

Implementing
Identity
Management
on AWS

A real-world guide to solving customer and
workforce IAM challenges in your AWS cloud
environments

Jon Lehtinen

BIRMINGHAM—MUMBAI

Implementing Identity Management on AWS
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and
distributors, will be held liable for any damages caused or alleged to have been caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

Group Product Manager: Wilson Dsouza
Publishing Product Manager: Yogesh Deokar
Senior Editor: Athikho Sapuni Rishana
Content Development Editor: Sayali Pingale
Technical Editor: Sarvesh Jaywant
Copy Editor: Safis Editing
Project Coordinator: Neil Dmello
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Production Designer: Alishon Mendonca

First published: August 2021
Production reference: 1120821

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

978-1-80056-228-8

www.packt.com

http://www.packt.com

A big thank you to everyone who encouraged me to take this on, had to
deal with me while I was doing it, and kept me going when major life events

made me think that I had finally stretched myself too far. To my family,
Aleeta, Calvin, Annabelle, and Syd, and to the Hombres, Hutch, Sean,

Anthony, and Pat, I am dead serious when I say I could not have done this
without you.

– Jon Lehtinen

Foreword
"Is it okay if I share your table?"

I first met Jon Lehtinen in Napa, California as we were both attending our first-ever Cloud
Identity Summit. This simple meeting turned out to be one of the few key moments in my
life when an act of pure serendipity caused my career to ricochet in a direction I could not
have foreseen. An exchange of pleasantries turned into a couple of hours of conversation,
an exchange of business cards, and me urging Jon to apply for one of the open positions
on our IAM Operations team. Soon after, Jon packed up his family in Arizona and moved
out to Virginia to join our team at GE's Information Security Technology Center.

Jon's guiding star has always been in designing his identity services to better serve the
communities of developers and practitioners who consumed them. Early on, my role
at GE was SSO service leader in charge of an engineering team tasked with aiding the
business in integrating their applications with our IAM services. An important lesson I
learned from Jon early on is that it's not enough to say that "the business is our customer."
Jon has always known that the real customers were those that were building products
around our services, administrators within those businesses, and the end users trying to
get their work done. When I moved into a principal architect role, Jon was promoted into
my old role and he quickly transformed it into one of servant leadership to support those
communities. He established open office hours, built on the foundations of an online
forum, and took all of the input from those communication streams to build a self-service
portal where developers were expertly guided in the implementation of our IAM services
in their applications in minutes and hours instead of days and weeks. Jon was truly the
voice of the identity practitioners and their champion on the engineering side of the
house.

Jon also wrote extensive developer and end user documentation on how the services
worked, how to request them, and best practices for integrating them in different
application scenarios. He continued to maintain that focus on the practitioner after
leaving GE and moving on to roles at Thomson Reuters and at Okta, where today he
is responsible for maximizing the value of their identity products through the internal
utilization of those same services. It comes as no surprise to me that when Jon decided
to make his foray into writing a book, he would choose to once again shine his light of
expertise into a field that can be difficult to traverse, even for the most experienced users.

The Amazon Web Services (AWS) team deserves high praise for building such an
extensive identity and access management service at the heart of AWS security. It gives
developers and administrators the ability to control access by creating users and groups,
designing centralized policies based on both RBAC and ABAC models, assigning those
policies to specific populations, integrating existing users via federation, setting up
additional controls such as multi-factor authentication, and numerous other features.
Because AWS recognizes that identity services are the foundation of any security service,
it offers the IAM services for free.

These services allow organizations to overcome the many security hurdles to cloud
adoption but, even with Amazon's extensive documentation, the sheer number and
granular nature of IAM services available can make that adoption difficult to navigate.
The same wide array of authentication and authorization controls that make it possible
to deploy highly secure environments using AWS can also frustrate administrators and
security professionals alike.

In this book, Jon does what he has always done best: take the mystery out of a complicated
service and provide practical guidance on and examples of its utilization. In the pages that
follow, Jon provides a complete overview of IAM, shares details of each of the services,
demonstrates the benefits of various combinations, and teaches you best practices on
how to protect your AWS accounts. He will also guide you through the latest services and
coach you through the configuration of important controls such as MFA.

Jon has once again provided me with knowledge and expert guidance on a service I still
periodically struggle with. It's always rewarding, and comforting, to be shown the way by
a professional who has been there before and has worked out the best avenue to success. I
wish you well on your own journey, both through this book and on your successful path
to securing your cloud workloads with AWS identity services.

Steve "Hutch" Hutchinson
VP for Security Architecture, MUFG

Board Member, IDPro

Contributors

About the author
Jon Lehtinen has 16 years of enterprise identity and access management experience and
specializes in both the strategy and execution of IAM transformation in global-scale
organizations such as Thomson Reuters, General Electric, and Apollo Education Group.
In addition to his work in the enterprise space, he has held positions on Ping Identity's
Customer Advisory Board and as an advisor to identity verification start-up EvidentID.
He currently owns the workforce and customer identity implementations at Okta.

Jon is dedicated to the growth and maturity of IAM as a profession and serves on the
Board of Directors for IDPro.org. He is also a member of the Kantara Initiative, ISC2,
OpenID Foundation, and Women in Identity. Jon has presented his work at several
conferences, including RSA, Identiverse, and KuppingerCole's European Identity and
Cloud Conference.

Currently, he owns Okta's workforce and customer IAM implementations as their
Director of Okta on Okta.

About the reviewers
Surendra Singh Khatana is a seasoned Identity and Access Management (IAM)
professional with more than a decade of experience in building security solutions using
public clouds, container technologies, and IAM tools.

He has worked in the past with TCS and Accenture as a security specialist and currently
works as a digital identity senior consultant at Nixu, Finland. At Nixu, he helps customers
embrace digitalization securely.

Punit Kumar (an open source lover), is a Certified Cloud Solution Architect –
Professional (AWS) with 9 years of experience in the IT industry and an understanding of
both public and private clouds.

He has spent a major part of his time on AWS in the areas of infrastructure design and
architecting, DevOps automation, infrastructure as code, security frameworks, operations
and cloud governance, and private cloud to public cloud transformations.

Punit has worked and helped various industry start-ups in their cloud adoption journey,
right from inception. He is a qualified AWS Well-Architecture reviewer and cost-
optimizer. Punit is an ambivert and likes socializing with his large circle of friends. All his
decisions in life are based on deep thinking and analysis and, of course, his friends'
support.

The completion of this book is the very first milestone in my journey as a
technical reviewer.

I am very grateful to my colleagues and mentors who really helped me
through my learning journey, encouraging me to start work.

Also, I would like to acknowledge my gratitude to family members – my
parents and my wife, Kajal Behl, for their support and trust, which really

encouraged me during this work.

Maurício Harley is doing a master's in computer science with cyber Security at the
University of York, UK. He holds a BSc in electrical engineering from Universidade
Federal do Ceará, Brazil and a telematics degree from Faculdade Integrada do Ceará,
Brazil.

On his blog (itHarley), he writes about security, the cloud, and networks. He also writes
about offensive security for PenTest Magazine and Hakin9. He is also the founder of an
OWASP chapter.

He has more than 25 years of experience in IT. He holds industry certifications such
as (ISC)2 CISSP, CCIE Routing and Switching, CCIE Service Provider, AWS Certified
Solutions Architect Associate, and AWS Certified Security Specialty.

He has given talks at Latin American conferences such as RootDay and OWASP
LATAM@Home. He works as a senior consultant at Amazon Web Services in France.

His research is split between cloud security, threat intelligence, and malware analysis.

To my wife, Paula, for the never-ending support and belief in all my career
endeavors.

To my parents, Bartolomeu and Leuzete, who went out of their way to build
a healthy home and to give us all education resources.

To my siblings, Raquel and Robson, for the friendship, partnership, and
love.

Preface

Section 1: IAM and AWS – Critical Concepts,
Definitions, and Tools

1
An Introduction to IAM and AWS IAM Concepts

Technical requirements 4
Understanding IAM 4
IAM applied to real-world use cases 6

Exploring AWS IAM 17
IAM for AWS and IAM on AWS 18
The AWS IAM dashboard 19
Principals, users, roles, and groups –
getting to know the building blocks of
AWS IAM 20

Authentication – proving you are who
you say you are 23
Authorization – what you are allowed
to do and why you are allowed to do it 24

Putting it all together 25
Signing in with the root user 26

Summary 33
Questions 34

2
An Introduction to the AWS CLI

Technical requirements 36
Exploring the AWS CLI basics 36
What is the AWS CLI? 36
Installing the AWS CLI 37
AWS CLI configuration 40
Testing out the CLI 43
Profiles 43

Using the AWS CLI 46
Discovering command syntax 47

Putting it all together – creating
a functional IAM user with the
AWS CLI 58
Attaching an administrator policy 59
Creating and attaching a password 61

Table of Contents

x Table of Contents

Creating and attaching the
programmatic credentials 62
Using the new profile 63
Scripting 64

Summary 67
Questions 68
Further reading 68

3
IAM User Management

Technical requirements 70
What is an IAM user account? 70
Principals 71

Managing and securing root
IAM user accounts 72
Differences between root user account
and IAM user accounts 72

Managing and securing IAM
user accounts 79

IAM user lifecycle management 79
Password management 81
Access key management 93
MFA credential management 101

Managing federated user
accounts 105
AWS Single Sign-On and federated users 108

Summary 110
Questions 110

4
Access Management, Policies, and Permissions

Technical requirements 112
What is access management? 112
Introducing the AWS access
policy types 113
The anatomy of an AWS JSON
policy document 114
Defining JSON policy document
elements 116

Exploring the AWS policy types 120
Identity-based policies 120
Resource-based policies 132
IAM permissions boundaries 136
Service control policies 144

Access control lists 146
Session policies 147

Policy evaluation 148
Governance 150
Access Analyzer 150
AWS CloudTrail 151

Summary 152
Questions 152
Further reading 152

Table of Contents xi

5
Introducing Amazon Cognito

Technical requirements 154
What is Amazon Cognito? 154
Amazon Cognito user pools 155
Amazon Cognito identity pools 159

Amazon Cognito use cases 160
User authentication for application
access 160
User authentication and authorization
for access to application resources 161
User authentication and access to
AWS services exposed through an
application 164

Federated user authentication and
access to AWS services exposed
through an application 165

Creating an Amazon Cognito
user pool 166
Populating users in a user pool 179
Bulk importing with CSV files 181
Creating a user pool using the AWS CLI 184

Exploring the hosted UI 196
Creating an Amazon Cognito
identity pool 202
Creating an identity pool with the CLI 205

Summary 208
Questions 209

6
Introduction to AWS Organizations and AWS Single Sign-On

Technical requirements 212
What is AWS SSO? 212
Requirements to use AWS SSO 215

AWS Organizations 216
Configuring AWS Organizations using
the Management Console 218
AWS organizations in the AWS CLI 230

Configuring AWS SSO in the
Management Console 245
AWS SSO settings 248
Creating and managing users 252

Connecting AWS accounts to AWS SSO 260

Configuring AWS SSO from the
CLI 270
Summary 274
Questions 275
Further reading 275

xii Table of Contents

7
Other AWS Identity Services

Technical requirements 278
Understanding AWS Directory
Service 278
AWS Managed Microsoft AD 279
Active Directory Connector 282
Simple Active Directory 283
Amazon Cognito 284

Encryption and secrets
management 284

AWS Key Management Service 284
AWS Secrets Manager 286

Logging and auditing 289
AWS CloudTrail 289
Amazon CloudWatch 292

Summary 294
Questions 294
Further reading 295

Section 2: Implementing IAM on AWS for
Administrative Use Cases

8
An Ounce of Prevention – Planning Your Administrative
Model

Technical requirements 300
Evaluating the organization's
current IAM capabilities 300
Evaluating the business
structure and account schema 302
Designing the AWS
organizational structure 304

Mapping business functions to OUs 304
Designing and applying organizational
service control policies 310

Summary 313
Questions 314
Further reading 314

9
Bringing Your Admins into the AWS Administrative
Backplane

Technical requirements 316 Defining our organization's
identity source 316
Connecting our IDP to AWS SSO 319

Table of Contents xiii

Provisioning administrative
accounts in AWS – account
linking 323
Limitations of manual provisioning
and account linking 328

Provisioning administrative
accounts in AWS – SCIM
provisioning 328

How SCIM works 329
Enabling automatic provisioning in
AWS SSO 331
SCIM in action 337

Summary 342
Questions 342
Further reading 342
Code samples 342

10
Administrative Single Sign-On to the AWS Backplane

Technical requirements 344
Why use federation for AWS
administrators? 344
Federated sign-in using an external IDP 345

Assigning access to AWS
accounts 349
Signing in to the administrative console 354

Implementing fine-grained
access management for
administrators 359

Permission sets and managed
authorization policies 359
Permission sets and custom
authorization policies for fine-grained
access control 363
Putting it all together for
administrative authorization 372

Administrative SSO using the
AWS CLI 377
Summary 379
Questions 380
Further reading 380

Section 3: Implementing IAM on AWS for
Application Use Cases

11
Bringing Your Users into AWS

Technical requirements 384
Distinguishing administrative
users from non-administrative
users 384

Solutions to non-administrative
user use cases for apps on AWS 386
Using Managed AD and trusts 392

xiv Table of Contents

Creating a Managed Microsoft AD
instance 394
Preparing the on-premises AD for a
trust – conditional forwarders 397
Creating the trusts between on-
premises and AWS Managed AD 400
Preparing the Managed AD for a trust –
conditional forwarders 404

Creating the trust between AWS
Managed AD and on-premises
AD 417
Summary 420
Questions 421
Further reading 421

12
AWS-Hosted Application Single Sign-On Using an Existing
Identity Provider

Technical requirements 424
Defining the use case and
solution architecture 425
Creating a user pool 426
Connecting Amazon Cognito to
an external IdP – SAML 430
Restricting application access to just
the external IdP 435
Populating the Amazon Cognito user
pool through JIT provisioning 435

Connecting Amazon Cognito to
an external IdP – OIDC 442
Restricting application access to just
the external IdP 450
Populating the Amazon Cognito user
pool through JIT provisioning 452

Assuming roles with
identity pools 458
Summary 468
Questions 468
Further reading 469

Other Books You May Enjoy
Index

Preface
Amazon Web Services (AWS) is the largest cloud platform in the world. It was also the
first modern cloud services provider and the first to achieve broad enterprise penetration.
Whereas being the successful first mover in a market has its advantages, it can also limit
a service’s flexibility. Compared to its biggest peers, which logically extend enterprise
identity architectures (in part because they came to market years later), AWS’ IAM
capabilities can appear slightly alien. Like an archaeologist examining a dig site, we can
see artifacts that suggest the service had a history of differing access mechanisms and
strategies over the years. Given the success of the service, perhaps it was deemed too great
a risk to the growing user base to make sweeping, foundational changes to align more
with the familiar IAM patterns found in other organizations.

As AWS predates many enterprise identity best practices and reference architectures,
bridging the paradigms of modern enterprise IAM and AWS’ custom approach to IAM is
often a difficult leap. Fortunately, with the advent of services such as AWS Organizations,
AWS SSO, and Amazon Cognito, the service has never been more approachable. In this
book, we will begin by examining the core services and components of identity on AWS
in a manner designed to take the rough edges off its more eccentric components. Once
we have built up our foundational knowledge, we will then apply what we have learned by
solving familiar enterprise use cases.

Who this book is for
Identity on AWS may be well-trodden ground, but that doesn’t make it any more inviting
for the uninitiated. AWS’ own documentation, while comprehensive, can be abstruse
to those who are not approaching the platform or their own use case from a developer’s
perspective. The experience of many enterprise IAM practitioners is being thrown into
the deep end to figure out how to solve a business identity problem on AWS through an
implementation. With so many services appearing to offer such similar capabilities for
similar use cases, getting up to speed, especially under a deadline, can be daunting.

This book was written to introduce IAM practitioners to identity on AWS with a use
case-driven perspective. By using the language, patterns, and perspective of an enterprise
identity practitioner, I aim to make this topic much more approachable.

xvi Preface

What this book covers
Chapter 1, An Introduction to IAM and AWS IAM Concepts, introduces essential IAM
concepts and AWS IAM as a suite of capabilities that provides user management and
access control to AWS resources.

Chapter 2, An Introduction to the AWS CLI, introduces the AWS CLI, which is the primary
programmatic method to interact with AWS resources.

Chapter 3, IAM User Management, addresses best practices around AWS user account
security, life cycle management, governance, and authentication/password policies.

Chapter 4, Access Management, Policies, and Permissions, provides an overview of the
authorization framework of AWS.

Chapter 5, Introducing Amazon Cognito, introduces Cognito and explores what it can do
as an application identity service.

Chapter 6, Introduction to AWS Organizations and AWS Single Sign-On, explores the tools
for applying organizational policies and managing access to multiple AWS accounts.

Chapter 7, Other AWS Identity Services, provides an overview of a few other identity and
identity-adjacent services that, while important, did not get their own chapter.

Chapter 8, An Ounce of Prevention – Planning Your Administrative Model, provides
guidance on designing an administrative and authorization policy model that addresses
an organization’s use cases.

Chapter 9, Bringing Your Admins into the AWS Administrative Backplane, walks through
methods for bringing existing administrative accounts into AWS.

Chapter 10, Administrative Single Sign-On to the AWS Backplane, walks through federated
authentication into the AWS console for administrative accounts and methods for
applying fine-grained access control.

Chapter 11, Bringing Your Users into AWS, examines the distinction between
administrative and standard user accounts, explores solution architectures for bringing
user accounts into AWS, and demonstrates how to extend an on-premises AD forest into
AWS using a trust.

Chapter 12, AWS-Hosted Application Single Sign-On Using an Existing Identity Provider,
addresses configuring an application with Cognito user pools against a federated provider
and using identity pools to authorize users to interact with AWS services on behalf of the
application.

Preface xvii

To get the most out of this book
To get the most out of this book, we expect familiarity with some basic IAM concepts
and tools. Strictly speaking, there are no significant prerequisites to follow along with
most of the exercises as they leverage existing AWS services and tools. As we look at some
enterprise use cases in the later chapters, you will benefit from either setting up or using
an existing non-production enterprise-grade identity provider and Active Directory
domain controller.

Most cloud-based identity providers offer developer accounts and/or basic functionality
free of charge that are more than sufficient for the examples in this book. Some chapters
include references to guides for configuring a test environment for low or no cost in AWS,
such as building a domain controller using Amazon EC2.

It would be impossible to cover every use case or scenario of AWS in a single book.
However, we believe those who read it will not only be ready to contribute their identity
expertise to most enterprise use cases but will be armed with the foundational knowledge
and experience needed to solve increasingly complex ones as well.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Implementing-Identity-Management-
on-AWS. In case there's an update to the code, it will be updated on the existing GitHub
repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

https://github.com/PacktPublishing/Implementing-Identity-Management-on-AWS
https://github.com/PacktPublishing/Implementing-Identity-Management-on-AWS
https://github.com/PacktPublishing/Implementing-Identity-Management-on-AWS
https://github.com/PacktPublishing/

xviii Preface

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: http://www.packtpub.com/sites/default/
files/downloads/9781800562288_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: “We can use resource tags and the ec2:ResourceTag variable to
enforce this.”

A block of code is set as follows:

{

 “Version”: “2012-10-17”,

 “Statement”:

Any command-line input or output is written as follows:

$ aws iam delete-virtual-mfa-device --serial-number
arn:aws:iam::451339973440:mfa/rbis3

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
“Let’s start with the IAM_NonProd AWS account. We tick the box next to that account
and hit the Assign users button.”

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

http://www.packtpub.com/sites/default/files/downloads/9781800562288_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781800562288_ColorImages.pdf

Preface xix

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

Share Your Thoughts
Once you've read Implementing Identity Management on AWS, we'd love to hear your
thoughts! Please click here to go straight to the Amazon review page
for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

http://www.packtpub.com/support/errata
http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1800562284

Section 1:
IAM and AWS – Critical
Concepts, Definitions,

and Tools
Identity is the most granular unit of security. To ensure the confidentiality, integrity, and
availability of a system, that system's infrastructure, applications, APIs, and endpoints
must all be identifiable, authenticated, and authorized in order to perform its functions.
The AWS platform operates under a rigid identity-centric model. Bridging that model
with your own organization's identity implementation can be daunting. At the end of this
section, you will understand the industry-standard and AWS-specific IAM terminology
that will be referenced throughout this book. You will also learn about best-practice access
management patterns and the tools available to implement said patterns within AWS.

This part of the book comprises the following chapters:

• Chapter 1, An Introduction to IAM and AWS IAM Concepts

• Chapter 2, An Introduction to the AWS CLI

• Chapter 3, IAM User Management

• Chapter 4, Access Management, Policies, and Permissions

• Chapter 5, Introducing Amazon Cognito

• Chapter 6, Introduction to AWS Organizations and AWS Single Sign-On

• Chapter 7, Other AWS Identity Services

1
An Introduction to
IAM and AWS IAM

Concepts
Identity is the perimeter of security, and every transaction, capability, administrative
event, and infrastructure component of cloud providers such as Amazon Web Services
(AWS) ultimately depends upon identity services to govern all its capabilities. If that
scope wasn't large enough already, tying AWS' native capabilities to an existing enterprise,
customer, administrative, or infrastructure identity deployment can seem so complex
as to make it difficult for cloud identity administrators to know how or where to start.
This book will help you overcome the paralysis caused by the capabilities of the platform
by approaching the implementation of AWS IAM (IAM) in a use case driven fashion,
informed by real experiences working in large enterprise AWS environments.

4 An Introduction to IAM and AWS IAM Concepts

By the end of this chapter, you will be familiar with the foundational concepts of IAM and
see how they are applied within an organization. You will learn the purpose of the AWS
IAM service, its components, and how they all work together to secure access to AWS
resources. Finally, you'll use the AWS Management Console to create and manage AWS
IAM resources, including IAM users, groups, and policies.

This chapter will cover the following topics:

• Understanding IAM

• Exploring AWS IAM

• Putting it all together

Technical requirements
To get the most out of this chapter, you will need the following:

• A web browser

• An AWS account

Understanding IAM
Identity is the most granular unit of security. The users, services, and systems that
interact with infrastructure, applications, APIs, and endpoints must all be identified,
authenticated, and authorized in order to perform their functions. The AWS platform
operates under a rigid identity-centric model. Bridging that model with your own
organization's identity implementation can be daunting.

Identity practitioners can (and do) argue about the minutiae and nuances of the
terminology used within IAM. However, for our purposes, we can afford to use a broad
definition of IAM in AWS:

''Identity & Access Management is the discipline of managing the life cycle
of digital accounts that correspond to and are under the control of a person

and ensuring that only the correct resources are accessed by the correct
actor under the correct context.''

Understanding IAM 5

For something purported as a simple definition, that sure is a mouthful. However, if we
break the statement down into its constituent components and consider a typical use case,
it affords us an opportunity to see how many technical disciplines you may already be
familiar with that relate to IAM:

''Managing the life cycle of digital accounts that correspond to and are
under the control of a person…''

In layman's terms, we have these digital accounts that can be used to access computer
systems. These accounts either directly or indirectly map to a person. This means that the
account is either a digital representation of that person or the person owns and controls
those accounts. That person can demonstrate proof of control of those accounts and is
accountable for actions taken with those accounts. And those accounts have a life cycle,
meaning under certain conditions they are created, under other conditions they may
change, and at some point, they may eventually cease to be.

This is called identity management. Identity management is responsible for the following:

• Keeping accounts up to date

• Keeping downstream consumers of those accounts synchronized with the
authoritative sources that define the account

• Provisioning and deprovisioning accounts entirely from various data stores

In short, it's a collection of processes responsible for managing account life cycle events
in accordance with business, legal, or technical controls. These controls trigger life cycle
events for accounts, such as account creation, modification, and disablement. What those
life cycle events are will vary depending upon the event, type of account, business, and
requirements of the system using those identities.

Now, let's look at the rest of the definition:

''…and ensuring that only the correct resources are accessed by the correct
actor under the correct context.''

6 An Introduction to IAM and AWS IAM Concepts

Those accounts, having been created, can be used to execute specific activities. What they
can do is determined by rules and policies. In order to do anything, the account must
first provide proof that whoever or whatever is using it to perform an activity is actually
allowed to do so. That proof comes through a shared secret that validates the authenticity
of the actor behind the account. This second part of our IAM definition addresses
something called access management. Access management addresses the authentication
of the account (proving you are who you say you are) and the authorization of that
account (proving that you are allowed to do what you are trying to do with that account)
to access resources or to perform certain tasks in accordance with established policies.

IAM applied to real-world use cases
To understand this better, and to provide a flimsy pretext to introduce some additional
concepts that are not so easily derived from that definition of IAM, let's imagine what
happens when someone joins a new company. To help visualize all the actors, systems, and
life cycle events in play, take a look at the diagram in Figure 1.1.

In this example, Bob has applied for a sales role at a large identity services organization
called Redbeard Identity, which has a reasonably mature internal IAM program,
application portfolio, and cloud platform capabilities. Bob's identity experience actually
began long before he got to the point where the hiring manager was prepared to make
an offer, because in order to apply for the position, he had to create a profile inside of
Redbeard Identity's candidate management system.

Important note
The Redbeard Identity organization will be the organization referenced
for several use cases and scenarios throughout this book. Whereas real
organizations typically have a fixed enterprise architecture, we will adjust the
architecture, capabilities, services, user accounts, and other characteristics
of the Redbeard Identity organization from chapter to chapter in whatever
ways we need to best demonstrate the material of that chapter. Please don't
be confused if our example organization's characteristics are not entirely
consistent throughout the book.

Understanding IAM 7

This marks the first identity life cycle event in Bob's onboarding journey: user account
creation. Bob, as a user of the candidate management system, is providing self-issued,
unverified information about himself such as his name, contact information, and details
about his work history. As there is neither external proof nor an outside source of control
validating the information he enters into this system, his candidate account is considered
a low-assurance record. As long as Bob remains merely a candidate for the sales role,
that low level of assurance is sufficient for the purpose that the candidate record system
account serves:

Figure 1.1 – Example of IAM life cycle events and flows

8 An Introduction to IAM and AWS IAM Concepts

Bob knows his craft well, is an impressive salesman, and aces his interviews. After the
details are agreed upon, the hiring manager sends Bob the offer letter confirming the
details of his role, along with instructions for accepting the offer. Bob accepts by signing
into the candidate portal and accepting the job offer. Now that Bob is more than just
a candidate, the authenticity of the details that Bob provided when populating his
candidate account must now be verified. To ensure that he is who he says he is, the HR
representative will start a process called identity verification. This process is defined by
the US Department of Commerce's National Institute of Standards and Technology as a
process ''to ensure the applicant is who they claim to be to a stated level of certitude'' (NIST
Special Publication 800-63A, Digital Identity Guidelines, Section 4, NIST).

The HR representative asks Bob to provide some identifying documents to facilitate his
onboarding and help corroborate the information that he already entered as part of his
candidate profile, such as a copy of his passport, a state-issued identification card, and his
tax information. For the sake of argument, let's just say Bob hands the HR representative
these documents in person to ensure that Bob himself has been compared against these
artifacts. Thus, he sidesteps any concerns about him stealing valid credentials from
someone else to use in his efforts to secure employment. The HR representative will finally
validate these artifacts against their authoritative sources to ensure their authenticity,
proving that Bob really is who he says he is. With the confidence that Bob is Bob and that
the information Bob entered into the candidate management system is accurate, the HR
system creates Bob's employee record and sets it to become active on Bob's start date.

As we said earlier, this organization has a reasonably mature IAM program. As part of
a nightly process, the IAM system checks the HR system for any discrepancies in the
data between the records stored there and its own corresponding identity records that it
maintains in order to keep them in sync. When a change is made to an existing HR record
that has a corresponding identity record, such as in the case of an employee changing
departments, the department attribute on that employee's identity record also gets
updated with the new department value. This is an example of attribute and metadata
synchronization being used to ensure the consistency of identity data across data stores.
In this case, the HR system is acting as an authoritative source for the IAM system,
meaning that the records, attribute values, and other information from that system will
overwrite any changes made directly against the records in downstream systems.

Understanding IAM 9

This organization uses business logic that tells the IAM system to create new identity
records for new joiners one week from the start date listed on the new joiner's HR record.
Once Bob's start date is less than a week away, that logic triggers the IAM system to
provision, or create, his identity record. This will be the authoritative account record for
all downstream systems, which in turn look to the IAM system as their own respective
authoritative source. The IAM system will create Bob's identity record based upon an
established pattern of attributes and characteristics, or a schema. It contains certain
attribute types and values based upon the kind of account that Bob's identity record is. In
Figure 1.1, we see a sample of (an admittedly spartan) schema for Bob's identity record.
Let's pretend that we can actually take a look at the identity schema for Bob's record
within the IAM system using Table 1.1:

Table 1.1 – Sample schema record for Bob within the IAM system

This shows us the attribute names, their current values, and the authoritative sources for
each of the attributes in this schema. You'll notice that for the most part, the HR system
provides the bulk of the authoritative data for the attributes, with the exception of ''mail,''
which is currently null (or without a value), and which also uses Azure Active Directory
(AD) as its authoritative source.

You aren't constrained to a single authoritative source for your identity schema. In fact,
you can have nearly infinite combinations of conditional clauses, secondary sources,
and compound sources when defining your schema and the authoritative sources used
to populate the schema's attributes. Beyond that complexity, you can also have several
distinct schemas depending on the type of identity you are defining. We've only been
examining Bob's identity journey as he gets onboarded at Redbeard Identity, and he is
an employee as denoted by the emptype attribute. Contractors will likely have distinct
schemas, as will bot process automation accounts, service accounts, business-to-business
accounts, and customer accounts. But to keep things simple, we will stick with Bob the
employee.

10 An Introduction to IAM and AWS IAM Concepts

Bob works in sales, but it is doubtful that Redbeard Identity is a pure-sales organization
given that they have enough technical wherewithal to run their own IAM infrastructure.
Even if they were that operationally lean, there are regulations that demand evidence that
some workers with certain job responsibilities cannot perform other, complementary
responsibilities in order to reduce the risk of malfeasance. The go-to example for this is the
protection control between accounts receivable and accounts payable in financial services
organizations in order to prevent someone entitled to issue invoices from also approving
their payment.

Separation of duties requires more than one person in order to complete a business
task. Organizations implement separation of duties by applying technical controls that
restrict or enable what a person can do based on business and regulatory requirements.
Those rules, restrictions, and permissions are called policies, and a collection of policies
that grants somebody the full range of access that they are entitled to depending upon
their responsibilities is called a role. Aligning policies to roles, and roles to users through
attributes or business logic is one part of access management. Providing evidence
that those controls function as designed and comply with business and regulatory
requirements is identity governance and audit. Identity governance and audit, access
management, roles, and policy, all work to ensure that Bob will only be able to access the
systems and resources that are appropriate for him to access, or in other words, that he is
authorized to access.

This ''all or nothing'' approach to access is an example of coarse-grained authorization.
Here, access is determined on a seemingly binary ''yes/no'' level based on the role that Bob
was assigned provisioning him an account in the system. In Bob's case, he received the
Sales role because, as we've said more than a few times now, he works in sales. However,
there was no attribute labeled ''role'' that indicated which role he would be assigned. And
there doesn't need to be. The logic that determines which entitlements get applied to an
identity upon creation can vary wildly. In this scenario, Redbeard Identity's IAM system
assigns roles based on the combination of the ''costcenter'' and ''department'' attributes.
There could also be application-level roles and policies that provide fine-grained
authorization to certain application-specific functions.

Understanding IAM 11

Now that Bob's identity has been provisioned and the IAM system has determined what
role aligns to that identity, the next step is for the IAM system to begin provisioning
Bob's accounts in the various downstream systems that he is entitled to access. Users
with the Sales role get certain birthright entitlements, which are accounts and access
that everyone gets just by being active employees within Redbeard Identity with that
basic Sales role. Figure 1.2 shows the provisioning process from the IAM system into
these account stores in greater detail, with information about the schema for each of the
accounts that Bob will be getting:

Figure 1.2 – Different account schemas across different identity stores

The IAM system provisions the following:

• Bob's Azure AD account

• An LDAP account in the company's directory

• A user account in Redbeard Identity's customer relationship management system
where Bob will be spending most of his workdays

• An account in the cloud directory used by Redbeard Identity's cloud-hosted
applications

12 An Introduction to IAM and AWS IAM Concepts

Each one of these account stores is an example of an identity store. This is the place
where an application or system can store its own instance of Bob's account with all the
application-specific attributes added on. Just like how the HR system was the authoritative
source for the IAM system, the IAM system is the authoritative source for these accounts
and for many of the attributes within these identity stores. Now that Bob has an Azure
Active Directory Account, he can get a mailbox and email address. If you recall from
Table 1.2, Bob's main identity record did not have a value under the mail attribute when
it was first provisioned. It is only now that the IAM system will detect Bob's email address
when checking Azure AD for any new account updates. Upon detecting the discrepancy
between the null value for the mail attribute in the identity record it has for Bob and the
email attribute it reads on Bob's Azure AD account, the IAM system imports that update
into Bob's IAM record with the new information obtained from that authoritative source.
But the updates don't stop there! Look at Figure 1.3:

Figure 1.3 – Account attribute synchronization across authoritative sources

Understanding IAM 13

Remember that the IAM record itself is an authoritative source for several of the attributes
on the downstream accounts that were provisioned as part of Bob's Sales role. In this
instance, Bob's LDAP, CRM, and Cloud Directory account will each get Bob's new
email address value written to the attribute that each has mapped to correspond to the
IAM record's mail attribute value. Now that Bob has all of his accounts provisioned and
synchronized with their authoritative sources, Bob is poised to be productive on his first
day on the job.

That is to say Bob could be productive, assuming he knew how to identify himself as the
owner of the account in each of these systems. This takes us to the last life cycle event
depicted in Figure 1.1, which is the issuance of Bob's credentials. Credentials are the
evidence used to attest that the person accessing a resource is who they say they are.

When talking about user accounts, credentials most often take the form of a unique
identifier (such as a username) and a shared secret. This shared secret is between the
person attempting to access a resource and the system that is trying to validate the identity
of the person attempting to access a resource (such as a password). Bob's username plus
his account password are his credentials to access these Redbeard Identity systems. Let's
take a look at how that credential was created and delivered to Bob, as well as how the
downstream applications can also verify Bob's identity despite not necessarily needing to
maintain a set of their own for Bob to use.

Within Redbeard Identity, the mechanics of creating Bob's credentials are fairly
straightforward. As part of the initial account creation process, the IAM system generates
a random password to use as the password value on Bob's account. As you can see in
Figure 1.3, though the password was generated by the IAM system, the IAM system is not
acting as the authoritative source for the password, nor is it even storing the password
attribute in its main identity record for Bob. Looking more closely at the schemas on those
downstream accounts, we see that the only system that stores Bob's password value (or
some form of hash of this value) is the LDAP directory.

14 An Introduction to IAM and AWS IAM Concepts

In addition to being the only place where that value is stored, there is another unique
attribute on that LDAP account called changepwonlogon, which is currently set as
true. When the changepwonlogon value is set to true, it will force the person
who entered the username and password to enter a new value for the password. When
changepwonlogon is false, the person who correctly enters the account's username
and password will simply be permitted to access the system or resource they were
attempting to access when challenged for their credentials.

Providing the credentials is how a user can authenticate themselves, or how they prove
that they are who they say they are. As Bob can't receive that initial password directly
from Redbeard Identity's systems since he does not have access to Redbeard Identity's
network yet, the IAM system instead issues the first password for Bob's account to Bob's
hiring manager.

So why isn't the password written into all of the other identity stores where Bob has an
account? In the specific situation we are examining using Bob's onboarding into the
Redbeard Identity organization, they are maintaining a single authoritative identity store
for all of their application authentication. This means that Bob will use a single, centrally
managed username and password to access the applications and systems he needs to
use to perform his job. This is as opposed to a system where he would be required to
memorize a unique username and password stored and managed by each individual
application. This is single sign-on (SSO).

Applications maintain application-specific user records for each user that they use
for their own purposes (such as authorization). However, the application delegates
authentication to a central identity store using a directory services protocol such as
LDAPS or Kerberos, or in the case of many modern web apps, a federated web-based
protocol such as SAML or OpenID Connect. Using SSO reduces the number of
credentials and the locations where those credentials are stored. This reduces the attack
surface that a malicious actor can try to exploit to steal a credential. Using SSO also helps
keep Redbeard Identity workers happy since they only have one password to manage.

Bob's first day at Redbeard Identity arrives. He shows up at the office for new hire
orientation, receives his laptop, and his hiring manager shares the initial password for his
account with him so he can sign into his account. After his credentials are validated, the
changepwonlogon attribute triggers the life cycle event responsible for ensuring that
the initial password gets changed. Bob enters a new password.

Understanding IAM 15

Once that is accepted and written to his LDAP account, the changepwonlogon value
flips to false, and Bob becomes the sole owner of his account, which is essential for
non-repudiation. From now on, any actions logged under emplid can be tied solely to
him since he is the only one who can access resources and applications by authenticating
using those credentials. And with that, Bob's identity onboarding experience is complete:

Figure 1.4 – Bob takes ownership of his account

Now that Bob has his account, he needs to sign into the applications he will use to
perform the majority of his job duties. As we mentioned earlier, the Redbeard Identity
organization maintains its users' passwords exclusively in its LDAP directory. Though
Bob has accounts in the user stores of other systems and applications, those applications
have delegated their user authentication to that LDAP directory. Applications can perform
lookups and password validations directly against the LDAP using LDAPS, but that model
has constraints that limit its usefulness as a modern authentication pattern.

16 An Introduction to IAM and AWS IAM Concepts

Modern applications should rather use identity federation for user authentication, which
is a model where the application looks to an external identity authority to receive trusted
identity information. The CRM application that Bob will be spending most of his time in
uses identity federation to authenticate its users. The process for the CRM app receiving
an authentication token for Bob's identity from the identity provider is shown in Figure
1.5:

Figure 1.5 – Federated authentication transaction using an identity provider

Let's break down the steps:

1. From a browser, Bob goes to the CRM application.

2. Since Bob doesn't have a session cookie, the CRM application redirects the browser
to the Identity Provider that it uses for user authentication.

3. The Identity Provider redirects Bob's browser to a logon form to collect Bob's
username and password.

4. Bob's username and password are posted to the Identity Provider.

5. The Identity Provider performs the password validation on Bob's account against
the authoritative source it uses for authentication – in this case, the LDAP directory
where the Redbeard Identity organization stores its user credentials.

Exploring AWS IAM 17

6. The LDAP directory responds that the credentials are valid and may optionally send
along some additional attributes that the CRM application may need to reference at
authentication time.

7. The Identity Provider creates a signed authentication token using its private signing
certificate and posts that to the CRM application. The CRM application is assured
that Bob has been authenticated by the external Identity Provider due to the unique
cryptographic signature on the authentication token.

8. The CRM application looks at the subject of the authentication token, which in this
instance is the emplid from the LDAP directory, and matches it to its local account
under that same username value. The CRM application examines its local user
record for Bob for his jobcode value to determine what application role he can
assume. Job code 66061 corresponds to a sales representative role. The CRM app
establishes an application session for Bob under that authorization context, and Bob
is now logged in.

Important note
It is important to remember that the example we just walked through was
meant to highlight IAM concepts, not necessarily IAM architecture or
engineering best practices. Organizations' IAM and security maturity can
vary greatly as they balance the risk equation of facilitating their core business
against the monetary and opportunity costs of identifying and remediating
potential security threats.

The Redbeard Identity scenario has provided us with an example of IAM principles in
action and shows how the various components of the IAM system combine to form a
platform that facilitates business outcomes and secure organizational resources. Now that
we have an idea of what an IAM is, let's begin our exploration of it within AWS.

Exploring AWS IAM
''Wait,'' you may be saying, ''I thought this book was supposed to be about AWS IAM?
What's the deal with the overwrought organizational identity scenario I just spent the last
several pages reading? When do we get to the AWS stuff?'' AWS is a cloud provider that is
ultimately governed by identity. AWS environments are owned by Amazon accounts and
organizations, and each of the resources created within those environments has life cycle
events governing its creation, modification, and eventual termination.

18 An Introduction to IAM and AWS IAM Concepts

Additionally, the scope and scale of what someone or something can do with those
resources are governed by identity, access management policies, and delegated
authorization models. Where organizations and technologists encounter difficulty is in
understanding the how, what, and why of AWS in the context of identity in light of its
rich, and seemingly overlapping, infrastructure-as-a-service and platform-as-a-service
components.

Taking a moment to recontextualize your organization's use of AWS through the lens of
identity, and especially in the context of the business, security, and governance challenges
you may have already solved in on-premises infrastructure in ways similar to the
Redbeard Identity scenario, will aid us as we demystify this seemingly complex topic.

According to Amazon (What is IAM?, at https://docs.aws.amazon.com/IAM/
latest/UserGuide/introduction.html),

''AWS IAM (IAM) is a web service that helps you securely control access to
AWS resources. You use IAM to control who is authenticated (signed in)

and authorized (has permissions) to use resources.''
This reads very similarly to our initial, high-level definition of IAM that we outlined
in Understanding IAM. AWS IAM creates and manages the accounts used to sign in
to the AWS Management Console and handles credential management and strong
authentication capabilities for the accounts it manages.

Access management and authorization for users, services, and even resources, including
fine-grained authorization to AWS resources, are managed through access policies that
are defined, governed, and validated against AWS IAM. Governance, compliance, and
audit are also reported through AWS IAM and presented through other AWS services.
AWS IAM and its supporting identity security services offer a complex and feature-rich
IAM capability for administrating and controlling who has access to what and under what
context that access is authorized.

IAM for AWS and IAM on AWS
AWS IAM is not the only tool that is capable of providing IAM services inside of the AWS
cloud. As we saw in the Redbeard Identity scenario, a comprehensive IAM solution at an
organizational level is composed of several different systems and services. These fulfill
the business and security use cases required for that business. There is not a monolithic
''Redbeard Identity IAM Service.'' Rather, it is a mix and match of various provisioning,
governance, authentication, and directory services.

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html

Exploring AWS IAM 19

AWS IAM is the service to govern access to AWS services, but there are several other
services that can be mixed and matched in pursuit of solutioning business IAM
challenges. When speaking about AWS IAM, we are referring to IAM for AWS, specifically
in the context of AWS as infrastructure-as-a-service. When we use other AWS services
to solve IAM challenges, we are applying IAM on AWS and using those services in the
context of AWS as a platform-as-a-service. We will address what some of those other
services are and their use cases in later chapters.

Tip
AWS IAM provides identity services for AWS as an infrastructure-as-a-service
platform. Other AWS identity services provide identity capabilities for AWS as
a platform-as-a-service.

The AWS IAM dashboard
With so much capability, it can be difficult to see how all the pieces fit together, let alone
figure out how to mash all of those pieces together in order to develop solutions to identity
challenges in the cloud without first familiarizing yourself with the tool directly. Let's start
by taking a quick look at the tool as it appears from inside of an AWS environment:

Figure 1.6 – AWS IAM dashboard

20 An Introduction to IAM and AWS IAM Concepts

The center panel offers a single-pane-of-glass scoreboard for the counts of critical identity
objects that are live in the environment. Already, you may recognize some of the IAM
terms and concepts that we touched upon in the Redbeard Identity organization example
earlier in this chapter, particularly roles, users, and policies. In the context of AWS, each of
these terms has a specific definition, which we will discuss in more detail momentarily.

Links to the individual administrative panes for Groups, Users, Roles, Policies, Identity
providers, and Account settings are on the left side of the AWS IAM dashboard. Each
one of those links will allow you to individually view and administrate the components.

Further down, we have some reports and analytics tools designed to facilitate policy
administration and aid in the creation and audit of policy structures. They govern
access to AWS resources in the environment. The Credential Report details the status
and age of the credentials for every AWS IAM user managed by the environment.
Finally, the Organization activity and Service control policies (SCPs) sections are
special administrative sections. They are only activated when an AWS account is part of
something called an AWS organization. This is a construct that allows large organizations
to govern multiple AWS accounts in line with a single, centralized policy.

Principals, users, roles, and groups – getting to know
the building blocks of AWS IAM
In case you couldn't tell, we are already experiencing some namespace collision on
the terms we used earlier to describe Bob's onboarding and authentication journeys at
Redbeard Identity and those used within AWS. For example, we could get away with
interchangeably referring to ''Bob's identity record'' and ''Bob's identity'' in the example.
The definitions used when referring to the components that compose and interact with
AWS IAM have very specific definitions. You will need to understand that taxonomy to
ensure you understand how AWS IAM, and AWS as a platform at large, operates. The
following definitions are taken from the AWS IAM User Guide (https://docs.aws.
amazon.com/IAM/latest/UserGuide/intro-structure.html#intro-
structure-terms):

• Principals: A person or application that uses the AWS account root user, an IAM
user, a federated user, or an IAM role to sign in and make requests to AWS.

• Entities: The IAM resource objects that AWS uses for authentication. These include
IAM users, federated users, and assumed roles.

https://docs.aws.amazon.com/IAM/latest/UserGuide/intro-structure.html#intro-structure-terms
https://docs.aws.amazon.com/IAM/latest/UserGuide/intro-structure.html#intro-structure-terms
https://docs.aws.amazon.com/IAM/latest/UserGuide/intro-structure.html#intro-structure-terms

Exploring AWS IAM 21

• Identities: The IAM resource objects that are used to identify and group. You can
attach a policy to an IAM identity. These include users, groups, and roles.

• Resources: The user, group, role, policy, and identity provider objects that are stored
in IAM. This can be an action in the AWS Management Console or an operation in
the AWS CLI or AWS API.

To ensure topical clarity moving forward, we will be using the AWS definitions of these
terms unless a distinct definition is specifically referenced in context. Speaking of topical
clarity, those definitions are far from clear. A principal authenticates with an entity, but
is that entity considered an AWS identity? An identity can be an AWS IAM role, user, or
group, and an entity can be an AWS IAM user or role, but can both of them have an access
policy attached to them? Both entities and identities are resources, and both entities and
identities can be roles or users, but are roles and users themselves resources? Perhaps it
will make things easier to approach these definitions with an old-fashioned Venn diagram.
Take a look at Figure 1.7:

Figure 1.7 – The relationship amongst AWS IAM principals, entities, identities, and resources

Let's start with the circle that's all by itself, Principals. The best way to think about
Principals is in terms of the subject of a sentence, or the who or what that performs the
action in the sentence's predicate. In the case of AWS, individual users act as principals
when they sign into their AWS IAM user accounts. However, principals don't have to be
tied to a flesh-and-bone person.

22 An Introduction to IAM and AWS IAM Concepts

Consider service accounts, bot process automation accounts, or even programmatic access
when calling APIs – each one of those use cases acts as the principal when either signing
into a corresponding account or assuming a delegated role that permits that service to
access a resource. What's more, other AWS services, such as S3 or EC2, may assume
a service-level role to act as principal and authenticate and get access to manipulate
resources.

On the topic of resources, resource is a very broad term in AWS. In this particular AWS
IAM context, it refers specifically to all of the things stored and managed in AWS IAM
that appeared on the at-a-glance dashboard on the landing screen of AWS IAM we saw in
Figure 1.6, such as users, groups, and roles. If you create it in AWS IAM, it is an AWS IAM
resource. Similarly, S3 bucket objects are resources within the S3 service. In the broader
context of AWS as a platform, a resource is an object created and managed within an AWS
service in an AWS environment.

That is also the reason why both entities and identities are fully encapsulated within the
resources circle in the diagram, as they both only exist in the context of AWS IAM. The
entity is the AWS IAM resource that a principle uses during authentication, and as such
provides information about the principal through policy objects attached to that IAM
user, assumed role, or federated user. If entities can be described as AWS IAM resources
used by a principal during authentication, then identities are the corresponding resources
assumed by principals for authorization.

Since identities cover users, groups, and roles under the auspice of grouping and
identification, this means that the foundation for authorization decisions within AWS
IAM are actually the user, groups, and role identity resources. The two act in conjunction
when a principal is engaged with the service, with the entity as the surrogate for the
principal within AWS IAM correlating the principal to an authenticator or credentials,
and the user identity's attached policy supplies the information for AWS IAM to
determine what that principal is and isn't allowed to do:

Figure 1.8 – AWS IAM evaluates principal authentication and request context to permit or deny actions
on a resource

Exploring AWS IAM 23

But how does AWS IAM decide what the principal can and cannot do? AWS IAM
evaluates each request in light of a request's context, which is to say a combination of
characteristics that can be evaluated against a policy. Take a look at Figure 1.8 to see
a breakdown of what contributes to a request's context. AWS IAM considers who is
attempting to take action, or the principal. Any time that principal interacts with the AWS
Management Console, they are performing operations against resources.

The AWS IAM service has about 40 specific operations that a principal can perform
against its resources. For the most part, they align with the familiar CRUD acronym,
(create, read, update, delete), but the actions specify the AWS IAM resource targeted by
that operation in the operation name, for example, create-user, update-group, get-role,
delete-policy. Further details about a specific resource that will be the target of the
operation narrow the scope of action further. Finally, there are the environmental details
in which the request takes place, such as the time of day or originating IP address.

AWS IAM considers the full request context against the policy applicable to the principal's
identity resource and decides whether the action is permitted or authorized, assuming the
principal's entity has been sufficiently authenticated.

Authentication – proving you are who you say you are
In the Redbeard Identity scenario, we made several references to both ''verifying the
authenticity'' of things, such as Bob's personal information, and ''authenticating'' that Bob
really was the account holder entitled to access the CRM application by providing his
password, a shared secret.

The first, while an authenticating activity, is identity verification. Identity verification
ensures that the principal you are issuing credentials to really is who they say they
are through the validation of that identifying information by an authoritative source.
Conversely, proving possession of a shared secret or token to demonstrate ownership and
control of an account in the context of gaining immediate access to a system with that
account is authentication as we will refer to it from here on out.

As we briefly touched upon in the previous section, before any principal is permitted to
take action on an AWS resource, they must first authenticate themselves through the AWS
IAM service. The most common way to do this is with a username and password pair
through the AWS Management Console.

24 An Introduction to IAM and AWS IAM Concepts

We will discuss the differences between the root user and IAM users and best practices
on securing and administrating your AWS administrative users in Chapter 3, IAM User
Management. But not every principal is a human behind a keyboard. For other principals,
such as applications requiring programmatic access where a username and password
validation flow would not serve, there is also the option to authenticate via an access key
ID and secret key ID. You have the option of granting either access type to new IAM users.

Authorization – what you are allowed to do and why
you are allowed to do it
Truth be told, we've already discussed authorization at length throughout this chapter.
AWS IAM's primary function is arguably making authorization decisions based upon a
policy evaluation against a request's context. That said, we've mentioned ''policy'' several
times without defining what it means both in the broader context of IAM and specifically
as a component of AWS IAM.

Policies are rules that define a course of action. IAM policies are rules that determine
whether a user or system can access or manipulate a resource based on their attributes,
role, or security context. AWS IAM authorization policies are a variety of rules and
evaluation logic that combine to determine whether a given request is authorized based
upon the information present in its request context. We will be diving very deeply into
the various policy types and the anatomy of AWS IAM's JSON-based policy structure in a
future chapter, but the policies that may be evaluated based on a request's context include
the following:

• Identity-based policies: These are inline policies that are attached to IAM identity
resources, namely users, groups, and roles.

• Resource-based policies: These are inline policies that are attached to AWS
resources, such as a policy on an S3 bucket that indicates what a specific principal
can do with that specific bucket's contents.

• Permissions boundaries: A policy that sets limits on what a specific IAM user or role
can do with a service or resource. This policy represents a ''boundary'' for the IAM
user or role it is applied to, meaning that other policies outside of that boundary will
not be respected.

Putting it all together 25

• The organization's service control policies: A policy that is similar to permissions
boundaries but applies to AWS accounts governed by that organization.

• Access Control Lists (ACLs): ACLs restrict the resources that principals from
different AWS accounts can access within your AWS account. This policy is unique
as it does not use AWS IAM's JSON-based policy structure.

• Session policies: Session policies create a hybrid policy that lasts only the duration
of the principal's session based upon attributes programmatically passed during
authentication time and an identity-based policy. This is an ''advanced'' policy
according to the AWS IAM User Guide.

AWS evaluates all applicable policies based on the request context to determine how the
request should be evaluated. Generally speaking, if the request context fails any evaluation
criteria for any of the applicable policies, the entire request is rejected unless a policy
includes an explicit ''allow'' statement.

The AWS IAM dashboard is the jumping-off point for applying identity to AWS services
and provides administrators an at-a-glance view of the IAM objects that currently exist
within their AWS account. Don't be intimidated by the flood of terminology, or the obtuse
relationships between the various IAM objects and authorization policies. These things
may be difficult to fully grasp right now as they are devoid of context. This will become
clearer as we work through some examples of how IAM objects are governed by AWS
IAM.

Putting it all together
Now that we've seen the AWS IAM dashboard, familiarized ourselves with the
terminology used with the service, and examined the relationship between principals,
entities, identities, roles, groups, and policies, let's create some AWS IAM resource objects
using the AWS Management Console. In order to complete this exercise, you will need to
sign up for an AWS account at https://aws.amazon.com.

https://aws.amazon.com

26 An Introduction to IAM and AWS IAM Concepts

Signing in with the root user
If you have signed up with a new account, the first and only option you have to sign in to
the AWS Management Console is with the Root user. The Root user is the owner of the
AWS account, and similar to a root user in a Linux system, it is a super administrator with
full access to all the services and resources available. Just as one would when configuring
a server, we should only use the Root user for as long as it takes to set up a different
administrative account to use:

1. From the AWS IAM dashboard, expand Access management on the left and click
on Users. From this screen, you can see every non-root user in your account,
including important security information such as group membership information,
access key age, password age, last activity, and whether or not that account has
multifactor authentication enabled:

Figure 1.9 – AWS IAM user administration console

2. As this is a new environment, our user list is empty. We create a new user by
clicking Add user:

Putting it all together 27

Figure 1.10 – User configuration and access type

3. Let's name the new account redbeardidentity and give it both programmatic
access and AWS Management Console access. This means the account will be issued
two sets of credentials, a password for console access, and the access key ID and
secret key ID for use with the AWS command-line interface:

28 An Introduction to IAM and AWS IAM Concepts

4. Since we will be using this account, we can select the option to populate our
own password and uncheck the box that requires a new password on first login.
If we were provisioning an account for another administrator, we would leave
the ''password reset on first logon'' requirement in place to ensure that the other
administrator was the only person who knew their password. Click on the Next:
Permissions button:

Figure 1.11 – Permissions options
On the next screen (Figure 1.11), we see several options for granting permissions
for the new account. Let's examine the options available to us. If this were a shared
account with several different administrators performing different job functions,
we could set up a group for each one of those job functions and attach policies to
the group. Then by adding the new user accounts to the appropriate group, those
users inherit the policies from the group. Alternatively, we could just copy the
permissions from an existing user. This is a non-starter for our use case as we are
currently creating the very first non-root user account in the environment and have
no other account from which to copy permissions. Finally, we can create and attach
a policy directly to the user. Since the wizard is selling groups as a ''best-practice way
to manage users' permissions,'' we'll do that. This is also where we can optionally set
a permissions boundary for this user. Since this user is an administrator, we don't
need to set such a boundary:

Putting it all together 29

Figure 1.12 – Create group and attach policy

5. Clicking Create group takes us to the group creation screen where we can name
the group and attach AWS-created policies to it. We also have the option to create
our own custom policy for the group, but as the goal for this group is to grant full
administrative privileges to the environment, and AWS already has a policy that
grants those entitlements, we'll spare ourselves the administrative overhead.

6. We give our administrator's group a name that will help ourselves and others
recognize its purpose and click Create group:

Figure 1.13 – Create group and attach policies

30 An Introduction to IAM and AWS IAM Concepts

The group is created, and we are returned to the user creation screen. The form now
shows the new user as a member of the FullAdministrator group. Click on
the Next: Tags button. On the next screen, we can optionally create some tags to
associate with this user. Tags are customizable attributes in the form of key-value
pairs that you can define on nearly every resource object type in AWS, and you
can use tags for reporting, searching, and perhaps most importantly, authorization
policy.

7. Tags are powerful tools for governance, so we will define some costcenter and
jobcode tags and populate them with values that we may be able to use to define
some session policies later. As we type, the console opens new rows for other tags.
Type something like what is shown in Figure 1.14 and click on the Next: Review
button:

Figure 1.14 – Attaching tags to the new IAM user

8. After that, we can review all of our selections and create the user. Simply click on
the Create user button and the operation is finished:

Putting it all together 31

Figure 1.15 – Review and create the new user
The AWS IAM dashboard has been updated to reflect the new user and group
creation, and the Users and Groups control panels now give us options to
administrate the new IAM resource objects:

Figure 1.16 – Updated IAM dashboard

32 An Introduction to IAM and AWS IAM Concepts

If we check the list of users, we see the new IAM user we've created, complete with
an at-a-glance view of the group membership, the age of its credentials, its last
activity, and whether it has multifactor authentication enabled:

Figure 1.17 – Updated IAM user administration console

9. Now we can sign in using the non-root account. Note the Sign-in URL for IAM
users in this account in Figure 1.16. It is an account-specific sign-in link for IAM
users to use when signing into this particular AWS account so we will not need to
memorize and enter the account number each time we sign in through https://
aws.amazon.com:

Figure 1.18 – Root user on the left, IAM user on the right

Once signed in under the redbeardidentity IAM user account, and despite it having
full administrator permissions to the AWS account just like the root account, we can
see that it is an IAM user account based on the differences in the account information
displayed in the menu bar.

https://aws.amazon.com
https://aws.amazon.com

Summary 33

Now that we've created our first AWS IAM user, let's recall once again why we bothered
to do so in the first place. IAM is the discipline of managing the life cycle of digital
accounts that correspond to and are under the control of a person and ensuring that only
the correct resources are accessed by the correct actor at the correct time and under the
correct context. Understanding how identity life cycle events and processes interact to
achieve a specific business or technological outcome helps us understand how to achieve
those same outcomes within the cloud. AWS IAM is the service that an AWS account uses
to authenticate and authorize users and applications that use the account's services and
handles the IAM use cases for AWS services.

AWS IAM controls IAM resource objects, including the entities that users, applications, or
federated users use to authenticate themselves to the service. IAM users, roles, and groups
are identity objects used to identity or group IAM resource objects for the application of
authorization policy. AWS IAM assesses requests to take actions on AWS objects using
the request context, which is a combination of details about the request, in conjunction
with authorization policy objects that apply to the user, role, group, or resource that
the principal is trying to manipulate. Each AWS account gets a root user, which is the
superuser for the account. Best practice recommends that you use an appropriately scoped
IAM user when accessing your AWS account, and not the root account.

Summary
Over the course of this chapter, we've learned the basics of IAM and seen it applied to
a typical enterprise worker scenario. We also learned about the AWS IAM service, and
how it applies IAM to AWS itself. Additionally, we learned about the types of objects
managed by the AWS IAM service and got a high-level overview of how AWS IAM uses
authentication, authorization, and request context to evaluate every request that comes
into an AWS account. Finally, we took a tour of the IAM dashboard inside of the AWS
Management Console and created our first non-root administrative user.

The next chapter will introduce us to an alternate method for interacting with our AWS
account – the AWS CLI. We will learn how to install and configure it on Windows and
macOS/Linux, including setting up different profiles for different use cases. We'll also
examine the command syntax and get introduced to some tools that will help us discover
command syntax and administrate objects. By the end of the chapter, we will have learned
how to make programmatic calls to an AWS account.

34 An Introduction to IAM and AWS IAM Concepts

Questions
1. What is IAM?

2. What is authentication?

3. What is authorization?

4. An IAM user, a role, a federated user, and an application are examples of what in an
AWS service request?

5. What are some examples of AWS IAM objects?

6. How does the AWS IAM service decide whether a request to access a resource is
permitted?

7. Name the AWS policy types that can impact an authorization decision.

2
An Introduction to

the AWS CLI
The AWS CLI is the programmatic interface for administrating resources within an AWS
account. You can use the AWS CLI to access any number of AWS accounts, operate under
any number of IAM user objects under each of those accounts, and execute complex
commands to perform all manner of functions on all of your AWS objects. Accessing
an AWS account through the AWS CLI requires an IAM user object with programmatic
access to its AWS account, which is a type of credential distinct from the user object's
Management Console password. With this access, you will be able to do everything via the
CLI that you can do in the Management Console.

In this chapter, you will learn all about the AWS CLI. This includes the installation and
configuration of the utility, including configuring different user profiles. You will also
learn about several methods to discover the syntax of AWS CLI commands, including the
built-in help command, auto-prompt, and creating and importing templates. The AWS
CLI reveals how many distinct AWS resources can contribute to what may be perceived
as a single operation, such as creating an administrative account. You will see that what
makes them work as we expect them to work is their relationships with each other. We can
use scripts to efficiently execute vast numbers of AWS CLI commands to administrate an
AWS account.

36 An Introduction to the AWS CLI

By the end of this chapter, we will have covered the following:

• Exploring the AWS CLI basics

• Using the AWS CLI

• Putting it all together – creating a functional IAM user with the AWS CLI

Technical requirements
To get the most out of this chapter, you will need the following:

• A workstation running either Windows 10, macOS, or Linux

• The AWS CLI v2 installer for your operating system, available at https://aws.
amazon.com/cli/

• An AWS account

• A text editor or IDE to edit JSON/YAML files, such as Microsoft Visual Studio Code

Exploring the AWS CLI basics
In this section, we will get introduced to the AWS CLI utility. We will learn what it is used
for, how to install it on various operating systems, and how to configure it for use with our
AWS account.

What is the AWS CLI?
The AWS CLI is a command-line utility that enables programmatic access to the services
in your AWS account. After you sign in to the AWS Management Console with an IAM
user (or assume an IAM role), the actions you take within the console to look at the
objects within each service, create new objects, or delete existing objects are all called via
backend APIs invoked through your interactions with that GUI. The AWS CLI is another
mechanism to administrate your AWS account, services, and resources just like you do
in the Management Console. You authenticate yourself by presenting the credentials of
an IAM user or with a session token and assumed role. You can list all of the services
available to you based on your authorization, create new resources, modify existing
resources, and delete resources. The AWS CLI commands manipulate the AWS platform
in the exact same way as the GUI.

https://aws.amazon.com/cli/
https://aws.amazon.com/cli/

Exploring the AWS CLI basics 37

So then, why would someone prefer to use a command line and painstakingly type their
commands when the Management Console offers useful wizards, tooltips, and a point-
and-click interface? In a single word – speed. The AWS CLI facilitates programmatic and
script-based resource administration that allows you to manipulate the environment at a
much quicker pace than can be achieved using the GUI. Additionally, the programmatic
nature of the CLI lends itself to infrastructure-as-code and DevOps processes that are not
compatible with a GUI. Real-deal AWS administration is done using the command line.

While it usually doesn't make sense to dive straight into a new concept with demos and
practical application, in order to explore the features and functionality of the AWS CLI,
you need to connect it to an AWS account, and that in turn requires us to perform some
basic configuration. So, let's start there.

Installing the AWS CLI
Since February 2020, there are two versions of the AWS CLI. Version 2 introduces several
new features, including a self-contained installer, support for AWS Single Sign-On
when using the CLI, and several quality-of-life improvements around documentation,
tooltip documentation, and auto-completion suggestions. While version 1 remains
supported, we will constrain our scope to the version 2 CLI with this book. Although
there is considerable overlap between version 1 and version 2 commands, version 2 is not
considered backward-compatible with version 1.

The following instructions represent the most concise method of installing and
configuring the AWS CLI, but there are detailed instructions for niche use cases (such
as specifying a specific point release to be downloaded) and additional operating
systems available from AWS at https://docs.aws.amazon.com/cli/latest/
userguide/install-cliv2.html.

macOS
To install the AWS CLI on macOS, use the following steps:

1. Open Terminal and navigate to a directory where you can save files. First, enter the
following command to download the latest version of the command-line installer
package:

$ curl ''https://awscli.amazonaws.com/AWSCLIV2.pkg'' -o
''AWSCLIV2.pkg''

https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html

38 An Introduction to the AWS CLI

2. Then, run the following command to install the AWS CLI for all users on the
workstation:

$ sudo installer -pkg AWSCLIV2.pkg -target /

Here's what the output for steps 1 and 2 looks like:

Figure 2.1 – Terminal window output after downloading and installing the AWS CLI v2 package

3. To verify that the installation was successful and that AWS CLI commands are now
included in your command $PATH, run the following command:

$ which aws

4. This will reveal the folder path where the symbolic links for the user-executable
commands were added to your $PATH variable:

$ aws --version

This will show the AWS CLI version, the Python version, and additional host kernel
information:

Figure 2.2 – Terminal window output after verifying the AWS CLI installation

Now that we have seen how it is done on macOS, let's move on to Windows.

Windows 10
Follow these steps to install the AWS CLI on Windows 10:

1. Open a browser and download the AWS CLI installer from https://awscli.
amazonaws.com/AWSCLIV2.msi.

2. Open and run the installer and follow the instructions to complete the installation.

https://awscli.amazonaws.com/AWSCLIV2.msi
https://awscli.amazonaws.com/AWSCLIV2.msi

Exploring the AWS CLI basics 39

3. Once the installer has completed, open Command Prompt to verify the installation
by entering the following command:

C:\> aws --version

This will show the AWS CLI version, the Python version, and additional host operating
system information:

Figure 2.3 – The Command Prompt window output after verifying the AWS CLI installation

This concludes the configuration under Windows 10. Let's move on to Linux.

Linux
The installation process is very similar to the one we used for macOS, given macOS'
Debian heritage. To install the AWS CLI on Linux, use the following steps:

1. Open Terminal and navigate to a directory where you can save files. First, enter the
following command to download the latest version of the command-line installer
package:

$ curl ''https://awscli.amazonaws.com/awscli-exe-
linux-x86_64.zip'' -o ''awscliv2.zip''

2. Then, run the following command to unzip the package. If your Linux install does
not have unzip installed, install unzip using your distribution's package manager
and try again:

$ unzip awscliv2.zip

3. Run the following to install the AWS CLI for all users:

$ sudo ./aws/install

40 An Introduction to the AWS CLI

4. To verify that the installation was successful and that AWS CLI commands are now
included in your command $PATH, run the following command:

$ which aws

5. This will reveal the folder path where the symbolic links for the user-executable
commands were added to your $PATH variable:

$ aws --version

This will show the AWS CLI version, the Python version, and additional host kernel
information:

Figure 2.4 – Output of installation on Ubuntu

The preceding should work for most versions of Linux, though it is possible you may run
into issues with custom compilations. Additionally, it is discouraged to install from your
distribution's package manager utility, such as yum or apt, as the versions maintained
there may not be the most recent release from AWS.

AWS CLI configuration
As we have mentioned before, every request into an AWS account is evaluated by the AWS
IAM service, which authenticates the principal making the request via the credentials
presented with the call, and by examining the policy and request context to determine
whether that request should be authorized to proceed. Requests from the AWS CLI are
no different. While there are several advanced patterns for identity and authorization
management that can be deployed with the AWS CLI, if you are operating in a new AWS
environment or are simply looking to get started quickly, you need to define your basic
configuration. Now that we have the AWS CLI installed, we will run the configuration
command to define the default values for how the AWS CLI will present data to us, where
it will send our requests, and the IAM user we will use to authenticate and authorize our
calls into the service. This most basic configuration is done using the aws configure
command.

Exploring the AWS CLI basics 41

The aws configure command will prompt for four settings:

• AWS Access Key ID: This the first half of the credentials issued to AWS IAM users
that have been granted programmatic access. This value is shown in the Security
Credentials section of the user object on the AWS IAM dashboard.

• AWS Secret Access Key: This is the second half of the credentials issued for
programmatic access and is considered a secret. You can only see the secret value or
download a .csv file with both the access key ID and the secret access key at the
credential's creation time, so keep that in mind when creating your programmatic
credentials for the IAM user you intend to use with the CLI.

• Default region name: This is the default region where requests will be sent. AWS
has dozens of regions across the globe. While some services, such as AWS IAM,
operate globally without a regional distinction, most services require you to specify
the region where you want the request to take place. The default region will be the
region where requests are sent unless a specific region is included within the syntax
of the request. The best practice is to select the region closest to you, assuming you
have no other region requirements for your use case.

• Default output format: This setting determines how the AWS CLI presents object
information. Options include json, yaml, yaml-stream, text, and table.
Whatever you select here is your preference, though json, yaml, and yaml-
stream lend themselves to more advanced programmatic use cases as the format
is machine-readable. Text and table options may improve human readability at the
cost of programmatic utility.

It is best practice not to use the root account's credentials in your AWS CLI configuration
as the loss of control of the root account's credentials could compromise the integrity
of the entire account. It is better to configure your AWS CLI using the programmatic
credentials of an IAM user whose access has been scoped appropriately for the work that
will be performed from the CLI. In the previous chapter, we created a full administrator
IAM user called redbeardidentity. We will be using that IAM user's programmatic
credentials for our initial CLI configuration, and to explore the capabilities of the CLI
throughout the chapter.

From the terminal, enter the following:

$ aws configure

42 An Introduction to the AWS CLI

You will be prompted to enter values for the four settings we listed earlier, and the current
configuration values for each of those settings will be listed in the brackets next to those
settings. Enter your desired value for each setting and hit Enter. Once all four are entered,
you will be returned to Command Prompt:

Figure 2.5 – Current and new values entered when performing basic AWS CLI configuration

If you need to modify any of these values, you can run aws configure again. It will
now show the values you entered as the current settings. Hitting Enter on any value you
do not want to change will leave that setting unchanged and entering a new value at the
prompt will update the configuration. Let's say we would prefer to use us-east-2 as our
default region; we just run the configuration again and update only that value:

Figure 2.6 – Changing our configuration to reflect us-east-2

The new values are committed and, assuming the authorization policy applied permits
us to, we can now begin issuing commands to our AWS account under this IAM user
context. These will be the default settings used with the CLI unless other values are
specified.

Important Note
Do not expose your Secret Key ID! Figure 2.5 commits a cardinal sin of IAM,
AWS administration, and general information security; never reveal your secret
key ID! The keys used in the preceding demonstration are dummy values for
instructional purposes. In the event that your secret access key ever becomes
exposed, disable it using the AWS IAM dashboard immediately and issue a
replacement.

Exploring the AWS CLI basics 43

Testing out the CLI
Let's perform a basic test of the CLI to make sure our configuration works. Since the
environment we are working in is brand new and given that we haven't yet gone through
exactly how to use the AWS CLI yet, we are just going to run a command that identities
the user object used to make the call into the AWS account. In Command Prompt, enter
the following:

$ aws sts get-caller-identity

I immediately received the following response:

Figure 2.7 – Response from the aws sts get-caller-identity command

This test validates that our default AWS CLI configuration is valid. You may have noticed
that we never defined an endpoint, nor an account, or any of the other things you typically
do when making web service calls. As an identity-defined service, our access key ID and
secret access key are sufficient identifiers for AWS to ensure that our requests are directed
and evaluated against the appropriate AWS account and AWS IAM policies within that
account.

Profiles
So, what happens if you need to use the AWS CLI with multiple AWS accounts? Or if you
have different IAM users with different entitlements for different use cases? The AWS
CLI manages your configuration settings by referencing a pair of files it manages in your
operating system user's home directory, called config and credentials. You can
differentiate between the configuration or credentials you want to use in your request
from the AWS CLI by specifying something called a profile. You can define a profile for
an AWS CLI configuration by adding the --profile operator with a label for the profile
when running the aws configure command:

Figure 2.8 – Defining a redbeardidentity profile with specific credentials and region/output settings

44 An Introduction to the AWS CLI

We can see the profile name and profile-specific values for the redbeardidentity
profile inside of the config and credentials files found in the hidden directory at
~/.aws/ on macOS and Linux, and %USERPROFILE%\.aws\ on Windows 10. As the
redbeardidentity IAM user has full administrator access to my AWS account, I am
also going to configure a profile under a new IAM user I have created that is scoped only
to administrate S3 objects and add that profile to my configuration, and another with
similar access to EC2:

Figure 2.9 – Defining a second profile

When I look at my config file, I can see the redbeardidentity, rbi_s3, and rbi_
ec2 profiles. The credentials file has corresponding entries for each of the profile names:

Figure 2.10 – Multiple profiles defined for use with the CLI

Exploring the AWS CLI basics 45

Speaking of the credentials file, as we have already emphasized the criticality of protecting
the access key ID and secret access keys, it should go without saying that this file can be
a high-risk target. When these AWS credentials are stored locally, you must take care to
secure your workstation lest the integrity of your AWS account is put into jeopardy. This
is also another reason why setting up restrictive access policies and IAM user objects with
appropriately scope access is critical to AWS security, as limiting access will reduce the
potential impact to your AWS account in the event that your credentials are leaked. Once
again, for emphasis, do not use the AWS root account's programmatic credentials with the
AWS CLI.

To get the most out of these profiles, you can either suffix each of your commands with
the appropriate profile as you issue them or export an environmental variable within the
terminal session that will change the default profile for all AWS CLI commands issued
during that session. This is useful if you don't want to modify your true default AWS CLI
configuration settings but want to do prolonged work under a specific IAM user.

For macOS and Linux, use the following command. This example uses the rbi_ec2
profile we created earlier:

$ export AWS_PROFILE=rbi_ec2

Windows users can run the following:

C:\> setx AWS_PROFILE rbi_ec2

With that, we've completed the basic setup for accessing our AWS account using the CLI.
We will be using the CLI for increasingly complex tasks throughout this book, so consider
the configuration preferences you've already made, and don't be afraid to adjust your
configuration to match your preferences and use case.

46 An Introduction to the AWS CLI

Using the AWS CLI
Now that we have our profiles set up, let's begin exploring how we can use the AWS CLI
to do things inside of our AWS account. Unfortunately, the AWS CLI does not have a
standard syntax of verbs similar to what you may be familiar with if you have ever worked
with RESTful protocols; there is no command structure that is universal across every
AWS service accessible from the CLI that can be recalled by applying a verb-like operator
against a service. So, in a RESTful service, you may have a format such as the following:

However, the AWS CLI has specific operations available on a per-service basis that will not
align service to service. However, the syntax across all of the operations across the services
does follow a basic syntax:

The emphasis here is on the N+1 options or parameters that can quickly pile up depending
upon the specific commands you are issuing. The preceding two examples are relatively
simple commands for the S3 service. The first lists all the buckets on the account that
I am allowed to see under my current IAM user role or profile (and since I am using
the redbeardidentity IAM user for these exercises, which is a member of the
FullAdministrator IAM group, I will see them all). That command doesn't require
any additional parameters past the ls subcommand since it is listing all of the buckets
on the account. The second command is a bit different, in that it will copy a local file into
an S3 bucket. The cp subcommand is followed by two additional parameters, the first
indicating which file is to be copied, and the second specifying the bucket and path where
that file is to be copied:

Using the AWS CLI 47

Figure 2.11 – Examples of the AWS CLI command syntax with differing amounts of parameters

Figure 2.11 shows us the results of those commands in action.

Discovering command syntax
Perhaps you are wondering how you can familiarize yourself with each of the commands,
subcommands, and countless options and parameters required to enter a command
as a typed string in Command Prompt. Unlike the AWS Management Console, there
doesn't appear to be any tooltips or prompts to guide your input, so the odds of making a
mistake and needing to go through the tedium of re-typing a long command seems high.
Fortunately, there are a few options to help you discover the available commands from the
CLI itself so you will not need to learn through trial and error, in addition to the detailed,
per-service documentation available at https://docs.aws.amazon.com/cli/
latest/reference/. Let's create a new user in the Redbeard Identity AWS account
using the CLI and see how each of these options provides details on the commands and
parameters required to do it successfully.

aws help
The most basic tool to aid you is the help command. By typing help after nearly
anything, you get a contextual help article with details on the command or subcommand
that precedes it. Since we are going to create a new IAM user, we can assume the first part
of our command will be as follows:

$ aws iam

But after that, I am at a loss. Let's see how the help command reveals the additional
information to us:

$ aws iam help

https://docs.aws.amazon.com/cli/latest/reference/
https://docs.aws.amazon.com/cli/latest/reference/

48 An Introduction to the AWS CLI

With that, a document listing the available commands opens up:

Figure 2.12 – aws iam help reveals the available commands for the aws iam command

Using the AWS CLI 49

create-user seems like the ticket. Repeat this process again and again and again with
each new subcommand and parameter until we have a properly formatted statement that
will create a new IAM user and we are good to go.

Auto-prompt
Of course, capturing the command syntax up until we don't know what is next, entering
help, reading the document, adding the next piece of the command, then repeating is
awfully time-consuming. Fortunately, as of the AWS CLI version 2, there is a setting
that will preemptively reveal the commands and variables as you type them called auto-
prompt. There are several ways to enable auto-prompt. The first is by setting a parameter
in the command line:

$ aws --cli-auto-prompt

This will enable the prompt for the duration of the command we are entering.

The second is by setting and exporting an environmental variable in our command-
line terminal that enables auto-prompt for the duration of that session. This is done by
entering the following commands:

$ AWS_CLI_AUTO_PROMPT=on

$ export AWS_CLI_AUTO_PROMPT

The third is by updating the config file where our profile settings are stored with an
additional parameter to leave auto-prompt enabled under a specific profile. The config file
is found in the hidden AWS directory within the user's home directory at ~/.aws/ on
macOS and Linux, and %USERPROFILE%\.aws\ on Windows 10. We open the config
file and add the following configuration key and value to the profile under which we want
auto-prompt enabled:

cli_auto_prompt = on

50 An Introduction to the AWS CLI

When completed, our profile will look like this:

Figure 2.13 – cli_auto_prompt enabled on every profile in the AWS CLI config file

Since there are various ways to enable auto-prompt, there is the chance that we could
set ourselves up with a conflicting configuration between the CLI config parameter, the
environmental variable, and the command parameter. While this will not cause an error,
it is important to know that whichever method we choose for our use case, there is a
hierarchy of precedence that will determine which configuration is ultimately respected.
The command-line parameter takes utmost precedence – we can toggle auto-prompt on
or off using that parameter regardless of any environment or config parameters. This is
useful for spot-checking commands or disabling auto-prompt for the commands that you
are well versed in using. An environment variable will override the config variable. The
way we choose to enable auto-prompt is ultimately a matter of personal preference, but
it is important to understand whether a workstation policy or an errant line in a script
disables the functionality that we were expecting.

Using the AWS CLI 51

Now that we have set up auto-prompt, let's take a look at that new user creation command
we were puzzling over earlier using auto-prompt as the guide. Since we have auto-prompt
enabled as a parameter on the config file, we see our command line change once we hit
Enter after entering any portion of an AWS CLI command:

Figure 2.14 – The auto-prompt menu shows available commands and parameters

As we are trying to create a new IAM user object, let's enter iam and then create-user
as the next commands and see what additional parameters appear:

Figure 2.15 – Contextual parameters, including required parameters, indicated by auto-prompt

And with that, auto-prompt begins showing its value as we see a contextual list of
parameters and explanations of what those parameters do. Most significantly, it reveals the
required parameters, or the minimally required parameters, for the command to execute.
Let's name this user something unique and move on.

52 An Introduction to the AWS CLI

We don't see any other parameters labeled as required on the list, so let's execute the
command:

Figure 2.16 – The output from a successfully created IAM user object using the AWS CLI

And there is our user. We can even verify that the IAM user object was created by looking
at the IAM dashboard within the AWS Management Console:

Figure 2.17 – CLI-created user appears in the Management Console

Tip
aws_cli_auto_prompt=on versus aws_cli_auto_prompt=on-
partial: Auto-prompt is useful, but as you grow in experience, it may
become tedious to wade through the menus on every command you enter in
the CLI. By setting the aws_cli_auto_prompt value to on-partial,
you can set auto-prompt to only trigger on malformed commands. This
balances the usefulness of its guidance with the intrusiveness of its prompts for
more experienced users.

Using the AWS CLI 53

Looking at Figure 2.17 there are a few differences with that user compared to the previous
three that we created using the Management Console. We were never prompted to set an
initial password for Management Console access, nor enable programmatic access for the
AWS CLI, nor did we associate this user with an IAM role, group, or policy that governs
its access. While the auto-prompt tool walked us through the minimum requirements to
create an IAM user, the user we got at the end of that process isn't very useful. Was this
a function of missing non-required parameters, or something else? We can examine this
issue more easily by looking at the IAM user object prior to issuing the command to create
it by using CLI-generated object templates to examine, edit, and then create an IAM user
object when using the CLI.

But before we do that, let's delete this user using the CLI. As we don't know exactly how to
do that, let's take a guess at the command and see how auto-prompt clues us in:

Figure 2.18 – Deleting the IAM user object under guidance from auto-prompt

Once we execute, the user is gone.

Generating an AWS CLI skeleton and loading a template
So far, we have created a new IAM user object using the CLI, but that user was not in a
very usable state – we couldn't use it to sign in to the Management Console as it had no
assigned password, nor could we use it to access our AWS account using the CLI as it had
no programmatic access. While auto-prompt helped us figure out what was required to
successfully execute the aws iam create-user command, that the user was unusable
suggests there is more configuration required to perform the full suite of commands to
create a fully usable IAM user via the AWS CLI than just that single one. Fortunately,
we can examine existing objects to see how they may differ using the CLI and, using the
--generate-cli-skeleton parameter, can even create a template that we can edit
using a text editor or IDE and import via the CLI to simplify the creation of these objects:

1. First, let's look at an existing IAM user object that we know is good, such as our
current non-root administrator redbeardidentity. From the AWS CLI, we can
list the IAM users in our environment with the following command:

$ aws iam list-users

54 An Introduction to the AWS CLI

This produces a list of all the IAM user objects in the account. As this is a new
tenant, there are not very many users here for us to sort through, so we can find all
the relevant details on the redbeardidentity account relatively easily:

Figure 2.19 – All IAM user objects in the AWS account

2. However, if we were working in an environment with thousands of users, this would
be terribly inefficient. Instead, we can pull all the details on a specific user by using
the get-user command:

$ aws iam get-user --user-name redbeardidentity

You'll notice that using that command provides more specifics on the user
compared to the earlier list command:

Figure 2.20 – Increased object detail using the get-user command versus the list-users command

Using the AWS CLI 55

3. Let's use the --generate-cli-skeleton parameter to create a full template for
the object that we can manipulate using an IDE or text editor and import using the
create-user command to ensure that we create the IAM user object with every
attribute available to it. To do this, you attach the --generate-cli-skeleton
parameter to the object for which you are running a create command, which in
this case is an IAM user:

$ aws iam create-user --generate-cli-skeleton

This produces a JSON template for the object. Alternatively, you can specify YAML
by further adding the following:

$ aws iam create-user --generate-cli-skeleton yaml-input

We see the skeleton templates in both JSON and YAML format in Figure 2.21 as
follows:

Figure 2.21 – JSON and YAML templates for the IAM user object

56 An Introduction to the AWS CLI

4. With those templates, we can copy whichever format we are more comfortable with
using into a text editor or IDE and create a file that we will direct the create-
user command to look to for all the parameters it requires for the creation of the
object. Since I prefer YAML, I will copy the YAML template into my preferred IDE,
Microsoft Visual Studio Code, and start inserting values for a new user, which I will
name RBI_Admin:

Figure 2.22 – Creating rbi_admin.yml using an IDE

5. For the values that we are uncertain about (such as Path), we can look into the
details we got when we ran the get-user command on the known-good IAM user
object, redbeardidentity. As we have not specified a permissions boundary in
our AWS account, we will need to remove or comment out that optional parameter.

6. Finally, we can copy/paste additional key/value pairs for all the tags we want to
attach to this user; we are not restricted to just what came out of the --generate-
cli-skeleton command. Once we save this file, we can return to the AWS CLI
and run the create-user command again, only this time telling it to refer to the
file for the parameters, and the location of the file:

$ aws iam create-user --cli-input-yaml file://rbi_admin.
yml

The output tells us the operation was a success:

Figure 2.23 – New IAM user object created from a template file

Using the AWS CLI 57

That said, there is nothing else there that gives us insight into what additional required
parameters may have been missed when we initially created our user using the create-
user command that would explain why our new IAM user object has a password for
Management Console access, nor programmatic access, nor authorization policy. Rather
than draw this out unnecessarily, I will spoil how this will end: the IAM user object, its
credentials, and the authorization policy that governs its access are all distinct objects
within AWS. What links them all together is a binding relationship through attributes that
we can manipulate using the AWS CLI.

Though we may not have fully figured out how to create a functional administrative user
object quite yet, don't let that diminish the value of CLI skeleton templates for your future
use cases. When using the templates with the CLI, there are a few important things to
remember:

• Required attributes are marked as REQUIRED and must be populated.

• Comment out or delete any non-required attribute that you are not using in the
template or the process will fail.

• The default output when using the --generate-cli-skeleton command is
JSON. To specify a YAML template, add the yaml-input parameter at the end of
the command.

• When importing a template, you must align the import command to the format of
the file using either --cli-input-json or --cli-input-yaml, followed by
file://<file path>.

• The file:// portion of the command starts relative to your current working
directory in the command line, so if you are running your AWS CLI in a command
line and your current working directory is /Users/yourname/Documents/,
you must either move the template to that location or adjust the path after
file:// to be correct relative to your current working directory.

Now that we have learned how to navigate the AWS CLI to the degree that we can discover
commands, create and import templates, and create objects, let's add the missing pieces
we need to make this IAM user a full administrator with programmatic and Management
Console access.

58 An Introduction to the AWS CLI

Putting it all together – creating a functional
IAM user with the AWS CLI
Now that we have created RBI_Admin as a new IAM user object, let's use the AWS CLI
to assign it credentials for both the Management Console and the AWS CLI, and give full
administrator access to our AWS account. As I mentioned earlier, identity objects used for
authorization decisions (groups, permission boundaries, user policies, and so on), those
used for authentication (credentials), and those used for identification (user objects) are
all fully independent IAM objects within AWS IAM. What makes them work as we expect
them to work is their relationships with each other. This relationship is most readily seen
through attributes on one of those objects referencing another. We will be using the AWS
CLI to establish those relationships. Before we begin, let's take a moment to map out what
it is we want to achieve, as this may help us understand how and why certain AWS CLI
commands are invoked:

Figure 2.24 – A map of the objects and actions needed to make the IAM user a full administrator

Looking at Figure 2.24, we seem to have three overarching objectives:

• Apply an authorization policy that grants the RBI_Admin user object full
administrator access.

• Create and attach Management Console credentials to the RBI_Admin user object.

• Create and attach programmatic credentials for the AWS CLI access to the RBI_
Admin user object.

Putting it all together – creating a functional IAM user with the AWS CLI 59

Now that we have an idea of what we are aiming to do, let's take a look at the commands
at our disposal to execute those tasks. Rather than hunt and peck through the AWS CLI
for the relevant commands, we can instead peruse all of the available commands available
to use at https://docs.aws.amazon.com/cli/latest/reference/iam/
index.html to see which ones look to get us close to the mark.

Attaching an administrator policy
First, let's make RBI_Admin an administrator. There are several ways this can be
accomplished using AWS IAM policies, but groups are easy to conceptualize and
administrate, so let's accomplish this task by adding RBI_Admin to a group that will
grant it that access:

1. First, we list the groups available in our AWS account to see what may already be
present:

$ aws iam list-groups

Fortunately, we had previously created a group for use with non-root administrators
on the first account we created (and are presently using it to issue these commands
from the CLI):

Figure 2.25 – Previously created FullAdministrator group object

2. In fact, since we know that redbeardidentityaccount is our current non-root
full administrator account, we will get the same output if we run a different
command with some different parameters:

$ aws iam list-groups-for-user --user-name
redbeardidentity

https://docs.aws.amazon.com/cli/latest/reference/iam/index.html
https://docs.aws.amazon.com/cli/latest/reference/iam/index.html

60 An Introduction to the AWS CLI

Sure enough, we get this output:

Figure 2.26 – Demonstrating the group relationship with the current AWS CLI user

3. Of course, how does this group grant its members full administrative privileges
to the AWS account? We can run some commands to explore the policy objects
attached to the group to find out:

$ aws iam list-attached-group-policies --group-name
FullAdministrator

As we see in Figure 2.27, the AWS-managed AdministratorAccess policy is
attached to this group:

Figure 2.27 – The attached policy objects for the FullAdministrator group
What is a managed policy, you may ask? A managed policy object is an AWS IAM
authorization policy that is created and maintained by AWS and included natively
with the AWS account. This is an example of how it is the relationship between
these two distinct objects, and not necessarily the group object itself, that ultimately
provides the identity outcome here.

Putting it all together – creating a functional IAM user with the AWS CLI 61

Having confirmed that there is a group that will suit our needs, let's add the RBI_
Admin user object to that group:

$ aws iam add-user-to-group --group-name
FullAdministrator --user-name RBI_Admin

4. No error message means the command was executed, but let's validate anyway by
running the following:

$ aws iam list-groups-for-user --user-name RBI_Admin

And sure enough, we now see FullAdministrator listed among the groups that
RBI_Admin belongs to:

Figure 2.28 – RBI_Admin added to and confirmed a member of the FullAdministrator group

Of course, being a member of the FullAdministrator group is of little use if the
RBI_Admin user cannot sign in to the Management Console.

Creating and attaching a password
The next thing we will tackle is the creation and attachment of the password to the RBI_
Admin user object. While you would think looking up commands involving password
would lead you to the right command, the change-password command is only good
for altering the password of the current user of the AWS CLI. As we are executing these
commands under the redbeardidentity IAM user object profile for the RBI_
Admin user object, that would not help us get RBI_Admin access to log on to the AWS
Management Console.

62 An Introduction to the AWS CLI

The command we are looking for is actually create-login-profile, and just
like within the AWS IAM dashboard, it provides options for either setting a temporary
password that must be changed at first logon or just defining the password entirely. Let's
make things simple and not force a change of password on the first login to the console:

$ aws iam create-login profile --user-name RBI_Admin --password
XXXXXXXXXXX - --no-password-reset-required

The output confirms the creation of Management Console access:

Figure 2.29 – Creating RBI_Admin's Management Console password

We can verify that it worked by signing in to the Management Console with RBI_Admin
and that password:

Figure 2.30 – Signing in to the Management Console with RBI_Admin

Now that we have access to the Management Console under the RBI_Admin user object,
we could simply enable programmatic access from the Console. But for completeness'
sake, let's also create the object's programmatic credentials from the CLI.

Creating and attaching the programmatic credentials
Finally, let's grant the RBI_Admin user object access to the AWS CLI creating its access
key ID and secret access key. By combing the AWS CLI documentation at https://
docs.aws.amazon.com/cli/latest/reference/iam/index.html, we can
quickly find the relevant commands for listing, creating, and deleting access keys, which
are (unsurprisingly) list-access-keys, create-access-key, and delete-
access-key, respectively. Let's get right to it and create an access key for RBI_Admin
by running the following:

$ aws iam create-access-key RBI_Admin

https://docs.aws.amazon.com/cli/latest/reference/iam/index.html
https://docs.aws.amazon.com/cli/latest/reference/iam/index.html

Putting it all together – creating a functional IAM user with the AWS CLI 63

We immediately get the access key ID and secret access key values as the output:

Figure 2.31 – Successful creation of programmatic credentials using the CLI

Tip
Capturing the secret access key upon creation: Remember, the secret
access key is only visible at creation time, unless you export the user object
information, along with its credentials, as a CSV file during creation using the
Management Console. If you lose the secret access key after creation, there is
no recovery process. A new one will need to be issued.

We now have what we need to use the RBI_Admin user with our AWS account from the
CLI.

Using the new profile
Now that we have everything required to make the RBI_Admin user object as equally
functional as our other administrative accounts, we can create a new profile in our AWS
CLI configuration to use it. We will start by running the aws configure command
to populate the access key ID, secret access key, default region, and default output for the
profile under a new profile name of rbi_admin:

$ aws configure --profile rbi_admin

AWS Access Key ID [None]: AKIAWSFPVONACOFCK7WA

AWS Secret Access Key [None]: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXX

Default region name [None]: us-east-1

Default output format [None]: yaml

64 An Introduction to the AWS CLI

Then, we can test it out by issuing any number of AWS CLI commands to make sure it
works. For example, let's list all of our access keys:

$ aws iam list-access-keys --profile rbi_admin

We get a list of all the access keys for the rbi_admin user object:

Figure 2.32 – All access keys under the rbi_admin profile

As I am curious about whether we can see the keys for other users under our rbi_admin
current profile, let's add an additional parameter to specify that we want to see all of the
redbeardbeardidentity user object's access keys:

$ aws iam list-access-keys --user-name redbeardidentity
--profile rbi_admin

It looks like our full administrator permissions are allowing us to see keys on other user
objects as well:

Figure 2.33 – Viewing the access keys of other IAM user objects under the rbi_admin profile

With that, we have verified that our rbi_admin profile can exercise its administrative
privileges the way we want it to from the CLI.

Scripting
Now, whereas entering all of these commands is arguably faster than doing it through
the Management Console, it is tedious to enter several commands just to create a single
IAM user object with full administrator privileges. Fortunately, this is where the power
of the AWS CLI's programmatic capabilities is nearly limitless; rather than manually
entering individual commands, how about we instead write a script that will string all the
commands together for us?

Putting it all together – creating a functional IAM user with the AWS CLI 65

On scripting best practices
The following example is designed to show how we can use scripting languages to
accomplish the same series of tasks that we have already completed using ad hoc
commands. You can use any scripting language you are comfortable with to accomplish
your objectives. The important thing to realize is that by chaining AWS CLI commands
in a script, you will be able to create complex arrangements of AWS objects and resources
very quickly, using resources that you can comfortably edit and collaborate on using
whatever toolsets and languages are optimal for your use case.

Let's take a moment to think about all of the individual commands we will need to run in
order to create a new IAM user object with access to both the AWS CLI and Management
Console, and that is also a member of the existing FullAdministrator group in our
AWS account. By recalling what it took to accomplish this with the RBI_Admin user
object, we can break the process down into a few steps:

1. Create the IAM user object.

2. Add that IAM user to the existing FullAdministrator group.

3. Create a login profile for the new IAM user object.

4. Create the access keys for the new IAM user object.

Bash is an approachable scripting language with plenty of searchable resources, so let's
make a Bash script that will handle all of those steps for us with minimal interaction.
Using a text editor or IDE, open a new file and save it as createiamuser.sh. To get
started, let's capture the corresponding AWS CLI commands that will address those four
things that we know we will need this script to do, and populate values for the username
and initial password:

#!/bin/sh

aws iam create-user --user-name ScriptTestUser

aws iam add-user-to-group --group-name FullAdministrator
--user-name ScriptTestUser

aws iam create-login-profile --user-name ScriptTestUser
--password 0urF1rstP@ssWord! --password-reset-required

aws iam create-access-key --user-name ScriptTestUser

66 An Introduction to the AWS CLI

Strictly speaking, this script would do the job. However, some critical components,
such as the secret access key, would appear once in the shell window as the script runs.
Additionally, this script would require editing for each new user object that we would
need to create. Let's punch it up a bit with some quality-of-life improvements that will
make it more useful:

#!/bin/sh

read -p ''Enter the username for the new IAM User Object: ''
username && touch ./$username

read -p ''Enter the initial password for AWS Management Console
Access: '' initialpassword && echo ''Your temporary AWS
Management Console password is $initialpassword'' > ./$username

aws iam create-user --user-name $username >> ./$username

aws iam add-user-to-group --group-name FullAdministrator
--user-name $username >> ./$username

aws iam create-login-profile --user-name $username --password
$initialpassword --password-reset-required >> ./$username

aws iam create-access-key --user-name $username >> ./$username

With these updates, we've added two user prompts at the beginning. The first will ask
for the IAM user object's name. The script then takes the value that is entered and uses
that value as the $username variable everywhere else in the script where the username
is required. This makes the script more maintainable. The second prompt asks for a
temporary password, which will be used for the first-time login to the Management
Console.

The next major change is that the output of the script is now captured in a file named after
the IAM user object that is being created. This makes it easy to hold onto the artifacts
needed to set up a profile using this IAM user object in the AWS CLI or to deliver the
results of the script to the designated principal who will be using that IAM object so that
they can change their credentials and start their configuration.

Let's run the script and see the output. Please note that you may need to make the script
executable before it can run:

$ chmod +x ./createiamuser.sh

$./createiamuser.sh

We are prompted for the IAM user object's name and the temporary password, and the
script completes rather quietly:

Summary 67

Figure 2.34 – Command-line output of the createiamuser.sh script

However, there is now a file in the same working directory where we ran our script named
for our new IAM user object. When we open it up, we see everything we need to use this
IAM user just like RBI_Admin before it:

Figure 2.35 – The contents of the ScriptTestUser file generated by the createiamuser.sh script

This script is rudimentary and could be further refined. For example, it could take a feed
from a separate list of users, generate a random string for the initial Management Console
password, and create hundreds of users at once. However, advanced Bash scripting
isn't the purpose of this chapter; the important thing to remember is that you can use
nearly any scripting language in conjunction with the AWS CLI to manage complex
arrangements of AWS resources very quickly.

Summary
Now that you have gone through this chapter, you have everything you need to begin
using the AWS CLI effectively. The AWS CLI is a powerful administrative tool for
managing your AWS account. Whereas this was definitely not a comprehensive review of
every command, feature, and function available to us in the CLI, the basic concepts and
examples you have learned will give you the tools you need to learn about and solve nearly
any challenge or use case you may require the use of the AWS CLI for.

68 An Introduction to the AWS CLI

We will put that knowledge to good use in the next chapter, and every remaining chapter,
of this book. Next, we will take a deep dive into IAM user accounts. This will include the
types of accounts and the different administrative requirements that each has. We will
also look more closely at passwords, password policy, programmatic credentials, and
multifactor credentials. Moreover, we will learn how to manage each and every one of
those things using the AWS CLI.

Questions
1. Is AWS CLI version 2 backward-compatible with AWS CLI v1?

2. What is the command to configure the default profile?

3. How would you configure an alternate profile using different programmatic
credentials without impacting your default AWS CLI profile?

4. Name three ways to discover AWS CLI command syntax from the command line.

5. True or false: When importing a template that was generated using the
--generate-cli-skeleton command, you cannot make any modifications to
the template that was generated by that command.

6. What are the three ways to enable auto-prompt on a profile?

7. True or false: AWS CLI commands must be entered one at a time from the
command line (this one is a trick question, so think carefully!).

8. What are the advantages of combining the AWS CLI with a scripting language?

Further reading
• AWS CLI command reference: https://docs.aws.amazon.com/cli/

latest/index.html

• AWS CLI user guide: https://docs.aws.amazon.com/cli/latest/
userguide/cli-chap-welcome.html

• AWS API reference (RESTful interface for interacting with AWS resources):
https://docs.aws.amazon.com/general/latest/gr/aws-apis.
html

https://docs.aws.amazon.com/cli/latest/index.html
https://docs.aws.amazon.com/cli/latest/index.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html
https://docs.aws.amazon.com/general/latest/gr/aws-apis.html
https://docs.aws.amazon.com/general/latest/gr/aws-apis.html

3
IAM User

Management
Some of the most highly visible objects in identity and access management (IAM) are
user accounts. Much of the discipline is centered on securing the credentials for those
accounts, ensuring they have proper lifecycle management, and providing the governance
to ensure that we can audit and document their proper use. And, of course, issues with
accounts and passwords can also cause much user-experience friction in both enterprise
and customer environments. All of those challenges are still with us in the cloud. In fact, it
is arguable that the stakes for securely managing user accounts within cloud management
backplanes are higher, as a loss of control there could have knock-on effects across dozens
of apps and on critical enterprise infrastructure. With that in mind, let's take a look at
Amazon Web Services (AWS) IAM user management.

In this chapter, we'll cover the following topics:

• What is an IAM user account?

• Managing and securing root IAM user accounts

• Managing and securing IAM user accounts

• Managing federated user accounts

70 IAM User Management

Technical requirements
To get the most out of this chapter, you will need the following:

• An AWS account

• A workstation running the AWS command-line interface (CLI)

• A text editor or integrated development environment (IDE) to edit JavaScript
Object Notation (JSON)/YAML Ain't Markup Language (YAML) files, such as
Microsoft Visual Studio Code (VS Code)

What is an IAM user account?
In Chapter 1, An Introduction to IAM and AWS IAM Concepts, we introduced the
foundational objects that AWS IAM uses to manage authentication and authorization
to AWS resources under the context of AWS as an infrastructure-as-a-service (IaaS)
platform. A principal—that is to say, a person or application that wants to access an
AWS resource—will present itself using a known IAM object (such as an IAM user or a
federated user) to AWS IAM. The principal validates their entitlement to assume that IAM
object by confirming a shared secret, such as the IAM user object's password or access key
ID and secret access key. By presenting the shared secret for the IAM user object, AWS
IAM is able to authenticate the principal or determine who the principal is.

IAM user accounts are distinct user profiles managed by AWS IAM that distinguish and
authenticate users within an AWS account. Using the AWS Management Console or the
AWS CLI, we can perform lifecycle management on the accounts, manage their access to
the Management Console, manage their programmatic access, and scope what they are
allowed to do within the account by applying access policies to them.

These users are identified by a unique Amazon Resource Name (ARN), which is the
universally unique identifier (UUID) for that object within AWS. The format of that
ARN is a combination of our account number and the user-friendly account name that
we've used to identify the delegated accounts we've created so far. Here's the ARN for
redbeardidentity:

arn:aws:iam::451339973440:user/redbeardidentity

Generally speaking, we typically interact with the user-friendly name, such as when
signing in to the AWS Management Console, or even when executing many AWS CLI
commands. However, some CLI commands and other AWS services require the specificity
of the ARN for their purposes.

What is an IAM user account? 71

Principals
We keep referring to the actor behind the IAM user account as a principal instead of
a person. Depending on your organization's needs, AWS IAM user accounts can map
to applications, service accounts, bot process automation accounts, or all manner of
additional use cases beyond an administrator accessing AWS resources with their account.

As such, users of IAM accounts can be any number of non-human entities. Not every
IAM user account is used by an individual human being. Good IAM governance
recommends that each user account used by an application be limited in its use to a
single application. This limits potential damage should any given application's IAM user
account be compromised, and facilitates access control and auditing of events to a specific
application's account as well. Additionally, it is best practice to ultimately correlate each
application's IAM user account to a named owner. However, this is a challenge that must
be solved outside of AWS IAM.

When a principal authenticates itself as an AWS user account, the AWS IAM account is
what it authenticates and authorizes to operate on AWS resources. It does not do this for
the organizational structure (or lack thereof) of people using the account.

Additionally, some access to AWS is not done through user accounts but through assumed
roles. In this use case, there is no user to refer to—at least not in the sense we've used
that term so far when discussing AWS IAM. In those use cases, it is again a principal that
accesses the AWS account, though through a distinct method. For the sake of consistency,
we will refer to the actor that initiates the authentication event as the principal. This
will be regardless of whether it is really a human being, a service account, or another
application.

The AWS IAM User Guide further clarifies the role of a principal in a transaction by
saying it is anyone ''authenticated as the AWS account root user or an IAM entity to make
requests in AWS'' and ''as a best practice, do not use your root user credentials for your daily
work'' (https://docs.aws.amazon.com/IAM/latest/UserGuide/intro-
structure.html). We will see in the next section how and why the root user is a
special class of account principals should avoid using.

https://docs.aws.amazon.com/IAM/latest/UserGuide/intro-structure.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/intro-structure.html

72 IAM User Management

Managing and securing root IAM
user accounts
IAM user accounts are the basic units of accountability when a principal authenticates
itself directly through AWS IAM, thus ensuring that those accounts are hardened is
foundational to the security of the entire AWS account. However, before we begin on
general account management and security, we need to address some peculiarities and best
practices of a unique account type.

Differences between root user account and IAM user
accounts
We've heard that repetition is key to learning. In both Chapter 1, An Introduction to IAM
and AWS IAM Concepts, and Chapter 2, An Introduction to the AWS CLI, we created IAM
users using both the AWS Management Console and the AWS CLI. The IAM users that
were created were no less capable of doing anything inside of the AWS account by dint of
them being members of the Full Administrators group. However, this still was an example
of an AWS IAM security best practice. The AWS root account should not be used beyond
creating other IAM user accounts.

Why is the AWS root account such a security risk? It is less that the AWS root account
is inherently risky; it's more that the AWS root account—unlike any other IAM user
account—cannot be deleted or replaced. It is intrinsically tied to the AWS account as the
root account for that environment. Moreover, the root account cannot have its access
scoped down at all; it will always be permanently endowed with a permissive, all-inclusive
authorization policy. As such, increasing one's dependency on that account by building
resources under it greatly increases certain risks, both in terms of the attack surface
and because of the likelihood that a full administrator token or credential could be
compromised by a malicious actor.

In comparison, even a full administrator IAM user account—if compromised—could
have its credentials revoked, its group memberships adjusted to limit blast radius, or even
authorization policies modified to alter what that account could do. There are no similar
avenues for remediation with the root account. As such, there are some best practices that
should be followed to ensure the root account does not become a security threat.

Managing and securing root IAM user accounts 73

Managing the root account's password
When we set up our AWS account, we may not have understood the significance of that
first password value we set. We're not merely setting up yet another password for yet
another online service; that password is the security linchpin for a wealth of pay-per-use
services.

AWS applies a service-wide password policy that it applies to all root accounts at
signup to ensure a baseline level of security. However, we may be subject to additional
regulatory requirements or organizational security policies that mandate enhanced
password complexity. As with any other password, the root account's password should be
changed on occasion. How frequently those changes occur depends upon your security
requirements, but it shouldn't be left as the same value indefinitely.

Tip
The root account is only covered by AWS's own password policy. You have the
option of creating a stricter password policy for your AWS IAM account, but
those requirements will only apply to managed IAM user accounts. If you must
comply with additional regulations or security policies, you will need to modify
the root account password manually to comply with the policies required by
your use case.

Unlike every other user, the root account is not administrated using the AWS IAM
Dashboard. We can sign in as our root user, but we will not see the same information
about password and access key age, last activity, or multi-factor authentication (MFA)
enablement as we do with our other IAM users in the AWS IAM Dashboard.

This is demonstrated in the following screenshot:

Figure 3.1 – Signed in as the root user, but no root account to be found

74 IAM User Management

We find our password management options under the My Security Credentials section in
the user menu, as illustrated in the following screenshot:

Figure 3.2 – Root account security-credential administration

It is here that we can update the root account's password based upon our own
requirements or on your organization's security policy.

Do not create or use root account access keys
Similar to the password change options available to us in the root account's My Security
Credentials form, we also have an option to administrate the root account's access keys.
That said, there should not be any access keys listed to administrate under our root
account, and not just because we never had occasion to create one. The form itself gives a
warning as to why, as illustrated in the following screenshot:

Figure 3.3 – Warning about root user access keys

Managing and securing root IAM user accounts 75

We've already emphasized how we cannot limit the access of the root account using
the authorization policy, unlike with other managed IAM user accounts. The existence
of long-lived root credentials presents an unnecessary risk to the integrity of the
environment when the same capabilities can be provided by an IAM user account with
full administrator access. This is why we created the Full Administrator group and the
IAM user accounts we configured for use with our AWS CLI profiles.

Important note
Using the AWS CLI to administrate the root user: As the root user is such a
powerful user object, it may be tempting to try to automate the management
of its credentials using the AWS CLI, to ensure some best practices (such as
credential cycling) are followed. While there is an argument to be made for
this kind of administration, consider other root account security best practices
that would have to be contraindicated in order to even allow the root account
AWS CLI access—namely, creating a long-lived access key ID and secret
access key for the root account. Moreover, those credentials would reside on
whatever system would be handling those administrative tasks, and would
require protection there. There are specialized privileged account-credential
vaulting tools that can facilitate these types of use cases. Notwithstanding,
carefully consider the use case you are trying to solve and the security risks
and trade-offs of issuing your root account programmatic credentials prior to
undertaking such a venture.

Enabling MFA on the root account
When a user is authenticated, they provide proof or a piece of evidence that they are who
they say they are. These proofs fall into the following three categories:

• Something you know: A shared secret that can be provided, which should only
be known by the account being authenticated and the system doing the validation,
such as a password

• Something you have: An item, token, or other object that was issued to the person
being authenticated, which they can then present as evidence that they are the
person who received that object, such as a certificate or a one-time-passcode token

• Something you are: Authentication through the validation of an inherent attribute
or property of the user being authenticated, such as a biometric identifier (for
example, a fingerprint)

76 IAM User Management

MFA occurs when a user or subject of an authentication request provides proofs across
two or more distinct authentication categories. For example, when signing in to a bank's
website using our username and password (something you know) on a new device, we
may be prompted to also enter a one-time code that will be sent to our cellphone number.
Our receipt and entry of that code proves possession of the phone number the bank has
on file with our account (something you have).

By compounding the different authentication methods, the level of assurance the bank
has that we are who we say we are goes up. Additionally, it becomes much more complex
for an attacker to impersonate us if we are asked to prove we are who we say we are in
various ways. An attacker may steal our password in a data breach, but they will have a
much more difficult time also stealing our phone. MFA is one of the most effective ways to
secure an account.

As such, it should come as no surprise that it is a recommended best practice to apply
MFA on the root account. In fact, if the root account on our AWS account does not have
MFA enabled, the AWS IAM Dashboard displays a warning to any IAM user that is signed
in.

We can enable MFA on the root account under the same My Security Credentials form
where we addressed the other credentials we've examined, as follows:

1. Expand the Multi-factor authentication (MFA) section and click the Activate
MFA button.

2. Here, we see the options available to us for our MFA devices. For some more detail
on each of the MFA authenticator types, see the MFA authenticators callout shown
next. We will use a Virtual MFA device with our root account. We select that
option and click Continue, as illustrated in the following screenshot:

Figure 3.4 – Options for MFA credentials

Managing and securing root IAM user accounts 77

3. The virtual authenticator we have on our device is Google Authenticator, but any
Time-based One-Time Passcode (TOTP)-compliant virtual MFA application will
work. A list of supported virtual MFA devices can be found at https://aws.
amazon.com/iam/features/mfa/?audit=2019q1.

4. To enroll our device, we scan the Quick Response (QR) code with our TOTP app
of choice and then enter two consecutive codes generated by that TOTP app. This
ensures the pattern that seeded the number sequence was captured correctly.

The process is illustrated in the following screenshot:

Figure 3.5 – TOTP authenticator configuration

https://aws.amazon.com/iam/features/mfa/?audit=2019q1
https://aws.amazon.com/iam/features/mfa/?audit=2019q1

78 IAM User Management

5. If our sequential codes validate, we get a notification that our root account has
been assigned a virtual MFA token. We can now see that specific authenticator,
including its ARN, listed in the Multi-factor authentication (MFA) section of the
Your Security Credentials form for the root account, as illustrated in the following
screenshot:

Figure 3.6 – The root account's registered MFA credentials

AWS IAM supports three types of MFA devices on both the root account and IAM user
accounts. This is a brief overview of each authenticator type:

• The first is a virtual MFA device. This is a software token—usually in the form of a
phone application—that will provide a one-time passcode. Microsoft Authenticator
and Google Authenticator are popular virtual MFA device choices.

• The next option is a Universal 2nd Factor (U2F) security key. These are hardware
cryptographic tokens that authenticate the possessor by registering a public key
corresponding to the device's private key with the authenticating service. By
sending a signing statement signed with the device's private key at authentication
time, the authenticating service can be confident that the U2F key is in possession
of the person who registered it thanks to public/private key encryption. U2F
security key MFA fulfills the requirements for the highest level of authentication
assurance based on US Department of Commerce National Institute of Standards
and Technology (NIST) 800-63-3 guidelines.

• Finally, there are hardware one-time passcode tokens. These tokens cycle through a
preset count of codes that the authenticating service validates by correlating them to
the hardware token's registered serial number. These are used less frequently in light
of the convenience of other tokens, but are popular in secured environments where
Universal Serial Bus (USB) access or phones may not be permitted.

With MFA enabled on our root account, we have an extra step during sign-on to the
Management Console after entering the password. We are prompted to enter the MFA
code from the authenticator we registered. Each passcode is only valid for a window of 30
seconds, so we must enter the code and submit it before a new one cycles through.

The process is illustrated in the following screenshot:

Managing and securing IAM user accounts 79

Figure 3.7 – TOTP code is now required on each root account login

This is now required with every login to the Management Console, which makes our root
account—and, by extension, our AWS account—much more secure.

Now that we've hardened our root account, let's focus on best practices for securing
normal IAM user objects.

Managing and securing IAM user accounts
Many of the same principles that apply to securing the root account apply broadly to
individual AWS IAM user accounts. That said, as these are managed objects, they are
subject to additional configurable security policies. Additionally, as we can use a delegated
account to administer other delegated accounts, we can also use the CLI for some of these
tasks, while doing the same for the root account would be ill advised.

IAM user lifecycle management
We have referred to user accounts as the most basic unit of accountability for
AWS-managed users. However, as the complexity of the organization increases, it's less
likely that administrators would provision and administrate IAM user accounts for their
user base. Large organizations with complex AWS account structures rely on identity
federation for user authentication into AWS. This relies on temporary security credentials
and assumed roles for access. We will dive more deeply into this topic in the Managing
federated user accounts section.

80 IAM User Management

The lifecycle of a native IAM user account is dependent upon the manual (or scripted)
processes available for creating, updating, and deleting them by the AWS account
administrators. The specific business or identity lifecycle triggers that determine the
circumstances in which the accounts are created will vary based on your organization's
business and regulatory requirements. Regardless of what those specific requirements and
lifecycle events are, there is a pattern to follow with these managed accounts, illustrated in
the following diagram:

Figure 3.8 – Generic account lifecycle pattern

First, an established process should trigger the creation of the account. Such a process
could be a service request, the onboarding of a new user, or nearly anything else; the
important point is that the provenance of the account is known. Next, modifications to
what that account can access or do also need to follow some sort of established process
and—where appropriate—have approval logged. The goal here is to ensure changes that
could give that account entitlements access beyond least privilege or in contradiction to
separation-of-duties requirements will not be violated, and also to ensure that the user of
the account cannot escalate their own privileges. Finally, the account should be terminated
when no longer needed. Unmanaged accounts are a security risk.

Assuming that account belonged to an individual, it should be terminated when that
individual leaves the organization or when the role that necessitated the account changes.
All of these events take place on a background of continuous audit and review so as to
ensure that controls are effective.

Managing and securing IAM user accounts 81

Password management
In this section, we will go over the password management options and best practices
available to any given IAM user account using the Management Console and CLI. Then,
we will look at the options available for us to apply account-wide password policies for all
IAM users. Password management policies allow administrators to enforce minimum-
complexity values, enforce credential cycling, and even require administrator intervention
to re-issue a password or unlock an account. This next section will show you how to
manage IAM user passwords and set password policies.

IAM user account password management
Let's take a look at the options we have for managing the redbeardidentity IAM user
account password. We will start with the Management Console. The first thing we notice
is that the IAM user accounts have a couple of additional options under My security
credentials compared to the root account, thanks to them being managed objects. Not
only is the layout different, but there are also additional credential types available for some
specific AWS services such as Keyspaces and CodeCommit. More important than those
differences are our options for making adjustments to how this form works for all user
accounts.

An overview of the form is provided here:

Figure 3.9 – IAM user account credential management

Tip
My security credentials is a path to administrate the credentials of the IAM
user account currently being used. We can also administrate those credentials
by selecting that user account from the User section of the IAM Dashboard.
If our user account has the appropriate authorization, we can select any user
account and review or change its security credentials by opening the Security
credentials tab on that user's Summary screen.

Let's look at how to apply a password policy next.

82 IAM User Management

Applying a password policy to the AWS account
Figure 3.9 shown previously gives us a few indications about the password policy that
applies to our AWS account. The password age and an admonition to regularly change that
password appear above the Change password button, but there is no indication that we
will be forced to change our password at any time.

If we feel these permissions are too lenient, or if we have security policy or regulatory
purposes for doing so, we have the option to change the password policy that applies to all
IAM user accounts within the AWS account.

Setting the password policy in the Management Console
We can review the current policy from the IAM Dashboard, under Access management,
Account settings. Here, we see the default policy for our account, which is currently set to
AWS' own baseline policy, as illustrated in the following screenshot:

Figure 3.10 – The default IAM password policy

We can review the options available to us by clicking the Change password policy
button. By doing so, we are brought to the Set password policy form, as illustrated in the
following screenshot:

Managing and securing IAM user accounts 83

Figure 3.11 – Options available for creating an account password policy

On this page, we have options for the following:

• Minimum password length

• Requiring at least one uppercase letter

• Requiring at least one lowercase letter

• Requiring at least one number

• Requiring at least one non-alphanumeric character from a pre-determined list of
values

• An option to force password expiration

• An option to force administrator intervention when a password has expired

• An option to allow users to change their own password

• An option that prevents previously used passwords from being re-entered

It's worth noting that the default password policy template does not start from a baseline
of the default AWS service password policy. If we look through the options, we see
that some things from our account's current policy—such as requiring alphanumeric
characters—are not enforced. Each password policy is a blank slate.

84 IAM User Management

Tip
The Password expiration requires administrator reset and Allow users to
change their own password options are not contradictory, though they may
appear to be. Requiring an administrator to reset an expired password means
they will need to issue a new password to the user only if the old one is allowed
to expire. A user should be able to change their own password before it ages 90
days, to avoid requiring administrator intervention.

For our account's new policy, we will enable each option. When we enable password
expiration, we get a new option to enter a value for how many days until a password
expires, and when we prevent password reuse, we can set the count of previous sequential
passwords to not allow, as illustrated in the following screenshot:

Figure 3.12 – Our AWS account's new custom password policy

Upon saving the changes, we can now see the new password policy reflected in the prior
form within the IAM Dashboard, as illustrated in the following screenshot:

Managing and securing IAM user accounts 85

Figure 3.13 – The new password policy is applied

We can make further piecemeal adjustments to the policy as needed by clicking Change
and adjusting the settings on the password policy form. Alternatively, we can click Delete
to revert to the default AWS policy.

Setting the password policy from the AWS CLI
Let's take a look at our new policy from the AWS CLI. From a terminal, run the following
command:

$ aws iam get-account-password-policy

86 IAM User Management

The output of that command will show the same values that we see in the IAM Dashboard,
though some of the names for the options may be described differently. For example,
HardExpiry, shown in the following screenshot, is really the Password expiration
requires administrator reset option from the Management Console:

Figure 3.14 – Reviewing IAM account password policy via CLI

Since most administrators are an overworked and cranky lot, we will eventually drop the
HardExpiry requirement from our password policy. Let's run the following command
to change that variable:

$ aws iam update-account-password-policy --no-hard-expiry

We can then confirm that the HardExpiry requirement was dropped by reviewing the
policy once more, as illustrated in the following screenshot:

Figure 3.15 – Unexpected changes to the password policy

Managing and securing IAM user accounts 87

Unfortunately, only setting a single-parameter value set the remaining values to some
values that will permit some weak passwords in our environment. We will need to run
the update command with every variable populated, in order to prevent insecure values
from being populated by default. Rather than type a several-hundred character length
command and risk typos and frustration, we can instead opt to use a CLI skeleton and
update the policy after editing it in an IDE or text editor. In the terminal, we enter the
following command:

aws iam update-account-password-policy --generate-cli-skeleton
yaml-input

We get our YAML template for the password policy in return, as illustrated in the
following screenshot:

Figure 3.16 – Password policy template

After we create a file and populate it with our desired parameter values, we import it using
the CLI. With that update executing successfully, we can view our updated policy with
HardExpiry set to false, as illustrated in the following screenshot:

Figure 3.17 – Import of new password policy and review of updated policy

Tip
The aws iam update-account-password-policy command
will execute successfully with no arguments from the CLI. This will disable all
requirements around complexity, password age, and reset options. Be sure to
always enter the command with all parameters included and set to the desired
values.

88 IAM User Management

Now that we know how to apply a password policy broadly to our account, let's look at
passwords in relation to specific user accounts.

Password administration
Similar to our experience when administrating the root account password, we can use the
AWS Management Console to change a password if we are logged in as that particular
IAM user. The process is nearly identical to that of the root account, except that our IAM
user account must comply with the password policy we applied to our AWS account.

An IAM user with the proper authorization policy can change the password on other user
accounts using the Management Console. This is done within the IAM Dashboard. We
will use our redbeardidentity user account to issue a new password to the RBI_S3
user account this way:

1. We select the user account from the list of users in the IAM Dashboard, and open
that user's Security credentials tab.

2. There, we see information about that user account's console password—specifically,
if it is currently enabled, and the date it was last used to log in. We click Manage to
modify the password, as illustrated in the following screenshot:

Figure 3.18 – Information on another user account's console password status

3. A window appears, with options to change that user's access to the Management
Console, set a new password, and to require the user to change their password on
their next login to the console. We will opt for an autogenerated password and force
that user account to change the password on their next login so that their password
remains secret, as illustrated in the following screenshot:

Managing and securing IAM user accounts 89

Figure 3.19 – Resetting the RBI_S3 user account's password

4. We are presented with the new password and warned that this will be our only
chance to capture the password value. We can download the .csv file and deliver
it to the principal who uses the RBI_S3 account, as illustrated in the following
screenshot:

Figure 3.20 – The new password is set

90 IAM User Management

We can also use the AWS CLI to reset IAM user account passwords, though we will need
valid programmatic credentials and the appropriate access policy in order to do so. First,
let's examine the current password for our redbeardidentity user account. From the
terminal, we enter the following command:

$ aws iam user get-login-profile --user-name redbeardidentity

The Management Console access is referred to as the login profile within the CLI. When
creating IAM users directly from the CLI, we must create a login profile for them if we
intend for them to have access to the Management Console. Part of that creation process
includes assigning a password to that login profile, as illustrated here:

Figure 3.21 – The redbeardidentity password status

This provides us information on our login profile, including its creation date and whether
the associated password for that profile requires a reset.

Tip
AWS documentation on creating users with the Management Console and CLI
is available at https://docs.aws.amazon.com/IAM/latest/
UserGuide/id_users_create.html.

As a member of the Full Administrator group, the redbeardidentity account can
reset the password for any IAM user account within our AWS account using the update-
login-profile command, including its own. From the terminal, we run the following
command:

$ aws iam update-login-profile --user-name redbeardidentity
--password dUpg09-vievut-tadziw --no-password-reset-required

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html

Managing and securing IAM user accounts 91

If the new password value we entered complied with our AWS account's password policy,
we will be able to use the new password value we defined with that command.

Whereas we are able to use this administrative command to update our own account's
login profile, this is not a best practice. Setting aside that it would be unlikely for most
AWS administrators to have access to this capability in the IAM service, directly altering
the login profile on an account introduces additional complicating parameters, such as
those focused on forcing a password reset or not. Nor does that command require the
person executing it to demonstrate knowledge of the account's previous password—just
because we have access to perform an administrative function does not mean we are
authorized to do so.

Best practice for AWS CLI-based, self-service password resets is to use the following
command:

$ aws iam change-password --old-password oldpasswordvalue

--new-password newpasswordvalue

There are fewer parameters, and it ensures whoever is changing the password can prove
ownership by authenticating themselves with the old password prior to changing it to a
new one.

We can use the update-login-profile command to issue temporary credentials
to users whose passwords have expired. We enhance security by ensuring that only the
account owner will know the final password after reset, as follows:

$ aws iam update-login-profile --user-name RBI_S3 --password
$TempP4ss --password-reset-required

92 IAM User Management

When we sign in to the Management Console as the RBI_S3 user account using the
temporary password, we are prompted to change our password, as illustrated in the
following screenshot:

Figure 3.22 – The RBI_S3 user is prompted to change the temporary password

What happens if we run afoul of our password policy when attempting a self-service
reset command? We can attempt to enter a password that fails to comply with our AWS
account's password policy, but we get an error message, as illustrated in the following
screenshot:

Figure 3.23 – Explicit deny due to failure to comply with password policy

The message indicates that we are not authorized to perform the operation on the
resource with an explicit deny. This is because the password policy is acting as a sort of
authorization policy for this specific transaction. By entering a password that fails its
criteria, we are explicitly barred from executing the update.

Managing and securing IAM user accounts 93

Access key management
In this section, we will examine access key management best practices. Access keys are
long-lived credentials used by principals to access AWS services programmatically. It is
through these credentials that we access our AWS account with the AWS CLI, and how
non-human principals such as service accounts and other applications leverage AWS
services.

IAM user access key management in the Management Console
As with the Management Console password, access keys are administrated within the
IAM Dashboard. Under the Security credentials tab for each IAM user, that user's access
key IDs, their creation date, dates of last use, and status (either Active or Inactive) are
available at a glance. This is also where existing access keys can be made inactive, or
new ones created. The following screenshot shows the access key IDs listed under the
redbeardidentity user account in our AWS account:

Figure 3.24 – The redbeardidentity user account's current access keys

Each user account is limited to two access keys. In order to create a new access key, we will
first need to delete one of them. We can tell by the last-used date on the inactive key that
it was never used and thus will be safe to delete; no process or activity has ever used it,
otherwise a date would be populated in that field. Conversely, we see a very recent last-
used date on the active key, so deleting that one would have an adverse impact on our
environment.

94 IAM User Management

To delete the inactive key, we click the x on its line. We are immediately prompted to
verify if we really want to delete that key, and a window reconfirming the user account
the access key belongs to and its last-used date appear, to ensure we are not selecting
the wrong key by mistake. As the information checks out we can confirm its deletion, as
illustrated in the following screenshot:

Figure 3.25 – Confirming deletion of the access key

Now that the access key is gone, we can create a new key for our redbeardidentity
user by clicking Create access key. A window pops up to show us our new access key ID
and secret access key values, along with an option to download a .csv file with those
values. As this is the only time the secret access key will be shared with us, we will opt
to download the .csv file for future reference. If we were creating a new key for a user
account owned by a different person, we would send the .csv file to them via a secure
channel.

The process is illustrated in the following screenshot:

Managing and securing IAM user accounts 95

Figure 3.26 – New access key creation

The new access key is immediately active for our user account to use, as illustrated in the
following screenshot:

Figure 3.27 – The old and new access keys, both active and ready for use

Both access keys are now visible within the Security Credentials tab, with the new key
showing as never having been used.

IAM user access key management in the AWS CLI
We can perform these same functions using the AWS CLI. First, we should view the access
keys using the following command:

$ aws iam list-access-keys

96 IAM User Management

This will provide a list of the keys associated with whatever user account was used to issue
the command from the AWS CLI, which is the redbeardidentity user account in
our case. Sure enough, that command returns the two access keys we had listed under that
user account in the Management Console. In the following screenshot, note the creation
dates on both keys indicate which is the newer one:

Figure 3.28 – The old and new access keys

In order to view the access keys that belong to a different user, we append a --user-
name parameter to that command. We can view the key assigned to our other Full
Administrator account, RBI_Admin, with the following command:

$ aws iam list-access-keys --user-name RBI_Admin

Figure 3.29 – Another user's access keys

As the process to create a new access key for the redbeardidentity account we
are using in the CLI is the same process we would follow for creating a key for any
other account, let's create a new access key for the RBI_Admin user account. From the
terminal, we enter the following command:

$ aws iam create-access-key --user-name RBI_Admin

Managing and securing IAM user accounts 97

Out comes the new access key for that user account, complete with its secret access key.
Similarly to when we create access keys in the Management Console, this will be the
only time the secret access key will be revealed, so we'd better capture it. In the following
screenshot, you can see where the secret access key appears:

Figure 3.30 – The new access key and secret access key

We now see two access keys listed under that account, including the one we just created,
as illustrated in the following screenshot:

Figure 3.31 – The updated list of access keys for the RBI_Admin account

Unlike with the Management Console, that command does not include at-a-glance
information on last-used datetime and service on the listed keys. If we wanted to know
when these keys were last used, we could use the aws iam get-access-key-last-
used command with the --access-key-id parameter to get that information.

Access key rotation
As they do with passwords, AWS considers it a best practice to rotate access keys at
intervals. However, since access keys may be used by applications and infrastructure,
casually removing an access key could have an impact that would not be felt until a
process, script, or application eventually attempted to use those credentials. As such,
the best practice for rotating access keys is slightly different from when changing a
Management Console password.

98 IAM User Management

Access key rotation using the Management Console

1. From the User section of the IAM Dashboard, select the user whose key needs
to be rotated, and open their Security credentials tab. We will select the
redbeardidentity user account for this example.

2. We want to rotate this user's only access key. We can see it is getting used
frequently—and recently—by looking at the Last used date. We can also see what it
was last used to do, which is useful for administrators who must rotate keys but who
may not have full knowledge of what every user account and their access keys may
be used for. This is illustrated in the following screenshot:

Figure 3.32 – The access key to be rotated with details on latest usage

3. Before we can replace the current key, we need to create its replacement. Once we
do, we will have two active access keys assigned to this user account.

4. To make the rotation non-disruptive, we must now replace the old access key
and secret key values with the new ones, everywhere they are referenced. For
the redbeardidentity user account, this is simple; we will just rerun aws
configure in the CLI to use the new keys. In more complex environments, the
ease of discovering where these keys are referenced could be much more difficult.
This is why the Management Console provides not just the last-used date, but also
the last-used service and region where the command was issued. We see that that
key was used against the IAM service in us-east-1. That makes sense as we've been
running many IAM commands from the CLI, and the redbeardidentity user
account's default region is set to us-east-1.

5. For our use case, we need to update our AWS CLI config to use the new keys, and
then verify that the CLI works with those keys. After running aws configure
and updating the default key values, we successfully run a command, as illustrated
in the following screenshot:

Managing and securing IAM user accounts 99

Figure 3.33 – Updating AWS CLI and testing the new keys

6. After verifying that the new key works, we return to the user's Security credentials
tab and disable the old access key. Why wouldn't we immediately delete it? Whereas
in this example we are confident that the key was only used in one location, such
certainty becomes more difficult in complex environments. Some functions that
use the old key may only execute once a week or once a month, or less frequently
than this, and it is advantageous to keep the old key around for a while to expedite
recovery from a service outage.

The following screenshot shows the old access key being disabled:

Figure 3.34 – Previous key disabled after successful testing of new key

Important note
Where's the last-used information for the new key? You may notice that the
new key shows N/A for the Last used value. The values shown are pulled from
CloudTrail audit records, which lag behind real-time events by a matter of
minutes. We were confident in disabling the old key after doing functional tests
using the new key in the AWS CLI.

7. Depending upon our requirements, once a sufficient amount of time has passed
without incident, we can finally delete the old key.

100 IAM User Management

Access key rotation using the AWS CLI
The process and guidance around key rotation are the same when using the AWS CLI;
only the mechanics of execution differ:

1. We will once again be rotating the redbeardidentity user account's keys.
If rotating the keys for a different user account, simply add the --user-name
parameter to these commands. We will start by creating a new access key, as follows:

$ aws iam create-access-key

2. Capture the access key and secret key values, as the secret key will not be revealed
again.

3. Replace the old key with the new one. For this use case, this is a matter of running
aws configure with the new-key values.

4. Once the new key has replaced the old one, wait a few days and then check if the old
key has been used by running the following command:

$ aws iam get-access-key-last-used --access-key-id
AKIAWSFPVONAOAHEAZNN

This will show the last date, time, service, and region where the specified access key
was used, indicating if we missed replacing this key somewhere.

5. Assuming the key is no longer being used, we can go ahead and disable it, as
follows:

$ aws iam update-access-key --access-key-id
AKIAWSFPVONAOAHEAZNN --status Inactive

6. We will leave the key in its inactive state for as long as is appropriate for our use
case. In the event that we discover something that requires the key, we can revert
it to an active state using the update-access-key command, remediate the
issue, and return it to inactive. If there are no issues, we can finally delete the old
key and the rotation is complete, as illustrated here:

$ aws iam delete-access-key --access-key-id
AKIAWSFPVONAOAHEAZNN

Managing and securing IAM user accounts 101

Tip
Rotating the programmatic credential this way will only work if the user
has a single key defined. If they have multiple keys defined, they will get the
following error:

An error occurred (LimitExceeded) when calling the
CreateAccessKey operation: Cannot exceed quota for
AccessKeysPerUser: 2

Now that we've addressed programmatic access key rotation, let's move on to best
practices for managing MFA credential management.

MFA credential management
This section addresses best practices for managing MFA credentials. MFA greatly
enhances the security of IAM user account login by requiring additional authentication
through a different channel aside from the user account's password.

IAM user account MFA credential management
We've already seen how to enable MFA on the root account earlier in this chapter. We can
initiate that process on our own IAM user account the same way by selecting My security
credentials from the User drop-down menu and clicking the Assign MFA device button.
Alternatively, if our account has the appropriate authorization policy, we can open the
Security credentials tab on our IAM user account in the IAM Dashboard and select
Manage next to Assigned MFA device. That process is the same when administrating the
MFA device for other IAM user accounts.

Interestingly, there is no intuitive account-wide setting to force IAM user accounts to
use MFA for console logon, nor to enforce MFA credential enrollment if those accounts
have Management Console access and a valid password, but no MFA device assigned.
The best-practice method to solve this is to apply an authorization policy to the user
accounts, which entitles them to manipulate their own security credentials and explicitly
denies certain service interactions unless MFA authentication has occurred. We will
dive into the details of authorization policy, including applying this policy, in Chapter
4, Access Management, Policies, and Permissions. As solving this use case outside of an
authorization policy involves several antipatterns, we will focus on self-service MFA token
administration use cases.

As we've already seen the process of assigning a virtual MFA device to our root account
using the Management Console, we will not repeat the exercise again here.

102 IAM User Management

We can also use the CLI to manage our user account's MFA device. You cannot
do the same with the root account; it is explicitly forbidden (more information is
available at https://docs.aws.amazon.com/IAM/latest/UserGuide/id_
credentials_mfa_enable_cliapi.html). We can create hardware and virtual
MFA devices using the CLI. As virtual MFA devices are much easier to procure and
administrate, we will stick to using those:

1. First, we must create the MFA device. From a terminal, we run the following
command:

$ aws iam create-virtual-mfa-device --virtual-mfa-device-
name googleauth1 --outfile ./redbeardidentitymfa.png
--bootstrap-method QRCodePNG

With this command, we give the virtual MFA device a name, designate a location
for the QR code to be written on our local workstation, and designate the activation
method for this device as a scanned QR code. If the command is successful, we
will see the ARN of the virtual MFA device as the command's output in the CLI. It
should be noted that the virtual device name value will be the name that appears for
the account in the TOTP application on our phone. If we have several accounts in
our TOTP application, we should be sure to name it something we would recognize
so that we can readily recall which account it belongs to when we use the phone
application.

The aforementioned process can be seen in the following screenshot:

Figure 3.35 – Successful creation of a virtual MFA device
We may alternatively use a different bootstrap method, and output a string called
Base32StringSeed. That file and bootstrap provide the same information that
can be scanned from the QR code, just in text form. That may be useful when
using a desktop TOTP MFA application, but as we are using a mobile application,
scanning the QR code is easier for us.

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_enable_cliapi.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_enable_cliapi.html

Managing and securing IAM user accounts 103

Important note
The output files are secrets: whichever method we use, both of the output files
are considered secrets as sensitive as any other credential. A malicious actor
with those files has much of what is needed to impersonate the MFA device
attached to an IAM user. These files should be deleted after use or stored with
the same care as for any other sensitive credential.

2. Next, we use our TOTP application to scan the QR code we generated in the
previous command. This will add the account into the app and begin issuing the
series of rotating codes we will need to complete the activation.

3. Next, we attach the virtual device to the IAM user account. From the terminal, run
the following command:

$ aws iam enable-mfa-device --user-name redbeardidentity
--serial-number arn:aws:iam::451339973440:mfa/googleauth1
--authentication-code1 557439 --authentication-code2
380195

In this command, we proved possession of that specific virtual MFA device by
entering two sequential codes from the TOTP application. If those codes match
what is expected, there is no output in the terminal. The redbeardidentity user
account now has an MFA device associated with it.

4. We can validate that the MFA device is associated with the account by signing in
to the Management Console. After entering our console password, we are now
prompted for a code to proceed, as illustrated in the following screenshot:

Figure 3.36 – MFA now enabled on the redbeardidentity user account

104 IAM User Management

Removing MFA from a user account is simple. From the terminal, run the following
command:

$ aws iam list-virtual-mfa-devices

This reveals all the virtual MFA devices created within our AWS account, along with
information on who the device is assigned to. Here, we see three devices, each assigned to
a different user account:

Figure 3.37 – A list of the account's virtual MFA devices

Since we are not using the RBI_S3 user account, we will remove that one. Similar to the
login profile, these devices cannot be deleted until they are first disassociated from the
user account they are attached to. This is done with the following command:

$ aws iam deactivate-mfa-device --user-name RBI_S3 --serial-
number arn:aws:iam::451339973440:mfa/rbis3

If successful, there is no output. We can verify that the RBI_S3 user account no longer
has the MFA device associated with it by listing the devices once more, as illustrated in the
following screenshot:

Managing federated user accounts 105

Figure 3.38 – The AWS account's MFA devices, with only two associated with user accounts

We now see that the device affiliated with the RBI_S3 user account is still listed, but
this no longer includes user information when we execute the list-virtual-mfa-
devices command. We can now delete it with the following command:

$ aws iam delete-virtual-mfa-device --serial-number
arn:aws:iam::451339973440:mfa/rbis3

Once again, if successful, there will be no output.

Thus far, we've addressed password policy and management, programmatic credential
management, and MFA credential management for our own user accounts. With identity
federation, authentication is delegated to an external identity provider, so we will not have
the same credential management concerns. In fact, in certain federation use cases, we
will not even have user accounts for our federated users at all. Let's take a closer look at
federated user accounts on AWS IAM.

Managing federated user accounts
We've focused primarily on AWS IAM-managed user accounts in this chapter. Recall
the distinction between a user account—referring to the AWS IAM user object, which a
principal uses to identify itself to access AWS resources—and a principal, which is an end
user of the system in a general sense. We've discussed at length how principals may use an
AWS IAM-managed user account to access AWS resources; however, that is not the only
way principals may do so.

106 IAM User Management

Many organizations manage their own enterprise identities and would prefer to maintain
control over the accounts and credentials that employees use when accessing business
applications. Similarly, service providers or relying parties benefit from not needing to
maintain an account's credentials. As we saw in the Redbeard Identity (RBI) example
in Chapter 1, An Introduction to IAM and AWS IAM Concepts, the RBI organization
would provision an account into various software-as-a-service (SaaS) providers, and
Bob could use his RBI-issued username and password to sign in to those SaaS platforms
using identity federation. Through identity federation, a service provider or relying party
(such as a SaaS platform) delegates authentication of the principal to an external identity
provider, as illustrated in the following diagram:

Figure 3.39 – Federated authentication relationships

AWS IAM supports federated authentication from an external identity provider. This
allows organizations to retain lifecycle control of their accounts and ensure that access to
the AWS account is revoked upon termination of the organization's user account. If the
user cannot sign in to their work account, they cannot access AWS resources either.

Managing federated user accounts 107

Identity federation deals primarily with authentication; many service providers merely
consume an authentication token from the identity provider and maintain no local record
or account. In other cases, where the application has need of its own identity store and
attributes for that federated user for certain application functions, the service provider
might maintain a local, corresponding user record. That record can be created and
updated in various ways. Just-in-time (JIT) provisioning creates new records and updates
existing records each time a new authentication token arrives. Organizations can send
flat files or data extracts from their authoritative sources to keep the SaaS user store and
the organization's directories in sync. A standards-based method is federated identity
provisioning through the System for Cross-domain Identity Management (SCIM),
which offers a connector that provides RESTful create, read, update, and delete (CRUD)
operations (where REST stands for REpresentational State Transfer) for maintaining
user information in the directory. Suffice to say, whereas federated authentication is
comparatively straightforward, managing remote identity stores remains a bit more
scattershot.

What is interesting about the federated authentication use case on AWS IAM is that
there are no AWS IAM user accounts involved—only the accounts managed by the
external identity provider. There is no requirement to map a federated user to an AWS
IAM-managed user account. If an authenticated federated user does not get correlated
to an IAM user account, then which AWS IAM-managed entity is used to identify the
federated user so that authorization may be applied to them?

At an exceedingly high level, when federating into an AWS account, the principal's
authentication token from their identity provider (IdP) is exchanged through AWS
Secure Token Service (STS) for a temporary credential, which is scoped to allow the
principal to assume a role from AWS IAM. The authorization policies associated with that
role determine what a federated user can and cannot do while their temporary credentials
are valid.

108 IAM User Management

The process is illustrated in the following diagram:

Figure 3.40 – Federated user assumes a role in an AWS account

We just introduced several topics and concepts in the preceding sentence that, while
germane to federated user authentication and authorization, merit their own chapters in
and of themselves. Don't worry for now if you don't fully understand the moving pieces;
the important part is to understand how federated users are handled differently compared
to AWS IAM users. Chapter 9, Bringing Your Admins into to the AWS Backplane, will delve
deeply into this topic.

AWS Single Sign-On and federated users
AWS Single Sign-On (AWS SSO) is a relatively new service within AWS, aimed at solving
complex AWS identity federation use cases. Large organizations often have several AWS
accounts to manage and maintain ad hoc federated relationships between their existing
IdP, and each of those AWS IAM instances grows into an increasing administrative burden
with each new AWS account the organization spins up.

The following diagram illustrates this:

Managing federated user accounts 109

Figure 3.41 – AWS organizations and AWS SSO propagating IdPs in downstream AWS accounts

AWS SSO aims to solve this complexity by providing one connection, both for directory
synchronization from an on-premises user store and as a single-service provider
connection for all AWS accounts in use by the organization. The AWS SSO connection
automatically registers the existing IdP as an IdP within the AWS IAM service of each
downstream AWS account. This way, organizational administrators only need to tend
the connection between their IdP and the main organizational AWS account, and every
other AWS account included in their organization will be able to take advantage of
delegated authentication without the per-account administrative overhead. This too will
be examined in much more detail in later chapters, such as in Chapter 9, Bringing Your
Admins into the AWS Administrative Backplane.

110 IAM User Management

Summary
Now that you've made it through this chapter, you have a much better understanding of
the best practices for administrating and securing AWS IAM-managed user accounts,
including the root account. Additionally, you have learned why the root account merits
extra consideration and why certain administrative functions are best left to managed
IAM user objects. This chapter also increased your understanding of password, access
key, and MFA device management within an AWS account, including how to perform
those functions programmatically using the AWS CLI. Finally, you were introduced to
what makes federated users different from AWS IAM users, in order to ensure you had a
complete understanding of how principals use both to interact with AWS services.

Now that we have discussed managing our AWS IAM users and the various ways we can
authenticate them, it is time to turn our attention to controlling what they can do within
an AWS account afterward. This is access management and authorization. In the next
chapter, we will take a look at AWS authorization policies, including the various types,
how they are written, and what they can do.

Questions
1. What is a principal?

2. How does an IAM user account differ from a root account?

3. Why is not considered a best practice to use access keys with a root account?

4. What is MFA, and how does it improve account security?

5. What kind of multifactor authenticators can be used with any IAM user, including a
root account, to access the Management Console?

6. Describe how federated users access AWS resources, and how that differs from AWS
IAM users.

4
Access Management,

Policies, and
Permissions

The Access Management model of AWS is based on policies. At a high level, we can use
these policies to determine what an AWS identity object or resource can do to or with
a resource or service within an AWS account. Of course, this quickly becomes very
complicated once we must apply and manage policies across the multiple places where
they may have been applied. We may also need to customize the existing access policies
within an AWS account, or even create new policies from scratch to accommodate our
own use cases. This chapter does not represent a complete compendium of knowledge
regarding the complexities of access management in AWS, but it will introduce you to the
foundational concepts required to understand and solve several common authorization
use cases.

With this knowledge as your foundation, you will be able to strategically select further
areas of study based on your own personal or professional requirements.

112 Access Management, Policies, and Permissions

The chapter will cover the following topics:

• What is access management?

• Introducing the AWS access policy types

• The anatomy of an AWS JSON policy document

• Exploring the AWS policy types

• Governance

Technical requirements
To get the most out of this chapter, you will need the following:

• An AWS account

• A workstation running the AWS CLI

• A text editor or IDE to edit JSON/YAML files, such as Microsoft Visual Studio Code

What is access management?
As the two words that make up the ''AM'' of IAM, access management represents one
of the core functions of IAM as an enabling technology. Access management covers two
things, the first of which is the validation that a request comes from a legitimate source.
To frame that in AWS IAM terms, it means that it can provide the shared secrets affiliated
with their IAM user account to prove the request is valid. This is the authentication side
of access management; we dealt with how to authenticate AWS IAM user accounts in
depth in Chapter 3, IAM User Management.

The second function of access management is to make sure that the request itself is
authorized. This is to say that there is nothing about the request, such as the target of
the action, or the location of the object or requestor, or anything else that runs afoul of
the rules that apply to that specific request and requestor, which then determine what
they should and should not be able to do. This is the authorization component of access
management. In AWS IAM, requests are authorized by evaluating several different policy
types to determine what an IAM user object or resource can and cannot do when they
make a request.

Introducing the AWS access policy types 113

Introducing the AWS access policy types
We've mentioned the word policy before. In an organizational, regulatory, or legal setting,
a policy represents the rules, patterns, and guidance meant to steer a decision-making
process. In the context of IAM, a policy is how things such as business logic, security
controls, and compliance requirements are translated into an access management system,
such as AWS IAM. Within AWS IAM, policy are objects that specifically spell out the
permissions of a principal or resource they are attached to. This can be seen in the
following diagram:

Figure 4.1 – An example of policy objects that can apply to one or more AWS objects

Access policies can apply to IAM objects, as shown in the preceding diagram. They can
also apply to specific AWS objects, such as S3 buckets, or even across multiple AWS
accounts under the management of an AWS Organization.

In some regards, an AWS access policy can be thought of as a ''mix and match'' system
containing infinitely combinable access control snippets. Depending on the type of policy
used, a given policy can exist within AWS IAM, but it will only affect an action if it is
associated with an object. A single policy object may be associated with a single object,
no objects at all, or thousands of objects. A single AWS resource may have a single policy
applied to it, or as many as can be accommodated by the AWS IAM service quotas (not
that the latter would be a desirable administrative situation).

114 Access Management, Policies, and Permissions

There are six high-level policy types that are used in AWS IAM that we will discuss in
detail momentarily. These policy types are as follows:

• Identity-based policies, which include managed policies and inline policies

• Resource-based policies

• Permissions boundaries

• Organizations service control policies

• Access control lists

• Session policies

In order to understand the nuances between these six main policy types, we will also
introduce some additional policy classifications that are based on how a policy is
created and managed, and how that policy becomes associated with an AWS identity
or resource. We will discuss those additional policy sub-classifications in the context of
their relationship to the six major policy types. These additional policy classifications are
as follows:

• Managed policies, which include the following:

i) AWS-managed policies

ii) Customer-managed policies
• Inline policies

These policy classifications are more of a mechanical description of the policy, indicating
how a given policy is managed and attached to the AWS resources they affect. The main
policy types describe what kind of policy they are and where they are applied in the AWS
IAM policy evaluation flow.

Next, let's take a look at how these policies are constructed and evaluated using AWS's
JSON policy language.

The anatomy of an AWS JSON policy document
Most, but not all, policy types are written and stored as JSON documents within AWS.
These include identity-based policies, resource-based policies, permissions boundaries,
organizational service control policies, and session policies. Access control lists use a
distinct syntax, depending on the service where it is being applied:

The anatomy of an AWS JSON policy document 115

Figure 4.2 – A policy document, its components, and the elements of its statements

Let's take a look at the preceding diagram. Here, we can see a logical example of
a policy document and its constituent components. Within the main document, there
is a Top-level element that contains policy-wide information, followed by one or more
statements. Each of these statements describes a permission or entitlement through the
information contained within its individual elements.

We can see these elements within the JSON of a policy document by examining any of the
existing policies available to us within our AWS account. Let's take a look at the one that
we are already familiar with – the AdministratorAccess policy:

{

 ''Version'': ''2012-10-17'',

 ''Statement'': [

 {

 ''Effect'': ''Allow'',

 ''Action'': ''*'',

 ''Resource'': ''*''

 }

]

}

Though this is a powerful policy, it is comparatively simple. We can see the Version
and Statement top-level elements, and the elements of the statement contained within.
Without instructions, we could likely infer what this policy does and how those asterisks
operate, given how we've used it so far. Notice that no principal element is explicitly
defined. This is relevant to the type of policy that this is. The reason why there is no
explicit principal element will be explained as we dive deeper into the six main policy
types in the Exploring the AWS policy types section.

116 Access Management, Policies, and Permissions

Defining JSON policy document elements
Let's take a closer look at what elements are within the JSON policy structure. Please note
that unless specified otherwise, all the items are elements within the statement section of
the policy document:

• Version (Policy top-level element): This defines the version of the policy language
that's used when writing the policy document. AWS' documentation indicates that
a best practice is to always use the latest version, which is currently 2012-10-17.
Please note that this version refers to the version of the policy language used within
the policy document, not the version of the policy document itself. The Version
element is required:

''Version'': ''2012-10-17''

• Id (Policy top-level element): A unique ID for the policy document. This is an
optional element. Best practice recommends ensuring that a unique value is used
for this element if it's used since certain services require it to be unique. Setting the
Id value to a Universally Unique Identifier (UUID) is recommended:

''Id'': ''cd3ad3d9-2776-4ef1-a904-4c229d1642ee''

• Statement (Policy top-level element): This is the main element of the policy that
houses the stuff that describes a permission. The top-level statement can house
a single statement or multiple statements within itself. This is required. Note the
differing bracket and braces requirements required due to JSON notation:

i) For a single statement: ''Statement'': {...}

ii) For multiple statements: ''Statement'': [{...},{...},{...}]
• Sid: Sid stands for ''statement ID,'' and it lets us optionally apply a unique identifier

or version to our policy statement. Each Sid must be unique within a policy
document:

''Sid'': ''1''

• Effect: This is the ''verb'' of the policy that determines what a principal subject
to the policy can or cannot do. It may be set to either Allow or Deny. By default,
AWS denies access to resources unless explicitly allowed by the policy:

''Effect'':''Allow''

The anatomy of an AWS JSON policy document 117

• Principal: This is the ''subject'' of the policy statement and determines who or
what should or should not be allowed access to a resource. As several things may act
as a principal during an action, the formatting for the subject of this element varies,
depending on the specific use case, policy, and principal in play.

i) AWS accounts: If an account is named as the principal in a statement,
authorization to access the resources in that account will be delegated to all the
identity objects in the account named in the principal element, assuming those
objects in the account named in the principal element have policies granting them
access to those resources:

''Principal'': { ''AWS'': ''451339973440'' }

ii) IAM users: These are specific IAM user accounts:

a) For a single user: ''Principal'': { ''AWS'': ''arn:aws:iam::
451339973440:user/redbeardidentity'' }

b) For multiple users: ''Principal'': {''AWS'': [''arn:aws:iam::4
51339973440:user/RBI_EC2'',''arn:aws:iam::451339973440:u
ser/RBI_S3'']}

iii) Federated web identity users: These are federated users that are authenticated
by a social identity provider such as Google, Facebook, or Cognito:

''Principal'': { ''Federated'': ''accounts.google.com'' }

iv) Federated SAML users: Users federated from an external SAML identity
provider registered within the account's AWS IAM service:

''Principal'': { ''Federated'': ''arn:aws:iam::
451339973440:saml-provider/rbi_idp'' }

v) IAM roles: An assumed role within the account:

''Principal'': { ''AWS'': ''arn:aws:iam::451339973440:r
ole/rbi_s3_admin_role'' }

vi) Assumed-role sessions: Assumed role sessions are unique identifiers for a role
that may be assumed by several different principals. By assigning a unique name
to the assumed role session, we can track activity to a distinct principal's activity,
though many principals may be entitled to assume a specific role:

''Principal'': { ''AWS'': ''arn:aws:sts::451339973440
:assumed-role/rbi_s3_admin_role/rbi_account2_unique_
session_name'' }

118 Access Management, Policies, and Permissions

vii) AWS services: Other AWS services can assume IAM roles through something
called service roles. These service roles perform functions within the AWS
account on behalf of a principal. These service roles are governed by inline
resource-based policies called trust policies. Trust policies define the principal
as the AWS service assuming the service role:

a) For a single service: ''Principal'': {''Service'': {''eks.
amazonaws.com''}}

b) For multiple services: ''Principal'': {''Service'': [''eks.
amazonaws.com'',''codebuild.amazonaws.com'']}

viii) Anonymous users: Some AWS services allow resource-based policies to
accommodate public access through a wildcard operator in the Principal
value. Consider a use case such as allowing anyone to view images hosted in an
S3 bucket. This is not considered a best practice and should be tempered with
something such as a condition to preclude unfettered access to the role:

''Principal'': ''*''

• NotPrincipal: This is an exclusionary version of the principal element. If a
policy using NotPrincipal includes an allow action, the principals named
in the NotPrincipal element would be explicitly denied access, and all other
principals, including anonymous principals, could be granted access. If a policy
using NotPrincipal included a deny action, the principal's names in the
NotPrincipal element would potentially be allowed access to the resource if
another policy explicitly granted them access to the resource, whereas every other
principal would be excluded. As this gets confusing very quickly, a best practice is to
limit use of NotPrincipal for use cases where there is no other option.

• Action: This defines which capabilities of a service are either allowed or denied
by the policy document. Each AWS service has their own collection of actions.
In a policy document, the actions of a service are prefixed by the service's name,
such as ec2:AllocateHosts or ecs:CreateCluster. Wildcards may be
used to indicate all the actions on all services (such as what we've seen in the
AdministratorAccess policy), or they may be used after the initial service
prefix to indicate full access or exclusion to just the actions available within that
specific service, such as ec2:*. The wildcard can also be used to subdivide actions
within a service. For example, ec2:Create* will address all the create actions
available within the EC2 service.

The anatomy of an AWS JSON policy document 119

• NotAction: The exclusionary version of the Action element. The actions listed
under a NotAction, in combination with an Allow Effect, are explicitly denied to
the principals listed in the policy. If a Deny Effect is used, all actions except those
listed under the NotAction element are explicitly denied, though the principal
will only be able to take the actions listed under NotAction if a different statement
or policy explicitly allows access.

• Resource: This is the object or wildcard group of objects that the statement is
determining access to. How these are specified may vary from service to service, but
generally, they may be explicitly named by Amazon Resource Name (ARN), a list
of ARNs, or a wildcard indicating every resource matching the ARN up to a certain
path. The resource element may also use a policy variable, which is a placeholder
value that is replaced and evaluated during runtime based on the request context.

• NotResource: The exclusionary version of the Resource element that explicitly
matches on every resource except those listed under that element. When used
with a Deny Effect, it explicitly denies access to all resources not listed. It is not
recommended to use NotResource with the Allow Effect as it would grant
permissions to all resources not listed in the NotResource element.

• Condition: The Condition element places requirements on the policy taking
affect. The condition may be simple or complex. Condition also supports policy
variables.

Tip
Both policy variables and all the available operations available within the
Condition element are tremendously useful when building maintainable
policy objects, though they would require their own chapters to do them
justice. For more information, please check out the Further reading section.

Now that we have examined the structure of the JSON policy documents and seen how
each of the elements work, let's look at the policy types available to us in AWS in detail.

120 Access Management, Policies, and Permissions

Exploring the AWS policy types
There are more than a few policy objects available within AWS. Every request and action
within an AWS account is evaluated against these policies at execution time. Since that is
a lot of moving parts determining permissions, let's take a look at the six major policy
types and how they are used.

Identity-based policies
Identity-based policies are the policies that determine what an identity object can do.
These policies are JSON documents that spell out the user, group, or role that can perform
the action, the resources that those actions can be performed on, and the conditions
under which those actions are valid. These identity-based policies are better understood
by some further categorization into three additional policy types, which we will now
explore in greater detail.

AWS managed policies
AWS IAM comes prepopulated with several hundred policy objects. They are not natively
used in a new AWS account; they are simply available for use to facilitate good access
management practices. These policies are created and maintained by AWS. They cannot
be edited by any of our AWS IAM users, nor by our root account, as they are considered
standalone policies. This means they have their own unique ARN, and that ARN doesn't
reference any AWS account number. AWS managed policies are globally referenceable.

These policies are advantageous to use as they are maintained by AWS. This means that
as the services, methods, and capabilities change within the platform itself, the function
and access control boundaries provided by managed policies will be adjusted accordingly.
Given the rate of feature introduction in AWS, we can save ourselves significant
administrative burden by sticking to these policies.

Exploring the AWS policy types 121

We can review the AWS managed policies from the Management Console by going to the
Policies section under Access Management on the IAM Dashboard. The AWS managed
policies have an orange icon next to them to distinguish them from other policy types.
Additionally, they are clearly labeled in the Type column of the policy list:

Figure 4.3 – AWS managed policies listed in the IAM Dashboard

122 Access Management, Policies, and Permissions

AWS designed many of these policies based on common use cases and job functions.
We've already taken advantage of one such managed policy when we set about complying
with the best practice guidance around not using the root account, by creating a full
administrator IAM user account to use instead. Earlier, we created the FullAdministrator
IAM group to manage admin access to our account. Rather than write our own access
policy for a super user, we attached an existing managed policy that would handle this
for us:

Figure 4.4 – The AdministratorAccess AWS managed policy attached to the FullAdministrator group

We can also review AWS managed policy objects using the CLI. As there is no icon to
help indicate which of the policies listed are managed when using the list-policies
command, we can use a parameter to ensure only AWS managed policies are returned
instead:

$ aws iam list-policies --scope AWS

As there are just under 800 of these policies, it still returns more information than we can
comfortably scrub through on screen. However, they are all AWS managed policies:

Exploring the AWS policy types 123

Figure 4.5 – Managed policies, as viewed through the CLI

We can confirm they are AWS managed policies since their ARN does not include an
AWS account number. This indicates these objects exist outside of our own or anyone
else's account, though they are available for us to use and reference.

124 Access Management, Policies, and Permissions

Customer managed policies
A customer managed policy is a policy object that is not managed by AWS, so it's being
created by, and thus the responsibility of, the AWS account owner. These are referred to
as ''customer managed'' because AWS is an infrastructure as a service platform. Whereas
we may think of ourselves in terms of administrators and owners, from the perspective
of AWS, we are their customers. If AWS does not manage something in an environment,
then the customer does.

Customer managed policies are useful for addressing an organization's unique access
requirements that are not satisfied by any of the AWS managed policies. As the name
implies, the onus of maintaining these policies is with the customer in light of continuous
AWS service iteration, which may introduce new services and functionality that are
not accounted for by the original policy. If we decide to create our own policies, it is
considered a best practice to use an existing AWS policy as a base template and make our
modifications as needed.

Customer managed policies are viewed and administrated the same way as AWS managed
ones are. In the Management Console, they are labeled Customer managed under Type
and are bereft of the icon the AWS managed policies have:

Figure 4.6 – Customer managed policy in the Management Console

We can also review these policy objects using the CLI. Using the list-policies
command, we can apply a different parameter to limit the scope to returning only
customer managed policies:

$ aws iam list-policies --scope Local

Exploring the AWS policy types 125

This gives us all the policies we created ourselves within our AWS account:

Figure 4.7 – All customer managed roles in our AWS account

Another difference between these policies and those managed by AWS is the ARN.
Customer managed policies include the AWS account in the ARN and are only available
locally within that AWS IAM instance. Both AWS managed and customer managed
policies are considered managed policies. Managed policies exist as their own objects
within AWS IAM. They have their own ARN, they may be iterated upon, and they can be
attached to many, or no, identity or resource objects to apply authorization.

Both AWS managed and customer managed policies may be referred to as managed
policies. This is to distinguish them from the next policy variation that's included in
identity-based policies.

126 Access Management, Policies, and Permissions

Inline policies
In contrast to managed policies, inline policies are applied directly to an object. An inline
policy functionally becomes part of the object itself; there is no longer a relationship
between a resource and a policy object that determines what that resource's permissions
are – there is now an innate property of that object that determines this:

Figure 4.8 – Inline policies innately apply to the object, while managed
policies are associated with objects

Inline policies exist specifically in the context of the single object that they are attached
to, meaning a specific inline policy applied to one object will not impact any other inline
policy, nor the access of any other identity object. An object with an inline policy may
still have managed policies applied to it, though administrators will need to be cognizant
of how a given inline policy could adversely impact the expected functionality granted
by a managed policy. Inline policies are not the most efficient way to administrate
authorization in AWS at scale. They are best used for narrow, purpose-built policies that
will only apply to a single identity.

Exploring the AWS policy types 127

Let's say we've decided that we will never have enough AWS administrators who would
merit the level of access that the FullAdministrator group grants its members, and
as such, we would like to delete that group. We still want the redbeardidentity
user account to retain its super user capabilities; we are just eliminating that group
as an avenue for any IAM user account to do so. If we wanted to ensure that only the
redbeardidentity user account had super administrator capabilities as an innate
characteristic of its object, we can create an inline policy to do so. Let's do just that:

1. From the AWS Management Console, open the FullAdministrator
group. We need to examine the AWS managed policy that gives the
FullAdministrator group its privileges to replicate them via an inline policy
on the redbeardidentity user account, so we will click Show policy next to
that managed policy:

Figure 4.9 – AdministratorAccess policy document

2. This pops up a window with the JSON policy document on it. For now, we just need
to capture this document as it will become the basis for our own inline policy.

128 Access Management, Policies, and Permissions

3. Next, we will hop over to the user management side of the IAM Dashboard
and open the redbeardidentity user record. The first tab shows us all the
permissions that have been applied to that user, with the AdministratorAccess
managed policy included in the list as being inherited from a group. We can even
see that JSON again by expanding the policy:

Figure 4.10 – Policies applied to redbeardidentity

4. Click Add inline policy to go to the policy creation form. We can either manually
sort through the services and actions by using the visual editor, or we can select the
JSON tab and write the policy document directly. Regardless of how we choose to
edit the policy, since we know the exact policy whose permissions we are trying to
recreate for this account, we can follow a best practice and base our custom inline
policy off that existing AWS managed policy. We can do this by selecting Import
managed policy and selecting AdministratorAccess from that list to import it:

Exploring the AWS policy types 129

Figure 4.11 – Policy creation form prior to importing the existing AdministratorAccess policy

5. The permissions and the JSON for that AWS managed policy now appear in our
policy creation form. Next, we give the policy a name and review the permissions it
provides. If everything checks out, we hit the Create policy button:

Figure 4.12 – Reviewing and naming our new inline policy

130 Access Management, Policies, and Permissions

6. Now, back on the redbeardidentity user account information screen,
we can see our new inline policy included among the policies that apply to that user
account. Take note of the new policy's name and how we gave it a prefix to help
make finding it easier:

Figure 4.13 – The inline and group-inherited policies on the redbeardidentity user account

7. Finally, we will remove redbeardidentity from the FullAdministrators
group. If the new inline policy is functioning as we expect it should, the account's
access should not change thanks to the new inline policy:

Exploring the AWS policy types 131

Figure 4.14 – Account has been removed from the FullAdministrator group

Even though we created that inline policy in the policy editor, named it, and saved it, it
will not appear among our AWS account's listed policies. We named the policy rbi_
FullAdministrator. Using the CLI, we can list all our account's local policies to see if
it shows up:

$ aws iam list-polices --scope Local

We only get a single unrelated policy in response:

Figure 4.15 – All managed policies in the account

132 Access Management, Policies, and Permissions

This reinforces the concept that unlike managed policies, inline policies are truly part of
the object they are applied to. We can find the new policy that we created by looking at the
specific object where that policy was applied:

$ aws iam list-user-policies --user-name redbeardidentity

This shows us our policy, embedded within the user that it is part of:

Figure 4.16 – Inline user policies on the redbeardidentity account

If we imagine an organization that were to apply a standard inline policy to each of its
user objects, that organization would functionally manage a unique instance of that
standardized user policy for each user object. Comparatively, if that organization attached
a standard managed policy to each of its user objects, it would only manage a single policy
that applies to every user object. If there are use cases where it would be desirable to use
and maintain inline policies for certain unique objects, it is considered a best practice to
take advantage of the centralized administration that managed policies offer.

So, to recap: identity-based policies are policy objects that apply to identity objects, such
as users, groups, and roles. There are various policy types that can contribute to identity-
based policies, such as managed policies and inline policies. Managed policies that are
created and maintained by AWS are AWS managed, and account-specific managed
policies that are created and administrated by an account administrator are customer
managed. Managed policies can apply to several identity objects at once, whereas inline
policies are unique to the object where they are written and applied.

Next, we will look at resource-based policies, which are policy statements that are applied
directly to resources.

Resource-based policies
The second of the main six AWS IAM access management policy types is resource-based
policies. Resource-based policies are a lot like identity-based policies in that they are
JSON documents that describe what principals can perform actions, and what actions
those principals are allowed to do. The difference between these resource policies and
identity policies is that resource policies describe the full access policy as it relates to that
resource, including the principals allowed to perform the actions. Identity policies imply
who the principal of the policy is by virtue of the policy being attached to them.

Exploring the AWS policy types 133

To help us visualize this, look at the following diagram. To aid with readability,
we've omitted the extra JSON formatting found in real policy documents and just left
the relevant policy structures in the diagram. Here, we can see two of our IAM user
accounts: redbeardidentity and RBI_S3. The redbeardidentity account has
an identity policy attached to it that gives it full administrative access to all the resources
within our account. The RBI_S3 account has no identity policies applied to it; outside
of authenticating to the tenant, it cannot do much. The policy on the right implies what
the principals are through its attachment to a user account. A principal is not specifically
enumerated inside that policy document:

Figure 4.17 – Identity policies versus resource policies

If we look to the left, we can see that the rbi-s3-bucket-1 S3 bucket has a resource
policy applied to it. This policy specifically names the principals that can act on the
resource, as well as the specific actions that principal can take on that resource. Despite
having no identity policies applied to it, the bucket's resource policy entitles the RBI_S3
user account to perform all S3 functions on the bucket object itself, as well as all objects
contained within that bucket. The redbeardidentity user is also entitled to do the
same, but that entitlement comes from the AWS managed identity policy that is attached
to the user account.

134 Access Management, Policies, and Permissions

We can see this in action by attempting to list the objects in the rbi-s3-bucket-1 S3
bucket. We can verify that the resource policy has been applied to that bucket through the
Management Console by going to the Permissions section of that bucket and reviewing
the bucket policy. Here is what we will find for the rbi-s3-bucket-1 S3 bucket:

Figure 4.18 – The rbi-s3-bucket-1 resource policy

Using the AWS CLI, we can validate that both the redbeardidentity and RBI_S3
accounts can successfully list that bucket's contents. First, run the list-objects-v2
command using the default profile (which executes under redbeardidentity), and
then again with the --profile RBI_S3 parameter to force use of the RBI_S3 account:

Exploring the AWS policy types 135

Figure 4.19 – Both user accounts can list objects in the bucket

Both accounts could execute these commands, despite the differing policy mechanisms
that granted them both access to do so.

In this situation, the redbeardidentity user account was able to access that S3
bucket, despite not being a named principal within the resource policy. That user account
received that permission from the inline permission granting full administrator access to
all the resources within the AWS account earlier. If we wanted to, we could amend that
bucket's resource policy to explicitly deny the redbeardidentity user account, which
would sufficiently override the permissions granted by the inline identity policy for that
single bucket resource.

So far, the identity-based policy types and resource policies we have looked at have
followed some fairly intuitive access management logic because they are additive, meaning
that they grant a principal access to perform actions. The next policy type, permissions
boundaries, introduces a different, yet complementary, access management paradigm.

136 Access Management, Policies, and Permissions

IAM permissions boundaries
The next major policy type is IAM permissions boundaries. True to their name,
they are policies that define the maximum boundary of permissions for an identity
object, regardless of whatever identity or resource policy may counter-indicate this.
A permissions boundary does not grant access to anything; it merely sets the limits of the
access that the identity object could theoretically have. This is useful for use cases where
an organization would like to constrain certain critical administrative functions from
subsets of administrative users.

Let's take a look at the RBI_EC2 user account in the Management Console. This was
a user account we created and attached a managed policy to that entitled it to have
full access to the EC2 service within our account. We saw this option to enable an
IAM permissions boundary when we created new IAM user accounts within the AWS
Management Console, though we can add permissions boundaries to existing users
as well:

Figure 4.20 – The RBI_EC2 account and its applied identity policies

This user account has a single identity policy applied to it. Let's use this as an opportunity
to demonstrate how permissions boundaries work, and why we would consider using
them in light of their functionality.

Exploring the AWS policy types 137

First, we will set a boundary from within the Management Console. Follow these steps:

1. Open the user account from the IAM Dashboard, as shown in the preceding
screenshot.

2. Select the Set boundary button.

3. IAM permissions boundaries use managed policies to define the access boundary
it will apply for the user. We can either use an existing AWS managed policy
or create our own to define the boundary. For the purposes of this demonstration,
let's simply select the AmazonEC2FullAccess AWS managed policy and use
that as our permission boundary. Clicking the Set boundary button applies the
boundary to the user object.

We can now see the permission boundary applied to the RBI_EC2 user account:

Figure 4.21 – Permission boundary applied to the RBI_EC2 user account

138 Access Management, Policies, and Permissions

So, how has what we've done here altered this account's access? Strictly speaking,
we have not modified its access in any way the principal would notice. All we have
done is constrain what this principal can do in the future, if it were given additional
access. The following diagram may help us visualize the impact of the permissions
boundary more easily:

Figure 4.22 – Venn diagram of RBI_EC2's permissions versus all available permissions

In the preceding diagram, we can see how the AmazonEC2FullAccess identity policy
gave the RBI_EC2 user account a subset of all available account permissions available.
In theory, we could grow that inner circle by attaching additional identity policies to
that user account, up to granting it full access to everything that can possibly be done
with every service inside of the account, similar to how the redbeardidentity
user account has full access to every service. If we diagrammed out the permissions of
redbeardidentity against all the available permissions of the account, the result
would be two perfectly overlapping circles:

Exploring the AWS policy types 139

Figure 4.23 – Venn diagram of redbeardidentity's permissions versus all available permissions

Now, let's give RBI_EC2 an identity policy, just like what redbeardidentity has.
If RBI_EC2 did not have a permissions boundary, our Venn diagram would be three
overlapping circles. However, since we put a permissions boundary scoped to the
AmazonEC2FullAccess managed policy on RBI_EC2, that account's functional access
will be limited to what is within the scope of that permissions boundary, regardless of the
more-permissive identity policy it now has:

Figure 4.24 – RBI_EC2 account constrained by a permissions boundary,
despite having AdministratorAccess

140 Access Management, Policies, and Permissions

We can see the permission boundary in action by attempting to do something that is
within scope of the identity policy but prohibited by the permissions boundary. Since we
know that the AdministratorAccess policy grants access to everything, we can safely
assume that we should be able to take action on any service that is inside the permissions
boundary. We still need to know exactly what is allowed in the AmazonEC2FullAccess
policy in order to validate that the boundary is working as expected. Fortunately, we can.
View the policy summary and/or the JSON document in the same place where we applied
the permissions boundary to the RBI_EC2 user account. The policy document is as
follows:

{

 ''Version'': ''2012-10-17'',

 ''Statement'': [

 {

 ''Action'': ''ec2:*'',

 ''Effect'': ''Allow'',

 ''Resource'': ''*''

 },

 {

 ''Effect'': ''Allow'',

 ''Action'': ''elasticloadbalancing:*'',

 ''Resource'': ''*''

 },

 {

 ''Effect'': ''Allow'',

 ''Action'': ''cloudwatch:*'',

 ''Resource'': ''*''

 },

 {

 ''Effect'': ''Allow'',

 ''Action'': ''autoscaling:*'',

 ''Resource'': ''*''

 },

 {

 ''Effect'': ''Allow'',

 ''Action'': ''iam:CreateServiceLinkedRole'',

 ''Resource'': ''*'',

Exploring the AWS policy types 141

 ''Condition'': {

 ''StringEquals'': {

 ''iam:AWSServiceName'': [

 ''autoscaling.amazonaws.com'',

 ''ec2scheduled.amazonaws.com'',

 ''elasticloadbalancing.amazonaws.com'',

 ''spot.amazonaws.com'',

 ''spotfleet.amazonaws.com'',

 ''transitgateway.amazonaws.com''

]

 }

 }

 }

]

}

The first statement indicates that any ec2 command will be allowed on any resource. As
such, we will use an ec2 command to test something that will be within the scope of the
permissions boundary. The final statement indicates that only a very narrow subset of iam
commands are enabled by this policy. We can use something simple, such as aws iam
list-users, to test an action that should be out of bounds.

Let's run the aws ec2-describe-addresses command under both the RBI_EC2
and redbeardidentity user accounts from the CLI. This command simply describes
the elastic IP addresses in use within the EC2 service. If there are none in use (which is the
case with our account), a successful response will show an empty list of addresses:

Figure 4.25 – Both accounts successfully executing the ec2 command

142 Access Management, Policies, and Permissions

Here, we can see that running that command first under the RBI_EC2 account's profile
and again under the default redbeardidentity account both completed successfully.
Next, let's try aws iam list-users:

Figure 4.26 – RBI_EC2's permissions boundary blocks an action permitted by
an attached identity policy

Predictably, the redbeardidentity account succeeded. However, the RBI_EC2
account failed. Though both accounts share the same identity policy, RBI_EC2 cannot
exceed its permissions boundary.

Finally, let's look at how permissions boundaries interact with resource-based policies. For
this, we will update the resource-based policy that we applied to the rbi-s3-bucket-1
S3 bucket, so that both the RBI_S3 and RBI_EC2 user accounts are named as the
principals who can perform operations on the bucket and its objects. The resource-based
policy now looks like this:

{

 ''Version'': ''2012-10-17'',

 ''Id'': ''rbis3bucket1'',

 ''Statement'': [

 {

 ''Sid'': ''1'',

Exploring the AWS policy types 143

 ''Effect'': ''Allow'',

 ''Principal'': {

 ''AWS'': [

 ''arn:aws:iam::451339973440:user/RBI_EC2'',

 ''arn:aws:iam::451339973440:user/RBI_S3''

]

 },

 ''Action'': ''s3:*'',

 ''Resource'': [

 ''arn:aws:s3:::rbi-s3-bucket-1'',

 ''arn:aws:s3:::rbi-s3-bucket-1/*''

]

 }

]

Let's see what happens when each of these users attempts to list the bucket's contents from
the CLI, similar to how we did earlier in this chapter when we first introduced resource-
based policies:

Figure 4.27 – The resource-based policy on the bucket explicitly allows
RBI_EC2 to perform all operations

144 Access Management, Policies, and Permissions

As the RBI_EC2 user has no S3 service capabilities listed within its permissions
boundary, we may expect that the permissions boundary would block it from taking
action on this S3 resource. However, it is important to remember the primary distinction
between resource-based policies and the identity-based policies that use managed policy
objects. More specifically, identity-based policies implicitly refer to a principal through
its association with an identity object. This is also true of permissions boundaries.
Conversely, a resource-based policy explicitly names a principal or principals, along with
the entitlements that principal has. For this example, though RBI_S3 was outside of its
permissions boundary, it was explicitly permitted full access to the rbi-s3-bucket-1
S3 bucket inside that bucket's resource-based inline policy.

Next, we will look at service control policies, which contain different type of restrictive
policy objects that behave similarly to permissions boundaries but apply at the AWS
account level, as opposed to the individual objects or user accounts within the account.

Service control policies
Many organizations use several AWS accounts. In addition to the chronic challenges of
aggregating accounts that have been discovered by shadow IT or mergers and acquisitions,
organizations may choose to deliberately divide their accounts among business units.
An emerging best practice is to issue AWS accounts on a per-application basis, to
preclude resource competition within an account and reduce the risk of unauthorized
or unintentional service impacts caused by access control failures.

AWS Organizations is a service that aims to help organizations manage all their AWS
accounts. We briefly touched on AWS Organizations in Chapter 3, IAM User Management,
specifically in the context of how that service assisted in managing federated users. In the
context of access control, AWS Organizations allows us to define a management AWS
account and organizational units where subordinate member accounts may be placed.
It is here that we can apply service control policies in order to define the maximum
permissions available within these subordinate AWS accounts. In this regard, service
control policies can be thought of permissions boundaries that are applied to entire AWS
accounts:

Exploring the AWS policy types 145

Figure 4.28 – Example of service control policies applied to an organizational structure

Service control policies may be applied at various levels within the organizational
structure. A policy applied at an organizational unit level will affect all the member
accounts listed beneath that OU. SCPs applied directly to the member account will apply
only to the member account. Similar to other policy types, we can apply the same policy
object to various levels within the OU structure; the impact this has on the member
account's maximum possible permissions will be a combination of policies.

Service control policies use the same JSON document structure as other policy types. It is
important to remember that SCPs do not innately grant permissions; just like permissions
boundaries on identity objects, they merely set the maximum possible permissions. An
additional policy will still be required to grant principals access to resources within each
member AWS account.

The next policy type we will examine, access control lists, will be familiar to anyone with
a background in network firewall management, though their use is not constrained to
only network resources in AWS.

146 Access Management, Policies, and Permissions

Access control lists
Access control lists determine whether an external principal can access a resource
within an AWS account. Unlike the other policy types, ACLs do not use the JSON policy
language. Different AWS services use different formats for their ACLs; for example, S3
uses an XML-formatted document, whereas several of the network-oriented services
such as AWS Virtual Private Cloud (VPC) use something that looks more like a network
allow/deny list, as shown here:

Figure 4.29 – A permissive ACL for a VPC subnet allowing anonymous principals from the greater
internet

Exploring the AWS policy types 147

Curiously, the AWS IAM documentation indicates that ACLs ''cannot be used to control
access for a principal within the same account'' (https://docs.aws.amazon.
com/IAM/latest/UserGuide/access_policies.html#policies_acl, yet
something every AWS neophyte quickly learns is how to open the appropriate ports on
their EC2 instances using something like a network security group. While this may seem
contradictory, it is important to remember transactions such as SSHing into an EC2
instance or connecting to a web server from the broader internet are not done under
the context of an AWS IAM user account. SSHing to an EC2 instance is a form of local
authentication to that specific EC2 instance. The ACL evaluates the inbound connection
as an anonymous principal for the purposes of AWS IAM evaluation, while additional
authorization occurs within the EC2 machine that is serving content.

The last policy type we will explore is session policies. These policies are used to limit the
scope of access of temporary credentials that are issued through an AWS Security Token
Service.

Session policies
In order to understand session policies, we must briefly discuss how federated
authentication works. You will recall from Chapter 3, IAM User Management, that
federated users do not map to an AWS IAM user account object, but rather they assume
an AWS IAM role. They assume that role by exchanging the signed authentication token
that was provided by their federated identity provider, which authenticated them with the
AWS Security Token Service:

Figure 4.30 – A principal receives temporary credentials governed by a session policy

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_acl
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_acl

148 Access Management, Policies, and Permissions

A session policy is included in that call from the IDP to the Security Token Service, which
will constrain the scope of the temporary credentials issued by AWS STS. This session
policy will be in addition to any other policy type that may be applied to the role identity
object, or any inline resource policies that may be actioned upon by the principal while
using those temporary credentials.

With so many different policy types in play in AWS, what is the order of operations for
determining the final level of authorization when policy types interact? Fortunately for us,
there is a consistent policy evaluation flow to ensure consistent access evaluation.

Policy evaluation
Now that we've looked at all the policy types available to us within AWS, the question
becomes, how do each of these policy types interact with each other, and is there some
sort of order or operations in play among them for processing requests? Fortunately,
there is an overall pattern of evaluation logic that we can follow to see how an action
is evaluated. Unfortunately, there are plenty of exceptions and nuances – more than
can be reasonably detailed here. Whereas it is still valuable to understand how requests
are generally assessed by AWS IAM, it is always prudent to review the service-specific
documentation for unique behaviors.

First, there are a few overarching rules:

• The AWS root account has full access by default.

• Requests from all other principals are denied by default.

• For identity-based policies and resource-based policies, an explicitly enumerated
allow statement will override the default deny.

• Organizational service control policies, session policies, and permissions
boundaries may override an explicitly enumerated allow statement in an identity-
or resource-based policy.

• An explicitly enumerated deny statement overrides any other allow statement.

Policy evaluation 149

Since that is as clear as mud, let's approach policy evaluation as a process diagram:

Figure 4.31 – Policy evaluation process diagram

Every request for every resource gets evaluated through this flow diagram every time
a request is made. Additionally, each evaluation step could have several policies applied,
with each policy containing several statements and conditions. With so many moving
parts, it becomes important to double check that policies do what we expect them to do.
Fortunately, there are tools available to help us with our governance challenges.

150 Access Management, Policies, and Permissions

Governance
We've spent the last several pages detailing the mechanics of access management and
authorization. It may seem tautological as to why we would want to enact a sound access
management policy; we want to protect our AWS resources. However, there are also
legal and regulatory requirements that we need to fulfill, such as least privilege, evidence
of events, and audit. We will now look at a couple tools available to us to fulfill the
governance requirements that come with access management.

Access Analyzer
Access Analyzer is a feature of AWS IAM that helps highlight potential weaknesses in
existing authorization policy. As we've seen over the course of this chapter, there are many
inputs, options, and places where a policy change could have unintended consequences
for access control. As we start intertwining additional AWS accounts, and perhaps even
AWS accounts not owned or managed by our own organization, it becomes increasingly
important (and difficult) to visualize those potential access leaks. Access Analyzer
facilitates this by automating the analysis of our AWS account's policies and providing
a report on potential findings that necessitate remediation:

Figure 4.32 – Access Analyzer shows no issues within our account

In the preceding screenshot, we did not find any findings that required remediation.
This was likely because our AWS account was not connected to any others, and sparsely
populated with IAM objects.

Least-privilege is an essential component of good governance, but we also need
administrative logging to tie actions to principals. Fortunately, there is a dedicated service
which provides that event monitoring and logging.

Governance 151

AWS CloudTrail
AWS CloudTrail is the audit tool available for administrators to review actions that have
been taken within the AWS account. It provides detailed event logging on a per-principal
basis for all actions, changes, and events caused by that specific principal:

Figure 4.33 – A record of events, timestamps, impacted resources, and
the principal responsible in CloudTrail

As we can see, we can review all the actions taken by the redbeardidentity user
account. All actions, whether they're performed in the console or on the CLI, are logged.
CloudTrail is a powerful governance and diagnostic tool for providing attestation to
auditors that events have taken place, such as account termination.

Now that we have learned about the various policy types, how they interact, how they are
evaluated, and how they are audited, we now have everything we need to control access to
the resources within our AWS accounts.

152 Access Management, Policies, and Permissions

Summary
Now that you've made it through this chapter, you should be familiar with the basics of
AWS access management. Though we've reviewed the high-level components we need in
order to be conversant on this topic and move forward, it is prudent to be cautious when
it comes to access management and entitlements. Many security incidents that stem from
excessive entitlements having been applied in an environment in the name of expediency.
As such, consider this chapter a primer on learning how to learn more deeply about this
topic, and consider the access management challenges that will surface throughout the
remainder of this book.

The next chapter will see us shift from purely focusing on AWS IAM and looking at AWS
as an infrastructure as a service offering. AWS Cognito is a service designed to offer
applications simplified identity services, including user management, authentication,
and authorization. Whereas we will reference many of the topics we introduced at the
beginning of the book, this chapter represents the first service we will examine where
AWS is acting as a platform as a service.

Questions
1. What is access management?

2. What is a policy document?

3. What is a statement within a policy document?

4. How many values are available for the Effect element and what are they?

5. Name the six major policy types available in AWS.

6. Describe why permissions boundaries and service control policies do not actually
grant access to anything.

7. What tools are available to assist with access management audit and governance for
AWS IAM and what do they do?

Further reading
• Condition – AWS User Guide

• Variables – AWS User Guide

5
Introducing

Amazon Cognito
So far, we have approached identity for AWS in the context of managing authentication
and authorization to AWS resources within an AWS account. We've examined the primary
service that governs that access, known as AWS IAM, and seen how user accounts are
managed, how their credentials are administrated, and how authorization policies are
applied. Most of these use cases focus on using AWS in the context of an Infrastructure
as a Service platform.

Amazon Cognito is, above all, a service for applications, with documentation and
examples targeted at application developers. In fact, many of the use cases attempt to
solve certain use cases by offering reference implementations that further enmesh the
application architecture into AWS. This is what we mean when we say that Amazon
Cognito offers identity services for AWS in the context of Platform as a Service (PaaS)
and that AWS IAM handles identity for AWS as Infrastructure as a Service (IaaS).
Regrettably, this laser focus on application and platform integration also makes Cognito
slightly less intuitive at first glance, even compared to the overly complex AWS IAM
service.

154 Introducing Amazon Cognito

By the end of this chapter, you will understand what each part of Cognito does and how
they interoperate, as well as how they optionally interact with other AWS services.

The following topics will be covered in this chapter:

• What is Amazon Cognito?

• Amazon Cognito use cases

• Creating an Amazon Cognito user pool

• Exploring the hosted UI

• Creating an Amazon Cognito identity pool

Technical requirements
To get the most out of this chapter, you will need the following:

• An AWS account

• A workstation running the AWS CLI

• A text editor or IDE to edit JSON/YAML files, such as Microsoft Visual Studio Code

What is Amazon Cognito?
Amazon Cognito provides identity management, user authentication, and authorization
for web applications. Amazon Cognito is a service that externalizes the components
for application user identity management and authorization for application developers
who do not wish to manage those items within the context of their own application. The
Amazon Cognito service, within a given AWS account, can accommodate several distinct
collections of user accounts, called pools. While Amazon Cognito is an identity service,
it is distinct from AWS IAM in terms of its purpose and functionality. However, there are
use cases and design patterns where Amazon Cognito and AWS IAM interact:

What is Amazon Cognito? 155

Figure 5.1 – The Amazon Cognito service from within the Management Console

Like nearly everything else in AWS, Amazon Cognito can be fully configured using both
the Administrative Console and the AWS CLI. As shown in the preceding screenshot,
Amazon Cognito offers two main features: user pools and identity pools. At a high level,
the primary distinction between the two is that user pools address identity management
and authentication use cases for applications, whereas identity pools address authorization
to access AWS resources for application users.

In a nutshell, we could say that Cognito is a service that handles IAM applications through
two components. The first is user account management and authentication through
user pools, while the second is application authorization management to AWS resources
through identity pools. As things are seldom that simple, let's examine each of these
features more closely.

Amazon Cognito user pools
Amazon Cognito has two main components that make up the service. The first is user
pools. A user pool is a managed directory for application accounts, and it offers a full
suite of application user management and security features, including the following:

• New user sign-up

• New account verification workflows, such as phone number and email verification

156 Introducing Amazon Cognito

• Prepackaged and customizable logon forms

• Federated authentication using social identity providers (IDPs), including
Google, Apple, Facebook, and Login with Amazon, as well as support for any
other standards-based SAML and OIDC identity provider

• Strong authentication with support for multifactor credentials

• Built-in security tools, including checks for compromised credentials and account
takeover protection

Unlike AWS IAM, where there is no corresponding user account object and which
only provides references to an assumed role when delegating user authentication to a
federated provider, every user within an Amazon Cognito user pool is a user account
object. Regardless of whether it is the Amazon Cognito user pool or a federated provider
handling the authentication, that authentication is mapped to a user account within the
user pool.

User pool tokens
Amazon Cognito uses standard OpenID Connect flows for its user authentication and
default attribute schema. OpenID Connect (OIDC) is an identity layer that's built upon
the OAuth2 authorization framework. This standard extends the functionality of an
OAuth2 authorization server to include authentication tokens and claims about end users
using REST-like transactions across security domains.

Once a user has been authenticated, Amazon Cognito provides user pool tokens to the
application, which can then be used to mediate access to application-side resources. These
user pool tokens are simply standard OIDC tokens. In this scenario, the Amazon Cognito
user pool acts as the IDP and authorization server, while the application acts as the
resource server in a standard OIDC transaction.

The following diagram shows an example of a flow between an application that uses
Amazon Cognito user pools for authentication and user management:

What is Amazon Cognito? 157

Figure 5.2 – Example of an authorization code flow with a proof of key for code exchange through an
Amazon Cognito user pool

This is an example of an authorization code plus proof of key for code exchange (PKCE)
flow, which is one of several different standardized flows available in the OpenID Connect
standard. While there are key differences between each available flow, their optimal
use cases, and the tokens they provide afterward, the authorization code flow is a good
reference to examine as it can provide all the available token types.

Tip
For additional information on the OpenID Connect standard, its available
flows, and its best practices for implementation, please visit the OpenID
Foundation at https://openid.net. For more information about
each of these flows within an Amazon Cognito user pool, see https://
aws.amazon.com/blogs/mobile/understanding-amazon-
cognito-user-pool-oauth-2-0-grants/.

https://aws.amazon.com/blogs/mobile/understanding-amazon-cognito-user-pool-oauth-2-0-grants/
https://aws.amazon.com/blogs/mobile/understanding-amazon-cognito-user-pool-oauth-2-0-grants/
https://aws.amazon.com/blogs/mobile/understanding-amazon-cognito-user-pool-oauth-2-0-grants/

158 Introducing Amazon Cognito

In the preceding diagram, we can see the following:

1. An unauthenticated user with an existing account clicks a sign-in link for a website
that uses an Amazon Cognito user pool for user management and authentication.

2. The application's Amazon Cognito registered client generates a random
code_verifier that it uses to generate a cryptographically generated code_
challenge.

3. The website redirects the user's browser and code_challenge to the user pool's
/authorize endpoint to make an authorization request.

4. The user pool redirects the user's browser to the Amazon Cognito login page to
challenge the user for their credentials.

5. The user enters their credentials and (optionally) consents to the Amazon Cognito
user pool sharing the information stored within the user pool directory, along with
the application the user is trying to access.

6. The user pool stores code_challenge and redirects the user back to the
application with a short-lived, one-time-use authorization code. This authorization
code is the short-lived proof that the user provided their credentials.

7. The application sends the authorization code and code_verifier, which it
created in Step 2, to the Amazon Cognito user pool authorization server. The
authorization code is what the application's client exchanges for tokens once the
authorization server validates the client using code_verifier and code_
challenge.

8. The user pool verifies code_verifier and code_challenge. If they
cryptographically correspond, then the authorization server has validated that the
client can make this request for user information from the Amazon Cognito user
pool as the authorization server.

9. The authorization server responds to the application with a signed ID token that
attests that the authorization server validated the user's credentials and that they
were valid. That ID token also contains embedded information about that user
from the user pool directory, called claims. It also sends an access token, which the
application may use on behalf of the user to access application resources protected
by the authorization server. Finally, it may also send a refresh token, which the
application may exchange for new ID, access, and refresh tokens without requiring
additional user interaction.

What is Amazon Cognito? 159

Whereas it may not be essential to understand every OIDC flow if we want to use Amazon
Cognito, it would be prudent to at least understand the basics of OAuth2 and OIDC. The
application and authorization models for Amazon Cognito user pools are built upon the
OpenID Connect specification.

Next, we will look at the second half of Cognito; that is, its identity pools.

Amazon Cognito identity pools
The second component of Amazon Cognito is its identity pools. Application developers
can use identity pools to bridge application and user access to AWS resources. Similar to
how federated AWS IAM users obtain temporary credentials, identity pool users may also
take advantage of the AWS Security Token Service to obtain temporary credentials. Just
like those federated AWS IAM users, there is no corresponding AWS IAM user account
for these Amazon Cognito identity pool users. Access comes through an AWS IAM trust
policy that mediates the Amazon Cognito identity pool users' access.

An identity pool requires a federated identity provider of some sort to provide the
identities for its pool. That provider could be an Amazon Cognito user pool, a social
provider such as Facebook or Twitter, a standards-based SAML2 or OIDC identity
provider, or a mixture of them all.

Whereas user pools are self-contained platforms, identity pools should be incorporated
into an application. The model behind identity pools is authorizing access to AWS
resources that an application may use, with the application itself being hosted on the AWS
platform. Identity pools are a developer-centric offering, with sample code and SDKs to
facilitate their adoption.

Amazon Cognito identity pools can be a difficult concept to understand as they can seem
redundant to other AWS identity services that address authorization to AWS resources,
except that identity pools are purpose-built for applications that have been designed for
deployment on AWS. The IaaS nature of AWS means we can solve a specific business or
application use case in multiple ways, whereas the PaaS nature of Amazon Cognito offers
a prescriptive pattern for solving that same use case. As we examine the use cases for both
user pools and identity in the next section, the purpose-built functionality of Amazon
Cognito (compared to the other AWS IAM patterns) will become easier to understand.

160 Introducing Amazon Cognito

Amazon Cognito use cases
There are several common deployment patterns and use cases that Amazon Cognito
accommodates. While each of these patterns may involve different Amazon Cognito,
AWS IAM, or other app and AWS service components, they all share the same underlying
purpose: to facilitate application identity services on applications deployed on AWS. Let's
examine a few of these use cases and patterns and see how the different Amazon Cognito
components come into play for each one.

User authentication for application access
The simplest design pattern to accommodate when using Amazon Cognito is fully
externalized user account management and authentication. In this pattern, the Cognito
user pool acts as the IDP and user store for the application:

Figure 5.3 – Application authentication and user management with a user pool

Applications can take advantage of Amazon Cognito's hosted account management, sign-
up, and verification process to register new user accounts in the user pool if a user does
not have credentials to access the application. Once the user registers their account and
sets up their credentials, the app looks to Amazon Cognito as its identity provider. Using a
standards-based authentication flow, the application receives confirmation from Amazon
Cognito that the user has been authenticated by being issued a signed, Amazon Cognito-
provided ID token and access token.

This model can also be extended to look at external, federated identity providers for user
authentication:

Amazon Cognito use cases 161

Figure 5.4 – App authentication and user management, including a federated provider

Under this model, the only significant difference is the option to change where the user
is authenticated, as well as where their credentials are managed. The Amazon Cognito
user pool may look to the locally managed accounts within its directory or to a federated
provider at user authentication time; the application continues to only respect Amazon
Cognito as its source of user identity. Though federated users may delegate authentication
to an identity provider, they still exist as records within the user pool, and any information
that's presented to the application about those users will come from Amazon Cognito
using attributes from that pool.

The next model builds upon this one but adds authorization into the mix.

User authentication and authorization for access to
application resources
This model is similar to the previous one, with one key exception: the application that uses
Amazon Cognito for its identity provider also acts as a resource server. In addition to the
user authentication and registration features, the application will also use the Amazon
Cognito user pool as its authorization server in an OAuth2 pattern:

Figure 5.5 – Application using Amazon Cognito user pool tokens for scoped access to server-side
resources

162 Introducing Amazon Cognito

In the preceding diagram, just as in Figure 5.4, the application looks to Amazon Cognito
for user authentication, new user sign-up, and account verification. The Amazon Cognito
user pool may optionally look to a federated identity provider for user authentication.
However, this time, the application also needs those users to be able to access either
or both of its available resources once they have been authenticated to the application.
Amazon Cognito user pools can facilitate this through group assignments within its
user directory. We can assign entitlements, such as members of group 1 may access
resource 1, that map to scopes that Amazon Cognito (as the authorization server) and
the application (as the resource server) use to limit the access that's granted by the access
token that's issued at user authentication time.

Important Note
Amazon Cognito user pools leverage OAuth2 concepts heavily. The IETF
RFC may be useful for bootstrapping familiarity with the terms, roles, and
mechanics of the framework. It is available here: https://tools.
ietf.org/html/rfc6749. If you would like more information on the
mechanics of calling the OAuth2 endpoints available in Amazon Cognito, you
may read more at https://docs.aws.amazon.com/cognito/
latest/developerguide/cognito-userpools-server-
contract-reference.html. Finally, for more information on
configuring application servers as resource servers for use with Amazon
Cognito user pools, see the documentation available here: https://docs.
aws.amazon.com/cognito/latest/developerguide/
cognito-user-pools-define-resource-servers.html.

With all this talk of scopes, resource servers, and authorization servers, you would
think that APIs would be in the mix somewhere in this model. To be fair, they could be
as resources available on the application/resource server. However, since leaving API
endpoints exposed is not a security best practice, AWS recommends pairing the Amazon
Cognito user pool with AWS API Gateway:

https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-userpools-server-contract-reference.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-userpools-server-contract-reference.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-userpools-server-contract-reference.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-define-resource-servers.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-define-resource-servers.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-define-resource-servers.html

Amazon Cognito use cases 163

Figure 5.6 – Amazon Cognito as an authorizer for AWS API Gateway

In this relationship, on top of all the previously established relationships and services
between Amazon Cognito user pools and the application, we must also establish a
relationship between the user pool and the Amazon API Gateway service, so that
Amazon API Gateway knows that Amazon Cognito can act as an authorization server
for the application APIs that it proxies. Just as in the earlier variant of this pattern, user
groups within the Amazon Cognito user pool map to scopes that determine which APIs
the access token is permitted to call. This pattern is very platform-specific to the AWS
services that are referenced in it. The documentation on implementing it is available here:
https://docs.aws.amazon.com/apigateway/latest/developerguide/
apigateway-integrate-with-cognito.html.

The next pattern drops the Amazon API Gateway in favor of Amazon Cognito
identity pools.

https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-integrate-with-cognito.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-integrate-with-cognito.html

164 Introducing Amazon Cognito

User authentication and access to AWS services
exposed through an application
The next pattern is the first to include both Amazon Cognito identity pools and a use
case where an application and its users would have need to access AWS resources. Let's
imagine we have an application that uses Amazon Cognito for its identity management,
and part of that app's functionality includes file uploads and downloads from a repository,
which is really just an S3 bucket:

Figure 5.7 – Architecture with identity pools and a token exchange to access AWS resources

All the capabilities and features of Amazon Cognito user pools remains the same as
they did previously. What's new here is that the application calls the identity pool to
exchange the user's Amazon Cognito user pool tokens for AWS IAM credentials, which
will allow them to access AWS resources in accordance with a predefined trust policy. The
application delegates authorization to AWS IAM. Once the user assumes those credentials
– more specifically, a role that was defined and scoped to allow access from that identity
pool – they can interact with the AWS resource through the application.

Though this pattern is common, in the next section, we will see that an Amazon Cognito
identity pool does not require a user pool to operate.

Amazon Cognito use cases 165

Federated user authentication and access to AWS
services exposed through an application
This pattern is nearly identical to the previous one, except it sidesteps the use of Amazon
Cognito user pools entirely in favor of only depending on federated identity providers.
This may be confusing as an Amazon Cognito user pool may also use a federated
identity provider for user authentication; the key difference is that a user pool provides
authentication and user management for the application that looks to it for those things,
regardless of whether the user pool itself federates to an external IDP. On the other hand,
an Amazon Cognito identity pool is indifferent to the identity provider the application
looks to for user authentication. Identity pools only care about the tokens that are issued
by the authoritative identity provider since those attributes can be used to determine
authorization and entitlement mapping:

Figure 5.8 – Amazon Cognito identity pool and an external federated provider governing app access to
AWS resources

Many of the same mechanics from the previous architecture are in play here as well,
except this time, in lieu of an Amazon Cognito user pool token, the token from the
federated provider is used to identify the user, collect critical attribute mappings, and align
the user to the appropriate trust policy that governs the assumed role they will get during
token exchange.

166 Introducing Amazon Cognito

These common architectures may help us conceptualize how Amazon Cognito user and
identity pools can be used to solve application identity challenges, but they do not give
us a sense of what options are available for us within these services. In the next section,
we will learn how to create an Amazon Cognito user pool and get a better sense for the
service.

Creating an Amazon Cognito user pool
We will create an Amazon Cognito user pool using the Management Console. To do this,
follow these steps:

1. Go to the Amazon Cognito service within the Management Console.

2. Click the Manage User Pools button.

3. This takes us to a listing of all the user pools that have currently been set up inside
our AWS account. Since we have not configured any inside this account, it should
be empty:

Figure 5.9 – Our empty list of Cognito user pools

4. Click the Create a user pool button to start creating our first pool. We will
immediately be prompted for a pool name and given options for either reviewing
the default configuration recommended by AWS or stepping through the
configuration one step at a time. Selecting the Review defaults option will simply
skip us to the Review page, so let's select Step through settings and see what
options are available to us. Since we are not overly creative, we will call our first pool
rbipool and proceed:

Creating an Amazon Cognito user pool 167

Figure 5.10 – Create a user pool screen

5. First, we must review the attribute settings for our user pool. These attribute settings
will determine the username, required attributes, and any potential alias attributes
we want our users to have. Let's leave the default identifier of username in place so
that our users can choose their own usernames rather than being forced to identify
via email or phone number. We should also note, and leave enabled, the case
insensitivity option for the username so that users won't need to worry about issues
such as browser autocapitalization during signup, causing them to lose access to
their accounts:

Figure 5.11 – Defining the user pool's identifying attribute

168 Introducing Amazon Cognito

6. Next, we can optionally select which of the standard attributes will be required at
signup. Each of these attributes will exist for every user record within the user pool,
though users will only be required to provide information at signup for the ones we
check here. Let's balance useful directory information against user privacy and only
add a few, such as given name, family name, and phone number:

Figure 5.12 – Selecting the attributes required at signup

7. We also have the option to define custom attributes. This is an opportunity to add
either string or number value attributes that our app would require but are not
natively included in the Cognito/OpenID profile attribute schema. Let's define a
custom attribute for costcenter and continue:

Figure 5.13 – Defining a custom attribute

Creating an Amazon Cognito user pool 169

8. The next step covers password policies. The first option specifies password
complexity requirements. As these default values look good, we can leave them at
their default values:

Figure 5.14 – Password policy for the user pool

9. On the same page, we can opt to only allow administrators to create user accounts,
either through manual creation or through an import process, or allow users to
sign themselves up. Enterprise use cases would likely select the first option, while
consumer use cases would select the second. Since we are merely kicking the tires
on a user pool today and not deploying for an enterprise use case, let's Allow users
to sign themselves up:

Figure 5.15 – Options for user self-signup

10. The final setting under the Policies setting defines the expiration period for
temporary passwords when they're not being used. It is a good idea to terminate
temporary passwords if they have not been used after some time as they represent
a vector for account takeover. This is especially true in consumer use cases where
there are no forcing functions requiring a user to interact with the application
within a certain timeframe. We can leave this at 7 days and move on:

Figure 5.16 – Temporary password expiration value

170 Introducing Amazon Cognito

11. The next section deals with multi-factor authentication and account recovery
options. Let's choose to enforce MFA and select the Time-based One-time
Password option:

Figure 5.17 – MFA options on the user pool

12. Still on the MFA and verifications page, we can select how we want to allow users
to recover their accounts if they lose their passwords. There are many options
available here. Best practice recommends keeping the account recovery channel and
the MFA channel separate. Had we allowed the phone number as an identifier, a
malicious actor in possession of a stolen phone would now have both the identifier
and second factor authenticator for an account; they would only need to initiate
account recovery to reset the password.

If account recovery also runs through the phone, it becomes the single channel
that's required for an account takeover. As we require our user pool accounts to set
a unique username and they are using TOTP for MFA, we can simply rely on email
recovery. However, we will want to confirm at signup that the user is in possession
of the email address, so we will want to enforce verification prior to allowing them
to log in after signup:

Creating an Amazon Cognito user pool 171

Figure 5.18 – Account recovery and email verification settings

13. Since we did not include SMS for any portion of our user pool configuration, we do
not need to allow the wizard to create the appropriate AWS IAM role, which will let
Cognito send SMS messages. If we had chosen SMS, this would be required. We are
now ready to move on:

Figure 5.19 – SMS IAM role prompt

172 Introducing Amazon Cognito

14. As we will be sending verification emails to our users, we need to configure how we
will be sending those messages. There are options to use AWS Simple Email Service
(SES) or Amazon Cognito natively. Each option has its own limitations, namely that
Amazon SES requires that we register and confirm an email within the Amazon SES
service to select Amazon SES as the sender for the user pool. Additionally, we must
apply for production access to Amazon SES if we wish to send to more addresses
than just the one we initially registered with within Amazon SES. As that seems
like more work than I am willing to put into my verification emails for my first user
pool, I will defer to the second option; that is, letting Amazon Cognito can handle it
natively:

Figure 5.20 – Message sender and SES configuration options
Using Amazon Cognito also has its limitations, such as only a limited number
of messages can be sent per day. Real organizations are encouraged to apply for
production action to Amazon SES if they anticipate a significant number of signups.
Now, we can move on.

Creating an Amazon Cognito user pool 173

15. Next, still on the Message customizations page, we have the option to customize
the email verification message that will be sent to the new users that sign up. We
can either have the users retrieve and enter a code or click a confirmation link. Let's
reduce user friction at signup and have them click a link:

Figure 5.21 – Customizing the verification link template for the user pool

16. Finally, we have the option to customize both the SMS and email templates that are
used for user invitation. If we are content with the default values, we can move on to
the next section:

Figure 5.22 – Customizing user invitation messages

174 Introducing Amazon Cognito

17. Like most things in AWS, user pools support tags. We can define them here. Let's
create one that we think may be useful and move on:

Figure 5.23 – User pool tagging

18. The next section gives us some options around remembering our user's devices.
This feature allows the user pool to affiliate the device with the user's profile, and
optionally allow us to opt to bypass the MFA prompt on known devices. The Always
option associates any device that's used at logon time with the user's profile. User
Opt In gives the user a choice in the matter and is the optimal balance of user
experience and security. Let's select the User Opt In option and move on:

Figure 5.24 – Device association options for the user pool

19. The next step lets us define an app client. An app client is the OpenID Connect
client that an application can use to execute one of the OIDC user authentication
flows against this user pool, in its capacity as an identity provider. We will need
to create an app client to make this user pool useful for forcing authentication to
access a website, so let's select Add an app client:

Creating an Amazon Cognito user pool 175

Figure 5.25 – Option to add a client to the user pool

20. This opens up a bunch of options, but we don't need to manipulate many values
here. Let's name the client rbiclient1 and leave the remaining values in their
default positions:

Figure 5.26 – Application client configuration

176 Introducing Amazon Cognito

Here, we can see that the refresh token is fairly long-lived by default, with an option
to extend it to up to 10 years. The best practice for refresh token longevity is to find
a balance for longevity that benefits the user experience and the risk appetite for not
requiring reauthentication, for however long that period may be. Depending on the
data classification or the regulatory environment that this app operates in, this could
be much shorter than 30 days. Access tokens and ID tokens are much shorter-lived
by comparison, with a default validity period of 1 hour.

There are additional options for various Auth Flows. These are AWS- and
Amazon Cognito-specific capabilities that are designed to accommodate local
application authentication mechanisms. While application developers may be
content reinventing the wheel with such things, identity practitioners strongly
advise adherence to standards-based protocols. The basic OpenID Connect flow is
sufficient for our use case. Details on implementing the other authentication flows
can be found in the Amazon Cognito documentation here: https://docs.aws.
amazon.com/cognito/latest/developerguide/amazon-cognito-
user-pools-authentication-flow.html#amazon-cognito-user-
pools-server-side-authentication-flow.

Finally, we can toggle the attribute read/write permissions. By default, the
application client is entitled to read and write to the user's record in Cognito. If we
wanted to limit what this client could do, we could remove its access to individual
attributes, scopes (which determine access to collections of attributes), or even read/
write access entirely. We are content with the defaults, so let's create our client and
click on the Next step button.

21. Next, can define certain AWS Lambda triggers upon certain events. Since we have
no Lambda functions defined to associate with any of these triggers, we can move
on to the review.

22. Here, we can see an overview of the choices we've made so far. We can go back and
make edits or create the pool if we are confident in what we have. Let's create the
pool:

https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html#amazon-cognito-user-pools-server-side-authentication-flow
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html#amazon-cognito-user-pools-server-side-authentication-flow
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html#amazon-cognito-user-pools-server-side-authentication-flow
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html#amazon-cognito-user-pools-server-side-authentication-flow

Creating an Amazon Cognito user pool 177

Figure 5.27 – Reviewing our user pool

23. Our user pool now appears in our list of user pools:

Figure 5.28 – Our newly created user pool

178 Introducing Amazon Cognito

24. Now that we have our user pool, we need to configure the domain that our user
pool will use as it acts as our identity provider for any applications that we choose
to point to it. We can do this by clicking on rbipool, which we just created, and
selecting Domain name beneath App Integration from the left-hand menu on the
page:

Figure 5.29 – Selecting an available Amazon Cognito domain or choosing our own domain for our user
pool

We must select an Amazon Cognito domain name to use with our authorization
server. To keep things consistent, let's use rbipool as the subdomain. We must
then check the availability of that subdomain by hitting the Check availability
button. If it is available, we can proceed.

There were a lot of steps and options for creating our user pool. However, consider what
a user pool is and what it can do. A user pool is a full-featured identity provider for
applications. When the process is recontextualized through that lens, it makes sense that it
is complicated. Finish this setting clicking on the Save changes button.

Of course, an identity provider is not worth much without an identity store being behind
it. We will populate our user pool in the next section.

Creating an Amazon Cognito user pool 179

Populating users in a user pool
Now that we have our user pool, we need some users to populate it. Users can enter our
user pool in three different ways. Since we enabled self-registration, users will be able to
sign up at login time to whatever applications we use with this user pool. We can also
either manually create accounts from the user pool management console or bulk import
users. Let's look at the user management options available to us in our user pool:

1. Using the menu on the left of the page, click Users and groups beneath General
settings.

2. This page would normally present a list of users in our pool. Since we have none, it
is looking pretty bare. We will create our first user by using the Create user button:

Figure 5.30 – The empty user management screen inside our user pool

3. Upon hitting the Create user button, we will get a form with the required attributes
we configured for our user pool, along with a few administrative options:

Figure 5.31 – Manually creating a user for the user pool

180 Introducing Amazon Cognito

As this is our first user, we will assign it the username of rbiuser1. We have
the option to invite the user to activate their account, as well as set a temporary
password. We can also define their phone number and email values, and optionally
preemptively mark them as validated without forcing the user to go through the
registration process. When we are satisfied with our selections, we can create the
user.

4. Upon returning to the Users and Groups screen, we will see the rbiuser1
account, along with some account information there. Note that both the email and
phone number have been verified, and that the password has been set to force a
change on the next logon:

Figure 5.32 – The new user in our user pool

5. If we go to our inbox, we will see an invitation message from Amazon Cognito that
tells us what our username and temporary password are:

Figure 5.33 – New user account notification email

This process is all well and good for single accounts, but what if we need to bulk load a
large population of users? Since creating accounts manually is tedious, let's examine the
import function.

Creating an Amazon Cognito user pool 181

Bulk importing with CSV files
We can use CSV files to bootstrap our user pool with a large population of users. Let's take
a look at this process:

1. Click the Import users button on the Users and groups page.

2. We can import users using CSV files and then create an import job to bulk load
them into our user pool. The proper format for composing that CSV is provided
to us upon clicking the Download CSV header button. We can populate as many
values as we want per account as long as we populate our required attributes, which
are email, phone, and cognito:username.

Tip
The phone_verified, email_verified, and cognito:mfa_
enabled values are boolean true/false values and must be populated as well.
If you require email or phone validation and are importing those users, the
assumption is that those values are verified and thus must be set to true;
otherwise, the import will fail. If those values are not required, you may either
select false to force the users to go through the verification process or true
to bypass this.

3. Next, click the Create import job button. This opens up a form where we give
the batch job a name. This is where we also select or create the AWS IAM role
that Amazon Cognito will use to write the logs from the batch load to AWS
CloudWatch. Let's select our file and hit Create job:

Figure 5.34 – Creating our import batch job

182 Introducing Amazon Cognito

4. This will start the job, and its status will appear in the list.

5. The sample file we used only had two additional records, so even though it is
marked as Failed, we can confirm that the correct count of records was imported.
However, Amazon Cognito reported that Too many users have failed or been
skipped during the import.:

Figure 5.35 – Output of the import process

6. The results of the import are logged in Amazon CloudWatch. We can review the
events of the import there to see why Amazon Cognito considered the batch a
failure. From the Amazon CloudWatch service, we can click on Log Groups on the
left-hand side of the window. This will show our Amazon Cognito user pool logs:

Figure 5.36 – Our Amazon Cognito CloudWatch log group

7. The Log events page shows two successful imports, and dozens of failures
thereafter:

Creating an Amazon Cognito user pool 183

Figure 5.37 – Log events from the user import
Looking at this gives us a clue as to why Amazon Cognito labeled the import as a
failure. We used Excel to edit the CSV file. Our two entries corresponded to the
successful imports on lines 2 and 3, but it appears as though Amazon Cognito
read every additional line on the Excel sheet as a malformed entry. Now that we
understand why it was falsely labeled a failure, we can move on.

184 Introducing Amazon Cognito

8. Upon returning to the Users and Groups page of our user pool, we can confirm that
the two new imported entries are there:

Figure 5.38– Additional user accounts in our user pool

There were a lot of steps and options for creating our user pool. However, consider what
a user pool is and what it can do. A user pool is a full-featured identity provider for
applications. When the process is recontextualized through that lens, it makes sense that
it is complicated. This is an opportunity to use the AWS CLI to simplify this complicated
task.

Creating a user pool using the AWS CLI
Now, let's create another user pool, but this time using the AWS CLI. This will
demonstrate the value of the CLI for simplifying complex tasks, assuming we understand
the commands, parameters, and desired values we require for our environment.
Fortunately, if we recall our lessons from Chapter 2, An Introduction to the AWS CLI, we
will remember a few tricks that will simplify this task:

1. From the AWS CLI, we can generate a CLI skeleton, which will ensure we create the
user pool accurately. We can do this with the following command:

$ aws cognito-idp create-user-pool --generate-cli-
skeleton yaml-input

Creating an Amazon Cognito user pool 185

This will produce the template for the user pool, which we can then copy and place
into an IDE or text editor:

PoolName: '' # [REQUIRED] A string used to name the user
pool.

Policies: # The policies associated with the new user
pool.

(Truncated for space, you can view the full template at
https://github.com/jonlehtinen/ImplementingAWSIdentity/
blob/main/create-user-pool_template.yml)

 Name: verified_phone_number # [REQUIRED] Specifies
the recovery method for a user. Valid values are:
verified_email, verified_phone_number, admin_only.

As we can see, all the steps that made creating the user pool so laborious with the
Management Console are represented in this skeleton.

2. From our IDE or text editor, we can enter the values we want into the template
and save it as a YAML file. If we are uncertain of certain values, we can refer to our
existing user pool as an example by executing the following command:

$ aws cognito-idp describe-user-pool --user-pool-id
us-east-1_IVeN0Q6lO –output yaml

The user pool ID can be found by opening the user pool from the Management
Console, on the General settings page. This provides us with our existing pool's
values, which we can use as a reference for our new CLI-made user pool as
needed. The full output of the command can be seen at https://github.com/
jonlehtinen/ImplementingAWSIdentity/blob/main/rbicli.yml.

It is important to note that while many of the values are good to reference,
the output of the describe-user-pool command is ultimately a different
format than the create-user-pool CLI skeleton template requires. As such,
it is important that we are mindful when copying values from one to another.
Additionally, any parameters and values that are found in the skeleton template, but
we do not intend to use with our user pool, such as LambdaConfig and all of its
sub-entries, will need to be removed from the template.

https://github.com/jonlehtinen/ImplementingAWSIdentity/blob/main/rbicli.yml
https://github.com/jonlehtinen/ImplementingAWSIdentity/blob/main/rbicli.yml

186 Introducing Amazon Cognito

3. Once the template is ready, we can execute the following command to create the
pool:

$ aws cognito-idp create-user-pool --cli-input-yaml
file://rbipoolcli.yml

If all goes well, the user pool will be created. If the parser finds issues with our
template, it will tell us what is wrong and how to fix it, as shown in the following
example:

> aws cognito-idp create-user-pool --cli-input-yaml
file://rbipoolcli.yml

Parameter validation failed:

Invalid length for parameter SmsVerificationMessage,
value: 0, valid range: 6-inf

Invalid length for parameter SmsAuthenticationMessage,
value: 0, valid range: 6-inf

In this case, we had left out these two parameters and values. We can copy and
paste them from our reference example and update the rbipoolcli.yml file and
try again. Once we have cleared all the parsing errors, the output of a successful
command will be a description of our new user pool, similar to as if we had used
describe-user-pool. You can see the rbipoolcli.yml file at https://
github.com/jonlehtinen/ImplementingAWSIdentity/blob/main/
rbipoolcli.yml.

4. If we refresh the Cognito service, we will be able to see our new user pool:

Figure 5.39 – The CLI-created user pool is now available

https://github.com/jonlehtinen/ImplementingAWSIdentity/blob/main/rbipoolcli.yml
https://github.com/jonlehtinen/ImplementingAWSIdentity/blob/main/rbipoolcli.yml
https://github.com/jonlehtinen/ImplementingAWSIdentity/blob/main/rbipoolcli.yml

Creating an Amazon Cognito user pool 187

5. A couple steps remain for configuring this user pool to be fully functional, all of
which were addressed using the Management Console wizard. These need to be
handled with ad hoc CLI calls. The first of these is defining the domain for our
authorization server. Let's follow the pattern we used for the first user pool we
created and set the subdomain value equal to the name of the user pool name. From
the CLI, do the following:

$ aws cognito-idp create-user-pool-domain --domain
rbipoolcli

If the command is successful, there will be no output. We can run a different
command to validate that the domain was set:

$ aws cognito-idp describe-user-pool-domain --domain
rbipoolcli

DomainDescription:

 AWSAccountId: '451339973440'

 CloudFrontDistribution: d3oia8etllorh5.cloudfront.net

 CustomDomainConfig: {}

 Domain: rbipoolcli

 S3Bucket: aws-cognito-prod-iad-assets

 Status: ACTIVE

 UserPoolId: us-east-1_yGe1YAnTV

 Version: '20210123171729'

We will also see the domain listed under the App Integration menu in the user pool
of the Management Console:

Figure 5.40 - The domain value on the rbipoolcli user pool

188 Introducing Amazon Cognito

6. For the identity provider to be useful, we need to configure OIDC app clients that
can interact with it on behalf of applications. Let's create an application client.
As there are many options available to us when creating a client, this is a good
opportunity to use another skeleton template:

$ aws cognito-idp create-user-pool-client --generate-cli-
skeleton yaml-input

We can capture the template output and modify it in an IDE or text editor:
UserPoolId: '' # [REQUIRED] The user pool ID for the
user pool where you want to create a user pool client.

ClientName: '' # [REQUIRED] The client name for the user
pool client you would like to create.

(This has been truncated for length. You can see
the full file at https://github.com/jonlehtinen/
ImplementingAWSIdentity/blob/main/rbipoolcliclient.yml.

PreventUserExistenceErrors: ENABLED # Use this setting to
choose which errors and responses are returned by Cognito
APIs during authentication, account confirmation, and
password recovery when the user does not exist in the
user pool. Valid values are: LEGACY, ENABLED.

This is another situation where referencing an existing object, such as a client in an
existing pool that has the configurations we desired, may help us populate the values
needed for the template. Similar to when we created the user pool with the CLI,
anything that we do not wish to define right now, such as our LogoutURLs, should
be removed or commented out of the template.

7. We intend to use this client for user authentication for an application with our
user pool as the identity provider, so there are few values in particular we should
highlight:

 AllowedOAuthFlows:

 - code

 AllowedOAuthFlowsUserPoolClient: true

 AllowedOAuthScopes:

 - aws.cognito.signin.user.admin

 - phone

 - openid

 - profile

 - email

Creating an Amazon Cognito user pool 189

 CallbackURLs:

 - https://openidconnect.net/callback

First, we need to enable the client to use the authorization code grant so that it
can authenticate users. That is the code value beneath AllowedOAuthFlows.
Next, we must set AllowedOAuthFlowsUserPoolClient to True, and set
the AllowedOAuthScopes to include those scopes that we have access to in our
user pool's authorization server. Finally, the code flow requires that we specify a
callback URL, which is where the IDP redirects the user agent after authentication.
Since we do not have any applications defined, I am specifying the callback URL
of the OpenID Connect Playground, available at https://openidconnect.
net/#. Alternatively, we could use any temporary value and update it once accurate
callback URLs are known for a specific application.

8. Once our template has been configured to our liking, we can create our client:

$ aws cognito-idp create-user-pool-client --cli-input-
yaml file://rbipoolcliclient.yml

Assuming it was successful, we will see an output describing our client:
UserPoolClient:

 AccessTokenValidity: 1

 AllowedOAuthFlows:

 - code

 AllowedOAuthFlowsUserPoolClient: true

 AllowedOAuthScopes:

 - aws.cognito.signin.user.admin

 - phone

 - openid

 - profile

 - email

 CallbackURLs:

 - https://openidconnect.net/callback

 ClientId: 66c6kfb9rtv1tnjkttgarrgak3

 ClientName: rbipoolcliclient

 ClientSecret:
1qgn7saucrfrfr4n51ad56nvit2vjcgjb0mka0abriohc3l8ult0

 CreationDate: '2021-01-23T13:09:32.317000-05:00'

 ExplicitAuthFlows:

https://openidconnect.net/#
https://openidconnect.net/#

190 Introducing Amazon Cognito

 - ALLOW_CUSTOM_AUTH

 - ALLOW_USER_SRP_AUTH

 - ALLOW_REFRESH_TOKEN_AUTH

 IdTokenValidity: 1

 LastModifiedDate: '2021-01-23T13:09:32.317000-05:00'

 PreventUserExistenceErrors: ENABLED

 ReadAttributes:

 - website

 - zoneinfo

 - address

 - birthdate

 - email_verified

 - gender

 - profile

 - phone_number_verified

 - preferred_username

 - given_name

 - locale

 - middle_name

 - picture

 - updated_at

 - custom:custom:costcenter

 - name

 - nickname

 - phone_number

 - family_name

 - email

 RefreshTokenValidity: 30

 SupportedIdentityProviders:

 - COGNITO

With the client created, we now have the application's entry point into the identity
provider. However, we still need to create some users for our Cognito user pool. We'll do
that next.

Creating an Amazon Cognito user pool 191

Importing users with the CLI
Now that we have a fully configured user pool, let's import the users from our CSV file
into it. From the CLI, do the following:

1. The command to import the users is create-user-import-job. Just as we
saw when we performed this function in the Management Console, this command
requires us to provide values for JobName, CloudWatchLogsRoleARN – which
is the role Amazon Cognito uses to write event logs to Amazon CloudWatch – and
UserPoolId of the user pool where we will be importing the records. Our first
task will be to aggregate those values from Amazon Cognito and AWS IAM so that
we can build the command.

2. Once we have the values we need, we can assemble the command:

$ aws cognito-idp create-user-import-job --user-
pool-id us-east-1_yGe1YAnTV --cloud-watch-logs-role-arn
arn:aws:iam::451339973440:role/service-role/Cognito-
UserImport-Role --job-name importrbipoolcli

The output of this is as follows:
$ UserImportJob:

 CloudWatchLogsRoleArn: arn:aws:iam::451339973440:role/
service-role/Cognito-UserImport-Role

 CreationDate: '2021-01-22T13:23:52.520000-05:00'

 FailedUsers: 0

 ImportedUsers: 0

 JobId: import-iodmi00IBa

 JobName: importrbipoolcli

 PreSignedUrl: https://aws-cognito-idp-user-
import-iad.s3.amazonaws.com/451339973440/us-east-1_
yGe1YAnTV /import-iodmi00IBa?X-Amz-Security-Token=IQ
oJb3JpZ2luX2VjEOr%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaCX
VzLWVhc3QtMSJHMEUCIFaucD4oM6VPh9iM2%2FiW9UjiEISW2rkJ-
NYWMjuWe%2FHX%2FAiEA9xFMtDlqYo%2FZr96LzMkXfW1EOTe4Tot
%2BAEQOJsw0qLkqvQMIwv%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FAR
ADGgw3NDU2MjM0Njc1NTUiDO4Mdkavkn7j292LiSqRA3bhbMFr3zm
%2FFcZeJ8hUQrK4xYRiD86MTmM07Blczl9jItrcXJKkyT1uUmHUf0
4WRHxMwksjZnNDGqztP8N1uCr6kwMAhNWpTjXtvVNOI6TqmMLjTyC
EGRwjBaPks2sHlmubrgWEV5YfOdQMmVYX9%2FhrSOwBSWAoSkLcBx
G5aYmhW4DGgxPcSBf6JQF%2BqeOj0IaGeOzoGeDMddBne%2BGURb%
2FzXkM0myTsq9pkNabn%2FsaptWoU11JOFK77DP%2FihIp%2F1aNR
NTni927uR3xGac0tvhU3pqE%2FkklWotHBZN6rZMxUtlLM8PuCv%2

192 Introducing Amazon Cognito

F7VMjePbQqWjIFZjcklgfZb9Iv1blAwLJ7ZMlDhCIcEsYFaRg0HYEpWZ
a3Fw9I9FZcekySY3KIuDkWwl9My%2BbdEOTfOa0Mluxi9ekqJmOVT4uLv
VBOpDURe%2B7%2Fjy%2FRRT6KgqdLLVSPsNiZlXsczlkE%2F9OgavFfQj
fKpvvZ3kz5NWAm9I49nEvFMu%2BPA7NetUs0T%2BdJf5DujACXY9vW3Z0
p6CoP2gfuKN3I5MLaNrIAGOusBpk2rWpDWE02W4T0ZojuG4tWf%2BMsSQ
e7els7KrlTrW1%2BZ43LznZ17YMKx69KYSB1me97AhYEne8k6FaSSqVx%
2Ft3NIo%2BFdnD2cHntGSqLPdRmN8THYPE3pZy2jmQTiKHLg%2FC9s8ys
yc2YYVJFbKT6IUQmzohzVg8ZWWZogUaLHaqHbkBdZhGP51nsBD2UPVdz4
Ax%2BveCRWZDFcHTg4OAGk77wQJEcvq16qvzZXVBiBO6tSz910W1a%2B
C1M6Ieh33JSyBLmdwAjhfc67Ix%2BoAS9RN5isAtIVmTriP6ZkApGfvnC
qq1ZBnU1OFW3Z5g%3D%3D&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-
Amz-Date=20210122T182352Z&X-Amz-SignedHeaders=host%3Bx-
amz-server-side-encryption&X-Amz-Expires=899&X-Amz-
Credential=ASIA23GU7GYR3RWBE2DS%2F20210122%2Fus-east-
1%2Fs3%2Faws4_request&X-Amz-Signature=299a07fb60b59aff2df
fc22476f7079a4bfb0e02b8e04f1a26575caf574200a3

 SkippedUsers: 0

 Status: Created

 UserPoolId: us-east-1_yGe1YAnTV

This command creates a pre-signed URL where we can now curl our CSV file
to trigger the import. We have a window of 15 minutes to upload our file to the
pre-signed URL before we will need to generate a new one.

3. Next, we will use curl to send the CSV file to that pre-signed URL:

* Trying 52.217.88.252...

* TCP_NODELAY set

* Connected to aws-cognito-idp-user-import-iad.
s3.amazonaws.com (52.217.88.252) port 443 (#0)

* ALPN, offering h2

* ALPN, offering http/1.1

* successfully set certificate verify locations:

* CAfile: /etc/ssl/cert.pem

 CApath: none

* TLSv1.2 (OUT), TLS handshake, Client hello (1):

* TLSv1.2 (IN), TLS handshake, Server hello (2):

* TLSv1.2 (IN), TLS handshake, Certificate (11):

* TLSv1.2 (IN), TLS handshake, Server key exchange (12):

* TLSv1.2 (IN), TLS handshake, Server finished (14):

* TLSv1.2 (OUT), TLS handshake, Client key exchange (16):

Creating an Amazon Cognito user pool 193

* TLSv1.2 (OUT), TLS change cipher, Change cipher spec
(1):

* TLSv1.2 (OUT), TLS handshake, Finished (20):

* TLSv1.2 (IN), TLS change cipher, Change cipher spec
(1):

* TLSv1.2 (IN), TLS handshake, Finished (20):

* SSL connection using TLSv1.2 / ECDHE-RSA-AES128-GCM-
SHA256

<Truncating for length><Truncating for length>

< HTTP/1.1 100 Continue

* We are completely uploaded and fine

< HTTP/1.1 200 OK

< x-amz-id-2: vB/rs6lGm0Ijy09e+CMXMZXnQixvtUeDyNdcGdwQE/
Q2X0fDeoJG4yJd3Jn+TrSzJqdulq0u12Q=

< x-amz-request-id: E9283A75A43CE9C5

< Date: Fri, 22 Jan 2021 18:29:00 GMT

< x-amz-version-id: L4HgGM9HjY3kuU2efYDE4GSc869EMkXj

< x-amz-server-side-encryption: aws:kms

< x-amz-server-side-encryption-aws-kms-key-id:
arn:aws:kms:us-east-1:745623467555:key/5ac74669-371e-
437b-9070-d49608aa7ba5

< ETag: ''0eef29cd0fef7e5a0cd50ec5ca7fb2dc''

< Content-Length: 0

< Server: AmazonS3

<

* Connection #0 to host aws-cognito-idp-user-import-iad.
s3.amazonaws.com left intact

* Closing connection 0

4. Next, we can verify that the job has been created by running the following
command:

$ aws cognito-idp list-user-import-jobs --user-pool-id
us-east-1_yGe1YAnTV --max-results 1

194 Introducing Amazon Cognito

This will show us all the jobs in our user pool, up to the maximum number
of results that we set. Since we only care about the most recent, we set the
--max-results parameter to 1. This will confirm that the job has been created
and provide us with the imported JobId:

UserImportJobs:

- CloudWatchLogsRoleArn: arn:aws:iam::451339973440:role/
service-role/Cognito-UserImport-Role

 CreationDate: '2021-01-22T13:47:36.389000-05:00'

 FailedUsers: 0

 ImportedUsers: 0

 JobId: import-P7N4tCIdCj

 JobName: importrbipoolcli

 PreSignedUrl: https://aws-cognito-idp-user-
import-iad.s3.amazonaws.com/451339973440/us-east-1_
yGe1YAnTV /import-P7N4tCIdCj?X-Amz-Security-Token=IQ
oJb3JpZ2luX2VjEOr%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaCX
VzLWVhc3QtMSJHMEUCIG2Ek%2B%2FGJ7OpXYigudji8QAyFv71%2-
Bu%2FIzqyAusvY4qDZAiEArLFDaPYLXDZExxdBYeUvGbGwBj%2B
G2Qerid%2F%2FrFPPCJ4qvQMIwv%2F%2F%2F%2F%2F%2F%2F%2F
%2F%2FARADGgw3NDU2MjM0Njc1NTUiDFCjLmutSMzVtTvMXiqRA
0oHTrX26%2FnvyMOCOTlG%2FDPltiMy08SN3b4e5olXzL5VbSDc
DDK%2FdmXjVTpzScw9r1rYxn55x9kfAmXjY9D8BuJ3rf%2F1hKd
%2FYMD3UScDO%2BLvEsnN5%2F5tX5wi2AIghzmZlgvIgpj4v6q%
2Bg13JSTvsRHyjHYPzkS3Rvh%2FSRw5bRr1lfcrdcHgVNmSHJgU
B050sUKn6%2FdXB1NBXdIde3jaPEzN9IWm9tKCIkwei1A6oOfi8
ZBYAZH3lqZyPi1muE%2B53z1awQOOUddI6TOFzXaru4ORYIXwoL
NSsb47gqsh6e%2Fc6HG1Ze2QwHQrTpUkAQXWQHzXlIdiyDP5t5L
l%2FGSSlZfdWGKcXEhqQf0x5Tw0Sb2d2iUp%2BMeWrc0OAVCWQj
7b8q8SRfzDMD5pFs7N28xH%2F5J0UTMIzHpB8KPc5CSMZtMjhDi
Nk3mI2oYIV8I6orjLJiyxMLWWXhGbqJSGbsC2uHLkvOJXb2Blst
3CeiL447JD8QqHZVPP884rFuqGvYnBbEZZRy%2F%2B4G%2FrGvU
yG5XOqOGgcMIGNrIAGOusB637ZZ3HGtagu4gMbV4Nlch2Y7ruSI
GNuNe%2B4Jdc0mvKjnMtWPD%2BA1ysJQiRUbzFgJ3mMFEzXEBTp
drLPOCo1O1ildc7RG0W2ZVarFrYoIfkU7NrpigEBRyzrKnDNCJU
NBRm9iADIA0aUAAFBdRodBesSn3latQn0AJYgWCnfNmSatNS%2F
lDIz9qWnEKwj%2FcbmWFtGAN8q1rkEKIo33oS1wzjsRl094vE%2
BznA%2Bfr0dVE2LNEiyRGhPPdM3J5ZByeU01QH%2BXXjVoJqPTIEVdhl
j1tmDYEg%2FHW8V2hIBjl5wi3zosAQZ7DlfI%2FttxA%3D%3D&X-Amz-
Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20210122T184736Z&X-
Amz-SignedHeaders=host%3Bx-amz-server-side-encryption&X-
Amz-Expires=899&X-Amz-Credential=ASIA23GU7GYRT5NAHQUZ%2F2
0210122%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=0

Creating an Amazon Cognito user pool 195

eb9b127c76a62559784ac90abc537bdcb9e495ef40abf6814314104e8
15b5fc

 SkippedUsers: 0

 Status: Created

 UserPoolId: us-east-1_yGe1YAnTV

5. Next, we must start the job:

$ aws cognito-idp start-user-import-job --user-pool-id
''us-east-1_yGe1YAnTV'' --job-id ''import-0UnHP46OBe''

The output will be similar to the previous one, only now the status will have moved
from Created to Pending, and eventually to Running.

6. We can rerun the list-user-import-jobs command from step 4 to check the
status of our import to verify that it succeeded:

UserImportJobs:

- CloudWatchLogsRoleArn: arn:aws:iam::451339973440:role/
service-role/Cognito-UserImport-Role

 CompletionDate: '2021-01-22T14:06:01.847000-05:00'

 CompletionMessage: Import Job Completed Successfully.

 CreationDate: '2021-01-22T14:04:59.342000-05:00'

 FailedUsers: 0

 ImportedUsers: 4

 JobId: import-0UnHP46OBe

 JobName: importrbipoolcli

... PreSignedUrl: https://aws-cognito-idp-user-import-
iad.s3.amazonaws.com/...1f865bf0e2ba20c

 SkippedUsers: 0

 StartDate: '2021-01-22T14:06:01.062000-05:00'

 Status: Succeeded

 UserPoolId: us-east-1_yGe1YanTV

196 Introducing Amazon Cognito

We can now return to the user pool in the Management Console and see the
accounts that were created:

Figure 5.41 – The imported user pool accounts

We have spent a lot of time configuring the backend of our Amazon Cognito user pool,
but we still haven't seen what it looks like when it is in front of an application. Fortunately,
we do not need to integrate it with an app to test out its capabilities.

Exploring the hosted UI
Amazon Cognito offers a customizable hosted UI for user sign-in and sign-up. We can see
the default UI by opening the link at the bottom of each app client, under the App client
settings menu inside our user pool:

Exploring the hosted UI 197

Figure 5.42 – The hosted UI is available from the App Client details form

This is the default sign-in form:

Figure 5.43 – Amazon Cognito user pool's default form

198 Introducing Amazon Cognito

If we wish to offer a branded experience, we can go to the UI customization menu in our
pool and adjust the colors, border padding, and other CSS elements to adjust the look
and feel of this hosted service so that it aligns with our own website. Amazon Cognito
offers the option to run several different versions of the hosted UI, with distinct branding
applied to a specific application client ID:

Figure 5.44 – Customization options for the hosted UI

Let's add a simple, and admittedly ugly, banner to our default form and relaunch the
hosted UI:

Figure 5.45 – Applying branding to the hosted UI

Exploring the hosted UI 199

Beyond branding, we can test out the user signup and sign-in experiences using this
interface. Let's create an account by clicking the Sign up link:

Figure 5.46 – New account creation form with the required attributes

200 Introducing Amazon Cognito

This takes us to the new account creation form. It will ask for a few pieces of information,
specifically the attributes that we defined, as required, when we set up our user pool. After
populating that information, we can proceed:

Figure 5.47 – Email verification process

When we set up this user pool, we specified that users had to verify their email addresses
as that was going to be our recovery mechanism. Before we can use this account, we must
intercept the activation email that was sent to the address we used at signup:

Figure 5.48 – The activation email with an activation link

Exploring the hosted UI 201

The email will arrive in our inbox moments later. Upon clicking the link, we will get
confirmation that our account is active:

Figure 5.49 – Confirmation of account activation

This user will now appear alongside the additional users we imported previously:

Figure 5.50 – New user in the pool, along with the confirmed account status

Now that we have created two user pools using both the Management Console and the
CLI, we should have a greater appreciation for not just the feature richness of Amazon
Cognito user pools, but also the complexity of their configuration. Amazon Cognito
user pools are a customizable federated identity provider for applications, complete with
user lifecycle management. We will explore practical applications of these capabilities for
protecting resources in Chapter 11, Bringing Your Users into AWS. For now, these user
pools provide us with what we need to look closely into Amazon Cognito's second major
component, known as identity pools.

202 Introducing Amazon Cognito

Creating an Amazon Cognito identity pool
Since we now have a user pool that can provide federated identities, we can create an
identity pool. Doing so will allow the federated identities from that user pool to access
AWS resources. To do this from the Management Console, follow these steps:

1. Go to the Amazon Cognito service and select Manage Identity Pools.

2. Since we have no existing identity pools, we are taken directly to the wizard to
configure our first one. Let's call this one rbiidentitypool:

Figure 5.51 – Naming the new identity pool

3. An interesting capability of identity pools is that they allow unauthenticated users to
obtain temporary credentials to access AWS resources. It may seem counterintuitive
to permit this, but there may be use cases where access to a resource, such as placing
a file into a bucket or adding an entry into an Amazon DynamoDB database, may
be deemed so sufficiently low risk that identifying principals taking these actions
may not be critical to the process. Whatever the justification may be, we have the
option of applying a distinct trust role policy to unauthenticated users if we wish to
use it. For our purposes, let's not allow unauthenticated identities:

Figure 5.52 – Identity pools support issuing temporary credentials to unauthenticated identities

Creating an Amazon Cognito identity pool 203

4. We may optionally downgrade our authentication flow to a legacy pattern if
required. Unless there is a good reason for us to do so, it is a best practice to leave
the default enhanced authentication flow enabled:

Figure 5.53 – Option to enable a legacy authentication flow

5. Finally, we must configure our authentication providers for the identity pool. This
can be one or more Amazon Cognito user pools, any number of social providers, a
SAML2 or OIDC identity provider, or any combination of them all. We will use the
user pool and client we created earlier for this:

Figure 5.54 – Setting federated providers for the identity pool

204 Introducing Amazon Cognito

6. Next, we will be prompted to create the two roles that the Amazon Cognito identity
pool users will be able to assume. The first is the policy for authenticated identities.
Let's make a policy that allows them to view and add items to a specific Amazon S3
bucket object:

{

 ''Version'': ''2012-10-17'',

 ''Statement'': [

 {

 ''Action'': [

''s3:ListBucket'',

''mobileanalytics:PutEvents'',

''cognito-sync:*'',

''cognito-identity:*''],

 ''Effect'': ''Allow'',

 ''Resource'': [''arn:aws:s3:::redbeardidentity-
bucket-1''],

 ''Condition'': {''StringLike'': {''s3:prefix'':
[''${cognito-identity.amazonaws.com:sub}/*'']}}

 },

 {

 ''Action'': [

 ''s3:GetObject'',

 ''s3:PutObject''

],

 ''Effect'': ''Allow'',

 ''Resource'': [''arn:aws:s3:::redbeardidentity-bucket-
1/${cognito-identity.amazonaws.com:sub}/*'']

 }

]

 }

We will also define the role that unauthenticated identities get. We already
precluded their access to this identity pool earlier, so we will leave this at the default
unauthenticated policy provided by AWS.

Creating an Amazon Cognito identity pool 205

7. After that, our identity pool is created, and we are presented with reference
materials and SDKs for incorporating Amazon Cognito identity pools into our
applications for a variety of programming languages:

Figure 5.55 – SDK downloads for several languages

Unless we digress to building an application that leverages these SDKs, it is slightly
more difficult to see identity pools in action. Unlike user pools, where everything can be
immediately configured and consumed since the user pool is acting as the application's
identity provider and user store, identity pools bridge application architecture and AWS
resources. Identity pools facilitate the secure use of AWS services and resources by an
application or the users of the application, but at a truly programmatic level. The decision
to use identity pools and to leverage AWS resources directly from the application tier
speaks to the PaaS identity focus of Amazon Cognito.

Creating an identity pool with the CLI
Creating an identity pool with the CLI follows the same pattern as other complex
resources. First, we must generate the skeleton template to work from:

$ aws cognito-identity create-identity-pool --generate-cli-
skeleton yaml-input

206 Introducing Amazon Cognito

This provides us with the following output:

IdentityPoolName: '' # [REQUIRED] A string that you provide.

AllowUnauthenticatedIdentities: true # [REQUIRED] TRUE if the
identity pool supports unauthenticated logins.

AllowClassicFlow: true # Enables or disables the Basic
(Classic) authentication flow.

SupportedLoginProviders: # Optional key.

 KeyName: ''

DeveloperProviderName: '' # The ''domain'' by which Cognito
will refer to your users.

OpenIdConnectProviderARNs: # A list of OpendID Connect provider
ARNs.

- ''

CognitoIdentityProviders: # An array of Amazon Cognito user
pools and their client IDs.

- ProviderName: '' # The provider name for an Amazon Cognito
user pool.

 ClientId: '' # The client ID for the Amazon Cognito user
pool.

 ServerSideTokenCheck: true # TRUE if server-side token
validation is enabled for the identity provider's token.

SamlProviderARNs: # An array of Amazon Resource Names (ARNs) of
the SAML provider for your identity pool.

- ''

IdentityPoolTags: # Tags to assign to the identity pool.

 KeyName: ''

Once we've made edits to omit variables that we will not use (such as the various provider
names aside from Amazon Cognito), we can save it as a YAML file. Then, it is time to run
the create command:

$ aws cognito-identity create-identity-pool --cli-input-yaml
file://rbiidentitypoolcli.yml

If this worked, the output will be a description of the new identity pool:

AllowClassicFlow: false

AllowUnauthenticatedIdentities: false

CognitoIdentityProviders:

Creating an Amazon Cognito identity pool 207

- ClientId: rbiidentitypool

 ProviderName: cognito-idp.us-east-1.amazonaws.com/us-east-1_
yGe1YAnTV

 ServerSideTokenCheck: true

IdentityPoolId: us-east-1:538ab1fe-f633-468f-8904-f8c585d0fe7a

IdentityPoolName: rbiidentitypoolcli

IdentityPoolTags: {}

However, we are still not done. We still need to attach policies for authenticated and
unauthenticated users to this identity pool. We can reuse existing roles or create net-new
roles. Rather than reinvent the wheel, let's reuse the roles we created in our previous
exercise. We can get their ARNs by running the following command against the first
identity pool we created:

$ aws cognito-identity get-identity-pool-roles --identity-
pool-id us-east-1:8cb6d391-621f-421e-8b8e-697125d4bf33

This gets us the ARN values we need for both our authenticated and unauthenticated
users:

IdentityPoolId: us-east-1:8cb6d391-621f-421e-8b8e-697125d4bf33

Roles:

 authenticated: arn:aws:iam::451339973440:role/Cognito_
rbiidentitypoolAuth_Role

 unauthenticated: arn:aws:iam::451339973440:role/Cognito_
rbiidentitypoolUnauth_Role

With that information, we can now set the new roles on our new identity pool instance:

$ aws cognito-identity set-identity-pool-roles --identity-
pool-id us-east-1:538ab1fe-f633-468f-8904-f8c585d0fe7a
--roles authenticated=arn:aws:iam::451339973440:role/
Cognito_rbiidentitypoolAuth_
Role,unauthenticated=arn:aws:iam::451339973440:role/Cognito_
rbiidentitypoolUnauth_Role

208 Introducing Amazon Cognito

If successful, no output should appear in the CLI. We can validate that our roles have been
set by running the get-identity-pool-roles command against the new identity
pool, the output of which will show the two roles:

$ aws cognito-identity get-identity-pool-roles --identity-
pool-id us-east-1:538ab1fe-f633-468f-8904-f8c585d0fe7a

IdentityPoolId: us-east-1:538ab1fe-f633-468f-8904-f8c585d0fe7a

Roles:

 authenticated: arn:aws:iam::451339973440:role/Cognito_
rbiidentitypoolAuth_Role

 unauthenticated: arn:aws:iam::451339973440:role/Cognito_
rbiidentitypoolUnauth_Role

Once again, unless we start building applications that leverage AWS-native capabilities, it
is difficult to demonstrate these identity pools in action.

Summary
We covered a lot of new ground in this chapter! In this chapter, we took our first steps into
a very large identity service that is nearly completely separate from the identity service
that we spent that last few chapters getting to know. However, now that we understand the
capabilities of Amazon Cognito, as well as how it can be used to solve application identity
in a PaaS context, we are prepared to incorporate it into a holistic cloud identity strategy.
We can use services such as Amazon Cognito to facilitate and simplify the challenges that
application teams have with user life cycle management and authentication, especially if
they intend to fully enmesh their application architecture into the AWS ecosystem.

The next chapter will bring us back into managing access to AWS as an IaaS platform.
However, it will do so via another fully featured identity provider service available on
AWS that is totally different from Amazon Cognito. There, we will become familiar with
AWS SSO and AWS organizations.

Questions 209

Questions
1. What are the two main components of Amazon Cognito?

2. What kind of tokens are issued by a Cognito user pool when it is acting as an
authorization server and IDP?

3. How are identity pools different from user pools?

4. What role does Amazon Cognito play in an identity ecosystem compared to AWS
IAM?

6
Introduction to AWS

Organizations and
AWS Single Sign-On

We've said several times that much of the confusion around applying identity to AWS
stems from the various identity services available on the platform, and the ambiguity
around their appropriate use. So far, we've split services into two groups: those that
provide identity for AWS as an infrastructure-as-a-service platform, and those that offer
identity capabilities in a platform-as-a-service (PaaS) context. AWS Single Sign-On
(SSO) strains this motif. On the one hand, AWS SSO's primary function and capability
focuses on facilitating access to AWS resources, specifically AWS accounts within an AWS
organization. On the other, it is also capable of being an enterprise-grade identity provider
for more than just AWS resources.

By the end of this chapter, we will understand AWS SSO's role in the AWS identity
ecosystem, and how it operates as an identity service across AWS.

212 Introduction to AWS Organizations and AWS Single Sign-On

In this chapter, you will learn about the following:

• What is AWS SSO?

• AWS Organizations

• Configuring AWS SSO in the Management Console

• Configuring AWS SSO from the CLI

Technical requirements
To get the most out of this chapter, you will need the following:

• An AWS account

• A workstation running the AWS CLI

• A text editor or IDE to edit JSON/YAML files, such as Microsoft Visual Studio Code

What is AWS SSO?
AWS SSO is another IDaaS capability available from AWS, similar in some regards to
Amazon Cognito. Whereas Amazon Cognito provides application identity capabilities,
AWS SSO facilitates centralized administration for federated access to AWS accounts, as
well as general identity provider capabilities. AWS SSO offers free account management,
authentication services, and a strong authentication capability for AWS accounts and
applications managed under an AWS organization. AWS SSO users can authenticate to
one or more AWS accounts using either accounts and credentials managed by AWS SSO
itself, or through accounts synched from an external authoritative source, such as an
enterprise-managed directory and identity provider.

We mentioned that one of the primary use cases of AWS SSO was centralized user
management and federated authentication to all AWS accounts within an AWS
organization. We discussed AWS Organizations briefly at the end of Chapter 3, IAM User
Management. Specifically, we said that as large organizations often have several AWS
accounts to manage and maintain, ad hoc federated relationships between their existing
IDP and each of those AWS IAM instances become an administrative burden over time:

What is AWS SSO? 213

Figure 6.1 – AWS SSO managing SSO into managed AWS accounts in an AWS Organization

AWS SSO provides one connection for both directory synchronization from an
on-premises user store, as well as a single service provider connection for all AWS
accounts in use by the organization. The AWS SSO connection automatically registers the
existing IDP as an IDP within the AWS IAM service of each downstream AWS account.
This way, organizational administrators only need to tend the connection between their
IDP and the main organizational AWS account, and every other AWS account included in
their organization will be able to take advantage of delegated authentication without the
per-account administrative overhead.

The deeply coupled integration between AWS Organizations and AWS SSO extends
beyond just synching IDP objects into the member accounts' AWS IAM instances.
For organizations that take advantage of organizational units (OUs) to organize their
accounts, that same OU structure is replicated and presented within AWS SSO. This
makes it easy to apply common permissions across accounts and manage access to specific
accounts based upon user account attributes, group membership information, and other
AWS IAM policy constructs, such as service control policies (SCPs). Administrators can
define permissions sets to enforce access control to specific services and resources when
users sign into specific AWS accounts through AWS SSO.

214 Introduction to AWS Organizations and AWS Single Sign-On

In addition to managing access to AWS accounts, AWS SSO also provides application
identity services for AWS apps (AWS' own offerings for business services such as instant
messaging, email, and document management), third-party cloud SaaS providers, and
any other SAML2-compliant service provider. Similar to Amazon Cognito, the AWS SSO
user store can be the source of truth for identity information or those accounts can be
synchronized from existing enterprise directories. Unlike Amazon Cognito, the service is
less developer-focused in its consumption. There is no need to insert AWS SSO-specific
code into an application for that application to consume the SAML tokens it issues for its
users. AWS SSO behaves very similarly to any other commercial on-premises or IDaaS
identity provider, complete with preconfigured integrations for major SaaS applications:

Figure 6.2 – Available identity flows through AWS SSO

AWS SSO's user store can be populated in several ways. In organizations with on-premises
Active Directory as their source of identity, the recommendation is to populate the AWS
SSO user store via AD Connector through the Amazon Cloud Directory service. As the
name suggests, AD Connector bridges the two user stores. Alternatively, AD accounts
can be synced directly to the AWS SSO user store when using the AWS Managed Active
Directory also available in Amazon Cloud Directory. AWS SSO also supports System
for Cross-domain Identity Management, or SCIM, which is a RESTful federated
provisioning protocol supported by many identity providers. Accounts, groups,
and credentials may optionally be managed directly within AWS SSO itself, free of
entanglement from an external authoritative source.

What is AWS SSO? 215

Finally, AWS SSO offers audit and event logging capabilities. AWS SSO is meant to
facilitate access to AWS accounts, and be the authoritative source of identity for not
only those accounts, but also other federated applications. As such, every administrative
action and user authentication event is captured in AWS CloudTrail, AWS' service for
governance, operational auditing, risk auditing, and compliance monitoring.

Requirements to use AWS SSO
Unlike Amazon Cognito or AWS IAM, the AWS SSO service has preconditions before it
can be activated on a given AWS account. These requirements are as follows:

• AWS Organizations must be enabled on the account.

• The account must be the management account of the organization.

• All AWS Organizations features must be enabled on the account, meaning the
organizational relationship cannot only be merely ''consolidated billing features.''

• Decisions around how the user store will be populated must be settled if not
using the built-in user store of AWS SSO. Whereas these points will not preclude
activation of the service, failure to consider the following requirements may limit
our deployment options if not considered before activation:

i) The use of AWS Managed Microsoft Active Directory as the source of user
identity will require activating AWS SSO in the same region where AWS SSO will be
activated.

ii) AWS Managed Microsoft Active Directory must be connected to the AWS
Organizations management account.

iii) An AD Connector to an on-premises Active Directory must also be in the same
region where AWS SSO will be activated, also on the Organizations management
account.

Once we have these preconditions addressed, we will be ready to enable AWS SSO on
our AWS account. If we wanted to proceed directly with configuring AWS SSO, the act
of enabling that service would also enable the AWS Organizations service, and set up an
organization using our Redbeard Identity AWS account as the primary account. Let's
instead examine AWS Organizations as a preamble to working with AWS SSO.

216 Introduction to AWS Organizations and AWS Single Sign-On

AWS Organizations
AWS Organizations is a service designed to facilitate the management and
administration of AWS accounts. Whereas AWS Organizations is not necessarily an IAM
service on its own, it can certainly be argued that it provides certain IAM-like functions.
If AWS accounts are user accounts, and an AWS Organization-managed organization is
a traditional organization, the AWS Organizations service is arguably the IAM system
of that analogy. As AWS Organizations is deeply linked to AWS SSO, we will spend just
enough time to ensure we understand the critical concepts about it that are necessary to
ensure we understand that relationship.

Through AWS Organizations, enterprises or organizations with multiple AWS accounts
can consolidate the management of every account down to a single, primary management
account. This is great for simplifying some basic business processes, such as billing. A
consolidated invoice for all the AWS accounts under a single organization is much less
paperwork than needing to process one invoice per account. Similar can be said for
other necessary, though tedious, processes such as software license reporting and audits.
Additionally, AWS Organizations enables unified reporting on things such as resource
utilization, service usage, and costs for the entire organization, with granularity available
down to individual accounts.

As we mentioned both earlier in this chapter and in Chapter 4, Access Management,
Policies, and Permissions, a key feature of AWS Organizations is access control offered
by SCPs. SCPs allow us to define the maximum set permissions an account may have by
selectively restricting the access to resources and services that the member accounts may
grant their own users. These service control policies may be applied directly to member
accounts, or to the OU where a number of member accounts reside. Should a specific
account within an OU require a more restrictive authorization policy, supplemental
policies may also be applied to that account, which will further restrict the access available
to members of that account:

AWS Organizations 217

Figure 6.3 – Example of service control policies applied to an organizational structure

Each SCP is functionally a filter, and the most restrictive policy statements from each SCP
will be applied to these authorization filters and stacked upon a member account. SCPs are
never additive in what they enable users to do.

The management account can use AWS Organizations to enable policies and trusted
services across all member accounts in the organization. Service control policies are an
example of such a policy that, when enabled, will be applied to the member organizations.
AWS SSO is an example of a trusted service that does the same. More specifically, a trusted
service is allowed to create service-linked roles in the AWS IAM services of member
organizations to enable cross-account capabilities. In the case of AWS SSO, that cross-
account capability is single sign-on into those member accounts using AWS SSO as the
identity provider.

There is more to AWS Organizations than we will address here. What is important is that
we understand its function, and how it creates and manages the relationship between AWS
accounts that allows AWS SSO to operate. Now, let's set up an organization in our account.

218 Introduction to AWS Organizations and AWS Single Sign-On

Configuring AWS Organizations using the Management
Console
We've said it enough over the last couple of pages: the relationship between AWS
Organizations and AWS SSO cannot be understated. As part of enabling AWS SSO, the
wizard checks to see whether we have enabled AWS Organizations on our account. If it
detects that we have not, it issues the prompt informing us of what AWS Organizations
does and asks for permission to create an AWS organization using the current account
as part of enabling AWS SSO. We can click the Create AWS organization button and
proceed. Once we do, we see a new window explaining what the full process for enabling
AWS SSO entails:

Figure 6.4 – AWS SSO has a dependency on AWS Organizations

AWS Organizations 219

We can continue, and an AWS organization will be created for us. Alternatively, we can
simply enable an organization directly from the AWS Organizations service. The result
will be the same. We will now be able to see our organization from the AWS Organizations
service in the Management Console:

Figure 6.5 – The AWS Organizations dashboard

The first place we land is the dashboard. It shows us the at-a-glance view of everything
that makes up our organization. This includes all of the accounts and OU we have
configured so far, along with their hierarchy relative to the organizational root. In very
complex organizations, the View AWS accounts only toggle will switch the organization
view from the logical organizational structure to a bullet list of just the AWS accounts that
comprise its membership. For now, the only account listed is our own. Let's correct that.

220 Introduction to AWS Organizations and AWS Single Sign-On

We created an additional AWS account, which we named RBI Sub Org 1, that we
would like to add as a member account in our new AWS organization. To do this, we
will start by clicking the Add an AWS account button on the dashboard of the AWS
Organizations service from within our Redbeard Identity AWS account. Here we have
two options, the first of which is creating an account directly from the AWS Organizations
service:

Figure 6.6 – We can create an AWS account from the AWS Organizations service

For anyone who has set up their own AWS account, it may seem odd that so little
information would be required to set up a whole new account. Manually signing up
for an account may not be an overly complicated process, but it does entail collecting
significantly more pieces of contact and billing information than just an email address.
However, recall that the management account handles billing for all membership
accounts. As such, any net-new AWS accounts' charges will come back to the management
account defined for the organization, tagged under that specific account's identifiers.

AWS Organizations 221

At any rate, in addition to the already existing account that we intended to add, let's create
one more account directly from the AWS Organizations service. Once we populate the
account's name and owner's email, we can optionally define tagging and create the AWS
account:

Figure 6.7 – Adding an AWS account to the organization

This kicks off the account provisioning process. The account owner will be notified by
mail once it is complete, and the account will appear in the main organization hierarchy
once provisioned.

222 Introduction to AWS Organizations and AWS Single Sign-On

Let's also invite the RBI Sub Org 1 account into our organization. This time we will
select Invite an existing AWS account:

Figure 6.8 – Inviting an existing account to join the organization

We identify the account in question using either the account ID or the email address
of the root user. Once sent, we can check the status of the invitation by going to the
Invitations menu on the left-hand side of the AWS Organizations dashboard page:

Figure 6.9 – Invitations and their status

If we check the inbox of the root account user who owns the RBI Sub Org 1 account,
we can see the invitation:

AWS Organizations 223

Figure 6.10 – The invitation to join the organization

If we follow the link, we are taken to the AWS Management Console sign-in page. By
signing in as the root user, we will automatically be taken to the invitation we received
in the RBI Sub Org 1 account's AWS Organizations service page. If we did not use
the link from the email, we could simply sign in as the root user and go to the AWS
Organizations service, where we will see an icon indicating there is a pending invitation.
There we will find our invitation to join the Redbeard Identity management account's
organization:

Figure 6.11 – The invitation as seen from the RBI Sub Org 1 AWS Organizations service

224 Introduction to AWS Organizations and AWS Single Sign-On

If we accept, we are prompted to confirm that we intend to join the organization identified
by the unique ID displayed on the screen. It also warns us that this action will allow
another administrator to be empowered to apply policies on our account, which could
restrict the services and actions that we are able to take with resources within our account.
Assuming we understand the implications of surrendering administrative control, we may
click Confirm and continue:

Figure 6.12 – Confirmation prompt for joining the organization

After a brief bit of processing, we are dumped back into our AWS Organizations service
inside of our account, and only now there is some new information on display. We can
see whether our organization is limited to billing management or full policy management,
as well as the organizational ID and email address of the root user for the management
account. If we have joined the organization in error, we can leave; however, that option is
not guaranteed to be available unless the management account allows it:

AWS Organizations 225

Figure 6.13 – Organizational info from the member account perspective

Let's return to the Redbeard Identity account and look at our organizational structure now
that we have more than our original account included in the hierarchy:

Figure 6.14 – Organizational structure with three accounts

Presently, all three accounts are under the organizational root directory. If we enable
any service control policies, tag policies, or other features available for organizational
management, we will need to apply them individually to each account to maintain a
distinction between the member accounts and the management account. This may
not be much of a burden in such a small organization, but it would quickly become an
administrative burden in a large one. We can create an organizational unit to facilitate
administration. With an OU, we can apply policies to the OU directly, and those policies
will apply to all accounts within that OU.

226 Introduction to AWS Organizations and AWS Single Sign-On

Creating an OU
We create an OU by starting at the AWS Organizations dashboard. OUs are defined
relative to their encapsulating OU, which is represented by a directory on the AWS
Organizations dashboard. As we do not have any depth to our organizational hierarchy
yet, the only place where we can define an additional OU would be from the Root OU. To
create the new OU, do the following:

1. Select the radio button next to the Root OU.

2. Then click the Actions drop-down menu to reveal the available actions, and select
Create new underneath Organizational unit:

Figure 6.15 – Creating a new OU beneath Root

3. This opens a form where we get to name the new OU, and optionally apply some
tagging to it. Since we created these new accounts using the Management Console,
we will name this OU MgmtConsoleSubOrgs, and hit the Create organizational
unit button to proceed:

AWS Organizations 227

Figure 6.16 – Naming and tagging the OU

4. Now we have our new RBIMgmtConsoleSubAccts OU available to us in our
organization on the same level as our three accounts, though we still need to move
the accounts into the OU:

Figure 6.17 – The new OU is available in the organization

228 Introduction to AWS Organizations and AWS Single Sign-On

Let's click the radio button next to RBI Sub Org 1, and hit the Actions drop-down
menu to discover that we now have the option to move the account available to us.
Click Move:

Figure 6.18 – Moving RBI Sub Org 1 to the new OU

5. This reveals a screen where we can select the OU where we would like to move the
account. We only have two of them to choose from in this example. Let's click the
radio button next to the RBIMgmtConsoleSubAccts OU and hit the Move AWS
account button to continue:

Figure 6.19 – Selecting the destination OU for the account

AWS Organizations 229

6. Once we are returned to the AWS Organizations dashboard, we will now see RBI
Sub Org 1 appearing inside of the RBIMgmtConsoleSubAccts OU:

Figure 6.20 – The new organizational hierarchy

7. Let's repeat the process again with the RBI Org 2 account.

8. Once we are done, we will have all of the member accounts in a single OU:

Figure 6.21 – The updated organizational hierarchy
With that work done, we can easily apply policies broadly to all the accounts within
that OU without having to repeat the effort for each account within the OU.

230 Introduction to AWS Organizations and AWS Single Sign-On

Instead of starting to lock down these member accounts with an SCP, let's instead examine
our organization and onboard some additional accounts using the AWS CLI.

AWS organizations in the AWS CLI
From the terminal, let's first take a look at our organization. The highest-level view comes
with using the describe-organization command. From the terminal, we enter
the following:

$ aws organizations describe-organization

This will provide details of the organization, including information about the master
account, and what features and policies are enabled as part of the organization
configuration. Here is how our organization appears:

Figure 6.22 – The basic description of our organization

This may tell us about the organization as an AWS construct, but it is not giving us much
information about the constituent membership of our organization. If we want to see
the accounts that make up the organizations, we will need to use the list-accounts
command. When executed using credentials belonging to the organization's management
account, this command will show us all of the accounts inside of our organization, along
with additional details about each one. From the terminal, we enter the following:

$ aws organizations list-accounts

And we see all the accounts in the current organization managed by the Redbeard Identity
management account:

AWS Organizations 231

Figure 6.23 – All the accounts in our organization, as seen from the management account

But what does this look like if we try to see all the accounts using the programmatic
credentials of a superuser account in one of the member organizations? We can run the
same command under a profile created for use with one of the managed organizations to
find out:

Figure 6.24 – Managed organizations cannot use the list-accounts command

Though this user account has the AdministratorAccess managed policy attached to
it within the RBI Sub Org 1 account, those permissions are insufficient to execute the
command against the Redbeard Identity management account. However, since we never
applied any SCPs that restricted what the member accounts could do, the RBI Sub Org
1 account could leave the organization, and even create its own. Let's do that using the
CLI:

$ aws organizations leave-organization --profile rbiorg1

If this is successful, there will be no response. We can confirm the account has left
the organization by executing the list-accounts command once more as the
management account:

$ aws organizations list-accounts

232 Introduction to AWS Organizations and AWS Single Sign-On

The output of which confirms RBI Sub Org 1 is once again an independent account:

Figure 6.25 – RBI Sub Org 1 has left the organization

With RBI Sub Org 1 having become independent, let's use it as the base to create a
new organization from the AWS CLI.

Tip
It is easy to get confused when administrating several different accounts under
a single organization using the CLI. Be sure to validate that each command is
under the correct profile before executing.

Creating an organization in the AWS CLI
We can verify that the RBI Sub Org 1 account has left the organization by checking
the Organizations service in the Management Console, or by running the describe-
account command in the CLI. Since we don't want to bother signing into the RBI Sub
Org 1 Management Console, let's enter the following into the terminal:

$ aws organizations describe-account --account-id 003980426125
--profile rbiorg1

AWS Organizations 233

We should note the parameters in use with that command to ensure we used the correct
credentials, and also evaluated the correct account. --account-id uses the unique
account number to specify which account will be evaluated with the command. The
number referenced previously corresponds to the RBI Sub Org 1 account. The
--profile parameter ensures that the correct AWS IAM user account is used to
execute the call, specifically one that actually exists within the RBI Sub Org 1 account.
The output of this command confirms that RBI Sub Org 1 is not a member of any
organization:

Figure 6.26 – Confirming the account is not a member of an organization

What would happen if we used the Redbeard Identity management account's credentials
to examine that account? If we clear the --profile parameter and use the default
credentials that belong to the Redbeard Identity account to execute the command, we get
the following:

Figure 6.27 – The RBI Sub Org 1 account does not exist

From the perspective of the Redbeard Identity account, there is no account by that
account number since it is not found within the organization. Having established that our
RBI Sub Org 1 account is independent, let's proceed with creating an organization
with it as the management account.

Creating the organization is a simple command, with only one parameter. We must decide
to create the organization with either all features enabled, or only consolidated billing
enabled. As AWS SSO is just one of many features available in a complete organization, we
will set that parameter to ALL:

$ aws organizations create-organization --feature-set ALL
--profile rbiorg1

234 Introduction to AWS Organizations and AWS Single Sign-On

The output of this command when successful looks very similar to what we saw when
we used the describe-organization command on the organization owned by our
Redbeard Identity account. However, now we can see the information from RBI Sub
Org 1 populating the attributes for the management account:

Figure 6.28 – Creation of a new organization

Now that we have an organization, it's time to invite some members. Similar to how we
added a pair of accounts to our organization using the Management Console, we will first
invite and join this organization using an existing account. After that, we will create a new
account from our organization directly.

Adding member organizations
We created yet another AWS account, this time called RBI Sub Org 3. We also created
a profile with programmatic credentials for it in our AWS CLI config. Now we can send
an invitation from the RBI Sub Org 2 management account to this new account to
join our organization. This is done with the intuitively named invite-account-to-
organization command but requires some rather unintuitive parameters if we attempt
to assemble the command directly from the CLI. Similar to what we saw when doing this
with the Management Console, we need to identify the account we want to invite using
either the account ID number or the email address of the root account user. We could
either run this:

$ aws organizations invite-account-to-organization --target
Id=281142516251,Type=ACCOUNT --profile rbiorg1

Or we could run this:

$ aws organizations invite-account-to-organization --target
Id=redbeardidentity+org3@gmail.com,Type=EMAIL --profile rbiorg1

Let's run the second. The output creates something called a handshake:

AWS Organizations 235

Figure 6.29 – The invitation handshake

The handshake is what occurs behind the scenes when an existing AWS account is invited
by a management account to join its organization. We did not see these handshakes when
inviting accounts to our organizations through our Management Console, but they were
there. In fact, we will now see the same artifacts from that invitation process, such as the
invitation email that was sent to the RBI Sub Org 3 account owner:

Figure 6.30 – Invitation to join the organization

236 Introduction to AWS Organizations and AWS Single Sign-On

But rather than complete the handshake through email, let's examine the acceptance
process through the CLI. Using the rbiorg3 profile, we can check whether we have any
outstanding invitations using the list-handshakes-for-account command:

$ aws organizations list-handshakes-for-account --profile
rbiorg3

This gives us the details about the invitation:

Figure 6.31 – RBI Sub Group 3's handshake to join the RBI Sub Org 1 organization

Rather than accept this handshake now, let's instead ignore it. We used RBI Sub Org 1
as an excuse to demonstrate how to create AWS organizations in the CLI, but at the end
of the day, we want to aggregate all of our accounts under the original Redbeard Identity
account. So, let's use the AWS CLI to do the following:

1. Decline the handshake to RBI Sub Org 3 to join the RBI Sub Org 1
organization.

2. Delete the RBI Sub Org 1 organization.

3. Invite RBI Sub Org 1 and RBI Sub Org 3 into the existing Redbeard Identity
organization.

4. Place RBI Sub Org 1 into the existing RBIMgmtConsoleSubAccounts OU.

5. Create a new OU for RBI Sub Org 3 at the same level in the org and put it there.

AWS Organizations 237

We can decline the handshake using the decline-handshake command under the
correct profile. The handshake has a unique ID that we can use to either accept or reject its
invitation to join the organization, which we saw when we listed the handshakes currently
extended to the RBI Sub Org 3 account. From the terminal, run the following:

$ aws organizations decline-handshake --handshake-id
h-5991a5ffc26b442fb53ca9b878866b48 --profile rbiorg3

Once run, the output shows the handshake details once more, only this time the State
attribute is no longer showing as OPEN:

Figure 6.32 – Declining the handshake

State is now Declined, which terminates this invitation. Next, we will delete the
unnecessary RBI Sub Org 1 organization:

$ aws organizations delete-organization --profile rbiorg1

There is no output if the command is successful, but we can verify that the account is no
longer part of an organization by running the describe-organization command
once more:

$ aws organizations describe-organization --profile rbiorg1

238 Introduction to AWS Organizations and AWS Single Sign-On

If we get an error indicating that the account is not a member of an organization, then we
are good to move onward. As the Redbeard Identity account, we will issue invitations to
both RBI Sub Org 1 and RBI Sub Org 3 to join the organization we created earlier
in the Management Console:

$ aws organizations invite-account-to-organization --target
Id=redbeardidentity+org1@gmail.com,Type=EMAIL

Handshake:

 Action: INVITE

 Arn: arn:aws:organizations::451339973440:handshake/o-
x46kdexfgy/invite/h-2dd0a3050c13464ba0560a57748c4737

 ExpirationTimestamp: '2021-02-22T15:51:41.959000-05:00'

 Id: h-2dd0a3050c13464ba0560a57748c4737

 Parties:

 - Id: redbeardidentity+org1@gmail.com

 Type: EMAIL

 - Id: x46kdexfgy

 Type: ORGANIZATION

 RequestedTimestamp: '2021-02-07T15:51:41.959000-05:00'

 Resources:

 - Resources:

 - Type: MASTER_EMAIL

 Value: redbeardidentity@gmail.com

 - Type: MASTER_NAME

 Value: Redbeard Identity

 - Type: ORGANIZATION_FEATURE_SET

 Value: ALL

 Type: ORGANIZATION

 Value: o-x46kdexfgy

 - Type: EMAIL

 Value: redbeardidentity+org1@gmail.com

 State: OPEN

$ aws organizations invite-account-to-organization --target
Id=redbeardidentity+org3@gmail.com,Type=EMAIL

Handshake:

 Action: INVITE

AWS Organizations 239

 Arn: arn:aws:organizations::451339973440:handshake/o-
x46kdexfgy/invite/h-2fbff6438566499999f21eb40a1d57d4

 ExpirationTimestamp: '2021-02-22T15:52:11.087000-05:00'

 Id: h-2fbff6438566499999f21eb40a1d57d4

 Parties:

 - Id: redbeardidentity+org3@gmail.com

 Type: EMAIL

 - Id: x46kdexfgy

 Type: ORGANIZATION

 RequestedTimestamp: '2021-02-07T15:52:11.087000-05:00'

 Resources:

 - Resources:

 - Type: MASTER_EMAIL

 Value: redbeardidentity@gmail.com

 - Type: MASTER_NAME

 Value: Redbeard Identity

 - Type: ORGANIZATION_FEATURE_SET

 Value: ALL

 Type: ORGANIZATION

 Value: o-x46kdexfgy

 - Type: EMAIL

 Value: redbeardidentity+org3@gmail.com

 State: OPEN

Now, we will accept each of those handshakes under their corresponding profiles. First,
RBI Sub Org 1:

$ aws organizations accept-handshake --handshake-id h-2dd0a3050
c13464ba0560a57748c4737 --profile rbiorg1

240 Introduction to AWS Organizations and AWS Single Sign-On

The output is similar to when we declined the previous offer under the RBI Sub Org 3
profile, only this time the State attribute on the handshake changed to ACCEPTED. We
can validate that RBI Sub Org 1 is now part of the Redbeard Identity organization by
running the describe command under its profile:

Figure 6.33 – RBI Sub Org 1 is back in the Redbeard Identity organization

Now we repeat the process and accept the handshake meant for RBI Sub Org 3:

$ aws organizations accept-handshake --handshake-id
h-2fbff6438566499999f21eb40a1d57d4 --profile rbiorg3

We get the same output if successful and can validate it the same way:

Figure 6.34 – RBI Sub Org 3 is now part of the Redbeard Identity organization

AWS Organizations 241

Now that every account is inside of a single organization, let's move them into specific
OUs. This will be done with the move-account command; however, before we can
use that command, we need to know the unique identifiers for each of the OUs in
the organization, including the root OU, as move-account requires the source and
destination IDs of the OUs where accounts will be moving. Let's get the ID for our root
OU first:

$ aws organizations list-roots

This provides details on the top-level, or root, OU in our organization's hierarchy. This
is where the management account resides, as well as the accounts that just joined the
organization:

Figure 6.35 – Root OU information

With the root OU's ID, we can drill down and discover additional OUs using another
command:

$ aws organizations list-organizational-units-for-parent
--parent-id r-olw2

This command lets us discover nested OUs starting at the specific ''parent'' OU's ID. In our
use case, the parent ID is the root OU. This command reveals the following:

Figure 6.36 – The OUs beneath the root OU

This gives us the ID for the other OU within our organization. As such, let's now move
RBI Sub Org 1 back into the RBIMgmtConsoleSubAccts OU:

$ aws organizations move-account --account-id 003980426125
--source-parent-id r-olw2 --destination-parent-id ou-olw2-
9qvzpmko

242 Introduction to AWS Organizations and AWS Single Sign-On

There will be no output if the command is successful. We can verify the account moved to
the new OU by running the list-account-for-parent command. This command
will list all the accounts within a specific OU, though it will not show OUs, nor accounts
within OUs found within the specified parent OU. Let's run it against the OU where we
moved the RBI Sub Org 1 account to demonstrate the nuance:

$ aws organizations list-accounts-for-parent --parent-id
ou-olw2-9qvzpmko

This outputs information for the accounts found under that parent OU's ID. The ID in
that command corresponds to the RBIMgmtConsoleSubAccts OU and does show that
the account was successfully moved:

Figure 6.37 – The RBI Org 1 account is now in the RBIMgmtConsoleSubAccts OU

Let's also run that command against the root OU:

$ aws organizations list-accounts-for-parent --parent-id r-olw2

We see the management account and the new RBI Sub Org 3 account listed under the
root OU in the output:

AWS Organizations 243

Figure 6.38 – The accounts within the root OU

However, we do not see the RBIMgmtConsoleSubAcct OU, nor the accounts found
within it. This command will only reveal the accounts within the OU, not the full list of
objects within the hierarchy.

Finally, let's create a new OU and move the RBI Sub Org 3 account into it. We do this
with the create-organizational-unit command. All we need for parameters are
the ID of the OU where we would like this OU to live and a name for the OU. Let's make
this OU one level deeper in the RBIMgmtConsoleSubAcct OU:

$ aws organizations create-organizational-unit --parent-id
ou-olw2-9qvzpmko --name RBICliSubAcct

The output will provide the ARN, ID, and name of the new OU:

Figure 6.39 – The new OU is created

We can capture the new OU's ID in order to move the RBI Sub Org 3 account into it:

$ aws organizations move-account --account-id 281142516251
--source-parent-id r-olw2 --destination-parent-id ou-olw2-
tww7ves0

244 Introduction to AWS Organizations and AWS Single Sign-On

If successful, there will be no output. However, we can list the accounts for the OU to
verify that it was moved:

$ aws organizations list-accounts-for-parent --parent-id
ou-olw2-tww7ves0

And the output will confirm it was successful:

Figure 6.40 – The account is in the new OU

We have just finished making several radical changes to the Redbeard Identity
organization using the CLI. Though we can logically track how those changes impacted
the organization, if we look back at it in the Management Console, we can see the changes
represented visually:

Figure 6.41 – The exploded view of the organization in the Management Console

Configuring AWS SSO in the Management Console 245

Tip
We are not following AWS' best practice guidance for administrating
organizations with the Redbeard Identity organization example. Ideally,
the management account will only be used for administrative functions for
managing the organization. This includes setting and modifying permission
sets and policies for OUs and accounts within the organization, configuring
the available services available across all accounts within the organization such
as AWS SSO, resource utilization reporting, and consolidated billing. Whereas
we are using the Redbeard Identity account and organization to explore these
services, please consider following AWS' guidance when designing your own
organization and implementing services between accounts within it.

There is much more to the AWS Organizations service than we have covered in this
chapter. However, we would quickly lose focus if we were to drill down into each potential
capability of the service. By now, we should know enough about how AWS Organizations
works to ensure that we will be able to understand its influence and interactions with AWS
SSO.

Configuring AWS SSO in the Management
Console
In this section, we will configure AWS SSO to be an identity provider using the
Management Console. For this exercise, we will set up AWS SSO as the identity store and
identity provider without connecting it to any pre-existing installations, as those scenarios
will be explored more fully in Chapters 10 and 12. Our objective here is to become
familiar with the service and its basic administration before we leap into those other
deployment patterns.

246 Introduction to AWS Organizations and AWS Single Sign-On

As usual, we start by signing into our Management Console. If we have not configured the
AWS SSO service with this account, we are greeted with a screen that invites us to enable
the service:

Figure 6.42 – The AWS SSO activation banner

The banner informs us that when we enable AWS SSO, we will allow it to create AWS IAM
roles for each of the AWS accounts within our AWS organization. It also warns us that
those organization member accounts will be able to assign applications to our AWS SSO
users. Since this is part of the value proposition for AWS SSO from our perspective, we
should be inclined to proceed. If we had not created an organization on this account yet,
we would also be told that this process will create one for us and assign this account as the
management account:

Configuring AWS SSO in the Management Console 247

Figure 6.43 – AWS SSO will create an organization if one does not exist

After a few moments, all the organization and IAM configuration tasks complete and we
are taken to the AWS SSO dashboard. This page gives us a list of recommended setup
tasks that are necessary to address as part of an overall deployment strategy if we are using
this in a production environment. We will work through these recommended setup steps
momentarily, but not necessarily in that order:

Figure 6.44 – The AWS SSO dashboard

248 Introduction to AWS Organizations and AWS Single Sign-On

We can review and make adjustments to the user management and authentication settings
for our AWS SSO service by clicking on the Settings menu on the left side of the screen.
Here we can designate the identity store where our users and groups will be managed, as
well as the authentication service provider for our user accounts. By default, AWS SSO is
set to handle all of those services.

AWS SSO settings
As we mentioned earlier, we have alternative options for populating the local identity store
in AWS SSO. Some of these options include synching the identities from Active Directory,
such as a forest connected to our AWS account through an AD connector, or a connection
to AWS' own managed Active Directory service:

Figure 6.45 – Identity source configuration settings in AWS SSO

Alternatively, we could use just-in-time provisioning with an external identity provider
and create the users upon authentication into AWS SSO from that external IDP. These
options are spelled out if we select the Change option next to Identity source.

Figure 6.46 – Options for changing the source of identity for AWS SSO

Configuring AWS SSO in the Management Console 249

Returning to the Settings page, we see additional configuration items under the Identity
source area. Currently, the Provisioning option is set to use AWS SSO as its authoritative
source for account creation. As we mentioned when looking at options for alternative
identity sources for our AWS SSO service, we have the option to use an external IDP to
populate AWS SSO's local user store with our users' identity information. In addition
to just-in-time provisioning using SAML2, we can also set up synchronization between
an external IDP and the AWS SSO user store using SCIM2. This will allow the identity
provider to automatically push new user accounts into AWS SSO, as well as to update or
remove existing ones.

Finally, the Attributes for access control option allows us to define which attributes to
use in policies to determine control to AWS accounts and resources. This is an example of
Attribute-Based Access Control (ABAC). ABAC is a fine-grained authorization method
based upon the attributes of a user. Rather than using groups, roles, or other entitlement
management strategies to make access control decisions, ABAC looks at a user's attributes
and allows or disallows access to a resource or action based upon the value of those
attributes. When implemented correctly, ABAC alleviates a lot of administrative overhead
for determining birthright entitlements, requesting additional access, and enforcing an
authorization policy as access control is now innate to the user object and its attributes.
We can see an example of how ABAC works in the following example:

Figure 6.47 – ABAC determines access to certain applications based on user attributes

250 Introduction to AWS Organizations and AWS Single Sign-On

We can enable ABAC within our AWS SSO instance and define the attributes we will
use to gate access to AWS accounts. We could go further with ABAC, and even include
user attributes as part of an AWS IAM policy to determine access to specific services and
resources in the connected AWS accounts. We will dive into the practicalities of managing
administrative access through this and other mechanisms in Chapter 10, Administrative
Single Sign-On to the AWS backplane.

The next item we will configure on the settings screen is the user portal. The user portal is
like the home page available with other IDaaS providers, in that it provides a single place
for users to view and launch all of the applications, AWS accounts, and roles they have
been assigned through AWS SSO:

Figure 6.48 – User portal URL configuration

By default, the user portal comes assigned with a URL that is prefixed by our AWS SSO
instance's identity store ID. Since that makes for a poor user experience, we can customize
it to something slightly more human-readable:

Figure 6.49 – Customizing the AWS SSO user portal URL

We can only do this customization once for this AWS SSO configuration, so we better
keep it on-brand. Upon saving, the new URL will be reflected on the settings page.

The next configuration item is Multi-factor authentication. This section allows us to
define the MFA policy we want to apply to AWS SSO transactions:

Configuring AWS SSO in the Management Console 251

Figure 6.50 – MFA configuration options

Beyond a simple yes or no toggle for enabling MFA on the AWS SSO service, there are
granular options for when users will be prompted for MFA, the types of authenticators
permissible to use for MFA, options for what to do when a user does not have an MFA
token registered, and settings for who is allowed to assign and manage MFA devices. In
many regards, these options are reminiscent of the MFA authentication policy options
available in AWS IAM, and so as such we will not go into detail on many of them.
However, the options for when to prompt MFA introduces some new capabilities unique
to the AWS SSO service, such as contextual authentication.

We can understand more about contextual authentication for prompting MFA compared
to the other MFA prompt settings by opening the MFA configuration options:

Figure 6.51 – Options for MFA prompts in AWS SSO

252 Introduction to AWS Organizations and AWS Single Sign-On

Here we have the usual options for disabling MFA and requiring MFA upon every
authentication attempt. Best practice and good security hygiene suggest that we should
enable MFA, but we should not discount the tedious user experience that forcing users
to respond to a prompt or enter a code on every application authentication event would
entail. Context-aware MFA walks a balance between security and user experience by only
prompting registered MFA users to use MFA at authentication time if there is something
abnormal about the context of their authentication event compared to a baseline. The
variables that determine this context include the device used, the location that the request
is coming from, requests coming from IP addresses that are known to be malicious or
suspicious, or other similar anomalies. This approach offers the security of MFA without
burdening users.

Some of the additional MFA configuration options available to us in this settings menu
include the types of authenticators available for our users to register, as well as options
for how we handle user authentication when a user who does not currently have a token
attempts to sign in. AWS SSO supports FIDO2 - and U2F-compatible security keys,
TOTP authenticator applications, and, when using a compatible browser, built-in FIDO2
authenticators such as Touch ID and Windows Hello. For ease of administration, we
will opt to enforce MFA device registration at user authentication time. This will work
for demonstration purposes; however, it is important to consider the provenance of
MFA device registration for production deployments. Some use cases may require the
additional security that comes with having only an administrator able to issue and revoke
MFA tokens.

Now that we have walked through the essential settings in our AWS SSO service, let's start
creating some users within our user store.

Creating and managing users
As we are not synchronizing an existing identity source into our AWS SSO identity store,
we will need to manually create a couple of users in order to continue exploring what
the service can do. We can do this from the Management Console, from the Users menu
within AWS SSO:

Configuring AWS SSO in the Management Console 253

Figure 6.52 – The empty user store of our AWS SSO service

AWS SSO is a directory. We can create a user within that directory by providing only
the attributes that are required to disambiguate and issue credentials to each user within
that directory. We are required to provide a username, email address, first name, last
name, and display name for each user record we create. Credentials are either randomly
generated and require change upon the first logon or will be created by the account owner
as a part of the account activation process:

Figure 6.53 – Add user form

254 Introduction to AWS Organizations and AWS Single Sign-On

Aside from the required attributes, there are several additional sub-attribute categories
with optional attributes that may be used to enrich the user record. We cannot customize
the attributes available within this directory. In organizations with unique directory
schemas, administrators must arrange attribute mappings into these attributes from their
local directories as part of synchronizing user information from on-premises into this
one. The optional attributes are as follows:

• Phone number

• User type

• Title

• Employee number

• Cost center

• Organization

• Division

• Department

• Manager

• Street address

• Locality

• Region

• Postal code

• Country

• Formatted (referring to the formatted street address)

• Nickname

• Preferred language

• Locale

• Time zone

Configuring AWS SSO in the Management Console 255

Let's create a few users using the required attributes along with a few of the optional ones.
We will be creating three records in total, with the following attributes:

Table 6.1 – The attributes for our test users

As we create each one, we will have an option to place it into a group. We will skip this for
now. We also could choose to have an email sent inviting the user to set up their account
or have a temporary password be created that will need to be changed at the first logon.
We will examine both of those flows.

We now have our user store populated with some users. The default view gives us an
at-a-glance security view by showing the account enablement status and MFA device
association for the accounts within our store:

Figure 6.54 – Our populated user store

256 Introduction to AWS Organizations and AWS Single Sign-On

We can check on each record in our store by selecting it. Once inside a specific user
record, we get options that are reminiscent of some features we had already seen across
both AWS IAM and Amazon Cognito in both general user account information, last logon
information, MFA device enrollment information, and details on the verification status of
the email address used to register the account:

Figure 6.55 – User account management in AWS SSO

If we wanted to enrich the record and populate any of the attributes that we initially
skipped during account creation, we have the option to do so now. In addition to those
attributes, a new attribute has appeared for the user record called User Id. The User
Id is the immutable and unique identifier for the user account.

Now that we have accounts in our user store, let's take a look at account activation
from the user perspective. In the next section, we will look at registration, password
management, and MFA device registration.

User account activation and credential activation
Let's activate this account for Tom Tomkins. When we created it, we opted to have an
invitation email sent to his email address:

Configuring AWS SSO in the Management Console 257

Figure 6.56 – Invitation to join AWS SSO

When we click the acceptance link, we are taken to the AWS SSO logon form. It is
pre-configured to accommodate a password reset for our user. As we set a new password,
we are prompted to comply with the service's password policy. Once we've entered and
confirmed our password, we can proceed onward:

Figure 6.57 – Setting a compliant password

258 Introduction to AWS Organizations and AWS Single Sign-On

We are told that our password has been reset, and we are immediately redirected to
an MFA device registration screen to enroll. We will use the Touch ID built into our
workstation for rbiuser1:

Figure 6.58 – AWS SSO MFA registration form

Upon selecting the built-in authenticator option, we see the prompt indicating that our
browser is attempting to access the built-in authentication hardware:

Configuring AWS SSO in the Management Console 259

Figure 6.59 – OS prompt to allow the browser to access Touch ID

If we allow the browser to proceed, we are then prompted by the browser to allow
the specific website to access the built-in authenticator. If we allow it, the built-in
authenticator will be successfully enrolled as the rbiuser1 MFA device:

 Figure 6.60 – Successful registration of Touch ID as rbiuser1's MFA device

260 Introduction to AWS Organizations and AWS Single Sign-On

Having registered all of our credentials, we are now ready to access the user application
portal that acts as the launch point for AWS SSO users to access the applications and
accounts they are authorized to through AWS SSO. As we have not connected any
applications or AWS accounts to AWS SSO, we don't have anything to use with our
account:

Figure 6.61 – rbiuser1's empty application portal

We will now remediate that as we assign Management Console access to our AWS SSO
users to our AWS Organizations accounts.

Connecting AWS accounts to AWS SSO
We finally have everything we need to use AWS SSO to control access to our AWS
accounts. We will investigate the basics of connecting the accounts to users, as well as
using permissions sets to define the permissions for those users within those accounts in
this chapter. However, the interplay between permissions sets, OU, individual accounts,
and AWS SSO groups in determining access to AWS accounts and the services within
those accounts on a per-user level provides ample opportunity for administrators to either
implement a sustainable and scalable access management pattern or find themselves in
an overly complex administrative nightmare. The patterns that will work for your specific
use cases may vary from another organization's implementation. This is why we will
be spending time in Chapter 8, An Ounce of Prevention – Planning Your Administrative
Model, thinking through our use cases, architecture, and implementation prior to working
through the practical implementation through the remainder of the book. For now, let's
just get our users into their own AWS account using SSO.

Configuring AWS SSO in the Management Console 261

We can see all of the AWS accounts in our organization in the AWS accounts section of
the AWS SSO service. We have two views available to us. Similar to how the organization
was presented in AWS Organizations, we can either see all the accounts in a list, or we can
expand the root OU and view the accounts at each level of the OU hierarchy:

Figure 6.62 – The AWS accounts in the organization as seen in AWS SSO

In addition to the account view, we can also view the permission sets that are defined for
use within our organization. We will need to create at least one permission set before we
will be able to assign a user to an account. Permission sets can be thought of as the roles
that the AWS SSO users will be assuming as they federate into member AWS accounts.

We should recall that part of the value of AWS SSO is how it automatically creates the
AWS IAM federated IDP provider in the member organizations that it federates users into.
Furthermore, we should also recall that when we use a federated identity provider in AWS
IAM, the federated principal has no corresponding user account object in the downstream
AWS account or that account's AWS IAM service. Rather, the federated principal
exchanges its IDP's token for an AWS IAM role to assume. By defining a permission
set, we are setting up the access limits for the assumed roles that will be available for the
federated users to assume in the member AWS organizations.

262 Introduction to AWS Organizations and AWS Single Sign-On

We can define several different permissions sets on a specific account, and in turn, assign
one or more of those permission sets to the user or group for them to use when accessing
an account. Let's start by creating a permission set that gives our users administrative
access to our AWS accounts:

1. We start by clicking the Create permission set button on the Permission set tab.

2. Similar to when we create roles, we can either use existing managed policy objects
as a baseline for our permission set or create a custom permission set. Let's keep
it simple and use an AWS-provided job function policy as the foundation for the
permission set, which will grant our users administrative access:

Figure 6.63 – Selecting existing or custom policies for permission set creation

3. AWS has several policies aligned to ''job functions.'' We've created roles and group
entitlements based on the AdministratorAccess job function policy before
and know that it gives full administrator access to an account, so we will select that
and proceed:

Configuring AWS SSO in the Management Console 263

Figure 6.64 – Job function policies for the new permission set

4. We may optionally tag the permission set, but we will skip that for now. We can
continue.

5. We can then review our selection and create the permission set:

Figure 6.65 – The AdministratorAccess permission set

264 Introduction to AWS Organizations and AWS Single Sign-On

Now that we have our permission set, let's add a user to an account. Let's start by adding
rbiuser1 to RBI Sub Org 1:

1. First, we click RBI Sub Org 1 on the AWS organization tab within the AWS
accounts section of AWS SSO.

2. This opens the Details page for RBI Sub Org 1. Here we can see the users that
are currently assigned to this account, any defined permissions sets for the account,
and the IAM identity providers currently configured within that account's AWS
IAM service. There isn't much here at present:

Figure 6.66 – RBI Sub Org 1's details

3. Let's add rbiuser1 to this account by clicking the Assign users button.

4. We see all of our AWS SSO users listed here and available for assignment. Similar to
the AWS IAM access policy, we could also choose to assign a group to have access to
the account, and then assign the users we want to have access to the account to that
group. Although that is a better pattern, and we will be building out those patterns
in a future implementation in later chapters; for now, let's simply select rbiuser1
and move on:

Configuring AWS SSO in the Management Console 265

Figure 6.67 – Assigning rbiuser1 to the RBI Sub Org 1 account

5. Next, we select the permission sets we wish to attach to this user for the account.
We only have one permission set at present, but we could choose to attach multiple
different permission sets if we wanted to give this user an option of roles to use with
the RBI Sub Org 1 account. Let's select the AdministratorAccess permission set
and continue:

Figure 6.68 – Assigning the rbiuser1 account the permission set it will use with the AWS account

266 Introduction to AWS Organizations and AWS Single Sign-On

6. After a brief amount of processing, the process is complete. We can see what this
process did by expanding the details section. There we see the entire workflow that
AWS SSO undertook to enable rbiuser1 to federate into the RBI Sub Org 1
account:

Figure 6.69 – AWS SSO completes the configuration of SSO into the member account

If we return to the RBI Sub Org 1 account, we can now see updated information
for the users, permission sets, and identity providers configured there, including the
rbiuser1 account. The next time we sign into the application portal as that user, we
should see that account available for us to use:

Configuring AWS SSO in the Management Console 267

Figure 6.70 – Updated information in RBI Sub Org 1

Let's sign in to our application portal as rbiuser1. Once we do, we see an account has
been assigned to us:

Figure 6.71 – The RBI Sub Org 1 AWS account is now available for rbiuser1

268 Introduction to AWS Organizations and AWS Single Sign-On

We have options for both the Management Console and for the command line. Let's start
with the Management Console. Sure enough, when we click on the link, we are taken to
the Management Console. We can see the assumed role under which we are operating
within this account:

Figure 6.72 – Federated logon to RBI Sub Org 1 under an assumed role

The AWS IAM service within this account shows several roles and an IDP listed on the
dashboard. The only AWS IAM object that we created in this account was a generic
administrator account that we configured upon first configuring the account. All the other
objects were placed within the AWS IAM service automatically by AWS Organizations
and AWS SSO from the management account:

Figure 6.73 – Roles and IDP created automatically through AWS Organizations and AWS SSO

Now that we are satisfied that we can access the Management Console, let's check out
how programmatic access works. Returning to the user application portal, we click on
the link that says Command line or programmatic access. We get a window with some
information:

Configuring AWS SSO in the Management Console 269

Figure 6.74 – Programmatic credentials for RBI Sub Org 1 through AWS SSO

We are given a set of temporary programmatic credentials that are generated upon our
successful sign-in through AWS SSO. We can use them in several ways, such as were
described in Chapter 2, An Introduction to the AWS CLI. However, as these are only good
for between 1 to 12 hours (depending upon the AWS SSO configuration), the easiest way
to use them without cluttering a config file would be exporting the value in a terminal
session. We can copy all of the export commands by clicking on the box with those
commands, and then simply paste and execute inside of our terminal window:

Figure 6.75 – Executing CLI commands using temporary credentials through AWS SSO

270 Introduction to AWS Organizations and AWS Single Sign-On

Immediately afterward, we are able to execute a command. The ARN on the returned
AWS IAM account aligns to the account number of RBI Sub Org 1. Normally,
the commands we issue without a --profile parameter execute against our default
profile and AWS account, which is the Redbeard Identity account. By using the export
command, this terminal session will override the defaults defined in the .aws/config
file.

Now that we've set up single sign-on between our accounts using the Management
Console, let's do the same from the CLI.

Configuring AWS SSO from the CLI
We usually tear down what we have built in the Management Console to address the steps
to recreate it from the CLI. However, this is a situation where AWS Organizations and
AWS SSO's tight coupling already addressed many of the initial creation steps required
to begin the tasks that we would perform from the AWS SSO service. We functionally
already created a new AWS SSO service and identity store when we created an AWS
organization using the command line. What is left to us to do with the CLI involves user
assignment to member accounts. As such, to get a full picture of how to create an AWS
SSO instance from scratch, refer back to the AWS Organization in the AWS CLI section
earlier in this chapter.

The CLI does not have many options for account management for the identity store.
Unlike Amazon Cognito, which is a full-featured platform for application identity use
cases, AWS SSO uses the identity store primarily as its attribute and credential store
for identities that were synched from an external authoritative source. As such, and
though it will feel like a large gap in this chapter, there are no options to create users in
the identity store from the CLI. We may only list/describe users and groups with the
identitystore command:

$ aws identitystore list-users --identity-store-id d-9067650dfa
--filters AttributePath=UserName,AttributeValue=rbiuser1

Users:

- UserId: 9067650dfa-bdaf7f4d-50db-44ff-9dd0-9aa5ca24f64b

 UserName: rbiuser1

Recognizing that limitation, let's focus on what we can do. We'll create a permission set
that enables view-only access to an account, and then assign that to rbiuser2 for RBI
Org 2. The first thing we will do is create that new permission set, and we can either look
at the CLI skeleton or the documentation to see what values we will need to make the
command execute successfully.

Configuring AWS SSO from the CLI 271

Reminder
AWS CLI documentation can be found at https://awscli.
amazonaws.com/v2/documentation/api/latest/index.
html.

From the CLI, we will run the create-permission-set command:

$ aws sso-admin create-permission-set --name ReadOnly
--instance-arn arn:aws:sso:::instance/ssoins-7223ec67c031315d
--session-duration PT12H

If successful, the output will show the details of the new permission set:

PermissionSet:

 CreatedDate: '2021-02-14T15:29:54.560000-05:00'

 Name: ReadOnly

 PermissionSetArn: arn:aws:sso:::permissionSet/ssoins-
7223ec67c031315d/ps-4fdc1dcd0d2cdd66

 SessionDuration: PT12H

This command creates the permission set within our AWS SSO instance, with a session
duration of 12 hours. Now that we have the permission set, we need to populate it with
some policy objects to make it useful, otherwise it is merely an empty permission set that
grants no access. We do this with the attach-managed-policy-to-permission-
set command:

$ aws sso-admin attach-managed-policy-to-permission-set
--instance-arn arn:aws:sso:::instance/ssoins-7223ec67c031315d
--permission-set-arn arn:aws:sso:::permissionSet/ssoins-
7223ec67c031315d/ps-4fdc1dcd0d2cdd66 --managed-policy-arn
arn:aws:iam::aws:policy/job-function/ViewOnlyAccess

If successful, there will be no output. However, we can verify that there is now an attached
managed policy by running the list-managed-policies-in-permission-set
command:

$ aws sso-admin list-managed-policies-in-permission-set
--instance-arn arn:aws:sso:::instance/ssoins-7223ec67c031315d
--permission-set-arn arn:aws:sso:::permissionSet/ssoins-
7223ec67c031315d/ps-4fdc1dcd0d2cdd66

https://awscli.amazonaws.com/v2/documentation/api/latest/index.html
https://awscli.amazonaws.com/v2/documentation/api/latest/index.html
https://awscli.amazonaws.com/v2/documentation/api/latest/index.html

272 Introduction to AWS Organizations and AWS Single Sign-On

This will show the attached policies as the output:

AttachedManagedPolicies:

- Arn: arn:aws:iam::aws:policy/job-function/ViewOnlyAccess

 Name: ViewOnlyAccess

With all of that prework addressed, we are now ready to assign the rbiuser2 user
account to the RBI Org 2 AWS account for AWS SSO. We do this with create-
account-assignment, along with several parameters:

$ aws sso-admin create-account-assignment --instance-arn
arn:aws:sso:::instance/ssoins-7223ec67c031315d --target-id
105788611811 --target-type AWS_ACCOUNT --permission-set-
arn arn:aws:sso:::permissionSet/ssoins-7223ec67c031315d/
ps-4fdc1dcd0d2cdd66 --principal-type USER --principal-id
9067650dfa-f5605b5a-79c6-4834-adc0-ef2d6d563dd2

Let's walk through the parameters so we understand what is going on:

• instance-arn refers to the AWS SSO instance in the management account of the
AWS organization.

• target-id is the managed AWS account's unique account ID number.

• target-type specifies whether the target is an application or an AWS account.

• permission-set-arn is the ARN of the permission set from the management
AWS account, which will be provisioned into the target member AWS account, and
will determine the access available to the principal with the assumed role in that
target account.

• principal-type can either refer to a specific user or a group.

• principal-id is the unique GUID for either the user or group selected as the
principal.

Assuming we didn't make a mistake with all of those parameters, we will get this as our
output:

AccountAssignmentCreationStatus:

 PermissionSetArn: arn:aws:sso:::permissionSet/ssoins-
7223ec67c031315d/ps-4fdc1dcd0d2cdd66

 PrincipalId: 9067650dfa-f5605b5a-79c6-4834-adc0-ef2d6d563dd2

 PrincipalType: USER

 RequestId: c28f7b77-5c0d-4878-9187-861ae690b083

Configuring AWS SSO from the CLI 273

 Status: IN_PROGRESS

 TargetId: '105788611811'

 TargetType: AWS_ACCOUNT

The status indication suggests that it is a process that could take some time. We could
validate that the process has been completed by checking the request ID using the
describe-account-assignment-creation-status command:

$ aws sso-admin describe-account-assignment-creation-status
--instance-arn arn:aws:sso:::instance/ssoins-7223ec67c031315d
--account-assignment-creation-request-id c28f7b77-5c0d-4878-
9187-861ae690b083

The output provides the new status:

AccountAssignmentCreationStatus:

 CreatedDate: '2021-02-14T15:45:39.977000-05:00'

 PermissionSetArn: arn:aws:sso:::permissionSet/ssoins-
7223ec67c031315d/ps-4fdc1dcd0d2cdd66

 PrincipalId: 9067650dfa-f5605b5a-79c6-4834-adc0-ef2d6d563dd2

 PrincipalType: USER

 RequestId: c28f7b77-5c0d-4878-9187-861ae690b083

 Status: SUCCEEDED

 TargetId: '105788611811'

 TargetType: AWS_ACCOUNT

As we can see our request succeeded, we should theoretically be able to open up our SSO
start page as rbiuser2 and see the account. After sign-on, we see the account and role:

Figure 6.76 – rbiuser2 with ReadOnly access to RBI Org 2

274 Introduction to AWS Organizations and AWS Single Sign-On

Sure enough, we are now able to sign into that account, though we cannot create anything
there:

Figure 6.77 – The assumed read-only role in the RBI Org 2 account

By now, deleting the account assignments, permission sets, and managed role assignments
to those permission sets should be fairly intuitive based on the patterns we have seen
when using the CLI so far. As such, let's instead recap the massive amount of information
that we picked up over the course of this chapter.

Summary
This was another tremendously long chapter filled with a ton of information. That said,
this truly was only an introduction. AWS SSO has only recently become the strategic
cornerstone for multi-account AWS account management in conjunction with AWS
Organizations, and new best practices and patterns are still being established. That
said, we learned how AWS Organizations is used to both bring existing accounts under
centralized management as well as to provision net-new accounts within an organization.
AWS SSO provides authentication and authorization for those accounts, as well as to
third-party SaaS providers and AWS applications. Access to AWS accounts is governed by
permission sets, which provide the template for the local AWS IAM roles that the users
will assume in the target AWS accounts through identity federation.

The next chapter will provide a high-level overview of the remaining identity and identity-
adjacent services that we need to be familiar with when implementing identity on AWS.
We will take a look at services that address directory services, encryption and secrets
management, and logging and auditing.

Questions 275

Questions
1. True/False: AWS Organizations can function without AWS SSO.

2. True/False: AWS SSO can function without AWS Organizations.

3. True/False: AWS IAM accounts are provisioned into the managed AWS accounts
from the management AWS account through AWS SSO.

4. Which of these is not a valid place where AWS SSO can source and synchronize
user information into its identity store?

a. AWS Managed Active Directory Service

b. External federated identity provider

c. On-premises Active Directory using AD Connector

d. Amazon Cloud Directory

5. What is the role of the management account in an AWS organization?

6. How do permission sets work to limit access to connected AWS account services
and resources in managed AWS accounts?

Further reading
• AWS Organizations User Guide – https://docs.aws.amazon.com/

organizations/latest/userguide/orgs_introduction.html?org_
product_rc_usergude

• AWS Single Sign-On User Guide – https://docs.aws.amazon.com/
singlesignon/latest/userguide/what-is.html

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_introduction.html?org_product_rc_usergude
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_introduction.html?org_product_rc_usergude
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_introduction.html?org_product_rc_usergude
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html

7
Other AWS

Identity Services
We are coming to the end of this section, where we have introduced and explored the
identity services that are available on AWS. The two previous chapters deep dived into the
customer and enterprise identity services, but in this chapter, we will be taking a slightly
different approach. This chapter will provide a brief overview of several additional identity
and identity-adjacent services. While familiarity with these services and their use cases
is an important part of a well-rounded education for implementing identity on AWS,
these services don't merit as deep a dive, nor as much of a practical exploration for our
purposes, before we move on to the next section of this book.

278 Other AWS Identity Services

The first service we will look at is AWS Directory Service. This service primarily
deals with supporting Active Directory (AD) workloads on AWS and extending
an organization's (organization meaning enterprise, not organization as in AWS
Organization) AD footprint into AWS. The next two services deal with secrets
management. AWS Secrets Manager provides secure storage for application passwords,
automated secrets rotation, and programmatic secret retrieval for AWS services and
applications through API calls that replace the plaintext secret value in configs and code.
AWS Secrets Manager works in conjunction with AWS Key Management Service, which
provides users control over the encryption master keys used to secure their data at rest.
The final two services address monitoring, logging, and audit. Amazon CloudWatch
provides operational metrics and monitoring, as well as application and service logging
capabilities. AWS CloudTrail is also a logging service, but it focuses on auditing actions
that have been made by services, principals, and entities within the AWS account itself.

In this chapter, we will cover the following topics:

• Understanding AWS Directory Service

• Encryption and secrets management

• Logging and auditing

Technical requirements
To get the most out of this chapter, you will need an AWS account.

Understanding AWS Directory Service
Microsoft AD is a complex and feature-rich enterprise directory service. Beyond basic
LDAP capabilities for user management and authentication, it can also be used for
machine management, including device authentication and authorization, DNS, certificate
authority services, endpoint policy management and enforcement, and federation
services. Over the years, it has been positioned and marketed as a one-stop-shop for
enterprise workloads. Unfortunately, the feature-richness that made AD an enterprise
mainstay for over 20 years is also why it can become insecure or misconfigured. This is
why AD implementations are at the heart of so many security incidents. Its monolithic
nature, broad set of services, and wide network port utilization also make it a tempting
target for bad actors and limit its capability to securely operate outside of an established
network perimeter.

Understanding AWS Directory Service 279

Though traditional on-premises AD may not be naturally suited for an internet-as-the-
backplane, cloud-first world, there is still a huge ecosystem of enterprise software designed
for Active Directory. Organizations are looking to move themselves into the cloud, but
many of those organizations are not willing to abandon functional software and business
processes to get there. AWS Directory Service aims to help organizations bridge their
existing on-premises AD into the cloud, make their existing user and computer objects
available there, and facilitate the management of AWS resources through AD.

Another major feature of AWS Directory Service is its potential to serve as the user store
for AWS SSO. As we covered in Chapter 6, Introduction to AWS Organizations and AWS
Single Sign-On, some of the Active Directory services available through AWS Directory
Service can be defined as identity stores for AWS SSO. This lets us use our AD credentials
to access AWS accounts and resources. Doing so has certain prerequisites, such as making
sure the AD service is deployed within the same region as the AWS SSO service on the
AWS Organizations' management account.

Amazon and AWS offer several enterprise productivity applications, such as Amazon
WorkDocs, Amazon WorkMail, Amazon WorkSpaces, and Amazon Chime. These are
more like traditional SaaS apps than AWS services. AWS Directory Service can be the
authenticating user store for them in the same way that AWS SSO can.

There are three major flavors of AWS Directory Service. Next, we'll quickly examine each
of them and their intended use cases.

AWS Managed Microsoft AD
The first solution is AWS Managed Microsoft AD. Aside from having a name that rolls
off the tongue, this is the most feature-rich option available within AWS Directory Service.
AWS Managed Microsoft AD provides turnkey instances of Microsoft Active Directory that
are automatically deployed on AWS. AWS handles the infrastructure support and operations
for running the AD domain, including backups, patching, replication, and monitoring.

Besides the value proposition of delegating infrastructure support, this version of the service
can also satisfy certain regulatory requirements. AWS Managed Microsoft AD can be made
compliant with the US Health Insurance Portability and Accountability Act (HIPAA) and
the Payment Card Industry Data Security Standard (PCI-DSS) regulations.

280 Other AWS Identity Services

AWS Managed Microsoft AD comes in two varieties: Standard Edition and Enterprise
Edition. Though both versions are fully functional Active Directory deployments, there
are important capacity and feature differences between them. Both editions start with a
pair of domain controllers spread across availability zones that have been deployed within
a single region, and the same automatic configuration process that deploys the required
network interfaces and security groups to use the service within the VPC and subnets
within the account where we activate it:

Figure 7.1 – Default Multi-Availability Zone deployment

The domain controllers available within the Standard Edition are sized more modestly
than those that come with the Enterprise Edition. The Standard Edition is best for small or
mid-sized organizations that won't go beyond 30,000 directory objects. Enterprise Edition
is capable of handling enterprise workloads and up to 500,000 objects.

Both versions support adding additional domain controllers. However, the Standard
Edition is constrained to keeping those DCs within a single region, though those DCs
may be deployed across all the AZs within that region. In contrast, the Enterprise Edition
is capable of handling global workloads and multi-region replication:

Understanding AWS Directory Service 281

Figure 7.2 – Multi-region configurations are supported by Enterprise Edition

Since many organizations already have an on-premises AD infrastructure and are not
willing to migrate their entire AD topology and workload to the cloud, AWS Managed
Microsoft AD also supports trust between the domain that's created within the service. A
trust allows users and objects from one domain to access the resources in another domain:

Figure 7.3 – Example of a trust between two AD forests

282 Other AWS Identity Services

There is plenty of nuance around what types of trusts and their directionality are
appropriate for a given use case. We won't go into that here, but it is important to keep it
in mind when implementing a secure AD architecture for a given organization's use case.

Amazon Relational Database Service (RDS) instances benefit from a pairing with
AWS Managed Microsoft AD. The Kerberos tokens that are used for device and user
authentication within AD may be used with the RDS service. The benefit of this
arrangement is that no passwords need to be transmitted during logon time, and
administrators and their access can be governed using existing business logic managed
through AD.

Finally, the AWS Managed Microsoft AD service facilitates the management of certain
AWS resources. EC2 Windows and Linux instances can be joined and managed within the
domain using the same tools and processes as they would on-premises. Existing instances
may be manually joined to the domain, and new instances can be instantly joined by
adding a specific IAM policy to that resource.

Now that we've gone over the capabilities of the AWS Managed Microsoft AD service, let's
look at what the Active Directory Connector can do.

Active Directory Connector
The AWS Managed Microsoft AD service offers a full AD instance within an AWS
account, which is valuable for organizations looking to realize the benefits of running
AD as a managed service. However, implicit to that service is replicating on-premises
identity information into the cloud. Much of the often nebulous concern around putting
identity data inside a public cloud has evaporated as cloud platforms such as AWS have
proven secure. That said, some organizations may either prefer not to accept that risk
or are precluded from doing so due to regulatory requirements. For these use cases, the
Active Directory Connector allows AWS resources to redirect directory requests to an
on-premises AD environment without importing any of that directory information into
the AWS account:

Understanding AWS Directory Service 283

Figure 7.4 – Authentication and management flows through the AD Connector

The AD Connector can perform many of the same functions as AWS Managed Microsoft
AD, including authentication to AWS resources such as Amazon EC2 instances,
authentication to AWS accounts within an AWS Organization with the on-premises AD
as the identity store, and automatically joining and managing AWS resources into the
on-premises AD domain. However, there are some additional limitations of using the
AD Connector compared to the Managed Microsoft AD Service. Each unique domain
must be paired with its own connector. AD Connectors do not support multi-region
configurations. Perhaps most significantly, each AWS region is limited to a default quota
of 10 AD connectors per account. This could be a constraint on orgs with complicated,
on-premises AD forests with multiple domains and trusts.

If we don't want to use the full capabilities of AD, we can save ourselves some complexity by
looking into the third variant of AWS Directory Service called Simple Active Directory.

Simple Active Directory
Simple Active Directory is a managed AD service for lightweight AD workloads.
Compared to the previous two Directory Service variants we looked at, this one is the
most spartan in terms of features and service capacity. Strictly speaking, it is not truly AD;
it runs a Samba 4 Active Directory Compatible Server.

Simple Active Directory is a managed service, similar to AWS Managed Microsoft AD.
Upon initialization, two domain controllers are deployed in a single region across two
different availability zones, and the directory itself can be managed using the typical tools
used to manage user and computer objects within AD. It supports user binds, groups,
Kerberos, and machine joins for EC2 instances, but that is the end of its similarities with
its more robust sister service.

284 Other AWS Identity Services

Simple Active Directory comes in two sizing options, small or large, supporting 2,000
directory objects and 20,000 directory objects, respectively. Its limited capacity and
capabilities make it useful for application authentication and LDAPS services in small
organizations. Similar to AD Connector, this service is also limited on a per-region basis
to 10 directories.

Amazon Cognito
AWS Directory Service is geared toward enterprise use cases. Although we won't relitigate
Amazon Cognito here, it merits mention that Amazon Cognito is specifically highlighted
as the directory solution for application developers looking for directory services for
customer use cases. For additional information on Amazon Cognito, please revisit
Chapter 5, Introducing Amazon Cognito.

Next, we will turn our attention to how AWS offers secrets and encryption key
management in relation to IAM use cases.

Encryption and secrets management
Confidentiality is one of the three pillars of information security. Encryption preserves the
confidentiality of data both in transit and at rest. To decrypt encrypted data, we need the
appropriate keys.

AWS offers services for both managing the cryptographic keys that encrypt the data used
within an AWS account, as well as a service for preserving secrets used for accessing AWS
resources. We will go over these services briefly.

AWS Key Management Service
Several services within AWS offer encryption for the data at rest and in transit. S3 buckets,
RDS instances, EBS volumes, and other resources leverage encryption to secure the data
they store. By default, each AWS service capable of leveraging AWS KMS can generate
their own instance of a default, AWS-managed encryption key that is used to encipher that
data for that AWS account. However, some organizations would prefer to retain control of
their encryption keys. In either case, AWS Key Management Service manages those keys.

Encryption and secrets management 285

AWS Key Management Service lets us create and control something called customer
master keys (CMKs). CMKs are what we can use with AWS KMS to generate the
encryption keys to encipher our data within AWS. By default, each AWS account offers an
AWS-managed CMK for encryption services. If you prefer not to use
the default AWS-managed key or create additional keys to use per resource or service,
you can create and manage them within the AWS Key Management Service. You can then
select the specific CMK you wish to use with a given resource when creating that resource:

Figure 7.5 – Selecting a custom KMS key to use with S3 bucket encryption

286 Other AWS Identity Services

In addition to creating or bringing along our own keys, AWS Key Management Service
provides services for cryptographic functions and key administration. It provides the
hardware security modules, interfaces, and services to create, edit, view, and delete all the
cryptographic keys that we would wish to use within our AWS account. We can perform
programmatic encryption/decryption functions, sign messages, verify the integrity of
messages, export key pairs, and generate random numbers. It also allows us to automate
how cryptographic material is rotated within our own customer-managed customer
master key.

These may seem like obtuse features, and to an extent, they are. They are designed to be
leveraged programmatically for cryptographic functions rather than by an administrator.
There is another service that aligns with solving administrator use cases – AWS Secrets
Manager.

AWS Secrets Manager
Simply put, AWS Secrets Manager stores secrets. These secrets can be for AWS-specific
resources, such as Amazon RDS instances, or they could be for other things such as service
account passwords, API keys, or OAuth tokens. The secrets that are stored within AWS
Secrets Manager are encrypted using keys managed by AWS Key Management Service:

Figure 7.6 – Available secrets in Secrets Manager

Encryption and secrets management 287

Aside from secure secret storage, there are two huge advantages to using AWS Secrets
Manager. The first is support for automatic secret rotation. When AWS Secrets Manager
is used with a supported AWS service such as Amazon RDS, Amazon Redshift, or
Amazon DocumentDB, AWS Secrets Manager can be configured to automatically rotate
the credential both within its secret store and within the connected service at a specified
interval. AWS Secrets Manager can do this for other secrets as well, though an AWS
Lambda function to cycle the Other type of secrets secret, stored at the connected service,
will need to be written and connected to the rotation schedule:

Figure 7.7 – Secrets Manager supports automatic rotation

288 Other AWS Identity Services

The second advantage that AWS Secrets Manager provides is code snippets for secrets
retrieval. This replaces a variable for the secret in a config file within the code, which is an
insecure programming practice. Once a secret has been stored in AWS Secrets Manager,
we can copy a specific code snippet that references our secret and insert it into our
application to take advantage of AWS Secrets Manager:

Figure 7.8 – Code snippets for retrieving our secret

Though not necessarily an IAM service, AWS Secrets Manager helps us manage and rotate
our app credentials more securely.

Next, we will look at the services that are available for logging and auditing within AWS.

Logging and auditing 289

Logging and auditing
Unlike the identity services that merited their own chapters, or even the services we
looked at earlier within this chapter, AWS CloudTrail and Amazon CloudWatch may not
seem worth much of a mention. However, logging and auditing are essential components
of non-repudiation. Non-repudiation is when we have assurances that something, such
as an action, signature, or event, cannot be denied by a person. IAM ties the event, action,
account, and others to the individual, and auditing and logging help prove that the event
occurred.

We will quickly look at the two services AWS provides for audit and logging. The first
is AWS CloudTrail, which captures the events that occur within an AWS account. The
second is Amazon CloudWatch, which is a monitoring and logging service that can be
used with AWS services and resources.

AWS CloudTrail
AWS CloudTrail captures events that occur within an AWS account to help us address
compliance, governance, and operational and risk auditing. When an IAM object, such
as a user, role, or a service, takes an action within the AWS account, the action is logged
in detail. We can see the latest actions that have been taken by the redbeardidentity
user account, including changing its password and starting and stopping an EC2 instance:

Figure 7.9 – User events captured across services in AWS CloudTrail

290 Other AWS Identity Services

It could be tempting to think of it as AWS' native security information and event
management (SIEM) software, it does not provide advanced threat analytics or
baselining. However, AWS CloudTrail events can be fed into other AWS services such
as Amazon GuardDuty, which performs such analytic functions. Alternatively, AWS
CloudTrail can be configured to output event data into an organization's existing SIEM.
AWS CloudTrail's main value stems from maintaining a detailed record of events for
security and operational auditing, which can then be used for compliance and operational
troubleshooting.

AWS CloudTrail logs come in JSON format. The log messages provide information about
a specific event, the time, the initiator, the source, and the resource that was manipulated.
This information is useful for compliance purposes, as well as getting additional
operational information in case something is not working within the environment. Here
is an example of the JSON log output from when redbeardidentity signed into the
Management Console:

{

 "eventVersion": "1.08",

 "userIdentity": {

 "type": "IAMUser",

 "principalId": "AIDAWSFPVONALTHHLBKLK",

 "arn": "arn:aws:iam::451339973440:user/
redbeardidentity",

 "accountId": "451339973440",

 "userName": "redbeardidentity"

 },

 "eventTime": "2021-03-09T14:00:35Z",

 "eventSource": "signin.amazonaws.com",

 "eventName": "ConsoleLogin",

 "awsRegion": "us-east-1",

 "sourceIPAddress": "108.4.89.93",

 "userAgent": "Mozilla/5.0 (Macintosh; Intel Mac OS
X 10_15_6) AppleWebKit/605.1.15 (KHTML, like Gecko)
Version/14.0.3 Safari/605.1.15",

 "requestParameters": null,

 "responseElements": {

 "ConsoleLogin": "Success"

 },

 "additionalEventData": {

Logging and auditing 291

 "LoginTo": "https://console.aws.amazon.com/console/
home?state=hashArgs%23&isauthcode=true",

 "MobileVersion": "No",

 "MFAUsed": "Yes"

 },

 "eventID": "1849ad94-a60d-47c1-bc3c-0e1ffe3fe9fd",

 "readOnly": false,

 "eventType": "AwsConsoleSignIn",

 "managementEvent": true,

 "eventCategory": "Management",

 "recipientAccountId": "451339973440"

}

By default, AWS CloudTrail maintains event logs for 90 days, and those logs can be
searched for from the Management Console. However, the typical AWS CloudTrail
usage pattern involves creating something called a trail. Trails allow event logging to be
exported into an Amazon S3 bucket for more durable storage and searching. Additionally,
trails enable integration into other AWS services, such as Amazon CloudWatch, where
monitoring, alarming, and notifications can be configured based on certain event types.
Trails can be configured for a single region, multiple regions, or for every AWS account
under an AWS Organization.

The events that AWS CloudTrail captures come in three different varieties. The first
set of events are known as management events. These are the events that manipulate
the services and objects of AWS, such as what we can see in the preceding screenshot.
Another way to think of management events are events that occur on AWS' control plane
through either the Management Console, CLI, or other interfaces such as APIs or SDKs.

The second are data events. These are events that operate at the data plane, such as when
we're manipulating objects within an S3 bucket or calling a Lambda function. This event
type acts similarly to application-level logging in terms of its verbosity and specificity as to
what was manipulated, what action was taken, and who or what performed the action. As
such, it is not natively enabled when creating a trail.

The last event type is Insights events. Insights are the bare minimum in terms of the
threshold analytics capabilities provided through AWS CloudTrail. With Insights enabled,
AWS CloudTrail will flag Insights by placing them into a unique folder within the default
Management Console interface, or preface the events with a unique prefix when exporting
to a bucket as part of a trail to highlight the historical aberration of the events. Insights are
not enabled by default.

292 Other AWS Identity Services

AWS CloudTrail provides an essential service, but its capabilities, such as anything other
than its event logger, only shine through when it is combined with other services, such as
Amazon CloudWatch. Next, we will look at Amazon CloudWatch, which is, among other
features, AWS' logging service.

Amazon CloudWatch
We may be underselling Amazon CloudWatch by referring to it simply as "AWS' logging
service." Whereas logging is one of its most visible and obvious use cases, it also performs
various flavors of health and capacity monitoring and alerting, operational dashboarding,
and anomaly detection. As availability is one of the three pillars of information security,
this service can help with many of the operational challenges that come with running
infrastructure in the cloud. However, for our purposes, we will stick to a very high-level
overview of some of its capabilities.

Amazon CloudWatch offers real-time monitoring for AWS resources and applications by
aggregating service metrics. An example of this is the CPU utilization in an Amazon EC2
instance or Amazon Elastic Container Service (ECS) cluster. By aggregating those metrics
over time, Amazon CloudWatch can provide dashboarding to show historical trends,
insights on how to improve the monitored service, and alerting when the metric either
exceeds or dips below a specific threshold. We can then build additional actions based on
the triggers and events provided by Amazon CloudWatch, such as scaling out an Amazon
ECS cluster once CPU utilization crosses a high utilization threshold and stays there for a
specific period.

Metrics can come from other places outside of AWS services. As we mentioned earlier,
Amazon CloudWatch is the logging service for AWS services, but it can also be used for
apps that have been deployed within AWS itself. We saw an example of the logging service
in action when we imported our Amazon Cognito users in Chapter 5, Introducing
Amazon Cognito:

Logging and auditing 293

Figure 7.10 – Log events captured in an Amazon CloudWatch log group

With application logs going to Amazon CloudWatch, we can filter on certain strings to
trigger events, such as sending an alert when a specific error message is found.

Amazon CloudWatch integrates with the Amazon Simple Notification Service to provide
alerting based on events or alarms. Alarms can be triggered based on single actions, such
as a server failing a health check, or based on a complex set of conditions known as a
composite alarm. A composite alarm reduces the number of alerts by only alerting once a
certain threshold of the monitored alarms trigger the composite alarm condition:

Figure 7.11 – Sample composite alarms

294 Other AWS Identity Services

Amazon CloudWatch has several more features, including the following:

• Synthetic monitoring that mimics user access patterns using code snippets
called canaries

• Container-specific monitoring and Insights

• Lambda-specific monitoring and Insights

• ServiceLens microservice monitoring

For additional information on Amazon CloudWatch and these capabilities, please see
the Further reading section at the end of this chapter.

Summary
Now that you have finished this chapter, you should be familiar with some of the
additional identity and identity-adjacent capabilities you can use to solve identity
challenges on AWS. AWS Directory Service supports Active Directory workloads on
AWS and extends an organization's AD footprint into AWS. AWS Secrets Manager allows
programmatic secret storage and rotation, while AWS Key Management Service allows
you to manage cryptographic keys that are used for encryption. Finally, AWS CloudTrail
acts as the audit log for all actions taken on AWS services, while Amazon CloudWatch
acts as a logging and resource monitoring service.

This concludes this section of this book, where we looked at specific AWS services. The next
section will see us pivot toward practically applying these services to solve an enterprise-
grade identity use case. In the next chapter, we will plan what we intend to accomplish with
our practical implementation by using enterprise-grade tools and design patterns.

Questions
1. What version of AWS Managed Microsoft AD, either Standard or Enterprise,

would be best suited for an organization consisting of 2,000 employees that requires
support for full AD workloads?

2. An organization consisting of 2,000 employees only needs LDAP services for their
applications in AWS. Which AWS Directory Service would be the most appropriate?

3. What is a customer master key?

4. AWS Secrets Manager can automatically rotate credentials for which three services,
without requiring a custom Lambda function?

Further reading 295

5. What is non-repudiation?

6. True/False: Amazon CloudWatch only provides logging aggregation.

Further reading
• AWS Key Management Service Developer Guide: https://docs.aws.

amazon.com/kms/latest/developerguide/overview.html

• AWS Secrets Manager User Manual: https://docs.aws.amazon.com/
secretsmanager/latest/userguide/intro.html

• AWS CloudTrail User Manual: https://docs.aws.amazon.com/
awscloudtrail/latest/userguide/cloudtrail-user-guide.html

• Amazon CloudWatch User Manual: https://docs.aws.amazon.com/
AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html

https://docs.aws.amazon.com/kms/latest/developerguide/overview.htm
https://docs.aws.amazon.com/kms/latest/developerguide/overview.htm
https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html

Section 2:
Implementing

IAM on AWS
for Administrative

Use Cases
This section will help you conceptualize how to use the previously introduced AWS IAM
services to solve common enterprise identity use cases, and will provide references and
guidance on their implementation. Each chapter will iterate upon the capabilities of a
hypothetical deployment, so you will be able to easily relate these concepts to your own
environments, and see how they expand upon one another and interrelate.

This part of the book comprises the following chapters:

• Chapter 8, An Ounce of Prevention – Planning Your Administrative Model

• Chapter 9, Bringing Your Admins into the AWS Administrative Backplane

• Chapter 10, Administrative Single Sign-On to the AWS Backplane

8
An Ounce of
Prevention –

Planning Your
Administrative

Model
In a fast-paced enterprise setting, many practitioners find themselves building piecemeal
solutions to complex business challenges in reaction to the changing demands and urgent
deadlines imposed upon them by the business. As both Identity and Access Management
(IAM) and the cloud are high-value, business-enabling technologies, it can be challenging
to take the time before implementation to contemplate what a sustainable implementation
pattern looks like for the business. Although engaging in this planning exercise may
frustrate some stakeholders, organizations that fail to plan out their cloud administrative
models often find themselves limited by their own short-term technical solutions. Solving
use cases such as these should be a holistic, multi-step design and analysis process.

300 An Ounce of Prevention – Planning Your Administrative Model

In this chapter, we will evaluate how we would like to apply an administrative model to the
Redbeard Identity organization. We will do this by evaluating both business requirements
and technical factors. By taking the time to consider our cloud administrative model
upfront prior to implementation, our solution will be less likely to require rework as our
business needs evolve. In other words, an ounce of prevention is worth a pound of cure.

By the end of this chapter, you will have done the following:

• Evaluated an organization's current-state IAM capabilities to inform the
administrative model

• Evaluated the business structure, user attribute schema, and business requirements
to inform the administrative model

• Determined the optimal AWS Organizations and account structure based upon the
business requirements

Technical requirements
To get the most out of this chapter, you will need an AWS account.

Evaluating the organization's current IAM
capabilities
Our objective over the next few chapters is to look for ways to link an organization's
existing identity management infrastructure and the organization itself to AWS. More
specifically, we want every administrator to have access to the backplane of the AWS
account or accounts where appropriate, and for these existing user identities to become
available to applications hosted on AWS. This means we will need to connect an existing
org's IAM infrastructure to AWS and apply the appropriate provisioning, governance, and
authorization models to ensure that appropriate access is granted. As we just completed
a review of the AWS identity services, next we must look at our organization's IAM
capabilities.

First, we must take an inventory of the current identity management landscape,
capabilities, and maturity for the organization as that will help inform our administrative
model. In order to make these examples comparable to scenarios found in real enterprise
environments, we have designed an organization and configured enterprise-grade
IAM capabilities to pair with our AWS environments. Let's start by taking a look at our
organization's enterprise architecture and capabilities.

Evaluating the organization's current IAM capabilities 301

For the use cases that we will be exploring through the remaining chapters of this book,
we will use a fictional company that we've predictably named Redbeard Identity. This
organization has its own account management, identity provider, directory service, and
strong authentication capabilities.

The Redbeard Identity organization wants to continue to use its own identity
infrastructure as much as possible as part of its AWS deployment. However, it is fine
with individual AWS accounts being bound by authorization rules managed within
the AWS platform. Since we need to both address administrative authentication into
AWS backplanes and provide our standard user identity information to apps deployed
within AWS while still referring to the existing Redbeard Identity IDP and directory
as the authoritative source of identity information, we recommend designing an AWS
Organization to manage the accounts.

Figure 8.1 – AWS Organization and an external IDP

302 An Ounce of Prevention – Planning Your Administrative Model

This will allow AWS SSO to manage administrative authentication into each account's
backplane using the existing IDP for authentication, and also load the accounts into the
local AWS SSO user store.

Next, we'll take a look at the business units and user accounts for guidance on how to
design the AWS Organization.

Evaluating the business structure and account
schema
As part of this exercise and others in the following chapters, we will be creating several
user accounts inside a directory that we can use with various AWS services. Let's take a
look at a sample account and its available attributes:

Table 8.1 – One user record from the organization

We've built this organization to include several users with diverse attribute values in
order to set up several example scenarios that we are likely to see in an enterprise use
case. To help us stay focused on how we are solving identity challenges on AWS rather
than concerning ourselves with needing to remember names, each employee record is
named for their job title. Furthermore, each account will track to a specific AWS use case
or environment. We will dive into the details of the AWS organizational design in the
next section. For now, let's look at all the accounts inside of our directory and a few key
attributes that will help us determine how we can build a durable administrative model:

Evaluating the business structure and account schema 303

Table 8.2 – The employees we will use with our examples

Tip
The CSV we used to populate our directory with user records is
available here: https://github.com/jonlehtinen/
ImplementingAWSIdentity/blob/main/
RedbeardIdentity_csv_template.csv.

By looking at the example accounts and the full record from Tables 8.1 and 8.2, we can see
a few patterns emerging that can help us plan our AWS integration. First, there appears
to be a distinction between development and operational roles across both the Sales and
Information Technology orgs. Next, the costCenter attribute also makes a distinction
between those who are titled Engineer and those who are titled Developer, in addition
to those two roles reporting to distinct departments under the broader Information
Technology organization. This suggests a need for distinct budget reconciliation across
those broader business functions, which may mean those two departments may require
separate AWS accounts.

https://github.com/jonlehtinen/ImplementingAWSIdentity/blob/main/RedbeardIdentity_csv_template.csv
https://github.com/jonlehtinen/ImplementingAWSIdentity/blob/main/RedbeardIdentity_csv_template.csv
https://github.com/jonlehtinen/ImplementingAWSIdentity/blob/main/RedbeardIdentity_csv_template.csv

304 An Ounce of Prevention – Planning Your Administrative Model

Though we can get valuable insights by looking at the existing IAM capabilities and account
schema, at the end of the day we are implementing an AWS identity administration strategy
in order to fulfill a business need. As such, any implementation includes partnering with
the business stakeholders to understand the business goals and objectives of the program
and folding those requirements into the technical capabilities we have discovered. For our
purposes, the business objectives for Redbeard Identity are to maintain separate accounts for
each department, maintain separation of duties between the development functions and the
operations functions, and ensure that former employees cannot access any AWS resources
once they have been terminated.

With this information in hand, let's begin drafting our AWS Organizations structure.

Designing the AWS organizational structure
Now that we have ascertained our organization's IAM capabilities, its business
requirements for AWS integration, and the account schema, we can begin to lay the
groundwork for how we will manage our organization's AWS accounts. While small
organizations may be able to address their cloud workloads within a single account,
enterprise-grade organizations often need to have additional regulatory and compliance
requirements that demand additional segmentation between business units, job functions,
and workloads. A well-planned multi-account structure will provide these benefits
without increasing the administrative overhead.

Mapping business functions to OUs
We will do this through an AWS organization, OUs, and organizational SCPs. Before we
begin the work of configuring all these things in the Management Console, it will be
helpful to first come up with and document our plan for the organizational hierarchy.
First is our management organization. This organization will be used only for managing
the organization, OUs, and accounts, and providing a single place for consolidated billing.
This account will be at the root of our organization's hierarchy:

Figure 8.2 – The organization with management account

Designing the AWS organizational structure 305

Next, we will create the OUs. It may be tempting to build an organizational structure
that mimics that of the business, but that could introduce unnecessary administrative
complexity when applying authorization policy. Consider the diversity of roles, business
functions, and separation of duty concerns that are found in a standard business
unit. Now imagine writing a corresponding authorization policy where those diverse
requirements are scattered up and down the OU hierarchy.

Instead, it is best to build our OUs based on common business functions or controls that
apply to a wide swath of business functions. An example of this is centralized services that
service the entire business, such as IT, Security, or Audit. Let's create an OU for one such
shared service that we saw when we looked at the accounts in directory, the Information
Technology organization:

Figure 8.3 – Adding the IT OU

We could begin creating accounts for each of the IT services within the IT OU if our
organization has no policy distinctions between their non-production and production
workloads. Let's follow separation of duties guidelines and configure nested Production
and Non-Production OUs beneath our IT OU. By doing this, all of our IT policies can
be applied and managed through an organizational SCP applied exclusively on the IT
OU. Further policy distinctions between the production and non-production accounts
within the IT OU are then applied and managed separately upon the production and
non-production OU respectively:

Figure 8.4 – Nested production and non-production OUs

306 An Ounce of Prevention – Planning Your Administrative Model

From there, we can create individual accounts for each of the departments within IT. Each
department's account will be independent of the other services, but still governed under
the organizational SCP that constrains its environmental OU and the broader IT OU:

Figure 8.5 – Accounts per service within the IT OU

We repeat this process with other business functions until our use case is satisfied. For
simplicity's sake, we'll only add the Sales organization for the purpose of demonstrating
how we can restrict access based on business logic:

Designing the AWS organizational structure 307

Figure 8.6 – Additional OUs and their accounts

Besides OUs that align to business functions, we can also consider other AWS account
use cases where a distinct policy would be required. For example, consider the life cycle
of the AWS accounts themselves. A sandbox OU could allow anyone to safely learn and
experiment under their own accounts. Similarly, when an account is ready to be retired,
an OU that applies an organizational SCP that disables all functionality could be used as a
pre-deletion buffer to ensure resources remain available, but access is removed:

Figure 8.7 – Our organization's OU hierarchy

308 An Ounce of Prevention – Planning Your Administrative Model

Our comparatively simple organization will be sufficient for our purposes. Now that we
understand what we want to build, we can configure this within our AWS console. As we
had already created an organization from our work in Chapter 6, Introduction to AWS
Organizations and AWS Single Sign-On, we can simply create the additional OUs under
that existing root. For detailed instructions on setting up a new organization, please see
that chapter. If you do not have an organization defined or would like to start with a fresh
organization, you can delete the existing organization from the Settings menu within the
AWS Organizations service and begin fresh:

Figure 8.8 – We can delete our organization from the Settings menu

Once we are satisfied with the organization, we can add our top-level OUs by selecting the
Root OU and selecting Create new from the menu:

Designing the AWS organizational structure 309

Figure 8.9 – Adding OUs to the Root OU

We repeat until our organization is as we wish:

Figure 8.10 – The completed organization hierarchy

310 An Ounce of Prevention – Planning Your Administrative Model

With the organizational hierarchy built, we can now consider how we want to configure
the service control policies in order to define the baseline capabilities of accounts within
each of these OUs.

Designing and applying organizational service control
policies
When we went through the exercise of designing our OUs, we classified each one by
similarity of business functions. This was because common business functions will
typically need to be governed by similar policies. By writing a single policy that we can
apply at the OU, we simplify our policy administration for all the accounts within our
organization. Now we'll write and apply those policies that will apply at the OU level for
each of our organization's OUs.

TIP
Service Control Policies (SCPs) will vary wildly from organization to
organization based on factors such as the local regulatory environment, the
organization's cost tolerance, technical maturity, and so on. These are meant to
be examples and not a comprehensive list of best-practice SCPs.

We will write each of these policies using the Create new service control policy wizard
found under the Policies menu in the AWS Organizations service and save them with
a descriptive name. We will then have each of these policies available for us to attach to
any given OU by selecting that OU from the AWS Organizations service and opening the
Policy tab.

First, we'll create a policy that will functionally disable the root account user for each
account. For similar reasons as to why it is recommended to never use the root account
outside of creating an IAM user account, we do this because the root account user is
outside of the governance model for AWS Organizations. The root user account represents
a risk for account takeover and even detachment from the organization. A service control
policy blocking the root user from performing any functions within its own account
greatly diminishes the blast radius in the event it is compromised.

We'll name this policy Deny_RootUser_Actions. From the Create new service
control policy wizard we can either edit the existing statement or clear it out and drop in
our own JSON:

{

 "Version": "2012-10-17",

 "Statement": {

Designing the AWS organizational structure 311

 "Sid": "DenyRootUserActions",

 "Effect": "Deny",

 "Action": "*",

 "Resource": "*",

 "Condition": {

 "StringLike": { "aws:PrincipalArn": "arn:aws:iam::*:root"
}

 }

 }

}

Note the Condition statement that looks for the root account in the principal ARN.
That condition is what prevents this SCP from disabling the entire account. We click the
Create policy button and the wizard validates that our policy is valid, and assuming it is,
our new service control policy is available to attach to our OUs:

Figure 8.11 – The new SCP is now available for use

While we are addressing the simple security policies, let's also create the policy that we will
use to disable all access and activity on the accounts that get placed into our Suspended OU.
The objective of this policy is to ensure that all activity, keys, and processes are stopped
within that account, but that the account and its contents remain available to the business in
the event that the account needs to be reinstated. This will be a very simple policy:

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Sid": "DisableAccount",

 "Effect": "Deny",

312 An Ounce of Prevention – Planning Your Administrative Model

 "Action": "*",

 "Resource": "*"

 }

]

}

The next policy we'll make will make sure that an account can't simply bypass whatever
policies we apply to them by leaving the organization. This policy is the first one we have
made where a specific service and action are referenced:

 {

 "Version": "2012-10-17",

 "Statement":

 {

 "Sid": "DontForgetYoureHereForever",

 "Effect": "Deny",

 "Action": "organizations:LeaveOrganization",

 "Resource": "*"

 }

}

We now have four SCPs defined and available for use within our organization's
management account. These SCPs include the three we just created, and the default
FullAWSAccess that is created by default when we created the organization. As we have
already seen how to attach policies using the Management Console and CLI in Chapter 6,
Introduction to AWS Organizations and AWS Single Sign-On, we won't repeat that process
for each OU and policy.

Let's map out which policies we would like to apply to which OU:

Summary 313

Table 8.3 – OU SCPs and where they apply

Note that we don't have a choice but to allow the FullAWSAccess policy as it applies to
the Root OU, and every OU and account will inherit that policy by virtue of being beneath
it in the organizational hierarchy.

Now we apply the policies to our OUs using either the administrative console or CLI.
Once this is done, we can validate that they are attached by looking at each OU within the
AWS Organizations service, or by using the following command in CLI:

aws organizations list-policies-for-target --filter SERVICE_
CONTROL_POLICY --target-id <organization target id value>

Now that we have our organization configured, we are ready to configure AWS SSO to
connect to our IDP so we can begin solving for our specific administrator and standard
user authentication and authorization use cases. We will build that connection and
onboard our administrative accounts in the next chapter.

Summary
In this chapter, we took a few moments to plan out our administrative model for an
enterprise AWS deployment. We did this so we could accommodate the business
requirements with a full understanding of the organization's IAM maturity and current-
state capabilities, which will help us design administrative patterns that will be supportive
in the long term. Once we had thought through the use cases, requirements, and
capabilities, we designed and applied some high-level OU SCPs that will govern all the
AWS accounts that we will be administrating moving forward.

314 An Ounce of Prevention – Planning Your Administrative Model

We will build upon this foundational work in the next two chapters. First, in the
next chapter, we will connect Redbeard Identity's external IDP and provision our
administrative users into AWS SSO. Then, in Chapter 11, Bringing Your Users into AWS,
we will address authentication and authorization use cases for those users into the AWS
backplane.

Questions
1. Which of these did we not consider when designing our administrative model?

a. The number of employees in the organization

b. Current-state IAM capability

c. Business objectives

d. Business function alignment

2. Why did our Suspended OU have the FullAWSAccess SCP when we did not
attach it to that OU?

Further reading
• AWS best practices for organizations: https://aws.amazon.com/

organizations/getting-started/best-practices/

• Best practices for OUs with organizations: https://aws.amazon.com/
blogs/mt/best-practices-for-organizational-units-with-aws-
organizations/?org_product_gs_bp_OUBlog

https://aws.amazon.com/organizations/getting-started/best-practices/
https://aws.amazon.com/organizations/getting-started/best-practices/
https://aws.amazon.com/blogs/mt/best-practices-for-organizational-units-with-aws-organizations/?org_product_gs_bp_OUBlog
https://aws.amazon.com/blogs/mt/best-practices-for-organizational-units-with-aws-organizations/?org_product_gs_bp_OUBlog
https://aws.amazon.com/blogs/mt/best-practices-for-organizational-units-with-aws-organizations/?org_product_gs_bp_OUBlog

9
Bringing Your

Admins into the
AWS Administrative

Backplane
In the previous chapter, we took the time to put some thought into how we would like to
administrate our AWS environments. Now that we know how our AWS accounts will be
structured, and the criteria for separating each environment, we can begin bridging our
example organization's IAM infrastructure to AWS.

The next two chapters will focus on implementing administrative access to the AWS
backplane. First, we will address getting our organization's identity information into
AWS SSO. This will entail connecting our AWS SSO service to our organization's identity
provider. With our organization's IDP set as the external identity provider, we will then
look at a couple of strategies for account management within AWS SSO when using an
external IDP. The first will be manual account linking. The second will be automated
provisioning and life cycle management through the System for Cross-domain Identity
Management protocol, or SCIM. Finally, we will define the conditions for provisioning
administrative users into the backplanes for their appropriate AWS accounts using groups.

316 Bringing Your Admins into the AWS Administrative Backplane

In this chapter, we will be covering the following topics:

• Defining our organization's identity source

• Provisioning administrative accounts in AWS – account linking

• Provisioning administrative accounts in AWS – SCIM provisioning

Technical requirements
To get the most out of this chapter, you will need the following:

• An AWS account

• An SAML2 and SCIM compliant identity provider, such as Okta Identity Cloud,
PingOne, or Azure Active Directory

• A populated user directory to act as the user store for that identity provider

Defining our organization's identity source
In the previous chapter, we were introduced to the Redbeard Identity organization. Based
upon that organization's business requirements, organizational structure, current identity
capabilities, and account attribute schema, we designed an administrative model for
our AWS organization:

Figure 9.1 – The Redbeard Identity AWS organization admin model

Defining our organization's identity source 317

Now that we know how we want AWS accounts to be created and managed, it is time to
connect the existing identity provider to the AWS SSO service so that we can bring our
administrators into their respective AWS administrative backplanes. Though
we won't dive into the details of administrative user authentication and authorization
until Chapter 10, Administrative Single Sign-On to the AWS Backplane, connecting an
external identity provider to the AWS SSO service is a prerequisite for either
a just-in-time provisioning and account linking model or for using SCIM.

Tip
The examples used in this book will be shown using the Okta Identity Cloud.
Whereas the configuration within AWS will be the same regardless the IDP
technology used within an organization, be advised that the requirements,
steps, and options available for user account administration from within the
IDP may be different, depending on your IDP platform.

The last time we worked within AWS SSO, we configured AWS SSO itself to be its own
identity source. AWS SSO became our own SAML2 IDP, and we could provision the
accounts that we created and managed within its own directory. This way, AWS SSO could
act as the IDP for managed AWS accounts within our AWS organization. It could also be
the IDP for our SaaS apps and any other SAML2 compliant service providers (SPs) where
we wanted to use those identities:

Figure 9.2 – AWS SSO as an IDP and user store with users created and managed within AWS SSO

318 Bringing Your Admins into the AWS Administrative Backplane

Our use case is different this time. While AWS SSO remains the IDP and user store for
administrative accounts for member accounts within our AWS organization, AWS SSO
is no longer the authoritative source for that identity information – at least as far as our
example Redbeard Identity company is concerned. AWS SSO will issue authentication
tokens to each connected AWS account, but only upon receiving a successful
authentication token from an external IDP:

Figure 9.3 – AWS SSO configured to use an external IDP

The preceding diagram shows how the external IDP can synchronize accounts from the
external IDP's user store into AWS SSO's user store through SCIM. In addition to SCIM
provisioning, AWS SSO can populate its local directory with an organization's Active
Directory (AD) accounts through either an AD Connector, or through an AWS Managed
AD instance. For organizations that use Active Directory as the user store for their
identity provider, both these methods will allow AWS SSO to match the authenticated
user from the external IDP's SAML2 assertion to its corresponding record in AWS SSO.
It is not a requirement that accounts be directly synchronized from the IDP's user store;
Redbeard Identity does not use Active Directory, but it could still match accounts that are
manually provisioned with matching values from its IDP's directory. That said, doing so
would introduce significant administrative overhead. We will investigate the advantages
of using a directory synchronization strategy such as SCIM or an AD Connector over
manual provisioning as we move through this chapter.

Defining our organization's identity source 319

Connecting our IDP to AWS SSO
Let's connect our IDP to AWS SSO:

1. From the AWS Management Console, we go to the AWS SSO service and select
Settings.

2. Assuming our configuration remains the same from the activities we did in Chapter
6, Introduction to AWS Organizations and AWS Single Sign-On, we may already have
values defined for our Identity source similar to what can be seen in the following
screenshot:

Figure 9.4 – Identity source settings in AWS SSO

3. The preexisting configuration will not impact anything we need to do; however,
if we want to start fresh, we can click the Delete AWS SSO configuration button at
the bottom of the page to clear out all the settings. Regardless, once the settings have
been cleared, we will return to this page and click Change next to Identity source.

4. This takes us to a wizard where we can define where our identities are sourced.
As we intend to use an external IDP for our Redbeard Identity example, we will
select the radial button next to External Identity Provider.

320 Bringing Your Admins into the AWS Administrative Backplane

5. This populates some URLs required to configure the SAML2 relationship with the
external IDP. It also provides a link to download the AWS SSO SAML metadata:

Figure 9.5 – Configuration values for AWS SSO to become a service provider in our IDP

6. From our IDP, we will build the connection to our AWS Single-Sign On service by
populating that connection information. We also need to define our Application
username format. AWS SSO uses Email as its unique identifier, so we must set
that as the unique identifier to be sent by the IDP. This process will look different
depending on the IDP we use, but the basic details will be the same across each one:

Defining our organization's identity source 321

Figure 9.6 – The IDP side configuration for AWS SSO

7. Once we save the connection information inside our IDP, we can download our
IDP's metadata file. This metadata file provides the IDP's endpoints, username
identifier format information, and most importantly, the public signing key that
AWS SSO can use to validate that an incoming assertion is genuinely from the IDP.
Once we have the IDP's metadata, we can go back to AWS SSO and upload it in the
Change identity source wizard. Alternatively, we could also populate the values
directly in AWS SSO if our IDP did not support metadata:

Figure 9.7 – Uploading the external IDP metadata into AWS SSO

322 Bringing Your Admins into the AWS Administrative Backplane

8. Next, we are prompted to confirm that we want to change our identity source for
AWS SSO. This page details several warnings about the additional responsibilities
we will take on by doing so. Type ACCEPT and move on:

Figure 9.8 – Confirming the change of our identity source

9. AWS SSO processes the information and confirms the change:

Figure 9.9 – New identity source configured

Provisioning administrative accounts in AWS – account linking 323

10. With the IDP configured, our AWS organization will now use our external IDP for
user authentication. However, we must still manage the accounts that will be used
with the AWS accounts:

Figure 9.10 – Our provisioning option is currently set to manual

Now that we have an external IDP configured, we need to populate AWS SSO's user store
with our administrative accounts. First, we will manually provision some accounts to
demonstrate account linking functionality.

Provisioning administrative accounts
in AWS – account linking
Account linking is when a service provider correlates a locally managed account with the
subject of an external IDP's federated token. The local account may get created in a just-
in-time fashion from the information contained within the IDP's authentication token,
or the account may have been created earlier and was correlated by matching on a unique
identifier, such as an email address. Arguably, when both AWS SSO and the IDP use
Active Directory as their account stores, but the IDP itself does not manage the accounts,
this is also an example of account linking. Though all the data ultimately stems from the
same Active Directory instance, there is no explicit link between the account, as presented
by the IDP, and the account stored within the AWS user store.

324 Bringing Your Admins into the AWS Administrative Backplane

However, our example company is not using Active Directory. As such, we need to
manually create some matching user records inside AWS SSO for our administrators.
The AWS CLI does not have a function for bulk importing accounts, so administrating
accounts in this fashion can be tedious. Let's create an account for our Iam Dev user:

1. From the AWS SSO service, under the Users section, we start by hitting the Add
user button. This takes us to a wizard where we can enter various attribute values
for our user:

Figure 9.11 – The AWS SSO Add user wizard

Provisioning administrative accounts in AWS – account linking 325

2. There are several sections available for us to populate information. However, only
the first section is required to make a fully functional AWS SSO user record. We can
reference the values inside our external IDP's directory for Iam Dev and populate
the required attributes:

Figure 9.12 – Populating essential attributes for our user record

3. While it is not required that we fully populate the record with the remaining
attributes from our external IDP's user store, we will go ahead and do it in the
interest of keeping our data consistent across data stores. Strictly speaking, we could
populate these attributes with distinct values compared to those found inside our
external IDP; so long as the username value and any other attributes that are sent
from the external IDP are the same, the remaining attributes do not need to match.
That said, we do not have any need to change our attribute values, so we will keep
them consistent and fill in the rest of the record. Once this is completed, we will be
ready to proceed.

326 Bringing Your Admins into the AWS Administrative Backplane

4. Next, we are asked to add the user to some groups. Our AWS SSO has not been
configured with any groups, but we are using groups to manage access to AWS SSO
within our external IDP. We will continue that pattern within AWS SSO, so we will
click Create group:

Figure 9.13 – The Create group option in AWS SSO

5. The Iam Dev user is a member of two groups inside our external IDP. The first is
AWS_IT_IAM_Dev, while the second is AWS_Sandbox. We must enter the group's
name and a description to create the first group and then repeat this for the second:

Figure 9.14 – Creating groups in AWS SSO

6. Now that we have two groups available to select, and they are the two groups
we want Iam Dev to be a member of, we can tick the boxes shown in the following
screenshot and click Create user:

Provisioning administrative accounts in AWS – account linking 327

Figure 9.15 – Adding the groups to Iam Dev

7. Once processing is complete, we can return to our Users section in AWS SSO.
There, we will find our Iam Dev user record, identical to how it exists in our
external IDP. We can also verify that it is a member of the two groups that
we created:

Figure 9.16 – Iam Dev user record and group membership in AWS SSO

328 Bringing Your Admins into the AWS Administrative Backplane

With Iam Dev complete, the next step is to repeat this process for every AWS admin
that we want to bring over from the Redbeard Identity IDP. This would be a tedious
undertaking, though, since we only have a handful of accounts that exist within that
user store. Rather, we'll focus on the better administrative method for the Redbeard
Identity use case, before we begin using these accounts and groups for authentication
and authorization in the next chapter.

Limitations of manual provisioning and
account linking
Setting aside the tedium of manually creating those accounts, manual provisioning has
other significant drawbacks. We are focusing on getting our administrators into the
administrative backplane, but auditors are much more interested in evidence showing that
terminated administrators have been removed from critical systems within a reasonable
timeframe. Whereas an organization could build a manual process around joiner, mover,
and leaver flows that ensure all compliance requirements are met, it would be costly to
operate and prone to human error.

Fortunately, most enterprise deployments will not use manual provisioning. Active
Directory connectors to on-premises deployments ensure that terminated accounts are
also disabled in the AWS SSO user store. More modern organizations can also leverage
the IDP as its provisioner through SCIM, which will ensure that any status change on
a user record or group will be immediately updated to AWS SSO. Let's look at a SCIM
implementation for Redbeard Identity's use case.

Provisioning administrative accounts
in AWS – SCIM provisioning
System for Cross-domain Identity (SCIM) provisioning is a standards-based RESTful
account provisioning service that sends account information in a standardized JSON
format. When we enable automatic provisioning with SCIM, the directory objects that
we specify for our IDP to synchronize in the user store for our AWS SSO service will
automatically be created, updated, and deleted, in tandem with their counterparts inside
the user store of our external IDP.

Provisioning administrative accounts in AWS – SCIM provisioning 329

How SCIM works
Before we enable SCIM for our example use case, let's take a quick look at how
SCIM operates:

Figure 9.17 – SCIM create and update flows

The SCIM provisioning flows for creating and updating accounts are rather
straightforward:

1. The IDP that acts as the authoritative source for provisioning in the service
provider's user store pushes the accounts and attributes based on that service
provider's predefined account schema. This is where things such as attribute
transformation can occur to manipulate the data between the IDP and SP to
accommodate the SP's specific attribute requirements.

2. With the accounts and groups now provisioned in the SP's user store, the service
provider will be able to link the subject of the authentication token it receives from
the IDP with up-to-date directory information from that same IDP's authoritative
user store.

3. As attributes are updated or group memberships change, the IDP intermittently
pushes the changes to the affected objects to maintain synchronization. This
includes account deprovisioning.

330 Bringing Your Admins into the AWS Administrative Backplane

SCIM is mostly a push-based process from the IDP to the service provider. That
said, there are flows where the trigger for synchronizing a directory object is
predicated on a request from the service provider. This trigger could be something
such as an SP-initiated authentication request to the IDP for an account that hasn't
been found yet within the SP's user store. This is a common practice, where the aim
is to minimize the proliferation of identity data across providers:

Figure 9.18 – SSO-triggered SCIM provisioning event

4. The service provider reaches out to the IDP to authenticate a user.
5. The IDP sends the authentication token to the service provider.
6. Upon not finding a corresponding account within its local user store, the SP makes

a request to the IDP to provision that account in its user store.
7. The IDP responds by provisioning the account in the SP's user store.
8. Now that the account has been added to the SP's user store, the IDP will push any

changes to that account into the SP's user store.

Compared to the administrative overhead of manual account administration, SCIM is
a good way to ensure our existing organization's joiner, mover, and leaver flows are
quickly reflected in downstream third-party applications.

Provisioning administrative accounts in AWS – SCIM provisioning 331

Enabling automatic provisioning in AWS SSO
Let's connect the Redbeard Identity organization's external IDP to our AWS SSO service's
user store using SCIM:

1. First, from the AWS Administrative Control Panel, we must go to our AWS SSO
service and select the Settings menu.

2. Under Identity source, click the link that says Enable automatic provisioning.
This opens the Inbound automatic provisioning wizard.

3. We will be presented two values: our SCIM endpoint and Access token. We will
use these to configure the SCIM connection inside our IDP. Similar to other secrets
issued inside AWS, this will be the one opportunity we will have to capture the
access token value, so we must make sure to document it someplace safe:

Figure 9.19 – Our AWS SSO SCIM endpoint and access token

332 Bringing Your Admins into the AWS Administrative Backplane

4. Now, we will go to the AWS SSO app configuration inside our IDP. For the
Redbeard Identity organization's IDP, this can be found under the Provisioning tab.
There, we must click the button labeled Configure API Integration:

Figure 9.20 – Configuring the Redbeard Identity IDP for SCIM to AWS SSO

5. From there, we must tick the box to enable API integration, which will present us
with the fields we need to populate with our SCIM endpoint and API token values.
We will drop the values we got from AWS SSO into the field and test the connection.
If all is well, we will see a confirmation message stating that the connection was
verified successfully:

Provisioning administrative accounts in AWS – SCIM provisioning 333

Figure 9.21 – The Redbeard Identity IDP is now connected to the AWS SSO user store via SCIM

334 Bringing Your Admins into the AWS Administrative Backplane

6. Now that our external IDP and AWS SSO's user store are connected, we have some
additional options inside our IDP for what operations we wish to allow, and how
we want to map our IDP's attributes to the user store schema of AWS SSO. We'll
click Edit and make sure that we are configured to create our users, update user
attributes, and deactivate users inside AWS SSO when there is a change inside our
IDP. Fortunately, our IDP is natively supported by AWS SSO, so a preconfigured
mapping of attributes has already been configured for us. If we want to customize
our IDP's user schema, or want to adjust mappings, this is where we could make
those changes. Once satisfied with the settings, we can click on Save and move on:

Figure 9.22 – Enabling provisioning and syncing in the AWS SSO user store

Provisioning administrative accounts in AWS – SCIM provisioning 335

7. Now that our users have been assigned to groups inside our IDP's directory, we
will assign access to AWS SSO through membership to those groups from our IDP.
Whereas only a handful of users are found in each one of these groups based upon
their job function, every individual user who is a member of one of those groups is
now in scope for provisioning in AWS SSO's user store:

Figure 9.23 – Group-based access control used to control provisioning in AWS SSO from the IDP

336 Bringing Your Admins into the AWS Administrative Backplane

8. We can confirm that this logic is working by refreshing the user list inside AWS
SSO. Within seconds, our users will be provisioned:

Figure 9.24 – SCIM-provisioned users appearing within the AWS SSO user store

9. We may optionally choose to also push specific groups from our IDP into AWS
SSO. This will provide us with additional options for authorization, so we will do so.
Similarly, those groups and their memberships will be populated within the AWS
SSO directory moments later:

Figure 9.25 – SCIM-provisioned groups in the AWS SSO directory

Provisioning administrative accounts in AWS – SCIM provisioning 337

With that, we can now manage AWS SSO users and groups centrally using
our organization's authoritative identity system.

TIP
The specifics of the IDP configuration will vary, basedpon the IDP used. The
Redbeard Identity IDP is built upon the Okta platform, which is available
for free for developer use cases. Please review the Further reading section for
references on using other major identity platforms.

SCIM in action
Let's observe how SCIM works with AWS SSO by creating a new user within the Redbeard
Identity IDP and adding it to the AWS_Sandbox group. We will call this new user New
User, and it will be a contractor reporting to Sales Dev within the Sales organization.
We will bootstrap this user by updating the CSV file we used in Chapter 8, An Ounce of
Prevention – Planning Your Administrative Model. This will quickly create a richly featured
account while leaving existing ones untouched (unless we want them to be updated):

Figure 9.26 – Adding a new user to the Redbeard Identity user store

338 Bringing Your Admins into the AWS Administrative Backplane

Once New User has activated their account, they become live in our IDP's directory, but
they won't be found inside AWS SSO's user store:

Figure 9.27 – RBI's user store on the left; AWS SSO's user store on the right

This is because the Redbeard Identity organization assigns AWS SSO access to group
membership. To get New User into AWS SSO, we will need to assign it to a group that
governs access in AWS SSO on the IDP side. As everyone within Redbeard Identity is
allowed to access the sandbox accounts, we will place New User in the AWS_Sandbox
group, within the IDP, and refresh our AWS SSO user store. If we select that group to view
its membership, we will see New User:

Provisioning administrative accounts in AWS – SCIM provisioning 339

Figure 9.28 – New User inside the AWS_Sandbox group

340 Bringing Your Admins into the AWS Administrative Backplane

Whereas automatic provisioning is convenient, the bulk of the security and compliance
value that SCIM offers comes from automatic deprovisioning. Let's deactivate New User
from our IDP and watch what happens.

First, he is deactivated within our IDP's user store and automatically loses access to the
applications he is assigned from his group memberships. This means he loses access to
AWS SSO at the IDP:

Figure 9.29 – New User is now cut off from AWS SSO access

Checking the AWS SSO user store, we can now see that the corresponding account for
New User has been disabled there as well. It has also been cut off from the AWS SSO side:

Provisioning administrative accounts in AWS – SCIM provisioning 341

Figure 9.30 – New User is disabled in AWS SSO

Depending on our organization's account management and compliance policies,
we may optionally delete the record entirely from AWS SSO at this point.

SCIM provides powerful and automated account management capabilities when
leveraging an external IDP. For organizations that either do not use Active Directory
as their user store or would prefer not to extend their AD footprint into the cloud, SCIM
provides modern, API-driven identity life cycle management capabilities to ensure that
only the right accounts and groups are provisioned in AWS for administrative access.

342 Bringing Your Admins into the AWS Administrative Backplane

Summary
In this chapter, we looked at how we can bring our administrative accounts into the
AWS administrative backplane. First, we connected our external identity provider to our
AWS SSO service. Then, we looked at two different methods to manage administrative
accounts. The first was manual account linking, where an administrator must provision,
deprovision, and monitor account and group membership for changes inside the external
IDP's user store, to then mimic those changes inside AWS SSO's own user store. The
second was SCIM, a RESTful, API-based identity provisioning protocol that automatically
synchronizes accounts, attributes, and groups between the external IDP and AWS SSO.

Now that we have our user stores synchronized using SCIM, we are positioned to
leverage those accounts and groups, along with their attributes, to address administrative
authentication and authorization to AWS resources. We will explore that topic in
detail in the following chapter.

Questions
1. What are manual provisioning and account linking?
2. What is SCIM?
3. What are some of the advantages of SCIM over manual provisioning?

Further reading
Take a look at the following link to find out more about the supported identity providers
and configuration instructions for AWS SSO SCIM: https://docs.aws.amazon.
com/singlesignon/latest/userguide/supported-idps.html.

Code samples
The following is the updated Redbeard Identity CSV file for this chapter: https://
github.com/jonlehtinen/ImplementingAWSIdentity/blob/main/
RedbeardIdentity_csv_template_new_scim_user.csv.

https://docs.aws.amazon.com/singlesignon/latest/userguide/supported-idps.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/supported-idps.html
https://github.com/jonlehtinen/ImplementingAWSIdentity/blob/main/RedbeardIdentity_csv_template_new_scim_user.csv
https://github.com/jonlehtinen/ImplementingAWSIdentity/blob/main/RedbeardIdentity_csv_template_new_scim_user.csv
https://github.com/jonlehtinen/ImplementingAWSIdentity/blob/main/RedbeardIdentity_csv_template_new_scim_user.csv

10
Administrative

Single Sign-On to the
AWS Backplane

In the previous chapter, we built out the provisioning and account synchronization
processes between our Amazon Web Services (AWS) environment and the Redbeard
Identity organization's existing identity provider (IDP). Our administrative users are
now synchronized to the AWS single sign-on (SSO) user directory from our external
IDP using the System for Cross-domain Identity Management (SCIM). Of course,
populating the AWS SSO user store is only half of the administrative access equation.
Next, we will address administrative user authentication and authorization to ensure that
each administrator can only access the environment that is appropriate for them.

The following topics will be covered in this chapter:

• Why use federation for AWS administrators?—Learn why identity federation is a
good pattern for managing administrator access into the AWS control plane

• Assigning access to AWS accounts—Assign accounts and authenticate
administrative users into AWS accounts through AWS SSO using an external IDP

344 Administrative Single Sign-On to the AWS Backplane

• Implementing fine-grained access management for administrators—Set the limits of
administrator access within an account through permission sets

• Administrative SSO using the AWS command-line interface (CLI)—Use SSO with
an external IDP to obtain temporary credentials to use within the AWS CLI, and
issue commands with those temporary credentials

Technical requirements
To get the most out of this chapter, you will need the following:

• An AWS account

• A Security Assertion Markup Language 2 (SAML2) and an SCIM-compliant IDP
such as Okta Identity Cloud, PingOne, or Azure Active Directory (Azure AD)

• A populated user directory to act as the user store for that IDP

• A workstation running the AWS CLI

• A text editor or integrated development environment (IDE) to edit JavaScript
Object Notation (JSON)/YAML Ain't Markup Language (YAML) files, such as
Microsoft Visual Studio Code (VS Code)

The code samples used in the chapter can be found at the following links:

• Updated Redbeard Identity comma-separated values (CSV) file: https://
github.com/jonlehtinen/ImplementingAWSIdentity/blob/main/
RedbeardIdentity_csv_template_new_scim_user.csv

• ITS_ec2_policy.json document: https://github.com/jonlehtinen/
ImplementingAWSIdentity/blob/main/ec2_policy.json

Why use federation for AWS administrators?
Before we dive into the mechanics of connecting our AWS environment with our external
IDP, let's take a moment to revisit our assumptions around why we would choose to use
an external IDP for AWS access in the first place. As we have seen throughout this book,
AWS has multiple services capable of addressing user authentication and authorization.
It could be argued that given the AWS Identity and Access Management (IAM)
service itself already evaluates every transaction and has the capability to handle user
management, authentication, and authorization, daisy-chaining additional components to
that service unnecessarily complicates matters.

https://github.com/jonlehtinen/ImplementingAWSIdentity/blob/main/RedbeardIdentity_csv_template_new_scim_user.csv
https://github.com/jonlehtinen/ImplementingAWSIdentity/blob/main/RedbeardIdentity_csv_template_new_scim_user.csv
https://github.com/jonlehtinen/ImplementingAWSIdentity/blob/main/RedbeardIdentity_csv_template_new_scim_user.csv
https://github.com/jonlehtinen/ImplementingAWSIdentity/blob/main/ec2_policy.json
https://github.com/jonlehtinen/ImplementingAWSIdentity/blob/main/ec2_policy.json

Why use federation for AWS administrators? 345

The argument for using identity federation with administrative accounts echoes the
same arguments for identity federation with most other third-party applications. Identity
federation, especially automated provisioning and deprovisioning, helps control the
proliferation of user and company data on third-party systems. Additionally, federation
also simplifies the sign-on experience to the third-party applications by allowing those
applications to trust users authenticated by an external IDP. This improves the user
experience (UX) and reduces the surface area of attack for credential theft. Users also
don't have to manage an additional set of credentials.

Finally, consider how other abstraction layers simplify powerful, yet complicated toolsets.
We wouldn't expect software to be written in machine code. Instead, software frameworks
and languages expand the accessibility and functionality of the powerful base language
that executes inside every central processing unit (CPU). Whereas abstraction layers
necessarily involve additional systems, services, and processing, that additional tooling
complexity is designed to make the underlying service simpler to understand and
consume. The leap in complexity for setting up the same level of administrative oversight
using AWS IAM compared to accomplishing the same task using AWS SSO is nowhere
near as severe as writing any program using machine code instead of JavaScript, but
it is an example of how some things are simplified through additional abstraction and
complementary services.

Now that we have had a refresher on why we are implementing things the way we are, let's
begin testing administrative authentication between AWS and our external IDP.

Federated sign-in using an external IDP
We set up the connection between our IDP and AWS SSO as a prerequisite to
synchronizing our administrative accounts from our IDP's user store into AWS SSO's user
store in Chapter 9, Bringing Your Admins into the AWS Administrative Backplane. Now,
let's verify if our users can sign in.

346 Administrative Single Sign-On to the AWS Backplane

Depending upon the IDP platform used, there may be a preliminary step required before
any users will be able to sign in to AWS using the external IDP. Identity as a Service
(IDaaS) platforms such as Okta and Azure AD require applications to be assigned to users
within the platform before the IDP will issue an authentication token for that user.

Figure 10.1 – Groups assigned access to AWS SSO from the Redbeard Identity IDP

The Redbeard Identity IDP allows direct assigning of applications to users. However, that
isn't the best administrative model. Instead, we assigned access to AWS SSO from the
IDP to various directory groups found within our IDP's directory. This means that any
users found within those groups will be authorized to access the AWS SSO instance we
configured inside our IDP. This is an example of coarse-grained authorization. Coarse-
grained authorization is a binary yes/no application access decision that is managed
by either the IDP (through a mechanism such as group membership or application
assignment) or the application itself (through a comparable mechanism). This makes the
Redbeard Identity IDP the first enforcement point for administrative access into our AWS
environment.

Why use federation for AWS administrators? 347

The groups shown in Figure 10.1 cover everyone within the IDP's directory. Whereas most
of the groups only have one or two members, the AWS_Sandbox group covers everyone
not previously covered by another group membership. Allowing the full set of users we
created for the Redbeard Identity use case to access the Sandbox is fine for our purposes,
but it would be prudent not to make such access a birthright entitlement if we had more
than a dozen records in our directory.

Now that we have addressed the prerequisites for coarse-grained access to AWS through
our IDP, we can attempt to access AWS in two different ways. The first is through our
IDaaS platform's user application portal, and the second is through the SSO link provided
by AWS SSO.

Let's start by walking through the IDaaS method, as follows:

1. First, we sign in to our IDP's portal as a Redbeard Identity user, as illustrated in the
following screenshot:

Figure 10.2 – Signing in as Iam Dev

348 Administrative Single Sign-On to the AWS Backplane

2. Once signed in, we see the AWS SSO application among our approved applications,
as illustrated in the following screenshot. This is because Iam Dev is a member of
two qualifying groups that grant access at the IDP level, AWS_IT_IAM_Nonprod
and AWS_Sandbox:

Figure 10.3 – AWS SSO within the IDaaS app launcher

3. We can click the AWS icon and start the SSO transaction to our AWS environment.

The alternate path for authentication is through the AWS-provided sign-on link.
This link is found in the Settings section of our AWS SSO service, under User
portal, as illustrated in the following screenshot:

Figure 10.4 – User portal Uniform Resource Locator (URL) in the AWS SSO settings

4. If we go to that address, AWS SSO redirects us to our IDP for authentication, as
illustrated in the following screenshot:

Assigning access to AWS accounts 349

Figure 10.5 – Redirecting to the external IDP for user authentication

5. We arrive back at our IDP, this time with an AWS banner. We will sign in using the
Iam Dev account once more.

Unfortunately, at this point, it doesn't matter which of the two paths we choose as we
still need to configure our authorization policies within AWS itself. The IDP may control
coarse-grained access to AWS SSO, but AWS will manage authorization to accounts and
resources within AWS once the federated user makes it into AWS.

Next, we'll take a look at our options for assigning access to our federated users inside
AWS.

Assigning access to AWS accounts
Now that we can sign in to AWS SSO with our external IDP, we need to assign accounts
to users within AWS SSO in order to close the loop between the authorization controlled
by the IDP and the authorization controlled by AWS. If we considered the IDP's
authorization control coarse-grained, AWS SSO provides options for fine-grained control
through a variety of mechanisms. Let's start with some basic authorization controls and
refine the permissions further as we go.

350 Administrative Single Sign-On to the AWS Backplane

We can see all of our AWS accounts listed in the AWS accounts menu inside AWS SSO, as
illustrated in the following screenshot:

Figure 10.6 – Our AWS accounts

Presently, we have no users assigned to any of them. We also do not have any permission
sets assigned to any of the accounts. A permission set defines what an AWS user can do
within an AWS account when signing in through AWS SSO. A permission set is stored as
an AWS IAM role that is assumed by the federated user within the member AWS account.
Users can be assigned multiple permission sets, but they may only assume one of those
permission sets at a time when signing in to a member AWS account. We will explore
permission sets in greater detail in the following section.

Let's start by assigning users to the IAM_NonProd account. We do this by selecting that
account and clicking the Assign users button, as illustrated in the following screenshot:

Assigning access to AWS accounts 351

Figure 10.7 – Selecting an account to assign users to it

This takes us to a wizard with which we can manually assign either individual users or
groups to that account. Whereas we only have a handful of users in our example, best
practice recommends against managing access on a per-account basis. We took the time
to build our IDP-side app provisioning logic to be group-based because it simplifies user
access management (UAM). We will assign each account to its corresponding group's
name, starting with this one. Let's tick AWS_IT_IAM_Nonprod, as illustrated in the
following screenshot, and move on:

Figure 10.8 – Assigning a group to the IAM_NonProd account

352 Administrative Single Sign-On to the AWS Backplane

Next, we assign permission sets. As AWS SSO configures itself as the IDP within each
managed account's AWS IAM instance, we need to define a role or roles that will be
available for our users to assume upon successfully federating into that account's AWS
IAM service. We still have the two policies we created in Chapter 6, Introduction to AWS
Organizations and AWS Single Sign-On, so we will enable both of those permission sets to
start. We can now finish the wizard. The process is illustrated in the following screenshot:

Figure 10.9 – Assigning permission sets

The wizard processes the request, and if all goes well, we get a readout of everything that
was created inside that account, as illustrated in the following screenshot:

Figure 10.10 – Provisioning accounts, SAML federation, and assumable roles

Assigning access to AWS accounts 353

We can now go back to our AWS accounts, where we see the permission sets defined next
to the IAM_NonProd account, as illustrated in the following screenshot:

Figure 10.11 – The account is now configured with permission sets

We'll repeat that exercise for each account. Once we are done, each account will be
accessible by every administrator account assigned to that account's corresponding access
control group back at our external IDP, as illustrated in the following screenshot:

Figure 10.12 – Each account configured with assigned group and permission sets

354 Administrative Single Sign-On to the AWS Backplane

The only aberration is the Red Beard Identity AWS account, which in this scenario
is acting as the management account. So far, we have been signing in using a local AWS
IAM account to perform all of the administrative functions. However, in the spirit of truly
delegating authentication and authorization to an externalized IDP, we should assign
access to our management AWS account to an account controlled by the external IDP as
well. Since we have used an AWS IAM account named redbeardidentity for most
of what we have done so far, we'll create a corresponding account in our IDP in the same
name and set it as an assigned user for our management account with full administrator
permissions.

Now that every AWS account within our AWS organization is configured to use AWS SSO
with our external IDP, we are ready to sign in.

Signing in to the administrative console
As it stands, we have 10 different accounts that we could sign in to using our external IDP.
Let's proceed as follows:

1. Let's start by signing into our external IDP's user portal as the Iam Dev user, as
illustrated in the following screenshot:

Figure 10.13 – Signing in as Iam Dev

Assigning access to AWS accounts 355

2. Once signed in, we again see the AWS SSO application among our approved
applications, as we did last time. This is illustrated in the following screenshot:

Figure 10.14 – AWS SSO within the IDaaS app launcher

3. We can click the AWS icon and start the SSO transaction to our AWS environment.
After some redirects, we are back at the AWS SSO application launcher, except this
time we actually have AWS accounts available for us to use, as we can see here:

Figure 10.15 – IAM_NonProd and Sandbox accounts available to the Iam Dev user

356 Administrative Single Sign-On to the AWS Backplane

4. We will select the IAM_NonProd environment. When we click it, we see a pair of
options appear beneath the account name, as illustrated in the following screenshot:

Figure 10.16 – Two links for IAM_NonProd

5. The names for each of these options correspond to the permission sets that we
attached to the account inside AWS SSO. Each of these links is for assuming a
specific role within the managed AWS account that corresponds to the permission
set we assigned to that account. Let's open the management console using the
ReadOnly role, as illustrated in the following screenshot:

Figure 10.17 – Signed in to IAM_NonProd under the ReadOnly role

Assigning access to AWS accounts 357

We can see the name of our federated login's assumed role once we are in the
environment. Attempting to do anything—such as creating a Simple Storage
Service (S3) bucket—throws an Access Denied error, which confirms the policy
is operating as expected.

Tip
Always validate the logic of a permission set to verify what it does or does not
do. These environments and resources were set up and used exclusively for
this book, so I took a shortcut by reusing the permission set that we created in
Chapter 6, Introduction to AWS Organizations and AWS Single Sign-On. You
should never make the same assumption in a live environment.

6. Launching the AdministratorAccess role shows a different assumed role upon
landing in the console, as we can see here:

Figure 10.18 – The AdministratorAccess assumed role in the IAM_NonProd account
Unlike the previous role, this one is unrestricted. However, unrestricted roles are
unusual in real deployments. We will need to revisit our permission sets to fine-tune
the access each administrator gets within each account.

358 Administrative Single Sign-On to the AWS Backplane

7. But before we do that, let's first sign in as the Redbeard Identity user through our
external IDP to get back into the administrative console for our management AWS
account. You can see this user account in the following screenshot:

Figure 10.19 – The Sandbox and management AWS account are available

As with most users, this one has access to the Sandbox. But more importantly and
uniquely, this account can access the management AWS account, as we can see here:

Figure 10.20 – Signing in as an admin on the management account through federation

We now have options to address some additional security best practices, such as removing
the redbeardidentity AWS IAM user account that we created and have used for all
administrative tasks up to this point. This will also remove the long-lived programmatic
credentials we have assigned to that user, which represent a potential security risk to our
environment. Now that we have connected everything through an external IDP, we are
free to further harden our AWS environments.

Implementing fine-grained access management for administrators 359

Tip
In this chapter, we will use the Redbeard Identity user account as the example
account that matches the organization, division, and department attributes
of another user. The CSV file referenced in this chapter (and in Chapter 8,
An Ounce of Prevention – Planning Your Administrative Model, and Chapter
9, Bringing Your Admins into the AWS Administrative Backplane) includes an
account that has all the same attributes as the Redbeard Identity user, but it has
been renamed as Super User for ease of identification and disambiguation from
the Redbeard Identity, CEO user account.

Next, we'll look into refining the user permissions into each environment beyond the basic
read-only and administrator access that we used to test out our configuration.

Implementing fine-grained access
management for administrators
So far, we only have two levels of access for our administrators inside our AWS accounts
once those administrators are placed inside a group that allows them to sign in to AWS
SSO: AdministratorAccess and ReadOnly. If we defined group-based access
that determines if a user is permitted to even access AWS SSO as coarse-grained access
management, then the access granted by these two permission sets represents a very
rudimentary example of role-based access control (RBAC). By layering on additional
concepts, we can further refine our authorization model into something that is only
allowed access to specific resources based upon the assumed role and the user's attributes,
to achieve fine-grained access management through attribute-based access control
(ABAC).

Permission sets and managed authorization policies
To achieve fine-grained access management through ABAC, we will need to marry an
improved set of permission sets with a customized authorization policy. Let's start our
journey there by taking a look at the first two permission sets we created and used with
AWS SSO, AdministratorAccess and ReadOnly.

360 Administrative Single Sign-On to the AWS Backplane

We can check the defined permission sets from the AWS SSO service's console under
AWS accounts. We can see all of the permission sets that we have defined, regardless of
whether they are in use or not, by clicking on the Permission sets tab, as illustrated in the
following screenshot. We can click on a permission set to see its properties:

Figure 10.21 – Permission sets available for use with AWS SSO

First, we have AdministratorAccess. We'll click on this and see how it is configured.
You can see the configuration in the following screenshot:

Figure 10.22 – The AdministratorAccess permission set's configuration

Implementing fine-grained access management for administrators 361

Here, we can adjust things such as the duration of the federated session. This is useful for
allowing different periods of session validity based upon the sensitivity of the permission
set. A superuser may require a shorter session before reauthentication to the external IDP,
whereas a read-only permission set could allow a much longer session duration.

More germane to the topic of authorization, however, is that this is where we can attach
managed policies to our permission set. In the case of AdministratorAccess, we
see that it has the AdministratorAccess managed policy attached. If we click on
that managed policy, we are taken to the AWS IAM service where we can see the policy
document itself, as illustrated in the following screenshot:

Figure 10.23 – The AdministratorAccess managed policy that makes up the AdministratorAccess
permission set

If we repeat that exercise with the ReadOnly permission set, we see that it has the
ViewOnlyAccess managed policy attached. Clicking on that managed policy also
shows us the policy document. As it lists every AWS service and every command that lists,
describes, or gets values from those services, it is quite long. Here is a snippet from the
document:

{

 "Version": "2012-10-17",

 "Statement": [

 {

362 Administrative Single Sign-On to the AWS Backplane

 "Action": [

 "acm:ListCertificates",

 "athena:List*",

 "aws-marketplace:ViewSubscriptions",

 "autoscaling:Describe*",

 "batch:ListJobs",

 -- (truncated for space) --

 "workmail:Describe*",

 "workspaces:Describe*"

],

 "Effect": "Allow",

 "Resource": "*"

 }

]

}

We have validated the policies behind our permission sets and seen that we can attach
managed policy objects to our permission sets, but none of that is going to help us further
refine access from either the full AdministratorAccess or ReadOnly options that
we currently have available. However, if we look further down on the properties of the
permission set, we have the option to edit permissions on these policies, as we can see
here:

Figure 10.24 – Option to customize permission set policy on an existing permission set

We can refine these existing permission sets to be more restrictive. Alternatively, we can
create custom policies on new permission sets. The end result will be the same—a custom
authorization policy that we can use to apply fine-grained access control to the resources
within our AWS accounts.

Implementing fine-grained access management for administrators 363

Permission sets and custom authorization policies for
fine-grained access control
Before we set about building our ABAC policies, let's look again at our AWS organization
and the administrative user attributes in the directory, and list out the use cases we need
to address to determine an optimal way to solve the business problem in front of us.

First, here is a map of our AWS organization:

Figure 10.25 – The Redbeard Identity AWS organization map

Whereas a real organization would have stakeholders informing the requirements, for
this exercise we are going to make some inferences based on the organizational layout
that will provide our access control requirements. Based on the layout, we can assume the
following:

• Only the superuser (redbeardidentity@gmail.com in this case) may have
access to the Management account.

• Only members of the IT organization should have access to IT organization AWS
accounts. The same applies to the Sales organization.

• Only workers in operational departments should have read/write access to
Production AWS accounts. They may optionally have read-only access to
Non-Prod AWS accounts.

• Only workers in development departments should have read/write access
to Non-Prod AWS accounts. They may optionally have read-only access to
Production AWS accounts.

364 Administrative Single Sign-On to the AWS Backplane

• Each division's operational and development departments may only access their
own division's AWS accounts.

• IT Support staff require access to stop and start Elastic Compute Cloud (EC2)
instances inside AWS accounts within the IT organizational unit (OU) and the
Sandbox.

• Anyone may access the Sandbox AWS account.

• Nobody may access accounts in the Suspended OU.

This may seem complicated, but fortunately, our preplanning has already gotten us most
of the way to solving most of these use cases through a combination of the coarse-grained
authorization policy through group-based access controlled at the external IDP. We now
just need to marry that coarse-grained policy with a corresponding fine-grained policy
managed through AWS SSO.

Mapping it all out, our architecture will look like this:

Figure 10.26 – Solutions architecture for this fine-grained authorization use case

Implementing fine-grained access management for administrators 365

Since we can use the group membership to fulfill all of our organizational requirements,
we just need to identify an attribute that will allow us to further refine the level of access
that will work for limiting the IT Support department to only affecting EC2 instances
owned by the IT organization. The costCenter will be a good candidate for this for
when we start writing our permission sets.

Writing our fine-grained authorization policies
In order to enable our fine-grained authorization use cases, we will need to make a few
adjustments to our configuration within AWS SSO. First, we need to customize the
authorization policy documents that we will use within each of the four permission sets
that we will be creating. Let's return to our AWS SSO service within the management
AWS account and create a new permission set by hitting the Create permission set button
under the Permission sets tab on the AWS accounts menu. We will start by writing one
of our new permission sets for the administrators within each of the AWS accounts. The
process is illustrated in the following screenshot:

Figure 10.27 – Selecting a canned role or custom permission set

366 Administrative Single Sign-On to the AWS Backplane

The first option we have is to either select an existing job function policy or create a
custom permission set. AWS provides several predefined policies based upon popular
job descriptions, as illustrated in the following screenshot. We should take a look at these
offerings before deciding to write our policy from scratch:

Figure 10.28 – Available job function policies

The next step lists the various job function policies, along with a brief description of what
they can do. Since we don't want our administrative users to be able to remove our IDP
configuration from each AWS account's AWS IAM instance, nor remove the account from
the AWS organization entirely, we should look for something down-scoped from the full
AdministratorAccess policy. Fortunately, there is a PowerUserAccess policy.
We can click it to see its JavaScript Object Notation (JSON) policy in AWS IAM, as
reproduced here:

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "NotAction": [

 "iam:*",

 "organizations:*",

Implementing fine-grained access management for administrators 367

 "account:*"

],

 "Resource": "*"

 },

 {

 "Effect": "Allow",

 "Action": [

 "iam:CreateServiceLinkedRole",

 "iam:DeleteServiceLinkedRole",

 "iam:ListRoles",

 "organizations:DescribeOrganization",

 "account:ListRegions"

],

 "Resource": "*"

 }

]

}

This policy will bar administrative users from all AWS IAM functions except creating or
deleting service-linked roles and listing roles, generally speaking. It also keeps them out of
AWS Organizations and Account services. This seems like a winner, so we can proceed.

Once we have clicked through the rest of the wizard and have our new
PowerUserAccess permission set listed among the other two that were previously
there, we can click it and open its properties. Let's adjust the session duration to 9 hours
to accommodate a full working day. We have to do this by entering a custom duration in
seconds, as 9 hours is not an option in the drop-down menu. The following screenshot
illustrates the process:

Figure 10.29 – Setting a custom session duration

368 Administrative Single Sign-On to the AWS Backplane

With that done, we may proceed. The next screen gives us an option to update the role
the permission set creates in the AWS accounts it is attached to. When modifying a
permission set that is attached to an AWS account, we must update that role for the
changes we make to be reflected in the assumed role in the member account's AWS IAM
service. You can see an example of this in the following screenshot. As we haven't assigned
this permission set to any of our accounts, we can move on:

Figure 10.30 – Option to reprovision accounts

For ReadOnly, we can follow the same process we used for PowerUserAccess, as
there is a default ViewOnlyAccess job function policy available for us to select. We
won't repeat the steps here. This means we now have the AdministratorAccess,
PowerUserAccess, and ReadOnly permission sets defined. Now, we need to write
a custom policy for our IT Support administrators to ensure they can only modify EC2
instances tagged with a costCenter that belongs to the IT organization across AWS
accounts within the IT OU of our AWS organization.

To do this, we once more create a new permission set. However, this time, we select the
Create a custom permission set option, which will take us to the following screen:

Figure 10.31 – Creating a custom permission set

Implementing fine-grained access management for administrators 369

Next, we set our new policy's name, description, and session duration. We will keep it at
the same 9 hours as the rest of our policies since our risk tolerance already accepts 9-hour
sessions for policies with much greater levels of access. Beneath those settings, we will tick
the option to create a custom permissions policy. This will open up a policy editor for us
to use, as illustrated in the following screenshot:

Figure 10.32 – The policy editor for writing our custom policy

Let's start by adding the essential components of our policy document—the version and
the statement, as follows:

{

 "Version": "2012-10-17",

 "Statement":

Our IT Support admins will need to view EC2 instances, so that will be our first statement.
As this is a multi-effect policy, we will need to mind our JSON syntax. You can view the
code we're using in the following snippet:

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Action": [

 "ec2:DescribeInstances"

],

 "Resource": "*"

 },

370 Administrative Single Sign-On to the AWS Backplane

Next, we want them to be able to start and stop instances. So, we write our next effect, as
follows:

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Action": [

 "ec2:DescribeInstances"

],

 "Resource": "*"

 },

 {

 "Effect": "Allow",

 "Action": [

 "ec2:StartInstances",

 "ec2:StopInstances"

],

 "Resource": "*"

As written (and setting aside the malformed JSON), this policy is too permissive. We
need to apply a condition statement that limits the specific EC2 instances they can
manipulate within shared environments, such as the Sandbox. We can use resource tags
and the ec2:ResourceTag variable to enforce this. We can look at our IDP's user store
for a list of cost centers to use within our condition statement. The code is illustrated in
the following snippet:

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Action": [

 "ec2:DescribeInstances"

],

 "Resource": "*"

 },

Implementing fine-grained access management for administrators 371

 {

 "Effect": "Allow",

 "Action": [

 "ec2:StartInstances",

 "ec2:StopInstances"

],

 "Resource": "*",

 "Condition": {

 "StringEquals": {

 "ec2:ResourceTag/CostCenter": ["3001",
"30002", "30011", "30012", "30013", "30014", "31013", "31000"]

 }

 }

 }

]

}

We drop that into the editor for validation, and we can move on. We are given a chance to
review, and then our final permission set is created.

Tip
Whereas it is alluring to look to ResourceTag and RequestorTag
variables to apply fine-grained authorization in sweeping policy statements, the
reality is that there is tremendous variation between the actions that support
ResourceTag/RequestorTag variables. In fact, there are even several
different types of ResourceTags variables depending upon the service,
including s3:ResourceTags, ec2:ResourceTags, and the general
aws:ResourceTags variable. Some services and actions do not support
ResourceTags variables at all. This is partially why we leaned more heavily
on using group membership, permission sets, and differing AWS accounts for
accomplishing the bulk of our authorization policy objectives.

Now that we have all of our policies aligned to our use cases, we are now ready to put
them to use.

372 Administrative Single Sign-On to the AWS Backplane

Putting it all together for administrative authorization
We have completed building all the pieces that will enable our administrative
authentication and authorization model in our AWS accounts, but there isn't anything
intrinsic to any of the managed policies we attached to the permission sets that will limit
access to specific AWS accounts. That authorization will come from assigning specific
groups to the account, and then assigning which permission sets (the assumed role within
that account) each of those groups will have access to. Let's begin doling out our access to
fulfill our eight business objectives, as follows:

1. Let's start with the IAM_NonProd AWS account. We tick the box next to that
account and hit the Assign users button, as illustrated in the following screenshot:

Figure 10.33 – Assigning users to IAM_NonProd

2. We open the Groups tab and select all of the groups that should have access to
this account based upon our eight authorization use cases. Based upon those use
cases, the AWS_IT_IAM_Nonprod group gets access. The AWS_IT_IAM_Prod
and AWS_IT_Support groups will also be in scope for access, but in order to
limit access of the SuperUserAccess permission set to just the AWS_IT_IAM_
Nonprod group, we will only select that for now. We tick just that group and move
on to assign permission sets to the groups.

3. We match the permission set to the group. This is how we constrain access within
the environment. After we have selected the PowerUserAccess and ReadOnly
permission sets, we can click Finish.

Implementing fine-grained access management for administrators 373

4. It will then provision the role into the account. We then repeat the process with the
other groups that need access.

5. Let's do the AWS_IT_IAM_Prod group next. That group will only be allowed to
have the ReadOnly permission set. We complete the process and start the cycle
once more for the AWS_IT_Support group.

6. The AWS_IT_Support group gets the ITS_EC2_Support permission set. We
complete that process, and we are done setting up access for the IAM_NonProd
AWS account.

7. We can take a look at the groups and their permission sets to validate everything
looks OK by clicking on the IAM_NonProd account, as illustrated in the following
screenshot:

Figure 10.34 – The groups and permission sets assigned to IAM_NonProd

374 Administrative Single Sign-On to the AWS Backplane

We then iterate through all the remaining accounts, repeating this process until
each account has the appropriate groups and permission sets assigned to fulfill our
authorization use cases. Once we are done, our AWS accounts will look like this:

Figure 10.35 – Groups and permission sets assigned to AWS accounts

We can now see how this looks through a user's eyes to validate that our policies work as
expected. Signing in as IT Support, we see our eight accounts available to us, as illustrated
in the following screenshot:

Implementing fine-grained access management for administrators 375

Figure 10.36 – IT Support's available accounts and roles

As our most granular policy was the ITS_EC2_Support policy, let's validate that this
is working as intended. The Iam Dev user created a pair of EC2 instances inside the
IAM_NonProd account. Let's sign in to that account as the IT Support user to see what
happens when we try to stop them. You can see the outcome here:

Figure 10.37 – IT Support can see the instances

376 Administrative Single Sign-On to the AWS Backplane

The IT Support user can see the two instances. We will start by first trying to stop the
untagged instance. Fortunately, we receive an error, indicating our policy appears to be
working so far. Note in the following screenshot that it is enciphered; our user does not
have the appropriate permissions to read the error message:

Figure 10.38 – Failure to stop the untagged EC2 instance

Next, we will try the tagged instance, as follows:

Figure 10.39 – Successfully stopping the tagged EC2 instance

The It Support user was able to stop this instance. We can see the tagging that made this
possible in the preceding screenshot.

Administrative SSO using the AWS CLI 377

Now that we have validated our fine-grained authorization policies are working the way
we want for our administrative use case, let's take a look at our administrative SSO and
authorization configuration for AWS CLI access.

Administrative SSO using the AWS CLI
One of the primary benefits of using AWS SSO for administrative access is the issuance of
temporary credentials. Whereas we have used durable programmatic credentials for AWS
CLI access in the past, we can now use a browser for SSO and instantiate a temporary
session without needing to issue or store those credentials on our workstation. We do this
by selecting the command-line or programmatic access link after signing in to AWS SSO
from our external IDP, as illustrated in the following screenshot:

Figure 10.40 – Our temporary AWS CLI credentials through AWS SSO

378 Administrative Single Sign-On to the AWS Backplane

We will sign in as the Iam Dev user once again and copy the commands to export the
variables we need to use the AWS CLI with our temporary credentials. These credentials
are valid for the duration of the session we defined within the permission set for this
assumed role. For this particular role, these credentials are good for 9 hours. Once we
enter the values, we can validate that they work by entering a basic command. The process
is illustrated in the following screenshot:

Figure 10.41 – Setting temporary credentials through AWS SSO and validating they work

After creating a tagged and untagged EC2 instance, let's sign in to the AWS CLI as
the IT Support user and attempt to stop both instances once again. We can get the
instance identifiers (IDs) using the describe-instances command once again.
i-0b3670c6354bed31d is untagged, and i-01296365cf6d834e6 is tagged.

First, we will try the untagged instance, as follows:

Figure 10.42 – Untagged instance cannot be stopped by IT Support user from the AWS CLI

As predicted, we cannot stop it, given our entitlements. Next, we will try the tagged
instance, as follows:

Summary 379

Figure 10.43 – Tagged instance is stopped

This time, it works. Our administrative authentication and authorization model using an
external IDP is working as expected for all our use cases.

With AWS SSO and permission sets, we are able to perform administrative functions from
the CLI without creating or storing a long-lived programmatic credential and while using
a federated identity.

Summary
In this chapter, we put into practice what we have learned across several AWS services
to design and apply an administrative account authentication and authorization model.
By using an external IDP, we were able to quickly deprovision access for administrators.
Synchronizing our external IDP's users and groups into AWS SSO via SCIM laid the
foundation for us to pair coarse-grained authorization control managed at the IDP
with a fine-grained authorization policy controlled by AWS to fulfill our administrative
authorization business objectives. We wrote a custom authorization policy for our
permission sets using conditional operators. Finally, we saw how that model extends
into the AWS CLI as well and improves security by eliminating long-lived programmatic
credentials.

In the next chapter, we will switch our focus to application-centric identity using
Amazon Cognito. We will address making our enterprise user accounts available for our
applications hosted in AWS.

380 Administrative Single Sign-On to the AWS Backplane

Questions
1. What is coarse-grained authorization?
2. What is fine-grained authorization?
3. What is a permission set?
4. How does a permission set grant access to the AWS accounts to which it is attached?

a. It provisions users into that account.

b. It automatically creates an assumable AWS IAM role for the federated user to
assume in the managed AWS account.

c. It doesn't.
5. AWS CLI access through AWS SSO removes the need to use long-lived

programmatic credentials managed through AWS IAM.

a. True

b. False

Further reading
To learn more on the subject:

• Manage SSO to your AWS accounts: https://docs.aws.amazon.com/
singlesignon/latest/userguide/manage-your-accounts.html

• Attribute-based access control: https://docs.aws.amazon.com/
singlesignon/latest/userguide/abac.html

• Actions, resources, and condition keys for AWS services: https://docs.
aws.amazon.com/service-authorization/latest/reference/
reference_policies_actions-resources-contextkeys.html

https://docs.aws.amazon.com/singlesignon/latest/userguide/manage-your-accounts.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/manage-your-accounts.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/abac.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/abac.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html

Section 3:
Implementing

IAM on AWS
for Application

Use Cases
Modern organizations often have a hybrid cloud/data center strategy for their internal
application portfolio. Whereas AWS-deployed applications could reach back into the
on-premises data center to look up user attributes, replicating that information to the
cloud using AWS Directory Services provides a better user experience and increased
developer flexibility. Additionally, organizations can leverage Amazon Cognito to facilitate
application identity use cases for AWS-hosted applications, all while retaining their
existing identity provider as the authoritative source of user identity information.

This part of the book comprises the following chapters:

• Chapter 11, Bringing Your Users into AWS

• Chapter 12, AWS-Hosted Application Single Sign-On Using an Existing Identity
Provider

11
Bringing Your Users

into AWS
In the previous chapter, we implemented the authentication and authorization
components of the administrative user model, which we initially conceptualized
back in Chapter 8, An Ounce of Prevention – Planning Your Administrative Model. We
accomplished our objectives through a combination of service control policies from AWS
Organizations, AWS Single Sign-On (SSO) permission sets, and group-based access
controlled by an external identity provider (IDP). Our requirements for administrative
user access focused on gaining access to AWS accounts and the resources within those
accounts. However, what are our options for providing user identity information to those
applications that our organization intends to host on AWS?

In this chapter, we will review how administrative and non-administrative identity
use cases differ, examine several possible solution architectures to solve this challenge
(some using AWS services and some not), and then build a solution that will enable
AWS-deployed applications to access user information through our organization's
authoritative sources.

384 Bringing Your Users into AWS

In this chapter, we will cover the following topics:

• Distinguishing administrative users from non-administrative users

• Solutions to non-administrative user use cases for apps on AWS

• Using Managed AD and trusts

• Creating a trust between AWS Managed AD and on-premises AD

Technical requirements
To get the most out of this chapter, you will need the following:

• An AWS account

• A SAML2 or SCIM-compliant IDP, such as Okta Identity Cloud, PingOne, or Azure
Active Directory

• An Active Directory domain

• A remote desktop client to sign in to remote Windows servers, such as Microsoft
Remote Desktop

Distinguishing administrative users from non-
administrative users
We already have a connection to our AWS accounts via AWS SSO and our external IDP
for the user accounts that are entitled to access our AWS environments. However, what
can we do to ensure that all user accounts are available to applications in AWS, even if the
users never need administrative access to an AWS account? To answer that question, first,
we need to clarify how we define each of these types of accounts. In the broadest terms,
administrative accounts are accounts that have enhanced permissions to modify system
settings, create other accounts, and change the permissions for what other accounts can
do. For our Redbeard Identity AWS use case, we classified administrative accounts as
those accounts that had access to and could manipulate resources within an AWS account.
We made distinctions as to where a given user had their administrative privileges via
group memberships to specific accounts and permission sets that limited their abilities
once they federated into their available AWS account.

Distinguishing administrative users from non-administrative users 385

So far, in the Redbeard Identity example, we have not created a distinction between
administrative accounts and standard user accounts within the Redbeard Identity
organization. The best practice is to separate highly privileged accounts from standard
user accounts. Whereas some organizations might not consider the day-to-day work that
occurs within an AWS account to be highly privileged, for the purposes of our Redbeard
Identity example, we will say that access to the AWS administrative backplane is a
privileged administrative function and that the accounts used when accessing AWS are
distinct from common user accounts. However, even if we were to assume that Redbeard
Identity had a single set of accounts for all of its use cases, the next question is whether
that single connection from the external IDP to AWS SSO would be sufficient for all
administrative and non-administrative use cases that the organization has for both AWS
administration and AWS-hosted applications.

There are a few application-centric use cases that are not well-served by that single-
connection model. For example, users within a group that grants access to an AWS
account are currently available within the AWS SSO user directory. Applications hosted
on AWS that need to be accessible to everyone within an organization require their IDP to
have access to the full user population within its identity store, not just the subset of users
who are members of an AWS administrative group.

AWS SSO might be a fully featured IDP capable of handling the authentication and
authorization of applications that use it for federated identity, but organizations might not
want to provide two distinct authoritative sources of identity within their applications. The
Redbeard Identity organization already has a strategic IDP that it uses as its authoritative
source for its workforce identity. Although AWS SSO was leveraged to facilitate
account access and administrative authorization, the strategic external IDP remains the
authoritative source of identity for AWS SSO.

Next, we will decide how to solve the challenge of exposing the full population of
Redbeard Identity users to AWS-hosted applications.

386 Bringing Your Users into AWS

Solutions to non-administrative user use cases
for apps on AWS
Let's consider some of the solution architectures that are available to us when providing
access to non-administrative user identity information to applications hosted within AWS.
We will start with a baseline where we do not leverage any AWS services at all in order to
access our user identities:

Figure 11.1 – An application directly integrated with an external IDP

In this configuration, the application, or its web server, is configured to operate as either
a SAML service provider or an OpenID Connect (OIDC)-reliant party. Previously,
we mentioned how services such as Amazon Cognito offer SDKs and code samples to
facilitate application integration with those services. Standards bodies and open source
communities offer similar plugins, SDKs, and web server modules that are designed to
facilitate the adoption of standards-based identity protocols, such as SAML2 and OIDC.
While this reduces the barrier for adoption, this model still requires the application team
to maintain either the plugin or the web components that handle authentication and
authorization. The web app either does not maintain a user store (that is, a single-page
app) or provisions local accounts in a just-in-time fashion.

Solutions to non-administrative user use cases for apps on AWS 387

Tip
Organizations such as the OpenID Foundation maintain a library of certified
(meaning the submitted has paid for independent compliance validation) and
uncertified libraries and plugins to help app and web servers consume OIDC.
The Shibboleth Consortium maintains Shibboleth SP, which is a popular open
source SAML2 service provider plugin. Another popular open source SAML2
implementation is SimpleSAMLphp, which is maintained by Uninett. Links
to all of these resources can be found in the Further reading section of this
chapter.

A minor variation on this design includes an additional connection to the external IDP's
System for Cross-domain Identity Management (SCIM) endpoint to address user
provisioning and attribute synchronization into the application's user store:

Figure 11.2 – An application with direct IDP authentication and SCIM provisioning

While this is better than the previous architecture, it still places significant administrative
responsibility on the app team to maintain and harden the identity components of the
application. However, this design does address provisioning, deprovisioning, and attribute
synchronization.

388 Bringing Your Users into AWS

Continuing with the architectures that do not use AWS components, the application
could use the external IDP for user authentication and just-in-time provisioning, and
then perform an additional attribute lookup through an LDAP lookup against either an
external IDP's user store or a proxied view of that user store:

Figure 11.3 – An external IDP for authentication with an additional attribute lookup via an LDAP bind

We do not recommend this pattern for several reasons. First, securely executing an LDAP
bind across not just security domains but also from AWS to an IDaaS platform or our own
on-premises user store requires significant additional network and security architecture
to execute. Secondly, an application that cannot get all the necessary user attributes from
the OIDC ID token or SAML assertion at login time has authorization requirements that
require bringing the application user store and authoritative user store closer in sync to
avoid any data discrepancy issues that could lead to unauthorized access issues.

For applications where directory lookup is required for user authentication and
authorization, theoretically, we could bind directly against either an on-premises AD or
our external IDP's user store:

Solutions to non-administrative user use cases for apps on AWS 389

Figure 11.4 – An ill-advised directory-centric application architecture

However, the same caveats apply as before; this requires significant infrastructure to
ensure secure communication between the external directories and the AWS-hosted
application. For Active Directory workloads, this is particularly ill-advised as AD uses the
full port range on the network for certain functions.

A far more secure solution architecture involves leveraging AWS Directory Services for
applications that require Active Directory support. We can use the AD Connector to
connect the application to the on-premises Active Directory domain controller:

Figure 11.6 – An application using the AD Connector for AD workloads

390 Bringing Your Users into AWS

Alternatively, we could extend the on-premises AD forest using a trust with a Managed
AD instance with AWS Directory Services:

Figure 11.7 – Using Managed AD for AD workloads

While AWS Directory Services is fine for organizations that have AD dependencies, we
have not needed AD with any of the examples that we have gone over in our Redbeard
Identity organization. Although we would not recommend deploying AD infrastructure
if an organization does not already use Active Directory, the pervasiveness of Active
Directory within the enterprise makes this solution attractive. This is because it enables us
to easily and securely expose user identity information to AWS-hosted applications.

The Redbeard Identity example focused on standards-based protocols and cloud-based
implementations. If Redbeard Identity were a real organization, we would encourage it
to continue following these architectural patterns to solve its use cases. As such, we could
recommend that it uses a Cognito user pool to expose its user information to AWS:

Solutions to non-administrative user use cases for apps on AWS 391

Figure 11.8 – An application references Cognito, which looks to the external IDP

In this design, the application will look to an Amazon Cognito user pool for its user
information. The user pool will act as the application's user store, and detailed attributes
will be provided at authentication time through the Cognito identity token. Since Amazon
Cognito user pools provide a standards-compliant OIDC IDP, additional attributes can
be accessed through the /userinfo endpoint, as needed, if the application is sufficiently
entitled and scoped to have that access. To ensure that the Redbeard Identity organization
is still able to control access to its applications despite the AWS-hosted application looking
to Amazon Cognito for user authentication and attributes, we can configure the user pool
to be populated through Redbeard Identity's strategic IDP. This way, we will be able to
populate the pool with the full complement of employee identity records, whether they
have access to an AWS account or not. Additionally, we will be able to ensure that access
to AWS-hosted applications is revoked when the user is terminated inside the external
IDP's user store.

392 Bringing Your Users into AWS

So far, this solution appears to be the one that is most aligned with how the Redbeard
Identity organization has operated based upon our previous implementation examples;
however, we won't use it here. This design comes with a number of limitations that could
make it less desirable compared to using something such as a Managed AD instance in
a trust with an on-premises AD directory, chiefly Amazon Cognito user pools relying
upon just-in-time provisioning when using an external IDP. We can ensure users will
lose access to applications that look to the user pool when they are terminated at the
external IDP, but this design won't disable the account object within the user pool.
Additionally, applications that have directory requirements along with user authentication
and authorization requirements would not be well served if this was the only way we
exposed our user's identities to AWS. This is because they would only be able to query the
directory for the subset of users that had already authenticated into the application via the
user pool.

As such, we will introduce Active Directory to the Redbeard Identity organization. In the
next section, we will create a Managed AD instance and build a trust with an existing AD
forest. This will allow the AWS-hosted applications to have access to the on-premises user
account information through that trust.

Using Managed AD and trusts
We will bring our non-administrative users into AWS using a Managed AD instance
in AWS Directory Services. Strictly speaking, we don't even need to import our
user's accounts into the Managed AD environment in order to accomplish our goal.
We can arrange for the Managed AD instance to perform lookups and binds against
our on-premises AD forest using a trust. A trust allows two or more AD domains to
authenticate against resources that are available in the other:

Figure 11.9 – A user signing in to an app through a domain trust

Using Managed AD and trusts 393

Consider the example in Figure 11.9. An AWS-hosted application that requires either
AD or LDAP for user authentication or authorization is configured to look to an AWS
Managed AD instance for user information. The Managed AD and the on-premises AD
have a two-way trust:

1. The user signs in to the application.
2. The application looks to the Managed AD to verify the user's credentials. However,

if the user's account is not found inside the Managed AD's domain, it will then look
inside the on-premises AD for that account.

3. It finds the account there, validates the credentials, pulls out the appropriate user
information, and the user has access to the application.

The name of the existing on-premises AD deployment that Redbeard Identity has is
example.local. Note that it is important to keep the names straight as we build the
trusts.

Tip
We will be addressing the critical steps that are needed to establish a trust
between an on-premises AD forest and an AWS Managed AD forest. As
organizations can have several different network architectures, we will not be
diving deeply into the network connectivity considerations between our on-
premises network and the AWS Virtual Private Cloud (VPC) where the AWS
Managed AD instance will be deployed. More information on the required
ports and VPC configurations can be found in the Further reading section at
the end of this chapter.

Next, let's take a look at what it takes to create a Managed Microsoft AD instance using
AWS Directory Service.

394 Bringing Your Users into AWS

Creating a Managed Microsoft AD instance
The Redbeard Identity organization has an existing on-premises Active Directory that
has a user account for every worker in the organization. Its Identity Governance and
Administration (IGA) platform provides each new employee with an account inside that
AD domain, and attributes are synchronized between that domain and the IDP's user
store. Though individuals might have different accounts for SSO through the IDP and AD,
they are all correlated as part of the same identity:

Figure 11.10 – The view of user accounts inside an on-premises AD

We need to build a matching AD instance using AWS Directory Service. To do this,
perform the following steps:

1. Go to AWS Directory Service in the AWS Management Console. From the left-side
menu, select Directories, which is beneath Active Directory.

2. Click on the button labeled Set up directory.
3. We will select the AWS Managed Microsoft AD option and then click on Next.
4. Here, we have options for sizing. As Redbeard Identity is a small organization, we

can stick with the Standard Edition option:

Using Managed AD and trusts 395

Figure 11.11 – The Standard Edition or Enterprise Edition sizing options

5. We also need to provide the domain name, NetBIOS name, description, and
administrator password for the domain admin account in this section:

Figure 11.12 – Additional configuration options

396 Bringing Your Users into AWS

6. Next, we need to select the VPC where the managed AD instance will be deployed,
along with two Availability Zones (AZs) within that VPC where the domain
controllers will be deployed. The VPC, where a Managed AD is set up in a trust with
an on-premises AD, will require some sort of direct connection to the enterprise
network, either through a direct connection or VPN:

Figure 11.13 – The VPC and subnet settings

7. Finally, we verify that the configuration is what we want, and we create our
Managed AD instance:

Figure 11.14 – Confirming the settings for our Managed AD instance

Using Managed AD and trusts 397

Tip
Most people do not have access to an on-premises AD environment for testing
like this. Please refer to the Further reading section at the end of this chapter for
tutorials on how to set up a lab in AWS EC2 to create a simulated on-premises
AD environment that can be used to set up a trust with AWS Managed
Microsoft AD.

The Managed AD instance will take some time to complete the setup. Once it has been
completed, we can view the details of our new AD environment by clicking on the
directory ID from the AWS Directory Service:

Figure 11.15 – Our Managed AD is complete

Now we have our AWS-hosted AD instance, called corp.example.com. Next, we
need to make several configuration changes within our on-premises AD environment in
preparation for establishing the trust.

Preparing the on-premises AD for a trust – conditional
forwarders
Active Directory provides much more functionality beyond user and machine identity,
such as DNS. As such, we will need to make some non-identity-related configuration
adjustments to our AD environments before we can implement our trusts; specifically,
we need to define conditional forwarders. Conditional forwarders are DNS servers that
forward requests to specific DNS servers in a network based upon the DNS name that
was queried. In AD trust topologies, we set up conditional forwarders so that requests to
resolve DNS names belonging to a different forest within the trust can be fulfilled by the
DNS servers managed by that domain. This configuration ensures the DNS servers that
can correctly resolve a domain name to an IP address receive the DNS requests.

398 Bringing Your Users into AWS

First, we need to create a conditional forwarder within example.local that will route
all requests for resources on corp.example.com to the DNS servers hosted on corp.
example.com. Please note that, for this example, we are working with Windows Server
2019:

1. Sign in as an admin to the example.local domain controller and open the
Server Management Console.

2. From the top-level menu, select Tools, and then click on DNS. This will open the
DNS Manager utility.

3. Expand the domain controller menu in the left-hand pane. This will reveal a folder
called Conditional Forwarders.

4. Right-click on the Conditional Forwarders folder and select New.
5. We need the DNS domain values and the IP addresses of the DNS domain values

for the AWS Managed AD instance. We can find those values by clicking on our
Managed AD instance in AWS Directory Service. The DNS domain name is
corp.local.com, and the DNS address values can be found underneath the
Networking & security tab:

Figure 11.16 – The DNS addresses for the corp.example.com domain

6. Returning to the domain controller, we will enter the DNS domain value of corp.
local.com into the DNS Domain field. Then, we will also enter each of the IP
addresses into the IP addresses field. Finally, we will tick the Store this conditional
forwarder in Active Directory box and select All DNS servers in this forest as the
replication option:

Using Managed AD and trusts 399

Figure 11.17 – Setting up the conditional forwarder on the on-premises domain

7. Click on OK and exit.
8. While we are here, we also want to capture the DNS server IPs used by example.

local for when we need to build the conditional forwarder on corp.example.
com. Right-click on the server object inside the DNS Manager window and then
select Properties.

400 Bringing Your Users into AWS

9. Click on the Interfaces tab to view the IP addresses of the DNS server. Make a note
of the value for when we create the other conditional forwarder:

Figure 11.18 – Capturing the example.local DNS server IP

We are now ready to begin building the trusts.

Creating the trusts between on-premises and AWS
Managed AD
In this section, we will continue working on the example.local domain controller.
Open the Server Manager on the domain controller, and follow these steps:

1. From the top-level menu, select Tools.
2. Then, select Active Directory Domains and Trust.
3. In the Active Directory Domains and Trusts console, right-click on the

example.local domain and select Properties. Then, navigate to the Trusts tab:

Using Managed AD and trusts 401

Figure 11.19 – The Trusts tab for the example.local domain

4. Click on the New Trust button to open the New Trust Wizard. Proceed past the
first welcome screen and enter the name of the domain in which you want to
establish the trust. Enter corp.exaple.com and then click on Next:

Figure 11.20 – Naming the domain for the trust

402 Bringing Your Users into AWS

5. We will select a forest trust for this use case as both domains are owned by a single
organization and will be inhabited by the same population of users. Click on Next:

Figure 11.21 – Defining the trust type

6. Next, we will define the directionality of the trust relationship. We will stick with a
two-way trust for this use case and then click on Next:

Figure 11.22 – Defining the trust directionality

7. For now, we will only create the trust on example.local. So, leave it set to This
domain only and move on:

Using Managed AD and trusts 403

Figure 11.23 – Sides of Trust

8. Next, we will define a trust password that will be used to validate new trust
relationships from the target domains. Enter and confirm the password and move
on. We will use this password when we build the trust from the other domain inside
this one.

9. Next, we get to confirm our settings. If we are satisfied, we can click on Next. We
will see that our trust creation has been completed, at least on this side. Click on
Next again to move on:

Figure 11.24 – Trust Creation Complete

404 Bringing Your Users into AWS

10. The next two windows provide opportunities to confirm the incoming and outgoing
trusts. We will skip this for now. That's because we have not built the other half of
the trust on corp.example.com yet. Finally, we hit the end of the wizard; click
on Finish to close the window. Now we can view the new trust in our Trusts tab:

Figure 11.25 – The new trust with corp.example.com from example.local

With that out of the way, we are now ready to build the second half of the trust on the
AWS Managed Microsoft AD instance.

Preparing the Managed AD for a trust – conditional
forwarders
When using AWS Managed AD, we are not able to sign in to the domain controllers to
make configuration changes to the forest. The AWS Directory Services control pane allows
us to access many of the basic domain administrator tasks, and in theory, we shouldn't
need to preconfigure anything in the Managed AD forest for the trust to be established. In
practice, we can sidestep some trust verification issues by preconfiguring the conditional
forwarders for the example.local domain on the corp.example.com domain
controllers.

To do that, we will need to join an EC2 instance to the Managed AD domain, and sign in
to it using the Managed AD's domain admin's credentials.

Using Managed AD and trusts 405

Joining an EC2 instance to the Managed AD domain
Before we create the EC2 instance, we will use it to manage the Managed AD domain
controllers. First, we will create an AWS IAM role that will allow the EC2 service to
automatically join EC2 instances to instances of AWS Managed AD. AWS offers managed
policies for this function. We won't go through all of the steps required to launch the
EC2 instance here, but we will highlight the essential steps to enable that EC2 instance to
automatically join the domain.

We will need to reference this role when we create the EC2 instance, so let's create it:

1. From AWS IAM, navigate to the Roles menu and click on the Create role button.
2. As this role will be used by an AWS service, we will leave that option selected. We

will select the EC2 option underneath Choose a use case, as that is the service that
will be using the role. We are ready to proceed:

Figure 11.26 – Creating an EC2 service AWS IAM role

3. We will attach two managed policies to this role,
that is, AmazonSSMManagedInstanceCore and
AmazonSSMDirectoryServiceAccess. After we have found each one and
selected it, we can proceed to the next step.

4. We could optionally tag the role if we want to. Once we have set the tags to our
liking, we can proceed. Remember to take one last look at the role before creating it.

5. Finally, we can name our role and give it a description. We will call it
EC2DomainJoin. Update the description and create the role.

406 Bringing Your Users into AWS

6. The role is now available for us to assign to our EC2 instance:

Figure 11.27 – Our EC2DomainJoin role

The other prerequisite for the EC2 instance is a security group that allows us to RDP
into it and allows communication between itself and the AWS Managed AD domain
controllers. Our Managed AD forest is deployed on its own VPC and two subnets with the
following CIDR ranges:

Table 11.1 – The Managed AD's VPC and subnet CIDR ranges

Our EC2 instance will need to be deployed inside that VPC as well; otherwise,
modifications will need to be made to the VPC's route table to allow communication from
an external VPC if we want to deploy it elsewhere. As the intricacies of VPC networking
are beyond the scope of the topic at hand, we will simply deploy it to the same VPC as the
Managed AD forest. Regardless, we will need to capture the VPC ID for future reference
when creating the security group.

Using Managed AD and trusts 407

Tip
The VPC, subnet, routing table, and security group requirements for Managed
AD will vary depending upon your organization's enterprise architecture. It is
always a best practice to reduce the scope of a security group to the minimum
access that it requires to operate, though additional consideration will be
required should any future modifications be required.

We could safely operate by allowing connections from the subnet's IP ranges on the ports
used by Active Directory, as we know this VPC will not see any further use. However,
in the interest of operating securely, we have a comparatively simple option to constrain
connectivity into the EC2 instance from just the Managed AD domain controllers. The
AWS Directory Service automatically created a security group for its domain controllers
when it deployed our Managed AD domain. We can build the security group for the EC2
instance to only allow connections from that security group ID on the ports used with
Active Directory. The values we would need in this security group are as follows:

Table 11.2 – The security group settings for the EC2 instance

408 Bringing Your Users into AWS

Let's create this security group so that we will have it available to attach to the EC2
instance when we create it. From the AWS Management Console, navigate to the EC2
service. From there, perform the following steps:

1. From the Network & security menu, select Security Groups.
2. First, we will search the list of existing security groups for the one that was created

by AWS Directory Services for the Managed AD domain controllers. Once we have
identified it, we will capture its security group ID:

Figure 11.28 – The details of the security group

3. Now that we have the security group ID value, we can proceed by creating a new
security group. After clicking on the Create button, give the security group a name,
description, and select the VPC where you want it to be deployed. Give it a name
and description that is memorable and descriptive, but most importantly, select the
VPC ID where the Managed AD is deployed:

Figure 11.29 – The name, description, and VPC ID for the security group

Using Managed AD and trusts 409

4. Next, we will set up all of the inbound rules that we outlined earlier:

Figure 11.30 – Restrictive inbound connectivity rules

5. We will leave outbound rules in their default state, and we can add tags that we
deem appropriate. Now, we can create the security group.

410 Bringing Your Users into AWS

We now have the security group, IAM role, and VPC information. Next, we need to create
the EC2 instance. The only additional requirements to create the EC2 instance are to
select a Windows Server 2016 or later AMI, to select an instance type that has sufficient
resources to run whichever version of Windows Server we choose, and to automatically
assign the instance a public IP so that we can RDP into it. We will apply the majority of
our selections during Step 3 of the instance creation, as follows:

Figure 11.31 – The EC2 instance VPC, public IP, domain join, and IAM role selections

In the preceding screenshot, where we applied the IAM role we created, we also get to
select the directory where the instance will be joined. Since this instance is meant to aid in
the administration of the corp.example.com domain, we will select that one.

We can proceed through the wizard making whatever other customizations are required
for our use case until Step 6, where we must select the security group that we created
earlier:

Figure 11.32 – Applying the security group to the EC2 instance

Using Managed AD and trusts 411

After reviewing all of our selections, we can create our instance. Once our instance is
running and we have recovered the password of the administrator, we sign in to it using
an RDP client. Although we have joined this instance to the Managed AD forest, we aren't
done yet. There are still additional configuration steps that are needed within Windows
Server itself to enable it to act as a remote domain controller management server.

Enabling AD management tools on the Managed AD management
server
We have signed in to the EC2 instance as a local administrator. Though this server is
joined to the domain, it is not configured to administrate any domain controllers within
the domain where it is joined. We will install the AD management tools needed to enable
us to administrate the domain controllers in corp.example.com, at which point we
will sign in to this server using the domain admin account of the Managed AD domain.

From the Windows Server desktop, perform the following steps:

1. Open the Start menu, and select Server Manager.
2. From the dashboard, click on Add roles and features. This opens the Add Roles

and Features Wizard.
3. We can click past the first screen and go straight to Installation Type. Make sure

that Role-based or feature-based installation is selected, and then move on.
4. On the next screen, leave the default option of Select a server from the server pool

selected, and make sure that your local server, identified by its internal IP address, is
selected. Assuming that is in order, select Next:

Figure 11.33 – Selecting the local server for feature installation

412 Bringing Your Users into AWS

5. We will skip the Server Roles by selecting next and moving straight to the Features.
Here, tick the box next to Group Policy Management. Expand the drop-down
menu next to Remote Server Administration Tools and then expand the drop-
down menu next to Role Administration Tools. From there, tick the boxes next
to AD DS and AD LDS Tools and DNS Server Tools. When those are all checked,
click on Next:

Figure 11.34 – Selecting the required AD management features

6. From the Confirm Selections screen, verify your selection and click on Install.
7. Once this has been completed, you will have the tools you need to administrate the

Managed AD domain from the Start menu:

Using Managed AD and trusts 413

Figure 11.35 – The necessary tools have been installed

With that prework done, we can now sign out of the EC2 instance and sign back in using
the username and password that we defined for the domain admin when we first set up
our Managed AD instance.

414 Bringing Your Users into AWS

Configuring the Managed AD conditional forwarder
Finally, we are ready to perform the task we mentioned that we were going to do several
sections ago, that is, to configure the conditional forwarder for the on-premises AD
domain in the Managed AD domain. Strictly speaking, this step, and all of the prework we
performed to arrive at this step, is not considered necessary. However, it was the author's
experience that the two domains could not verify their mutual trust until the conditional
forwarder was preconfigured on the Managed AD domain. Furthermore, given that it is
almost certainly an administrative necessity that we would build a management server
for our Managed AD domain in any event, we recommend defining the conditional
forwarders and all the prework required to get there, as ultimately, this will still benefit the
reader despite not being required.

With that behind us, let's define a conditional forwarder so that we can finally build the
trust:

1. After signing in to the EC2 instance using the domain administrator credentials for
the Managed AD domain, open the Server Manager dashboard.

2. In the top-level menu, open the Tools menu, and select DNS from the drop-down
menu:

Figure 11.36 – The Managed AD Domain DNS configuration options

Using Managed AD and trusts 415

3. This opens up the DNS Manager tool. We will need to connect to one of the
Managed AD domain's DNS servers. We can find those values in the Networking
Details section of our Managed AD directory in AWS Directory Services. Once you
have the IP address for one of them, enter that value and click on OK:

Figure 11.37 – Connecting to one of the Managed AD's DNS servers

4. Once connected, you can view the configuration details for the DNS server.
We want to set up a conditional forwarder, so right-click on the Conditional
Forwarder folder and select New Conditional Forwarder to launch the creation
wizard.

416 Bringing Your Users into AWS

5. We will enter the domain name and the IP address of the on-premises Active
Directory forest's DNS server. We will also tick the box to store the conditional
forwarder in the Managed AD and replicate it across DCs within that forest. Once
the values have been entered, click on OK:

Figure 11.38 – Setting up the conditional forwarder

6. Now, the conditional forwarder for the on-premises domain has been set up in our
Managed AD domain:

Figure 11.39 – The new conditional forwarder

Creating the trust between AWS Managed AD and on-premises AD 417

With the conditional forwarder set up, we are now ready to return to the AWS Directory
Service dashboard and finalize the trust between our two domains.

Creating the trust between AWS Managed AD
and on-premises AD
As we have touched so many different AWS services and created so many resources
throughout this chapter, we should take a moment to reflect upon why we went
through all of this effort. The aim of this exercise was to provide a mechanism by which
non-administrative user identity information could be made available to applications
and resources hosted inside our AWS environment. We elected to make our on-premises
Active Directory accounts available through AWS Managed AD care of a two-way
trust. Once the trust has been established, the accounts in both domains will be able
to access resources in each of the domains. Applications that use Active Directory for
user authentication or attribute lookup will be able to look inside both domains for user
information.

Now that we have done all of the necessary supporting work to get to this point, let's
configure the forest trust between the AWS Managed AD and our on-premises AD:

1. From the AWS Directory Service dashboard, click on the directory to open the
directory details screen.

2. We can view the existing trust relationships on this screen. Note that there shouldn't
be any listed yet. Click on the Add trust relationship button to begin:

Figure 11.40 – The current trust relationships for corp.example.com

418 Bringing Your Users into AWS

3. This opens a wizard where we can define the details for the new trust relationship.
We will select a Forest trust and list the example.local domain as the target
domain name:

Figure 11.41 – Setting up the trust type and domain target

4. Next, we will enter the trust password that we defined when we built the first
half of the trust from example.local to corp.example.com. By providing
the password, the on-premises domain will know the request to form a trust is
legitimate. Additionally, we will set the trust directionality to two-way to match how
we configured the trust that we set up earlier. Finally, we can see that our predefined
conditional forwarder has been found and is already populated. We are ready to
click on the Add button:

Creating the trust between AWS Managed AD and on-premises AD 419

Figure 11.42 – Defining the trust directionality, shared secret, and conditional forwarder

After that, we are taken back to the Directory details screen. Here, we can now view the
trust and its current status:

Figure 11.43 – The trust being created

420 Bringing Your Users into AWS

After it has been created, each domain will attempt to validate communications with each
other and verify that the credentials and connection information provided are valid:

Figure 11.44 – The domain is verifying the trust

Finally, if all of the validations are successful and the domains are able to communicate,
the trust is verified:

Figure 11.45 – The trust is verified and the resources and accounts can now be shared

Resources and accounts can now be shared across the domains. Applications that
need access to non-administrative user information can query this domain to find the
on-premises accounts.

Summary
In this chapter, we brought our user's identity information into AWS so that it could
be consumed by applications hosted on AWS. First, we considered how administrative
and non-administrative identity use cases differ. Then, we examined several different
solution architectures to solve the challenge of bringing user identity information into
AWS. Finally, we built a solution that enabled AWS-deployed applications to access user
information through our organization's authoritative sources. We did this by using AWS
Directory Services and building a trust between our on-premises Active Directory and a
Managed AD domain created within our AWS account.

In the next chapter, we will discuss how to use AWS-native identity services, such as
Amazon Cognito, to solve application identity use cases while still deferring to our
external IDP as the authoritative source of user identity information.

Questions 421

Questions
1. What is the difference between an administrative account and a non-administrative

account?

a. The distinction varies based upon an organization's level of risk acceptance and
compliance requirements. However, generally speaking, administrative accounts
have access to privileged resources and are subject to heightened access and audit
controls.

b. There is no difference.

c. Administrative accounts must be stored in Active Directory.
2. Why would a two-way trust allow AWS-hosted applications to access users and

groups in an on-premises Active Directory?

Further reading
To learn more on the topic:

• Tutorial: Setting up your base AWS Managed Microsoft AD test lab in AWS:
https://docs.aws.amazon.com/directoryservice/latest/admin-
guide/ms_ad_tutorial_test_lab_base.html

• Tutorial: Creating a trust from AWS Managed Microsoft AD to a self-managed Active
Directory installation on Amazon EC2: https://docs.aws.amazon.com/
directoryservice/latest/admin-guide/ms_ad_tutorial_test_
lab_trust.html

https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_tutorial_test_lab_base.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_tutorial_test_lab_base.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_tutorial_test_lab_trust.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_tutorial_test_lab_trust.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_tutorial_test_lab_trust.html

12
AWS-Hosted

Application Single
Sign-On Using an
Existing Identity

Provider
In the previous chapter, we looked at several solution architectures for non-administrative
identity use cases. We defined our non-administrative use case as wanting to expose our
organization's identity information to applications hosted on Amazon Web Services
(AWS), regardless of whether the account owner had access to the AWS backplane.
Most organizations make a distinction between their administrative accounts and their
standard user accounts, and often have distinct architectures for each of these use cases.
Typically, standard application identity needs are satisfied through the use of standard
user accounts. This chapter will focus on addressing the identity needs of AWS-hosted
applications.

424 AWS-Hosted Application Single Sign-On Using an Existing Identity Provider

Whereas we can use native AWS services such as Amazon Cognito to solve application
identity challenges on AWS, organizations often have policy or regulatory requirements
that require them to demonstrate life cycle and access controls on the user accounts
used with their applications. If an organization does not have an established pattern for
correlating Amazon Cognito accounts to their organization's authoritative source of
identity, applications and their users could sidestep important controls on access control.

Fortunately, Amazon Cognito user and identity pools allow app teams to create local
account records and correlate them to a federated identity, meaning the existing user
accounts that are federated from an existing identity provider (IdP). This model allows
cloud-deployed applications flexibility to manage their application identity while using
the centrally managed user identities that are governed by their organization. Let's explore
how to configure an application with Amazon Cognito user pools against an external,
authoritative federated provider using both Security Assertion Markup Language
2 (SAML2) and OpenID Connect (OIDC) so that we can enjoy the convenience of
Amazon Cognito for AWS-hosted applications without surrendering the governance and
life-cycle controls we have in our authoritative identity systems. Then, we will look at our
options for authorizing those users to access our AWS resources.

This chapter will address the following topics:

• Defining the use case and solution architecture

• Creating a user pool

• Connecting Amazon Cognito to an external IdP—SAML

• Connecting Amazon Cognito to an external IdP—OIDC

• Assuming roles with identity pools

Technical requirements
To get the most out of this chapter, you will need the following:

• An AWS account

• A SAML2- and System for Cross-domain Identity Management (SCIM)-
compliant IdP such as Okta Identity Cloud, PingOne, or Azure Active Directory
(Azure AD)

• A populated user directory to act as the user store for that IdP

Defining the use case and solution architecture 425

Defining the use case and solution
architecture
Before we begin connecting applications, user pools, and external IdPs, let's take a
moment and visualize the solution we intend to build for the use case we want to solve.
Once again, we have some familiar components in play for the Redbeard Identity
organization, as shown in the following diagram:

Figure 12.1 – Application references Cognito, which looks to the external IdP

In this design, the application will look to an Amazon Cognito user pool for its user
information. The user pool will act as the application's user store, and detailed attributes
will be provided at authentication time through the Amazon Cognito identity token.
Since Amazon Cognito user pools provide a standards-compliant OIDC IdP, additional
attributes can be accessed through the /userinfo endpoint as needed, if the application
is sufficiently entitled and scoped to have that access. In order to ensure that the
Redbeard Identity organization is still able to control access to its applications despite
the AWS-hosted application looking to Amazon Cognito for user authentication and
attributes, we can configure the user pool to be populated through Redbeard Identity's
strategic IdP. This way, we will be able to populate the pool with the full complement of
employee identity records, whether they have access to an AWS account or not, as well as
ensure access to AWS-hosted applications is revoked when the user is terminated inside
the external IdP's user store.

426 AWS-Hosted Application Single Sign-On Using an Existing Identity Provider

We will connect the external Redbeard Identity IdP to an Amazon Cognito user pool for
our application identity use cases for applications hosted on AWS. We will only create a
single user pool for our example, but other organizations will need to consider how they
wish to proliferate Amazon Cognito user pools within their environments. Requiring each
application team to connect to a singular user pool and auditing access on a per-client
basis improves the security posture of the deployment; however, it ultimately undermines
the speed and agility of the platform. As each AWS account can support 1,000 user pools,
it is advised that administrators enforce user pools used with enterprise applications to
ultimately federate to the enterprise's strategic IdP and leave the details of each user pool's
creation and implementation to the business application teams. This approach balances
centralized control of identity information with flexibility for application teams to design
and implement their own per-application identity requirements.

Creating a user pool
We will begin by creating a user pool that we intend to use for all of our users. This will
be a repeat of the process we went through in Chapter 5, Introducing Amazon Cognito, so
we will not be as fastidious in documenting the process, aside from the specifics of the
configuration we require to fulfill our use case. Proceed as follows:

1. From the AWS Management Console, go to Amazon Cognito and select the
Manage User Pools option.

2. Select Create a user pool. This takes us through to the wizard. We name our pool
and select the option to step through the settings, to make the changes we will need
to configure this user pool instance as we want. The process is illustrated in the
following screenshot:

Figure 12.2 – Creating a new user pool

Creating a user pool 427

3. We will make several adjustments to the Attributes section. If we want our external
IdP to be the authoritative source of user information for this user pool, we will
need to ensure we include all of the attributes from the external IdP's user store that
we will want to expose through the user pool. First, we want to make sure nobody
can be configured with an identifier (ID) that is different from what gets sent from
the external IdP, so we will set the user pool to use the email attribute as the ID. The
process is illustrated in the following screenshot:

Figure 12.3 – Setting email attribute as the user pool ID

4. We then select the required attributes that we can send from our external IdP. As
Amazon Cognito includes all of the standard attributes included as part of the
OpenID specification, including many that may not be part of our organization's
identity attribute schema, most of the available required attributes will not be
required. The process is illustrated in the following screenshot:

Figure 12.4 – Enabling required attributes that are available from the external IdP

428 AWS-Hosted Application Single Sign-On Using an Existing Identity Provider

5. We will be populating the user pool using just-in-time (JIT) provisioning from
the external IdP. As is, the handful of required attributes we have selected will not
provide rich identity data to the AWS-hosted apps that will be looking to this user
pool for that information. As such, we will need to map additional custom attributes
for each of the attributes that are available from the external IdP on the user pool
account. The process is illustrated in the following screenshot:

Figure 12.5 – Mapping additional attributes to enrich the accounts in the user pool
Once we have added all of the additional attributes, we can move on.

6. Under the Policies section, we want to disable the option for new users to sign
themselves up for a user pool account. Since we want the external IdP to be the
ultimate authentication authority for the applications that look to this pool, we
do not want to introduce an uncontrolled class of users that only exists within the
user pool. Every user within this user pool will have a corresponding record at the
external IdP. We can proceed to the next step.

Creating a user pool 429

7. We can set remaining options to whichever values best suit our needs and wrap up
the creation of the user pool.

8. Now, we can make cosmetic adjustments to our user pool's domain, including
hosting it on our own subdomain. We will finish this before we move on to the next
section of the configuration. The process is illustrated in the following screenshot:

Figure 12.6 – Setting up the Amazon Cognito domain

We now have our new Redbeard Identity pool created and our domain configured. Next,
we will build a connection between this user pool and our external IdP.

430 AWS-Hosted Application Single Sign-On Using an Existing Identity Provider

Connecting Amazon Cognito to an external IdP
– SAML
Now that we have a user pool configured with attributes that match those found in our
external IdP, we need to put some users inside it. We do not want users created directly
inside the user pool as that would bypass the external IdP as the authoritative source of
identity information for our users. To connect the external IdP with the user pool, we will
need to configure our external IdP as an IdP for the user pool, as follows:

1. From the user pool, we can select the type of federated provider we want to add
under the Federation menu. We will select the SAML option, as illustrated in the
following screenshot:

Figure 12.7 – Selecting a new IdP for the user pool

2. The configuration options are very sparse since it wants to import a metadata file.
We will come back to the form shown in the following screenshot since we will need
to build this connection on the external IdP side in order to create that metadata file
first:

Connecting Amazon Cognito to an external IdP – SAML 431

Figure 12.8 – Metadata file is required for IdP configuration

3. We can create a new SAML2 application inside the administrative control panel
of the external IdP. We need to provide some specific information for the SAML
flow to work—specifically, the assertion consumer service (ACS) Uniform
Resource Locator (URL) and the entity ID. The user pool ACS URL will always
be https://<yourDomainPrefix>.auth.<region>.amazoncognito.
com/saml2/IdPresponse, or if we are using a custom subdomain, it will be
https://<subdomain>/saml2/IdPresponse. The entity ID value will be
urn:amazon:cognito:sp:<yourUserPoolID>. The process is illustrated in
the following screenshot:

Figure 12.9 – Creating a user pool application within the external IdP

432 AWS-Hosted Application Single Sign-On Using an Existing Identity Provider

Tip
We are using Okta Identity Cloud for the Redbeard Identity external IdP. The
specific steps to configure these mappings, build a connection within the IdP,
and export the metadata will be different depending upon the IdP in use at
your organization.

4. As part of the application configuration, we will define attributes that get sent in the
assertion, how those attributes will be named, and where those attributes come from
in the IdP's user store. More importantly, we must match all of the required and
custom attributes we defined in our user pool to attributes in our external IdP's user
store, and include those values inside the assertion. It may be helpful to review that
user pool's attributes list to ensure that every attribute is accounted for and mapped
in this configuration. You can view this here:

Figure 12.10 – Our attribute mappings

Connecting Amazon Cognito to an external IdP – SAML 433

In the preceding screenshot, the attribute names on the left are how the attributes
are named within the user pool, as well as in the SAML assertion from the IdP. The
values on the right are where the IdP pulls the attribute values for each of those
attributes in the user store.

5. As this user pool is designed to represent the full population of the Redbeard
Identity organization, our IdP needs to allow everyone to access it instead of only
provisioning access based upon group membership. We will assign this RBI user
pool to everyone within the IdP to ensure that the entire organization will be
accessible through this connection.

6. After defining the attribute mappings, providing the ACS URL, and entity ID, we
can now generate the IdP metadata we need to load into our user pool. We return
to the user pool Federation settings, select a SAML federated provider, load the file,
and create a provider. The process is illustrated in the following screenshot:

Figure 12.11 – Creating a federated provider in the user pool

434 AWS-Hosted Application Single Sign-On Using an Existing Identity Provider

7. Now that we have our IdP configured, we still need to tell our user pool which
attributes from the IdP's assertion will correspond to each of the attributes within
its own local user store. We do this by going to the Attribute Mapping section
and selecting the federated provider we just created. This will be shown under the
SAML2 tab. There, we can enter the name of the attribute as it will appear in the
assertion and correlate it to an attribute within the user pool schema. We must map
all of the attributes. The process is illustrated in the following screenshot:

Figure 12.12 – Mapping assertion attributes to user pool attributes

With that, everything is now in place for the external IdP to authenticate and populate
users for the user pool. However, there are still additional steps required when connecting
applications to a user pool to ensure we constrain application access to user pool identities
provided by the external IdP and not user pool native accounts.

Connecting Amazon Cognito to an external IdP – SAML 435

Restricting application access to just the external IdP
The applications that will use this user pool will do so through an app client. App clients
can be configured to support different Open Authentication 2 (OAuth 2) profiles, scopes,
and callback Uniform Resource IDs (URIs). In addition to those configuration settings,
we have an additional setting now that we have enabled an external IdP, as illustrated in
the following screenshot:

Figure 12.13 – Option to enable different IdPs for the app client

Each app client can be configured to be used with the external IdP, the user pool, or both.
We have our app client set to use the external IdP for reasons we have already repeatedly
mentioned in this chapter. Specifically, our goal is to ensure all Redbeard Identity users are
available for applications through this user pool, but we still want to retain the external
IdP as the definitive source for user authentication, even though AWS-hosted applications
will be looking at the user pool. By disabling the native user pool capability on the client
and disabling self-registration into the user pool by users, we are able to enforce that
control.

Populating the Amazon Cognito user pool through JIT
provisioning
Finally, we have everything we need to expose our application users in AWS. We will use
an OIDC test application to verify that a user has been created in the user pool.

Tip
This demonstration uses an application that walks users through the OIDC
authorization code flow since the process is visible in a browser. Authorization
code with Proof Key for Code Exchange (PKCE) is the best flow to use for
production use cases.

436 AWS-Hosted Application Single Sign-On Using an Existing Identity Provider

8. Let's take a look at the user pool's user store at present. If we search it, there are
currently no accounts available. If we felt so inclined, we could download the
comma-separated values (CSV) template and bootstrap the user store with account
information from the external IdP's user store. For now, we will be content with JIT
provisioning. You can see the empty user store here:

Figure 12.14 – User store is empty

9. We will populate the test application with the values we need to complete a code
flow using our user pool and the app client that we defined to use the external
IdP as its authentication source. We can bootstrap the configuration by using the
Discovery Document URL. The format for that endpoint is shown in the following
code snippet:

https://cognito-IdP.{region}.amazonaws.com/{userPoolId/.
well-known/openid-configuration

This means that we have the following value for our user pool's specific metadata
endpoint:

https://cognito-IdP.us-east-1.amazonaws.com/us-east-1_
rz2HyPFjt/.well-known/openid-configuration.

Once we enter that value, we can click the USE DISCOVERY DOCUMENT button
to populate the remaining values in the configuration, besides the client and scope
information. You can see these values here:

Connecting Amazon Cognito to an external IdP – SAML 437

Figure 12.15 – Configuring the OIDC test app

10. Once set up, we fire the code flow, as follows:

Figure 12.16 – Requesting the authorization code

438 AWS-Hosted Application Single Sign-On Using an Existing Identity Provider

11. We get the authorization code and exchange it for an access token and a refresh
token, as illustrated in the following screenshot:

Figure 12.17 – ID, access, and refresh tokens

Connecting Amazon Cognito to an external IdP – SAML 439

12. Next, we verify the signature on the ID token to ensure it came from the IdP, as
illustrated in the following screenshot:

Figure 12.18 – Verifying the ID token

440 AWS-Hosted Application Single Sign-On Using an Existing Identity Provider

13. As the signature is valid, we can trust the decoded contents of the ID token. Here,
we see all of the attributes we defined at the external IdP presented through the user
pool:

Figure 12.19 – The decoded ID token with all the user attributes we defined

Connecting Amazon Cognito to an external IdP – SAML 441

14. Now that the user has authenticated through the user pool, their record has been
populated within the Amazon Cognito user pool's user store, as we can see here:

Figure 12.20 – The new user record in the user store

The user record will be updated from the authoritative IdP each time the user
authenticates to an application that uses this user pool as its IdP.

Now that we have finished setting up the inbound federation with our authoritative IdP
using SAML, we will repeat the process using OIDC.

442 AWS-Hosted Application Single Sign-On Using an Existing Identity Provider

Connecting Amazon Cognito to an external IdP
– OIDC
Amazon Cognito user pools support the use of multiple external IdPs. It would be
unusual, though not necessarily ill-advised, to connect the same external IdP to an
Amazon Cognito user pool using both SAML and OIDC. We will connect our external
IdP to OIDC in the interest of demonstrating how both protocols operate when used with
an external IdP with a user pool. We'll proceed as follows:

1. From the user pool, we can select the type of federated provider we want to add
under the Federations menu. We will select the OpenID Connect option. We can
see a marker on the SAML option indicating an existing connection, as illustrated
in the following screenshot:

Figure 12.21 – Selecting a new IdP for the user pool

2. In the following screenshot, we see the required fields for configuring the new
OIDC IdP. As we do not have all of these values yet, this means that we will need to
create a client that the Amazon Cognito user pool will use with our external IdP in
our external IdP as a first step:

Connecting Amazon Cognito to an external IdP – OIDC 443

Figure 12.22 – Required fields for a new OIDC IdP in Amazon Cognito

Tip
The steps shown for configuring the OIDC client and IdP attribute mappings
for the client in this example were performed using Okta Identity Cloud. The
experience may be different when using a different IdP platform, though the
overarching objectives remain the same.

3. We sign in to our external IdP to create a client that Amazon Cognito will use with
the IdP. First, we specify that this will be an OIDC application, as illustrated in the
following screenshot:

Figure 12.23 – Defining the application type in the external IdP

444 AWS-Hosted Application Single Sign-On Using an Existing Identity Provider

4. Next, we specify the application type. The application type will determine the
OIDC grant that this client will use. Amazon Cognito uses authorization code flow,
which is enabled in our external IdP by selecting the Web Application option, as
illustrated in the following screenshot:

Figure 12.24 – Selecting the application type in the external IdP

5. Next, we give the application a user-friendly name, apply any branding, and add
additional grants for our use case, as illustrated in the following screenshot. We are
fine with just the defaults, so we can move on:

Figure 12.25 – Client naming, branding, and options for additional flows

Connecting Amazon Cognito to an external IdP – OIDC 445

6. Next, we begin to configure some of the values that are unique to our Amazon
Cognito user pool. We need to define at least one redirect URI where the external
IdP will post the ID and access tokens upon successful user authentication. We
need to enter our Amazon Cognito user pool domain or the domain alias that we
configured for our user pool suffixed by /oauth2/IdPresponse, then we can
finish the configuration. The process is illustrated in the following screenshot:

Figure 12.26 – Defining the client's redirect URI

7. With the configuration completed, we are issued a client ID and secret that we can
use for our Amazon Cognito user pool and our external IdP. We now have all of the
values required to complete the OIDC IdP configuration in our user pool.

8. Returning to our Amazon Cognito user pool's Federations menu, let's click the
OpenID Connect provider option once again, which will take us to the following
screen. This time, we can insert all of the necessary values to complete the initial
configuration:

Figure 12.27 – Defining the external OIDC IdP in the user pool

446 AWS-Hosted Application Single Sign-On Using an Existing Identity Provider

Let's take a moment and define each of the fields. Provider name is a user-friendly name
for the OIDC provider within the Amazon Cognito user pool. Client ID and Client secret
are the ID and shared secret used to authenticate the application at the external IdP and
prevent data leakage. Attributes request method defines how the user pool should call
the OIDC IdP's /userinfo endpoint, either through GET or POST. The scopes under
Authorize scope are the scopes the client will use when calling the IdP. The openid
scope is required for all OIDC authentication transactions, so it is a required field. The
email, phone, and address scopes are also OIDC standards and provide claims for
those attributes. Any additional scopes will depend upon the IdP used and the attributes
mapped to each scope. For our external IdP, we will place all additional attributes behind
the profile scope. Issuer is the ID for the IdP and usually appears as the base URL for
the IdP. In our example here, the issuer is https://redbeardidentity.okta.com.
Assuming our IdP is compliant, the Amazon Cognito user pool will be able to determine
all of the endpoints necessary to execute the OIDC transactions by appending /.well-
known/openid-config to the Issuer URI and querying the IdP's OIDC metadata.
Finally, Identifiers are optional custom names that can be used instead of the IdP's name
in the endpoint URLs, similar to the domain aliases we set up for our user pool.

Now that we have entered all of the values, we can save the OIDC IdP as a provider within
our user pool. However, in order to ensure that the identity information that comes into
the user pool is as complete as possible, we still need to adjust the attributes that the
external IdP will send upon user authentication and map those attributes to the user
attribute schema we defined for our user pool. Let's return to our IdP to begin enriching
our claims. We'll proceed as follows:

9. From our external IdP, we open the profile editor to add additional attributes to our
profile scope, as illustrated in the following screenshot:

Figure 12.28 – Editing our profile scope's attributes

https://redbeardidentity.okta.com

Connecting Amazon Cognito to an external IdP – OIDC 447

10. For each of the additional attributes that we need to populate in our user pool, we
need to add a corresponding attribute to our profile mapping. We start by hitting
the Add Attribute button and naming the attribute to be added, as illustrated in the
following screenshot. We repeat this until we have all the attributes that are required
to fully populate our Amazon Cognito user pool:

Figure 12.29 – Adding attributes to our profile

448 AWS-Hosted Application Single Sign-On Using an Existing Identity Provider

11. Once we have all of our profile attributes listed, we then need to map them to
attributes within our external IdP's user store. Once each attribute for the RBI user
pool OIDC client's claim list has been mapped to an attribute in the external IdP's
user store for fulfillment, as illustrated in the following screenshot, our work within
the external IdP is complete:

Figure 12.30 – Mapping attributes from the user store to fulfill the claims for the user store client

12. Now, we just need to configure the corresponding mapping within the Amazon
Cognito user pool for our OIDC client. From the Cognito menu, under Federation
| Attribute mapping, we will go to the OIDC tab. There, we will add and capture
all of the attributes that will come in from the external IdP and map them to an
attribute in our user pool, as illustrated in the following screenshot. We must name
the attributes exactly as they will appear within the id_token or /userinfo
endpoint, or they will not be found and added to the Amazon Cognito user pool
directory:

Connecting Amazon Cognito to an external IdP – OIDC 449

Figure 12.31 – Mapping external IdP claims to user pool attributes

That completes the configuration between the external IdP and the Amazon Cognito
user pool. Next, we will define a new client in our user pool that will use this inbound
federation for user authentication.

450 AWS-Hosted Application Single Sign-On Using an Existing Identity Provider

Restricting application access to just the external IdP
Inside our user pool, we already created one app client that defers to the external
SAML IdP for user authentication. We could adjust that client's configuration to no
longer respect the SAML IdP and, instead, look to the OIDC IdP and reuse that client.
Alternatively, we could enable that client to use both the SAML IdP and OIDC IdP and
allow users to select their IdP at authentication time. These patterns would be acceptable
for applications where multiple organizations or sub-businesses with their own IdPs
populate and authenticate into applications serviced by a single user pool. However, for
the purposes of this example, we will assume that we want to enforce a single IdP as the
authoritative source for each application. As such, we will create a new app client to use
with our OIDC IdP configuration.

From our user pool, we can create new clients through the App clients menu. We simply
click Add another app client, give it a name, and ensure the default client values work for
our use case. The process is illustrated in the following screenshot:

Figure 12.32 – Both clients for our user pool

We now have our previous rbi_user_pool_app_client client and the new rbi_
oidc_client client available in our user pool. We can capture the new client's secret
by hitting the Show Details button. We will record this in a secure location as we will be
using it with our application momentarily.

Now that we have our rbi_oidc_client client, we need to make some adjustments to

Connecting Amazon Cognito to an external IdP – OIDC 451

its configuration to ensure it only respects inbound federation through our external OIDC
IdP. This is done by going to the App client settings menu, which will take you to the
following screen:

Figure 12.33 – App client settings for rbi_oidc_client

Once there, we will scroll down until we find the correct client. Under Enabled Identity
Providers, we need to leave all options deselected except for RBIOIDC, as this will
ensure that the app client delegates all user authentication to the authoritative OIDC IdP
instead of referring to the Amazon Cognito user pool directly. We also need to define the
callback URLs for the application that will use this client, and we must make sure that all
the correct scopes and OAuth flows are enabled. Once configured, as per the preceding
screenshot, we are ready to test user creation and app authentication using this client.

452 AWS-Hosted Application Single Sign-On Using an Existing Identity Provider

Populating the Amazon Cognito user pool through JIT
provisioning
Finally, we have everything we need to expose our application users to AWS-hosted
applications using Amazon Cognito and our authoritative OIDC IdP. We will use an
OIDC test application to verify that a user has been created in the user pool.

Tip
This demonstration uses an application that walks users through the OIDC
authorization code flow since it is visible through a browser. Authorization
code with PKCE is the best flow to use for production use cases.

Let's set up our test application, as follows:

1. From the test application's configuration page, we will enter values specific to our
user pool and the app client we configured to use our external OIDC provider
through the user pool. We should remember to use the Discovery Document URL
field for our user pool to facilitate this setup. You can see the configuration in the
following screenshot:

Figure 12.34 – Configuring the application to use the OIDC app client

Connecting Amazon Cognito to an external IdP – OIDC 453

2. Once set up, we fire the code flow, as follows:

Figure 12.35 – Requesting the authorization code

3. We are redirected to the external OIDC IdP to authenticate the user. We will sign in
as Iam Dev, as illustrated in the following screenshot, and continue:

Figure 12.36 – Signing in as Iam Dev

454 AWS-Hosted Application Single Sign-On Using an Existing Identity Provider

4. We get the authorization code from our successful sign-in, as illustrated in the
following screenshot. We can exchange it for an access token and a refresh token:

Figure 12.37 – Receiving authorization code

5. In exchange for the authorization code, we get an id_token, access_token,
and refresh_token from the user pool, as illustrated in the following screenshot:

Figure 12.38 – ID, access, and refresh tokens received from the user pool

Connecting Amazon Cognito to an external IdP – OIDC 455

6. Next, we verify the id_token signature to ensure its cryptographic signature is
valid, as illustrated in the following screenshot, thus proving the authenticity of the
claims and the user's identity:

Figure 12.39 – Verifying token signature

456 AWS-Hosted Application Single Sign-On Using an Existing Identity Provider

7. The signature is evaluated as valid, and we can decode the id_token to view the
claims contained within it. This information is what will ultimately be passed to the
application from the Amazon Cognito user pool after the user pool itself receives
the claims and creates a user record, after validating claims from the external OIDC
IdP. The process is illustrated in the following screenshot:

Figure 12.40 – Decoded claims from the user pool

8. We can now see this record in our user pool's directory, as follows:

Connecting Amazon Cognito to an external IdP – OIDC 457

Figure 12.41 – The user record created from the OIDC IdP in the user pool

If we look closely at this account, especially when compared to the one created by the
external SAML IdP for the same user, we can already see some interesting formatting
issues when using this method. Many of the standard IDs are alike, but the Amazon
Cognito IDs are formatted far differently. Whereas we may be able to tune the formatting
and data quality issues to align attributes and accounts across both the SAML and
OIDC IdPs, it is much simpler to restrict each Amazon Cognito user pool to a single,
authoritative external IdP instead of bifurcating the JIT provisioning flow from our
external IdP. The downstream applications that look to the Amazon Cognito user pools as
their source of identity are free to reference any attributes as their IDs—such as email—
but we would avoid lots of account reconciliation issues by limiting our user pools to a
single IdP if we were to deploy this model in a real organization.

Now that we have seen two methods to bring our organization's users into AWS while
retaining control through our existing authoritative systems, let's look at our options for
access control.

458 AWS-Hosted Application Single Sign-On Using an Existing Identity Provider

Assuming roles with identity pools
We have addressed our need for AWS-hosted apps to have baseline user authentication
services available using Amazon Cognito user pools. This model allows us to continue to
use our existing identity systems as the ultimate authoritative source for the users in those
applications, even when those applications take advantage of services such as Amazon
Cognito for their identity use cases. For applications with architectures that have deep
integration into AWS services, Amazon Cognito identity pools can provide authorization
to AWS resources such as Amazon Simple Storage Service (S3) buckets and Amazon
Relational Database Service (RDS) databases. This allows the application users to
indirectly interact with these services when using the application that is built to leverage
them.

Let's consider a use case where the Redbeard Identity Sales team manages its sales reports
through an application that is hosted on AWS. The reports are published to all other
members of the organization through that application. Members of the Sales organization
have full access to create, read, update, and delete reports, whereas all other Redbeard
Identity workers only have read access to those reports. The application uses an Amazon
S3 bucket as the report repository. The process is illustrated in the following diagram:

Figure 12.42 – Solutions architecture for application

We will use an Amazon Cognito identity pool and AWS Identity and Access
Management (IAM) roles to generate temporary credentials that the Amazon Cognito
users will use to interact with the reports in the Amazon S3 bucket for this use case.

Assuming roles with identity pools 459

Tip
We explored the features available through Amazon Cognito identity pools
in Chapter 5, Introducing Amazon Cognito. Therefore, we will not review
everything available in an Amazon Cognito identity pool in this chapter.

The first thing we will need to do is create an identity pool, as follows:

1. From the AWS Management Console, we go to Cognito Service, select Manage
Identity Pools, and then Create new Identity Pool. This opens a wizard with which
we will initially define the identity pool we will use with this application.

2. We will start by naming the identity pool. We will call it RBI_External_IdP.
3. Moving down to Unauthenticated identities, we will leave this unenabled to access

resources, as illustrated in the following screenshot. We only want authenticated
Redbeard Identity workers to access these resources:

Figure 12.43 – Do not allow unauthenticated identities access

460 AWS-Hosted Application Single Sign-On Using an Existing Identity Provider

4. Next, under Authentication providers, we will enter the user pool ID and the app
client ID we will use within that user pool for authenticating users, as illustrated in
the following screenshot. We will use an app client ID that exclusively looks to the
external IdP for authentication and provides information on the user's organization.
We can now move to the next step of the wizard:

Figure 12.44 – Setting our user pool and app client ID as an authentication provider for the identity pool

5. The identity pool wizard asks for a role to assign to authenticated users and
unauthenticated users. If we wish to use an existing AWS IAM role, we can, or we
can let the wizard create new roles for our identity pools. We will let the wizard
create new roles for us. We will be editing these momentarily within AWS IAM.
It will create two roles called Cognito_RBI_External_IdPAuth_Role
and Cognito_RBI_External_IdPUnauth_Role. The first is assigned as
the default role for authenticated users, and the second is the default role for
unauthenticated users. We can now complete the wizard and create our identity
pool.

6. We now have our identity pool, but we still need to do some work so that it will
fulfill our use case. Let's open it from the Cognito Identity Pool dashboard, and
then click on the Edit Identity pool link in the upper right to look at our options
for authorization.

Assuming roles with identity pools 461

7. From this Edit Identity Pool screen, let's expand the Authentication providers
section. Under Authenticated role selection, there is a dropdown that allows
us to pick how roles will be assigned to authenticated users. By default, it is set
to Use default role. However, we can configure this identity pool to assign a
distinct authenticated role based upon the value of the claim from the user pool at
authentication time. Let's set the dropdown to Choose role with rules, as illustrated
in the following screenshot:

Figure 12.45 – Defining distinct authentication roles based on claims
We can fulfill our use case by building a special role for authenticated users with the
custom:organization claim value of Sales. Any other authenticated user will
default back to the default role for authenticated users.

462 AWS-Hosted Application Single Sign-On Using an Existing Identity Provider

8. We will need to adjust the default roles created for the identity pool and create a
new role for the users with the Sales claim. Let's head to the Roles dashboard inside
AWS IAM and review the policy on these roles, starting with Cognito_RBI_
External_IdPAuth_Role.

We need to make sure that any authenticated user role for this identity pool has a
trust policy that limits who can access that role. We can see the role's trust policy
in the Trust relationship tab and by clicking the Show policy document link. The
trust policy for Cognito_RBI_External_IdPAuth_Role is provided here:

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Principal": {

 "Federated": "cognito-identity.amazonaws.com"

 },

 "Action": "sts:AssumeRoleWithWebIdentity",

 "Condition": {

 "StringEquals": {

 "cognito-identity.amazonaws.com:aud": "us-east-
1:9fbe790a-13c5-4201-8368-eedaf5083caf"

 },

 "ForAnyValue:StringLike": {

 "cognito-identity.amazonaws.com:amr":
"authenticated"

 }

 }

 }

]

}

The important section is the Condition section, which constrains this role to only
be assumed by authenticated members of the Amazon Cognito identity pool we
created in Steps 1-5 of this section.

Assuming roles with identity pools 463

9. Having validated the trust policy, let's now adjust the inline policy. Let's move to the
Permissions tab and expand the policy document. We want to edit this document
to limit access to just reading the items inside a specific Amazon S3 bucket. This
policy statement already has some basic actions that came with the default role
creation, so we will add an additional action to handle our Amazon S3 use case, as
illustrated in the following code snippet:

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Action": [

 "mobileanalytics:PutEvents",

 "cognito-sync:*",

 "cognito-identity:*"

],

 "Resource": [

 "*"

]

 },

 {

 "Effect": "Allow",

 "Action": [

 "s3:GetObject"

],

 "Resource":
["arn:aws:s3:::sharedsalesreportbucket/reports/*"]

 }

]

 }

464 AWS-Hosted Application Single Sign-On Using an Existing Identity Provider

10. Now, let's create a new role for those users who have the Sales claim. In the new role
wizard, we will select Web identity for the trusted entity type. We will then select
our Amazon Cognito user pool as the identity provider and define a condition that
only allows authenticated users to assume this role. The process is illustrated in the
following screenshot:

Figure 12.46 – Setting the trust policy for the new role

11. As we go through the wizard, we will need to create a new policy for our role. This
will pop open a separate wizard with which we can create our new user-managed
policy. We will define our new policy with the following statement, and save it as
SalesClaimsPolicy:

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Action": [

 "mobileanalytics:PutEvents",

 "cognito-sync:*",

 "cognito-identity:*"

Assuming roles with identity pools 465

],

 "Resource": [

 "*"

]

 },

 {

 "Action": ["s3:ListBucket"],

 "Effect": "Allow",

 "Resource":
["arn:aws:s3:::sharedsalesreportbucket"]

 },

 {

 "Action": [

 "s3:GetObject",

 "s3:PutObject"

],

 "Effect": "Allow",

 "Resource":
["arn:aws:s3:::sharedsalesreportbucket/reports/*"]

 }

]

 }

12. With our new policy saved, we can return to the role wizard, refresh to find
SalesClaimsPolicy, and add it to our new role, as illustrated in the following
screenshot:

Figure 12.47 – Adding the new policy to the new role

466 AWS-Hosted Application Single Sign-On Using an Existing Identity Provider

13. We will name the new role Cognito_RBI_External_IdP_SalesClaim_
Auth_Role and exit the wizard.

14. Upon opening the new role, we can validate that the trust policy is what we want.
The policy matches the trust policy of our other roles for the identity pool, as we can
see here:

Figure 12.48 – Verifying the trust policy on the new role

15. Let's return to our identity pool's configuration settings and complete the setup.
After opening up our Settings page and returning to the Authentication providers
section for our identity pool, we will change the dropdown beneath Authenticated
role selection from Use default role to Choose role with rules.

16. We will define one set of claims. The claim value must match what comes from
the user pool, so if we are looking at the organization attribute for Redbeard
Identity users, we will need to enter custom:organization as the claim name,
as that is how that claim is mapped into the user pool's directory. We will leave the
operator set to Equals and set the Value field to Sales. Under the Role dropdown,
we will select Cognito_RBI_External_IdP_SalesClaim_Auth_Role.
We will leave Role resolution at its default value, which is Cognito_RBI_
External_IdP_SalesClaim_Auth_Role. The process is illustrated in the
following screenshot:

Assuming roles with identity pools 467

Figure 12.49 – Configuring the role rules

17. Hit Save changes, and we are done.

The application now has its report functionality governed through Amazon Cognito
identity pools. There are three potential outcomes when someone attempts to access the
reports store, as we can see in the following diagram:

Figure 12.50 – Amazon Cognito-governed user flows

468 AWS-Hosted Application Single Sign-On Using an Existing Identity Provider

Any user who is not authenticated through Amazon Cognito will be unable to access
the application entirely. A user who is authenticated by the user pool but does not have
the Sales claim will assume the role that grants them temporary credentials to access the
Amazon S3 bucket where reports are stored with read-only permissions. Principals with
the claim are granted temporary credentials with an enhanced level of access. All AWS
IAM roles that can be assumed through the identity pool are restricted to principals that
were authenticated through the Amazon Cognito user pool we associated with the identity
pool, and that limitation is enforced through the roles' trust policy.

Summary
In this chapter, we explored the authentication and authorization options available to
applications hosted in AWS. We were able to provide identity information to those
applications leveraging AWS identity services, particularly Amazon Cognito, while
continuing to respect our organization's existing IAM infrastructure as the authoritative
source for access control. We showed how to delegate authentication to an external
provider using both SAML and OIDC when using an Amazon Cognito identity pool, and
then explored how we could apply authorization controls to an AWS-hosted application
by assigning distinct AWS IAM roles to Amazon Cognito identities based upon claims
from that external IdP.

And with that, we have reached the end of the book. Congratulations on making it
through! You now have a solid foundation of AWS identity knowledge that will make you
better prepared to address your cloud identity challenges moving forward.

Questions
1. Why would an organization choose to federate their managed identities into an

Amazon Cognito user pool for application identity?

a. Allows the app team to use native AWS services for identity.

b. Allows the organization to continue to enforce their compliance controls
centrally, even though applications may not look directly to their identity systems
for user information.

c. They shouldn't; they should only connect apps directly to their organization's
official IdP.

d. A and B.

Further reading 469

2. Why would we apply a trust policy that validates a principal was authenticated by
the identity pool that is requesting temporary credentials for an Amazon Cognito
user?

Otherwise, non-authenticated users could be granted access to AWS resources
within the account.

Further reading
Here are some resources for making applications SAML2- and OIDC-compliant through
relying parties:

• OpenID Foundation resources page: https://openid.net/developers/
libraries/

• Shibboleth Service Provider (SP) wiki: https://wiki.shibboleth.net/
confluence/display/SP3/Home

• SimpleSAMLphp: https://simplesamlphp.org

• OIDC playground: https://openidconnect.net

https://openid.net/developers/libraries/
https://openid.net/developers/libraries/
https://wiki.shibboleth.net/confluence/display/SP3/Home
https://wiki.shibboleth.net/confluence/display/SP3/Home
https://simplesamlphp.org
https://openidconnect.net

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

http://Packt.com
http://packt.com
http://www.packt.com

472 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Keycloak - Identity and Access Management for Modern Applications

Stian Thorgersen, Pedro Igor Silva

ISBN: 978-1-80056-249-3

• Understand how to install, configure, and manage Keycloak

• Secure your new and existing applications with Keycloak

• Gain a basic understanding of OAuth 2.0 and OpenID Connect

• Understand how to configure Keycloak to make it ready for production use

• Discover how to leverage additional features and how to customize Keycloak to fit
your needs

• Get to grips with securing Keycloak servers and protecting applications

https://www.packtpub.com/product/keycloak-identity-and-access-management-for-modern-applications/9781800562493

Why subscribe? 473

Mastering Identity and Access Management with Microsoft Azure

Jochen Nickel

ISBN: 978-1-78913-230-4

• Apply technical descriptions to your business needs and deployments

• Manage cloud-only, simple, and complex hybrid environments

• Apply correct and efficient monitoring and identity protection strategies

• Design and deploy custom Identity and access management solutions

• Build a complete identity and access management life cycle

• Understand authentication and application publishing mechanisms

• Use and understand the most crucial identity synchronization scenarios

• Implement a suitable information protection strategy

https://www.packtpub.com/product/mastering-identity-and-access-management-with-microsoft-azure-second-edition/9781789132304

474 Other Books You May Enjoy

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you've finished Implementing Identity Management on AWS, we'd love to hear
your thoughts! If you purchased the book from Amazon, please click here to go
straight to the Amazon review page for this book and share your feedback or
leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1800562284
https://packt.link/r/1800562284

Index

A
Access Analyzer 150
access control lists 146
access key management, IAM

user account 93
access key rotation

about 97
AWS CLI, using 100
Management Console, using 98, 99

access management
about 6, 112
authentication component 112
authorization component 112

access token 158
account deprovisioning 329
account linking

about 323-328
limitations 328

Active Directory Connector 282
AD management tools

enabling, on Managed AD
management server 411-413

administrative accounts
provisioning, in AWS 323-328

administrative SSO 377-379

administrative users
versus non-administrative

users 384, 385
Amazon Chime 279
Amazon CloudWatch

about 292, 293
features 294

Amazon Cognito
about 154, 284
application access, restricting

to OIDC 450, 451
application access, restricting

to SAML 435
connecting, to OpenID

Connect 442-449
connecting, to SAML 430-434
features 155
hosted UI 196-201
identity pools 155
roles, assuming with identity

pools 458-468
use cases 160-165
user pools 155

Amazon Cognito identity pools
about 159
creating 202-205

476 Index

Amazon Cognito user pools
about 155
creating 166-178
populating, through JIT provisioning

435-441, 452-457
tokens 156-158

Amazon GuardDuty 290
Amazon Relational Database

Service (RDS) 282
Amazon Resource Name (ARN) 70, 119
Amazon Web Services (AWS)

about 17
administrative accounts,

provisioning 323-328
for IAM 18

Amazon WorkDocs 279
Amazon WorkMail 279
Amazon WorkSpaces 279
app client 174
Attribute Based Access Control

(ABAC) 249
attribute transformation 329
auditing 289
authorization configuration

for AWS CLI 377-379
automatic provisioning

enabling, in AWS SSO 331-337
Availability Zones (AZs) 396
AWS access policy, types

about 113, 114, 120
access control lists 146, 147
IAM permissions boundaries 136-144
identity-based policies 120
resource-based policies 132-135
service control policies 144, 145
session policies 147

AWS accounts
access, assigning 349-354

administrative console,
signing in 354-358

connecting, to AWS Single
Sign-On (SSO) 260-270

password policy, applying to 82
AWS administrators

federation 344, 345
AWS CLI

about 36, 37
access key rotation 100
AWS organizations 230-232
AWS organizations, creating 232, 234
functional IAM user,

creating with 58, 59
IAM user access key management 95-97
installing 37
installing, on Linux 39, 40
installing, on macOS 37, 38
installing, on Windows 10 38
password policy, setting from 85-87
used, for authorization

configuration 377-379
used, for creating user pool 184-190
used, for importing users 191-196

AWS CLI configuration 40-42
AWS CLI skeleton

generating 53-57
AWS CLI template

loading 53-57
AWS CLl

about 36
auto-prompt command syntax 49-52
aws help command syntax 47, 49
command syntax, discovering 47
profiles 43-45
testing 43
using 46

AWS CloudTrail 151, 289-292

Index 477

AWS Directory Service 279
AWS-hosted applications

solution architecture, defining 425, 426
solutions, for using non-administrative

user 386-392
use case, defining 425, 426

AWS IAM
authentication 23, 24
authorization 24, 25
exploring 17, 18
signing in, with root user 26-33

AWS IAM dashboard
about 19-21
entities 20
identities 21
principals 20
resources 21-23

AWS JSON policy document
anatomy 114, 115

AWS Key Management Service 284-286
AWS Managed AD, and on-premises AD

trust, creating between 417-420
AWS Managed Microsoft AD 279-282
AWS managed policies 120-123
AWS Organizations

about 216, 217
account schema, evaluating 302, 303
business structure, evaluating 302, 303
configuring, with Management

Console 218-225
creating, in AWS CLI 232, 234
identity source, defining 316-318
in AWS CLI 230-232
member organizations, adding 234-245
Service Control Policies (SCPs),

designing 310-313
structure, designing 304

AWS Secrets Manager 286-288

AWS Simple Email Service (SES) 172
AWS SSO

about 108, 109, 212-215, 279
automatic provisioning,

enabling 331-337
AWS accounts, connecting to 260-270
configuring, from CLI 270-274
configuring, in Management

Console 245-248
credential activation 256-260
IDP, connecting to 319-323
settings 248-252
user account activation 256-260
users, creating 252-256
users, managing 252-256
using, requisites 215

Azure Active Directory (Azure AD) 344

B
Bash 65
business functions

mapping, to OUs 304-310

C
central processing unit (CPU) 345
claims 158
CLI

AWS Single Sign-On (SSO),
configuring from 270-274

used, for creating identity pool 205-208
coarse-grained authorization 346
CodeCommit 81
conditional forwarders 397-400
create, read, update, and

delete (CRUD) 107
credentials 13

478 Index

CSV files
bulk importing 181-184

customer managed policy 124, 125
customer master keys (CMK) 285

D
data events 291

E
EC2 instance

joining, to Managed AD
domain 405-411

Elastic Compute Cloud (EC2) 364
encryption 284

F
federated sign-in

with external IDP 345-349
federated user account

managing 105-108
federated users 108, 109
fine-grained access management

administrative authorization,
implementing 372-376

implementing, for administrators 359
permission sets and authorization

policies, managing 359-362
permission sets and custom

authorization policies 363-365
fine-grained authorization policies

writing 365-371
flows, Amazon Cognito user pool

reference link 157

functional IAM user, creating
with AWS CLI

about 58, 59
administrator policy, attaching 59-61
new profile, using 63, 64
password, attaching 61, 62
password, creating 61, 62
programmatic credentials,

attaching 62, 63
programmatic credentials,

creating 62, 63
scripting 64
scripting, best practices 65-67

G
governance 150

H
Health Insurance Portability and

Accountability Act (HIPAA) 279
hosted UI 196-201

I
IAM permissions boundaries 136-144
IAM user access key management

in AWS CLI 95-97
in Management Console 93-95

IAM user account
about 70
access key management 93
managing 79
MFA credential management 101
password administration 88-92
password management 81
principals 71

Index 479

securing 79
versus root user account 72

IAM user account MFA credential
management 101-105

IAM user lifecycle management 79, 80
identifiers (IDs) 378
Identity and Access Management (IAM)

about 4, 5, 344, 458
applying, to real-world use cases 6-17
for AWS 18
capabilities, evaluating 300-302

Identity as a Service (IDaaS) 346
identity-based policies

about 120
AWS managed policies 120-123
customer managed policy 124, 125
inline policies 126-132

identity federation 16
Identity Governance and

Administration (IGA) 394
identity governance and audit 10
identity management 5
identity pool

about 159
creating, with CLI 205-208

identity verification 8
IDP

connecting, to AWS SSO 319-323
infrastructure-as-a-service (IaaS) 70
inline policies 126-132
Insights events 291
integrated development

environment (IDE) 344

J
JavaScript Object Notation (JSON) 344

JIT provisioning
Amazon Cognito user pool, populating

through 435-441, 452-457
JSON policy document elements

defining 116-119
just-in-time (JIT) provisioning 107, 428

K
Keyspaces 81

L
Linux

AWS CLI, installing on 39, 40
logging 289

M
macOS

AWS CLI, installing on 37, 38
Managed AD

preparing, for trust 404
using 392, 393

Managed AD conditional forwarder
configuring 414-417

Managed AD domain
EC2 instance, joining to 405-411

Managed AD management server
AD management tools,

enabling on 411-413
Managed Microsoft AD instance

creating 394-397
Management Console

access key rotation 98, 99
AWS Single Sign-On (SSO),

configuring 245-248
IAM user access key management 93-95

480 Index

password policy, setting 82-85
used, for configuring AWS

Organizations 218-225
management events 291
manual provisioning

limitations 328
MFA credential management,

IAM user account 101
Microsoft AD 278
multi-factor authentication (MFA)

enabling, on root account 75-79

N
non-administrative users

use cases, for AWS-hosted
applications solutions 386-392

versus administrative users 384, 385
non-repudiation 289

O
Okta Identity Cloud 317
on-premises AD

preparing, for trust 397-400
on-premises AD, and AWS Managed AD

trust, creating between 400-404
Open Authentication 2 (OAuth 2) 435
OpenID Connect (OIDC)

about 156, 386
Amazon Cognito, connecting

to 442-449
OpenID Connect standard

URL 157
OU

about 216
business functions, mapping to 304-310
creating 226-230

P
password administration, IAM

user account 88-92
password management policies 81
password policy

applying, to AWS account 82
setting, from AWS CLI 85-87
setting, in Management Console 82-85

Payment Card Industry Data Security
Standard (PCI-DSS) 279

permission set 350
policies 10
policy evaluation 148, 149
policy variable 119
pools 154
profile 43
Proof Key for Code Exchange (PKCE) 435

Q
Quick Response (QR) code 77

R
Redbeard Identity 6, 301
refresh token 158
Relational Database Service (RDS) 458
REpresentational State Transfer

(REST) 107
resource-based policies 132-135
role 10
role-based access control (RBAC) 359
root account access keys

warning 74, 75
root IAM user account

managing 72
securing 72

Index 481

root user account
multi-factor authentication

(MFA), enabling on 75-79
versus IAM user account 72

root user account's password
managing 73, 74

S
Samba 4 Active Directory

Compatible Server 283
secrets management 284
Secure Token Service (STS) 107
Security Assertion Markup

Language 2 (SAML2) 344
Security Assertion Markup

Language (SAML)
Amazon Cognito, connecting

to external IdP 430-434
service control policies

about 144, 145
designing 310-313

service providers (SPs) 317
service roles 118
session policies 147
Simple Active Directory 283
Simple Storage Service (S3) 357, 458
single sign-on (SSO) 14
software-as-a-service (SaaS) providers 106
System for Cross-domain Identity

Management (SCIM) 107, 214, 387
System for Cross-domain Identity

(SCIM) provisioning
about 328
automatic provisioning, enabling

in AWS SSO 331-337
workflow 329, 330
working 337-341

T
Time-based One-Time

Passcode (TOTP) 77
trail 291
trust

about 392
creating, between AWS Managed AD

and on-premises AD 417-420
creating, between on-premises AD

and AWS Managed AD 400-404
Managed AD, preparing 404
on-premises AD, preparing 397-400

trust policies 118

U
Uniform Resource IDs (URIs) 435
Universal 2nd Factor (U2F)

security key 78
Universally Unique Identifier (UUID) 116
Universal Serial Bus (USB) 78
user access management (UAM) 351
user pool

about 155
creating 426-429
creating, with AWS CLI 184-190
users, populating 179, 180

users
importing, with CLI 191-196

V
virtual MFA device 78
Virtual Private Cloud (VPC) 146, 393
Visual Studio Code (VS Code) 344

482 Index

W
Windows 10

AWS CLI, installing on 38

Y
YAML Ain't Markup Language

(YAML) 344

	Cover
	Title page
	Copyright and Credits
	Dedication
	Foreword
	Contributors
	Table of Contents
	Preface
	Section 1:
IAM and AWS – Critical Concepts, Definitions,
and Tools
	Chapter 1: An Introduction to IAM and AWS IAM Concepts
	Technical requirements
	Understanding IAM
	IAM applied to real-world use cases

	Exploring AWS IAM
	IAM for AWS and IAM on AWS
	The AWS IAM dashboard
	Principals, users, roles, and groups – getting to know the building blocks of AWS IAM
	Authentication – proving you are who you say you are
	Authorization – what you are allowed to do and why you are allowed to do it

	Putting it all together
	Signing in with the root user

	Summary
	Questions

	Chapter 2: An Introduction to the AWS CLI
	Technical requirements
	Exploring the AWS CLI basics
	What is the AWS CLI?
	Installing the AWS CLI
	AWS CLI configuration
	Testing out the CLI
	Profiles

	Using the AWS CLI
	Discovering command syntax

	Putting it all together – creating a functional IAM user with the AWS CLI
	Attaching an administrator policy
	Creating and attaching a password
	Creating and attaching the programmatic credentials
	Using the new profile
	Scripting

	Summary
	Questions
	Further reading

	Chapter 3: IAM User Management
	Technical requirements
	What is an IAM user account?
	Principals

	Managing and securing root IAM
user accounts
	Differences between root user account and IAM user accounts

	Managing and securing IAM user accounts
	IAM user lifecycle management
	Password management
	Access key management
	MFA credential management

	Managing federated user accounts
	AWS Single Sign-On and federated users

	Summary
	Questions

	Chapter 4: Access Management, Policies, and Permissions
	Technical requirements
	What is access management?
	Introducing the AWS access policy types
	The anatomy of an AWS JSON policy document
	Defining JSON policy document elements

	Exploring the AWS policy types
	Identity-based policies
	Resource-based policies
	IAM permissions boundaries
	Service control policies
	Access control lists
	Session policies

	Policy evaluation
	Governance
	Access Analyzer
	AWS CloudTrail

	Summary
	Questions
	Further reading

	Chapter 5: Introducing
Amazon Cognito
	Technical requirements
	What is Amazon Cognito?
	Amazon Cognito user pools
	Amazon Cognito identity pools

	Amazon Cognito use cases
	User authentication for application access
	User authentication and authorization for access to application resources
	User authentication and access to AWS services exposed through an application
	Federated user authentication and access to AWS services exposed through an application

	Creating an Amazon Cognito user pool
	Populating users in a user pool
	Bulk importing with CSV files
	Creating a user pool using the AWS CLI

	Exploring the hosted UI
	Creating an Amazon Cognito identity pool
	Creating an identity pool with the CLI

	Summary
	Questions

	Chapter 6: Introduction to AWS Organizations and AWS Single Sign-On
	Technical requirements
	What is AWS SSO?
	Requirements to use AWS SSO

	AWS Organizations
	Configuring AWS Organizations using the Management Console
	AWS organizations in the AWS CLI

	Configuring AWS SSO in the Management Console
	AWS SSO settings
	Creating and managing users
	Connecting AWS accounts to AWS SSO

	Configuring AWS SSO from the CLI
	Summary
	Questions
	Further reading

	Chapter 7: Other AWS
Identity Services
	Technical requirements
	Understanding AWS Directory Service
	AWS Managed Microsoft AD
	Active Directory Connector
	Simple Active Directory
	Amazon Cognito

	Encryption and secrets management
	AWS Key Management Service
	AWS Secrets Manager

	Logging and auditing
	AWS CloudTrail
	Amazon CloudWatch

	Summary
	Questions
	Further reading

	Section 2: Implementing
IAM on AWS
for Administrative Use Cases
	Chapter 8: An Ounce of Prevention – Planning Your Administrative Model
	Technical requirements
	Evaluating the organization's current IAM capabilities
	Evaluating the business structure and account schema
	Designing the AWS organizational structure
	Mapping business functions to OUs
	Designing and applying organizational service control policies

	Summary
	Questions
	Further reading

	Chapter 9: Bringing Your Admins into the AWS Administrative Backplane
	Technical requirements
	Defining our organization's identity source
	Connecting our IDP to AWS SSO

	Provisioning administrative accounts
in AWS – account linking
	Limitations of manual provisioning and
account linking

	Provisioning administrative accounts
in AWS – SCIM provisioning
	How SCIM works
	Enabling automatic provisioning in AWS SSO
	SCIM in action

	Summary
	Questions
	Further reading
	Code samples

	Chapter 10: Administrative Single Sign-On to the AWS Backplane
	Technical requirements
	Why use federation for AWS administrators?
	Federated sign-in using an external IDP

	Assigning access to AWS accounts
	Signing in to the administrative console

	Implementing fine-grained access management for administrators
	Permission sets and managed authorization policies
	Permission sets and custom authorization policies for fine-grained access control
	Putting it all together for administrative authorization

	Administrative SSO using the AWS CLI
	Summary
	Questions
	Further reading

	Section 3: Implementing
IAM on AWS
for Application
Use Cases
	Chapter 11: Bringing Your Users into AWS
	Technical requirements
	Distinguishing administrative users from non-administrative users
	Solutions to non-administrative user use cases for apps on AWS
	Using Managed AD and trusts
	Creating a Managed Microsoft AD instance
	Preparing the on-premises AD for a trust – conditional forwarders
	Creating the trusts between on-premises and AWS Managed AD
	Preparing the Managed AD for a trust – conditional forwarders

	Creating the trust between AWS Managed AD and on-premises AD
	Summary
	Questions
	Further reading

	Chapter 12: AWS-Hosted Application Single Sign-On Using an Existing Identity Provider
	Technical requirements
	Defining the use case and solution architecture
	Creating a user pool
	Connecting Amazon Cognito to an external IdP – SAML
	Restricting application access to just the external IdP
	Populating the Amazon Cognito user pool through JIT provisioning

	Connecting Amazon Cognito to an external IdP – OIDC
	Restricting application access to just the external IdP
	Populating the Amazon Cognito user pool through JIT provisioning

	Assuming roles with identity pools
	Summary
	Questions
	Further reading

	About Packt
	Other Books You May Enjoy
	Index

