, with adaptive
autoscaling. Throughput very
low to very high.

Light concurrency
mechanisms using
timestamps.

Scale writes and
reads in millisec-
onds without
practical limits.

Throughput very
low to very high.

Very strong concur-
rency mechanisms.

Amazon DynamoDB
Amazon DocumentDB (with
MongoDB Compatibility)

Amazon Keyspaces
(for Apache
Cassandra)

Security
and
Compliance

Support for encryption in transit and at rest. Compliant with PCI, HIPAA,
and SOC, among others (details at aws.amazon.com/compliance/
services- in- scope).

Business
Logic

The application logic cannot be hosted at the database level.

Cost Cost based on the
following:

 ■ Table class (standard
or infrequent access)

 ■ Amount of storage
 ■ Write and read

capacity units
 ■ DynamoDB- specific

features such as
global tables

 ■ Storage consumed
by backups

Cost based on the following:

 ■ Number and type of
nodes

 ■ Amount of storage
 ■ Amount of I/O operations
 ■ Storage consumed by

backups

Cost based on the
following:

 ■ Amount of
storage

 ■ Write and read
request units

 ■ Storage con-
sumed by
backups

 ■ Time- to- live of
items

TABLE 3 .2 AWS Nonrelational Database Services (continued)

http://aws.amazon.com/compliance/services-in-scope
http://aws.amazon.com/compliance/services-in-scope

Purpose- Built Databases on AWS 45

Amazon Neptune Amazon Timestream Amazon QLDB

Transaction
Support

ACID compatible. No ACID compatibility. ACID compatible.

Consistency Strong consistency. Eventual consistency. Strong consistency.

Volume GB to TB (64–128 TB max). GB to PB. GB to TB. Maximum
item size 128 KB,
maximum transac-
tion size of 4 MB.

Durability Very high (six copies). Very high. Very high.

Availability Could span multiple AZs
in a region with Neptune
replicas.

Span multiple AZs in a
region.

Span multiple AZs
in a region.

Security
and
Compliance

Support for encryption in transit and at rest. Compliant with PCI, HIPAA,
and SOC, among others (details at aws.amazon.com/compliance/
services- in- scope).

Business
Logic

The application logic cannot be hosted at the database level.

Cost Cost based on the
following:

 ■ Number and type of
nodes

 ■ Amount of storage
 ■ Amount of I/O

operations
 ■ Storage consumed

by backups

Cost based on the following:

 ■ Amount of storage
 ■ Amount of data written
 ■ Amount of data scanned

by queries
 ■ Amount of memory con-

sumed by queries
 ■ Storage consumed by

backups

Cost based on the
following:

 ■ Amount of
storage

 ■ Write and read
requests

 ■ Storage
consumed by
backups

Amazon ElastiCache Amazon MemoryDB

Access
Patterns

Known and predefined during applica-
tion design; access through libraries and
drivers connecting to database endpoint.

Known and predefined during
application design; access through
libraries and drivers connecting to
database endpoint.

Latency Microseconds to milliseconds. Microseconds to milliseconds.

Scaling Vertical scaling in ElastiCache for
Memcached; vertical and horizontal
scaling in ElastiCache for Redis.
Throughput high to very high, light
concurrency mechanisms.

Vertical and horizontal scaling.
Throughput high to very high. Light
concurrency mechanisms.

Transaction
Support

No ACID compatibility. No ACID compatibility.

(continues)

http://aws.amazon.com/compliance/services-in-scope
http://aws.amazon.com/compliance/services-in-scope

46 Chapter 3 ■ Purpose- Built Databases

Amazon ElastiCache Amazon MemoryDB

Consistency Strong consistency on primary nodes,
and eventual consistency on read nodes.

Strong consistency on primary
nodes, and eventual consistency on
read nodes.

Volume GB to TB. GB to TB.

Durability Low (ephemeral data). Very high.

Availability Single node for Memcached. ElastiCache
for Redis could span multiple AZs and
multiple regions using global data stores.

Could span multiple AZs in a region.

Security
and
Compliance

Support for encryption in transit and
at rest. Compliant with PCI, HIPAA, and
SOC, among others— except when using
Memcached (check aws.amazon.com/
compliance/services- in- scope).

Support for encryption in transit and
at rest. Compliant with PCI, HIPAA,
and SOC, among others (check
aws.amazon.com/compliance/
services- in- scope).

Business
Logic

The application logic could not be hosted at the database level.

Cost Cost based on the following:

 ■ Number and type of nodes
 ■ Storage consumed by backups

Cost based on the following:

 ■ Number and type of nodes
 ■ Amount of data written
 ■ Storage consumed by backups

Summary
This chapter discussed the main characteristics of data stores, working backward from these
characteristics to AWS purpose- built database services.

In the next chapters, we will dive deep into each purpose- built database service and dis-
cuss key topics such as high availability, monitoring, backups, and best practices.

Exam Essentials
Understand the characteristics of data stores. Leverage the 11 data store characteristics
presented in this chapter and gather this information with developers, stakeholders, and
application architects.

TABLE 3 .2 AWS Nonrelational Database Services (continued)

http://aws.amazon.com/compliance/services-in-scope
http://aws.amazon.com/compliance/services-in-scope
http://aws.amazon.com/compliance/services-in-scope
http://aws.amazon.com/compliance/services-in-scope

Exam Essentials 47

Be able to identify whether a workload requires a relational database. Leverage the PIE
theorem to evaluate whether the application requirements are best suited for a relational
database, with PI (Pattern Flexibility and Infinite Scale) or PE (Pattern Flexibility and
Efficiency) characteristics.

Be able to identify whether a workload requires a nonrelational database. Leverage the PIE
theorem to evaluate whether the application requirements are best suited for a nonrelational
database, with IE (Infinite Scale and Efficiency) characteristics.

Be able to identify whether a workload requires a specialized nonrelational data-
base. Leverage the PIE theorem to evaluate whether the application requirements are best
suited for a nonrelational database, with IE (Infinite Scale and Efficiency) characteristics, and
specialized datasets, like graph, time series, or ledger.

Identify the best purpose- built database for each application requirement. Be able to map
data store requirements to the most suited purpose- built database, taking advantage of the
characteristics of each database- managed service.

48 Chapter 3 ■ Purpose- Built Databases

Review Questions

1. A DBA is identifying the best purpose- built database for a new product. Application require-
ments include flexible data access patterns, millisecond latency, ability to scale out and scale
in reads on demand, multiregion availability, and full ACID compliance. Which of the follow-
ing should the DBA choose?

A. None; no AWS database service fits these requirements.

B. Amazon DocumentDB

C. Amazon Neptune

D. Amazon Aurora

2. A DBA is working on an application refactor project and needs to propose the best purpose-
built database with these requirements: ACID transactions, global multimaster with the
ability to perform reads and writes in more than one AWS region, predictable millisecond
latency for reads, and ability to scale out and scale in on demand. Which of the following
should the DBA choose?

A. Amazon RDS for Oracle

B. Amazon DynamoDB

C. Amazon Timestream

D. Amazon DocumentDB

3. A DBA is analyzing a problematic application with the following requirements: milli-
second latency for reads, predefined access patterns, 600 KB per item, and ability to update
individual attribute values for a team very proficient in the SQL language. Which purpose-
built database services would address these requirements? (Choose two.)

A. Amazon DynamoDB

B. Amazon QLDB

C. Amazon Keyspaces

D. Amazon Aurora

4. A DBA is working on a project for Wall Street where data immutability and auditability are
crucial. Which is the best purpose- built database for these requirements?

A. Amazon Keyspaces

B. Amazon Timestream

C. Amazon QLDB

D. Amazon DocumentDB

Review Questions 49

5. A retail company is searching for a new database for its inventory system. Inventory data is
received in JSON format with a typical payload of 2 MB per item; access patterns are well
defined; traffic is predictable, reads could scale horizontally; and the application will query
nested JSON attributes and can’t remodel the data at this time. Which is the best purpose-
built database for these requirements?

A. Amazon Neptune

B. Amazon DynamoDB

C. Amazon DocumentDB

D. Amazon Keyspaces

6. A financial services company is searching for a new database for its transaction history.
Transaction data is received in JSON format with a typical payload of 40 KB per item;
access patterns are well defined; traffic is unpredictable and could scale from hundreds to
millions of requests per second in 1 minute; applications need predictable latency; and data
should be retrieved in few milliseconds. Which is the best purpose- built database for these
requirements?

A. Amazon Timestream

B. Amazon DynamoDB

C. Amazon DocumentDB

D. Amazon Keyspaces

7. A financial services company is searching for a new database for the accounts API. Transac-
tion data is received in JSON format with a typical payload of 80 KB per item; access pat-
terns are well defined; traffic is unpredictable and could scale from hundreds to millions of
requests per second in 1 minute; the application needs predictable latency; and data should
be retrieved in few milliseconds. Developers are used to running CQL queries on the data-
base, and to reduce friction, the new database should provide this functionality. Which is the
best purpose- built database for these requirements?

A. Amazon Timestream

B. Amazon DynamoDB

C. Amazon DocumentDB

D. Amazon Keyspaces

8. An automotive company is searching for a new database for its order system. Order data
is received in JSON format with a typical payload of 10 KB per item; a data store should
enable aggregation functions directly at the database layer. Which would be the best purpose-
built database for this requirement?

A. Amazon QLDB

B. Amazon DynamoDB

C. Amazon Keyspaces

D. Amazon DocumentDB

50 Chapter 3 ■ Purpose- Built Databases

9. A company is searching for a new database to support a global- scale application. The new
database should be available in multiple regions and receive reads and writes in each region,
updating, deleting, and inserting in the same data store. Which is the best purpose- built data-
base for these requirements?

A. Amazon QLDB

B. Amazon DynamoDB

C. Amazon Keyspaces

D. Amazon DocumentDB

10. What is the most cost- effective solution for a data store required to deliver millisecond
latency with an unpredictable number of concurrent users through the day, ranging from zero
users to thousands of users in a matter of seconds?

A. Amazon RDS sized for the peak, with multiple nodes

B. Amazon ElastiCache for Redis

C. Amazon QLDB

D. Amazon DynamoDB with on- demand capacity

PART

II
Management

and Operations,
Database
Security,

Monitoring and
Troubleshooting

per Workload

Chapter 4: Transactional Databases on AWS

Chapter 5: Low Latency Response Time for Your Apps and APIs

Chapter 6: Document Databases in the Cloud

Chapter 7: Better Places Other Than Databases to Store Large Objects

Chapter 8: Deliver Valuable Information at the Speed Your Business Needs

Chapter 9: Discovering Relationships Using Graph Databases

Chapter 10: Immutable Database and Traceable Transactions

Chapter 11: Caching Data with In-memory Databases

52 Part II ■ Management and Operations, Database Security

Relational Databases
on AWS

THE AWS CERTIFIED DATABASE - SPECIALTY
EXAM OBJECTIVES COVERED IN THIS
CHAPTER MAY INCLUDE, BUT ARE NOT
LIMITED TO, THE FOLLOWING:

 ✓ Domain 1: Workload- Specific Database Design

 ■ 1.2 Determine strategies for disaster recovery and high

availability.

 ■ 1.3 Design database solutions for performance, compliance,

and scalability.

 ■ 1.4 Compare the costs of database solutions.

 ✓ Domain 2: Deployment and Migration

 ■ 2.2 Determine data preparation and migration strategies.

 ■ 2.3 Execute and validate data migration.

 ✓ Domain 3: Management and Operations

 ■ 3.1 Determine maintenance tasks and processes.

 ■ 3.2 Determine backup and restore strategies.

 ■ 3.3 Manage the operational environment of a database

solution.

 ✓ Domain 4: Monitoring and troubleshooting

 ■ 4.2 Troubleshoot and resolve common database issues.

 ■ 4.3 Optimize database performance.

 ✓ Domain 5: Database security

 ■ 5.1 Encrypt data at rest and in transit.

 ■ 5.2 Evaluate auditing solutions.

 ■ 5.3 Determine access control and authentication mechanisms.

 ■ 5.4 Recognize potential security vulnerabilities within database

solutions.

Chapter

4

Understanding transactional databases is important to pass
the AWS Certified Database - Specialty exam. It also helps to
improve the database skills you use in your daily job, espe-
cially when reviewing important topics such as understanding

requirements and defining maintenance strategies for relational database management.

Relational Databases
Edgar Frank “Ted” Codd developed the “relational databases” concept in 1970 at IBM. After
that, several companies and open- source communities implemented the relational model.

Relational databases store data in tables. The tables store data organized in columns and
rows. In this model, the tables have references, using primary keys and foreign key con-
straints to enforce uniqueness and guarantee referential consistency.

The following are purposes of relational databases:

 ■ Supporting transactions: A relational database handles a complex statement that
changes data from different tables as a single unit of work and guarantees the commit-
ment of all SQL statements within the transaction. If any statement within the transac-
tion fails, the relational database will roll back all SQL statements inside the transaction
declaration.

 ■ Avoiding data redundancy: The relational database is based on normalization rules
when storing data inside the tables to prevent data duplicity, inconsistencies, and integ-
rity loss. It also relies on enforcement rules using the constraints to prevent storing
inconsistent data.

Relational databases use Structured Query Language (SQL) for data manipulation.
Several commercial relational databases are widely used, including Db2, Oracle, Informix,

and Microsoft SQL Server.
After some years, we saw the development of open- source relational databases. The

MySQL community released the first MySQL database in 1995, the PostgreSQL community
released its first database in 1997, and the MariaDB community released its database
in 2009.

On AWS, you can deploy relational databases on Amazon EC2 instances, where you man-
age the operating system and database software by yourself. You can also choose Amazon
Relational Database Service (Amazon RDS), a managed database service. We will discuss the
differences and the benefits of choosing each type of solution.

Structured Query Language 55

Structured Query Language
The Structured Query Language (SQL) uses specific commands— such as create, drop,
select, insert, update, and delete— to execute the statements. The SQL standard sepa-
rates the commands into the following categories:

 ■ Data Definition Language (DDL): DDLs are commands to create objects such as create
table, drop table, create index, alter, and truncate. The following command creates a
table called “students” with four columns, creates a primary key on the id column, alters
the table “students” to add a column called “address,” and executes truncate to exclude
all rows in the “students” table.

create table students
(
 id datatype,
 name datatype,
 age datatype,
 dateofbirth datatype
);
create index pk_students_id on students (id);
alter table students add (address datatype);
truncate table students;
drop table students;

 ■ Data Query Language (DQL): DQLs are commands to select data from tables. For
example, the following statement is querying the column’s id and name from the
“students” table and is filtering people younger than 10 years old:

select id, name
from students
where age > 10;

 ■ Data Manipulation Language (DML): DMLs are commands to insert, update, or
delete data on tables. For example, the following command inserts a row into the
“students” table:

insert into students (
id,
name,
age,
dateofbirth,
address
)

56 Chapter 4 ■ Relational Databases on AWS

values
 (
 '001',
 'John Smith',
 38,
 '01/01/1983',
 '80 Queen Street, Auckland Central, Auckland 1010'
);
update students set address = '123 Avenue Road, Greenmeadows, Napier 2112'
where id = '001';
delete students where id = '001';

 ■ Data Control Language (DCL): DCL commands are used to grant access to the tables
and stored procedures to users. For example, the first command will grant the user
“dave” permission to execute select and update on the “students” table, and the second
command will revoke the permissions:

grant select, update on students to dave;
revoke select, update on students from dave;

 ■ Transaction Control Language (TCL): TCL commands control transactions in the data-
base. For example, the following statements will control when the transaction is com-
mitted or rolled back or define savepoints inside the SQL code:

Commit;
Rollback;
Savepoint savepoint_name;

The following example demonstrates two SQL statements within a transaction:

begin
 insert into students
 (
 id,
 name,
 age,
 dateofbirth,
 address
)
 values
 (
 '002',
 'Joseph Miller',
 42,
 '01/01/1980',

Install and Manage Databases Yourself 57

 'Triq Alamein Pembroke PBK, 1710, Malta'
);
 update class_attendance set
(
date = current_date(),
 status = 'OK'
)
 where student_id = '001'
 and class_id = '1024';
 commit;
end;

Developers and architects choose relational databases to support transactional environ-
ments because of the capacity to commit or roll back an entire transaction of all statements
if something goes wrong. All relational databases (PostgreSQL, MySQL, Oracle, SQL Server,
and others) can handle it.

Amazon DynamoDB also handles a single all- or- nothing action using
TranctWriteItems or TransactGetItems. We discuss this in Chapter 5, “Low Latency
Response Time for Your Apps and APIs.”

Amazon DocumentDB has the transactions capability, which we’ll discuss in Chapter 6,
“Document Databases in the Cloud.”

The capacity for handling transactions’ integrity is known as ACID (which stands for
atomicity, consistency, isolation, and durability).

 ■ Atomicity refers to the integrity of the entire database transaction and not just to a
single SQL statement. If one transaction operation fails, the database rolls back the
whole transaction.

 ■ Consistency refers to following appropriate validation rules. It means that if the data
complies with the validation rules, the data will persist.

 ■ Isolation refers to the capacity for handling multiple concurrent transactions, and one
transaction won’t impact the data integrity of the others and vice versa.

 ■ Durability refers to the capacity for saving data once a transaction has completed. Even
if an unexpected failure in the system occurs (e.g., hardware failure), the committed data
will be protected and consistent.

Install and Manage Databases Yourself
A typical way to deploy databases on AWS is to install and manage the database by yourself
on Amazon EC2 or even in bare- metal instances.

You’ll need to keep the following in mind:

 ■ Certification matrix between database software and operating system

 ■ The supported operating systems on Amazon EC2

58 Chapter 4 ■ Relational Databases on AWS

 ■ Filesystem’s requirements

 ■ Sizing elements (IOPS, CPU, and memory usage)

Whenever you choose to install database software on EC2, you must validate if the
database software is supported and certified with the operating system. Keep in mind that
all of that information depends on the product lifetime of the database software’s versions
(even proprietary or open- source/community) and that you need to keep it up to date
accordingly.

I/O Requirement
An I/O requirement is an essential but basic configuration for database performance. We
strongly recommend collecting usage metrics before resource allocation. The appropriate
storage assignment, such as gp2, gp3, or Provisioned IOPS (PIOPS), is also critical due
to costs.

Amazon Elastic Block Store (Amazon EBS) is the block- storage service for Amazon
Elastic Compute Cloud (Amazon EC2). When assigning EBS volumes to the EC2,
they are raw and unformatted block devices. To use the volumes, you must mount
them as devices for the operating system. You can change the configuration of an EBS
dynamically.

Amazon EBS has the following classes of volume types available to support different
workloads:

 ■ Solid- state drives (SSDs) are optimal for transactional workloads involving frequent
read/write operations with small I/O size and the predominant high IOPS metric. SSD
drives are the most commonly used for relational databases.

 ■ Hard disk drives (HDDs) are optimal for handling large streaming workloads, and the
throughput metric is dominant.

Amazon EBS also has previous generation hard disk drives. They are appropriate for
workloads with small datasets and infrequent access, where performance is not a require-
ment. We do not recommend this category for transactional databases.

Solid- state drives have two classes:

 ■ General- purpose SSDs deliver a balance between price and performance. Most work-
loads benefit from general- purpose SSD drives.

 ■ Provisioned IOPS SSDs deliver high performance for business- critical, I/O- intensive,
low- latency, or high- throughput workloads.

Table 4.1 shows each volume type configuration.

Install and Manage Databases Yourself 59

The following is important information to keep in mind when planning the database
storage:

 ■ Volume sizes smaller than or equal to 170 GiB provide the maximum throughput of
128 MiB/s.

 ■ Volumes larger than 170 GiB but smaller than 334 GiB provide the maximum
throughput of 250 MiB/s if burst credits are available.

 ■ Volumes larger than 334 GiB provide 250 MiB/s regardless of burst credit.

TABLE 4 .1 I/O Requirements and Configurations

General- Purpose SSD Provisioned IOPS SSD

Volume type gp3 gp2 io2 Block Express ‡ io2 io1

Durability 99.8%–
99.9%
durability
(0.1%–0.2%
annual
failure rate)

99.8%–99.9%
durability
(0.1%–0.2%
annual failure
rate)

99.999% durability (0.001%
annual failure rate)

99.8%–99.9%
durability
(0.1%–0.2%
annual failure
rate)

Use cases Low- latency interactive apps

Development and test
environments

Workloads that
require submil-
lisecond latency,
and sustained IOPS
performance or
more than 64,000
IOPS or 1,000 MiB/s
of throughput

Workloads that require
sustained IOPS or more
than 16,000

I/O- intensive database
workloads

Volume size 1 GiB–6 TiB 4 GiB–64 TiB 4 GiB–16 TiB

Max IOPS
per volume
(16 KiB I/O)

16,000 256,000 64,000 †

Max
throughput
per volume

1,000 MiB/s Between
128 MiB/s and
250 MiB/s,
according to the
volume size.

4,000 MiB/s 1,000 MiB/s †

Source: Adapted from AWS, https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-volume-
types.html

† Only instances built on Nitro System provisioned can guarantee maximum IOPS and throughput with more
than 32,000 IOPS. Other instance classes guarantee up to 32,000 IOPS and 500 MiB/s.
‡ Only specific regions have io2 Block Express as an opt- in preview.

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-volume-types.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-volume-types.html

60 Chapter 4 ■ Relational Databases on AWS

Managing Databases on EC2
Managing the databases on EC2 is similar to managing them on premises. There are some
reasons for managing databases on EC2 by yourself:

 ■ To have access to the operating system level, libraries, and directories

 ■ To have access to the database standard administration user (root, sys, system, sa, etc.)

When using databases deployed on EC2, it’s necessary to implement the backup routines
according to the RDBMS software. For example:

 ■ Oracle over RMAN backup routines and storing the backup pieces in Amazon S3 use
the expiration rules based on RMAN backup retention.

 ■ SQL Server backup routines configured using file gateway to S3

 ■ PostgreSQL backup routines configured using pg_dump
 ■ MySQL backup routines configured using mysqldump or Percona XtraBackup

 ■ MariaDB backup routines configured using mysqldump or mariabackup

Always remember that the backup solution will be the native backup tool of the given
database deployed on EC2.

Even the backup retention and expiration rules must be defined according to the business
needs. S3 rules will be very useful on this control.

Monitoring Databases on EC2
Monitoring databases on EC2 is similar to monitoring them on premises. It is strongly rec-
ommended to configure notifications when thresholds are reached. All database operations
are essential to monitor— for example, when memory usage reaches more than 95 percent,
when swap activity starts, or when the CPU reaches 70 percent of use.

Monitoring also is essential for sizing the CPU allocation and EBS performance require-
ments. On one hand, if the environment is constantly near the physical resource limits for
CPU and memory, additional allocation probably will be necessary to change the instance
class. On the other hand, if the environment is constantly in low- usage metrics, it will be
better to change to lower- size instance types. Amazon EC2 allows you to change the instance
class for increasing or decreasing whenever you need to, and it will cause a reboot.

For the system’s health, it is essential to monitor the following:

 ■ Operating system logs, to check if there are errors

 ■ CPU usage

 ■ Memory usage

For the database health, it is essential to monitor the following:

 ■ Database logs, to check if there are errors related to the database software operations
and the sessions operations

 ■ Number of active database connections

 ■ Slow queries

 ■ Database buffers’ efficiency (cache hit ratio)

Install and Manage Databases Yourself 61

Scaling Databases
There are some options to scale a relational database. The most common are vertical scaling
(changing to bigger instance types) and horizontal scaling (adding standby read- only repli-
cated instances using native replication).

Let’s explore the vertical scaling option. For this option, we basically change the instance type
using the AWS console, the AWS CLI, or even AWS SDK. This action requires downtime of the
environment, and it’s highly recommended to back up the database and all environments before
the change. Depending on the resources, this operation may require minutes to accomplish.

To reduce the downtime during this operation, the alternative is to deploy a new instance
with the required resources using an out- of- pace strategy. To accomplish this task, you can
perform the following steps:

1. Install the same database software version as the source environment.

2. Restore a full backup in this environment, and keep the database updated using log
shipping (for example, Oracle archives, MySQL binlog, and PostgreSQL WAL).

3. When the databases are completely in sync, stop the application on the source, switch
over the database to the replica, and connect the application to the new database.

In this option, the downtime from the application perspective will be the following steps
in a small maintenance window:

1. Disconnect the application.

2. Check if there’s small sync difference to be replicated (Oracle archives, MySQL binlog,
or PostgreSQL WAL).

3. Reconnect to the database.

Scaling the database environment horizontally using replicas based on log shipping repli-
cation is an alternative to reduce the I/O overhead generated by read- intensive applications.
Some native database options include the following:

 ■ MySQL binlog replication

 ■ MariaDB replica using binlog

 ■ PostgreSQL log- shipping standby servers or streaming replication

 ■ Oracle Active Data Guard

 ■ Microsoft SQL Server native replication

Upgrading Databases
When upgrading self- managed databases, you must be aware of the software version avail-
ability and follow the upgrade steps based on each database distribution.

You must be aware of business requirements during upgrades and any kind of mainte-
nance. Although you need to follow each particular software distribution step, keep in mind
that performing an out- of- place upgrade can be less risky.

You can upgrade the database version directly in the current environment; this is an in-
place upgrade. If you need to undo this upgrade because you found some issue in the appli-
cation, the only alternative is to restore a backup.

62 Chapter 4 ■ Relational Databases on AWS

To manage risks and guarantee database availability, you should choose a safe strategy
for performing maintenance like upgrades. For better management of the maintenance risk,
instead of upgrading directly the current database software, you can choose to perform an
out- of- place upgrade or perform logical replication if the database engine allows.

To perform an out of place upgrade, complete the following steps:

1. Back up the current database.

2. Launch a new EC2 instance with the required operating system.

3. Patch the operating system with the required OS libraries and parameters.

4. Install the database software.

5. Restore the backup from step 1.

6. Establish replication.

7. Sync the database.

8. Stop the replication.

9. Perform the upgrade operation on this cloned database. If something goes wrong with
the operation, your original database will be untouched.

In step 7, to synchronize database, you can perform logical replication, based on the
native engine method.

Some databases have native logical replication available, like PostgreSQL pglogical, or even
use AWS Database Migration Service (AWS DMS), which handles different database engines and
versions. In this scenario of replicating between different versions, you need to install the database
on the desired final version in a new Amazon EC2 instance and then start replication from the
previous database to the new one installed on the new Amazon EC2 instance.

Managed Services
for Relational Databases
Amazon Relational Database Service (Amazon RDS) is a managed database service. It provides
easier management and enables automatic installation and configuration. It offers faster setup and
operation compared to self- managed databases and scales databases in the cloud. It automates
time- consuming activities such as hardware provisioning, database setup, patching, and backups.

You can select among six database engines including Amazon Aurora, PostgreSQL,
MySQL, MariaDB, Oracle, and SQL Server. You can choose the appropriate instance cat-
egory for the given workload for better cost and performance. For example, there are
instances optimized for memory, performance, or I/O.

Amazon RDS provides the following automated services and features that you can
easily enable:

 ■ Installation

 ■ Monitoring

Managed Services for Relational Databases 63

 ■ Backup and snapshots

 ■ Automated patching

 ■ Version upgrade

 ■ High availability with multi- AZ

 ■ Read replicas

Launching an RDS Instance
To configure an RDS instance, perform the following steps:

1. Navigate to the RDS console, select Create Database, and then select the engine option
and version appropriate to your environment (Figure 4.1).

F IGURE 4 .1 Choosing the database engine

64 Chapter 4 ■ Relational Databases on AWS

2. Select the template most appropriate to your workload: Production, Dev/Test, or Free
Tier (Figure 4.2).

3. Define an appropriate DB cluster identifier, master username, and password in the Settings
section (Figure 4.3). The master username has administrator privileges on the DB instance.

F IGURE 4 .2 Choosing a template

F IGURE 4 .3 Choosing the database settings

Managed Services for Relational Databases 65

4. Choose the appropriate instance class in the DB Instance Class section (Figure 4.4).

5. In the Storage section, define whether your environment requires general- purpose or
provisioned IOPS, the total provisioned IOPS, the allocated storage in size (GB), the
storage autoscaling enablement, and the maximum storage allowed for the autoscaling
provisioning (Figure 4.5).

F IGURE 4 .4 Choosing the instance class

F IGURE 4 .5 Choosing the storage configuration

66 Chapter 4 ■ Relational Databases on AWS

6. In the Availability & Durability section, select whether your database requires the high
availability provided by multi- AZ deployment (Figure 4.6).

7. In the Connectivity section, select the appropriate VPC, subnet group, whether the
database needs public access (it’s strongly recommended not to assign public access for
databases), and the security group (Figure 4.7). In the Additional Configuration section,
you can define the database port.

8. In the Database Authentication section, select the appropriate method (Figure 4.8).

 ■ Password authentication: The DB instance handles all users and passwords
connected to the DB. The database maintains and authenticates user accounts. It’s
required to create users by the CREATE USER statement defining the username and
password.

 ■ IAM database authentication: This method is available for RDS for MySQL
and RDS for PostgreSQL. Using IAM database authentication doesn’t require
the password authentication; instead, the user will connect using an authentica-
tion token.

 ■ Kerberos authentication: Kerberos is a network authentication protocol based on
tickets and symmetric- key cryptography to eliminate transmitting the password
over the network. Kerberos has been built into Active Directory and authenticates
users to network resources, such as databases.

F IGURE 4 .6 Enabling multi- AZ

Managed Services for Relational Databases 67

F IGURE 4 .7 Configuring the connectivity

68 Chapter 4 ■ Relational Databases on AWS

9. In the Additional Configuration section, in Database Options, you can define an initial
database name to be created and a DB parameter group (Figure 4.9). The option group
is always the standard one. (You can choose a new one later defining the suitable option
for parameter group and option group.)

10. In the Backup section, select whether to enable automatic backups, the backup retention
period, the backup window, and whether to replicate the backup to another AWS region
(Figure 4.10).

F IGURE 4 .8 Choosing the authentication method

F IGURE 4 .9 Defining an initial database to be created, parameter, and option groups

Managed Services for Relational Databases 69

11. In the Encryption section, you can select to enable encryption and the encryption key
(Figure 4.11).

12. In the Performance Insights section, select whether to enable Performance Insights and
the retention period (Figure 4.12). For seven days, there is no additional cost for the
database instance (perfect for development and test environments), and for production,
you can choose to retain insights of up to two years of performance information for an
extra charge (recommended for production databases).

F IGURE 4 .10 Configuring backup

F IGURE 4 .11 Enabling encryption

70 Chapter 4 ■ Relational Databases on AWS

13. In the Monitoring section, you can enable enhanced monitoring, the granularity to col-
lect, and whether you need to export database logs to CloudWatch (Figure 4.13).

14. In the Maintenance section, you can select whether to keep auto minor version upgrades
enabled and choose the maintenance window period allowed for the given database
(Figure 4.14).

F IGURE 4 .12 Enabling Performance Insights

F IGURE 4 .13 Enabling monitoring

F IGURE 4 .14 Configuring maintenance rules

Managed Services for Relational Databases 71

15. In the Deletion Protection section, you can choose whether the database will be pro-
tected against deletion (Figure 4.15).

16. Select Create Database (Figure 4.16).

Once the database is available, you can check the endpoint connection information by
accessing the RDS Management Console, by using the AWS Command Line Interface (AWS
CLI) describe- db- instances command, or by using the Amazon RDS API
Describe DBInstances operation.

This example demonstrates how to check your endpoint connectivity. As shown in
Figure 4.17, there’s a cluster endpoint for read- only (ro) workloads and another endpoint for
read/write operations. The Type column (Reader/Writer) describes the endpoint role.

F IGURE 4 .15 Enabling deletion protection

F IGURE 4 .16 Creating the database

F IGURE 4 .17 Checking the endpoints

72 Chapter 4 ■ Relational Databases on AWS

Managing High Availability and Scalability
Managing high availability and scalability is a usual requirement for most production data-
bases. For databases that require high availability, on Amazon RDS you can enable the
Multi- AZ setting. For databases that require scaling read operations, you can enable read
replicas.

Multi- AZ
Amazon RDS Multi-AZ provides high availability and durability for RDS instances. When
enabled, Amazon RDS automatically creates a primary and a standby database using
synchronous storage replication. The primary and the standby are separate instances and
storages independent, in different availability zones. RDS will automatically fail over to the
secondary database if the primary database fails.

RDS Multi- AZ provides the following:

 ■ Improved durability: Multi- AZ deployments for the MySQL, PostgreSQL, MariaDB,
and Oracle engines use synchronous physical replication based on Amazon failover
technology to keep the standby database up to date. Multi- AZ deployments for Micro-
soft SQL Server use synchronous logical replication with SQL Server native mirroring
technology called SQL Server Database Mirroring (DBM) or Always on Availability
Groups (AGs).

 ■ Increased availability: When a failure occurs on the primary database, the application
will be impacted by the time to fail over the primary to the standby in the secondary
availability zone. Typically RDS engines such as Oracle, Microsoft SQL Server, Post-
greSQL, MySQL, and MariaDB take 60 to 120 seconds to complete the failover.

 ■ Automatic failover: Amazon RDS changes the DNS resolution name automatically to
the standby database; there’s no manual activity during this operation.

 ■ Protection of database performance: Backups are taken from the standby database.

Failure conditions that trigger a failover in Multi- AZ include the following:

 ■ Failure of availability in the primary availability zone

 ■ Network connectivity failure to the primary database

 ■ A hardware failure on the primary database instance

 ■ A storage failure on the primary database

 ■ User requested; request a failover by selecting reboot with failover

The failover mechanism automatically changes the DB’s instance Domain Name System
(DNS) record to point to the standby database. Consequently, the application requires recon-
necting to the database.

We recommend reviewing the DNS TTL on the application side. Using this configuration
appropriately will guarantee that when the resource’s IP address changes, the application will
obtain the new IP if a failover operation has occurred.

Managed Services for Relational Databases 73

Always test the appropriate values for the DNS TTL to assure the best
configuration.

Databases configured with Multi- AZ have increased write and commit latency compared
to Single-AZ databases. We strongly recommend configuring provisioned IOPS and choosing
an instance class optimized for provisioned IOPS.

Scalability
To better adjust scalability in RDS, you can change your instance type to expand or reduce
the compute resources assigned to the RDS instance. And to increase horizontal read scal-
ability, you can add RDS read replicas.

Read Replicas
Amazon RDS provides horizontal read scalability using the MariaDB, Microsoft SQL Server,
MySQL, Oracle, and PostgreSQL DB engines’ native replication mechanisms. The origin DB
instance is the primary DB instance, and the data manipulation on the original data is rep-
licated asynchronously to the read replica. You can use the read replica to issue read opera-
tions and better scale out for read- heavy database workloads.

Figure 4.18 shows how a read replica works.

F IGURE 4 .18 How to create read replicas

74 Chapter 4 ■ Relational Databases on AWS

Use cases for read replica include the following:

 ■ Scale- out compute or I/O capacity for read- intensive database workloads.

 ■ Redirect read operations while the source instance is inaccessible. Keep in mind that the
data in the read replica might be “stable” during this period.

 ■ Provide business reporting or data warehousing read access.

You can promote a read replica to a stand- alone instance in primary DB failure for
disaster recovery. Keep in mind that it becomes an independent primary database after pro-
moting the read replica.

For multiregion high availability, you can enable cross- region read replicas for MariaDB,
MySQL, Oracle, or PostgreSQL. SQL Server on Amazon RDS does not support cross- region
read replicas.

Configuring RDS Parameter Groups
Parameter groups are assigned to databases to define configurations such as the instance buf-
fer’s size, max_connections, parameters that control queries behavior.

In RDS, to change parameters defined for postgres.conf, my.cnf, or init.ora, you’ll
customize them using the parameter groups.

Each database engine (MySQL, PostgreSQL, Oracle, MariaDB, and SQL Server) has its
own standard parameter group and specific version. This engine- and version- specific param-
eter group has several parameters already calculated based on the database instance class.

If you need to customize a specific parameter, you must create a new parameter group
based on an existing one and then assign this newly created parameter group to the database
instance. This modification requires that you manually reboot the DB instance for the change
to become valid.

Perform the following steps to create a new parameter group:

1. Sign in the AWS console and open Amazon RDS Console.

2. In the navigation pane, select Parameter Groups and then Create Parameter Group, as
shown in Figure 4.19.

3. In the Create Parameter Group window, in the Parameter Group Family list, select a DB
parameter group family.

4. In the Group Name box, enter the name of the new DB parameter group.

5. In the Description box, enter a description for the new DB parameter group.

6. Click Create.

The RDS Amazon instance may be unable to start in “incompatible- parameter” status,
and this problem may be generated by the following:

 ■ A DB instance was changed to an instance class with fewer memory resources than as
defined in the parameter group.

 ■ A database engine was upgraded, and the custom parameters are not available in the
new database version.

Managed Services for Relational Databases 75

To solve this problem, you may choose the following options:

 ■ Reset all parameters in the parameter group to the default value.

 ■ Reset the values of the parameter that are incompatible.

If you choose to reset all parameters in a parameter group, it may affect other instances
that use this parameter group. To perform this change in a better way, first create a copy of
the current parameter group for which you’re about to reset all values.

1. Open the RDS Console, and select parameter groups from the navigation pane.

2. Select the incompatible parameter group, and then choose Parameter Group Actions.

3. Click Copy.

Now that the values of the parameter group are safe, you can reset the values to solve the
current instance unavailability.

1. Open the RDS Console, and choose parameter groups from the navigation pane.

2. Select the parameter group of the instance in trouble.

3. Select Parameter Group Actions and then Reset.

4. Click Reset.

You may also choose to change only the incompatible parameter value instead of all
parameters within the parameter group. To accomplish that, follow these steps:

1. Open the RDS Console, and choose the parameter groups from the navigation pane.

2. Select the incompatible parameter group, and then choose Parameter Group Actions.

3. Select Parameter Group Actions and choose Edit.

F IGURE 4 .19 Creating a parameter group

76 Chapter 4 ■ Relational Databases on AWS

4. Enter the correct parameter values and click Save Changes.

5. Reboot the instance without failover to apply the new parameter values.

Configuring RDS Option Groups
Option groups are used to enable specific options that make the management easier and to
provide additional security.

To enable an option in the database, you need to associate an option group to the data-
base according to the database engine, as shown in Table 4.2.

TABLE 4 .2 Database Engines and Available Option Groups

Database Engine Options Available by Option Group

MariaDB MARIADB_AUDIT_PLUGIN (MariaDB 10.0.24 and later)

Microsoft SQL Server Native backup and restore

Transparent Data Encryption

SQL Server Audit

SQL Server Analysis Services

SQL Server Integration Services

SQL Server Reporting Services

Microsoft Distributed Transaction Coordinator

MySQL MariaDB Audit Plugin support

MySQL memcached support

Oracle Amazon S3 integration

Oracle Application Express (APEX)

Oracle Enterprise Manager

Oracle Java virtual machine

Oracle Label Security

Oracle Locator

Oracle Multimedia

Oracle native network encryption

Oracle OLAP

Oracle Secure Sockets Layer

Oracle Spatial

Oracle SQLT

Oracle Statspack

Oracle time zone

Oracle Transparent Data Encryption

Oracle UTL_MAIL

Oracle XML DB

Managed Services for Relational Databases 77

RDS PostgreSQL does not implement options by option groups; it uses extensions and
modules to provide additional features.

When you launch an RDS instance, by default the option group is empty. Perform the fol-
lowing steps to enable an option group for an RDS instance:

1. Create a new option group. On Amazon RDS console, select Option Group, and then
select Create (Figure 4.20).

2. Add one or more options to this option group. Select the recently created option group
(certificationmysqloptiongroup), as shown in Figure 4.21.

3. Select the Add option (Figure 4.22).

F IGURE 4 .20 Amazon RDS group options

F IGURE 4 .21 Adding options to the group (step 1)

78 Chapter 4 ■ Relational Databases on AWS

4. Search for the available options according to the DB engine. (You can find the options
in Table 4.2.)

5. To assign the option group recently created to the instance, you must perform the fol-
lowing steps, as shown in Figure 4.23:

a. Select Modify the DB Instance at RDS Console.

b. In the Additional Configuration section, search for the recently created option
group— in this example certificationmysqloptiongroup.

c. In the Scheduling of Modifications section, choose Apply Immediately or During
The Next Maintenance Window.

d. Select Modify DB Instance.

Deletion Protection
RDS will only allow you to delete an instance that doesn’t have the deletion protection
enabled. You can configure the deletion protection at the database instance launch (creation)
or when you select the modify option.

F IGURE 4 .22 Adding options to the group (step 2)

F IGURE 4 .23 Selecting Modify DB Instance

Amazon Aurora Cloud- Native Relational Database 79

By default, the deletion protection is:

 ■ Enabled when you create the database using the RDS Console

 ■ Disabled when you create the database using AWS CLI or API commands

Although there are differences in the deletion protection enablement when operating the
AWS Console or CLI/API, Amazon RDS enforces the deletion protection when you utilize
the console, the CLI, or the API to remove a DB instance.

To delete a database instance with deletion protection enabled, you must first disable the
deletion protection and then delete it.

There’s no instance outage to enable or disable the deletion protection.

RDS Pricing Model
RDS allows you to choose the billing method for the database instances.

 ■ Pay as you go: There’s no up- front commitment. You’ll pay a monthly charge for each
instance launched. When you stop using the instance, you delete it and will no longer be
charged.

 ■ Reserved instances: In this option, you’ll book the DB instance for a one- year or three-
year term and, in return, receive a substantial discount compared to the on- demand
price. This option is better for databases that will be up and running 24/7 and that are
necessary for an extended period.

You can stop and start your databases for seven days at a time. This is an affordable
option for development and quality assurance databases, which usually aren’t required to be
up and running 24/7.

You receive a credit of complimentary backup storage up to the total provisioned storage
size within a region. If you have three instances of 1 TB of provisioned storage each, you’ll
have 3 TB of backup storage for free. With detailed backup billing, for each database in-
stance in your account, the size of backup usage will be compared to the provisioned
storage.

If the backup usage exceeds the provisioned storage, the exceeding part will be charged.
If the backup usage is less than the provisioned storage, the difference is counted as usage

credits and discounted proportionally from charges applied to other instances.
Backup storage not associated with an RDS active instance will be charged the total price,

except when you have discounts generated by other instances in the same account.

Amazon Aurora Cloud- Native
Relational Database
Amazon Aurora is a fully managed relational database compatible with MySQL or Post-
greSQL launched on a high- performance storage subsystem. Amazon Aurora MySQL- and

80 Chapter 4 ■ Relational Databases on AWS

PostgreSQL- compatible database engines are optimized to take advantage of the
high- performance and distributed storage.

Aurora is one of the managed database services in Amazon Relational Database Service
(Amazon RDS), making it more effortless to set up, manage, and scale a relational database
in the cloud. RDS automatically enables the most time- consuming activities, such as backup,
monitoring, and automatic patching.

The same application code and native tools from MySQL and PostgreSQL databases can
run in Aurora.

The snapshots created from Amazon RDS for MySQL and PostgreSQL are restorable on
Amazon Aurora.

Another migration alternative is setting up one- way replication.
On usual benchmarks, Aurora demonstrates up to five times the throughput (usually the

measure is transactions per second [TPS]) for the MySQL engine and up to three times the
throughput for the PostgreSQL engine.

Amazon Aurora Storage
Aurora Storage assembles its storage in logical blocks, which are named protection groups,
of 10 GB. Aurora distributes the protection groups across three availability zones (AZs) and
hosts two copies of each protection group on each AZ. In total, Aurora has six copies of
each protection group, as depicted in Figure 4.24. The storage continuously replicates the log
data to Amazon S3 to keep up the point- in- time recovery. This architecture provides a fault
tolerance of 99.999999999 percent (11 nines) of durability.

F IGURE 4 .24 Full tolerance architecture

Amazon Aurora Cloud- Native Relational Database 81

The Aurora storage grows automatically up to 128 tebibytes (TiB); there’s no manual
intervention during the auto- scale operation.

Amazon Aurora DB Clusters
An Amazon Aurora DB cluster contains one or more DB instances and a cluster volume that
handles the data for the DB instances.

An Aurora cluster requires two kinds of instances:

 ■ Primary DB instance (mandatory): Every Aurora DB cluster must have one primary DB
instance to handle read and write operations for the application layer and manage all
data modifications to the cluster volume.

 ■ Aurora replica: Supports read- only operations and attaches to the same storage volume
as the primary as depicted in Figure 4.25. To scale read operations and increase high
availability, we strongly recommend adding Aurora replicas. An Aurora DB cluster can
have up to 15 Aurora replicas in addition to the primary DB instance. You can launch
the Aurora replicas across the availability zones that the cluster belongs to within
a region.

F IGURE 4 .25 Aurora replicas architecture

82 Chapter 4 ■ Relational Databases on AWS

Amazon Aurora High Availability
When a primary instance fails, one of the Aurora replicas will be promoted to the primary
instance to increase availability.

Aurora automatically fails over to an Aurora replica if the primary DB instance fails. The
Amazon Aurora cluster allows configuring the failover priority on the read replicas. Priority
values vary from 0 for the first priority to 15 for the last priority. The failover precedence
sequence is as follows:

1. The failover priority defined for Aurora replicas, the instance with the lowest failover
priority value, will be first chosen in a failover situation.

2. If there’s no failover priority defined, the cluster will choose the highest instance’s read
replica node.

3. If there’s no failover priority and all the instances have the same instance type, the
cluster will randomly select one read replica.

You can adjust the priority of an Aurora replica at any moment. Changing
the priority value of a read replica doesn’t start a failover.

Amazon Aurora Global Database
Aurora Global Database allows the replication of an Aurora Cluster to multiple regions
based on storage async replication, with low replication latency (typically less than 1 second),
and provides fast recovery in an entire region’s outage.

The Aurora global database must have a primary DB cluster in the one region, and it
allows you to add up to five secondary DB clusters in remote regions (secondary regions).

Figure 4.26 represents the Aurora global database.

F IGURE 4 .26 Aurora global database architecture

Amazon Aurora Cloud- Native Relational Database 83

You can run distributed applications on distant regions using a database replicated with
the Aurora global database. The read- only remote instances allow read operations closer to
remote application users, improving data locality.

Only the primary cluster issues write operations. Using the “write forwarding” feature
(available only on Aurora MySQL version 2.08.1 or later), the database cluster on the
secondary region accepts the write operation; actually, it forwards the write operation to the
primary database cluster, and then the primary database cluster propagates all write opera-
tions to the secondary regions.

Depending on the situation, the Aurora global database allows you to choose the follow-
ing failover methods:

 ■ Unplanned failover process: The Aurora global database can recover after the primary
region’s outage. In this rare situation, you must perform the following steps:
1. Stop any write operations on the primary Aurora DB cluster.
2. Choose an Aurora DB cluster to be promoted to primary. In the case of global

database configurations with two or more secondary regions, you should choose the
remote region with the minor replication lag.

3. Detach the selected secondary DB cluster from the Aurora global database. This
action will stop the replication and promote the selected DB cluster to a primary
stand- alone. Then this newly promoted DB cluster will be available to read/write
capabilities. If other secondary DB clusters are associated with the primary cluster
in the outage region, they will still be open to the applications. To prevent data
inconsistencies, you must re- create the Aurora global database by removing the
remaining secondary regions and creating a new global database.

4. Configure your application to connect to the newly promoted DB cluster.

 ■ Planned managed failover: Relocating the primary cluster of a healthy Aurora global
database to one of its remote regions with a zero recovery point objective (RPO). In this
planned situation, you must perform the following steps:

1. Select the global database, and in Actions, select Failover Global Databases.
2. Select the remote region to be the new primary region. This action will stop the

write operations in the primary region, the secondary regions that may have some
replication lag will reach the same data position as the primary, and the newly
selected region will become the new primary with no data loss.

3. Configure the application to connect to the new primary DB cluster.
Aurora global databases offer the following benefits:

 ■ Global reads with local latency: For applications that need to allow the read operation
in offices around the world, the remote instances will provide faster read access for local
applications.

 ■ Scalable secondary Aurora DB clusters: On each remote cluster you may configure up
to 16 read replicas on the secondary regions, instead of only 15 allowed in the pri-
mary region.

84 Chapter 4 ■ Relational Databases on AWS

 ■ Fast replication from primary to secondary Aurora DB clusters: Data propagation per-
formed having a minor impact on the Aurora primary cluster.

 ■ Recovery from region- wide outages: For recovering from a possible primary region
catastrophe, you can promote any remote clusters to primary.

Amazon Aurora Read Replica Across Regions
Aurora MySQL allows you to create read replicas across different regions. Using this fea-
ture, you can enable faster read operations in remote regions and replicate your database for
disaster recovery.

You can enable up to five cross- region read replicas for each DB cluster.
Aurora MySQL read replicas require binary logging on the source Aurora MySQL cluster.
You can configure both the source DB cluster and the cross- region read replica cluster

with a maximum of 15 replicas on each one of the clusters, allowing up to 90 readable
instances.

A globally replicated cluster is subject to replication lag between the source DB cluster
and a remote cluster in a cross- region scenario due to longer network channels between AWS
regions.

The resulting data transfer from cross- region replication incurs additional fees.

Amazon Aurora Serverless
Aurora Serverless is an autoscaling configuration for Amazon Aurora. Aurora Serverless can
scale up and down automatically according to resource utilization (on- demand); there’s no
instance class allocation. You must specify the minimum and maximum Aurora capacity
units (ACUs). Aurora Serverless currently offers versions v1 and v2.

Aurora Serverless has the following characteristics:

 ■ It is compatible with the MySQL and PostgreSQL engines.

 ■ It reduces the complexity of managing DB instance capacity.

 ■ It will increase and reduce computational and memory resources, if required, with no
impact on client connections.

 ■ It is a cost- efficient service due to the automatic instance resizing.

 ■ It uses the same distributed storage as Aurora provisioned, replicating the protection
groups on three availability zones and two copies on each availability zone, having a
total of six copies to avoid data loss.

Aurora Serverless is good for the following uses:

 ■ Infrequently used applications— for example, applications that access the database a few
minutes per day or week.

 ■ New applications, when you’re not sure about the resources needed to size an in-
stance type.

Amazon Aurora Cloud- Native Relational Database 85

 ■ Variable workloads, for example, applications where you can’t predict how long it
will take to complete and the resources required. Sometimes a few resources (vCPUs
and memory) will be enough, and in other circumstances it will require more assigned
resources. With Aurora Serverless, there’s no need to allocate the resources for the
maximum workload.

 ■ Development and test databases. Usually they’re required for a few hours during the
day, and there’s no need to be up and running during noncommercial hours.

 ■ Environments with a high constraint on costs.

Amazon Aurora Multi- master
An Aurora multi- master cluster is an architecture where both instances can perform read
and write operations. There’s no failover when a master becomes unavailable because the
remaining nodes are always ready to assume the failed node work.

Replication operates directly among writers. Every writer propagates its changes to all
other writers. Multi- master clusters are attached using low- latency and low- lag Aurora repli-
cation, hosted on all peer-to-peer replication.

Amazon Aurora multi- master is exclusively available for MySQL- compatible edition v1
engines, which is MySQL 5.6. Amazon has announced an end- of- life policy for this major
Aurora MySQL version (February 2023). You can have up to four DB instances in a multi-
master cluster, and the instances must be in the same AWS region.

Aurora will report a write conflict to the application as a deadlock error if different
instances simultaneously try to modify the same data page. This error circumstance will
drive the transaction to roll back. The application must catch the error and retry the opera-
tion in this situation.

The following workloads are appropriate for Aurora multi- master:

 ■ Active- passive workloads: Using this configuration, the application issues all read and
write operations simultaneously; if a failure occurs on the active instance, the remaining
active node will assume all workloads without performing a failover.

 ■ Active- active workloads: Using this configuration, you typically segment the workload
so that the different DB instances won’t modify the same underlying data simulta-
neously. Consequently, it reduces a possible write conflict. Multi- master is a good choice
for segmented workloads when dividing write operations by the instance, database,
table, or table partition is applicable. For example, it’s good when running multiple
applications on the same cluster, each assigned for a specific node. Another option is
dividing various small tables, for example, one table for each module of an app. We rec-
ommend designing the solution to avoid writing conflicts. Sharded applications are the
typical use case.

86 Chapter 4 ■ Relational Databases on AWS

Patch Management and Upgrade
Amazon RDS makes available newer versions and patches of the supported database
engines, and you can keep your database up to date according to your application needs.

On Amazon RDS, you’ll find two categories of upgrades:

 ■ Major version upgrades introduce modifications that may not be compatible with
current applications. The versioning sequence is specific to each database distribution.
For illustration, RDS for MySQL 5.7 and 8.0 are major versions, and upgrading from
any 5.7 version to any 8.0 is a major version upgrade.

 ■ Minor version upgrades contain exclusive modifications that are backward- compatible
with existing applications.

For major versions, manually select and modify the DB engine version via the AWS
Management Console or issue the modify option using the AWS CLI or RDS API.

For minor version upgrades, manually choose to modify the engine version via the
Amazon RDS console or enable auto minor version upgrades in the database configuration.

Monitoring and Performance Management
Monitoring is essential for database operations. Defining a monitoring plan is the fore-
most action.

Initially, define the monitoring goals by specifying your baselines (using metrics such as
network throughput, CPU, client connections, and IO operations) and understanding which
metrics are regular for your operation and which metrics will become a problem for the
business. In the second step, identify the resources that require monitoring. Third, define the
monitoring frequency that is most appropriate for identifying the problem and taking correc-
tive action. Fourth, choose the monitoring tool that will be able to implement the previous
requirements that you identified. Finally, identify who will receive the monitoring notifica-
tion and take the appropriate action.

To fulfill the monitoring objectives, you need to specify a baseline. Then review past
workloads’ resource consumption to identify appropriate metrics. For databases, the follow-
ing items are commonly monitored:

 ■ Database connections

 ■ Memory usage

 ■ CPU usage

 ■ Network throughput

 ■ IOPS metrics

 ■ Disk space consumption

 ■ Latency lag (for replicated databases)

Amazon Aurora Cloud- Native Relational Database 87

You can use the following to check and report issues or failure events to the database
administration team when something isn’t working using Amazon RDS reporting tools:

 ■ Amazon RDS instance status: This allows you to check instance status using the
Amazon RDS console, AWS CLI command, or RDS API.

 ■ Amazon RDS recommendations: These allow you to inspect and react to “automated
recommendations” for databases on RDS, like DB instances, read replicas, DB param-
eter groups, and patch/upgrade advice.

 ■ Amazon RDS Performance Insights: Amazon RDS allows the Performance Insights
enablement on the database creation or by modifying it later. Using the Performance
Insights dashboard, you can visualize the database load on your Amazon RDS DB in-
stance load and filter the load by waits, SQL statements, hosts, or users. It allows you to
comprehend the events such as SQL statements causing high resource consumption and
“wait for events” in the database.

 ■ Amazon RDS Enhanced monitoring: Amazon RDS allows enhanced monitoring enable-
ment at database creation or later modification. Enhanced monitoring will enable you
to examine real- time operating system metrics with lower granularity. Enhanced moni-
toring shows a summary of operating system metrics; Amazon RDS delivers the metrics
from Enhanced Monitoring to Amazon CloudWatch. For each OS metric, you can view
a graph showing the metric monitored over a specific period.

 ■ Amazon RDS events: Amazon RDS allows the notifications subscription to specific
events that may occur to a DB instance, DB snapshot, DB parameter group, or DB secu-
rity group. Some event classification examples are availability, backup, configuration
change, maintenance, and failure.

 ■ Amazon RDS database logs: These allow you to view, download, or watch database log
files using Amazon RDS console or Amazon RDS API operations. You can also publish
database logs to Amazon CloudWatch.

Amazon CloudWatch and Amazon CloudWatch Logs enable you to enhance and inte-
grate the monitoring process.

 ■ Amazon CloudWatch monitors Amazon RDS databases in near real time, and you can
integrate Amazon CloudWatch metrics and Amazon CloudWatch alarms to execute one
or more steps according to the value of a specific metric.

 ■ Amazon CloudWatch Logs enables monitoring, storing, and accessing the database log
files in CloudWatch.

To observe monitoring metrics, perform the following steps:

1. In the Amazon RDS console, choose the desired database to observe metrics and the
Monitoring tab (Figure 4.27).

88 Chapter 4 ■ Relational Databases on AWS

2. On the Monitoring tab, you can inspect metrics such as CPU utilization, connections,
memory utilization, and other metrics (Figure 4.28).

3. You can extend the Monitoring tab to access the Enhanced Monitoring, OS Process List,
and Performance Insights items (Figure 4.29).

F IGURE 4 .27 Database monitoring

F IGURE 4 .28 CPU utilization monitoring

F IGURE 4 .29 Monitoring expansion

Amazon Aurora Cloud- Native Relational Database 89

4. In Enhanced Monitoring, you can verify the operating system metrics, as shown in
Figure 4.30.

5. In Performance Insights, you can drill down to what’s going on at database perspective,
and check database wait events and top SQL statements (Figure 4.31).

F IGURE 4 .30 Operating system monitoring

F IGURE 4 .31 Performance insights

90 Chapter 4 ■ Relational Databases on AWS

Backup and Restore
On RDS databases you can configure automated backups and you can also take manual
snapshots.

 ■ Automated backups
 ■ Automated backups are enabled by default. When launched by the Amazon RDS

console, the standard is seven days of retention, and when launched by the RDS API
or AWS CLI, the standard is one retention day.

 ■ You can configure the backup retention from 1 to 35 days.

 ■ Automatic backups support point- in- time recovery within any time until the
maximum retention days defined for the database.

 ■ Automatic backups occur within the preferred backup window that you can define
for the most appropriate time according to your business needs. If the backup
demands more time than assigned to the backup window, the backup continues the
execution after the window ends until it concludes. The backup window can’t coin-
cide with the weekly maintenance window for the DB instance.

 ■ By changing the retention to zero, you can disable the automatic RDS backup. If you
disable automatic backups, you cannot create a read replica.

 ■ Manual backups (snapshots)

 ■ Manual backups can be taken by choosing the Snapshot option in the Amazon RDS
console, AWS CLI, and RDS API.

 ■ Manual backups do not support point- in- time recovery.

 ■ Manual backups never expire. That means they’re recommended for long- term backups.

 ■ For backups of MariaDB, MySQL, and PostgreSQL that the business rules require stor-
ing for an extended time, we recommend exporting the snapshot data to Amazon S3. The
snapshot to S3 stores the data in Apache Parquet format, which is compressed and con-
sistent. This alternative will allow you to read the data using Amazon Athena or Redshift.

You can take a snapshot using the Amazon RDS console, RDS API, or AWS CLI. In the
Amazon RDS console, select the database and select Take Snapshot on the Actions tab
(Figure 4.32).

F IGURE 4 .32 Taking an Amazon RDS snapshot

Amazon Aurora Cloud- Native Relational Database 91

To restore from an automated backup, you can select any time within the retention period
defined for the database.

Restoring from an automated backup or a snapshot will allocate a new instance and the
required storage; you can’t restore the database into an existing DB instance. You can choose
instance classes that are different from the source database.

1. In the Amazon RDS console, select the database, and on the Actions tab, select Restore
To Point In Time (Figure 4.33)

2. In the Restore Time section, choose the latest restorable time available or set the specific
date and time to restore the database (Figure 4.34).

F IGURE 4 .33 Selecting the database

F IGURE 4 .34 Choosing the restorable time

92 Chapter 4 ■ Relational Databases on AWS

3. In the Instance Specifications section, define an identifier (Figure 4.35).

4. Define an instance class for the new database to be restored (Figure 4.36).

5. You can also choose a new VPC and security group for the database and then select
Restore To Point In Time (Figure 4.37).

F IGURE 4 .35 Defining an identifier

F IGURE 4 .36 Defining an instance class

Amazon Aurora Cloud- Native Relational Database 93

To restore from the snapshot, you can select the snapshot with the desired data. Keep in
mind that there’s no point- in- time recovery; the snapshot represents the image of the exact
moment of its generation.

On the Amazon RDS console, select Snapshots and then the required snapshot to be
restored (Figure 4.38).

Then, click the Actions button and then select Restore Snapshot (Figure 4.39).

AWS Backup is a managed service for centralizing and automating backup plans of AWS
services in the cloud and resources hosted on premises.

AWS Backup permits the RDS backups management using resource tagging to associate
the RDS instance backup with backup plans.

F IGURE 4 .37 Choosing a new VPC and security group

F IGURE 4 .38 Restoring from an Amazon RDS snapshot (step 1)

F IGURE 4 .39 Restoring from an Amazon RDS snapshot (step 2)

94 Chapter 4 ■ Relational Databases on AWS

Backtrack
Backtrack is a feature that enables you to rewind the DB cluster to a specific time that you
need. Backtracking is not a substitute for backing up the Amazon Aurora DB cluster; how-
ever, backtracking a DB cluster to an exact time is much faster than restoring a backup.
Backtrack is available only in Amazon Aurora MySQL- Compatible, and you can customize
how many retention hours to keep in the target backtrack window; the maximum is
72 hours. By enabling backtracking, you can do the following:

 ■ Revert mistaken operations, such as an update command without a where clause. In a
situation like that, you can backtrack the DB cluster to a moment before the erroneous
statement execution.

 ■ Ensure that the database will be available quickly. In a similar situation without back-
track enabled, you could perform a point- in- time restore to the time before the mistaken
operation, but it would take hours to complete, depending on the DB cluster size.

 ■ Explore the DB cluster to find out when the mistake operation occurred. For example,
you can backtrack the database to several different points in time to query the data from
the tables; it’s a nondestructive operation.

Cloning an Amazon Aurora DB Cluster Volume
Cloning is available only for Amazon Aurora. It’s an instant image taken at the storage level.
Cloning is quicker and more space- saving than restoring from a snapshot.

Cloning uses the copy- on- write protocol. Initially, a clone requires only minimal addi-
tional space, and Aurora maintains the same storage data for both clusters. The Aurora
storage will allocate additional space only when data changes and generates new block
images on the source or the cloned cluster.

Let’s explore graphically how cloning works.
Before cloning the DB cluster, the example storage allocated shown in Figure 4.40 has

four pages.

F IGURE 4 .40 Before cloning the database

Amazon Aurora Cloud- Native Relational Database 95

Just after cloning, both the source and the cloned DB clusters share the same storage
pages (Figure 4.41).

After the source database changes the data on page 1, it creates its own page 1
(Figure 4.42).

After the cloned database changes the data at page 4, now the cloned database has its
own page 4 (Figure 4.43).

F IGURE 4 .41 Just after cloning

F IGURE 4 .42 After some changes at source database

96 Chapter 4 ■ Relational Databases on AWS

Note that cloning has no impact on Aurora cluster performance.
The following are some use cases:

 ■ You’re going to test the impact of a change in the database, even on tables or param-
eters. Creating a clone for testing the process and the impact is faster and more space-
efficient than restoring from regular backups, enabling a safer strategy to perform the
test impact in the DB cluster.

 ■ You’re going to perform an intensive analytical workload and don’t want to cause a
performance impact at the source Aurora cluster.

 ■ You need to create a copy of the production DB cluster for a test environment.

Using the cloning mechanism, you won’t be charged twice for the storage allocation.
You’ll be charged only for the additional changed data generated by the pages modified, as
demonstrated in Figure 4.43.

Aurora supports up to 15 clones of a single Aurora DB cluster.
To clone an Aurora cluster, on Amazon RDS console, select the cluster to be cloned, select

the Actions tab, and then select Create Clone (Figure 4.44).

F IGURE 4 .43 After changes at cloned database

F IGURE 4 .44 Aurora cluster cloning

Amazon Aurora Cloud- Native Relational Database 97

Auditing
Auditing is a requirement for environments that need to track database activities. For
example, you can identify who (user/hostname) performed some statement, the specific SQL
statement, the exact execution time, the IP address, and other information important to track
what’s going on with the data stored and how the data is being accessed by applications.

RDS offers the following methods to enable auditing the database activities according to
the database engine:

 ■ Amazon Aurora: server_audit_logging allows you to enable or disable the
advanced auditing, available only in Aurora MySQL- Compatible, and server_audit_
events allows you to specify which events to log.

You can configure the following events in server_audit_events:

 ■ CONNECT: Records both successful and failed connections and disconnections and
user information

 ■ QUERY: Records all queries in plain text, including queries that fail due to syntax or
permission errors

 ■ QUERY_DCL: Records only data control language (DCL) queries (for example,
GRANT and REVOKE)

 ■ QUERY_DDL: Records data definition language (DDL) queries (for example,
CREATE and ALTER)

 ■ QUERY_DML: Records data manipulation language (DML) queries (INSERT,
UPDATE, and SELECT)

 ■ TABLE: Records the tables that were affected by query execution

 ■ RDS for PostgreSQL: You can employ the pgaudit extension. Once the extension is
enabled, PostgreSQL will record the audit activities at pgaudit.log.

 ■ RDS for MySQL or MariaDB: The MariaDB Audit plugin records events issued on the
database— for example, connections, disconnections, queries, or tables queried.

To enable the MariaDB Audit plugin, you must create a custom option group and assign
it to the database instance, as follows:

1. Create a custom option group or modify an existing custom option group.

2. Assign the MariaDB Audit Plugin option to the option group, and configure the option
settings.

3. Assign the option group to the database.

You can also publish the audit logs to Amazon CloudWatch to monitor the events:

1. In the Amazon RDS Console, select the database in the display window.

2. Select the DB instance that requires exporting log to CloudWatch.

3. Choose Modify.

4. In the Log exports section, select Audit Log.

98 Chapter 4 ■ Relational Databases on AWS

5. Choose Continue.

6. Review the summary of modifications, and select Modify Instance.

Database Activity Stream in Amazon Aurora
 ■ Another alternative to monitor the database activity in Amazon Aurora is the Database

Activity Streams (DAS) feature. Using DAS, you can monitor database activities in near
real time. By combining monitoring tools, you can watch and audit activities in the data-
base. SQL statements and CONNECT details are collected, and Aurora pushes the database
activities to an Amazon Kinesis stream. From Kinesis, you can configure AWS services
such as Amazon Kinesis Firehose and AWS Lambda to consume the activity stream.

DAS generates data in event records in JSON format. The JSON record stores a database
connection’s valuable information for an audit requirement, such as the following:

 ■ logTime
 ■ clientApplication
 ■ dbUserName
 ■ databaseName
 ■ remoteHost
 ■ remotePort
 ■ command
 ■ commandText
 ■ objectType
 ■ objectName
 ■ exitCode
 ■ rowCount
 ■ serverType
 ■ serviceName
 ■ serverVersion
 ■ dbProtocol
 ■ netProtocol
 ■ errorMessage

Security
Managing security for databases is crucial. At the conception of your database implementa-
tion, it’s important to plan several aspects of security based on the security requirements of
the business and applications.

Amazon Aurora Cloud- Native Relational Database 99

The following resources are available to handle security in RDS databases:

 ■ VPC: When you launch an RDS instance, choose the VPC with the most significant net-
work access control for your business operation.

 ■ Security groups: Employ security groups to manage which IP address or EC2 instance
can reach the database. When you launch an RDS instance, you define the security
group with the appropriate security rules to avoid undesirable access to the database.
The security group is similar to a firewall and has rules specifying the protocol, port,
and source IP address or another security group and the allowed rules.

 ■ Identity and access management (IAM): Utilizing IAM, you can control the permissions
to operate, create, describe, modify, and delete database instances, tag resources, or
modify security groups.

 ■ Encryption at rest: You can choose to secure your data at rest and in snapshots. Amazon
RDS employs the industry- standard AES- 256 encryption algorithm to encrypt the data
hosted on the database server.

 ■ Encryption in transit: To protect the data in transit, you can configure the TLS or SSL
connection in Amazon RDS.

 ■ Transparent Data Encryption (TDE): To encrypt tables or tablespace, you can configure
the native encryption mechanism available in database engines such as Oracle or SQL
Server TDE.

RDS Encryption in Transit
The industry- standard protocol Secure Sockets Layer (SSL) enables secure network con-
nections between the client and server. Since version 3.0, the name changed to Transport
Layer Security (TLS), but we frequently refer to the protocol as SSL. To encrypt your data in
transit, you need to use SSL/TLS connections.

For SSL, you must configure SSL certificates for the data in transit encryption. The client
must trust the AWS root certified authority (CA).

To enforce SSL, you must configure encryption in transit according to the data-
base engine.

 ■ MariaDB or MySQL: Execute the following command at the database engine:

ALTER USER 'service_user'@'%' REQUIRE SSL;
 ■ PostgreSQL: Change the parameter rds.force_ssl to 1 by updating the parameter

group for the DB instance. Modifying this parameter requires a reboot.

 ■ Microsoft SQL Server: Change the parameter rds.force_ssl to 1 by adjusting the
parameter group for the DB instance. You can also encrypt specific connections. Modi-
fying this parameter requires a reboot.

 ■ Oracle: Amazon RDS supports Oracle native network encryption (NNE). You must
add the NNE option to the option group to enable it. Changing this parameter doesn’t
require a reboot.

100 Chapter 4 ■ Relational Databases on AWS

To connect using SSL, you need to configure the connection client side according to
the database engine. To provide the SSL Trust certificate, download it from https://
s3.amazonaws.com/rds- downloads/rds- ca- 2019- root.pem.

You need to provide SSL options to connect to the database.
For Microsoft SQL Server, append encrypt=true to your connection string to encrypt

the connection from other SQL clients.
To use SSL on PostgreSQL:

$ psql - h postgresqldb1.xxxxxxxxx.us- east- 1.rds.amazonaws.com - p
5432 "dbname=mydb1 user=service_user sslrootcert=rds- ca- 2019-
 root.pem sslmode=verify- full"

To connect using SSL on MariaDB:

mysql - h mysqldb1.xxxxxxxxx.rds- us- east- 1.amazonaws.com - - ssl-
ca=[full path]rds- combined- ca- bundle.pem - - ssl- mode=REQUIRED

To connect using SSL on MySQL:

mysql - h mysqldb1..xxxxxxxxx.rds- us- east- 1.amazonaws.com - - ssl-
ca=[full path]rds- combined- ca- bundle.pem - - ssl- mode=VERIFY_IDENTITY

If you don’t configure an SSL connection in a DB instance with the SSL enforcement
enabled, it will result in an error.

RDS Encryption at Rest
Amazon RDS–encrypted DB instances use the industry- standard AES- 256 encryption, and
the AWS Key Management Service (AWS KMS) manages the keys. All logs, backups, and
snapshots are encrypted for an Amazon RDS–encrypted DB instance.

Enabling DB encryption on RDS doesn’t require any change at the application level or
even a connection to the DB instance.

You can encrypt both primary and read replicas.
The encryption must be defined at the launch time of the DB instance. You can’t modify

this configuration later.
If you need to encrypt an unencrypted DB instance, you must create a snapshot of the

DB instance and then generate an encrypted copy of that snapshot. Then you restore the
encrypted snapshot, and the new DB instance will be encrypted.

Another method to enable encryption at rest in RDS is using TDE for Oracle and
Microsoft SQL Server. You can use the TDE option for Oracle, and you can use the
TRANSPARENT_DATA_ENCRYPTION option for Microsoft SQL Server. This feature is avail-
able by configuring the option group.

The database performance might be affected if you enable TDE and encryption at rest
together. To choose the best encryption method, consider the application, performance, and
compliance requirements for the DB instance.

https://s3.amazonaws.com/rds-downloads/rds-ca-2019-root.pem
https://s3.amazonaws.com/rds-downloads/rds-ca-2019-root.pem

Exam Essentials 101

Migrating Databases
Migrating databases is a critical task and must be planned carefully according to the down-
time supported by the application and the complexity of the migration process.

The first step is choosing the target engine database to identify if a migration tool is
required or if a native migration method is available. Keep in mind that using the native
engine tools usually is the simplest way to migrate compatible engines.

For an RDS for MySQL or RDS for PostgreSQL to Amazon Aurora migration, the eas-
iest method is to create an Aurora read replica from the source RDS DB instance. Once the
replica becomes synchronized, you can schedule a maintenance window, promote the Aurora
read replica to a new stand- alone primary database, and make it available to the application.

Chapter 12 explores several migration methods in detail.

Summary
Relational databases are widely used for applications. They’re important for applications
that require relational consistency among tables, constraint enforcement at database level,
and transaction control (commit and rollback) guaranteed by the database engine.

Amazon RDS supports six important database engines and supports native migration
methods.

Amazon RDS automates the most time- consuming manual tasks, unlocking the architects,
administrators, and developers to enable innovation and performance for the databases with
much more reliability than deploying databases on Amazon EC2.

You can use tools like Aurora cloning and read replicas as a strategy to reduce downtime
and risk during maintenance windows. To implement better and reduce operational deploy-
ment errors, you can rely on CloudFormation, as described in Chapter 14, “Saving Time and
Reducing Errors Automating Your Infrastructure.”

Exam Essentials
Know how to handle high availability and scalability on RDS. For high availability on
RDS, you can rely on Multi- AZ, and you can rely on read replicas for scaling read opera-
tions. Especially on Amazon Aurora, the read replica will attend to both high availability
and scaling read operations.

Know how to manage and troubleshoot on Amazon RDS. Databases require the usual
management tools for troubleshooting, tuning statements, and auditing. For tuning SQL
statements, you can use Performance Insights. For tuning the database instance, you can
better understand the problem by using enhanced monitoring. For auditing and logging

102 Chapter 4 ■ Relational Databases on AWS

requirements, you can enable this operation according to the database engine. For managing
and changing database instance parameters, in RDS you can use the parameter groups. For
managing additional options in the database, you can configure using option groups.

Know how to migrate from RDS to Amazon Aurora with minimal downtime. It is impor-
tant to understand how you can easily migrate from Amazon RDS MySQL and PostgreSQL
to Amazon Aurora using read replicas. This is the fastest method, is easiest to implement,
and has little downtime.

Know how to manage backups. Amazon RDS enables automatic backups and point- in-
time restore; it also enables you to use snapshots for longer retention and for additional
backup requirements. You can also enable AWS Backup integration with RDS snapshots.

Know the pricing model. Amazon RDS lets you choose the pay- as- you- go pricing model
for environments that you can stop and start when your workload requires (for example,
staging environments or any other type of temporary environment) and also lets you use the
reserved instance model for environments that you are sure will be active for longer periods
of time and have better discounts. It’s essential to know the difference between pay- as-
you- go and reserved instances and when to choose each.

Know how to secure the data at rest and in transit. Amazon RDS supports encryption
at rest using the industry- standard AES- 256 encryption and the KMS managed keys. RDS
also allows the encryption- in- transit configuration to secure connections using the data-
base engine’s specific methods. For the exam, it is essential to have a clear understanding of
managing encryption at rest, converting an unencrypted database to an encrypted one, and
vice versa. It is also important to understand the steps to encrypt the connections for data- in-
transit security.

Know important cloud- native features in Amazon Aurora. Amazon Aurora features such
as cloning, read replicas for horizontal scaling, and automatic failover will improve resil-
ience and performance for transactional environments. It is essential for the exam to under-
stand when specific Amazon Aurora features will be useful for the question in the proposed
environment.

Exercises
For assistance and additional details to complete the proposed exercises, refer to Amazon
RDS and Amazon Aurora documentation at https://docs.aws.amazon.com/
AmazonRDS/latest/AuroraUserGuide/CHAP_Aurora.html and https://docs.aws
.amazon.com/AmazonRDS/latest/UserGuide/CHAP_GettingStarted.html.

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/CHAP_Aurora.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/CHAP_Aurora.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_GettingStarted.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_GettingStarted.html

Exercises 103

E X E R C I S E 4 . 1

Create an Amazon RDS MySQL and enable Multi- AZ

In this exercise, you will create an Amazon RDS MySQL database and enable Multi- AZ:

1. Log in as a user with Amazon RDS privileges in AWS Console.

2. Navigate to RDS Console.

3. Click on the “Create database” option.

4. In the “Engine options” section, select “MySQL.”

5. In the “Engine Version” section, choose the appropriate MySQL version.

6. In the “Templates” section, choose “Dev/Test.”

7. In the “Availability and durability” section, choose the “Multi- AZ DB instance” option.

8. In the “Settings” section, in the DB instance identifier section you can keep the default
name or rename to exercise- 41- db- certification- <Account ID>, it will be
similar to exercise- 41- db- certification- 123456789012.

9. In the “Credential Settings”, at the “Master username” section, you can keep the default
admin or rename to a username more appropriate to your use case.

10. In the “Master password” section, define a password for your “Master username” and
confirm the same password in the “Confirm master password” section.

11. In the “Instance configuration,” at the “DB instance class” section, change to “Burstable
classes (includes t classes)” and select the db.t3.micro instance class.

12. In the “Storage” section, change the “Storage type” to general purpose SSD (gp2).

13. In the “Allocated storage” section change to 20 GiB.

14. In the “Connectivity” section in the “Virtual private cloud (VPC) section, select the VPC
or keep the Default VPC.

15. In the “DB subnet group” section you can keep the default subnet group or choose
another.

16. In the “Public access” section select “No”.

17. In the “VPC security group (firewall)” section, select “choose existing”.

18. In the “Existing VPC security groups” section, select the default.

19. In the “Database authentication” section, choose the “Password authentication”
option.

20. Click on “Create database”.

104 Chapter 4 ■ Relational Databases on AWS

E X E R C I S E 4 . 2

Create an Amazon Aurora cluster

In this exercise you will launch an Amazon Aurora cluster (MySQL- Compatible) with a writer
instance and an Aurora replica:

1. Log in as a user with Amazon RDS privileges in AWS Console.

2. Navigate to the RDS Console.

3. Click on the “Create database” option.

4. In the “Engine options”, at the Engine type, choose Aurora (MySQL–Compatible).

5. In the “Available versions” section, select Aurora MySQL 3.02.2 (compatible with
MySQL 8.0.23).

6. In the “Templates” section, choose the Dev/Test option.

7. In the “Settings”, at the “DB cluster identifier”, you can keep the default name or
rename to exercise- 42- db- certification- <Account ID>, it will be similar to
exercise- 42- db- certification- 123456789012.

8. In the “Credential Settings”, in the “Master username” section, you can keep the default
admin or rename to a username more appropriate to your use case.

9. In the “Master password” section, define a password for your “Master username” and
confirm the same password in the “Confirm master password” section.

10. In the “Instance configuration”, at the “DB instance class”, select “Memory optimized
classes (includes r classes)”, then choose the db.r6g.large instance class.

11. In the “Availability & Durability” section, select “Create an Aurora Replica or Reader
node in a different AZ”.

12. In the “Connectivity” section in the “Virtual private cloud (VPC)” section, select the VPC
or keep the Default VPC.

13. In the “DB subnet group” section you can keep the default subnet group or choose
another.

14. In the “Public access” section select “No”.

15. In the “VPC security group (firewall)” section, select “choose existing”.

16. In the “Existing VPC security groups” section, select the default.

17. In the “Database authentication” section, choose the “Password authentication” option.

18. Click on “Create database”.

Exercises 105

E X E R C I S E 4 . 3

Add an Amazon Aurora replica and modify the priority

In this exercise you will add an Aurora replica to the previous Aurora cluster and modify to
a higher priority for failover situations:

1. Log in as a user with Amazon RDS privileges in AWS Console.

2. Navigate to RDS Console.

3. Select the exercise- 42- db- certification- 123456789012 database.

4. In the “Actions” option, click on “Add reader”.

5. In the “Settings”, at the DB instance identifier, define a name like
replica- exercise- 42- db- certification- 123456789012.

6. In the “Instance configuration”, select “Memory optimized classes (includes r classes)”,
and choose db.r6g.large instance class.

7. In the “Additional configuration”, at the “Failover priority” section, choose tier- 0.

8. Select “Add reader”.

106 Chapter 4 ■ Relational Databases on AWS

Review Questions

1. The RDS database instance was rebooted and is having problems starting; you are getting
errors on the parameter group due to incompatible parameter status. How can you safely fix
this problem?

A. Reset the parameter group to the default values, and reboot the instance.

B. Select the incompatible parameter group of the instance, make a copy, select the param-
eter group actions, choose Edit, choose the valid parameter values, and save the changes.
Reboot the instance without failover to apply the new values at the DB instance.

C. Select the RDS database, and modify the DB to the default parameter group instead of
the custom problematic parameter group.

D. Remove the custom parameter group; it will force the instance to use the default param-
eter group.

2. You have a legal requirement to retain the RDS database backup taken on the last day of the
month for two years. Which method is the most appropriate to meet the requirements?

A. Configure the automatic backup retention for two years; then you’ll be able to restore at
any time within this period.

B. Take a manual snapshot and configure the appropriate retention.

C. Use the clone feature to keep regular database images.

D. Export the database snapshot to S3.

3. The application team is detecting an odd behavior in the application and has asked you to
help identify what SQL statements are consuming the most resources in the RDS database.
Which feature will better assist this requirement quickly?

A. Use Performance Insight, and check the top SQL session.

B. Prefer a native migration tool according to the database engine. For example, for Post-
greSQL, use pgbadger; or for MySQL, use MySQL EXPLAIN.

C. Analyze the SQL statements’ execution plan.

D. Check the slow query logs exported on CloudWatch.

4. You received a request to validate a maintenance patch on the Amazon Aurora cluster. This
is a critical application, and you must guarantee the minimal interruption time if something
goes wrong, and the application must be returned to the previous structure. Which method
will best attend to this requirement?

A. Take a database snapshot. If something bad occurs, restore the snapshot.

B. Restore from automatic backup to the point in time exactly previous to the maintenance.

C. Launch a new Amazon Aurora cluster, and configure logical replication from the original
cluster to the new Amazon Aurora cluster. If something goes wrong, point to the new
cluster.

Review Questions 107

D. Create a clone of the database before performing the maintenance. If something bad
occurs, quickly start the clone image and point the application to the clone database
cluster.

5. Your team is working on the development of an application and has received the requirement
to encrypt the data in transit between RDS for PostgreSQL and the application tier. How can
you enable this?

A. Require an SSL connection at the session layer.

B. In your RDS for PostgreSQL instance, change the parameter rds.force_ssl=1
in the parameter group, and reboot the instance. On the application side, down-
load the certificate rds- ca- 2019- root.pem, and for the connection define
sslmode=verify- full.

C. Select Native Network Encryption in the option group.

D. Enable the parameter rds.force_ssl=1 to enforce SSL.

6. You were requested to store the SQL statements issued by the user’s connections in the
Amazon Aurora database. This information must be stored for a long time, and after
one year if the information is required, it’s acceptable to wait some time to retrieve the
information. Which option is the best alternative?

A. Enable Database Activity Stream (DAS), store the JSON events in Amazon S3, and
configure a life- cycle policy to move the files to infrequent access storage class after
one year.

B. Enable the MariaDB Audit Plugin option, creating a custom option group.

C. Enable the pgaudit extension.

D. Enable the server_audit_logging and server_audit_events advanced param-
eters on Amazon Aurora.

7. You received a request to attend to the audit requirement for your RDS for MySQL database.
It’s required to identify SQL statements issued in the DB instance and also to read this audit
log from a management console to configure notifications. How can you answer this request?

A. Enable the MariaDB Audit Plugin option, creating a custom parameter group.

B. Enable the MariaDB Audit Plugin option, creating a custom option group. Add the Mar-
iaDB plugin option to the option group, configure the option settings, apply the option
to the Database, and publish the audit logs to CloudWatch.

C. Create a logon trigger that captures and stores the statements issued by the users.

D. Enable Database Activity Streams (DAS).

8. Your customer has RDS for PostgreSQL and has decided to migrate to Amazon Aurora
PostgreSQL. He has asked you which is the best option to reduce the downtime for the
application.

A. Using the pg_dump tool to connect to the RDS for PostgreSQL instance and generate a
backup; create the Amazon Aurora PostgreSQL instance; use pg_restore to connect
to Amazon Aurora PostgreSQL and restore the backup.

108 Chapter 4 ■ Relational Databases on AWS

B. Create an Amazon Aurora read replica from the RDS for PostgreSQL; when the Amazon
Aurora read replica lag reaches zero, promote the read replica, and connect the applica-
tion to the newly promoted Amazon Aurora PostgreSQL.

C. Replicate from RDS for PostgreSQL to Amazon Aurora PostgreSQL using AWS DMS.

D. Use the pg_dump tool to connect to the RDS for PostgreSQL instance and generate a
backup; copy the backup to Amazon S3; at the RDS Console, on the creation step, select
the Restore From S3 option.

9. Your customer has a MySQL database on premises and has decided to migrate to Aurora
MySQL. Which option is the best method to simplify and reduce downtime during the
migration?

A. Create an Amazon Aurora MySQL instance; create an AWS DMS instance and configure
the endpoints and migration task; then start the migration task to start loading the data
from the MySQL on premises to Aurora.

B. Use mysqldump to extract the MySQL backup; copy the dump file to an EC2 in-
stance; and use the MySQL client to connect to the Amazon Aurora MySQL instance
and restore from the dump file.

C. Generate a backup from the source MySQL DB using the Percona XtraBackup tool, and
copy the backup file to an S3 bucket. At the Amazon Aurora instance creation, select the
Restore From S3 option, and select the S3 bucket where the backup file was uploaded.
After the restore is completed, establish binlog replication from MySQL on premises to
Amazon Aurora MySQL.

D. Create a read replica from MySQL on premises to Amazon Aurora MySQL. When the
replication is completed and without any lag, switch the application to the new Amazon
Aurora MySQL.

10. You have an Amazon RDS database unencrypted, and the company now needs to attend to a
regulatory requirement of encryption at rest. What can you do to attend to this requirement?

A. Modify the database configuration to encrypt the DB instance.

B. It is not possible to modify the database.

C. Take a snapshot, copy the snapshot with the encryption option, and restore the
encrypted snapshot; then you’ll have an encrypted DB instance.

D. Create a read- replica with encryption and promote the read- replica.

Low- Latency
Response Time for
Your Apps and APIs

THE AWS CERTIFIED DATABASE –
SPECIALTY EXAM OBJECTIVES COVERED
IN THIS CHAPTER MAY INCLUDE, BUT ARE
NOT LIMITED TO, THE FOLLOWING:

 ✓ Domain 1: Workload- Specific Database Design
 ■ 1.2 Identify strategies for high availability and disaster

recovery solutions.

 ■ 1.3 Database designs for scalability, compliance, and

performance.

 ■ 1.4 Take into consideration database solutions costs.

 ✓ Domain 2: Deployment and Migration
 ■ 2.2 Be familiar with the migration strategies and data

preparation steps.

 ✓ Domain 3: Management and Operations
 ■ 3.1 Maintenance tasks and processes.

 ■ 3.2 Backup and restore strategies.

 ✓ Domain 4: Monitoring and troubleshooting
 ■ 4.2 Know how to identify and resolve common

database issues.

 ■ 4.3 Database performance optimization.

 ✓ Domain 5: Database security
 ■ 5.1 Data encryption in transit and at rest.

 ■ 5.3 The authentication and access control mechanisms.

 ■ 5.4 Be aware of potential security vulnerabilities related to the

database solutions.

Chapter

5

In this chapter, you will learn about the main functionalities
of Amazon DynamoDB and Amazon Keyspaces (for Apache
Cassandra) and when to leverage them. You will also learn

how to migrate, deploy, and operate workloads using DynamoDB or Keyspaces as the data
store. The chapter will cover DynamoDB and Keyspaces security, scalability, and avail-
ability aspects. Finally, it will familiarize you with the following features of DynamoDB and
Keyspaces:

 ■ DynamoDB:

 ■ Local and global secondary indexes

 ■ On- demand and provisioned capacity modes

 ■ In- memory accelerator

 ■ Real- time event handling with DynamoDB Streams

 ■ Active/active global tables

 ■ Continuous backups

 ■ Autoscaling and burst capacity

 ■ Keyspaces:

 ■ Clustering keys

 ■ On- demand and provisioned capacity modes

 ■ Static columns

 ■ Continuous backups

 ■ Consistency models

Getting Started with Modern
Applications and NoSQL Databases
Before we start talking about the low- latency database systems on AWS, we need to mention
that the application patterns and architectures have evolved significantly over the years and

Getting Started with Modern Applications and NoSQL Databases 111

brought new challenges related to scalability, developer efficiency, performance, and total
cost of ownership (TCO). This phenomenon is a consequence of the following trends related
to the data:

Microservice and analytics Organizations are moving from legacy monolithic applica-
tions to a modern microservices architecture. Microservices let organizations decouple
complex problems into independent components so developers can build and operate in
small groups with fewer dependencies and, therefore, respond more quickly to business
chances. However, there are two implications in this trend.

 ■ First, developers can pick the best tool to build those specific components, including
the database layer.

 ■ Second, because those microservices are independent from each other, there is a
need for detailed monitoring and analytics capabilities to understand what’s not
working well between them.

Explosion of data A lot of data is being generated every second worldwide. Companies
already know that it is crucial to track and keep all that data, especially the data that
comes from their business applications. However, that growth is also coming from data
generated by smart devices such as smart homes, mobile phones, wearable technologies,
connected cars, home appliances, industrial equipment, security systems, etc. Most
high- end new cars are coming out with built- in cellular connections. Those connections
alone account for one- third of mobile sign- ups with telecom cellular networks. Modern
applications also generate data in real time, such as user behavior from mobile apps,
purchase data from e- commerce sites, and data from social media applications.

DevOps and innovation As companies need to innovate quickly to keep up with the
competition, the IT velocity also changes, which is why most of them are transition-
ing to a DevOps model. This model leverages different tools to automate the software
development life cycle and, as a consequence, improves the software delivery pace,
which also affects the change rate of data and its structure.

Cloud application characteristics are very different from traditional applications. Users
can easily be in the millions order of magnitude; data volumes can reach PB and EB levels on
short notice. Performance is often measured in milliseconds and microseconds. On average,
the app serves millions of requests per second and on big days processes tens of millions of
requests per second. This application variance demands that systems can scale up, out, and
in to maintain the right cost profile.

The workloads with these new requirements can be fulfilled only by using multiple
purpose- built databases; in this chapter, we will focus on low- latency key- value and wide-
column NoSQL databases on AWS, Amazon DynamoDB, and Amazon Keyspaces (for
Apache Cassandra).

112 Chapter 5 ■ Low- Latency Response Time for Your Apps and APIs

Amazon DynamoDB
Amazon DynamoDB is a cloud- native NoSQL database engine compatible with key- value
and document databases created by AWS. It is a fully managed, multiregion, durable, and
highly available service capable of delivering single- digit millisecond performance at any
scale. The scale can be pretty impressive. There is a story about a media company supporting
the 2017 Super Bowl and handling 10+ millions of transactions per second at the end of the
game with their DynamoDB table. A more recent example is the Amazon 2020 Prime Day,
where over the course of the 66- hour event, the retail application components running using
DynamoDB made 16.4 trillion calls to the API, peaking at 80.1 million requests per second.

AWS does the heavy lifting related to running a massively scalable NoSQL database on
behalf of the customer, allowing their software developers to focus on adding functionalities
rather than managing infrastructure. Developers only need to learn the DynamoDB’s API
instead of having to become experts in advanced distributed database and compute concepts.

DynamoDB is also cost effective; the customers pay for the actual storage they are allo-
cating and the read/write throughput values they have provisioned. When the application
requires only a small portion of storage and compute, that small amount of capacity is what
needs to be provisioned in the DynamoDB service. As the usage of the application grows
and the required storage and throughput increase, DynamoDB keeps up by adding more
capacity on the fly. This elasticity at the database layer enables the application to seamlessly
grow to support millions of concurrent users making thousands of requests to the database
every second.

Design Considerations
The common relational database model is nicely organized in human- readable components
such as tables, columns, foreign keys, etc., and the data is related. It is modeled to reduce
storage because decades ago the storage was expensive; now the storage is very cheap com-
pared to compute power.

We step off into the world of aggregated items, essentially prebuilt items. Rather than
running queries/joins across tables, these items are written as they will be fetched, making
it very compute- cheap and fast to store and retrieve each one of them. This requires under-
standing the access patterns and writing the data appropriately, but the benefits are nearly lim-
itless scale and consistent performance, which is precisely where Amazon DynamoDB excels.

Amazon DynamoDB Design
Rather than storing data in tables with rows and columns, DynamoDB stores data in tables
with items and attributes, with one or two attributes chosen as the primary key.

The tables in DynamoDB are similar to those in other common database systems. They
are collections of data organized in items.

A DynamoDB item is a collection of attributes that is uniquely identifiable among the
other items in the table. It is similar to a row in traditional database systems.

Amazon DynamoDB 113

A DynamoDB attribute is the fundamental data element in DynamoDB, something that
does not need to be broken down any further. Attributes in DynamoDB are similar to col-
umns in SQL database systems.

Additionally, each table can have secondary indexes, a cache layer, and read and write
capacity units, among other features. Which feature to leverage for each table will depend on
the database design.

There are six main tenets to consider when designing a DynamoDB database:

 ■ Use case: The nature of the application, for example, a mobile app, a game backend, a
product catalog, a session storage, or a cache system.

 ■ Access pattern: The relation between read and write operations. What are the necessary
query dimensions and aggregations?

 ■ Application type: Whether the workload type resembles online transaction processing
(OLTP) or online analytical processing (OLAP) behavior.

 ■ Define the data life cycle: Time to live (TTL), backup, and archival.

 ■ Identify the primary keys: How the inserts and gets are going to be done. How would
the data spread among the partitions?

 ■ Data modeling: Start with one table. This helps break that relational training, but it also
helps reduce the number of round trips. Try to organize data to be returned as related
collections under partition keys.

Table 5.1 describes the main difference between SQL and NoSQL databases.

Partition and Sort Keys
DynamoDB supports two different kinds of primary keys:

Partition Key The partition key must be string, number, or binary. Each table can have
only one partition key, and it is one of the attributes of the table that identifies each item
individually, so it has to be unique. It’s known as a partition key because DynamoDB

TABLE 5 .1 SQL and NoSQL Comparison

SQL NoSQL

Normalized/relational Denormalized/hierarchical

Ad hoc queries Instantiated views

Scale vertically Scale horizontally

Good for OLAP Built for OLTP* at scale

114 Chapter 5 ■ Low- Latency Response Time for Your Apps and APIs

uses its value as input to an internal hash function to evenly distribute data items across
partitions. The output of the mentioned hash function determines the partition (physical
device) in which the item will be stored.

Composite Key The composite key consists of two attributes: a partition key and a
sort key. Items with the same value for the partition key will be stored in the same
partition, using the same hash function as the partition key in a sorted way. Using the
attribute defined as the sort key. In a table with a partition key and a sort key, it’s pos-
sible for two different items to have the same partition key value. Nevertheless, those
two items must have different values as the sort key.

Most Amazon DynamoDB tables can benefit from using a composite key approach.
Imagine a Book table described in items and attributes for an example of a table with a
composite primary key (Author and Title). You can access any item in the Book and its reg-
ular attributes (such as genre, year, and language) directly if you provide the Author and
Title values for that item. Figure 5.1 shows the previously described DynamoDB table.

The composite primary also provides extra flexibility when querying the data. For
example, if you provide only the value for Author, DynamoDB retrieves all of the books by
that particular author. To retrieve only a subset of books by a particular author, you can pro-
vide a value for Author along with a range of values for the book titles.

Migrating Your Data into DynamoDB
There are three main sources from which you can migrate data into a DynamoDB database:

 ■ Plain- text files like JSON documents on Amazon S3

 ■ NoSQL database like MongoDB and Cassandra

 ■ RDBMS sources like MySQL

Let’s go through an overview of the available options and good practices for each one
of them.

F IGURE 5 .1 DynamoDB table: Books

Amazon DynamoDB 115

Plain- Text Files
There are several options to migrate plain- text data. Let’s review the five main ones.

If you can control the format and type of the file, the fastest and most cost- effective
way to do it is by using a JSON file in a PutItem API payload- like format and use the
batch- write- item AWS CLI operation to bulk load the data into the DynamoDB table,
as in this example:

aws dynamodb batch- write- item - - request- items file://ProductCatalog.json

If the data is on a random format in a random file type, the best way to do it is by using
an AWS Lambda function. You need to load the data from the location where it resides—
ideally on Amazon S3 due to the fast and seamless integration it has with AWS Lambda.
Then, you can start putting the items into the DynamoDB table by using the SDK available
in the language you use to code the Lambda function.

If the data is in a comma- separated value format in Amazon S3, you can use the AWS
Database Migration Service (AWS DMS) to do the migration. To use S3 as a source for
DMS, the source data files must be in CSV format, and you need to build a JSON mapping
file for the tables and the columns for the DynamoDB target database.

If neither of the previous approaches can be done due to format or data volume
constraints, you can use the Amazon EMR service to load data from Amazon S3 to
DynamoDB. You can do this by using a source file in Apache Hive format, but it requires a
deeper knowledge of AWS services, AWS APIs, and HiveQL.

You can also leverage AWS Glue to create and orchestrate ETL jobs in Python Shell or
PySpark.

Amazon EMR and AWS Glue options can be used also to export data from Amazon
DynamoDB into Amazon S3.

NoSQL Databases
Since DynamoDB is a NoSQL database, the migration from another NoSQL source should
be seamless, especially if you use a tool like AWS DMS. It doesn’t support live migration
by using Change Data Capture (CDC) as it does when migrating a SQL database, but since
the NoSQL database engine provides high read and write throughput by default, the migra-
tion time window is typically smaller than with regular SQL import and export migrations.
When using DMS, you can choose NoSQL database sources like MongoDB and Cassandra
databases.

For MongoDB, you will have available two migration modes:

 ■ Document mode: When using document mode, AWS DMS migrates all the data within
the JSON document into a single column named “_doc” in the target DynamoDB table.

 ■ Table mode: When using table mode, AWS DMS scans the specified number of docu-
ments in the source MongoDB database and then creates a schema with all the keys and
their types it found during the previous scan. Additionally, customers can use the object
mapping feature in AWS DMS to transform the original data from MongoDB to the
desired structure in DynamoDB.

116 Chapter 5 ■ Low- Latency Response Time for Your Apps and APIs

To perform the migration from a MongoDB database to DynamoDB, AWS DMS connects
to the MongoDB database, reads all the source data, and then transforms that data to load
it into the DynamoDB table. If the MongoDB database contains sharded collections, the cus-
tomers need to migrate each one of the shards separately.

If the source database is Cassandra, there is also an automated way to do this, but it
needs to be done by a component of AWS DMS dedicated to schema conversions: the AWS
Schema Conversion Tool (AWS SCT).

To use the SCT for a Cassandra migration, you need to use a special data extraction
agent available exclusively for Cassandra. This agent is compatible with most of the current
Cassandra database versions. To be able to execute the migration without impacting your
original system, you need to convert the current Cassandra database to a data center cluster.
All the migration tasks will run on the newly created data center.

Data extraction is performed directly from each binary .db file using the Cassandra
driver and data extraction agents. During the extraction process, the data is transformed
into .csv files, and the metadata is stored in task- setting and table- mapping JSON files. The
AWS DMS tasks use those files for the migration process, so the customers need to upload
all the files to an Amazon S3 bucket. The final step is to load each file from Amazon S3 to
DynamoDB by using the AWS Schema Conversion Tool and an AWS DMS task.

SQL
You can use the AWS Database Migration Service as well for this kind of migration. How-
ever, because RDBMS table designs could be very different from those of DynamoDB and
NoSQL, you will need some time to think about how to distribute your current data into
several DynamoDB tables and indexes and then build a mapping JSON on the AWS DMS
task. There are a few DMS options like “map- record- to- record” that will automatically cre-
ate a corresponding attribute on the target DynamoDB table for each column on the source
database, but it still can be a complicated process.

You can decouple the migration into two steps by using AWS DMS as well. You can first
migrate the data from the RDBMS database into plain- text files on Amazon S3 and then
create another DMS task from Amazon S3 to DynamoDB. In this way, you can have more
control over the process and perform some manual transformation between, but it will also
require you to build mapping files to accommodate the data in the target DynamoDB tables.

Query Considerations
There are two ways of getting the data out of DynamoDB: queries and scans.

Queries
A DynamoDB query finds items in the database based on the primary key value. Optionally,
you can also provide the value for the sort key attribute to refine the result further. When
using the sort key attribute, you can leverage comparison operators to cover more access
patterns with a single attribute. DynamoDB also provides the attributes projection feature to

Amazon DynamoDB 117

reduce the amount of data being retrieved from the database, in a similar way to how “Select
X, Y, Z from. . .” works in the SQL world.

Besides the primary and sort key conditions, you can query the data by using filters on
other attributes. Let’s consider the difference between filters and sort key conditions.

Imagine an IoT application where devices’ sensors are sending updates to a table, as
shown in Figure 5.2. The table is organized by DeviceID, so it has a well- distributed/high-
cardinality key space. The sort key is the date so that queries can return items in the most
recent order. The combination of the ID and the date define a unique item; there could be a
new log inserted for each device every five minutes.

To retrieve only warning logs for device d#12345 with this design, you can query using a
WHERE clause like DeviceID=d#12345 and then filter out all the updates that were normal.

Using SQL- like syntax, this would look like this:

SELECT * FROM DeviceLog
WHERE DeviceID = 'd#12345'

F IGURE 5 .2 Devices DynamoDB table

118 Chapter 5 ■ Low- Latency Response Time for Your Apps and APIs

ORDER BY Date DESC
FILTER ON State=WARNING

Using the DynamoDB query API, it would look like this:

aws dynamodb query
- - table- name DeviceLog
- - key- condition- expression "#dID = :dID"
- - no- scan- index- forward
- - filter- expression "#s = :s"
- - expression- attribute- names '{"#dID": "DeviceID", "#s": "State}'
- - expression- attribute- values '{":dID": {"S":"d#12345"}, ":s":
{"S":"WARNING"}}'

Now, this would be OK, but most systems may have more than 99 percent of updates
with a normal state and less than 1 percent of updates that are warning. In this case, when
a query is run on 500 items, typically 495 of them will be filtered out and 1 percent of them
will be returned. The filter expression is applied after the query, so DynamoDB will read all
500 items regardless of whether it returns 5 or 500.

This design can be improved by implementing a composite sort key by concatenating two
attributes that you are interested in, as shown in Figure 5.3. Use the most general on the left
and concatenate the more unique on the right. This enables the begins_with condition we
will see next.

F IGURE 5 .3 Sort key attribute concatenation

Amazon DynamoDB 119

This action of moving a regular attribute into the primary key as part of the sort key fun-
damentally changes the access pattern. Now, if there were 500,000 saved items in total and
only 500 with a warning state and you only want to retrieve the items with “warning” state
wherever the begins_with query is run, it will read and return only the warning items,
making it very efficient.

You can achieve the previous in traditional SQL- like syntax as follows:

SELECT * FROM DeviceLog
WHERE DeviceID = 'd#12345'
ORDER BY Date DESC
BEGINS_WITH
 State='WARNING'

This is how it looks with the actual DynamoDB API:

aws dynamodb query
- - table- name DeviceLog
- - no- scan- index- forward
- - key- condition- expression "#dID = :dID AND begins_with(#s, :sd)"
- - expression- attribute- names '{"#cId": "DeviceID", "#s": "State#Date"}'
- - expression- attribute- values '{":cId": {"S":"d#12345"}, ":sd":
{"S":"WARNING#"}}'

As you can see, there are several ways to optimize the query operation times and the com-
pute resources used for each one. Let’s dive deep now into the other way to get data out of
DynamoDB.

Scans
The scan operation always searches through all the data, so it can be less efficient than other
DynamoDB operations like query, which targets the specific partition where the items are
located. Once the full scan finishes, it filters out values to provide the result you want, basi-
cally adding an extra step for removing data from the result set.

To get faster response times, you design your tables and indexes in a way that your appli-
cations can use query instead of scan. (In the case of tables, you can also use the BatchGet-
Item and GetItem APIs calls.)

Because the scan operation reads an entire page (the default value in DynamoDB is
1 MB), you can mitigate the impact of the full scan operation by setting a smaller page size,
which you can do by using the limit parameter.

It is strongly recommended to not perform scans on a table that has “mission- critical”
traffic. You can handle this load by rotating traffic hourly between two tables— one for criti-
cal traffic and the other for the querying of bookkeeping purposes.

Another option is to perform parallel scan operations. Many applications can benefit
from using it rather than the typical sequential scans. For instance, an application that needs

120 Chapter 5 ■ Low- Latency Response Time for Your Apps and APIs

to process a large table of historical data can leverage a parallel scan. As a rule of thumb, the
tables that can better benefit from parallel scans are those with more than 20 GB of storage.

If you enjoy running queries with SQL instead of an API- like request, you will be able to
do so by using PartiQL, a SQL- compatible query language. This way you can easily interact
with DynamoDB tables and run ad hoc queries using the AWS Management Console,
NoSQL Workbench, AWS Command Line Interface, and DynamoDB APIs for PartiQL. Par-
tiQL operations provide the same availability, latency, and performance as the other
DynamoDB data plane operations.

Amazon DynamoDB Index Options
Modern applications usually have several access patterns that cannot be resolved by just
using composite keys and attribute filters. Database indexes are a way to support more
access patterns within the same table.

An index is a data structure that reduces the speed of retrieval queries on a database table
at the cost of additional storage capacity and extra write operations. Amazon DynamoDB
provides two index mechanisms to seamlessly evolve the database to meet new access
pattern demands: a local secondary index (LSI) and a global secondary index (GSI).

 ■ Global secondary index: A GSI can be created at any time and with any kind of pri-
mary key because it’s a partition key, and a sort key can be different from the one in the
original table. A query on a global secondary index can span all of the data in the base
table, across all partitions. Another important thing is that the global secondary index
has no size limitations regarding storage and has its own provisioned throughput set-
tings apart from the table ones.

 ■ Local secondary index: An LSI can be created only at table creation time, and the table
must have a composite primary key. It is essentially an index that has the same partition
key as the base table but a different sort key. A local secondary index works in a way
that every partition of a local secondary index is scoped to an original table partition
that shares the same partition key value. As a result, the total size of locally indexed
items for any partition key value can’t exceed 10 GB. Regarding throughput, the local
secondary index shares the provisioned throughput settings with the base table.

Table 5.2 represents the main difference between the LSI and GSI.

TABLE 5 .2 LSI vs. GSI

LSI GSI

Create at table creation Create at any time

Shares WCU/RCU with table WCU/RCU independent of table

Collection size <= 10 GB No size limits

Limit = 5 Limit = 20

Strong consistency Eventual consistency

Amazon DynamoDB 121

Each table in DynamoDB can have by default up to 20 global secondary indexes and
5 local secondary indexes. This can be increased, but it might not be a good idea. In general,
you should keep the number of indexes at a minimum. Just create those for the attributes
you need to query very often, because it can be more expensive in terms of storage and
throughput than the actual performance improvement for the application.

Another tip is to use a global secondary index, whenever possible, over a local secondary
index. The exception is when the application needs strong consistency in the query results,
which a local secondary index can provide and a global secondary index cannot. Note that
the GSI should have enough capacity units to accommodate the original table throughput;
otherwise, it could generate throttling issues.

Let’s go back to our IoT sensors table example. What happens when there is a new access
pattern? What if the system has a requirement to fetch data logs from an operator between
two dates?

By keeping values as top- level attributes, you can add a GSI to the table at any time. A
GSI in practical terms is a view or a second table that DynamoDB keeps up to date for you.

Using the Operator field of our table as a GSI- partition key, as shown in Figure 5.4, is a
good choice here, because it will maintain high cardinality for the primary key of the GSI (a
requirement just like the base table). By adding this GSI, we are establishing an M:N rela-
tionship (many devices to many operators).

This is what a query for the logs of a given operator between two dates will look like in
traditional SQL syntax:

SELECT * FROM GSI–Operator
WHERE Operator = 'Liz'
ORDER BY Date DESC
BETWEEN
 Date='2020- 04- 20' AND
 '2020- 04- 25'

Ba
se

 T
ab

le
GSI-Operator

F IGURE 5 .4 Operator global secondary index

122 Chapter 5 ■ Low- Latency Response Time for Your Apps and APIs

This is what a query for the logs of a given operator between two dates will look like
using the DynamoDB API:

aws dynamodb query
- - table- name DeviceLog
- - index- name GSI–Operator
- - key- condition- expression "#op = :op AND #d between :d1 AND :d2"
- - expression- attribute- names '{"#op": "Operator" , "#d": "Date"}'
- - expression- attribute- values '{":op": {"S":"Liz"} , ":d1":
{"S":"2020- 04- 20"}, ":d2":{"S":"2020- 04- 25"}}'

DynamoDB Capacity Modes
Another important point to consider when designing an Amazon DynamoDB table is the
capacity mode. We have mentioned the terms capacity and provisioned throughput a couple
of times in this chapter. Let’s discover exactly what that means for Amazon DynamoDB.

DynamoDB comes with provisioned capacity mode as default, but it actually has two
read/write capacity modes for processing each read and write operation on the tables.

On- Demand Capacity
On- demand capacity is the autopilot capacity option for Amazon DynamoDB. A pay- as-
you- go billing option capable of serving from zero to thousands of requests per second
without planning or provisioning capacity, DynamoDB instantly accommodates your work-
loads as they ramp up or down at any given time. The on- demand mode instantly accom-
modates up to double the previous peak traffic on a table. For instance, if your table has
a peak traffic of 3,000 reads per second, DynamoDB can accommodate up to 6,000 reads
per second. Even if you need more than double your previous peak capacity, DynamoDB
automatically allocates more capacity as your traffic volume increases to avoid throttling.
Nevertheless, throttling can happen if you exceed double your previous peak within a
30- minute window.

Provisioned Capacity
Provisioned capacity mode requires you to specify the number of read and write operations
per second the application needs from the table. This doesn’t mean that you will only get
up to that capacity; you can still use autoscaling techniques to adjust the table’s provisioned
capacity in response to traffic pattern changes. This feature helps customers to govern their
DynamoDB capacity to stay at or below a defined request rate to save costs when there are
some levels of predictability in the traffic.

The recommendation, if you are unsure about the table load the application will have,
is to start with on- demand, monitor the table read and write capacity consumption for a
period of time, and then decide whether you should switch to provisioned mode or continue
using on- demand.

Amazon DynamoDB 123

This capacity mode change can happen once every 24 hours. Consider that tables that use
on- demand mode deliver the same single- digit millisecond latency, service- level agreement
(SLA) commitment, and security that DynamoDB already offers for provisioned capacity—at
a higher cost per granular read or write operation. The customers can choose on- demand
capacity mode for new and existing tables without changing the API calls or the application
code. Table 5.3 shows the main reasons to choose one mode or the other.

How does DynamoDB measure the capacity being provisioned? This is when the terms
read capacity units (RCUs) and write capacity units (WCUs) come into play.

A read capacity unit (RCU) represents two eventually consistent reads or one strongly
consistent read per second, as long as the item is up to 4 KB in size. If the item is more than
4 KB in size, it consumes the total size divided by 4 and rounded up to the next unit.

A write capacity unit (WCU) represents one write operation per second for an item up
to 1 KB. If the application needs to write an item larger than 1 KB in size, DynamoDB con-
sumes additional write capacity units the same way we explained before.

The current maximum DynamoDB item size is 400 KB; beyond that, you will need to
redesign and split the table into smaller items. There is a special feature of DynamoDB that
lets you run transactional reads and writes. We will get deeper into that later; for now, you
just need to know that these transactional operations consume twice the capacity units for
the same item size.

To put this in practical terms, suppose that you create a provisioned table with 4 RCUs
and 2 WCUs. With these settings, the application could do the following:

 ■ Perform strongly consistent reads of up to 16 KB per second (4 KB × 4 read
capacity units)

 ■ Perform eventually consistent reads of up to 32 KB per second (twice as much read
throughput)

 ■ Perform transactional read requests of up to 8 KB per second

 ■ Write up to 2 KB per second (1 KB × 2 write capacity units)

 ■ Perform transactional write requests of up to 1 KB per second

TABLE 5 .3 On- Demand vs. Provisioned Capacity

On- Demand Provisioned

Unpredictable spikes of application
traffic

Predictable application traffic patterns

For new tables with unknown workloads Applications with consistent traffic patterns

Ease of paying only for what you use Can predict the capacity requirements to save
costs

124 Chapter 5 ■ Low- Latency Response Time for Your Apps and APIs

A single partition in a DynamoDB table can handle 3,000 reads and 1,000 writes per second.
So, you might ask, how does DynamoDB handle millions of requests per second on a table, as
we mentioned at the beginning of the chapter? Well, the answer is that the service allocates
that many partitions on your table so it can handle millions of requests per second. As
simple math, if the table needs to handle 2,000 writes per second, it requires two partitions.

Let’s say for your upcoming event you know you need to handle 30,000 writes per
second at peak load. To handle the peak load, switch to provisioned mode and allocate
30,000 WCUs prior to the event and switch back to your original table configuration. The
advantage of doing this exercise is that DynamoDB repartitions the data in 30 partitions
(one every thousand write operations)— thus, your table is now ready to handle your pick
traffic without repartitioning your data during the actual event. Allocating the 30,000 WCUs
will be very quick the next time. And if you use on- demand mode, it will be instant. If the
application goes beyond the maximum provisioned capacity, the DynamoDB API will throw
a ProvisionedThroughputExceededException error. The DynamoDB SDKs will automatically
retry requests that receive this exception until your request is eventually successful, unless
your retry queue is too large to finish. To mitigate the long queue issue, the AWS SDK imple-
ments an exponential backoff algorithm for better flow control.

Reserved Capacity
You may be familiar with other purchase options provided by different services, for instance
Amazon Relational Database Service (Amazon RDS) reserved instances or Amazon EC2
compute saving plans. Amazon DynamoDB has a way to reserve the capacity as well to save
costs even further.

With the DynamoDB Reserved Capacity option, you pay a discounted one- time up- front
fee with a commitment to keep a minimum provisioned usage over the defined period of
time. The reserved capacity is billed at the hourly reserved capacity rate. At the time of
writing, the price for 100 RCUs is $0.0025 per hour in the US- EAST- 1 AWS region. The
same amount without the price discount would be $0.013 per hour. You may check the lat-
est numbers in the official Amazon DynamoDB pricing page.

Besides the reserve capacity mode, DynamoDB provides a permanent free usage tier con-
sisting of 25 GB of storage, 25 RCUs, and 25 WCUs. With these settings, you may be able to
handle up to 200 million requests per month.

Other Features of DynamoDB
Let’s explore some additional DynamoDB features.

Transactions
Despite DynamoDB being a NoSQL database, there can be access patterns that require
ACID- like transactions. What is an ACID transaction in the database context? It is a
sequence of database operations that can be perceived as a single logical one. This transac-
tion has to satisfy the ACID properties (atomicity, consistency, isolation, and durability).

Normalized data structures are a primary driver for ACID requirements. With
DynamoDB, many of these requirements are fulfilled simply by aggregating and storing

Amazon DynamoDB 125

all the information as single rows/items. Each single- item operation is ACID because no
two operations could partially impact a row simultaneously. However, DynamoDB intro-
duced transactions in 2018, which makes it very simple to ensure consistent changes across
related items.

It works as an “all or nothing” operation. There is no concept of “rolling back.” The
application will not see a partial transaction that is then reverted. Once accepted, it will
complete, or it will be rejected because one of its steps failed. If this happens, you can use an
option called ReturnValuesOnConditionCheckFailure and then you can rebuild the
operation.

You can include a client token when making a TransactWriteItems call to ensure that the
request is idempotent. Making the transactions idempotent helps you prevent application
errors if the same operation is submitted more than once. DynamoDB ensures that opera-
tions will be treated as idempotent for 10 minutes.

Like the rest of the operations with DynamoDB, the transactions can be used via API, and
there is no additional cost for enabling this feature; it will just consume twice as many read
and write capacity units per operation. With the transaction write API, the application can
group together multiple Update, Put, Delete, and ConditionCheck operations— up to 100
unique items or 4 MB of data. The application can then submit the actions as a single Trans-
actWriteItems operation that can either succeed or fail as an atomic unit.

Let’s see a real- life example use of transactions. Consider the table design shown in
Figure 5.5 to store information about a player in an online game.

F IGURE 5 .5 Online game player data

126 Chapter 5 ■ Low- Latency Response Time for Your Apps and APIs

It is partitioned by GamerID. The game requirement is that whenever health is purchased,
there are three simultaneous operations.

 ■ The player must have 400 coins to purchase health.

 ■ Set the health attribute value to 100 percent.

 ■ Decrement the coins attribute value by the cost (400).

The payload for the TransactWriteItems operation will look like this:

{
"TransactItems" : [{
 "Update ": {
 "TableName": "Gamers",
 "Key" :{"GamerID" : {"S": "Hammer57"},
 "Type" : {"S" : "Status"}},
 "UpdateExpression" : "Set health = :nhealth",
 "ExpressionAttributeValues":{":nhealth":{"N":"100"}}
 },
 {
 "Update ": {
 "TableName": "Gamers",
 "Key" :{"GamerID" : {"S": "Hammer57"},
 "Type" : {"S" : "Assets"} },
 "ConditionExpression" : "coins > :cost",
 "UpdateExpression" : "Set coins = coins - :cost",
 "ExpressionAttributeValues" :{":cost":{"N":"400"}}
 }
 }]
}

These will all happen simultaneously, with an “all or nothing” approach. This could
be more complex— and include up to 25 items. Perhaps the 400 coins are added to the
inventory of the healer? Or, it checks to ensure that health is not already equal to 100 per-
cent, etc.

Consider the following recommended best practices when using the DynamoDB transac-
tions feature:

 ■ The AWS SDK for DynamoDB handles the idempotency of the request on your behalf.
If you are not using the SDK, you should include a ClientRequestToken attribute with the
TransactWriteItems API call to ensure that the request remains idempotent.

 ■ Enable autoscaling on the tables, or be sure that you have enough provisioned capacity
to perform twice as many read and write operations for every item in your transaction.

Amazon DynamoDB 127

 ■ Try not to group operations together in a single transaction. For instance, if a transac-
tion with eight operations can be decoupled into smaller multiple transactions without
compromising the application’s integrity, it is recommended to break it up into the
smallest possible number. Simpler transactions are more likely to succeed and improve
throughput.

 ■ Multiple transactions updating the same items simultaneously can cause conflicts that
cancel the transactions. We recommend following DynamoDB best practices for data
modeling to minimize such conflicts.

 ■ If a set of attributes is often updated across multiple items as part of a single transaction,
consider grouping the attributes into a single item to reduce the scope of the transaction.

 ■ Avoid using transactions for ingesting data in bulk. For bulk writes, it is better to use
BatchWriteItem. It can handle up to 25 items with up to 16 MB in aggregated size within
each operation.

In- Memory Acceleration
Most cloud- native and modern applications can work seamlessly within the single- digit mil-
lisecond latency that DynamoDB provides by default, but there may be some workloads
that demand even lower latency from the database. For those cases, you can use DynamoDB
Accelerator functionality and enjoy the 10x performance improvement at the same scale of
up to millions of requests per second.

DynamoDB Accelerator (DAX) is a secure, scalable, fully managed, read- through/write-
through caching service compatible with the DynamoDB API. It is designed to seamlessly
add an in- memory cache layer to DynamoDB tables so the customer can benefit from ultra-
fast in- memory operations. It supports server- side encryption with AES- 256 and in- transit
data encryption with TLS.

DynamoDB acceleration addresses these three core scenarios:

 ■ It reduces the response times of eventually consistent read workloads from single- digit
milliseconds to microseconds.

 ■ It reduces the cache implementation complexity at the operational and application levels
by providing a managed service that is API- compatible with DynamoDB. And in that
way, it requires only minimal changes within an existing application.

 ■ For read- heavy or spiky workloads, DynamoDB DAX provides cost savings by reducing
the need to overprovision read capacity units. This works even better for applications
that need to perform repeated reads for individual keys.

To be able to provide microsecond latency response times, DAX is deployed within an
Amazon VPC environment that lets you add another layer of security via the ACL and SG.

DAX is a read- through/write- through cache engine that will intercept both reads and
writes to the DynamoDB tables you define. Each DAX cluster can be assigned to one or
many tables within the same AWS region. As a read- through caching system, when a read is
sent to DAX, it will first see if that item is in the cache; if it is (cache hit), DAX will return

128 Chapter 5 ■ Low- Latency Response Time for Your Apps and APIs

the value with response times in microseconds scale. If the item is not in the cache (cache
miss), DAX automatically fetches the item from the DynamoDB table, stores it in the cache
for subsequent reads, and returns the value to the application. This is done transparently
to the developer. Similarly, for writes, DAX first writes the value to DynamoDB, caches the
value in DAX, and then returns success to the application. This way, reads after writes are
available for cache hits, which further simplifies the application. With cache eviction handled
by time- to- live (TTL) and write- through evictions, you no longer need the code to perform
this task.

It is important to understand the eventual consistency models of both DAX and
DynamoDB (by default) to ensure that your applications behave as expected. To ensure high
availability, it’s recommended that the DAX cluster be deployed across three availability
zones. When your DAX cluster is up and running, it replicates the data to all of the nodes in
the cluster. When an application performs a successful UpdateItem, the system will update
the value of that item in the primary node of the cluster. That value is then replicated among
the other nodes in the cluster with an eventual consistency model. As you might be thinking,
in this scenario, it’s possible for two clients to get different values when reading the same key
from the same DAX cluster if they hit different nodes.

If you are building an application that will leverage DAX as a cache layer, that application
should be designed in a way that can tolerate eventually consistent data. If the request spec-
ifies a strong consistent read, the DAX cluster will forward the request to the DynamoDB
table and won’t store its result on the cache. These applications can benefit directly by
using DAX:

 ■ Applications that require a microsecond- fast response time for reads, such as trading
applications, social gaming, and real- time bidding.

 ■ Applications that usually read some items more frequently than others, for example, an
ecommerce application that has a one- day sale on a popular product. You can offload
the read activity to a DAX cache layer until the sale promotion is over.

 ■ Applications that are read- intensive and also cost- sensitive. With DynamoDB provi-
sioned mode, the customer provisions the number of reads per second that the appli-
cation requires. If the read activity increases, you can increase your tables’ provisioned
read throughput (at an additional cost). Another choice is to offload that read activity
from the application to a DynamoDB DAX cluster and reduce the number of RCUs that
you would purchase otherwise.

 ■ Applications that usually perform repeated reads operations over a large set of data,
such as a long- running forecast process using regional weather. That weather anal-
ysis could be performed against DAX cached data, saving a lot of RCU from the
original table.

Time to Live
Time to live (TTL) is an item- level attribute represented as an epoch timestamp mark that
indicates that the item can be deleted by an automatic background process, without con-
suming a provisioned capacity unit or causing extra costs. TTL is lazy, so expirations can

Amazon DynamoDB 129

take a couple of hours. There is a 48- hour upper bound of this behavior. Stale items can be
easily removed from result sets using a filter expression on the epoch timestamp.

The following are typical TTL attribute use cases:

 ■ Applications that store user usage or sensor data that is not relevant after a given
period of time

 ■ For analytics purposes, archive expired items to an Amazon S3 data lake via Amazon
DynamoDB Streams and AWS Lambda

 ■ Applications that need to retain data for a certain amount of time according to contrac-
tual or regulatory obligations

The following are best practices to consider when assigning TTL attributes to a table:

 ■ Changing the TTL settings on a table can take up to one hour to propagate and also to
allow the modification of any other TTL- related actions.

 ■ Customers cannot modify the TTL to use a different attribute. It must be disabled and
then reenabled with the new attribute or just done via a CloudFormation template.

 ■ IAM policies can be used to prevent unauthorized modifications to the TTL attribute on
an item or the configuration of TTL itself.

 ■ Remember that this can be combined with the DynamoDB Streams feature to take some
action whenever a record is deleted. There is a principal flag for TTL expired items; it is
simple to “tier out” cool data from the table into an S3 data lake or archive.

 ■ If data recovery feasibility is a concern, it is recommended that you back up your tables.
DynamoDB offers fully managed table backup features like the DynamoDB on- demand
backups and the continuous backups with point- in- time recovery (PITR).

It’s important to be aware that if you specify a TTL for a table (for example, an attribute
named expirationDate) but an item does not have any attribute with that name, the TTL pro-
cess ignores the item.

DynamoDB Streams
Modern applications also follow modern architectures, and event- driven applications are
very popular these days due to the increasing use of serverless compute and distributed
systems.

DynamoDB Streams is like a change log that captures information about every modifica-
tion to data items in the table. This is one of the powerful features of DynamoDB because it
allows you to react to data changes in near real time without impacting the performance of
your table.

For example, you can build a social media application that automatically sends notifica-
tions to mobile devices as soon as one contact uploads a new picture. DynamoDB Streams is
integrated with AWS Lambda, which makes it easy to build a trigger- based application with
a piece of code that automatically responds to events in DynamoDB Streams.

DynamoDB has two streaming models for CDC built in: Kinesis Data Streams for
DynamoDB and DynamoDB Streams. Table 5.4 illustrates when to choose each one.

130 Chapter 5 ■ Low- Latency Response Time for Your Apps and APIs

DynamoDB Streams can be turned on/off at any time without extra cost; the cost is per
reading at $0.2 per 100,000 reads in us-east-1 at the time of writing. There’s no reading
cost at all if the reader is a Lambda function. DynamoDB Streams supports the following
record views:

 ■ NEW_IMAGE: Send the entire item as it is after being modified.

 ■ OLD_IMAGE: Send the entire item as it was before it was modified.

 ■ NEW_AND_OLD_IMAGES: Send both the new and old images of the item.

 ■ KEYS_ONLY: Send only the key attributes of the modified item.

TABLE 5 .4 DynamoDB Streams vs. Kinesis Data Streams for DynamoDB

Property DynamoDB Streams Kinesis Data Streams for DynamoDB

Data retention 24 hours. Up to 1 year.

Kinesis Client
Library (KCL)
support

Supports KCL version
1.X.

Supports KCL versions 1.X and 2.X.

Number of
consumers

Up to two concurrent
consumers per shard.

Up to five concurrent consumers per shard.
Customer can enable the enhanced fan- out
feature and increase that number to 20.

Throughput
quotas

Subject to throughput
quotas by DynamoDB
table.

Unlimited.

Record delivery
model

Pull mode over HTTP by
using GetRecords.

Pull mode over HTTP by using GetRecords.
Customer can enable the enhanced fan- out
feature, and Kinesis Data Streams pushes the
records over HTTP/2 to the subscribers cre-
ated by using SubscribeToShard.

Ordering of
records

The stream records
appear in the same order
as the actual modifica-
tions executed to the
item in the table.

Items can appear in a different order than in
the DynamoDB table, so there is a timestamp
attribute on each stream record that can be
used to identify the actual order.

Duplicate records No duplicate records can
appear in the stream.

Duplicate records might occasionally appear.

Stream processing
options

DynamoDB Streams
Kinesis Adapter or AWS
Lambda.

AWS Lambda, Kinesis Data Firehose, Kinesis
Data Analytics, or AWS Glue Streaming ETL.

Amazon DynamoDB 131

It is also important to see that items expired by TTL will have a new attribute to indicate
that the item was expired by the system.

This is what a stream record looks like:

{
 'eventID': 'ba0aa41d6f9f2d64f',
 'eventName': 'MODIFY',
 'eventVersion': '1.1',
 'eventSource': 'aws:dynamodb',
 'awsRegion': 'us- east- 1',
 'dynamodb': {
 'ApproximateCreationDateTime': 1546020023.0,
 'NewImage': {Full map of item goes here}
 'SequenceNumber': '113973700000000001108655351',
 'SizeBytes': 116,
 'StreamViewType': 'NEW_AND_OLD_IMAGES'
. },
 'eventSourceARN': 'arn:aws:ddb:reg:acct:tbl/str/'
}

These are the appropriate use cases for DynamoDB Streams:

 ■ You have a mobile application that needs to modify the data in a DynamoDB table
at the rate of thousands of operations per second. On the other hand, you might have
another application that captures and stores related data about those updates, providing
real- time usage metrics for the first app.

 ■ There is a financial application that updates stock market data in a DynamoDB table. At
the same time, different applications are running in parallel tracks, and these changes in
real time compute value- at- risk formulas and automatically rebalance portfolios based
on each stock price movement.

 ■ Industrial equipment or transportation vehicle applications need to handle IoT sensor
information. That real- time data can be stored in a DynamoDB table and have different
applications to monitor performance and send messaging alerts whenever a problem is
detected. Furthermore, a customer can leverage that inbound data to predict any poten-
tial issues by implementing machine learning algorithms.

 ■ A customer registration process workload for any application can store its data in a
DynamoDB table. The event invokes another application via DynamoDB Streams that
can send a welcome email to the new customer.

Consider the following recommended best practices when using DynamoDB Streams:

 ■ DynamoDB Streams does not enforce consistency or transactional capability across
the tables; those features must be handled at the application level. Also, there is a sub-
second latency in every stream processing task as data is propagated into the stream.

132 Chapter 5 ■ Low- Latency Response Time for Your Apps and APIs

You should take the previous factors into account when defining the SLA of your
applications.

 ■ All item- level changes will be sent to the stream, including deletes. The application
should be able to handle each one of those operations.

 ■ Avoid having more than two processes reading from a stream shard at the same time.

 ■ Design your stream- processing layer to handle different types of failures. You should
also define your processing application to be idempotent, which can allow you to safely
retry each event.

 ■ Try to catch different exceptions in your source code and decide if you want to retry
them or put them in a dead letter queue (DLQ) for further analysis.

 ■ We recommend that you consider using AWS Lambda for stream processing whenever
possible. Lambda is serverless and therefore easier to manage and scale. Regarding
Lambda optimization, set an appropriate batch size (up to 10.000) based on the type
of transformation. For example, a simple copy could be 200 records, or complex
difference- finder analysis may read only 20 records per call.

Global Tables
The global tables functionality uses DynamoDB’s global footprint to provide you with
a fully managed, multiregion, and multiwriter database that provides low- latency read
and write performance for distributed global applications. Global tables replicate your
DynamoDB tables automatically across your choice of AWS regions to provide local data
access for the application. This feature eliminates the difficult task of replicating data bet-
ween AWS regions and resolving update conflicts across each node, enabling customers to
focus on their application’s business logic.

When customers create a DynamoDB global table, the service actually creates several
table replicas (one per AWS region) that DynamoDB treats as a single unit. All of the replicas
share the same table name and the same primary key. Whenever an application performs a
write operation to a replica table, DynamoDB propagates that update to the other replicas in
the other AWS regions automatically by using log processors, as shown in Figure 5.6.

A global table’s goal is to get the same copy of an item in every table worldwide. There
are many replication flows running at a time in global tables version 2019.11.21. In fact,
one replication pipeline is set up from each source region to each remote region so that in
the event of failure in a remote region, only replication to that region is impacted, while the
other replicas continue to replicate normally.

At the time of writing, two versions of DynamoDB global tables are available: version
2019.11.21 (latest) and version 2017.11.29. We recommend using the most recent one,
which enables you to dynamically add new replica tables from a table populated with data.
Besides that, it is more efficient and consumes less write capacity than the oldest one.

Amazon DynamoDB 133

These are the appropriate use cases for DynamoDB global tables:

 ■ Massively scaled applications with globally dispersed users. In such an environment,
users expect very fast application performance.

 ■ Mission- critical applications that require high availability, even in the unlikely event of
isolation or degradation of an entire region.

Consider the following recommended best practices when using DynamoDB global tables:

 ■ Global tables can be declared natively as infrastructure as code via CloudForma-
tion without a custom resource since May 2021. This is the recommended way to
deploy DynamoDB infrastructure, but you cannot convert a DynamoDB table into a

F IGURE 5 .6 DynamoDB global tables’ high- level architecture

134 Chapter 5 ■ Low- Latency Response Time for Your Apps and APIs

DynamoDB global table just by changing its type in the template. Doing so will result in
the elimination of the DynamoDB table. For that reason, it is recommended to always
use global table resources if your application might go global at some point.

 ■ When using the latest available version of global tables, customers must either enable
autoscaling on the table or use on- demand capacity. By doing so, you can be sure that
the table will always have enough capacity to perform replicated writes across all
regions of the global table.

 ■ If you are using version 2019.11.21 and you also use the TTL feature, DynamoDB rep-
licates TTL deletes to all replica tables. The initial TTL delete does not consume write
capacity in the region in which the TTL expiry occurs. However, the replicated TTL
delete to the replica table(s) consumes a replicated write capacity unit when using provi-
sioned capacity, or replicated write when using on- demand capacity mode, in each of the
replica regions, and applicable charges will apply.

 ■ Transactional operations provide ACID properties (atomicity, consistency, isolation, and
durability) only within the region where the original write operation was made. Transac-
tions are not supported for global table replicas.

 ■ The number of replicated write capacity units (WCUs) will be the same in all regions of
the global table deployment. For instance, suppose that you expect 10 writes per second
to a replica table in N. Virginia and 10 writes per second to a replica table in Oregon.
In this case, you should expect to consume 20 replicated WCUs (or 20 replicated write
request units, if using on- demand capacity) in each region, N. Virginia and Oregon.

Backup/Restore
Like many other database services in AWS, DynamoDB offers two ways to back up and
restore the data.

 ■ On- demand backups for long- term data archiving and compliance

 ■ Continuous backups for PITR

On- Demand Backups
The on- demand backups allow you to create full backups of your DynamoDB tables’ data,
making it easy to perform data archiving and comply with the corporate and governmental
regulatory requirements. Customers can back up tables from just a few megabytes up to
hundreds of terabytes of used capacity, without impact on performance and availability
across thousands of partitions. On- demand backup operations can process backup requests
in seconds regardless of the total size of the DynamoDB tables so that customer don’t have
to worry about the orchestration of backup schedules or long- running processes.

It is important to consider that when you do a full table restore using on- demand
backups, the destination table is configured with the same provisioned RCU and WCU as the
original table, as it was at the time when the backup was requested.

Amazon DynamoDB 135

When restoring a backup, you can assign the same value of the original table for these
settings or change it as necessary.

 ■ Global secondary indexes (GSIs)

 ■ Local secondary indexes (LSIs)

 ■ Billing mode

 ■ Provisioned read and write capacity

 ■ Encryption settings

There are other settings that need to be manually defined for each restored table:

 ■ Autoscaling policies

 ■ AWS IAM policies

 ■ Amazon CloudWatch metrics and alarms

 ■ Tags

 ■ DynamoDB Streams settings

 ■ TTL settings

Continuous Backups
In addition to the on- demand backups, you can enable continuous backups for point- in- time
recovery. This gives you the ability to restore to any point in the last 35 days down to the
per- second granularity. All the backups taken are automatically encrypted and retained until
the customer explicitly deletes them. You can run backup and restore operations with a
single click in the AWS Console or via a single API call.

The point- in- time recovery restoration process always restores the data to a new
table and can be within the values for EarliestRestorableDateTime and
LatestRestorableDateTime. The earliest is 35 days ago, and the latest is usually
five minutes before the current time.

Like the on- demand backups, the point- in- time recovery operations don’t affect
performance or API latencies or consume any provisioned throughput on the table.

In the same way as with on- demand restores, you are able to modify the same group of
settings when performing a restore and need to manually assign the other group of settings
after the restore is done.

You can use the describe- continuous- backups command to get the current options for
the PITR.

{
 "ContinuousBackupsDescription": {
 "PointInTimeRecoveryDescription": {
 "PointInTimeRecoveryStatus": "ENABLED",
 "EarliestRestorableDateTime": 1519257118.0,
 "LatestRestorableDateTime": 1520018653.01
 },
 "ContinuousBackupsStatus": "ENABLED"
 }
}

136 Chapter 5 ■ Low- Latency Response Time for Your Apps and APIs

DynamoDB is also natively integrated with a fully managed, centralized backup solution:
AWS Backups. You can leverage AWS Backups to schedule, copy, tag, and handle the life
cycles of your backups automatically across all DynamoDB tables in the AWS organization
from a centralized place while still being able to view and restore these backups from each
DynamoDB console.

With AWS Backups for DynamoDB, you can automatically copy your backups to a
different AWS region or AWS account, which allows you to fulfill your data protection
requirements. AWS Backups also has an Audit Manager feature to find backup activity and
resources that are not yet compliant with the centralized controls that you defined for your
organization.

Consider the following recommended best practices when working with DynamoDB
backups:

 ■ Each time the customer creates an on- demand backup, all the data in the table is backed
up. There is no limit regarding the number of on- demand backups that can be taken
from a table.

 ■ Be sure that you execute the backup process on the right table at the right time, because
once it’s initiated, it can’t be paused or canceled, and the table cannot be deleted, until
the backup is finished.

 ■ You can schedule a recurrent backups request by using an AWS Lambda function and an
Amazon Event Bridge rule.

 ■ Restore operations can be more cost- efficient and faster if some or all indexes are
excluded from being created on the restored table.

 ■ When planning for a disaster recovery process (DRP), the overall recovery time objective
(RTO) related to a restore operation (based on more than 95 percent of the customers)
should be less than an hour.

 ■ If you disable PITR and later reenable it on a table, you reset the EarliestRestorable
DateTime attribute from which you can recover that table. In other words, you will lose
the potential 35 days of history stored at that point.

 ■ You can enable point- in- time recovery on each local replica of a global table. When
you restore the table, the backup restores to an independent table that is not part of the
global table.

 ■ While a restore operation is in progress, you can’t modify or delete the IAM policies that
grant the IAM principal permission to perform the restore; if you did, it would throw
an error.

Scalability
Before talking about Amazon DynamoDB scalability, we need to cover some differences bet-
ween scaling SQL and NoSQL databases.

In relational databases, the data is usually normalized. To enable join operations, you
are usually tied to a single storage unit in a single system. That makes you dependent on the
performance of the hardware specs of the server. To improve performance in that scenario,

Amazon DynamoDB 137

you can create read replicas or add cache layers, but that approach works only for read
operations, and you may still run out of head room. That’s why SQL databases are usually
only able to scale up.

NoSQL databases were specifically designed to overcome those scalability issues. You
can scale out data and workload using distributed clusters and shards running on low- cost
hardware. All that can be achieved without sacrificing throughput or latency for all the oper-
ations. Therefore, by using NoSQL, businesses can scale virtually without limit. Of course,
that limitless scalability doesn’t come for free; you need to bend one of the CAP theorem
pillars.

Figure 5.7 will help you remember the CAP theorem and where Amazon DynamoDB
fits in.

Autoscaling
We talked before about the on- demand provisioning mode of Amazon DynamoDB and
how it can scale up to millions of transactions per second. Let’s focus now on the provi-
sioned capacity mode and the autoscaling feature. If you are familiar with the autoscaling of
Amazon EC2 instances, this is similar. DynamoDB leverages the AWS Application Auto Scal-
ing service to automatically adjust the provisioned throughput capacity in response to actual
traffic patterns. This enables a table to dynamically handle sudden changes in traffic.

F IGURE 5 .7 CAP theorem and AWS database service affinity with each pillar

138 Chapter 5 ■ Low- Latency Response Time for Your Apps and APIs

You take advantage of autoscaling policies to provision capacity when your application
demands it and avoid unnecessary overprovisioning. The scaling policy contains a target uti-
lization of the provisioned throughput at a point in time. It uses a target tracking algorithm
to adjust the provisioned throughput of the table or global secondary indexes up or down in
response to actual request volumes so that the actual capacity utilization remains at or near
your target utilization. The target utilization can go from 20 percent to 90 percent of the
read or write capacity.

The autoscaling modifies the provisioned capacity only when the request rate is sustained
for a period of several minutes to keep the target utilization at or near the desired value most
of the time. What happens to sudden spikes on the workload?

Amazon DynamoDB provides flexibility in your per- partition provisioning by providing
some burst capacity. Whenever the application is not fully using a partition’s throughput,
DynamoDB stores a portion of that unused capacity (five minutes at time of writing) for
later bursts or background maintenance tasks.

This kind of surge, represented in Figure 5.8, is what actually happened in the 2017 Super
Bowl game as we mentioned at the beginning of this chapter.

As mentioned previously, DynamoDB spread the provisioned capacity evenly across all
partitions. What happens in terms of scaling and burst when some items are more requested
than others, causing what is usually called a hot partition?

Amazon DynamoDB also handles this for you without any additional cost by using the
adaptive capacity feature. To better accommodate uneven access patterns, the adaptive
capacity enables your application to continue reading and writing to hot partitions without
being throttled, as long as that traffic does not exceed your table’s total provisioned capacity
or the partition’s maximum capacity.

10,000,000

8,000,000

6,000,000

4,000,000

2,000,000

F IGURE 5 .8 2017 Super Bowl game’s DynamoDB traffic surge

Amazon DynamoDB 139

If this uneven access pattern becomes normal, then DynamoDB rebalances your partitions
such that frequently accessed items don’t reside in the same place. This can go as granular as
a single item for a whole partition if necessary.

Scaling is achieved through partitioning and the number of partitions is calculated based
on the following two formulas, whatever happens first:

 ■ By capacity = (Total RCU / 3000) + (Total WCU/1000)

 ■ By size = Total Size / 10 GB

As you may guess with the first formula, each partition delivers 1,000 writes/second and
3,000 reads/second.

Consider the following recommended best practices when working with DynamoDB
autoscaling:

 ■ The frequently accessed items isolation feature doesn’t work with tables with local
secondary items or with DynamoDB Streams.

 ■ DynamoDB autoscaling doesn’t prevent customers from manually modifying the provi-
sioned throughput settings for a table. These manual adjustments don’t affect any exist-
ing CloudWatch alarms that are related to autoscaling either.

 ■ If DynamoDB autoscaling is enabled for a table that has one or more global secondary
indexes, it is highly recommended that autoscaling is also configured for those indexes.
The Apply Same Settings To Global Secondary Indexes option can do this automatically.

 ■ When using AWS CloudFormation templates to create scaling policies, customers should
manage the scaling policies from AWS CloudFormation so that the resources are in sync
with the stack template. If you change scaling policies from DynamoDB or Application
Auto Scaling, they might get overwritten with the values from the AWS CloudFormation
template.

Security
Amazon DynamoDB is a fully managed serverless service, so if you recall the Shared Respon-
sibility Model from Chapter 2, there are only a few tasks that the customers need to take
care of regarding security: identity access management and data protection. AWS provides all
the tools and features to seamlessly manage both of them.

Access Management
Amazon DynamoDB depends on IAM for access control. You need credentials to use the
DynamoDB APIs, and those credentials must have permissions to access each resource
within it, such as a table, an index, or DynamoDB Streams.

Two types of principals can be used to grant access to DynamoDB resources: users and
roles. The user can be a regular IAM user or an IAM group. We strongly recommend not
using the root user for these purposes. The other principal is a role; the role is intended to

140 Chapter 5 ■ Low- Latency Response Time for Your Apps and APIs

be assumable by anyone who needs it and doesn’t have long- term credentials such as a pass-
word. The IAM roles, instead, use temporary credentials to grant access to the following
options:

 ■ Federated user existing in another identity provider (IDP) such as AWS SSO, another
SSO provider, or a corporate directory.

 ■ AWS Service that needs to access the data inside a DynamoDB table or its configuration,
typically the application layer. This can be an AWS Lambda function or the Application
Auto Scaling service to modify the provisioned capacity.

 ■ Applications on Amazon EC2 instances that need credentials to access DynamoDB data.
The application running on EC2 can use an IAM role that is attached to the instance to
get the temporary credentials to access DynamoDB APIs. Though you can store an IAM
user access key inside the virtual machine, the role option is the recommended method.

One thing is the authentication before the DynamoDB API, and another is the permis-
sions that the principal has authorization for. When granting permissions for DynamoDB,
you decide who is getting what permissions, the resources they get permissions for, and what
specific actions you want to allow on those resources.

These permissions are granted through policies. You can view policies like gates, and you
can create different gates to different parts of your “property.” DynamoDB is compatible
only with identity- based policies that can be attached to IAM entities, like an IAM role or an
IAM user.

The following is an IAM policy example to allow data management operations in the
Books DynamoDB table:

{
 "Version": "2012- 10- 17",
 "Statement": [
 {
 "Sid": "DynamoDBTableAccess",
 "Effect": "Allow",
 "Action": [
 "dynamodb:BatchGetItem",
 "dynamodb:BatchWriteItem",
 "dynamodb:ConditionCheckItem",
 "dynamodb:PutItem",
 "dynamodb:DescribeTable",
 "dynamodb:DeleteItem",
 "dynamodb:GetItem",
 "dynamodb:Scan",
 "dynamodb:Query",
 "dynamodb:UpdateItem"
],

Amazon DynamoDB 141

 "Resource": "arn:aws:dynamodb:us- west- 2:123456789012:table/Books"
 }
]
}

Each DynamoDB resource belongs to an AWS account, but you can use IAM roles to
grant cross- account access to each resource.

In addition to the regular policies, you can define granular access control on items based
on the primary key, as well as attributes using conditions.

The following AWS IAM policy example allows data management operations over the
Title, Language, and Genre attributes of the DynamoDB Books table.

{
 "Version": "2012- 10- 17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:GetItem",
 "dynamodb:BatchGetItem",
 "dynamodb:Query",
 "dynamodb:PutItem",
 "dynamodb:UpdateItem",
 "dynamodb:DeleteItem",
 "dynamodb:BatchWriteItem"
],
 "Resource": ["arn:aws:dynamodb:*:*:table/Books"],
 "Condition": {
 "ForAllValues:StringEquals": {
 "dynamodb:Attributes": [
 "Title",
 "Language",
 "Genre"
]
 },
 "StringEqualsIfExists": {"dynamodb:Select":
"SPECIFIC_ATTRIBUTES"}
 }
 }
]
}

142 Chapter 5 ■ Low- Latency Response Time for Your Apps and APIs

DynamoDB Accelerator (DAX), on the other side, is designed to work together with
DynamoDB. However, DAX and DynamoDB have separate access control mechanisms. Both
services use IAM to implement their respective security policies, but the security models for
DAX and DynamoDB are different. You can grant a user access to a DAX cluster but not to
the DynamoDB table itself and viceversa.

Figure 5.9 represents a user that doesn’t have a policy to access a DynamoDB table
directly, but it can access a DAX cluster, which in turn has access to the table itself.

Data Protection
In addition to permissions (via IAM), which is the fundamental way of protecting your data,
you should protect it against the following other events:

 ■ Data corruption: To avoid this kind of event, you can enable point- in- time recovery and
design your tables to minimize the risk of corruption by keeping a local table replica for
mission- critical data, or you can apply policies that only allow you to insert new items
instead of updating them, in other words, some kind of append- only strategy.

 ■ Disasters: DynamoDB provides a highly durable storage infrastructure replicated across
three availability zones but for some mission- critical workloads that might not be
enough and need extra protection. You can use DynamoDB global tables for disaster
recovery purposes and on- demand backup and restore.

 ■ Disclosure: This one is easy: it is done by data encryption. Amazon DynamoDB supports
two kinds of data encryption: at rest and in transit. All data stored in DynamoDB is

F IGURE 5 .9 Accessing DynamoDB data through DAX

Amazon DynamoDB 143

fully encrypted at rest by default using its own keys for free. When creating a table, you
have the option to use AWS KMS Customer Managed Keys (CMKs) or AWS Managed
Keys stored on KMS as well, but this option might incur KMS charges. The encryption
of the storage layer happens transparently with minimal impact on the performance and
without the need to change the application code.

DynamoDB encryption at rest includes data in a table, local and global secondary
indexes, streams, global tables, backups, and DAX clusters.

Regarding the protection of the data in transit, DynamoDB uses Transport Layer Security.
We recommend using TLS 1.2 or greater. Clients must also support cipher suites with Perfect
Forward Secrecy (PFS). Additionally, you must sign requests using an access key ID and a
secret access key that are associated with an IAM principal.

Besides the protection of the protocol, you can protect the channel of communication.
What do I mean by that? DynamoDB APIs are public by default, but if your DynamoDB
client resides within an Amazon VPC, you can create a VPC endpoint to privately connect
to the DynamoDB API without traversing the public Internet. On top of that, you can add
a condition to the IAM policy to allow access to the DynamoDB resources only from that
specific VPC endpoint, as you can see in the following example:

{
 "Version": "2012- 10- 17",
 "Statement": [
 {
 "Sid": "AccessFromSpecificEndpoint",
 "Action": "dynamodb:*",
 "Effect": "Deny",
 "Resource": "arn:aws:dynamodb:region:account- id:table/*",
 "Condition": { "StringNotEquals" : { "aws:sourceVpce":
"vpce- 11aa22bb" } }
 }
]
}

The channel protection does not only apply from clients within a VPC; you can also use
Dynamo DB securely from on- premises networks via an AWS site- to- site VPN connection or
an AWS Direct Connect connection.

Monitoring
Once you have your database up and running, you need to be sure that it continues that
way. You can do that by monitoring. This is an important part of maintaining the reliability,
availability, and performance of your DynamoDB resources. AWS provides several tools and
services for monitoring DynamoDB to respond to potential incidents and to troubleshoot
specific errors.

144 Chapter 5 ■ Low- Latency Response Time for Your Apps and APIs

To be able to set up the right autoscaling thresholds, first you need to understand
the performance baseline of your application. The best way to do that is by measuring
performance at various times and under different load conditions. You can do that by
observing the Amazon CloudWatch metrics available for DynamoDB. These metrics are
delivered in near real time and retained for a period of time (up to 15 months), so you
can access historical information for a better analysis of how the database is performing.
Table 5.5 shows some examples.

You can get these metrics for a given dimension as well, for instance, per the following:

 ■ Operation: PutItem, GetItem, DeleteItem, Query, Scan, etc.

 ■ Operation type: Read or write

 ■ StreamLabel: Limits the metrics to a specific DynamoDB stream

 ■ TableName: Limits the metrics to a specific DynamoDB table

Another important element is to be aware if any of those metrics are in an undesired
state. For that you can use Amazon CloudWatch Alarms to watch a single metric over a

TABLE 5 .5 Amazon CloudWatch Metrics Available for DynamoDB

Use Case Metric

Rate of TTL dele-
tions on a table

You can monitor TimeToLiveDeletedItemCount over the specified time
period.

Provisioned
throughput being
used

For this, customers can monitor the ConsumedReadCapacityUnits or
ConsumedWriteCapacityUnits metrics over the specified time
period.

Requests exceed
the provisioned
throughput quotas

ThrottledRequests is incremented one by one if any event within a
request exceeds the provisioned throughput quota. Then, to gain insight
into which operation is throttling a request, you should compare the
ThrottledRequests, ReadThrottleEvents, and WriteThrottle
Events metrics for the table and its local secondary indexes.

System errors Customers can monitor the SystemErrors metric to determine whether
any requests returned an HTTP 500 (server error) code.

Provisioned
capacity usage

AccountProvisionedWriteCapacityUtilization displays the
percentage of provisioned write capacity units utilized by an account.

Read data band-
width out of your
tables or streams

You can monitor ReturnedBytes to get the number of bytes returned by
GetRecords operations during the specified time period.

Amazon DynamoDB 145

time period and perform some actions based on the values of the metric relative to a given
threshold.

You can also integrate Amazon Event Bridge (formerly known as CloudWatch events)
to capture an event generated by DynamoDB and route them to a target function or a
DynamoDB Stream to capture the state information and take corrective action.

Figure 5.10 represents a rule to send a message to an Amazon SNS topic and get notified
every time that a table DDL operation is performed.

As you probably already know, AWS CloudTrail keeps track of every API operation per-
formed on AWS, and since DynamoDB works exclusively via API calls, CloudTrail is the
main logging mechanism available for DynamoDB. The API requests captured by CloudTrail
include requests from the DynamoDB web console and API client requests to the DynamoDB
control plane API.

If you haven’t created a CloudTrail trail yet, you can still view the most recent
DynamoDB events in the CloudTrail console in Event history.

F IGURE 5 .10 DynamoDB event notification rule

146 Chapter 5 ■ Low- Latency Response Time for Your Apps and APIs

Amazon CloudTrail stores the log information on Amazon S3 by default. Once on
S3, you can use Amazon Athena queries to identify trends and further isolate activity by
 attribute, such as the source IP address, event type, error code, or IAM principal.

The following JSON represents a CloudTrail entry for DynamoDB GetItem operation:

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "Root",
 "principalId": "123456789101",
 "arn": "arn:aws:iam::123456789101:root",
 "accountId": "123456789101",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "attributes": {
 "creationDate": "2021- 06- 09T22:15:24Z",
 "mfaAuthenticated": "false"
 }
 }
 },
 "eventTime": "2021- 06- 09T22:19:30Z",
 "eventSource": "dynamodb.amazonaws.com",
 "eventName": "GetItem",
 "awsRegion": "us- east- 1",
 "sourceIPAddress": "192.0.2.1",
 "userAgent": "aws- internal/3 aws- sdk- java/1.11.1022 Linux",
 "requestParameters": {
 "tableName": "dev",
 "key": {
 "PK": "Recording|RE445def6510c9ed7979c5b9a03f62d61a"
 },
 "consistentRead": true
 },
 "responseElements": null,
 "requestID": "I8I6AF2O99VTFIDU5S44GDJ363VV4KQNSO5AEMVJEXAMPLE",
 "eventID": "6accd126- d6c4- 444d- 9141- 7ccc939fc1c3",
 "readOnly": true,
 "resources": [
 {

Amazon DynamoDB 147

 "accountId": "555555555555",
 "type": "AWS::DynamoDB::Table",
 "ARN": "arn:aws:dynamodb:us- east- 1:555555555555:table/dev"
 }
],
 "eventType": "AwsApiCall",
 "apiVersion": "2012- 08- 10",
 "managementEvent": false,
 "recipientAccountId": "555555555555",
 "eventCategory": "Data"
}

For a more robust monitoring solution, you can send CloudTrail events to Amazon
CloudWatch Logs to enable a near real- time analysis of the traces. Once the events are on
CloudWatch Logs, you can create filters to raise an alarm in case something strange is going
on— for example, like the filter in Figure 5.11 that identifies when someone is attempting an
unauthorized operation.

Another interesting Amazon CloudWatch feature is Contributor Insights for Amazon
DynamoDB. This is a diagnostic tool for seamlessly identifying the most frequently accessed
items on your table or index. The Contributor Insights feature helps customers to under-
stand who or what is impacting their system and application performance by highlighting
outliers, finding traffic patterns, and ranking the top- heavier system processes.

F IGURE 5 .11 CloudWatch Logs filter example

148 Chapter 5 ■ Low- Latency Response Time for Your Apps and APIs

Amazon Keyspaces
Amazon DynamoDB is not the only AWS NoSQL database service capable of millisecond
response times at millions of transactions per second. Apache Cassandra is an open- source,
wide- column, transactional database designed to handle large amounts of data, and is con-
sidered by many in the world to be one of the top 10 database engines. You can use Amazon
Keyspaces (for Apache Cassandra) to support your application within a few clicks and lines
of code without the need to provision, patch, or manage servers.

Keyspaces is a managed service that is scalable and highly compatible with the Apache
Cassandra 3.11.2 version at the time of writing. Like DynamoDB, Keyspaces is serverless,
so you pay as you go only for the resources that you use. The service also automatically
scales tables up and down in response to the actual application traffic. Customers can build
applications that can serve up to thousands of requests per second while keeping virtually
unlimited storage and throughput.

When you use Keyspaces, it will appear as a nine- node Apache Cassandra cluster and
supports all commonly used Cassandra data- plane operations, such as creating keyspaces
and tables, reading data, and writing data.

Design Considerations
For both SQL and NoSQL databases, how you model your data is critical to achieve optimal
performance. Amazon Keyspaces is no exception. An inefficient data model can significantly
impact its performance. Let’s review some design considerations.

Like most NoSQL databases, in Cassandra Query Language (CQL), there are no joins
despite it being a SQL “like” query language. Therefore, Cassandra table design should be
done while thinking about the shape of the data and business use cases. This might result in
denormalization with data duplication. You should design each Cassandra table specifically
for each particular access pattern, as you do with DynamoDB.

Partition and Clustering Keys
Data is stored as a key- value pair in partitions, which are in turn organized into tables and
keyspaces.

The Cassandra keyspace groups related tables that are relevant for one or more applica-
tions in a similar way as tablespaces do in the relational world.

The Cassandra table is the primary data structure for Amazon Keyspaces and its made-
 up rows and columns. A subset of those columns is used to partition and ultimately to place
the data.

The partitions system works very similar the way it works in DynamoDB regarding the
number of partitions used to store the data and how that data is distributed across the parti-
tions by using the partition key. For this reason, how you build the partition key can have a
significant impact on the performance of the queries.

Amazon Keyspaces 149

The primary key can be composed the same way as in DynamoDB, but in Cassandra, the
sort key has a different name (clustering column), and it can use several columns at the same
time. If the clustering column has more than one column, the sorting order is executed in
the same order in which the columns are listed in the clustering column definition, from left
to right.

This ability to add extra columns to the sort key makes it easier to shard the data than in
DynamoDB because all you need to do is create a new column with a random number and
add it to the sort key.

Static Columns
Another particular feature of Keyspaces is the static column. The value stored in this column
type is shared across all rows in a partition. When customers update the value of the column,
Amazon Keyspaces applies that change automatically to all rows within the partition.

This static data is associated with Cassandra logical partitions and not with individual
rows. Logical partitions can have virtually unlimited capacity by distributing data across
several physical storage partitions. As a consequence, Amazon Keyspaces counts write opera-
tions on static and nonstatic data separately. Furthermore, writes that include both static and
nonstatic data require additional overhead to provide data consistency.

If customers perform a mixed write operation on both nonstatic and static data, they will
generate two separate write operations (one for each type). This applies the same way to
both capacity modes (on- demand and provisioned read/write).

Keys and Rows Sizing
Partition keys can store up to 2,048 bytes of data. Each column in the partition key needs to
contain up to 3 bytes of metadata that count toward the 1 MB row size limit.

Each row can store up to 850 bytes of clustering column data. Each clustering column
requires up to 4 bytes for metadata that also count toward the 1 MB row size limit.

When calculating the total size of each row, you should consider the previously men-
tioned partition key and clustering column metadata.

Migrating Your Data into Keyspaces
As of this writing, Amazon Keyspaces is not yet compatible with the AWS migration and
data movement services as DynamoDB is. Therefore, to migrate your current data to Key-
spaces, you need to use native tools or ETL services. Let’s explore an example of each.

The native tool available for homogeneous data migration is cqlsh. With the shell tool
for CQL, you can use the COPY FROM command to migrate from a CSV file into the Key-
spaces table. The file header must match the column names on the target Keyspaces table to
work. This approach has minimal options available, is single process, and has throughput
and connection limitations.

If the migration can’t be done via cqlsh, you can use the Amazon EMR service to accom-
plish it. Since Amazon EMR is an ETL- like service, you need to explore the data source
structure first and transform it into any Apache Hadoop–compatible file format like HDFS,

150 Chapter 5 ■ Low- Latency Response Time for Your Apps and APIs

for example. Once on a Hadoop- compatible format, you can use a Cassandra connector like
Spark Cassandra to open a session and execute the migration commands. This option allows
you to run complex data transformations during the migration; it is distributed and has scal-
able throughput.

The other option is to use a third- party tool for the migration. One of the more popular is
DataStax Bulk Loader. With DataStax Bulk Loader, you can do bulk migrations using a CSV
file such as the native tool or a complex migration with a transformation- like approach by
using Amazon EMR.

The migration is more cost effective if you use provisioned capacity instead of on-
demand. Therefore, you need to know how much throughput capacity to provision for the
table receiving the data. For an accurate estimation, you need to consider two variables:
how much data you will load and how fast you want to load it. You can use the following
formulas to do the calculations:

 Capacity per row ceiling average size of each item / 1024

For example, for an average item size of 1,950, you will get the following:

 Ceiling 1950 1021 2 0/ .

WCU number of items to load time in seconds capacity per r(/)* oow

an extra for buffer

*

. %1 10 10

For example, for 1.300.600 lines to be loaded in 5 minutes, you will need the following:

1 300 600 300 2 1 10 9537. . / * * . WCUs

Query Considerations
Like DynamoDB, Keyspaces automatically paginates the results from SELECT statements
when the data to return exceeds 1 MB in size. The application can process the first page,
then the second page, and so on. Cassandra clients should always check for pagination
tokens when executing the SELECT queries that return more than one row.

Because the pagination of the results is based on the number of row reads necessary to
process a request and not the actual rows to be returned, there is a chance that some pages
may be empty.

For instance, if you set PAGE SIZE to 20 and Keyspaces evaluates 80 rows to process
a SELECT query, Amazon Keyspaces will return four pages. If only a subset of the rows
matched your query, some pages may have fewer than 10 rows.

Amazon Keyspaces 151

Keyspaces Capacity Modes
Amazon Keyspaces has two throughput capacity modes: on- demand and provisioned. Cus-
tomers can choose each table’s throughput capacity mode to optimize the price of each read
and write operation based on the predictability and variability of their workload.

On- Demand Mode
This is the default Keyspaces throughput mode where you pay for only the requests that
your application actually performs. You do not need to specify the throughput capacity in
advance. With on- demand mode, Amazon Keyspaces can scale the capacity for the table up
to any previously reached traffic level instantly, just like DynamoDB, and then back down
when application traffic decreases. This mode instantly accommodates up to double the
previous peak traffic on a table; however, you might get “insufficient throughput capacity”
errors if you exceed twice the previous peak capacity within 30 minutes.

Amazon Keyspaces charges you for the read and write operations that your appli-
cation performs on your tables in terms of read request units (RRUs) and write request
units (WRUs).

One RRU represents one LOCAL_QUORUM read request or two LOCAL_ONE read requests,
for a row up to 4 KB in size, which is similar to DynamoDB’s strongly and eventually consis-
tent read operations.

One WRU represents one write for a row up to 1 KB in size. All writes are processed with
the LOCAL_QUORUM consistency model, and there is no additional charge for using light-
weight transactions (LWTs).

Lightweight transactions in Apache Cassandra leverage linearizable consistency to ensure
a transaction isolation level similar to the serializable level offered by relational databases.

You can enable on- demand capacity mode for new and existing tables. Figure 5.12 repre-
sents the max throughput change with new peaks.

F IGURE 5 .12 Amazon Keyspaces traffic peak example

152 Chapter 5 ■ Low- Latency Response Time for Your Apps and APIs

Provisioned Mode
With provisioned throughput capacity mode, customers specify the number of reads and
writes per second that they are expecting to get from the application in the form of read
capacity units (RCUs) and write capacity units (WCUs), which is similar to DynamoDB.

One RCU in Keyspaces represents one LOCAL_QUORUM read per second or two
LOCAL_ONE reads per second, for an item up to 4 KB in size. For instance, if your row size is
8 KB, you will require 2 RCUs to perform one LOCAL_QUORUM read per second, and 1 RCU
if you require a LOCAL_ONE read.

One WCU in Keyspaces represents one write per second for an item up to 1 KB in size.
All writes use the LOCAL_QUORUM consistency model, and there is no additional charge for
using lightweight transactions (LWTs) the same way as we described the WRU earlier.

The provisioned throughput value is the maximum amount of throughput capacity an
application can consume from a specific table. If your application exceeds that provisioned
throughput capacity, you might get insufficient capacity errors. To avoid those errors, you
can enable autoscaling to increase and decrease the provisioned capacity automatically.
You can optimize the price if you have predictable application traffic and can forecast your
table’s capacity requirements.

You can change the table capacity mode once per day as you learn more about the work-
load access patterns or, perhaps, when you expect to have a large burst in traffic from a
major event that you anticipate will drive a lot of extra traffic.

When you change a table from provisioned capacity to on- demand capacity mode,
Amazon Keyspaces internally makes several changes to the structure of the table and par-
titions. This process can take several minutes to complete. During the ongoing switching
period, the table delivers the previously provisioned WCU and RCU values.

When switching from on- demand capacity mode to provisioned capacity mode, the Key-
spaces table delivers throughput that is consistent with the last peak reached when the table
was configured with on- demand capacity mode.

Consistency Models
The consistency models are specific for each operation executed on the database, whether
reads or writes. Before getting into the consistency level, let’s understand those available for
Amazon Keyspaces first.

 ■ LOCAL_QUORUM: The local quorum means that the transaction will be approved once the
majority of replicas in the coordinator site have already confirmed the transaction. Since
Keyspaces replicates the data three times on each availability zone, the LOCAL_QUORUM
waits for the confirmation of two replicas.

 ■ LOCAL_ONE: The LOCAL_ONE waits for one replica of the coordinator site to acknowl-
edge the operation before confirming the transaction to the client.

 ■ ONE: This will confirm the transaction whenever any replica acknowledges it.

Amazon Keyspaces replicates all write operations three times across multiple availability
zones for durability and high availability and uses only the LOCAL_QUORUM consistency level.

Amazon Keyspaces 153

Regarding the read operations, Keyspaces supports the three consistency levels: ONE,
LOCAL_ONE, and LOCAL_QUORUM. The first two levels can improve the performance and
availability of your read requests, but the response might not reflect the results of a recently
completed write.

Each write operation up to 1 KB will consume a WCU or WRU, and each read operation
with LOCAL_QUORUM consistency up to 4K will consume RCU or RRU depending on the
configured throughput capacity mode.

If you use LOCAL_QUORUM for both reads and writes, you can emulate a strong consis-
tency model for your queries, but of course, this doesn’t come for free. In addition to the
additional response latency, there is more usage of the provisioned capacity for the cluster.
Table 5.6 will help you see the difference.

Use Cases
Amazon Keyspaces use cases are similar to Amazon DynamoDB ones with regard to low
latency and the ability to process data at high speeds with single- digit- millisecond latency.
These applications can be industrial equipment maintenance, trade monitoring, fleet
management, and route optimization, but it is better when the customers are already using
Apache Cassandra or have experience working with CQL. For instance:

 ■ You can build applications on AWS using the open- source Cassandra drivers and APIs
available for several programming languages, such as Ruby, Java, Node.js, Python, PHP,
Microsoft .NET, C++, Go, and Perl.

 ■ You can move your Cassandra workloads to the cloud to avoid the heavy lifting of
managing Cassandra tables yourself. With Amazon Keyspaces, customers can deploy,
secure, and scale Cassandra- compatible tables in the AWS without managing or provi-
sioning infrastructure.

Best Practices
When using Amazon Keyspaces, consider the following best practices:

 ■ The on- demand capacity mode can accommodate traffic requests up to twice as much
as the previous peak. For instance, suppose that an application’s traffic pattern typically

TABLE 5 .6 Amazon Keyspaces Capacity per Consistency Level

Consistency Level Capacity

ONE 0.5 RCUs

LOCAL_ONE 0.5 RCUs

LOCAL_QUORUM 1 RCU

154 Chapter 5 ■ Low- Latency Response Time for Your Apps and APIs

goes from 10,000 to 20,000 strongly consistent reads per second, where 20,000 reads
per second is the previously reached traffic peak. In this scenario, the service recom-
mends that you to wait for at least 30 minutes before going up to a new peak of 80,000
reads per second.

 ■ New tables with the on- demand capacity mode or tables switched to on- demand mode
will have a default RRU peak of 6,000 and a WRU of 2,000.

 ■ When using AWS CloudFormation templates to create scaling policies, customers should
manage the scaling policies from AWS CloudFormation so that the resources are in sync
with the stack template. If you change scaling policies from Amazon Keyspaces or Appli-
cation Auto Scaling, they might get overwritten with the values from the AWS Cloud-
Formation template.

 ■ When doing a migration to Keyspaces, try to break it down into smaller components.
There are several division criteria to consider; it can be by keyspace or table, or by
data itself, for instance: by category, by date, or by groups of user and products. When
running the actual migration, avoid using batches with all the items on the same parti-
tion and with a maximum of 30 statements. Rather, create more new connections rather
than more requests in the same connection. It’s also a good idea to stop the CloudWatch
metrics when the migration is running.

 ■ Don’t name new tables the same as any previously deleted one. If a new table is created
with the same qualified name, the deleted table will no longer be restorable.

 ■ As is the case with DynamoDB, while a restore is in progress, don’t modify or delete the
IAM policies that grant the IAM principal permission to perform the restore.

Backups
The Cassandra snapshot and increment backup process requires heavy lifting and increases
in cost as the cluster grows. Besides that, the open- source third- party backup systems for
Apache Cassandra are very complex and require deep expertise to work with.

Amazon Keyspaces offers point- in- time recovery (PITR) to help protect your tables from
accidental write or delete operations. With PITR, you can restore a table’s data to any sec-
ond in time since the PITR option was enabled up to the last 35 days. If a customer deletes a
table with point- in- time recovery enabled, they can query for the deleted table’s data for up
to 35 days (at no additional cost). There is also an option to restore it to the state it was in
just before the point of deletion. A table recovery using the PITR feature does not impact the
table’s performance or availability, nor does it consume additional throughput capacity. The
restores are done in a new table; PITR doesn’t overwrite existing tables.

The PITR option is enabled by default when you create the table via the web console.
Amazon Keyspaces uses two timestamps to maintain the time frame for which restorable
backups are available for a table the same way as DynamoDB does.

 ■ Earliest restorable time: This marks the time of the earliest available restorable backup.
The earliest restorable backup can go back to 35 days ago or to when the PITR feature

Amazon Keyspaces 155

was enabled, whichever is more recent. The maximum backup range of 35 days can’t be
modified.

 ■ Current time: The timestamp for the latest restorable backup is the current time at the
operation request time. If no timestamp is provided during a restore, the current time
is used.

If you disable and then enable the PITR option, you will lose the earliest restorable time
and thus the previous history. A table doesn’t have to be active in order to be restored. Cus-
tomers can also restore deleted tables if the PITR option was enabled on the deleted table
and the deletion occurred within the last 35 days.

Scalability
As mentioned in the capacity mode overview, Amazon Keyspaces also has autoscaling fea-
tures. This is done by using the Application Auto Scaling service to increase and decrease a
table’s read and write capacity on your behalf. This service works through autoscaling pol-
icies to define a target utilization related to the specific services it’s supporting. The target
utilization is the relation of consumed capacity units to the provisioned capacity units at a
given point in time, expressed as a percentage value. The automatic scaling feature uses a
target tracking algorithm to adjust the provisioned throughput capacity of the table upward
in response to increasing traffic and downward once the peak is over.

As with Amazon DynamoDB, when customers create a scaling policy, the Application
Auto Scaling service creates two pairs of Amazon CloudWatch alarms. Each alarm repre-
sents your upper and lower boundaries for provisioned and consumed throughput values.
The Application Auto Scaling service only modifies the capacity of the table when the actual
workload runs higher (or lower) for a sustained period of several minutes. To handle the
small sudden spikes in the traffic, Keyspaces has the same burst feature we reviewed in
DynamoDB.

Security
As Amazon Keyspaces is a managed serverless service, the shared responsibility model bar is
very high because AWS manages the infrastructure, operating system, application server, and
scalability on your behalf. You only need to take care of data encryption and access control.

Data Encryption
Customers can protect their data in transit and at rest. Amazon Keyspaces is compat-
ible with encryption at rest by using 256- bit Advanced Encryption Standard (AES- 256).
This encryption helps secure the data from unauthorized access to the underlying storage
layer. The Keyspaces engine encrypts and decrypts the table data transparently without
performance impact or extra costs. Customers can use an AWS managed key without extra
costs or can use their own keys via AWS KMS, but extra charges may apply. The key type
used can be changed at any time.

156 Chapter 5 ■ Low- Latency Response Time for Your Apps and APIs

Regarding encryption in transit, Keyspaces only accepts secure connections using Trans-
port Layer Security (TLS), no matter what you use as the client, such as the Cassandra Client
Driver or the cqlsh tool.

Access Control
Amazon Keyspaces supports two ways to authenticate client requests. One is through service-
specific credentials, which are the username and password credentials that Cassandra typi-
cally uses for authentication and access control but are associated with a specific IAM user.
The other method uses an authentication plugin for the DataStax Java Driver for Cassandra.
The plugin allows you to use temporary credentials when connecting to Amazon Keyspaces
by signing the API requests using the access key that you specify when you configure it.

Like DynamoDB, Keyspaces only supports identity- based policies and not resource- based
policies. With IAM identity- based policies, customers can specify allow or deny actions
on resources as well as the conditions under which those actions are allowed or denied. If
there are several condition elements in a statement or multiple keys affected with a single
condition, AWS evaluates them using a logical AND operation. If there are multiple values
for a single condition key, on the contrary, AWS evaluates the condition using a logical OR
operation.

The permission for the statement will be granted only after all the conditions are met.
You can add conditions on resources up to the table level:

arn:${KeySpacePartition}:cassandra:${AWSRegion}:${AWSAccount}:/
keyspace/${KeyspaceName}/table/${TableName}

You can replace the TableName or KeyspaceName value with wildcards if you want to
increase the scope of the resource condition.

There is also the option to use placeholder variables when writing policy conditions. For
instance, customers can grant an IAM user permission over a resource only if it is tagged
with the same IAM username.

Keyspaces uses IAM service- linked roles. This kind of role is a unique type of IAM role
that is linked directly to the Amazon Keyspaces service and includes all the permissions that
the service requires to leverage all the necessary AWS services on your behalf. For instance,
a service- linked role makes setting up autoscaling easier because you don’t have to manually
add the necessary IAM permissions for it.

The default method to access Amazon Keyspaces is through AWS- published APIs. Clients
must support at least Transport Layer Security (TLS) 1.0 and a cypher suite compatible with
Perfect Forward Secrecy (PFS). If you need to access Amazon Keyspaces privately without
leaving the Amazon network, you can use a VPC interface endpoint powered by AWS Pri-
vateLink. AWS PrivateLink enables this by using an elastic network interface with private IP
addresses in your VPC so that network traffic does not leave the Amazon network.

Consider the following recommended best practices when working with Keyspaces access
control:

 ■ Get started by using AWS managed policies to grant your employees all the permissions
they need to work with Keyspaces. These policies are already available in every account
and are maintained and updated by AWS.

Amazon Keyspaces 157

 ■ When you create custom policies, comply with the least privilege best practices, and
grant just the minimum permissions required to perform that particular task.

 ■ For extra security settings, require IAM users to use multifactor authentication (MFA)
to access sensitive resources or API operations. For example, delete or disable Cloud-
Watch metrics and autoscaling features.

 ■ Use policy conditions for extra security. Define the conditions under which the identity-
based policies grant access to a given resource. For instance, customers can write con-
ditions to allow only a range of IP addresses to call the APIs. You could also write
conditions to allow requests only within a specified date or time range to avoid critical
business hours or to require the use of SSL or MFA for extra security.

 ■ Prefer to use IAM roles when using Amazon Keyspaces within an AWS service that
uses or can use a role, like applications running on EC2 instances or a microservice on
AWS Lambda.

 ■ Enable encryption at rest; with AWS Managed Keys you won’t incur extra charges. Con-
sider using client- side encryption if the Keyspaces table stores sensitive or confidential
information.

Monitoring
The AWS Console for Amazon Keyspaces offers a preconfigured dashboard showing the
latency and errors aggregated across all tables in an account, but that isn’t enough to main-
tain the reliability, availability, and performance of Amazon Keyspaces.

Like every AWS service, Keyspaces is integrated with Amazon CloudWatch to send raw
system and operation data to be processed and converted into readable, near- real- time
metrics. It’s near real time because all metrics for Keyspaces are aggregated and reported
every minute.

Like all other metrics, Keyspaces metrics can be added to a CloudWatch dashboard and
are stored within CloudWatch for 15 months so that you can access historical information
and gain insights on how the service is performing. Customers can also set alarms when the
metrics reach certain thresholds and send notifications or take actions according to the data.

Table 5.7 covers some of the most important metrics available for Keyspaces.

TABLE 5 .7 Amazon CloudWatch Metrics Available for Keyspaces

Metric Description

ConsumedReadCapacityUnits

and ConsumedWriteCapacityUnits

Shows the number of read and write capacity units
consumed over the specified time period.

ProvisionedReadCapacityUnits

and

ProvisionedWriteCapacityUnits

Shows the number of provisioned read and write
capacity units for a table.

(continues)

158 Chapter 5 ■ Low- Latency Response Time for Your Apps and APIs

Like all other AWS services, Amazon Keyspaces will store all API call traces on Amazon
CloudTrail; remember that this also includes web console actions and CLI commands.

Summary
This chapter covered the necessary concepts and features of Amazon DynamoDB and
Amazon Keyspaces to be able to identify the right use cases for both and to understand how
to translate the applications requirement to the deployment options of these services. You
will be able to design the DynamoDB or Keyspaces databases to be highly available, scalable,
secure, and performant. We showed you the available tools to monitor and troubleshoot pos-
sible database issues and talked about how to optimize the performance even further. You
also gained a general understanding of how to operate the DynamoDB and Keyspaces data-
bases in terms of backups, maintenance tasks, and security configurations.

Metric Description

PerConnectionRequestRateExceeded Requests to Amazon Keyspaces that exceed the per-
connection request rate quota. Each connection to
Amazon Keyspaces endpoints can support up to 3,000
requests per second. As a workaround, the clients can
create multiple connections concurrently to increase
the throughput.

ReturnedItemCount Corresponds to the number of rows that a multirow
SELECT query returns during the specified time period.
Multirow SELECT queries do not contain a fully quali-
fied primary key like a full table scan or a range query.

SystemErrors Shows the requests to Amazon Keyspaces that gen-
erate an internal ServerError during the specified time
period.

UserErrors Shows the number of requests to Amazon Keyspaces
that generate an InvalidRequest error during the spec-
ified time period. This kind of error usually indicates a
client- side error regarding parameters and resource
names.

TABLE 5 .7 Amazon CloudWatch Metrics Available for Keyspaces (continued)

Exercises 159

Exam Essentials
Know the right database for each use case. The technology is no longer evolving toward
modern application development, microservices, distributed system, and NoSQL databases;
it is already there, and there are only a few laggards left behind. It is crucial to know which
database type is best suited for each use case, especially managed and serverless ones like
DynamoDB and Keyspaces.

Understand the right deployment and migration options. Not all applications are born
cloud- native. Most of them are still legacy on- premises ones. That’s why it is important to
know what are the available migration and deployment configuration tools for Amazon
DynamoDB and Amazon Keyspaces.

Understand Amazon DynamoDB and Keyspaces management and operations. Once you
have your application running, you need to keep it in that state, and the database is an
important part of it. You need to know the available features and services to help manage
and operate Amazon DynamoDB and Amazon Keyspaces, including scaling, backup/restore,
performance optimization, and maintenance.

Know the available monitoring and troubleshooting tools. Everything fails all the time. Be
familiar with the AWS monitoring and logging services available for Amazon DynamoDB
and Keyspaces. Know how to identify and resolve the potential issues and optimize the data-
base performance.

Strengthen the security for Amazon DynamoDB and Keyspaces. Security is a priority for
most organizations, so it is important to understand the security mechanism that you should
leverage to secure your data in transit and at rest and implement a robust access control in
Amazon DynamoDB and Keyspaces.

Exercises
If you need assistance in completing the following exercises, please refer to the Amazon
DynamoDB developer guide at docs.aws.amazon.com/amazondynamodb/latest/
developerguide/GettingStartedDynamoDB.html.

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GettingStartedDynamoDB.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GettingStartedDynamoDB.html

160 Chapter 5 ■ Low- Latency Response Time for Your Apps and APIs

E X E R C I S E 5 . 1

Create a DynamoDB Table and Populate It

In this exercise, you will create a new DynamoDB table.

1. Sign in to the AWS Management Console with a user with the right DynamoDB permis-
sions and open the DynamoDB console.

2. Navigate to the DynamoDB console dashboard with the left menu button Dashboard
or Tables.

3. Click the Create Table button.

4. Enter the basic table information such as the name, the partition key, and the sort key.

5. Leave Default Settings checked and click the Create Table button at the bottom- right
side of the screen.

6. You will go automatically to the table screen and see a message similar to this: “Cre-
ating the [table_name] table. It will be available for use shortly.”

7. Once the table is successfully created, go to the Explore Items section on the top menu
and select the recently created table.

8. Click the Create Item button located on the right of the interface and enter some values
for the primary and sort keys. You can also add other new attributes as desired. Note
that you can use two views, a form or the JSON view.

9. Click the Create Item button at the bottom right of the screen.

10. Repeat the previous step as many times as you want to populate the table with
sample items.

E X E R C I S E 5 . 2

Create a Global Secondary Index

In this exercise, you will create a GSI for the table created in the previous exercise.

1. In the DynamoDB console, navigate to the tables view with the left menu button Tables.

2. Click the recently created table from the list.

3. Go to the Indexes tab on the top- right side of the screen.

4. Click the Create Index button and select a partition key for the index among the existing
attributes. Remember that the GSI can be different from the main table. You will notice
that the index name will autocomplete.

5. Leave the rest of the default values and click the Create Index button at the right
bottom of the dialog. You will see the index being created in the Indexes section of
the table.

Exercises 161

E X E R C I S E 5 . 3

Query the Data on Your Table

In this exercise, you will query the data you created in Exercise 5.1.

1. In the DynamoDB console, navigate to the tables view with the left menu button Tables.

2. Go to the Explore Items section at the top right and select the recently created table
from the table list.

3. Expand the Scan/Query Items section to visualize the query interface.

4. Enter some of the partition key values you inserted in Exercise 5.1 and click Run.

You will see that the result page changes to fit the search criteria you used.

E X E R C I S E 5 . 4

Clean Up the Created Resources

In this exercise, you will delete the table and index you created in the previous exercises.

1. In the DynamoDB console, navigate to the tables view with the left menu button Tables.

2. Click the recently created table from the list.

3. Go to the Indexes tab on the top right side of the screen.

4. Select the GSI you created and click the Delete button on the right of the screen. Finally,
confirm the delete action by typing delete in the pop- up window.

5. Once the GSI is deleted, click the Actions drop- down list at the top right of the screen
and choose the Delete Table option. Finally, confirm the delete action by typing delete
in the pop- up window, leaving the other options with the default values.

6. Wait for a few seconds and check that the table has been deleted successfully.

162 Chapter 5 ■ Low- Latency Response Time for Your Apps and APIs

Review Questions
1. A company is developing an IoT application using DynamoDB as the database for device

event data. The application needs to archive all event data older than 60 days automatically
on Amazon S3. What is the best way to implement this?

A. Create an Amazon EventBridge rule to be executed every day and trigger a Lambda
function to perform a query and move to S3 the items with a timestamp greater than
60 days.

B. Create a new DynamoDB table every 60 days and archive the old DynamoDB table.

C. Enable TTL on the DynamoDB table and set the expiration timestamp in the TTL attri-
bute when putting the item. Enable Stream on the table to capture the TTL deletions and
send those items to Amazon S3 for archiving.

D. Enable TTL on the DynamoDB table and set the expiration timestamp in the TTL attri-
bute when putting the item. Create on- demand backups of the data every 60 days.

2. A development team needs to build an AWS Lambda function to communicate with Amazon
DynamoDB. What is the most secure method of providing the Lambda function access per-
missions to the DynamoDB table?

A. Create an IAM role and an IAM policy granting the necessary access permissions for the
AWS Lambda service. Assign the IAM role to the DynamoDB table.

B. Create a DynamoDB user and password, store the credentials in Secret Managers, and
use it in the Lambda Function.

C. Create an IAM user with programmatic access keys. Grant the necessary DynamoDB
permissions policies to that user and use the keys in the Lambda function.

D. Create an IAM role and an IAM policy granting necessary access permissions for AWS
Lambda service. Assign the IAM role to the Lambda function.

3. A company is developing a mission- critical application. There is a requirement to store
the data in two AWS regions in active- active mode. What is the best solution for these
requirements?

A. Amazon Aurora with the Global Database option

B. Amazon RDS with Multi- AZ and read replicas in the other regions

C. Amazon DynamoDB with Global Tables

D. Amazon Aurora with the multimaster cluster

4. A large enterprise is currently migrating to the cloud, and it has several workloads running
Apache Cassandra. They want to do a migration of their 100 TB of data on Cassandra to a
serverless deployment option that will let them save costs and reduce operational overhead.
There is a requirement to do the migration within the least amount of time to reduce down-
time. What is the best approach to accomplish the migration requirements?

A. They need to do a heterogeneous migration to DynamoDB since it is the only compatible
NoSQL database with a serverless mode on AWS.

B. They should migrate to Amazon Keyspaces (for Apache Cassandra) and use cqlsh to
build the import jobs.

Review Questions 163

C. Use the third- party tool DataStax Bulk Loader (DSBulk) to migrate the on- premises
cluster to Amazon Keyspaces with on- demand capacity mode.

D. Create an Amazon Keyspaces cluster with provisioned capacity and build the migration
process using Amazon EMR.

5. An ecommerce application stores the inventory of available items for purchase on the web-
site. Each item is uniquely identified by a stock keeping unit (SKU) number. The DynamoDB
table contains additional attributes such as Type, Manufacture Date, Manufacturer Name,
Country of Origin, and Price. The application must get the item information on each pur-
chase. Another component produces reports for a list of sales for each country. Which of the
following is the best combination for indexes and keys for both access patterns?

A. Table Partition Key=Manufacture Date

Table Sort Key=SKU

GSI Partition Key=Manufacturer Name

GSI Sort Key=Country of Origin

B. Table Partition Key=SKU

Table Sort Key=Type

GSI Partition Key=Country of Origin

GSI Sort Key=Manufacturer Name

C. Table Partition Key=SKU

Table Sort Key=Type

GSI Partition Key=Random Prefix

GSI Sort Key=Country of Origin

D. Table Partition Key=SKU

Table Sort Key=Type

GSI Partition Key=Manufacture Date

GSI Sort Key=Country of Origin

6. A payment transaction application stores its data in DynamoDB. A business unit sends a new
requirement to the development team where the application has to perform strongly con-
sistent queries on an attribute that is not the partition key. How can the team approach this
problem?

A. Create a new DynamoDB table.

B. Create a new GSI on the current table.

C. Create a new LSI on the current table.

D. Create a DynamoDB DAX cluster and use it on the front of every get operation.

164 Chapter 5 ■ Low- Latency Response Time for Your Apps and APIs

7. Select the AWS NoSQL databases that always provide strong consistency read operations
within their options. (Choose three.)

A. Amazon Neptune

B. Amazon Keyspaces

C. Amazon DynamoDB

D. Amazon DocumentDB

8. A company is having budget problems and needs to optimize the DynamoDB database
performance without incurring extra costs. A database specialist has to identify fre-
quently accessed keys. What service can the specialist use to achieve this in the most cost-
effective way?

A. Analyze CloudTrail events history in Amazon S3 with Amazon Athena.

B. Enable DynamoDB Performance Insights and review the usage of the database.

C. Use AWS X- Ray to trace the DynamoDB requests and find what is the most used key.

D. Create a CloudWatch Contributor Insight rule to find the outliers among all the logs.

9. A high- performance application is currently using Amazon DynamoDB as the database
system, with a maximum item size of 5 KB. The application needs to perform 50 strongly
consistent reads and 10 writes per second all the time. What are the required RCUs and
WCUs to accommodate the application traffic in the provisioned throughput capacity mode?

A. 50 RCUs and 25 WCUs

B. 50 RCUs and 50 WCUs

C. 100 RCUs and 25 WCUs

D. 100 RCUs and 50 WCUs

10. A DBA was asked to truncate a DynamoDB table. What’s the most effective way to do it?

A. Use the CLI command truncate- table with the right parameters.

B. Use the DynamoDB truncate API operation with the right parameters.

C. Use the CLI command scan and iterate through all the items using the CLI command
delete- item.

D. Delete and re- create the table with the same options as before.

Document Databases
in the Cloud

THE AWS CERTIFIED DATABASE - SPECIALTY
EXAM OBJECTIVES COVERED IN THIS
CHAPTER MAY INCLUDE, BUT ARE NOT
LIMITED TO, THE FOLLOWING:

 ✓ Domain 1: Workload- Specific Database Design

 ■ 1.2 Determine strategies for disaster recovery and high

availability.

 ■ 1.3 Design database solutions for performance, compliance,

and scalability.

 ■ 1.4 Compare the costs of database solutions.

 ✓ Domain 2: Deployment and Migration

 ■ 2.2 Determine data preparation and migration strategies.

 ■ 2.3 Execute and validate data migration.

 ✓ Domain 3: Management and Operations

 ■ 3.1 Determine maintenance tasks and processes.

 ■ 3.2 Determine backup and restore strategies.

 ■ 3.3 Manage the operational environment of a database solution.

 ✓ Domain 4: Monitoring and troubleshooting

 ■ 4.2 Troubleshoot and resolve common database issues.

 ■ 4.3 Optimize database performance.

 ✓ Domain 5: Database security

 ■ 5.1 Encrypt data at rest and in transit.

 ■ 5.2 Evaluate auditing solutions.

 ■ 5.3 Determine access control and authentication mechanisms.

 ■ 5.4 Recognize potential security vulnerabilities within database

solutions.

Chapter

6

When you modernize your application, you need to modernize
your database too; it’s not one size fits for all. Modern applica-
tions need different databases flavors, one of which is the docu-

ment database. In this chapter, you will learn what a document database is and how to work
with document databases in AWS. You’ll also learn how to use document databases in cloud
architectures, as well as use MongoDB on AWS and Amazon DocumentDB.

Introducing Document Databases
A document database is a nonrelational database that stores data as structured documents.
Documents can be represented by Extensible Markup Language (XML) or JavaScript Object
Notation (JSON) formats in most cases. Extensible Markup Language (XML) is a markup
language that allows users to define their own tags and structure data in a hierarchical
manner. JavaScript Object Notation (JSON) is a text- based data format that is designed to
store and exchange data in an organized, human- readable way. JSON is often used in web
applications for transferring data between the client and the server. One of the major benefits
of JSON is its flexibility, as you can change the structure of documents (add or remove fields)
without worrying about a schema definition. The flexible data model is also one of the key
benefits of using document databases. In the following example, a JSON- like simple docu-
ment describes a user:

{
 id: "2301",
 user: "derek",
 status: "enabled",
 groups: ["sports", "news"]
}

The preceding code snippet enables you to store unstructured or semistructured data as
a document. The document structure, or schema, provides nested key- value pairs, which is
how documents are stored in a document database. With these characteristics and natural
APIs for agile development, document databases are a great option for user profiles, real-
time Big Data, and content management use cases. An application programming interface
(API) is a set of routines, protocols, and tools used to build software applications. An API
specifies how software components should interact, allowing developers to create modular,
reusable code that can be integrated into other applications.

Introducing Document Databases 167

Some of the benefits of using document databases include the following:

 ■ Documents correspond to native data types in several programming languages (e.g.,
Python dictionaries or JavaScript objects)

 ■ Indexing

 ■ Flexible schema

 ■ Replica sets (mirror instances)

 ■ Sharding (distributed data)

There are a variety of document databases, including Amazon DocumentDB, Amazon
DynamoDB, CouchDB, Couchbase, and MongoDB. MongoDB is by far the most popular
and used document database to date. In MongoDB, documents are represented in a JSON-
like format called Binary JSON (BSON). BSON uses a key- pair way to store data. CouchDB
is an open- source, document- oriented NoSQL database. It uses JSON to store data, Java-
Script as its query language, and HTTP for an API. Couchbase is an open- source, distributed
NoSQL database. It uses a distributed architecture to provide scalability, high availability,
and performance. Couchbase supports various data models including key- values, JSON doc-
uments, and search indexes. It also has an extensive API for interacting with the database.
MongoDB is an open- source, document- oriented NoSQL database. It stores data in flexible,
JSON- like documents, allowing for a dynamic schema. MongoDB also has an extensive API
for interacting with the database, making it easy to build and scale applications.

Because of this particular structure, document databases use a different terminology than
relational databases. A group of documents form a collection. In relational databases this
is known as a table. Each record in a collection is a document, and the structure between
documents can be the same or not. Typically, all documents in a collection have a similar or
related purpose. Table 6.1 compares the terminology used by document databases, especially
for MongoDB, with the terminology used by relational databases.

TABLE 6 .1 Terminologies of Relational vs. Document Databases

Relational Databases Document Databases

Database Database

Table Collection

Row Document

Column Field

Primary Key ObjectID

Nested table or object Embedded document

168 Chapter 6 ■ Document Databases in the Cloud

Document databases are not ideal when the relationships between multiple entities are
important for your application or if there are a lot of foreign keys or joins.

Because it is multiplatform, MongoDB is accepted among enterprise environments with
modern tools for management and data modeling like Compass, Robo3T, Studio 3T, and
MongoView. MongoDB is also schema- free, which means documents can have any structure,
even in the same collection. However, it’s important to have a good schema design based on
application requirements.

Another feature of MongoDB is scalability. It can easily scale within and across multiple
locations. MongoDB can scale with no downtime and without changing your application.
The architecture of your MongoDB installation will depend on the scale at which you want
to operate. You have two options:

 ■ Stand- alone instances: Mongod (primary daemon process) will handle requests, man-
age data access, and perform background management operations. With this option,
you have only one instance, which is good for development and testing but should not
be used in a production environment, because it cannot guarantee high availability or
automatic failover in a disaster scenario. Mongod is a daemon process for MongoDB, an
open- source document- oriented NoSQL database. It is the primary component of a Mon-
goDB system and is responsible for managing data stored in collections and databases.

 ■ Replica sets: These are groups of mongod processes that maintain multiple copies of the
data and perform automatic failover for availability. In this scenario, you have multiple
instances, with one instance (primary) acting as the primary member (node) and the
other instances acting as secondary members (replicas). The primary member receives all
write operations, while replicas can serve read- only traffic. If the primary member fails,
one of the secondary members is automatically elected to the primary role. You cannot
serve any write operations until the election completes successfully, but you can serve to
read requests.

The time limit in milliseconds for detecting when a replica set’s primary is
unreachable when you have higher values results in slower failovers, just
as lower values result in faster failover. Either way, the primary node will
be impacted.

MongoDB offers read- after- write consistency when you read from the primary instance,
which means that read and write requests are issued to a primary member of the replica set.
Applications and clients can read from the replicas, but a read preference must be specified,
and this operation is eventually consistent.

MongoDB has native sharding. Sharding is a way to distribute data across multiple
machines. This is helpful to support large data sets and high- throughput operations. Only
one server can fit or match in terms of CPU, memory, and disk capacity. There are two
options for scaling:

 ■ Vertical: This involves increasing the capacity of a single server, such as adding a CPU,
adding memory, or adding storage spaces. This can be a good fit for a small or medium
environment but has some limitations. In the cloud, you pay as you go, which means

Introducing Document Databases 169

larger instances will cost you more; another limitation is downtime. To increase capacity
and/or change your Amazon EC2 family type, you must stop the machine.

 ■ Horizontal: This involves dividing your data set and load across multiple servers. With
this scenario, every machine handles a subset of the data set, providing better efficiency
over a single server. There is a limitation: increased complexity in infrastructure and
maintenance for deployment.

As mongod is a primary daemon for MongoDB, mongod acts as a query router to deter-
mine in which shard a query must be run. A config server stores metadata and configuration
settings for the sharded cluster. These two elements are key to have sharding along with
MongoDB, because it will surpass the hardware limitations of a single server, without adding
complexity to the application. As shown in Figure 6.1, MongoDB automatically balances the
data in the shared cluster as the data grows or the size of the cluster increases or decreases.

MongoDB supports indexing, which is a way to efficiently query your data set without
needing to perform a collection scan, meaning scanning every document in a collection.
MongoDB indexes are similar to other database systems. MongoDB defines indexes at the
collection level and supports indexes on any field or subfield of the documents.

When you create an index, MongoDB can use the index to limit the number of documents
it must inspect in a query.

>db.COLLECTION_NAMME.createIndex ({KEY:1})

Because of its flexible data model and indexing capabilities, MongoDB can be a great fit
for both transactional and analytical workloads.

F IGURE 6 .1 Sharding in MongoDB

170 Chapter 6 ■ Document Databases in the Cloud

In AWS, you can run MongoDB in two ways:

 ■ Using Amazon EC2 with MongoDB installed

 ■ Using Amazon DocumentDB (with the MongoDB compatibility)

There is a third way: MongoDB Atlas is a fully managed document database service in the
cloud, built by the MongoDB team, but this is beyond the scope of the AWS Database exam.

You can install and manage MongoDB in Amazon EC2. EC2 is a service that provides
compute capacity in the cloud, and it is aligned with the shared responsibility model. AWS
takes care of the infrastructure, hypervisor, and facilities, and you are responsible for patch-
ing, managing the operating system, data, encryption, and so on. AWS offers a Quick Start
reference deployment for MongoDB Community Edition version 3.2 or 3.4, where you can
rapidly deploy a MongoDB cluster. The AWS Shared Responsibility Model is an agreement
between customers and AWS that outlines the security responsibilities of each party in
running and using the cloud service. It states that the customer is responsible for their own
application, data, and operating system security, while AWS is responsible for the security of
the cloud service, infrastructure, and physical resources.

Also, you can create a cluster or stand- alone server using your system administrator skills,
but this can be a complex and hard task, especially if you want to create multiple replica
sets, as it is hard to manage, maintain, upgrade, backup, and restore. This is why AWS cre-
ated Amazon DocumentDB (with MongoDB compatibility).

Getting Started with
Amazon DocumentDB
Amazon DocumentDB (with MongoDB compatibility) is a fast, reliable, and fully managed
database service. With Amazon DocumentDB you can run the same application code and use
the same drivers and tools that you use with MongoDB. As of this writing, DocumentDB is
compatible with MongoDB 3.6 and 4.0.

With the launch of MongoDB 4.0, Amazon DocumentDB supports atomic, consistent,
isolated, and durable (ACID) transactions across multiple documents, statements, collec-
tions, and databases. ACID is a set of properties that guarantees transaction integrity in a
database system. It ensures that data is consistent and reliable even if the system crashes
or errors occur. Common use cases for transactions include financial processing, fulfilling
and managing orders, and building multiplayer games. Transactions simplify application
development by enabling you to ACID operations across one or more documents within an
Amazon DocumentDB cluster.

Amazon DocumentDB is compatible with the MongoDB 3.6 and 4.0 APIs; however, it
does not support every MongoDB feature. To see a list of supported APIs, refer to docs
.aws.amazon.com/documentdb/latest/developerguide/mongo- apis.html.

Amazon DocumentDB is a cluster, and you can have from 1 up to 16 instances. One of
those instances acts as a primary, supporting read and write requests, and the others are

http://docs.aws.amazon.com/documentdb/latest/developerguide/mongo-apis.html
http://docs.aws.amazon.com/documentdb/latest/developerguide/mongo-apis.html

Getting Started with Amazon DocumentDB 171

replicas, supporting read- only requests. Instances are distributed across subnets (i.e., AZs)
within the subnet group assigned to the cluster. You can have only one subnet group per
cluster. This is a collection of subnets within an Amazon VPC, and it must have at least two
subnets associated, which means at least two availability zones for each cluster. A cluster is
a group of computers that are connected and work together to provide better performance,
scalability, and availability than would be possible with a single computer. Amazon Virtual
Private Cloud (Amazon VPC) is a cloud computing service that provides an isolated virtual
network in the AWS cloud. AWS users can launch Amazon EC2 instances and other AWS ser-
vices in Amazon VPC to leverage the scalability, reliability, and availability of the AWS cloud
while maintaining control of their sensitive data. Availability zones are a high- availability
offering from AWS that provides fault- tolerant and scalable deployments of applications.

Like MongoDB, the Amazon DocumentDB cluster has two instance roles: the primary
instance and the replica instance. The primary instance executes all the data modifications on
the cluster volume and performs both read and write operations. Replica instances perform
read- only operations; you can have up to 15 replica instances across multiple AZs. Docu-
mentDB must have one primary instance; replica instances are optional.

The Amazon DocumentDB cluster is sitting on a region, which means sitting on a VPC
with subnets, but Amazon DocumentDB stores data in a cluster storage volume, which is a
single virtual volume that uses solid- state drives (SSDs). As shown in Figure 6.2, this cluster
volume makes six copies of your data, distributed across three AZs. This helps ensure your
data is highly durable and available. DocumentDB will consider the data durable when the
storage layer acknowledges the persistence of at least four copies out of six; this is known as
write quorum. Now, for read operations, DocumentDB needs two copies out of six; this is
known as read quorum.

F IGURE 6 .2 Amazon DocumentDB architecture

172 Chapter 6 ■ Document Databases in the Cloud

The DocumentDB cluster storage size scales automatically from 10 GB to 64 TB (the
maximum cluster size as of this writing) as the amount of data increases. The storage is
fault- tolerant and self- healing. DocumentDB uses a log- structured at storage layer passing
incremental log records from the instance (compute) to the store layer, very similar to the
Amazon Aurora architecture. Amazon Aurora is a relational database service provided by
AWS that is designed to be compatible with MySQL and PostgreSQL; it provides the secu-
rity, reliability, scalability, and availability of commercial- grade databases at a fraction of
the cost.

In a DocumentDB cluster, the primary and replica instances can have different instance
classes, and you can scale in or out to meet the demand. The cluster’s storage scales indepen-
dently of the instances. To serve multiple connections, Amazon DocumentDB has three end-
points, as you can see in Figure 6.3, and each endpoint has a unique DNS name followed by
a colon and the port number (default value is 27017).

 ■ Cluster endpoint: This is the endpoint that you will use to connect to the cluster’s
current primary instance. It can be used for read and write operations. The Amazon
DocumentDB cluster has only one cluster endpoint.

sample- cluster.cluster- 111111111111.us- east 1.docdb.amazonaws.com:27017
 ■ Reader endpoint: This is a read- only endpoint that load balances across all available

replicas in the cluster. If a cluster has only one instance, then the primary instance will
be the target of both the cluster and reader endpoints.

sample- cluster.cluster- ro- 111111111111.us- east 1.docdb.amazonaws.com:27017
 ■ Instance endpoint: This endpoint connects to a specific instance within a cluster. Both

primary and replica instances have their own instance endpoints, but the same premise
remains: the primary instance endpoint is for write and read operations, and the replica
instance endpoint is only for read operations.

sample- instance.111111111111.us- east- 1.docdb.amazonaws.com:27017

It is recommended to connect using the cluster endpoint in replica set mode, which
enables your SDK to auto- discover the cluster arrangement as instances get added or
removed from the cluster. Each Amazon DocumentDB cluster consists of a single replica set
with the default name rs0, and this cannot be changed. A software development kit (SDK)
is a set of tools and resources designed to help developers create software applications. It
typically includes a collection of APIs, libraries, prewritten code, documentation, and other
resources to assist them in creating customized software solutions.

An Amazon DocumentDB cluster can have up to 15 read replicas and has a default
approach as an async replication, which means that even though replicas share the same
underlying storage layer, there is typically a replication lag of fewer than 100 milliseconds.
Because the replica lag can vary depending on the rate of data change, it is recommended
to monitor the ReplicationLag metrics on Amazon CloudWatch, especially on high write
activity operations. Amazon CloudWatch is a monitoring and observability service provided
by AWS that allows you to monitor, store, and access data and logs related to your AWS
resources and applications running on the AWS cloud, edge services, and/or on premises.

Getting Started with Amazon DocumentDB 173

As previously mentioned, you can set the read- preferred option for a specific query or as a
default option in your MongoDB driver. Amazon DocumentDB supports the following read
preference options:

 ■ Primary: This option ensures that all reads are routed to the cluster’s primary instance;
if the primary instance is unavailable, the read operation fails. Use this preference when
read- after- write consistency is necessary over high availability and read scaling.

 ■ PrimaryPreferred: This option also ensures that read operations are routed to the pri-
mary instance, but if the primary instance fails over, the client routes requests to a rep-
lica. Use this option for use cases that prioritize read- after- write consistency over read
scaling but still need high availability. This is a recommended option.

 ■ Secondary: This option ensures that all reads are routed to a replica, never the primary
instance. If a cluster does not have a replica, the read request fails. Use this option when
you want to prioritize the primary instance for write throughput over high availability
and read- after- write consistency.

 ■ SecondaryPreferred: This option also ensures that reads are routed to a read replication,
but only if one or more replicas are active. If there are no read replicas, the read request
is routed to the primary instance. Use this option for reading scaling and high availability
over read- after- write consistency. This is also a recommended option for read use cases.

 ■ Nearest: This option of reading preference routes is based only on the measured latency
between the client and all instances in the cluster. Use this option when you want to pri-
oritize the lowest possible read latency and high availability over read- after- write consis-
tency and read scaling.

Logged into an Amazon DocumentDB cluster, this is how you specify one of the pre-
ceding options. Change the option in readPref to the value you want.

db.example.find().readPref('nearest')

F IGURE 6 .3 Amazon DocumentDB architecture endpoint

174 Chapter 6 ■ Document Databases in the Cloud

Creating an Amazon DocumentDB
Cluster
To create an Amazon DocumentDB cluster, perform the following steps:

1. Before you begin, make sure that the AWS region you are logged into supports
Amazon DocumentDB. See docs.aws.amazon.com/documentdb/latest/
developerguide/regions- and- azs.html#regions- and- azs- availability.

2. Avoid using the VPC default: before creating your cluster, create a corresponding VPC
with at least two subnets in different subnets.

3. Create a corresponding security group for your cluster. Make sure that port 27017 (you
can choose another port number in DocumentDB) is open within the security group
itself and can be reached from the application servers or your on- premises servers.

4. If you will not use the default KMS key, make sure you create a key through the AWS
KMS console or API before starting this process.

Clusters that you create using the console have encryption at rest
enabled by default. Clusters that you create using the AWS CLI have
encryption at rest disabled by default. Therefore, you must explicitly
enable encryption at rest using the - - storage- encrypted parameter.
In either case, after the cluster is created, you can’t change the encryption
at rest option.

5. Open the Amazon DocumentDB console and click Launch Amazon DocumentDB.

6. Select a unique name for your cluster.

7. Select your engine version. At this moment, DocumentDB supports versions 3.6.0
and 4.0.0.

8. Select your instance class.

9. Select the number of instances for your cluster. Note that all instances will be the same
instance class selected in the previous step. You can modify the instance class later. The
number can vary from 1 to 16. (One instance will have the primary role.)

10. In the Authentication step, type your master username and password. The master user-
name cannot be admin.

11. Choose Show Advanced Settings.

12. Select the Amazon VPC created in step 2.

13. Select the subnet group. If you did not create a subnet group, Amazon DocumentDB cre-
ates one for you with one subnet available per AZ. It is recommended that you create a
subnet group before this step.

14. In VPC security groups, select the security group created in step 3.

http://docs.aws.amazon.com/documentdb/latest/developerguide/regions-and-azs.html#regions-and-azs-availability
http://docs.aws.amazon.com/documentdb/latest/developerguide/regions-and-azs.html#regions-and-azs-availability

Amazon DocumentDB Architecture 175

15. At Cluster Options, select a port that should be used to connect to the cluster. By
default, it is 27017.

16. In the Cluster Parameter group, if you did not have a parameter group, the Amazon
DocumentDB will create a default. Be aware that you cannot modify any parameters in
a default parameter group. Therefore, it is highly recommended that you create param-
eter groups accordingly before setting this step. Each parameter group must be on the
same engine version of the cluster.

17. By default, encryption is enabled by AWS KMS managed key aws/rds, but you can
change this key for a key created in step 4.

18. Backup retention by default is one day; this is the retention for automated backup of
your cluster. You can change this to a value up to 35 days. Also, change the backup
window accordingly in UTC time.

19. In Logs Exports, select Audit And Profiler Logs so the logs can be delivered to Amazon
CloudWatch Logs. Note that this is the first of two steps— you also must enable these
logs in your parameter group within your cluster.

20. Amazon DocumentDB is a fully managed service, but you need to set maintenance win-
dows for modification or patches that can be applied to instances in the cluster. Modifi-
cation in general in the cluster will be applied during these windows.

21. As a best practice, add tags so that it’s easier to manage your resources and identify the
costs related to it.

22. For production clusters, enable deletion protection.

23. A disclaimer will show an estimated hourly cost for the cluster. The value will depend
on the instance class size and the number of instances that you are using for the cluster.
Double- check the class size and number of instances, and click Create Cluster. In a few
minutes your new Amazon DocumentDB cluster will be created.

Amazon DocumentDB Architecture
For Amazon DocumentDB failover scenarios, a replica is automatically promoted to be the
new primary during disaster recovery. Amazon DocumentDB flips the CNAME of the DB
instance to point to the replica and promotes it, which means that failovers occur auto-
matically. A canonical name (CNAME) record is a type of resource record in the Domain
Name System (DNS) that maps one domain name (an alias) to another (the canonical name).
There is a minimal downtime of 30 seconds for failover to a replica. If you do not have a
replica, creating a new instance could take less than 10 minutes; it is highly recommended
for a production environment to have at least three replicas across multiple AZs. It is also
recommended that Amazon DocumentDB replicas use the same instance class as the primary
instance.

176 Chapter 6 ■ Document Databases in the Cloud

You can control which replica instances are preferred as failover targets. You put
preference ranges from 0 for the highest priority to 15 for the lowest primary in each replica
instance. This means, if a primary instance fails, the replica with the highest preference is
promoted to the new primary instance. You can modify the priority of a replica at any time.
If two or more replicas in the same cluster have the same preference, then the largest instance
replica is promoted to primary. If the replicas are the same size and have the same priority, a
random replica instance in the same promotion tier is promoted.

Table 6.2 provides guidelines for an Amazon DocumentDB deployment configuration to
meet specific availability. Plan according to your goals.

Amazon DocumentDB has a service level agreement (SLA). You can find more
information at aws.amazon.com/documentdb/sla.

You can force your Amazon DocumentDB cluster to fail over to verify your application’s
behavior or test the availability during a real failover event. To initiate a manual failover, in
the AWS console within the Clusters page, choose the Failover action on the Actions menu,
as shown in Figure 6.4.

TABLE 6 .2 Availability of Amazon DocumentDB

Availability
Goal

Total
Instances Replicas Availability Zones

99% 1 0 1

99.9% 2 1 2

99.99% 3 2 3

F IGURE 6 .4 How to fail over your DocumentDB cluster

http://aws.amazon.com/documentdb/sla

Security 177

This option also can be done through the AWS CLI by executing the failover- db-
cluster command. It is good practice to have a process to test the failover of your cluster,
at least once every six months, to understand how your application will respond and how
long the process takes.

Amazon DocumentDB supports cross- region instance replicas using global clusters.
A global cluster allows you to have up to five read- only secondary regions from one
primary region. Amazon DocumentDB automatically replicates asynchronously the data to
the secondary regions using a dedicated infrastructure with less than one second of latency.
For more information, visit docs.aws.amazon.com/documentdb/latest/
developerguide/global- clusters.html.

Also, Amazon DocumentDB supports AWS CloudFormation for provisioning and deploy-
ment. AWS CloudFormation is a service that allows users to create and manage a collection of
related AWS resources in an orderly and predictable fashion. It uses templates written in JSON
or YAML to describe infrastructure and provides versioning and rollback options. It can be
used through the AWS Management Console, AWS CLI, or SDKs. This can be used as a cross-
region disaster recovery plan and to have a blueprint using infrastructure as a code, but make
sure you always define recovery strategies in line with your RTO and RPO needs. Infrastruc-
ture as code (IAC) is a practice that treats infrastructure and its configuration as code, rather
than as manual processes. This allows for the automated provisioning and management of
infrastructure, as well as version control, testing, and collaboration on infrastructure changes.

The recovery time objective (RTO) is the amount of time within which a business process
must be restored after a disaster to avoid unacceptable consequences associated with the
disruption.

The recovery point objective (RPO) is the amount of time that might pass dur-
ing a disaster before the quantity of data lost is not tolerable by the business. For more
information, visit docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/
AWS_DocDB.html.

Security
Security is an important topic for exam and real- life application environments. Security is a
shared responsibility between AWS and the customer. This section describes common topics
in document databases.

Access Control
MongoDB has a default authentication mechanism called the Salted Challenge Response
Authentication mechanism (SCRAM), which Amazon DocumentDB also supports. You can
use AWS IAM to manage DocumentDB resources and built- in roles for DB users with role-
based access control (RBAC) and always enforce the least privilege principle. SCRAM is a
password- based authentication mechanism that uses a combination of hashing, salting, and
challenge- response protocol to provide secure authentication.

http://docs.aws.amazon.com/documentdb/latest/developerguide/global-clusters.html
http://docs.aws.amazon.com/documentdb/latest/developerguide/global-clusters.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_DocDB.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_DocDB.html

178 Chapter 6 ■ Document Databases in the Cloud

AWS IAM is a web service from Amazon Web Services (AWS) that enables you to securely
control access to AWS services and resources for your users.

RBAC is a method of regulating access to computer or network resources based on the
roles of individual users within an organization. In RBAC, users are assigned to specific
roles, and those roles are then associated with certain permissions or access levels to various
resources.

The principle of least privilege (POLP) is a security concept that states that an entity
(such as a user or program) should have the minimum set of permissions or access rights
necessary to perform its intended function. The idea behind this principle is to reduce the
attack surface and potential for damage in case of security breaches. By giving users or pro-
grams only the access they need to perform their specific tasks, the risk of accidental or
malicious misuse of those privileges is minimized.

You can connect as the master user to Amazon DocumentDB, which you created when
you launched the cluster, and also create additional users as required using db.createUser.

db.createUser(
 {
 user: "sample- user",
 pwd: "database123",
 roles:
 [{role: "readWrite"}]
 }
)

For more information, visit docs.aws.amazon.com/documentdb/latest/
developerguide/role_based_access_control.html.

Data Protection
There are certain features, such as encryption at rest with AWS Key Management Services
keys, that Amazon DocumentDB shares operational technology with Amazon RDS and
Amazon Neptune. You should grant permissions to a user following the least privilege prin-
ciple. AWS Key Management Service (KMS) is a secure and convenient tool for managing
encryption keys. It allows customers to securely encrypt data stored in the cloud and manage
access control to their encryption keys.

Amazon Relational Database Service (RDS) is a fully managed service provided by
Amazon Web Services (AWS) that makes it easy to set up, operate, and scale a relational
database in the cloud. RDS supports multiple database engines including Amazon Aurora,
PostgreSQL, MySQL, MariaDB, Oracle, and Microsoft SQL Server.

Amazon Neptune is a fully managed graph database service provided by Amazon Web
Services (AWS). It is designed to make it easy to build and run applications that work with
highly connected data, such as social networks, recommendation engines, and fraud detec-
tion systems.

Regarding network security, Amazon DocumentDB is VPC- only, which means that it can
be used only in private subnets. For access within a corporate network, you must have a

http://docs.aws.amazon.com/documentdb/latest/developerguide/role_based_access_control.html
http://docs.aws.amazon.com/documentdb/latest/developerguide/role_based_access_control.html

Security 179

hybrid connection, such as a VPN or AWS Direct Connect, to connect from an on- premises
host, or you can use an Amazon EC2 or AWS Cloud9 as a jump server with a MongoDB
shell installed. A virtual private network (VPN) is a technology that allows users to create a
secure connection to another network over the Internet. This can be used to access resources
on a private network, such as a company’s internal network, while connected to the INTER-
NET from a remote location.

AWS Direct Connect is a service provided by AWS that allows users to establish a ded-
icated network connection from their on- premises data centers to AWS. This connection
can be used to transfer data between the two environments with lower latency and higher
throughput than a traditional Internet connection.

A jump server, also known as a jump box or a bastion host, is a secure intermediate host
or an intermediary device that is used to access and manage other devices on a network. It is
typically used as a secure way to access a private network from an external location, such as
remote employees connecting to a company’s internal network.

Amazon DocumentDB is an AWS service that follows the shared responsibility model. In
terms of data protection, two approaches should be followed: encryption at rest and encryp-
tion in transit.

 ■ At rest: An Amazon DocumentDB cluster uses AWS KMS to retrieve and manage
encryption keys. If you do not specify an AWS KMS key identifier at the launch process,
Amazon DocumentDB will use the default AWS managed service customer master key
(CMK). The CMK is a unique encryption key used to protect data stored in the Amazon
Web Services (AWS) cloud.

You can enable or disable encryption at rest only at the time the Amazon
DocumentDB cluster is created. If a cluster is encrypted, then all instances, automated
backups, snapshots, and indexes will be encrypted with the same CMK.

You cannot change the CMK in a cluster after you have already created it.

 ■ In transit: Amazon DocumentDB cluster endpoints use Transport Layer Security (TLS)
to encrypt data in transit. TLS is a cryptographic protocol that provides secure com-
munication over a computer network. To enable TLS, you must set the tls parameter
in the cluster parameter group. By default, encryption in transit is enabled for newly
created Amazon DocumentDB clusters. To connect over TLS, you must download the
certificate (public key) from AWS and pass the certificate key while connecting to the
cluster. The public key can be downloaded at s3.amazonaws.com/rds- downloads/
rds- combined- ca- bundle.pem.

Other Features
An Amazon DocumentDB cluster has a feature to enable cluster deletion protection. This
feature prevents the accidental deletion of your cluster. It is a best practice to have this fea-
ture enabled in all production clusters.

http://s3.amazonaws.com/rds-downloads/rds-combined-ca-bundle.pem
http://s3.amazonaws.com/rds-downloads/rds-combined-ca-bundle.pem

180 Chapter 6 ■ Document Databases in the Cloud

To avoid saving usernames and passwords as plaintext in code, it is highly recommended
to use vault manager credentials, such as AWS Secrets Manager. AWS Secrets Manager is a
service provided by AWS that allows users to store and manage sensitive information, such
as passwords, database credentials, and API keys. It rotates, stores, and encrypts your pass-
words with a simple API request. For more information, visit docs.aws.amazon
.com/secretsmanager/latest/userguide/rotating- secrets- documentdb.html.

The Amazon DocumentDB service complies with several security standards, including
PCI DSS, ISO 9001, 27017, 27018, SOC 1/2/3, and HIPAA. For more information, you can
download the compliance reports available in AWS Artifact. AWS Artifact is a secure reposi-
tory of compliance reports and security documents provided by AWS. It provides customers
with easy access to the latest reports on AWS services and helps them easily manage their
compliance needs.

Backup and Restore
The data in the Amazon DocumentDB storage layer is continuously backed up to Amazon
S3 in real time for point- in- time recovery (PITR) purposes, which means that instance (com-
pute) node performance is unaffected, as shown in Figure 6.5. PITR is a feature of some
database management systems that allows for restoring a database to a specific point in time.
This can be useful for recovering from data loss or corruption or for undoing data changes
that were made by mistake. The maximum retention period is 35 days; if you need more
retention time, you will need to do a manual snapshot. Amazon DocumentDB automated

F IGURE 6 .5 Amazon DocumentDB’s backup architecture

http://docs.aws.amazon.com/secretsmanager/latest/userguide/rotating-secrets-documentdb.html
http://docs.aws.amazon.com/secretsmanager/latest/userguide/rotating-secrets-documentdb.html

Backup and Restore 181

backup is enabled by default, with a default backup retention period of one day, and you
cannot disable it. Choose your backup retention period according to your recovery point
objective (RPO).

The first backup is full and the subsequent backups are incremental. When you want
to restore a point in time, you need to stipulate a time between the earliest and latest
restore times.

Your backup can be restored only to a new Amazon DocumentDB cluster. This new
cluster can have the same or different instance classes from the original. Also, you can
restore an unencrypted snapshot to an encrypted cluster, but not the other way round. To
restore a cluster from an encrypted snapshot, you must have access to its AWS KMS key.

When you delete an Amazon DocumentDB cluster, you can take a final snapshot, and this
will be persisted as long as the user chooses, together with the manual snapshots. However,
all automated backups for the point- in- time restore will be deleted.

For sharing purposes, you can share snapshots across AWS accounts within the same AWS
region. Also, you can copy manual or automatic snapshots within the same AWS region or to
a different region but in the same AWS account. At this time, sharing an encrypted DB snap-
shot publicly is not supported. For private sharing, you also must share the customer master
key to the target account through the AWS KMS policy. For more information, visit docs
.aws.amazon.com/kms/latest/developerguide/key- policy- modifying
.html#key- policy- modifying- external- accounts.

Figure 6.6 shows that if you want to share an automated backup, you must first copy and
then share the snapshot. You cannot share a snapshot encrypted using the default AWS KMS
key of the account (alias aws/rds).

This feature of sharing between AWS accounts can be suitable to share data between your
several environments such as production, development, test, staging, and so on.

Amazon DocumentDB supports copying an automated backup or manual snapshot to
any AWS supported region.

F IGURE 6 .6 Sharing snapshots in Amazon DocumentDB

http://docs.aws.amazon.com/kms/latest/developerguide/key-policy-modifying.html#key-policy-modifying-external-accounts
http://docs.aws.amazon.com/kms/latest/developerguide/key-policy-modifying.html#key-policy-modifying-external-accounts
http://docs.aws.amazon.com/kms/latest/developerguide/key-policy-modifying.html#key-policy-modifying-external-accounts

182 Chapter 6 ■ Document Databases in the Cloud

Performance and Scaling
One of the key scaling benefits for MongoDB is sharding, but Amazon DocumentDB does
not support it; instead, it offers read replicas, vertical scaling, and storage scaling.

Why is sharding not necessary in Amazon DocumentDB? Sharding is important when you
want to do the following:

 ■ Scale reads: In DocumentDB, you can add up to 15 read replicas.

 ■ Scale writes: In DocumentDB, you can easily resize your instances with very low impact.

 ■ Scale storage: As mentioned, the storage layer in DocumentDB scales automatically up
to 64 TB and is decoupled from the compute instances.

Besides, you can scale up a replica independently from other replicas. This is typically for
analytical workloads. If you have problems identifying slow queries, you can use profiler
logs to dive deep and/or use the explain command, as follows:

db.runCommand({explain:{<query document>}});

If your cluster is having performance issues, with mongoshell you can use the following
command to list all the activity:

Db.adminCommand({currentOp: 1, $all: 1});

Once you have identified which operation is facing problems, you can kill it:

Db.adminCommand({killOp: 1, op: <opid of running or blocked query>});

Compatibility between Amazon
DocumentDB and MongoDB
Amazon DocumentDB has compatibility with MongoDB 3.6 and 4.0. The life of MongoDB
3.6 ends in April 2021. Amazon DocumentDB does not follow the same life cycles as Mon-
goDB. Therefore, you can use Amazon DocumentDB 3.6 with MongoDB 3.6 drivers, appli-
cations, and tools.

The Amazon DocumentDB Compatibility tool examines log files from MongoDB to
determine whether any queries use operators that are not supported in Amazon Docu-
mentDB. You can use this tool to produce a simple report of the use of unsupported opera-
tors and save all log lines that were not supported to an output file for further investigation.
More information is available at github.com/awslabs/amazon- documentdb- tools/
tree/master/compat- tool.

https://github.com/awslabs/amazon-documentdb-tools/tree/master/compat-tool
https://github.com/awslabs/amazon-documentdb-tools/tree/master/compat-tool

Migrating from MongoDB to Amazon DocumentDB 183

Migrating from MongoDB to
Amazon DocumentDB
You can migrate your MongoDB databases to Amazon DocumentDB. First, you must assess
which version of MongoDB your current cluster is. For that, you should use the db.version()
command. The version must be 3.x or greater.

AWS Data Migration Service (AWS DMS) is a service to help with homogeneous and het-
erogeneous migrations between different database platforms. AWS DMS supports MongoDB
versions 3.x and 4.0 as a database source, as well as many popular databases as a target for
data replication, including Amazon DocumentDB. Bear in mind that AWS DMS does not
migrate indexes, only data. You must manually create your indexes in DocumentDB. It is
recommended to create them before migrating the data. There is a GitHub repository with
tools that can help with MongoDB to DocumentDB migration tasks, including index valida-
tion and creation. For more information about the Amazon DocumentDB Index Tool, go to
github.com/awslabs/amazon- documentdb- tools.

Besides AWS DMS, common MongoDB utilities such as mongodump, mongorestore,
mongoimport, and mongoexport can be used in migrations. Figure 6.7 shows the migration
strategies.

 ■ Online: An online migration uses AWS DMS and can support change data capture
(CDC) mode to replicate changes from the source database. This approach is recom-
mended to reduce downtime in the environment. Change data capture (CDC) is a tech-
nique used to identify and capture changes made to data in a database. This can include
inserts, updates, and deletes.

 ■ Offline: This can be achieved via the Amazon DocumentDB Index Tool and the
mongodump and mongorestore tools. The Amazon DocumentDB Index Tool allows
you to check the dumped indexes for compatibility and pre- create the indexes on the
target Amazon DocumentDB cluster. Executing this process can reduce overall restore
time because the indexes can be populated in parallel while restoring. It is recommended
to first create your indexes in Amazon DocumentDB before performing the migration.
This strategy might have a long downtime period, as you can’t use the databases while
the export and import processes are running.

 ■ Hybrid: A hybrid approach combines both online and offline strategies. It uses
mongo dump and mongorestore tools to migrate the data from the source MongoDB
to Amazon DocumentDB cluster, and it uses AWS DMS with CDC mode to replicate
changes. This is the most complex of the three approaches, but it balances speed and
downtime.

You can migrate your Amazon DocumentDB cluster from 3.6 to 4.0, using AWS DMS or
utilities such as mongodump, mongorestore, mongoimport, and mongoexport.

https://github.com/awslabs/amazon-documentdb-tools

184 Chapter 6 ■ Document Databases in the Cloud

Amazon DocumentDB Monitoring
Amazon DocumentDB integrates with Amazon CloudWatch, Amazon CloudTrail, and third-
party solutions like New Relic and Datadog. Amazon CloudWatch uses operational metrics
to monitor the status and health of your cluster, and alarms can be set up to receive notifi-
cation if a metric value breaches a specific threshold that you specify. Some key metrics are
CPUUtilization, FreeableMemory, VolumeReadIOPS, VolumeWriteIOPS, WriteIOPS,
ReadIOPS, DatabaseConnections, DatabaseTransactions, NetworkThroughput, and
VolumeBytesUsed. Amazon CloudWatch can monitor the cluster by Reader or Writer role,
by whole- cluster metrics, and by instance metrics.

F IGURE 6 .7 Migration strategies from MongoDB to an Amazon DocumentDB cluster

Amazon DocumentDB Monitoring 185

For log purposes, Amazon DocumentDB will request during the launch process to publish
audit and profiler logs to Amazon CloudWatch Logs. They should be enabled if you want
to publish any logs regarding the audit and profiler of your cluster. To support auditing of
the operations performed, you need to enable audit_logs in the parameter group of the
cluster; by default, it is disabled. When the audit parameter is enabled, the logs record data
definition language (DDL) statements; authentication, authorization, and user management
events are exported to Amazon CloudWatch Logs as JSON documents. Table 6.3 details
some of the auditing supports by Amazon DocumentDB.

To find the audit logs for your cluster, open the Amazon CloudWatch console, make sure
that you are in the same AWS region as your Amazon DocumentDB cluster, and choose
/aws/docdb/yourClusterName/audit. The respective instance names will have auditing
events for each of your instances within your cluster.

TABLE 6 .3 Events That audit_logs Deliver to Amazon CloudWatch Logs

Event Type Category

authCheck Authorization

authenticate Connection

createDatabase DDL

createCollection DDL

createIndex DDL

dropCollection DDL

dropDatabase DDL

dropIndex DDL

createUser User Management

dropAllUsersFromDatabase User Management

dropUser User Management

grantRolesToUser User Management

revokeRolesFromUser User Management

updateUser User Management

186 Chapter 6 ■ Document Databases in the Cloud

The profiler logs need to be enabled in the parameter group of the cluster; by default, it
is disabled. These logs will detail the operation performed on the cluster and help to identify
slow operations and improve query performance. At launch or by modifying your cluster,
you can enable Audit and/or Profiler logs and be published to Amazon CloudWatch Logs.

In addition, the following parameter groups can be set:

 ■ profiler: Enables profiling for slow operations. It is disabled by default.

 ■ profiler_sampling_rate: Sampling rate for logged operations.

 ■ profiler_threshold_ms: Operations longer than this value will be logged.

 ■ Change_stream_log_retention_duration: Duration of time in seconds that the
change stream log is retained and can be consumed. The default is 10,800 seconds, or
180 minutes.

 ■ ttl_monitor: Enables time to live to monitor. This is enabled by default.

 ■ tls: Enables/disables TLS connection over to the cluster; it is enabled by default.

As usual, API calls are logged with CloudTrail, but for certain management features,
Amazon DocumentDB uses operational technology that is shared with Amazon RDS. Filter
in the AWS CloudTrail console at the event source from rds.amazonaws.com to see the
appropriate events from the Amazon DocumentDB APIs.

Naturally, when choosing an instance type, you must be aware of the workload’s
performance requirements. You must estimate the number of vCPUs, memory, and con-
nections your application needs. For baseline performance reasons, you can monitor the
Amazon CloudWatch metrics of your cluster to evaluate whether it meets or exceeds expec-
tations. You can use the following key metrics:

 ■ Network throughput

 ■ Write throughput

 ■ Read throughput

 ■ Replica lag

You can mix your cluster with different instance classes, but be aware that for failover
purposes it is recommended to configure the failover priority for each instance.

Amazon DocumentDB has an Events Subscriptions feature where you can add a
subscription to a certain source type event that is present on the Events page. The
subscription can be an existing Amazon SNS topic, or you can create a new topic and
recipient email to receive the notifications. The event may be related to instances, security
groups, parameter groups, clusters, and cluster snapshots. You can subscribe to only one of
the source types at a time. Each event subscription consumes events from all or the specific
sources mentioned. Each source type has event categories, and you may include all or specific
categories. These specific categories vary depending on the source type. This is a good option
for monitoring and notifying the cluster’s stakeholders about issues or informational mes-
sages that can lead to preventive or corrective actions. Furthermore, because the Event Sub-
scriptions feature relies on Amazon SNS, you can do any sort of automation triggering AWS
Lambda or putting on a queue with Amazon SQS.

http://rds.amazonaws.com

When to Use DynamoDB vs. DocumentDB 187

The subscription to DocumentDB’s events may be created through the AWS management
console or the AWS CLI using create- event- subscription.

Developing with Amazon DocumentDB
An Amazon DocumentDB cluster does not have public access. Therefore, you need a jump
server to connect with the cluster. You can use the jump server in the cloud, within the same
VPC, or from a VPC that can reach the cluster’s VPC, as well as on premises. For this, a
hybrid connection is necessary.

In AWS, you can use AWS Cloud9 or Amazon EC2 as a jump server to connect to your
cluster. You can also use tools such as Robo3T or Studio3T and a command- line tool like
mongoshell.

All new DocumentDB clusters have TLS enabled by default. You can disable it in the
cluster parameter group using the tls parameter. To connect to a cluster with TLS enabled
using mongoshell, you use the following command:

mongo - - ssl - - host sample- cluster.node.us- east- 1.docdb.amazonaws.com:27017
- - sslCAFile rds- combined- ca- bundle.pem - - username <sample- user> - - password
<password>

This is how to connect to your cluster without TLS:

mongo - - host mycluster.node.us- east- 1.docdb.amazonaws.com:27017 - - username
<sample- user> - - password <password>

An important feature in DocumentDB is change streams. This provides a time- ordered
sequence of change events that occur within your cluster’s collections. The retention period
by default is three hours, but you can extend it up to seven days through the cluster param-
eter group in the change_stream_log_retention_duration parameter. The Amazon
DocumentDB change streams feature is disabled by default, but you can enable it at any
time; be aware that could incur additional charges. For more information about this feature,
please check in docs.aws.amazon.com/documentdb/latest/developerguide/
change_streams.html.

When to Use DynamoDB
vs. DocumentDB
Chapter 4, “Transactional Databases on AWS,” mentioned that Amazon DynamoDB sup-
ports both key- value and document models. Some key points distinguishing between Docu-
mentDB and DynamoDB are flexibility and performance.

http://docs.aws.amazon.com/documentdb/latest/developerguide/change_streams.html
http://docs.aws.amazon.com/documentdb/latest/developerguide/change_streams.html

188 Chapter 6 ■ Document Databases in the Cloud

Amazon DynamoDB is designed for workloads that need variable throughput or infinite
scale. Access patterns should be known up front. DynamoDB provides differentiated features
such as global tables and DynamoDB Accelerator. The performance could handle millions
of requests per second with multiple writers and reads, and last but not least, DynamoDB is
serverless with pricing that varies between on- demand or provisioned capacity units.

Amazon DocumentDB is designed around the flexibility of the document model with
compatibility with the MongoDB APIs and workloads that need known query operation
to run ad hoc queries. DocumentDB is a cluster with a single write that can handle tens of
thousands of writes per second and multiple readers that can handle millions of reads per
second. DocumentDB is priced by instance, storage, backup, and I/O.

Another key factor is that you can store a document of up to 16 MB in Amazon Docu-
mentDB. To store a large document in DynamoDB, you would have to break it down in
smaller pieces, as an item in Amazon DynamoDB can be only up to 400KB in size.

The decision about which AWS services you should use will depend on the facts discussed,
the application, the technical and business requirements, the costs, and the overall purpose
of the services.

Amazon DocumentDB Pricing
Amazon DocumentDB pricing is based on the following dimensions. There is no up- front
cost and no minimum fee.

 ■ On- demand instances

 ■ Database I/O

 ■ Database storage

 ■ Backup storage

Amazon DocumentDB is billed per second for instances, with a 10- minute minimum
billing period. You can stop your cluster for up to seven days when you do not need to access
it. This is a good option for development and test environments because you can pause them
on the weekend. You are not billed for cluster instances when the cluster is stopped.

Amazon DocumentDB replicates your data six times across three AZs, but you pay for
only a single copy, with pricing at $0.10 GB/month (may vary among AWS regions). Also,
the data transferred across multiple AZs between cluster instances is free. The I/O of the
cluster automatically scales, and you pay $0.20 per 1 million requests (may vary among
AWS regions). Be aware, when you enable features such as TTL and change streams, that
they incur I/O costs when data is written, read, and deleted. If you are not using those
parameters for a particular reason, disable them to reduce costs.

You are not billed for sharing snapshots between accounts. Nevertheless, you may be
charged for the snapshots, as well as any clusters that you restore from shared snapshots.

For more information about pricing, visit aws.amazon.com/documentdb/pricing.

http://aws.amazon.com/documentdb/pricing

Exam Essentials 189

Summary
MongoDB is a powerful document database that can be deployed on Amazon EC2, but
it can be difficult to manage, scale, upgrade, and maintain. Amazon DocumentDB is a
managed service that gives you the ability to create and manage a cluster easily. It has com-
patibility with MongoDB 3.6 and 4.0; however, it does not follow the life- cycle policies of
MongoDB.

With Amazon DocumentDB, you can have 1 to 15 instances in your cluster that automat-
ically balance the addition or reduction of instances on demand. These processes are done
in a few minutes, and there is no need to copy your hundreds of gigabytes to one instance
or another, as one of the key features of Amazon DocumentDB is that the cluster volume is
decoupled from the computational part and automatically grows in size on demand. This
gives you great flexibility and cost benefits without compromising on performance.

It offers an SDK for most common languages, allowing developers to build applications
to interact easily with the collections.

You can secure your cluster access using IAM policies and encryption at rest and in
transit. Also, you can audit through AWS CloudTrail and Amazon CloudWatch Logs and see
profiler performance with Amazon CloudWatch Logs and Metrics.

Exam Essentials
Understand what a document database is. The knowledge of what a document database
and its advantages are will be key for driving architectural decisions, as well as for the exam.

Know how the architecture of Amazon DocumentDB works. Using Amazon DocumentDB
allows you to handle different architectures because it gives you options depending on your
workload’s scope. So, knowing how the architecture of Amazon DocumentDB works will
give you options to match with scenario requirements and its particularities.

Know how to migrate from MongoDB to Amazon DocumentDB. AWS DMS is the way
that we can migrate online from this source and target; other built- in options can be used,
depending on the scenario. Be aware of the migrations options for online, offline, and
hybrid modes.

Know how to enable audit and profiler logs in the Amazon DocumentDB cluster. AWS
CloudTrail and profiler logs with Amazon CloudWatch Logs are the way to monitor and
manage access control and determine slow queries to an Amazon DocumentDB cluster.

Know when Amazon DocumentDB is a good fit for an architecture. AWS exams are case
scenario questions, so knowing how and when to use Amazon DocumentDB is essential for
this exam. Also, it helps to know the differences between Amazon DocumentDB and similar
services, such as Amazon DynamoDB, but remember the purpose of each AWS service.

190 Chapter 6 ■ Document Databases in the Cloud

Exercises
For assistance in completing the following exercises, refer to the Amazon DocumentDB
developer guide at docs.aws.amazon.com/documentdb/latest/developerguide/what- is.html.

E X E R C I S E 6 . 1

Create a Secure Amazon DocumentDB Cluster

In this exercise, you will create an Amazon DocumentDB cluster uniquely in AWS, with
encryption enabled.

1. Log in as a user with Amazon DocumentDB privileges in the AWS Console.

2. Navigate to the DocumentDB console.

3. Click the Create button.

4. For the cluster identifier, you can use the default name or rename it in this format:
<Account ID>- exercise- 6- db- certification. It would look like this: 123456789012- exercise-
6- db- certification.

5. Select the engine version. The default is 4.0.

6. Select an instance class of db.t3.medium. The default is db.r6g.large.

7. Select the number of instances. The default is 3.

8. Enter a master username and master password and a confirmation.

9. Select Show Advanced Settings.

10. Make sure Encryption- at- rest is set to Enable.

11. Advance to the page bottom and click Create Cluster to confirm the creation, with the
selected options.

E X E R C I S E 6 . 2

Apply a Custom Parameter Group in Your Cluster

When you create an Amazon DocumentDB cluster, it will use the default parameter group,
but you cannot modify this parameter group. To customize your cluster, you need to create
a parameter group and apply it.

1. In the Amazon DocumentDB console, go to Parameter Groups and click Create.

2. For Name, use db- certification- pg.

http://docs.aws.amazon.com/documentdb/latest/developerguide/what-is.html

Exercises 191

3. For Family, use the name of your Amazon DocumentDB cluster’s engine.

4. For Description, use This is a custom parameter group, and click in Create.

5. Enter your custom parameter group and modify a parameter, like audits_logs.

6. Select audit_logs, click Edit, and change the value to Enabled.

7. For When To Apply Modifications, select Apply Immediately.

8. For Clusters, select your cluster and click Actions and Modify.

9. For Cluster Parameter Group, select db- certification- pg.

10. Advance to the page bottom and click ModifyCluster to confirm the modification, with
the selected options, and apply immediately.

192 Chapter 6 ■ Document Databases in the Cloud

Review Questions

1. A DBA needs to access and monitor all data definition language for Amazon Docu-
mentDB. The DBA already enabled the audit_logs parameter in the cluster parameter
group. What should the DBA do to automatically collect the database logs?

A. Enable DocumentDB to export the logs to Amazon CloudWatch Logs.

B. Enable DocumentDB to export the logs to AWS CloudTrail.

C. Enable DocumentDB events to export the logs to Amazon CloudWatch Logs.

D. Enable change streams on Amazon DocumentDB.

2. Which of the following AWS services should you use to migrate from MongoDB to Amazon
DocumentDB with minimum downtime?

A. AWS Database Migration Service

B. AWS VM Import/Export

C. AWS Cloud9

D. AWS Server Migration Service

3. An Amazon DocumentDB can have up to ___ instance replicas.

A. 1

B. 6

C. 10

D. 15

4. An Amazon Document cluster can have up to ____ primary instance(s).

A. 2

B. 3

C. 1

D. 6

5. Which is a key difference between MongoDB and Amazon DocumentDB?

A. Amazon DocumentDB is a fully managed service, while MongoDB is a document data-
base that you should manage yourself.

B. They are the same thing; Amazon DocumentDB is a software as a service of MongoDB.

C. Amazon DocumentDB follows the software life cycle of MongoDB.

D. MongoDB supports change streams, and Amazon DocumentDB does not.

6. Which are the key benefits of document databases? (Choose two.)

A. Flexible schema

B. Horizontal scaling

C. Support for joins

Review Questions 193

D. Instance resizing capabilities

E. CSV support

7. Which metric should you monitor to know about replication between replica instances?

A. DBClusterReplicaLagMaximum

B. DatabaseConnections

C. BufferCacheHitRatio

D. SwapUsage

8. Which option should you enable in the cluster parameter group to get slow query
operations?

A. audit_logs
B. profiler
C. ttl_monitor
D. profiler_threshold_ms

9. A CSO determines that all data storage must be encrypted at rest. The company requires the
solution to be cost- effective and operationally efficient. How can you encrypt an unencrypted
Amazon DocumentDB cluster with minimum operational costs?

A. This is not possible.

B. Take a snapshot of the unencrypted cluster and restore it in a new cluster with encryp-
tion enabled with AWS KMS.

C. Modify the cluster and enable encryption.

D. Use AWS DMS to migrate to an encrypted cluster.

10. Which feature can you use to be notified when something occurs in your Amazon
DocumentDB cluster?

A. Events

B. Parameter groups

C. Change streams

D. Events subscription

Better Places Than
Databases to Store
Large Objects

THE AWS CERTIFIED DATABASE –
SPECIALTY EXAM OBJECTIVES COVERED
IN THIS CHAPTER MAY INCLUDE, BUT ARE
NOT LIMITED TO, THE FOLLOWING:

 ✓ Domain 1.0: Workload- Specific Database Design

 ■ 1.1 Select appropriate database services for specific types of

data and workloads.

 ■ 1.3 Design database solutions for performance, compliance,

and scalability.

 ■ 1.4 Compare the costs of database solutions.

 ✓ Domain 5.0: Database Security

 ■ 5.1 Encrypt data at rest and in transit.

 ■ 5.3 Determine access control and authentication mechanisms.

Chapter

7

This chapter discusses how to deal with workloads that need to
store large objects as binary or text files. AWS has services that
can work with database services to process and store data.

When choosing the technology to accommodate different kinds of data for an applica-
tion, before cloud computing, we used to use a single service with hundreds of features such
as queue services, email services, and large objects (LOB). Databases have been the common
place to store everything for decades.

Today, with cloud computing services such as AWS, when we analyze the performance,
compliance, scalability, and costs of a solution, we usually find that there are specific services
for each purpose that are faster, cheaper, more reliable, and more scalable for each of those
features, as well as easier to manage and integrate.

Databases and Large Objects
Relational databases were built to handle transactions, so their default units of read and
write from and to the disks, called block size, are usually small (8–64 KB). This means each
read or write will deal with records to write or read in this granularity of 8 KB.

When we look at NoSQL databases, they also usually have small units of reads and
writes, as in Amazon DynamoDB, where the read capacity unit (RCU) is 4 KB and the write
capacity unit is 1 KB, or Apache HBase, which defaults to a 64 KB block size.

Table 7.1 shows some popular databases’ default block sizes. When you put records
larger than the block size in a database, the records are split into several blocks as a chain.
As you may expect, this causes overhead when reading from and writing to the database.

TABLE 7.1 Some popular databases’ default block sizes

Database engine Default block size for reads and writes

PostgreSQL 8 KB

MySQL 16 KB

MS SQL Server 64 KB

Oracle Database 8 KB

Databases and Large Objects 197

Most relational databases allow you to read a group of multiple blocks in a single read
operation to spend fewer operational system resources, and some of them allow you to
choose larger block sizes such as 32 KB or 64 KB.

To optimize this and to allow databases to store larger objects, database engines have the
concept of large objects. LOB databases have a particular structure to store the large objects
and a pointer in a table to find out where each LOB is stored physically.

With this approach, most databases use these common types of LOB:

 ■ CLOB: Stores long text fields.

 ■ NCLOB: Similar to CLOB; uses characters from the national character set.

 ■ BLOB: Stores binary objects— for example, media files.

 ■ BFILE and GridFS: Files stored out of the database file structure directly in the
filesystem.

We have support for different LOB types in each database engine, as shown in Table 7.2.

TABLE 7.2 Support for LOB types

Database engine LOB support

PostgreSQL BLOB and CLOB

MySQL BLOB

MS SQL Server BLOB, CLOB, and NCLOB

Oracle Database BLOB, CLOB, NCLOB, and BFILE

Amazon DynamoDB Binary

MongoDB GridFS

Apache HBase MOB (Medium size Object)

Database engine Default block size for reads and writes

Amazon DynamoDB 1 KB WCU

4 KB RCU

MongoDB 4 KB OS dependent

Apache HBase 64 KB

198 Chapter 7 ■ Better Places Than Databases to Store Large Objects

With LOB support, the storage of large objects inside the database is feasible, but the
object storage services offered by cloud services are cheaper and not dependent on database
compute power.

Introducing Amazon S3
In 2006 AWS introduced an object storage service called Amazon Simple Storage Service
(Amazon S3), which is a storage layer that provides APIs to store and interact with objects
as files, such as backup files, media files (pictures, movies, and audio), compressed sets
of application files, big data files, logs, and many others. Amazon S3 is designed to have
99.999999999 percent durability by offering six copies of each object spread among differ-
ent availability zones.

When we look at different databases and compare their ability to store large objects, we
find that they may not be the best option for this kind of object.

 ■ Object store services like Amazon S3 cost less than 25 percent of a dedicated disk
volume attached to an instance if we consider the Standard class. This cost can go down
to 4 percent of the cost of the attached volume if we consider the Glacier class.

 ■ Amazon S3 objects are replicated to at least three availability zones by default with
no further setup, which makes it cost even less compared to replicating your database
storage.

 ■ As opposed to what happens in an instance- attached store volume, there is no need to
allocate and pay for storage areas when you are not using them and are expecting to
receive new objects. In Amazon S3, you are charged for the amount of storage your
objects really use.

 ■ The central processing unit (CPU) consumption of Amazon S3 is included in the service,
so there is no need to manage concurrency with other database workloads to store and
retrieve the objects; this is the opposite of what happens in a database instance. There
are no explicit limitations on the number of objects in Amazon S3, as there are in some
databases, such as LOBs per instance or per database.

Many commercial and open- source software applications are already aware of these ben-
efits and have created plugins for Amazon S3. One example is the Amazon S3 plugin for the
WordPress media library, which can store videos, images, audios, and PDF documents.

Amazon S3 comes with storage classes, and objects can have their lifecycles automatically
managed by lifecycle policies. When using life cycle policies, objects are moved from one tier
to another after a custom- defined number of days in one tier, keeping the same object key.

The following storage classes are available:

 ■ Amazon S3 Standard is the default class for Amazon S3 objects; it is designed for fre-
quent access and high durability (99.999999999 percent).

 ■ Amazon S3 Standard- IA is the infrequent access class of Amazon S3 with high dura-
bility. It was designed for data accessed infrequently that needs to be retrieved quickly
when requested.

Introducing Amazon S3 199

 ■ Amazon S3 OneZone- IA is the Amazon S3 class for infrequent access, with only one-
zone durability. It was designed for objects that can be re- created in the case of losing
one AWS availability zone (AZ).

 ■ Amazon S3 Glacier is a low- cost class of an Amazon S3 object store for long- term data
that is intended to be accessed or restored rarely.

 ■ Amazon S3 Deep Archive is an Amazon S3 class for data that is very rarely retrieved but
is needed for legal/compliance obligations.

 ■ Amazon S3 Intelligent Tier is an automatic decision of best- of- class for S3 objects based
on the access pattern detected. It uses a mix of access patterns automatically managed
between the classes: Standard, Standard- IA, S3 Glacier, and S3 Deep Archive.

Choosing the class and the lifecycle is a matter of how often the data needs to be
retrieved after it is stored. Table 7.3 shows S3 storage classes and the use cases that may take
advantage of each one.

The Standard class has the highest price for storage, but you don’t pay for retrievals,
which means it’s good for data you use frequently.

TABLE 7.3 Amazon S3 options

Storage
class Use case Keep here if:

S3 Standard Frequent low- latency access. Frequency >= 2
times a month

S3
Standard- IA

Infrequent access with high durability.

The data is accessed infrequently but needs to be
retrieved quickly.

Frequency <= 1
time a month

OneZone- IA For infrequent access, with only one- zone durability.

You need to re- create objects in the case of losing one AZ.
For use cases where you can re- create the data.

Frequency <= 1
time a month

S3 Glacier Long- term backups, rare to access. Frequency <=1
time in 4 months

S3 Deep
Archive

Very rarely retrieved but necessary for legal/compliance
obligations.

Frequency <=2
times a year

Intelligent
Tier

You can’t tell previously what the frequency of your data
access is, and you want S3 to decide based on the access
pattern detected.

Mixed access patterns automatically managed between
the classes: Standard, Standard- IA, S3 Glacier, and S3
Deep Archive.

Frequency =
unknown

200 Chapter 7 ■ Better Places Than Databases to Store Large Objects

For the database exam certification, you should be aware of the S3 capabilities for keep-
ing backups, moving data from on- premises facilities, storing asset files such as SQL files,
and keeping large objects that can have different access patterns.

Costs of Amazon S3 vs. Elastic
Block Storage
Each Amazon S3 class has a different set of costs: storage cost (price per gigabyte), requests
and retrievals (price per 1,000 requests and gigabytes retrieved), and data transfer (from one
region to another or from S3 to the Internet).

The cost of objects stored in S3 is mainly composed of the storage and data retrievals, as
the request operations cost a few cents per thousands of operations. AWS prices can change
over time, but Table 7.4 compares the S3 classes for North Virginia (us- east- 1) as of Septem-
ber 12, 2022.

TABLE 7.4 Amazon S3 storage class costs— first 50 TB

Amazon S3
storage class

Storage
per GB

Data retrievals
per GB

Time to
retrieve data Copies to AZs

Standard $0.0230 Low latency >=3 AZs

Standard- IA $0.0125 $0.01 Low latency >=3 AZs

OneZone- IA $0.01 $0.01 Low latency 1 AZ

S3 Glacier

Expedited

$0.004

$0.03 1–5 minutes >=3 AZs

Standard $0.01 3–5 hours

Bulk $0.0025 5–12 hours

S3 Deep Archive $0.00099

12 hours

>=3 AZs

Standard $0.02

Bulk $0.025

S3 Intelligent - Tiering $0.0230

Source: Adapted from AWS, https://aws.amazon.com/s3/pricing

https://aws.amazon.com/s3/pricing

Costs of Amazon S3 vs. Elastic Block Storage 201

Amazon Relational Database Service (RDS) has three storage options:

 ■ General Purpose SSD (gp2/gp3): Volumes offering a low cost for nonintensive I/O
workloads

 ■ Provisioned IOPS (io1/io2): Volumes recommended for I/O- intensive and consistent
workloads with low latency

 ■ Magnetic: Volumes used for backward compatibility only; not recommended for new
workloads

Large objects in Amazon RDS can be stored in SSD storage, as they are usually not
accessed frequently, even for magnetic storage options. The problem with magnetic is that
you cannot choose to put only large objects on it; all your database data of that instance
must reside on magnetic if you choose it, so you may end up with some performance issues
for other tables.

Table 7.5 shows the RDS storage prices for the PostgreSQL engine for North Virginia
(us- east- 1) on September 12, 2022.

To compare the strategy of using LOB objects inside databases versus Amazon S3, con-
sider the following scenario:

 ■ Your application has 200 objects, such as images and PDF documents, every month.

 ■ There is a business need for AZ failure recoverability.

 ■ The average object size is 512 MB.

 ■ Documents and images are accessed at a rate of 20 objects per day.

 ■ Thirty days after the object creation, the object is stored in Amazon S3; the objects are
infrequently accessed, at a rate of two objects accessed per day.

 ■ After 90 days, objects are maintained only for auditing purposes and are rarely accessed,
at a rate of one object per month.

TABLE 7.5 RDS storage costs

RDS
storage

Storage
per GB

Provisioned IOPS
per IOPS Cost per 1 million requests

EBS $0.115

IOPS $0.125 $0.10

Magnetic $0.10 $0.10

Source: Adapted from AWS, https://aws.amazon.com/rds/postgresql/pricing

https://aws.amazon.com/rds/postgresql/pricing

202 Chapter 7 ■ Better Places Than Databases to Store Large Objects

We used an AWS calculator to simulate the cost. Costs can change, but in general the
proportion stays the same.

 ■ Amazon S3 Standard = 2.51 USD/month. This is the class we chose for the first month
in which the objects are created.

 ■ We are considering one month of Standard (200 objects × 512 MB × 1 month)
= 100 GB.

 ■ It will require 200 PUTs to store the objects.

 ■ It will request 20 GETs per day × 30 days = 600 GETs per month.

 ■ It will retrieve 600 GETs × 512 MB = 300 GB per month.

 ■ The cost of storage is calculated by 100 GB × 0.023 USD/GB = 2.30 USD per month.

 ■ The cost of PUT requests is calculated by 200 PUT requests per month × 0.0000005
USD per request = 0.001 USD.

 ■ The cost of GET requests is calculated by 600 GET requests per month ×
0.00000004 USD per request = 0.0002 USD.

 ■ The cost of select data returned is calculated by 300 GB select data returned per
month × 0.0007 USD select data returned = 0.21 USD.

The total cost of Standard is the sum of the preceding items:

2.30 USD + 0.001 USD + 0.0002 USD + 0.21 USD = 2.51 USD/month

 ■ Amazon S3 Standard-IA = 1.55 USD/month: This is the S3 storage class we chose for
objects older than 30 days in S3.

 ■ We are considering one month of Standard- IA (200 objects × 512 MB × 1 month)
= 100 GB.

 ■ It will require 200 life cycle transitions per month.

 ■ It will request 2 GETs per day × 30 days = 60 GETs per month.

 ■ It will retrieve 60 GETs × 512 MB = 30 GB per month.

 ■ The cost of storage is calculated by 100 GB × 0.0125 USD/GB = 1.25 USD
per month.

 ■ The cost of GET requests is calculated by 60 GET requests per month × 0.000001
USD per request = 0.0001 USD per month.

 ■ The cost of life cycle requests is calculated by 200 life cycle requests per month ×
0.00001 USD per request = 0.002 USD per month.

 ■ The cost of select data returned is calculated by 30 GB per month × 0.01 USD =
0.30 USD per month.

The total cost of Standard- IA is the sum of the previous items:

1.25 USD + 0.0001 USD + 0.002 USD + 0.30 USD = 1.55 USD/month

Costs of Amazon S3 vs. Elastic Block Storage 203

 ■ Amazon S3 Glacier = 0.41 USD/month: This is the class we chose for compliance
90 days after object creation.

 ■ We are considering one month of Glacier (200 objects × 512 MB × 1 month)
= 100 GB.

 ■ It will require 200 life cycle transitions per month, after 90 days.

 ■ It will request 1 GET × 1 month = 1 GET per month.

 ■ It will retrieve 1 GET × 512 MB = 0.5 GB per month.

 ■ The cost of storage is calculated by 100 GB × 0.004 USD/GB = 0.40 USD per month.

 ■ The cost of life cycle transition requests is calculated by 200 requests per month ×
0.00003 USD / request = 0.006 USD (lifecycle)/month.

 ■ The cost of a GET request is calculated by one request per month × 0.00003
USD = 0.00003 USD.

 ■ The cost of select data returned is calculated by 0.5 GB per month × 0.01 USD =
0.005 USD per month.

The total cost of Glacier is the sum of these items:

0.40 USD + 0.006 USD + 0.00003 USD + 0.005 USD = 0.41 USD/month

When using databases in AWS, you will be required to use Elastic Block Storage (EBS)
SSD or Provisioned IOPS volumes to store data and objects.

Now we can compare the cost of the same scenario using EBS storage attached to the
instance’s solution. We chose the less expensive SSD EBS disk and considered a multi- AZ
deployment, where there is a storage volume in one availability zone and another one in a
second availability zone for high availability.

 ■ Amazon EBS, SSD = 23.00 USD/month.

 ■ One month of EBS (SSD) (200 × 512 MB × 1 month) = 100 GB.

 ■ 100 GB per month × 0.23 USD × 1 instance = 23.00 USD (storage cost) per month.

As shown in Table 7.6, the AWS costs for object storage in S3 for our one- year example
are advantageous— 23 times less compared to EBS volumes. You can play with the AWS cal-
culators to get used to this kind of comparison and understand the cost perspective of this
scenario.

Pay attention to the words in the AWS certification exam questions to
clarify what is being asked. You will usually see four possible answers,
but they will have qualifiers like lowest cost, highest performance, lowest
effort to manage, or most secure. When looking for the cost perspective,
getting familiar with the costs of the services you are studying is key to
understanding the side costs, such as requests for Amazon S3 using the
calculator we used (calculator.aws) and the old AWS calculator
(calculator.s3.amazonaws.com/index.html).

http://calculator.s3.amazonaws.com/index.html

204 Chapter 7 ■ Better Places Than Databases to Store Large Objects

Moving LOBs to Amazon S3
Now that you know where to put your LOBs to have a cost- effective solution, let’s start
moving the large objects to Amazon S3.

Creating an S3 Bucket
We start by creating a bucket— that is, a logical space where you can store objects. Note that
every bucket name must be unique globally; it doesn’t matter if it’s accessible only in your
account. The bucket will reside in one region of your preference, where most of your other
AWS resources may be located, which means that there will be no data transfer costs bet-
ween S3 and other AWS services in that region.

To enforce that your bucket name is unique and avoid naming conflicts, you can add
a unique value such as an account ID, which provides an easy way to find it in the AWS
Console. At the top right, click the login name to open a menu where you can copy the
account ID.

Say that your account ID will be 123456789012; you can use different methods to create
an S3 bucket with a suffix of mylobs- certification in the us- east- 2 region.

 ■ In the AWS Console, navigate to the S3 services with the (Ohio) us- east- 2 selected and
click Create Bucket, as shown in Figure 7.1.

TABLE 7.6 Cost comparison for one month of data stored for one year

Storage 1st month 2nd month 3rd month 4th+ month

One year
[1st+2nd+3rd+(4th
x 9)]

Amazon S3 2.51 1.55 1.55 0.41 9.30

Standard 2.51

Standard- IA 1.55 1.55

Glacier 0.41

EBS,
multi- AZ

23.00 23.00 23.00 23.00 276.00

(29 times S3 cost)

SSD 23.00 23.00 23.00 23.00

Moving LOBs to Amazon S3 205

 ■ In the AWS command- line interface (CLI), use the s3 mb (make bucket) function.

aws s3 mb s3://123456789012- mylobs- certification - - region us- east- 2

 ■ Use the AWS SDK. For example, use boto3 to interact with S3, which is the SDK library
for the Python language.

import boto3
s3 = boto3.client('s3', region_name='us- east- 2')
s3.create_bucket(Bucket='123456789012- mylobs- certification')

If you create a bucket name like s3://mylobs, where s3:// is a prefix
for S3, no other bucket named s3://mylobs will exist in any other AWS
account globally. Anyone in the world who tries to create the next
s3://mylobs bucket will get an error message. So, a best practice is to
include the account ID in your bucket name— for example,
123456789012- mylobs- certification.

F IGURE 7.1 S3 bucket creation console

206 Chapter 7 ■ Better Places Than Databases to Store Large Objects

Putting or Uploading Objects
Objects reside in buckets, and you can add a path to them. For example, if I have a set of
pictures from New York taken in 2019 that I named picny1.jpg, picny2.jpg, picny3
.jpg, and picny4.jpg, I can add a prefix before the image names as a path to organize the
data. For example, I use s3://123456789012- mylobs- certification/2019/us/
new- york/pics, so each object will be named as follows:

s3://123456789012- mylobs- certification/2019/us/new- york/pics/picny1.jpg
s3://123456789012- mylobs- certification/2019/us/new- york/pics/picny2.jpg
s3://123456789012- mylobs- certification/2019/us/new- york/pics/picny3.jpg
s3://123456789012- mylobs- certification/2019/us/new- york/pics/picny4.jpg

It’s important to recognize that you have two components for every object in S3: the
bucket 123456789012- mylobs- certification and the object key us/new- york/pics/
picny4.jpg. Keep in mind that the object key is the way you will refer to any object inside
an S3 bucket, and it has the full path inside the bucket and filename.

You can upload your files from remote machines or your own machine to Amazon S3 as
follows:

 ■ Using the AWS Console, navigate to S3 Services and open the bucket you created to cre-
ate three folders inside it, as shown in Figure 7.2. Create a us folder inside the bucket,
then a new- york folder, and then a pics folder. Folders are logical representations of
object keys; you need to create them only if you are using the Console to upload files.

Upload the files to the pics folder, as shown in Figure 7.3.

F IGURE 7.2 Creating the folder

Moving LOBs to Amazon S3 207

 ■ With the AWS CLI, you don’t need to create folders, as S3 commands automatically
handle the folder path as a key to the objects.

Using s3 cp (copy function for the S3 bucket), copy the file to a complete S3 path.

aws s3 cp picny1.jpg s3://123456789012- mylobs- certification/2019/us/
new- york/pics/

Copy all images from a local directory in one AWS CLI command using the
s3 cp - - recursive (copy object to bucket) function.

aws s3 cp . s3://123456789012- mylobs- certification/2019/us/new- york/
pics/ - - recursive

 ■ Using the AWS SDK (for example, upload_fileobj in Python boto3), you also don’t
need to create folders.

import boto3
s3 = boto3.client('s3', region_name='us- east- 2')
bucket = '<your bucket>'
picture_name = 'picny1.jpg'
local_path='<local directory>/'
s3_path = 'us/new- york/pics/'

F IGURE 7.3 Uploading the files

208 Chapter 7 ■ Better Places Than Databases to Store Large Objects

source_file=local_path+picture_name
object_key = s3_path+picture_name
response = s3.upload_file(source_file, bucket, object_key)

If you have a PostgreSQL database with LOB objects, you may want to automate the
extraction of LOB objects from a PostgreSQL table using a Python script or other language
of your preference. You can perform the following automation: Using the psycopg2 library,
connect to PostgreSQL in your Python code, load from the my.picture table the column
names (picture names) and the piclob (picture object), and save the objects to S3 with the
path set and add the picture name as the filename.

conn is your connection to postgresql using psycopg2
cur = conn.cursor()
path='us/new- york/pics/'
cur.execute(""" SELECT name, piclob
 FROM my.pictures""")

blob = cur.fetchone()
 object_key = path + blob[0]
 picture = blob[1]
response = s3_client.upload_fileobj(picture, bucket, object_key)

Indexing LOBs in Amazon S3
You now have your objects inside S3. A common pattern to create an index for the objects
in S3 using SQL databases is to create a table as select, which is the creation of a new table
based on a SELECT statement, with only the other columns, not the LOB, from your old
table. Then add two new columns as text, s3bucket and s3key, as they are commonly used
separately in the AWS API.

Table 7.7 shows the column values of a table named Pictures.

TABLE 7.7 Representation of a relational table

id
(pk)

Name City

s3bucket s3key
Other
columns(index)

1 subway0002 New York 123456789012- mypics us/new- york/subway/
subway0002.jpg

a b c

21 dog0012 New York 123456789012- mypics us/new- york/dogs/dog0012.
jpg

a b c

Indexing LOBs in Amazon S3 209

Indexes in relational databases are useful for querying exact items with a better response
time. For relational databases, it’s common to have an integer identification number (ID) as
the primary key that will be used in join operations. In this case, you can create an index on
the Name and City columns. The Name and City columns will be indexed, and the query to
quickly retrieve a key to an S3 object for the object name people0010 of New York City
would be as follows:

SELECT 's3://'||s3bucket||'/'||s3key as s3_bucket_key
FROM pictures
WHERE name = 'people0010' and city='New York';
============
query result
============
s3_bucket_key s3://123456789012- mypics/us/new- york/people/people0010.jpg

A cost- effective way to save and retrieve objects in S3 is to keep them indexed in NoSQL
databases and store two attributes (s3bucket and s3path) along with a key. Different
from relational databases, the main index for a NoSQL database is its primary key; so, if
you use Amazon DynamoDB, you have the option to use a composite, concatenating two
attributes as a partition key and another as a sort key. Table 7.8 illustrates how it would be
stored in an Amazon DynamoDB table named Pictures.

id
(pk)

Name City

s3bucket s3key
Other
columns(index)

22 dog0003 New York 123456789012- mypics us/new- york/dogs/dog0012.
jpg

a b c

50 people0010 New York 123456789012- mypics us/new- york/people/peo-
ple0010.jpg

a b c

60 trees0001 New York 123456789012- mypics us/new- york/trees/
trees0001.jpg

a b c

61 trees0025 New York 123456789012- mypics us/new- york/trees/
trees0025.jpg

a b c

210 Chapter 7 ■ Better Places Than Databases to Store Large Objects

In our modeling, the DynamoDB table keys Name (partition key) and City (sort key)
uniquely identify a record and can be retrieved in one- digit milliseconds (refer to Chapter 5,
“Low Latency Response Time for Your Apps and APIs”). A GET operation using the AWS
CLI would be as follows:

aws dynamodb get- item \
 - - table- name picture \
 - - key '{"Name": {"S": "people0010"},"City": {"S": "New York"}}' \
 - - projection- expression "s3bucket, s3key"
============
get- item result
============
{
 "Item": {
 "s3bucket": {
 "S": "123456789012- mypics"
 },
 "s3key": {
 "S": "us/new- york/people/people0010.jpg"
 }
 }
}

TABLE 7.8 Representation of a DynamoDB table

Primary key Attributes

Name
(pk)

City
(sk) s3bucket s3key

Other
attributes

subway0002 New York 123456789012- mypics us/new- york/subway/
subway0002.jpg

a b c

dog0012 New York 123456789012- mypics us/new- york/dogs/dog0012.jpg a b c

dog0003 New York 123456789012- mypics us/new- york/dogs/dog0012.jpg a b c

people0010 New York 123456789012- mypics us/new- york/people/people0010
.jpg

a b c

trees0001 New York 123456789012- mypics us/new- york/trees/trees0001.jpg a b c

trees0025 New York 123456789012- mypics us/new- york/trees/trees0025.jpg a b c

Additional S3 Features 211

Your application now can use the result from the get- item CLI call and perform a GET
operation in S3 to retrieve the picture.

If you have lots of files that tend to have the same name, use an application immutable
universally unique identifier (UUID) library for the language you chose to generate unique
names for the object keys.

Additional S3 Features
We have explained some concepts of Amazon S3, the storage classes and their use cases, and
the resilience and costs associated with each class. But there are some other important con-
cepts and features of S3 that you need to learn.

Backup and Dump Files
As a database administrator, you need to know that Amazon S3 is the first place to think of
when dealing with large backup files. AWS- managed services also use this strategy, but they
perform it to AWS internal- only S3 buckets.

So if you have a PostgreSQL pg_dump file, MySQL mysqldump, Oracle RMAN backup,
or MS SQL Server .bak, you may want to store these files in S3.

Amazon RDS also provides access from your instances to Amazon S3 with the following:

 ■ MySQL on Amazon RDS: Supports files created with Percona XtraBackup and then
uploaded to S3.

 ■ PostgreSQL on Amazon RDS: An aws_s3 PostgreSQL extension to export or import
data to S3.

 ■ Oracle on Amazon RDS: S3 integration that enables you to use features such as
Oracle Data Pump along with S3. The S3 integration is also useful to extract backups
in RMAN format. At this time, RDS provides backups only; you cannot restore
them in RDS.

 ■ MS SQL Server on Amazon RDS: To load backup data from S3 to an RDS SQLServer,
you can use backup files (.bak), supported with the SQLSERVER_BACKUP_RESTORE
option in the RDS option group. You can also enable the S3_INTEGRATION option in
the RDS option group to use files from S3 to perform bulk inserts into a SQL Server
database.

Other Use Cases
Amazon S3 is used by AWS analytics tools such as Amazon EMR, AWS Glue jobs, Amazon
SageMaker, and Amazon QuickSight, as well as by migration tools such as AWS Database
Migration Service (AWS DMS). A standard pattern is to use S3 as data lake storage.

212 Chapter 7 ■ Better Places Than Databases to Store Large Objects

You can use the following tools to extract data from a database to the data lake with
minimal code effort:

 ■ AWS Glue jobs, created on Glue Studio

 ■ AWS DMS for change data capture (CDC) or full load

 ■ Amazon Data Pipeline ETL tool

 ■ Sqoop and s3distcp on Amazon EMR

Sharing content via S3 is a common practice, but always keep in mind that database
content may require a private- only bucket.

Also consider the following use cases:

 ■ Scripts: S3 is a good place to share and reuse content using an S3 bucket as asset pro-
vider, as S3 can support versioning. You can enable it to update files with new versions
and roll back to previous versions. Common shared scripts include the following:

 ■ SQL routine or custom monitoring that needs to be scheduled

 ■ AWS CLI (shell scripts) or infrastructure scripts to create snapshots or clones

 ■ Export dump scripts

 ■ Backup scripts for EC2 or on- premises databases

 ■ Backups: You can store backup files, backup pieces, and dump files (especially when
dealing with database migration to the cloud). S3 can store very large backup files, up to
5 TB each.

Other AWS services are integrated into Amazon S3 to perform data movement from an
on- premises environment to Amazon S3, including the following:

 ■ AWS Storage Gateway: Creates an extension of S3 as gateway systems, such as file-
systems, tapes, or volumes, with the option of caching data locally.

 ■ AWS Transfer for SFTP: Can be used to move large files, backup files, and dump
files from an on- premises environment or other remote facilities in a secure way to
Amazon S3.

 ■ AWS DataSync: Can be used to copy data from on- premises storage as Network File
System (NFS) or Server Message Block (SMB) to Amazon S3 buckets.

 ■ AWS Snow family: Physical devices that you can order to copy high volumes of data
from your on- premises datacenter into them and send them back to AWS. They can be
from as few as 8 TB in Snowcone to several petabytes in Snowmobile.

Pay per Usage and Scalability
Amazon S3 is a managed service, and you interact with buckets and objects in S3 through an
API. There are zero provisioning requirements to store objects; you only create a bucket with
no objects.

Additional S3 Features 213

After you have a bucket (not paid), you start to put objects in it, where you pay per USD
cent per thousands of PUT operations. When you have some files, you will pay per gigabyte
per month usage ($0.0230 USD/GB for the Standard class).

If you delete files, S3 will stop charging for the space the files used to have.
Suppose that you start with the sum of 1 MB. You can easily scale to gigabytes, terabytes,

and exabytes. (One exabyte is 1018 bytes, or 1,000,000,000,000,000,000 bytes.)
Each object (file) can be as large as 5 TB, so Amazon S3 supports very large objects, some-

times database backup files.

Availability and Durability
You will find in the Amazon S3 documentation that it is designed for extremely high dura-
bility (11 nines), and this is achieved using several copies of each S3 object across multiple
systems. As shown in Figure 7.4, each object has at least six copies automatically created
when you put the objects in S3.

F IGURE 7.4 S3 bucket resilience and durability

214 Chapter 7 ■ Better Places Than Databases to Store Large Objects

So, S3 is a highly durable object store, which means the chances of losing a file are mostly
related to bad operations you perform, not the infrastructure.

But being highly durable doesn’t mean S3 has 100 percent availability. Not losing an
object is different from being able to always access the object, and S3 is designed for 99.99
percent and 99.9 percent availability for S3 Standard and Standard- IA, respectively.

As shown in Figure 7.4, to increase availability and have an even more reliable storage
infrastructure, S3 allows you to build a cross- region replication, which enables a fast
recovery not only in the case of AZ failure but also from an entire region failure.

Security
Amazon S3 has several security features such as data encryption and access control. You will
learn in this section how to protect your data using standard features.

Access Control
Amazon S3 access relies on AWS Identity and Access Management (IAM). It can be as sharp
as you need— for example, allowing specific put operations to your application and denying
delete operations to the same application, while allowing another application read- only
access to the same objects.

You can set a policy at the bucket level, which means this is the main set of rules for that
bucket, limited to 20 KB JSON. To refine it, you can also set individual policies granting or
blocking users, groups, roles, or specific actions in a bucket and a bucket path.

Amazon S3 bucket, user, or role policies should follow the least privilege principle, in
which everything is denied except what really needs to be allowed.

You create Amazon S3 policies as you create other IAM policies with the following
components:

 ■ Effect: Allow or Deny.

 ■ Action: S3 operations such as PutObject, GetObject, and ListObjects.

 ■ Principal: User or role to be granted or denied.

 ■ Resource: Τhe bucket or bucket path to which this permission applies; resources are
Amazon Resource Name (ARN), and you can use the * wildcard, which means every
object inside that path before the wildcard will be applied in the policy.

The following is an example of a bucket policy that uses Allows as Effect, granting the
policy to two roles as principals (arn:aws:iam:us- east- 1:012345678901:role/
MyAppRole and arn:aws:iam:us- east- 1:012345678901:role/Audit) and
enables it to put and get objects as the action (s3:PutObject and s3:GetObject) to

Security 215

the bucket (my- bucket- 022022022) in any path inside it, represented by the resource
(arn:aws:s3:::bucket- 022022022/*) with the wildcard * at the end.

{
 "Version":"2012- 10- 17",
 "Statement":[
 {
 "Sid":"MyFirstBucketPolicy",
 "Effect":"Allow",
 "Principal": {"AWS": ["arn:aws:iam:us- east- 1:012345678901:role/
MyAppRole","arn:aws:iam:us- east- 1:012345678901:role/Audit"]},
 "Action":["s3:PutObject","s3:GetObject"],
 "Resource":"arn:aws:s3:::bucket- 022022022/*"
 }
]
}

If you want to apply dynamic rules in a bucket policy to allow it to filter what users can
be allowed, you can have specific dynamic paths for users in the resource, which means that
different users would have different permissions for bucket paths. This is achieved using
the policy’s Condition attribute for the user group policy, filtering by string with the
StringLike clause.

If you need to share a bucket with another AWS account, you can specify the principal of
the bucket policy as the other account ("AWS":"123123123123").

Amazon S3 now has a configuration that can block public access. It’s highly recom-
mended that you turn on the Amazon S3 Block Public Access option, unless you have a good
reason to allow public access and are totally confident that you have no sensitive data in
your bucket. You can use Amazon Macie to look for sensitive information before you open
access to the public.

Data Encryption
Amazon S3 allows you to easily set up encryption to your bucket, so there is no excuse to
not do so. There are four options to enable data encryption at rest on S3 buckets, and only
new data uploaded after encryption setup will be encrypted.

 ■ At rest:
 ■ Client- side encryption: You can encrypt the data with some security package on

your side before uploading it to S3 and then get an object and decrypt it on your
side again.

 ■ Server- side encryption with Amazon S3–managed keys (SSE- S3): This uses a strong
encryption cipher, Advanced Encryption Standard (AES- 256), to encrypt data on the
S3 side using a key from the AWS Key Management Service (KMS).

216 Chapter 7 ■ Better Places Than Databases to Store Large Objects

 ■ Server- side encryption with an AWS KMS key stored in the AWS Key Management
Service (SSE- KMS): This differs from SSE- S3 only because it uses a customer- created
key, and you can use this with different groups of users and access patterns.

 ■ Server- side encryption with customer- provided keys (SSE- C): This follows the same
concept, but now you provide the keys by yourself using software or an appliance
and use this key in AWS.

 ■ In transit:

 ■ S3 enables you to use HTTPS (TLS) for in- transit encryption. You can enforce
this behavior by specifying the condition aws:SecureTransport in your bucket
policies.

Summary
This chapter discussed strategies for offloading large objects from databases to the large-
scale object store called Amazon S3.

The 99.999999999 percent durability of S3 is one of the key features to rely on for back-
ing up and storing application objects such as photos, videos, and documents.

S3 costs are very attractive, and S3 storage classes for less frequently accessed objects can
lower these costs even more.

An AWS SDK is available for most common languages and allows developers to build
applications that interact easily with the objects.

You can secure your bucket access using IAM policies and encryption at rest and in
transit.

Exam Essentials
Know the basics of S3 costs compared to EBS costs. When talking about strategies of
moving databases to AWS and database migration, it is key to know that Amazon S3
is a cost- effective solution to substitute LOB segments as well as to handle backup and
dump files.

Know the different storage classes in S3. Amazon S3 has an option to handle different
frequencies of access to get a lower cost for nonfrequent or even rare access. So, if you
put a backup file in S3 that will be used just in the case of compliance, you can set up an
S3 lifecycle policy to move the object to a lower- cost storage class, such as Infrequent Access,
Glacier, or Deep Archive.

Exercises 217

Know how to prevent access to objects with IAM. AWS IAM enables you to manage access
control to an S3 bucket, an S3 path, and an S3 key (the singular object), with very granular
options. You can set up different approaches based on each group of user permissions to list,
put, get, and prevent access from nonauthorized sources.

Know how to encrypt data with different levels of security. Amazon S3 enables you to use
its default encryption, starting with TLS in transit encryption, but also to use AWS KMS keys
and custom keys. This allows you to build different strategies of encryption that also help in
granting specific groups the ability to decrypt the data.

Exercises
For assistance in completing the following exercises, refer to the S3 User Guide at docs
.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html.

E X E R C I S E 7. 1

Create a Secure S3 Bucket for Your LOBs

In this exercise, you will create an Amazon S3 bucket uniquely named in AWS, with encryp-
tion enabled.

1. Log in as a user with S3 privileges in the AWS Console.

2. Using the service menus, go to the S3 console.

3. Click the Create Bucket button.

4. Define your bucket name as <Account ID>- exercise- 7- db- certification. It
should look like this: 123456789012- exercise- 7- db- certification.

5. Select a region such as us- west- 2 or us- east- 2 to create it.

6. Ensure that the option Block All Public Access is selected.

7. For the Default Encryption option, select Enable and choose the Amazon S3 Key
(SSE- S3) Encryption option.

8. At the bottom of the page, click Create Bucket to confirm the creation, with the selected
options.

http://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html

218 Chapter 7 ■ Better Places Than Databases to Store Large Objects

E X E R C I S E 7. 2

Create a Lifecycle Rule for Your S3 Bucket

In this exercise, you will enable a lifecycle policy in your bucket to save money with objects
that are infrequently accessed and also objects maintained for compliance reasons moving
objects to Standard- IA after 30 days and to Glacier after 90 days.

1. Click the bucket you created in Exercise 7.1 to open the options.

2. Click Management to open the life cycle options.

3. Click the Create Lifecycle Rule button.

4. Enter Lifecycle for LOBs at Lifecycle as the rule name.

5. Select This Rule Applies To All Objects In The Bucket and confirm your acknowledgment.

6. For lifecycle rule actions, select Transition Current Versions Of Objects Between Storage
Classes.

7. Select Standard- IA and 30 days. This is the minimum time to transition to Standard- IA.

8. Click Add Transition.

9. Select Glacier as the storage class, and select 90 days. The number of days needs to be
30 days more than the value for the Standard- IA rule.

10. Check the Acknowledge button and click Create Rule.

E X E R C I S E 7. 3

Enable Versioning for S3

In this exercise, you will enable versioning, so if someone uploads a file with the same
name, S3 will keep the previous version of the file in the background and enable you to roll
back to this previous version.

1. Use the bucket you created in Exercise 7.1, and click it to open the options.

2. Go to the Properties tab.

3. At the Bucket Versioning session, click Edit.

4. Check the Enable button and click the Save Changes button to complete the versioning
configuration.

Review Questions 219

Review Questions
1. A customer is trying to reduce costs by migrating from a simple on- premises Oracle database

that handles user profiles in an application to AWS. What is the most cost- effective solution
to store the profiles with profile photos that is currently stored in Oracle BLOB segments?

A. Create an RDS for Oracle and keep using an Oracle blob to store profile photos, since
RDS for Oracle supports blob segments.

B. Create an RDS for the PostgreSQL database, convert the schema, and migrate everything
from Oracle to PostgreSQL using the AWS Database Migration Service.

C. Create an RDS for the PostgreSQL database, convert the schema, and migrate everything
except the LOB segments from Oracle to PostgreSQL using the AWS Database Migra-
tion Service. Create a script to move the pictures to Amazon S3 and index them in the
table in PostgreSQL.

D. Create an RDS for the PostgreSQL database, convert the schema, and migrate everything
except the LOB segments from Oracle to PostgreSQL using the AWS Database Migra-
tion Service. Create a script to move the pictures to an Amazon EBS volume and index
them in the table in PostgreSQL.

2. What are examples of the storage classes available in S3?

A. S3 Standard, S3 Standard- IA, Deep Storage and PCI Compliance

B. Standard, Standard One- Zone IA, Deep Storage and PCI Compliance

C. S3 Standard, S3 Standard- IA, S3 Glacier, and S3 Glacier Deep Archive

D. Standard, Standard One- Zone IA, Long-Term Archive, and S3 One- Zone Infre-
quent Access

3. A customer is starting to use S3 to store large objects but is concerned about badly written
routine overwrite files. What is the easiest and cheapest way to implement a track version for
overwritten objects in a way that the old version of files is recoverable?

A. Index the files in S3 in a DynamoDB table, enable S3 encryption, create a routine that
checks object existence before writing it, and append a hash with the object key if it
already exists.

B. Use a UUID library to generate unique names for your files to avoid the chances of being
overwritten, and enable bucket versioning for bad routines error prevention.

C. Use a UUID library to generate unique names for your files to avoid the chances of being
overwritten and enable cross- region replication to replicate the objects.

D. Index the files in S3 in a DynamoDB table, enable S3 encryption, create a routine that
checks object existence, and replicate it to another region to keep a version of it.

4. Which of the following are valid encryption at rest options for an S3 bucket?

A. Amazon S3- Managed Keys (SSE- S3) with AES- 256.

B. AWS Key Management Service (SSE- KMS).

C. Server- Side Encryption with Customer Master Keys (CMKs).

D. Server- Side Encryption with Customer- Provided Keys (SSE- C).

E. All the above are valid.

220 Chapter 7 ■ Better Places Than Databases to Store Large Objects

5. What is an S3 object key?

A. An object key is a necessary key to gain access to the object for a user.

B. An object key or key name is the object tag you need to retrieve before accessing
the object.

C. An object key is an optional parameter to identify a key to retrieve your object.

D. An object key or key name uniquely identifies the object in an S3 bucket.

6. What is an invalid object size for a single object in S3?

A. 1 byte

B. 5 TB

C. 1 PB

D. 0 bytes

7. In terms of the cost per gigabyte of Amazon S3 objects, what is the correct ascending order of
storage classes, from the lowest to highest price?

A. S3 Standard, S3 Infrequent Access, S3 One Zone IA, S3 Glacier, S3 Glacier Deep
Archive

B. S3 Glacier Deep Archive, S3 Glacier, S3 One Zone IA, S3 Infrequent Access,
S3 Standard

C. S3 Glacier, S3 Glacier Deep Archive, S3 Standard, S3 One Zone IA, S3 Infrequent Access

D. S3 Glacier Deep Archive, S3 Glacier, S3 Standard, S3 One Zone IA, S3 Infrequent Access

8. Considering S3 resilience, what is true?

A. Objects in S3 are automatically replicated across availability zones in a region, unless
you use S3 One- Zone Infrequent Access.

B. You may need to manually copy S3 objects if you would like to have redundancy copy
in a region.

C. Objects in S3 are automatically replicated across regions unless you use S3 One- Zone
Infrequent Access.

D. You can set up cross- region replication so S3 will keep only one physical copy of the file
in each region.

9. How can you allow list and read- only access to objects in your S3 to a user from another
account (AccountB) with the least privilege necessary?

A. Set up the following bucket policy:

{
 "Version": "2012- 10- 17",
 "Statement": [
 {

Review Questions 221

 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::AccountB:user/AccountB_UserName"
 },
 "Action": [
 "s3:GetObject",
 "s3:PutObject",
 "s3:PutObjectAcl",
 "s3:ListBucket"],
 "Resource": [
 "arn:aws:s3:::YourAccountBucketName/*",
 "arn:aws:s3:::YourAccountBucketName"
]
 }
]
}

B. Set up the following bucket policy:

{
 "Version": "2012- 10- 17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::AccountB:user/AccountB_UserName"
 },
 "Action": [
 "s3:GetObject",
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::YourAccountBucketName/*",
 "arn:aws:s3:::YourAccountBucketName"

]
 }
]
}

222 Chapter 7 ■ Better Places Than Databases to Store Large Objects

C. Set up the following bucket policy:

{
 "Version": "2012- 10- 17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::AccountB:user/*"
 },
 "Action": [
 "s3:GetObject",
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::YourAccountBucketName/*",
 "arn:aws:s3:::YourAccountBucketName"

]
 }
]
}

D. Set up the following bucket policy:

{
 "Version": "2012- 10- 17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::AccountB:user/AccountB_UserName"
 },
 "Action": [
 "s3:*"
],
 "Resource": [
 "arn:aws:s3:::YourAccountBucketName/*"
]
 }
]
}

Review Questions 223

10. How can you provide in- transit TLS encryption to put or get objects from S3 with
low effort?

A. Use the AWS CLI or AWS SDK that provides authentication and encryption in transit
with S3.

B. Create an API gateway and a Lambda function to receive the requests and deal with the
put and get to and from S3.

C. Create a Beanstalk application to perform the put and get and a public load balancer
with a certificate to receive the requests.

D. Use a CloudFront and a bucket policy to accept requests only from it.

Deliver Valuable
Information at
the Speed Your
Business Needs

THE AWS CERTIFIED DATABASE –
SPECIALTY EXAM OBJECTIVES COVERED
IN THIS CHAPTER MAY INCLUDE, BUT ARE
NOT LIMITED TO, THE FOLLOWING:

 ✓ Domain 1.0: Workload- Specific Database Design
 ■ 1.1 Select appropriate database services for specific types of

data and workloads.

 ■ 1.2 Determine strategies for disaster recovery and high

availability.

 ■ 1.3 Design database solutions for performance, compliance,

and scalability.

 ■ 1.4 Compare the costs of database solutions.

 ✓ Domain 2.0: Deployment and Migration
 ■ 2.2 Determine data preparation and migration strategies.

 ✓ Domain 5.0: Database Security
 ■ 5.1 Encrypt data at rest and in transit.

 ■ 5.2 Evaluate auditing solutions.

 ■ 5.3 Determine access control and authentication mechanisms.

 ■ 5.4 Recognize potential security vulnerabilities within database

solutions.

Chapter

8

This chapter describes how to address different business speed
requirements with AWS databases for analytics, time- series, and
operational data.

Tools have been used more and more to extract information for business decisions. With
cloud services, business intelligence (BI) has been empowered, with data arriving faster and
being delivered in near real time for business decision- makers.

Different businesses require different response times when an event is generated to the
business. For example, an e- commerce application or website that delays a recommendation
5 seconds may lose the opportunity to catch a user’s attention, because they have already
clicked another banner, but the same 5- second wait for an analysis of your last five years of
sales may be OK.

For the different database flavors, AWS has launched different options to deliver business
information with managed services.

Information Latency
Information latency is the time from the event being generated to the time it’s available for
your business decision. The event can be a sequence of clicks, a single click, a photo upload,
the change in value of a stock in the market, or thousands of other kinds of events.

The Internet of Things (IoT) and Global Position System (GPS) technology have created
new use cases for image recognition algorithms. Enterprises can rely on sensors and alerts to
trigger actions. A simple application, for example, is to interact with customers using mes-
sages or pop- ups that display discounts to their smartphones as they get close to a store.

As you can expect, companies have a small window of time to interact with their cus-
tomers and business problems and to really make valuable decisions and take actions for
them. For example, this can be the time the customer enters the mall until the time the cus-
tomer decides to leave the mall. Or it can be the time when a customer interacts with prod-
ucts on your website to the time they leave the website. If the application misses this window
of time, it loses the opportunity to extract the full value from the data.

Figure 8.1 represents the value of the information for a business from the time an event
has been generated to the complete business action. The concept, introduced in 2002 by
Richard Hackathorn (www.researchgate.net/publication/228815719_Current_
practices_in_active_data_warehousing), highlights that the value of the information
for the business decreases when the response of the business action is delayed.

http://www.researchgate.net/publication/228815719_Current_practices_in_active_data_warehousing
http://www.researchgate.net/publication/228815719_Current_practices_in_active_data_warehousing

Information Latency 227

Considering the time elapsed between an event and the business action reacting to it,
database solutions can influence the information latency, which is the time it takes for the
information about the event to be ready for a business decision, we will use this concept for
the rest of this chapter.

As shown in Figure 8.2, speeding up the response time usually requires a higher infra-
structure cost, so there is a trade- off.

For example, if you analyze 1 TB of information that arrived in the last 24 hours using
Amazon Redshift Spectrum to read the data, you can use a different frequency to read it—
for example, every day, every hour, or every minute. For all frequencies, it will cost USD $5
per terabyte of data scanned, plus the cost of a small job to trigger during each frequency.
Considering that the job used to trigger the action of data processing uses the minimal time
usage of 1 minute, using AWS Glue Python Shell, it would cost the following:

 ■ USD $0.44 per hour ÷ 60 min/hour = USD $0.00733 × 1 execution for the daily rate

 ■ USD $0.00733 × 24 executions = USD $0.1759 for the hourly rate

 ■ USD $0.0073 × 1440 executions = USD $10.555 in a per minute rate

Adding the USD $5 costs per terabyte of data scanned, reading the data using Redshift would
cost from USD $5.00733 to USD $15.555 per day, depending on the frequency of the job.

F IGURE 8 .1 Information latency

228 Chapter 8 ■ Deliver Valuable Information at the Speed Your Business Needs

For the same 1 TB, if you need a faster response time, from seconds to a few milliseconds, and
you choose Amazon Timestream, it will cost USD $0.05 per 1 million writes of 1 KB multiplied by
1073.74 millions of KB to write 1 TB, which equals USD $53,687, plus a per scan price of USD
$0.01 per GB scanned times 1024 GB, which equals USD $10.24, for a total of USD $63.927.

When you’re getting a microsecond response time, performing queries and calculations
is challenging because each calculation needs to occur close to the event that triggered the
action. If you used a cache environment to store the data, and assuming the data would be
removed after one day, you would need a cluster of seven instance types of m4.10xlarge just
to store the data. This would cost USD $15,902.32 per month or USD $530.07 per day.

So, in this example of 1 TB, the costs vary from a fraction of a dollar to $530 for the
same amount of data with different information latency.

All the prices of the preceding examples were taken from the AWS web-
site in October 2022.

To deliver information extremely quickly, we need to provide infrastructure and stream-
ing technologies that have higher cost; if the business decisions can wait to extract value
from the data, there are batch and microbatch technologies that are very cost efficient.

F IGURE 8 .2 Solution cost comparison based on information rates

Data Warehouses 229

Because of network communications latency, if we need faster information, we need to put
closer to the business event infrastructure that is capable of handling the event and transform it
into information for the business, such as what happens in the example of Amazon Go stores.

This chapter addresses three different database solutions with different characteristics, as
shown in Table 8.1.

For near real- time analysis over time- series data, there are specific database engines, such as
Amazon Timestream, that are able to perform time- windowed queries and advanced analytics.

Search engines, such as Amazon OpenSearch, provide a fast granular ingestion capability
and the ability to index your data to perform complex searches and timeline analysis.

If your business needs powerful analytical functions, such as comparing business results among
hundreds of different channels and locations for the past six months, that allow a few minutes of
information latency, you can use a data warehouse, such as Amazon Redshift. The information
latency is higher, but the analytical capabilities and cost are lower for large amounts of data.

Data Warehouses
Data warehouses are enterprise systems specializing in data analysis and reporting. They are
composed of large computational machines dedicated to storing and combining aggregated
information, extracted from transactional environments. They have been in place since the
1970s to help businesses make decisions based on information. The concepts are old but still
useful for many enterprises.

Extract, transform, and load (ETL) is the process that extracts data from transactional environ-
ments, aggregates it in a business view, and loads it into a data warehouse. It usually is performed
on a dedicated machine that sits between the transactional database and the data warehouse. As
shown in Figure 8.3, the data warehouse information flow starts with the ETL process.

TABLE 8 .1 Database Engines for Analytics, Time- Series, and Operational Data

Database Engine AWS Service Information Latency Use Case

Time- series
database

Amazon Timestream Milliseconds IoT

Operational data

Time- series analytics

Data warehouse Amazon Redshift Minutes to hours Analytics of any complexity

Historical analysis

Search engine Amazon Open-
Search Service

Milliseconds to
seconds

Operational data

Text search

Simple queries

230 Chapter 8 ■ Deliver Valuable Information at the Speed Your Business Needs

1. Connect to the sources with ETL tools (for example, Pentaho Data Integration, Infor-
matica PowerCenter, Matillion, Talend, or AWS Glue).

2. Map the data sources, schemas, and tables.

3. Create jobs to extract the data from the source systems and save them in a staging area.

4. Add steps to transform the data with a job.

a. Combine tables to enrich the data.

b. Perform a quality check on the information.

c. Create business views of the data, adjusting the naming conventions and data types.

5. Add the job’s final step to load the data into the data warehouse.

6. Schedule the job for a period when the source system is not being used intensively to
avoid concurrency with transactional operations.

As an established standard inside the data warehouse, the information is separated into
data marts that represent the business unit’s data domain with all the information this
business unit needs.

F IGURE 8 .3 Data warehouse environment diagram

Data Warehouses 231

The business users use powerful analytics tools with data visualization capabilities, such
as Tableau, QlikView, and Amazon QuickSight, to create graphic dashboards that represent
the main metrics for their businesses, usually called key performance indicators (KPIs), and
also discover trends and make business projections.

It happens that the ETL process usually to extract data from the systems by querying
large amounts of data that may affect the transaction operations, which used to be done dur-
ing the night batch job schedules.

Scheduling tools help operations by allowing jobs to run in parallel and also in sequence
with dependencies.

With all this complexity, in a standard data warehouse you will see “D- 1” (the current
day minus one day) information. Unfortunately, due to the capacity of ETL tools and
the data warehouse itself, it’s not uncommon to see some D- 2 environments that have
information from about two days ago.

With less intrusive extraction tools using change data capture (CDC), it’s possible to per-
form “all day” operations, extracting data from the source systems without affecting their
performance.

Database Engines for Data Warehouses
To deal with information at scale from different sources and serve the business areas in large
data warehouse systems, the hardware (CPU, memory, and disk) in a single machine is not
enough for large companies.

The massively parallel processing (MPP) architecture uses several machines that work in
parallel, orchestrated by a process, to speed up the analysis of very large datasets, taking
advantage of several sets of CPU, memory, and storage to perform data operations, as shown
in Figure 8.4.

MPP data warehouses can receive more workloads and still deliver the information at
a reasonable information latency rate. Using several computational nodes and
software intelligence to use the nodes in parallel to process queries has become the standard.

In the MPP architecture, the data is split into different nodes, usually using a key with
good cardinality and then a key to group similar data inside the blocks.

F IGURE 8 .4 MPP architecture

232 Chapter 8 ■ Deliver Valuable Information at the Speed Your Business Needs

Data marts and the business user queries aggregate data by column and do not care much
about the details of a single record. Instead of picking a single transaction of a customer in a store,
for example, business analysts usually query for the total sales in stores and compare the sales for
a period of time, such as which products, categories, or brands were sold the most, for example.

To aggregate data with the Structured Query Language (SQL) using aggregate functions
(SUM, COUNT, AVG) grouped by a few columns, it makes sense to store data in a columnar
format. Say we have a table that has 50 columns, and the system is querying information about
only 3 columns. Then when summarizing or counting the results of column sales by column,
month, and product, the system will read fewer storage blocks using a columnar storage
format, actually only 3/50 of potential blocks, compared to a line record storage format, where
it would need to read all 50 columns and then filter the 3 columns used in the query.

MPP databases use a columnar format, so performing Select * from
is terribly bad usage of them, because instead of reading a few column
blocks, you will read all column blocks. In other words, you will be wast-
ing CPU, memory, and disk operations.

Figure 8.5 shows the difference between three records stored in a line record format and
stored in a columnar format. The advantage of columnar format for aggregating data is
that you can read only the blocks of the columns you are using in your query. For example,
Dates and Product Name discover the number of products you have sold by date, instead of
reading all the columns from the line records (OLTP pattern) and then discarding the ones you
don’t need.

F IGURE 8 .5 Line record storage vs columnar storage formats

Data Warehouses 233

The block size is also larger compared to online transactional database (OLTP) relational
databases. Using columnar format and querying aggregated data benefits from large block
sizes, so instead of using an 8 KB block size (a common size in many OLTP databases), MPP
databases usually use 512 KB or 1 MB block size. This means each physical read can contain
a large number of records of a single column.

Appliances were a good way to solve the problem for on- premises data centers, but since
cloud computing is being used more and more, data warehouses benefit from the cloud. We
can find a great variety of software and hardware built together to deliver MPP databases.
The following are good examples:

 ■ Teradata

 ■ IBM Netezza

 ■ IBM Infosphere Balanced Warehouse, based on DB2

 ■ EMC Greenplum appliance

 ■ Oracle Exadata

 ■ Vertica (Dell/EMC)

After the introduction of cloud computing, companies launched their data warehouses in
the cloud, so we are now seeing some of the appliance leaders with great solutions built on
top of AWS. Examples include Teradata (Teradata Vantage on AWS) and Greenplum (Pivotal
Greenplum on AWS), and some new ones are Snowflake and Vertica (Vertica by Hour).

For the certification exam, you must know Amazon Redshift, a PostgreSQL- based data-
base specifically designed for OLAP and BI applications. Amazon Redshift is the AWS solu-
tion for data warehouses that uses the modern concept of a data lakehouse.

A data lakehouse is an architecture with a single access point that provides joins between
the data that is inside the data warehouse, Amazon Redshift, for example, and the data that
resides in Amazon S3, acting as a data lake. You will learn more about this later in this chapter.

Amazon Redshift has been the managed service choice in AWS to migrate from on- premises
data warehouses to the cloud. AWS has also developed tools to make it easy to migrate.

Migrating Data Warehouses to Amazon Redshift
Using AWS SCT
The AWS Schema Conversion Tool (AWS SCT) converts database schemas and can migrate
data from traditional data warehouses to Amazon Redshift.

AWS SCT is a client tool that you can install in a machine running Microsoft Windows,
Apple macOS, Ubuntu, or Fedora Linux. It facilitates the migration to Amazon Redshift by
converting the schemas from supported source systems to Amazon Redshift and migrating
the data using SCT data extractors.

The following are some of the supported sources for schema migration:

 ■ Greenplum Database (version 4.3 and later)

 ■ Microsoft SQL Server (version 2008 and later)

234 Chapter 8 ■ Deliver Valuable Information at the Speed Your Business Needs

 ■ Netezza (version 7.0.3 and later)

 ■ Oracle (version 10 and later)

 ■ Teradata (version 13 and later)

 ■ Vertica (version 7.2.2 and later)

AWS SCT facilitates the migration to Amazon Redshift by performing the following steps
(see Figure 8.6):

1. Map the source DW schema and create conversion SQL statements for the schema. (You
can create rules to change names and data types in this step.)

2. Migrate the schema to Redshift, creating tables and other database objects; you can
filter the objects to be migrated.

3. Extract data from the source data warehouse and store it in an AWS Snowball device
on premises that will be loaded into Amazon S3, or directly send it into an S3 bucket.

4. Load the data from the S3 bucket into Amazon Redshift with the COPY command.

Besides the schema and the data, you may want to convert the ETL jobs you run on
premises to AWS Glue. The job conversion can be done with the AWS SCT ETL convertor.

AWS SCT also provides a schema migration for other databases; this will be discussed in
Chapter 12, “Migrating Your Data to AWS.”

F IGURE 8 .6 SCT schema and data migration to Redshift

Amazon Redshift 235

AWS Snowball is a storage device with high- speed connectivity that
AWS provides in case you need to move large amounts of data and there
is limited network traffic bandwidth. Each device can handle 50–80 TB,
depending on the version. AWS sends the device to you; then you con-
nect it to your network using RJ45, SFP+, or SFP+ (with optic) connectors.
You transfer the data, send it back to AWS, and AWS loads your data into
an S3 bucket or EBS volumes. AWS Snowball Edge is a version where
you transfer data and also run code on premises, and AWS Snowcone is
a simple option for volumes up to 8 TB.

Amazon Redshift
Amazon Redshift is a robust, fully managed AWS service for data warehouses. It creates all
the cluster infrastructure and manages cluster nodes for you to load data and analyze tens of
gigabytes to perabytes of data.

When migrating data warehouse workloads to AWS, Amazon Redshift is the top- of- mind
service. Although there are options to perform queries for reports, such as Amazon Aurora
with read replicas, when the workload has analytics characteristics with large volumes, then
the columnar storage format and the MPP architecture of Amazon Redshift are keys to
delivering performance at low cost.

Redshift Cluster Architecture
Amazon Redshift cluster architecture is based on MPP concepts with columnar data storage
and efficient data compression per column (see Figure 8.7).

The leader node is where the client applications connect, using JDBC or ODBC connec-
tors. The leader node receives the queries, parses and builds an execution plan, and then dis-
tributes the compiled code of this plan to the compute nodes.

Compute nodes are where the data and processing are distributed, with dedicated CPU,
memory, and disks attached to each one. Every compute node has a group of slices that are
the smallest unit of Redshift; slices are units of CPU, memory, and disk space used to paral-
lelize processing and storage.

So even if you have only one compute node, the data as well as the processing will be dis-
tributed among the slices.

As your data and workloads grow, you can add more nodes to a Redshift cluster.

Table Design in Redshift
Amazon Redshift supports several different table models, such as star schema, snowflake
schema, third normal form (3NF), and denormalized tables. It’s easy to bring working
models from other data warehouses to Redshift without changing table modeling.

236 Chapter 8 ■ Deliver Valuable Information at the Speed Your Business Needs

One important thing to know about table relationships and constraints is that you should
define the primary key and foreign key constraints between tables wherever appropriate for
the table models mentioned, such as star schema, snowflake, and 3NF. Even though they are
informational only, they don’t enforce data uniqueness; for example, the query optimizer
uses those constraints to generate more efficient query plans.

To get all the benefits from the Redshift architecture, we need to distribute the data
among the compute nodes and slices. This way, when you issue a query, the work is distrib-
uted among the slices using parallelism.

Distribution style is a table attribute in Redshift that tells Redshift how to distribute
data among Redshift cluster nodes; it can be set to EVEN, KEY, ALL, or AUTO. We can
specify a distribution style during table creation; otherwise, Redshift will use the AUTO
distribution.

Figure 8.8 illustrates the distribution styles, using an alphabetic column example for the
distribution key that will determine where to put the records in the slices according to their
values. It also shows that Distribution Even will store the records in a round- robin fashion in
the slices, without taking the value into consideration, and that Distribution All will save all
the records in all the nodes.

F IGURE 8 .7 Redshift architecture

Amazon Redshift 237

F IGURE 8 .8 Redshift distribution style

238 Chapter 8 ■ Deliver Valuable Information at the Speed Your Business Needs

The following are the Redshift distribution style options:

 ■ Key distribution is a distribution style where the data is distributed in the slices and
nodes according to the values of one key- chosen column. This is great for large tables
such as fact tables, and if you distribute a pair of tables by their joining keys, the match-
ing values of both are physically stored together.

 ■ All distribution is a distribution style where every node has a copy of the entire table. It’s
ideal for small dimension tables that you frequently join with fact tables. As each node has
a copy of it, the storage requirement is multiplied by the number of nodes.

 ■ Even distribution is a distribution style where the data is distributed in the slices and
nodes in a round- robin fashion, without taking the values into consideration. You may use
it if your table doesn’t perform joins, such as one big denormalized table design pattern.

 ■ Auto distribution is a distribution style that lets Redshift decide automatically between
the ALL, EVEN, and KEY distribution styles, based on your table size and queries, so
data will be distributed based on the style that better fits the data and query profile of
the table.

After deciding the distribution style, you should decide on the sort key, which is how the
data will be ordered inside the data blocks that were distributed by the distribution key.

Sort keys are important for the queries. For example, if you are interested in queries
using ranges of dates, using the date column as the sort key can reduce the number of blocks
needed for a query, as all the dates in a small range will be in a single or few blocks, instead
of having them split in several blocks not ordered.

You should always use sort keys for frequently used columns in your WHERE clauses that
could filter the number of data blocks to retrieve.

Redshift lets you create two types of sort keys.

 ■ Compound sort keys is the preferred sort key method for a Redshift table. Data is
ordered by a list of columns, in the order in which they are listed in the compound key
definition. To improve the use of compound keys, put the most frequently used columns
in the WHERE or GROUP BY clauses first in the key definition. There is a limit of 400 sort
key columns per table.

 ■ Interleaved sort keys is a more flexible sort key method for a Redshift table that gives
equal weight to the columns in the interleaved key definition. This method is used when
a query uses restrictive predicates on secondary sort columns. However, AWS recom-
mends not using an interleaved sort key on columns with monotonically increasing
attributes, such as identity columns, dates, or timestamps. There is a limitation of eight
columns per table when using interleaved sort keys.

You can also set SORTKEY AUTO for your table definition. This allows Redshift to choose
the best sort keys based on your query behaviors.

As a columnar database, Redshift can use compression encode, which is the type of com-
pression that will be applied for each column; there are different encoding algorithms avail-
able according to column data types (see Table 8.2), and you can let Redshift manage the
encode for the tables using the ENCODE AUTO option for tables, which is the default.

Amazon Redshift 239

Encoding saves storage space by compressing the data. It also optimizes read and write
operations by reducing the number of storage blocks required for the same data.

Although you can explicitly set up encodes for your table columns, it’s a good idea to let
Redshift calculate and suggest the best encoding for you, as it does by default when you use
the COPY command to load data for the first time.

ENCODE AUTO is the default for tables and columns whenever you don’t specify other
encode types. With ENCODE AUTO Redshift will manage compression encoding for the
columns in the table.

TABLE 8 .2 Compression Encodings and Data Types

Compression
Encoding

Keyword in
CREATE TABLE and
ALTER TABLE Data Types

Raw (no
compression)

RAW All

AZ64 AZ64 SMALLINT, INTEGER, BIGINT, DECIMAL, DATE, TIME-
STAMP, TIMESTAMPTZ

Byte dictionary BYTEDICT SMALLINT, INTEGER, BIGINT, DECIMAL, REAL, DOU-
BLE PRECISION, CHAR, VARCHAR, DATE, TIMESTAMP,
TIMESTAMPTZ

Delta DELTA

DELTA32K

SMALLINT, INT, BIGINT, DATE, TIMESTAMP, DECIMAL

INT, BIGINT, DATE, TIMESTAMP, DECIMAL

LZO LZO SMALLINT, INTEGER, BIGINT, DECIMAL, CHAR, VAR-
CHAR, DATE, TIMESTAMP, TIMESTAMPTZ, SUPER

Mostlyn MOSTLY8

MOSTLY16

MOSTLY32

SMALLINT, INT, BIGINT, DECIMAL

INT, BIGINT, DECIMAL

BIGINT, DECIMAL

Run- length RUNLENGTH SMALLINT, INTEGER, BIGINT, DECIMAL, REAL, DOU-
BLE PRECISION, BOOLEAN, CHAR, VARCHAR, DATE,
TIMESTAMP, TIMESTAMPTZ

Text TEXT255

TEXT32K

VARCHAR only

VARCHAR only

Zstandard ZSTD SMALLINT, INTEGER, BIGINT, DECIMAL, REAL, DOU-
BLE PRECISION, BOOLEAN, CHAR, VARCHAR, DATE,
TIMESTAMP, TIMESTAMPTZ, SUPER

240 Chapter 8 ■ Deliver Valuable Information at the Speed Your Business Needs

Loading Data into Redshift
Performing a single- row insert is bad for Redshift. As discussed previously, Redshift is a
columnar database, so every row you add in a table, with 10 columns, for example, will
actually perform 10 entries, in 10 different 1 MB blocks of storage.

So, to optimize load performance and Redshift block usage, avoid performing isolated
insert operations.

Redshift optimizes load operations with the following commands:

 ■ COPY: This command is used to load data from files, usually from an Amazon S3 bucket.
You can use parallelism, using cluster slices to load data from the files. When you have
data in a number of files that is a multiple of the cluster slices count, you optimize
parallelism, as every slice will always be handling a file and loading it to Redshift until
all the files are done.

 ■ INSERT as SELECT: This command performs a bulk insert into an existing table, opti-
mizing the write operation with efficient block usage and using parallelism.

 ■ CREATE TABLE as SELECT: This command creates a table from a result set of a
SELECT statement, performing a bulk insert similar to INSERT as SELECT.

The Redshift COPY command is very flexible, allowing you to load data from Amazon S3,
Amazon DynamoDB, and Amazon EMR, as well as from an SSH remote connection. When
loading data from Amazon S3, the Redshift COPY command supports several file types and
compressions: AVRO, JSON, BZIP2, GZIP, LZOP, PARQUET, ORC, ZSTD, CSV, DELIM-
ITED, FIXED WIDTH, and SHAPED FILE.

If you need to encrypt data on the client side, before loading the data into Redshift using
the COPY command, you can use an AWS KMS customer- managed symmetric key (KMS-
CMK) to encrypt the data, add the ENCRYPTED keyword along with the compress format in
the FORMAT parameter (GZIP, LZOP, BZIP2, or ZSTD), and perform the load using COPY.

To parallelize the work of the COPY command, you need to split the data you want to
load into several files. Each slice of Redshift will be able to load a file at a time, so if you
have 16 slices in a cluster, you should split your data into a multiple of 16 files, in a way that
every slice is working until the load is ended in a fast and parallelized way.

Remember, however, that you should not keep file size too small; it should be at least
1 MB and ideally up to 1 GB after compression. If you have a large dataset to load, you can
use a larger file size than 1 GB, but keep in mind that you should parallelize the load using
multiple files to use the cluster resources and speed up the operation.

You should always authorize COPY commands using IAM roles to allow access to the data
source, although it’s possible to use IAM credentials.

The following is an example of a COPY command that loads the data from all the files
that are in the specified path in Amazon S3 using an IAM role:

copy my_student_table
from 's3://mybucket_name/path_for_files/'
iam_role 'arn:aws:iam::<aws- account- id>:role/<role- name>'
region 'us- east- 1;

Amazon Redshift 241

The IAM role used in the COPY command needs to have permission to list and read files
from the specified path. You can be specific and point to a single file or use a manifest file
with a list of files.

The following is an example of the COPY command using a manifest file:

copy my_student_table
from 's3://mybucket_name/student.manifest'
iam_role 'arn:aws:iam::<aws- account- id>:role/<role- name>'
manifest;

The following is an example of a manifest file where four files with the path url need to
be loaded for the operation to succeed:

{
 "entries": [
 {"url":"s3://mybucket_name/student01", "mandatory":true},
 {"url":"s3://mybucket_name/student02", "mandatory":true},
 {"url":"s3://mybucket_name/student03", "mandatory":true},
 {"url":"s3://mybucket_name/student04", "mandatory":true}
]
}

Data Lakes in AWS
AWS has a well- known architecture for data lakes— that is, Amazon S3 to store the data,
AWS Glue Data Catalog to catalog data objects as tables and databases (using a hive meta-
store), and AWS Lake Formation to control access for IAM groups and roles (see Figure 8.9).

F IGURE 8 .9 AWS data l architecture

242 Chapter 8 ■ Deliver Valuable Information at the Speed Your Business Needs

For some data sources, such as Apache Avro, Apache ORC, Apache Parquet, JSON,
Binary JSON, XML, Amazon Ion, Apache log, Combined Apache log, Linux kernel log,
Microsoft log, Redis log, Ruby log, and CSV files, AWS Glue Data Catalog can map tables
with hive metastore definitions using a crawler. After cataloging the tables, it allows them to
be queried with Amazon Athena (with Presto engine), Amazon EMR (Spark and Presto), and
Redshift Spectrum.

Redshift Spectrum
Redshift Spectrum allows Redshift to query data from an AWS data lake in Amazon S3, over
structured and semistructured data.

The Redshift Spectrum servers are a set of servers that work independently and along
with the Amazon Redshift cluster.

You can point Redshift Spectrum to the AWS Glue Data Catalog using an external
schema, and you can attach an IAM role to this schema to be granted access to databases
and tables using AWS Lake Formation.

CREATE EXTERNAL SCHEMA my_student_schema
FROM DATA CATALOG DATABASE 'my_db' region 'us- east- 1'
IAM_ROLE 'arn:aws:iam::<redshift- account- id>:role/<spectrum- role>';

Redshift Federated Queries
Redshift federated queries allow you to integrate queries from Amazon Redshift on live
data in external databases with queries across your Amazon Redshift and Amazon S3
environments.

Federated queries can work with external databases in Amazon RDS for PostgreSQL and
Amazon Aurora PostgreSQL and Aurora MySQL Compatibles.

Data Lakehouse
A data lakehouse architecture uses a data warehouse in conjunction with a data lake and
other sources (see Figure 8.10).

With Amazon Redshift, you can use Redshift Spectrum and federated queries to access
external tables and join them with internal Redshift tables.

Suppose you have the following three tables:

 ■ Redshift table: redshift.transactions
 ■ Amazon S3 table: s3.transactions_hist
 ■ RDS for PostgreSQL table: rds.transactions_online

Amazon Redshift 243

You can create a view that unites the three tables:

CREATE VIEW transactions AS
 SELECT t_id, t_date::date , t_type, t_value
 FROM s3.transactions_hist
 UNION ALL SELECT * FROM redshift.transactions
 UNION ALL SELECT * FROM rds.transactions_online
 with no schema binding;

Then you can join the view with dimensions:

SELECT tr.t_id, tr.t_date , tp.t_description, tr.t_value
FROM transactions as tr
LEFT OUTER JOIN redshift.type_t as tp
ON tr.t_type = tp.t_type;

Redshift Cluster Node Types
AWS offers three Redshift cluster node types:

 ■ Dense compute: Nodes with SSD storage, with 160 GB (dc1.large and dc2.large) or 2.56
TB per node (dc1.8xlarge and dc2.8xlarge)

 ■ Dense storage: Nodes with HDD storage, with 2 TB (ds2.large) or 16 TB per node
(ds2.8xlarge)

F IGURE 8 .10 AWS data lakehouse architecture

244 Chapter 8 ■ Deliver Valuable Information at the Speed Your Business Needs

 ■ RA3: Nodes with an independent storage layer up to 32 TB (ra3.xplus) and 128 TB
(ra3.4xlarge and ra3.16xlarge) per node

Table 8.3 shows detailed information about each node type for Redshift.

Notice that Redshift clusters with the RA3 node types have the largest scalability in terms
of RAM and storage. The storage for RA3 nodes is provided and priced separately from the
nodes as Redshift Managed Storage.

Redshift Monitoring
Amazon CloudWatch is the central monitoring for AWS services, and Redshift is also sup-
ported with tens of metrics.

The Redshift console also displays several metrics from CloudWatch, such as CPU utiliza-
tion, which is displayed for each node. This helps to check whether all the clusters are being
used or only a few nodes are working.

One thing to notice is that Redshift will try to use the cluster for heavy queries. Some-
times we can see a high usage (above 95 percent of CPU), and the expected behavior is that
peaks last for a few seconds to minutes. If the cluster is being used for a very long period
with high usage, then it is time to evaluate resizing the cluster.

TABLE 8 .3 Redshift Node Types

Node Type Node Size

vCPU
per
Node

RAM
(GB)
per Node

Slices
per
Node

Nodes per
Cluster
(Range)

Max
Storage
(TB)

Dense Compute dc1.large 2 15 2 1 to 32 5

dc2.large 2 15 2 1 to 32 5

dc1.2xlarge 32 244 16 2 to 128 326

dc2.2xlarge 32 244 16 2 to 128 326

Dense Storage ds2.xlarge 4 31 2 1 to 32 64

ds2.8xlarge 36 244 16 2 to 128 2,048

RA3 ra3.xplus 4 32 2 2 to 16 1,024

ra3.4xlarge 12 96 4 2 to 32 8,192

ra3.16xlarge 48 384 16 2 to 128 16,384

Amazon Redshift 245

Metrics about queue utilization and query wait time are also available on a Redshift
console, so it’s good to check how queues are set and adjust them as needed.

With CloudWatch alarms you can set alarms triggered by thresholds reached and send the
alert to an Amazon Simple Notification Service (Amazon SNS) topic or run an AWS Lambda
function that reacts to your alarm.

CPU utilization for Redshift is key to getting benefits from its multinode
architecture. We want to see all the nodes working, especially for large
queries and loads (COPY commands). If you see an unbalanced usage of
CPU among the nodes for queries, you can look at the tables involved in
the queries and verify the distribution style and distribution keys. If you
see this behavior for load operations, you should split the number of files
you have into multiple slices in the cluster so that each will be handled by
a slice.

Redshift Scalability
As previously demonstrated in Table 8.3, the scalability can vary according to the node type.
If you use a cluster with the largest Redshift RA3 node size (ra3.16xlarge), it can have up to
6,144 vCPUs, 48 TB of RAM, and 16,384 TB of storage.

To scale your cluster, you can perform the following operations:

 ■ Elastic resize: This can be used to change the cluster configuration in terms of the
number of nodes, node type, or both. An elastic resize can take between 10 and 15 min-
utes. During a resize operation, the cluster is read- only. If you’re changing the number
of nodes only, the connections are kept open, but the queries are temporarily paused.
There are growth and reduction limits on the number of nodes, based on the current
node number and type: four times for RA3 xlarge nodes, two times for other node types.
An elastic resize has some limitations: it is available only for clusters in a Virtual Private
Cloud (VPC) network, and dc2, ds2, and ra3.xplus nodes support only two times the
growth and a one- half reduction, as opposed to ra3.4xlarge or ra3.16large nodes for
which you can resize up to four times the current size or a one- quarter reduction. To
check the available resize possibilities for your cluster, you can use the describe-
node- configuration- options AWS CLI command with the - - action- type
resize- cluster parameter.

 ■ Classic resize: If the elastic resize is not available according to the number of node
restrictions described previously, use a classic resize to change the node type, number of
nodes, or both. The operation can take hours or last up to several days, depending on
your data size. Note that the source cluster will be read- only during a resize operation.

 ■ Snapshot, restore, and resize: You can make a copy of your cluster to keep it available
during a classic resize. Then, resize the new cluster. You will need to copy the very recent
data ingested in the old cluster, if any, after the migration completes.

246 Chapter 8 ■ Deliver Valuable Information at the Speed Your Business Needs

You can upgrade from dense compute or dense storage to an RA3 node. The operation is
performed by taking a snapshot, creating a new cluster RA3 from the snapshot, and renam-
ing it to the old cluster name.

You can automate the operation of upgrading to RA3 by performing an elastic resize.
You may encounter a few examples of Redshift environments where the customer uses

more than one cluster at the same time using some of these options:

 ■ Using PgBouncer, an open- source, lightweight, single- binary connection pooler for
PostgreSQL, in front of two Redshift clusters in different availability zones, and
 letting PgBouncer control each cluster access. Check AWS git github.com/awslabs/
pgbouncer- rr- patch for details.

 ■ Dual load using the same ETL process for both clusters.

 ■ Dedicate a different group of user to each cluster.

Workload management (WLM) enables you to define queues of queries with rules to limit
the number of Redshift resources or cluster time they can use; then you associate groups of
users to route their queries to the appropriate queue’s runtime.

To get started with WLM, you can use Automatic WLM, which creates up to eight
queues and sets memory and concurrency to automatic. Then you can define a priority for
the queues you need based on the business requirements. Queries can be assigned based on
database user groups, and you can use a query monitor rule (QMR) to limit long- running
queries.

Manual WLM is also available. With this option you set up the queues and create the
routing rules for user groups and query groups. You also control the memory and concur-
rency for each queue.

There is also a queue for fast- running queries, called short query acceleration (SQA),
which is useful to avoid having short- running queries waiting in a common queue. This is
enabled by default.

The Concurrent Scaling feature may help with peaks of load for Redshift clusters.
When you enable Concurrent Scaling for a queue using WLM, you can support virtually

unlimited concurrent users; with this option Redshift adds additional cluster capacity to pro-
cess peaks of read and write queries.

Although concurrency scaling supports COPY, INSERT, DELETE, and UPDATE statements,
in some cases, the write statements are not sent to the concurrency- scaling cluster, such as
CREATE TABLE or ALTER TABLE.

Redshift Security
To protect data in a Redshift cluster, you should create Redshift clusters inside nonpublic
subnets in your VPCs and connect to Amazon VPC through a VPN or AWS Direct Connect
connection, unless you have a good reason to deploy it in a public subnet.

Redshift is secured by security groups that will allow traffic only from well- known appli-
cations. You will explicitly set up security group rules that allow ingress traffic from other
security groups or IP ranges to access your Redshift cluster.

http://github.com/awslabs/pgbouncer-rr-patch
http://github.com/awslabs/pgbouncer-rr-patch

Amazon Redshift 247

You should also use Amazon S3 VPC endpoints so that Redshift will privately access
data in S3 for the ETL process to load or unload. The Amazon Redshift API also can be used
through a VPC endpoint (AWS PrivateLink).

It is important to know that you can enable storage encryption if you have requirements
for encryption at rest. Redshift allows you to set up an AWS Key Management Service to
manage the encryption keys.

With Redshift encryption at rest enabled, the data stored on disks within a cluster and the
Amazon S3 backups of Redshift data will be encrypted with Advanced Encryption Standard
(AES- 256).

It’s always possible to encrypt the data before sending it to Redshift with client- side
encryption of your preference, but with this option the management of encryption process,
keys store, and related tools is all yours.

Data tokenization is popular nowadays to mask or obfuscate table column values that
should not be public or seen by users or groups of users for data security purposes. Personal
identifiable information (PII) or protected health information (PHI) can be tokenized with
Amazon Redshift user- defined functions (UDFs) using AWS Lambda functions.

There are also native Redshift functions such as SHA2 that can be used in database views
to provide hash values for people not authorized to view the information.

The following is an example of a VIEW with a hash function for PII information:

CREATE OR REPLACE VIEW <hashed_view> AS
SELECT sha2(name, 256) AS name,
sha2(email, 256) AS email,
transaction_timestamp,
transaction_id,
transaction_type,
transaction_value
FROM <original_table>;

With the preceding VIEW example, if you grant only this view to a group of data scien-
tists, they would have data to analyze but would not know who this data belongs to.

For audit purposes, Redshift has two levels of traceability:

 ■ CloudTrail is available for API calls that change or interact with a Redshift cluster, with rich
information about the origin of the call such as IP address, interface, and IAM role or user.

 ■ Database audit logging is available for database events such as connection log, user log,
and user activity log. The last one logs each query before running it. You need to set the
parameter enable_user_activity_logging to true. The audit log destination is
Amazon S3 with managed keys encryption (AES- 256).

Redshift Data Resilience and Backup
Redshift is backed up by default with a snapshot every 8 hours or 5 GB of changing data per
node. The default retention policy is 24 hours, but you can modify it. To disable automatic
snapshots, you can set the retention policy to zero.

248 Chapter 8 ■ Deliver Valuable Information at the Speed Your Business Needs

For RA3 node–type clusters, you cannot disable automated snapshots, so you can set the
retention from 1 to 35 days.

For some use cases (for example, after a data load completion), you may want to schedule
snapshots, which can be as specific as days of the week and times or as generic as every 12
hours. (The limits are from every 1 hour to every 24 hours.)

Manual snapshots can be triggered using the Redshift API or Redshift console. This is
useful when you need to trigger snapshots in a script, and their retention can be specifically
set for each manual snapshot.

If you have a set of tables that doesn’t need to be backed up (because you re- create them
every day, for example), you can set the table with the BACKUP NO parameter. This will
exclude the table from snapshots. The default is set to include the table.

For restore operations, you can use table granularity, restoring, for example, a single table
from the snapshot to your cluster.

If you need to create a multiregion failover scenario, you can set Redshift automated
snapshots to be written also in another region.

You can restore the whole cluster from a snapshot and can use this process to also change
the node type or node number of your cluster using the following AWS CLI command, for
example:

aws redshift restore- from- cluster- snapshot
- - region us- west- 2
- - snapshot- identifier student- cluster- change011- snapshot
- — cluster- identifier student- cluster- 123456789012
- - node- type ra3.4xlarge
- - number- of- nodes 4

To verify which cluster node types and node numbers would be the best options for
your Redshift snapshot to be restored on, you can use the Redshift AWS CLI command
describe- node- configuration- options. This command will list all the available con-
figurations, NodeType and NumberOfNodes, that you can use to restore your snapshot with
an estimated disk utilization percentage for each configuration.

Redshift snapshots are stored in an AWS internal managed S3 not shown in your account
as S3 objects, and you can only access them using Redshift’s API. This means that every
snapshot is available in any availability zone of the region your cluster is in, and in any
availability zone of another region if you set up the automated cross- region snapshot replica-
tion copy.

So if your current cluster is in the us- east- 1 region at the availability zone a (us- east- 1a),
you can restore a snapshot in any other availability zone of that region— us- east- 1b, us-
east- 1c, and so on.

And if you enabled Redshift to automatically copy snapshots to another region, such as
us- west- 2, you would be able to restore in any availability zone of us- west- 2, for example,
us- west- 2a, us- west- 2b or us- west- 2c.

You can use the Redshift UNLOAD operation to extract logical backups of tables directly
to Amazon S3.

Time- Series Databases 249

Time- Series Databases
Time- series databases are intended to store and query data records that are in a time- series
format, which basically means a set of data points that have a timestamp and values associ-
ated to each timestamp.

Historically, time- series databases have been used for industrial equipment measurement
with a set of sensors, such as rotation per minute, temperature, and pressure, that can be
correlated to a good function and performance of a transformation machine or line of
production.

Today’s common use cases include the following:

 ■ Financial stock prices over time

 ■ Metrics of infrastructure utilization, such as CPU and memory of an application
over time

 ■ IoT sensor measurements over time, such as temperature or humidity

 ■ Application measurements, such as user activity interaction over time

With the popularization of the IoT, devices are generating time- series data all the time.
For example, Table 8.4 is a set of sensors installed in a bicycle, where for each timestamp we
have a measurement of temperature, bike speed, and wind speed.

TABLE 8 .4 Time- Series Data Example

Timestamp
Temperature
(Celsius)

Bike
Speed
(kph)

Wind Speed
(km/h)

2021- 08- 01 10:37:00.000 23.41 39.8 5.0

2021- 08- 01 10:37:00.045 23.52 39.9 5.0

2021- 08- 01 10:37:00.120 23.52 39.9 5.0

2021- 08- 01 10:37:00.231 23.50 40.1 4.9

2021- 08- 01 10:37:00.309 23.45 40.2 4.9

2021- 08- 01 10:37:00.343 23.01 40.2 4.9

2021- 08- 01 10:37:00.402 22.99 40.1 4.8

2021- 08- 01 10:37:00.522 22.94 40.1 4.8

2021- 08- 01 10:37:00.600 22.92 40.1 4.7

(continues)

250 Chapter 8 ■ Deliver Valuable Information at the Speed Your Business Needs

You can use a relational database for time- series data or even a NoSQL database such as
Apache Cassandra or Apache HBase with proper table modeling, but a time- series database
usually offers statistical functions to facilitate the analysis of time- series data and the data
life cycle.

Several time- series databases are available to install and manage, including the following:

 ■ Apache Druid

 ■ Apache Pinot

 ■ InfluxDB

 ■ Apache Kudu

 ■ Prometheus

 ■ Riak- TS

 ■ RDDtool

For the purpose of the AWS Certified Database Specialty certification, you should know
that AWS has a fully managed time- series database, Amazon Timestream.

Timestamp
Temperature
(Celsius)

Bike
Speed
(kph)

Wind Speed
(km/h)

2021- 08- 01 10:37:00.621 22.41 40.2 4.7

2021- 08- 01 10:37:00.720 22.50 40.1 4.7

2021- 08- 01 10:37:00.800 22.59 40.3 4.7

2021- 08- 01 10:37:00.920 22.51 40.0 4.7

2021- 08- 01 10:37:01.009 22.46 40.0 4.7

2021- 08- 01 10:37:01.343 22.03 39.9 4.9

2021- 08- 01 10:37:01.402 21.99 39.8 5.0

2021- 08- 01 10:37:01.522 21.94 39.8 5.1

2021- 08- 01 10:37:01.600 21.92 39.9 5.1

TABLE 8 .4 Time- Series Data Example (continued)

Amazon Timestream 251

Amazon Timestream
Amazon Timestream is a fully managed AWS database service for IoT and operational
application data that is stored as time- series data points. It’s accessible using a JDBC driver
and SQL.

As shown in Figure 8.11, the Amazon Timestream services use the following
terminology:

 ■ Database: A container for tables.

 ■ Table: The unit to store and query a set of time- series records.

 ■ Record: A single data point in a time series.

 ■ Timestamp: The moment that a given record was collected. Timestream supports time-
stamps with nanosecond granularity.

 ■ Dimension: A pair of dimension name and dimension value that describes the time- series
metadata— for example:

 ■ The device ID for IoT sensors identifies the sensors the measure came from; Device
00001 data points will have DeviceID as the dimension name and 00001 as the
dimension value.

 ■ For the stock exchange, StockID can be the dimension name and AMZN the
dimension value.

 ■ For AWS resource metrics, you can use Resource ARN as the dimension name
and the resource ARN value as the dimension value— for example, Resource
ARN"="arn:aws:s3:::my_corporate_bucket/*.

 ■ Measure: The value being measured. Examples are the temperature or humidity reading,
the stock price, or the number of gigabytes stored in S3. Measures consist of measure
names and measure values. Consider the following examples:

 ■ "stock price" = 100 is the actual stock price at a point in time, for a
"StockID".

 ■ "temperature" = 70 and "humidity" = 0.55 are measures for a given
DeviceID at a specific timestamp.

 ■ For CPU utilization, the measure name is CPU utilization, and the measure value
is the actual CPU utilization.

252 Chapter 8 ■ Deliver Valuable Information at the Speed Your Business Needs

Amazon Timestream Architecture
The Amazon Timestream architecture has three main layers. Ingestion happens fast using the
ingestion layer to an in- memory fault- tolerant store, replicated to three AZs in the storage
layer, and can then be queried using the query layer, as shown in Figure 8.12.

 ■ The layer is the layer we interact with through JDBC or the AWS SDK to query time-
series data inside a Timestream table. It has a fleet of dedicated workers.

 ■ The storage layer is the layer for data persistence. There are two types of storage layer:

 ■ The in- memory storage layer is used for ingestion and queries with a horizontal scal-
ability. It stores time- series data in a fault- tolerant in- memory structure, which will
then be written to the magnetic store.

 ■ The magnetic (persistent) store storage layer is used for queries. You can set a reten-
tion period for data to reside in a magnetic store.

 ■ The ingestion layer is the layer we use in the AWS SDK to ingest time- series data. It
works independently from the query layer. Data is replicated to three AZs, and duplica-
tions are detected.

F IGURE 8 .11 Amazon Timestream logical structure

Amazon Timestream 253

Amazon Timestream has a concept of cellular architecture, a small unit of the infrastruc-
ture that holds a copy of your data, so when you interact with Timestream, it has a virtual
endpoint called discovery endpoint that will redirect your interaction to the cellular end-
point, that is, the Timestream cell that holds your data. This concept is shown in Figure 8.13
wherein each cell is a Timestream unit.

With cellular architecture, AWS enables scalability and avoids a single point of failure for
the Amazon Timestream architecture.

Loading Data into Amazon Timestream
Amazon Timestream can receive data natively from some sources within AWS services.

 ■ AWS IoT core rules can be configured to send data to Amazon Timestream.

 ■ An Amazon Kinesis Data Analytics for Apache Flink data connector can be used to load
data from Amazon Kinesis Data Analytics, Amazon MSK, Apache Kafka, and other
streaming technologies directly into Amazon Timestream.

F IGURE 8 .12 Amazon Timestream logical structure

254 Chapter 8 ■ Deliver Valuable Information at the Speed Your Business Needs

 ■ An AWS Lambda function or another application can ingest data with the AWS SDK, as
in the following small snippet:

write_client = session.client('timestream- write', config=Config(read_timeout=20,
max_pool_connections = 5000, retries={'max_attempts': 10}))
result = write_client.write_records(DatabaseName=Constant.DATABASE_NAME,
TableName=Constant.TABLE_NAME, Records=records,
CommonAttributes={})

There are also connectors such as Prometheus or Amazon SageMaker Data Wrangler to
send data to Amazon Timestream.

Querying Data from Amazon Timestream
Amazon Timestream offers a JDBC driver for connections, enabling it to be connected from
a wide variety of tools, from SQL clients to analytics tools.

The query language supports the standard SELECT statements and WITH clause and has a
variety of options for aggregate functions. The following example calculates the average tem-
perature for every 30 seconds in sensors from 'NewYork' for the last two hours:

SELECT city, BIN(time, 30s) AS binned_timestamp, ROUND(AVG(measure_
value::double), 2)
AS avg_temperature
FROM "certification".Rides

F IGURE 8 .13 Amazon Timestream cellular architecture

Amazon Timestream 255

WHERE measure_name = 'temperature'
 AND city = 'NewYork'
 AND time > ago(2h)
GROUP BY city, bin(time, 30s)
ORDER BY binned_timestamp ASC

You can see that we use special time functions that are commonly used in time- series
databases but not present in many standard SQL databases, such as the ago function, which
returns a timestamp interval from a time unit behind (2 hours in the example) until now,
and the bin function, which has nothing to do with binary conversion (as in MySQL) but
instead is a rounded timestamp interval, usually to group data in a time- based window— in
our case, one window of aggregation for every 30 seconds.

The Amazon Timestream tables’ data can also be consumed from Amazon QuickSight,
Amazon SageMaker, and Grafana.

Amazon Timestream Monitoring
There are fewer Amazon Timestream metrics on CloudWatch than for Amazon Redshift or
Amazon OpenSearch Service— because you don’t have to worry about nodes and because
there are fewer parameters or queues to tune.

Metrics available for Timestream include SuccessfulRequestLatency, SystemErrors, User-
Errors, and CumulativeBytesMetered, for the DatabaseName, TableName, and Operation
dimensions. The metrics are used to monitor the response time, errors, and workload for a
given table and database.

Amazon Timestream Scalability
Timestream scales very well. You don’t need to add nodes, and you don’t need to make new
configurations to accommodate new workloads. Each layer scales automatically for peaks
and new workloads.

The scale model is different from Redshift and Amazon OpenSearch Service, which are
based on adding or changing nodes. It’s closer to DynamoDB on- demand provisioning,
where the infrastructure automatically accepts new throughputs.

Amazon Timestream doesn’t set a limit on the throughput for ingestion or query concur-
rency. It has some limits, however. Examples of limits that you may consider for scale in the
exam include the following:

 ■ Time data remains in memory: 1 to 8,766 hours, default is 6 hours

 ■ Time data remains in persistent store: 1 to 73,000 days

 ■ Per account databases: Up to 500

 ■ Per account tables: Up to 50,000

 ■ Records write in a single WriteRecords API call: 100

 ■ Query result set size: Up to 5 GB

 ■ Query execution time: Up to 1 hour

256 Chapter 8 ■ Deliver Valuable Information at the Speed Your Business Needs

Amazon Timestream Security
Timestream has encryption set up by default.

 ■ At- rest encryption is set by default with an AWS KMS key, which can be managed by
Timestream or your own custom key.

 ■ In- transit encryption is in place for all communications to and from Timestream, using
Transport Layer Security (TLS) encryption.

AWS IAM is used to grant access to Amazon Timestream with identity- based policies, as
in the following example:

{
 "Version": "2012- 10- 17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "timestream:Select",
 "timestream:ListMeasures"
],
 "Resource": "arn:aws:timestream:us- east-
1:<account_ID>:database/study/table/student"
 }
]
}

Amazon Timestream does not support resource- based IAM policies, but you can use tag-
based access control, as in the following policy, which allows access only to the tables that
are tagged with Owner with a value equal to the username:

{
 "Version": "2012- 10- 17",
 "Statement": [
 {
 "Sid": "ReadOnlyAccessTaggedTables",
 "Effect": "Allow",
 "Action": "timestream:Select",
 "Resource": "arn:aws:timestream:us- east-
1:123456789012:database/study/table/*",
 "Condition": {
 "StringEquals": {"aws:ResourceTag/Owner": "${aws:username}"}
 }
]
}

Amazon OpenSearch Service 257

API calls to Amazon Timestream are captured by AWS CloudTrail for table change opera-
tions, not for query or write records.

To access Timestream from your applications in a VPC, you should create a VPC end-
point for Timestream and then apply policies to allow the action you need to this endpoint.

Amazon Timestream Data Resilience and Backup
Amazon Timestream achieves data resilience by replicating the data to three AZs by default.

It is important to know that the service doesn’t offer point- in- time recovery or snap-
shots to extract backups from your tables. If you have some requirements, you may want to
extract data and put it on Amazon S3, for example.

Amazon OpenSearch Service
OpenSearch is not a topic of this certification exam, but it’s here because it’s a related topic.
You can skip this section if you’re focused on the exam only.

AWS has a managed service search engine, the Amazon OpenSearch Service, that provides
an installation of OpenSearch Dashboards. The service is based on OpenSearch, an open-
source search engine powered by Apache Lucene and derived from Elasticsearch 7.10.2 and
Kibana 7.10.2.

Amazon OpenSearch Service has gained several features such as SQL syntax support to
interact with the data, available in the OpenSearch project, or the Ultrawarm storage tech-
nology based on OpenSearch’s own storage layers. You will learn in this chapter about the
basics of Amazon OpenSearch Service.

Amazon OpenSearch Service Domain Architecture
Although you can launch a publicly accessible Amazon OpenSearch Service domain, it is
highly recommended that you keep your cluster inside a VPC and then create an application
load balancer on top of it, if you need to expose your domain to the Internet.

Amazon OpenSearch Service domain architecture is based on nodes, as shown in
Figure 8.14, and at least one data node is required to have a domain. Ultrawarm nodes and
dedicated master nodes are optional.

Loading Data to Amazon OpenSearch Service
Elasticsearch has a long history of receiving data from Logstash. This strategy usually uses
Beats, a free open platform to send data to Logstash or Elasticsearch. You can find tens
of convenient types of beats in the community, such as filebeats, metricbeat, packetbeat,
and winlogbeat, each one specialized on the source format. You can use this strategy with
Amazon OpenSearch Service as well.

258 Chapter 8 ■ Deliver Valuable Information at the Speed Your Business Needs

Of course, there are several ways to load data from other AWS services like Amazon
Kinesis Data Firehose, Amazon CloudWatch Logs with an AWS Lambda function, AWS IoT,
Amazon Kinesis Data Streams, and Amazon API Gateway with an AWS Lambda function.

Searching for Data in Amazon OpenSearch Service
To search for data, Elasticsearch APIs provide a simple way to interact with indexed data in
Amazon OpenSearch Service.

A simple call would be a GET on the Amazon OpenSearch Service domain URL followed
by /search_?/q=, as in the following examples:

 ■ A query that searches for the word certification in all indexes and fields of the
search- mystudent- domain domain:

GET https://search- mystudent- domain.us- east-
1.es.amazonaws.com/_search?q=certification

F IGURE 8 .14 OpenSearch domain architecture

.

Amazon OpenSearch Service 259

 ■ A query that searches for the word certification in the my_student_index index and
only in the title field of this domain:

GET https://search- mystudent- domain.us- east- 1.es.amazonaws.com/
my_student_index/_search?q=title:certification

You can use the SQL interaction with Amazon OpenSearch Service as in the following
example:

SELECT author, book_name, book_description
FROM books
WHERE address = MATCH_QUERY('Jeff')

For the certification exam you don’t need to master search syntax, but as Elasticsearch
has an expressive usage, it would be good to explore other interesting search possibilities,
such as KNN search, asynchronous search, or custom packages (dictionaries).

Amazon OpenSearch Service Monitoring
Several metrics are collected by Amazon CloudWatch for Amazon OpenSearch Service, and
some of them are displayed in Amazon OpenSearch Service’s own console.

Amazon OpenSearch Service Scalability
Amazon OpenSearch Service domains can be scaled to handle a heavier workload or more
data, so you can scale a domain by adding more data or Ultrawarm nodes, increasing EBS
storage size and changing node types.

Amazon OpenSearch Service Security
Launching an Amazon OpenSearch Service domain inside a VPC is always the best option.
Using domains inside a VPC actually uses one Elastic Network Interface (ENI) for each
data node with a private IP address, and you protect the access to them using VPC secu-
rity groups.

Encryption at rest using AWS KMS is also available for the Amazon OpenSearch Ser-
vice, and this includes all indexes, logs, swap files, application directories, and automated
snapshots.

Amazon OpenSearch Service uses node- to- node TLS 1.2 encryption inside the VPC by
default.

Amazon OpenSearch Service Data Resilience and Backup
Amazon OpenSearch Service sets a replica of each index using one replica by default for the
indexes, but you can increase them to a desired number_of_replicas. This is useful to prevent
data lost in the case of node failure.

260 Chapter 8 ■ Deliver Valuable Information at the Speed Your Business Needs

In a production domain environment running in a multi- AZ configuration, the replicas of
index shards will be distributed in different availability zones and also prevent data lost in
the case of AZ failures.

Automated hourly snapshots are provided for Elasticsearch version 5.3 or later by
Amazon OpenSearch Service, and manual snapshots can be taken to prepare for a recovery
or when moving data from one cluster to another; as the snapshots are stored in Amazon S3,
standard S3 charges apply.

Summary
This chapter introduced the information latency concept and three information systems
that can be used in different approaches: Amazon Redshift for a data warehouse with
an information latency of minutes, Amazon Timestream for near real- time latency with
advanced features considering time- series data, and Amazon OpenSearch Service for near
real- time ingestion, processing, and search engine functionality.

All three systems can be used to extract information through complex or simple queries.
For time- series data, such as IoT sensor data or infrastructure metrics that you want to

store and analyze, Amazon Timestream is a natural choice. For large datasets of historical
multidimensional data and for traditional data warehouses, Amazon Redshift is the best
option. For full- text engine and operational data with near real- time latency, Amazon Open-
Search Service is the best option.

Amazon Kinesis Firehose is a streaming tool that can be used to load data into Amazon
Redshift, using the proper COPY command, and to load data into Amazon OpenSearch Ser-
vice, performing a buffering layer for the records to be loaded and optimizing the write
operations.

Amazon Kinesis Data Analytics for Flink can be used to ingest data to Amazon
Timestream and Amazon OpenSearch Service. AWS Lambda functions also can be used for
this purpose.

All three services— Redshift, OpenSearch, and Timestream— support encryption at rest
and in transit. Amazon OpenSearch Service and Amazon Redshift provide private access
inside a VPC by default, and Amazon Timestream provides private access via a VPC
endpoint.

AWS IAM is used to grant and prevent access to Amazon OpenSearch Service, Amazon
Timestream, and the Amazon Redshift Data API. Regular database grants can be used to
grant object permissions to users and user groups in Redshift, which allows you to set up
fine- grained access.

Exercises 261

Exam Essentials
Know that AWS offers analytics capabilities on managed service databases for different use
cases. Amazon Redshift offers a full data warehouse, plus a flexible way to join internal
data with data lake data. Amazon Timestream provides a fast, near real- time ingestion and
analysis of time- series data.

Understand that database solutions for analytics have different information latency. When
choosing services for different information latency requirements, note that Amazon
Timestream is faster than Redshift and OpenSearch, because it ingests data in- memory, but it
fits only for time- series data.

Amazon Redshift has a higher information latency compared to Timestream and Open-
Search, due to its columnar storage format. It cannot handle direct inserts well and uses the
COPY command to enforce a copy of data on Amazon S3 before it goes to Redshift. In terms
of information latency, Amazon OpenSearch is between Timestream and Redshift, as you can
ingest data directly to it, so it’s faster than Redshift, but the acknowledgment and availability
of data take longer than Timestream.

Choose the right tool for the right job. Although all the use cases presented in this chapter
could be addressed by a regular relational database like MySQL, when we scale the solution,
the price, performance, and effort to build are really better if we choose the proper data-
bases, such as Amazon Redshift, Amazon Timestream, and Amazon OpenSearch, to perform
complex analysis with multidimensional queries, time- series queries, and search jobs.

Know how to build a security environment for analytics databases. Using VPC private
subnets for Amazon Redshift and Amazon OpenSearch Service and using VPC endpoints
for Amazon Timestream, along with encryption at rest and in transit, are the keys to start
building a secure analytical environment. Security groups should allow only specific applica-
tions that need to query and ingest data, filtering them by their security group or source IP
address in case they are on premises.

Exercises
For assistance in completing the following exercises, refer to the User Guides at docs
.aws.amazon.com/redshift/latest/dg/welcome.html, hdocs.aws.amazon.com/
timestream/latest/developerguide/what- is- timestream.html, and docs.aws
.amazon.com/opensearch- service/latest/developerguide/what- is.html.

http://docs.aws.amazon.com/redshift/latest/dg/welcome.html
http://docs.aws.amazon.com/redshift/latest/dg/welcome.html
http://hdocs.aws.amazon.com/timestream/latest/developerguide/what-is-timestream.html
http://hdocs.aws.amazon.com/timestream/latest/developerguide/what-is-timestream.html
http://docs.aws.amazon.com/opensearch-service/latest/developerguide/what-is.html
http://docs.aws.amazon.com/opensearch-service/latest/developerguide/what-is.html

262 Chapter 8 ■ Deliver Valuable Information at the Speed Your Business Needs

E X E R C I S E 8 . 1

Create an Amazon Redshift Cluster

This exercise guides you through how to launch and load data into a Redshift cluster.

1. Open the Amazon Redshift console at console.aws.amazon.com/redshift.

2. Choose the N. Virginia (us- east- 1) AWS region to create the cluster.

3. Choose CLUSTERS, and then click Create Cluster.

4. In the Cluster Configuration section, specify values for Cluster Identifier, Node Type,
and Nodes.

 ■ Use the cluster identifier myfirstcluster.

 ■ Select Production for the question What are you planning to use this cluster for?
(Otherwise, you cannot specify the size by yourself.)

 ■ Set Node Type to dc2.large.

 ■ Configure a cluster of two nodes by setting Nodes to 2.

5. Select some sample data and check Load Sample Data.

6. Use the following values:

 ■ Admin username: Type student.

 ■ Admin user password: Type a value for the password.

7. Select Cluster Permissions. Do not set any IAM role now, as you will not need it for the
exercise, because we are not accessing data in S3.

8. Click Create Cluster.

Do not skip Exercise 8.6, where you’ll destroy your cluster and avoid unwanted costs.

E X E R C I S E 8 . 2

Use the Query Editor to Create and Interact with a Table

In this exercise, you’ll interact with a Redshift cluster using its own editor. You need to
complete Exercise 8.1 before completing this exercise.

1. At the Redshift console (console.aws.amazon.com/redshift), choose QUERY
EDITOR, version 1.

2. Click Connect To Database in your cluster.

http://console.aws.amazon.com/redshift
http://console.aws.amazon.com/redshift

Exercises 263

3. Use temporary credentials and then enter the values that you used when you created
the cluster, as follows:

 ■ Cluster: Choose myfirstcluster.

 ■ Database name: Type dev.

 ■ Database user: Type student.

4. Click Connect.

Notice that you have the following sample tables in the public schema:

 ■ category

 ■ date

 ■ event

 ■ listing

 ■ sales

 ■ users

 ■ venue

5. Expand each table by clicking the small triangle before it so you can examine
its columns.

6. Examine the data of each table by clicking . . . (three dots) beside the table. Choose
to preview the data.

You may need to scroll down to see the results.

7. Repeat steps 5 and 6 until you are done with every table.

8. Type the following SELECT statement to discover the top 50 buyers among all the
events, and click Run to execute it:

SELECT lastname||', '||firstname, event.eventname, total_quantity
FROM (SELECT buyerid,eventid, sum(qtysold) total_quantity
 FROM sales
 GROUP BY buyerid, eventid
 ORDER BY total_quantity desc limit 50) Q, users, event
WHERE Q.buyerid = users.userid AND
Q.eventid = event.eventid
ORDER BY Q.total_quantity desc;

9. Click the plus sign (+) to open a new tab.

264 Chapter 8 ■ Deliver Valuable Information at the Speed Your Business Needs

E X E R C I S E 8 . 2 (c o n t i n u e d)

10. Type the following SELECT statement and click Run to get the venue’s available seats
as emptyseats according to the sales by date:

SELECT q.dateid, venue.venuename, total_quantity, venueseats,
case
when venueseats>0 then venueseats- total_quantity
else null
end as emptyseats
FROM (SELECT eventid,dateid, sum(qtysold) total_quantity
 FROM sales
 GROUP BY dateid, eventid) Q, venue, event
WHERE Q.eventid = event.eventid
AND event.venueid = venue.venueid
ORDER BY total_quantity desc limit 50;

11. Click Clear.

E X E R C I S E 8 . 3

Use the Query Editor to Insert Data and Export ResultSet

Perform this exercise to download results and manipulate data using the editor. You need to
complete Exercise 8.1 first.

1. At the Redshift console (console.aws.amazon.com/redshift), choose EDITOR.

2. Click Connect To Database in your cluster.

3. Use temporary credentials and then enter the values that you used when you created
the cluster, as follows:

 ■ Cluster: Choose myfirstcluster.

 ■ Database name: Type dev.

 ■ Database user: Type student.

4. Click Connect.

5. Choose Public for the schema to create a new table based on that schema.

http://console.aws.amazon.com/redshift

Exercises 265

6. Type the following statement and click Run to execute it:

create table books(
bookname varchar (60),
bookauthor varchar(60)
);

7. Choose Clear.

8. Type the following statement and click Run to add rows to your table:

insert into books values
('Book Example','John Doe'),
('My exercises','Mike Doe');

9. Choose Clear.

10. Type the following simple query to retrieve the data:

select * from books;

The query displays the results:

bookname. bookauthor
Book Example John Doe
My exercise Mike Doe

11. Click Export to download the query results as a CSV, TXT, or HTML file.

E X E R C I S E 8 . 4

Take a Manual Snapshot of Your Cluster

In this exercise, you will create a Redshift manual snapshot that is useful before significant
changes as a backup of that exact time or to create a new cluster from this snapshot. You
need to complete Exercise 8.1 first.

1. At the Redshift console (console.aws.amazon.com/redshift/), click Clusters.

2. Click the check box to select your cluster, myfirstcluster.

3. With your cluster selected, click Actions and then Create Snapshot.

4. Type a snapshot identifier: manual- snapshot- 1.

5. Select a snapshot retention: 1 day.

6. Create a snapshot.

http://console.aws.amazon.com/redshift/

266 Chapter 8 ■ Deliver Valuable Information at the Speed Your Business Needs

E X E R C I S E 8 . 5

Explore the Resize Options for Your Cluster

In this exercise, you will practice how to resize a Redshift cluster. You need to complete
Exercise 8.1 before doing this exercise.

1. At the Redshift console (console.aws.amazon.com/redshift/), choose Clusters.

2. Click the check box to select your cluster, myfirstcluster.

3. With your cluster selected, click Actions and then Resize.

4. Select Elastic Resize.

5. Explore the Node Type option.

Notice that only a few options are available based on your current cluster size: ds2
.xlarge, ra3.xplus, ra3.4xlarge, dc2.large.

For each node type, you can explore the number of nodes available; for example, for
the ra3.xplus, you can use only two or four nodes; for ra3.4xlarge, you can use two,
three, or four nodes.

6. Choose Cancel.

E X E R C I S E 8 . 6

Destroy Your Cluster

Perform this exercise to avoid unwanted costs and destroy the Redshift cluster you created
to practice. Do not skip this exercise.

1. At the Redshift console (console.aws.amazon.com/redshift), click Clusters.

2. Click the check box to select your cluster, myfirstcluster.

3. With your cluster selected, click Actions and then Delete.

4. Uncheck Create Final Snapshot.

5. Click Delete Cluster.

http://console.aws.amazon.com/redshift/
http://console.aws.amazon.com/redshift

Exercises 267

E X E R C I S E 8 . 7

Create an Amazon Timestream Database

In this exercise, you will practice how to create a Timestream database and use a sample
dataset.

1. Go to Amazon Timestream console at console.aws.amazon.com/
timestream/home.

2. Click Create Database.

3. Choose Sample Database so that you can play around with the data.

4. Type a name for the database: sampleDB.

5. Choose IoT Sample Data Sets.

6. Check the Single- Measure button for the type of time- series records.

7. Click the Create Database button.

A green message will appear at the top level of your AWS console: “Successfully cre-
ated database sampleDB. Next, run a sample query in the Query Editor.”

E X E R C I S E 8 . 8

Run Sample Queries on Amazon Timestream

In this exercise, you will use the Timestream Query Editor to interact with the data.

1. Click the Run Sample Query button in the upper right of the Timestream console.

2. Select a sample query of your choice from the list of sample queries, making sure to
choose queries with an “IoT” value for the Scenario attribute.

Amazon Timestream will load the query into the Query Editor.

3. Click Run.

4. Examine the query structure. Most of the queries aggregate the measures by a time-
stamp type column.

5. For queries with a bin function, change the aggregation time by using the bin with the
time you want.

6. For queries with the ago function, choose a short period of time to see changes in the
query result.

7. Click the Sample Queries tab to choose another query, run it, and repeat the steps of
changing the ago and bin function parameters.

https://console.aws.amazon.com/timestream/home
https://console.aws.amazon.com/timestream/home

268 Chapter 8 ■ Deliver Valuable Information at the Speed Your Business Needs

E X E R C I S E 8 . 9

Delete Your Amazon Timestream Database

Perform this exercise to avoid unwanted costs and destroy the Timestream database you
created to practice. Do not skip this exercise.

1. Click Tables in the upper left of the Amazon Timestream console.

2. Select the IoT table you created along with the database in Exercise 8.7.

3. Click Delete.

4. Confirm the deletion by typing delete in the text box, and click the Delete button.

5. Click Databases in the upper left of the Amazon Timestream console.

6. Select the sampleDB database you created in Exercise 8.7.

7. Click Delete.

8. Confirm the deletion by entering delete in the text box, and click the Delete button.

E X E R C I S E 8 . 10

Create an Amazon OpenSearch Service Domain

In this exercise, you will create an OpenSearch domain.

1. Go to the OpenSearch Service console at console.aws.amazon.com/es/home.

2. Click Create A New Domain.

3. Type an OpenSearch domain name: myfirstdomain.

4. Leave Enable Custom Endpoint unchecked.

5. Choose Development And Testing for the deployment type.

6. Choose the latest OpenSearch version and then click Next.

7. Leave Auto- Tune enabled.

8. Choose the t3.small.search instance type, select 1- AZ for availability zones, and set the
value of number of nodes to 1.

9. Leave Data Nodes Storage at the default.

10. Do not enable dedicated master nodes.

11. Click Next.

http://console.aws.amazon.com/es/home

Exercises 269

12. Select Public Access for the network setup.

This is for the exercise only; do not use this option with real data.

13. Click the Enable Fine- Grained Access Control button.

14. Create a master user.

 ■ Choose a master username.

 ■ Choose a master password.

For now, ignore the SAML authentication and Amazon Cognito authentication sections.

15. For Domain Access Policy, choose Only Use Fine- Grained Access Control. In this tuto-
rial, fine- grained access control handles authentication, not the domain access policy.

16. Keep the encryption settings at their default values.

17. Ignore the tags option and click Create.

18. Confirm your domain configuration and choose Confirm.

New domains typically take 15–30 minutes to initialize but can take longer depending
on the configuration. After your domain initializes, make note of its endpoint.

E X E R C I S E 8 . 11

Log In to Your Amazon OpenSearch Service Domain

In this exercise, you will explore a sample data set inside OpenSearch.

1. Go to the OpenSearch Service console and select your domain.

2. Click the OpenSearch Dashboards URL link.

3. Use your master user credentials.

4. Click the Add Data button to play with the sample data.

5. Select the Global Tenant check box and click Confirm.

6. Select Sample eCommerce orders by clicking Add Data.

7. Click View Data to explore the dashboards based on the e- commerce data.

8. Use [eCommerce] Controls to filter data by manufacturer, category, or quantity.

9. Select Discover in the top- left corner menu to view the raw data.

270 Chapter 8 ■ Deliver Valuable Information at the Speed Your Business Needs

E X E R C I S E 8 . 1 2

Delete Your Amazon OpenSearch Service Domain

In this exercise, you will remove the OpenSearch domain you created to avoid the costs of
unused domains.

Do not skip this exercise.

1. At the OpenSearch console, select your domain.

2. Click Delete.

3. Type the name of your domain in the text box to confirm the deletion.

4. Click the Delete button.

Review Questions 271

Review Questions
1. Your customer wants to build a traditional data warehouse in AWS and is concerned about

the possibility of keeping their star schema design required by their business users’ dash-
board. What is a possible solution?

A. The customer can use Amazon Timestream and bring their star schema design; they can
also use primary keys and foreign keys to improve their query plans.

B. There is no feasible solution, as the options for data warehouses in AWS don’t support
star schema table modeling.

C. The customer can use Amazon Redshift and bring their star schema design; they can also
use primary keys and foreign keys to improve their query plans.

D. The customer can use Amazon Redshift, although it supports only denormalized tables.
It’s possible to create views and simulate primary keys and foreign keys to improve visi-
bility for business users.

2. You are working on a project that will handle millions of events per minute coming from
thousands of Internet of Things (IoT) device sensors, and it will be required to compare
device sensors over time values using statistics such as average, mean, and standard deviation.
What is a managed service solution with low cost to address this requirement?

A. Use AWS IoT to receive sensor data. Install a time- series database in containers using the
managed service AWS Fargate and create an AWS Lambda function to ingest the data in
the time- series database. Perform the queries using a SQL client with a JDBC driver.

B. Directly ingest the data into Amazon DynamoDB and use DynamoDB APIs to perform
queries over the time- series data.

C. Use AWS IoT to receive sensor data, and create an Amazon Timestream database and
table to receive the data. Create a rule in AWS IoT to ingest the data into a Timestream
table. Perform the queries using a SQL client with a JDBC driver or the Amazon
Timestream console.

D. Use AWS IoT to receive sensor data, and create an Amazon Neptune database and table
to receive the data. Create a rule in AWS IoT to ingest the data into a Neptune table.
Perform the queries using a SQL client with a JDBC driver or Amazon Neptune console.

3. You talked to a customer who has a multiterabyte on- premises data warehouse using
commercial databases and wants to migrate to AWS. The customer asked you for a simple
solution, with a single endpoint, that can address scalability for further growth without hours
of downtime; it’s a goal also to reduce current storage costs. Choose the option that best
addresses the customer’s needs.

A. Offload the storage to S3 and enable access to the data through AWS Storage Gateway
for the on- premises environment. Activate Dynamic Migration Services to migrate
to Amazon Redshift while converting the database objects with the AWS Object
Conversion Tool (OCT).

B. Convert and migrate their database objects using the AWS Schema Conversion Tool
(SCT), along with its data extractor agents, to Amazon Redshift. Use Redshift managed
storage for frequent data access, use Amazon S3 for historical infrequent data access, use

272 Chapter 8 ■ Deliver Valuable Information at the Speed Your Business Needs

Redshift Spectrum to query the data, use concurrency scale for peak scale needs, and use
elastic resize for increasing nodes.

C. Create an Amazon Aurora MySQL database, enable read- replica for reporting, migrate
the data using AWS Transfer family services to Amazon S3, use the COPY command to
load the data from Amazon S3 to Aurora, and keep the historical data in Amazon S3 to
be accessed with an AWS Lambda function.

D. Migrate their database objects using the Schema Conversion Tool (SCT), along with its
data extractor agents, to Amazon Redshift. Use Redshift SSD storage for frequent data
access, use Redshift HDD storage for historical infrequent data access, use elastic resize
for peak scale needs, and use concurrency scale for increasing nodes.

4. A customer who already uses Amazon Redshift has a website and wants to collect stream-
ing data to enable analysts to query the data along with other Redshift tables. The customer
requires a low- code and easy to set up solution to load the data to Redshift and enable retry
in case of failure. What is the best approach?

A. Ask the customer to stream the data to an Apache Kafka installed in an EC2 instance,
and create Kafka consumers with Fargate to ingest data on Redshift.

B. Ask the customer to stream the data to Amazon S3; create an AWS Lambda function
using the COPY command, triggered by S3; and ingest the data to Redshift.

C. Ask the customer to stream the data to an Amazon Kinesis Data Firehose and enable
Amazon Redshift as a destination for Kinesis Firehose.

D. Create an Amazon API Gateway backed by an AWS Lambda function that inserts the
data into Redshift and stream the data to the API Gateway.

5. You need to load 100 GB from flat files to an Amazon Redshift cluster from your on-
premises environment. Your Redshift cluster is a four- node ra3.4xlarge, with 48 vCPU, 16
slices, and 384 GB. You need to optimize network bandwidth to transfer the data and load
the data as fast as you can. What are the steps you would perform to load this data?

A. Create a single file compressed with BZIP2. Transfer the file to an Amazon S3 bucket
with the AWS CLI. Load the file using the COPY command using the PARALLEL param-
eter, directly from Amazon S3.

B. Create a single file compressed with GZIP. Transfer the file to Amazon S3 bucket
with the AWS CLI. Load the file using the COPY command using a manifest file from
Amazon S3.

C. Create files in a multiple of 384, compressed with BZIP2; calculate a size of a few kilo-
bytes per file generated of compressed data. Transfer the files to an Amazon S3 bucket
with the AWS CLI to a common path. Create a manifest file and load the files using the
COPY command directly from Amazon S3.

D. Create files in a number multiple of 16, compressed with BZIP2; calculate a size of few
gigabytes per file generated of compressed data. Transfer the files to an Amazon S3
bucket with AWS CLI to a common path. Create a manifest file and load the files using
the COPY command directly from Amazon S3.

Review Questions 273

6. Your customer is concerned about security and wants to encrypt the data you need to load
into an Amazon Redshift cluster. How could you use encryption on the client side and load
this data to Amazon Redshift with minimal effort?

A. Encrypt the data on the client side using an AWS KMS customer- managed symmetric
key (CSE- CMK), and compress the data with GZIP. Load the data to Amazon S3, use an
Amazon EC2 instance, and uncompress the data before loading it to Amazon Redshift.

B. Encrypt the data on the client side using an AWS KMS customer- managed symmetric key
(CSE- CMK), and compress the data with BZIP2. Load the data into Amazon S3, and
use the COPY command with the appropriate ENCRYPTED BZIP2 parameters to load the
encrypted, compressed files into Amazon Redshift.

C. Encrypt the data on the client side using LUKS for encryption, and compress the data
with GZIP. Load the data into Amazon S3, use an Amazon EC2 instance, and uncom-
press the data before loading it into Amazon Redshift with the COPY command.

D. Encrypt the data using a key generated by you, and compress the data using BZIP2.
Load the key into the Redshift Key Manager. Use the COPY command along with
ENCRYPTED, and use the BZIP2 format parameters to load the data into the Redshift
cluster.

7. What are the optimized ways to load external data to Redshift from files and from
streaming?

A. Load files into Amazon S3 and then use the COPY command for data in files and use
Amazon Kinesis Data Firehose for streaming data.

B. Use an AWS Lambda function to load data into Redshift for files in Amazon S3 or
streaming using INSERT row by row.

C. Use an AWS Lambda function to load data to Redshift for files in Amazon S3 or stream-
ing using the UPSERT command.

D. Load files into Amazon S3 and then use the COPY command for data in files and
Amazon Kinesis Data Analytics for streaming data.

8. Consider you are migrating workloads to AWS and now need to define what are best choices
of target databases for cost efficiency for your data warehouse, for your time- series data, and
for operational logs and dashboards. What AWS services would you use for each workload?

A. Use Amazon Redshift for a data warehouse, Amazon Aurora for time- series data, and
Amazon OpenSearch Service with Kibana for operational logs and dashboards.

B. Use Amazon Aurora for a data warehouse, Amazon DynamoDB for time- series data, and
Amazon OpenSearch Service with Kibana for operational logs and dashboards.

C. Use Amazon Neptune for a data warehouse, Amazon Timestream for time- series data,
and Amazon OpenSearch Service with Kibana for operational logs and dashboards.

D. Use Amazon Redshift for a data warehouse, Amazon Timestream for time- series data,
and Amazon OpenSearch Service with Kibana for operational logs and dashboards.

274 Chapter 8 ■ Deliver Valuable Information at the Speed Your Business Needs

9. Your customer asks you to create a database in AWS to handle time- series data with two very
different payloads with different retention time requirements. The database should scale
from a few records per second in the development phase to thousands of records per second
in production. The customer would like to perform comparison between periods using SQL
queries to gather statistics on the data with a data latency of a few milliseconds. What would
be an easy, cost- efficient way to deliver this database?

A. Using Amazon Timestream, create a standard database for the application, and create a
single table to handle both the different payloads with a customized data retention per
payload. Use autoscaling groups for Amazon Timestream.

B. Using Amazon DynamoDB, create a single table to handle both the different pay-
loads with a customized TTL per payload, and set up an on- demand table for capacity
planning.

C. Using Amazon Redshift, start with a single- node environment and add more nodes when
you need them. Create a routine to delete old data using an AWS Lambda function based
on a column timestamp.

D. Using Amazon Timestream, create a standard database for the application, and create
one table for each of the different payloads, with the proper data retention set up for
each table. It will scale automatically.

10. You have an Amazon Timestream table and need to improve performance for queries using
the latest 24 hours. You need to retain the data for only 1 month in the table. What is the
best approach with a low cost?

A. Set the memory store retention to 24 hours and magnetic store retention to one month.

B. There’s no way to improve performance in Amazon Timestream.

C. Create a DAX in front of Amazon Timestream to improve performance and set the DAX
TTL to 24 hours.

D. Set magnetic store retention to 24 hours and memory store retention to 1 month.

Discovering
Relationships Using
Graph Databases

THE AWS CERTIFIED DATABASE – SPECIALTY
EXAM OBJECTIVES COVERED IN THIS
CHAPTER MAY INCLUDE, BUT ARE NOT
LIMITED TO, THE FOLLOWING:

 ✓ Domain 1: Workload- Specific Database Design

 ■ 1.1 Select appropriate database services for specific types of

data and workloads.

 ■ 1.2 Determine strategies for disaster recovery and high

availability.

 ■ 1.3 Design database solutions for performance, compliance,

and scalability.

 ✓ Domain 2: Deployment and migration

 ■ 2.2 Determine data preparation and migration strategies.

 ✓ Domain 3: Management and Operations

 ■ 3.2 Determine backup and restore strategies.

 ■ 3.3 Manage the operational environment of a database

solution.

 ✓ Domain 4: Monitoring and Troubleshooting

 ■ 4.3 Optimize database performance.

 ✓ Domain 5: Database Security

 ■ 5.3 Determine access control and authentication mechanisms.

Chapter

9

Most developers used to choose relational databases for
several purposes; in fact, they were the only choice available for
most applications. Relational databases are efficient for storing
transactional data. However, modern applications have scal-

ability, performance, and the ability to handle the data format requirements appropriately.
Exploring highly connected data use cases requires more specific data stores, so graph data-
bases have taken over.

Graph databases can store highly connected nodes, properties, and relationships. They
can explore similar attributes or properties much faster, enabling the correlation of data
according to similar characteristics.

Graph Databases
Graph databases are used to store highly connected data and enable navigation in those
relationships.

Graph databases store the information inside nodes (also named vertices). These nodes
can be anything such as a person, a company, a product, or food. Graphs also enable the
creation of a relationship between nodes with a direction representing a meaningful corre-
lation between the nodes, like a relationship that means that a person likes a certain kind
of food.

The relationships are the predicates or edges. Edges represent the relationships between
entities/vertices in the property graph data model, and the edges must have a label name and
a direction. A predicate is used to state the predicate of a statement in the RDF model.

Each edge has a type and direction from one vertex (starting from) to another
(destination).

Both vertices and edges may have additional properties to hold characteristics. For
example, a node or vertex representing a person may have properties such as name, age,
weight, and height. And the predicate or edge that represents the relationship (works_for)
between a person and a company may have the property job role.

These databases connect specific data points (nodes/vertices) and create relationships
(predicates/edges) in graphs that users can access with queries. Nodes can represent cus-
tomers, companies, or any data to represent relevant information.

Graph databases manage relationships between nodes using edges, so users can easily
understand the relationship and consequently more quickly explore the data. A relational
database would require recursive SQL queries for this use case, and performance could

Graph Databases 277

degrade as the table size grows or the number of recursions increases, whereas graph data-
bases store both the nodes and predicates as part of the data structure; as a result, this data
exploration has better performance compared to a relational implementation.

Figure 9.1 shows how graph databases store data. The nodes in light gray and dark gray
represent the people; the lines represent the friendship (edges) between the nodes. The edges
represent only the friendship among this group of people, but you can create many different
relationships among the nodes.

When to Use Graph Databases
Relational databases and graph databases are developed to run different application
requirements.

Relational databases are very efficient for the following:

 ■ Handling highly transactional application requirements.

 ■ Applications that require primary keys, foreign keys, and the other constraints (check
and not null, for example) implemented in the RDBMS database.

 ■ Applications that require data lock control during transaction execution. For example, a
billing application must manipulate data from different tables and keep the data integ-
rity of the entire transaction.

 ■ Applications that require the SQL language.

F IGURE 9 .1 Graph databases storing data

278 Chapter 9 ■ Discovering Relationships Using Graph Databases

Graph databases are very efficient for the following:

 ■ Modeling data interconnections and writing complex queries that extract real- world
information from the graph

 ■ Retrieving billions of rows to explore the relationships among the nodes

 ■ Discovering similar patterns of relationships

Table 9.1 compares graph and relational databases.

Common Use Cases
Graph databases are beneficial to develop the following:

 ■ Personalization and recommendations: Graph databases are appropriate for handling
relationships between information such as customer preferences, friends, and purchase
history in a graph and query it to make personalized and relevant recommendations.
A usual case is to make product suggestions to a consumer based on which products
are purchased by other consumers who follow that same football team and have similar
purchase histories. Or, you can identify people who have a friend in common but don’t
yet know each other and make a friendship recommendation.

 ■ Knowledge graphs: The graph model is appropriate for identifying highly connected
datasets. One example is to map tax policies and their differences across different coun-
tries. When an organization wants to go into a new region, it can recommend the set of
tax policies that applies to that company.

 ■ Fraud detection: A graph data model helps use relationships to process financial and
acquisition transactions in near real time to detect fraud patterns more quickly. Neptune
can execute efficient graph queries to identify relationship standards like multiple people

TABLE 9 .1 Comparing Graph and Relational Databases

Graph Databases Relational Databases

Highly connected data Complex models

Relationships represented by edges Relationships represented by foreign keys

Programming languages: Gremlin, RDF, and
Cypher

Programming language: declarative SQL

Flexible schema Rigid schema

Graph traversal performance SQL query performance

Amazon Neptune 279

associated with a personal email address or people using the same IP address but located
at different physical addresses.

 ■ Network/IT operations: Graph data models are appropriate for storing the connections
of your network and use graph queries to answer questions like how many hosts are
using a specific application. Amazon Neptune can hold and query billions of events to
manage and secure your network. If you detect an event that is an anomaly, you can use
Amazon Neptune to quickly understand how it might affect your network by querying
a graph pattern using the attributes of the event. You can query the Amazon Neptune
graph to discover additional devices that may be affected. A typical use case is detecting
a malicious file on a host. Amazon Neptune can locate connections between the hosts
that shared the malicious file and track the original host that downloaded it for the
first time.

 ■ Life sciences: You can use graph databases to store disease and gene interaction models
and search for graph patterns within protein pathways to find other genes that may be
associated with a disease. You can model chemical compounds as a graph and query for
similar patterns in molecular structures.

Amazon Neptune
Amazon Neptune is a fast, reliable, fully managed database service that enables you to
develop and run applications that require exploring highly connected data.

Amazon Neptune is a purpose- built, scalable graph database engine optimized for keep-
ing billions of relationships and querying the graph with millisecond latency.

High- Level Architecture
An Amazon Neptune database cluster must have one primary database instance (writer), and
you can add up to 15 read replica database instances.

The Amazon Neptune instances in a cluster share the same managed storage layer. The
storage accessed by Amazon Neptune is natively reliable and highly available.

Figure 9.2 represents the Amazon Neptune architecture. At the bottom, the purpose- built
shared storage is distributed across three availability zones, having two copies of each pro-
tection group in each availability zone. In total, Amazon Neptune cluster has six copies of
each protection group. The middle part represents the Amazon Neptune cluster instances
having one mandatory primary/writer instance and 15 additional optional read replica
instances. The Amazon Neptune cluster makes the writer and reader endpoints available for
the Gremlin and SPARQL query languages, from where the apps can reach the graph data-
base instance and retrieve the data.

280 Chapter 9 ■ Discovering Relationships Using Graph Databases

Graph Models and Query Languages
Amazon Neptune supports the following graph models and languages:

 ■ Property graph: The property graph data model represents graph elements by vertices
(nodes) and edges (relationships). Vertices represent entities from the real world in the
domain. Edges represent the relationships between entities/vertices, and the edges must
have a label name and a direction. In this model, edges without two connecting vertices
aren’t allowed. The property graph API is the open standard Apache TinkerPop project.
It provides the imperative traversal Gremlin programming language. Gremlin is the lan-
guage to write traversals on property graphs, and several open- source and vendor imple-
mentations support it.

 ■ W3C’s RDF: Resource Description Framework (RDF) encodes the resource descriptions
in subject- predicate- object triples format. While the property graph model chunks data
into record- like vertices and edges, RDF creates a fine- grained domain representation

F IGURE 9 .2 Amazon Neptune architecture

Amazon Neptune 281

of the data. RDF adopts the Semantic Web standard defined by the W3C. The SPARQL
query language for RDF allows users to write declarative graph queries to explore data
from RDF graph models.

Developers prefer property graphs because they are used to relational models.
Information architects prefer RDF because of the flexibility for modeling complex
information domains. There are several existing public domains in RDF— for example,
Wikidata and PubChem (a database of chemical molecules).

 ■ openCypher: Neo4j developed the Cypher Query Language and open- sourced it in
2015. openCypher supports HTTPS endpoints and the Bolt protocol. The Bolt protocol
is a statement- oriented client- server protocol initially developed by Neo4j and licensed
as the Creative Commons 3.0 Attribution-ShareAlike. It’s client- driven, meaning that the
client always initiates message exchanges.

Property- graph query language is a query language inspired by the SQL language.
Gremlin and openCypher are property- graph query languages. They’re used for different
purposes and also complement each other.

Figure 9.3 represents the same friendship initially used as an example among Marcel,
Maria, Laura, and other people in this chapter. Examples of query languages include
Gremlin, SPARQL, and openCypher, using the representation of friendship.

The following is an example of the query using Gremlin to return the names of the friends
of Marcel’s friends:

g.V().has('name', 'marcel').out('friend').out('friend').values('name')

F IGURE 9 .3 Graph databases storing data

282 Chapter 9 ■ Discovering Relationships Using Graph Databases

The following example uses a SPARQL query to return the names of the friends of
Marcel’s friends:
prefix : <#>

select ?names where {
 ?howard :name "Marcel" .
 ?howard :friend/:friend/:name ?names .
}

The following example demonstrates openCypher:

MATCH (user:User {name: 'Marcel'})- [r1:FRIEND]- ()- [r2:FRIEND]
- (friend_of_a_friend)
RETURN friend_of_a_friend.name AS fofName

Using and Extracting Data from Amazon Neptune
Amazon Neptune offers the following methods to load graph data into it:

 ■ You can use SPARQL INSERT statements or Gremlin addV and addE steps for small
datasets. addV is a Gremlin statement to add vertices. addE is a Gremlin statement to
add edges.

 ■ The bulk loader command is faster for loading large amounts of data from external
files and has less overhead than the query- language commands. It’s optimized for large
 datasets and supports both RDF and Gremlin data.

 ■ The AWS Database Migration Service (AWS DMS) is also a good option when import-
ing data from other data sources like Amazon RDS.

Amazon Neptune allows you to query data using Gremlin, SPARQL, or openCypher.
Let’s explore some examples using Gremlin. The vertex designates entities/domains, and

the edges define directional relationships between vertices. Neptune Gremlin Vertex and
Edge IDs are always of type String. If the ID is not declared in Gremlin when you add a
vertex or edge, Gremlin generates a UUID and converts it to a string. The user- supplied IDs
are supported, but they are optional in normal usage. However, the Neptune Load command
requires all IDs to be specified using the ˜id field in the Neptune comma- separated values
(CSV) format.

The following example adds a vertex with a label (person) and a property called name
with value marcel:

g.addV('person').property('name', 'marcel')

The following example adds a vertex with a custom ID with a value of 1:

g.addV('person').property(id, '1').property('name', 'marcel')

Do not put quotation marks around the id keyword.

Amazon Neptune 283

The following example changes the property or adds a property if it doesn’t exist:

g.V('1').property(single, 'name', 'teo')

When the single cardinality is declared, it adds a new value to the property, but only if
it doesn’t already appear in the set of values. If you didn’t specify single, it appends the
value to the property name. In this example, the command changed the property name of the
vertex with id=1 from marcel to teo. We can confirm the change:

g.V('1').hasLabel('person').values('name')
==>teo

Let’s return the value to marcel.

 g.V('1').property(single, 'name', 'marcel')

Let’s also insert some additional vertices.

g.addV('person').property(id, '2').property('name', 'maria')
g.addV('person').property(id, '3').property('name', 'laura')
g.addV('person').property(id, '4').property('name', 'ivan')
g.addV('person').property(id, '5').property('name', 'john')
g.addV('person').property(id, '6').property('name', 'fred')
g.addV('person').property(id, '7').property('name', 'linda')
g.addV('person').property(id, '8').property('name', 'angela')

Here we’re adding an edge because marcel (ID 1) is Maria’s friend (ID 2):

g.V('1').addE('friend').to(__.V('2')).property('weight', 0.5).iterate()

Let’s check who is Marcel’s friend:

g.V().has('name', 'marcel').out('friend').valueMap()
==>{name=[maria]}

All statements other than the last statement must end in a terminating step, such as
.next() or .iterate(); otherwise, they won’t run.

Use .iterate() whenever you don’t need the results to be serialized.
All statements are sent together and included in a single transaction and will succeed or

fail together.
Using the following command, you can run a traversal to return all the vertices having the

label person:

g.V().hasLabel('person').values('name')
==>maria
==>laura
==>john
==>ivan
==>angela
==>marcel

284 Chapter 9 ■ Discovering Relationships Using Graph Databases

==>fred

==>linda

The following command will run a traversal and return key- value pairs for all vertices
that marcel is a “friend of.”

g.V().has('name', 'marcel').out('friend').valueMap()
==>{name=[maria]}

Storage Architecture
Amazon Neptune architecture is reliable, durable, and fault tolerant.

Amazon Neptune data relies on a cluster volume, a storage layer available to the compute
nodes as a single virtual volume that uses solid- state disk (SSD) drives.

The storage layer in Amazon Neptune has the same architecture as the storage layer
for Amazon Aurora. Amazon Neptune relies on a shared storage architecture that scales
 automatically, distributed across three availability zones. The cluster volume can grow to
128 tebibytes (TiB).

The Amazon Neptune storage volume uses Non- Volatile Memory Express (NVMe) SSD-
based drivers. This storage volume’s logical block (segment) allocates 10 gigabytes (GB).
Each segment is replicated into six copies, distributing two copies to each of the three avail-
ability zones (AZs).

Data Resilience
Amazon Neptune automatically identifies defeats in the disk volumes within the virtual
cluster volume.

When a segment of the disk volume fails, Neptune instantly fixes that segment, using the
data from the other available disk volumes. This self- healing feature guarantees that the data
in the repaired segment is current.

This self- healing architecture avoids data loss and minimizes the condition of restoring a
point in time from a disk failure situation.

Read Replicas
Each Amazon Neptune database cluster must have one primary node that supports read/
write operations. You can add up to 15 read replica instances to run the read- only queries.

The read replica instances need not be the same instance class as the primary node.
The read replica instances read the same shared storage cluster as the primary, as rep-

resented in Figure 9.4; therefore, the read replica instances return the queried data with a
minimal lag, usually much less than 100 milliseconds.

Amazon Neptune 285

Amazon Neptune uses the endpoint method to make it transparent to the application
connections so that you don’t have to keep a fixed hostname in the application code or
write specific failover logic for forwarding connections when some database instances are
unavailable.

The following endpoints are available in an Amazon Neptune database cluster:

 ■ Cluster endpoint: A cluster endpoint connects the primary database instance for that
database cluster. Each Amazon Neptune database must have one primary database
instance and its respective cluster endpoint.

The cluster endpoint provides failover for reading/writing connections to the database
cluster. The applications must use the cluster endpoint for all write operations (inserts,
updates, deletes, and modifications on schemas by data definition language). You can
configure the cluster endpoint for reading operations (queries), but for better scalability
and readiness for scaling out read operations we strongly recommend using the reader
endpoint.

If the primary database instance fails, Amazon Neptune automatically fails over to an
available read replica if there’s one available. The failover process occurs with minimal
service interruption; the database cluster keeps answering connection requests to the
cluster endpoint from the newly promoted primary database instance.

 ■ Reader endpoint: A reader endpoint connects the Amazon Neptune database cluster
to one of the available read replicas for that database cluster. Each Amazon Neptune

F IGURE 9 .4 Read replicas

286 Chapter 9 ■ Discovering Relationships Using Graph Databases

database cluster always has a reader endpoint, even if you don’t add a read replica to
the cluster, and it will connect to the primary instance. Whenever the database cluster
has more than one read replica, the reader endpoint forwards the connection request to
one read replica.

The reader endpoint works by round robin, routing the connections to the available
read replicas. Each time you call the reader endpoint, you resolve the DNS and get a
different IP address and establish a connection to this new IP. After confirming a connec-
tion, the cluster sends all the requests to the same IP address (host).

To potentially connect to a different read replica, the client must create a new connec-
tion to enforce the DNS resolution.

Some client software might cache the DNS resolution and use the IP address for all con-
nections. This behavior will direct all requests to the same host, which can be a problem
for round- robin routing and failover situations. Disabling any DNS caching configura-
tion is recommended to force the DNS resolution each time.

 ■ Instance endpoint: An instance endpoint connects to a specific database instance. Each
database instance in the cluster has its unique endpoint. Using the instance endpoint
allows the application to connect to a particular instance of the database cluster. This
strategy might be appropriate when the cluster and reader endpoints are not the best
alternatives.

 ■ Custom endpoints: Custom endpoints manage the connection to a set of database
instances you choose. When you connect to the endpoint, Amazon Neptune will choose
one of the compound selected instances and handle the connection.

The custom endpoint isn’t available by default in an Amazon Neptune database cluster
until you create one.

Scalability
Amazon Neptune architecture decouples the compute and storage layers and allows the scal-
ing of instances and storage independently.

 ■ Storage scaling–— Storage in Amazon Neptune grows automatically up to 128 TiB in all
supported regions except China and GovCloud, which is limited to 64 TiB. For engine
releases earlier than release 1.0.2.2 (2020- 03- 09), however, the size of cluster volumes
is limited to 64 TiB in all regions. When you create a Neptune database cluster, the
cluster allocates a single segment of 10 GB. As the volume of data grows the current
storage, Neptune automatically extends the cluster volume by adding new segments of
10 GB. The storage size is checked hourly to determine the storage costs. You’re charged
only for the space actually allocated. However, when Neptune data is removed, such as
by using a drop query like g.V().drop(), the overall allocated space remains the same.
Unused allocated space is then reused automatically when the amount of data increases
in the future.

Amazon Neptune 287

The storage costs are based on the “high water mark” (the maximum amount allocated
to your Amazon Neptune database cluster at any time during its existence). Avoid ETL
practices that create large amounts of temporary information or that load large amounts
of new data before removing unneeded older data.

 ■ Instance scaling: You can scale the instance class according to the workload require-
ments by modifying each database instance in the database cluster and choosing
instances with more vCPUs and memory. Amazon Neptune supports several optimized
database instance classes.

 ■ Read scaling: For horizontal scaling, you can add more instances for read- only opera-
tions; each Amazon database cluster supports up to 15 read replicas. In the read rep-
licas, you can load balance the read operations for your application.

Availability
To ensure high availability, it’s recommended that you create one or more read replica
instances that have the same database instance class as the primary instance and are located
in a different availability zone than the primary instance.

Having one or more read replicas increases the availability of your cluster. In the case of
failure of the primary node, Amazon Neptune automatically fails over to one of the read
replica instances to primary with a priority that you can specify using the failover tier con-
figuration. While promoting a read replica to primary, there’s a brief interruption on the read
replica while the promoted instance is rebooted. Read and write operations running on the
primary instance will fail with an exception.

If the Amazon Neptune cluster doesn’t have any read replica, in failure situations, the
database cluster remains unavailable until the primary instance has been re- created.
Re- creating an instance takes considerably longer than promoting a read replica.

For multiregion replication requirements, Amazon Neptune allows the global database
to replicate across multiple AWS regions. An Amazon Neptune global database enables
low- latency reads in the remote region and fast recovery if a failure impacts an entire AWS
region, which is a rare situation.

Amazon Neptune global database enables replicating the cluster up to five different
regions. Only read replicas will be available in the secondary regions, and in each region, you
can launch up to 16 read replica instances.

You can’t create an encrypted read replica instance from one unen-
crypted cluster. And vice versa: you can’t create an unencrypted read
 replica instance for an encrypted Amazon Neptune database cluster.

Failover Policy
You can configure the failover tier at the read replica instances. Read replica instances with
lower values in the failover tier configuration have a higher preference to be promoted to
primary in failure situations.

288 Chapter 9 ■ Discovering Relationships Using Graph Databases

If the read replica instances have the same failover tier value, Amazon Neptune will pro-
mote the replica that is the same size as the primary instance.

You can modify the failover tier for a read replica instance at any time.

Security
The AWS shared responsibility model applies to Amazon Neptune. This model describes that
AWS is responsible for protecting the global infrastructure that runs the AWS cloud. You are
responsible for maintaining control over your content in this infrastructure.

For data protection purposes, it’s recommended that you protect the AWS credentials and
set up user accounts with AWS Identity and Access Management (IAM).

You can only create an Amazon Neptune database cluster in the Amazon Virtual Private
Cloud (VPC) service deployed with a minimum of two subnets and with a minimum of two
availability zones; this strategy will guarantee the instances’ deployment across at least two
availability zones and will minimize the impact in the unlikely failure of an availability zone.
The storage volume is always distributed in three availability zones to reduce data loss and
increase availability. The Amazon Neptune endpoints are accessible only within that virtual
private cloud. The Figure 9.5 represents the security group deployment method to access the
Amazon Neptune database cluster.

F IGURE 9 .5 Security group

Amazon Neptune 289

You need to create a security group to allow the EC2 instance that requires access to the
Amazon Neptune database cluster within the VPC.

You can set up different ways to connect to your Amazon Neptune cluster:

 ■ By connecting to the Amazon Neptune cluster from an Amazon EC2 instance in the
same VPC

 ■ By accessing your Amazon Neptune cluster from an Amazon EC2 instance in another
VPC, using a VPC peering connection (network connection between VPCs)

 ■ By accessing your Amazon Neptune cluster from a private network

Using IAM, you can authenticate to the Amazon Neptune database cluster or instance.
Enabling the IAM database authentication requires all the HTTP requests to be signed using
AWS Signature Version 4.

Amazon Neptune only allows Secure Sockets Layer (SSL) connections through HTTPS to
any instance or cluster endpoint since engine version 1.0.4.0.

For security reasons, always use HTTPS instead of HTTP to connect to Amazon Neptune
endpoints.

Amazon Neptune automatically provides SSL certificates for your Neptune database
instances when you create new instances. There’s no need to request any certificates.

Amazon Neptune permits you to protect data at rest by encrypting the data and using
the AWS Key Management Service (AWS KMS) for the keys management for encrypting and
decrypting operations.

All logs, backups, and snapshots are encrypted once the cluster encryption is enabled.
You can encrypt a cluster when creating it by using the AWS Neptune console; select Yes

in the Enable Encryption section. If you don’t define a KMS key during this step, Amazon
Neptune uses the default Amazon RDS encryption key (aws/rds). Different AWS regions have
other default encryption keys.

Note the following important tips:

 ■ You cannot convert an unencrypted database cluster to an encrypted one. However, you
can restore an unencrypted database cluster snapshot to an encrypted database cluster.
To accomplish this conversion, you must set a KMS encryption key when restoring from
the unencrypted database cluster snapshot.

 ■ You cannot convert an unencrypted database instance to an encrypted one. You can
only enable encryption for a database instance when you create it.

 ■ You can’t modify an encrypted database instance to disable encryption.

 ■ You can’t have an encrypted read replica of an unencrypted database instance or an
unencrypted read replica of an encrypted database instance.

 ■ You must encrypt read replicas with the same key as the source database instance.

Automatic Backup and Restore
Amazon Neptune automatically backs up your cluster volume and retains the backups for
the backup retention period. The backup in the Amazon Neptune database cluster is contin-
uous and incremental, so you can quickly recover the database to any specific date and time

290 Chapter 9 ■ Discovering Relationships Using Graph Databases

within the backup retention period. There’s no performance impact or interruption of data-
base service while the Amazon Neptune database cluster takes the backup. When creating or
modifying, you can determine the backup retention from 1 to 35 days in the cluster configu-
ration. You can take manual snapshots and manage their retention period.

For restoring the database from a previous timestamp, you can choose to restore from the
automatic backup or from a snapshot (if snapshots were taken manually previously). Dur-
ing the restore process, a new Amazon Neptune database cluster will be launched with the
chosen backup data.

To check the latest and earliest restorable time for a database instance, look for the Latest
Restorable Time or Earliest Restorable Time values.

Amazon Neptune deletes its automated backups simultaneously when you delete a data-
base cluster. Amazon Neptune does not delete manual snapshots during cluster deletion. You
won’t be able to restore this Amazon Neptune cluster at a later time unless you choose to
create a final database snapshot manually.

Monitoring
Amazon Neptune enables native mechanisms for monitoring the cluster usage, performance,
and service health.

 ■ Instance status: Using curl, you can check the instance status. If the instance is healthy,
the following command will return the status, startTime, dbEngineVersion, and
query language available in the cluster, as well as other important information.

curl - G https://your- neptune- endpoint:port/status
 ■ Amazon CloudWatch: Using Amazon CloudWatch, you can observe by AWS Console,

Cloudwatch API, or AWS command line (CLI) the percentage of CPU utilization, the
average number of I/O disk writes, and the number of requests waiting in the input
queue pending execution.

 ■ Audit log files: When enabling audits in Amazon Neptune cluster, you can download
data from the console to review information such as the timestamp, the IP address, or
the hostname that originates the user connection, the connection type (Websockets,
HTTP_POST, HTTP_GET, or Bolt), authentication information, the HTTP header, and
the payload (Gremlin, SPARQL, or openCypher query).

 ■ Publishing logs to Amazon CloudWatch Logs: You can enable publishing audit logs
to Amazon CloudWatch to perform near- real- time analysis, create alarms, and view
metrics.

 ■ AWS CloudTrail: AWS CloudTrail exclusively logs events for Neptune Management API
calls, such as creating an instance or cluster.

 ■ Event notification subscriptions: You can enable the Simple Notification Service (SNS)
for notifications when an Amazon Neptune event occurs. You can subscribe to event
categories: availability, backup, failover, configuration change, failure, and others.

 ■ Tagging: You can add tags with descriptions to the Amazon Neptune database cluster
resources and track the usage based on tags.

Exam Essentials 291

Summary
Graph databases enable you to explore highly connected data. They support modern appli-
cations, such as recommendation engines, fraud detection, and others.

Amazon Neptune enables graph databases in a fast, secure, reliable, and scalable
platform, enabling your applications to explore graph data models very efficiently.

Exam Essentials
Understand the Amazon Neptune architecture and purpose- built storage. Amazon Neptune
relies on cloud- native architecture, with a durable and high- performance storage layer dis-
tributed across three availability zones; it keeps two copies on each AZ, which are six copies
of each protection group segment.

Understand the graph models and query languages that you can use in Amazon
Neptune. To explore the highly connected data, you can choose the property graph data
model using the Gremlin or openCypher languages or using RDF via the SPARQL language.

Understand how to load data into Amazon Neptune. To load graph data into Amazon
Neptune, you can use SPARQL INSERT statements or Gremlin addV and addE statements.
For large datasets, you can use the bulk load command. It supports both RDF and
Gremlin data. You can also use AWS Database Migration Service to migrate from other data
sources.

Know how to scale and improve availability using read replicas in Amazon Neptune.
Amazon Neptune cluster has one primary and writer node and allows it to scale out, add-
ing up to 15 read replicas. The read replicas are available to balance read operations and
failover in case of an eventual loss of the primary node. You can also modify the instance
type to allocate more CPU and memory for your cluster.

Know how to secure your Amazon Neptune database cluster. You can rely on the VPC and
security group configuration to restrict the connection to allowed sources. Use AWS IAM to
authenticate the connections to the Amazon Neptune cluster.

292 Chapter 9 ■ Discovering Relationships Using Graph Databases

Review Questions
1. Which query languages are currently supported on Amazon Neptune?

A. Gremlin, openCypher, and SPARQL

B. Structured Query Language (SQL)

C. Python

D. Pyspark

2. You received a requirement to host data for a large retail online store, make this data avail-
able for a product recommendation engine application, and build a fast and high- availability
architecture. Which database is the best solution?

A. RDS PostgreSQL

B. Amazon DynamoDB

C. Amazon Neptune

D. Amazon Keyspaces

3. You have an Amazon Neptune database cluster with only one primary node that processes all
write and read operations, and now the cluster is struggling with read operations. What is the
best alternative to improve the performance and high availability of your cluster?

A. Add a read replica to your Amazon Neptune cluster.

B. Create another Amazon Neptune cluster, create a task using DMS to replicate the data
to the new cluster, and connect the reading applications to this new cluster.

C. Change the instance to an instance type with more vCPU and memory capacity.

D. Add a read replica to your Amazon Neptune cluster, and change the application to con-
nect the read- only operations to the read replica endpoint.

4. Your Amazon Neptune cluster has two read replicas configured with different instance types.
In an eventual failure of the writer instance, how can you ensure that the cluster will promote
the instance with more VCPUs?

A. Configure the instance with more VCPUs with the lowest value in the failover tier.

B. Configure the instance with more VCPUs with the highest value in the failover tier.

C. There’s nothing to configure; the Amazon Neptune cluster will always promote the in-
stance with more VCPUs.

D. There’s nothing to configure; the Amazon Neptune cluster will always randomly choose
the instance to promote.

5. You received the requirement to ensure the Amazon Neptune cluster replication in a second
AWS region. How can you achieve this requirement with the lowest RTO and RPO?

A. Enable Neptune Streams.

B. Configure Database Migration Service replication.

C. Enable Global Database for your Amazon Neptune cluster.

D. It is not possible to replicate cross- region.

Review Questions 293

6. You received the requirement to encrypt your existing unencrypted Amazon Neptune cluster.
How can you meet this requirement?

A. Modify the cluster configuration and choose Apply Immediately.

B. Modify the cluster configuration and choose Apply The Maintenance In The Next Main-
tenance Window.

C. It is not possible to modify the instance encryption configuration.

D. Take a snapshot, and set a KMS encryption key when restoring from the unencrypted
database cluster snapshot. The newly restored cluster will be encrypted.

7. You received the requirement to encrypt data in transit for all your databases including the
Amazon Neptune clusters. You have newer versions and clusters prior to version 1.0.4.0.
How can you meet this requirement? (Choose two.)

A. For all Amazon Neptune clusters starting from 1.0.4, there’s nothing to do; SSL is the
only option.

B. For all Amazon Neptune clusters prior to 1.0.4, you can meet this requirement by modi-
fying the cluster to use a newer parameter group.

C. It is not possible to encrypt data in transit for an Amazon Neptune cluster.

D. For all Amazon Neptune clusters prior to 1.0.4, you can’t enable encryption in transit.

8. You are in charge of building a recommendation engine that will suggest products for cus-
tomers while navigating the website. For the developers programming, using SQL queries is
very easy, and according to your historical customers’ purchase data, you are going to model
the customers and products by vertices and the relationships by edges. Which is the best
graph data model to store your data?

A. Relational model.

B. Property graph data model.

C. Resource Description Framework.

D. Convert the data to S3 in Parquet format, and explore the data using Athena.

9. You’re in charge of inserting in your Amazon Neptune cluster that uses the property graph
data model a large dataset already extracted to an external file. Which is the fastest method
for loading large datasets?

A. Perform the insert using addV and addE steps.

B. Perform the bulk loader command.

C. Configure Database Migration Service replication.

D. Perform the insert using the SPARQL INSERT statement.

10. You are in charge of supporting a promotional campaign that will issue queries for the
recommendation engine. You don’t want to impact the production environment with two
read replicas and have decided to launch a new read replica to accommodate this specific
campaign. Which is the easiest method to ensure that this specific workload will connect to
the new read replica launched?

A. Your only option is to connect to the cluster endpoint.

B. Connect to the reader endpoint, and it will connect to the new read replica.

C. Connect to the instance endpoint for the new read replica instance.

D. Configure a custom endpoint, and manage the connection to this new instance.

Immutable Database
and Traceable
Transactions

THE AWS CERTIFIED DATABASE –
SPECIALTY EXAM OBJECTIVES COVERED
IN THIS CHAPTER MAY INCLUDE, BUT ARE
NOT LIMITED TO, THE FOLLOWING:

 ✓ Domain 1: Workload- Specific Database Design.
 ■ 1.3 Design database solutions for performance, compliance,

and scalability.

 ✓ Domain 4: Monitoring and troubleshooting.
 ■ 4.2 Troubleshoot and resolve common database issues.

 ■ 4.3 Optimize database performance.

 ✓ Domain 5: Database security.
 ■ 5.1 Encrypt data at rest and in transit.

 ■ 5.3 Determine access control and authentication mechanisms.

Chapter

10

In this chapter, you will learn about blockchain technology—
specifically, centralized ledgers and the related AWS service,
Amazon Quantum Ledger Database (Amazon QLDB). The
chapter also highlights QLDB main features and how they can

be leveraged within your blockchain application. You will also learn how to deploy, secure,
monitor, and operate workloads using Amazon QLDB.

Have you ever faced the challenge of versioning a database? How is it handled with a
traditional relational database? A good database designer probably would go for a separate
table that replicates the original table, plus some column with a time mark to keep track
whenever the data is updated. When new data arrives, a new record is inserted into the his-
tory table with the data snapshot before the update. Another approach can be to use a data
warehouse and store all the versions of the data in an aggregated way.

Any solution based on relational databases would be very complex since they cannot
seamlessly prevent tampering with old data, not to mention that the whole setup and opera-
tion add extra complexity and time. The best solution for this scenario is to use blockchain
technology. In this chapter, we will also cover the main centralized ledger use cases.

Amazon Quantum Ledger Database
When would it be appropriate to use Amazon Quantum Ledger Database? There are two
possible scenarios.

In the first, multiple parties need to work with a centralized, trusted authority to maintain
a complete and verifiable record of transactions. An example is a retail customer looking to
connect its suppliers with a centralized ledger that maintains a transparent and verifiable his-
tory of information related to the movement of a product through its supply chain.

In the second, multiple parties transact in a decentralized manner without the need for
a centralized, trusted authority. An example is a consortium of banks and credit houses
looking to perform cross- boundary transfer of assets among each other, without a central-
ized authority acting as a broker.

If you require a centralized ledger that records all application data changes and main-
tains an immutable record of these changes, AWS provides the ledger database known as
Amazon QLDB.

Amazon QLDB is a new kind of database that eliminates the need for the full
development effort to create your own ledger- like applications. QLDB is a fully managed
database that provides an immutable and cryptographically verifiable transaction log, owned

Amazon Quantum Ledger Database 297

by a trusted central authority. It can be used to record every change in application data and
maintain a complete and verifiable history.

With QLDB, the data change history is immutable, meaning it cannot be modified
or deleted, and by using cryptography, you can easily verify that no modifications have
occurred to your application data. QLDB uses an immutable transaction log, called a
journal, that records every change in application data and maintains a complete and verifi-
able history.

QLDB is easy to use because it provides to developers a familiar application program-
ming interface (API) that is similar to Structured Query Language (SQL), a flexible document
data model, and full transaction support. QLDB also has streaming capability that provides
near real- time flow of data from a QLDB table, allowing you to develop event- driven work-
flows, perform real- time analytics, and replicate data to other AWS services to do further
data processing such as advanced analysis.

QLDB is also serverless, so it scales automatically to support the demands of your appli-
cation, and you pay only for what you use. There are no servers to manage, and there is no
read or write limit to configure. Figure 10.1 shows the high- level architecture.

Amazon QLDB Components
If you have experience with relational database management systems (RDBMS) and SQL,
you will find some analogies with QLDB components (see Table 10.1).

Amazon QLDB Architecture

Journal

Current State

Insert
Data

Update
Data

Delete
Data

Indexed History Ledger Catalog

Cryptographic
Verification

F IGURE 10 .1 High- level architecture of Amazon QLDB

298 Chapter 10 ■ Immutable Database and Traceable Transactions

Ledger
An Amazon QLDB ledger is a set of tables with documents and a journal that keeps the
complete, immutable history of changes to each document within the tables.

Table
Tables belong to a ledger and contain a collection of document revisions from the journal,
similar to a materialized view. Tables support optional indexes on document fields; the
indexes can improve performance for queries that make use of the equality operator.

System Catalog
For each table in an Amazon QLDB ledger, there is a system- assigned unique ID. You can
find a table’s ID, the index list, and other metadata by querying the system catalog table:
information_schema.user_tables.

The following metadata fields are available for query:

 ■ tableId: The unique ID of the table

 ■ name: The table name

 ■ index: The ID, the attribute, and the status for each index

 ■ status: The table’s current status, ACTIVE or INACTIVE

Documents
Data records within QLDB tables consist of revisions of QLDB documents. These documents
use a specific format called Amazon Ion and represent a single version of a sequence of docu-
ments identified by a unique ID.

TABLE 10 .1 Relational and QLDB

Relational QLDB

Database Ledger

Table Table

Row

Column

Index

Document

Document attribute

Index

SQL

Audit logs

PartiQL

Journal

Amazon Quantum Ledger Database 299

Amazon Ion is a superset of JSON format that adds additional data types, type anno-
tations, and comments. Those documents don’t need to comply to any particular schema,
allowing you the flexibility to build applications that can easily adapt to changes.

QLDB supports documents that contain nested JSON elements and also gives you the
ability to write queries that reference and include these nested elements.

Journal
The ledger is built on an append- only log called a journal. As transactions are committed to
the ledger, they’re organized into blocks and appended to the journal. Each block contains
only one transaction.

Once committed and appended, blocks can’t be modified or overwritten, which gives you
an immutable record of every insert, update, and delete ever committed to the ledger and
access to every revision of every document at all times.

Query Engine
The purpose of Amazon QLDB is to work as a high- performance online transaction
processing (OLTP) immutable database with full ACID transaction support. To fulfill this
role, the data needs to be accessed by some query language.

To this end, QLDB provides real- time table views based on the information stored in
the journal. These views can be queried by using a subset of PartiQL operations. PartiQL
is an open standard query language that supports SQL- compatible access to relational,
semistructured, and nested data, while remaining independent of any particular data source
or schema.

To run PartiQL queries in QLDB, you can use one of the following:

 ■ The Query Editor on the AWS Management Console for QLDB

 ■ The command- line QLDB shell

 ■ An AWS- provided QLDB driver to run queries programmatically

Cryptographic Verification
To prove that the transaction history is immutable, Amazon QLDB provides a cryptographic
verification feature that enables it to mathematically prove the integrity of the entire transac-
tion history.

What exactly is this verification feature?
After a client writes data to the ledger, Amazon QLDB calculates a hash of the data using

the SHA- 256 hash algorithm and stores it along with the data. At a high level, verifying data
in Amazon QLDB is done by recalculating the hash for the data you want to verify and com-
paring it to the hash that was stored at the time when the data was written.

You might be thinking, how can we verify the integrity of the entire database then?
Validating all the records one by one isn’t a choice because an attacker with low- level

access to the database could tamper with the data and its hash at the same time, and it
would be difficult to discover.

300 Chapter 10 ■ Immutable Database and Traceable Transactions

To overcome this issue, QLDB uses a hash chaining mechanism. Hash chaining is the
process of applying a cryptographic hash algorithm to another hash, creating a hash of
a hash. The records in the database are sorted sequentially, and each data record hash
depends on the hash of the record before it, so changing the data in one record affects the
hash of that record and the hash of every other record that comes after it. This proves not
just the contents of each document, but also that each document is where it belongs in the
database in sequential order. Notice that the chain example in Figure 10.2 has two transac-
tions per block, but Amazon QLDB stores only one transaction per block in a one- to- one
relationship.

To make verifications more efficient, QLDB organizes the hashes using a Merkle tree.
A Merkle tree is a binary tree data structure whose leaf nodes contain a single data hash
and whose nonleaf nodes contain a hash of their two child node hashes, as shown in
Figure 10.3.

Working with Amazon QLDB
As with all databases, the ledger doesn’t fulfill any use case on its own; it needs to
be integrated into an application that requires the immutable and auditable features
to be built in.

hash(m1.0+m0.3)

m2.0

m1.0

m0.2m0.1 m0.3

h5h4h3h2h1h0

(d0) (d1) (d2) (d3) (d4) (d5)

hash(m0.1+m0.2)

hash(h0+h1) hash(h2+h3) hash(h4+h5)

F IGURE 10 .2 Hash chain example

Amazon Quantum Ledger Database 301

Application Integration
To connect to Amazon QLDB and transact with the data in the ledger, the app can use the
Amazon QLDB API, the AWS SDK for QLDB, or the QLDB driver provided by AWS.

The driver provides a high- level abstraction layer above the transactional data API
(QLDB session). It handles the SendCommand API calls including all the necessary parame-
ters, session pool management, and retry policies.

In addition, the driver uses Amazon Ion libraries to enable support for handling Ion data
when running transactions. These libraries also take care of calculating the hash of Ion docu-
ments, which QLDB requires to check the integrity of data transaction requests.

The driver is open source and currently available for the following programming
languages:

 ■ Java

 ■ .NET

 ■ Go

 ■ Node.js

 ■ Python

Amazon QLDB doesn’t have the same concept of a traditional relational connection over
TCP because transactions are sent via HTTP request and response messages. The analogous
concept to an RDBMS connection is an active session. QLDB supports one actively running
transaction per session.

{} {} {}

Document verified

A B C

ED

F G

Digest

Proof hashes

Block hashes

Document hashes

A hash that represents your ledger’s
entire history of document revisions as
of a point in time.

PROOF

F IGURE 10 .3 QLDB Merkle tree implementation

302 Chapter 10 ■ Immutable Database and Traceable Transactions

The QLDB driver maintains and manages a pool of sessions for the clients. When the
application asks the driver to run a transaction, the driver chooses a session from the pool
and uses it. If the transaction fails because of a session error, the driver uses another session
to retry the transaction. Essentially, the driver offers a fully managed session pool experience.

The QLDB driver automatically retries the transactions when common exceptions occur.
You can implement a retry policy to configure how many retries to attempt before the trans-
action aborts and the session returns to the pool.

Besides the number of attempts, the retry policy also can be used to define the back-
off strategy. The backoff is exponential, uses a minimum delay of 10 milliseconds and a
maximum delay of 5000 milliseconds, and has equal jitter.

Querying the Data
Amazon QLDB provides access to the documents by keeping a subset of the data on table
views. These are real- time views, so they’re always available for applications to query by
using PartiQL statements.

In addition to these queryable views, you can query the revision history of your data by
using the built- in history function.

Besides the traditional basic query operations, QLDB allows you to run projections,
filters, and some traditional ANSI SQL functions such as AVG, COUNT, SUM aggregates,
COALESCE, EXIST, NULLIF conditionals, SUBSTRING, CHAR_LENGTH, and TRIM string oper-
ations, among other functions and categories.

The following query shows a select projection and a filter based on a string list containing
predicates:

SELECT
 v.Make,
 v.Model,
 r.Owners
FROM
 VehicleRegistration AS r JOIN Vehicle AS v
ON
 r.VIN = v.VIN
WHERE
 r.VIN IN ('1N4AL11D75C109151', 'KM8SRDHF6EU074761')

Proof of Integrity of the Data
You can easily request proof of integrity from Amazon QLDB by requesting a digest. A
digest is a cryptographic representation of the entire journal at some point in time. When
one is requested, QLDB generates a digest as an output file, from which you can verify
the integrity of the data that was committed at a prior point in time. If you recalculate the
hashes by starting with a revision and ending with the digest, you prove that your data has
not been tampered with in between.

Amazon Quantum Ledger Database 303

QLDB also has a feature to assist you in the verification process. It is done by requesting
a digest with the ID and block address of the document revision to verify.

The ID and address can be retrieved with the following PartiQL query example:

SELECT metadata.id, blockAddress FROM table_name
WHERE some_criteria

With that ID, you can use the QLDB console verification page, and the service will auto-
mate the hash verification process by returning a result page showing the content of the
proof for the specified document revision and digest. Figure 10.4 shows an example of a ver-
ification result page.

Amazon QLDB also supports event- driven architectures by providing continuous journal
stream capability. This data streaming can be integrated with Amazon Kinesis to process
real- time journal data.

Backup and Durability
Like all other AWS services, Amazon QLDB is built on the AWS Global infrastructure and
shares the same level of resilience. In addition, Amazon QLDB has some backup features.

The managed service comes with a feature that provides on-demand journal export to an
Amazon S3 bucket. Once the journal is on S3, you can access its contents in your ledger for
various purposes including analytics, auditing, data retention, verification, and exporting to
other systems. The information goes to Amazon S3 in Amazon Ion format.

At the time of writing, Amazon QLDB doesn’t provide a backup and restore feature; the
export functionality is mainly for additional data redundancy.

Block 59 Block 60 Block 61

Block Hash:
000057ecfda71

Previous Block Hash:
0000d682j0a3b

Block Hash:
000034ecfca52

Previous Block Hash:
000057ecfda71

Timestamp

Timestamp

Timestamp

Timestamp

Timestamp

Timestamp

Block Hash:
000061ebfaa88

Previous Block Hash:
000034ecfca52

Timestamp

Timestamp

Timestamp

F IGURE 10 .4 Block reference example

304 Chapter 10 ■ Immutable Database and Traceable Transactions

If you need to restore a QLDB database, it has to be done at the application level into a
new ledger by using some kind of ingest mechanism.

Regarding durability, Amazon QLDB journal storage and indexes implement synchronous
replication to multiple availability zones for every write. By doing so, AWS ensures that even
in a full availability zone failure, the journal storage would not be compromised.

Additionally, the journal sends another asynchronous archive to a fault- tolerant storage.
This feature supports disaster recovery in the highly unlikely event that several availability
zones fail simultaneously.

Performance and Scalability
Amazon QLDB has a centralized design, so it won’t wait for the consensus of the majority of
members in the network to execute a transaction, like the common blockchain frameworks
do. For the decentralizaed implementation, QLDB is capable of delivering from two to three
times more performance than other ledgers.

Similar to Amazon DynamoDB on- demand capacity, you don’t need to worry about pro-
visioning capacity or configuring read and write limits in QLDB; it will automatically scale
to support the demands of the application.

To keep the performance stable and be able to scale as demand grows, QLDB enforces
throttling on a per- region and per- account basis using a token throttling algorithm. QLDB
does this to ensure fair usage for all QLDB customers. For example, trying to acquire many
concurrent sessions using the StartSessionRequest API operation might lead to throttling.

In addition to the token throttling algorithm, QLDB enforces an internal scaling limit
per ledger to maintain the health and performance of the service as well. This limit changes
depending on the workload size of each individual request. For example, a request can have
an increased workload if it performs inefficient data transactions, such as table scans that
result from a nonindex attribute query predicate.

The throttling and limit mechanisms help to mitigate potential scaling issues, but the real
thing behind QLDB is the concurrency model implementation.

Amazon QLDB operates with optimistic concurrency control (OCC). OCC works on the
principle that multiple transactions can frequently be completed without interfering with
each other. Transactions in QLDB do not lock database resources and run with full serializ-
able isolation. QLDB executes concurrent transactions in a series, so it has the same effect as
if those transactions were started sequentially.

What if the result of one transaction affects the condition of the following one?
QLDB will reject a transaction if another one interferes with a read condition of the

transaction itself before the actual commit. For example, if there is a wire transfer waiting
to be executed in the sequence and the source account had a withdrawal in between, the
wire transfer transaction commit will fail due to an OCC conflict (OccConflictException).
You can retry the transaction and re- check if the source account still has enough balance. In
other words, QLDB will keep track of any transaction in the sequence that could potentially
tamper with the outcome of a read condition of the following transaction in the order.

Amazon Quantum Ledger Database 305

Security
Amazon QLDB shares the same level as security as the rest of the managed AWS services;
that’s why it also complies with some of the most important compliance programs such as
SOC, PCI, ISO, and HIPAA. Besides the standard security level provided by AWS, there are
several ways you can secure the data on Amazon QLDB. Let’s go through the features avail-
able for data protection and access management.

Access Management
Every time you read about security for an AWS service, you will see Identity and Access
Management (IAM) as the main component. This happens because a good security posture
begins with good access management control. IAM lets you control who can be authenti-
cated and authorized to use each one of the Amazon QLDB resources.

There are two kinds of QLDB users:

 ■ Service users: A simple user who is authorized to perform certain tasks on QLDB. A ser-
vice user, in turn, can be one of the following principals:

 ■ IAM user or group using their username and password

 ■ IAM role with temporary credentials like an Amazon EC2 instance

 ■ Federated user from an external identity provider like Active Directory

 ■ Cross- account user from a different AWS account with a trust relationship

 ■ Service- linked role assumed by another AWS service, like an AWS Lambda function

 ■ Service administrator: The one with full access to Amazon QLDB and with the responsi-
bility of creating and assigning the right permissions over a QLDB resource to each ser-
vice user. The resources that support the IAM policies are the following:

 ■ Ledger

 ■ Table

 ■ Catalog

 ■ Stream

The service administration has the following IAM features at their disposal to grant fine-
grain access to the service users and, in that way, apply the least privilege principle:

 ■ Identity- based policies

 ■ Policy actions

 ■ Policy resources

 ■ Policy condition keys

 ■ Attributes- based access control with TAGs

 ■ Temporary credentials

 ■ Service roles

306 Chapter 10 ■ Immutable Database and Traceable Transactions

Data Protection
Another key factor in security is the data protection itself. As explained earlier in this book,
and probably in all other AWS certification preparation guides out there, data protection is a
responsibility shared between AWS and the customers. The well- known AWS shared respon-
sibility model also applies to Amazon QLDB. AWS is responsible for protecting the infra-
structure while customers are responsible for maintaining control over the QLDB content
that is running on that infrastructure.

AWS provides several tools and features to help customers fulfill their roles in the previ-
ously mentioned model. The following are the main ones for Amazon QLDB:

 ■ All data stored in QLDB is encrypted at rest by default using AWS KMS. It can be with
AWS owned keys at no additional cost. Or you can use your keys to have full control
over the encryption keys, but KMS charges will apply.

 ■ Amazon QLDB also ensures the encryption in transit by only accepting HTTPS connec-
tions using SSL/Transport Layer Security (TLS). Clients must support TLS 1.0 or later,
though it is recommended to use TLS 1.2 or above.

 ■ You can enforce the usage of MFA for Amazon QLDB administrator users or console
service users.

 ■ Amazon QLDB is compatible with VPC endpoints, so your application running in an
Amazon VPC can communicate with the ledger in QLBD using AWS private networks
instead of the public Internet.

 ■ All nontransactional operations of QLDB are recorded on Amazon CloudTrail for audit
or compliance reasons.

Monitoring
Monitoring is a key part of keeping the reliability and performance of all applications;
Amazon QLDB is no exception. There are three main elements to watch for in QLDB:
storage I/O, operation latency, and exception count. We will cover next how to monitor
each one.

Like the other AWS services, Amazon CloudWatch will integrate natively with
QLDB. You can build a CloudWatch Dashboard, aggregating the metrics available on a
single pane of glass. You can also set up alarms to trigger; if some metric changes, it states
for a given period of time. You can use CloudWatch Events to match a QLDB event and
route them to a target function, stream, or queue to take further actions. You can also send
QLDB CloudTrail logs to CloudWatch Logs to store, filter, or analyze them.

By default, CloudWatch provides the following metrics for QLDB:

 ■ JournalStorage

 ■ IndexedStorage

 ■ ReadIOs

 ■ WriteIOs

Summary 307

 ■ CommandLatency

 ■ IsImpaired

 ■ Exceptions

Best Practices
The following are the best practices to consider when using Amazon QLDB:

 ■ Amazon QLDB PartiQL operations are subject to transaction limits for a size of
4 MB and timeout of 30 seconds. You should design your applications considering
these quotas.

 ■ For data protection purposes, we recommend that you protect AWS account credentials
and set up individual user accounts with AWS Identity and Access Management (IAM).
That way, each user has only the necessary permissions to fulfill their job duties.

 ■ The number of QLDB concurrent sessions is 1,500; when that limit is reached,
any session that tries to start a transaction will result in a LimitExceededException
error. The best practice is to use the session pool in your application by using the
QLDB driver.

 ■ For better performance, ensure that only one global instance of the driver exists on each
application instance. This can be done by using dependency injection design patterns.

 ■ PartiQL is SQL compatible. However, avoid table scans for production use cases in
QLDB, as they can cause performance problems on large tables, including concurrency
conflicts and transaction timeouts.

 ■ Make your write transactions idempotent to avoid any unexpected side effects in the
case of retries. A transaction is idempotent if it can run multiple times and produce iden-
tical results each time.

 ■ Run multiple statements per transaction to optimize the performance of your
application.

 ■ You should run statements with a WHERE predicate clause that filters on an indexed field
or a document ID. QLDB requires an equality operator on an indexed field to efficiently
look up a document, for example, WHERE IndexKey = 9887.

Summary
This chapter explained the main concepts of a ledger database based on blockchain tech-
nology. We also covered Amazon QLDB features and components, as well as some details
about the internal service mechanism that makes QLDB an excellent option to run a ledger
database at any scale. There is a wide range of industries and use cases for QLDB. Banking
and finance have various use cases for it involving the tracking of transactional history.

308 Chapter 10 ■ Immutable Database and Traceable Transactions

Ecommerce, and retail more generally, uses it to maintain inventory or track supplies. The
automotive industry uses QLBD to aid in the driver and vehicle documentation registration
process. Finally, the transportation industry uses QLBD to track goods.

Exam Essentials
Know the centralized blockchain use cases. Some workloads require database versioning
or high- standard audit capabilities. Audit capabilities provide proof of integrity not only to
internal teams but also to external auditors or business stakeholders. The previous use cases
along with a centralized approach, is the perfect match for Amazon QLDB.

Understand Amazon QLDB main features. Every AWS service has specific availability,
scalability, durability, performance, integration, and application- related features. The exam
might include questions about how Amazon QLDB implements these features.

Know the available monitoring and troubleshooting tools. Once you have the application
running, you need to keep it in that state. Amazon QLDB provides the necessary traceability
and monitoring features to do so. Amazon QLDB integrates with AWS observability services
like Amazon CloudWatch metrics and Amazon CloudTrail for nontransactional operations.

Understand how to strengthen the security for Amazon QLDB. Security is AWS’s top pri-
ority, so every AWS service has strong security features built in. Amazon QLDB includes
data access features with fine- grained authentication and authorization features via AWS
IAM, data protection in transit and at rest, and private networking capabilities with VPC
endpoints.

Exercises
For assistance in completing the following exercises, refer to the Amazon QLDB developer
guide at docs.aws.amazon.com/qldb/latest/developerguide/accessing.html.

http://docs.aws.amazon.com/qldb/latest/developerguide/accessing.html

Exercises 309

E X E R C I S E 10 . 1

Create a New Amazon QLDB Ledger Database

In this exercise, you will create a new QLDB database.

1. Sign in to the AWS Management Console as a user with the right QLDBB permissions.

2. Navigate to Amazon QLDB by finding it in the list of services under Database, go to the
Getting Started page, and then click Create Ledger.

3. Enter a name for the ledger, leave the permission mode and encryption options at the
defaults, and click the Create Ledger button. The creation process takes from 3 to 5 min-
utes, and you can continue once the status is Active.

E X E R C I S E 10 . 2

Load the Sample Data

In this exercise, you will load the Amazon QLDB database with sample data.

1. In the QLDB console, go back to the Getting Started page and proceed to the Sample
Application Data section.

2. On the automatic session, choose the ledger you created in the previous task and click
Load Sample Data.

E X E R C I S E 10 . 3

Query the Data

In this exercise, you will query the data you loaded in Exercise 10.2.

1. In the QLDB console, navigate to the Query Editor and select your ledger in the ledger panel.

2. Execute the following query to get a sample vehicle by the VIN number:

 SELECT * FROM Vehicle AS v WHERE v.VIN = '1N4AL11D75C109151'

3. Execute this other query to join the Vehicle table and the VehicleRegistration
table.

SELECT v.VIN, r.LicensePlateNumber, r.State, r.City, r.Owners FROM Vehicle
AS v, VehicleRegistration AS r WHERE v.VIN = '1N4AL11D75C109151' AND
v.VIN = r.VIN

As you can see, the PartiQL query language is similar to traditional ANSI SQL.

310 Chapter 10 ■ Immutable Database and Traceable Transactions

E X E R C I S E 10 . 4

Request a Digest and Perform a Document Revision

In this exercise, you will request a digest from your ledger’s journal.

1. Go to the Ledgers page of the QLDB console and select your ledger by clicking the
radio button next to its name. Then click the Get Digest button and save it to your
computer.

2. Execute the following query to get the metadata ID and block address of the sample
Vehicle:

SELECT r.metadata.id, r.blockAddress FROM _ql_committed_VehicleRegistration AS
r WHERE r.data.VIN = '1N4AL11D75C109151'

3. Save the ID and block address to do the verification.

4. In the navigation pane, choose Verification.

5. Enter the metadata ID and block address you saved before, upload the digest file you
downloaded in the previous task, and click the Verify button.

6. Check the Verification Results output session to view the proof of hashes and the entire
block information in the Block panel.

7. Proceed with the deletion of all the resources created in the previous exercises. Notice
that the ledger was probably created with the delete protection enabled, so you need
to deselect it first.

Review Questions 311

Review Questions
1. A company is defining the backup policy for a vehicle registration application that leverages

Amazon EC2, Amazon EFS, and Amazon QLDB. What is the best approach?

A. Use AWS Backup to have a centralized management console to back up all the applica-
tion components.

B. Leverage the native Amazon QLDB point- in- time recovery or on- demand backup fea-
tures along with AWS Backup to support Amazon EFS filesystems and Amazon EBS
volumes.

C. Amazon QLDB doesn’t support any backups, so you will be able to back up only the
EC2 instances and EFS filesystem. Use AWS Backup for those.

D. Use AWS Backup for Amazon EC2 and Amazon EFS and implement a custom backup
solution with an Amazon QLDB driver at the application level.

2. What is the appropriate type of data to store on Amazon QLDB?

A. Time- series data with verification capabilities

B. System- of- record applications, those for which data integrity, completeness, and verifi-
ability are critical

C. Structured data in rows and columns with multiple relationships among entities

D. JSON documents to be used in a mobile app

3. An audit process is coming to a financial service company that uses Amazon QLDB to store
their customer transactions history. What security mechanisms are already in place as part of
the managed service? (Choose three.)

A. Data encryption at rest using Amazon managed keys or customer managed keys.

B. In- transit data encryption for Amazon QLDB API using TLS 1.0 or above.

C. All management and data operations are automatically stored in Amazon CloudTrail for
auditing purposes.

D. Integration with Amazon IAM to write fine- grain security policies and conditions to
grant access to Amazon QLDB resources.

4. Amazon QLDB is a distributed ledger or blockchain technology.

A. True

B. False

5. A solutions architect needs to propose the right AWS database service for an application
project that needs an auditable database. The database schema may change over time, and
there is no information about the potential traffic the app may have.

A. Since there is not a fixed schema, the best solution is to use a NoSQL database like
Amazon DynamoDB with the on- demand provisioned mode. To guarantee the audit
part, all the logs from CloudTrail can be sent to Amazon S3 and Object Lock can be
enabled in that bucket.

312 Chapter 10 ■ Immutable Database and Traceable Transactions

B. To provide full ACID properties for the audit, the only option is to use a relational data-
base. Since there is no information about the scale, the best choice is Amazon Aurora
Serverless. To keep track of the audit, the development team can enable an audit plugin
like MariaDB Audit Plugin for MySQL. Then store the logs on S3 with an Object Lock
in place.

C. Use the Amazon Managed Blockchain Service for Hyperledger Fabric. Leverage the
native audit features of the blockchain technology.

D. Use Amazon QLDB as the database service. With QLDB you can have full ACID trans-
actions, serverless provisioning, and built- in immutable and auditable features.

6. What are the authentication methods available for Amazon QLDB?

A. A request signature to be attached to the HTTP requests

B. Database user and password

C. Anonymous authentication

D. Federated authentication via Microsoft AD

7. Amazon QLDB provides private VPC integration. True or false?

A. True

B. False

8. How can you configure the scalability of Amazon QLDB?

A. You need to set up minimum and maximum capacity units, and the service will add or
remove nodes on demand.

B. You need to configure an autoscaling group with the right metric to observe.

C. There is no need to configure scalability because Amazon QLDB is serverless.

D. The service currently does not offer scalability features.

9. How can you interact with the data stored in Amazon QLDB? (Choose all that apply.)

A. Since Amazon QLDB uses JSON documents, you can use the same driver used for
MongoDB.

B. You must include the AWS- provided QLDB driver.

C. Amazon QLDB supports access only through API calls, similar to Amazon DynamoDB.

D. Amazon QLDB allows you to query your data using a subset of PartiQL.

10. Amazon QLDB supports ACID transactions. True or false?

A. True

B. False

Caching Data with
In- Memory Databases

THE AWS CERTIFIED DATABASE -
SPECIALTY EXAM OBJECTIVES COVERED
IN THIS CHAPTER MAY INCLUDE, BUT ARE
NOT LIMITED TO, THE FOLLOWING:

 ✓ Domain 1: Workload- Specific Database Design

 ■ 1.2 Select appropriate database services for specific types of

data and workloads.

 ■ 1.3 Design database solutions for performance, compliance,

and scalability.

 ✓ Domain 4: Monitoring and Troubleshooting

 ■ 4.3 Optimize database performance.

Chapter

11

Modern applications tend to be faster than old ones, and to
keep user engagement, it is important to respond quickly. One
way to provide data with extremely low latency is to have it in
a memory structure. This process is known as caching data.

Caching data is the action of putting data in a memory structure and accessing it when it
is needed, as memory response times are faster than disk response times. By an order of mag
nitude, memory responds in nanoseconds, and an Amazon EBS volume disk usually responds
in a few milliseconds. This means memory is thousands of times faster. According to the
Amazon EBS documentation, the average response time from an EBS volume to an EC2
instance is 1 millisecond, but for the specific io2 Block Express disk type, you can expect
submillisecond latency.

Of course, if the caching layer is not local, you must consider the network latency be
tween the data and the application. The closer the cache structure is to the running applica
tion in terms of the network, the better.

In this chapter, you will learn about in memory databases, how they are used for differ
ent use cases, and the options you can use in AWS. In memory databases are volatile, so for
persistent and durable data requirements, you need to consider other database services in
conjunction with in memory in your architecture.

Built- in Database Cache
A built- in database cache is a memory structure in a database instance where the engine
caches frequently used data and object definitions to improve performance. From a database
engine perspective such as Amazon Aurora, by default the engine uses built in memory struc
tures in each database instance for caching.

Database engines manage those memory structures automatically, with little interaction
from the database administrator (DBA), but DBAs can still check their efficiency and tune
them. Amazon Relational Database Service (Amazon RDS) automatically sets up memory
parameters for each database engine according to the amount of memory the RDS instance
has, but it also allows them to be tuned through database parameters.

For transactional workloads with repeated queries, memory usually improves
performance. Working with memory optimized instance families, such as R and X, can be
beneficial to a majority of workloads. The instance size determines the amount of memory
available to be used by database cache structures.

Caching Use Cases 315

Cache invalidation is an important concept of a built in cache, where the engine controls
data changes and has mechanisms to invalidate old data versions from the cache.

The problem with those built in memory structures is that the amount of memory avail
able depends on the database instance size. A shutdown is required to increase the database
server’s memory. Also, to access this structure, you need to use compute resources from the
database instance, increasing concurrency if this happens frequently.

Local Application Cache
In a local cache, a running application can use local memory to load and access frequently
used data. This is the fastest way to use data, but it is restricted to the data that was previ
ously loaded into the local device.

There are limitations of usage, as the device memory available is in general competing
with other applications.

After some time, the local cache may not have the most recent version of data if this is a
distributed application, so it needs to frequently look for newer data versions in the applica
tion database.

In- Memory Databases
In- memory databases are remote cache structures relying on machines with large memory.
They are accessed by different remote applications, share content among themselves, and can
integrate with other database engines that support remote cache integration.

In most architectures of distributed systems, this structure sits between the local applica
tions and the database engine, but it can also be a stand alone structure with dedicated data
sharing accessed by the applications.

Amazon ElastiCache is the AWS service that provides an in memory, fully managed cach
ing service with options that are compatible with Redis and Memcached.

Caching Use Cases
Caching data can improve response time for lots of use cases. Database specialists usually
know how the database engines use the instance memory layer in a database architecture,
which is as a cache. Most database engines provide parameters to adjust memory utilization
to have the best configuration for a given workload and database machine. Large database
machines with hundreds of gigabytes to a few terabytes of memory and tens to hundreds
of vCPUS usually use a high number of blocks from this memory layer, but the number is
limited by the size of the database machines.

316 Chapter 11 ■ Caching Data with In- Memory Databases

To speed up online applications’ response time, frequently used data such as user sessions,
preferences, progress, or choices, as these session attributes can be used several times, we can
cache data. The cached data can be used to improve response times and to perform fewer
calls to the back end infrastructure for client reconnection and to make the user experi
ence smooth.

An online game leaderboard is a classic use case for remote caching, as the latest status
can be updated and viewed with no latency for a large number of users.

Most of the modern applications we use in our mobile phones take advantage of caching
structure, local and/or remote.

It’s important that you know what cache hit and cache miss are. Every time your appli
cation looks for a key in the cache and the key is there, you have a cache hit; every time the
key is not there and has to be read from the disk on another database layer, you have a cache
miss. You will find metrics for cache hit or cache miss percentage. Cache hit percentage is for
all the times the application tries to find a key, and cache miss percentage is the percentage of
not finding it.

To check the efficiency of your cache strategy, monitor the cache hit and
cache miss metrics and try to keep the cache hit as high as needed by
your application.

Remote Cache Strategies
Remote caching can be used with different strategies, considering the application function
ality, freshness of data required in the cache, available memory for caching, and objectives
for caching in the application architecture.

Two caching strategies are commonly used.

 ■ Lazy loading is a cache strategy when you cache the data only when the application tries
to read it for the first time.

 ■ Write- through is a cache strategy when you cache all the data at the moment it is gener
ated or whenever it has been updated in the database.

The lazy loading strategy is cheaper, as it uses the cache only for the data that it is
required to, and it can handle node failure, as it will continue to cache data when needed
after failure. However, it increases the time to retrieve data when a cache miss happens, and
it can have stale data if the data is updated in the database because it loads new data only
when there is a cache miss.

The write through strategy will always have the most recent version of data in the cache,
but it will potentially require more memory to store some data that may never be read, and
there is also operation overhead to write all the data that has changed.

Caching Data in AWS 317

Time to live (TTL) is an attribute used by some caching engines to expire old data from
the cache after a configured amount of time to avoid keeping stale data in the cache.

To avoid keeping data that is never used with the write through strategy or to avoid
having stale data with a lazy loading strategy, it is useful to create a time to live (TTL) for
cached data so that data will be expired from the cache after a defined amount of time; in
other words, data is removed from the cache after the TTL time.

Lazy Loading

1. The application requests the data from the remote cache.

2. If it’s there, it reads it.

3. If it’s not there (a cache miss), it then reads from the database and writes the data to the
cache for further usage.

Write- Through

1. The data is updated or created in the database.

2. The remote cache is updated with a new version or new data for every piece of data
written to the database layer.

Time to Live

1. You can set up a maximum time a record will be in the cache after being added— for
example, 600 seconds.

2. When a record reaches a TTL of 600 seconds in the cache, it is expired.

3. After it is expired by the TTL, the next time the record is needed, it will be read from the
database and then populated again in the cache.

Caching Data in AWS
AWS provides several services that can be used for caching data. Let’s take a broader look at
them before we dive deep into Amazon ElastiCache.

As shown in Figure 11.1, application performance can be increased using different types
of caching strategies.

 ■ Amazon CloudFront for delivering static and some dynamic content, usually pictures
and large objects

 ■ Dedicated specialized structures using Amazon ElastiCache

 ■ The database instance memory portion natively dedicated for caching in Amazon RDS
and Amazon DocumentDB

 ■ Amazon DynamoDB Accelerator (DAX)

 ■ A mix of scenarios of Amazon ElastiCache between other databases and the applications

318 Chapter 11 ■ Caching Data with In- Memory Databases

Applications

Amazon
CloudFront

Amazon
ElastiCache

Redis

Amazon
ElastiCache
Memcached

Content Delivery Network (CDC)

Specialized Service for Caching

Native Relational Database Cache

Native Cache for DocumentDB

Caching for Amazon DynamoDB

Database
Native Cache

Memory

Database
Native Cache

Memory

DAX
DynamoDB
Accelerator

Amazon
DynamoDB

Amazon
RDS

DocumentDB

Leverage usage
of remote

Caching with
ElastiCache

F IGURE 11.1 Caching option for applications

Caching Data with ElastiCache 319

Caching Data with ElastiCache
AWS has a specialized service for caching, Amazon ElastiCache, which is compatible with
two popular data caching software applications, Redis and Memcached, as a fully managed
service.

Memcached or Redis?
To start with the ElastiCache service, we first need to determine which software is the best
for the use case, Memcached or Redis. Both products can deliver the following:

 ■ Extremely low latency, in the submillisecond range

 ■ Easy API interaction for developers

 ■ Data distribution within the nodes with partitioning

 ■ Support for many programming languages, including Python, JavaScript, C, C++, Java,
PHP, Node.js, Go, and Ruby

 ■ In transit data encryption

 ■ String data type, the only data type supported by Memcached

As you can tell by the common features, for simple caching use cases, both Memcached
and Redis can be used.

Memcached has multithreaded architecture, allowing multiple core utilization and
making good use of compute resources. Redis, on the other hand, has the following set of
enterprise level features that can be used to improve resilience, integration, and application
flexibility:

 ■ Snapshots allow Redis to keep the data safe on disk for point in time recovery or
archiving.

 ■ Replication, with the capability of multiple replicas, enables database reads on Redis to
scale and provides high availability.

 ■ The use of transactions with Redis allows the control of commands as a whole group,
for dependency checks.

 ■ Pub/Sub messaging is a good built in feature for application integration and streaming.

 ■ Geospatial support can be a decision point to use Redis, as it has specific commands to
interact with geospatial data in real time.

 ■ It offers the ability to improve performance and reduce complexity using server side Lua
scripts.

 ■ It offers the ability to add and remove shards dynamically (cluster mode).

320 Chapter 11 ■ Caching Data with In- Memory Databases

 ■ It offers encryption at rest.

 ■ It offers compliance with the following certifications— FedRamp, HIPAA, and PCI DSS.

 ■ It supports complex data types such as bitmaps, sorted sets, sets, hashes, and lists, not
just strings.

New features of the latest versions of Redis include the following:

 ■ Data tiering, using memory and solid state drives (SSDs) (version 6.2)

 ■ Role based access control with authentication (version 6.0)

After looking at the differences, if you have a simple caching scenario that can scale up
and down with nodes being added and removed, that can use large nodes with multiple
threads, and that has low security compliance regulations, you could choose Memcached.

Your choice should be Redis if you need more resilience or any of the Redis unique fea
tures mentioned: snapshots, replication, transactions, real time Pub/Sub, geospatial support,
compliance certification, data tiering, and role based access.

Memcached Architecture on Amazon ElastiCache Service
Amazon ElastiCache for Memcached can be deployed in a single availability zone (AZ) or
in a multi AZ scenario, where you can specify the availability zones for the nodes or let the
ElastiCache service choose the AZs.

An ElastiCache for Memcached cluster is a logical group of ElastiCache nodes, which are
units of RAM memory securely attached to a cluster, with each node running an instance of
Memcached. The cluster can be set up with up to 40 nodes in a region, spread among the
AZs, and for each AWS region, you can have up to a total of 300 nodes.

The ElastiCache cluster can also be launched in an AWS local zone, which is an extension
of an AWS region but physically closer to your users.

It also supports deployment on AWS Outposts, a service that extends the AWS infra
structure and functionality of several services, including Amazon ElastiCache, to your on
premises environment.

It’s important know that, as Memcached does not support replication, the distribution
across AZs is to avoid losing all the nodes in the case of an AZ failure, but this does not pre
vent losing the data that resides in the failing nodes. The application will need to reload data
according to the caching strategy.

Although the failed nodes are detected and replaced automatically by the service, the
failure can impact the data availability for the applications. So, using smaller nodes is a good
strategy to reduce the impact of single node failures.

The Memcached option distributes the data across the cluster nodes and makes good use
of distributed resources. The cache nodes can vary, from standard cache nodes (families t and
m) to memory optimized cache nodes (family r). Your cluster’s total capacity will depend on
the memory available per node, discounting system overhead, multiplied by the number of
nodes, so using memory- optimized cache nodes, from the r family, will increase your cluster
capacity.

Caching Data with ElastiCache 321

You control how data is distributed across the nodes using a hash algorithm, and there
are libraries that can perform a consistent hash, which minimizes the number of keys that
need to be migrated in the case of adding or removing a node.

Using memory optimized nodes will also save you money, compared to using standard
cache nodes, as the price per memory unit is lower on memory optimized nodes. This is also
true for the Redis version.

AWS lets you horizontally scale out (adding nodes) and in (removing nodes) an Elas
tiCache for Memcached cluster, from 1 to 40 nodes, and the engine allows you to use a
data partition strategy so that your application uses multiple nodes, spreading the data
among them.

It is useful to use autodiscovery in your Memcached cluster so that you don’t need to
manually update your client application when you add or remove nodes.

You can also take advantage of scaling vertically with the Memcached option, using large
instances, but every time you change the instance type you need to create a new cluster, and
your application will need to populate the data to the new cluster.

ElastiCache for Memcached clusters are deployed in a VPC by default and rely on VPC
security groups as firewalls to control and grant access to source security groups, source sub
nets, or IP addresses as usual. When you plan to scale, it is important to consider the number
of free IP addresses in the subnets you will use for the service.

When you create a cluster, you will be able to configure it for TLS in transit encryption.
You will not be able to modify this cluster configuration after creation.

Redis Architecture on the Amazon ElastiCache Service
The Redis engine improves resilience because you can deploy it in a multi AZ environment,
which will create a secondary node, called standby, in a different AZ that receives data repli
cation asynchronously from the primary node, enabling a failover scenario.

With multiAZs enabled for Redis, the cluster availability for writing is fast and the loss
of data is minimized, but due to the replication lag between the primary and the read nodes
in different availability zones, it can still have minimal data loss in the case of a primary
node failure.

Figure 11.2 shows the two different architectures of the Redis engine on AWS: with
cluster mode enabled and with cluster mode disabled. Redis with cluster mode enabled can
have several shards, each a node group with a primary node and up to five replica nodes.
Redis with cluster mode disabled can have only one shard, comprised of a node group with
a primary node and up to five replica nodes.

When choosing the Redis engine of Amazon ElastiCache, you need to determine whether
you are going to use cluster mode enabled or cluster mode disabled. Table 11.1 illustrates
some differences between the two.

322 Chapter 11 ■ Caching Data with In- Memory Databases

TABLE 11.1 Main differences between the Redis cluster modes

Feature Cluster Mode Disabled Cluster Mode Enabled

Multi- AZ deployment
(optional, enabled by default)

Yes (requires at least one
replica)

Yes

Node group/shard One node group (a single
shard)

Up to 500 node groups (one
per shard)

Data partition Not available; a single node
must accommodate all the
cached data

Yes, using shards

AWS Cloud

Region
Availability Zone

Primary
Node

Primary
Node

Primary
Node

Primary
Node

...

Replica
Node 1

Replica
Node 1

Replica
Node 1

Replica
Node 1

Replica
Node 2

Replica
Node 4

Replica
Node 3

Replica
Node 5

Replica
Node 2

Replica
Node 4

Replica
Node 3

Replica
Node 5

Replica
Node 2

Replica
Node 4

Replica
Node 3

Replica
Node 5

Replica
Node 2

Replica
Node 4

Replica
Node 3

Replica
Node 5

Availability Zone

Redis Cluster Mode Enabled

Shard 1

Shard 2

Redis Cluster Mode Disabled

Shard n
(node <= 500,
shards <= 500)

One Shard
(nodes <= 6,
shards = 1)

Availability Zone

F IGURE 11.2 Redis architectures

Caching Data with ElastiCache 323

Working with cluster mode enabled is key for large scalability, mainly because you can
work with multiple shards.

For scenarios with controlled cache size without much variation, where a single node
can handle all the data, the cluster mode disabled option is the simplest to manage and
work with.

Besides the replication in the same region, the Redis engine for Amazon ElastiCache has a
replication feature to another region, named the Global Datastore for Redis. For this feature,
you set up a secondary Redis cluster in another region as a passive cluster, and your primary
cluster in the first region will be the active cluster.

All the replication between the two clusters is asynchronous and managed by the Elasti
Cache service. The secondary cluster in the secondary region is a read only cluster, until you
decide to fail over and promote it to your primary cluster. Cross region communication is
protected using VPC peering.

The Global Datastore for Redis supports encryption at rest and in transit, via Redis Auth
and AWS KMS. Parameter updates from one local cluster are applied to all the clusters in the
global datastore. It also has limitations: the version needs to be 5.0.6 or higher, old instance
types are not supported, and the primary data store number should be the same in each
cluster, but the replica numbers can be different.

Another feature available for the Redis engine for a limited set of instance type R6gd
nodes (graviton2 based) is data tiering, which allows the cluster to use SSDs and automati
cally move the least recently used data to the disk.

The shards for the Redis engine are also referred to as replication node
groups, as the API and CLI commands work with replication- group
commands, such as create- replication- group and delete-
replication- group. The default limit for the number of shards or total
nodes in a cluster is 90, but it can be increased to 500 per cluster.

Feature Cluster Mode Disabled Cluster Mode Enabled

Read replicas Zero to five per cluster Zero to five per shard

Horizontal scale Limited horizontal scale, up to
five read replicas

Large scalability, adding/
removing node groups
(shards), with online
resharding

Vertical scale Node type change, affecting a
maximum of six nodes

Node type change, affecting
potentially hundreds of nodes

Write- intensive operations Limited to one node Spread by the shards

324 Chapter 11 ■ Caching Data with In- Memory Databases

Backup and Restore
The Amazon ElastiCache for Redis cluster provides the ability to back up the data and meta
data of a cluster and, of course, the ability to restore a cluster from a backup, using the AWS
console, the AWS CLI, or the ElastiCache APIs.

Running the Redis engine enables you to set up backups, which are .rdb files written to
Amazon S3, along with the cluster metadata. You should schedule backups if you need to
restore data after a failure. This is done by creating a new cluster and using the backup to
populate it.

The backups for the Redis engine can be taken manually where you fully control the time
they happen and the retention, or they can be automatically scheduled with the ElastiCache
service and retained for 1 to 35 days. Note that setting the retention to zero will disable
automatic backups.

The restoration process can also be used to change a cluster from cluster mode disabled
to enabled, to change note types or shard numbers, or even to migrate data from a self
managed installation of Redis to ElastiCache, where you need to provide the .rdb file in an
S3 bucket.

Redis Append Only Files (AOF) can be enabled in ElastiCache for Redis, and when
enabled, ElastiCache creates a file to append all the transaction records written in the cluster
to this file. This AOF file can be run against a cluster to repopulate data to it. AOF has some
drawbacks, such as its size on disk and the time consumed when creating or provisioning a
cluster.

There is no backup option for the Memcached engine on ElastiCache, so the strategy is to
minimize data loss in the case of failure by spreading the data among many small nodes. You
can always build your own scripts or applications to write data to the cache after a failure,
but this will not be managed by AWS.

Security
The Amazon ElastiCache can be secured by creating the cluster in Amazon VPC and config
uring limited access in the security group for only the applications interacting with the cache.

For Memcached, you should consider enabling in transit encryption, and for the Redis
engine, you should consider enabling at rest encryption along with the in transit encryption.

The in transit option can be enabled by replication groups, with the option TransitEn-
cryptionEnabled = True at the replication group creation time for the Redis engine.
You can also improve security using an authentication called Redis AUTH, which requires a
token or password for your client to communicate with the service and can be enabled only
when in transit encryption is enabled. You can later rotate or set new passwords to improve
security.

Another option for user authentication over TLS is to use role- based access control
(RBAC) with Redis 6.0 and later, where you grant user groups and roles access to specific
replication groups and not to all the clusters as happens in AUTH; this allows a granular
access control.

For Redis 7.0 or higher, it is also possible to use AWS IAM authentication, providing a
relationship between IAM users and Redis users and user groups with fine grained access.

Amazon MemoryDB for Redis 325

Encryption at rest, available for the Redis engine, encrypts the disk sync data, backup
data, swap operations, and Amazon S3 backups. Data stored in SSDs when data tiering is
enabled is encrypted by default.

To interact with the Amazon ElastiCache service infrastructure, clients need Transparent
Layer Security (TLS) support; AWS recommends TLS version 1.2 or later. The client applica
tion also will need to be authenticated with the AWS IAM access key and secret key or with
AWS Security Token Service (STS).

Monitoring
Besides the default metrics that are sent to Amazon CloudWatch when using Amazon Elas
tiCache, like CacheHitRate or the number of bytes written or read, there is an integration
between ElastiCache events and Amazon Simple Notification Service (SNS) that can trigger
actions with other AWS components.

A cache miss is when the application looks for some record in the cache data and the item
is not there. The metric that covers this is CacheMisses.

A cache hit is when the application looks for some record in the cache data and the item
is there, so it is successfully read. The metric that covers this is CacheHits.

Cache hit rate is the rate of successful cache hits among all the queries for items in the
cache. The metric that covers this is CacheHitRate, and it is calculated by dividing the cache
hits by the sum of cache misses and cache hits. A CacheHitRate of 0.8 means that 80 percent
of the time your application looked for an item in the cache and found the item there. For
most applications, you would like this value to be as high as possible.

Specific to the Redis engine, there is a log delivery option to send the commands and
metadata to Amazon Kinesis Data Firehose or Amazon CloudWatch Logs to be stored or
consumed by other applications.

There are useful metrics related to ElastiCache infrastructure utilization and capacity
planning like CPUUtilization and EngineCPUUtilization.

The Memory, SwapUsage, and FreeableMemory metrics can give you an idea about the
amount of memory you have in the cluster for new data and how swap is being used. You
should keep the value of FreeableMemory higher than your SwapUsage value to have a good
cluster performance.

For network communication, the Latency, ReplicationBytes, and ReplicationLag metrics
can help you to understand the usage, where bottlenecks are in the replication processes, and
response time.

Amazon MemoryDB for Redis
Amazon MemoryDB for Redis is an AWS resilient database service, compatible with Redis.
It was launched in 2021. It is a durable, in memory database service that delivers extreme
low latency, microsecond reads, single digit millisecond writes, and scalability to hundreds of
terabytes, and more than 100 million TPS per cluster.

326 Chapter 11 ■ Caching Data with In- Memory Databases

Amazon MemoryDB for Redis is a good choice when resilience and durability are impor
tant but you don’t have a durable database as another layer. All the resilience options we
explored in this chapter for the Redis engine are available in MemoryDB by default, with the
addition that transactions are durable, consistent, and recoverable automatically.

So, there is no need to have two separate layers, one for cache and another for persis
tence. With a managed database, you can still deliver an extremely low latency response time
for reads in the scale of microseconds.

The same option for the Redis engine on ElastiCache cluster enabled in terms of shard
ing and replication is available in MemoryDB: 1 to 500 shards and 0 to 5 replicas for each
shard, limited to 500 nodes in total.

MemoryDB for Redis is deployed in Amazon VPC and so has all the security components
such as security groups, subnets, network access control lists (ACLs), and route tables to
control access to the service from other resources.

When you set up MemoryDB, you can also use an additional layer of security, based on
the ACL, for authenticated users. You create an ACL, assign users and their permissions to it,
and then create or assign clusters to the ACL you created. If you don’t create ACLs, there is a
default open- access ACL available with a user named default.

This ACL option for MemoryDB for Redis works similarly to role- based access control
(RBAC) with Redis in Amazon ElastiCache but provides an easy way to set up and maintain
ACLs and users.

The data at rest is encrypted by default for the service, and you can select to be an AWS
managed key or a customer managed key (CMK); both use AWS Key Management Services
(AWS KMS).

As with Amazon ElastiCache, MemoryDB allows you to use TLS encryption for in transit
encryption.

Summary
This chapter discussed caching strategies using lazy loading and write through and how to
use TTL to reduce the overall size of your clusters and avoid stale data.

The chapter also discussed the differences between the Redis and Memcached versions of
Amazon ElastiCache so that you can decide what is best for extremely low latency queries.

The chapter also explored Amazon MemoryDB for Redis and how you can achieve per
sistency for use cases that need data durability with caching.

Exam Essentials
Understand caching strategies. Scenarios where latency is critical, such as mobile applica
tions, require a cache structure (local or remote) that sits between the application and the
persistent database. For remote caching, Amazon ElastiCache supports two engine options,
Redis and Memcached.

Exercises 327

Choose between Redis and Memcached. Memcached is a simple option for use cases that
need to scale to several nodes, spread the data around, and use multithread processing capa
bilities. Redis is more robust and resilient when data failover needs to be minimized, when
you want to scale reads with data replication and read replicas, or when you have high secu
rity and compliance requirements.

Understand the difference between Redis cluster mode enabled and Redis cluster mode dis-
abled. Cluster mode disabled doesn’t have a mechanism to partition data with shards, as it
has a single shard and depends on the cached data to fit in one node and then replicate to up
to five read replica nodes per cluster. In contrast, cluster mode enabled can have data distrib
uted up to 500 nodes, with up to five read replicas per shard and a maximum of 500 shards.

Understand Amazon MemoryDB for Redis. Amazon MemoryDB is an innovation on cache
service, as you can rely on one structure for extremely low latency caching; it also has trans
action persistence, consistency, and recoverability, and you can interact with data using the
same Redis APIs.

Exercises
For assistance in completing the following exercises, refer to the following developer guides:

docs.aws.amazon.com/elasticache/index.html
docs.aws.amazon.com/memorydb

E X E R C I S E 11. 1

Create an Amazon Linux EC2 Machine to Be Your Bastion Host

1. Create a VPC security group in a VPC that you can access from your machine to assign
to the cluster.

a. In the AWS VPC console, go to Security Groups under Security.

b. Click Create Security Group.

c. Type a security group name: for- cache.

d. Type a description: Security group for caching data exercises.

2. Add an inbound rule to allow port 22 to your IP address.

 ■ Type: Custom TCP

 ■ Port range: 22

 ■ Source: choose My IP

(Continues)

http://docs.aws.amazon.com/elasticache/index.html
http://docs.aws.amazon.com/memorydb

328 Chapter 11 ■ Caching Data with In- Memory Databases

E X E R C I S E 11. 1 (c o n t i n u e d)

3. Add an inbound rule to allow ports 11211 and 6379 to your IP address.

a. For Memcached:

 ■ Type: Custom TCP

 ■ Port: 11211

 ■ Source: your VPC IP range— for example, 172.31.0.0/16

b. For Redis:

 ■ Type: Custom TCP

 ■ Port: 6379

 ■ Source: your VPC cidr— for example, 172.31.0.0/16

4. Click Create Security Group.

5. Create an Amazon Linux EC2 instance:

a. From the EC2 Console, click Launch Instances.

b. Type an instance name: for-cache.

c. Select Amazon Linux AMI Instance.

d. Select the t2.micro or other small instance.

e. At Network Settings, click Edit.

f. Select your VPC and settings and use public access to remotely access your in-
stance if you don’t have a VPN connection to your VPC.

g. At Firewall (Security Groups), select the one you created in the previous step.

6. Launch the instance.

E X E R C I S E 11. 2

Create a Memcached Cluster

1. In the AWS console, open the Amazon ElastiCache service page.

2. In the left menu, click Memcached.

3. Click Create.

Exercises 329

4. Select Memcached as the cluster engine.

5. Choose AWS Cloud as the location.

6. Enter MyMemcached as the name.

7. Choose 1.6.6 as the engine version compatibility.

8. Select 11211 as the port.

9. Select default.memcached1.6 as the parameter group.

10. Select cache.r6g.large (or another small node) as the node type.

11. Choose 2 as the number of nodes.

12. Click Advanced Memcached settings.

13. Click Create New To Create A Subnet Group.

14. Enter my- cache- subnetgroup as the name.

15. Choose your VPC as the VPC ID.

16. Check three subnets.

17. Choose No Preferences for availability zones placement.

18. Choose your for- cache security group.

19. Select No Preferences for the maintenance window.

20. Choose Disable Notifications for SNS.

21. Leave Tags blank.

22. Click Create.

23. After the cluster is created, click the created cluster and open the Nodes tab.

24. Take note of each of the two endpoints created, which should look as follows:

 ■ Node Name: 001

 ■ Port: 11211

 ■ Endpoint: mymemcached.fjby0c.0001.use1.cache.amazonaws.com

 ■ Node Name: 002

 ■ Port: 11211

 ■ Endpoint: mymemcached.fjby0c.0002.use1.cache.amazonaws.com

http://mymemcached.fjby0c.0001.use1.cache.amazonaws.com
http://mymemcached.fjby0c.0002.use1.cache.amazonaws.com

330 Chapter 11 ■ Caching Data with In- Memory Databases

E X E R C I S E 11. 3

Cache Data with the pymemcache Python Library

1. Go to your AWS EC2 console, select your for- cache instance, and click Connect to con-
nect to it using SSH.

2. Install the library for your Linux environment.

$ pip3 install pymemcache

3. Substitute in the following Python code, <Endpoint 001> and <Endpoint 002>, with the
endpoints you created in Exercise 14.2. You can either run it in the Python 3 console or
save it as a file and run it.

$ python3
from pymemcache.client.hash import HashClient

client = HashClient([
 '<Endpoint 001>:11211',
 '<Endpoint 002>:11211'
])

def put_value(key,value):
 print('put {} – {}'.format(key,value))
 client.set(key, value)
def print_value(key):
 print('key:',key,' value:',client.get(key).decode('utf- 8'))

put_value('0001', 'my first key- value')
put_value('0002', 'second value here')
put_value('a', 'relational databases')
put_value('b', 'nosql databases')
put_value('c', 'in- memory databases')

print_value('0001')
print_value('0002')
print_value('a')
print_value('b')
print_value('c')

Exercises 331

E X E R C I S E 11. 4

Create a Redis Cluster

1. In the AWS console, open the Amazon ElastiCache service page.

2. In the left menu, click Redis Clusters.

3. Click Create Redis Cluster.

4. Choose cluster mode Disabled.

5. For the cluster info, type a name: MyRedis.

6. Choose AWSCloud for the location.

7. Select Checked for Multi- AZ.

8. Set the engine version compatibility to 7.0.

9. Set the port to 6379.

10. Choose a parameter group: default.redis.7.cluster.on.

11. Select a node type: cache.r6g.large (or another small node).

12. Select the number of replicas: 2.

13. Go to the Connectivity Redis settings:

a. Select IPV4 for the network type.

b. Select my- cache- subnetgroup for the subnet group.

14. Choose No Preferences for Availability Zones Placement.

15. Click Next.

16. Go to the Security options:

a. Leave encryption as the default.

b. Click Manage For Security Groups and choose your for- cache security group.

17. Leave the backup options as the default.

18. Go to Maintenance:

a. Choose No Preference for the maintenance window.

b. Choose Enable for Auto Upgrade Minor Versions.

c. Choose Disable Notifications for SNS Notification.

(Continues)

332 Chapter 11 ■ Caching Data with In- Memory Databases

E X E R C I S E 11. 4 (c o n t i n u e d)

19. Go to Logs.

a. Do not change Slow Logs.

b. Leave Engine Logs unchecked.

20. Leave Tags blank.

21. Click Next.

22. Click Create.

23. After the cluster is created, click it and open the Nodes tab.

24. Take note of each of the primary endpoints created:

Node Name: myredis- 001

Current role: Primary

Port: 6379

Endpoint: myredis- 001.m76vzo.0001.use1.cache.amazonaws.com

E X E R C I S E 11. 5

Cache Data with the Redis Library for the Python Library

1. Go to your AWS EC2 console, select your for- cache instance, and click Connect to con-
nect to it using SSH.

2. Install the library for your Linux environment.

3. Install Redis.

$ pip3 install redis

4. Substitute in the following Python code, <Endpoint 001>, with the endpoints you
created in Exercise 14.4:

$ python3
import redis

r = redis.Redis(host='<YOU REDIS PRIMARY ENDPOINT>', port=6379, db=0)

def put_value(key,value):
 print('put {} – {}'.format(key,value))
 r.set(key, value)

http://myredis-001.m76vzo.0001.use1.cache.amazonaws.com

Exercises 333

def print_value(key):
 print('key:',key,' value:',r.get(key).decode('utf- 8'))

put_value('0001', 'my first key- value')
put_value('0002', 'second value here')
put_value('a', 'relational databases')
put_value('b', 'nosql databases')
put_value('c', 'in- memory databases')

print_value('0001')
print_value('0002')
print_value('a')
print_value('b')

E X E R C I S E 11. 6

Delete the Resources to Avoid Unnecessary Costs

1. Go to the AWS console on the ElastiCache dashboard.

2. Find your Memcached cluster, and delete the nodes and cluster.

3. Find your Redis cluster, and delete the nodes and cluster.

4. Go to your AWS EC2 console, and terminate your instance.

334 Chapter 11 ■ Caching Data with In- Memory Databases

Review Questions
1. Your team is developing an application, and you need to provide a structure to store user

preferences data to be retrieved by a mobile app and web version very quickly (consistently a
submillisecond response time) for thousands of users. How can you achieve this while mini
mizing your team’s overhead for managing the infrastructure?

A. Set up an Amazon EC2 in a VPC, install your caching software, use a security group to
allow access from your application, and include an application library in your applica
tion to interact with your caching service to store and retrieve values from the cache.

B. Create an Amazon Aurora cluster in a VPC, use a security group to allow access from
your application, and include a JDBC driver in your application to interact with your
caching service to store and retrieve values from the cache.

C. Set up an Amazon ElastiCache cluster for Redis or Memcached in a VPC, use a secu
rity group to allow access from your application, and include an application library in
your application to interact with your caching service to store and retrieve values from
the cache.

D. Create an Amazon DocumentDB cluster in a VPC, use a security group to allow access
from your application, and include a MongoDB library in your application to interact
with your caching service to store and retrieve values from the cache.

2. A customer asks you to help him with an application that needs to store and update thou
sands of records in parallel. He estimates that he will require a large number of vCPUs (at
least six) to write data and the same number to read data, and will need 40 GB to store the
data. This data needs to be accessible for querying with a very low latency (submillisecond)
response time. The customer doesn’t want to use sharding. If the cache is lost, it will be
repopulated by the applications, as data is frequently updated.

A. Create an Amazon ElastiCache for Memcached, with an instance size of at least 12
vCPUs and 40 GB of memory to perform the reads and writes, using multithread writes.

B. Create an Amazon RDS for PostgreSQL with a read replica option.

C. Create an Amazon RDS for Oracle with a DataGuard option.

D. Create an Amazon ElastiCache for Redis cluster with at least six vCPUs to perform the
writes, using multithreaded processing, and perform reads on read replicas.

3. The application team wants to implement a low latency data store cache layer to provide end
users with faster response times to their last viewed products, recommendations, and profile.
The current response time is about 20 milliseconds, and they would like to provide a no more
than 2millisecond response time. The information can be updated by application in the case
of failure, and they expect to increase updates to this data store from hundreds per second to
thousands per second. Which suggestion would you give them for faster implementation, low
cost, and an easy setup and scale process?

A. Use Amazon OpenSearch Service.

B. Use the Amazon ElastiCache service and choose Redis.

C. Use Amazon MemoryDB for Redis.

D. Use the Amazon ElastiCache service and choose Memcached.

Review Questions 335

4. Your company is using a relational database and wants to improve cache capabilities, as
they need to improve response times. Which AWS service would you advise them to start
evaluating?

A. Evaluate the AWS Lambda layer.

B. Evaluate Amazon ElastiCache.

C. Evaluate Amazon Managed Streaming for Apache Kafka (MSK).

D. Evaluate Amazon DynamoDB DAX.

5. Your company application has a high response time for critical information to mobile appli
cations running on AWS. It currently has a 40 millisecond response time, and the marketing
team found out that this is one of the reasons for users abandoning the platform. The appli
cation should respond in less than 1 millisecond with the latest data version to keep users
engaged. What do you suggest for them?

A. Amazon ElastiCache, with a write through strategy

B. Amazon RDS, with a write through strategy

C. Amazon RDS, with a lazy loading strategy

D. Amazon ElastiCache, with a lazy loading strategy

6. What is Amazon ElastiCache useful for?

A. Creating a streaming layer

B. Offloading database reads for frequently read data

C. Improving database consistency

D. Creating a cache layer for low latency response time queries

7. You need to provide a data layer for an application that is persistent on disk and has a
microsecond latency response time for read operations. Which AWS service is the best fit?

A. Amazon MemoryDB for Redis

B. Amazon ElastiCache for Memcached

C. Amazon ElastiCache for Redis

D. Amazon Aurora MySQL

8. Your team is required to provide a game leaderboard for thousands of simultaneous read
access and single thread updates, the application usage is extremely sensitive to latency, and
there is already a persistent layer. What service would you consider for caching that is low
cost, low effort to set up, and easy to maintain?

A. Amazon RDS

B. Amazon ElastiCache for Redis

C. Redis on an Amazon EC2 instance

D. Amazon MemoryDB for Redis

9. What is true about Amazon ElastiCache?

A. You can choose between Redis and Memcached.

B. You can choose between MemoryOnly and DiskMemory.

C. You can choose between Redis cluster mode enabled or disabled.

D. You can choose between cache mode enabled or disabled.

336 Chapter 11 ■ Caching Data with In- Memory Databases

10. Your company is considering using Amazon ElastiCache. They would like an option to cache
some JSON data to be read by a large number of users and rarely updated. They are not
willing to deal with sharding. What would be a good option for this use case?

A. Amazon ElastiCache for Redis with cluster mode disabled

B. Amazon ElastiCache for Memcached with cluster mode disabled

C. Amazon ElastiCache for Redis with cluster mode enabled

D. Amazon ElastiCache for Memcached with cluster mode disabled

PART

III
Deployment and

Migration

Chapter 12: Migrating Your Data to AWS

Chapter 13: Disaster Recovery

Chapter 14: Saving Time and Reducing Errors Automating Your Infrastructure

338 Part III ■ Deployment and Migration

Migrating Your Data
to AWS

THE AWS CERTIFIED DATABASE –
SPECIALTY EXAM OBJECTIVES COVERED
IN THIS CHAPTER MAY INCLUDE, BUT ARE
NOT LIMITED TO, THE FOLLOWING:

 ✓ Domain 2.0: Deployment and Migration
 ■ 2.2 Determine data preparation and migration strategies.

 ■ 2.3 Execute and validate data migration.

Chapter

12

When you are migrating existing databases to AWS, after you
choose your target database environment, you need to decide
on how you want to migrate your data.

Some important considerations include the amount of data,
the conversion that may be needed, the time window to complete the migration, the network
bandwidth, and, if any downtime is acceptable, how long it could be. You also have to con-
sider how and when the dependent applications will be migrated.

There are several ways to migrate data to AWS. This chapter describes the options to
migrate database workloads to AWS.

Network Communication and
Data Migration
Network communication is key for data migration, not only for data transfer throughput
but also for the security requirements you may have. AWS database services will be in a
virtual private cloud (VPC) most of the time or have a VPC endpoint (for example, in the
case of Amazon DynamoDB). Therefore, you can establish a connection with your current
datacenters using an AWS Site-to-Site virtual private network (VPN) or using an AWS Direct
Connect connection and then use security groups to allow traffic only from specific IP
address ranges in a VPC, from application security groups in AWS, or from on- premises IP
address ranges.

Even if you are not going to transfer data directly to a database service but instead use
Amazon S3 as a staging area, you can use Amazon S3 interface endpoints with AWS Private-
Link to allow on- premises communication with Amazon S3 over your secure AWS Site- to-
Site VPN or AWS Direct Connect connections.

It’s possible to send data directly to Amazon S3 over the Internet using the Transport
Layer Security (TLS) encryption, but this is not the most secure. The most secure option is to
use TLS over AWS Site- to- Site VPN or AWS Direct Connect.

Database migration is the relocation of the table definition and related objects, such as
indexes, functions, procedures, views, and of course the data, from a source database to a
target database.

When planning a database migration, note that one of the most limiting resources for
data migration is network bandwidth. So, after gathering your database size, you can use
Table 12.1 to help you figure out how long, in hours or days, a data transfer through the
network will take according to your database size and the available network bandwidth.

Network Communication and Data Migration 341

TABLE 12 .1 Estimated Time to Migrate Data

Database Size Network Bandwidth Data Migration

(GB) (Mbps) (In Hours) (In Days)

100 10 22h, 13 min <1

100 100 2h, 3 min <1

100 500 0h, 26 min <1

100 1,000 0h, 13 min <1

100 2,000 0h, 7 min <1

512 10 114h 5

512 100 11h, 22 min <1

512 500 2h, 16 min <1

512 1,000 1h, 8 min <1

512 2,000 0h, 34 min <1

1,024 10 228h 10

1,024 100 22h, 45 min 1

1,024 500 4h, 34 min <1

1,024 1,000 2h, 16 min <1

1,024 2,000 1h, 8 min <1

2,048 10 456h 19

2,048 100 46h 2

2,048 500 9h, 6 min <1

2,048 1,000 4h, 33 min <1

2,048 2,000 2h, 16 min <1

10,240 10 2,276h 97
(continues)

342 Chapter 12 ■ Migrating Your Data to AWS

Several times you will not have a dedicated network tunnel for the database migration,
so be aware that this bandwidth is considering only database traffic. If the network connec-
tion is shared with other applications or users, you may have traffic concurrency, which will
increase the time to migrate. Work with your company’s network team.

If your database to be migrated is 512 GB or less, you will probably finish your data
migration in less than a week, if your network bandwidth available for this migration is at
least 10 Mbps.

AWS Site- to- Site VPN throughput can be limited by the bandwidth you have contracted
from an Internet provider in your site and by the network interface from your source data-
base and target database. AWS provides two tunnels for AWS Site- to- Site VPN and limits
each tunnel to 1.25 Gbps. If you have up to 1.25 Gbps Internet bandwidth in your site, you
will be able to use all its capacity to transfer data, but if you have more bandwidth available
from your site, your transfer rate will be capped at 1.25 Gbps per tunnel by AWS.

If you need a higher bandwidth or want to have a dedicated physical connection, you can
use an AWS Direct Connect connection, which is available in speeds starting at 50 Mbps and
scaling up to 100 Gbps. You will need to have a physical connection from your datacenters
to at least one of the AWS connection locations. Check the available locations on the AWS
Direct Connect Locations page.

Database Size Network Bandwidth Data Migration

(GB) (Mbps) (In Hours) (In Days)

10,240 100 228h 10

10,240 500 46h 2

10,240 1,000 22h, 45 min 1

10,240 2,000 11h, 22 min <1

51,200 10 11,378h 485

51,200 100 1,138h 49

51,200 500 228h 10

51,200 1,000 114h 5

51,200 2,000 56h 2

TABLE 12 .1 Estimated Time to Migrate Data (continued)

Database Migration to AWS 343

Database downtime for migration is the time it takes to switch over the applications from
the source database to the target database in a consistent manner, including the portion of
time required to apply the latest changes from the source to the target, before allowing the
application to connect to the target.

Change data capture (CDC) is the process that captures the changes in the source, while
the data files are being copied, to update the target database with the transactions that hap-
pened during the copy time.

To plan for a minimal downtime migration, you need to add bandwidth for CDC
updates to be sent over the network, while static data is also being migrated at the same
time. Estimate the generation rate of your database changes to be captured such as Oracle
archived logs, PostgreSQL write- ahead logs (WAL), MySQL bin logs, and Microsoft SQL
Server transactions logs (usually measured as bytes per second, so convert it to Mbps and
add this to your bandwidth requirements).

Also check if your source database hardware resources such as network speed, CPU, and
disk read throughput are not being capped by your current infrastructure and have capacity
to accommodate the migration process to provide fast read and data transfer rates.

Optimizing Bandwidth Usage
Compressing data when performing data migration over the network is a best practice.
Database tools can deliver backup files in a compressed format for most database engines.
When this option is not available or you have access only to the uncompressed backup files,
you can use compress tools such as Gzip, Lzop, Bzip2, Zip, and others before sending them
through the network. As the compression process takes time, perform some sample tests
to estimate how long it will take so you can include the amount of time required in your
planning.

Database Migration to AWS
Heterogeneous database migration is a database migration where the source and target
database are different engines. You can use some native tools from the source to extract the
data, but you need to convert the objects and then use a different tool to load the data to
the target.

AWS has created two services that facilitate the process for heterogeneous database
migration: AWS Schema Conversion Tool and AWS Data Migration Service.

Homogenous database migration is a database migration where the source and target are
the same engine. The native tools for each engine are usually enough to perform the entire
migration for the schema objects and the data.

AWS DMS can be useful for homogenous database migration, especially when minimal
downtime is required, because of its CDC capability.

344 Chapter 12 ■ Migrating Your Data to AWS

AWS Schema Conversion Tool
AWS Schema Conversion Tool (AWS SCT) is an AWS tool to convert a source database
schema from one engine to another engine as the target; it works for several commercial and
open- source database engines.

The main purpose of AWS SCT is to convert schemas from a source database engine to
a target database engine. This is key, because the data types, Structured Query Language
(SQL), and Procedural Language/Structured Query Language (PL/SQL) code may have dif-
ferent supported syntaxes, function names, and features such as partitioning and would
require many hours for database specialists to manually convert them.

AWS SCT is a client graphical tool, as represented in Figure 12.1, that you install on a
Windows or Linux machine. To convert a schema, perform the following steps:

1. Install AWS SCT on your Linux or Windows machine; you can use an Amazon EC2 in-
stance as well.

2. Download the JDBC drivers for the source and target engines.

3. Connect to the source database.

4. Connect to the target database, or use a virtual target for planning.

5. Select the appropriate schemas and objects to migrate.

6. Create a conversion and migration assessment report.

7. Generate the SQL statements to create a target schema that has a classification for each
object as an action item, enabling a comparison between the source and target codes.

8. Download the conversion scripts as a SQL file.

9. Apply the changes to the target database, creating a target converted schema.

10. Optionally, generate AWS Glue jobs for data warehouses from the SQL transformation.

11. Optionally, use the SCT extraction agents to migrate the data to Amazon Redshift from
commercial data warehouses.

12. Optionally, integrate with AWS DMS to create the data migration tasks.

F IGURE 12 .1 AWS SCT client tool

AWS Schema Conversion Tool 345

When migrating from one database engine to another (for example, from a commercial
database to Amazon Aurora), the AWS SCT migration assessment reports are useful, because
they are easy to create and they display valuable information. You should always consider
using AWS SCT to evaluate the level of automation for a schema conversion and the manual
tasks you will need to perform for objects not converted automatically.

The report summary displays the schemas, tables, columns, and constraints. The schema
migration is categorized as follows:

 ■ Simple: Actions that can be completed in less than one hour

 ■ Medium: Actions that are more complex and can be completed in one to four hours

 ■ Significant: Actions that are very complex and take more than four hours to complete

After creating a report, you can navigate through the Action Items tab, which not only
shows the issues for unsupported data types and object conversion, but also tells you how
you should manually handle them. The action items are categorized as follows:

 ■ Automatically handled by AWS SCT (in gray)

 ■ Converted with a small automatic transformation that the database specialist may want
to validate (in yellow)

 ■ Could not be automatically converted, with recommendations for how to manually con-
vert the schema items (in red)

Sometimes it will be easier to convert objects in the source, refresh the schema, and
run the report again, but many times database specialists can adjust the SQL statement by
rewriting it from the suggestion and either apply it to the target database or save it as SQL.

AWS SCT Extension Pack is an add- on module that emulates functions present in the
source database that are required when converting objects to the target database. This is use-
ful to reduce the number of manual changes to convert code from one database to another.
For example, it creates a Sysdate function in the target to work as Oracle sysdate when
converting from Oracle to PostgreSQL.

AWS SCT supports the following source databases. They don’t need to be on premises,
although that is the most common scenario.

 ■ Oracle

 ■ Microsoft SQL Server

 ■ MySQL

 ■ PostgreSQL

 ■ SAP ASE (Sybase ASE)

 ■ IBM Db2 LUW

 ■ Apache Cassandra

 ■ Azure SQL Database

 ■ IBM Db2 for z/OS

346 Chapter 12 ■ Migrating Your Data to AWS

The supported target database will depend on the source, but here are the available tar-
gets for AWS SCT:

 ■ Amazon RDS for MySQL

 ■ Amazon Aurora (MySQL)

 ■ Amazon RDS for MariaDB

 ■ Amazon RDS for PostgreSQL

 ■ Amazon Aurora (PostgreSQL)

 ■ Amazon RDS for Oracle

 ■ Amazon RDS for SQL Server

 ■ Amazon DynamoDB

The following are the supported data warehouse sources for AWS SCT:

 ■ Oracle Data Warehouse

 ■ Teradata

 ■ Netezza

 ■ Greenplum

 ■ Vertica

 ■ SQL Server Data Warehouse

 ■ Azure SQL Data Warehouse (Azure Synapse)

 ■ Snowflake

For a data warehouse’s source, the target will be Amazon Redshift. For this type of migra-
tion, you can also use AWS SCT data extractor agents, which support most of these sources
at the moment. AWS SCT extractors are agents that extract your data and upload the data to
either Amazon S3 or an AWS Snowball Edge device. You then use another step in AWS SCT
to copy the data to Amazon Redshift.

Extractors work in a parallelized way. You define tasks and subtasks as groups of tables,
and each subtask runs in an autonomous way of extracting, uploading, and copying the data
to Amazon Redshift.

You can use three levels of filter when creating a task.

 ■ Schema name filter, for all schema names that contain the filter text

 ■ Table name filter, for all table names that contain the filter text

 ■ Where clause filter, to actually filter data based on a condition

Extraction agents are currently supported on the following operating systems: macOS,
Microsoft Windows, Red Hat Enterprise Linux (RHEL) 6.0, and Ubuntu Linux (version
14.04 and later).

AWS SCT data extractor agents can also be used to extract data from Apache Cassandra
to Amazon DynamoDB.

AWS Data Migration Service 347

AWS Data Migration Service
AWS Database Migration Service (AWS DMS) can be used to migrate the databases to the
same database engine as a homogenous migration, or to another database engine as a
 heterogeneous migration, making it possible to migrate from Oracle to PostgreSQL or Micro-
soft SQL Server to MySQL. AWS DMS also supports NoSQL databases as sources and
targets.

The main purpose of AWS DMS is to perform database migration to AWS, but you can
also use AWS DMS to migrate databases from AWS to somewhere else.

AWS DMS covers two main types of migration: full load mode, to copy the data from
source tables to target tables, and CDC mode, where AWS DMS captures the ongoing
changes and applies them to the target to synchronize the target database with the most
recent version of the source. You can use a task with the Migrating Existing Data and Cap-
turing Changes During Migration options to perform the full load from the existing data
and automatically start the CDC applying process when the full load is finished. This allows
you to decide when to stop the CDC applying process to switch over applications to the new
target database or even when you want to create a point- in- time copy from the source data-
base for test, development, or reporting purposes.

As mentioned previously, if you are changing engines, you will need to run AWS SCT or
another tool to convert the schema, as AWS DMS will be limited to creating the target ta-
bles and primary keys and migrating the data; it doesn’t create other indexes, procedures,
functions, grants, and table references.

The following are the supported source databases, known as source endpoints, for
AWS DMS:

 ■ Oracle database 10.2 and later, 10g, 11g, and up to 12.2, 18c, and 19c

 ■ Microsoft SQL Server database versions 2005, 2008, 2008R2, 2012, 2014, 2016, 2017,
and 2019

 ■ Microsoft Azure SQL database

 ■ PostgreSQL database: version 9.4 and later, 9.x, 10.x, 11.x, and 12.x

 ■ MySQL database versions 5.5, 5.6, 5.7, and 8.0

 ■ MariaDB database versions 10.0.24 to 10.0.28, 10.1, 10.2, and 10.3, 10.3.13,
10.4, 10.5

 ■ SAP ASE database versions 12.5, 15, 15.5, 15.7, 16, and later

 ■ MongoDB database versions 3.x and 4.0

 ■ Amazon DocumentDB (with MongoDB compatibility)

 ■ Amazon S3, in comma- separated value (CSV) format files

 ■ IBM Db2 for Linux, Unix, and Windows database (Db2 LUW) versions 9.7, 10.1, 10.5,
11.1, and 11.5

348 Chapter 12 ■ Migrating Your Data to AWS

The AWS DMS replication instance is an instance that connects to the source endpoint,
reads the data, converts the data into the target format, and writes the data to the target end-
point, which is a connection to the target database instance.

The AWS DMS source endpoint is a database connection configuration, such as host-
name, port, username, or secret, to the source database, which is the one that has the data to
migrate from.

The AWS DMS target endpoint is a database connection configuration, such as hostname,
port, username, secret, to the target database, which is the one that will receive the data dur-
ing migration.

The following are the supported target databases, known as target endpoints, for
AWS DMS:

 ■ Oracle database 10.2 and later, 10g, 11g and up to 12.2, 18c, and 19c

 ■ Microsoft SQL Server database versions 2005, 2008, 2008R2, 2012, 2014, 2016, 2017,
and 2019

 ■ PostgreSQL database version 9.4 and later, 9.x, 10.x, 11.x, and 12.x

 ■ MySQL database versions 5.5, 5.6, 5.7, and 8.0

 ■ MariaDB database versions 10.0.24 to 10.0.28, 10.1, 10.2, and 10.3, and 10.4

 ■ SAP ASE database versions 12.5, 15, 15.5, 15.7, 16, and later

 ■ Redis version 6.x

 ■ Amazon RDS instance databases for Oracle, Microsoft SQL Server, MySQL, or
PostgreSQL

 ■ Amazon Aurora MySQL- Compatible Edition

 ■ Amazon Aurora PostgreSQL- Compatible Edition

 ■ Amazon Redshift

 ■ Amazon S3

 ■ Amazon DynamoDB

 ■ Amazon OpenSearch Service

 ■ Amazon ElastiCache for Redis

 ■ Amazon Kinesis Data Streams

 ■ Amazon DocumentDB (with MongoDB compatibility)

 ■ Amazon Neptune

 ■ Apache Kafka— self- managed or Amazon Managed Streaming for Apache Kafka
(Amazon MSK)

Figure 12.2 shows the following components of AWS DMS:

 ■ Source endpoint: Connection details to the source database or files in S3 you want
to migrate

AWS Data Migration Service 349

 ■ Target endpoint: Connection details to the target database, streaming service, or storage
where you are migrating to

 ■ Replication task: A definition of a set of tables or schemas to be migrated in a group

 ■ Replication instance: A service instance that connects to both source and target, and
executes the tasks for migration

You will need to choose a replication instance type and size, according to the tables you
are going to migrate and if you are performing full load, CDC, or both processes. Each rep-
lication instance can handle multiple tasks, and migration will consume vCPU, memory, and
disk storage. The AWS DMS replication instance can be of the following types:

 ■ Burstable general- purpose (T type) provides a baseline level of CPU performance with
the ability to burst CPU usage; this is useful for generic, not intensive, replication tasks.

F IGURE 12 .2 AWS Data Migration Service components

350 Chapter 12 ■ Migrating Your Data to AWS

 ■ Compute- intensive (C type) delivers cost- effective high performance for compute-
intensive workloads; this is useful for heterogeneous migration, where a replication in-
stance needs to translate and convert data types and transactions.

 ■ Memory- optimized (R type) is useful for ongoing replications from high- throughput
transaction databases.

The default disk size of replication instance is usually enough for the majority of tasks.
Because log files are the great consumers of disk space in the replication instance, however,
you should consider the following regarding replication instances and disk storage:

 ■ Table size: Large tables take longer to migrate, and transactions need to be held in disk
if CDC is enabled, so you will need to set up enough disk space for the transaction logs.

 ■ Source database change activity: If the source database has been highly updated with
transactions, these transactions must be cached until the tables are loaded. Each table
that is loaded has the transactions applied at the end of the full loading process.

 ■ Transaction size: Long- running transactions in the source will require sufficient memory
to stream all changes in the transaction.

 ■ Total size: Large migrations take longer, and they usually generate a large number of
log files.

 ■ Number of tasks per replication instance: More tasks in a single replication instance will
require more caching, and more log files are generated.

 ■ Large objects: Tables with large objects (LOBs) take longer to load, increasing the
number of logs retained during the process.

Setting Up AWS DMS
The AWS DMS migration task is the configuration of the set of tables you would like to
migrate, from a source endpoint to a target endpoint. You state the details of the transforma-
tion as well as the mode, namely, if it will be existing data only or a continuous replication.

To replicate tables from the source to the target, you need to create a migration task that
will run on a replication instance.

The following steps are a sample of creating an AWS DMS migration task to migrate data
from a source database to a target database:

1. In the AWS VPC console, create or choose a VPC with the proper subnets, and then cre-
ate a security group in the VPC for your replication instance.

2. In the AWS DMS console, create a subnet group for your replication instance.

3. Create a replication instance in the subnet group, using the security group created.

4. On your source database, open a firewall rule to allow traffic from your replication in-
stance to your source database at the correct port.

5. Create a user in your source database with the minimal privileges required according
to the DMS documentation for your source database engine. Each engine has its own
requirement. For ongoing replication, additional privileges will be required to read the
logs on the source.

AWS Data Migration Service 351

6. Create a source endpoint using the replication instance and the user you created. Test
the connectivity and refresh the schemas.

7. On your target database, create a rule in the security group to allow traffic from your
replication instance security group to the correct port.

8. Create a target endpoint using the replication instance and a user with privileges to cre-
ate objects, check the DMS documentation for each database engine as a target, and test
the connectivity.

9. Create a database migration task using the replication instance, the source endpoint, and
the target endpoint.

10. Choose the migration type.

 ■ Migrate existing data.

 ■ Migrate existing data and replicate ongoing changes.

 ■ Replicate data changes only.

11. Set up the task settings, as follows:

a. Select if you want to drop, truncate, or do nothing with the target tables before
migrating.

b. Select whether LOB columns should be replicated and their maximum size.

c. Select whether to enable or disable the validation check, which is a comparison bet-
ween the source and target tables after full load. Validation being enabled requires
additional time to complete.

d. Enable CloudWatch logs and select the level— from default to detailed debug— for
each log type. If you don’t enable CloudWatch logs, you will not be able to trouble-
shoot failed migration tasks.

e. Choose the maximum number of tables to load in parallel, transaction consistency
timeout, commit rate, and DMS control tables in the target in the advanced settings
options.

12. Enable the pre- migration assessment to preview warnings on potential issues that DMS
can detect before migrating, such as unsupported data types, tables with LOB objects
but without a primary or unique key, tables for CDC without a primary key, or the
presence of a composite primary key when the target is the OpenSearch service.

13. Set up the task to start automatically or manually after creation.

14. Assign the proper tags for your control.

As DMS can load tables in parallel, without control of the order, the ref-
erential integrity between tables may be broken until the end of the data
load process, so you will need to disable referential constraint during full
load. Also, database triggers should be disabled in the target to avoid
creating records or actions that have already been done in the source
database.

352 Chapter 12 ■ Migrating Your Data to AWS

Groups of tables that have a relationship with or dependency on each other should be
put in a single replication task, but you should not include tables with no relationship in the
same tasks. Isolating groups of tables that have relationships with each other in tasks enables
you to restart a task with a smaller group of tables in the case of failure, instead of restarting
the whole migration.

Imagine that you are at the end of a migration with 200 tables that have been running
for hours, and a single table fails. You have two potential solutions based on how you set up
your tasks.

 ■ One big single task with 200 tables: You will need to fix the cause of the failure and
restart the task, potentially losing everything you have migrated until the failure.

 ■ Tables split into many tasks, and this failed table is in a task with 15 other tables:
You can restart the failed task without impacting the other 185 tables that have been
migrated in other tasks.

Another benefit of splitting tables across tasks is that you have control of the parallelism
for each task, as well as the commit rate and transaction timeout, which could address a
fine- tuning for each group of tables more precisely.

After the full load of a task, you can enable constraints for that group of tables you have
isolated in a replication task and re- create or rebuild indexes and recompile database objects
in phases.

AWS DMS Continuous Replication
The most common migration types for AWS DMS are migrating existing data and migrating
existing data and replicating ongoing changes, which handles all the consistency of change
logs being applied to the target, but AWS DMS allows you to create a task to replicate data
changes only.

Migrate existing data is an AWS DMS migration type that migrates only the data that is
already in the tables at the moment the task reads it, and it doesn’t handle any changes after
this time.

Migrate existing data and replicate ongoing changes is an AWS DMS migration type that
migrates the data that is already in the tables and after this continues to apply any changes
that are occurring in the source database with a CDC mechanism.

Replicate data changes only is an AWS DMS migration type that applies the changes that
occur only after the task starts or at a particular point in time, and it imposes some tracking
activities for the database administrator who handles the migration, because it assumes you
have already migrated the data with a full load, with AWS DMS full load, with AWS Snow-
ball, or with another copy of the data.

To maintain the consistency between the source and the target, you need to know the
exact time you took the copy from your source environment so you can apply the changes
that happened after that exact moment. This is hard to track in terms of exact microseconds.

To facilitate this tracking, databases have a sequence number to track the changes, such as
the following:

AWS Data Migration Service 353

 ■ Log sequence number (LSN), for SQL Server

 ■ System change number (SCN), for Oracle

 ■ Checkpoint replication slots, for PostgreSQL

 ■ LSN, for MySQL

The use of LSN, SCN, or checkpoint replication slots facilitates the task of performing
the synchronization with a full load copy and the changes that happened afterward. When
you take a consistent, point- in- time copy from your source to perform the full load, you
query and take note of the consistent number (LSN, SCN, or checkpoint). Then you use this
number to apply every change that happened after the copy to your target database.

Take care of your log (bin log, archived log, write- ahead log [WAL], or
transaction log) area in the source database machine when performing
continuous replication. You cannot delete the logs generated after the
full load copy has been generated, until the replication instance is able
to read them; otherwise, you will not be able to synchronize the target
with the source database. So, many times you may need to disable the
delete routines that happen after the backup of these log areas tempo-
rarily, and you may also need to increase this area to handle those files
for more time.

AWS DMS Best Practices
AWS DMS has launched several features and options since its first release in January 2016
that help you configure and optimize a database migration. Here are some best practices
regarding some of those features and options:

 ■ Do not underestimate the effort of a database migration. Perform a proof of concept of
database migration to know in advance your data profile and how large your database
is. This will give you space to tune your replication instance size, distribute tables prop-
erly among the tasks, and evaluate the number of replication instances needed.

With the tests, you will also know the bottlenecks of data migration by evaluating the
performance in terms of vCPU, memory, network, and disk metrics, and by considering
the source instance resources, replication instance size and storage, network commu-
nication, and target database instance resources. In the real world, for large databases,
you will see 80 percent to 90 percent of your tables being migrated fast and without any
issues, which means you will need to fine- tune 10 percent to 20 percent of them. Those
are usually the very large tables, which tests will identify.

 ■ Tune parallelism for tasks. By default it’s set to eight tables in parallel per task.
 Separating large tables into specific tasks can help you to isolate them from other
table errors, whereas for small tables, which are easy to migrate, you can increase
parallelism. Try not to increase the workload in source databases too much, especially

354 Chapter 12 ■ Migrating Your Data to AWS

production ones. The workers will use disk reads and vCPU from your source database
machine for each table being loaded in parallel at the same time. For engines like Oracle,
Microsoft SQL Server, MySQL, Sybase, and IBM Db2 LUW, it’s possible to parallelize
loading large tables using partition- load task configuration, where data will be parallel-
ized based on a list, a set of ranges, or automatically.

 ■ LOB columns take longer to migrate compared to columns with regular data types
of the same size. Do not migrate LOBs if you have a better strategy to store them in
Amazon S3, for example. AWS has created a specific setup in the migration task to
address this, so you can exclude LOB columns from the migration and, instead of
migrating them, rethink where to store the objects. If you decide to migrate the LOB col-
umns, you can set it to three different modes, depending on the size of source LOBs and
behavior during migration, as follows:

 ■ Limited LOB mode, where DMS will truncate the objects that exceed the size limit.
This is the AWS recommended mode, and the maximum LOB size should be set to up
to 100 MB for optimal performance.

 ■ Full LOB mode, which can be very slow. This is a piece- by- piece migration of the
objects and will take longer. It is split into chunk sizes that default to 64 KB.

 ■ Inline LOB mode, so small objects limited by size will migrate as an inline migration,
and what exceeds the limit will be migrated using the Full LOB mode, piece by piece.

 ■ Import other schema objects with AWS SCT or native tools. Keep in mind that AWS
DMS only creates tables and primary keys; it does not migrate dependent objects and
grants, so you may want to use a dump file from a native tool with metadata to import
objects such as procedures and functions in your target database. For heterogeneous
migration, you can use AWS SCT, which handles the schema conversion required from
one engine to another. For homogenous migration, you can use native database tools
such as Oracle SQL Developer, MySQL Workbench, or pgAdmin4 to move the complete
schema with dependencies and use AWS DMS to migrate the data.

 ■ Indexes, triggers, and referential integrity constraints can increase load time and may
cause task failure. During the full load, you should drop or disable the indexes, referen-
tial integrity constraints, and triggers, and then re- create, rebuild, or enable them before
the CDC phase.

 ■ For an Amazon RDS target, disable Multi- AZ and turn off backups until the databases
are synchronized.

 ■ Enable CloudWatch logs, which are not enabled by default. You will not be able to trou-
bleshoot failing tasks to determine the root cause and correct them.

 ■ Monitor CloudWatch metrics for the migration tasks and set event alarms for high
latency for long- running migrations.

 ■ Enable validation for database targets so you can use the validation help in your final
database migration validation.

AWS Data Migration Service 355

 ■ You can use JSON task definitions that are easy to maintain, duplicate, or update, with
minimal effort. The following JSON example selects every schema and table from the
source database and uses a parallel load for table SH.SALES:

{
 "rules": [{
 "rule- type": "selection",
 "rule- id": "1",
 "rule- name": "1",
 "object- locator": {
 "schema- name": "%",
 "table- name": "%"
 },
 "rule- action": "include"
 },
 {
 "rule- type": "table- settings",
 "rule- id": "2",
 "rule- name": "2",
 "object- locator": {
 "schema- name": "SH",
 "table- name": "SALES"
 },
 "parallel- load": {
 "type": "partitions- auto"
 }
 }
]
}

 ■ Use filters to migrate only a subset of the data if you don’t need some tables to be
migrated. For example, to pick only sales values greater than 1000, use the follow-
ing filter:

{
 "rules": [{
 "rule- type": "selection",
 "rule- id": "1",
 "rule- name": "1",
 "object- locator": {

356 Chapter 12 ■ Migrating Your Data to AWS

 "schema- name": "SH",
 "table- name": "SALES"
 },
 "rule- action": "include",
 "filters": [{
 "filter- type": "source",
 "column- name": "SALES_VALUE",
 "filter- conditions": [{
 "filter- operator": "gte",
 "value": "1000"
 }]
 }]
 }]
}

 ■ For a migration that takes too long over the network and puts the migration window at
risk, consider using AWS Snowball or another hard- copy system for the full load.

AWS DMS Security
As a best practice, an AWS DMS replication instance should be set up in a private subnet
in your VPC network. You will need to allow traffic from this replication instance to your
source database instance and to your target database instance using an AWS Site- to- Site VPN
or AWS Direct Connect connection.

For security purposes, AWS DMS encrypts the storage and endpoints connection
information with an AWS Key Management Service (AWS KMS) key, with the default (aws/
dms) or an AWS KMS that you can create.

AWS DMS also supports Secure Sockets Layer (SSL) to encrypt the connection for the
source and target endpoints.

AWS DMS Resilience
The replication instance for AWS DMS is where all the processes of migration tasks are
tracked and logged. To improve resilience, you should deploy a Multi- AZ replication in-
stance so the service will automatically provision and maintain a synchronous copy of the
replication instance in a different availability zone (AZ).

So in the case of instance failure or AZ failure, AWS DMS can continue to work with an
automatic failover to the secondary AZ with the standby instance.

Other AWS Services for Data Migration 357

Other AWS Services for Data Migration
When performing a homogenous migration where the source and target are the same engine,
you can use AWS DMS, but you also can use the native database tools. Some of them are
supported only for self- managed databases on EC2; some native tools and third parties
are supported for managed services. Here are some examples of native tools available for
relational databases on EC2 and on RDS:

 ■ Oracle on EC2: Oracle Data Pump, GoldenGate, Data Guard, and RMAN

 ■ RDS for Oracle: Oracle Data Pump and GoldenGate

 ■ PostgreSQL on EC2: Master- slave replication, pg_dump, pg_restore, and psql

 ■ RDS for PostgreSQL: pg_dump, pg_restore, and psql

 ■ MySQL on EC2: mysqldbcopy, mysqldump, Percona XtraBackup, and MySQL
read replica

 ■ RDS for MySQL: mysqldbcopy, Percona XtraBackup, and mysqldump

 ■ Microsoft SQL Server on EC2 or RDS for SQL Server: Backup and Restore, Copy Data-
base Wizard, and copy and attach database

In this section, you will learn about services that help data movement from on- premises
to AWS as dump files.

AWS DataSync
AWS DataSync service is a service that can copy files from a specific filesystem on premises
and transfer it to an AWS service such as Amazon S3, Amazon EFS, or FSx.

If you have a database- native backup tool and copies of data files or dump files on
 premises and want to transfer them over the network, you can use AWS DataSync. This tool
is used to move datasets over the network into Amazon S3, Amazon EFS, or FSx for Win-
dows File Server, using compression algorithms, and it also includes data integrity validation
and encryption.

To speed up migrations, AWS DataSync uses a purpose- built network protocol and a
parallel, multithreaded architecture.

AWS Snow Family
When the volume of data is high and the bandwidth is not fast enough to allow a reasonable
window time for migration, you can use the AWS Snow family of physical devices. These are
storage devices that AWS sends you. You connect them in your data center to copy data, and
you send them back to AWS when the copy is finished.

358 Chapter 12 ■ Migrating Your Data to AWS

AWS offers three main types of Snow devices for data transfer.

 ■ AWS Snowcone is the entry- level member of the AWS Snow family of data transfer
devices, with a capacity of up to 8 TB of storage. It also provides edge computing capa-
bilities to run code inside them.

 ■ AWS Snowball Edge Storage Optimized are devices provided with 40 vCPUs of compute
capacity coupled with 80 TB of usable block or Amazon S3–compatible object storage.

 ■ AWS Snowmobile is a 45- foot- long ruggedized shipping container that can move up to
100 PB of data; it should be considered for multipetabyte migrations.

Consider the AWS Snow family when you want to physically copy data and send it to
AWS. If you need a CDC process for minimal downtime, it’s possible to synchronize both
processes and use time- based or database log–based controls along with AWS Data Migra-
tion Services (AWS DMS).

AWS Storage Gateway
AWS Storage Gateway is a way to move on- premises files, data files, backup files, or dump
files over the network to AWS. It offers four different types of gateways: Amazon S3 File
Gateway, Amazon FSx File Gateway, Tape Gateway, and Volume Gateway. The on- premises
machines connect to the service through a virtual machine or gateway hardware appliance
using standard storage protocols, such as Network Filesystem (NFS), Server Message Block
(SMB), and Internet Small Computer System Interface (iSCSI).

The virtual storage is then mounted into on- premises machines, but the files you create
there are actually stored in AWS storage services, such as Amazon S3, Amazon S3 Glacier,
Amazon S3 Glacier Deep Archive, Amazon FSx for Windows File Server, Amazon EBS,
and AWS Backup. It’s possible to use local on- premises disks as cache areas to improve
performance while the data is saved in AWS storage services.

The AWS transfer family can be another option used to transfer data securely from
on- premises to AWS, with the Secure File Transfer Protocol (SFTP) or File Transfer Pro-
tocol over SSL (FTPS) protocols. The SFTP and FTPS services will store the received files to
Amazon Simple Storage Service (S3) or Amazon Elastic File System (EFS) as configured as a
totally managed service.

Choosing the Migration Path
The path to migrate the data will depend on the transformation you will perform, what your
source and target database engines are, and if you are going to use managed services or self-
management for a target.

One or Many Target Databases
The first thing to decide is whether you are going to migrate to a self- managed data-
base on Amazon Elastic Compute Cloud (Amazon EC2) or an AWS managed service, like
Amazon RDS.

Choosing the Migration Path 359

Choose a database in EC2 when the source engine is not supported by AWS managed ser-
vices and the application cannot be changed to use another database, such as a legacy appli-
cation that uses IBM Db2 where you can’t change application code.

A single source database instance may be split into multiple target database engines,
because you are using the purpose- built database concept and choosing the appropriate
database for each database workload that was previously running on the same database in-
stance. For example, you are moving a product catalog search service to a NoSQL database,
the orders service to an Aurora PostgreSQL, and historical records to Amazon Redshift. The
application code and database schema will need to change, and you will use AWS SCT to
convert the schema and AWS DMS to migrate the data.

Small, Noncritical Databases
For small databases being migrated with homogenous migration that can afford some down-
time, consider using database- native tools, such as Oracle SQL Developer, MySQL Work-
bench, SQL Server backup, and pgAdmin4; or you can use third- party tools. Amazon S3 can
be an intermediate storage for dump or backup files.

For MySQL there is a pattern using Percona XtraBackup and Amazon EFS for a migra-
tion to Aurora MySQL database that accelerates migration to AWS.

For Oracle, you can also use the Oracle Data Pump network link from RDS to load the
data using a database link and a file system area for the logs.

For near- zero downtime, with full loads that can be done in a reasonable time window
over AWS Direct Connect or AWS Site- to- Site VPN connection, you can use AWS DMS full
load plus ongoing replication, or another tool with CDC capability that is able to synchro-
nize the source and target with the transaction changes after full load.

Using AWS DMS for the continuous replication only is also possible, since you can per-
form a consistent copy and take note of the exact point in time of that copy to apply the
change logs after the copy.

Consider also working with a DNS resolver to be able to point applications to the new
database service with minimal reconfiguration time and create application copies in AWS
before migrating the database.

Very Large Databases
For very large databases that don’t fit in the time window for migration over the network,
you may need to perform the full load using a storage device such as AWS Snowball. Or you
can use AWS DMS Agent, which is a small software package that AWS provides to install in
your on- premises environment, extract data in parallel with several worker threads, and then
synchronize the source and target with continuous replication.

AWS Snowball and AWS DMS Agent will use Amazon S3 as a staging area before load-
ing the data to the target, and then another DMS task loads from Amazon S3 to the target
database.

360 Chapter 12 ■ Migrating Your Data to AWS

Summary
This chapter explored the main AWS services for database migration, as well as services that
can be used to accelerate migration using database- native tools.

When performing heterogeneous migration, you can use AWS SCT and AWS DMS. AWS
SCT will perform schema conversion and also detect any manual changes needed, while
AWS DMS will be in charge of the data migration.

When performing homogenous migration, you should consider using AWS DMS for
minimal downtime or using database- native tools when downtime is acceptable. Then you
can use AWS DataSync, AWS Storage Gateway, and the AWS Snow family to transfer the
data files, backup files, or dump files to AWS. It is also possible to perform a continuous rep-
lication to synchronize the source and target using AWS DMS ongoing replication after the
full load, even if the full load has been done by database- native tools.

Exam Essentials
Know how to migrate databases to AWS. You have seen that AWS provides a set of services
that can help with database migration, from the database- specific tools, such as AWS DMS
and AWS SCT, to file movement tools such as AWS DataSync, AWS Transfer Family, and
AWS Storage Gateway. You can move data over the network using AWS Direct Connect or
AWS Site- to- Site VPN, or you can use an AWS storage device via AWS Snowball to copy the
data and send it back to AWS.

Be able to use AWS SCT and AWS DMS. AWS Schema Conversion Tool facilitates het-
erogeneous database migration, and it’s aligned with a purpose- built database strategy.
One source database can be migrated to more than one target engine, separating workload-
specific tables for the appropriate service. AWS DMS then migrates the table data to each
target database.

Understand AWS DMS best practices. Enable AWS DMS validation for data migration to
the target database, and enable logging activities for tasks for troubleshooting. Parallelize
table migration at three levels: use the parallel partition- load to parallelize large table loads
in several partitions, use the tables in parallel per task setting that defaults to eight, and cre-
ate different tasks for groups of tables to run parallel.

Implement a database migration strategy. Your migration strategy can vary according to
the database size, the requirements for minimum or zero downtime, and the target database
engine. For homogenous migration, you can use AWS DataSync, AWS Transfer Family, or
AWS Storage Gateway along with database- native tools.

Know how to minimize downtime. For minimum or zero downtime, AWS DMS ongoing
replication can synchronize the source and the target, even if the full load has been done
with another tool.

Exercises 361

Exercises
For assistance in completing the following exercises, refer to the User Guides here:

docs.aws.amazon.com/SchemaConversionTool/latest/userguide/
CHAP_Welcome.html

docs.aws.amazon.com/dms/latest/userguide/Welcome.html

E X E R C I S E 1 2 . 1

Create a MariaDB RDS

In this exercise, you will create a simple MariaDB engine RDS to be your source database
for migration.

1. Open the Amazon RDS service page in the AWS Console.

2. Click Create Database.

3. For the engine options, choose MariaDB or another engine you would like to convert to
PostgreSQL.

4. Perform a standard setup with no public access, for test purposes only.

5. Choose a VPC that you can set up as a public EC2 instance to install the SCT later.

E X E R C I S E 1 2 . 2

Create an Aurora PostgreSQL Target Database

In this exercise, you will create a simple Aurora PostgreSQL database to be your target
database for migration.

1. In the AWS console, open the Amazon RDS service page.

2. Click Create Database.

3. For the Engine option, choose Amazon Aurora.

4. For the edition, choose Amazon Aurora with PostgreSQL compatibility.

5. For the capacity type, choose Provisioned.

6. For the version, choose Aurora PostgreSQL (compatible with PostgreSQL 12.7).

7. Set up a test instance with basic settings; use the same VPC as the previous step.

http://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_Welcome.html
http://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_Welcome.html
http://docs.aws.amazon.com/dms/latest/userguide/Welcome.html

362 Chapter 12 ■ Migrating Your Data to AWS

E X E R C I S E 1 2 . 3

Create an EC2 Bastion Host to Install the AWS SCT

In this exercise, you will create an EC2 Windows instance to install and use the AWS SCT
for schema conversion.

1. In the AWS console, open the Amazon EC2 service page.

2. Click Launch Instances.

3. Choose an Amazon Machine Image (AMI) and select Microsoft Windows Server
2019 Base.

4. Choose t3.medium as the instance type.

5. Configure the Instance Details options by selecting Auto- assign Public IP: (Enable).

6. Set up security to allow you to connect to RDP and launch the instance in the same VPC
from your RDS instances.

7. Update the RDS’s security groups to allow your EC2 security group to access the data-
base port.

8. Go to the AWS SCT installation page at docs.aws.amazon.com/SchemaConver-
sion Tool/latest/userguide/CHAP_Installing.html.

E X E R C I S E 1 2 . 4

Set Up JDBC Drivers and Schema in EC2

In this exercise, you will download JDBC drivers and create a database/schema in a
MariaDB instance.

1. On your EC2 instance machine, download the JDBC drivers and install them— in this
case, for MariaDB and PostgreSQL.

2. Download a SQL editor of your preference in the remote instance. (You can use www
.sql- workbench.eu/downloads.html.)

3. Using SQL Workbench, create a sample schema in the MariaDB database as follows:

 CREATE DATABASE db1;
 use db1;
 CREATE TABLE teste_tbl(
 student_id INT NOT NULL AUTO_INCREMENT,
 student_name VARCHAR(120) NOT NULL,
 entry_date DATE,

http://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_Installing.html
http://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_Installing.html
http://www.sql-workbench.eu/downloads.html
http://www.sql-workbench.eu/downloads.html

Exercises 363

 PRIMARY KEY (student_id));
 INSERT INTO teste_tbl (student_name, entry_date) VALUES ("Cristiano Ronaldo","
2022- 01- 12");
 INSERT INTO teste_tbl (student_name, entry_date) VALUES ("Maria Hernandes","
2022- 01- 13");
 INSERT INTO teste_tbl (student_name, entry_date) VALUES ("Neymar Junior","
2022- 01- 14");
 Commit;

E X E R C I S E 1 2 . 5

Convert the Schema

In this exercise, you will use the AWS SCT application to convert the schema from MariaDB
to PostgreSQL.

1. Within the SCT application, in your EC2 instance, make a source connection to your
MariaDB database and a target to your Aurora PostgreSQL.

2. Right- click the sample schema db1 you created, and click Convert Schema.

3. Confirm to continue with the migration.

You should see in the right window the objects to be created in Aurora PostgreSQL.

4. Click any table inside the tables on the Aurora PostgreSQL connection.

This will open two sections in the center, one with the source DDL from MariaDB and
another with the target DDL on the PostgreSQL database.

5. The table is not created in PostgreSQL yet; you need to right- click the PostgreSQL
schema and click Apply To Database.

6. Confirm that it created the table and constraint.

E X E R C I S E 1 2 . 6

Migrate the Data

In this exercise, you will use AWS DMS to migrate the data you created.

1. Go to the AWS DMS console.

2. Create a replication instance in the same VPC.

3. Create a source endpoint that points to MariaDB.
(continues)

364 Chapter 12 ■ Migrating Your Data to AWS

E X E R C I S E 1 2 . 6 (c o n t i n u e d)

4. Create a target endpoint that points to Aurora PostgreSQL.

5. Test the endpoint connectivity for both.

6. Go to the Database Migration Tasks menu and create a task.

7. Choose the schema db1 you would like to migrate.

8. Choose Migrate Existing Data Only.

9. Start the task and perform the migration.

E X E R C I S E 1 2 . 7

Delete the AWS Resources

In this exercise, you will delete the resources you created to avoid extra costs.

1. In the AWS DMS Console, stop the task you created.

2. Delete the task.

3. Delete the source and target endpoints created.

4. In the EC2 Console, terminate your instance.

5. In the RDS Console, delete both the MariaDB instance and the Aurora PostgreSQL
cluster.

Review Questions 365

Review Questions
1. A customer wants to migrate an Oracle on- premises database to Amazon Aurora Post-

greSQL. What would be the best option to perform this migration with minimal downtime
and minimal effort?

A. Use ora2pg to convert the schema from Oracle to Aurora PostgreSQL, then develop a
Java program that reads the data from Oracle and writes to PostgreSQL, and at the end
of the copy, perform the switchover to Aurora PostgreSQL.

B. Use the AWS SCT to convert the schemas from Oracle to PostgreSQL. Use AWS DMS to
create a task to migrate the data from Oracle to PostgreSQL with full load and contin-
uous replication enabled. After the full load of all the tables, wait for the replication lag
to be minimal, stop the application at the source, stop the migration task, and perform a
switchover to Aurora PostgreSQL.

C. Use AWS DMS to create a task to migrate the data from Oracle to PostgreSQL with the
full load and continuous replication enabled. After the full load of all the tables, wait for
the replication lag to be minimal, stop the source, stop the migration task, and perform a
switchover to Aurora PostgreSQL.

D. Use Amazon RDS to create a task to migrate the data from Oracle to PostgreSQL with
full load and continuous replication enabled. After the full load of all the tables, wait for
the replication lag to be minimal, stop the source, stop the migration task, and perform a
failover to Aurora PostgreSQL.

2. A customer has a large, multiterabyte SQL Server database to migrate to Amazon Aurora
MySQL. Their database team estimated it would take three months to migrate the data over
the current network link and would not fit the time window they have for migration. They
also need minimal downtime on this migration. What is the fastest option to accelerate the
migration while meeting minimal downtime for the migration?

A. Request an Amazon Storage Gateway. Create a project in AWS SCT, configure it to use
Storage Gateway, register an AWS DMS agent, create a local task to extract the data to
the Snowball device, and perform the load to the device. Ship Snowball back to AWS,
wait for the data to be loaded in Amazon S3, and use a DMS remote task to load the
data to the target database. CDC apply will start after loading the table to the target by
AWS DMS.

B. Perform a consistent copy of the source database, take note of the database change
number (SQL Server LSN), compress the files using popular compression tools, and send
the files to Amazon S3 using multipart upload. After the copy, load the data with AWS
SCT and synchronize the databases, informing the SQL Server LSN to start the contin-
uous replication.

C. Request an AWS Snowball edge storage- optimized device. Use the AWS SCT to extract
data on premises and move it to the device connected to your infrastructure. Ship the
edge device back to AWS. Wait for AWS to automatically load the data to Amazon S3.
Use AWS DMS to migrate the data to the target store. Finally, let AWS DMS apply the
CDC updates to the target store.

D. Create an AWS DMS task with the compression- optimized option and put the source
SQL Server in read- only mode. Set up all tables to be migrated in parallel at once using
multiple AWS DMS tasks, and at the finish, start the failover to Amazon RDS.

366 Chapter 12 ■ Migrating Your Data to AWS

3. You are assigned to design a solution for a customer that already has some applications in
AWS in a VPC connected to their on- premises environment. The customer has an Oracle
database on premises and wants to have a copy of some table data in a cheaper storage solu-
tion to create ad hoc analytics reports with a delay maximum of five minutes since the data is
updated in the database. What would be the easiest way to set up a solution in AWS?

A. Create a Kubernetes application that connects to Oracle and tracks changes from the
database, launches an Amazon EKS, and deploys your application. Add a routine to save
the extracted changes to Amazon S3 in a different path for each table aggregating data
in a maximum window of five minutes.

B. Create an AWS DMS replication instance, create an endpoint for source Oracle database
on premises, create a target endpoint to Amazon S3, and create a task for continuous
replication to capture changes on the database. Set up a task for continuous replication
including the tables needed to be replicated. Create a table definition on AWS Glue and
use Amazon Athena to query the data and generate the reports.

C. Use Oracle Data Pump, including the tables to replicated, and configure it to generate
files on premises; then transfer the data to AWS using AWS DataSync every five minutes.

D. Create an AWS SCT replication instance, create an endpoint for source Oracle data-
base on premises, create a target endpoint to Amazon S3, create a task for continuous
replication to capture changes on the database. Set up a task for continuous replication
including the tables needed to be replicated. Create a table definition on AWS Glue and
use Amazon EMR to query the data to generate the reports.

4. Your company has a Microsoft SQL Server database server and is considering migrating
to an Amazon RDS for the MySQL database. How can you estimate the impact of such a
migration in terms of database objects?

A. You can install AWS SCT on a machine that has access to your MS SQL Server data-
base server and also to a possible target Amazon RDS MySQL test instance. Gen-
erate a Schema Conversion Assessment Report to check what objects will need help
on the migration, what type of changes will be needed, and what will be converted
automatically.

B. You will need to perform a manual migration using a SQL Server tool to extract the
table and other object definitions as CSVs and then convert them to a MySQL syntax.

C. You can install AWS DMS in your laptop, load a table definition file to it, and run
a Schema Conversion Assessment Report to check what objects will need help on
the migration, what type of change will be needed, and what will be converted
automatically.

D. You can install AWS SQL Migration Studio and run a Schema Conversion Assessment
Report that will clarify all the manual changes needed to perform the migration.

Review Questions 367

5. The company you are working for requires a migration path for a MySQL database from
their on- premises environment to an AWS managed service. They require that the migration
have minimal downtime. What are the steps to perform the data migration?

A. Set up an Amazon RDS for MySQL database instance. Create an Amazon EC2 Linux
temporary instance. In the EC2, generate a mysqldump extraction connecting to your
source database. After the extraction is completed, load the data to your Amazon RDS
for MySQL and redirect the application traffic to your RDS instance.

B. Set up an Amazon RDS for a MySQL database instance. Configure an AWS Lambda
function to generate a mysqldump extraction connecting to your source database. After
the extraction is completed, load the data to your RDS for MySQL database and redi-
rect the application traffic to your RDS instance.

C. Set up an Amazon RDS for MySQL database instance. Create an AWS DMS replica-
tion instance and create a source endpoint and a target endpoint using your source and
target database connection attributes. Create one or more replication tasks, grouping
tables that are related to each other and using full load and continuous replication.
After the full load is completed and continuous replication is on, determine the time to
stop writing to your source database and redirect the application traffic to your RDS
instance.

D. Set up an Amazon RDS for MySQL database instance. Configure an AWS Glue contin-
uous replication. Create one or more replication jobs, grouping tables that are related
to each other and using full load and continuous replication. After the full load is com-
pleted and continuous replication is on, determine the time to stop writing to your
source database and redirect the application traffic to your RDS instance.

6. What service can you use together with AWS SCT and AWS DMS to move large volumes of
data when you don’t have enough network throughput bandwidth to move the data in a rea-
sonable time window?

A. Amazon EBS Attachable device is a physical device that can be used to send large vol-
umes of data to AWS.

B. Use the AWS Snow family of devices. AWS Snowcone and AWS Snowball are physical
devices that can be used to send large volumes of data to AWS.

C. You can buy any attachable storage device, save your data, and send to AWS with
instructions to upload the data to your AWS account using Amazon S3 Upload Manager.

D. AWS Storage Gateway can be used to store and upload data to AWS asynchronously.

7. What service can you use to optimize your network bandwidth using compression when
moving data from on- premises to AWS?

A. AWS Data Transfer Optimized.

B. AWS DataSync.

C. The only way is to use a third- party software to optimize bandwidth.

D. Amazon S3 multipart upload.

368 Chapter 12 ■ Migrating Your Data to AWS

8. Which of the following AWS services can help you to perform a heterogeneous database
migration from on- premises to AWS? (Choose two.)

A. AWS SCT

B. AWS Step Functions

C. Amazon EKS

D. AWS DMS

E. AWS DTS

9. Which component is responsible for keeping track of continuous replication using
AWS DMS?

A. The source endpoint

B. The replication instance

C. The target endpoint

D. The replication manager

10. How do you migrate a small MySQL database from on- premises to Amazon
Aurora MySQL?

A. Use Amazon EFS to mount a filesystem in your on- premises server, the same one you
mount on an EC2 instance. Use Percona XtraBackup to create a backup on the EFS area,
then use EC2 to upload it to Amazon S3, and finally restore the backup from S3 to your
Aurora cluster.

B. Use the copy from the MySQL option in the Amazon Aurora cluster to point to MySQL
and migrate the data.

C. Use Amazon EFS to mount a filesystem in your on- premises server, which is the same
one you mount on an EC2 instance. Use Percona XtraBackup to create a backup on the
EFS area, and restore the backup from EFS to your Aurora cluster.

D. Use Amazon EBS to mount a filesystem in your on- premises server, which is the same
one you mount on an EC2 instance. Use Percona XtraBackup to create a backup on the
EFS area, use EC2 to move it to Amazon S3, and then restore the backup to your Aurora
cluster.

Disaster Recovery

THE AWS CERTIFIED DATABASE - SPECIALTY
EXAM OBJECTIVES COVERED IN THIS
CHAPTER MAY INCLUDE, BUT ARE NOT
LIMITED TO, THE FOLLOWING:

 ✓ Domain 1: Workload- Specific Database Design

 ■ 1.1 Select appropriate database services for specific types of

data and workloads.

 ■ 1.2 Determine strategies for disaster recovery and high

availability.

 ■ 1.3 Design database solutions for performance, compliance,

and scalability.

 ✓ Domain 3: Management and Operations

 ■ 3.2 Determine backup and restore strategies.

 ■ 3.3 Manage the operational environment of a database

solution.

Chapter

13

Building resilient workloads is critical to keep the business up
and running, to avoid losing credibility, and, in several situa-
tions, to be compliant with regulations.

Databases are an important area of infrastructure resilience due to the volume, integrity,
and technologies available to provide the required resilience.

Understanding and Planning Disaster
Recovery Requirements
To build resilient workloads, it is critical to understand the impact of each specific service if
it becomes unavailable for the business line.

Different areas inside the company might have different acceptable downtimes if
something goes wrong with its provisioned hardware, software, or network infrastructure.
All of those requirements and acceptable downtimes must be identified for the applications
used by each business area to better design the business continuity plan.

The next step is evaluating the appropriate architecture for disaster recovery. Some busi-
nesses might require a strategy replicating the applications and respective databases across
different availability zones and inside the same region. For other businesses, replicating to
another region will better support their operations.

Defining the requirements and disaster recovery strategies might seem to be at a very high
level, but they’re critical for the business continuity plan. And they have an important impact
on cost, for sure, and also on implementing a strategy that will be most appropriate to
support their operations and business. Choosing them inappropriately may lead to making it
impossible to implement the disaster recovery strategy.

Developing a disaster recovery plan in the cloud brings unprecedented possibilities, which
this chapter discusses in detail.

Challenges in Disaster Recovery 371

Recovery Point Objective and Recovery
Time Objective
Let’s review some important definitions: RPO and RTO.

 ■ Recovery point objective (RPO) is the maximum acceptable period of information loss
in a failure situation. How much information may be lost in a failure situation from
the database perspective? Is it acceptable to lose the information generated in the last
five minutes, or must all the committed information inside the database be available?

 ■ Recovery time objective (RTO) is the maximum acceptable time between the failure and
the service time restoration. In a few words, it’s the maximum acceptable downtime.
From the database perspective, what’s the maximum acceptable time for your database
to be unavailable in a service failure situation?

After identifying the business areas and respective applications that must be addressed in
the business continuity plan, the next step is understanding the RPO and RTO required by
each application. Figure 13.1 shows how to measure and position the RPO and RTO in a
disaster event.

Challenges in Disaster Recovery
Defining the business areas and related applications that require a disaster recovery strategy
is a process that requires integration from the technical IT team and business areas, and in
general it takes a long time to complete.

Once the applications, as well as their respective RPOs and RTOs, are identified, you
should identify the appropriate method to make your environment resilient. The upcoming
section “Database Replication Methods: Multi-AZ and Cross- Region Replication” discusses
the methods available for databases deployed in the AWS cloud.

F IGURE 13 .1 Measuring and positioning the RPO and RTO in a disaster event

372 Chapter 13 ■ Disaster Recovery

The chosen method must also consider the cost perspective (see Table 13.1).

Choose the appropriate method according to the business requirements; otherwise, the
replicated environment might not support your actual needs or might even make the strategy
impossible to implement.

The systems must be prepared if components go down, as hardware and software are sub-
ject to failure. Even human errors and malicious and insider threats may occur beyond site
outages.

An on- premises disaster recovery strategy requires a high up- front investment. As the
volume of data grows, we face even higher hardware and operational costs. It’s quite com-
plex to test all the disaster recovery scenarios due to their complexity and dependencies.

In the cloud, there are no up- front infrastructure requirements. You can scale and update
your environment if required and perform tests more frequently. It’s also easier to orches-
trate, automate, and test your strategy.

TABLE 13 .1 Comparing the costs considering the different RPO and RTO requirements

Strategy
& criteria

Backup &
restore in
the same
region

Backup &
restore in
another
region

Multi- AZ
strategy
self-
managed

Multi- AZ
strategy
managed
service

Multiregion
strategy
self- managed

Multiregion
strategy
managed
service

Cost $ $$ $$ $$$ $$$$ $$$$$

RPO Usually
minutes

Usually
minutes

Usually
minutes

Usually 0* Usually min-
utes depend-
ing on the
volume data
changes

Usually min-
utes depend-
ing on the
volume data
changes

RTO Might
take hours
depending
on the data-
base size

Might
take hours
depending
on the data-
base size

Usually
minutes

Usually
1- 2 minutes

Usually
minutes

Usually
less than
5 minutes

AWS Well Architected Framework - Disaster Recovery of Workloads on AWS: Recovery in the Cloud

*In Multi- AZ, if the primary instance fails, RDS will fail over to the secondary with no data loss. There are rare sce-
narios where re- creating from backup would be needed; for example, if corruption occurs on the primary’s volume,
it may replicate in the secondary’s volume. But in the most common scenarios, the RPO is 0. Amazon Aurora auto-
matically maintains six copies hosted in three AZs; if some corruption occurs, the corrupted protection group will
automatically recover from one of the other five protection groups. Almost no scenarios require the restoration
from a backup for recovering from a disaster in Amazon Aurora. The RPO is 0.

Managing Disaster Recovery Strategies 373

Managing Disaster Recovery Strategies
The AWS cloud enables you to deploy disaster recovery using different strategies, such as a
backup and recovery approach, a Multi-AZ, or a cross- region strategy.

 ■ Backup and recovery strategy: A backup and recovery strategy is a cost- effective
alternative for less aggressive RTO and RPO metrics. It works for recovering from
disaster scenarios in the same region and when replicating to a remote region is
required.

 ■ Multi- AZ strategy: Each availability zone in an AWS region consists of one or more data
centers located in separate and distinct geographic locations, close to each other to mini-
mize network latency and distant from each other to survive events such as earthquakes,
floods, hurricanes, and power outages. This distribution reduces the risk of a single
event impacting more than one AZ.

 ■ Multiregion strategy: The AWS regions are distributed across the globe, and there are
multiple resources to enable multiregion replication. This strategy enables an even
higher protection level compared to the Multi-AZ, but it’s important to keep in mind the
RPO and RTO when replicating the environment over longer distances.

Backup and Recovery Strategy
For self- managed database resources, you can adopt the backup and restore strategy.
Remember that you keep all the scripts and maintenance tools to manage the backup
operation.

All managed services allow you to configure the backup retention from 1 to 35 days sup-
porting point- in- time recovery, and you can use the automatic backup to recover from a
disaster scenario.

Amazon RDS also allows taking snapshots for longer retention than the automatic
backup definition. Remember that manual snapshots don’t allow point- in- time recovery.

Amazon RDS allows replicating the automatic backups and transaction logs to another
AWS region according to the business requirements. When enabled, it will replicate all snap-
shots and transaction logs as shortly as they are ready in the current DB instance.

You can automate and centralize data protection across AWS services using AWS Backup.
You can create a backup plan, define frequency and retention, and copy it to another region.

Database Replication Methods: Multi- AZ and
Cross- Region Replication
According to the database implemented in your environment, you can choose different repli-
cation methods. Let’s explore how to deploy replication when you have a database deployed
on EC2, Amazon RDS, Amazon Aurora, Amazon DocumentDB, or Amazon Neptune.

374 Chapter 13 ■ Disaster Recovery

Keep in mind that on every database engine, you can always restore the database from
your daily backup, if the RTO allows the downtime until the new database instance becomes
available from the backup restore process.

Databases Deployed on EC2
Every database enables its own log shipping native replication: Oracle, PostgreSQL, MySQL,
Db2, Microsoft SQL Server, and others. You can use native log shipping to replicate the
database engine to another EC2 instance deployed in a secondary availability zone or even a
secondary region. Table 13.2 describes the database engines and their respective log shipping
replication methods.

Figure 13.2 demonstrates the replication at a high level using the Multi-AZ strategy.

Figure 13.3 demonstrates the replication at a high level using the multiregion strategy.

TABLE 13 .2 Database Engine Replication Methods

Database Engine Log Shipping Replication

Oracle Redo logs, Data Guard

PostgreSQL Transferring WAL records

MySQL Binlog

Microsoft SQL Server Always On availability group

Db2 High availability through log shipping

F IGURE 13 .2 Replication using native log shipping in Multi- AZ deployment

Managing Disaster Recovery Strategies 375

You can see that both strategies are implemented with the same method. The only
difference is placing the database in a second availability zone or a second AWS region.

Whenever you decide on cross- region replication, keep in mind that the replication lag
will be higher than replicating in a Multi-AZ strategy according to the log rate generated at
the source database, and there are data transfer costs replicating data between regions.

All the replication configuration and automation for databases hosted on EC2 must be
maintained and monitored by your operational team and must be configured according to
the respective manual’s provider and recommendations.

Amazon RDS
Amazon RDS allows you to choose backup and restore, a Multi-AZ, and/or a multiregion
strategy.

Multi- AZ Strategy on Amazon RDS
Amazon RDS provides high availability and failover support for DB instances using Multi-
AZ deployments, as described in Chapter 4, “Transaction Databases on AWS.” Figure 13.4
represents the RDS Multi-AZ deployment.

Multi- AZ is a deployment method that writes synchronously to the secondary instance,
so every committed piece of data on the primary instance is replicated to the secondary in-
stance. It takes from 60 to 120 seconds to fail over in failure situations.

For disaster recovery in the same region, you can also use a read replica created in
another availability zone. The read replica is based on asynchronous replication, which
means it is subject to delay. However, it has the advantage of being open for read- only oper-
ation and can be promoted in the event of primary failure.

F IGURE 13 .3 Replication using native log shipping in multiregion deployment

376 Chapter 13 ■ Disaster Recovery

Figure 13.5 represents the Amazon RDS read replica.

F IGURE 13 .4 Amazon RDS Multi- AZ

F IGURE 13 .5 Amazon RDS read replica asynchronous replication

Managing Disaster Recovery Strategies 377

RDS will automatically fail over when Multi-AZ is enabled in the case of failure in the
following situations:

 ■ The operating system is being patched.

 ■ The primary host instance is unhealthy.

 ■ The primary host is unreachable due to a network connection failure.

 ■ The RDS instance was modified by the customer.

 ■ The primary instance is busy and unresponsive.

 ■ The storage volume experienced a failure.

 ■ The user requested the failover.

Multiregion Strategy on Amazon RDS
In a multiregion strategy, according to your RTO and RPO, you can choose between repli-
cating automated backups to another AWS region or enabling cross- region read replicas.

Amazon RDS allows you to configure the RDS instances to replicate snapshots and trans-
action logs to a destination AWS region of your choice. Once this option is chosen, RDS
starts a cross- region copy of all snapshots and transaction logs as soon as they are ready on
the database instance.

You will be charged for the data transfer and the storage costs in the destination region.
The backup replication is supported by the engine’s Oracle Database 12.1.0.2.v10 and

higher, PostgreSQL 9.6 and higher, and Microsoft SQL Server version 2012 and higher.
Backup replication isn’t supported for encrypted SQL Server DB instances.
To fail over, you should restore the backup that was replicated in the remote region.

Always validate the available source and destination regions available in
the AWS documentation.

Amazon RDS MariaDB, MySQL, Oracle, and PostgreSQL enable creating read replicas
in different AWS regions from the source DB instance. Cross- region read replicas aren’t sup-
ported for RDS SQL Server. Figure 13.6 represents a cross- region read replica deployment.

The cross-region read replicas for Amazon RDS are based on asynchronous replication,
and the data in transit may be lost if the replication fails. The RPO will depend on the repli-
cation lag.

To fail over, you should promote the read replica in the remote region and configure the
application to connect to the newly promoted instance.

The read replica promotion in the secondary region takes less than five minutes to
accomplish.

378 Chapter 13 ■ Disaster Recovery

Amazon Aurora
Chapter 4 discussed the Amazon Aurora architecture. Because of the cloud- native
architecture, we can explore it to build a resilient database environment. Let’s better under-
stand the Multi-AZ and multiregion alternatives to high availability.

High Availability Strategy for Amazon Aurora
The Amazon Aurora storage architecture is distributed across three availability zones, with
two protection groups (PGs) in each availability zone (see Figure 13.7). In total, there are six
copies of each PG.

Whenever you deploy a new Amazon Aurora read replica instance, it will be launched
and share the same storage layer (see Figure 13.8).

Amazon Aurora automatically fails over to a read replica if the primary DB instance fails.
You can also choose to fail over the primary instance; as described in Chapter 4, you can
define the failover priority in the read replica configuration. Values vary from 0 for the high-
est priority to 15 for the last priority. If no failover priority is defined, the Amazon Aurora
cluster will choose the largest read replica instance to become the new writer. If the read rep-
lica instances have the same failover priority and the same instance size, Amazon Aurora will
arbitrarily pick up one read replica.

Multiregion Strategy on Amazon Aurora
Amazon Aurora enables two alternatives for cross- region replication and also enhances data
locality in remote regions: cross- region read replicas and Aurora global databases.

F IGURE 13 .6 Cross- region read replica deployment

Managing Disaster Recovery Strategies 379

F IGURE 13 .7 Amazon Aurora storage architecture

F IGURE 13 .8 Amazon Aurora read replica instances and the storage layer

380 Chapter 13 ■ Disaster Recovery

Cross- Region Read Replicas
Cross- region read replicas are available only for the MySQL engine, and they replicate
by using binary logs. You can create up to five read replica clusters from your Aurora DB
cluster.

Using cross- region read replicas, you can promote readers to a master for faster recovery
in the event of a disaster (low RTO/low RPO solution).

The writer in the replica cluster applies logical changes. Depending on the volume of data
generated at the source cluster, the remote read replica cluster is subject to replication lag.

Aurora Global Database
An Aurora global database is a cross- region replication available on Amazon Aurora
clusters.

An Aurora global database depends on the cluster storage volume for replication and not
on the database engine. You can also create up to five read replica clusters from the source.

An Aurora global database has the following features:

 ■ High throughput rates: You will get rates up to 200,000 writes/sec.

 ■ Low replica lag: This is less than one second. In the case of unplanned failover, the RPO
is less than one second.

 ■ Fast recovery: This is less than one minute of downtime after a region’s unavailability.

 ■ Write forwarding: MySQL 5.7 supports write forwarding. Using this feature, Amazon
Aurora forwards SQL statements that perform write operations received from the
secondary region to the primary cluster. Then the primary cluster will propagate the
write operations to the secondary clusters in remote regions.

 ■ Managed planned failover: This feature is used in controlled environments such as
disaster recovery testing scenarios, operational maintenance, and other planned oper-
ational procedures. It allows you to relocate the primary DB cluster of your Aurora to
one of the secondary regions without changing the replication topology. This feature
synchronizes secondary DB clusters with the primary before making any other changes.
The RPO is 0 (no data loss).

 ■ Recovery from an unplanned outage: On rare occasions, when experiencing an unex-
pected outage in its primary AWS region, you can detach your chosen secondary DB
cluster from the Aurora Global database. The replication will be stopped, and this
secondary DB cluster will be promoted to the primary.

Figure 13.9 represents an Amazon Aurora global database deployment with three
secondary regions.

Managing Disaster Recovery Strategies 381

Amazon DocumentDB
Using Amazon DocumentDB, you can deploy a Multi-AZ or multiregion strategy according
to your business requirements. Amazon DocumentDB consists of a cluster volume for
storage service, one mandatory writer instance, and up to 15 read replicas in the same
region, as described in Chapter 6, “Document Databases in the Cloud.” You can enable
global clusters and deploy up to five remote regions for global requirements.

Amazon DocumentDB Multi- AZ Strategy
The Amazon DocumentDB cluster requires one writer instance and allows scaling up to 15
replica instances across the three availability zones, sharing the same storage layer. Once a
failure occurs on the writer instance, any read replica instance may be promoted to a writer
instance. You can configure the failover tier number on the read replicas to define a priority
order for a read replica instance to be promoted. The lowest numbers have higher priority
when choosing a promotion.

F IGURE 13 .9 Aurora global database with three secondary regions

382 Chapter 13 ■ Disaster Recovery

To increase the availability level of your DocumentDB cluster, you can use the read rep-
licas shown in Table 13.3.

Amazon DocumentDB Multiregion Strategy
The Amazon DocumentDB global cluster consists of one primary region and up to five read-
only secondary regions. Every write operation issued on the primary region is replicated to
the secondary regions using a dedicated infrastructure. This topology typically is subject to
latency of less than a second.

In the event of a region- wide outage, you can promote one of the secondary clusters to a
primary within minutes, with a typical RTO of less than a minute. The RPO is typically mea-
sured in seconds, but it depends on the lag across the network at the failure time.

To recover from an unplanned outage, make sure that you detach all the secondary regions
and then promote one of those secondary regions to the new primary AWS region. With the new
primary region, update the endpoint used by your applications to the newly promoted cluster.

Amazon DynamoDB
Amazon DynamoDB is a cloud- native NoSQL database, as described in Chapter 5, “Low
Latency Response Time for Your Apps and APIs.” It is a database engine that automati-
cally replicates across three availability zones and allows cross- region replication using
global tables.

Multi- AZ Strategy on Amazon DynamoDB
Amazon DynamoDB stores all data on solid- state disks (SSDs) and is automatically repli-
cated across multiple availability zones in an AWS region, which offers data durability and
integrated availability.

Because of the serverless nature, no action is required to be taken if one of the availability
zones is experiencing unavailability issues. Amazon DynamoDB will natively redirect the
reads and writes to the available storage nodes.

Multiregion Strategy on Amazon DynamoDB
Amazon DynamoDB global tables provide a fully managed solution for deploying a multi-
region, multi- active database. DynamoDB global tables allow you to specify the AWS region
where you require the table to be available.

TABLE 13 .3 Availability Goal vs. Number of Instances

Instances Environment Availability Goal

1 dev/test 99%

2 production 99.9%

3 production 99.99%

Managing Disaster Recovery Strategies 383

When the data inside an Amazon DynamoDB global table is updated, all changes are rep-
licated to the remote AWS regions, and typically, replication takes only a few seconds.

Allowing writing in multiple regions is subject to conflict. In conflict situations for
Amazon DynamoDB global tables, the last writer wins.

In the same way as working in a single region, because of the serverless nature, there’s no
action required to be taken if one of the availability zones experiences unavailability issues.

Amazon Neptune
Amazon Neptune is a cloud- native database based on a shared storage purpose- built engine
as described in Chapter 9, “Discover Relationships Between Objects or People Faster Than a
Traditional RDBMS.” It allows you to deploy a Multi-AZ and multiregion strategy.

Multi- AZ Amazon Neptune Strategy
An Amazon Neptune cluster must have one writer node and might have up to 15 read rep-
licas. The read replicas access the storage layer, natively replicated across three availability
zones. Figure 13.10 represents the Amazon Neptune Cluster architecture.

F IGURE 13 .10 Amazon Neptune Cluster architecture

384 Chapter 13 ■ Disaster Recovery

In the case of the failure of the primary node, Amazon Neptune promotes one of the read
replicas to primary. You can also choose to fail over manually to a read- replica instance.

Multiregion Amazon Neptune Strategy
An Amazon Neptune global database replicates to multiple regions for low- latency global
reads and fast recovery in disaster scenarios. With a global database, you can deploy up to
five secondary regions, with latencies commonly less than one second.

You can perform write operations only in the writer node of the primary region, and the
instances in the remote regions will be available only for read operations.

Amazon Neptune global database allows the following failover methods:

 ■ Choose the manual unplanned detach- and- promote steps. This promotes a secondary
region to recover from an outage in the primary region. Detach one of the secondary
clusters; the secondary cluster will become stand- alone. Then promote it to turn it into a
new primary master.

 ■ Choose the managed planned failover for planned operational activities. You can relo-
cate the primary cluster to one of the secondary regions with no data loss.

Summary
A disaster recovery plan and a business continuity plan are essential to support the business
operation. In many industry sectors, it’s also necessary to be compliant with regulation
requirements.

Consider all aspects, including RPO, RTO, implementation and operational costs, and the
orchestration. In the end, choose the appropriate method to best support your business.

Disaster recovery in the AWS cloud enables you to choose and implement the method
according to your requirements, with the flexibility to choose the right service for each envi-
ronment. Cloud- native databases enable flexible methods for replicating data, managing
operations, and orchestrating them.

Exam Essentials
Understand the RPO and RTO required for support according to your business operation
needs. Database availability is essential to every business operation, and the different
applications across a company have other availability and recoverability requirements. It
is important to evaluate that very restrictive requirements will cost much more, and very
loose requirements may not be able to attend to your business operations.

Exam Essentials 385

The first step is collecting precisely the time to be available again (RTO) and how much of
the data you can afford to lose (RPO) in a failure scenario. You can choose the most appro-
priate database deployment method with this essential data.

Understand how to protect your database in RDS against disasters. Determine the rep-
lication strategy (Multi-AZ or multiregion) and apply the replication method to enable it
according to the database engine. Understand if replication lag is acceptable and its impact
in a recovery scenario.

Understand the different replication methods and how long each takes to fail over. It
is essential to understand the differences between replicating self- managed solutions and
managed services and the effort required for implementing and maintaining each replica-
tion method. The different replication methods in managed services will also allow faster or
slower failover operations. For example, an Amazon Aurora global database allows faster
failover and lower data loss compared to Amazon RDS cross- region read replicas.

Understand how to manage the different failover methods according to the database. It is
essential to clearly know how to handle a failure situation and which methods are available
to fail over to another availability zone or even a secondary region. For example, when an
Amazon RDS cross- region read replica is promoted in a remote region, the newly promoted
RDS instance becomes a stand- alone database instance. An Amazon Aurora global database
allows you to promote the secondary region and also allows you to manage the failover
without breaking the replication topology.

386 Chapter 13 ■ Disaster Recovery

Review Questions

1. A startup company uses Amazon Aurora to host their data and is planning to expand their
market to other continents. The customer has a huge concern about latency reads and repli-
cation lag on the remote continents, so they plan to replicate their database to improve the
data locality, using the remote region for disaster recovery purposes. What is the best solution
to accommodate the customer requirements?

A. Enable a cross- region read replica to improve the locality of the data. In disaster situa-
tions, they can promote the remote region to be used as a primary database.

B. Enable backup replication to another AWS region.

C. Enable the Aurora global database, with replicas in the remote region used to improve
data locality. In disaster recovery situations, they can fail over to the secondary region.

D. Configure the native binlog replication to replicate to a remote region.

2. Your customer has RDS for Oracle and has asked you to support him in choosing a disaster
recovery alternative to host their environment if something goes wrong in the current region
where they operate. They have a solid directive for avoiding high operational costs, the RTO
is 10 hours, and the technical team already tested the restore operation, which was completed
in less than five hours. Which is the best solution to host the environment?

A. Enable cross- region read replicas at the RDS for Oracle, and promote the remote read
replica in a disaster situation.

B. Enable automated backup replication to another region, and restore the database in the
remote region in a disaster recovery situation of the primary region.

C. Establish DMS logical replication in the remote region.

D. Set up native redo Data Guard replication in the remote region.

3. Company ABC hosts their data on Amazon Aurora. For regulatory reasons, they require rep-
lication of the database to a secondary region, and periodically they must test their disaster
recovery strategy. However, they are really concerned about losing the database topology
during failover tests. How can you support them?

A. Enable an Amazon Aurora logical read replica, and promote the read replica just during
the failover test.

B. Enable an Amazon Aurora global database during the disaster recovery test, and use the
feature Managed Planned Failover.

C. Enable DMS replication to the secondary region, and stop the replication during the
disaster recovery test.

D. Enable native binlog replication to a primary Aurora DB cluster in the secondary region,
and stop the replication during the disaster recovery test.

4. You received the request to build and deploy a resilient database within an AWS region, repli-
cating the database between two availability zones. The acceptable downtime for the failover
process is two minutes, and it isn’t acceptable to lose committed transactions (RPO=0).

Review Questions 387

Which alternatives are able to meet these requirements with automated managed services?
(Choose two.)

A. Amazon Aurora PostgreSQL with at least one read replica

B. Amazon RDS PostgreSQL with Multi-AZ enabled

C. Deploying PostgreSQL on EC2 with native replication enabled

D. Amazon Aurora global databases

5. You’re developing an app that requires a relational database engine, and the app needs to
read and write data on the same database in a secondary region. What database solution will
better fulfill the application requirements?

A. Amazon RDS cross- region read replica

B. Amazon DynamoDB global tables

C. Amazon Aurora global database with write forwarding enabled

D. Amazon DocumentDB global cluster

6. Your company has asked you to create a database disaster recovery strategy to support the
relational database replication and also to periodically test running the entire database and
application in a secondary region without destroying the database replication topology and
without losing any data. Which database solution will better meet those requirements?

A. Amazon DynamoDB global tables

B. Amazon Aurora global databases with managed failover

C. Amazon RDS cross- region read replicas

D. Amazon Neptune cluster using three availability zones

7. You are in charge of implementing a database deployment to allow replicating the relational
database to a remote region, to allow read operations on the remote region, and in a disaster
event to be able to promote the remote region to become the new primary database. Which
deployment enables this solution with the lowest cost?

A. Launch Amazon DynamoDB global tables, allowing read and write operations on both
regions.

B. Launch Amazon Aurora global databases with write forwarding enabled, and operate
with two active regions.

C. Launch Amazon RDS cross- region read replicas, and promote them in a failure situation.

D. Launch Amazon DocumentDB and enable global cluster replication.

8. You’ve received the requirement to architect a highly available database environment across
availability zones for supporting JSON documents, and each document size may reach up
to 16 MB. For a production environment with 99.99% availability, it must be resilient to be
available if an entire availability zone fails. Which architecture is the most appropriate?

A. Deploying an Amazon DocumentDB global cluster and enabling read operations on the
remote region.

B. Deploying an Amazon DocumentDB cluster within a single region, with one primary
node and two read replicas in different availability zones.

388 Chapter 13 ■ Disaster Recovery

C. Deploying Amazon DynamoDB will natively distribute the data across three avail-
ability zones.

D. Deploying Amazon Aurora will natively distribute the data across three avail-
ability zones.

9. The company you work for is expanding operations onto new continents. You received the
task to enable the current DocumentDB cluster data in another region, for better data locality
and to promote this data in a disaster situation. How can you meet the business requirements
with minimal application impact?

A. Deploy a new Amazon DocumentDB cluster in the secondary region, establishing repli-
cation using DMS.

B. Convert the Amazon DocumentDB to DynamoDB, and enable DynamoDB global tables.

C. Deploying Amazon DynamoDB will natively distribute the data across three avail-
ability zones.

D. Deploy an Amazon DocumentDB global cluster, enabling reading at the remote regions.
If the primary region experiences a failure, you’ll be able to promote the secondary
region to be the primary.

10. You are the solution architect supporting a new app development. The app data must be
available in three different regions, and the data must be available for read and write opera-
tions in the three regions simultaneously. The app has a defined key- value pattern to retrieve
the information. Which database solution will be able to support the app requirements?

A. An Amazon Aurora global database with write forwarding enabled.

B. Amazon DynamoDB.

C. Amazon DynamoDB global tables.

D. Amazon RDS will be less expensive.

Save Time and Reduce
Errors Automating
Your Infrastructure

THE AWS CERTIFIED DATABASE - SPECIALTY
EXAM OBJECTIVES COVERED IN THIS
CHAPTER MAY INCLUDE, BUT ARE NOT
LIMITED TO, THE FOLLOWING:

 ✓ Domain 2: Deployment and Migration

 ■ 2.1 Automate database solution deployments.

 ✓ Domain 3: Management and Operations

 ■ 3.3 Manage the operational environment of a database

solution.

 ✓ Domain 4: Monitoring and troubleshooting

 ■ 4.2 Troubleshoot and resolve common database issues.

 ✓ Domain 5: Database security

 ■ 5.1 Encrypt data at rest and in transit.

 ■ 5.2 Evaluate auditing solutions.

 ■ 5.3 Determine access control and authentication mechanisms.

 ■ 5.4 Recognize potential security vulnerabilities within database

solutions.

Chapter

14

In this chapter, you will learn how to automate your infrastruc-
ture to save time and reduce error. AWS has services that can
work together with database services to automate and build a
whole environment with a few commands.

Automation is a key process that any company must have in its daily operations. Infra-
structure as a code (IaC) is a process wherein you can write code to build resources, net-
work, instances, and a whole infrastructure for your environment. You can use IaC as a
template to help you maintain a consistent, secure, and agile development.

By using automation through IaC, you can easily reproduce your infrastructure in another
region, in another AWS account, or within the same region as a disaster recovery plan, if
everything has been deleted.

AWS CloudFormation
AWS CloudFormation is a service where you build your template and set up your AWS
resources that you want to provision. There is no coding or manual operation through AWS
Management Console; this all done via AWS APIs. AWS CloudFormation supports templates
in YAML or JSON. All the examples in this chapter are in YAML format.

The following are the main benefits of building a template for AWS CloudFormation:

 ■ Simplify infrastructure management: With AWS CloudFormation you can straightfor-
wardly create, update, or delete some/several AWS resources; moreover, you can cen-
tralize your infrastructure management.

 ■ Quickly replicate your infrastructure: You can easily create the same infrastructure
in a disaster recovery (DR) target region and align with your recovery time objective
and recovery point objective, especially during DR scenarios. AWS CloudFormation
is supported in all AWS regions. Or you can have the same infrastructure for differ-
ent purposes— for example, development, quality and assurance, and production. The
recovery time objective (RTO) is the amount of time that a business process must be
restored after a disaster to avoid unacceptable consequences associated with the disrup-
tion. The recovery point objective (RPO) is the amount of time that might pass during a
disaster before the quantity of data lost is not tolerable by the business.

 ■ Easily control and track changes to your infrastructure: Resources deployed through
AWS CloudFormation can track and modify their changes. This could be helpful for
maintaining compliance and following standards.

AWS CloudFormation 391

 ■ Increase productivity: CloudFormation enables you to destroy and re- create any infra-
structure on AWS. You can separate each template by layers, for example, network
stacks, application stacks, and so on. This will help you to manage and update your
environment.

When you use AWS CloudFormation, there are some concepts that you need to bear
in mind.

 ■ Templates: A CloudFormation template is a JSON or YAML text file. You can save
these files with a .json, .yaml, .template, or .txt extension. The maximum size of
the template body is 1 MB. The following is a YAML example:

AWSTemplateFormatVersion: 2010- 09- 09
Resources:
 MyDB:
 Type: 'AWS::RDS::DBInstance'
 Properties:
 DBInstanceClass: "db.t3.micro"
 AllocatedStorage: 20
 Engine: MySQL
 EngineVersion: 8.0.16
 MasterUsername: admin
 MasterUserPassword: secretpassword
 DeletionProtection: false
 DeleteAutomatedBackups: true

 ■ Stacks: The CloudFormation template will create one or more stacks. Through stacks
management you can create, update, and delete a group of resources defined by your
template. To create any resource, you will create a stack by submitting the template that
you created, and CloudFormation will provision all the resources for you. Stacks can be
managed through CloudFormation’s console, API, or AWS CLI.

 ■ Change sets: When you need to change a resource deployed via CloudFormation, before
making any changes to your resources, you can generate a change set, which is a sum-
mary of your planned changes. For example, if you rename an Amazon RDS database
instance, CloudFormation will create a new database and delete the old one. If you did
not back up your data, you will lose it. With change sets, you can see if your change will
cause your database to be replaced, and you can plan accordingly before you update
your stack to prevent any damage.

To use a larger template body, separate your template into multiple tem-
plates by using nested stacks.

AWS CloudTrail integrates with AWS CloudFormation, and it tracks anyone making
AWS CloudFormation API calls in your account. Enable AWS CloudTrail and store the

392 Chapter 14 ■ Save Time and Reduce Errors Automating Your Infrastructure

logs in an Amazon S3 bucket so that you can audit who made any operations with AWS
CloudFormation.

AWS CloudFormation is a free service. You are charged only for the AWS resources you
include in your stacks at current rates for each.

To create a stack in AWS CloudFormation, the template must be stored in an Amazon S3
bucket. Even if you upload a template file through the AWS Management Console, the file
will be stored in an Amazon S3 bucket. You cannot edit the template once you upload it.
Each stack must have a unique name.

When you delete a stack, every single artifact that was created by CloudFormation will be
deleted.

CloudFormation is a declarative way of outlining the provision of your AWS resources
(most AWS services are supported), and the template creates your resources in the right order
with the exact configuration that you specify. There are two ways to create your template:

 ■ Manual: By editing the template using CloudFormation Designer through the AWS
console. CloudFormation Designer is a graphical tool for creating and modifying AWS
CloudFormation templates. It allows users to create templates visually, using drag- and-
drop components, and provides a preview of the template before it is deployed.

 ■ Automated: By editing the template using any IDE of your preference that supports
YAML or JSON formats. You also can use the AWS CLI to deploy the templates.

Figure 14.1 shows the first step to create a CloudFormation stack on AWS Console.

F IGURE 14 .1 Creating a CloudFormation stack

AWS CloudFormation 393

Components
There are several components in an AWS CloudFormation template. Only Resources are
required.

 ■ AWSTemplateFormatVersion: This is the CloudFormation template version that the tem-
plate conforms to. The current version is 2010- 09- 09.

 ■ Description: This is the text that describes the template.

 ■ Resources: This includes your AWS resources declared in the template, such as
Amazon EC2 or an Amazon Relational Database Service. That’s the only section that
is required in a CloudFormation template. Resource type identifiers have this form:
AWS::aws- product- name::data- type- name.

 ■ Parameters: These are dynamic inputs that you pass when creating or updating your
template. These parameters can be referenced in the Resources and Outputs sec-
tions of the template. CloudFormation supports string, number, comma delimited list,
list<number>, System Manager parameter types, and AWS parameters. Parameters have
the following optional settings:

 ■ Description(String): An explanation that describes the parameter

 ■ Type: The data type for the parameter

 ■ AllowedPattern: The regular expression that represents the patterns to allow for
String types

 ■ AllowedValues: An array containing the list of values allowed for the parameter

 ■ ConstraintDescription(String): Text that explains what’s going on when a constraint
is violated (i.e., a better error message)

 ■ Mix/Max Length(Integer): The minimum and maximum lengths for String types

 ■ Mix/Max Value(Number): The minimum and maximum numeric values for
Number types

 ■ Default: An appropriate value for the template to use if no parameter value has
been input

 ■ NoEcho(boolean): To mask the parameter value to avoid displaying it in the console

There are two ways to pass parameters:

 ■ Statically: With AWS CLI or AWS Management Console or by using a flat file from
the local filesystem or Amazon S3

 ■ Dynamically: With AWS Secrets Manager or Amazon System Manager Param-
eter Store

 ■ Rules: Validate a parameter or a combination of parameters passed during a stack
creation or update.

394 Chapter 14 ■ Save Time and Reduce Errors Automating Your Infrastructure

 ■ Mappings: These are static variables for your template. They are useful resources
for different environments, such as development and production and different AWS
regions. The values are hard- coded within the template. They can be used by the
Fn::FindInMap intrinsic function in the Resources and Outputs sections.

 ■ Outputs: These are one or more values to return from resources’ properties created or
updated in your template. This value can be exported and used in different CloudFor-
mation templates using Fn:ImportValue.

 ■ Conditions: These manage some resources to be created. For example, if a parameter has
an input, then create an IAM policy referencing it. A condition is used to define whether
a specific set of resources will be created depending on environment— for example, if the
parameter asks for the dev or prod environment and the user set it to prod, then only
resources with the condition prod will be created.

 ■ Metadata: This provides additional information about the template.

There are others components, but they are not relevant for this book or the exam.
Regarding using parameters, you can use AllowedPattern with regular expressions

to restrict the string values that will be accepted. You can also use ConstraintDescrip-
tion, which is a string that explains a constraint when the constraint is violated. In
addition, the Description property is a string that you can use to describe the param-
eter. MaxLength/MinLength receives an integer value that determines the minimum and
maximum numbers of characters you want to allow for String types. The following template
describes Amazon RDS using MySQL as the engine:

AWSTemplateFormatVersion: 2010- 09- 09
Parameters:
DBUsername:
 Description: Username for MySQL database access
 Type: String
 MinLength: '1'
 MaxLength: '16'
 AllowedPattern: '[a- zA- Z][a- zA- Z0- 9]*'
ConstraintDescription: must begin with a letter and contain only alphanumeric
characters.
 DBPassword:
Description: Password MySQL database access
Type: String
MinLength: '8'
MaxLength: '41'
AllowedPattern: '[a- zA- Z0- 9]*'
ConstraintDescription: must contain only alphanumeric characters.
Resources:
 MyDB:
 Type: 'AWS::RDS::DBInstance'

AWS CloudFormation 395

 Properties:
 DBInstanceClass: "db.t3.micro"
AllocatedStorage: 20
Engine: MySQL
EngineVersion: 8.0.16
MasterUsername: !Ref DBUsername
MasterUserPassword: !Ref DBPassword
DeletionProtection: false
DeleteAutomatedBackups: true

The exam does not expect you to write a CloudFormation template, but
you should be able to understand and read it, as well as be able to use it
in automation and disaster recovery best- practices scenarios.

Intrinsic functions are built- in functions that help you assign values to properties that are
not available until runtime. The following are some important intrinsic functions:

 ■ Fn::FindInMap: Returns the value corresponding to the key in a two- level map that is
declared in the Mappings section. In the following example, the intrinsic function used is
FindInMap, and it will use MySQL5.7 if the engine chosen is Aurora:

Mappings:
 EngineMap:
 aurora:
 Engine: aurora
 EngineVersion: '5.7.12'
 ClusterParameterGroupFamily: 'aurora5.7'
 ParameterGroupFamily: 'aurora5.7'
Resources:
 DBInstance:
 Type: 'AWS::RDS::DBInstance'
 Properties:
 Engine: !FindInMap [EngineMap, !Ref aurora, Engine]

 ■ Fn::GetAtt: Returns a specific attribute value from a resource created. In the follow-
ing example, it will show on the Output tab the Amazon RDS endpoint created from
the template. It can be used to reference attribute values between resources in the same
template:

Outputs:
 DatabaseEndpoint:
 Description: 'The connection endpoint for the database'
 Value: !GetAtt 'DBInstance.Endpoint.Address'

 ■ Ref: Returns the value of the specified parameter or resource.

396 Chapter 14 ■ Save Time and Reduce Errors Automating Your Infrastructure

Reference Parameter

Parameters:
 SecurityGroupDescription:
 Description: Security Group Description
 Type: String

Resources:
 DBSecurityGroup:
 Type: 'AWS::EC2::SecurityGroup'
 Properties:
 GroupDescription: !Ref SecuirtyGroupDescription

 …

Reference Resource

Resources:

 MyVPC:
 Type: 'AWS::EC2::VPC'
 Properties:
 CidrBlock: ''10.0.0.0/16''
 EnableDnsSupport: 'true'
 EnableDnsHostnames: 'true'
 DBSubnet:
 Type: 'AWS::EC2::Subnet'
 Properties:
 VpcId: !Ref MyVPC
 …

 ■ Fn::Join: Appends a set of values into a single value, separated by the specified delimiter.

!Join
 - ''
 - - 'arn:'
 - !Ref AWS::Partition
 - ':s3:::elasticbeanstalk- *- '
 - !Ref AWS::AccountId

 ■ Fn::ImportValue: Returns a value that was exported from an Output section in a tem-
plate by another stack. You cannot delete a CloudFormation stack if its outputs are
being referenced by another CloudFormation stack.

AWS CloudFormation 397

Resources:
 WebServer:
 Type: 'AWS::EC2::Instance'
 Properties:
 InstanceType: t3.micro
 ImageId: ami- a1b23456
 NetworkInterfaces:
 - GroupSet:
 - Fn::ImportValue
 'Fn::Sub': '${NetworkStackNameParameter}- SecurityGroupID'
 AssociatePublicIpAddress: 'true'
 DeviceIndex: '0'
 DeleteOnTermination: 'true'
 SubnetId: Fn::ImportValue
 'Fn::Sub': '${NetworkStackNameParameter}- SubnetID'

 ■ Fn::Sub: Substitutes variables in an input string with values that you specify. Could use
pseudoparameters or resources’ names within the template:

Fn:ImportValue:
 !Sub '${AWS::StackName}- SecurityGroupID'

You can use pseudoparameters in your template. Pseudoparameters are predefined by
AWS CloudFormation and include AWS::Region, AWS::StackId, AWS::StackName, and
AWS::AccountId.

A deployment of an AWS CloudFormation stack can fail when you are creating, updat-
ing, or deleting it. You can access and view logs and messages to help troubleshoot the issue.
If a failure occurs, one of three statuses will appear: CREATE_FAILED, UPDATE_FAILED, or
DELETE_FAILED. There are several reasons for a failure. Here are the most common:

 ■ Your IAM user or role doesn’t have appropriate permission to execute the action.

 ■ There is a dependency error between resources. You can solve it by including a DependsOn
property and the resource’s name with the dependency.

 ■ There is an invalid value input in the Parameter section at stack creation.

 ■ At CloudFormation Stack deletion, some resources need to be empty— for example, an
Amazon S3 bucket.

 ■ There are no updates to perform. You need to change the template in order to update
your stack.

When a stack fails, you can specify one of the following actions:

 ■ Roll back all stack resources: Roll back the stack to the last known state. You can define
alarms and monitoring time when creating or updating the stack.

 ■ Preserve successfully provisioned resources: Resources without a last known stable state
will be deleted upon the next stack operation.

398 Chapter 14 ■ Save Time and Reduce Errors Automating Your Infrastructure

AWS CloudFormation supports nested stacks, which are stacks created as part of other
stacks. You can isolate repeated patterns or common components of your architecture in sep-
arate stacks and call them from other stacks. To create a nested stack within another stack,
use the AWS::CloudFormation::Stack resource in the Resources section.

For example, in a scenario of three- tier web application, you can use AWS CloudFor-
mation to automate your infrastructure and separate each tier as a stack; thus, it may
help with code maintainability and reuse components. This is different from cross stacks,
which are helpful when stacks have different life cycles and use Outputs export and
Fn::ImportValue to pass export values to several stacks.

Figure 14.2 illustrates nested stacks.

Nested stacks are considered a best practice.

AWS CloudFormation supports cross- account and cross- region deployments using a fea-
ture called StackSets. StackSets can extend the functionality of stacks by enabling you to
create, update, or delete a stack across multiple accounts and regions with a single operation.
Figure 14.3 illustrates CloudFormation deployed from Northern Virginia using StackSets
features to other accounts in different regions such as São Paulo and Oregon.

F IGURE 14 .2 Nested stacks

AWS CloudFormation 399

An administrator account manages the CloudFormation template creation and uses the
template as the basis for provisioning stacks into selected target accounts and AWS regions.
StackSets can be deployed using the AWS Management Console or the AWS CLI. A stack
instance is a reference to a stack in a destination account within a region. It is created with
or without a stack, and in case the stack could not be created for some reason, the stack in-
stance shows the reason for the stack creation failure.

StackSets deploy resources across regions and accounts, so ensure
that global resources such as IAM roles and S3 buckets do not have
conflicting names.

F IGURE 14 .3 AWS CloudFormation StackSets

400 Chapter 14 ■ Save Time and Reduce Errors Automating Your Infrastructure

To allow StackSets to be created, you must create permissions, which could be self-
managed or service- managed permissions. Self- managed permissions create the IAM role and
establish a trusted relationship between the admin account and the target account. Service-
managed permissions allow you to deploy instances to accounts managed by AWS organiza-
tions, and you do not have to create an IAM role, because StackSets creates the IAM roles
on your behalf.

You must enable trusted access with AWS organizations to use service-
managed permissions.

Important Concepts
There are some important concepts for the exam when you are working with the CloudFor-
mation template.

 ■ AWS::RDS::DBInstance: This resource creates an Amazon DB instance and has the fol-
lowing key properties:

 ■ DeleteAutomatedBackups: This removes automated backups immediately after the
DB instance is deleted. The default value removes all automated backups.

 ■ DeletionProtection: The database cannot be deleted while it has DeletionProtection
on. For more information, see the “Deleting AWS CloudFormation Stacks” section.

 ■ DBInstanceIdentifier: This is the name of the DB instance. If you don’t specify a
name, CloudFormation will generate a unique physical ID and use that ID for the DB
instance.

If you specify a name on the DBInstanceIdentifier property, you cannot
perform updates that require replacement of this resource, only updates
that require no or some interruption.

 ■ DBSnapshotIdentifier: This is the name of the Amazon Resource Name (ARN) of the
DB snapshot that’s used to restore the DB instance.

 ■ MasterUsername/MasterUserPassword: This is the master username and password
for the instance. These are conditional properties; some engines do not require
these attributes. Refer to the documentation based on the engine used. For more
information to protect the password securely, see the “AWS Secrets Manager” section.

If you specify SourceDBInstanceIdentifier or DBSnapshotIdentifier, you
don’t need to specify MasterUsername. The value is inherited from the
source DB instance or snapshot.

AWS CloudFormation 401

 ■ EnableIAMDatabaseAuthentication: This is disabled by default and it can be enabled
to map to AWS IAM, but does not replace the master username and password. It sup-
ports only RDS for MariaDB, MySQL, and PostgreSQL.

 ■ AWS::RDS::DBCluster: This resource creates an Amazon Aurora DB cluster or Multi-
 AZ DB cluster. The instances will inherit configurations from the cluster.

 ■ DBClusterIdentifier: This is the identifier of the DB cluster that the instance will
belong to.

 ■ DeletionPolicy: The default policy is Snapshot. You can preserve this attribute, in
some cases, and back up a resource when its stack is deleted. There are three behav-
iors: Delete, Retain, and Snapshot. For more information, see the “Deleting AWS
CloudFormation Stacks” section.

The following is an example of an AWS CloudFormation template for Amazon RDS
for MySQL instance version 8.0.16 using “admin” as the master username and “secret-
password” as the password, with deletion protection enabled and the deletion policy set
to Retain.

AWSTemplateFormatVersion: 2010- 09- 09
Resources:
 MyDB:
 Type: 'AWS::RDS::DBInstance'
 Properties:
 DBInstanceClass: "db.t3.micro"
 AllocatedStorage: 20
 Engine: MySQL
 EngineVersion: 8.0.16
 MasterUsername: admin
 MasterUserPassword: secretpassword
 DeletionProtection: true
 DeleteAutomatedBackups: false
 DeletionPolicy: Retain

The following CloudFormation template will deploy an Amazon Aurora cluster. You must
have an Amazon VPC and subnets deployed in order to deploy this template and reference
them in the Parameters section.

AWSTemplateFormatVersion: 2010- 09- 09
Parameters:
 Subnet1:
 Description: Subnet 1 ID
 Type: 'AWS::EC2::Subnet::Id'
 Subnet1AZ:
 Type: 'AWS::EC2::AvailabilityZone::Name'

402 Chapter 14 ■ Save Time and Reduce Errors Automating Your Infrastructure

 Subnet2:
 Description: Subnet 1 ID
 Type: 'AWS::EC2::Subnet::Id'
 Subnet2AZ:
 Type: 'AWS::EC2::AvailabilityZone::Name'

Resources:
 DBSubnetGroup:
 Type: 'AWS::RDS::DBSubnetGroup'
 Properties:
 DBSubnetGroupDescription: !Ref 'AWS::StackName'
 SubnetIds:
 - !Ref Subnet1
 - !Ref Subnet2

 RDSDBClusterParameterGroup:
 Type: 'AWS::RDS::DBClusterParameterGroup'
 Properties:
 Description: "CloudFormation Sample Aurora Cluster Parameter Group"
 Family: aurora5.6
 Parameters:
 time_zone: US/Eastern

 RDSCluster:
 Type: 'AWS::RDS::DBCluster'
 Properties:
 DBClusterParameterGroupName: !Ref RDSDBClusterParameterGroup
 DBSubnetGroupName: !Ref DBSubnetGroup
 Engine: aurora
 MasterUserPassword: secretpassword
 MasterUsername: mysuperuser

 RDSDBParameterGroup:
 Type: 'AWS::RDS::DBParameterGroup'
 Properties:
 Description: "CloudFormation Sample Aurora Parameter Group"
 Family: aurora5.6
 Parameters:
 sql_mode: IGNORE_SPACE

AWS CloudFormation 403

 RDSDBInstance1:
 Type: 'AWS::RDS::DBInstance'
 Properties:
 AvailabilityZone: !Ref Subnet1AZ
 DBClusterIdentifier: !Ref RDSCluster
 DBInstanceClass: db.t3.small
 DBParameterGroupName: !Ref RDSDBParameterGroup
 DBSubnetGroupName: !Ref DBSubnetGroup
 Engine: aurora

 RDSDBInstance2:
 Type: 'AWS::RDS::DBInstance'
 Properties:
 AvailabilityZone: !Ref Subnet2AZ
 DBClusterIdentifier: !Ref RDSCluster
 DBInstanceClass: db.t3.small
 DBParameterGroupName: !Ref RDSDBParameterGroup
 DBSubnetGroupName: !Ref DBSubnetGroup
 Engine: aurora

See the complete list of Amazon RDS properties at docs.aws.amazon.com/AWS-
CloudFormation/latest/UserGuide/aws- resource- rds- dbinstance.html and
the Amazon Aurora properties at docs.aws.amazon.com/pt_br/AWSCloudFormation/
latest/UserGuide/aws- resource- rds- dbcluster.html.

Updating AWS CloudFormation Stacks
When you need to make an update of an AWS CloudFormation stack, you might interrupt
resources and/or replace updated resources, depending on which template properties you
change. Behaviors on Amazon RDS that require some interruptions include DBParameter-
GroupName, Engine, and DBInstanceClass. Others require a complete replacement of the
resource like DBInstanceIdentifier or Port.

AWS CloudFormation updates can require no or some interruptions, or
even a replacement of a resource. Be aware that this could impact your
environment.

There are two methods for updating stacks: direct update or creating and executing
change sets. Figure 14.4 shows the first option. You can submit changes directly by upload-
ing the template through the AWS console, by changing the parameters using the current
template, by replacing the current template, or by editing the template in designer. When you
submit changes, CloudFormation immediately deploys them. Use this option when you need
to quickly deploy updates in your environment.

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-rds-dbinstance.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-rds-dbinstance.html
http://docs.aws.amazon.com/pt_br/AWSCloudFormation/latest/UserGuide/aws-resource-rds-dbcluster.html
http://docs.aws.amazon.com/pt_br/AWSCloudFormation/latest/UserGuide/aws-resource-rds-dbcluster.html

404 Chapter 14 ■ Save Time and Reduce Errors Automating Your Infrastructure

If you need to update a nested stack, always update the parent
(root stack).

Using change sets, you can preview the changes that AWS CloudFormation will make to
your stack, and then you can decide whether to apply those changes. This option will ensure
that you do not make any unintentional changes or consider other possibilities.

You can create a change set of your stack through the AWS Management Console, as
shown in Figure 14.5, or the AWS CLI. For creation you need to update the template using a
current template (changing parameters directly on the console), using a template designer, or
uploading an updated template through the AWS console or Amazon S3.

After you change a parameter or part of the template, a change set will be created. As
Figure 14.6 shows, the change set will show the changes that will be made; in this example,
you can see that no replacement is needed, since Replacement is False. You can review the
changes and decide if you still want to deploy them.

F IGURE 14 .5 AWS CloudFormation update using change sets

F IGURE 14 .4 AWS CloudFormation direct update stack

AWS CloudFormation 405

If you perform an update in Amazon RDS and it requires a replacement, a new data-
base will be created, and your old database will be deleted. AWS CloudFormation deletes all
automated snapshots but retains manual snapshots. For more information, see the “Impor-
tant Concepts” section.

Take a snapshot before making an update. If do not, you lose the data
when CloudFormation replaces your database instance.

Change sets do not indicate whether CloudFormation will successfully
update a stack. If an update fails, CloudFormation attempts to roll back
your resources to their original state.

Figure 14.7 shows the flow of an update using the change set. First, you create a change
set from your original stack by submitting a modified stack template or input parameter
values, and then you can view the change set. At this point, the change does not make any
changes to your stack. After this, you can, optionally, create additional changes to your stack
and do more changes at once and then execute the change set that includes the changes that
you made to your stack.

F IGURE 14 .6 AWS CloudFormation change sets

406 Chapter 14 ■ Save Time and Reduce Errors Automating Your Infrastructure

Delete the change sets to prevent executing a change set that should not
be applied.

After you execute the change sets, CloudFormation sets the status of the specified
resources to UPDATE_COMPLETE. As shown in Figure 14.8, note that the change set for
nested stacks is enabled by default in the AWS console, but you can disable it.

When you update stacks in StackSets, by default it will update all stack instances, which
means that updating a stack set with a large number of stacks can take significant time, and
this could block you from performing other operations on the stack set, so plan accordingly.
This is a standard behavior to have granular control over updating individual stacks and cre-
ating multiple stack sets.

When you create a stack, all updates’ actions are allowed on all resources, which means
that anyone with stack update permissions can update all of the resources in the stack. To
avoid that, in your AWS CloudFormation stack you can put a stack policy, which is a JSON
document that defines the update actions that can be performed on designed resources.
A stack policy applies only during stack updates to prevent accidental updates to specific
resources; if you want more granular control, use AWS Identity and Access Management. As
Figure 14.9 shows, you can update your stack with no stack policy, enter a stack policy on
the AWS console, or upload a JSON file.

F IGURE 14 .7 CloudFormation change sets flow

F IGURE 14 .8 Change sets for nested stacks

AWS CloudFormation 407

The following example shows a stack policy that prevents updates to all instances of
Amazon RDS:

{
 "Statement" : [
 {
 "Effect" : "Deny",
 "Action" : "Update:*",
 "Principal": "*",
 "Resource" : "*",
 "Condition" : {
 "StringEquals" : {
 "ResourceType" : ["AWS::RDS::DBInstance"]
 }
 }
 },
 {
 "Effect" : "Allow",
 "Action" : "Update:*",
 "Principal": "*",
 "Resource" : "*"
 }
]
}

AWS CloudFormation has a mechanism to give you visibility into whether a specific
resource and its configuration are different from what was configured by the original
template. This feature is called drift detection. You can perform drift detection from the
AWS Management Console or AWS CLI, and you can detect drift on an entire stack or on
individual resources within the stack. Any property or resource that has been deleted is con-
sidered a drift. If any resource is detected as drifted, then the stack is considered drifted.

F IGURE 14 .9 Stack policy during update

408 Chapter 14 ■ Save Time and Reduce Errors Automating Your Infrastructure

Deleting AWS CloudFormation Stacks
AWS CloudFormation stacks have termination protection that can be enabled (by default,
it is disabled) to prevent them from being deleted accidentally, although the stack can be
updated. This option can be enabled at the launch stack process or after the creation of the
stack by editing the stack’s configuration, as shown in Figure 14.10.

You can set a DeletionPolicy configuration to preserve or back up some resource when
its corresponding stack is deleted. By default, if a resource does not have a DeletionPolicy
attribute, then AWS CloudFormation deletes the resource. There are three DeletionPolicy
options:

 ■ Delete: When a CloudFormation stack is deleted, the resource and all its contents will be
deleted. This is default behavior if you don’t specify this attribute.

AWSTemplateFormationVersion: '2010- 09- 09'
Resources:
 myEC2Instance:
 Type: AWS::EC2::Instance
 DeletionPolicy: Delete

 ■ Retain: CloudFormation keeps the resource and its contents when the stack is deleted.

AWSTemplateFormationVersion: '2010- 09- 09'
Resources:
 myS3Bucket:
 Type: AWS::S3::Bucket
 DeletionPolicy: Retain

 ■ Snapshot: CloudFormation creates a snapshot for the resource before deleting it. This
is the default behavior for AWS::RDS::DBCluster. The following resources are sup-
ported: AWS::EC2::Volume, AWS::RDS::DBCluster, AWS::RDS::DBInstance,
AWS::Neptune::DBCluster, AWS::ElastiCache::CacheCluster, AWS::Elasti-
Cache::ReplicatonGroup, and AWS::Redshift::Cluster.

F IGURE 14 .10 Editing termination protection

AWS Systems Manager Parameter Store 409

Once CloudFormation completes the stack deletion, the snapshots that are created
with this policy continue to exist and continue to incur charges until you delete those
snapshots.

AWSTemplateFormationVersion: '2010- 09- 09'
Resources:
 myDBInstance:
 Type: AWS::RDS::DBInstance
 DeletionPolicy: Snapshot

The default policy is Snapshot for AWS::RDS::DBCluster resources
and for AWS::DBInstance resources for which you don’t specify the
DBClusterIdentifier property.

AWS Systems Manager
Parameter Store
AWS Systems Manager (SSM) Parameter Store is a feature within the AWS Systems Manager
that provides secure, hierarchical storage for configuration data management and secrets
management such as strings, database strings, Amazon Machine Image (AMI) IDs, and
license code as parameter values.

You can store data as plaintext or AWS::EC2::Image with the type as a String, String-
List, or SecureString. The SecureString parameter value is the only encrypted value. Sensitive
data should use this parameter type. It encrypts using AWS Key Management Service (AWS
KMS) keys from your account or another account.

AWS CloudFormation fetches the last values in SSM Parameter Store and supports plain-
text and SecureString stored parameters. SecureString uses AWS KMS to encrypt and decrypt
stored parameters. Plaintext and SecureString use ssm and ssm- secure as aliases, respec-
tively. When you use a dynamic reference, you can reference SSM Parameter Store in your
template, and during the stack’s deployment or change set, CloudFormation will retrieve the
specific value referenced.

The following example uses SSM Parameter Store as a dynamic parameter in plaintext as in
{{resolve:ssm:parameter- name:version}} or as a SecureString as in ‘{{resolve:ssm-
secure:parameter- name:version}}’. This template uses ssm- secure as a dynamic refer-
ence to the SSM Parameter Store named MyRDSUserName and named MyRDSUserPassword in
version 2 in the proprieties MasterUserName and MasterUserPassword, respectively.

 MyRDSInstance:
 Type: 'AWS::RDS::DBInstance'
 Properties:
 DBName: MyRDSInstance
 AllocatedStorage: '20'

410 Chapter 14 ■ Save Time and Reduce Errors Automating Your Infrastructure

 DBInstanceClass: db.t3.small
 Engine: mysql
 MasterUsername: '{{resolve:ssm- secure:MyRDSUserName:2}}'
 MasterUserPassword: '{{ resolve:ssm- secure:MyRDSUserPassword:2}}'

For dynamic reference using SecureString (ssm- secure), only AWS::RDS::DBCluster,
AWS::RDS::DBInstance, and AWS::Redshift::Cluster resources are supported.

SSM Parameter Store integrates with AWS Secrets Manager, and you can retrieve Secrets
Manager secrets. However, SSM Parameter Store does not support password rotation life
cycles. If this is a requirement, use AWS Secrets Manager.

SSM Parameter Store offers two pricing tiers:

 ■ Standard: The standard tier is free. You can have up to 10,000 parameters with a value
size up to 4 KB each.

 ■ Advanced: The advanced tier is for more than 10,000 parameters with a value size up to
8 KB each. Using this tier, you can apply parameter policies such as notification policies,
which send notifications from Amazon EventBridge based on when this parameter expires or
if the parameter has not changed for a given period of time. Additionally, you have parameter
expiration, which deletes the parameter when a specific date and time are reached. Note that
Advanced tier has charges involving storage and API interaction monthly. Amazon Event-
Bridge is a service that provides real- time access to changes in data in AWS services, your own
applications, and software- as- a- service (SaaS) applications without writing code.

You can use SSM Parameter Store as a dynamic parameter pattern in your AWS Cloud-
Formation template, using {{resolve:ssm:parameter- name:version}} as your
SSM Parameter Store parameter that could carry an AMI ID or password, etc., for plain-
text information. For a secure string encrypted by AWS KMS, use {{resolve:ssm-
secure:parameter- name:version}}. For both options you should specify the version of
the parameter store, since the SSM Parameter Store organizes the parameters using version-
ing. See the following examples.

Using ssm (plaintext):

 myDBInstance:
 Type: 'AWS::RDS::DBInstance
 Properties:
 MasterUserPassword: '{{resolve:ssm:MasterPassword:2}}'

Using ssm- secure encrypted with AWS KMS:

myDBCluster:
 Type: 'AWS::RDS::DBCluster
 Properties:
 MasterUserPassword: '{{resolve:ssm- secure:MasterClusterPassword:2}}'

AWS CloudFormation never stores the actual parameter value. The following resources
support using dynamic parameters for secure strings (ssm- secure) in an AWS CloudForma-
tion template regarding AWS databases services: AWS::ElastiCache::Replication
Group, AWS::RDS::DBCluster, AWS::RDS::DBInstance, and AWS::Redshift::Cluster.

AWS Secrets Manager 411

The following is a full AWS CloudFormation template with an Amazon RDS in MySQL
8.0.16 instance using AWS SSM Parameter Store to retrieve sensitive information using
dynamic references for the master username and password:

Parameters:
 InstanceClass:
 Type: AWS::SSM::Parameter::Value<String>
 Default: /MyDB/InstanceClass
Resources:
 MyDB:
 Type: 'AWS::RDS::DBInstance'
 Properties:
 DBInstanceClass: !Ref InstanceClass
 AllocatedStorage: 20
 Engine: MySQL
 EngineVersion: 8.0.16
 MasterUsername: '{{resolve:ssm:/MyDB/RDSUser:1}}'
 MasterUserPassword: '{{resolve:ssm- secure:/MyDB/RDSUserPassword:1}}'
 DeletionProtection: false
 DeleteAutomatedBackups: true
 DeletionPolicy: Delete

AWS Secrets Manager
AWS Secrets Manager is a service that you can use to store, encrypt, and rotate creden-
tials and secrets. With AWS Secrets Manager, you do not need to embed any credentials for
accessing the database directly in the application code; you can use an API call to Secrets
Manager to retrieve the secret programmatically. This gives you the direct benefit of ensuring
that no sensitive information is stored in plaintext files and reduces the risk of compromising
any credentials.

AWS Secrets Manager has a free trial of 30 days, after which you pay monthly, $0.40 per
secret and $0.05 per 10,000 API calls.

The key point for AWS Secrets Manager, compared with AWS SSM Parameter Store, is
the rotation of the secret. AWS Secrets Manager can schedule the secret rotation between 1
and 365 days, and the secret is encrypted by default using the default AWS KMS key or a
custom key.

Use AWS Secrets Manager whenever the exam asks about the rotation of
credentials.

412 Chapter 14 ■ Save Time and Reduce Errors Automating Your Infrastructure

You can use AWS Secrets Manager as a dynamic parameter pattern with
‘{{resolve:secretsmanager:secret- id:secret- string:json- key:version-
stage:version- id}}’. Dynamic parameter patterns for secure strings are the same as
those supported by AWS Systems Manager Parameter Store. AWS CloudFormation does not
persist any resolved secret value. Note that updating a secret in Secrets Manager does not
automatically update the secret in CloudFormation. To update the secret in your template,
consider using version- id to specify the version of your secret.

In the following example, an Amazon RDS MySQL is used as a CloudFormation resource
to retrieve the master username and password from AWS Secrets Manager, which are then
passed as a dynamic reference:

 MyRDSInstance
 Type: 'AWS::RDS::DBInstance'
 Properties:
 DBName: MyRDSInstance
 AllocatedStorage: '20'
 DBInstanceClass: db.t2.micro
 Engine: mysql
 MasterUsername: '{{resolve:secretsmanager:MyRDSSecret:SecretString:username}}'
 MasterUserPassword: '{{resolve:secretsmanager:MyRDSSecret:SecretString:password}}'

AWS Secrets Manager integrates natively with Amazon RDS and Aurora, Amazon Docu-
mentDB, Amazon Redshift, and databases (MariaDB, MySQL, PostgreSQL, Oracle, and
SQL Server) installed in Amazon EC2 or on- premises machines. Also, AWS Secrets Manager
can be used to store secret key- value and plaintext keys in JSON.

Figure 14.11 shows the workflow of the CloudFormation template perspective generating
a random secret using AWS Secrets Manager and then attaching it to an Amazon RDS.

F IGURE 14 .11 AWS Secrets Manager with Amazon RDS

AWS Secrets Manager 413

This is how it is works:

1. Create an AWS::SecretsManager::Secret resource in the template, and specify a
GenerateSecretString property to randomly generate a secret.

2. Create an AWS::RDS::DBInstance that references that secret, using dynamic
references.

3. Create an AWS::SecretManager::SecretTargetAttachment property that links to
the Secrets Manager secret as SecretId, and the RDS database as TargetId.

The AWS CloudFormation template will look like this:

AWSTemplateVersion: 2010- 09- 09
Description: "This is an example template to demonstrate CloudFormation
resources for Secrets Manager"
Resources:
 MyRDSSecret:
 Type: "AWS::SecretsManager::Secret"
 Properties:
 Description: "This is a Secrets Manager secret for an RDS DB instance"
 GenerateSecretString:
 SecretStringTemplate: '{"username": "admin"}'
 GenerateStringKey: "password"
 PasswordLength: 8
 ExcludeCharacters: '"@/\'

 MyRDSInstance:
 Type: AWS::RDS::DBInstance
 Properties:
 AllocatedStorage: 20
 DBInstanceClass: db.t3.micro
 Engine: mysql
 MasterUsername: !Join ['', ['{{resolve:secretsmanager:', !Ref MyRDSSecret,
':SecretString:username}}']]
 MasterUserPassword: !Join ['', ['{{resolve:secretsmanager:', !Ref
MyRDSSecret, ':SecretString:password}}']]
 BackupRetentionPeriod: 0
 DBInstanceIdentifier: 'rotation- instance'

 SecretRDSInstanceAttachment:
 Type: "AWS::SecretsManager::SecretTargetAttachment"
 Properties:
 SecretId: !Ref MyRDSSecret
 TargetId: !Ref MyRDSInstance
 TargetType: AWS::RDS::DBInstance

414 Chapter 14 ■ Save Time and Reduce Errors Automating Your Infrastructure

In addition, you can have a rotation schedule of the secret, using AWS::SecretsManager
::RotationSchedule. This property uses AWS Lambda to trigger the secret rotation. You
can create a new Lambda or use an existing one by choosing RotationLambdaARN. For
Amazon RDS, Amazon ElastiCache, Amazon Redshift, and Amazon DocumentDB, Secrets
Manager offers two rotation strategies:

 ■ Single user: This strategy is appropriate for most use cases. It is a simple rotation for one
user in one secret.

 ■ Alternating user rotation strategy: This strategy is appropriate for applications that
require high availability, because Secrets Manager will clone the user and then alternate
which user’s credentials are updated. For example, if an application retrieves the secret
during rotation, the application still gets a valid set of credentials. After the rotation,
both users’ credentials are valid.

During the rotation of your credential for a short time, there’s a low risk of your database
denying calls that use the rotated credentials, independently of the strategies you use. To
mitigate that risk, you should consider implementing exponential backoff in your applica-
tion. To learn more about rotation strategies, check the tutorial at docs.aws.amazon.com/
secretsmanager/latest/userguide/rotating- secrets_strategies.html.

You can add a recurring schedule to rotate your credential. The following code adds a
Lambda function, which is provided by the rotation functions templates and configures
rotation, using a cron expression, between 8 a.m. and 10 a.m. UTC on the first day of every
month. Coordinated Universal Time (UTC) is the primary time standard by which the
world regulates clocks and time. A cron expression is a string of characters that represents a
schedule for running a task.

 MySecretRotationSchedule:
 Type: AWS::SecretsManager::RotationSchedule
 DependsOn: SecretRDSInstanceAttachment
 Properties:
 SecretId:
 Ref: MyRDSInstanceRotationSecret
 HostedRotationLambda:
 RotationType: MySQLSingleUser
 RotationLambdaName: SecretsManagerRotation
 RotationRules:
 Duration: 2h
ScheduleExpression: 'cron(0 0 8- 10 1 * ?)'

AWS provides Lambdas function rotations for the databases and resources supported. See
more at docs.aws.amazon.com/secretsmanager/latest/userguide/reference_
available- rotation- templates.html.

http://docs.aws.amazon.com/secretsmanager/latest/userguide/rotating-secrets_strategies.html
http://docs.aws.amazon.com/secretsmanager/latest/userguide/rotating-secrets_strategies.html
http://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_available-rotation-templates.html
http://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_available-rotation-templates.html

Exam Essentials 415

Summary
This chapter described using automation in AWS to save time and reduce errors. AWS
CloudFormation is widely used to deploy applications, databases, networks, and other AWS
resources. Together with AWS Systems Manager Parameter Store and AWS Secrets Manager,
AWS CloudFormation can be a powerful tool to standardize the environment at scale across
multiple teams and workloads by passing sensitive information for database resources using
a template, avoiding hard- coding and plaintext values.

AWS CloudFormation is a free service that incurs charges only for underlying deployed
services and integrates with a majority of AWS services.

Exam Essentials
Know the basics of AWS CloudFormation, AWS Systems Manager Parameter, and AWS
Secrets Manager. To be successful in the exam, it is important to understand the purpose of
each service. AWS Systems Manager Parameter Store and AWS Secrets Manager are similar
but have different features and fulfill different purposes. You should expect to interpret AWS
CloudFormation template snippets and identify resources related to databases.

Know when to use advanced features such as StackSets, nested stacks, and change sets,
as well as how to protect resources from deletion. The exam will use CloudFormation fea-
tures as part of an answer, especially regarding best practices, disaster recovery, and change
scenarios. You should understand the main purpose of each CloudFormation feature.

Know how to use AWS CloudFormation with AWS Systems Manager Parameter
Store. AWS Systems Manager parameter storage is more cost- effective than AWS Secrets
Manager, but the main difference is that it does not have a secret rotation feature. Use
integration between AWS CloudFormation and SSM Parameter Store to work with dynamic
references, especially with segmented environments and when you need to centralize several
parameters in one place.

Know how to use AWS CloudFormation with AWS Secrets Manager. AWS Secrets Man-
ager integrates with some AWS database services natively and has a secret scheduled rotation
feature. When the exam asks about the easiest way to do a rotation schedule for your secret,
AWS Secrets Manager is the best answer.

416 Chapter 14 ■ Save Time and Reduce Errors Automating Your Infrastructure

Review Questions

1. A retail company wants to deploy a new application in multiple regions. The company plans
to save local popular purchases in Amazon DynamoDB tables in each region. A database spe-
cialist needs to design a solution to automate the deployment of the database with identical
configurations in additional regions, as needed. The solution should also automate configura-
tion changes across all regions.

A. Create an AWS CLI command to deploy the Amazon DynamoDB table to all regions
and save it for other future deployments.

B. Create an AWS CloudFormation template and deploy the template to all the regions.

C. Create an AWS CloudFormation template and use a StackSet to deploy the template to
all regions.

D. Create DynamoDB tables using the AWS Management Console in all regions and docu-
ment it for future use.

2. A three- tier web application was deployed using AWS CloudFormation. A database specialist
needs to complete load testing, but the application team is changing the deployment by add-
ing Amazon EC2 and AWS Lambda resources to increase the load testing capacity. The data-
base specialist needs to guarantee that the changes made by the Application team will not
change the Amazon RDS database resources already deployed. Which steps need to be taken
to complete this? (Choose two.)

A. Review the stack drift before modifying the template.

B. Create and review a change set before applying it.

C. Export the database resources as stack outputs.

D. Define the database resources in a nested stack.

E. Set a stack policy for the database resources.

3. A database specialist created an important AWS CloudFormation template that includes an
Amazon RDS instance with sensitive data. What does the database specialist need to set on
RDS settings to the CloudFormation template to avoid any potential data loss and accidental
deletion? (Choose two.)

A. Set Multi-AZ to true.

B. Set TerminationProtection to True.

C. Set DeleteAutomatedBackups to False.

D. Set DeletionPolicy to Snapshot.

E. Set DeletionPolicy to Retain.

4. An ecommerce website has a tiered web application hosted on AWS. The database tier is in
Amazon. The application needs to be deployed to production and other nonproduction envi-
ronments. A database specialist needs to specify different MasterUsername and MasterUser-
Password properties in the AWS CloudFormation templates used for automated deployment.

Review Questions 417

The company also needs to meet compliance requirements by routinely rotating its data-
base master password for production. What is the most secure solution to store the master
password?

A. Store the master password in a parameter file in each environment. Reference the
environment- specific parameter file in the CloudFormation template.

B. Encrypt the master password using an AWS KMS key. Store the encrypted password in
the CloudFormation template.

C. Use the ssm dynamic reference to retrieve the master password stored in AWS System
Manager Parameter Store and enable automatic rotation.

D. Use the secretsmanager dynamic reference to retrieve the master password stored in AWS
Secrets Manager and enable automatic rotation.

5. How can a database specialist create standardized infrastructure for the core components
such as Amazon RDS and the bastion host while handling environment- specific settings sep-
arately and minimize rework due to configuration errors? Which of these processes are the
easiest way that the database specialist can meet these requirements?

A. Organize common and environmental- specific parameters hierarchically in the AWS Sys-
tems Manager Parameter Store and then reference the parameters dynamically from an
AWS CloudFormation template. Deploy the CloudFormation stack using the environ-
ment name as a parameter.

B. Create a parameterized AWS CloudFormation template that builds the required objects.
Keep separate environment parameter files in separate Amazon S3 buckets. Provide an
AWS CLI command that deploys the CloudFormation stack directly referencing the
appropriate parameter bucket.

C. Create a parameterized AWS CloudFormation template that builds the required
resources. Import the template into the CloudFormation console. Make the required
changes to the parameters and deploy the CloudFormation stack.

D. Create an AWS Lambda function that builds the required resources using an AWS
SDK. Set the required parameter values in a test event in the Lambda console for each
environment that the application team can modify, as needed. Deploy the infrastructure
by triggering the test event in the console.

6. An enterprise wants to automate creating a secure test Amazon RDS with random creden-
tials to be stored safely. The credentials should have sufficient information about each test
database to initiate a connection and perform automated credential rotations. The credentials
should not be logged or stored unencrypted. Which steps should a database specialist take to
meet these requirements using an AWS CloudFormation template?

A. Create the database with the MasterUserName and MasterUserPassword properties set
to the default values. Then, create the secret with the username and password set to the
same default values. Add a Secret Target attachment resource with the SecretId and Tar-
getId properties set to the Amazon Resource Names (ARNs) of the secret and the data-
base. Finally, update the secret’s password value with a string set randomly generated
by the GenerateSecretString property. Define your rotation schedule rule using a cron
expression with the AWS:SecretsManager::RotationSchedule resource.

418 Chapter 14 ■ Save Time and Reduce Errors Automating Your Infrastructure

B. Add a Mapping property from the database Amazon Resource Name (ARN) to the
secret ARN. Then, create the secret with a chosen username and a randomly generated
password set by the GenerateSecretString property. Add the database with the Master-
UserName and MasterUserPassword properties set to the user’s name of the secret.

C. Add a resource of type AWS::SecretsManager::Secret and specify the GenerateSecret-
String property. Then, define the database user name in the SecureStringTemplate
template. Create a resource for the database and reference the secret string for the Mas-
terUserName and MasterUserPassword properties. Then, add a resource of type AWS::
SecretsManagerSecretTargetAttachment with the SecretId and TargetId prop-
erties set to the Amazon Resource Names (ARNs) of the secret and the database. Define
your rotation schedule rule using a cron expression with an AWS:SecretsManager::
RotationSchedule resource.

D. Create the secret with a chosen username and a randomly generated password set by
the GenerateSecretString property. Add a SecretTargetAttachment resource
with the SecretId property set to the Amazon Resource Name (ARN) of the secret
and the TargetId property set to a parameter value matching the desired database
ARN. Then, create a database with the MasterUserName and MasterUserPass-
word properties set to the previously created values in the secret.

7. A company is using Amazon DynamoDB that is deployed by an AWS CloudFormation tem-
plate. The template configures provisioned throughput capacity using hard- coded values. The
company wants to change the template so that the tables it creates in the future have inde-
pendently configurable read and write capacity units allocated. Which solution will enable
this change?

A. Use Mappings and set values for the rcuCount and wcuCount parameters. Configure
DynamoDB to provision throughput capacity using the stack’s mappings.

B. Use Parameters; create two number parameters, rcuCount and wcuCount; and request
input values from the user. Replace the hard- coded values with calls to the Ref intrinsic
function, referencing the new parameters.

C. Use Outputs and add values for the rcuCount and wcuCount parameters as outputs of
the template. Configure DynamoDB to provision throughput capacity using the stack
outputs.

D. Use Mappings and set values for the rcuCount and wcuCount parameters. Replace
the hard- coded values with calls to the Ref intrinsic function, referencing the new
parameters.

8. Which of the options are not AWS CloudFormation best practices? (Choose two.)

A. Implementing StackSets

B. Embedding credentials into the template

C. Nesting stacks

D. Enabling termination protection

E. Creating a development and production environment in a single template

Review Questions 419

9. Which are the possible causes for an update rollback failure of an AWS CloudFormation
stack? (Choose two.)

A. Insufficient permissions.

B. Termination Protection was enabled.

C. Changes to a resource were made outside of AWS CloudFormation.

D. The AWS CloudFormation template was invalid.

E. The update was done via AWS Management Console.

10. What is the option to audit AWS CloudFormation operations on the AWS account?

A. AWS CloudFormation console

B. Amazon CloudWatch

C. AWS CloudTrail

D. Template designer

Answers to
Review Questions

Appendix

422 Appendix ■ Answers to Review Questions

Chapter 3: Purpose- Built Databases
1. D. Flexible data access patterns indicate a relational database reinforced by being fully ACID

compliant. Scaling out and scaling in reads on demand with multiregion support are Amazon
Aurora characteristics.

2. B. DynamoDB fits all the requirements except microsecond latency for reads. By lever-
aging Amazon DynamoDB Accelerator (DAX), the DBA could deliver all the application
requirements.

3. C, D. Although we could use PartiQL to interact with DynamoDB with “SQL- like”
commands, DynamoDB does not support 600 KB. Amazon Keyspaces fits the requirements
and delivers the Cassandra CQL language, which is very familiar to SQL- proficient DBAs.
Amazon Aurora fits the requirements as well, delivering the native SQL language.

4. C. Amazon QLDB is a ledger database that provides a transparent, immutable, and crypto-
graphically verifiable transaction log.

5. C. Amazon DocumentDB has a maximum item size of 16 MB and has indexing in nested
fields or arrays. Data remodeling techniques, such as unnesting, could be applied; however, in
this particular scenario, the customer is not open to data remodeling.

6. B. Amazon DynamoDB offers high- scalability, single- digit millisecond latency even when
scaling from hundreds to millions of requests.

7. D. Amazon Keyspaces delivers all the requirements, and CQL comes from Cassandra Query
Language, supported in Amazon Keyspaces.

8. D. Amazon DocumentDB offers aggregation functions at the database level, including
average, sum, and group by.

9. B. Amazon DynamoDB global tables enable regional write capabilities for global
applications.

10. D. Deploying Amazon RDS and Amazon ElastiCache for Redis implies that we will have a
cluster with multiple nodes, even if we don’t have enough application traffic to be processed
by the database. The most cost- effective solution is to leverage DynamoDB serverless
capabilities with on- demand capacity.

Chapter 4: Relational Databases on AWS
1. A. To solve an RDS instance stuck in incompatible parameter status, the possible alternatives

are to reset all parameters in the parameter group to default values or to reset the values
of the parameters that are incompatible. You can’t connect to or modify an instance
in this state.

Chapter 4: Relational Databases on AWS 423

2. B. When you take a manual snapshot, you can configure the retention according to your
business needs, and there’s no maximum allowed time to retain it.

The automatic backup has a maximum of 35 retention days; although it supports point- in-
time recovery, you cannot configure longer retention periods.

Cloning is allowed only for Amazon Aurora, and it isn’t recommended for long- term
backups.

Exporting to S3 is used when it’s required to export to Parquet files so the data can be read
by other services like Amazon Athena or Amazon Redshift Spectrum. Exporting to S3 is
allowed only for RDS MariaDB, RDS MySQL, and RDS PostgreSQL.

3. A. The faster option is to check the top SQL sessions in Performance Insights. By default,
Performance Insights is turned on in the console create wizard for all Amazon RDS engines.

You can use a native tool according to the database engine, but this option will take longer to
configure the appropriate tool and also to search the appropriate view at the DB instance.

The execution plan will demonstrate which path the DB optimizer chooses to select the data,
but it does not show if one SQL statement is consuming more resources than others.

Checking the slow query logs exported will tell you which SQL statement is taking more
than the threshold seconds defined to run, but it won’t identify which statement is consuming
more than others.

4. D. The faster and cheaper alternative to make the database available without the restoring
time is the Clone option, because Clone uses the same storage of the source database with the
copy- on- write protocol.

All the other alternatives require restoring the database instance from a snapshot, which
takes time to complete, and it will depend on the database size.

5. B. The SSL connection on RDS for PostgreSQL requires enabling the SSL on the database by
modifying the parameter rds.force_ssl to 1, downloading the certificate, and defining
sslmode=verify- full for the connection.

If you modify rds.force_ssl to 1 but don’t use the certificate and sslmode=verify-
full, you will get a connection error.

6. A. Using DAS, you’ll enable a near real- time data stream of the database activity. Amazon
Aurora pushes activities to an Amazon Kinesis data stream. From Kinesis you can configure
AWS services such as Amazon Kinesis Firehose and AWS Lambda to consume and store the
data. On S3 you can configure life- cycle policies to move your objects to different storage
classes according to how frequently the data is accessed.

The MariaDB Audit plugin works for RDS for MySQL and RDS for MariaDB.

The pgaudit extension works for RDS for PostgreSQL and Amazon Aurora PostgreSQL,
and the activity entries will be written on the pgaudit.log file.

The advanced parameters server_audit_logging and server_audit_events work
for Amazon Aurora MySQL only, and the data activity will be stored on the database logs.

7. B. The best option for RDS for MySQL is enabling the MariaDB Audit plugin by the option
group and publishing the logs to CloudWatch.

424 Appendix ■ Answers to Review Questions

Only enabling the MariaDB Audit plugin at the option group, the activity will be stored only
on the local log. You won’t be able to access it at CloudWatch.

There’s no need to configure logon trigger, because RDS for MySQL already has the capa-
bility to log database activity.

DAS is available only for Amazon Aurora.

8. B. The best alternative with lower downtime is creating an Amazon Aurora read replica and
promoting the Read Replica to primary once it is synchronized.

The pg_dump and pg_restore options work, but they require more steps to be accom-
plished and also will result in longer downtime.

Using AWS DMS will also require more configuration steps. To create the schema first, check
the objects, constraints, triggers, sequences, and so on.

It isn’t possible to restore a backup generated from pg_dump directly at the creation step.

9. C. Amazon Aurora is able to restore backup files directly generated from the Percona Xtra-
Backup tool and restore backups generated from mysqldump.

Although it’s possible to use AWS DMS, it requires more steps to configure and to replicate
the data.

Using mysqldump to generate and the MySQL client to restore won’t keep the replication
between the source on premises and Amazon Aurora.

You can’t create an Amazon Aurora read replica from a MySQL on premises; this option is
available only when the source database is an RDS for MySQL or RDS for PostgreSQL.

10. C. Since you can’t directly modify an unencrypted database to be encrypted, and since a read
replica will inherit the same encryption configuration from the source database, the only
alternative available is to take a snapshot, copy the snapshot enabling the encryption option,
and then restore the database from the encrypted snapshot.

Chapter 5: Low- Latency Response Time
for Your Apps and APIs
1. C. Options B is invalid. Options A and D could do the job, but the optimal solution is to use

the Time to Live (TTL) attribute for Amazon DynamoDB and enable Streams on the table.
DynamoDB Streams events have a special flag you can use to archive the items expired by
the TTL.

2. D. Options A, B, and C are invalid because the role is for AWS Lambda, not
DynamoDB. User/password is not a valid authentication option for Dynamo, and using hard-
coded access keys in AWS Lambda is a bad idea. The role then needs to be assigned to the
Lambda function as the execution role to be able to inherit the DynamoDB permissions.

Chapter 6: Document Databases in the Cloud 425

3. C. Options A and B don’t support active- active mode; writing can be done only in the
primary AWS region. Option D supports active- active but within a single region. The only
option that fulfills the question’s requirement is DynamoDB Global Database.

4. D. Option A requires a refactoring overhead, and it is false that the DynamoDB is the only
serverless NoSQL database on AWS. Option B would work but won’t fulfill the least amount
of time requirement, since it is a single- threaded process. Option C in particular isn’t cost-
effective either because it proposes to use on- demand capacity. Option D is the best solution.

5. C. Options A and D are incorrect; dates are poor choices for partition keys because date is
a low cardinality attribute. A similar thing would happen with option B with the Country of
Origin. Option C is the best choice because a random prefix will be guaranteed to have high
cardinality on the GSI and thus avoid the “hot partitions” issues.

6. A. Option C is invalid because LSI can be created only at table creation time and must share
the same partition key with the main table. Options B and D are incorrect because the GSI
index only supports eventual consistency, and the DAX cluster only allows queries on the
same keys as the main table. The only feasible option is option A.

7. A, B, and C. Amazon Neptune is ACID compliant by default, so all operations provide
strong consistency. DynamoDB has strong consistent read API operations. Keyspaces read
operations with LOCAL_QUORUM will return strong, consistent results. DocumentDB, on the
other hand, has the option to return the data from the primary node and will be strongly
consistent in most cases; however, if the database is under a failover process, the read opera-
tion will be eventually consistent as long as the failover process lasts.

8. D. Options B and C are invalid because Performance Insights is an Amazon RDS feature and
X- Ray is used to debug and trace request in microservice applications. Option A could work
but is not the most cost effective. Option D is the right one because CloudWatch Contributor
Insights can be used to determine frequently accessed attribute keys of DynamoDB tables.

9. D. One RCU represents one strongly consistent read for an item up to 4 KB in size. Since
the application item size is 5 KB, you will need two times the number of required reads.
Regarding the writes, one WCU is equivalent to one write operation for an item up to 1 KB
in size. Since the question item size is 5 KB, you will need to provision five times the number
of required write operations.

10. D. Options A and B are invalid since there isn’t any truncate CLI command or API oper-
ation. Option C could do the job, but it would be costly, as it consumes both RCU and WCU
proportionally to the size of the table.

Chapter 6: Document Databases
in the Cloud
1. A. Amazon DocumentDB can export logs only to Amazon CloudWatch Logs. CloudTrail

is an API tracking service. Amazon DocumentDB events cannot export logs to CloudWatch
Logs, because events show recent events that occurred in your clusters. The cluster must
enable the export of the logs to CloudWatch Logs and enable the audit_logs parameters
in the cluster parameter group for CloudWatch Logs to receive such logs.

426 Appendix ■ Answers to Review Questions

2. A. Amazon DocumentDB is a managed service. Since AWS DMS supports the service as
a target, this is the only option. VM Import/Export is a legacy service for virtual machine
migration. Cloud9 is an IDE in the cloud, and AWS SMS is an agentless AWS service for
migration between virtual machines for supported hypervisors recommended for lift- and-
shift approaches.

3. D. Amazon DocumentDB can support 15 instance replicas.

4. C. Amazon DocumentDB can support only one primary instance.

5. A. Amazon DocumentDB is not a software as a service of MongoDB. The integration
with AWS services, backup, and replication features differs from an Amazon EC2 instance
with MongoDB. Amazon DocumentDB does not follow the software life cycle of Mon-
goDB. Amazon DocumentDB supports change streams.

6. A and B. Document databases are not a good fit for applications/workloads that need to do
a lot of joins, because it tends to be expensive. Document databases usually are defined as a
cluster, so it makes more sense to scale by adding instances horizontally.

7. A. DatabaseConnections shows how many open connections your cluster has. BufferCache-
HitRatio is the percentage of requests that are served by the buffer cache. SwapUsage is the
amount of swap space used on the instance.

8. B. profiler is the parameter that enables or disables query profiling. audit_logs defines
whether AWS CloudTrail audit logs are enabled. ttl_monitor defines whether time- to- live
monitoring is enabled for the cluster, and profiler_threshold_ms defines the threshold
for the profiler.

9. B. This operation can be done by taking a snapshot of the unencrypted cluster and restoring
it in a new cluster with encrypt enabled with AWS KMS. You cannot modify the cluster and
enable encryption, since the encryption can be enabled only at the launch of the cluster. You
can do it through AWS DMS, but this will add unnecessary operational challenges and tasks,
which is the opposite of what the question asks.

10. D. Only the events that occurred in your cluster appear in AWS Management Console.
Parameter groups are configurable parameters applied within your cluster. The change
streams feature in Amazon DocumentDB provides a time- ordered sequence of change events
that occur within your cluster’s collections. Events subscription is the only way that you can
be notified for something occurring in your cluster.

Chapter 7: Better Places Other Than
Databases to Store Large Objects
1. C. As the question asks for the most cost- effective solution, we need to consider the feasible

solutions that best address costs, and option C is cheaper than B, as you remove the LOB to
S3. Option B is cheaper than option A if you consider only licensing. Option D is not actually
complete, as you may need an EC2 instance to create and store the objects in an EBS volume,
and it doesn’t lower the cost, as EBS costs are 23x higher than S3.

Chapter 8: Deliver Valuable Information at the Speed Your Business Needs 427

2. C. There are no PCI compliance, Deep Storage, or Long-Term Archive classes for S3; the only
available options are S3 Standard, S3 Standard- IA, S3 Glacier, and S3 Glacier Deep Archive.

3. B. Using versioning is an easy way to keep track of recoverability for objects in S3, and cross
replication will add a new bucket in place and will not prevent objects from being lost in the
case of being overwritten in the other region, and will add data transfer costs between the
regions. Performing a check before writing objects to S3 will add a cost for DynamoDB reads
for every operation.

4. E. All the options are valid for encryption for S3.

5. D. The object key is not a key to gain access; a key to gain access would be an IAM access
key. An object key is required, and it’s not a tag. When you create an object, you specify
the key name, that is, the object key and its full name, inside the bucket, in the following
S3 object, for example: s3://123456789012- mypics/us/new- york/people/
people0010.jpg, where 123456789012- mypics is the bucket name, and us/new-
york/people/people0010.jpg is the object key.

6. C. You can have single objects from 0 bytes to 5 TB size in Amazon S3, so a 1 PB single
file is out of the range. You can have multiple files that sum several perabytes, but you can’t
have a single file larger than 5 TB. For objects larger than 100 MB, you should use Multipart
Upload. When you use the AWS CLI aws s3 cp command, it automatically chooses to use
Multipart Upload for large files.

7. B. Option A is in reversed order from most expensive to cheapest. In option C, Glacier Deep
Archive should be the first, and for options C and D, Infrequent Access appears with a lower
cost than S3 Standard, which is not true.

8. A. Option A is correct. Option B is false because S3 replicates six copies of each object
inside a region. Option C is false because cross- region replication is not automatically set up,
and for option D S3 will keep six physical copies in each region if you set up cross- region
replication.

9. B. Option A adds unnecessary PUT operations. Option C uses the wildcard * for users,
which allows any user from AccountB, and option D uses a wildcard * for actions, which
allows any operations, so A, C, and D are too permissive.

10. A. Amazon S3 API requires TLS, so using the AWS CLI or SDK will comply with the
required TLS encryption. Options B to D are more complex and require more effort than
option A.

Chapter 8: Deliver Valuable Information
at the Speed Your Business Needs
1. C. Amazon Redshift is the first option when migrating data warehouses to AWS, and it sup-

ports star schema as well, so option C is correct. Option B is automatically invalid. Amazon
Timestream is not the best solution for data warehouses and does not support star schema
design, so option A is wrong. Option D is not true because Amazon Redshift supports a
native star schema implementation.

428 Appendix ■ Answers to Review Questions

2. C. The question asked for managed services, so option A is wrong, as it installs a time- series
database over a container platform. Option B would work with some effort from the sensor
side to send it to DynamoDB but would add a high cost for time- series queries over time.
Option C will have a good cost efficiency for queries using Amazon Timestream and will use
AWS IoT and Timestream, which are all managed services. Option D is not correct as it uses
Amazon Neptune, a graph database that is good for finding relationships between data but
not for performing statistics comparing time- series data.

3. B. As the question asked for a simple solution, that allows for scalability and reduces storage
costs. There is no Dynamic Migration Services or AWS Object Conversion Tool (OCT) in
AWS, and AWS Storage Gateway will require a complex setup to work with data. Option C
suggested Amazon Aurora MySQL, which is not the best option for data warehouse work-
loads, and there is no COPY command for Aurora MySQL. Options C and D are similar,
but there is no way to mix Redshift with SSD and HDD; also, elastic resize is used to add or
remove nodes from the cluster to scale, while concurrency scale is used to handle workload
peaks, so option B is the correct one.

4. C. Although options B and D can work, customers will need to code Lambda and create
some logic to retry when it fails. Option D uses inserts instead of the COPY command, which
is an anti- pattern for Redshift. Option A requires a lot of effort to set up and manage. Option
C is straightforward, is easy to set up, and already has mechanisms for delivering retry and
error messages to Redshift.

5. D. To optimize bandwidth to transfer the data, you should compress the data before send-
ing it to Amazon S3. To parallelize work when using the COPY command, you should split
the data in files in a multiple of your SLICE number, in this case 16. A single file as stated in
options A and B will take longer to load as they will use only one SLICE to load all the data.
Option C takes into consideration the memory size of the cluster, which doesn’t help in the
case of loading data. This will result in very small files. Option D is the correct one as it uses
the number of SLICE to split the data and keep the files with a few gigabytes.

6. B. The Redshift COPY command enables us to load data using encrypted data from customer-
managed symmetric keys (CSE- CMK). We can load compressed data with CSE- CMK directly
from S3, using the ENCRYPTED parameter along with the compressed algorithm, as stated
in option B. We don’t need to uncompress the data using an Amazon EC2, so option A
would add more effort. Option C would work but would also add unneeded effort using an
Amazon EC2 instance. Option D is wrong because there is no Redshift Key Manager Service.

7. A. To load data into Redshift, the COPY command from Amazon S3 is the best way. Amazon
Kinesis Data Firehose buffers streaming data and performs micro batches to load the data
using the COPY command, so option A is the best option. Options B and C use INSERT and
UPSERT, which are not optimized to load external data to Redshift. Option D is correct for
data in files but uses the wrong component, Amazon Kinesis Data Analytics, instead of the
appropriate Amazon Kinesis Data Firehose, so it is not the correct answer.

Chapter 9: Discovering Relationships Using Graph Databases 429

8. D. The best choice for cost efficiency is to use the proper engine for the workload, so
Amazon Redshift for a data warehouse, Amazon Timestream for time- series data, and
Amazon OpenSearch Service with Kibana for operational logs and dashboards are the
natural choices. Amazon Aurora is not the best option for time- series data, so option A is not
the best option. Amazon Aurora is not the best option for data warehouses nor DynamoDB
for time- series, so option B is wrong. Option C is not correct, because it uses Neptune, a
graph database, for the data warehouse.

9. D. Option A is wrong because it creates one single table; there is no customized data reten-
tion per payload in Amazon Timestream. You set one data retention period per table; also
there is no autoscaling group for Amazon Timestream. Option B would have a higher cost
for the queries and would not support SQL queries. Amazon DynamoDB will require a single
attribute to perform the TTL and does not have a customized TTL per payload. Option C
would not deliver the data with the data latency of milliseconds and would require extra rou-
tines to handle data purging. Option D is easy to set up, will scale per usage, and will deliver
data with a latency of milliseconds.

10. A. Option A will handle the latest 24 hours in memory for the queries you need to improve
and also set the overall retention on disk to one month, with low cost, so that is the correct
one. Option D is the opposite, as it sets memory retention to one month, and it will cost
30 times more than option A, approximately. Option B is wrong, as you have the option to
cache data in memory with Amazon Timestream to improve performance. Option C uses
DAX, and DAX is available only for Amazon DynamoDB.

Chapter 9: Discovering Relationships
Using Graph Databases
1. A. The query languages supported by Amazon Neptune are Gremlin, openCypher, and

SPARQL. SQL is not a supported query language; you can use Python libs to use Gremlin,
but not as a query language. Pyspark is an interface for Apache Spark in Python.

2. C. A graph database is the best solution to run recommendation engines, and Amazon
Neptune is the graph database in AWS. Relational databases such as PostgreSQL don’t scale
appropriately to return billions of rows and complex joins. Amazon DynamoDB and Amazon
Keyspaces aren’t appropriate for exploring relationships.

3. D. The correct choice is to add a read replica and modify the application to connect the read-
only operations to the read replica endpoint. If you only add the read replica, the application
will not be automatically redirected to the read replica endpoint.

There’s no need to create a new cluster to receive replicated data because the Amazon Nep-
tune database cluster accesses the same purpose- built storage, and the data will be available
to the read replicas with minimal lag.

430 Appendix ■ Answers to Review Questions

If you only modify the instance type to a bigger instance type, you will better accommodate
the current workload, but you will not improve the cluster’s high availability.

4. A. Amazon Neptune cluster allows the failover tier configuration in the read replica instance
to define the priority to promote the instance. Instances with lower values in the failover tier
are promoted.

Option B is not correct, because it mentions the highest value in the failover tier. Options C
and D aren’t correct, because you can manage it using the failover tier.

5. C. The Amazon Neptune cluster allows Global Database for cross- region replication; it
enables fast recovery in a rare failure event of the current AWS region. Option A is not
correct, because it is more complex to implement. Option B is not correct, because DMS does
not support continuous replication for Amazon Neptune, only full load. Option D is not
correct, because you can achieve cross- region replication using a global database.

6. D. Although you cannot modify the cluster encryption, to meet this requirement, you can do
so by taking the snapshot and restoring the snapshot with the required encryption key.

Options A and B are not correct, because you can’t modify the cluster encryption directly in
the cluster configuration. Option C is not correct; although you cannot modify the
instance encryption, snapshot and restore is an efficient method to meet this requirement.

7. A and B. Options A and B are correct, because the newer Amazon Neptune clusters only
allow SSL, and for older versions you can do it by changing the parameter group to a newer
version. Options C and D are not correct; you can meet this requirement even on newer or
older cluster versions.

8. B. Option B is correct; the property graph data model is appropriate for representing the
data in vertices and edges, and the programing language is familiar to SQL developers.

Option A is not correct; the relational database model is not efficient for querying highly
connected data. Option C is not correct; RDF is most appropriate to represent in subject-
predicate- object triples format. Option D is not correct; storing data in Parquet format is not
efficient for querying highly connected data.

9. B. Option B is correct; the bulk loader command is faster and has less overhead for load-
ing external files and supports Gremlin data. Option A is not correct; insert using addV and
addE is better for small data sets. Option C is not correct; DMS is useful when migrating
from another database. Option D is not correct; SPARQL INSERT does not work for the
property graph data model.

10. C. Option C is correct; the instance endpoint purpose is to connect to a particular instance.
Option A is not correct; the cluster endpoint purpose is to connect to the primary instance.
Option B is not correct; the reader endpoint will load balance across the read replica
instances. Option D is not correct. The custom endpoint is more appropriate when you need
to configure a set of instances; for only one instance, it is easier and faster using the instance
endpoint.

Chapter 10: Immutable Database and Traceable Transactions 431

Chapter 10: Immutable Database and
Traceable Transactions
1. D. Option A is invalid because AWS Backup doesn’t support Amazon QLDB. Option B is

also invalid because Amazon QLDB currently doesn’t support PITR or on- demand backups.
Option C isn’t the right one because it is leaving the database without any backup strategy.
Option D is right because AWS Backup supports both EC2 and EFS, and at the time of
writing, there is no managed backup solution for QLDB; the customer needs to implement a
custom solution.

2. B. Amazon Timestream is the better service to store time- series data. Relational data should
be placed on Amazon RDS or Amazon Aurora. Although QLDB supports JSON documents,
if there is no need to perform data integrity verification, then DocumentDB or DynamoDB
would be the best choice.

3. A, B, D. Option C is incorrect because Amazon CloudTrail records only nontransactional
API operations.

4. B. QLDB is a centralized ledger database built for customers who need to maintain a verifi-
able history of data changes within an application that they own.

5. D. Option A could do the job, but it will demand extra overhead to keep the logs auditable,
and a bad actor could potentially tamper with the data by disabling CloudTrail for a given
period of time. Option B won’t work for the same reason as DynamoDB, and changing the
database schema in the future won’t be easy.

Option C can work, but it doesn’t have a serverless approach, and there is no mention that it
needs to be a decentralized ledger.

Option D is the right solution for the given use case.

6. A. Option A is the only available option for application access to an Amazon QLDB ledger
database.

7. A. Amazon QLDB is integrated with AWS Private Link.

8. C. You create a ledger and define your tables, and QLDB automatically scales to support the
demands of your application.

9. B and D. The MongoDB driver is just for MongoDB- compatible databases, and Amazon
QLDB isn’t one. You can use the API to access your QLDB ledger, but it is not the only
choice; you can also use the driver or the SDK.

10. A. Amazon QLDB provides atomicity, consistency, isolation, and durability (ACID)
properties.

432 Appendix ■ Answers to Review Questions

Chapter 11: Caching Data with
In- Memory Databases
1. C. Options B and C will not deliver submillisecond latency for queries consistently, so those

options are wrong. Although option A is feasible, it doesn’t minimize the team overhead, as
they would have to manage the EC2 nodes and caching software.

2. A. Option A is the correct one, as Memcached will handle the writes with multithread
processes. Options B and C are wrong, as they will not deliver data for submillisecond
query latency. Option D is wrong, as Redis doesn’t support multithreaded processing for
applications.

3. D. Option A does not comply with the latency required of the service. Options B and C sug-
gest Redis and MemoryDB for Redis, which is OK; however, providing scalability for writes
will require advanced sharding techniques, as they are single thread for writing, so they
would be good choices if the customer was looking for more resilience and fault tolerance.
Option D is easy to set up and good to scale writes, as Memcached is multithreaded and is
able to use more resources of the same hardware to write.

4. B. Option A does not implement a cache layer, so it’s wrong. Option B is the correct one,
where they can evaluate between Redis and Memcached. Option C is not a cache, but a data
stream for Kafka application, so it’s not correct. Option D is incorrect, as DAX is available
only for Amazon DynamoDB, not relational databases.

5. A. Using a write- through strategy with Amazon ElastiCache will guarantee the cache layer
always has the latest information, so option A is the best choice. Amazon RDS will not lower
the response time to less than 1 millisecond, so options B and C are incorrect. The lazy load-
ing strategy will not guarantee the latest information is already in the cache, so this could
increase response time for cache misses, so option D is not the best choice.

6. B and D. Option A is not correct, as Amazon ElastiCache is not for streaming. Options B
and D are correct because they implement a cache layer that can offload frequent queries
from the database layer and improve response time. Option C doesn’t improve consistency,
so it is not correct.

7. A. Amazon MemoryDB for Redis provides a persistent layer with extremely low latency, so
option A is correct. Options B and C are not persistent, as they use memory only, although
Redis has good resilience. Option D is incorrect, as Amazon Aurora will not provide micro-
second latency for reads; it will provide millisecond latency.

8. B. Option A is wrong, as it doesn’t provide extreme low latency. Option B is correct, as it’s
a managed service for a cache option. Option C is not low effort and not easy to maintain.
Option D exceeds the requirements, as the solution already has a persistent layer, so it will
add unnecessary costs.

Chapter 12: Migrating Your Data to AWS 433

9. A and C. Options A and C are correct. Option B is wrong because there are no such options
for ElastiCache. Option D is wrong, as there is no cache mode option; in ElastiCache, you
can choose cluster mode for Redis.

10. A. Option A is correct, as you can work with a single shard and not deal with sharding data
using cluster mode disabled for ElastiCache for Redis. There is no cluster mode for Elasti-
Cache for Memcached, so options B and D are wrong. Option C will require sharding data,
which is not what your company wants.

Chapter 12: Migrating Your Data to AWS
1. B. Option A is wrong, as it doesn’t apply the logs with a CDC or continuous replication

to minimize downtime; ora2pg can convert a schema but will not be able to migrate with
minimal downtime. Option B is the correct one, because it performs schema conversion with
the SCT and then DMS data migration and continuous replication, minimizing downtime
and effort. Option C is feasible, but it will require the conversion of Oracle objects not han-
dled by DMS. Option D is wrong, as you don’t create migration tasks in RDS; you create
them in DMS instead.

2. C. Option A is wrong, as Amazon Storage Gateway will not significantly reduce the time to
transfer the data and doesn’t have integration with AWS SCT. Option B will also not improve
the time to load to S3 because it will still use the network connection. Option C is the correct
one because it optimizes the transfer with an AWS Snowball edge storage- optimized device
and also synchronizes the databases using AWS SCT with the AWS DMS agent. Option D is
not addressing the connection bandwidth and is trying to force the load using all tables in
parallel, so it will not help in this scenario.

3. B. Option B is the correct one; by using DMS, you can create a continuous replication to the
Amazon S3 target. Option A is feasible but is definitely not the easiest to set up, as it involves
creating and maintaining a replication code. Option C is incorrect, as Oracle Data Pump
generates snapshots of the table’s data and does not offer continuous replication. Option D
is incorrect, as AWS SCT is used to convert the schema and has extractors to load data from
data warehouses at one time, with no continuous replication and no replication instances.

4. A. Option A is correct, as the target and source are supported by the AWS Schema
Conversion Tool (SCT). Option B is not correct, as it requires very intensive work to per-
form the assessment. Option C is also wrong, as AWS DMS is able to convert schemas when
migrating data, but it’s not able to generate an assessment report before the conversion.
Option D is incorrect because AWS SQL Migration Studio doesn’t exist.

5. C. Options A and B are incorrect, as neither addresses the minimal downtime requirement.
Option D is incorrect, as Glue doesn’t have a continuous replication job by default; it does
have incremental jobs based on a bookmark key. Option C is correct, as it will provide a
minimal downtime scenario for the migration.

434 Appendix ■ Answers to Review Questions

6. B. There is no such thing as an Amazon EBS Attachable device, so option A is wrong. Option
B is the right choice; you can choose between AWS Snowcone or AWS Snowball according to
the amount of data you need to send. There is no such service as Amazon S3 Upload Man-
ager, so option C is not correct. Option D is not correct, as it uses your network connection
to transfer data.

7. B. Option A does not exist as a service. Option B is correct; you can use AWS DataSync
to compress data and use optimization algorithms to send data through a network con-
nection. Option C is not correct because you can use AWS DataSync as well as third- party
software, not only third- party software, for this purpose. Amazon S3 multipart upload opti-
mizes throughput using parallelism but not compression algorithms, so option D is not the
best answer.

8. A and D. You can use AWS SCT to convert the database schema and AWS DMS to migrate
the data, so options A and D are correct. AWS Step Functions doesn’t help on database
migration, nor does Amazon EKS, so options B and C are not correct. Option E is not correct
because AWS DTS does not exist.

9. B. The replication instance keeps track of each table replication, what changes have been
applied, and what have already need to be applied, so option B is correct. Source endpoint
and target endpoint map the connection string attributes for the source and the target.
Option D is not correct because it does not exist.

10. A. Option A is a good path for small databases because it allows some downtime during
migration. Option B does not exist. Option C is not correct, as you cannot restore directly
from an EFS volume to the Aurora Cluster. Option D is not correct, as you cannot mount an
Amazon EBS on premises.

Chapter 13: Disaster Recovery
1. C. The Aurora global database supports high write throughput with lower replication lag.

That’s the best alternative. Cross- region read replicas may face high replication lag depending
on the data volume to be replicated, as well as native binlog replication. Automated backups
will not improve data locality.

2. B. The customer has a huge concern about costs, and the RTO is 10 hours. This RTO time is
enough to restore a backup that is already replicated to the remote region. Option A is valid,
but cross- region read replicas are more expensive. DMS replication is difficult to manage in
the event of a disaster, and native redo is more expensive. Data Guard isn’t available to be
implemented in RDS for Oracle; it must be implemented by a read replica.

3. B. The only alternative that will allow us to manage the failover operation without changing
or rebuilding the topology is the Aurora global database with managed planned failover. All
the other alternatives require rebuilding the topology after activation.

4. A, B. Amazon Aurora PostgreSQL with at least one read replica and Amazon RDS Post-
greSQL with Multi- AZ enabled will fulfill the requirements.

Chapter 13: Disaster Recovery 435

PostgreSQL on EC2 is a self- managed deployment, and Amazon Aurora global databases are
a multiregion strategy.

5. C. An Amazon Aurora global database with write forwarding enabled will support the
relational model and allow it to accept the write operations on the remote region.

An Amazon RDS cross- region read replica allows only read operations on remote regions but
not writing.

Amazon DynamoDB global tables allow read and write operations on remote regions but
aren’t compatible with a relational model.

An Amazon DocumentDB global cluster allows only reading on remote regions and isn’t
compatible with a relational model.

6. B. Amazon Aurora global databases allow managed failover to fail over to a secondary
region without destroying the replication topology.

Amazon DynamoDB global tables allow replication, reading, and writing in remote regions.
But they don’t allow the relational model.

An RDS cross- region read replica allows the promotion of the remote read replica but
doesn’t allow you to revert to the primary master.

An Amazon Neptune cluster is not a relational database.

7. C. An Amazon RDS cross- region read replica allows read operations on remote regions, and
in a failure situation the remote read replica can be promoted, with lower cost than Aurora
global databases.

Amazon DocumentDB is not appropriate for relational models.

8. B. Amazon DocumentDB is able to support 16 MB document sizes, and to improve resilience
across a single region, you can deploy read replicas across different availability zones.

This scenario doesn’t require cross- region replication for choosing an Amazon DocumentDB
global cluster.

Although DynamoDB also supports documents, the item limit size is 400 KB.

9. D. Amazon DocumentDB supports global clusters to replicate to a secondary region with
minimal effort.

DMS does not support Amazon DocumentDB as a source.

Converting to Amazon DynamoDB will require an application code change.

10. C. Amazon DynamoDB global tables will enable DynamoDB tables on remote regions for
read and write operations.

Amazon Aurora global databases with write forwarding enable write operations, but for an
application with a defined known pattern to retrieve data, DynamoDB will be more efficient.

Deploying on DynamoDB will enable resilience only within a single region.

Amazon RDS does not allow write operations on remote regions.

436 Appendix ■ Answers to Review Questions

Chapter 14: Save Time and Reduce
Errors Automating Your Infrastructure
1. C. Although the AWS CLI is a doable option, it will create overhead regarding multiple

regions. AWS CloudFormation supports using StackSet, which is a native feature. Using the
AWS Management Console is out of the question, because it clearly asked about automation.

2. D and E. Options A and C will not guarantee that the RDS resources will not be affected by
changes made by the application team. Option B could be right, but it is not guaranteed that
future changes made by the application team will affect the RDS resources, and the question
asks to avoid any harm to those resources. Option D is a best practice, and option E will
effectively prevent any database resources from being changed.

3. C and E. Option B will not prevent accidental deletion. Option D is already the default
behavior. Option D could be a good option, but it goes in a different direction from what the
question is asking, which is to avoid any accidental deletion; option C will allow deletion but
take a snapshot of the resources. Option B prevents accidental deletion in your CloudForma-
tion stack. Option E will prevent data loss by retaining resources associated with this dele-
tion policy.

4. D. The only option that meets the requirements is to use the AWS Secrets Manager, because
it allows the stored secrets to be rotated and the question clearly asks for a routine master
password rotation. SSM Parameter Store does not rotate the stored values.

5. A. The question clearly mentioned a separate environment, which means that AWS System
Manager Parameter Store is a great option to fit for this feature, because the parameter can
be used in the template dynamically. Using Amazon S3 and AWS Lambda would be more
complex solutions.

6. C. The key point for this question is about the credential rotations. Option C is the only one
that clearly mentioned AWS Secrets Manager, the AWS service that stores, encrypts,
and rotates credentials. You must create as a resource an AWS Secret Manager, set the
GenerateSecretString property, and then create a database that references that secret
using dynamic references. Then create the resource AWS::SecretManager::SecretTa
rgetAttachment linking the Secrets Manager secret as SecretId and the database as
TargetId.

7. B. To provide more independently configurable read and write capacity, the template should
allow the user to pass the values they will fit into Amazon DynamoDB. The only option that
allows this is option B. Pass the values as parameters and then reference them using. The
Ref intrinsic function in the model will give exactly the same number that was passed to the
Parameters section. The use of Mappings and Outputs is out of the question because they are
constructed for a purpose other than what the question is asking for.

Chapter 14: Save Time and Reduce Errors Automating Your Infrastructure 437

8. B and E. StackSets is a great option for multiple accounts and region deployments. Nested
stacks are a great option to modularize your environment and reuse your templates. Enabling
termination protection could avoid accidental deletion of a stack. Option B is not a best
practice; you should use AWS SSM Parameter Store or AWS Secrets Manager. Option E is not
a best practice, since nested stacks or conditions are better choices. See more at docs.aws
.amazon.com/AWSCloudFormation/latest/UserGuide/best- practices.html.

9. A and C. Option B does not cause rollback failure. If option D is true, you could not proceed
with an update at all; every AWS CloudFormation template must be valid to move forward
to deployment. Option E could not be a cause, because you can do updates through the
AWS Management Console and AWS CLI. See more at docs.aws
.amazon.com/AWSCloudFormation/latest/UserGuide/troubleshooting
.html#troubleshooting- errors- update- rollback- failed.

10. C. AWS CloudTrail integrates with AWS CloudFormation, so you can see in AWS Cloud-
Trail’s dashboard all the API calls used by AWS CloudFormation. See more at docs
.aws.amazon.com/AWSCloudFormation/latest/UserGuide/security- best-
practices.html#cloudtrail.

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-practices.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-practices.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/troubleshooting.html#troubleshooting-errors-update-rollback-failed
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/troubleshooting.html#troubleshooting-errors-update-rollback-failed
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/troubleshooting.html#troubleshooting-errors-update-rollback-failed
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/security-best-practices.html#cloudtrail
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/security-best-practices.html#cloudtrail
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/security-best-practices.html#cloudtrail

Index

A
ACID (atomicity, consistency, isolation,

durability), 6–7, 170
ACM (AWS Certificate Manager), 26
AD (Active Directory), 25
ad hoc queries, 37
alarms, CloudWatch, 33
Amazon Aurora, 40–42, 79

cloning, 94–96
cluster creation, 104
DB clusters, 81

replication, 82–83
disaster recovery

global database, 380–381
high availability, 378
multiregion strategy, 378–379
read replica, 379–380
storage architecture, 379

Global Database, 82–84
high availability, 82
multi- master, 85
PostgreSQL target database, 361
priorities, 105
read replica, 84
replica, adding, 105
Serverless, 84–85
storage, 80–81

Amazon CloudTrail, 33–34
Amazon CloudWatch, 244–245
Amazon DocumentDB, 42–46, 167, 170

ACID, 170
Amazon VPC, 171
answers to review questions, 425–426
architecture, CNAME, 175
availability, 176
availability zones, 171

AWS CloudFormation, 176
AWS DMS (Data Migration

Service), 183–184
cluster storage, 172
clusters

creating, 174–175
creation, 190
parameter groups, 190–191

developing with, 187
disaster recovery, 381

multi- AZ strategy, 381–382
multiregion strategy, 382

versus DynamoDB, 187–188
endpoints

cluster, 172
instance, 172
reader, 172

migrating from MongoDB, 183–184
versus MongoDB, 182
monitoring, 184–187
pricing, 188
read preferences, 173
ReplicationLag, 172

Amazon DynamoDB, 42–46, 57, 167
acceleration, 127–128
answers to review questions, 424–425
autoscaling, 137–139
backup/restore

continuous, 135–136
on- demand, 134–135

capacities
on- demand, 122
provisioned, 122–124
reserved, 124

composite key, 114
DAX (DynamoDB Accelerator), 142, 143–147
design, items, 112–113

440 Amazon EBS (Elastic Block Storage) – Amazon OpenSearch Service

devices, 117
disaster recovery

global tables, 382–383
multi- AZ strategy, 382
multiregion strategy, 382–383

versus DocumentDB, 187–188
global secondary index (GSI), 160
global tables, 132–134
indexes, 120–122
migrating to, 114

NoSQL databases, 115–116
plain- text files, 115
SQL, 115–116

monitoring, 143–147
partition key, 113–114
queries, 116–117, 161
resources, 161
scalability, 136–139
scans, 119–120
security

data protection, 142–143
IAM, 139–142

streams, 129
Kinesis Data Streams compare, 130
record views, 130–131
use cases, 131

table creation, 160
transactions, 124–127
TTL (time to live), 128–129

Amazon EBS (Elastic Block Storage),
27–28, 58

versus Amazon S3 costs, 200–204
Amazon EC2. See EC2 (Elastic

Compute Cloud)
Amazon EFS (Elastic File System), 28–29
Amazon ElastiCache, 42–46, 315

backups, 324
CPUUtilization, 325
EngineCPUUtilization, 325
Memcached, 319–321

cluster creation, 328–329
Redis, 319, 321–324
resource deletion, 333

restore, 324
security group, 324–325

Amazon EMR, 211
Amazon Ion, 299, 303–304
Amazon Keyspaces, 42–46

answers to review questions, 424–425
Amazon Kinesis Data Analytics, 253–254
Amazon MemoryDB, 42–46
Amazon MemoryDB for Redis, 325–326
Amazon Neptune, 42–46, 178–179

architecture, 279–280
availability, 287
AWS KMS (Key Management Service)

and, 289
backup/restore, 289–290
data, loading, 282–284
disaster recovery, 383–384
endpoints

cluster endpoints, 285
custom endpoints, 286
instance endpoints, 286
reader endpoints, 285–286

failover policy, 287–288
monitoring, 290
openCypher, 281
property graphs, 280
query languages, 280–282
RDF (Resource Description

Framework), 280–281
read replicas, 284–286
resilience, 284
scalability

instance scaling, 287
read scaling, 287
storage scaling, 286

security, 288–289
storage, 284

Amazon OpenSearch Service
answers to review questions, 427–429
backup, 259–260
certification, 258–259
data resilience, 259–260
data search, 258–259

Amazon QLDB (Quantum Ledger Database) – Amazon Redshift 441

domain creation, 268–269
domain deletion, 270
domain login, 269
loading data, 257–258
metrics, 259
scalability, 259
security, 259

Amazon QLDB (Quantum Ledger Database),
42–46, 296–297

Amazon Ion, 299, 303–304
answers to review questions, 431
application integration, 301–302
backups, 303–304
best practices, 307
cryptographic verification, 299–300
digests, 302–303

requesting, 310
documents, 298–299

revision, 310
Ion libraries, 301
journal, 297, 299
ledger, 298

database, 309
Merkle tree, 301
monitoring, 306–307
OLTP (online transaction processing), 299
performance, 304
proof of integrity, 302–303
QLDB API, 301
queries, 302, 309
query engine, 299
sample data, loading, 309
scalability, 304
security

data protection, 306
IAM, 305

system catalog, 298
tables, 298
validation, 299–300

Amazon QuickSight, 211
Amazon RDS (Relational Database Service),

40–42, 178–179, 314
answers to review questions, 422

auditing, 97–98
backtrack, 94
backups, 90–93
database engines, 76–78
deletion protection, 78–79
disaster recovery

multi- AZ, 375–377
multiregion strategy, 377–378

encryption
at rest, 100
in transit, 99–100

Enhanced monitoring, 87
events, 87
instance status, 87
logs, 87
MariaDB, 361
monitoring, 86–89
MS SQL, 211
multi- AZ, 72–73, 103
MySQL, 211
MySQL database creation, 103
option groups, 76–78
Oracle, 211
parameter groups, 74–76
patch management, 86
Performance Insights, 87
performance management, 86–89
PostgreSQL, 211
pricing model, 79
read replicas, 73–74
recommendations, 87
restorable time, 91–92
restore, 90–93
scalability, 73
snapshots, 90–91
storage options, 201
upgrades, 86

Amazon Redshift, 40–42, 226
Amazon CloudWatch and, 244–245
Amazon S3 VPC endpoints and, 247
answers to review questions, 427–429
backups, 247–248
client- side encryption, 247

442 Amazon S3 (Amazon Simple Storage Service) – Amazon Timestream

cluster architecture, 235
cluster node types, 243–244
clusters

creating, 262
destroying, 266
resizing, 266
snapshots, manual, 265

compute node, 235
COPY, 240–241
data, loading, 240–241
data lakehouse, 242–243
data resilience, 247–248
distribution style, 236–237

all distribution, 238
auto distribution, 238
even distribution, 238
key distribution, 238

federated queries, 242
leader node, 235
migrating to, AWS SCT and, 233–235
monitoring, 244–245
query editor

exporting resultsets, 264–265
inserting data, 264–265
table creation, 262–264

Redshift Spectrum, 242
scalability, 245–246
security, 246–247
slices, 235, 240
snapshots, clusters, 265
sort key, 238
SQA (short query acceleration), 246
table creation, 262–264
table design, 235–236
WLM (workload management), 246

Amazon S3 (Amazon Simple Storage Service),
29–31, 198

versus Amazon EBS cost, 200–204
Amazon EMR and, 211
Amazon QuickSight, 211
Amazon S3 Deep Archive, 199
Amazon S3 Glacier, 199
Amazon S3 Intelligent Tier, 199
Amazon S3 OneZone- IA, 199

Amazon S3 Standard, 198, 199
Amazon S3 Standard- IA, 198, 199
Amazone SageMaker, 211
answers to review questions, 426–427
availability, 213–214
AWS DataSync, 212
AWS DMS, 211
AWS Glue jobs, 211
AWS Snow family, 212
AWS Storage Gateway, 212
AWS Transfer for SFTP, 212
backups, 211
buckets

creating, 217
lifecycle rules, 218

dump files, 211
durability, 213–214
encryption, 215–216
IAM (Identity and Access

Management), 214–215
LOBs, 217

indexing, 208–211
pay per usage, 212–213
S3 buckets, 204–208

DynamoDB tables, 210
scalability, 212–213
versioning, enabling, 218

Amazon S3 VPC endpoints, Amazon Redshift
and, 247

Amazon SageMaker, 211
Amazon Timestream, 42–46, 251

answers to review questions, 427–429
backup, 257
cellular architecture, 253
cellular endpoint, 253
data resilience, 257
database creation, 267
database deletion, 268
discovery endpoint, 253
ingestion layer, 252
loading data, 253–254
metrics, 255
queries, 254–255

sample, 267

APIs (application programming interfaces) – backup/restore 443

scalability, 255
security, 256–257
storage layer, 252
terminology, 251

APIs (application programming
interfaces), 166

ARN (Amazon Resource Name), 214
at- rest encryption, 256
auditing, RDS (Relational Database

Service), 97–98
automation

answers to review questions, 436
AWS CloudFormation

AWS::RDS::DBCluster, 401–403
AWS::RDS::DBInstance, 400–401
change sets, 391
stack deletion, 408–409
stack updates, 403–407
stacks, 391, 392
template benefits, 390–391
template components, 393–400

AWS Secrets Manager, 411–414
AWS SSM, 409–411

autoscaling, DynamoDb, 137–139
AWS (Amazon Web Services)

AZ (availability zone), 14–15
local zones, 15
points of presence, 16
regions, 14
resources, deleting, 364
wavelength zones, 15

AWS CloudFormation
answers to review questions, 436
AWS::RDS::DBCluster, 401–403
AWS::RDS::DBInstance, 400–401
change sets, 391
stack deletion, 408–409
stack updates, 403–407
stacks, 391, 392
template benefits, 390–391
template components, 393–400

AWS DataSync, 212, 357
AWS Direct Connect, 179

data migration, 340, 342

AWS DMS (Data Migration Service),
183–184, 211, 347

best practices, 353–356
continuous replication, 352–353
heterogeneous database migration, 343
replication instances, 348–349

resilience, 356
security, 356
setup, 350–352
source endpoints, 347–348
target endpoints, 348–350

AWS DynamoDB, 8
AWS EBS (Elastic Block Store), 8
AWS Glue jobs, 211
AWS IAM, 177–178
AWS Keyspaces, 8
AWS KMS (Key Management Service), 25,

26, 178–179
Amazon Neptune and, 289

AWS SCT (Schema Conversion Tool), 344
data warehouses, migrating with, 233–235
databases supported, 345–346
EC2 bastion host, 362
Extension Pack, 345
schema, converting, 363
task creation, 346

AWS Secrets Manager, 26, 180, 411–414
AWS Shared Responsibility Model, 170
AWS Site- to- Site VPN, 342
AWS Snow family, 212, 357–358
AWS SSM (Systems Manager), 411–414
AWS SSO (single sign- on), 25
AWS Storage Gateway, 212, 358
AWS Transfer for SFTP, 212

B
Backman, Charles W., 4–5
backup and recovery, disaster recovery

and, 373
backup/restore

Amazon ElastiCache, 324
Amazon Neptune, 289–290

444 bandwidth – data warehouses

Amazon OpenSearch Service, 259–260
Amazon Redshift, 247–248
Amazon S3, 211
Amazon Timestream, 257
DynamoDB

continuous, 135–136
on- demand, 134–135

bandwidth, usage optimization, 343
block size, databases, 196–197
block storage, 27
Brewer, Eric, 7
BSON (Binary JSON), 167
built- in database cache, 314–315

C
cache hit rate, 325
cache hits, 316, 325
cache invalidation, 315
cache misses, 316, 325
caching, 314

answers to review questions, 432–433
application performance, 317–318
built- in database cache, 314–315
in- memory databases, 315
lazy loading, 316–317
local cache, 315
memory- optimized cache nodes, 320
pymemcache Python library, 330
Redis library for Python Library, 332–333
remote caching, 316–317
use cases, 315–316
write- through, 316–317

CAP theorem, 7, 37
Cassandra, 154–155
CDC (Change Data Capture), 115, 343
CDN (content delivery network), 16
client- side encryption, 215–216, 247
CloudWatch, 32–33, 87

Keyspaces and, 157–158
CODASYL Data Model, 5
Codd, E.F., 5
continuous backup, DynamoDB, 135–136

Couchbase, 167
CouchDB, 167
CSV (Clustered Shared Volumes), 9

D
DAS (Database Activity Streams), 98
dashboards, CloudWatch, 33
data access patterns, 37
data encryption

at- rest encryption, 25
in- transit encryption, 26

data lakehouse, 233
data lakes, 241–242
data marts, 230–231
data migration, 340

answers to review questions, 433–434
AWS DataSync, 357
AWS Direct Connect, 342
AWS DMS, 347–350

best practices, 353–356
continuous replication, 352–353
replication instances, 356
security, 356
setup, 350–352

AWS SCT (Schema Conversion Tool), 344
data warehouses, 233–235
databases supported, 345–346
Extension Pack, 345
task creation, 346

AWS Site- to- Site VPN, 342
AWS Snow family, 357–358
AWS Storage Gateway, 358
CDC (Change Data Capture), 343
downtime for migration, 343
heterogeneous database migration, 343
path, 358–359
time estimates, 341–342

data tokenization, 247
data visualization, KPIs (key performance

indicators), 231
data warehouses

answers to review questions, 427–429

database engines – DDL (Data Definition Language) 445

data marts, 230–231
database engines, 231–233
ETL (extract, transform, and

load), 229–230
migrating to Redshift, 233–235

database engines
analytics, 229
MPP (massively parallel

processing), 231–233
operational data, 229
time- series, 229

database management system (DBMS). See
DBMS (database management system)

databases. See also relational databases
in the cloud, 10–12
document databases, 166

backup and restore, 180–181
BSON (Binary JSON), 167
collections, 167
Couchbase, 167
CouchDB, 167
data protection, 178–179
DocumentDB, 167, 170–177, 184–188
DocumentDB versus

DynamoDB, 187–188
DocumentDB versus MongoDB, 182
DynamoDB, 167
JSON, 166
migrating MongoDB, 183–184
MongoDB, 167, 168–170
performance, 182
scaling, 182
schema, 166
security, 177–180
terminology, 167
XML, 166

EC2 and, 60
flat- file, 4
graph databases, 276–277

Amazon Neptune, 279–290
common use, 278–279
when to use, 277–278

I/O requirement, 58–59
in- memory, 315

infrastructure
basic, 9
complex, 9–10
resiliency, 9–10

large objects and, 196–198
management, 10
nonrelational, 42–46
on- premises, 9–10
QLDB, 298
relational, 298
scaling, 61
storage, LOB (large objects), 196–198
time- series, examples, 249–250
upgrading, 61–62

databases on EC2, 374–375
datastores, 36

ACID compliance, 38
ad hoc queries, 37
answers to review questions, 422
availability, 39
business logic, 39
consistency, 38
cost, 40
data access patterns, 37
durability, 39
latency, 37
PIE theorem, 37
QPS (queries per second), 37
scaling, 37–38
security, 39
TPS (transactions per second), 37
volume, 38

DAX (DynamoDB Accelerator),
142, 143–147

DBA (database administrator), 10, 314
career, 11–12
DevOps, 11

DBASE, 6
DBMS (database management system), 4–5

ADABAS, 6
history, 4–9
INGRESS, 6

DCL (Data Control Language), 56
DDL (Data Definition Language), 5, 55

446 Direct Connect – encryption

Direct Connect, 20
disaster recovery

Amazon Aurora
global database, 380–381
high availability, 378
multiregion strategy, 378–379
read replica, 379–380
storage architecture, 379

Amazon DocumentDB
multi- AZ strategy, 381–382
multiregion strategy, 382

Amazon DynamoDB
global tables, 382–383
multi- AZ strategy, 382
multiregion strategy, 382–383

Amazon Neptune, 383–384
Amazon RDS

multi- AZ, 375–377
multiregion strategy, 377–378

answers to review questions, 434–436
backup and recovery, 373
challenges, 371–372
costs, 372
databases on EC2, 374–375
replication, 373–374
requirements, 370
RPO (recovery point objective), 371
RTO (recovery time objective), 371

DML (Data Manipulation Language),
5, 55–56

document databases, 166
answers to review questions, 425–426
backup and restore

PITR (point- in- time recovery), 180
RPO (recovery point objective), 181
snapshots, 181

BSON (Binary JSON), 167
collections, 167
Couchbase, 167
CouchDB, 167
data protection, 178–179
DocumentDB, 167

ACID, 170

Amazon VPC, 171
architecture, 175–177
availability zones, 171
cluster storage, 172
clusters, 171
creating, 174–175
developing with, 187
versus DynamoDB, 187–188
migrating from MongoDB, 183–184
versus MongoDB, 182
monitoring, 184–187
pricing, 188
read preferences, 173
ReplicationLag, 172

DynamoDB, 167
JSON (JavaScript Object Notation), 166
MongoDB, 167, 168–170
performance, 182
scaling, 182
security

access control, 177–178
AWS IAM, 177–178
POLP (principle of least privilege), 178
SCRAM (Salted Challenge Response

Authentication), 177
terminology, 167
XML (eXtensible Markup Language), 166

downtime for migration, 343
DQL (Data Query Language), 55

E
EC2 (Elastic Compute Cloud), 8, 10–11, 58

AWS SCT and, 362
database management, 60
database monitoring, 60
JDBC drivers setup, 362–363
Linux machine creation, 327–328
schema, setup, 362–363

Elasticsearch, 257
encryption

Amazon S3, 215–216

ETL (extract transform load) – information latency 447

at- rest, 256
client- side, 215–216, 247
in- transit, 256
Keyspaces, 155–156
server- side, 215–216

ETL (extract transform load), 11, 229–230
events, CloudWatch, 33

F
file storage, 26
FKs (foreign keys), 5
flat- file databases, 4

G
GPFS (General Parallel Filesystem), 9
GPS (Global Position System), image

recognition, 226
graph databases

Amazon Neptune
architecture, 279–280
availability, 287
backup/restore, 289–290
data, loading, 282–284
failover policy, 287–288
graph models, 280–282
monitoring, 290
query languages, 280–282
read replicas, 284–286
resilience, 284
scalability, 286–287
security, 288–289
storage, 284

answers to review questions, 429–430
data storage, 277
fraud detection, 278–279
IT operations, 279
knowledge graphs, 278
life sciences, 279
network operations, 279

nodes, 276
personalization, 278
predicates, 276
recommendations, 278
vertices, 276
when to use, 277–278

Greenplum, 233
GSI (global secondary index), 120–121, 160

H
HDD (hard disk drives), 58
HDD volumes, 28
heterogeneous database migration, 343

I
I/O requirement, database performance

and, 58–59
IAM (Identity and Access Management),

24–25, 214–215
Amazon QLDB, 305
AWS SSO (single sign- on), 25
DynamoDB, 139–142
Keyspaces, 156–157

identity- based policies, 24
in- memory databases, 315
in- transit encryption, 26, 256
Indexed Sequential Access Method. See ISAM

(Indexed Sequential Access Method)
indexes, 5–6

DynamoDB, 120–122
GSI (global secondary index), 120–121
ISAM (Indexed Sequential Access

Method), 4
LOBs, 208–211
LSI (local secondary index), 120–121
queries and, 209

InfiniBand networks, 9
information latency, 226

answers to review questions, 427–429

448 Internet gateways – MPP (massively parallel processing)

Internet gateways, 18
IoT (Internet of Things)

Amazon Timestream, 253–254
image recognition, 226

IP addressing
external, 17
internal, 17

ISAM (Indexed Sequential Access Method), 4

J
JSON (JavaScript Object Notation), 166
jump servers, 179

K
Keyspaces

backups, 154–155
best practices, 153–154
capacity

on- demand mode, 151
provisioned mode, 152

Cassandra keyspace groups, 148
Cassandra tables, 148
CloudWatch and, 157–158
clustering keys, 148–149
columns, static, 149
consistency models, 152–153
IAM (identity and access

management), 156–157
migrating to, 149–150
monitoring, 157–158
partition keys, 148–149
row sizing, 149
scalability, 155
security

access control, 156–157
encryption, 155–156

use cses, 152–153
KPIs (key performance indicators), 231

L
latency, datastores, 37
lazy loading cache strategy, 316–317
LOB (large objects), 196

Amazon S3, indexing, 208–211
answers to review questions, 426–427
moving to Amazon S3

folders, 206–208
S3 buckets, 204–208
uploading objects, 206–208

strategies, 201
support, 197

local cache, 315
logs, CloudWatch, 33
LSI (local secondary index), 120–121

M
MAA (Maximum Availability

Architecture), 10
MariaDB RDS, 361
Memcached, 319–321

cluster creation, 328–329
memory- optimized cache nodes, 320
metrics, 32
migrating

AWS DMS (Data Migration
Service), 183–184

hybrid approach, 183
to Keyspaces, 149–150
offline migration, 183
online migration, 183

migration, relational databases, 101
MongoDB, 115–116, 167, 168–170

versus DocumentDB, 182
monitoring

Amazon CloudTrail, 33–34
Amazon CloudWatch, 32–33
Amazon Neptune, 289–290

MPP (massively parallel processing), 7

MPP (massively parallel processing) architecture – relational databases 449

MPP (massively parallel processing)
architecture, 231–233

MySQL, 7

N
NACL (network access control list), 22
NAT (network address translation), 18
NAT gateway, 18
networking, 340

Direct Connect, 20
Internet gateways, 18
IP addressing, 17
NAT gateway, 19
security, 21–22

data encryption, 25–26
IAM (identity and access

management), 24–25
identity- based policies, 24
NACL (network access control list), 22
network segmentation, 23
SG (security group), 22
Shared Responsibility Model, 22–23
temporary security credentials, 24

subnets, 17
Transit Gateway, 19
VPC (Virtual Private Cloud), 16

peering, 19
routing, 17–18

VPN (virtual private network), 20
nonrelational databases, 42–46
NoSQL, 8
NVME (nonvolatile memory express) disks, 9

O
object storage, 27
object storage services, Amazon S3, 198–199
OCC conflict (OccConflictException), 304
OLTP (online transaction processing),

Amazon QLDB, 299
on- demand backup (DynamoDB), 134–135

online migration, 183
operations, 31–32
Oracle RAC (Real Application Clusters), 10

P
PARADOX, 6
performance, document databases, 182
PFS (Perfect Forward Secrecy), 156
PIE theorem

E (efficiency), 37
I (infinite scale), 37
P (pattern flexibility), 37

PITR (point- in- time recovery), 154
PKs (primary keys), 5
PODC (Principles of Distributed

Computing), 7
POLP (principle of least privilege), 178
POS (point- of- sales), 7
Postgres95, 7
PostgreSQL, 7
pymemcache Python library, 330

Q
queries

Amazon QLDB, 302, 309
Amazon Timestream, 254–255
indexes and, 209
SQA (short query acceleration), 246

query languages, 6

R
RBAC (role- based access control), 324
RCUs (read capacity units), 152
Redis, 319, 321–324

Amazon MemoryDB for Redis, 325–326
cluster creation, 331–332

relational databases, 40–42, 54–55, 298
Amazon Aurora, 79

450 remote caching – scaling

cloning, 94–96
DB clusters, 81, 82–83
Global Database, 82–84
high availability, 82
multi- master, 85
read replica, 84
Serverless, 84–85
storage, 80–81

answers to review questions,
422–424

block size, 196
DAS (Database Activity Streams), 98
database engines, 76–78
DynamoDB

acceleration, 127–128
backup/restore, 134–136
design, 112–114
devices, 117
global tables, 132–134
indexes, 120–122
monitoring, 143–147
on- demand capacity, 122
provisioned capacity, 122–124
queries, 116–117
reserved capacity, 124
scalability, 136–139
scans, 119–120
security, 139–143
streams, 129–132
transactions, 124–127
TTL (time to live), 128–129

managed services, 62–79
migrating, 101
RDS, 62–63

auditing, 97–98
backtrack, 94
backups, 90–93
deletion protection, 78–79
encryption at rest, 100
encryption in transit, 99–100
Enhanced monitoring, 87
events, 87
instance status, 87

instances, launching, 63–71
logs, 87
monitoring, 86–89
multi- AZ, 72–73
option groups, 76–78
parameter groups, 74–76
patch management, 86
Performance Insights, 87
performance management, 86–89
pricing model, 79
read replicas, 73–74
recommendations, 87
restorable time, 91–92
restore, 90–93
scalability, 73
snapshots, 90–91
upgrades, 86

security, 98–99
terminology, 167

remote caching, 316–317
replication, disaster recovery, 373–374
replication node groups, 323
ReplicationLog, 172
RoCE (RDMA over converged Ethernet), 9
routing, VPC, 17–18
RPO (recovery point objective), 176, 371
RRUs (read request units), 151
RTO (recovery time objective), 10, 176, 371

S
SANs (storage area networks), 9
scalability

Amazon OpenSearch Service, 259
Amazon QLDB, 304
Amazon Redshift, 245–246
Amazon S3, 212–213
Amazon Timestream, 255
DynamoDB, 136–137

autoscaling, 137–139
scaling

concurrency, 38

schema – TTL (time to live) 451

databases, 61
document databases, 182
throughput, 37–38

schema, 166
AWS SCT, 344–346

converting, 363
SCRAM (Salted Challenge Response

Authentication), 177
SDK (software development kit), 172
security

Amazon ElastiCache, 324–325
Amazon OpenSearch Service, 259
Amazon Redshift, 246–247
Amazon Timestream, 256–257
datastores, 39
document databases

access control, 177–178
AWS IAM, 177–178
POLP (principle of least privilege),

178
SCRAM (Salted Challenge Response

Authentication), 177
IAM (Identity and Access

Management), 214–215
Keyspaces

access control, 156–157
encryption, 155–156

network, 21–22
data encryption, 25–26
IAM (identity and access

management), 24–25
identity- based policies, 24
network segmentation, 23
SG (security group), 22
Shared Responsibility Model, 22–23
temporary security credentials, 24

relational databases, 98–99
server- side encryption, 215–216
servers, jump server, 179
Shared Responsibility Model, 22–23
site- to- site VPN, 20
Snowflake, 233
SQA (short query acceleration), 246

SQL (Structured Query Language), 6
aggregation, 232
DCL (Data Control Language), 56
DDL (Data Definition Language), 55
DML (Data Manipulation

Language), 55–56
DQL (Data Query Language), 55
TCL (Transaction Control

Language), 56–57
SSD (solid- state drives), 9, 58
storage

Amazon EBS (Elastic Block
Storage), 27–28

Amazon EFS (Elastic File System), 28–29
Amazon S3 (Amazon Simple Storage

Service), 29–31
block storage, 27
databases, LOB (large objects), 196–198
durability, 27
file storage, 26
HDD volumes, 28
object storage, 27
RDS, 201

subnets, 17

T
TCL (Transaction Control Language),

56–57
TCO (total cost of ownership), 111
TDE (Transparent Data Encryption), 25
temporary security credentials, 24
Teradata, 233
time- series databases

Amazon Timestream, 251
answers to review questions, 427–429
examples, 249–250

TLS (Transport Layer Security)
data migration, 340
encryption, 256

Transit Gateway, 19
TTL (time to live), 317

452 upgrading – XML (eXtensible Markup Language)

U
upgrading, databases, 61–62

V
validation, Amazon QLDB, 299–300
Vertica, 233
Virtual Storage Access Method. See VSAM

(Virtual Storage Access Method)
VPC (Virtual Private Cloud), 16, 340

endpoints, 21
peering, 19
routing, 17–18

VPN (virtual private network), 20, 179, 340
AWS Site- to- Site VPN, 342
site- to- site, 20

VSAM (Virtual Storage Access Method), 4

W
WLM (workload management), 246
write- through cache strategy, 316–317
WRUs (write request units), 151

X–Y–Z
XML (eXtensible Markup Language), 166

WILEY END USER LICENSE AGREE-
MENT

Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Cover
	Title Page
	Copyright Page
	Contents at a Glance
	Contents
	Table of Exercises
	Introduction
	What Does This Book Cover?
	Interactive Online Learning Environment and Test Bank
	AWS Certified Database Study Guide – Specialty (DBS-C01) Exam Objectives
	Objective Map

	Part I Workload-Specific Database Design
	Chapter 1 Databases—from Your Server to AWS Cloud
	Databases from the Beginning
	1960s
	1970s
	1980s
	1990s
	2000–2010
	2010–Today

	Databases on Premises
	Basic Infrastructure
	Complex Infrastructure and Resiliency
	Management

	Databases in the Cloud
	Data Remains Data
	DBAs Are the Initial DevOps
	DBA Career—Now What?

	Summary

	Chapter 2 Basic AWS Concepts
	AWS Global Infrastructure
	AWS Regions
	AWS Availability Zones
	AWS Local Zones
	AWS Wavelength Zones
	Points of Prescence

	Networking
	IP Addressing
	Subnets
	VPC Routing
	Gateways and Connectivity Options

	Security
	Network Security
	AWS Shared Responsibility Model
	Identity and Access Management
	Data Encryption

	Storage at AWS
	Amazon Elastic Block Storage
	Amazon Elastic File System
	Amazon Simple Storage Service

	Operations
	Monitoring and Logging
	Amazon CloudWatch
	AWS CloudTrail

	Summary

	Chapter 3 Purpose-Built Databases
	Data store Concepts
	Data Access Patterns
	Latency
	Scaling
	Transaction Support
	Consistency
	Volume
	Durability
	Availability
	Security/Compliance
	Business Logic
	Cost

	Purpose-Built Databases on AWS
	Relational Databases
	Nonrelational Databases

	Summary
	Exam Essentials
	Review Questions

	Part II Management and Operations, Database Security, Monitoring and Troubleshooting per Workload
	Chapter 4 Relational Databases on AWS
	Relational Databases
	Structured Query Language
	Install and Manage Databases Yourself
	I/O Requirement
	Managing Databases on EC2
	Monitoring Databases on EC2
	Scaling Databases
	Upgrading Databases

	Managed Services for Relational Databases
	Launching an RDS Instance
	Managing High Availability and Scalability
	Configuring RDS Parameter Groups
	Configuring RDS Option Groups
	Deletion Protection
	RDS Pricing Model

	Amazon Aurora Cloud-Native Relational Database
	Amazon Aurora Storage
	Amazon Aurora DB Clusters
	Amazon Aurora High Availability
	Amazon Aurora Global Database
	Amazon Aurora Read Replica Across Regions
	Amazon Aurora Serverless
	Amazon Aurora Multi-master
	Patch Management and Upgrade
	Monitoring and Performance Management
	Backup and Restore
	Backtrack
	Cloning an Amazon Aurora DB Cluster Volume
	Auditing
	Database Activity Stream in Amazon Aurora
	Security
	Migrating Databases

	Summary
	Exam Essentials
	Exercises
	Review Questions

	Chapter 5 Low-Latency Response Time for Your Apps and APIs
	Getting Started with Modern Applications and NoSQL Databases
	Amazon DynamoDB
	Design Considerations
	Migrating Your Data into DynamoDB
	Query Considerations
	Amazon DynamoDB Index Options
	DynamoDB Capacity Modes
	Other Features of DynamoDB
	Backup/Restore
	Scalability
	Security
	Monitoring

	Amazon Keyspaces
	Design Considerations
	Migrating Your Data into Keyspaces
	Query Considerations
	Keyspaces Capacity Modes
	Consistency Models
	Use Cases
	Best Practices
	Backups
	Scalability
	Security
	Monitoring

	Summary
	Exam Essentials
	Exercises
	Review Questions

	Chapter 6 Document Databases in the Cloud
	Introducing Document Databases
	Getting Started with Amazon DocumentDB
	Creating an Amazon DocumentDB Cluster
	Amazon DocumentDB Architecture
	Security
	Access Control
	Data Protection
	Other Features

	Backup and Restore
	Performance and Scaling
	Compatibility between Amazon DocumentDB and MongoDB
	Migrating from MongoDB to Amazon DocumentDB
	Amazon DocumentDB Monitoring
	Developing with Amazon DocumentDB
	When to Use DynamoDB vs. DocumentDB
	Amazon DocumentDB Pricing
	Summary
	Exam Essentials
	Exercises
	Review Questions

	Chapter 7 Better Places Than Databases to Store Large Objects
	Databases and Large Objects
	Introducing Amazon S3
	Costs of Amazon S3 vs. Elastic Block Storage
	Moving LOBs to Amazon S3
	Creating an S3 Bucket
	Putting or Uploading Objects

	Indexing LOBs in Amazon S3
	Additional S3 Features
	Backup and Dump Files
	Other Use Cases
	Pay per Usage and Scalability
	Availability and Durability

	Security
	Access Control
	Data Encryption

	Summary
	Exam Essentials
	Exercises
	Review Questions

	Chapter 8 Deliver Valuable Information at the Speed Your Business Needs
	Information Latency
	Data Warehouses
	Database Engines for Data Warehouses
	Migrating Data Warehouses to Amazon Redshift Using AWS SCT

	Amazon Redshift
	Redshift Cluster Architecture
	Table Design in Redshift
	Loading Data into Redshift
	Data Lakes in AWS
	Redshift Spectrum
	Redshift Federated Queries
	Data Lakehouse
	Redshift Cluster Node Types
	Redshift Monitoring
	Redshift Scalability
	Redshift Security
	Redshift Data Resilience and Backup

	Time-Series Databases
	Amazon Timestream
	Amazon Timestream Architecture
	Loading Data into Amazon Timestream
	Querying Data from Amazon Timestream
	Amazon Timestream Monitoring
	Amazon Timestream Scalability
	Amazon Timestream Security
	Amazon Timestream Data Resilience and Backup

	Amazon OpenSearch Service
	Amazon OpenSearch Service Domain Architecture
	Loading Data to Amazon OpenSearch Service
	Searching for Data in Amazon OpenSearch Service
	Amazon OpenSearch Service Monitoring
	Amazon OpenSearch Service Scalability
	Amazon OpenSearch Service Security
	Amazon OpenSearch Service Data Resilience and Backup

	Summary
	Exam Essentials
	Exercises
	Review Questions

	Chapter 9 Discovering Relationships Using Graph Databases
	Graph Databases
	When to Use Graph Databases
	Common Use Cases

	Amazon Neptune
	High-Level Architecture
	Graph Models and Query Languages
	Using and Extracting Data from Amazon Neptune
	Storage Architecture
	Data Resilience
	Read Replicas
	Scalability
	Availability
	Failover Policy
	Security
	Automatic Backup and Restore
	Monitoring

	Summary
	Exam Essentials
	Review Questions

	Chapter 10 Immutable Database and Traceable Transactions
	Amazon Quantum Ledger Database
	Amazon QLDB Components
	Working with Amazon QLDB
	Backup and Durability
	Performance and Scalability
	Security
	Monitoring
	Best Practices

	Summary
	Exam Essentials
	Exercises
	Review Questions

	Chapter 11 Caching Data with In-Memory Databases
	Built-in Database Cache
	Local Application Cache
	In-Memory Databases
	Caching Use Cases
	Remote Cache Strategies
	Caching Data in AWS
	Caching Data with ElastiCache
	Memcached or Redis?
	Memcached Architecture on Amazon ElastiCache Service
	Redis Architecture on the Amazon ElastiCache Service
	Backup and Restore
	Security
	Monitoring

	Amazon MemoryDB for Redis
	Summary
	Exam Essentials
	Exercises
	Review Questions

	Part III Deployment and Migration
	Chapter 12 Migrating Your Data to AWS
	Network Communication and Data Migration
	Optimizing Bandwidth Usage

	Database Migration to AWS
	AWS Schema Conversion Tool
	AWS Data Migration Service
	Setting Up AWS DMS
	AWS DMS Continuous Replication
	AWS DMS Best Practices
	AWS DMS Security
	AWS DMS Resilience

	Other AWS Services for Data Migration
	AWS DataSync
	AWS Snow Family
	AWS Storage Gateway

	Choosing the Migration Path
	One or Many Target Databases
	Small, Noncritical Databases
	Very Large Databases

	Summary
	Exam Essentials
	Exercises
	Review Questions

	Chapter 13 Disaster Recovery
	Understanding and Planning Disaster Recovery Requirements
	Recovery Point Objective and Recovery Time Objective
	Challenges in Disaster Recovery
	Managing Disaster Recovery Strategies
	Backup and Recovery Strategy
	Database Replication Methods: Multi-AZ and Cross-Region Replication
	Databases Deployed on EC2
	Amazon RDS
	Amazon Aurora
	Amazon Neptune

	Summary
	Exam Essentials
	Review Questions

	Chapter 14 Save Time and Reduce Errors Automating Your Infrastructure
	AWS CloudFormation
	Components
	Important Concepts
	Updating AWS CloudFormation Stacks
	Deleting AWS CloudFormation Stacks

	AWS Systems Manager Parameter Store
	AWS Secrets Manager
	Summary
	Exam Essentials
	Review Questions

	Appendix: Answers to Review Questions
	Chapter 3: Purpose-Built Databases
	Chapter 4: Relational Databases on AWS
	Chapter 5: Low-Latency Response Time for Your Apps and APIs
	Chapter 6: Document Databases in the Cloud
	Chapter 7: Better Places Other Than Databases to Store Large Objects
	Chapter 8: Deliver Valuable Information at the Speed Your Business Needs
	Chapter 9: Discovering Relationships Using Graph Databases
	Chapter 10: Immutable Database and Traceable Transactions
	Chapter 11: Caching Data with In-Memory Databases
	Chapter 12: Migrating Your Data to AWS
	Chapter 13: Disaster Recovery
	Chapter 14: Save Time and Reduce Errors Automating Your Infrastructure

	Index
	EULA

