

Learn Ansible

Automate your cloud infrastructure, security configuration,
and application deployment with Ansible

Russ McKendrick

Learn Ansible
Copyright © 2024 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Preet Ahuja
Publishing Product Manager: Suwarna Rajput
Book Project Manager: Ashwini Gowda
Senior Editor: Runcil Rebello
Technical Editor: Arjun Varma
Copy Editor: Safis Editing
Proofreader: Runcil Rebello
Indexer: Subalakshmi Govindhan
Production Designer: Ponraj Dhandapani
DevRel Marketing Coordinator: Rohan Dobhal

First published: July 2018

Second edition: June 2024

Production reference: 1080524

Published by Packt Publishing Ltd.

Grosvenor House
11 St Paul’s Square
Birmingham
B3 1RB, UK

ISBN 978-1-83508-891-3

www.packtpub.com

http://www.packtpub.com

Contributors

About the author
Russ McKendrick is an experienced DevOps practitioner and system administrator with a passion
for automation and containers. He has been working in IT and related industries for the better part of
30 years. During his career, he has had responsibilities in many different sectors, including first-line,
second-line, and senior support in client-facing and internal teams for small and large organizations.

He works almost exclusively with Linux, using open source systems and tools across dedicated hardware
and virtual machines hosted in public and private clouds at Node4, where he is the practice manager
(site reliability engineering (SRE) and DevOps). He also buys way too many records!

I would like to thank my family and friends for their support and for being so understanding about all of
the time I have spent in front of the computer writing. I would also like to thank my colleagues at Node4
and our customers for their kind words of support and encouragement throughout the writing process.

About the reviewer
Luca Berton is a seasoned Ansible Automation expert and a pivotal member of the Red Hat Ansible
engineer team, where he honed his skills for three years. He is the celebrated author of several Ansible
best-selling books. His infrastructure hardening and automation expertise is backed by over 15 years
of experience integrating with Kubernetes and Terraform.

Luca created the Ansible Pilot website and YouTube channel. His passion for open source solutions is
evident through his active participation in community events, where he shares extensive knowledge
to help others excel in automation.

Luca continues to contribute to the technological community, driving innovations and simplifying
automation challenges for professionals around the globe.

Preface xi

Part 1: Introducing, Installing,
and Running Ansible

1
Installing and Running Ansible 3

Technical requirements 3
My story: part one 4
Ansible’s story 5
What is Ansible? 5
Ansible, the software 6

Ansible versus other tools 7
Declarative versus imperative 7
Configuration versus orchestration 10
Looking at some code 11

My story: part two 12

Installing and running Ansible 13
Installing on macOS 13
Installing on Linux 18
Installing on Windows 11 20

Launching a virtual machine 23
An introduction to playbooks 25
Host inventories 25
Playbooks 28

Summary 36
Further reading 36

2
Exploring Ansible Galaxy 37

Technical requirements 37
The Ansible release life cycle 38
The life cycle of a release 39

Introduction to Ansible Galaxy 41
What is a role? 42

Publishing to and using Ansible
Galaxy roles 46
Publishing your roles to Ansible Galaxy 46
Using roles from Ansible Galaxy 50

Ansible collections 52

Table of Contents

Table of Contentsvi

Ansible Galaxy commands 53
Summary 55

Further reading 55

3
The Ansible Commands 57

Inbuilt commands 57
Ansible 58
The ansible-config command 64
The ansible-console command 65
The ansible-inventory command 67
What is ansible-pull? 68

Using the ansible-vault command 69

Third-party commands 75
The ansible-inventory-grapher command 75

Summary 77
Further reading 77

Part 2: Deploying Applications

4
Deploying a LAMP Stack 81

Technical requirements 81
The playbook structure 82
The LAMP stack 83
The common role 84
The Apache role 88

The MariaDB role 93
The PHP role 99

The LAMP playbook 102
Summary 106
Further reading 107

5
Deploying WordPress 109

Technical requirements 110
Preinstallation tasks 110
The stack_install role 111
Enabling the NGINX repository 111

The stack_config role 114
WordPress system user 114
NGINX configuration 115

The wordpress role 123
Some facts 123
WordPress CLI installation 123
Creating the WordPress database 124
Downloading, configuring, and installing
WordPress 125
WordPress plugins installation 127

Table of Contents vii

Running the WordPress playbook 129
Summary 133

Further reading 134

6
Targeting Multiple Distributions 135

Technical requirements 135
Debian and Red Hat 136
Multi-distribution considerations 137
The Stack Install role 137
The Stack Config role 138
The WordPress role 139

Adapting the roles 139

Operating system family 139
The Stack Install role 142
The Stack Config role 144
The WordPress role 147

Running the playbook 147
Summary 149
Further reading 149

7
Ansible Windows Modules 151

Technical requirements 151
Launching a Windows server in Azure 152
Ansible preparation 156
The ping module 158
The setup module 159

The Windows Playbook roles 159
Enabling Windows features 160

Creating a user 163
Installing applications using Chocolatey 164
Information role 165

Running the Playbook 165
Summary 167
Further reading 168

Part 3: Network and Cloud Automation

8
Ansible Network Modules 171

Manufacturer and device support 171
The collections 172

Summary 178

Further reading 178

Table of Contentsviii

9
Moving to the Cloud 179

Technical requirements 179
An introduction to Microsoft Azure 179
Launching instances in Microsoft
Azure 180
Preparing Ansible for Microsoft Azure 181
Reviewing the variables 182
The resource group task 185

The networking tasks 186

Bootstrapping WordPress 193
The site and host environment files 194
The secrets role 194
Other changes 195

Running the playbook 196
Summary 197

10
Building Out a Cloud Network 199

Technical requirements 200
An introduction to AWS 200
Amazon VPC overview 201
Creating an access key and secret 202
Getting Ansible ready for targeting
AWS 203
The AWS playbook 204
The playbook variables 204

The VPC role 206
The subnets role 207
The gateway role 210
The security group’s role 211

Running the playbook 214
Summary 216
Further reading 216

11
Highly Available Cloud Deployments 217

Technical requirements 218
Planning the deployment 218
Costing the deployment 219
WordPress considerations and high availability 219

The Playbook 221
The variables 222
EC2 configuration 225

The Playbook roles 228

Running the Playbook 247
Playbook run highlights 247

Terminating all the resources 254
Summary 257

Table of Contents ix

12
Building Out a VMware Deployment 259

Technical requirements 259
An introduction to VMware 259
The VMware REST modules 260

VMware REST appliance modules 261
VMware REST content modules 265
vCenter modules 265

Summary 268

Part 4: Ansible Workflows

13
Scanning Your Ansible Playbooks 271

Technical requirements 271
Why scan your playbooks? 272
Docker overview and installation 272
Installing Docker Desktop on macOS 272
Installing Docker Desktop on Windows 273
Installing Docker Desktop on Linux 273

Exploring Checkov 273

Exploring KICS 279
Running the scan 279
Reviewing the results 280
Re-running the scan 285
Output files 285

Summary 287
Further reading 287

14
Hardening Your Servers Using Ansible 289

Technical requirements 289
The scanning tools 290
OpenSCAP 290
WPScan 292
OWASP ZAP 292

The playbook 292
The common role 294
The Docker role 294

The WordPress roles 295
The scan role 295
The OpenSCAP role 298
Running the playbook 307

Summary 309

Table of Contentsx

15
Using Ansible with GitHub Actions and Azure DevOps 311

Technical requirements 311
GitHub Actions 312
Preparation 312
Understanding the GitHub Action workflow 317
Committing the code 323

Azure DevOps 327

Creating and configuring our project 327
Cloning the repository and uploading the code 329
The Azure DevOps pipeline 330

Summary 339
Further reading 340

16
Introducing Ansible AWX and Red Hat Ansible Automation Platform 341

Technical requirements 341
Red Hat Ansible Automation
Platform versus AWX 342
Ansible AWX 343
Deploying and configuring the Ansible AWX
Operator 343
Setting up our playbook 348

Running our playbooks 354
Terminating the Kubernetes cluster 356
Playbook considerations 357
Ansible AWX’s advantages and disadvantages 359

Summary 360
Further reading 361

17
Next Steps with Ansible 363

Technical requirements 363
Integrating with third-party services 363
Slack 363
Other integrations 371
Summary of third-party services 373

The Ansible playbook debugger 373

Debugging the task 374
Summary of the Ansible debugger 376

Some real-world examples 377
Automating a complex deployment 377
Combining Ansible and other tools 378

Summary 381

Index 383

Other Books You May Enjoy 394

Preface

Ansible, an open source orchestration tool, has experienced significant growth and is now a comprehensive
orchestration and configuration management solution under Red Hat’s ownership. This book will
guide you through writing playbooks using core, vendor-supplied, and community Ansible modules
to deploy various systems, from simple LAMP stacks to highly available public cloud infrastructures.

By the end of this book, you will have acquired the following skills:

• A solid foundational knowledge of Ansible and its various supporting tools

• The ability to write your own custom playbooks to configure both Linux and Windows servers

• The ability to define highly available cloud infrastructures using code, enabling the easy
distribution of your infrastructure configuration alongside your code base

• An understanding of how to use Ansible Galaxy, use community-contributed roles, and create
and contribute your own roles

• The ability to run your Ansible playbooks using GitHub Actions and Azure DevOps

• The ability to deploy and configure Ansible AWX, a web-based interface for Ansible

• Various skills gained from exploring several use cases demonstrating how to integrate Ansible
into your daily tasks and projects

You will have a solid understanding of how to incorporate Ansible into your everyday responsibilities
as a system administrator, developer, or DevOps practitioner.

Who this book is for
This book is written for people in the following roles who want to streamline their workflows by
leveraging Ansible’s capabilities:

• System administrators: This book will help you automate repetitive tasks and ensure consistent
configurations across your systems if you manage and maintain servers, networks, and other
infrastructure components.

• Developers: As a developer, you can benefit from this book by learning how to use Ansible
to provision and manage development environments, deploy applications, and integrate
infrastructure-as-code practices into your development workflow.

Prefacexii

• DevOps practitioners: If you are a DevOps practitioner responsible for bridging the gap
between development and operations, this book will provide the tools and knowledge to create
efficient, repeatable, and scalable deployment processes using Ansible.

No prior experience with Ansible is necessary to get started with this book.

What this book covers
Chapter 1, Installing and Running Ansible, discusses the problems Ansible was developed to solve.
After covering its background, we will work through installing Ansible on macOS and Linux. We will
also discuss why there is no native Windows installer and cover installing Ansible on the Windows
Subsystem for Linux.

Chapter 2, Exploring Ansible Galaxy, discusses Ansible Galaxy, an online repository of community
and vendor-contributed roles. In this chapter, we will discover some of the best roles available, how
to use them, and how to create your role and have it hosted on Ansible Galaxy.

Chapter 3, The Ansible Commands, explains how we examine Ansible commands before writing and
executing more advanced playbooks. Here, we will cover using the tools that make up Ansible.

Chapter 4, Deploying a LAMP Stack, discusses deploying a complete LAMP stack using the various
core modules that ship with Ansible. We will target the Ubuntu machine that is running locally.

Chapter 5, Deploying WordPress, expands on the LAMP stack playbook, which we deployed in the
previous chapter as our base. We will use Ansible to download, install, and configure WordPress – a
popular CMS.

Chapter 6, Targeting Multiple Distributions, explains how we will adapt the playbook from the previous
chapter so it can run against both Debian, which we have been targeting so far, and Red Hat-based
Linux distributions.

Chapter 7, Ansible Windows Modules, explores the ever-growing collection of Ansible modules that
support and interact with Windows-based servers.

Chapter 8, Ansible Network Modules, discusses network modules available from various vendors through
Ansible Galaxy. Due to their requirements, we will only discuss the functionality of these modules.

Chapter 9, Moving to the Cloud, discusses how we can move from using local virtual machines to using
Ansible to deploy network and compute resources in Microsoft Azure. Then, we will use the playbook
from the previous chapters to install and configure a LAMP stack and WordPress.

Chapter 10, Building Out a Cloud Network, since we will have just launched a virtual machine in
Microsoft Azure, moves on to Amazon Web Services; however, before launching any compute instances,
we must create a network in which they can be hosted.

Preface xiii

Chapter 11, Highly Available Cloud Deployments, continues our Amazon Web Services deployment.
We will start deploying compute and storage services into the network we created in the previous
chapter, and by the end of the chapter, we will have a highly available WordPress installation.

Chapter 12, Building Out a VMware Deployment, discusses the modules that allow you to interact
with the various components of a typical VMware installation.

Chapter 13, Scanning Your Ansible Playbooks, provides practical examples of running two third-party
tools, Checkov and KICS. These tools are designed to scan your Ansible playbook code for common
mistakes and potential security problems.

Chapter 14, Hardening Your Servers Using Ansible, explains how to install and execute OpenSCAP.
We will also automatically generate remediation Ansible playbooks and Bash scripts to resolve any
problems found during the scan. We will also look at running WPScan and OWASP ZAP scans against
the resources deployed using the playbooks from previous chapters.

Chapter 15, Using Ansible with GitHub Actions and Azure DevOps, will examine running our Ansible
playbook books from these two CI/CD platforms. As neither has native Ansible support, we will
discuss how to install and run Ansible to get the most out of the platforms.

Chapter 16, Introducing Ansible AWX and Red Hat Ansible Automation Platform, examines two
web-based interfaces: we will discuss the commercial Red Hat Ansible Automation Platform and then
take a deep dive into deploying and configuring the open source Ansible AWX.

Chapter 17, Next Steps with Ansible, discusses how Ansible can be integrated into our day-to-day
workflows, from interacting with collaboration services to troubleshooting your playbooks with
the built-in debugger. We will also look at real-world examples of how I have used Ansible across
organizations I have worked with.

To get the most out of this book
To get the most out of this book, I assume that you have the following:

• Some experience of using the command line on both Linux-based machines and macOS

• A basic understanding of how to install and configure services on a Linux server

• A working knowledge of services and languages such as Git, YAML, and virtualization

Software/hardware covered in the book Operating system requirements

Ansible macOS, Linux, or Windows via Subsystem for Linux

Canonical Multipass macOS, Linux, or Windows

Various CLIs for public cloud providers macOS, Linux, or Windows via Subsystem for Linux

Prefacexiv

If you are using the digital version of this book, we advise you to type the code yourself or access
the code from the book’s GitHub repository (a link is available in the next section). Doing so will
help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at http://github.com/
PacktPublishing/Learn-Ansible-Second-Edition. If there’s an update to the code,
it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “As you
can see, it is calling a variable called {{ apache_packages }}, which is defined in roles/
apache/defaults/main.yml as follows.”

A block of code is set as follows:

- name: "Install apache packages"
 ansible.builtin.apt:
 state: "present"
 pkg: "{{ apache_packages }}"

When we wish to draw your attention to a particular part of a code block, the relevant lines or items
are set in bold:

- name: "Install apache packages"
 ansible.builtin.apt:
 state: "present"
 pkg: "{{ apache_packages }}"

Any command-line input or output is written as follows:

$ ansible-playbook -i hosts site.yml

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words
in menus or dialog boxes appear in bold. Here is an example: “You can leave the remaining options
at their defaults and then click on the Create repository button at the end of the form.”

http://github.com/PacktPublishing/Learn-Ansible-Second-Edition
http://github.com/PacktPublishing/Learn-Ansible-Second-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface xv

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

Share Your Thoughts
Once you’ve read Learn Ansible, we’d love to hear your thoughts! Please click here to go straight to
the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

mailto:customercare%40packtpub.com?subject=
mailto:customercare%40packtpub.com?subject=
http://www.packtpub.com/support/errata
mailto:copyright%40packt.com?subject=
mailto:authors.packtpub.com?subject=
https://packt.link/r/1835088910
https://packt.link/r/1835088910

xvi

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781835088913

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781835088913

Part 1: Introducing, Installing,
and Running Ansible

In this part, we will dive into the world of Ansible and explore the fundamental concepts. You will learn
how to install Ansible on various operating systems and familiarize yourself with the basic commands
and structure of Ansible playbooks. By the end of this part, you will have a solid foundation to build
upon as we delve deeper into automating tasks with Ansible.

This part has the following chapters:

• Chapter 1, Installing and Running Ansible

• Chapter 2, Exploring Ansible Galaxy

• Chapter 3, The Ansible Commands

1
Installing and Running Ansible

Welcome to this, our first chapter in the second edition of Learn Ansible. In this chapter, we will look
at a few topics to introduce you to Ansible; these topics will familiarize you with the basics of what
Ansible is and give you a few different use cases.

By the end of the chapter, you will have gotten hands-on with Ansible and covered the following:

• Who is behind Ansible?

• The differences between Ansible and other tools

• The problem Ansible solves

• How to install Ansible on macOS and Linux

• Running Ansible on Windows 11 using the Windows Subsystem for Linux

• Launching a test virtual machine

• An introduction to playbooks

Before we start talking about Ansible, let’s quickly discuss my background, how I came to be writing
a book about Ansible, and what you will need to install and run Ansible on your system.

Technical requirements
Later in this chapter, we will install Ansible, so you will need a machine capable of running it. I will go
into more detail about these requirements in the second half of the chapter. We will also use Multipass
to launch a virtual machine locally. A section walks through installing Multipass and downloading
an Ubuntu image to use the virtual machine’s base, which is a download of a few hundred MBs. You
can find all of the code used in this chapter at https://github.com/PacktPublishing/
Learn-Ansible-Second-Edition/tree/main/Chapter01.

https://github.com/PacktPublishing/Learn-Ansible-Second-Edition/tree/main/Chapter01
https://github.com/PacktPublishing/Learn-Ansible-Second-Edition/tree/main/Chapter01

Installing and Running Ansible4

My story: part one
I have been working with servers, primarily ones that serve web pages, since the late 90s, and the
landscape is unrecognizable. Here is a quick overview of my first few years running servers to give
you an idea of how I used to operate my early servers.

Like most people at the time, I started with a shared hosting account where I had very little control
over anything on the server side when the website I was running outgrew shared hosting due to the
forum, which made up part of the site’s popularity. I moved to a dedicated server, where I thought
I could flex my future system administrator muscles, but I was wrong.

The server I got was a Cobalt RaQ 3; this was a 1U server appliance that was ahead of its time. However,
I did not have root-level access to the machine, and I had to use the web-based control panel for
everything I needed to do. Eventually, I got a level of access where I could access the server using
Telnet; I now know this isn’t good, but it was the early days, and SSH was considered cutting-edge.
I started to teach myself how to be a system administrator by making changes in the web control panel
and looking at the changes to the configuration files on the server.

After a while, I changed servers and, this time, opted to forego any web-based control panel and use
what I had learned with the Cobalt RaQ to configure my first proper Linux, Apache, MySQL, PHP (or
LAMP for short) server by using the pages of notes I had made. I had created runbooks of one-liners
to install and configure the software I needed and numerous scribbles to help me investigate problems
and keep the lights on.

After I got my second server for another project, I realized that was probably a good time to type
out my notes so that I could copy and paste them when I needed to deploy a server; the timing of
this couldn’t have been better as it was a few months after making these notes that my first server
failed—my host apologized and replaced it with a higher-specification but completely fresh machine
with an updated operating system.

So, I grabbed my Microsoft Word file containing my notes and copied and pasted each instruction,
making tweaks based on what I needed to install on the upgraded operating system. Several hours
later, I had my server up and running and my data restored.

One of the critical lessons I learned, other than that there is no such thing as too many backups, was
not to use Microsoft Word to store these types of notes; the Linux command line doesn’t care if your
notes are all nicely formatted with headings and courier font for the bits you need to paste in. It does
care about proper syntax, and Word had very kindly autocorrected and formatted all of my notes for
print, meaning that not only did I have the pressure of having to deploy a new server and restore the
backups I had thankfully been taking each day but also to try and debug my notes as I was doing so.

Because of this, I made a copy of the history file on the server and transcribed my notes in plaintext.
These notes provided the base for the next few years as I started to script parts of them, mainly the
bits that didn’t require any user input.

Ansible’s story 5

These scraps of commands, one-liners, and scripts were all adapted through Red Hat Linux 6; note
the lack of the word Enterprise appended to the operating system’s name there, all the way through
to CentOS 3 and 4.

Things got complicated when I changed roles; I stopped consuming services from a web hosting
company and started working for one. Suddenly, I was building servers for customers who may have
different requirements than my projects—each server was different.

From here, I started working with Kickstart scripts, PXE boot servers, gold masters on imaging
servers, virtual machines, and bash scripts that started prompting information on the system being
built. I had also moved from only needing to worry about maintaining my servers to having to log in
to hundreds of different physical and virtual servers, from ones that belonged to the company I was
working for to customer machines.

Over the next few years, my single text file quickly morphed into a complex collection of notes, scripts,
precompiled binaries, and spreadsheets of information that only made sense to me; if I am being
honest, I ended up making myself quite a significant single point of failure.

While I had moved to automate quite a few parts of my day-to-day work using bash scripts and
stringing commands together, I found that my days were still very much filled with running all these
tasks manually and working a service desk dealing with customer-reported problems and queries.

My story is typical of many people, while the operating systems used will probably be considered
ancient. The entry point of using a GUI and moving to the command line while keeping a scratch pad
of common commands is quite a common scenario I have heard when working with other system
administrators and even modern-day DevOps practitioners.

So now that you know a little about my background, let’s talk about Ansible.

Ansible’s story
Let’s take a quick look at who developed Ansible and what it actually is.

What is Ansible?

Before we discuss how Ansible started, we should quickly discuss the origin of the name. The term
“Ansible” was penned by science fiction novelist Ursula K. Le Guin; it was first used in her novel
Rocannon’s World, which was first published in 1966. In the story’s context, an Ansible is a fictional
device that sends and receives messages faster than light.

Note
In 1974, Ursula K. Le Guin’s novel The Dispossessed: An Ambiguous Utopia was published. This
book features the development of the Ansible technology by exploring the (fictional) details of
the mathematical theory that would make such a device possible.

Installing and Running Ansible6

The term has since been used by several other notable authors within the genre to describe communication
devices that are capable of relaying messages over interstellar distances, which, as you will discover
throughout the course of the book, is quite an apt description of the software itself.

Ansible, the software

Ansible was initially developed by Michael DeHaan, who was also the author of Cobbler, which was
developed while DeHaan worked for Red Hat.

Note
Cobbler is a Linux installation server that allows you to deploy servers within your network
quickly; it can help with DNS, DHCP, package updates and distribution, virtual machine
deployment, power management of physical hosts, and also the handoff of a newly deployed
server, be it physical or virtual, to a configuration management system.

DeHaan left Red Hat and worked for companies such as Puppet, which was a good fit since many
users of Cobbler used it to hand off to a Puppet server to manage the servers once they had been
provisioned, myself included.

A few years after leaving Puppet, DeHaan made the first public commit to the Ansible project on
February 23, 2012. The original README file gave quite a simple description that laid the foundation
for what Ansible would eventually become:

Ansible is an extra-simple Python API for doing ‘remote things’ over SSH. As
Func, which I co-wrote, aspired to avoid using SSH and have its own daemon

infrastructure, Ansible aspires to be quite different and more minimal, but still able
to grow more modularly over time.

Since that first commit, and at the time of writing, there have been over 53,000 commits by 5,000
contributors, and the project has over 58,000 stars on GitHub.

In 2013, the project had grown. Ansible, Inc. was founded to offer commercial support to users who
had relied on the project to manage their infrastructure and server configuration, whether physical,
virtual, or hosted on public clouds.

Out of the formation of Ansible, Inc., which received $6 million in series A funding, came the
commercial Ansible Tower, which acted as a web-based frontend where end users could consume
role-based access to Ansible services.

Then, in October 2015, Red Hat announced they would acquire Ansible for $150 million.

In the announcement, Joe Fitzgerald, who was vice president, Management, at Red Hat at the time of
the acquisition, stated, “Ansible is a clear leader in IT automation and DevOps, and helps Red Hat take
a significant step forward in our goal of creating frictionless IT.”

Ansible versus other tools 7

During this book, you will find that the statements in the original README file and Red Hat’s statement
when acquiring Ansible still ring true.

Before we look at rolling our sleeves up and installing Ansible, which we will do later in this chapter,
we should look at some of its core concepts.

Ansible versus other tools
If you look at the design principles in the first commit compared to the current version, you will notice
that while there have been some additions and tweaks, the core principles remain pretty much intact:

• Agentless: Everything should be managed by the SSH daemon using the WinRM protocol in
the case of Windows machines or API calls—there should be no reliance on custom agents
or additional ports that need to be opened or interacted with on the target host. The machine
running Ansible should need line of sight of the target resource network-wise.

• Minimal: You should be able to manage new remote machines without installing any new
software on the target host; each Linux target host will typically have at least SSH and Python
installed as part of a minimal installation, which is all needed to run Ansible.

• Descriptive: You should be able to describe your infrastructure, stack, or task in a language
readable by machines and humans.

• Simple: The setup processes and the learning curve should be simple and intuitive.

• Easy to use: It should be the most accessible IT automation system ever.

A few of these principles make Ansible quite different from other tools. Let’s examine the fundamental
difference between Ansible and other tools, such as Puppet and Chef.

Declarative versus imperative

When I started using Ansible, I had already implemented Puppet to help manage the stacks on the
machines I was managing. As the configuration became increasingly complex, the Puppet code
became highly complicated. This was when I started looking at alternatives, and some fixed some of
the issues I was facing.

Puppet uses a custom declarative language to describe the configuration. Puppet then packages this
configuration as a manifest that the agent running on each server then applies.

Using declarative language means that Puppet, Chef, and other configuration tools, such as CFEngine,
all operate using the principle of eventual consistency, meaning that eventually, after a few runs of the
agent, your desired configuration would be in place.

Installing and Running Ansible8

On the other hand, Ansible is an imperative language that, rather than just defining the end state of
your desired outcome and letting the tool decide how it should get there, you also define the order in
which tasks are executed to reach the state you have defined.

The example I use is as follows. We have a configuration where the following states need to be applied
to a server:

1. Create a group called Team.

2. Create a user Alice and add her to the group Team.

3. Create a user Bob, and add him to the group Team.

4. Give the user Alice escalated privileges.

This may seem simple; however, when you execute these tasks using declarative language, you may,
for example, find that the following happens:

Figure 1.1 – An overview of what happens with the declarative run

So, what has happened here? Our tool has executed the tasks during run 1 in the order of 2, 1, 3,
and 4, meaning that the user Alice could not be created when the first task ran because the group
Team did not exist.

Ansible versus other tools 9

However, as the group Team was created before the user Bob was created, Bob’s user was created
without any errors, and the final task, adding escalated privileges to the user Alice, failed because
no user called Alice existed on the system for the escalated privileges to be applied to.

During run 2, the tasks were executed in the same order as run 1, but this time as a group called
Team existed, the user Alice was created, and because Alice was present, that user was given
escalated privileges.

No changes were needed during run 3 as everything was as expected; that is, consistent.

Each subsequent run would continue until there was either a change to the configuration or on the
host itself, for example, if Bob had annoyed Alice and she used her escalated privileges to remove
the user Bob from the host. When the agent subsequently runs, Bob will be recreated as that is still
our desired configuration, no matter what access Alice thinks Bob should have.

If we were to run the same tasks using an imperative language, then the following should happen:

Figure 1.2 – An overview of what happens with the imperative run

The tasks are executed in the order we defined them, meaning that the Team group is created, the
Alice and Bob users are added, and the escalated privileges to the Alice user are applied.

As you can see, both ways get to our final configuration and enforce our desired state. With the tools
that use declarative language, it is possible to declare dependencies, meaning we can engineer the
issue we encountered when running the tasks.

However, this example only has four steps; what happens when you have a few hundred steps that are
launching servers in public cloud platforms and then installing software that needs several prerequisites?

Installing and Running Ansible10

This is the position I found myself in before I started to use Ansible. Puppet was great at enforcing
my desired end configuration; however, to get there, I had to worry about building so much logic into
my manifests to arrive at my desired state. In Puppet, this logic was using a function that allowed me
as the end user to define my dependencies.

In the example we used, I would have had to define that users could only be created once the block
of code that created the group had been run and the resource was present.

The more complex my code got, the more I fought the way the declarative tools wanted to run and
the longer each execution would take because the tool had to consider my logic, which was a little
hit and miss.

This became more annoying, as each successful run was getting close to taking about 40 minutes
to complete. If I had dependency issues, I had to start from scratch with each failure and change to
ensure that I was fixing the problem and not because things were starting to become consistent, so
that typically meant having to redeploy a resource rather than running subsequent runs of my code.
This made development very time-consuming, especially when it came to debugging the code, which
sometimes involved trial and error.

This is not a great position to find yourself in when you are on the clock and must meet customer deadlines.

Configuration versus orchestration

Another critical difference between Ansible and the other tools it is commonly compared to is that
most of these tools have their origins as systems designed to deploy and police a configuration state.

They typically require an agent to be installed on each host; that agent discovers some information
about the host it is installed on, then calls back to a central server saying, “Hi, I am server XYZ. Could
I please have my configuration?” The server then decides what the configuration for the server looks
like and sends it across to the agent, which then applies it. Typically, this exchange takes place every
15 to 30 minutes—this is great if you need to enforce a configuration on a server.

However, the way that Ansible has been designed to run allows it to act as an orchestration tool; for
example, you can run it to launch a server in your VMware environment, and once the server has
been launched, it can then connect to your newly launched machine and install a LAMP stack. Then,
it never has to connect to that host again, meaning that all we are left with is the server, the LAMP
stack, and nothing else, other than maybe a few comments in files to say that Ansible added some
lines of configuration, which should be the only sign that Ansible was used to configure the host.

Ansible versus other tools 11

Looking at some code

Before we finish this part of the chapter and move on to installing Ansible, let’s quickly look at examples
of some actual code. The following bash script installs several RPMs using the yum package manager:

#!/bin/sh
LIST_OF_APPS="dstat lsof mailx rsync tree vim-enhanced git whois"
yum install -y $LIST_OF_APPS

The following is a Puppet class that does the same task as the previous bash script:

class common::apps {
 package {
 [
 'dstat',
 'lsof',
 'mailx',
 'rsync',
 'tree',
 'vim-enhanced',
 'git',
 'whois',
]:
 ensure => installed,
 }
}

Next up, we have the same task using SaltStack:

common.packages:
 pkg.installed:
 - pkgs:
 - dstat
 - lsof
 - mailx
 - rsync
 - tree
 - vim-enhanced
 - git
 - whois

Finally, we have the same task again, this time using Ansible:

- name: "Install packages we need"
 ansible.builtin.yum:

Installing and Running Ansible12

 name:
 - "dstat"
 - "lsof"
 - "mailx"
 - "rsync"
 - "tree"
 - "vim-enhanced"
 - "git"
 - "whois"
 - "iptables-services"
 state: "present"

Even without going into any detail, you should be able to get the general gist of what each of the three
examples is doing. While not strictly infrastructure, all three are valid examples of infrastructure as code.

This is where you manage the code that manages your infrastructure in precisely the same way as a
developer would manage the source code for their application. You use source control, store it in a
centrally available repository where you can collaborate with your peers, branch and use pull requests
to check in your changes, and, where possible, write and execute unit tests to ensure that changes to
your infrastructure are successful and error-free before deploying to production. This should be as
automated as possible. Any manual intervention in the tasks mentioned could be a point of failure,
and you should work to automate the task.

This approach to infrastructure management has a few advantages, one being that you, as system
administrators, are using the same processes and tooling as your developer colleagues, meaning
that any procedures that apply to them also apply to you. This makes for a more consistent working
experience and exposes you to tools you may have yet to be exposed to or use.

Secondly, and more importantly, it allows you to share your work. Before this approach, this type of
work seemed to others a dark art performed only by system administrators. Doing this work in the open
allows you to have your peers review and comment on your configuration and do the same yourself
to theirs. Also, you can share your work so that others can incorporate elements into their projects.

My story: part two
Before we finish this part of the chapter, I would like to finish the story of my journey. As mentioned
earlier in the chapter, I moved from my collection of scripts and runbooks to Puppet, which was
great until my requirements moved away from managing just server configuration and maintaining
the servers’ state.

I needed to start managing infrastructure in public clouds. This requirement quickly started to frustrate
me when using Puppet. At the time, Puppet’s coverage of the APIs I needed to use for my infrastructure
needed to be improved. I am assured it is a lot better now, but also, I found myself having to build too
much logic into my manifests about the order in which each task was executed.

Installing and running Ansible 13

It was around this time, which was December 2014, that I decided to look at Ansible. I know the date
because I wrote a blog post entitled First Steps With Ansible; I don’t think I have looked back since.
I have since introduced several of my work colleagues and customers to Ansible and have written
books on the subject, including the first edition of the title you are reading now.

So far in this chapter, we have looked at my personal history with both Ansible and some of the other
tools that Ansible is compared to, and we have discussed the differences between these tools and
where Ansible originated.

Now we are going to start your journey with Ansible by looking at installing it and running our first
Ansible playbook against a local virtual machine.

Installing and running Ansible
Let’s dive straight in and install Ansible. Throughout this book, I will assume you are running a macOS
host machine or a Linux machine with an Ubuntu LTS release. While we will cover running Ansible
on Windows 11 using the Linux subsystem for Windows, this book will not support using Windows
as a host machine.

Installing on macOS

You can install Ansible on your macOS host machine in a few different ways. I will cover both here.
As we are discussing two different ways of installing Ansible, I recommend reading through this
section and the Pros and cons subsection before choosing which installation method to use on your
local machine.

Installing with Homebrew

The first installation method is to use a package manager called Homebrew.

Note
Homebrew is a package manager of macOS. It can be used to install command-line tools and
desktop packages. It describes itself as “The missing package manager for macOS”, and it usually
is one of the first tools I install after a clean installation or when getting a new computer.

To install Ansible using Homebrew, you first need to install Homebrew. To do this, run the
following command:

$ /usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/
Homebrew/install/master/install)"

At each step of the installation process, the installer will tell you exactly what it is going to do and also
prompt you for any additional information it needs from you to complete the installation.

Installing and Running Ansible14

Once installed, or if you already have Homebrew installed, run the following commands to update
your list of packages; if there are any updates, then you can also upgrade them:

$ brew update
$ brew upgrade

Finally, depending on how new your installation is or when you last used it, you might want to run
the following command to check that your Homebrew installation is optimal:

$ brew doctor

Now that we have Homebrew installed, updated, and ready to brew, we can run the following to
check what Ansible packages Homebrew has by running:

$ brew search ansible

As you can see from the results in the following screenshot, there are several packages returned in
the search:

Figure 1.3 – Searching for Ansible using the brew command

We want the Ansible package; you can find out more about the package by running the following command:

$ brew info ansible

Installing and running Ansible 15

You can see the results of the command in the following screenshot:

Figure 1.4 – Viewing information on the Ansible package we will install

As you can see, the command returns information on the version of the package that will be installed
along with a complete list of its dependencies; in the preceding screen, all of the dependencies have
green ticks next to them because I already have them installed—yours may look different.

It also gives the URL to the Homebrew formula, which will be used to install the package. In our
case, you can view formula details at https://github.com/Homebrew/homebrew-core/
blob/master/Formula/ansible.rb.

To install Ansible using Homebrew, we must run the following command:

$ brew install ansible

This will download and install all dependencies and then the Ansible package itself.

Depending on how many dependencies are installed on your machine, this may take a few minutes.

https://github.com/Homebrew/homebrew-core/blob/master/Formula/ansible.rb
https://github.com/Homebrew/homebrew-core/blob/master/Formula/ansible.rb

Installing and Running Ansible16

Once installed, you should see something like the following screenshot:

Figure 1.5 – Installing Ansible using Homebrew

As you can see from the preceding screenshot, Homebrew is quite verbose in its output, giving you
both feedback on what it is doing and details on how to use the packages it installs.

The second of two installation methods we will look at for macOS is a more traditional one.

Installing using pip

The second method, pip, is a more traditional approach to installing and configuring a Python package.

Note
pip is a package manager for Python software. It is a recursive acronym for pip install packages.
It is a good frontend for installing packages from the Python Package Index (PyPI).

Most modern macOS installations come with pip installed by default; depending on what you have
installed on your machine, you may have to check which pip binary you have installed.

To do this, run the following commands:

$ pip --version
$ pip3 --version

One or both should return a version number and give you the path to the pip binary.

Installing and running Ansible 17

Depending on the version of pip you have installed, you may need to amend the following pip command,
which is what we need to run to install Ansible:

$ pip install ansible

This command will download and install all the prerequisites to run Ansible on your system. While
it is as verbose as Homebrew, its output contains information on what it has done rather than hints
on what to do next:

Figure 1.6 – Installing Ansible using Pip

As you can see from the small amount of output, many of the requirements were already satisfied.

Pros and cons

So, now that we have covered some of the different ways of installing Ansible on macOS, which is
best? Well, there is no real answer to this as it comes down to personal preference. Both methods
will install the latest versions of Ansible. However, Homebrew tends to be a week or two behind the
current release.

If you have a lot of packages already installed using Homebrew, then you will be used to running the
following commands:

$ brew update
$ brew upgrade

Just run these occasionally to update your installed packages to the latest versions. If you already do
this, it makes sense to use Homebrew to manage your Ansible installation.

Installing and Running Ansible18

If you are not a Homebrew user and want to ensure that you immediately have the latest version
installed, use the pip command to install Ansible. Upgrading to the latest version of Ansible is as
simple as running the following command:

$ pip install ansible --upgrade

Should you need to, you can install older versions of Ansible using Homebrew and pip.

To do this using Homebrew, you need to remove the current version by running the following command:

$ brew uninstall ansible

Then, you can install an earlier version of the package by running the following command:

$ brew install ansible@2.0

While this will install an earlier version, you do not have much choice in which version you get. If
you really need an exact version, you can use the pip command to install it. For example, to install
Ansible 2.3.1.0, you would need to run:

$ pip install ansible==2.3.1.0

It is essential to note that you should never need to do this, and I do not recommend it.

However, I have found that on rare occasions, I have had to downgrade to help debug quirks in my
playbooks introduced by upgrading to a later version of Ansible for playbooks that I last touched a
few years ago.

As mentioned, I spend the bulk of my time in front of a macOS machine both during my day job and
at home, so which of the two methods do I use?

Primarily, I use Homebrew as I have several other tools installed using Homebrew. However, if I need
to roll back to a previous version, I use pip and then return to Homebrew once the issue is resolved.

Installing on Linux

There are a few different ways of installing Ansible on Ubuntu. However, I am only going to cover
one of them here. While there are packages available for Ubuntu that you can install with apt, they
tend to become out of date quickly and are typically behind the current release.

If you wish to install using the apt package manager, then you can run the following command:

$ apt install ansible

Installing and running Ansible 19

Note
Advanced Packaging Tool (APT) is the package manager that ships with Debian-based systems,
including Ubuntu. It is used to manage .deb files.

Because of this, we will be using pip. The first thing to do is install pip, and this can be done by running
the following commands:

$ sudo -H apt-get update
$ sudo -H apt-get install python3-pip

The first of the two apt-get commands downloads all the update files, ensuring that the package
list is up to date on your Ubuntu installation, and the second command installs the python3-pip
package and its dependencies.

Once pip is installed, the instruction for installing Ansible is similar to installing on macOS. Run the
following command:

$ sudo -H pip install ansible

This will download and then install Ansible and its requirements, as shown in the following screenshot:

Figure 1.7 – Installing Ansible using pip on Ubuntu

Installing and Running Ansible20

Once installed, you can upgrade it by using the following command:

$ sudo -H pip install ansible --upgrade

Also, downgrading Ansible uses the same command:

$ sudo -H pip install ansible==2.3.1.0

The preceding commands should work on most Linux distributions, such as Rocky Linux, Red Hat
Enterprise Linux, Debian, and Linux Mint, to name a few.

A lot of these distributions have their own package managers you can also use to install Ansible; for
example, on Red Hat-based distributions such as Red Hat Enterprise Linux or Rocky Linux, you
could also run:

$ dnf install ansible-core

Please consult the document for more details on installing whatever your Linux distribution of choice is.

Installing on Windows 11

The last platform we will cover is Windows 11; well, sort of. While it is technically possible to run
Ansible on a Windows 11 natively, it is not something I would recommend attempting as it is one
of those tasks where the phrase “just because you can doesn’t mean you should” applies, as getting all
of the dependencies installed and configured just right can be very troublesome, and maintaining
them is more so.

Luckily, Microsoft—and as a long-term Linux System administrator typing this, this still feels strange—
has excellent native support for running Linux systems seamlessly within Windows 11.

Installing and running Ansible 21

Open the Microsoft Store and search for Ubuntu; you should see something like the following screen:

Figure 1.8 – Finding Ubuntu in the Microsoft Store

Click the Get button to download Ubuntu. Once downloaded, we have Ubuntu on our Windows 11 host,
but we still need something to run it on. To run it, we need to enable Windows Subsystem for Linux.

To enable this, open a PowerShell window by typing PowerShell into your Windows Search bar
and opening the Windows PowerShell application; once you are at a terminal prompt, run the
following command:

$ wsl --install

Follow the onscreen prompts, and once everything is installed, restart your Windows 11 host.

Installing and Running Ansible22

Once rebooted, you should have something like the following prompt pop-up once you log back in:

Figure 1.9 – Completing the Ubuntu installation on Windows 11

Once the installation is completed, I like to switch out of the default Windows Subsystem for the
Linux terminal and use the Microsoft Terminal, which you can grab for free in the Microsoft Store.

Once you have your preferred terminal emulator open and you are sitting at a prompt in your Windows
Subsystem for Linux Ubuntu installation, you can run the same commands we ran to install Ansible
on Linux, which are as follows:

$ sudo -H apt-get update
$ sudo -H apt-get install python3-pip
$ sudo -H pip install ansible

Once you have run these commands, you should see an output that looks like the following screenshot:

Figure 1.10 – Installing Ansible in Ubuntu on Windows 11

Launching a virtual machine 23

As you can see, everything works as if you were running an Ubuntu machine, allowing you to run
and maintain your Ansible installation in precisely the same way.

Note
The Windows Subsystem for Linux (WSL) is not running on a virtual machine. It is a full
native Linux experience baked right into Windows 11. It targets developers who must run Linux
tools as part of their toolchain. While the overall support for Linux commands is excellent,
I recommend reading through the FAQs written and maintained by Microsoft to get an idea
of the limits and quirks of the subsystem. The FAQ can be found at https://learn.
microsoft.com/en-us/windows/wsl/faq.

As mentioned, while this is a viable way of running an Ansible control node on a Windows-based
machine, some of the other tools we will cover in future chapters may not work with Windows. So,
while you may follow along using the Ubuntu instructions, some parts may not work.

Launching a virtual machine
To launch a virtual machine to run our first set of Ansible commands against, we will use a tool called
Multipass. This tool allows you to run Ubuntu virtual machines on your local host. It works with
macOS, Linux, and Windows.

To install Multipass on macOS, we can use Homebrew and run the following command:

$ brew install multipass

To install on Ubuntu, you can run the following command:

$ snap install multipass

Finally, for Windows 11 users, you will have to first download and install the VirtualBox Windows
executable from https://www.virtualbox.org/wiki/Downloads and then download
and install Multipass from https://multipass.run/install. I recommend reading through the installation
notes for Windows, which can be found at the following URL https://multipass.run/docs/installing-
on-windows before installing.

Note
While you can run the same commands in Ubuntu running under Windows Subsystem for
Linux, you will need to replace all references of the multipass command with multipass.
exe so that the Windows version of Multipass is called.

Next, check out the GitHub repo accompanying this title and open your terminal in the Chapter01
folder—if you are running Windows 11, you must open an Ubuntu terminal, not a Windows one.

https://learn.microsoft.com/en-us/windows/wsl/faq
https://learn.microsoft.com/en-us/windows/wsl/faq
https://www.virtualbox.org/wiki/Downloads

Installing and Running Ansible24

Important
Before we start, a quick word of warning: the folder Chapter01 contains an OpenSSH key-
pair, which will be used to access the local machine. It is important that you do not use this
key-pair anywhere other than this example on your local machine as the key-pair is publicly
accessible, which is not considered secure.

You will see several files in the Chapter01 folder. The one we are going to use when launching the
virtual machine is called cloud-init.yaml. This file contains some back configuration to add a user
called vmadmin and attach the public portion of an OpenSSH key to the user, meaning that when
executing Ansible, we can use the private part of the OpenSSH key to authenticate as the vmadmin user.

The command we are going to run to launch the virtual machine, which will be called ansiblevm, is
as follows:

$ multipass launch -n ansiblevm --cloud-init cloud-init.yaml

Once the virtual machine has been launched, which may take a short while when you first run the
command as it will download a virtual machine image, you need to run the following command to
get some information on the newly created ansiblevm virtual machine:

$ multipass info ansiblevm

The following screen shows me starting and viewing the information on the virtual machine:

Figure 1.11 – Launching our virtual machine

Now that we have our virtual machine running and we have checked out the basic information, you
will need to note the IP address, which in my case is 192.168.64.7. The IP address will be different
when you launch the virtual machine on your host.

An introduction to playbooks 25

Before we run our first Ansible playbook, you must make a copy of the hosts-simple.example and
hosts.example files and remove the .example in the filename by running the following commands:

$ cp -pr hosts-simple.example hosts-simple
$ cp -pr hosts.example hosts

Once you have made a copy of the file, open the newly created files and replace just the text that says
paste_your_ip_here with the IP address of the ansiblevm virtual machine; in my case, the
hosts-simple file went from:

paste_your_ip_here.nip.io ansible_user=vmadmin ansible_private_key_
file=./example_key

to reading:

192.168.64.7.nip.io ansible_user=vmadmin ansible_private_key_file=./
example_key

Once you have changed both the hosts-simple and hosts files, you are ready to run your first
Ansible Playbook.

An introduction to playbooks
Typically, in IT, a playbook is a set of instructions run by someone when something happens; a little
vague, I know, but stay with me. These range from building and configuring new server instances to
deploying code updates and dealing with problems when they occur.

In the traditional sense, a playbook is typically a collection of scripts or instructions for a user to
follow, and while they are meant to introduce consistency and conformity across systems, even with
the best intentions, this is seldom the case.

This is where Ansible comes in. Using an Ansible playbook, you are telling it to apply these changes
and commands against these sets of hosts rather than having to log in and start working your way
through the playbook manually.

Before we run a playbook, let’s discuss how we provide Ansible with a list of hosts to target. To do
this, we will be using the ansible.builtin.setup module. This connects to a host and then
fetches as much information on the host as possible.

Host inventories

To provide a list of hosts, we need to provide an inventory list. This is in the form of a host’s file.

In its simplest form, our host’s file could contain a single line just like our hosts-simple file:

192.168.64.7.nip.io ansible_user=vmadmin ansible_private_key_file=./
example_key

Installing and Running Ansible26

This tells Ansible that the host we want to contact is 192.168.64.7.nip.io (please remember
your IP address will be different) using the username vmadmin. If we didn’t provide the username,
it would fall back to the user you are logged into your Ansible control host as, which in my case is the
user russ, which does not exist on the ansiblevm we launched. The final part tells Ansible to use
the private OpenSSH key file called example_key, which we installed the public portion of to the
vmadmin user when we launched the virtual machine.

Note
We are using https://nip.io, a free service that provides free wildcard DNS entries for
any hostname containing an IP address. This means that our domain 192.168.64.7.nip.
io will resolve to 192.168.64.7 when a DNS lookup is made against the domain.

To run the ansible.builtin.setup module, we need to run the following command from
within the Chapter01 folder where your updated hosts-simple and example_key files are
stored, making sure to update the IP address to your own:

$ ansible -i hosts-simple 192.168.64.7.nip.io -m ansible.builtin.setup

If everything works as expected, you should see a lot of output, which specifies some quite detailed
and low-level information about your host. You should see something like the following:

Figure 1.12 – The start of the output of me running the ansible.builtin.setup module

As you can see from the preceding screenshot, Ansible has quickly found out a lot of information on
our Vagrant box. The screenshot shows the IP addresses configured on the machine, along with the
IPv6 addresses. It has recorded the time and date, and if you scroll through your output, you will see
a lot of information returned detailing the host.

Let’s go back to the command we ran:

$ ansible -i hosts-simple 192.168.64.7.nip.io -m ansible.builtin.setup

https://nip.io

An introduction to playbooks 27

As you can see, we are loading the hosts-simple file using the -i flag. We could have also used
--inventory=hosts-simple, which loads our inventory file. The next part of the command is
the host to the target. In our case, this is 192.168.50.4.nip.io. The final part of the command,
-m, tells Ansible to use the setup module. We could have also used --module-name= ansible.
builtin.setup.

This means that the full command if we didn’t use shorthand would be:

$ ansible --inventory=hosts-simple simple 192.168.64.7.nip.io
--module-name=ansible.builtin.setup

As already mentioned, the hosts-simple file is as basic as we can get it. The following is a more
common host inventory file:

ansiblevm ansible_host=192.168.64.7.nip.io
[ansible_hosts]
ansiblevm
[ansible_hosts:vars]
ansible_connection=ssh
ansible_user=vmadmin
ansible_private_key_file=./example_key
host_key_checking=False

This is the content of the file called just hosts; as you can see, there is a lot more going on, so let’s
quickly work through it from top to bottom.

The first line defines our single host. Unlike the simple example, we will be calling our target host
ansiblevm and grouping it together in a group called ansible_hosts, so we are giving Ansible
details of where it can SSH to. This means we can now use the name ansiblevm when referring to
192.168.64.7.nip.io. This means our command would now look something like this:

$ ansible -i hosts ansiblevm -m ansible.builtin.setup

Next up in the file, we are creating a group of hosts called ansible_hosts and, in that group, we
are adding our single host ansiblevm. This means that we can also run:

$ ansible -i hosts ansible_hosts -m ansible.builtin.setup

If we had more than just a single host in the group, the preceding command would have looped
through all of them. The final section of the hosts file sets up some common configuration options
for all of the hosts in the boxes group. In this case, we are telling Ansible that all of the hosts in the
group are using SSH, the user is vmadmin, the private key at ./example_key should be used,
and it should not check the host key when connecting.

We will be revisiting the inventory host files in later chapters. From now on, we will use the hosts
file to target the ansible_hosts group.

Installing and Running Ansible28

Playbooks

In the previous section, running the ansible command allowed us to call a single module.

In this section, we are going to look at calling several modules. The following playbook is called
playbook01.yml. It calls the ansible.builtin.setup module we called in the previous section
and then uses the ansible.builtin.debug module to print a message to the screen:

- name: "A simple playbook"
 hosts: ansible_hosts
 gather_facts: true
 become: true
 become_method: "ansible.builtin.sudo"
 tasks:
 - name: "Output some information on our host"
 ansible.builtin.debug:
 msg: "I am connecting to {{ ansible_nodename }} which is
running {{ ansible_distribution }} {{ ansible_distribution_version }}"

Before we break the configuration down, let’s look at the results of running the playbook. To do this,
use the following command:

$ ansible-playbook -i hosts playbook01.yml

This will connect to our host, gather information on the system, and then return just the information
we want in a message:

Figure 1.13 – The output of running ansible-playbook01.yml

An introduction to playbooks 29

The first thing you will notice about the playbook is that it is written in YAML, a recursive acronym
for YAML Ain’t Markup Language. YAML was designed to be a human-readable data serialization
standard that all programming languages can use. It is commonly used to help define configurations.

The indentation is very important in YAML as it is used to nest and define areas of the file. Let’s look
at our playbook in more detail:

While these lines might not seem like much, they are used as document separators, as Ansible compiles
all the YAML files into a single file. It is essential for Ansible to know where one document ends and
another begins.

Next up, we have the configuration for the playbook. As you can see, this is where the indentation
starts to come into play:

- name: "A simple playbook"
 hosts: ansible_hosts
 gather_facts: true
 become: true
 become_method: "ansible.builtin.sudo"

The - tells Ansible that this is the start of a section. From there, key-value pairs are used. These are
as follows:

• name: This gives a name to the playbook run.

• hosts: This tells Ansible the host or host group to target in the playbook. This must be defined
in a host inventory like the ones we covered in the previous section.

• gather_facts: This tells Ansible to run the ansible.builtin.setup module when
it first connects to the host. This information is then available to the playbook during the run.

• become: This is present because we are connecting to our host as a basic user, in this case, the
vmadmin user. Ansible may not have enough access privileges to execute some of the commands
we are telling it to, so this instructs Ansible to execute all of its commands as the root user.

• become_method: This tells Ansible how to become the root user; in our case, we have a
passwordless sudo configured by the cloud-init script we ran when launching the virtual
machine, so we are using ansible.builtin.sudo.

• tasks: These are the tasks we can tell Ansible to run when connected to the target host.

You will notice that from here, we move the indentation across again. This defines another section of
the configuration. This time it is for the tasks:

 - name: "Output some information on our host"
 ansible.builtin.debug:

Installing and Running Ansible30

 msg: "I am connecting to {{ ansible_nodename }} which is
running {{ ansible_distribution }} {{ ansible_distribution_version }}"

As we have already seen, the only task we run is the ansible.builtin.debug module. This module
allows us to display output in the Ansible playbook run stream you saw when we ran the playbook.

You may have already noticed that the information between the curly brackets is made up of the keys
from the ansible.builtin.setup module. Here, we are telling Ansible to substitute the value
of each key wherever we use the key. We will be using this a lot in our playbooks. We will also be
defining our own key values to use as part of our playbook runs.

Let’s extend our playbook by adding another task. The following can be found as playbook02.yml:

- name: "Update all packages"
 hosts: "ansible_hosts"
 gather_facts: true
 become: true
 become_method: "ansible.builtin.sudo"
 tasks:
 - name: "Output some information on our host"
 ansible.builtin.debug:
 msg: "I am connecting to {{ ansible_nodename }} which is
running {{ ansible_distribution }} {{ ansible_distribution_version }}"
 - name: "Update all packages to the latest version"
 ansible.builtin.apt:
 name: "*"
 state: "latest"
 update_cache: true

As you can see, we have added a second task that calls the ansible.builtin.apt module.
This module is designed to help us interact with the package manager used by Ubuntu and other
Debian-based operating systems called apt. We are setting three key values here:

• name: This is a wildcard. It tells Ansible to use all of the installed packages rather than just a
single named package. For example, we could have used something such as apache2 here
to target Apache.

• state: Here, we are telling Ansible to ensure the package we have defined in the name key is
the latest version. As we have named all of the installed packages, this will update everything
we have installed.

• update_cache: As the virtual machine image we downloaded was optimized for being small,
it does not contain any information on the available package; by setting update_cache to
true, this will download a list of all package and version information.

An introduction to playbooks 31

Run the playbook using the following command:

$ ansible-playbook -i hosts playbook02.yml

This will give us the following results:

Figure 1.14 – The output of running ansible-playbook02.yml

The ansible.builtin.apt task has been marked as changed on the host box. This means that
packages were updated.

Rerunning the same command shows the following results:

Figure 1.15 – The output of rerunning ansible-playbook02.yml

As you can see, the ansible.builtin.apt task is now showing as ok on our host. This is because
there are currently no longer any packages requiring updates.

Before we finish this quick look at playbooks, let’s do something more interesting.

Installing and Running Ansible32

The playbook, playbook03.yml, adds NTP installing, configuring, and starting capabilities to
our virtual machine. It also uses a template to add a custom NTP config file to our virtual machine.

The vars section allows us to configure our own key-value pairs. In this case, we are providing a list
of NTP servers, which we will be using later in the playbook:

 vars:
 ntp_servers:
 - "0.uk.pool.ntp.org"
 - "1.uk.pool.ntp.org"
 - "2.uk.pool.ntp.org"
 - "3.uk.pool.ntp.org"

We are actually providing four different values for the same key. These will be used in the template
task. We could have also written this as follows:

 vars:
 ntp_servers: ["0.uk.pool.ntp.org", "1. uk.pool.ntp.org", "2.
uk.pool.ntp.org", "3. uk.pool.ntp.org"]

However, this is a little more difficult to read. The next new section is handlers. A handler is a task
that is assigned a name and called at the end of a playbook run depending on what tasks have changed:

 handlers:
 - name: "Restart ntp"
 ansible.builtin.service:
 name: "ntp"
 state: "restarted"

In our case, the restart ntp handler uses the ansible.builtin.service module to restart
ntp. Next up, we have two new tasks, starting with installing the NTP service and the sntp and
ntp-doc packages using ansible.builtin.apt:

 - name: "Install packages"
 ansible.builtin.apt:
 state: "present"
 pkg:
 - "ntp"
 - "sntp"
 - "ntp-doc"

As we need to install three packages, we need a way to provide three different package names to the
ansible.builtin.apt module so that we don’t have to have three different tasks for each of
the package installations. To achieve this, we use the pkg option rather than the name option, where
you can only define a single package to install. Rather than using latest, we are using present;
this will mean that our packages don’t get updated if they are already installed.

An introduction to playbooks 33

The final addition to the playbook is the following task:

 - name: "Configure NTP"
 ansible.builtin.template:
 src: "./ntp.conf.j2"
 dest: "/etc/ntp.conf"
 mode: "0644"
 notify: "Restart ntp"

This task uses the ansible.builtin.template module. To read a template file from our
Ansible controller, process it and upload the processed template to the host machine. Once uploaded,
we are telling Ansible to notify the restart ntp handler if there have been any changes to the
configuration file we are uploading.

In this case, the template file is the ntp.conf.j2 file in the same folder as the playbooks, as defined
in the src option. This file looks like this:

{{ ansible_managed }}
driftfile /var/lib/ntp/drift
restrict default nomodify notrap nopeer noquery
restrict 127.0.0.1
restrict ::1
{% for item in ntp_servers %}
server {{ item }} iburst
{% endfor %}
includefile /etc/ntp/crypto/pw
keys /etc/ntp/keys
disable monitor

The bulk of the file is the standard NTP configuration file, with the addition of a few Ansible parts.
The first addition is the very first line:

{{ ansible_managed }}

If this line wasn’t there every time we ran Ansible, the file would be uploaded, which would count as
a change and the restart ntp handler would be called, meaning that even if there were no changes,
NTP would be restarted.

The next part loops through the ntp_servers values we defined in the vars section of the playbook:

{% for item in ntp_servers %}
server {{ item }} iburst
{% endfor %}

For each of the values, add a line that contains the word server, the value or {{ item }}, and
then iburst.

Installing and Running Ansible34

Now that we know what we have added to the playbook and have an idea of the additional tasks that
will be performed, let’s run it using the following command:

$ ansible-playbook -i hosts playbook03.yml

The following screen just shows the additional tasks and not the full output as we know it will be just
marked as ok:

Figure 1.16 – The output of running ansible-playbook03.yml

This time, we have three changed tasks. Running the playbook again shows the following:

Figure 1.17 – The output of rerunning ansible-playbook03.yml

As expected, there are no changes because we haven’t changed the playbook or anything on the virtual
machine, and Ansible is reporting everything as ok. Also, because no changes were detected to the
NTP config file, the Handler to restart NTP did not need to be called, and therefore it doesn’t appear
in the output.

Before we finish, let’s launch a second virtual machine by running the following command:

$ multipass launch -n ansiblevm2 --cloud-init cloud-init.yaml

Once the second virtual machine has started, run the following command to get some information
on the new virtual machine:

$ multipass info ansiblevm2

An introduction to playbooks 35

Now that we know the IP address, we can add two new lines to our hosts file. First of all, to define
the new host, add the following code (updating it so it uses the correct IP address) underneath where
our original host is defined:

ansiblevm2 ansible_host=192.168.64.8.nip.io

Then, add ansiblevm2 to the ansible_hosts group:

[ansible_hosts]
ansiblevm
ansiblevm2

Then, rerun the playbook using the following:

$ ansible-playbook -i hosts playbook03.yml

As you can see, the same commands run, but now we are targeting both virtual machines, the original
virtual machine has no changes, and all the changes are applied to the newly deployed host:

Figure 1.18 – The output of rerunning ansible-playbook03.yml against two virtual machines

If you rerun the command, you will see that everything is now shown as ok as there are no further changes.

Before we move on to the summary, let’s tidy up our two virtual machines and remove them as we
won’t need them again. To do this, run the following command:

$ multipass delete --purge ansiblevm ansiblevm2

As I am sure you would have already guessed, this deletes the virtual machines and then purges the
configuration and files.

Installing and Running Ansible36

Summary
In this chapter, we have taken our first steps with Ansible by installing it locally and then, using Vagrant,
launching a virtual machine to interact with. We learned about basic host inventory files and used the
Ansible command to execute a single task against our virtual machine.

We then looked at playbooks, starting with a basic playbook that returned some information on our
target before progressing to a playbook that updates all the installed operating system packages before
installing and configuring the NTP service.

By the end of the chapter, we had launched a second virtual machine and quickly brought it up to the
same configuration level as our first virtual machine.

In the next chapter, we will look at Ansible Galaxy and discuss how Ansible packages up and maintains
its community modules.

Further reading
In this chapter, we mentioned Puppet and SaltStack:

• Puppet is a configuration management tool that runs a server/agent configuration. It comes
in two flavors—an open source version and an enterprise version that Puppet, the company,
supports. It is a declarative system and is closely tied to Ruby. For more information on Puppet,
see https://www.puppet.com/.

• SaltStack is another configuration management tool. It is highly scalable and, while it shares a
design approach with Ansible, it works in a similar way to Puppet in that it has a server/agent
approach. You can find more information on SaltStack at https://www.vmware.com/
support/acquisitions/saltstack.html.

• I also mentioned my personal blog, which you can find at https://www.russ.foo/.

We used the following Ansible modules, and you can find out more information on each module at
the following links:

• ansible.builtin.setup: https://docs.ansible.com/ansible/latest/
collections/ansible/builtin/setup_module.html

• ansible.builtin.debug: https://docs.ansible.com/ansible/latest/
collections/ansible/builtin/debug_module.html

• ansible.builtin.apt: https://docs.ansible.com/ansible/latest/
collections/ansible/builtin/apt_module.html

• ansible.builtin.template: https://docs.ansible.com/ansible/latest/
collections/ansible/builtin/template_module.html

• ansible.builtin.service: https://docs.ansible.com/ansible/latest/
collections/ansible/builtin/service_module.html

https://www.puppet.com/
https://www.vmware.com/support/acquisitions/saltstack.html
https://www.vmware.com/support/acquisitions/saltstack.html
https://www.russ.foo/
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/setup_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/setup_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/debug_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/debug_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/apt_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/apt_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/template_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/template_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/service_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/service_module.html

2
Exploring Ansible Galaxy

Welcome to our second chapter. Here, we are going to be looking at the ansible-galaxy command;
we are going to be covering the features provided by the command and also discussing its importance
in the development of Ansible over the last few years.

Ansible Galaxy is an online repository of community-contributed roles; we will discover some of
the best roles available, how to use them, and how to create your own role and have it hosted on
Ansible Galaxy.

By the end of the chapter, we will have worked through the following topics:

• The Ansible release life cycle

• Introduction to Ansible Galaxy

• What is a role?

• Publishing to and using Ansible Galaxy roles

• Ansible collections

• Ansible Galaxy commands

Before we start exploring Ansible Galaxy, let’s discuss the Ansible core release life cycle and how it
has changed over the last few years, as these changes have made it an essential component of the
Ansible ecosystem.

Technical requirements
In this chapter, we will again make use of Multipass, the tool that we covered in Chapter 1, Installing
and Running Ansible, and the GitHub repository that accompanies this title, which can be found
at https://github.com/PacktPublishing/Learn-Ansible-Second-Edition.

https://github.com/PacktPublishing/Learn-Ansible-Second-Edition

Exploring Ansible Galaxy38

The Ansible release life cycle
In the previous chapter, when we installed Ansible, the keen-eyed among you may have spotted a few
different Ansible packages installed using the sudo -H pip install ansible command.

What follows is an edited version of the output of installing Ansible using pip:

 $ sudo -H pip install ansible
Collecting ansible
 Downloading ansible-8.2.0-py3-none-any.whl (45.1 MB)
Collecting ansible-core~=2.15.2
 Downloading ansible_core-2.15.2-py3-none-any.whl (2.2 MB)
Installing collected packages: resolvelib, packaging, ansible-core,
ansible
Successfully installed ansible-8.2.0 ansible-core-2.15.2
packaging-23.1 resolvelib-1.0.1

As you can see, two main Ansible packages were installed: ansible-8.2.0 and ansible-
core-2.15.2. Before we discuss the difference between the two packages, let’s quickly discuss how
Ansible was maintained and packaged up until version 2.9 of Ansible.

Every version of Ansible before version 2.10 shipped with many modules baked into the release;
while Ansible was new and its user base and functionality were focused on a few tasks, it was easy
to manage and maintain the releases of these modules as part of the main Ansible code base, which
was maintained by the Ansible team at the official GitHub repo, which you can find at https://
github.com/ansible/ansible.

By the end of Chapter 1, Installing and Running Ansible, we had used a total of five modules, all of
which are built into Ansible; these were the following:

• ansible.builtin.setup: A module that discovers information on the target host and
makes it available during the playbook run

• ansible.builtin.service: A module that manages the state of a service on the target host

• ansible.builtin.debug: This module allows you to print statements during your
playbook execution

• ansible.builtin.apt: This module manages packages on the target host using the apt
package manager

• ansible.builtin.template: This module brings templating to Ansible, allowing you
to output files to your target hosts

That was just a single playbook that did a single task; add to that the sheer number of modules to give
you an idea of the numbers—there are currently 95 modules in the Amazon AWS namespace and 282
in the Microsoft Azure namespace—that’s over 370 modules that cover the basic functionality of two
different namespaces. There are, at the time of writing, over 40 different namespaces.

https://github.com/ansible/ansible
https://github.com/ansible/ansible

The Ansible release life cycle 39

You might be asking, “Wait, what is a namespace?” The modules are now grouped into collections,
and each collection has its namespace; some examples are the following:

• ansible.builtin: As you might have already guessed, the modules within this namespace provide
some of Ansible’s core functionality

• amazon.aws: These are the official Amazon Web Services modules

• azure.azcollection: Here, you will find the official Microsoft Azure modules

• kubernetes.core: If you want to work with Kubernetes, these will be your modules

Again, you might be thinking, “That’s useful information, but what has this got to do with anything?”;
well, Ansible used to have a few major releases a year and had to ship a release that had slowly grown
to include thousands of modules, plus their associated plugins meant that the release process quickly
became unmanageable, as the team not only had to worry about the core Ansible code base but also
about the modules that shipped with it.

Each namespace potentially has its dev team comprised of core Ansible contributors, community
members, and, in the case of some namespaces, large corporations such as Amazon and Microsoft.
Thus, trying to coordinate an Ansible release became a challenge, both in terms of logistics and timing.
Some of the technology that Ansible supports changes very fast; for example, both Amazon Web
Services and Microsoft Azure introduce new features and add functionality to existing services almost
weekly. It didn’t make sense for Ansible to potentially wait up to six months to provide an update that
adds compatibility issues, which is why the Ansible team decided it was time to decouple the release of
what is now known as Ansible Core, which is the tooling needed to run Ansible; this now comprises
over 85 name namespace collections, which are made up of well over 1,000 modules and plugins.

The life cycle of a release

The release cycle begins with introducing a new major version of ansible-core, such as ansible-
core 2.11. Following this, the latest release of ansible-core and its two preceding versions,
ansible-base 2.10 and Ansible 2.9, are actively maintained. Development then shifts
to the devel branch, where new features for ansible-core are continuously worked on. During
this phase, there’s a freeze on adding or updating collections in the Ansible community package.

Subsequently, a release candidate for the Ansible community package is introduced. This undergoes
testing, and additional release candidates are rolled out if necessary.

Once finalized, a new major version of the Ansible community package is released, which aligns with
the recent ansible-core; for instance, Ansible 4.0.0 would be based on ansible-core
2.11. After this release, only the latest version of the Ansible community package remains under
active maintenance.

Exploring Ansible Galaxy40

The focus then shifts to collections, where new features are developed. Individual collections instances
have the flexibility to introduce several minor and major versions. On a regular schedule, minor
updates are released every four weeks for the three supported ansible-core versions, such as
2.11.1, and for the single supported version of the Ansible community package, such as 4.1.0.

As the cycle progresses, there’s a feature freeze on ansible-core. This is followed by introducing a
release candidate for ansible-core, which undergoes testing. If needed, more release candidates
are introduced. Finally, the subsequent major version of ansible-core is released, marking the
commencement of a new cycle.

The following chart provides an overview of the cycle:

Figure 2.1 – An overview of the Ansible release cycle

As you can see, this approach allows the Ansible team to be a lot more flexible with their release
schedules and allows a lot more concurrent work on the two different releases.

Introduction to Ansible Galaxy 41

Now that we have an idea of how Ansible manages its release cycle and also how modules can be
packaged, let’s take a look at Ansible Galaxy, which can be used to distribute collections and roles.

Introduction to Ansible Galaxy
Most people’s first exposure to Ansible Galaxy is the website hosted at https://galaxy.ansible.
com/. The website is home to community-contributed roles and modules:

Figure 2.2 – The Ansible Galaxy home page

Throughout the remainder of this book, we will be writing custom roles that interact with the Ansible
Core modules for use in our playbook.

More than 15,000 roles are published on Ansible Galaxy; these roles cover many tasks and support
almost all the operating systems supported by Ansible.

Then, we have the ansible-galaxy command; this is a way of interacting with the Ansible Galaxy
website from the comfort of your command line, as well as being able to bootstrap roles, which we will
look at shortly; we can also use it to download, search, and publish our custom roles on Ansible Galaxy.

Finally, Red Hat has open-sourced the code for Ansible Galaxy, meaning you can also run a self-hosted
version of the site should you need to distribute your roles behind a company firewall.

Before we look at publishing roles and using roles from Ansible Galaxy, let’s discuss what a role means.

https://galaxy.ansible.com/
https://galaxy.ansible.com/

Exploring Ansible Galaxy42

What is a role?

Throughout the remainder of this book, we will be building custom roles of our own, so this will be
just an overview of what a role is.

In Chapter 1, Installing and Running Ansible, our final playbook comprised some variables, a handler,
four tasks, and a template.

Apart from the template file, all of the code was hardcoded into our playbook file, which, although
this makes it easy to read when using a small number of tasks and variables, etc., taking this approach
doesn’t make the code very re-useable. Additionally, in later chapters, we could potentially be executing
over 50 tasks in a single playbook run, which will make for quite a large, unruly file.

To get around this, Ansible has the concept of roles; they allow you to structure your Ansible code
in a way that makes sense logically, for example, grouping tasks that perform a single job, which, in
Chapter 1, Installing and Running Ansible, was installing and configuring the NTPD service.

It also means you can drop a role into another playbook by copying the role folder, publishing it, and
then pulling it down from Ansible Galaxy.

So, let’s look at creating a basic role based on the tasks, handler, variables, and template from the final
playbook we ran at the end of Chapter 1, Installing and Running Ansible.

To start with, we will need to create the folder and file structure recommended by Ansible for a role;
luckily, the ansible-galaxy command has us covered here; by running the following command
in the folder where your playbook is going to be stored, it will bootstrap the folder and file structure,
which is considered by Red Hat to be a best practice:

$ ansible-galaxy role init roles/learnansible-example-role

The preceding command will create a folder called roles if one doesn’t already exist, and inside the
roles folder, add a second called learnansible-example-role.

The learnansible-example-role folder contains all the best-practice folder layouts and files
needed to be able to publish a role on Ansible Galaxy.

These are as follows:

• README.md: This file contains an outline for you to fill in to provide information on your role;
you can use as much or as little as you want of the template. Please note its contents will appear
on Ansible Galaxy if you decide to publish your role there, so make it as descriptive as possible.

• defaults/main.yml: This YAML file typically contains any default values for your role.

• files/: This empty folder holds any files that need to be copied for your role to the target
hosts during playbook execution.

Introduction to Ansible Galaxy 43

• handlers/main.yml: As you may have already guessed by the name of this folder, this
YAML file is where you define any handlers your role needs.

• meta/main.yml: This YAML file, like the README.md file, is only used once the role is
published to Ansible Galaxy; here, you can provide your details, any tags you want to add, and
define the supported platform and the minimum version of Ansible version your role support.

• tasks/main.yml: This is the file we will spend most of the time in throughout the rest of
the chapters; it is where all of the roles’ tasks are defined.

• templates/: This is another empty folder; this time, it is here to store your template files.

• tests/inventory and test.yml: Here, we have a file that contains two files, an inventory
file and a test playbook; it is used to run tests on your role.

• vars/main.yml: Finally, this YAML file contains any variables that you may wish to use,
and these override the contents of the defaults/main.yml file, should you need to do so.

To populate the role, I have taken the code from the final playbook and split it across the aforementioned
various files; the only change that I made to the playbook itself was to remove the following task, as
we don’t need it:

 - name: "Output some information on our host"
 ansible.builtin.debug:
 msg: "I am connecting to {{ ansible_nodename }} which is
running {{ ansible_distribution }} {{ ansible_distribution_version }}"

This leaves the roles/learnansible-example-role/tasks/main.yml file looking like
the following code:

tasks file for roles/learnansible-example-role

- name: "Update all packages to the latest version"
 ansible.builtin.apt:
 name: "*"
 state: "latest"
 update_cache: true
 tags:
 - "skip_ansible_lint"

- name: "Install packages"
 ansible.builtin.apt:
 state: "present"
 pkg:
 - "ntp"
 - "sntp"
 - "ntp-doc"

Exploring Ansible Galaxy44

- name: "Configure NTP"
 ansible.builtin.template:
 src: "./ntp.conf.j2"
 dest: "/etc/ntp.conf"
 mode: "0644"
 notify: "Restart ntp"

Notice that, as mentioned in Chapter 1, Installing and Running Ansible, we have --- at the top of the
file to show that main.yml is a separate file. As it is in the tasks folder, we do not need to define
that it contains tasks by using tasks, as we did in our original playbook.

This pattern is followed by the roles/learnansible-example-role/handlers/main.
yml file, which looks like this:

handlers file for roles/learnansible-example-role

- name: "Restart ntp"
 ansible.builtin.service:
 name: "ntp"
 state: "restarted"

Additionally, this is followed by the roles/learnansible-example-role/vars/main.
yml file, which contains the following:

vars file for roles/learnansible-example-role
ntp_servers:
 - "0.uk.pool.ntp.org"
 - "1.uk.pool.ntp.org"
 - "2.uk.pool.ntp.org"
 - "3.uk.pool.ntp.org"

The roles/learnansible-example-role/vars/ntp.conf.j2 file is an exact copy of
the template file we used in Chapter 1, Installing and Running Ansible.

The only addition outside of the README.md file is roles/learnansible-example-role/
meta/main.yml. This file, as mentioned, contains all of the information needed to publish the role
to Ansible Galaxy; in our example, this looks like the following:

galaxy_info:
 role_name: "ansible_role_learnansible_example"
 namespace: "russmckendrick"
 author: "Russ McKendrick"
 description: "Example role to accompany Learn Ansible (Second
Edition)"

Introduction to Ansible Galaxy 45

 issue_tracker_url: "https://github.com/russmckendrick/ansible-role-
learnansible-example/issues"
 license: "license (BSD-3-Clause)"
 min_ansible_version: "2.9"
 platforms:
 - name: "Ubuntu"
 versions:
 - "jammy"
 galaxy_tags:
 - "ntp"
 - "time"
 - "example"
dependencies: []

We will revisit this file in the next section of this chapter when it comes to publishing our role to
Ansible Galaxy.

Now that we have everything that we need to run the role in place, we need a playbook to call it; in
the Chapter02 folder for the repo, which accompanies this title, you will file the roles folder, as
described earlier, and a playbook called playbook01.yml, which looks like the following:

- name: "Run the role locally"
 hosts: "ansible_hosts"
 gather_facts: true
 become: true
 become_method: "ansible.builtin.sudo"

 roles:
 - learnansible_example_role

As you can see, the start of the playbook looks precisely the same as the one we ran at the end of
Chapter 1, Installing and Running Ansible. However, it is missing the vars, handlers, and tasks
sections, and instead, we are just using a roles section, which contains the single role found
at roles/learnansible-example-role.

In the Chapter02 folder, you will find all the files needed to launch a local virtual machine
using Multipass.

Important note
When running the following commands, create a copy of the hosts.example file and call
it hosts; once copied, update the newly created file with the IP address of the newly launched
VM, as we did in Chapter 1, Installing and Running Ansible.

Exploring Ansible Galaxy46

To launch the virtual machine, get its IP address and run the playbook using the following commands:

$ multipass launch -n ansiblevm --cloud-init cloud-init.yaml
$ multipass info ansiblevm
$ ansible-playbook -i hosts playbook01.yml

This should give you something like the following output:

Figure 2.3 – Running the playbook using the newly created role

You can stop and delete the VM by using the following two commands:

$ multipass stop ansiblevm
$ multipass delete --purge ansiblevm

Now that we know what a role is and have a fundamental one defined, let’s look at publishing our
simple role to Ansible Galaxy and then use it—along with some others—in an Ansible playbook.

Publishing to and using Ansible Galaxy roles
Now that we know what a role is and have seen how using them can make our Ansible playbooks a
little cleaner and repeatable, we should look at how we can publish our roles to Ansible Galaxy and
use them from there in our playbooks.

Publishing your roles to Ansible Galaxy

You need two main prerequisites when publishing your role to Ansible Galaxy: an active GitHub
account, which will be used to authenticate to Ansible Galaxy, and a public GitHub repository
containing the code for your role.

Publishing to and using Ansible Galaxy roles 47

In this example, I am going to be using my own GitHub account; you can find me at http://
github.com/russmckendrick/. I will be using a repository that can be found at https://
github.com/russmckendrick/ansible-role-learnansible-example/.

To publish your role, you need to take the following steps:

1. Go to the Ansible Galaxy website, which can be found at https://galaxy.ansible.
com/, and click on the GitHub logo to log in:

Figure 2.4 – Logging in to Ansible Galaxy

2. Once logged in, click on the My Content menu item, which is represented by the bulleted
pointed list icon in the left-hand side menu as follows:

Figure 2.5 – Going to the My Content page

http://github.com/russmckendrick/
http://github.com/russmckendrick/
https://github.com/russmckendrick/ansible-role-learnansible-example/
https://github.com/russmckendrick/ansible-role-learnansible-example/
https://galaxy.ansible.com/
https://galaxy.ansible.com/

Exploring Ansible Galaxy48

3. Once on the My Content page, click on the + Add Content button; here, you will be given two
options: Import Role from GitHub or Upload New Collection:

Figure 2.6 – Adding content options

4. Click on the Import Role from GitHub button, and you will be presented with a list of your
repositories; select the repository containing the role you would like to publish and click on
the OK button:

Figure 2.7 – Choosing the repository containing the role you want to publish

Publishing to and using Ansible Galaxy roles 49

5. After a few moments, your role will be published, and you will be returned to the My Content
page, which should now list your newly published role:

Figure 2.8 – Returning to the My Content page

6. Click on the newly published role name, which will take you to the Ansible Galaxy roles page:

Figure 2.9 – The newly published Ansible Galaxy roles page

Exploring Ansible Galaxy50

You can find a copy of the role I published during this walk-through at https://galaxy.ansible.
com/russmckendrick/ansible_role_learnansible_example.

As you can see, the details in the Info section of the Ansible Galaxy roles page contain the information
we defined in the meta/main.yml file and clicking on the Read Me button on the page will display
the rendered contents of the README.md file.

Now that the role has been published, how do we use it in our Ansible playbooks? Let’s find out.

Using roles from Ansible Galaxy

The first thing we need to do before we use the role in our playbook is to download the role; there
are a few ways of doing this; first, you can download the role using the command given on the roles
Ansible Galaxy page.

Running the following command will download the role to your Ansible configuration directory:

$ ansible-galaxy install russmckendrick.ansible_role_learnansible_
example

The Ansible configuration directory is typically a hidden folder in your user’s home folder. The
shorthand for this folder is ~/.ansible, or in my case, the full path to the folder is /Users/
russ.mckendrick/.ansible, as you can see in the following shell output:

Figure 2.10 – Downloading the role from Ansible Galaxy

The second way to download roles from Ansible Galaxy is to create a requirements.yml file;
this file should contain a list of the roles you wish to download, for example, the requirements.
yml file in the Chapter02 folder of the repository, which accompanies this book and looks like
the following:

- src: "itnok.update_ubuntu"
- src: "geerlingguy.nginx"
- src: "russmckendrick.ansible_role_learnansible_example"

As you can see, there are three roles defined in there; to install all three, you can run the following command:

$ ansible-galaxy install -r requirements.yml

Publishing to and using Ansible Galaxy roles 51

The two others we will download are the following:

• itnok.update_ubuntu: This role manages updates on Ubuntu hosts

• geerlingguy.nginx: This role helps you download, install, and configure NGINX on
multiple Linux distributions

You can find links for the roles in the further reading section at the end of the chapter.

This will download only the missing roles; when I ran the command, I got the following output:

Figure 2.11 – Downloading the missing roles from Ansible Galaxy

As you can see, as russmckendrick.ansible_role_learnansible_example was already
present on my machine, it skipped downloading it.

The Ansible playbook called playbook02.yml, which can be found in the Chapter02 folder,
calls the three roles defined in the requirements.yml file using the following code:

- name: "Run the remote roles"
 hosts: "ansible_hosts"
 gather_facts: true
 become: true
 become_method: "ansible.builtin.sudo"

 roles:
 - "itnok.update_ubuntu"
 - "geerlingguy.nginx"
 - "russmckendrick.ansible_role_learnansible_example"

Exploring Ansible Galaxy52

As before, you can launch a VM using Multipass (ensuring that you update the IP address in the hosts
file) and run the playbook using the following commands:

$ multipass launch -n ansiblevm --cloud-init cloud-init.yaml
$ multipass info ansiblevm
$ ansible-playbook -i hosts playbook02.yml

As you can see from the playbook recap in the following screen, a lot more happened this time:

Figure 2.12 – Running the playbook, which uses the roles downloaded from Ansible Galaxy

The two additional roles did a more thorough update of the operating system than our role did,
installing the NGINX package and starting the service up; this means that if you put the IP address
returned by the multipass info ansiblevm command into your browser, you can see the
default NGINX page.

Once again, when ready, you can stop and delete the VM by using the following two commands:

$ multipass stop ansiblevm
$ multipass delete --purge ansiblevm

So now that you understand what an Ansible Role is, how to publish it to Ansible Galaxy, and how
to incorporate our own published and community roles into an Ansible playbook, what else can
Ansible Galaxy do?

Ansible collections
At the start of this chapter, we discussed how the Ansible development team decoupled Ansible
Modules away from Ansible Core and how this affected the release life cycle.

Ansible Galaxy commands 53

All of these modules, plugins, and other supporting code are available on Ansible Galaxy; for example,
the AWS collection from the Amazon namespace can be found at https://galaxy.ansible.
com/amazon/aws; you can install the collection using the following command:

$ ansible-galaxy collection install amazon.aws

Running this command will download and install the collection to ~/.ansible/collections/
ansible_collections/amazon/aws, as seen in the following terminal output:

Figure 2.13 – Installing the amazon.aws collection

However, just having the collection installed doesn’t mean that you will be able to use it within your
playbooks just yet; for example, the Amazon AWS module requires some additional Python libraries
to be installed, and typically, each collection will come with a requirements.txt file that lists
the required Python libraries that need to be installed on your system for the collections modules
and plugins to work.

To install these libraries, you should use pip to install them:

$ pip install -r ~/.ansible/collections/ansible_collections/amazon/
aws/requirements.txt

Once installed, you will be able to use the modules and plugins which make up the collection.

Ansible Galaxy commands
Before finishing this chapter on Ansible Galaxy, let’s quickly discuss some other useful commands.

The ansible-galaxy command has some of the basic functionality you would expect, such as
the following:

$ ansible-galaxy --version
$ ansible-galaxy --help

This displays details of the version and basic help options on the command, respectively.

The ansible-galaxy command is split into two parts, which we have already touched upon.

https://galaxy.ansible.com/amazon/aws
https://galaxy.ansible.com/amazon/aws

Exploring Ansible Galaxy54

First, there is ansible-galaxy collection; from here, you can add the following commands:

• download: Retrieves collections and their dependencies, such as tarballs, which is an archive
format for Linux machines for offline installations.

• init: Set up a new collection with the foundational structure.

• build: Construct an Ansible collection artifact suitable for publication to Ansible Galaxy.

• publish: Release a collection artifact to Ansible Galaxy.

• install: Add collection(s) from the specified file(s), URL(s), or directly from Ansible Galaxy.

• list: Display the name and version of every collection in the collections path.

• verify: Contrast the checksums of the installed collection(s) with those on the server; any
dependencies are not verified.

Secondly, there is ansible-galaxy role, as I am sure you will have already guessed; these
commands are for working with roles:

• init: Set up a new role with the foundational structure of a role

• remove: Erase roles from the specified roles path

• delete: Remove the role from Galaxy. Note that this does not affect or modify the actual
GitHub repository

• list: Display the name and version of every role in the roles path

• search: Query the Galaxy database using tags, platforms, authors, and keywords

• import: Incorporate a role into a Galaxy server

• setup: Oversee the connection between Galaxy and the designated source

• info: Obtain detailed information about a particular role

• install: Add role(s) from specified file(s), URL(s), or directly from Ansible Galaxy

For more help on any of these commands, you can append --help to the end. For example, you
can run the following:

$ ansible-galaxy role search --help

This will give you detailed information on how to search Ansible Galaxy; for example, to search for
my roles, you would need to run the following:

$ ansible-galaxy role search --author russmckendrick

Summary 55

This returns a list of all of the roles I have published to Ansible Galaxy, or you could run this:

$ ansible-galaxy role list

This lists all the roles you have installed in the roles path (which is ~/.ansible/roles/). From
there, you could run something like the following:

$ ansible-galaxy role info russmckendrick.ansible_role_learnansible_
example

This helps you obtain information on a role you have installed, which concludes our look at the
ansible-galaxy command.

Summary
In this chapter, we have had an in-depth look at Ansible Galaxy, the website, and the command-line
tool. We have also discussed the Ansible development and release cycle and understood what an
Ansible Role is.

I am sure that you will agree that Ansible Galaxy offers valuable community services in that it allows
users to share roles for everyday tasks and provides a way for users to contribute to the Ansible
community by publishing their roles.

However, just be careful. Remember to check the code and read through bug trackers before using
roles from Ansible Galaxy in production environments; after all, many roles need escalated privileges
to execute their tasks successfully.

As mentioned in this chapter, we will be creating our own Ansible Roles throughout the remainder
of this title, and there will be additional hints and tips on creating and using roles as our Ansible
playbooks get more and more sophisticated.

In our next chapter, we will look at more Ansible commands and tools that ship as part of Ansible Core.

Further reading
You can find more details on the two additional roles that we installed from Ansible Galaxy and the
official documentation at the following sites:

• geerlingguy.nginx: https://galaxy.ansible.com/ui/standalone/
roles/geerlingguy/nginx

• itnok.update_ubuntu: https://galaxy.ansible.com/ui/standalone/
roles/itnok/update_ubuntu/

• Ansible Galaxy Documentation: https://ansible.readthedocs.io/projects/
galaxy-ng/en/latest/community/userguide/

https://galaxy.ansible.com/ui/standalone/roles/geerlingguy/nginx
https://galaxy.ansible.com/ui/standalone/roles/geerlingguy/nginx
https://galaxy.ansible.com/geerlingguy/nginx
https://galaxy.ansible.com/ui/standalone/roles/itnok/update_ubuntu/
https://galaxy.ansible.com/ui/standalone/roles/itnok/update_ubuntu/
https://galaxy.ansible.com/itnok/update_ubuntu
https://ansible.readthedocs.io/projects/galaxy-ng/en/latest/community/userguide/
https://ansible.readthedocs.io/projects/galaxy-ng/en/latest/community/userguide/

3
The Ansible Commands

Before moving on to writing and executing more advanced playbooks, we will look at the rest of the
built-in Ansible commands. Here, we will cover using the commands that make up Ansible. Toward
the end of this chapter, we will install a third-party tool to visualize our host inventory.

This chapter will cover the following topics:

• Inbuilt commands

• Third-party commands

Inbuilt commands
When we installed Ansible, several different commands were installed. These were as follows:

• ansible

• ansible-config

• ansible-console

• ansible-doc

• ansible-galaxy

• ansible-inventory

• ansible-playbook

• ansible-pull

• ansible-vault

We already covered the ansible-galaxy command in Chapter 2, Exploring Ansible Galaxy.
We will be looking at ansible-playbook throughout the remaining chapters of this book, so I
will not go into any detail about that command in this chapter. Let’s start at the top of the list and a
command we have already used.

The Ansible Commands58

Ansible

Now, you would have thought that ansible would be the most common command we will use
throughout this book, but it isn’t.

The ansible command is only ever used for executing ad hoc commands against a single host or
collection of hosts. In Chapter 1, Installing and Running Ansible, we created a host inventory file that
targeted a single local virtual machine.

For this part of the chapter, we’ll look at targeting four different hosts I have running in a cloud
provider; my host’s file looks as follows:

ansible01 ansible_host=139.162.233.174
ansible02 ansible_host=139.162.233.227
ansible03 ansible_host=139.144.132.49
ansible04 ansible_host=139.144.132.71
[london]
ansible01
ansible02
[nyc]
ansible03
ansible04
[demohosts:children]
london
nyc
[demohosts:vars]
ansible_connection=ssh
ansible_user=root
ansible_private_key_file=~/.ssh/id_rsa
host_key_checking=False

As you can see, I have four hosts – ansible01 > ansible04. My first two hosts are in a group
called london and my second two are in a group called nyc. I have then taken these two groups
and created one containing them called demohosts, and I used this group to apply some basic
configurations based on the hosts I have launched.

Using the ping module, I can check connectivity to the hosts by running the following commands.
First, let’s check the two hosts in london:

$ ansible -I hosts london -m ping

Inbuilt commands 59

This returns the following results:

Figure 3.1 – Doing an Ansible ping targeting the london hosts

Now, let’s run the same command, but this time targeting the nyc hosts:

$ ansible -i hosts nyc -m ping

This gives us the following output:

Figure 3.2 – Doing an Ansible ping targeting the nyc hosts

As you can see, all four of my hosts returned pong.

I can also target all four hosts at once by adding all rather than a particular group of hosts:

$ ansible -i hosts all -m ping

Now that we can access our host through Ansible, we can target them and run some ad hoc commands;
let’s start with something basic:

$ ansible -i hosts london -a "ping -c 3 google.com"

The Ansible Commands60

This command will connect to the london hosts and run the ping -c 3 google.com command;
this will ping the google.com domain from the hosts and return the results:

Figure 3.3 – Running the ping command against google.com

We can also run a single module using the ansible command; we did this in Chapter 1, Installing
and Running Ansible, using the setup module. However, a better example would be updating all the
installed packages across all the hosts by running the following command:

$ ansible -i hosts all -m ansible.builtin.apt -a "name=* state=latest
update_cache=ye"

As you can see, we have taken the ansible.builtin.apt module, which we defined as follows
in Chapter 1, Installing and Running Ansible:

- ansible.builtin.apt:
 name:"*"
 state:"latest"
 update_cache:"true"

http://google.com

Inbuilt commands 61

I’ve passed in the same options, but rather than use YAML, I have formatted it as a key and value,
which is typical of what you would pass into any command on the command line:

Figure 3.4 – Using the ansible.builtin.apt module to update all the packages

As you can see, the output when running Ansible is quite verbose, and it provides feedback to tell us
precisely what it did during the ad hoc execution.

Let’s rerun the command against all our hosts, but this time just for a single package, say ntp:

$ ansible -i hosts all -m ansible.builtin.apt -a "pkg=ntp
state=latest"

Running the command once will install the package on all four of our hosts:

Figure 3.5 – Using the ansible.builtin.apt module to install the ntp package

The Ansible Commands62

Now, let’s rerun the command:

$ ansible -i hosts all -m ansible.builtin.apt -a "pkg=ntp
state=latest"

Running the command once will install the package on all four of our hosts and give us the following results:

Figure 3.6 – Rerunning the ansible.builtin.apt module to install the ntp package

As you can see, the hosts are returning a SUCCESS status and are showing no changes, which is what
we would expect to see.

So, why would you want to do this, and what is the difference between the two commands we ran?

First, let’s take a look at two of the commands we initially ran once we confirmed our hosts were
available using an Ansible ping:

$ ansible -i hosts london -a "ping -c 3 google.com"
$ ansible -i hosts all -m ansible.builtin.apt -a "name=* state=latest
update_cache=true"

While it appears that the first command isn’t running a module, it is. The default module for the
ansible command is called raw and runs raw commands on each of the targeted hosts. The -a part
of the command passes arguments to the module. The raw module happens to accept raw commands,
which is precisely what we are doing with the second command.

As mentioned previously, you will have noticed that the syntax is slightly different when we pass
commands to the ansible command and when using it as part of a YAML playbook. All we are
doing here is passing the key-value pairs directly to the module.

So, why would you want to use Ansible like this? Well, it’s excellent for running commands directly
against non-Ansible managed hosts in an extremely controlled way.

Inbuilt commands 63

Ansible uses SSH to connect to the hosts, runs the command, and lets you know the results. Just be
careful – it is easy to get overconfident and run something like the following:

$ ansible -I hosts all -a "reboot now"

If the user Ansible is using to connect to the host has permission to execute the command, it will
just run the command you give it. Running the previous command will reboot all the servers in the
host inventory file:

Figure 3.7 – Rebooting all four of the hosts with a single command

All hosts have an UNREACHABLE status because the reboot command kicked our SSH session
before the SUCCESS status could be returned. You can, however, see that each of the hosts has been
rebooted by running the uptime command:

$ ansible -i hosts all -a "uptime"

The following screenshot shows the output for the preceding command:

Figure 3.8 – Checking the uptime of the four hosts

Important
As mentioned previously, plus speaking from experience (it’s a long story), please be extremely
careful when using Ansible to manage hosts using ad hoc commands – it’s a powerful but dumb
tool, and it will assume you know the consequences of running the commands against your hosts.

The Ansible Commands64

That concludes our look at the ansible command; let’s move on to our next command, ansible-
config.

The ansible-config command

The ansible-config command is used to manage Ansible configuration files. Ansible ships with
sensible defaults, so there is little to configure outside of these. You can view the current configuration
by running the following:

$ ansible-config dump

As shown from the following output, all the text in green is the default config, and any configuration
in orange is a changed value:

Figure 3.9 – Dumping our complete Ansible configuration to screen

Running the following command will list details of every configuration option there is within Ansible,
including what the option does, its current state, when it was introduced, the type, and much more:

$ ansible-config list

The following screenshot shows the output for the preceding command:

Figure 3.10 – Viewing details on an Ansible configuration option

Inbuilt commands 65

If you had a configuration file, say at ~/.ansible.cfg, then you can load it using the -c
or–-config flags:

$ ansible-config view –-config "~/.ansible.cfg

The previous command will give you an overview of the custom configuration file and display the
Ansible default values not defined in your custom configuration file.

The ansible-console command

Ansible has a built-in console. It is not something I have used much in my day-to-day running of
Ansible. To start the console, we need to run one of the following commands:

$ ansible-console -i hosts
$ ansible-console -i hosts london
$ ansible-console -i hosts nyc

The first of the three commands targets all of the hosts, while the next two just target the named groups:

Figure 3.11 – Establishing the console connection

Once connected, you will see that I am connected to the london group of hosts, in which there are
two hosts. From here, you can type a module name, such as ping:

Figure 3.12 – Running ping from Ansible

The Ansible Commands66

Alternatively, you can use the raw module; for example, you can check the uptime command by
typing ansible.builtin.raw uptime:

Figure 3.13 – Using the raw module to run the uptime command

You can also use the same syntax as we did when running the ansible command to pass key-value
pairs – for example, running the following at the console prompt:

ansible.builtin.apt pkg=ntp state=latest update_cache=true

It should give you something like the following output:

Figure 3.14 – Checking that the ntp package is installed using the ansible.builtin.apt module

You may have noticed that the syntax of the command we are running this time is slightly different
from when we ran the same module using the ansible command earlier in this chapter.

That command was as follows:

$ ansible -i hosts london -m ansible.builtin.apt -a"pkg=ntp
state=latest update_cache=true"

Whereas this time, we just ran the following:

ansible.builtin.apt pkg=ntp state=latest update_cache=true

The reason for this is that when we called the module using the ansible command, we were working
on the command line of our local machine, so we needed to pass in the module name using the

Inbuilt commands 67

-m flag and then define the attributes by using the -a flag. After, we had to pass in our key-value pairs
within quotation marks so as not to break the flow of the command as spaces are used as a delimiter
when it comes to the command line.

When we ran the Ansible console, we had effectively already run the ansible -i hosts london
part of the command, left our local command line altogether, and were interacting with Ansible
itself directly.

To leave the console, type exit to return to your regular command-line shell.

As mentioned at the start of this section, the ansible-console command is something I do not use
– mainly for the warning I gave when we looked at the ansible command at the start of this chapter.

When connecting to several hosts using the ansible-console command, you must be 100%
confident that the commands you are typing are correct. For example, while I was only connected to
two hosts, my hosts file could have contained 200 hosts. Now, imagine I typed the wrong command
– executing it across 200 hosts at once could potentially do some unwanted things, such as rebooting
them all simultaneously.

To quit the ansible-console session, simply type exit and hit Enter.

As you have probably guessed, this happened to me. It wasn’t 200 hosts, but it could have easily been
– so please be careful.

The ansible-inventory command

Using the ansible-inventory command provides you with details of your host inventory
files. It can be helpful to understand how your hosts are grouped. For example, let’s say I run the
following command:

$ ansible-inventory -i hosts–-graph

In the same folder as the hosts inventory file that I have been using throughout this section, the
following is returned:

Figure 3.15 – Getting an overview of the inventory hosts file

The Ansible Commands68

As you can see, it displays the groups, starting with all, then the main host group (demohosts), then
the child groups (london and nyc), and finally the hosts themselves (ansible01 > ansible04).

If you want to view the configuration for a single host, you can use this command:

$ ansible-inventory -i hosts –-host=ansible01

The following screenshot shows the output of the preceding command:

Figure 3.16 – Viewing a single host

You may have noticed that it displays the configuration information that the host inherited from the
configuration we set for all the hosts in the demohost host group in the inventory file. You can view
all the information on each of your hosts and groups by running the following command:

$ ansible-inventory -i hosts –-list

This command is helpful if you have a large or complicated host inventory file and want information on
just a single host or if you have taken on a host inventory and want a better idea of how the inventory
is structured. We will look at a third-party tool later in this chapter that gives more display options.

What is ansible-pull?

Like the ansible-console command, ansible-pull is not a command I use very often;
I can count on one hand how often I have used it in the past several years.

ansible-pull is a command that allows a target machine to pull its configuration from a given
source, such as a Git repository, and apply it locally. This reverses the typical Ansible push model,
where a central control node pushes configuration to managed nodes.

The ansible-pull command works as follows:

1. The target machine, the one running ansible-pull, fetches a specified repository.

2. Once the repository has been fetched, the target machine looks for a playbook. By default, it
looks for one called localhost.yml, but you can specify a different playbook file if you
need to – please note that this is not included in the example files.

3. The target machine then runs the playbook against itself.

Inbuilt commands 69

There are a few use cases for ansible-pull:

• Decentralized configuration management: In environments where a centralized Ansible
server might be a single point of failure or isn’t feasible, ansible-pull allows nodes to
self-configure by pulling their configurations

• Edge locations and remote sites: For edge locations or remote sites with limited connectivity,
ansible-pull can be scheduled to run at specific intervals via a cron job, ensuring that
hosts can self-update when they have connectivity

• Development and testing: Developers can use ansible-pull to pull down and
apply configurations to their local development environments, ensuring consistency with
production configurations

There are a few prerequisites to running ansible-pull – the most prominent being that the
host running ansible-pull must have an active and valid Ansible installation and any other
dependencies needed to execute the playbook.

In summary, ansible-pull provides a way to invert the traditional Ansible model, allowing hosts
to pull their configurations as needed rather than having a central host push the configurations to them,
as we did in Chapter 1, Installing and Running Ansible, and Chapter 2, Exploring Ansible Galaxy. For
the remainder of this book, we will be taking the more traditional approach to Ansible deployments
and pushing our configuration to our target hosts.

However, it is always good to know that if, for whatever reason, you are not able to take this approach,
then you do have an alternative option in ansible-pull.

Using the ansible-vault command

In Ansible, it is possible to load variables from files or within a playbook itself; we will look at this in
the next chapter in more detail. These files can contain sensitive information such as passwords and
API keys. Here’s an example:

secret:"mypassword"
secret-api-key:"myprivateapikey"

As you can see, we have two sensitive bits of information visible as plaintext. This is OK while the
file is on our local machine – well, just about OK. But what if we want to check the file into source
control to share it with our colleagues?

We shouldn’t store this information in plaintext, even if the repository is private.

Ansible introduced Ansible Vault to help solve this very problem. Using the ansible-vault
command, we can encrypt a file or just variables, and then when Ansible is executed, it can be decrypted
in memory, and the content can be read as part of the execution.

The Ansible Commands70

Note
For the rest of the chapter, I will set a Vault password of password, should you wish to run
the ansible-vault command against the files in the Chapter03/vault folder.

To encrypt a file, we need to run the following command, providing a password that will be used to
decrypt the file when prompted:

$ ansible-vault encrypt secrets.yml

The following screenshot shows the output of the preceding command:

Figure 3.17 – Using ansible-vault to encrypt an entire file

As you can see from the output, you will be asked to confirm the password. Once encrypted, your file
will look something like this:

$ANSIBLE_VAULT;1.1;AES256
623731386430386366643631666466373331313864313661376436303264333032313
36331303262
3661383061313436653464663039626338376233646630310a3064376664623134396
36634646633
396534353334333263613065313938326130383536653338663831613132393431343
76632316263
3736633665303161630a3932656330666636313362396139383631303062626136333
33030336430
663438333765323138663638386534643830656337376137353237393032323830313
26262376366
616631366234313063636663303738313362303231323362636262373665393261623
73564353937
303465306233633633303533633232623233

As you can see, the details are encoded using text. This ensures that our secrets.yml file will still
work without problems when it’s checked into source control such as Git.

You can view the content of a file by running the following command:

$ ansible-vault view secrets.yml

Inbuilt commands 71

This will ask you for the password and print the content of the file to the screen:

Figure 3.18 – Using ansible-vault to encrypt an entire file

You can decrypt the file on disk by running the following command:

$ ansible-vault decrypt secrets.yml

This will restore the file to its unencrypted original state.

Important
When using the ansible-vault decrypt command, please do not commit or check the
decrypted file into your source control system!

Since early in the release of Ansible 2, encrypting a single variable in a file is now possible. Let’s add
some more variables to our file:

username:"russmckendrick"
password:"mypassword"
secretapikey:"myprivateapikey"
packages:
 - apache2
 - ntp
 - git

It would be good if we didn’t have to keep viewing or decrypting our file to check its variable name
and overall content.

Let’s encrypt the password content by running the following command:

$ ansible-vault encrypt_string'mypassword'–-name'password'

The Ansible Commands72

This will encrypt the mypassword string and give it a variable name of password:

Figure 3.19 – Using ansible-vault to encrypt a single string

We can then copy and paste the output into our file and repeat this process for secretapikey:

$ ansible-vault encrypt_string 'myprivateapikey' –-name 'secretapikey'

With that, we have generated two secret variables and replaced the unencrypted ones in our variables file.

Note
For ease of reading, I have truncated the output a little – the entire file can be found in the
Chapter03/vault folder in this book’s GitHub repository.

Our variables file should end up looking something like this:

username:"russmckendrick"
password: !vault |
 $ANSIBLE_VAULT;1.1;AES256
303934633637333863336365366638323835653463353930306434353161323634376
43261383837
 3035
secretapikey: !vault |
 $ANSIBLE_VAULT;1.1;AES256
386631333938346466386636323536343436386262373334383361316538623737616
66539326263
 3934
packages:
 - apache2
 - ntp
 - git

As you can see, that is much easier to read and is just as secure as encrypting the file.

Inbuilt commands 73

So far, so good, but how do you use Ansible Vault encrypted data in an Ansible playbook?

Before we look at how to do this, let’s see what happens when you don’t tell the ansible-playbook
command you are using Ansible Vault by running the following playbook. As you can see, it is loading
in the myvars.yml file and then printing the contents of our variables to the screen using the
ansible.builtin.debug module:

- name: "Print some secrets"
 hosts: "localhost"
 vars_files:
 - "myvars.yml"
 tasks:
 - name: "Print the vault content"
 ansible.builtin.debug:
 msg:
 - "The username is {{ username }} and password is {{
password }}, also the API key is {{ secretapikey }}"
 - "I am going to install {{ packages }}"

We can run the playbook using the following command; note that since it’s just running locally, we
are not passing an inventory file. This is something it will give you a warning about:

$ ansible-playbook playbook01.yml

This results in an error message being shown in the Terminal output:

Figure 3.20 – Getting an error when running the ansible-playbook command

As you can see, it’s complaining that it found Vault-encrypted data in one of the files, but we haven’t
provided the secret to unlock it.

The Ansible Commands74

The first way we can pass the Vault password during the ansible-playbook run is to put the
password in a text file and have the ansible-playbook command read the file’s contents.

As mentioned at the start of this section, I have been encoding my Vaults using a password of
password. Let’s put that in a file and then use it to unlock our Vault:

$ echo "password" > /tmp/vault-file

Running the following command will read the content of /tmp/vault-file and decrypt the data:

$ ansible-playbook --vault-id /tmp/vault-file playbook01.yml

As you can see from the following playbook run, the output is now as we expect:

Figure 3.21 – Running ansible-playbook and passing the Vault password in via a file

If you prefer to be prompted for the password, you can use the following command:

$ ansible-playbook --vault-id @prompt playbook01.yml

The following output shows the prompt:

Figure 3.22 – Running ansible-playbook and entering the password via a prompt

Third-party commands 75

You might be asking yourself, why are there two different options? When prompted, just running the
command and entering the password might seem enough.

However, when it comes to using services such as the ones we will cover in Chapter 15, Using Ansible
with GitHub Actions and Azure DevOps, the commands need to run utterly unattended as there will
not be an active terminal for you to enter the password.

Another advantage that will be looked at in both Chapter 15, Using Ansible with GitHub Actions and
Azure DevOps, and Chapter 16, Introducing Ansible AWX and Red Hat Ansible Automation Platform, is
that by abstracting away the need for an end user to enter credentials at runtime, it is entirely possible
for someone to run a pipeline and never need to know or have access to any of the secrets stored in
your playbooks or the credentials to unlock them.

Third-party commands
Before we finish looking at the various Ansible commands, let’s look at a command that isn’t shipped
as part of Ansible itself but is, in fact, a third-party open source project.

The ansible-inventory-grapher command

The ansible-inventory-grapher command, by Will Thames, uses the Graphviz library to
visualize your host inventories. The first thing we need to do is install Graphviz. To install this on
macOS using Homebrew, run the following command:

$ brew install graphviz

To install Graphviz on Ubuntu, use the following command:

$ sudo apt-get install graphviz

Once installed, you can install ansible-inventory-grapher using pip:

$ pip install ansible-inventory-grapher

Now that we have everything installed, we can generate the graph using the hosts file we used
earlier in this chapter:

$ ansible-inventory-grapher -i hosts demohosts

The Ansible Commands76

This will generate something that looks like this:

Figure 3.23 – Running ansible-inventory-grapher against our hosts file

This is the raw output of the graph. As you can see, it is like and uses some of the same syntax as HTML.
We can render this using the dot command, which ships as part of Graphviz. The dot command
creates hierarchical drawings from graphs. To do this, run the following command:

$ ansible-inventory-grapher -i hosts demohosts | dot -Tpng > hosts.png

This will generate a PNG file called hosts.png that contains the visualization of the host inventory
file you can see here:

Figure 3.24 – The output of passing our ansible-inventory-grapher output through Graphviz

Summary 77

As you can see, this is an excellent representation of the hosts being targeted by Ansible; it works
great for inclusion in your documentation but also gives you an idea of how a complicated inventory
file is structured.

Summary
In this chapter, we briefly looked at some of the supporting tools that ship as part of a standard Ansible
installation and a useful third-party tool designed to work with Ansible.

We will use these commands and the one we have purposely missed, ansible-playbook, in
later chapters.

In the next chapter, we will write a more complex playbook that installs a basic LAMP stack on our
local virtual machine.

Further reading
You can find the documentation for each of the tools covered in this chapter at the following URLs:

• Ansible command-line tools overview: https://docs.ansible.com/ansible/
latest/command_guide/command_line_tools.html

• ansible: https://docs.ansible.com/ansible/latest/cli/ansible.html

• ansible-config: https://docs.ansible.com/ansible/latest/cli/
ansible-config.html

• ansible-console: https://docs.ansible.com/ansible/latest/cli/
ansible-console.html

• ansible-doc: https://docs.ansible.com/ansible/latest/cli/ansible-
doc.html

• ansible-inventory: https://docs.ansible.com/ansible/latest/cli/
ansible-inventory.html

• ansible-playbook: https://docs.ansible.com/ansible/latest/cli/
ansible-playbook.html

• ansible-pull: https://docs.ansible.com/ansible/latest/cli/ansible-
pull.html

• ansible-vault: https://docs.ansible.com/ansible/latest/cli/
ansible-vault.html

• ansible-inventory-grapher: https://github.com/willthames/ansible-
inventory-grapher

https://docs.ansible.com/ansible/latest/command_guide/command_line_tools.html
https://docs.ansible.com/ansible/latest/command_guide/command_line_tools.html
https://docs.ansible.com/ansible/latest/cli/ansible.html
https://docs.ansible.com/ansible/latest/cli/ansible-config.html
https://docs.ansible.com/ansible/latest/cli/ansible-config.html
https://docs.ansible.com/ansible/latest/cli/ansible-console.html
https://docs.ansible.com/ansible/latest/cli/ansible-console.html
https://docs.ansible.com/ansible/latest/cli/ansible-doc.html
https://docs.ansible.com/ansible/latest/cli/ansible-doc.html
https://docs.ansible.com/ansible/latest/cli/ansible-inventory.html
https://docs.ansible.com/ansible/latest/cli/ansible-inventory.html
https://docs.ansible.com/ansible/latest/cli/ansible-playbook.html
https://docs.ansible.com/ansible/latest/cli/ansible-playbook.html
https://docs.ansible.com/ansible/latest/cli/ansible-pull.html
https://docs.ansible.com/ansible/latest/cli/ansible-pull.html
https://docs.ansible.com/ansible/latest/cli/ansible-vault.html
https://docs.ansible.com/ansible/latest/cli/ansible-vault.html
https://github.com/willthames/ansible-inventory-grapher
https://github.com/willthames/ansible-inventory-grapher

Part 2: Deploying Applications

Now that you understand Ansible’s basics, it’s time to put that knowledge into practice. In this part,
we will focus on deploying applications using Ansible playbooks. From setting up a LAMP stack
to deploying WordPress and targeting multiple distributions, you will gain hands-on experience
automating application deployments. We will also explore how Ansible can manage Windows-based
servers, expanding your automation capabilities.

This part has the following chapters:

• Chapter 4, Deploying a LAMP Stack

• Chapter 5, Deploying WordPress

• Chapter 6, Targeting Multiple Distributions

• Chapter 7, Ansible Windows Modules

4
Deploying a LAMP Stack

This chapter will look at deploying a complete LAMP stack using the various core modules that ship
with Ansible. We will target the local Multipass virtual machine we first used in Chapter 1, Installing
and Running Ansible.

We will discuss the following:

• The playbook layout – how our playbook is going to be structured

• Linux – preparing the Linux server

• Apache – installing and configuring Apache

• MariaDB – installing and configuring MariaDB

• PHP – installing and configuring PHP

This chapter covers the following topics:

• The playbook structure

• The LAMP stack

• The LAMP playbook

Before we start writing the playbook, we will discuss the structure we will use after we briefly discuss
what we need for the chapter.

Technical requirements
We will again use the local Multipass virtual machine we launched in the previous chapters. As we
will be installing all the elements of a LAMP stack on the virtual machine, your Multipass virtual
machine will need to be able to download packages from the internet; in all, there is around 500 MB
of packages and configuration to download.

Deploying a LAMP Stack82

You can find a complete copy of the playbook in the repository accompanying this book at https://
github.com/PacktPublishing/Learn-Ansible-Second-Edition/tree/main/
Chapter04.

The playbook structure
In Chapter 1, Installing and Running Ansible, the playbooks we ran were as basic as possible. They
have been in a single file, accompanied by a host inventory file, and, if required, a template file. Then,
in Chapter 2, Exploring Ansible Galaxy, we extended our playbook files to include roles rather than
putting all our tasks, handlers, and variables into one file.

As you can see from the following layout, there are several folders and files:

Figure 4.1 – The folder structure we will use for our playbook

While there is a copy of the structure in the repository, let’s work on creating the structure and discuss
each item as we create it. The first folder we need to create is our top-level folder. This is the folder
that will contain our playbook folders and files:

$ mkdir Chapter04
$ cd Chapter04

The next folder we are going to create is one called group_vars. This will contain the variable files
used in our playbook. For now, we are going to create a single variable file called common.yml:

$ mkdir group_vars
$ touch group_vars/common.yml

Next, we are going to create two files – our host inventory file, which we will name hosts, and our
master playbook, which is typically called site.yml:

$ touch production
$ touch site.yml

https://github.com/PacktPublishing/Learn-Ansible-Second-Edition/tree/main/Chapter04
https://github.com/PacktPublishing/Learn-Ansible-Second-Edition/tree/main/Chapter04
https://github.com/PacktPublishing/Learn-Ansible-Second-Edition/tree/main/Chapter04

The LAMP stack 83

The final folder we are going to create manually is called roles. Here, we are going to use the
ansible-galaxy command, which we learned about in Chapter 2, Exploring Ansible Galaxy, to
create a role called common. To do this, we use the following commands:

$ mkdir roles
$ ansible-galaxy role init roles/common

This should create all the files needed to start writing the common role.

The cloud-init.yaml, example_key, example_key.pub, and hosts.example files
are all lifted straight from Chapter 1, Installing and Running Ansible, and Chapter 2, Exploring Ansible
Galaxy, so we will not cover them again in this chapter.

Note
While we will work through each of the files individually in this and the following sections, a
complete copy of the playbook is available in the accompanying GitHub repository.

Let’s look at each of the four roles in our playbook and install and configure our LAMP stack.

The LAMP stack
The LAMP stack is the term used to describe an all-in-one web and database server. Typically, the
components are as follows:

• Linux is the underlying operating system; in our case, we will use Ubuntu 22.04

• Apache is the web server element of the stack

• MariaDB is what we will use as the database component of the stack; typically, it is based on
MySQL, which could also be used

• PHP is the dynamic language used by the web server to generate content

A common variation of the LAMP stack is called LEMP; this replaces Apache with NGINX, which
is pronounced engine-x, hence the E rather than the N.

We are going to look at creating roles to deal with these components; these are as follows:

• common: This role will prepare our Ubuntu server, installing any supporting packages and
services we need

• apache: This role will install the Apache web server and configure a default virtual host

• mariadb: This role will not only install MariaDB but also secure the installation and create a
default database and user, as well as optionally download and import a database to use

Deploying a LAMP Stack84

• php: This role will install PHP and configure a set of common PHP modules, and if we set
the option to a database admin tool written in PHP, we can interact with our test database via
the browser

Let us begin by looking at the common role.

The common role

In the previous section of this chapter, we used the ansible-galaxy role init command
to create the common role. This creates several folders and files; as discussed in Chapter 2, Exploring
Ansible Galaxy, we will not go into any detail here but instead dive straight into the role itself.

Let’s make a start by adding some tasks.

Updating installed packages

First of all, let’s update our server by adding the following to the beginning of the roles/common/
tasks/main.yml file:

- name: "Update apt cache and upgrade packages"
 ansible.builtin.apt:
 name: "*"
 state: "latest"
 update_cache: true

You will notice a difference from when we last used the ansible.builtin.apt module to
update all the installed packages.

We now start the task using the name key; this will print out the content of the value we assigned to
the name key when the playbook runs, which will give us a better idea of what is going on during the
playbook run, rather than just printing the name of the module that is executed.

Installing common packages

Now that we have updated the installed packages, let’s install the packages we want to install on all
the Linux servers we will target with the Playbook:

- name: "Install common packages"
 ansible.builtin.apt:
 state: "present"
 pkg: "{{ common_packages }}"

The LAMP stack 85

As you can see, we again use the ansible.builtin.apt module, and we have added a descriptive
name for the task. Rather than providing a list of packages in the task, we use a variable called common_
packages, which is defined in the roles/common/defaults/main.yml file as follows:

common_packages:
 - "ntp"
 - "sntp"
 - "ntp-doc"
 - "vim"
 - "git"
 - "unzip"

As you can see, we install ntp, sntp, and ntp-doc; we will configure ntp shortly. Next, we install
vim, git, and unzip, as they are always helpful to have installed on a server.

Another thing that you may have noticed is that we pass a list of packages using {{ common_
packages }} to the pkg key in the ansible.builtin.apt module, resulting in the module
looping through the list of packages we pass in and installing them all in one go, rather than having
to call the module to install each package individually.

Configuring Network Time Protocol (NTP)

Next, we copy the ntp.conf file from the templates folder, adding the list of NTP servers as
we have done in the previous chapters, and then informing Ansible to restart NTP whenever the
configuration file changes.

Creating a key, group, and user

In the roles/common/defaults/main.yml file, the following variable is defined:

users:
 - {
 name: "lamp",
 group: "lamp",
 state: "present",
 key: "/tmp/id_ssh_lamp_rsa",
 }

This is slightly different from the variables we have used so far, as it is a single variable called users,
which is made up of a single item, and that item contains the name, group, state, and key
key-value pairs.

Deploying a LAMP Stack86

Because we are using items, we need to change our approach to how we use the variables within the
task, the first of which in roles/common/tasks/main.yml creates an OpenSSH key pair;
if one doesn’t already exist, we need to save it at the path that is defined in the key key-value pair:

- name: "Generate a ssh keypair"
 community.crypto.openssh_keypair:
 path: "{{ item.key }}"
 with_items: "{{ users }}"
 delegate_to: "localhost"
 become: false

Working through the task, you can see that we use the community.crypto.openssh_keypair
module, in which we pass just one value, which is the path to the file where we would like our OpenSSH
key stored.

As you can see, we use the {{ item.key }} variable to enter the path, but we do not define
that the variable is called users here; instead, we use the with_items option and pass in the {{
users }} variable here.

While we only pass one item in this example, you could take this approach to execute a single task
multiple times – for example, if our variable looked like this:

users:
 - {
 name: "lamp",
 group: "lamp",
 state: "present",
 key: "/tmp/id_ssh_lamp_rsa",
 }
 - {
 name: "user2",
 group: "lamp",
 state: "present",
 key: "/tmp/id_ssh_user2_rsa",
 }

Then, when the task is executed, it would create two OpenSSH keys, and the subsequent tasks, which
we will get into in a moment, would create a single group called lamp and then two users, lamp
and user2.

Back to the task at hand – you will notice that we have defined two other options, delegate_to
and become.

The LAMP stack 87

If we were to run the community.crypto.openssh_keypair module without defining
delegate_to, then the module will be executed on the remote host, which is not what we want
to happen in this case, as we want a copy of the private and public portions of the OpenSSH key on
our local machine. Therefore, by using localhost as the value in the delegate_to option, we
tell Ansible to run this task locally.

The next option, become, tells Ansible not to become an escalated user using the sudo command,
which is the default action for all the hosts we have defined at the top of our main site.yml playbook
file – this is because we want the community.crypto.openssh_keypair module to run as
the user you are logged in as, rather than your local machine’s root user.

The logic for this task, minus the delegate_to and become options, as we want the remainder
of the tasks to be executed against the target machine, is followed through to the remaining tasks in
the role, starting with creating the group by executing the ansible. builtin.group module:

- name: "Add group for our users"
 ansible.builtin.group:
 name: "{{ item.group }}"
 state: "{{ item.state }}"
 with_items: "{{ users }}"

Once the group has been created, we can then add the user using ansible.builtin.user, or
users if we have defined more than one item in the users variable:

- name: "Add users to our group"
 ansible.builtin.user:
 name: "{{ item.name }}"
 group: "{{ item.group }}"
 comment: "{{ item.name }}"
 state: "{{ item.state }}"
 with_items: "{{ users }}"

The final task in the role takes the public portion of the OpenSSH key, which we generated earlier, and
adds the contents to the user(s) created during the previous task, using the ansible.builtin.
authorized_key module:

- name: "Add keys to our users"
 ansible.posix.authorized_key:
 user: "{{ item.name }}"
 key: "{{ lookup('file', item.key + '.pub') }}"
 with_items: "{{ users }}"

You may have noticed that the value we pass for the key option is new to us; this uses the lookup
plugin to read the file’s contents at the item.key path with .pub appended to the end, meaning, in
our case, it reads the contents of the file at /tmp/id_ssh_lamp_rsa.pub. This file is the public

Deploying a LAMP Stack88

portion of the OpenSSH key-pair, which was created when we executed the "generate a ssh
keypair" task earlier in the role.

The lookup plugin is designed to be executed locally, so in this case, we do not need to use the
delegate_to and become options, as we want the task to be executed on the target host because
that is where our user has been created, but we want to populate the /home/lamp/.ssh/
authorized_key file on the remote host with the contents of the /tmp/id_ssh_lamp_rsa.
pub file that we have on our local host.

That concludes the tasks in the common role; before we move on to the next role, which will install
and configure apache, you should know one more thing.

The "generate a ssh keypair" task will not overwrite any existing key-pairs when executed,
meaning the first time you run the role and no files exist at /tmp/id_ssh_lamp_rsa and /
tmp/id_ssh_lamp_rsa.pub, the key-pair will be created, and on subsequent Playbook runs,
as the files now exist, the task will return an OK, as there is nothing for it to do, as a valid key-pair
is already at the location, and we ask the community.crypto.openssh_keypair module to
create the key-pair.

The Apache role

Once the common role has finished running our remote host, we will be ready to install and configure
the Apache web server.

Installing the Apache packages

The first task in roles/apache/tasks/main.yml installs the packages we need to run the
Apache web server; it uses the ansible.builtin.apt module and looks like the following:

- name: "Install apache packages"
 ansible.builtin.apt:
 state: "present"
 pkg: "{{ apache_packages }}"

As you can see, it calls a variable called {{ apache_packages }}, which is defined in roles/
apache/defaults/main.yml as follows:

apache_packages:
 - "apache2"
 - "apache2-ssl-dev"
 - "ca-certificates"
 - "openssl"

As we learned when we walked through the common role, this will install the four packages defined
in the variable.

The LAMP stack 89

Once Apache has been installed, which is a single task, we can now progress to configuring our
Apache installation.

Configuring Apache

The first task when configuring Apache is to take the user that was created when the common role
was run and add them to the Apache group; to do this, we run the following task:

- name: "Add user to apache group"
 ansible.builtin.user:
 name: "{{ item.name }}"
 groups: "{{ apache_group }}"
 append: true
 with_items: "{{ users }}"

This takes the {{ users }} variable from the previous role and loops over the items defined in
the variable, adding the user to the group defined under the {{ apache_group }} variable in
the roles/apache/defaults/main.yml file. A full list of the variables defined to configure
Apache, which we will use throughout the next few tasks, is as follows:

apache_group: "www-data"
web_root: "web"
document_root: "/home/{{ users.0.name }}/{{ web_root }}"
index_file: index.html
vhost_path: "/etc/apache2/sites-enabled/"
vhost_default_file: "000-default.conf"
vhost_our_file: "vhost.conf"

You may have noticed that the value of the document_root variable is a little different from the
ones we have used so far; there’ll be more on that in a moment.

The next task creates a folder within the users directly, which we will use to store the files served
via Apache:

- name: "Create the document root for our website"
 ansible.builtin.file:
 dest: "{{ document_root }}"
 state: directory
 mode: "0755"
 owner: "{{ users.0.name }}"
 group: "{{ apache_group }}"

As you can see, we use {{ users.0.name }} as we did for the document_root variable
value; why is this?

Deploying a LAMP Stack90

As we know, the common role only creates a single user; we can’t simply use {{ users.name }},
as the name key exists within an item within the variable, so using {{ users.name }} would
result in an error, stating that the variable can’t be found.

Because of this, we can reference the first item in the list of items by using its position within the list,
which, because Ansible counts from zero, will be 0 rather than 1.

Using the values that we have defined in the defaults for the common and apache roles, this task will
create a folder at /home/lamp/web/; the lamp user would own the folder and would be assigned
to the www-data group, which is the group the Apache process will run as.

The next task will ensure the correct read, write, and execute permissions are set on the /home/
lamp/ folder:

- name: "Set the permissions on the user folder"
 ansible.builtin.file:
 dest: /home/{{ users.0.name }}/
 state: directory
 mode: "0755"
 owner: "{{ users.0.name }}"

That task concludes configuring the folder structure needed to serve our web pages; now, it is time
to configure Apache itself.

The first thing we need to do is remove the default virtual host configuration file; to do this, we will
execute the following task:

- name: "Remove the apache default vhost config"
 ansible.builtin.file:
 path: "{{ vhost_path }}{{ vhost_default_file }}"
 state: absent
 notify: "Restart apache2"

This uses the ansible.builtin.file module to set the state of the file defined by {{ vhost_
default_file }} in the {{ vhost_path }} folder to absent, which means, if the file
exists, remove it.

It also uses notify to call the "Restart apache2" handler, which is defined as the following
task in the roles/apache/handlers/main.yml file:

- name: "Restart apache2"
 ansible.builtin.service:
 name: "apache2"
 state: "restarted"
 enabled: true

The LAMP stack 91

Once the default file has been removed, we can add our virtual host configuration file.

The template for this virtual host configuration file can be found at roles/apache/templates/
vhost.conf.j2, and it contains the following:

{{ ansible_managed }}
<VirtualHost *:80>
 ServerName {{ ansible_hostname }}
 DocumentRoot {{ document_root }}
 DirectoryIndex {{ index_file }}
 <Directory {{ document_root }}>
 AllowOverride All
 Require all granted
 </Directory>
</VirtualHost>

When loaded, this configuration file serves the contents of the {{ document_root }} folder
when someone visits the site’s URL in their browser.

The task to deploy this template file to the remote host looks like the following:

- name: "Copy the our vhost.conf to the sites-enabled folder"
 ansible.builtin.template:
 src: vhost.conf.j2
 dest: "{{ vhost_path }}{{ vhost_our_file }}"
 mode: "0644"
 notify: "Restart apache2"

As you can see, this also calls the "Restart apache2" handler if there are any changes to the file.

With Apache now configured, there is one final task.

Optionally copying an index.html file

The final task in this role uses the following variables block:

html_deploy: true
html_heading: "Success !!!"
html_body: |
 This HTML page has been deployed using Ansible to {{ ansible_host
}}.

 The user is {{ users.0.name }} who is in the {{ apache_
group }} group.

 The weboot is {{ document_root }}, the default index file is
{{ index_file }}.

Deploying a LAMP Stack92

As you can see, it contains a heading and some HTML code for the body; these variables are used by
the following task:

- name: "Copy the test HTML page to the document root"
 ansible.builtin.template:
 src: index.html.j2
 dest: "{{ document_root }}/index.html"
 mode: "0644"
 owner: "{{ users.0.name }}"
 group: "{{ apache_group }}"
 when: html_deploy

This uses a template that can be found at roles/apache/templates/index.html.j2 and
looks like the following:

<!--{{ ansible_managed }}-->
<!doctype html>
<title>{{ html_heading }}</title>
<style>
 body { text-align: center; padding: 150px; }
 h1 { font-size: 50px; }
 body { font: 20px Helvetica, sans-serif; color: #333; }
 article { display: block; text-align: left; width: 650px; margin: 0
auto; }
</style>
<article>
 <h1>{{ html_heading }}</h1>
 <div>
 <p>{{ html_body }}</p>
 </div>
</article>

However, the task is only called if the html_deploy variable is set to true; this is managed by the
following statement at the end of the task:

when: html_deploy

So, if, for any reason, the html_deploy variable is not equal to true, then the task will be skipped
when the playbook is executed.

That’s all we need to do to install and configure Apache; let us now look at installing the M in LAMP
and review the role to install and configure MariaDB.

The LAMP stack 93

The MariaDB role

Of the four roles we cover in this chapter, this, the MariaDB one, is the most complicated, as it installs
MariaDB, configures it, and optionally downloads and imports a sample database.

Let’s start by covering the installation.

Installing MariaDB

You may have started to spot a trend in the roles; the tasks always start with installing a few packages,
and MariaDB is no different.

The task from roles/mariadb/tasks/main.yml is as follows:

- name: "Install mariadb packages"
 ansible.builtin.apt:
 state: "present"
 pkg: "{{ mariadb_packages }}"

The mariadb_packages variable in roles/mariadb/defaults/main.yml looks like
the following:

mariadb_packages:
 - "mariadb-server"
 - "mariadb-client"
 - "python3-pymysql"

As you can see, we installed the MariaDB client and server. Also, we installed the python3-pymysql
package; this is required for the tasks that need to interact with MariaDB once it is installed to function.
Without it, Ansible cannot establish a connection to and interact with our MariaDB server.

Once the packages have been installed, we need to start the MariaDB server by using the following task:

- name: "Start mariadb"
 ansible.builtin.service:
 name: mariadb
 state: started
 enabled: true

You might be thinking, why aren’t we using a handler as we have done for previous tasks? Well,
handlers are only called once the playbook execution has been completed and Ansible knows all the
services that need to be restarted.

However, in this case, we need to interact with the MariaDB service to be able to configure it as part
of the playbook run, so rather than using a handler, we just start the service as a task using the same
block we would use as the handler.

Deploying a LAMP Stack94

Now that MariaDB is installed and started, we can start the configuration.

Configuring MariaDB

Before we dive into the tasks, quickly look at the variables in roles/mariadb/defaults/main.
yml, which will be used to configure our MariaDB server:

mariadb_root_username: "root"
mariadb_root_password: "Pa55W0rd123"
mariadb_hosts:
 - "127.0.0.1"
 - "::1"
 - "{{ ansible_nodename }}"
 - "%"
 - "localhost"

Now that we know what variables we will use, it’s time to work through the configuration, which
is a little complex due to the default way that MariaDB is configured when it starts immediately
after installation.

By default, MariaDB starts with no password in place, meaning that anyone can connect to the database
as the root user, which is not ideal, so the first thing we need to do is to secure our installation by
setting the root password.

That sounds easy enough, you might be thinking to yourself.

Technically, it is; however, if the playbook were to be run a second time, meaning that there is now
a password set, then the task we are about to define, which sets the initial password, will error, as we
need to configure the task not to use a password. Once the password has been set, the server will only
accept a connection using the already set password.

We also need to consider that once a password has been configured, we need to use that password each
time we need to connect to the MariaDB server – so we need an easy way to ensure we can connect
smoothly once the password has been set.

Luckily, there is a function built into MariaDB and MySQL that allows you to put your credentials into
a file on the server; the file should be placed in the home directory of the user you are logged in as.
Once in place, each time you attempt to connect to the database server using that user, the database
client will read the file and connect you, without you having to type the credentials – this file should
be called ~/.my.cnf (the ~/ part is a shortcut for the user’s home folder).

For our scenario, this works because we can check for the presence of the ~/.my.cnf file, and if it
is not there, then it will be safe to assume that the password has not been configured yet.

The LAMP stack 95

The task that checks for the presence of the file is as follows:

- name: "Check to see if the ~/.my.cnf file exists"
 ansible.builtin.stat:
 path: ~/.my.cnf
 register: mycnf

This uses the ansible.builtin.stat module to check for the file and then uses the register
option to register a runtime variable, called mycnf.

Now that we have a dynamically registered variable that contains details on whether the ~/.my.cnf
file exists on the remote host’s filesystem or not, we can now proceed with changing the password or
skip the task if the ~/.my.cnf file is present.

Ansible has several built-in modules to interact with MySQL and MariaDB; the one we will use here
is ansible.builtin.mysql_user:

- name: "Change mysql root password if we need to"
 community.mysql.mysql_user:
 name: "{{ mariadb_root_username }}"
 host: "{{ item }}"
 password: "{{ mariadb_root_password }}"
 check_implicit_admin: "yes"
 priv: "*.*:ALL,GRANT"
 login_user: "{{ mariadb_root_username }}"
 login_unix_socket: /var/run/mysqld/mysqld.sock
 with_items: "{{ mariadb_hosts }}"
 when: not mycnf.stat.exists

In the task, we instruct Ansible to set the password for the user defined in the {{ mariadb_root_
username }} variable to the password stored in the {{ mariadb_root_password }} variable,
giving the user full admin access to all the databases across all possible host combinations, which are
defined in the {{ mariadb_hosts }}, which we loop over using the with_items function.

When logging in to do this, Ansible should use the {{ mariadb_root_username }} username
and connect over a Unix socket, which can be found at /var/run/mysqld/mysqld.sock; this
means we don’t have to establish a network connection to interact with the database because, if we
did, Ansible wouldn’t be able to connect, as it can’t send a blank password.

Finally, only run this task when the mycnf.stat.exists variable is equal to false.

Now that we have set the actual password and secured the MariaDB installation, we need to create
the ~/.my.cnf file to carry on with the configuration.

Deploying a LAMP Stack96

To do this, we will again use a template, which can be found at roles/mariadb/templates/
my.cnf.j2. This template looks like the following:

{{ ansible_managed }}
[client]
user='{{ mariadb_root_username }}'
password='{{ mariadb_root_password }}'

As you can see, it contains the username and password needed to connect to the database server.

Because the file contains credentials, when the task creates the file on the server, we need to ensure
that the file can only be read and written to by the root user, by setting the read, write, and execute
permissions of the file as it is created:

- name: "Set up ~/.my.cnf file"
 ansible.builtin.template:
 src: "my.cnf.j2"
 dest: "~/.my.cnf"
 mode: "0600"

Now that we have the ~/.my.cnf file on the remote host, we can progress with securing our MariaDB
installation; the subsequent task removes the anonymous user, again looping through the hosts that
user could be associated with:

- name: "Delete anonymous MySQL user"
 community.mysql.mysql_user:
 user: ""
 host: "{{ item }}"
 state: absent
 with_items: "{{ mariadb_hosts }}"

The final task that deals with securing our MariaDB installation removes the default test database:

- name: "Remove the MySQL test database"
 community.mysql.mysql_db:
 db: "test"
 state: "absent"

The remainder of the tasks in the role, such as copying the index.html file in the apache role,
are optional, so let’s review those tasks now.

The LAMP stack 97

Downloading and importing the example database

There is one more block of variables in roles/mariadb/defaults/main.yml; these deal with
downloading and importing an example database. There are a lot of keys in the mariadb_sample_
database variable, starting with the flag to enable the option, the URL of the file to download, and
the path to save it to:

mariadb_sample_database:
 create_database: true
 source_url: "https://github.com/russmckendrick/test_db/archive/
master.zip"
 path: "/tmp/test_db-master"

Next, we have the name of the example database being created as well as the username and password
to use for the new database:

 db_name: "employees"
 db_user: "employees"
 db_password: "employees"

Finally, there is a list of the files that need to be imported. The first two files contain the schema:

 dump_files:
 - "employees.sql"
 - "show_elapsed.sql"

The remaining files contain the actual data to be loaded:

 - "load_departments.dump"
 - "load_employees.dump"
 - "load_dept_emp.dump"
 - "load_dept_manager.dump"
 - "load_titles.dump"
 - "load_salaries1.dump"
 - "load_salaries2.dump"
 - "load_salaries3.dump"

Now that we know what variables are defined, we can work through the remaining tasks, the first of
which downloads and unarchives the ZIP file that contains the example database files:

- name: "Download and unarchive the sample database data"
 ansible.builtin.unarchive:
 src: "{{ mariadb_sample_database.source_url }}"
 dest: /tmp
 remote_src: "yes"
 when: mariadb_sample_database.create_database

Deploying a LAMP Stack98

As you can see, the ansible.builtin.unarchive module allows you to download and unarchive
the file, meaning we can do everything we need in a single task. Also, we only run the when task
when the mariadb_sample_database.create_database equals true. We will do this
for the remainder of the tasks and even expand upon the when statement toward the end of the role.

The next task creates the example database:

- name: "Create the sample database"
 community.mysql.mysql_db:
 db: "{{ mariadb_sample_database.db_name }}"
 state: present
 when: mariadb_sample_database.create_database

Once the database has been created, we can run a task that creates the user and assigns permissions
to the newly created user to access the database we just added:

- name: "Create the user for the sample database"
 community.mysql.mysql_user:
 name: "{{ mariadb_sample_database.db_user }}"
 password: "{{ mariadb_sample_database.db_password }}"
 priv: "{{ mariadb_sample_database.db_name }}.*:ALL"
 state: present
 with_items: "{{ mariadb_hosts }}"
 when: mariadb_sample_database.create_database

We are now down to the final two tasks, and here is where we need to add a little more logic to our
playbook to ensure that we only import the example data once; if we don’t have the logic in place, we
can run into all sorts of problems if the playbook is rerun and could risk data being overwritten or
duplicate data being inserted if the import task is allowed to run again.

As the databases are stored on the host’s filesystem, we can use the same logic that we used to check
for the presence of the ~/.my.cnf file, but this time, we check for a database file:

- name: "Check to see if we need to import the sample database dumps"
 ansible.builtin.stat:
 path: /var/lib/mysql/{{ mariadb_sample_database.db_name }}/{{
mariadb_sample_database.db_name }}.frm
 register: db_imported
 when: mariadb_sample_database.create_database

We register a variable called db_imported, which we will use with the when condition of the next
and final task; this is the one that loops through mariadb_sample_database.dump_files
and imports the databases:

- name: "Import the sample database"
 community.mysql.mysql_db:

The LAMP stack 99

 name: "{{ mariadb_sample_database.db_name }}"
 state: import
 target: "{{ mariadb_sample_database.path }}/{{ item }}"
 with_items: "{{ mariadb_sample_database.dump_files }}"
 when: db_imported is defined and not db_imported.stat.exists

We have changed the when condition slightly here; rather than referencing mariadb_sample_
database.create_database, we only use db_imported.

The first part ensures that the playbook doesn’t error if we decide not to import the database by setting
mariadb_sample_database.create_database to false, as db_imported can only be
defined if mariadb_sample_database.create_database is set to true, as the task that
sets the db_imported variable is only ever executed when that condition is met.

As you can also see, we use and, thus adding a second condition to the when statement; this means
that the task will only be executed if db_imported is defined and not db_imported.
stat.exists are both met.

That final task brings us to the end of the MariaDB role and leaves us with one role to work through
– the PHP role.

The PHP role

This, our final role, installs PHP, optionally copies a PHP Info file along with it, and installs a database
management interface written in PHP, called Adminer, so that we can access the database server we
used in the previous role.

Installing the PHP packages

It should come as no surprise to you that the first task executed in the PHP role installs the packages
needed for us to run PHP.

The full list of packages is defined in the roles/php/default/main.yml file, as follows:

php_packages:
 - "php"
 - "php-cli"
 - "php-curl"
 - "php-gd"
 - "php-intl"
 - "php-mbstring"
 - "php-mysql"
 - "php-soap"
 - "php-xml"
 - "php-xmlrpc"

Deploying a LAMP Stack100

 - "php-zip"
 - "libapache2-mod-php"

The task itself looks familiar:

- name: "Install php packages"
 ansible.builtin.apt:
 state: "present"
 pkg: "{{ php_packages }}"
 notify: "Restart apache2"

The thing to note is that we restart Apache once PHP is installed because we run PHP as an Apache
module. So, once installed, Apache needs to be restarted to load in the module and enable PHP on
our Apache web server.

That’s it. PHP is installed, and Apache asks to be restarted; everything from here is optional.

Copying the PHP Info file

The next task is a simple one that copies roles/php/files/info.php to the web root of the
server if the php_info variable is set to true:

- name: "Copy the PHP info to the document root"
 ansible.builtin.copy:
 src: info.php
 dest: "{{ document_root }}/info.php"
 mode: "0755"
 owner: "{{ users.0.name }}"
 group: "{{ apache_group }}"
 when: php_info

The only difference is that we copy the file from our local host to the remote one with this task – we
do not use the ansible.builtin.template module this time but instead, the ansible.
builtin.copy one. This is because info.php is made up of three lines of code, none of which
we need to update based on the environment or any variables we set.

Installing and configuring Adminer

The variables for the remaining tasks in the roles/php/default/main.yml file look like
the following:

adminer:
 install: true
 path: "/usr/share/adminer"
 download: "https://github.com/vrana/adminer/releases/download/
v4.8.1/adminer-4.8.1-mysql.php"

The LAMP stack 101

They define where to download the file from and where on the remote to download it to, which is
where the first of the three tasks comes in, as this creates the folder on the remote virtual machines
filesystem for us to download Adminer to:

- name: "Create the document root for adminer"
 ansible.builtin.file:
 dest: "{{ adminer.path }}"
 state: directory
 mode: "0755"
 when: adminer.install

Once we have the download target folder created, we can download Adminer itself:

- name: "Download adminer"
 ansible.builtin.get_url:
 url: "{{ adminer.download }}"
 dest: "{{ adminer.path }}/index.php"
 mode: "0755"
 when: adminer.install

As you may have spotted from the download URL and destination, Adminer is a single PHP file that
we save as index.php. So, how will we access Adminer via our Apache web server?

Well, to do that, we need to copy across another virtual host configuration file:

- name: "Copy the adminer.conf to sites-enabled folder"
 ansible.builtin.template:
 src: adminer.conf.j2
 dest: "{{ vhost_path }}adminer.conf"
 mode: "0755"
 when: adminer.install
 notify: "Restart apache2"

As you can see, this renders and copies across roles/php/templates/adminer.conf.j2
to adminer.conf, the site-enabled folder on our remote host, and instructs the Apache service to
restart to load the newly added configuration.

The adminer.conf.j2 file contains the following:

{{ ansible_managed }}
Alias /adminer "{{ adminer.path }}"
 <Directory "{{ adminer.path }}">
 DirectoryIndex index.php
 AllowOverride All
 Require all granted
 </Directory>

Deploying a LAMP Stack102

This tells Apache that whenever someone visits http://someurl/adminer/, the Adminer
index.php file should be served.

With that task covered, we have completed the walk-through of the four roles that go into installing
and configuring our LAMP stack, and now it is time to review and execute the playbook itself.

The LAMP playbook
As mentioned at the start of this chapter when we discussed the playbook structure, the main playbook
file is called site.yml, which contains the following:

- name: "Install LAMP stack"
 hosts: ansible_hosts
 gather_facts: true
 become: true
 become_method: ansible.builtin.sudo

 vars_files:
 - group_vars/common.yml

 roles:
 - common
 - apache
 - mariadb
 - php

As you can see, it calls the four roles we have already walked through and also loads a variables
file from group_vars/common.yml; this file contains an override for html_body, which is
configured in roles/apache/defaults/main.yml and looks like the following:

html_body: |
 This HTML page has been deployed using Ansible to {{ ansible_
nodename }}.

 The user is {{ users.0.name }} who is in the {{ apache_
group }} group.

 The weboot is {{ document_root }}, the default index file is
{{ index_file }}.

 You can access a PHP Info file or <a href="/
adminer/">Adminer.

This means that when we run the playbook, the index.hml page will have links to info.php and
the /adminer URL to access the additional content easily.

The LAMP playbook 103

Note
The Chapter04 folder in the GitHub repo that accompanies this title contains the example
hosts file and keys to launch a local virtual machine using Multipass. If you are following along,
refer to the instructions in Chapter 1, Installing and Running Ansible, for how to launch the
virtual machine and prepare your own hosts file.

So, without further ado, let’s run the playbook:

$ ansible-playbook -i hosts site.yml

On the first run, this should give us some output that looks like the following:

PLAY [ansible_hosts]
TASK [Gathering Facts]
ok: [ansiblevm]
TASK [roles/common : update apt cache and upgrade packages]
ok: [ansiblevm]
…. lots of other output here ….
RUNNING HANDLER [roles/apache : restart apache2]
changed: [ansiblevm]
PLAY RECAP
ansiblevm : ok=34 changed=26
unreachable=0 failed=0 skipped=0 rescued=0 ignored=0

As you can see, the Playbook has made 26 changes to the target virtual machine.

Let’s run the playbook a second time:

$ ansible-playbook -i hosts site.yml

Then, in the play recap, you should see that some tasks were skipped:

PLAY RECAP
ansiblevm : ok=30 changed=0
unreachable=0 failed=0 skipped=2 rescued=0 ignored=0

As expected, one of those tasks was updating the root password for the database user:

TASK [roles/mariadb : change mysql root password if we need to]
skipping: [ansiblevm] => (item=127.0.0.1)
skipping: [ansiblevm] => (item=::1)
skipping: [ansiblevm] => (item=ansiblevm)
skipping: [ansiblevm] => (item=%)
skipping: [ansiblevm] => (item=localhost)
skipping: [ansiblevm]

Deploying a LAMP Stack104

The second task that is skipped is importing the database files:

TASK [roles/mariadb : import the sample database]
skipping: [ansiblevm] => (item=employees.sql)
skipping: [ansiblevm] => (item=show_elapsed.sql)
skipping: [ansiblevm] => (item=load_departments.dump)
skipping: [ansiblevm] => (item=load_employees.dump)
skipping: [ansiblevm] => (item=load_dept_emp.dump)
skipping: [ansiblevm] => (item=load_dept_manager.dump)
skipping: [ansiblevm] => (item=load_titles.dump)
skipping: [ansiblevm] => (item=load_salaries1.dump)
skipping: [ansiblevm] => (item=load_salaries2.dump)
skipping: [ansiblevm] => (item=load_salaries3.dump)
skipping: [ansiblevm]

Both are to be expected, as that is how we configured the tasks to respond on subsequent Playbook runs.

Now, if you open your browser and enter http:// and then the name of your Ansible host (for
me, this was http://192.168.64.20.nip.io; I suspect yours will be different, so the link
will likely not work), then you should be greeted by the index.html page that Ansible generated:

Figure 4.2 – Success !!! – viewing the index.html page

http://192.168.64.20.nip.io

The LAMP playbook 105

Clicking on the link for the PHP Info file should take you to something like http://192.168.64.20.
nip.io/info.php, which will display information on your PHP installation:

Figure 4.3 – Viewing the PHP Info page

The final link to click is the one for Adminer; clicking it will take you to http://192.168.64.20.
nip.io/adminer/, which will prompt you to log in:

Figure 4.4 – The Adminer login page

To log in, use the following credentials:

• Username: root

• Password: Pa55W0rd123

• Database: employees

http://192.168.64.20.nip.io/info.php
http://192.168.64.20.nip.io/info.php
http://192.168.64.20.nip.io/adminer/
http://192.168.64.20.nip.io/adminer/

Deploying a LAMP Stack106

Once logged in, you will be taken straight to an overview of the employees database:

Figure 4.5 – The employees database overview

Feel free to click around, and once you have finished, ensure that you terminate the Multipass
virtual machine; instructions on how to do this can be found at the end of Chapter 1, Installing and
Running Ansible.

Summary
In this chapter, we worked through writing a playbook that installs a LAMP stack on our Multipass
virtual machine. We created four roles, one for each element of the stack, and within each of the roles,
we built in a bit of logic that can be overridden to deploy additional elements, such as test HTML and
PHP pages, and we also built in the option to create a test database that contains over 40,000 records.

So far, we installed some basic packages. In the next chapter, we will write a playbook that installs,
configures, and maintains a WordPress installation.

This updated playbook will reuse some of the elements from the roles we covered in this chapter
and make some improvements, as some of the elements we covered in this chapter were a little too
simplistic. The biggest change is that we will not use a hardcoded password for the database instance
moving forward.

Further reading 107

Further reading
You can find the project pages for the third-party tools covered throughout the chapter at the
following URLs:

• Apache: https://httpd.apache.org/

• MariaDB: https://mariadb.org/

• Datacharmer test database: https://github.com/datacharmer/test_db

• PHP: https://php.net/

• Adminer: https://www.adminer.org

• NGINX: https://nginx.org

https://httpd.apache.org/
https://mariadb.org/
https://github.com/datacharmer/test_db
https://php.net/
https://www.adminer.org
https://nginx.org

5
Deploying WordPress

In the previous chapter, we built a playbook that installs and configures a basic LAMP stack. In this
chapter, we will be building on top of the techniques we used there to create a playbook that installs a
LEMP stack, which, as you might recall, replaces Apache with NGINX and then installs WordPress.

Once we finish this chapter, you should be able to do the following:

• Prepare our initial playbook

• Download and install the WordPress CLI

• Install and configure WordPress

• Log in to your WordPress installation

The chapter covers the following topics:

• Preinstallation tasks

• The stack_install role

• The stack_config role

• The wordpress role

• Running the WordPress playbook

Before we start, we should quickly cover what WordPress is; you have likely visited a website powered
by WordPress at some point in the last 24 hours.

It is an open-source content management system (CMS) powered by PHP and MySQL and used by
around 810 million websites, which is around 43% of all the websites on the internet today, according
to the statistics published by Colorlib in August of 2023.

Deploying WordPress110

Technical requirements
Like in Chapter 4, Deploying a LAMP Stack, we will use the local Multipass virtual machine we have
been using throughout the title. Again, additional packages will be downloaded when launching the
virtual machine and deploying WordPress.

You can find a complete copy of the playbook in the repository accompanying this title at https://
github.com/PacktPublishing/Learn-Ansible-Second-Edition/tree/main/
Chapter05.

Preinstallation tasks
As mentioned in Chapter 4, Deploying a LAMP Stack, a LEMP stack is composed of the following elements:

• Linux: In our case, this will be the Ubuntu Multipass virtual machine

• NGINX: If you remember, it is pronounced as engine-x, which means there is an E in LEMP
and not an N (which would also make it impossible to pronounce as an abbreviation)

• MariaDB: As we have already seen, this will be the database component

• PHP: We will be using PHP 8 again for this

Before we install WordPress, we need to install and configure these components. Also, as this playbook
will eventually be executed against publicly available cloud servers, we must consider some best
practices around our NGINX configuration.

However, before we start looking at the playbook, let’s start things off by getting the initial structure
of the playbook set up:

$ mkdir Chapter05 Chapter05/group_vars Chapter05/roles
$ touch Chapter05/group_vars/common.yml Chapter05/hosts Chapter05/
site.yml
$ cd Chapter05

This gives us our basic layout. Next, we must copy the cloud-init.yaml, example_key,
example_key.pub, and hosts.example files from the previous chapters, so when it is time
to run the playbook, we have everything we need to launch the virtual machine using Multipass.

Now that we have the basics configured, we can make a start by writing the playbook to deploy and
configure our initial software stack.

.

https://github.com/PacktPublishing/Learn-Ansible-Second-Edition/tree/main/Chapter05
https://github.com/PacktPublishing/Learn-Ansible-Second-Edition/tree/main/Chapter05
https://github.com/PacktPublishing/Learn-Ansible-Second-Edition/tree/main/Chapter05

The stack_install role 111

The stack_install role
We are going to start by creating a role called stack_install using ansible-galaxy role
init:

$ ansible-galaxy role init roles/stack_install

This will install our initial software stack. Once installed, we hand it over to a second role, which will
then configure the software stack before a third role starts the WordPress installation.

So, what packages do we need? WordPress has the following requirements:

• PHP 7.4 or greater

• MySQL 5.7 or greater OR MariaDB 10.4 or greater

• Nginx or Apache with the mod_rewrite module

• HTTPS support

We know from the previous chapter that the versions of PHP and MariaDB we are installing meet
this requirement, leaving just NGINX, which we can download and install from the principal NGINX
repository to get the latest and greatest version.

Enabling the NGINX repository

Before we look at the tasks and variables that we will need to enable the mainline NGINX repository,
let’s start off the roles/stack_install/tasks/main.yml file with a task that updates the
operating system and the cache of available packages:

- name: "Update apt-cache and upgrade packages"
 ansible.builtin.apt:
 name: "*"
 state: "latest"
 update_cache: true

The remainder of the tasks we will be defining enable the repository before we finally install the packages.

Moving onto the roles/stack_install/default/main.yml file, we need to set some
variables containing information on the repository, which we will add alongside the default Ubuntu ones.

These variables start with one that contains the URL of the signing key for the repository that will
be enabled:

repo_keys_url:
 - "http://nginx.org/keys/nginx_signing.key"

Deploying WordPress112

We will then add the following repository URLs:

repo_packages:
 - "deb http://nginx.org/packages/mainline/ubuntu/ {{ ansible_
distribution_release }} nginx"
 - "deb-src http://nginx.org/packages/mainline/ubuntu/ {{ ansible_
distribution_release }} nginx"

You may have noticed that we are using the ansible_distribution_release fact to dynamically
run into the URL to put the correct version number of the Ubuntu distribution.

Now, back to the roles/stack_install/tasks/main.yml file and the two tasks that call
these variables – these will look like the following, starting with the addition of the signing key:

- name: "Add the apt keys from a URL"
 ansible.builtin.apt_key:
 url: "{{ item }}"
 state: "present"
 with_items: "{{ repo_keys_url }}"

As you can see, we are using with_items, so, if you need to, you could define more than one URL
and add additional signing keys.

This approach is carried forward to the next task, where we are adding more than one repository:

- name: "Install the repo packages"
 ansible.builtin.apt_repository:
 repo: "{{ item }}"
 state: "present"
 update_cache: true
 with_items: "{{ repo_packages }}"

The final task in the roles/stack_install/tasks/main.yml file is the one that installs
all of the packages:

- name: "Update cache and install the stack packages"
 ansible.builtin.apt:
 state: "present"
 update_cache: true
 pkg: "{{ system_packages + extra_packages + stack_packages }}"

You will notice that rather than defining the packages in a single variable, I have split them into three,
and we are combining them by using + when calling the variables.

So, what do these three variables contain, and why don’t we define them as a single variable?

The stack_install role 113

Back to the roles/stack_install/default/main.yml file, you can see that system_
packages is defined as the following:

system_packages:
 - "software-properties-common"
 - "python3-pymysql"
 - "acl"

Following that, the extra_packages variable contains the following package list:

extra_packages:
 - "vim"
 - "git"
 - "unzip"

Finally, we have the list of packages that make up the bulk of our software stack:

stack_packages:
 - "nginx"
 - "mariadb-server"
 - "mariadb-client"
 - "php-cli"
 - "php-curl"
 - "php-fpm"
 - "php-gd"
 - "php-intl"
 - "php-mbstring"
 - "php-mysql"
 - "php-soap"
 - "php-xml"
 - "php-xmlrpc"
 - "php-zip"

As we are defining three variables for the packages, it means that we can, if required, overwrite them
elsewhere in our playbook.

Let us, for example, assume that we need to install the Amazon Web Services command-line tool on
the virtual machine.

This would allow us to push data, such as images, to an Amazon S3 bucket or clear a cache on a
CloudFront content delivery network endpoint.

Deploying WordPress114

Rather than overriding a long list of packages from a single variable, we could take the extra_
packages variable, add it to group_vars/common.yml, and append it to the end of the list of
packages so that it will now look like the following:

extra_packages:
 - "vim"
 - "git"
 - "unzip"
 - "awscli"

As you can see, this is a lot more efficient than repeating all the packages we want to install.

Another advantage of using + to combine everything is that we only need to call a single ansible.
builtin.apt task to install everything we need for the following role, which we will dive into now.

The stack_config role
Now that we have our base software stack installed we need to configure it, let’s start by creating the
role by running the following command:

$ ansible-galaxy role init roles/stack_config

This gives us the basic file structure needed for the stack_config role. With that in place, we can
now look at configuring the role itself – in this role, we will need to do the following:

• Add a system user for our WordPress installation to run under

• Configure NGINX as per the best practices on the WordPress documentation

• Configure PHP-FPM to run as the WordPress user we created earlier

As we need a user for WordPress to run under, we should make a start there.

WordPress system user

The defaults for the WordPress system user, which should be placed in roles/stackconfig/
defaults/main.yml, are as follows:

wordpress_system:
 user: "wordpress"
 group: "php-fpm"
 comment: "wordpress system user"
 home: "/var/www/wordpress"
 state: "present"

The stack_config role 115

We refer to this as the system user, as we will create a user in WordPress itself later in the chapter. This
user’s details will also be defined in Ansible, so we do not want to get the two different users confused.

The two tasks that use these variables, found in roles/stack_config/tasks/main.yml,
should look like this:

- name: "add the wordpress group"
 ansible.builtin.group:
 name: "{{ wordpress_system.group }}"
 state: "{{ wordpress_system.state }}"

The preceding task ensures that the group is present, and the next task adds an operating system-level
user, which is added to the group that has just been created:

- name: "Add the wordpress user"
 ansible.builtin.user:
 name: "{{ wordpress_system.user }}"
 group: "{{ wordpress_system.group }}"
 comment: "{{ wordpress_system.comment }}"
 home: "{{ wordpress_system.home }}"
 state: "{{ wordpress_system.state }}"

As you can see, we are not adding a key to the user this time as we don’t want to log in to the user
account to start manipulating files and other actions. This should all be done within WordPress itself
or by using Ansible.

NGINX configuration

We are going to be using several template files for our NGINX configuration. The first template is
called roles/stack_config/templates/nginx-nginx.conf.j2, and it will replace
the main NGINX configuration deployed by the package installation:

{{ ansible_managed }}
user nginx;
worker_processes {{ ansible_processor_count }};
error_log /var/log/nginx/error.log warn;
pid /var/run/nginx.pid;
events {
 worker_connections 1024;
}
http {
 include /etc/nginx/mime.types;
 default_type application/octet-stream;
 log_format main '$remote_addr - $remote_user [$time_local]
"$request" '

Deploying WordPress116

 '$status $body_bytes_sent "$http_referer" '
 '"$http_user_agent" "$http_x_forwarded_for"';
 access_log /var/log/nginx/access.log main;
 sendfile on;
 keepalive_timeout 65;
 client_max_body_size 20m;
 include /etc/nginx/conf.d/*.conf;
}

The file’s content is the same as the file that will be replaced, except that we are updating worker_
processes to use the number of processors detected by Ansible when the setup module runs rather
than a hardcoded value.

The task to deploy the configuration file is as you would expect, and it should be placed in roles/
stack_config/tasks/main.yml:

- name: "Copy the nginx.conf to /etc/nginx/"
 ansible.builtin.template:
 src: nginx-nginx.conf.j2
 dest: /etc/nginx/nginx.conf
 mode: "0644"
 notify: "Restart nginx"

As you can see, we are notifying the restart nginx handler, which is stored in the roles/stack_
config/handlers/main.yml file:

- name: "Restart nginx"
 ansible.builtin.service:
 name: nginx
 state: restarted
 enabled: true

Next, we have the default site template, roles/stack_config/templates/nginx-confd-
default.conf.j2:

{{ ansible_managed }}
upstream {{ php.upstream }} {
 server {{ php.ip }}:{{ php.port }};
}
server {
 listen 80;
 server_name {{ ansible_nodename }};
 root {{ wordpress_system.home }};
 index index.php index.html index.htm;

The stack_config role 117

 include global/restrictions.conf;
 include global/wordpress_shared.conf;
}

To help identify where the template files will be placed on the target host, I am naming them so that
the full path is in the filename. In this case, the filename is nginx-confd-default.conf.j2,
and it will be deployed to /etc/nginx/conf.d/default.conf; the task to do this follows:

- name: "Copy the default.conf to /etc/nginx/conf.d/"
 ansible.builtin.template:
 src: nginx-confd-default.conf.j2
 dest: /etc/nginx/conf.d/default.conf
 mode: "0644"
 notify: "Restart nginx"

The following two files we are deploying are going into a folder that doesn’t exist. So, we first need to
create the destination folder. To do this, we need to add the following to roles/stack_config/
tasks/main.yml:

- name: "Create the global directory in /etc/nginx/"
 ansible.builtin.file:
 dest: /etc/nginx/global/
 state: directory
 mode: "0644"

As we are not making any replacements in the nginx-global-restrictions.conf file, we
are using the ansible.builtin.copy module rather than ansible.builtin.template
here; the file is stored in roles/stack_config/files/ and the task that copies it is as follows:

- name: "Copy the restrictions.conf to /etc/nginx/global/"
 ansible.builtin.copy:
 src: nginx-global-restrictions.conf
 dest: /etc/nginx/global/restrictions.conf
 mode: "0644"
 notify: "Restart nginx"

This file has some sensible defaults in it, such as denying access to files that are included as part of
the WordPress installation:

location ~* /(wp-config.php|readme.html|license.txt|nginx.conf) {
 deny all;
}

Deploying WordPress118

Another import inclusion is adding a configuration to deny access to .php files within /wp-content/
and its sub-folders:

location ~* ^/wp-content/.*.(php|phps)$ {
 deny all;
}

There are several other configurations in the nginx-global-restrictions.conf file; see
the repository, which accompanies the book, for the complete configuration, as there are too many
snippets for us to go into here.

The same can be said for the next and final block of the NGINX configuration; review the repository
for more information on the configuration deployed by the following task:

- name: "Copy the wordpress_shared.conf to /etc/nginx/global/"
 ansible.builtin.template:
 src: nginx-global-wordpress_shared.conf.j2
 dest: /etc/nginx/global/wordpress_shared.conf
 mode: "0644"
 notify: "Restart nginx"

When we reviewed the default site template, roles/stack_config/templates/nginx-
confd-default.conf.j2, you may have noticed the use of a few variables we haven’t yet defined;
they were php.ip and php.port.

As you may have already guessed from the variable labeling, these have to do with the configuration
of PHP, so, let us look at configuring the PHP and PHP-FPM part of our deployment.

PHP and PHP-FPM configuration

As we saw in the previous section, there are a few variables defined for PHP in roles/stack_
config/defaults/main.yml, and these are as follows:

php:
 ip: "127.0.0.1"
 port: "9000"
 upstream: "php"
 ini:
 - { regexp: "^;date.timezone =", replace: "date.timezone = Europe/
London" }
 - { regexp: "^expose_php = On", replace: "expose_php = Off" }
 - {
 regexp: "^upload_max_filesize = 2M",
 replace: "upload_max_filesize = 20M",
 }

The stack_config role 119

We then have some variables that define some information on the paths for the various files and
service names:

php_fpm_path: "/etc/php/8.1/fpm/pool.d/www.conf"
php_ini_path: "/etc/php/8.1/fpm/php.ini"
php_service_name: "php8.1-fpm"

The first configuration of the two tasks we will be running deploys the PHP-FPM configuration; this
is, what the template, which can be found at roles/stack_config/templates/php-fpmd-
www.conf.j2, looks like:

; {{ ansible_managed }}
[{{ wordpress_system.user }}]
user = {{ wordpress_system.user }}
group = {{ wordpress_system.group }}
listen = {{ php.ip }}:{{ php.port }}
listen.allowed_clients = {{ php.ip }}
pm = dynamic
pm.max_children = 50
pm.start_servers = 5
pm.min_spare_servers = 5
pm.max_spare_servers = 35
php_admin_value[error_log] = /var/log/php-fpm/{{ wordpress_system.user
}}-error.log
php_admin_flag[log_errors] = on
php_value[session.save_handler] = files
php_value[session.save_path] = /var/lib/php/fpm/session
php_value[soap.wsdl_cache_dir] = /var/lib/php/fpm/wsdlcache

As you can see, we have a few replacements in this file. Starting at the top between the square brackets,
we are defining the PHP-FPM pool name and using the content of the wordpress_system.
user variable for this.

Next, we have the user and group we want our pool to run under; here, we use wordpress_system.
user and wordpress_system.group.

Finally, we are setting the IP address and port we want our PHP-FPM pool to listen on by using the
php.ip and php.port variables.

The task in roles/stack_config/tasks/main.yml to deploy the template looks as follows:

- name: "Copy the www.conf to /etc/php-fpm.d/"
 ansible.builtin.template:
 src: php-fpmd-www.conf.j2
 dest: "{{ php_fpm_path }}"

Deploying WordPress120

 mode: "0644"
 notify: "Restart php-fpm"

The handler to restart PHP-FPM in roles/stack_config/handlers/main.yml is very
similar to the ones we have already been defining throughout the book:

- name: "Restart php-fpm"
 ansible.builtin.service:
 name: "{{ php_service_name }}"
 state: restarted
 enabled: true

The next task in roles/stack_config/tasks/main.yml uses the ansible.builtin.
lineinfile module:

- name: "Configure php.ini settings"
 ansible.builtin.lineinfile:
 dest: "{{ php_ini_path }}"
 regexp: "{{ item.regexp }}"
 line: "{{ item.replace }}"
 backup: "true"
 backrefs: "true"
 with_items: "{{ php.ini }}"
 notify: "Restart php-fpm"

We are taking the php.ini file and looping through it by looking for the values defined by the
regexp key. Once we find the value, we replace it with the content of the replace key. If there are
changes to the file, we are making a backup first, just in case.

Also, we are using backrefs to ensure that if there is no matching regex in the file, then it will
be left unchanged; if we didn’t use them, the restart php-fpm handler would be called every
time the playbook runs, and we do not want PHP-FPM to be restarted if there is no reason for it be.

Starting NGINX and PHP-FPM

Now that we have NGINX and PHP-FPM installed and configured, we need to start the two services
rather than wait until the end of the playbook run.

If we don’t do this now, our upcoming role to install WordPress will fail. The first of the two tasks in
roles/stackconfig/tasks/main.yml looks like the following:

- name: "Start php-fpm"
 ansible.builtin.service:
 name: "{{ php_service_name }}"
 state: "started"

The stack_config role 121

The second task looks pretty much the same:

- name: "Start nginx"
 ansible.builtin.service:
 name: "nginx"
 state: "started"

If you look at the two tasks, they are the same as the two handlers we have already defined.

However, if you look closer, you will notice that while we are using the ansible.builtin.
service module, we are only setting the state setting to started rather than restarted,
and we are missing the configuration for enabled, which sets the service to start on boot.

Another thing you may have noticed is the use of the php_service_name variable; to explain why
we are using this, you will need to wait until Chapter 6, Targeting Multiple Distributions.

The final component of our software stack that we need to configure is MariaDB, so let us review that
before we move on to the WordPress installation and configuration.

MariaDB configuration

The MariaDB configuration will closely match its configuration in Chapter 4, Deploying a LAMP Stack,
minus a few steps, so I will not go into too much detail here.

The default variables for this part of the role in roles/stack_config/defaults/main.
yml are as follows:

mariadb:
 bind: "127.0.0.1"
 server_config: "/etc/my.cnf.d/mariadb-server.cnf"
 username: "root"
 password: "Pa55W0rd123"
 hosts:
 - "127.0.0.1"
 - "::1"
 - "{{ ansible_nodename }}"
 - "localhost"

As you can see, we are now using a nested variable and have removed the host wildcard, which we
had previously defined as % in Chapter 4, Deploying a LAMP Stack.

Our first task is to start MariaDB so that we can interact with it:

- name: "Start mariadb"
 ansible.builtin.service:
 name: "mariadb"

Deploying WordPress122

 state: "started"
 enabled: true

Check for the presence of the ~/.my.cnf file:

- name: "Check to see if the ~/.my.cnf file exists"
 ansible.builtin.stat:
 path: "~/.my.cnf"
 register: mycnf

Set a password:

- name: "Change mysql root password if we need to"
 community.mysql.mysql_user:
 name: "{{ mariadb.username }}"
 host: "{{ item }}"
 password: "{{ mariadb.password }}"
 check_implicit_admin: "true"
 priv: "*.*:ALL,GRANT"
 login_user: "{{ mariadb.username }}"
 login_unix_socket: /var/run/mysqld/mysqld.sock
 with_items: "{{ mariadb.hosts }}"
 when: not mycnf.stat.exists

Create the ~/my.cnf file:

- name: "Set up .my.cnf file"
 ansible.builtin.template:
 src: "my.cnf.j2"
 dest: "~/.my.cnf"
 mode: "0644"

Then, remove the anonymous user:

- name: "Delete anonymous MySQL user"
 community.mysql.mysql_user:
 user: ""
 host: "{{ item }}"
 state: "absent"
 with_items: "{{ mariadb.hosts }}"

Now, we have come to our final task, which is to remove the test database:

- name: "Remove the MySQL test database"
 community.mysql.mysql_db:

The wordpress role 123

 db: "test"
 state: "absent"

Now, with everything we need to install and run WordPress configured, we can start on WordPress itself.

The wordpress role
Now that we have completed the roles that prepare our target virtual machine, we can proceed with
the actual WordPress installation; this will be split into a few different parts, starting with downloading
wp-cli and setting up the database.

Before we progress, we should create the role:

$ ansible-galaxy role init roles/wordpress

Now that we have the empty role files, we can start populating the tasks and variables in the files.

Some facts

Before installing WordPress, we must set some facts using the ansible.builtin.set_fact
module. The following task, the first in the roles/wordpress/tasks/main.yml file, sets two
variables using the information gathered when Ansible first connects to the hosts:

- name: "Set a fact for the wordpress domain"
 ansible.builtin.set_fact:
 wordpress_domain: "{{ ansible_ssh_host }}"
 os_family: "{{ ansible_distribution }} {{ ansible_distribution_
version }}"

We will use these two variables when we install WordPress using the WordPress CLI, which we will
be downloading and installing next.

WordPress CLI installation

WordPress CLI (wp-cli) is a command-line tool used to administer your WordPress installation;
we will be using it throughout the role, so, the first thing our role should do is download it. To do this,
we need to download the following variables in roles/wordpress/defaults/main.yml:

wp_cli:
 download: "https://raw.githubusercontent.com/wp-cli/builds/gh-pages/
phar/wp-cli.phar"
 path: "/usr/local/bin/wp"

Deploying WordPress124

Moving back to the roles/wordpress/tasks/main.yml file, we use these two variables in
the following task, which downloads wp-cli and places it on our host:

- name: "Download wp-cli"
 ansible.builtin.get_url:
 url: "{{ wp_cli.download }}"
 dest: "{{ wp_cli.path }}"
 mode: "0755"

Now, we have wp-cli on our host with the correct execute permissions.

Before we start to use wp-cli, we have one more bit of preparation work to do: create the database
and user, which we will use with our WordPress installation.

Creating the WordPress database

The next part of the role creates the database our WordPress installation will use; as per the other tasks
in this chapter, it uses a nested variable, which can be found in roles/wordpress/defaults/
main.yml:

wp_database:
 name: "wordpress"
 username: "wordpress"
 password: "W04DPr3S5"

The tasks in roles/wordpress/tasks/main.yml to create the database are as follows:

- name: "Create the wordpress database"
 community.mysql.mysql_db:
 db: "{{ wp_database.name }}"
 state: "present"

Now that the database has been created, we can add the user:

- name: "Create the user for the wordpress database"
 community.mysql.mysql_user:
 name: "{{ wp_database.username }}"
 password: "{{ wp_database.password }}"
 priv: "{{ wp_database.name }}.*:ALL"
 state: "present"
 with_items: "{{ mariadb.hosts }}"

Notice how we are using the mariadb.hosts variable from the previous role. Now that we have
the database created, we can start downloading and installing WordPress.

The wordpress role 125

Downloading, configuring, and installing WordPress

Now that we have everything in place to install WordPress, we can make a start, first by setting some
default variables in roles/wordpress/defaults/main.yml:

wordpress:
 domain: "http://{{ wordpress_domain }}/"
 title: "WordPress installed by Ansible on {{ os_family }}"
 username: "ansible"
 password: "password"
 email: "test@example.com"
 plugins:
 - "jetpack"
 - "wp-super-cache"
 - "wordpress-seo"
 - "wordfence"
 - "nginx-helper"

Now that we have our variables, we can start our download if we need to. To find out whether we need
to download WordPress, we should check for the presence of an existing WordPress installation. The
task to do this in roles/wordpress/tasks/main.yml looks like the following:

- name: "Are the wordpress files already there?"
 ansible.builtin.stat:
 path: "{{ wordpress_system.home }}/index.php"
 register: wp_installed

As you can see, the first task uses the ansible.builtin.stat module to check for an index.
php file in our system user’s home directory, which in our case is also the webroot.

If this is the first time that the playbook is being run against the host, then we will need to
download WordPress:

- name: "Download wordpresss"
 ansible.builtin.command: "{{ wp_cli.path }} core download"
 args:
 chdir: "{{ wordpress_system.home }}"
 become_user: "{{ wordpress_system.user }}"
 become: true
 when: not wp_installed.stat.exists

This task uses the ansible.builtin.shell module to issue the following command:

$ su wordpress -
$ cd /var/www/wordpress
$ /usr/local/bin/wp core download

Deploying WordPress126

There are a few arguments we should work through before moving on to the next task, which are
the following:

• args and chdir: You can pass additional arguments to the ansible.builtin.shell
module using args. Here, we are passing chdir, which instructs Ansible to change to the
directory we specify before running the shell command we provide.

• become_user: This is the user we want to run the command as. The command will run as
the root user if we do not use this flag.

• become: This instructs Ansible to execute the task as the defined user.

The next task in the playbook sets the correct permissions on the user’s home directory:

- name: "Set the correct permissions on the homedir"
 ansible.builtin.file:
 path: "{{ wordpress_system.home }}"
 mode: "0755"
 when: not wp_installed.stat.exists

Now that WordPress is downloaded, we can start the installation. First, we need to check whether
this has already been done:

- name: "Is wordpress already configured?"
 ansible.builtin.stat:
 path: "{{ wordpress_system.home }}/wp-config.php"
 register: wp_configured

If there is no wp-config.php file, then the following task will be executed:

- name: "Sort the basic wordpress configuration"
 ansible.builtin.command: "{{ wp_cli.path }} core config --dbhost={{
mariadb.bind }} --dbname={{ wp_database.name }} --dbuser={{ wp_
database.username }} --dbpass={{ wp_database.password }}"
 args:
 chdir: "{{ wordpress_system.home }}"
 become_user: "{{ wordpress_system.user }}"
 become: true
 when: not wp_configured.stat.exists

This is like you logging in and running the following:

$ su wordpress -
$ cd /var/www/wordpress
$ /usr/local/bin/wp core config \
--dbhost=127.0.0.1\

The wordpress role 127

--dbname=wordpress\
--dbuser=wordpress \
--dbpass=W04DPr3S5

As you can see, we are using Ansible to execute commands as if we had a local terminal open.

Now that we have our wp-config.php file created, with the database credentials in place, we can
install WordPress.

First, we need to check whether WordPress has already been installed:

- name: "Do we need to install wordpress?"
 ansible.builtin.command: "{{ wp_cli.path }} core is-installed"
 args:
 chdir: "{{ wordpress_system.home }}"
 become_user: "{{ wordpress_system.user }}"
 become: true
 ignore_errors: true
 register: wp_installed

As you can see from the presence of the ignore_errors option, if WordPress is not installed, this
command will give us an error. We are then using this to our advantage when registering the results,
as you can see from the following task:

- name: "Install wordpress if needed"
 ansible.builtin.command: "{{ wp_cli.path }} core install --url='{{
wordpress.domain }}' --title='{{ wordpress.title }}' --admin_user={{
wordpress.username }} --admin_password={{ wordpress.password }}
--admin_email={{ wordpress.email }}"
 args:
 chdir: "{{ wordpress_system.home }}"
 become_user: "{{ wordpress_system.user }}"
 become: true
 when: wp_installed.rc == 1

This task is only executed if the previous task returns an error, which is what happens if WordPress
is not installed.

Now that our primary WordPress site is installed, we can continue installing the plugins.

WordPress plugins installation

The final part of our WordPress installation is to download and install the plugins we defined in the
wordpress.plugins variable.

Deploying WordPress128

As per previous tasks, we will build a little logic into the tasks. First, we run the following task to see
whether all the plugins are already installed:

- name: "Do we need to install the plugins?"
 ansible.builtin.command: "{{ wp_cli.path }} plugin is-installed {{
item }}"
 args:
 chdir: "{{ wordpress_system.home }}"
 become_user: "{{ wordpress_system.user }}"
 become: true
 with_items: "{{ wordpress.plugins }}"
 ignore_errors: true
 register: wp_plugin_installed

If the plugins are not installed, this task should fail, so we have ignore_errors in there.

As you can see, we are registering the results of the entire task, because, if you remember, we are
installing several plugins, such as wp_plugin_installed.

The next two tasks take the results of wp_plugin_installed and use the ansible.builtin.
set_fact module to set a fact depending on the results:

- name: "Set a fact if we don't need to install the plugins"
 ansible.builtin.set_fact:
 wp_plugin_installed_skip: true
 when: wp_plugin_installed.failed is undefined

The preceding task is set if we don’t need to install any of the plugins, and the following one is used
if we need to install at least one of the plugins:

- name: "Set a fact if we need to install the plugins"
 ansible.builtin.set_fact:
 wp_plugin_installed_skip: false
 when: wp_plugin_installed.failed is defined

As you can see, we are setting wp_plugin_installed_skip to be true or false: if the fact
is set to false, then the next task will loop through installing the plugins:

- name: "Install the plugins if we need to or ignore if not"
 ansible.builtin.command: "{{ wp_cli.path }} plugin install {{ item
}} --activate"
 args:
 chdir: "{{ wordpress_system.home }}"

Running the WordPress playbook 129

 become_user: "{{ wordpress_system.user }}"
 become: true
 with_items: "{{ wordpress.plugins }}"
 when: not wp_plugin_installed_skip

Now that we have the plugins’ tasks defined, we can have a go at running our playbook.

Running the WordPress playbook
To run the playbook and install WordPress, we need to finish walking through the files; site.yml
should look as follows:

- name: "Install and configure WordPress and supporting software"
 hosts: "ansible_hosts"
 gather_facts: true
 become: true
 become_method: "ansible.builtin.sudo"

 vars_files:
 - "group_vars/common.yml"

 roles:
 - "stack_install"
 - "stack_config"
 - "wordpress"

With that out of the way, we can run the playbook.

Note
The Chapter05 folder in the GitHub repository accompanying this title contains the example
hosts file and keys for launching a local virtual machine using Multipass. If you are following
along, please refer to the instructions in Chapter 1, Installing and Running Ansible; these detail
how to launch the virtual machine and prepare your hosts file.

As we know, to run the playbook, we need to issue the following command once our Multipass virtual
machine is up and running:

$ ansible-playbook -i hosts site.yml

Deploying WordPress130

Let’s cover some of the highlights rather than go through the whole output here, starting with adding
the NGINX repository:

TASK [roles/stack_install : add the apt keys from a URL] **
changed: [ansiblevm] => (item=http://nginx.org/keys/nginx_signing.key)
TASK [roles/stack_install : install the repo packages] ****
changed: [ansiblevm] => (item=deb http://nginx.org/packages/mainline/
ubuntu/ jammy nginx)
changed: [ansiblevm] => (item=deb-src http://nginx.org/packages/
mainline/ubuntu/ jammy nginx)

As you can see, the name of the Ubuntu release is added – in the example, this is jammy.

When making changes to the php.ini file, only two of the three changes we defined need to be
applied, as expose_php is already set to Off:

TASK [roles/stack_config : configure php.ini] *************
changed: [ansiblevm] => (item={'regexp': '^;date.timezone =',
'replace': 'date.timezone = Europe/London'})
ok: [ansiblevm] => (item={'regexp': '^expose_php = On', 'replace':
'expose_php = Off'})
changed: [ansiblevm] => (item={'regexp': '^upload_max_filesize = 2M',
'replace': 'upload_max_filesize = 20M'})

Remember that we set the ignore_errors flag for some of the checks when it came to installing
and configuring WordPress; this is why:

TASK [roles/wordpress : do we need to install wordpress?] *
fatal: [ansiblevm]: FAILED! => {"changed": true, "cmd": "/usr/local/
bin/wp core is-installed", "delta": "0:00:00.142910", "end": "2023-09-
17 12:28:16.500304", "msg": "non-zero return code", "rc": 1, "start":
"2023-09-17 12:28:16.357394", "stderr": "PHP Warning: Undefined
array key \"HTTP_HOST\" in /var/www/wordpress/wp-includes/functions.
php on line 6135\nWarning: Undefined array key \"HTTP_HOST\" in /
var/www/wordpress/wp-includes/functions.php on line 6135\nPHP
Warning: Undefined array key \"HTTP_HOST\" in /var/www/wordpress/
wp-includes/functions.php on line 6135\nWarning: Undefined array key
\"HTTP_HOST\" in /var/www/wordpress/wp-includes/functions.php on line
6135", "stderr_lines": ["PHP Warning: Undefined array key \"HTTP_
HOST\" in /var/www/wordpress/wp-includes/functions.php on line 6135",
"Warning: Undefined array key \"HTTP_HOST\" in /var/www/wordpress/
wp-includes/functions.php on line 6135", "PHP Warning: Undefined
array key \"HTTP_HOST\" in /var/www/wordpress/wp-includes/functions.
php on line 6135", "Warning: Undefined array key \"HTTP_HOST\" in /
var/www/wordpress/wp-includes/functions.php on line 6135"], "stdout":
"", "stdout_lines": []}
...ignoring
TASK [roles/wordpress : install wordpress if needed] ******
changed: [ansiblevm]

Running the WordPress playbook 131

As you can see, an error was ignored, and the task to install WordPress was triggered. The same thing
happened for the plugins:

TASK [roles/wordpress : set a fact if we don't need to install the
plugins] **************************************
skipping: [ansiblevm]
TASK [roles/wordpress : set a fact if we need to install the plugins]
**
ok: [ansiblevm]

On first execution, the recap looked something like the following:

PLAY RECAP **
ansiblevm : ok=39 changed=28 unreacha-
ble=0 failed=0 skipped=1 rescued=0 ignored=2

Rerunning the playbook immediately after shows how the logic we have added throughout the task
execution kicks in, which results in a lot of the later tasks being skipped entirely:

TASK [roles/wordpress : are the wordpress files already there?] ******

ok: [ansiblevm]
TASK [roles/wordpress : download wordpresss] **************
skipping: [ansiblevm]

Note that, this time, the check for the plugins doesn’t result in an error:

TASK [roles/wordpress : do we need to install the plugins?]
changed: [ansiblevm] => (item=jetpack)
changed: [ansiblevm] => (item=wp-super-cache)
changed: [ansiblevm] => (item=wordpress-seo)
changed: [ansiblevm] => (item=wordfence)
changed: [ansiblevm] => (item=nginx-helper)

TASK [roles/wordpress : set a fact if we don't need to install the
plugins] **************************************
ok: [ansiblevm]
TASK [roles/wordpress : set a fact if we need to install the plugins]
**
skipping: [ansiblevm]
TASK [roles/wordpress : install the plugins if we need to or ignore if
not] ***
skipping: [ansiblevm] => (item=jetpack)
skipping: [ansiblevm] => (item=wp-super-cache)
skipping: [ansiblevm] => (item=wordpress-seo)
skipping: [ansiblevm] => (item=wordfence)
skipping: [ansiblevm] => (item=nginx-helper)

Deploying WordPress132

Now that WordPress is installed, we should be able to access it in a browser by going to the host you
have defined in your hosts file, in my case, http://192.168.64.26.nip.io/; yours will
be different.

You will see the default WordPress site:

Figure 5.1 – Our freshly installed WordPress website

As you can see, the site’s description in the top left reads WordPress installed by Ansible on Ubuntu
22.04, which is what we set when installing WordPress.

Also, if you go to the WordPress admin area by appending /wp-admin/ to the end of your URL,
for example, http://192.168.64.26.nip.io/wp-admin/, you should be able to log in to
WordPress using the username and password we defined:

Figure 5.2 – The WordPress admin login page

Summary 133

Once logged in, you should see a few messages about the plugins we installed during the playbook
run needing to be configured:

Figure 5.3 – Prompts when first logging into WordPress

Feel free to play with the WordPress installation and even, if you are so inclined, try and break it – if
you needed to, you could delete and relaunch the Multipass virtual machine and quickly rerun the
playbook to reinstall WordPress.

Summary
In this chapter, we have reused many of the same principles we covered in the previous chapter and
moved on to deploying a complete application. What is good about this is that the process is both
repeatable and just a single command.

So far, we have been targeting an Ubuntu virtual machine. If we ran our playbook against a Red-Hat-
based virtual machine, the playbook would give an error as commands and paths are different.

The next chapter will target multiple operating systems using the same playbook.

Deploying WordPress134

Further reading
You can find out more information on the technologies we have covered in this chapter at the
following links:

• Colorlib WordPress statistics: https://colorlib.com/wp/wordpress-statistics

• NGINX: http://nginx.org/

• WordPress: https://wordpress.org/

• WP-CLI: http://wp-cli.org/

• WordPress on NGINX: https://wordpress.org/documentation/article/
nginx/

The project pages for the plugins we installed can be found at the following links:

• Jetpack: https://en-gb.wordpress.org/plugins/jetpack/

• WP Super Cache: https://en-gb.wordpress.org/plugins/wp-super-cache/

• Yoast SEO: https://en-gb.wordpress.org/plugins/wordpress-seo/

• Wordfence: https://en-gb.wordpress.org/plugins/wordfence/

• NGINX Helper: https://wordpress.org/plugins/nginx-helper/

https://colorlib.com/wp/wordpress-statistics
http://nginx.org/
https://wordpress.org/
http://wp-cli.org/
https://wordpress.org/documentation/article/nginx/
https://wordpress.org/documentation/article/nginx/
https://en-gb.wordpress.org/plugins/jetpack/
https://en-gb.wordpress.org/plugins/wp-super-cache/
https://en-gb.wordpress.org/plugins/wordpress-seo/
https://en-gb.wordpress.org/plugins/wordfence/
https://wordpress.org/plugins/nginx-helper/

6
Targeting Multiple

Distributions

So far, throughout the previous chapters, we have been targeting a single operating system, Ubuntu,
when running on our playbooks.

This chapter will examine how to work with multiple Linux distributions within the same roles
and playbooks.

We will take the WordPress playbook and the roles we created in Chapter 5, Deploying WordPress,
and do the following:

• Discover what the difference is between our two target operating systems

• Look at and implement our WordPress roles, making them work on both target operating systems

• Discuss and apply best practices for targeting multiple distributions

The chapter covers the following topics:

• Debian and Red Hat

• Multi-distribution considerations

• Adapting the roles

• Running the playbook

Technical requirements
Given that we will be launching two different operating systems, we will be changing the approach
that we have taken in previous chapters and launching a pair of virtual machines in a cloud provider
rather than two different virtual machines on our local machines.

Targeting Multiple Distributions136

The primary reason for this is that Multipass only really supports Ubuntu machines as it was created
by Canonical, the creators and maintainers of Ubuntu, to give people a quick, easy, and consistent
way to launch an Ubuntu virtual machine across multiple host platforms.

As we will be looking at automating cloud deployments in Chapter 9, Moving to the Cloud, we won’t
use Ansible to deploy the cloud resources for this chapter.

For this chapter, I would recommend using a cloud provider such as DigitalOcean (https://www.
digitalocean.com/) or Linode (http://www.linode.com/), both of whom support the
operating systems we will be covering in this chapter and whose virtual machine costs start at around
5 USD per month.

Important note
This chapter will not cover how to launch virtual machines; if you are following along, please
review your chosen cloud provider’s documentation. Additionally, for the full working code,
please see the GitHub repository at https://github.com/PacktPublishing/
Learn-Ansible-Second-Edition.

Debian and Red Hat
This is where the world of Linux operating systems can get slightly confusing. Although we launch
Ubuntu 22.04 and Rocky Linux 9 virtual machines to run our playbooks against, we will reference
Debian and Red Hat within the playbook code.

Why is that? The reason behind this lies in the lineage of Linux distributions. Ubuntu is a descendant
of the Debian operating system, inheriting its package management system and many other features.
Similarly, Rocky Linux is a descendant of Red Hat, designed to be a downstream, bug-for-bug compatible
release with Red Hat Enterprise Linux (RHEL).

So, when we mention Debian and Red Hat in our playbooks, we’re referring to the fundamental bases
from which our two operating systems, Ubuntu and Rocky Linux, have evolved.

In practical terms, the playbook code will often check the underlying distribution type to determine
how to proceed with specific tasks. For example, the commands to install a software package on a
Debian-based system such as Ubuntu might differ from those on a Red Hat-based system such as
Rocky Linux.

Debian-based systems use the Debian package management system, with dpkg as the core utility,
and often utilize either apt or apt-get, or in some cases all of them, for user-friendly interactions.

Red Hat-based systems employ the RPM package management system, using rpm as the core utility, often
complemented by yum or its successor dnf for a more user-friendly interface for managing packages.

https://www.digitalocean.com/
https://www.digitalocean.com/
http://www.linode.com/
https://github.com/PacktPublishing/Learn-Ansible-Second-Edition
https://github.com/PacktPublishing/Learn-Ansible-Second-Edition

Multi-distribution considerations 137

There are other differences, such as Debian and Red Hat-based systems that have different directory
structures and configuration file locations, which can affect the system administration that we must
consider in our playbook roles.

The biggest, at the time of writing, and most relevant difference between the two is licensing.

Debian is known for its strict adherence to free software principles. In contrast, Red Hat-based
systems may incorporate more proprietary or closed-source software, especially in the case of Red
Hat Enterprise Linux’s commercial enterprise distribution of Red Hat.

This came to a head in June 2023 when Red Hat altered its terms, ceasing the public availability of
RHEL’s source code and restricting access solely to customers.

This move impacted downstream projects, relying on RHEL source code to create compatible distributions
such as Rocky Linux. The change means that only customers bound by contracts preventing code
sharing can access RHEL source code, aligning with the GPL license’s terms, which mandates source
code availability only for binary users, who are, essentially, the paying customers in this scenario.

At the time of writing, the fallout from this change is still being felt, and the dust is still settling,
although it does seem like distributions such as Rocky Linux have found ways of being compliant;
see the Further reading section at the end of this chapter for more information.

So, back to our playbook, by referencing either (or both) Debian and Red Hat in the code, we create
more adaptable roles that can handle different Linux distributions and their derivatives consistently.

Multi-distribution considerations
Looking at each of the Ansible built-in modules used in the three roles, stack_install, stack_
config, and wordpress, we are using a few that will not work on our newly introduced Rocky
Linux box.

Let’s quickly work through each module and consider what we need to change or take into account
when targeting two different distributions.

The Stack Install role

This role uses the following built-in modules:

• ansible.builtin.apt

• ansible.builtin.apt_key

• ansible.builtin.apt_repository

We use these modules to update our operating system, add the NGINX mainline repository, and
install all the packages we require for our WordPress installation.

Targeting Multiple Distributions138

As these modules all deal with package management, we won’t be able to reuse any of these tasks,
meaning that we will need to split the role into two parts: one that deals with Debian-based systems
and the other for Red Hat systems.

Additionally, we won’t be able to reuse the variables, as there are subtle differences in the package
names between the two distributions.

This means that our best approach to this role is to use two different sets of tasks depending on the
distribution Ansible is targeting. Luckily, there are built-in Ansible modules that make this approach
simple. After reviewing the modules in the two remaining roles, we will cover these in the next section.

The Stack Config role

This role is slightly different from the previous one in that we don’t need to split the tasks into two
here; most of the tasks will work across both our Linux distributions.

This means that the tasks which make use of the following modules won’t need any changes:

• ansible.builtin.group: Creating a group is the same for both distributions

• ansible.builtin.user: Creating a user is the same for both distributions

• ansible.builtin.template: This only renders and copies files to the target hosts

• ansible.builtin.file: This only copies files to the target hosts

• ansible.builtin.copy: This only copies files on the target hosts

• ansible.builtin.lineinfile: This only searches for text and, if required, updates it
within the files on the target hosts

• ansible.builtin.service: This is supported on both distributions

• ansible.builtin.stat: Only checks for the presence of a file on the host’s file system

• ansible.builtin.mysql_user: As this interacts with the database service, it is
distribution agnostic

• ansible.builtin.mysql_db: As with the previous task, it interacts with the database service

This list is mostly true; however, the file paths will change between the two distributions.

Still, as we already mentioned in Chapter 5, Deploying WordPress, when we looked at the variables
for the Stack Config role, we are referencing files that contain the variables we want to load into the
playbook run, so we will need to load in an additional set of variables for the distribution as well as
the standard ones.

We will need to execute some additional tasks as part of adding the second distribution. Some Red
Hat distributions come with a firewall enabled out of the box and SELinux enabled, so we will need
to perform some Red Hat-only tasks at the end.

Adapting the roles 139

SELinux, or to give it its full name, Security-Enhanced Linux, is a security module of the Linux
kernel that provides a mechanism for supporting access control security policies.

However, we can keep these tasks within the main.yml file rather than loading a different set of
tasks by getting creative with the conditions when calling the tasks.

The WordPress role

As the previous two roles have already installed and configured everything that we need to run our
WordPress installation, this role is entirely distribution agnostic, and we don’t need to make any
changes to the tasks within the role. If you remember, in Chapter 5, Deploying WordPress, when we
ran the command to configure WordPress, we set the following fact:

- name: "Set a fact for the wordpress domain"
 ansible.builtin.set_fact:
 wordpress_domain: "{{ ansible_ssh_host }}"
 os_family: "{{ ansible_distribution }} {{ ansible_distribution_
version }}"

This used the facts gathered by Ansible when first connecting to the host to figure out which distribution
and version we were connecting to; we will expand on this logic as we dive deeper into the changes
outlined in this section for the Stack Install and Config roles.

Adapting the roles
So, how do we build the logic into our roles to execute only certain parts of them on different operating
systems? As we know, the package names will be different. How do we define different sets of variables
per operating system?

Operating system family

We have looked at the ansible.builtin.setup module in Chapter 1, Installing and Running
Ansible; this module gathers facts about our target hosts.

One of these facts is ansible_os_family; this tells us the type of operating system we are running.

To demonstrate this, I have launched two hosts, one running Ubuntu 22.04, and the second running
Rocky Linux 9 as its operating system. I have created an inventory file which looks like the following:

RedHat ansible_host=178.79.178.78.nip.io
Debian ansible_host=176.58.114.60.nip.io
[ansible_hosts]
RedHat
Debian
[ansible_hosts:vars]

Targeting Multiple Distributions140

ansible_connection=ssh
ansible_user=root
ansible_private_key_file=~/.ssh/id_rsa
host_key_checking=False

Important note
The preceding inventory file is only for illustrative purposes; if you are following along, you will
need to update it to consider your host IP addresses, user names, and private key file locations.

With the hosts up and running, we can target each one individually using the following commands:

$ ansible -i hosts RedHat -m ansible.builtin.setup | grep ansible_os_
family
$ ansible -i hosts Debian -m ansible.builtin.setup | grep ansible_os_
family

Running these two commands should show you something like the following terminal output:

Figure 6.1 – Checking the values of ansible_os_family

As you can see, each of the two hosts correctly returns the operating system family.

We can take this one step further and update our commands to the following:

$ ansible -i hosts RedHat -m ansible.builtin.setup | grep ansible_
distribution
$ ansible -i hosts Debian -m ansible.builtin.setup | grep ansible_
distribution

Adapting the roles 141

This gives the following output:

Figure 6.2 – Checking the values of ansible_distribution

As you can see, this gives much more detail on the operating system itself and not just the flavor of
Linux; it is based on RedHat or Debian.

Finally, we run the following command:

$ ansible -i hosts ansible_hosts -m ansible.builtin.setup | grep
ansible_os_family

This will target both hosts within the same Ansible run and return a terminal output that should look
like the following:

Figure 6.3 – Checking the values of ansible_distribution in a single run

Now that we can identify which operating system is in use on each host, we can start adapting the
roles to consider the changes we discussed in the previous section of this chapter.

Targeting Multiple Distributions142

The Stack Install role

The first part of the role we will look at is the content of roles/stack_install/tasks/main.
yml. The previous version of the role contained all of the tasks to install the repos and packages for
our Ubuntu server; all of those tasks should be moved to a file called roles/stack_install/
tasks/Debian.yml, and a new file called roles/stack_install/tasks/RedHat.yml
should have been created; finally, we should update roles/stack_install/tasks/main.
yml so that it has the following contents.

Here are the three task loads in the variables file for the operating system we are targeting:

- name: "Include the operating system specific variables"
 ansible.builtin.include_vars: "{{ ansible_os_family }}.yml"

As you can see, this uses the ansible.builtin.include_vars module to load variables from
the variables path within the roles folder, which would be roles/stack_install/vars/.

Then, it loads a file called RedHat.yml or Debian.yml; these two file names are populated using
the {{ ansible_os_family }} variable in the task, meaning that the variables relevant to the
operating system being targeted are loaded.

If you look in the repository on GitHub, you will notice that, although being subtle, there are differences
in the packages listed in the system_packages, extra_packages, and stack_packages
package lists.

The next task uses the when condition when calling the ansible.builtin.import_tasks
module, first of all for the Debian-based system:

- name: "Install the stack on Debian based systems"
 ansible.builtin.import_tasks: "Debian.yml"
 when: ansible_os_family == 'Debian'

In our case, this means that when the Ansible playbook is targeting a Debian-based host, it will load
the tasks from roles/stack_install/tasks/Debian.yml, which are essentially the same
as those we discussed at length in Chapter 5, Deploying WordPress, and execute them against the host.

The next task does the same function, but this time for Red Hat-based hosts, using the tasks listed in
the roles/stack_install/tasks/RedHat.yml file:

- name: "Install the stack on RedHat based systems"
 ansible.builtin.import_tasks: "RedHat.yml"
 when: ansible_os_family == 'RedHat'

The roles/stack_install/tasks/RedHat.yml file contains three tasks, which are pretty
much the same as the Debian.yml tasks.

Adapting the roles 143

We start the role by running an update of all the installed packages:

- name: "Update all of the installed packages"
 ansible.builtin.dnf:
 name: "*"
 state: "latest"
 update_cache: true

As you can see, this uses the ansible.builtin.dnf modules rather than the ansible.
builtin.apt one.

Next up, we have the task that installs the NGINX mainline repo:

- name: "Add the NGINX mainline repo"
 ansible.builtin.yum_repository:
 name: "{{ nginx_repo.name }}"
 description: "{{ nginx_repo.description }}"
 baseurl: "{{ nginx_repo.baseurl }}"
 gpgcheck: "{{ nginx_repo.gpgcheck }}"
 enabled: "{{ nginx_repo.enabled }}"

Although this uses the ansible.builtin.yum_repository module, DNF will pick up the
new repo once it is added. This is also the only task we need to run to add the repo, and adding a Yum
repository is very different from adding a repository on a Debian-based system.

The final task for Red Hat-based systems is to install all the packages, including the NGINX one from
the mainline repository we just enabled by, again, calling the ansible.builtin.dnf module:

- name: "Update cache and install the stack packages"
 ansible.builtin.dnf:
 state: "present"
 update_cache: true
 pkg: "{{ system_packages + extra_packages + stack_packages }}"

As you can see, with a little change to the logic in which the tasks are being called, it was relativity
painless to update the role to target Debian and Red Hat distributions.

For the next role we need to change, the Stack Config role, we will take a slightly different approach
to considering the different operating system distributions.

Targeting Multiple Distributions144

The Stack Config role

Apart from a single task at the start and half a dozen at the end, the bulk of this role remains as-is.

There are some changes to the default variables file in the roles/stack_config/default/
main.yml file; first off, the following variables are added:

selinux:
 http_permissive: true

firewall_comands:
 - "firewall-cmd --zone=public --add-port=80/tcp --permanent"
 - "firewall-cmd --zone=public --add-port=80/tcp"

As I am sure you can guess from their names, these deal with SELinux and the Firewall.

The next change is to move the mysql_socket_path, php_fpm_path, php_ini_path, and
php_service_name variables to distribution-specific files at roles/stack_config/vars/
Debian.yml and roles/stack_config/vars/RedHat.yml.

As we have already discussed, one of the key differences between the two distributions is the paths to
both the core files and the configuration files for the services we installed during the Stack Install role.

In the roles/stack_config/vars/Debian.yml file, we have the following:

mysql_socket_path: "/var/run/mysqld/mysqld.sock"
php_fpm_path: "/etc/php/8.1/fpm/pool.d/www.conf"
php_ini_path: "/etc/php/8.1/fpm/php.ini"
php_service_name: "php8.1-fpm"

However, for the roles/stack_config/vars/RedHat.yml file, we need to define the following:

mysql_socket_path: "/var/lib/mysql/mysql.sock"
php_fpm_path: "/etc/php-fpm.d/www.conf"
php_ini_path: /etc/php.ini
php_service_name: "php-fpm"

As you can see, at first glance, they look a little similar, but the paths and file names are different.

These files are called by a task, which is the same as we used at the start of the Stack Install role:

- name: Include the operating system specific variables
 ansible.builtin.include_vars: "{{ ansible_os_family }}.yml"

From here, all the original tasks we covered in Chapter 5, Deploying WordPress, are called and executed,
ending with the task that removes the test MySQL database.

Adapting the roles 145

From here, in the role, we have the tasks that consider the additional steps needed to configure our
Red Hat-based host, starting with configuring SELinux; for our role, we need to enable the policy that
allows web servers to run, for which, on a lot of Red Hat distributions, is blocked by default.

The task to do this looks like the following:

- name: "Set the selinux allowing httpd_t to be permissive is
required"
 community.general.selinux_permissive:
 name: httpd_t
 permissive: true
 when: selinux.http_permissive and ansible_os_family == 'RedHat'

As you can see, the when condition here ensures that the task is only executed when the selinux.
http_permissive variable is set to true, and the ansible_os_family is equal to RedHat.

While our Debian-based system will meet the selinux.http_permissive condition, the task
will be skipped on those hosts, as it doesn’t meet the second condition.

Finally, we have the tasks for configuring the firewalld service, which is the default firewall on
most modern Red Hat-based distributions.

Important note
Although we are using firewall-cmd in this section, there is an Ansible module that supports
the firewalld service called ansible.posix.firewalld. As this is the only instance in
the title that we will be targeting a Red Hat-based operating system with, we have, instead,
used ansible.builtin.command to show how we can meet more complex conditions
based on the output commands.

Like some of the roles we have included in other chapters, configuring the firewall is a task we only
have to do once. The first thing we will do is check for the presence of a file at ~/firewall-
configured and register the results:

- name: "Check to see if the ~/firewall-configured file exists"
 ansible.builtin.stat:
 path: "~/firewall-configured"
 register: firewall_configured

Next, we need to check whether firewalld is running, but only if it’s a RedHat distribution. To
do this, we need to run the firewall-cmd --state shell command and the output result is
registered in the fireweall_status variable:

- name: "Check if firewalld is running"
 ansible.builtin.command: firewall-cmd --state

Targeting Multiple Distributions146

 register: fireweall_status
 when: ansible_os_family == 'RedHat'

Now, as the remaining tasks could also be executed on a Debian-based host, we need to take that
into account as we now have a variable containing the stdout of the command we ran called
fireweall_status, which won’t be present, resulting in an error that would stop playbook
execution on a Debian-based host:

- name: "Set a fact so the playbook can continue if running on a
Debian based system"
 ansible.builtin.set_fact:
 fireweall_status:
 stdout: notrunning
 when: ansible_os_family == 'Debian'

As you can see from the preceding task, if ansible_os_family is Debian, we are setting the
fireweall_status.stdout variable to notrunning.

Now we have all of the information we need to make a decision on whether we should run the
commands to configure the firewall, the following conditions need to be met:

• The firewall-cmd --state command returns running

• The operating system is RedHat

• The ~/firewall-configured file does not exist

If all three of these conditions are met, which are defined in the following task, then the commands
to configure the firewall to open and allow traffic on port 80 are executed:

- name: "Run the firewall-cmd commands if the firewall-cmd --state
command returns running"
 ansible.builtin.command: "{{ item }}"
 with_items: "{{ firewall_comands }}"
 when: fireweall_status.stdout == "running" and ansible_os_family ==
'RedHat' and not firewall_configured.stat.exists

The final task then creates the ~/firewall-configured file so that the commands are not
executed again:

- name: "Create the ~/firewall-configured file"
 ansible.builtin.file:
 path: ~/firewall-configured
 state: touch
 mode: "0644"
 when: not firewall_configured.stat.exists

Running the playbook 147

It does this on both distributions, as it doesn’t matter if it is set on Debian-based systems, and we
don’t want to run the commands regardless; on Red Hat systems, it will mean that any subsequent
executions of the playbook will not be able to meet the three conditions where the commands are
executed to configure the firewall service.

The WordPress role

As already mentioned, we do not have to make any changes to this role.

Running the playbook
There are no changes to our site.yml file, meaning that we need to run the following command
to run the playbook:

$ ansible-playbook -i hosts site.yml

There is way too much output to cover here, but I will include some of the highlights from the playbook
execution, starting with the gathering of the facts:

TASK [Gathering Facts] ************************************
ok: [Debian]
ok: [RedHat]

Now that Ansible knows about our two hosts, it makes a start on running the tasks; here are the
updated ones from the Stack Install role:

TASK [roles/stack_install : update apt-cache and upgrade packages]

skipping: [RedHat]
changed: [Debian]

As you can see, this was the apt one, and the dnf one looks like this:

TASK [roles/stack_install : update all of the installed packages]

skipping: [Debian]
changed: [RedHat]

Now, moving onto the Stack Config role, this is where tasks are being run on both distributions:

TASK [roles/stack_config : add the wordpress group] *******
changed: [RedHat]
changed: [Debian]

Targeting Multiple Distributions148

To update the firewall on just the Red Hat-based distribution, we do the following:

TASK [roles/stack_config : run the firewall-cmd commands if the
firewall-cmd --state command returns running] ***
skipping: [Debian] => (item=firewall-cmd --zone=public --add-port=80/
tcp --permanent)
skipping: [Debian] => (item=firewall-cmd --zone=public --add-port=80/
tcp)
skipping: [Debian]
changed: [RedHat] => (item=firewall-cmd --zone=public --add-port=80/
tcp --permanent)
changed: [RedHat] => (item=firewall-cmd --zone=public –
-add-port=80/tcp)

Finally, we complete the playbook run:

PLAY RECAP **
Debian : ok=44 changed=29 unreacha-
ble=0 failed=0 skipped=7 rescued=0 ignored=2
RedHat : ok=45 changed=34 unreacha-
ble=0 failed=0 skipped=6 rescued=0 ignored=2

All of which means that I should now have two WordPress installations:

Figure 6.4 – WordPress running on Ubuntu 22.04

Figure 6.5 – WordPress running on Rocky Linux 9.2

While the preceding screens aren’t the most exciting of websites, as you can see, we have WordPress
up and running on two different operating systems.

At this point, if you have been following along, don’t forget to delete any resources you have deployed
to run your playbooks against.

Summary 149

Summary
In this chapter, we have adapted the WordPress installation playbook we wrote in Chapter 5, Deploying
WordPress, to target multiple operating systems. We did this by using Ansible’s built-in auditing module
to determine which operating system the playbook is running against and running only the tasks that
will work on the two target distributions.

While targeting multiple Linux distributions is one use for the approach we have taken with the
conditions we have been using, I am sure that you will already have some ideas on how you could
use some of the logic we used in your projects, such as bootstrapping different software based on the
role on a virtual machine host, etc.

Additionally, this approach is beneficial when publishing your roles to Ansible Galaxy, as discussed
in Chapter 2, Exploring Ansible Galaxy, by making the operating system agnostic.

You may have noticed so far that we have been targeting Linux virtual machines; in the next chapter,
we will look at Ansible support for Windows-based operating systems.

Further reading
• Red Hat Enterprise Linux: https://www.redhat.com/en/technologies/linux-

platforms/enterprise-linux

• Debian: https://www.debian.org/

• Ubuntu: https://ubuntu.com/

• Rocky Linux: https://rockylinux.org/

• The Register, Red Hat strikes a crushing blow against RHEL downstreams: https://www.
theregister.com/2023/06/23/red_hat_centos_move/

• The Ansible Posix Firewalld Module: https://docs.ansible.com/ansible/
latest/collections/ansible/posix/firewalld_module.html

https://www.redhat.com/en/technologies/linux-platforms/enterprise-linux
https://www.redhat.com/en/technologies/linux-platforms/enterprise-linux
https://www.debian.org/
https://ubuntu.com/
https://rockylinux.org/
https://www.theregister.com/2023/06/23/red_hat_centos_move/
https://www.theregister.com/2023/06/23/red_hat_centos_move/
https://docs.ansible.com/ansible/latest/collections/ansible/posix/firewalld_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/posix/firewalld_module.html

7
Ansible Windows Modules

In this chapter, we will look at the ever-growing collection of built-in Ansible modules that support
and interact with Windows-based servers; coming from an almost exclusively macOS and Linux
background, it seemed odd to be using a tool not natively supported on Windows to manage Windows.

By the end of our time in this chapter, I am sure you will agree that looking at the options available,
the Ansible developers have made managing Windows Server workloads with a playbook as seamless
and familiar as possible.

In this chapter, we will learn how to do the following:

• Launch a Windows server instance in Microsoft Azure

• Enable features in Windows

• Create users

• Install third-party packages using Chocolatey

The chapter covers the following topics:

• Launching a Windows server in Azure

• Ansible preparation

• The Windows Playbook roles

• Running the Playbook

Technical requirements
Rather than trying to run a full Windows Server 2022 locally in a virtual machine (VM), in this
chapter, we will cover securely launching and configuring a Windows Server 2022 VM hosted in
Microsoft Azure. If you are following along, you must have an active Microsoft Azure subscription
and the Azure command-line interface (CLI) installed.

Ansible Windows Modules152

For details on how to install and configure the Azure CLI, please see the documentation at https://
learn.microsoft.com/en-us/cli/azure/install-azure-cli/. If you are following
along on a Windows host, I recommend installing the Azure CLI within your Windows Subsystem
for Linux installation alongside where you installed Ansible.

Launching a Windows server in Azure
We will not use Ansible to deploy the Azure resources as we will do in Chapter 9, Moving to the Cloud;
instead, we will use the Azure CLI to launch our VM.

Note
As some of the commands in this chapter will be pretty long, I will break them up with a
backslash. In Linux command lines, the backslash (\) followed by a newline is a line continuation
character. It lets you split a single command over multiple lines for better readability.

Start by changing to the Chapter07 folder within your checked-out copy of the repository that
accompanies this title and run the following commands:

$ MYIP=$(curl https://api.ipify.org 2>/dev/null)
$ VMPASSWORD=$(openssl rand -base64 24)
$ echo $VMPASSWORD > VMPASSWORD

The first two commands set two variables on your command line; the first uses the ipify service
(https://www.ipify.org/) to populate the $MYIP variable with the public IP address of
your current network session.

The second generates a random password using the openssl command and assigns it to the variable
called $VMPASSWORD.

The third command copies the content of $VMPASSWORD to a file called VMPASSWORD; this command
must be executed in the same folder as the host inventory file, as it will be called in our host inventory
file, which we will discuss later in the chapter.

Note
I will follow the Azure Cloud Adoption Framework recommendations around resource naming
and launching the resources in the UK South region.

Now that we know our IP address and have a password, we can start using the Azure CLI to launch
resources. The first thing we need to do is make sure that we are logged in by running the following:

$ az login

https://learn.microsoft.com/en-us/cli/azure/install-azure-cli/
https://learn.microsoft.com/en-us/cli/azure/install-azure-cli/
https://www.ipify.org/

Launching a Windows server in Azure 153

Once logged in, we can then create an Azure Resource Group by executing the following:

$ az group create \
 --name rg-ansible-windows-server-uks \
 --location uksouth

The Azure Resource Group is the logic container we will be deploying our Azure resources to, the
first of which will be an Azure Virtual Network.

The following command will create the Azure Virtual Network with an address space of 10.0.0.0/24
and a single subnet using 10.0.0.0/27; this is where we will launch our Windows Server:

$ az network vnet create \
 --resource-group rg-ansible-windows-server-uks \
 --name vnet-ansible-windows-server-uks \
 --address-prefix 10.0.0.0/24 \
 --subnet-name sub-vms \
 --subnet-prefix 10.0.0.0/27

Now, we need to create a Network Security Group to assign to the network interface of our VM once
it has been launched.

We need this as we will assign a public IP address to the VM, and we don’t want to expose our three
management ports directly to the internet; instead, we want to lock them down to just us:

$ az network nsg create \
 --resource-group rg-ansible-windows-server-uks \
 --name nsg-ansible-windows-server-uks

We now have an empty Network Security Group created. Let’s add some rules, starting with the rule
that opens port 80 to everyone to allow HTTP traffic:

$ az network nsg rule create \
 --resource-group rg-ansible-windows-server-uks \
 --nsg-name nsg-ansible-windows-server-uks \
 --name allowHTTP \
 --protocol tcp \
 --priority 100 \
 --destination-port-range 80 \
 --access allow

Next, we have the rule that opens port 3389, which Remote Desktop uses to allow you to create a
session to the host; we only want this open to us, so the command here would be as follows:

$ az network nsg rule create \
 --resource-group rg-ansible-windows-server-uks \

Ansible Windows Modules154

 --nsg-name nsg-ansible-windows-server-uks \
 --name allowRDP \
 --protocol tcp \
 --priority 1000 \
 --destination-port-range 3389 \
 --source-address-prefix $MYIP/32 \
 --access allow

Note that we are passing in the $MYIP variable we registered when launching the resources. This will
pass your IP address, and as you can see, we are then appending /32 to the end; this is the Classless
Inter-Domain Routing (CIDR) notation for a single IP address.

Now that we have the rule for Remote Desktop in place, which is how we, as end users, will connect to
the VM, we need to open the Windows Remote Management (WinRM) port, which is how Ansible
will be connecting to the machine:

$ az network nsg rule create \
 --resource-group rg-ansible-windows-server-uks \
 --nsg-name nsg-ansible-windows-server-uks \
 --name allowWinRM \
 --protocol tcp \
 --priority 1050 \
 --destination-port-range 5985-5986 \
 --source-address-prefix $MYIP/32 \
 --access allow

The next of the commands we need to run is the one that launches the VM itself and configures it to
use the core networking components we have just launched:

$ az vm create \
 --resource-group rg-ansible-windows-server-uks \
 --name vm-ansible-windows-server-uks \
 --computer-name ansibleWindows \
 --image Win2022Datacenter \
 --admin-username azureuser \
 --admin-password $VMPASSWORD \
 --vnet-name vnet-ansible-windows-server-uks \
 --subnet sub-vms \
 --nsg nsg-ansible-windows-server-uks \
 --public-ip-sku Standard \
 --public-ip-address-allocation static

Launching a Windows server in Azure 155

As you can see, we are instructing the Azure CLI to launch a VM that uses the Win2022Datacenter
VM image as its base; the VM is being deployed into the rg-ansible-windows-server-uks
resource group and using all of the network resources we launched using the previous commands.

You might be thinking, great, let’s get back to looking at Ansible. However, there is one more command
we need to run before we can connect to the VM using Ansible – and the reason is that while we have
a Windows 2022 server up and running, the WinRM protocol is not enabled by default.

The command to enable this functionality is as follows:

$ az vm extension set \
 --resource-group rg-ansible-windows-server-uks \
 --vm-name vm-ansible-windows-server-uks \
 --name CustomScriptExtension \
 --publisher Microsoft.Compute \
 --version 1.10 \
 --settings "{'fileUrls': ['https://raw.githubusercontent.
com/PacktPublishing/Learn-Ansible-Second-Edition/main/Scripts/
ConfigureRemotingForAnsible.ps1'],'commandToExecute': 'powershell
-ExecutionPolicy Unrestricted -File ConfigureRemotingForAnsible.ps1'}"

This enables a VM Extension on the Azure VM we have just deployed. There are many different types
of Virtual Machine Extensions; the one we are using is Custom Script Extension. This extension
downloads a script from a URL passed to it and then executes a command; in our case, we are
downloading the script configuring WinRM from the GitHub repository accompanying this title.

You can see the script that will be downloaded at the following URL: https://raw.
githubusercontent.com/PacktPublishing/Learn-Ansible-Second-Edition/
main/Scripts/ConfigureRemotingForAnsible.ps1

The command that runs once the script is downloaded is as follows:

$ powershell -ExecutionPolicy Unrestricted -File
ConfigureRemotingForAnsible.ps1

The Virtual Machine Extension executes the preceding command, so we do not have to run it directly.

The Resource Visualizer in the Azure portal for the resource group should show you something that
looks like the following overview:

https://raw.githubusercontent.com/PacktPublishing/Learn-Ansible-Second-Edition/main/Scripts/ConfigureRemotingForAnsible.ps1
https://raw.githubusercontent.com/PacktPublishing/Learn-Ansible-Second-Edition/main/Scripts/ConfigureRemotingForAnsible.ps1
https://raw.githubusercontent.com/PacktPublishing/Learn-Ansible-Second-Edition/main/Scripts/ConfigureRemotingForAnsible.ps1

Ansible Windows Modules156

Figure 7.1 – Reviewing our resources in the Azure Resource Visualizer

Once completed, our Windows Server VM is ready to have our Ansible run against it.

Ansible preparation
As mentioned in the previous section, Ansible will use WinRM to interact with our Windows host.

Information
WinRM provides access to a Simple Object Access Protocol (SOAP)-like protocol called WS-
Management. Unlike Secure Shell (SSH), which provides the user with an interactive shell
to manage the host, WinRM accepts executed scripts, and the results are passed back to you.

Ansible preparation 157

Ansible requires us to install a few Python modules to enable it to use the protocol; these modules
need to be installed as they are not typically installed alongside Ansible.

To install the module, if you are running on Ubuntu, run the following command:

$ sudo -H pip install pywinrm

On macOS, run the following:

$ pip install pywinrm

Once installed, we need to update our environment file to instruct Ansible to use the WinRM protocol
rather than SSH.

Our updated hosts file looks like the following file, which is a copy of the hosts.example file
from the Chapter07 folder in the accompanying repository. If you are following along with the
exercise, you will need to update yours to update the IP address to match that of your Azure Virtual
Machine once it has been launched:

WindowsServer ansible_host=123.123.123.123.nip.io

[ansible_hosts]
WindowsServer

[ansible_hosts:vars]
ansible_connection=winrm
ansible_user="azureuser"
ansible_password="{{ lookup('ansible.builtin.file', 'VMPASSWORD') }}"
ansible_winrm_server_cert_validation=ignore

The start of the file mirrors what we have been used to so far in that it contains a name for a host and
the resolvable hostname of the VM, again using the Nip.io service (https://nip.io/).

Next, we take the named host and put it in the ansible_hosts group before defining a bunch of
settings for the group.

The first of these settings instructs Ansible to use winrm by setting it as the value for the ansible_
connection key.

Next, we set the ansible_user key; the value is azureuser, which we defined when we launched
the Azure Virtual Machine; and also the ansible_password key.

If you recall, at the start of the chapter, we ran the following command:

$ echo $VMPASSWORD > VMPASSWORD

https://nip.io/

Ansible Windows Modules158

This took the random password we generated, that is, $VMPASSWORD, and placed it inside a file
named VMPASSWORD; this means that when we define the ansible_password key, we can use
a lookup value, using {{ lookup('ansible.builtin.file', 'VMPASSWORD') }},
to read the contents of the VMPASSWORD file and use that rather than us having to hardcode the
password into our environment file.

Finally, we tell Ansible to ignore any certificate errors by setting the ansible_winrm_server_
cert_validation key to false; we need to do this because WinRM has been configured to
use a self-signed certificate, which will cause a certificate error as our local machine does not know
to trust the certificate.

Now that we have Windows up and running and Ansible configured, we can start interacting with it.

The ping module

Not all Ansible modules work with Windows hosts, and ansible.builtin.ping is one of them.

If you were to run the following command:

$ ansible WindowsServer -i hosts -m ansible.builtin.ping

You would then get quite a verbose error with the following warning:

[WARNING]: No python interpreters found for host WindowsServer (tried
['python3.11', 'python3.10',
'python3.9', 'python3.8', 'python3.7', 'python3.6', 'python3.5', '/
usr/bin/python3',
'/usr/libexec/platform-python', 'python2.7', '/usr/bin/python',
'python'])

Luckily, there is a module provided for Windows called ansible.windows.win_ping, so let’s
update our command to run that instead:

$ ansible WindowsServer -i hosts -m ansible.windows.win_ping

This returns the result you would expect to receive if you sent a ping:

WindowsServer | SUCCESS => {
 "changed": false,
 "ping": "pong"
}

The next module we will look at doesn’t require any changes from how we ran it against a Linux host.

The Windows Playbook roles 159

The setup module

As before, we need to run the module and target our host, so the command is as follows:

$ ansible WindowsServer -i hosts -m ansible.builtin.setup

This will return information on the host as it did when executing the same module against our Linux
host, a snippet of which can be seen in the following screenshot:

Figure 7.2 – Some of the output from the setup module

This is one of the only modules that will work on Windows and Linux hosts.

Now that we have confirmed that our host is accessible, let’s look at the changes we need to make to
the playbooks.

The Windows Playbook roles
The entire playbook can be found in the Chapter 07 folder in the repository that accompanies
the title, so I will not cover how to create roles in this chapter as we have covered it at length in the
previous chapters.

Ansible Windows Modules160

Enabling Windows features

Two roles cover how to enable features; the first role, called iis, enables the Internet Information
Services (IIS) on our Windows Server.

Information
IIS is the default web server that ships with Windows Server, and it supports the following
protocols: HTTP, HTTPS, and HTTP/2, as well as FTP, FTPS, SMTP, and NNTP. It was first
released in 1995 as part of Windows NT.

There are some default variables in roles/iis/defaults/main.yml; these define where things
need to be copied to on the server and also include the contents on an HTML file we will copy to the host:

document_root: 'C:\inetpub\wwwroot\'
html_file: "ansible.html"
html_heading: "Success !!!"
html_body: |
 This HTML page has been deployed using Ansible to a {{ ansible_
distribution }} host.

 The weboot is {{ document_root }} this file is called {{
html_file }}.

There are then two tasks in roles/iis/tasks/main.yml. The first task is where the magic happens:

- name: "Enable IIS"
 ansible.windows.win_feature:
 name:
 - "Web-Server"
 - "Web-Common-Http"
 state: "present"

I say where the magic happens because I don’t get to touch Windows hosts very often as a Linux system
administrator by trade.

Still, as you can see from the preceding task, Ansible is giving us a Linux-like experience, meaning
that I don’t have to roll up my sleeves and get under the hood of Windows too much.

The task uses the ansible.windows.win_feature module to enable the Web-Server and
Web-Common-Http features; as we are sticking with the default out-of-the-box settings, there isn’t
any more configuration we need to do other than to copy an HTML file across to the document root:

- name: "Create an html file from a template"
 ansible.windows.win_template:
 src: "index.html.j2"
 dest: "{{ document_root }}{{ html_file }}"

The Windows Playbook roles 161

As you can see, we are using a Jinja2 template file, an abridged version of which looks like the following:

<!--{{ ansible_managed }}-->
<title>{{ html_heading }}</title>
<article>
 <h1>{{ html_heading }}</h1>
 <div>
 <p>{{ html_body }}</p>
 </div>
</article>

But rather than ansible.builtin.template, we are using ansible.windows.win_
template, which is the Windows module version, as I am sure you will have already guessed.

Suppose we were to use the ansible.builtin.template version; we would get the same
error as when we ran the ansible.builtin.ping module, and complaints about Python not
being installed.

The next role expands on the iis file and enables .Net; the role is called dotnet.

Again, there are some default variables in roles/dotnet/defaults/main.yml:

aspx_document_root: 'C:\inetpub\wwwroot\ansible\'
aspx_file: "default.aspx"
aspx_heading: "Success !!!"
aspx_body: |
 This HTML page has been deployed using Ansible to a {{ ansible_
distribution }} host.

 The weboot is {{ aspx_document_root }} this file is called
{{ aspx_file }}.

 The output below is from ASP.NET

 Hello from <%= Environment.MachineName %> at <%= DateTime.UtcNow
%>

As you can see, this time, the body contains some inline code.

However, you may have yet to spot a subtle difference in how we define the paths in the variables. For
both tasks for our Windows workload, the path variables have been defined as follows:

document_root: 'C:\inetpub\wwwroot\'
aspx_document_root: 'C:\inetpub\wwwroot\ansible\'

But, if we look at how we defined the path in Chapter 5, Deploying WordPress, there is quite a
crucial difference:

wordpress_system:
 home: "/var/www/wordpress"

Ansible Windows Modules162

The difference is not that we have used wordpress_system.home as the variable; it is more
subtle than that.

If you have noticed that the Windows workload paths are using single quotes and the Linux one is
using double quotes, give yourself a pat on the back.

In Ansible, single quotes (') that enclose strings are treated as literals, ensuring special characters
aren’t interpreted or expanded, making them ideal for Windows paths.

Double quotes (") allow for string interpolation, meaning embedded Jinja2 template expressions or
special characters will be expanded. They also support escape sequences, such as \n for new lines,
because many escape sequences such as \, which is in our path, could cause problems.

If we needed to use double quotes because we needed to pass in something that needed to be expanded,
then you could have a double slash (\\) like this:

document_root: "C:\\inetpub\\wwwroot\\"
aspx_document_root: "C:\\inetpub\\wwwroot\\ansible\\"

However, it can confuse reading the paths, so I used single quotes in our examples – back to the role now.

The first of four tasks in roles/dotnet/tasks/main.yml enables .Net:

- name: "Enable .NET"
 ansible.windows.win_feature:
 name:
 - "Net-Framework-Features"
 - "Web-Asp-Net45"
 - "Web-Net-Ext45"
 state: "present"
 notify: "Restart IIS"

We are also triggering a restart of IIS via a handler if any changes are detected; this uses ansible.
windows.win_service:

- name: "Restart IIS"
 ansible.windows.win_service:
 name: "w3svc"
 state: "restarted"

The next task creates a folder if one doesn’t exist:

- name: "Create the folder for our asp.net app"
 ansible.windows.win_file:
 path: "{{ aspx_document_root }}"
 state: "directory"

The Windows Playbook roles 163

Again, a Windows version of an existing module we have used is called, this time ansible.
windows.win_file. Next, we copy the file to the folder we just created:

- name: "Create an aspx file from a template"
 ansible.windows.win_template:
 src: "default.aspx.j2"
 dest: "{{ aspx_document_root }}{{ aspx_file }}"

The final task in the role configures IIS to consider we are now running an application:

- name: "Ensure the default web application exists"
 community.windows.win_iis_webapplication:
 name: "Default"
 state: "present"
 physical_path: "{{ aspx_document_root }}"
 application_pool: "DefaultAppPool"
 site: "Default Web Site"

There are a few more roles to cover before we run the playbook; let’s look at the next one.

Creating a user

This role creates a user for us to connect to our instance with. The defaults that can be found in
roles/user/defaults/main.yml are as follows:

ansible:
 username: "ansible"
 password: "{{ lookup('password', 'group_vars/generated_password
chars=ascii_letters,digits length=30') }}"
 groups:
 - "Users"
 - "Administrators"

As you can see, here, we are defining a user called ansible that has a 30-character random
password, which Ansible will create using a lookup plugin if one doesn’t exist. The ansible user
will be a member of the Users and Administrators groups.

There is a single task in roles/user/tasks/main.yml using the ansible.windows.
win_user module, which looks like the following:

- name: "Ensure that the ansible created users are present"
 ansible.windows.win_user:
 name: "{{ ansible.username }}"
 fullname: "{{ ansible.username | capitalize }}"
 password: "{{ ansible.password }}"

Ansible Windows Modules164

 state: "present"
 groups: "{{ ansible.groups }}"

Like all Windows modules, the syntax is similar to the Linux equivalent, so you should know what each
key means. As you can see from the previous task, we are using a Jinja2 transformation to capitalize
the first letter of the ansible.username variable.

Installing applications using Chocolatey

The next role, called choco, uses Chocolatey to install a few bits of software on the machine.

Information
Chocolatey is Windows’ answer to macOS’s Homebrew – a package manager streamlining
software installations. Like we used Homebrew earlier, Chocolatey wraps typical Windows
installations into neat PowerShell commands, making it a perfect match for orchestration
tools such as Ansible.

In roles/choco/defaults/main.yml, we have a single variable that contains a list of the
packages we want to install:

apps:
 - "notepadplusplus.install"
 - "putty.install"
 - "googlechrome"

As you may have already guessed, this is the task that installs the applications:

- name: "Install software using chocolatey"
 chocolatey.chocolatey.win_chocolatey:
 name: "{{ apps }}"
 state: "present"

Again, the module takes a similar input to the previous package manager modules, ansible.
builtin.apt and ansible.builtin.dnf, that we used. This means that the logic Ansible
uses across the modules that do similar tasks is consistent across multiple operating systems and not
just different Linux distributions.

Running the Playbook 165

Information role

The final role is called info; its only purpose is to output once the playbook has finished running. The
role has a single task defined in roles/info/tasks/main.yml:

- name: "Print out information on the host"
 ansible.builtin.debug:
 msg: "You can connect to '{{ ansible_host }}' using the username
of '{{ ansible.username }}' with a password of '{{ ansible.password
}}'."

As you can see, this will provide us with the hostname to create a Remote Desktop session, along with
confirming the username and password we should use.

That concludes our look at the roles that will be called when we run the playbook, which we are now
ready to do.

Running the Playbook
The site.yml is missing some of the settings at the top because we are targeting a Windows host:

- name: "Install IIS, .NET, create user, install chocolatey and
display info"
 hosts: "ansible_hosts"
 gather_facts: true
 vars_files:
 - "group_vars/common.yml"

 roles:
 - "iis"
 - "dotnet"
 - "user"
 - "choco"
 - "info"

As you can see, there is no need for the become or become_method keys to be set, as we do not
need to change users once connected to the host.

Outside of that, the rest of the file is as expected, as is the way we run the playbook:

$ ansible-playbook -i hosts site.yml

Ansible Windows Modules166

It will take a little while to run as a lot is going on in the background, as you will see from the output
when the playbook runs for the first time:

Figure 7.3 – Reviewing the playbook output

As you can see from the preceding output, the host I was given was 20.50.120.120.nip.io
(this host has long since been terminated, but if you are following along, you can replace the preceding
host with your own).

To view the static HTML and .Net pages we uploaded, you can visit http://20.50.120.120.
nip.io/ansible.html or http://20.50.120.120.nip.io/ansible/default.
aspx, making sure to update the host to reflect your own.

You can also open a remote desktop session to the host using the credentials given in the output; the
following screenshot shows a session using the user we created and opening the side using Google
Chrome with notes in Notepad++, both of which are applications we installed with the Playbook:

http://20.50.120.120.nip.io/ansible.html
http://20.50.120.120.nip.io/ansible.html
http://20.50.120.120.nip.io/ansible/default.aspx
http://20.50.120.120.nip.io/ansible/default.aspx

Summary 167

Figure 7.4 – A remote desktop session

Once you have finished with the host, you can run the following Azure CLI command to terminate
all the resources we created:

$ az group delete \
 --name rg-ansible-windows-server-uks

Double-check that everything has been removed as expected to ensure you do not get any unexpected bills.

Summary
As mentioned at the start of the chapter, using what we would consider a traditional Linux tool such as
Ansible on Windows always feels a little strange. However, I am sure you will agree that the experience
is as Linux-like as possible.

When I first started experimenting with the Windows modules, I was surprised that I managed to
launch a Windows Server in Azure and deploy a simple web application without having to remote
desktop into the target instance.

Ansible Windows Modules168

With each new release, Ansible gets more and more support for Windows-based hosts, making it easy
to manage mixed workloads from your playbooks.

In the next chapter, we will examine the networking modules available in Ansible.

Further reading
You can find more information on the excellent Chocolatey at https://chocolatey.org/.

https://chocolatey.org/

Part 3: Network and
Cloud Automation

Ansible’s power extends beyond just managing servers; it can also automate network devices and
cloud infrastructure. Here, we will explore Ansible’s network modules and discuss how to interact
with network devices programmatically. We will then shift our attention to the cloud, where you
will discover how to provision and manage resources on popular cloud platforms such as Microsoft
Azure and Amazon Web Services. By the end of this part, you will have the skills needed to automate
complex cloud deployments using Ansible.

This part has the following chapters:

• Chapter 8, Ansible Network Modules

• Chapter 9, Moving to the Cloud

• Chapter 10, Building Out a Cloud Network

• Chapter 11, Highly Available Cloud Deployments

• Chapter 12, Building Out a VMware Deployment

8
Ansible Network Modules

Welcome to Chapter 8; this chapter will look at an often-overlooked use case for Ansible and delve
into Ansible’s expansive community of networking modules.

In this chapter, instead of a deep dive into every collection—which could be an entire book—we’ll
provide an overview, highlighting these modules’ capabilities and flexibilities.

The chapter covers the following topic:

• Manufacturer and device support

Manufacturer and device support
So far, we have been looking at modules that interact with servers. In our case, they have mostly been
running locally. In the upcoming chapters, we will be communicating more with remotely cloud-
hosted servers. But, before interacting with remote servers, we should cover the core network modules.

These modules have all been designed to interact with and manage the configuration of various network
devices, from your traditional top-of-rack switches and fully virtualized network infrastructure to
firewalls and load balancers. Ansible supports many devices, from open source virtual appliances to
hardware solutions, some of which could have a starting price of over USD 500,000, depending on
your configuration.

So, what do all these collections and modules have in common?

Well, they all interact with what are traditionally complex to configure devices, which, in most
deployments and environments, are both the core and critical elements; after all, everything connected
to them needs some level of network connectivity.

These modules give you a standard interface, i.e., Ansible, for many of these devices and remove the
need for engineers to access these devices directly. They can, instead, run Ansible playbooks, which
run roles created by experienced network engineers to configure them in a controlled and consistent
way by just changing a few variables.

Ansible Network Modules172

The only downside of using Ansible to manage this critical core infrastructure is that the host running
Ansible requires a line of sight to the management interface or API running on the devices, which
may sometimes raise some security concerns. Hence, Ansible’s instructions on how to manage your
network devices need some serious thought.

The collections

The following list of collections is in the order of the namespaces and then the collection name; this
is listed at the end of each item as [namespace.collection-name].

Apstra Extensible Operating System (EOS) [arista.eos]

There are over 30 modules that allow you to manage your devices running EOS. These modules let you
operate access control lists (ACLs) interfaces, configure border gateway protocol (BGP) settings,
run arbitrary commands on devices, manage hostname, interface configurations, logging, and more.
A module also allows you to gather facts from each device.

Additionally, there are plugins for command line and HTTP API interactions.

Check Point [check_point.mgmt]

The Ansible collection for Check Point Management comprises many modules; at the time of writing,
there are over 250 modules.

Each manages different aspects of your Check Point device, such as access layers, rules, administrators,
or network feeds on your Check Point firewall using the Web Services API. They provide functionalities
ranging from fetching facts and adding or managing objects to workflow features such as approving
and publishing sessions on your Check Point firewall.

Cisco

Given the number of Cisco device types and classes, there are several collections in the Cisco namespace.

Cisco Application Centric Infrastructure (ACI) [cisco.aci]

The 150+ ACI modules are used to manage all aspects of Cisco’s ACI, which is to be expected of Cisco’s
next-generation API-driven networking stack.

There are modules for managing various aspects of the Cisco ACI, such as AAAA records (these are
address records that store IPv6 addresses), roles, users, certificates, Access SPAN configurations, bridge
domains (BDs) and subnets, BGP route reflectors, and many more. There are modules for managing
Cloud Application Profiles and Cloud AWS Provider configurations.

Manufacturer and device support 173

Cisco Adaptive Security Appliance (ASA) [cisco.asa]

With the five ASA modules, you can manage access lists, run commands, and manage the configuration
of physical and virtual Cisco ASA-powered devices.

Cisco DNA Center (DNAC) [cisco.dnac]

The Ansible collection for the Cisco DNAC comprises nearly 400 modules to manage different aspects
of your Cisco DNAC deployment. The modules cover a range of functionalities, from fetching the
configuration details of access points, managing application policies, assigning devices to sites, importing
authentication certificates, and running compliance checks to managing configuration templates.

Cisco IOS and IOS XR [cisco.ios and cisco.iosxr]

These two collections contain modules that allow you to manage your Cisco IOS and IOS XR-powered
devices. You can gather facts on your devices and configure users, interfaces, logging, banners, and
more with them.

Identity Services Engine (ISE) [cisco.ise]

This collection manages your ISE; it comprises a variety of modules for managing settings and
configurations, such as handling ACI bindings and settings, managing Active Directory settings, handling
allowed protocols, administering ANC endpoints and policies, managing backup configurations and
schedules, handling certificates, and more.

Cisco Meraki [cisco.meraki]

Here, we have just short of 500 modules that manage the different elements of your Meraki deployment,
such as administered identities, device details, camera settings, cellular gateway configurations, and
sensor relationships. Each module is designed to fetch information or modify settings, which helps
you manage your Cisco Meraki devices by using automation.

Cisco Network Services Orchestrator (NSO) [cisco.nso]

A handful of modules allow you to interact with your Cisco NSO-managed devices. You can execute
NSO actions, query data from your installation, and verify your configuration alongside service
synchronization and configuration.

Cisco Network Operating System Software (NX-OS) [cisco.nxos]

As you can imagine, there are a lot of modules for managing devices running Cisco NXOS; there are
over 80 that cover a range of functions such as managing AAA server configurations, ACLs, BGP
configurations, executing arbitrary commands, managing interfaces, and handling various other
configurations and settings on Cisco NX-OS devices.

Ansible Network Modules174

Cisco Unified Computing System (UCS) [cisco.ucs]

While not strictly a networking device, the modules to manage Cisco’s unified computing, storage,
and network system include one that allows you to manage DNS servers, IP address pools, LAN
connectivity policies, MAC address pools, QoS settings, VLANs, and vNICs. The rest of the modules
allow you to programmatically manage computing and storage across your blades and chassis.

F5 BIG-IP Imperative [F5Networks.F5_Modules]

There are 160 modules, all prefixed with BIG-IP, that allow you to manage all aspects of your F5 BIG-IP
Application Delivery Controller.

Fortinet

There are just two collections in the Fortinet namespace, but, as you can see from the number of
modules in each, they are very feature-rich.

Fortinet FortiManager [fortinet.fortimanager]

There are over 1,100 modules (yes, you read that correctly), including configuring antivirus profiles and
options, managing AP local configuration profiles and command lists, configuring custom application
signatures and firewall application groups, managing internet service applications, and more.

Fortinet FortiOS v6 (fortinet.fortios)

While this has fewer modules than the FortiManager collection, there are still over 650 modules for
configuring antivirus settings, application control lists, authentication schemes, and certificate settings.

Free Range Routing (FRR) [Frr.Frr]

There are just two modules here: one that allows you to configure BGP, and the other lets you gather
facts about devices running FRR.

Juniper Networks Junos [junipernetworks.junos]

A total of 40 modules enable you to interact with Juniper devices running Junos from within your
playbooks. These range from the standard command, configuration, and fact-gathering modules to
those that allow you to install packages and copy files to your devices.

Open vSwitch [Openvswitch.Openvswitch]

The four modules in the namespace allow you to manage bonds, bridges, ports, and databases on
your OVS virtual switches.

Manufacturer and device support 175

VyOS [vyos.vyos]

The VyOS collection includes modules for managing various configurations and resources on VyOS
devices. Some of these modules include managing multiline banners, configuring BGP global and
address family settings, running commands, managing firewall settings, interface configurations, logging,
NTP, OSPF, SNMP, static routes, system commands, user management, and VLAN configurations,
among others .

The Community Network Collection [Community.Network]

This collection is a catch-all for all other network modules without dedicated namespace or development
teams; the module prefix is now in the square brackets.

A10 Networks [a10]

The A10 modules support A10 Networks AX, SoftAX, Thunder, and vThunder devices. These are all
application delivery platforms that provide load balancing.

Cisco AireOS [aireos]

The two AireOS modules allow you to interact with the Cisco Wireless LAN Controllers running
AireOS. One of the modules will enable you to run commands directly on the devices, and the other
is for managing the configuration.

APCON [apcon]

A single module that allows you to run commands on your APCON device.

Aruba Mobility Controller [aruba]

There are just two Aruba modules. These allow you to manage the configuration and execute commands
on the Aruba Mobility Controllers from Hewlett Packard.

Avi Networks [avi]

There are a total of 65 Avi modules that allow you to interact with all aspects of the Avi application
services platform, including the load-balancing and web application firewall (WAF) features.

Big Cloud Fabric and Big Switch Network [bcf + bigmon]

There are three Big Switch Network modules. Big Cloud Fabric (BCF) allows you to create and delete
BCF switches. The other two modules enable you to create Big Monitoring Fabric (Big Mon) service
chains and policies.

Ansible Network Modules176

Huawei Cloud Engine [ce]

Over 75 Cloud Engine modules allow you to manage all aspects of these robust switches from Huawei,
including BGP, access control lists, MTU, static routes, VXLANs, and SNMP configuration.

Lenovo CNOS [cnos]

There are nearly 30 modules that allow you to manage devices running the CNOS operating system
from Lenovo; they enable you to configure everything from BGP and port aggregation to VLAG,
VLANs, and factory reset devices, should you need to.

Arista Cloud Vision [cv]

A single module lets you provision an Arista Cloud Vision server port using a configlet.

illumos [dladm + flowadm + ipadm]

illumos is a fork of the Open Solaris operating system. Its powerful networking features make it the
perfect candidate for deploying as a self-built router or firewall. These modules allow you to manage
the interfaces, NetFlow, and tunnels. Additionally, as illumos is a fork of Open Solaris, your playbook
should work on Open Solaris-based operating systems.

Ubiquiti EdgeOS [edgeos + edgeswitch]

The modules for EdgeOS enable you to manage configurations, execute ad hoc commands, and collect
facts on EdgeOS-running devices, such as the Ubiquiti Edge Router.

There are also a few modules for Edge Switches.

Lenovo Enterprise Networking Operating System [enos]

There are three modules for the Lenovo ENOS. Like other devices, these allow you to gather facts,
execute commands, and manage the configuration.

Ericsson [eccli]

This single module allows you to run commands on devices running the Ericsson command-line interface.

ExtremeXOS [exos + nos + slxos]

These half-a dozen modules allow you to interact with the ExtremeXOS, Extreme Networks SLX-OS,
and Extreme Networks NOS software on Extreme Networks switches.

Cisco Firepower Threat Defense [ftd]

A few modules allow you to configure and upload/download files to a Cisco Firepower Threat
Defense device.

Manufacturer and device support 177

Itential Automation Platform [iap]

A few modules allow you to interact with workflows hosted on the Itential Automation Platform, as
well as low-code automation and orchestration for hybrid cloud networks.

Ruckus ICX 7000 [icx]

These modules allow you to configure your Ruckus ICX 7000 series campus switches.

Ingate Session Border Controllers [ig]

While these are mainly used for SIP, or to give its full name, session initiation protocol services,
there are a few modules to help configure the network elements.

NVIDIA Network Command Line Utility [nclu]

A single module that allows you to manage network interfaces using the NVIDIA Network Command
Line Utility on compatible devices.

Nokia NetAct [netact]

A single module that allows you to upload and apply your Nokia NetAct-powered core and radio networks.

Citrix Netscaler [netscaler]

These modules are designed to manage and configure various aspects of Netscaler devices. They cover
functionalities such as content switching, Global Server Load-Balancing (GSLB), load-balancing,
issuing Nitro API requests, and saving configurations, as well as managing server configurations,
services, service groups, and SSL certificate keys.

Nokia Nuage Networks Virtualized Services Platform (VSP) [nuage]

There is a single module that allows you to manage enterprises on your Nokia Nuage Networks VSP.

OpenSwitch [opx]

A single module that performs the specified action on the YANG object, utilizing the CPS API on the
networking device operating OpenSwitch.

Ordnance Virtual Routers [ordnance]

There are two modules: one to manage configuration and the other to collect facts on Ordnance
Virtual Routers.

Ansible Network Modules178

Pluribus Networks Netvisor OS [pn]

These 40 modules allow you to manage your Pluribus Networks (PN) Netvisor OS-powered devices,
from creating clusters and routers to running commands on your white-box switches.

Nokia Networks Service Router Operating System [sros]

There are three modules that let you run commands against, configure, and roll back changes to your
Nokia Networks SROS devices.

Radware [vidrect]

A small number of modules that allow you to manage your Radware devices via a vDirect server.

Ansible Net Common [ansible.netcommon]

The final collection is a set of modules that could be considered tools to help support all the devices
we have covered in this chapter. There are modules that can ping targets and run generic commands
using custom prompts and answers.

Summary
I suspect most of you would not have heard of a lot of the devices we have listed in this chapter, and
for the ones you have heard of—such as the Cisco ones—you will probably not have had direct access
to them, leaving any configuration to your network administrators.

When we speak about triggering Ansible using CI/CD in Chapter 15, Using Ansible with GitHub Actions
and Azure DevOps, and Chapter 16, Introducing Ansible AWX and Red Hat Ansible Automation Platform,
we will learn about some deployment options that could help alleviate the concerns we mentioned
at the start of the chapter, e.g., those about a host running your Ansible playbooks needing a line of
sight of the potentially critical core infrastructure.

Before we get to those chapters, we will look at moving our workloads to the cloud, a journey that
starts in the next chapter.

Further reading
• The Ansible Collection index: https://docs.ansible.com/ansible/latest/

collections/index.html

https://docs.ansible.com/ansible/latest/collections/index.html
https://docs.ansible.com/ansible/latest/collections/index.html

9
Moving to the Cloud

This chapter will move from using our local virtual machine to using Ansible to launch instances
with a public cloud provider.

For this chapter, we will be using Microsoft Azure, and we are targeting this provider as it allows us
to launch virtual machines and interact with them without having too much configuration overhead.

We will then look at adapting our WordPress playbook to interact with the newly launched Microsoft
Azure instance.

In this chapter, we will cover the following topics:

• An introduction to Microsoft Azure

• Launching instances in Microsoft Azure

• Bootstrapping WordPress

Technical requirements
In this chapter, we will launch instances in a public cloud, so if you are following along, you will
need a Microsoft Azure account. As with other chapters, complete versions of the playbooks can be
found in the repository in the chapters folder at https://github.com/PacktPublishing/
Learn-Ansible-Second-Edition/tree/main/Chapter09.

An introduction to Microsoft Azure
In 2008, Microsoft took its first significant step into cloud computing by introducing Windows Azure,
a cloud-based data center service. This launch marked a pivotal moment in what many people saw as
a traditional software company’s history, signaling a strategic shift toward cloud computing.

Developed under the internal project Project Red Dog, Windows Azure represented Microsoft’s answer
to the growing demand for scalable, accessible, and flexible computing resources.

https://github.com/PacktPublishing/Learn-Ansible-Second-Edition/tree/main/Chapter09
https://github.com/PacktPublishing/Learn-Ansible-Second-Edition/tree/main/Chapter09

Moving to the Cloud180

Windows Azure was initially rolled out with five core components, each designed to offer distinct
capabilities within the cloud computing spectrum:

• Microsoft SQL Data Services: This component offered a cloud version of Microsoft’s SQL
database, simplifying the complexities associated with hosting and managing databases in a
cloud environment.

• Microsoft .NET Services: As a platform as a service (PaaS) offering, it enabled developers
to deploy their .NET-based applications within a Microsoft-managed runtime, streamlining
the development process.

• Microsoft SharePoint and Microsoft Dynamics: These software as a service (SaaS) offerings
provided cloud-based versions of the company’s renowned intranet and customer relationship
management (CRM) products, enhancing collaboration and customer engagement.

• Windows Azure (IaaS): An infrastructure-as-a-service (IaaS) solution, this allowed users
to create and control virtual machines, storage, and networking services, addressing diverse
compute workloads.

The preceding four definitions are from an older book I wrote, Infrastructure as Code for Beginners.

Central to Windows Azure’s architecture was the Red Dog operating system, a specially modified
version of Windows NT. This system was engineered to include a cloud layer, ensuring the smooth
delivery of data center services.

By 2014, reflecting its expanded range of services and a growing emphasis on Linux-based workloads,
Microsoft rebranded the service as Microsoft Azure. This change underscored the platform’s evolution
beyond Windows-centric solutions.

Fast forward to 2020, and it was evident that Microsoft Azure had embraced a more inclusive approach, with
over half of its virtual machine cores and a significant number of Azure Marketplace images being Linux-based.

This shift demonstrated Microsoft’s broader adoption of Linux and open-source technologies, which
remain integral to their current cloud service offerings at the time of writing.

Launching instances in Microsoft Azure
If you followed along in Chapter 7, Ansible Windows Modules, you will have already launched a virtual
machine in Microsoft Azure using the Azure CLI.

Reminder
For instructions on how to install and configure the Azure CLI, please see the documentation at
https://learn.microsoft.com/en-us/cli/azure/install-azure-cli/.
Remember, if you are following along on a Windows host, then make sure to install the Azure CLI
within your Windows Subsystem for Linux installation alongside where you installed Ansible.

https://learn.microsoft.com/en-us/cli/azure/install-azure-cli/

Launching instances in Microsoft Azure 181

When talking through launching the Windows virtual machine, we did the following:

• We created a resource group to collect all the resources for our virtual machine workload.

• We then created a virtual network and subnet to attach to the machine’s network interface.

• We then created a network security group to secure our virtual machine.

• Once we had the basics, we launched a Windows virtual machine, attaching a public IP address
directly to the network interface.

• Finally, we deployed a virtual machine extension that executed the PowerShell script on our
Windows host to enable the WinRM protocol, allowing us to connect to and interact with the
host using Ansible.

This chapter will repeat, tweak, and add to these steps using Ansible and the Azure collection of modules.

Preparing Ansible for Microsoft Azure

Before we dive into the Ansible role, which will launch our resources, we need to do a little preparation;
first, let’s ensure that the Azure collection is installed by running the following:

$ ansible-galaxy collection install azure.azcollection

Next, we must install the Python modules that allow the Azure collection to interact with the Azure
APIs. To do this, we need to run the following command:

$ pip3 install -r ~/.ansible/collections/ansible_collections/azure/
azcollection/requirements-azure.txt

With the necessary supporting Python modules installed, the next step is to ensure that you have signed
into your Microsoft Azure account using the Azure CLI. To do this, run the following command and
follow the onscreen prompts:

$ az login

If you have access to more than one Azure subscription using your account, you should ensure that
the subscription you intend to launch your resources in is selected.

To do this, you can list all the subscriptions and, if needed, switch to the right subscription by running
the following commands:

$ az account list --output table
$ az account set --subscription <subscription_id>

Ensure you replace <subscription_id> with the correct subscription ID from the az account
list command.

Moving to the Cloud182

Note
Using the az account set command only applies to your current session; if you close your
terminal window and reopen a new session, you must ensure you have changed subscriptions again.

Reviewing the variables

There are several variables across the roles we will use to deploy our Azure resources and configure
WordPress. The first ones we will look at can be found in the group_vars/common.yml file.

To start with, we have some feature flags, the first of which, debug_output, outputs the contents
of the variables that are registered during the playbook run; setting this to true is helpful to pull
back information on the Azure resources once they have launched during the development of the role.

The second feature flag is generate_key; if this is set to true, then a private and public key pair
will be created by Ansible if one does not exist at ~/.ssh/id_rsa.

The playbook will use the key in this location when launching a virtual machine, so one must exist,
as without it, Ansible cannot connect to the newly launched virtual machine.

These two variables look like the following:

debug_output: false
genterate_key: false

Next, in group_vars/common.yml, we define some information about our app workload; this
contains a mixture of details about the application and some of the Azure details like the Azure region
the workload will be launched in (location and location_short) as well as the name that our
WordPress site will be accessible on (public_dns_name):

app:
 name: "learnansible-wordpress"
 shortname: "ansiblewp"
 location: "westeurope"
 location_short: "euw"
 env: "prod"
 public_dns_name: "learnansible"

The final set of variables, which are defined in the group_vars/common.yml file, are for the tags
that will be applied to each Azure resource that Ansible will launch:

common_tags:
 "project": "{{ app.name }}"
 "environment": "{{ app.env }}"
 "deployed_by": "ansible"

Launching instances in Microsoft Azure 183

The next set of variables we will be using can be found in roles/azure/defaults/main.yml,
which are used to deploy our resources.

The first block of variables defines a quick dictionary of Azure service names for use when it comes
to naming our resources:

dict:
 ansible_warning: "Resource managed by Ansible"
 load_balancer: "lb"
 network_interface: "nic"
 nsg: "nsg"
 private_endpoint: "pe"
 public_ip: "pip"
 resource_group: "rg"
 subnet: "snet"
 virtual_machine: "vm"
 virtualnetwork: "vnet"

Next, we define the resource names – as per Chapter 7, Ansible Windows Modules, I am naming the
resources as close to the cloud adoption framework recommendations as possible:

load_balancer_name: "{{ dict.load_balancer }}-{{ app.name }}-{{app.
env}}-{{ app.location_short }}"
load_balancer_public_ip_name: "{{ dict.public_ip }}-{{ load_balancer_
name }}"
nsg_name: "{{ dict.nsg }}-{{ app.name }}-{{app.env}}-{{ app.location_
short }}"
resource_group_name: "{{ dict.resource_group }}-{{ app.name }}-{{app.
env}}-{{ app.location_short }}"
virtual_network_name: "{{ dict.virtualnetwork }}-{{ app.name }}-{{app.
env}}-{{ app.location_short }}"
vm_name: "{{ dict.virtual_machine }}-admin-{{ app.name }}-{{app.env}}-
{{ app.location_short }}"
vnet_name: "{{ dict.virtualnetwork }}-{{ app.name }}-{{app.env}}-{{
app.location_short }}"

Now that all the naming is out of the way, we can start defining the networking variables:

vnet_config:
 cidr_block: "10.0.0.0/24"
 subnets:
 - {
 name: "{{ dict.subnet }}-vms-{{ app.name }}-{{app.env}}-{{
app.location_short }}",
 subnet: «10.0.0.0/27»,

Moving to the Cloud184

 private: true,
 service_endpoints: «Microsoft.Storage»,
 }

Next, in networking, we have two lists of IPs – one is for fixed IPs, and the other is the IP address
discovered when the playbook runs:

trusted_ips:
 - ""
dynamic_ips:
 - "{{ your_public_ip }}"

The next block of variables takes the preceding lists of IP addresses and uses them when creating the
two network security group rules:

nsg_rules:
 - name: "allowHTTP"
 description: "{{ dict.ansible_warning }}"
 protocol: «Tcp»
 destination_port_range: «80»
 source_address_prefix: "*"
 access: "Allow"
 priority: "100"
 direction: "Inbound"
 - name: "allowSSH"
 description: "{{ dict.ansible_warning }}"
 protocol: "Tcp"
 destination_port_range: «{{ load_balancer.ssh_port }}»
 source_address_prefix: "{{ trusted_ips|select() + dynamic_ips |
unique }}"
 access: "Allow"
 priority: "150"
 direction: "Inbound"

As you can see, the first rule, allowHTTP, opens port 80 to the world; but allowSSH locks down
the SSH port to the IP addresses in our two lists. To do this, we take the list of IP addresses in the
trusted_ips variable, append the content of dynamic_ips, and then finally only display the
unique items in the list so any duplicate entries are removed.

The final networking block defines the basics needed to launch Azure Load Balancer:

load_balancer:
 ssh_port: "22"
 ssh_port_backend: "22"

Launching instances in Microsoft Azure 185

 http_port: "80"
 http_port_backend: "80"

Now we have the virtual machine configuration:

vm_config:
 admin_username: "adminuser"
 ssh_password_enabled: false
 vm_size: "Standard_B1ms"
 image:
 publisher: "Canonical"
 offer: "0001-com-ubuntu-server-jammy"
 sku: "22_04-LTS"
 version: "latest"
 disk:
 managed_disk_type: "Premium_LRS"
 caching: "ReadWrite"
 key:
 path: "/home/adminuser/.ssh/authorized_keys"
 data: "{{ lookup('file', '~/.ssh/id_rsa.pub') }}"

Then, finally, just two variables that define the location and the host group of our newly launched
virtual machine will be placed:

location: "{{ app.location }}"
hosts_group: "vmgroup"

Now that we have covered all of the variables needed to launch our Azure resources, we can work
through the tasks that do the actual work, all of which can be found in roles/azure/tasks/
main.yml.

The resource group task

The first task we are going to look at is creating the resource group where all of the other Azure
resources are going to be placed:

- name: "Create the resource group"
 azure.azcollection.azure_rm_resourcegroup:
 name: "{{ resource_group_name }}"
 location: "{{ location }}"
 tags: "{{ common_tags }}"
 register: "resource_group_output"

Moving to the Cloud186

As you can see, there is not much to it; it takes the name, location, and tags variables we defined
and creates the resource group using the azure. collection.azure_rm_resourcegroup
module. The task output is then registered as a variable, allowing us to reuse the output in later tasks.

The next task prints the contents of the resource_group_output register variable on the screen
if debug_output is set to true; if it is false, then the task is skipped:

- name: "Debug - Resource Group result"
 ansible.builtin.debug:
 var: "resource_group_output"
 when: debug_output

This is a common pattern throughout the Azure role, so we will not cover this task again. Assume
that if the task registers its output, there is a supporting debug task immediately after. Now that we
have our resource group, we can make a start on configuring the networking.

The networking tasks

The first task launches the virtual network, placing it in the resource group we just created:

- name: "Create the virtual network"
 azure.azcollection.azure_rm_virtualnetwork:
 resource_group: "{{ resource_group_output.state.name }}"
 name: "{{ virtual_network_name }}"
 address_prefixes: "{{ vnet_config.cidr_block }}"
 tags: "{{ common_tags }}"
 register: "virtual_network_output"

As you can see, when referencing the resource group name, we use the registered output from the
previous task by using {{ resource_group_output.state.name }}. Again, this is going
to be a common thread throughout the remaining tasks.

Note, we are not defining the subnet as part of creating the virtual network; this is possible as we are
only adding a single subnet, but it is considered best practice to use the azure.collection.
azure_rm_subnet module to add subnets as this approach means that you can loop through
adding subnets with a with_items statement:

- name: "Add the subnets to the virtual network"
 azure.azcollection.azure_rm_subnet:
 resource_group: "{{ resource_group_output.state.name }}"
 name: "{{ item.name }}"
 address_prefix: "{{ item.subnet }}"
 virtual_network: "{{ virtual_network_output.state.name }}"
 service_endpoints:
 - service: "{{ item.service_endpoints }}"

Launching instances in Microsoft Azure 187

 with_items: "{{ vnet_config.subnets }}"
 register: "subnet_output"

With the virtual network now populated with subnets, we can move on to creating the network
security group.

As you may remember, when we looked at the variables, we used a variable called your_public_
ip, so our next task is to discover the external IP address of the host running Ansible using the
community.general.ipify_facts module:

- name: "Find out your current public IP address using https://ipify.
org/"
 community.general.ipify_facts:
 register: public_ip_output

As you can see, there is not much to this, but we are not registering a variable called your_public_ip;
this is done as a separate task that uses the ansible.builtin.set_fact module:

- name: "Register your public ip as a fact"
 ansible.builtin.set_fact:
 your_public_ip: "{{ public_ip_output.ansible_facts.ipify_public_ip
}}"

Now we know the IP address, we can create the network security group:

- name: "Create the network security group"
 azure.azcollection.azure_rm_securitygroup:
 resource_group: "{{ resource_group_output.state.name }}"
 name: "{{ nsg_name }}"
 rules: "{{ nsg_rules }}"
 tags: "{{ common_tags }}"
 register: "nsg_output"

So far, so good; the next piece of networking configuration we need to do is to launch Azure Load
Balancer. This is the first deviation from the resources we launched in Chapter 7, Ansible Windows
Modules, so why is that?

While Microsoft allows you to directly assign a public IP address to a virtual machine’s network interface
in Azure, it is generally frowned upon and not considered best practice – having a networking resource
such as Azure Load Balancer to route and distribute your traffic to one or more hosts is deemed to be
more secure as you are putting a layer between the virtual machine and the public internet.

Also, having traffic pass through a load balancer, even when running a single virtual machine like
ours, allows you to perform a basic health check to see whether the port to which the load balancer
sends traffic is healthy.

Moving to the Cloud188

The first task we need to run when launching Azure Load Balancer is to create a public IP address
resource, which will be attached to the load balancer when we launch it:

- name: "Create the public IP address needed for the load balancer"
 azure.azcollection.azure_rm_publicipaddress:
 resource_group: "{{ resource_group_output.state.name }}"
 allocation_method: "Static"
 name: "{{ load_balancer_public_ip_name }}"
 sku: "standard"
 domain_name: "{{ app.public_dns_name }}"
 tags: "{{ common_tags }}"
 register: "public_ip_output"

Now that the public IP address is defined, we can move on to Azure Load Balancer itself.

As there is rather a lot to the task, I will break it up a little as we go along:

- name: "Create load balancer using the public IP we created"
 azure.azcollection.azure_rm_loadbalancer:
 resource_group: "{{ resource_group_output.state.name }}"
 name: "{{ load_balancer_name }}"
 sku: "Standard"

The next block in the task defines the front of the load balancer. This is where we attach the public
IP address we just created:

 frontend_ip_configurations:
 - name: "{{ load_balancer_name }}-frontend-ip-config"
 public_ip_address: "{{ public_ip_output.state.name }}"

Next up, we define the backend pool. This is the pool where our virtual machine will be placed to have
traffic sent to it. If we had more than one virtual machine, all of them would be addressed to the pool:

 backend_address_pools:
 - name: "{{ load_balancer_name }}-backend-address-pool"

Now we have the health probe, which probes the HTTP port on the backend pool to make sure that
the virtual machines are ready to access traffic on port 80 by seeing if the port is open:

 probes:
 - name: "{{ load_balancer_name }}-http-probe"
 port: «{{ load_balancer.http_port_backend }}»
 fail_count: "3"
 protocol: "Tcp"

Launching instances in Microsoft Azure 189

For our WordPress workload, we want our HTTP port to be exposed. To do this, we will create a
load-balancing rule that allows you to create a one-to-many relationship with one or more virtual
machines in the backend pool. This rule exposes the HTTP port on the load balancer and sends the
traffic to the HTTP port on the backend virtual machines. If we had more than one virtual machine,
the traffic would be evenly distributed across all hosts in the backend on the HTTP port:

 load_balancing_rules:
 - name: "{{ load_balancer_name }}-rule-http"
 frontend_ip_configuration: "{{ load_balancer_name }}-frontend-
ip-config"
 backend_address_pool: "{{ load_balancer_name }}-backend-
address-pool"
 frontend_port: «{{ load_balancer.http_port }}»
 backend_port: "{{ load_balancer.http_port_backend }}"
 probe: "{{ load_balancer_name }}-http-probe"

While a load balancing rule takes traffic from a single port on the frontend and distributes it across
multiple virtual machines in the backend pool, an inbound NAT (which stands for Network Address
Translation) rule distributes traffic on a one-to-one basis, which makes it perfect for services such as
SSH that are not meant to be distributed across multiple hosts:

 inbound_nat_rules:
 - name: "{{ load_balancer_name }}-nat-ssh"
 frontend_ip_configuration: "{{ load_balancer_name }}-frontend-
ip-config"
 backend_port: "{{ load_balancer.ssh_port }}"
 frontend_port: "{{ load_balancer.ssh_port }}"
 protocol: "Tcp"

If we were to have more than one machine, we would add more rules that take different ports and map
them to port 22 on the backend virtual machines. Typically, I would use high ports such as 2220 >
2229 so I don’t clash with over services – 2220 would send traffic to port 22 on the first machine
and 2221 would do the same for the second machine, and so on.

However, in this example, we just have a single host, so I am mapping port 22 to port 22.

Lastly, we will tag the resource and register the output:

 tags: "{{ common_tags }}"
 register: "load_balancer_output"

Now we have the load balancer, we need to create a network interface, which will be placed in the
backend pool and attached to our virtual machine.

Moving to the Cloud190

For those of you who have already looked at the Ansible Azure collection, you may have noticed a module
called azure.azcollection.azure_rm_networkinterface, which is used to manage network
interfaces. Hence, you’d assume that the task we will be looking at uses that. Well, you would be wrong.

While the pre-written module has pretty good feature parity with the API endpoint it interacts with,
it is missing one key piece of functionality we require for our deployment: the ability to assign the
network interface to a NAT rule.

However, all is not lost, and there is a workaround.

There is an Azure module whose only purpose is to interact with the Azure Resource Manager API
directly, called azure.collection.azure_rm_resource, and by using this module, we
can make an API call directly to the Microsoft.Network/networkInterfaces endpoint
from within Ansible.

Having the ability to do this for any of the Azure Resource Manager APIs is quite powerful as it opens
new features as soon as Microsoft releases them, and it means you don’t have to wait for the Ansible
Azure collection developers to write, test, and release the module.

It does come with one downside, though: using this method does add an additional layer of complexity
to your playbook.

The following URL is the link to the REST API documentation, which covers the creation of a network
interface: https://learn.microsoft.com/en-us/rest/api/virtualnetwork/
network-interfaces/create-or-update?view=rest-virtualnetwork-2023-
05-01&tabs=HTTP.

As we will see from working through the task, the general gist of what we are doing is constructing
the URL of the API we would like to target and then constructing the request body detailed in the
REST documentation.

To start with, let’s look at the part of the task that generates the URL:

- name: "Create the network interface for the wordpress vm"
 azure.azcollection.azure_rm_resource:
 api_version: "2023-05-01"
 resource_group: "{{ resource_group_output.state.name }}"
 provider: "network"
 resource_type: "networkinterfaces"
 resource_name: "{{ dict.network_interface }}-{{ vm_name }}"
 idempotency: true

The preceding information constructs the URL given in the documentation, which is the following:

PUT https://management.azure.com/subscriptions/{subscriptionId}/
resourceGroups/{resourceGroupName}/providers/Microsoft.Network/
networkInterfaces/{networkInterfaceName}?api-version=2023-05-01

https://learn.microsoft.com/en-us/rest/api/virtualnetwork/network-interfaces/create-or-update?view=rest-virtualnetwork-2023-05-01&tabs=HTTP
https://learn.microsoft.com/en-us/rest/api/virtualnetwork/network-interfaces/create-or-update?view=rest-virtualnetwork-2023-05-01&tabs=HTTP
https://learn.microsoft.com/en-us/rest/api/virtualnetwork/network-interfaces/create-or-update?view=rest-virtualnetwork-2023-05-01&tabs=HTTP

Launching instances in Microsoft Azure 191

Let us look at how this is generated:

• {subscriptionId} is automatically generated by the module, and we do not need to
provide this information.

• {resourceGroupName} is added by providing the resource_group key, and as per the
rest of the tasks, we are using the resource group name, which is the output of our registering
the variable in the resource group task.

• The providers are provided by us by filling in the provider and resource_type keys.
Don’t worry – the URL is not case-sensitive, and the module adds the Microsoft. part for us.

• {networkInterfaceName} is the resource_name key.

• Finally, the API version is provided by filling in the api_version key.

The last part of the “header” does not form part of the URL, but instead, it instructs Ansible to perform
a GET request and then compares the body of what will be posted to what is returned by the GET
request, and if there are any problems, it will error before the body is posted.

Now that we have the URL of the Azure Resource Manager API endpoint to which we will send our
request, we need to populate the body of the request.

For our case, this looks like the following code:

 body:
 location: "{{ location }}"
 properties:
 enableAcceleratedNetworking: false
 primary: true
 networksecuritygroup:
 id: "{{ nsg_output.state.id }}"
 configurations:
 - name: "{{ vm_name }}-ipcfg"
 properties:
 subnet:
 id: "{{ subnet_output.results[0].state.id }}"
 loadBalancerBackendAddressPools:
 - id: "{{ load_balancer_output.state.backend_address_
pools[0].id }}"
 loadBalancerInboundNatRules:
 - id: "{{ load_balancer_output.state.inbound_nat_
rules[0].id }}"
 tags: "{{ common_tags }}"

Moving to the Cloud192

When the module runs, properties will be rendered as JSON and posted alongside location
and tags in the request’s body, leaving the final part of the task to register the output:

 register: "network_interface_output"

We now have all the base Azure configuration and resources in place; we can launch our virtual
machine. As we will be using SSH to connect to the virtual machine and bootstrap our WordPress
installation, we need to ensure we have a valid SSH key generated.

As we will connect to a remote virtual machine, we want to ship a test key as we have been doing on
our locally deployed hosts. So, if there is not a key at ~/.ssh/id_rsa on your local machine, then
set the genterate_key variable in the group_vars/common.yml file to true (it is false
by default), then Ansible will generate the key for you.

Do not worry if a key already exists at that location; Ansible will only create a key if one does not exist:

- name: "Check user has a key, if not create one for {{ ansible_user_
id }}"
 ansible.builtin.user:
 name: "{{ ansible_user_id }}"
 generate_ssh_key: true
 ssh_key_file: "~/.ssh/id_rsa"
 when: genterate_key

Next, we have the task that launches the virtual machine itself. It uses all of the resources we have
already deployed and configured so I will not go into too much detail:

- name: Create the admin virtual machine
 azure.azcollection.azure_rm_virtualmachine:
 resource_group: "{{ resource_group_output.state.name }}"
 name: "{{ vm_name }}"
 admin_username: "{{ vm_config.admin_username }}"
 ssh_public_keys:
 - path: "{{ vm_config.key.path }}"
 key_data: "{{ vm_config.key.data }}"
 ssh_password_enabled: "{{ vm_config.ssh_password_enabled }}"
 vm_size: "{{ vm_config.vm_size }}"
 managed_disk_type: "{{ vm_config.disk.managed_disk_type }}"
 network_interfaces: "{{ network_interface_output.response.name }}"
 image:
 offer: "{{ vm_config.image.offer }}"
 publisher: "{{ vm_config.image.publisher }}"
 sku: "{{ vm_config.image.sku }}"

Bootstrapping WordPress 193

 version: «{{ vm_config.image.version }}»
 tags: «{{ common_tags }}»
 register: «vm_output»

As with most tasks we have run in this role, immediately after there is a debug task.

You may think, “That’s the end of the role, right?” but we have two tasks to cover.

The first of these final two tasks takes information about the hosts, such as the public IP address and
SSH port, and then adds it to the host group defined as the hosts_group variable.

This means that there is no hardcoding of IP addresses or connections in our host’s inventory file. The
task to register the host looks like the following:

- name: Add the Virtual Machine to the host group
 ansible.builtin.add_host:
 groups: "{{ hosts_group }}"
 hostname: "{{ public_ip_output.state.ip_address }}-{{ load_
balancer.ssh_port }}"
 ansible_host: "{{ public_ip_output.state.ip_address }}"
 ansible_port: «{{ load_balancer.ssh_port }}»

So, what could this task be? We have the networking in place, our virtual machine has been launched,
and we have registered our host, so we must be ready to start bootstrapping WordPress.

That’s the problem; we might be ready, but the host we just launched might not be as it can sometimes
take a minute or two for the virtual machine to finish booting up. If we were to immediately try and
SSH into the host before it has finished booting, then our playbook would error and halt running.

Luckily, an Ansible module was developed for use in this scenario, ansible.builtin.wait_for:

- name: "Wait for the virtual machine to be ready"
 ansible.builtin.wait_for:
 host: "{{ public_ip_output.state.ip_address }}"
 port: «{{ load_balancer.ssh_port }}»
 delay: 10
 timeout: 300

This will wait for 10 seconds and then attempt to SSH to the host for up to 5 minutes (300 seconds);
when SSH is accessible, the Ansible playbook will then progress to the next set of roles, which, in our
case, bootstrap WordPress.

Bootstrapping WordPress
It won’t be of any surprise to you that the bulk of the WordPress roles remain intact from our previous
chapters so we will not cover those parts there and will instead review some of the small changes.

Moving to the Cloud194

The site and host environment files

The site.yml is now split into two sections; the first runs locally and interacts with the Azure
Resource Manager API to launch and configure the Azure resources:

- name: "Deploy and configure the Azure Environment"
 hosts: localhost
 connection: local
 gather_facts: true
 vars_files:
 - group_vars/common.yml

 roles:
 - "azure"

The second section targets the vmgroup host group and looks more like what we have been working
with so far in the previous chapters:

- name: "Install and configure Wordpress"
 hosts: vmgroup
 gather_facts: true
 become: true
 become_method: "ansible.builtin.sudo"
 vars_files:
 - group_vars/common.yml

 roles:
 - "secrets"
 - "stack_install"
 - "stack_config"
 - "wordpress"

The hosts file looks like the hosts files we have been using throughout the previous chapters; it
is just missing the lines where we explicitly define the target hosts and instead is just made up of the
host groups’ definitions.

You may have noticed that we are adding a new role, and the remaining ones are mostly the same; the
role is called secrets, so let’s see what it does.

The secrets role

The sole purpose of this role is to generate secure passwords for WordPress and the database. Its tasks
are delegated to the local machine as it creates a variables file at group_vars/secrets.yml and
loads them into the playbook run.

Bootstrapping WordPress 195

First, it checks if group_vars/secrets.yml already exists and if it does, we don’t want to change
the contents of the file:

- name: "Check if the file secrets.yml exists"
 ansible.builtin.stat:
 path: "group_vars/secrets.yml"
 register: secrets_file
 delegate_to: "localhost"
 become: false

If there is no file, then it and its contents are generated from a template file:

- name: "Generate the secrets.yml file using a template file if not
exists"
 ansible.builtin.template:
 src: "secrets.yml.j2"
 dest: "group_vars/secrets.yml"
 when: secrets_file.stat.exists == false
 delegate_to: "localhost"
 become: false

The template file at roles/secrets/templates/secrets.yml.j2 looks like the following:

db_password: "{{ lookup('community.general.random_string', length=20,
upper=true, special=false, numbers=true) }}" wp_password: "{{
lookup('community.general.random_string', length=20, upper=true,
special=true, override_special="@-&*", min_special=2, numbers=true)
}}"

As you can see, it uses the community.general.random_string module to generate a random
string with some sensible rules, which we will use as passwords.

Other changes

Most of the changes to the roles are to the variables; for example, in roles/wordpress/defaults/
main.yml we have the following:

wordpress:
 domain: "http://{{ app.public_dns_name }}.{{ app.location
}}.cloudapp.azure.com/"
 password: "{{ wp_password }}"

This uses the public URL we are configuring on the Azure Load Balancer public IP address and the
password variable from the secrets role that just ran.

Everything else in the roles remains as we left it in Chapter 5, Deploying WordPress.

Moving to the Cloud196

Running the playbook
Running the playbook uses the same command we have been running throughout the book:

$ ansible-playbook -i hosts site.yml

The playbook will execute and by the end of it you should see something like the output on the
following screen:

Figure 9.1 – Running the playbook in a terminal

Visiting the Azure portal at https://portal.azure.com/ and viewing the resource group
that Ansible created should show you something like the following:

Figure 9.2 – Viewing the resources in the Azure portal

https://portal.azure.com/

Summary 197

From here, you should be able to enter the DNS name assigned on the public IP address; for example,
in my instance, it was http://learnansible.westeurope.cloudapp.azure.com/.
This may be different in your case and you should see your newly bootstrapped WordPress site.

Just like when we launched Azure resources in Chapter 7, Ansible Windows Modules, to terminate the
resources, we need to remove the resource group, which will remove all the resources contained there.

To do this using Ansible, there is a small, self-contained playbook called destroy.yml, which can
be executed by running the following:

$ ansible-playbook -i hosts destory.yml

This will take a few minutes to run, but it will remove all resources deployed in the site.yml playbook,
including the ones in Azure and the group_vars/secrets.yml file, leaving you with a nice
clean slate for when you next run the main site.yml playbook.

Summary
In this chapter, we launched our first instances in a public cloud using the Azure Ansible modules;
as you have seen, the process was relatively straightforward, and we managed to securely launch
the network and compute resource in Microsoft Azure, ready for us to then install WordPress on it
without making any significant changes to the roles we covered in Chapter 5, Deploying WordPress.

In the next chapter, we will expand on some of the techniques we have covered in this chapter and
return to networking, but unlike the previous chapter, where we covered networking devices, we will
be looking at networking in public clouds.

10
Building Out a Cloud Network

Now that we have launched servers in Microsoft Azure, we will start looking at launching services
within Amazon Web Services (AWS).

Before we launch virtual machine instances, we must create a network to host them. This is called a
virtual private cloud (VPC) and there are a few different elements we will need to bring together in
a playbook to create one, which we will then be able to use for our instances.

In this chapter, we will do the following:

• Receive an introduction to AWS

• Cover what it is we are trying to achieve and why

• Create a VPC, subnets, and routes (networking and routing)

• Create security groups (firewall)

We will look at more advanced Ansible techniques as we launch and manage more dynamic resources
with complex dependencies.

The chapter covers the following topics:

• An introduction to AWS

• Amazon VPC overview

• Creating an access key and secret

• Getting Ansible ready for targeting AWS

• The AWS playbook

• Running the playbook

Building Out a Cloud Network200

Technical requirements
This chapter will use AWS; you will need administrator access to create the roles needed to allow
Ansible to interact with your account. As with other chapters, you can find the complete playbooks
in the Chapter10 folder in the accompanying GitHub repository at https://github.com/
PacktPublishing/Learn-Ansible-Second-Edition/tree/main/Chapter10.

An introduction to AWS
AWS has been around since 2002; it started by offering a few services that were not linked in any
way. It progressed in this form until early 2006 when it was relaunched. The relaunched AWS brought
together three services:

• Amazon Elastic Compute Cloud (Amazon EC2): This is the AWS compute service

• Amazon Simple Storage Service (Amazon S3): Amazon’s scalable object storage service

• Amazon Simple Queue Service (Amazon SQS): This service provides a message queue,
primarily for web applications

Since 2006, it has grown from three unique services to over 160, covering over 15 primary areas such
as the following:

• Compute

• Storage

• Database

• Networking and content delivery

• Machine learning analytics security, identity, and compliance

• Internet of things

At its earnings call in October 2023, it was revealed that AWS had USD 23.06 billion in revenue in the
third quarter of 2023, good for a service that initially offered to share idle compute time.

At the time of writing, AWS spans 32 geographic regions, which host a total of 102 availability
zones (https://aws.amazon.com/about-aws/global-infrastructure/).

So, what makes AWS so successful? Not only its coverage but its approach to putting out its services.
Andy Jassy, AWS CEO, has been quoted as saying:

“Our mission is to enable any developer or any company to be able to build all their
technology applications on top of our infrastructure technology platform.”

https://github.com/PacktPublishing/Learn-Ansible-Second-Edition/tree/main/Chapter10
https://github.com/PacktPublishing/Learn-Ansible-Second-Edition/tree/main/Chapter10
https://aws.amazon.com/about-aws/global-infrastructure/

Amazon VPC overview 201

As an individual, you have access to the same APIs, services, regions, tools, and pricing models as
large multi-national companies and Amazon themselves, as they consume their services. This gives
you the freedom to start small and scale massively. For example, Amazon EC2 instances start from
around USD 4.50 per month for a t2.nano (1 vCPU and 0.5G) all the way up to over USD 19,000 per
month for an x1e.32xlarge (128 vCPU, 3,904 GB RAM, and two 1920 GB SSD storage); as you can
see, there are instance types for every workload imaginable.

Both instances and most services are billed under pay-as-you-go, from per-second billing for EC2
instances to pay per GB per month for the storage you are using.

Amazon VPC overview
In this chapter, we are going to be concentrating on launching an Amazon Virtual Private Cloud
(Amazon VPC); this is the networking layer that will host the computing and other Amazon services
that we will be launching in Chapter 11, Highly Available Cloud Deployments.

We are going to be launching our VPC into the EU-West #1 (Ireland) region; we will be spanning all
three availability zones for our EC2 instances and also the Application Elastic Load Balancer. We
will, again, be using the three availability zones for our Amazon Relational Database Service (RDS)
instance and also two zones for the Amazon Elastic File System (Amazon EFS) volumes.

This all means our Ansible playbook needs to create/configure the following:

• One Amazon VPC

• Three subnets for EC2 instances

• Three subnets for Amazon RDS instances

• Three subnets for Amazon EFS volumes

• Three subnets for the Application Load Balancer

• One internet gateway

We will also need to configure the following:

• One route to allow access through the internet gateway

• One security group that allows everyone to access port 80 (HTTP) and 443 (HTTPS) on the
Application Load Balancer

• One security group that allows trusted source access to port 22 (SSH) on the EC2 instances

• One security group that allows access to port 80 (HTTP) from the Application Load Balancer
to the EC2 instances

Building Out a Cloud Network202

• One security group that allows access to port 3306 (MySQL) on the Amazon RDS instances
from the EC2 instances

• One security group that allows access to port 2049 (NFS) on the Amazon EFS volumes from
the EC2 instances

This will give us our primary network, allowing restrictive access to everything but the Application
Load Balancer, which we want to be publicly available.

Before creating an Ansible playbook that deploys the network, we need to get an AWS API access
key and secret.

Creating an access key and secret
It is more than possible to create an access key and secret key for your AWS user to give Ansible full
access to your AWS account.

Because of this, we are going to look at creating a user for Ansible, which only has permission to access
the parts of AWS we know that Ansible will need to interact with for the tasks we are covering in this
chapter. We will be giving Ansible full access to the following services:

• Amazon VPC

• Amazon EC2

• Amazon RDS

• Amazon EFS

To do this, follow these steps:

1. Log in to the AWS console, which can be found at https://console.aws.amazon.com/.

2. Once logged in, click on Services, which can be found in the menu at the top of the screen. In
the open menu, enter IAM into the search box and then click on the IAM “Manage access to
AWS resources” result.

3. On the IAM page, click User Groups in the left-hand side menu; we will create a group with
the permissions assigned to it, and then we will create a user and add it to our group.

4. Once on the User Groups page, click the Create Group button. This process has two steps, the
first of which is setting the group’s name. In the space provided, enter the group name Ansible.

5. Now, in the Attach permissions policies – Optional section, select AmazonEC2FullAccess,
AmazonVPCFullAccess, AmazonRDSFullAccess, and AmazonElasticFileSystemFullAccess;
once all four have been selected, click on the Create Group button at the bottom of the page.

6. Now that we have our Ansible group, click Users in the left-hand side menu.

https://console.aws.amazon.com/

Getting Ansible ready for targeting AWS 203

7. Once on the Users page, click Create user, and this will take you to a page where you can
configure your desired username and the type of user you want. Enter the following information:

 � User name: Enter LearnAnsible in here

 � Leave the Provide user access to the AWS Management Console – optional option
unchecked, as we will create a programmatic user

8. Click on the Next button to take you to the Set Permissions page. Ensure that Add user to
group is selected and that you have the Ansible group we created earlier ticked, and then
click Next, which will take you to the Review and Create page.

9. Once you have reviewed the details, you need to click the Create user button, which will
precisely do that: create our LearnAnsible user.

10. The final step is to get an access key for our user. To get this, click on the LearnAnsible
user and select the Security credentials tab; from there, scroll down to Access Keys and click
the Create access key button.

11. In the list of Access key best practices & alternatives select Other and then the Next button.
Enter For use with Learn Ansible for the description tag value and then click
Create access key.

12. The Retrieve access keys page is the only time you get access to the Secret access key, so I
recommend downloading the CSV file. Once downloaded, click on Done.

Important note
The CSV file you have just downloaded contains credentials allowing whoever has them to launch
resources in your AWS account; please do not share them and keep them safe, as they could be
misused, resulting in a huge and unexpected AWS bill should they fall into the wrong hands.

Now that we have an access key ID and secret access key for a user with the permissions, we need
to launch our VPC using Ansible; we can start getting Ansible ready and reviewing the playbook.

Getting Ansible ready for targeting AWS
We first need to discuss how to pass our access key ID and secret access key to Ansible safely and
securely. As I will share the final playbooks in a public repository on GitHub, I want to keep my AWS
keys private from the world as that could get expensive! Typically, if it were a private repository, I
would use Ansible Vault or some other secret management to encrypt the keys and include them with
other potentially sensitive data, such as deployment keys.

In this case, I don’t want to include any encrypted information in the repository, as it would mean that
people would need to unencrypt it, edit the values, and then re-encrypt it. Luckily, the AWS modules
allow you to set two environment variables on your Ansible controller; those variables will then be
read as part of the playbook execution.

Building Out a Cloud Network204

To set the variables, run the following commands to make sure that you replace the content with your
access key and secret after = (the information listed as follows is just placeholder values):

$ export AWS_ACCESS_KEY=AKIAI5KECPOTNTTVM3EDA
$ export AWS_SECRET_KEY=Y4B7FFiSWl0Am3VIFc07lgnc/TAtK5+RpxzIGTr

Once set, you can view the contents by running the following:

$ echo $AWS_ACCESS_KEY

Now that we can securely pass our credentials to Ansible, we can install the Python modules needed
by the AWS Ansible modules to interact with the AWS API.

Important note
You must set the environment variables for each terminal session, as they will be lost each time
you close your terminal.

To install the Python modules, run the following command:

$ pip3 install botocore boto3

Now that we have the basics configured, we can review our playbook.

The AWS playbook
As mentioned at the start of the chapter, we are going to be using some more advanced techniques
when it comes to deploying resources in AWS where possible; I have tried to allow the resources to
be deployed as dynamically as possible, a lot of which comes down to how we define our variables,
which is where we are going to start our playbook review.

The playbook variables

Most of the variables we define can be found in group_vars/common.yml, and as you can see from
the following, they start by looking a lot like the variables we described in Chapter 9, Moving to the Cloud:

debug_output: false
app:
 name: "learnansible"
 region: "eu-west-1"
 env: "prod"

As you can see, we have the same debug_output feature flag and selection of variables used to
describe our app and the AWS region in which it will be launched.

The AWS playbook 205

Next up, we have the resource names:

vpc_name: "{{ app.name }}-{{ app.env }}-{{ playbook_dict.vpc }}"
internet_gateway_name: "{{ app.name }}-{{ app.env }}-{{ playbook_dict.
internet_gateway }}"
internet_gateway_route_name: "{{ internet_gateway_name }}-{{ playbook_
dict.route }}"

Nothing too out of the ordinary so far, but here we will find our first difference in approach:

vpc:
 cidr_block: "10.0.0.0/23"
 dns_hostnames: true
 dns_support: true
 subnet_size: "27"
 subnets:
 - name: "ec2"
 role: "{{ subnet_role_compute }}"
 - name: "rds"
 role: "{{ subnet_role_database }}"
 - name: "efs"
 role: "{{ subnet_role_storage }}"
 - name: "dmz"
 role: "{{ subnet_role_public }}"

At first glance, that doesn’t look too dissimilar to what we did for Microsoft Azure.

However, you might have noticed that there are no IP address CIDR ranges listed for the subnets, just
some details about the subnets, including a dictionary of roles:

subnet_role_compute: "compute"
subnet_role_database: "database"
subnet_role_storage: "storage"
subnet_role_public: "public"

We will look at why the subnet’s CIDR ranges are missing when we get to the tasks that create the subnet.

Next, we have the variables for creating the security groups; in total, we will be configuring four security
groups, so in the interest of space, I will only be showing one of the small groups here:

security_groups:
 - name: "{{ app.name }}-rds-{{ playbook_dict.security_group }}"
 description: "opens port 3306 to the ec2 instances"
 id_var_name: "rds_group_id"
 rules:
 - proto: "tcp"

Building Out a Cloud Network206

 from_port: "3306"
 to_port: "3306"
 group_id: "{{ ec2_group_id | default('') }}"
 rule_desc: "allow {{ ec2_group_id | default('') }} access to
port 3306"

See the GitHub repo for the full configuration for the four security groups; there is only one thing at
this point to highlight, and that is this: where we reference {{ ec2_group_id | default('')
}}, we are setting a default value of nothing (which is the '' part). We will discuss why we are doing
this when we cover the security role.

The final set of variables is the dictionary (playbook_dict) and a variable, which sets the value of
region using app.region; again, see the GitHub if you want to see all the contents.

The VPC role

Before we get to the exciting tasks, we need to create the VPC. The task in roles/vpc/tasks/
main.yml looks like the following:

- name: "Create VPC"
 amazon.aws.ec2_vpc_net:
 name: "{{ vpc_name }}"
 region: "{{ region }}"
 cidr_block: "{{ vpc.cidr_block }}"
 dns_hostnames: "{{ vpc.dns_hostnames }}"
 dns_support: "{{ vpc.dns_support }}"
 state: "{{ state }}"
 tags:
 Name: "{{ vpc_name }}"
 projectName: "{{ app.name }}"
 environment: "{{ app.env }}"
 deployedBy: "{{ playbook_dict.deployedBy }}"
 description: "{{ playbook_dict.ansible_warning }}"
 register: vpc_output

The task is pretty much as you would expect, apart from the tags being set a little more in line than
those we defined in Chapter 9, Moving to the Cloud. There is also a debug statement that prints the
results of creating the VPC if you set debug_output to true:

- name: "Debug - VPC result"
 ansible.builtin.debug:
 var: "vpc_output"
 when: debug_output

The AWS playbook 207

From now on, it is safe to assume that all registered output will be followed by an ansible.builtin.
debug task. Now that we have our VPC launched, we can start putting things inside it, beginning
with the subnets, where things get more interesting.

The subnets role

As mentioned in the AWS overview, there are 32 geographic regions and, at the time of writing, 102
Availability Zones. AWS differs from Microsoft Azure in that you need a subnet per Availability Zone
rather than a single subnet spanning all the availability zones.

The eu-west-1 region, which is the region we will target, is made up of three availability zones, and
we have subnets for four different roles, meaning that we need 12 subnets in total, but our playbook
could easily be targeting a region that only has two availability zones, or in some cases, even more.

So, our first task is to get information on the availability zones in our target region:

- name: "Get some information on the available zones"
 amazon.aws.aws_az_info:
 region: "{{ region }}"
 register: zones_output

Now that we know some information on the region, we can use that information and create our subnets:

- name: "Create all subnets"
 ansible.builtin.include_tasks: create_subnet.yml
 loop: "{{ vpc.subnets }}"
 loop_control:
 loop_var: subnet_item
 index_var: subnet_index
 vars:
 subnet_name: "{{ subnet_item.name }}"
 subnet_role: "{{ subnet_item.role }}"
 az_zones_from_main: "{{ zones_output }}"
 register: subnet_output

This task is quite different from the ones we have been using so far in the book, so let’s take a deeper
dive into what is happening.

Here, we are using a loop to automate the creation of multiple subnets. Each iteration of the loop
processes one subnet from the vpc.subnets list, which, as we have already seen, contains the
configuration details for each subnet.

As the loop runs, it assigns the current subnet’s details to the subnet_item variable and its index
in the list to subnet_index. These variables are then utilized to customize the creation process
for each subnet.

Building Out a Cloud Network208

The task includes and executes the steps defined in create_subnet.yml (which we will cover
next) for each subnet, using the specific details of that subnet (such as its name and role).

You may have noticed that we still haven’t passed in any CIDR ranges for the subnets; this is all handled
within the create_subnet.yml task, which we loop over for each of our four subnet types; this
is also where a second loop happens:

- name: "Create subnet in the availability zone"
 amazon.aws.ec2_vpc_subnet:
 region: "{{ region }}"
 state: "{{ state }}"
 vpc_id: "{{ vpc_output.vpc.id }}"
 cidr: "{{ vpc_output.vpc.cidr_block | ansible.utils.ipsubnet(vpc.
subnet_size, az_loop_index + (subnet_index * az_zones_from_main.
availability_zones|length)) }}"
 az: "{{ az_item.zone_name }}"
 tags:
 Name: "{{ subnet_name }}-{{ playbook_dict.subnet }}-{{ az_item.
zone_id }}"
 projectName: "{{ app.name }}"
 environment: "{{ app.env }}"
 deployedBy: "{{ playbook_dict.deployedBy }}"
 description: "{{ playbook_dict.ansible_warning }}"
 role: "{{ subnet_role }}"
 loop: "{{ az_zones_from_main.availability_zones }}"
 loop_control:
 loop_var: az_item
 index_var: az_loop_index

Please stick with me, as this is where it gets a little confusing; for each of the four loops we are enacting
from our main loop, we are taking the information on the availability zones and then looping over
them, creating a subnet per availability zone for the role we are currently looping over.

So, what about the CIDR range for the subnet?

You may have noticed something where you would expect to see the CIDR range; we have this expression:

vpc_output.vpc.cidr_block | ansible.utils.ipsubnet(vpc.subnet_size,
az_loop_index + (subnet_index * az_zones_from_main.availability_
zones|length))

We have the following components in the expression:

• vpc_output.vpc.cidr_block: This is the CIDR block of the VPC, within which the
subnets will be created. For our example, it’s 10.0.0.0/22.

• vpc.subnet_size: This specifies the size of each subnet. We are using /27, representing
a subnet with 32 IP addresses.

The AWS playbook 209

• az_zones_from_main.availability_zones|length: This is the total number of
availability zones available. The region we are targeting has 3 availability zones.

• az_loop_index: This is the current index in the loop over the availability zones.

• subnet_index: This is the index of the current subnet being processed.

This means that for our expression, we will get the following results. The first subnet, which is labeled
ec2, in the availability zone (az1) will have the following:

• az_loop_index = 0

• subnet_index = 0

So, the formula would be 0+(0*3)=0, meaning that we would get the following:

cidr = "{{ vpc_output.vpc.cidr_block | ansible.utils.ipsubnet(27, 0)
}}"

With vpc_output.vpc.cidr_block being 10.0.0.0/22, we could get the first /27, which
would be 10.0.0.0/27.

For the second availability zone (az2), the loop would be the following:

• az_loop_index = 1

• subnet_index = 0

1+(0*3)=1 means we would get 10.0.0.32/27 since the next subnet block starts immediately
after the previous one at the next 32 IP address interval.

The third Availability Zone (az3) would be 2+(0*3)=2, and the CIDR block would be 10.0.0.64/27.

The next subnet role, which is the RDS role, would give the following for az1:

• az_loop_index = 0

• subnet_index = 1

The formula would be 0+(1*3)=3, giving us a CIDR block 10.0.0.96/27.

This pattern would follow the sequence, where the next subnet for RDS az2 would be at 10.0.0.128/27,
and for az3, it would be at 10.0.0.160/27, and so on.

This expression ensures that each subnet created within the VPC is assigned a unique and non-overlapping
CIDR block, segmented adequately according to the defined subnet size, and distributed across
different availability zones.

Building Out a Cloud Network210

Taking this approach not only simplifies the management of subnet creation but also ensures efficiency
when it comes to writing the role, as it means that we don’t have to hardcode tasks to consider changes
between regions or the number of subnets we are defining in our variables.

The remaining tasks in the role build a list of the subnet IDs for each of the roles we have defined. An
example of one of these tasks is as follows:

- name: "Gather information about the compute subnets"
 amazon.aws.ec2_vpc_subnet_info:
 region: "{{ region }}"
 filters:
 "tag:role": "{{ subnet_role_compute }}"
 "tag:environment": "{{ app.env }}"
 "tag:projectName": "{{ app.name }}"
 register: subnets_compute_output

This gets information on the three subnets assigned the subnet_role_compute role. A few more
of these data-gathering tasks can be found in the repo; these cover the subnet_role_database,
subnet_role_storage, and subnet_role_public roles.

Finally, the final task in the role prints the subnet IDs that we have gathered using the previous set of tasks;
this looks slightly different to the debug statements we have been using in the playbook so far, as we are
using the msg function rather than the var one when calling the ansible.builtin.debug module.

The gateway role

The gateway role is relatively simple compared to the previous one. In comparison, it deploys an
internet gateway. Then, it creates a route to send all traffic destined for the internet (represented by
using 0.0.0.0/0, the CIDR notation for all network traffic) to our newly launched internet gateway.

The task that creates the internet gateway looks like the following:

- name: "Create an Internet Gateway"
 amazon.aws.ec2_vpc_igw:
 region: "{{ region }}"
 state: "{{ state }}"
 vpc_id: "{{ vpc_output.vpc.id }}"
 tags:
 "Name": "{{ internet_gateway_name }}"
 "projectName": "{{ app.name }}"
 "environment": "{{ app.env }}"
 "deployedBy": "{{ playbook_dict.deployedBy }}"
 "description": "{{ playbook_dict.ansible_warning }}"
 "role": "igw"
 register: internet_gateway_output

The AWS playbook 211

As per the rest of the tasks, a debug task follows this, and then the task that creates the route table,
which is then associated with our newly created internet gateway and also the computing and public
subnets that we defined and gathered the information for in the subnet’s role:

- name: "Create a route table so the internet gateway can be used by
the public subnets"
 amazon.aws.ec2_vpc_route_table:
 region: "{{ region }}"
 state: "{{ state }}"
 vpc_id: "{{ vpc_output.vpc.id }}"
 subnets: "{{ subnet_compute_ids + subnet_public_ids }}"
 routes:
 - dest: "0.0.0.0/0"
 gateway_id: "{{ internet_gateway_output.gateway_id }}"
 resource_tags:
 "Name": "{{ internet_gateway_route_name }}"
 "projectName": "{{ app.name }}"
 "environment": "{{ app.env }}"
 "deployedBy": "{{ playbook_dict.deployedBy }}"
 "description": "{{ playbook_dict.ansible_warning }}"
 "role": "route"
 register: internet_gateway_route_output

We then do a debug task that completes this role, and we then move on to the final role of the playbook:
the security group’s role.

The security group’s role

While this role, in my opinion, is not as complicated as the subnet’s role, we have built a little more
logic into the task than some of the more straightforward tasks in the book that we have run so far.

If you recall, earlier in the chapter, when we covered the variables being used by the playbook, we
gave the following example of the security groups being deployed:

 - proto: "tcp"
 from_port: "3306"
 to_port: "3306"
 group_id: "{{ ec2_group_id | default('') }}"
 rule_desc: "allow {{ ec2_group_id | default('') }} access to port
3306"

The preceding rule, as per rule_desc, opens up port 3306 for any devices that have the EC2 security
group attached to them, which, as we will see in Chapter 11, Highly Available Cloud Deployments, will
be the EC2 instances that will be running our workload.

Building Out a Cloud Network212

You may think to yourself, “Now that makes sense.” However, this is a little bit of a flaw in the logic we
must work around. ec2_group_id is referencing a group ID, which, at the time we first run our
playbook, doesn’t exist. So, how can we create the groups and populate them with rules that reference
groups that don’t yet exist?

As we have already seen, looping over the resources defined in our variables is more efficient. It reduces
the hard-coded logic at the role level, making the role more re-useable between projects and playbooks.

Before we look at the logic of creating the groups, we need to gather one bit of information: the public
IP address of the resource running Ansible. To do this, we call the following task:

- name: "Find out your current public IP address using https://ipify.
org/"
 community.general.ipify_facts:
 register: public_ip_output

Then we set a fact called your_public_ip, which we can reference in our rules where needed:

- name: "Set your public ip as a fact"
 ansible.builtin.set_fact:
 your_public_ip: "{{ public_ip_output.ansible_facts.ipify_public_ip
}}/32"

Now that we have that snippet of information, we can return to the question of how we can reference
the IDs of resources that have yet to be launched.

To create the security groups, we will be using the amazon.aws.ec2_security_group module.
The module has a flag called purge_rules, set to true by default; in this default state, when our
playbook finds and needs to update an existing security group, it will drop all the rules in the group
and then add just the ones defined in the playbook to maintain a consistent state.

While it is a valid use case, in our example, disabling this functionality by setting purge_rules to
false will allow us to create some unpopulated security groups:

- name: "Create the base security groups"
 amazon.aws.ec2_security_group:
 region: "{{ region }}"
 state: "{{ state }}"
 vpc_id: "{{ vpc_output.vpc.id }}"
 name: "{{ item.name }}"
 description: "{{ item.description }}"
 purge_rules: false
 tags:
 "Name": "{{ item.name }}"
 "projectName": "{{ app.name }}"
 "environment": "{{ app.env }}"

The AWS playbook 213

 "deployedBy": "{{ playbook_dict.deployedBy }}"
 "role": "securitygroup"
 loop: "{{ security_groups }}"
 register: base_security_groups_output

This will loop through and create the base, unpopulated security groups if they don’t exist, and if they
do already exist, no changes will be made to them.

So, now that we have our groups created, or if they already exist, we have the information we need to
dynamically define some facts based on the output of the previous tasks:

- name: "Set the fact for the security group ids"
 ansible.builtin.set_fact:
 "{{ item.id_var_name }}": "{{ base_security_groups_output.
results | selectattr('item.name', 'equalto', item.name) |
map(attribute='group_id') | first }}"
 loop: "{{ security_groups }}"
 when: base_security_groups_output.results | selectattr('item.name',
'equalto', item.name) | map(attribute='group_id') | list | length > 0

This task uses the ansible.builtin.set_fact module, allowing the creation or update of
new variables during runtime. This task aims to extract the unique ID of each security group created
in the first task and assign it to a specific variable name.

There are two expressions we use to do this. The first is the following:

"{{ item.id_var_name }}": "{{ base_security_groups_output.
results | selectattr('item.name', 'equalto', item.name) |
map(attribute='group_id') | first }}"

This is used to create the dynamic set of variables based on the loop created by the second expression.
A breakdown of this first expression follows:

• base_security_groups_output.results: This refers to the list of results from the
previous task that created the security groups. Each result in this list contains data about one
of the security groups.

• selectattr('item.name', 'equalto', item.name): The selectattr filter
is used to search through the list of results. It looks for results where the name attribute of the
item (each security group) is equal to the current item.name in the loop. In other words, it
filters the results to find the specific security group we’re currently interested in.

• map(attribute='group_id'): The map filter is then used to transform the filtered list of
results. It extracts only the group_id attribute from each result, which is the ID of the security group.

• first: Since the previous step can still return a list (albeit with a single element), the first filter
takes only the first element from this list, which should be the unique ID of the security group.

Building Out a Cloud Network214

The result of this expression is the ID of the security group that matches the current item in the loop,
and it’s assigned to a variable named according to item.id_var_name.

The second expression, which is in the when condition, runs as part of the loop:

when: base_security_groups_output.results | selectattr('item.name',
'equalto', item.name) | map(attribute='group_id') | list | length > 0

This expression determines whether the task should be executed for a particular item in the loop. It
follows a similar logic to the first expression:

• It starts with the same filtering process to find the security group that matches the current item.
name.

• After extracting the group_id, it ensures the output is treated as a list using the list filter.

• length > 0: This part checks whether the length of the list (the number of items in it) is greater
than 0. This means at least one security group with the specified name must exist. If the list is
empty, no matching security group is found, and the task will be skipped for the current item.

In theory, we should have now populated the variables that contain the security group IDs, meaning
that we can now add the rules:

- name: "Provision security group rules"
 amazon.aws.ec2_security_group:
 region: "{{ region }}"
 state: "{{ state }}"
 vpc_id: "{{ vpc_output.vpc.id }}"
 name: "{{ item.name }}"
 description: "{{ item.description }}"
 purge_rules: false
 rules: "{{ item.rules }}"
 loop: "{{ security_groups }}"
 register: security_groups_with_rules_output

This will loop over the already created groups and populate the rules for each one, using the group
IDs from the variables we dynamically defined in the previous task.

Running the playbook
As mentioned earlier, we worked our way through the playbook code; before you run the playbook,
you must set the AWS_ACCESS_KEY and AWS_SECRET_KEY environment variables on your
terminal session by running the following, making sure to update any values to those that you made
a note of when you created the Ansible user in the AWS console:

$ export AWS_ACCESS_KEY=AKIAI5KECPOTNTTVM3EDA
$ export AWS_SECRET_KEY=Y4B7FFiSWl0Am3VIFc07lgnc/TAtK5+RpxzIGTr

Running the playbook 215

With the environment variables set, you can run the playbook running the now very familiar
following code:

$ ansible-playbook -i hosts site.yml

Once completed, you should see something like the following terminal output:

Figure 10.1 – Running the playbook in a terminal

Going to the VPC and viewing the resource map in http://console.aws.amazon.com/
should display something like the following resource map:

Figure 10.2 – Viewing the resource map

By going to Security Groups, you should also see the groups that we created listed:

http://console.aws.amazon.com/

Building Out a Cloud Network216

Figure 10.3 – Reviewing the security groups

I have included a second playbook in the repo, which destroys all of the resources created by running
the site.yml playbook called destroy.yml. You can run it using the following command:

$ ansible-playbook -i hosts destroy.yml

I am not going to cover the contents of the playbook here, but if you review the code, you will notice
that, in essence, it runs the same tasks in the role we have covered in this chapter in reverse order,
setting the state to absent rather than present.

Summary
In this chapter, we have taken our next step in using Ansible to launch resources in a public cloud. We
have laid the groundwork for automating quite a complex environment by creating a VPC, setting up
the subnets we need for our application, provisioning an internet gateway, and setting our instances
to route their outgoing traffic through it.

We have configured four security groups, with three containing dynamic content, to secure the services
launching into our VPC.

In the next chapter, we will build on the foundations laid in this chapter and launch a more complex
set of services alongside the VPC.

Further reading
• Details of the AWS Q3 2023 earnings call: https://www.cnbc.com/2023/10/26/

aws-q3-earnings-report-2023.html

https://www.cnbc.com/2023/10/26/aws-q3-earnings-report-2023.html
https://www.cnbc.com/2023/10/26/aws-q3-earnings-report-2023.html

11
Highly Available Cloud

Deployments

Continuing with our AWS deployment, we will start to deploy services into the network we created in the
previous chapter, and by the end of the chapter, we will be left with a highly available WordPress installation.

Building on top of the roles we created in the previous chapter, we will be doing the following:

• Launching and configuring an Application Load Balancer

• Launching and configuring Amazon Relational Database Service (RDS) (database)

• Launching and configuring Amazon Elastic File System (EFS) (shared storage)

• Launching an Elastic Compute Cloud (EC2) instance and creating an Amazon Machine
Image (AMI) from it (deploying the WordPress code)

• Launching and configuring a launch template to use the newly created AMI and autoscaling
group (high availability)

The chapter covers the following topics:

• Planning the deployment

• The Playbook

• Running the Playbook

• Terminating all the resources

Highly Available Cloud Deployments218

Technical requirements
As in the previous chapter, we will be using AWS; you will need the access key and secret key we
created in the previous chapter to launch the resources needed for our highly available WordPress
installation. Please note that we will be launching resources that incur charges. Again, you can find the
complete playbook in the Chapter11 folder of the accompanying GitHub repository at https://
github.com/PacktPublishing/Learn-Ansible-Second-Edition/tree/main/
Chapter11/.

Planning the deployment
Before diving into the playbooks, we should get an idea of what we are trying to achieve. As mentioned,
we will build on our AWS Virtual Private Cloud (VPC) role by adding instances and storage; our
final deployment will look like the following diagram:

Figure 11.1 – An overview of what we shall be launching

https://github.com/PacktPublishing/Learn-Ansible-Second-Edition/tree/main/Chapter11/
https://github.com/PacktPublishing/Learn-Ansible-Second-Edition/tree/main/Chapter11/
https://github.com/PacktPublishing/Learn-Ansible-Second-Edition/tree/main/Chapter11/

Planning the deployment 219

In the diagram, we have the following:

• 2 x EC2 instances (t2.micro), deployed across different availability zones

• 1 x RDS instances (t2.micro)

• 1 x EFS storage across three availability zones

Before we talk about the deployment itself, based on the diagram and specifications here, how much
is this deployment going to cost us to run?

Costing the deployment

The cost of running this deployment in the EU-West-1 region is as follows:

Instance Type # Number Instance cost Total Monthly Cost
EC2 instances (t2.micro) x2 $9.20 $18.40
RDS instance (t2.micro) x1 $13.14 $13.14
Application Load Balancer x1 $24.24 $24.24

EFS 5GB $0.88 $4.40
Total $61.83

Table 11.1 – Cost of running the deployment

There will be a few other minor costs, such as bandwidth and storing the AMI that contains our
software stack. We could also consider increasing these costs by adding additional redundancy, such
as updating our RDS instance to a multi-AZ RDS primary and stand-by instance deployment and
increasing the number of EC2 instances.

However, this introduces additional complexity to our deployment, as we are about to spend the
rest of the chapter covering the playbook, which will be deploying the resources. I want to keep this
playbook as simple as possible for now.

WordPress considerations and high availability

So far, we have been launching WordPress on a single server, which is fine. Still, as we are trying to
remove as many of the single points of failure within our deployment as possible, we must put a little
thought into how we initially configure and launch our deployment.

First, let’s discuss the order we need to launch our deployment. The primary order in which we will
need to tackle the elements is as follows:

• VPC, subnets, internet gateway, routing, and security groups: These are all needed to launch
our deployment.

Highly Available Cloud Deployments220

• The Application Elastic Load Balancer: We will be using the public hostname of the Elastic
Load Balancer for our installation, so this needs to be launched before we start our installation.

• The RDS database instance: Our database instance must be available before we launch our
installation, as we need to create the WordPress database and bootstrap the installation.

• The EFS storage: We need some storage to share between the EC2 instances we will be
launching next.

So far, so good; however, this is where we have to start taking WordPress into account.

As some of you may know from experience, the current version of WordPress is not designed to be
spread across multiple servers. We can apply plenty of hacks and workarounds to make WordPress play
nicely in this sort of deployment; however, this chapter is about something other than the finer points
of deploying WordPress. Instead, it is about using Ansible to deploy a multi-tiered web application.

Because of this, we will be going for the most basic of the multi-instance WordPress options by deploying
our code and content on the EFS volume. This means that all we must do is install our LEMP stack. It
should be noted that this option could be more performant at a large scale, but it will serve our needs.

Now, back to the list of tasks. When it comes to launching our instances, we need to do the following:

1. Launch a temporary EC2 instance running Ubuntu to reuse parts of existing playbooks.

2. Update the operating system and install the software stack, supporting tools, and configuration
needed for us to install and run our WordPress installation.

3. Mount the EFS volume, set the correct permissions, and configure it to mount when the
instance boots.

4. Bootstrap WordPress itself.

5. Create an AMI from our temporary instance and then terminate the temporary instance as it
will not be needed now.

6. Create a launch template that uses the AMI we just created.

7. Create an autoscaling group and attach the launch configuration; it should also register our
WordPress instances with the Elastic Load Balancer.

Further playbook runs, which will update the operating system and non-WordPress configuration,
should repeat the process with the existing instances up and running, and then, once the AMI is built,
it should be deployed alongside the current instances, which will then be terminated once the new
instances are registered with the Elastic Load Balancer and receiving traffic.

This will allow us to update our operating system packages and configurations without downtime if
everything goes as planned!

Now that we have an idea of what we are trying to achieve, let’s make a start on our playbook.

The Playbook 221

The Playbook
We will use the Playbook we looked at in Chapter 10, Building Out a Cloud Network, as a starting point,
as all the roles are relevant to our deployment, and it already has the structure we need for our playbook.

We will also be using the roles to deploy and configure WordPress and the supporting software stack
we used in Chapter 9, Moving to the Cloud, with a few tweaks, which are needed as we are targeting
AWS and not Microsoft Azure; I will let you know when we get to them.

Unlike previous chapters, we will first look at the site.yml file to get an idea of the order in which
we will run the roles.

There are three stages in the file, starting with the stage that deploys and configures our underlying
AWS resources:

- name: "Deploy and configure the AWS Environment"
 hosts: localhost
 connection: local
 gather_facts: true
 vars:
 state: "present"

 vars_files:
 - group_vars/common.yml

 roles:
 - vpc
 - subnets
 - gateway
 - securitygroups
 - elb
 - efs
 - rds
 - ec2tmp
 - endpoints

As you can see, this is the same as the site.yml file from Chapter 10, Building Out a Cloud Network,
with additional roles added to the list from the securitygroups role downwards.

By the time our Playbook run gets to the second stage:

- name: "Install and configure Wordpress"
 hosts: vmgroup
 gather_facts: true
 become: true
 become_method: "ansible.builtin.sudo"

Highly Available Cloud Deployments222

 vars_files:
 - group_vars/common.yml
 - group_vars/generated_aws_endpoints.yml

 roles:
 - stack_install
 - stack_config
 - wordpress

A file called group_vars/generated_aws_endpoints.yml will have been generated,
and there should be a temporary virtual machine instance up and running, meaning SSH should be
accessible to the host running the Playbook.

Once this stage has been completed, our temporary virtual machine instance should have our software
stack installed. WordPress will be freshly installed if this is the first time the playbook has been run,
or if the playbook has detected an existing WordPress installation and left it alone unless there have
been any changes to the plugin configuration from within the playbook.

The final stage is then run:

- name: "Create AMI and update the Auto Scaling Group"
 hosts: localhost
 connection: local
 gather_facts: true
 vars:
 state: "present"

 vars_files:
 - group_vars/common.yml

 roles:
 - ec2ami
 - autoscaling

This stage creates an AMI from the temporary virtual machine instance, terminates the temporary
instance as we no longer need it, creates a new version of our launch template, and then creates/updates
the Auto Scaling Group to deploy the new version on the EC2 instances.

Sounds simple? Well, let’s find out.

The variables

Out of the box, there is a single variables file called group_vars/common.yml that contains all
the static variables needed to deploy our environment.

The Playbook 223

Some additional files will be created in the group_vars folder throughout the Playbook run; they
will contain some dynamically generated resources, such as passwords, resource names/endpoints,
and other information.

We will discuss these files in more detail when we look at the tasks that create and interact with them;
for now, we will look at the static variables defined within group_vars/common.yml, starting
with the base application configuration.

Application and resource configuration

We start the configuration with the option to enable/disable debug when running the Playbook. By
default, it is set to false; however, when running the Playbook, I recommend switching it to true
and reviewing the output:

debug_output: false

Next, we have the application name, region, and environment reference:

app:
 name: "learnansible"
 region: "eu-west-1"
 env: "prod"

The next block of variables defines details for the WordPress database; as we will be using the Amazon
RDS service, we are just using the variables that are defined later in the file, so we only have to update
the information in one place:

wp_database:
 name: "{{ rds.db_name }}"
 username: "{{ rds.db_username }}"
 password: "{{ rds.db_password }}"

The next block is the various variables used to configure WordPress itself:

wordpress:
 domain: "http://{{ aws_endpoints.elb }}/"
 title: "WordPress installed by Ansible on {{ os_family }}"
 username: "ansible"
 password: "{{ rds.db_password }}"
 email: "test@test.com"
 plugins:
 - "jetpack"
 - "wp-super-cache"
 - "wordpress-seo"
 - "wordfence"
 - "nginx-helper"

Highly Available Cloud Deployments224

There are no significant changes to when we last defined these in Chapter 9, Moving to the Cloud, apart
from using the aws_endpoints.lb variable, which won’t be known until the Elastic Load Balancer
has been launched. Also, for ease of use, we are reusing the password, which will be dynamically
generated later in the file, as the WordPress admin password.

Stack configuration

The next section overrides the defaults in the roles/stack_install role:

stack_packages:
 - "nginx"
 - "mariadb-client"
 - "php-cli"
 - "php-curl"
 - "php-fpm"
 - "php-gd"
 - "php-intl"
 - "php-mbstring"
 - "php-mysql"
 - "php-soap"
 - "php-xml"
 - "php-xmlrpc"
 - "php-zip"
 - "nfs-common" # Added for AWS
 - "nfs4-acl-tools" # Added for AWS
 - "autofs" # Added for AWS
 - "rpcbind" # Added for AWS

We have removed mariadb-server from the list of packages as we no longer need to install or
configure a local database server, and we have added four packages at the end (all labeled # Added
for AWS). These packages install the software required to mount the EFS filesystem using the NFS
protocol, which leads us nicely into the next block:

nfs:
 mount_point: "/var/www/"
 mount_options:
"nfsvers=4.1,rsize=1048576,wsize=1048576,hard,timeo=600,retrans=2"
 state: "mounted"
 fstype: "nfs4"

As you can see, this defines some basic information on where the EFS filesystem should be mounted,
with what options and the type of filesystem it is.

The Playbook 225

Resource names

This next section builds up the names of the resources we are going to be deploying; there is nothing
too special happening here – it is just defined like this, so we don’t have to update repeated information
in several places manually:

vpc_name: "{{ app.name }}-{{ app.env }}-{{ playbook_dict.vpc }}"
internet_gateway_name: "{{ app.name }}-{{ app.env }}-{{ playbook_dict.
internet_gateway }}"
internet_gateway_route_name: "{{ internet_gateway_name }}-{{ playbook_
dict.route }}"
elb_target_group_name: "{{ app.name }}-{{ app.env }}-{{ playbook_dict.
elb_target_group }}"
elb_name: "{{ app.name }}-{{ app.env }}-{{ playbook_dict.elb }}"
efs_name: "{{ app.name }}-{{ app.env }}-{{ playbook_dict.efs }}"
rds_name: "{{ app.name }}-{{ app.env }}-{{ playbook_dict.rds }}"
ec2_tmp_name: "{{ app.name }}-tmp-{{ playbook_dict.ec2 }}"
ami_name: "{{ app.name }}-{{ app.env }}-{{ playbook_dict.ami }}"
ec2_name: "{{ app.name }}-{{ app.env }}-{{ playbook_dict.ec2 }}"
launch_template_name: "{{ app.name }}-{{ app.env }}-{{ playbook_dict.
lt }}"
asg_name: "{{ app.name }}-{{ app.env }}-{{ playbook_dict.asg }}"

We will not be covering the full playbook_dict block here as there is not much to see, although
as a reminder, this is what the start of it looks like:

playbook_dict:
 deployedBy: "Ansible"
 ansible_warning: "Resource managed by Ansible"
 vpc: "vpc"

It just continues defining service names. The following section is where we start to define the variables
used for the AWS resource deployment.

EC2 configuration

The ec2 variable is split into a few different layers. Layers for the auto-scaling group, the AMI, and
the SSH keypair follow some general settings:

ec2:
 instance_type: "t2.micro"
 public_ip: true
 ssh_port: "22"

The variables are used across instances apart from the public_ip reference, which is only used
when launching the temporary virtual machine instance to bootstrap WordPress.

Highly Available Cloud Deployments226

The next layer defines some details about the auto-scaling group and launch template when used;
they help define how many instances are launched, how updated instances are rolled out, and also,
how the load balancer will check to see if they are healthy:

 asg:
 min_size: 1
 max_size: 3
 desired_capacity: 2
 health_check_type: "EC2"
 replace_batch_size: 1
 health_check_period: 300
 replace_all_instances: true
 wait_for_instances: true
 wait_timeout: 900
 disable_api_termination: true

Next, we define the details about the base AMI we will use; as you can see, we are using Ubuntu 22.04,
which is supplied by Canonical, the publisher and maintainer of Ubuntu:

 ami:
 owners: "099720109477"
 filters:
 name: "ubuntu/images/hvm-ssd/ubuntu-jammy-22.04-amd64-server-*"
 virtualization_type: "hvm"

Finally, we have some details on the keypair to upload to AWS and use when launching our Virtual
Machine instances:

 keypair:
 name: "ssh_keypair"
 key_material: "{{ lookup('file', '~/.ssh/id_rsa.pub') }}"

Next up are the variables used when launching the RDS service.

RDS configuration

These are all standard, apart from the rds.db_password variable:

rds:
 db_username: "{{ app.name }}"
 db_password: "{{ lookup('password', 'group_vars/generated_rds_
passwordfile chars=ascii_letters,digits length=30') }}"
 db_name: "{{ app.name }}"

The Playbook 227

 instance_type: "db.t2.micro"
 engine: "mysql"
 engine_version: "8.0"
 allocated_storage: "5"

As you can see, we are using a lookup module to add a random password to the group_vars/
generated_rds_passwordfile file; we are instructing the module to generate a 30-character
random password comprising letters and numbers only.

EFS configuration

Here, we define the variables used to tell Ansible to wait and how long when creating the EFS resource:

efs:
 wait: "yes"
 wait_time: "1200"

VPC and subnet configuration

This block remains unchanged from Chapter 10, Building Out a Cloud Network.

Security group configuration

Most of this block is unchanged from Chapter 10, Building Out a Cloud Network, as we now define
the SSH port as ec2.ssh_port. I have updated the EC2 group to use this reference rather than
hardcoding port 22 into the block. The only other addition is the following:

elb_seach_string: "elb"
ec2_seach_string: "ec2"
rds_seach_string: "rds"
efs_seach_string: "efs"

These will be used throughout the playbook when we query the AWS API for information on our
security groups.

The final block

As per Chapter 10, Building Out a Cloud Network, this contains the following:

region: "{{ app.region }}"

That concludes our whistle-stop tour of the group_vars/common.yml file; as you can see,
structure- and content-wise, we are following the same patterns as the last few chapters, where we
group variables into logical blocks and trying to reuse references as much as possible throughout so
that we don’t have to repeat information repeatedly.

Highly Available Cloud Deployments228

The Playbook roles

Now that we have covered the variables, we can work through the roles in the order they appear in
the site.yml file.

The VPC, subnets, gateway, and security groups roles

There are no changes to these roles from Chapter 10, Building Out a Cloud Network; they are just dropped
in place and work as expected. The remaining roles in this section of the Playbook will reference the
output of these roles when referring to subnets, security groups, and the VPC.

The Application Elastic Load Balancer (ELB) role

In this role, we will deploy two resources, the first of which is a target group. This will be used when
we launch our auto-scaling virtual machine instances – we attach our instances to the target group.
Then, the target group is attached to the Application Elastic Load Balancer, which we will also launch
in this role.

The task itself is pretty static, as you can see from the code for the following task:

- name: "Provision the target group"
 community.aws.elb_target_group:
 name: "{{ elb_target_group_name }}"
 region: "{{ region }}"
 state: "{{ state }}"
 protocol: "http"
 port: "80"
 deregistration_delay_timeout: "15"
 vpc_id: "{{ vpc_output.vpc.id }}"
 modify_targets: "false"
 tags:
 "Name": "{{ elb_target_group_name }}"
 "projectName": "{{ app.name }}"
 "environment": "{{ app.env }}"
 "deployedBy": "{{ playbook_dict.deployedBy }}"
 "description": "{{ playbook_dict.ansible_warning }}"
 "role": "target-group"
 register: elb_target_group_output

We are just referencing variables, with the only dynamic content being the ID of the VPC, which is
referenced from the vpc_output variable we registered when launching the VPC in the VPC role.

The Playbook 229

As we are registering some output in this role, we will continue by adding a debug task straight after;
in this case, the task looks like the following:

- name: "Debug: ELB Target Group Output"
 ansible.builtin.debug:
 var: "elb_target_group_output"
 when: debug_output

As we have already covered in Chapter 10, Building Out a Cloud Network, we will not be repeating
these tasks in our overview of the Playbook unless we are doing something different – so, from now
on, if we are registering an output, please assume that a debug task immediately follows.

There is one more bit of information we need before we create the ELB, and that’s the ID of the
security group.

To get this, we can loop through the security_groups_with_rules_output variable
and use set_fact to set the group_id when the group_name contains the contents of the
elb_seach_string variable:

- name: Extract ELB Group ID
 ansible.builtin.set_fact:
 elb_group_id: "{{ item.group_id }}"
 loop: "{{ security_groups_with_rules_output.results }}"
 when: item.group_name is search(elb_seach_string)

Whenever we need the ID of a security group, we will use this same pattern but update the name of
the fact that is being set and the corresponding search steering variable.

The following task provisions the Application Elastic Load Balancer, which will be used to distribute
HTTP requests across our auto-scaling managed virtual machine instances to serve our WordPress site:

- name: "Provision an application elastic load balancer"
 amazon.aws.elb_application_lb:
 region: "{{ region }}"
 name: "{{ elb_name }}"
 state: "{{ state }}"
 security_groups: "{{ elb_group_id }}"
 subnets: "{{ subnet_public_ids }}"
 listeners:
 - Protocol: "HTTP"
 Port: "80"
 DefaultActions:
 - Type: "forward"
 TargetGroupArn: "{{ elb_target_group_output.target_group_
arn }}"
 tags:

Highly Available Cloud Deployments230

 "Name": "{{ elb_name }}"
 "projectName": "{{ app.name }}"
 "environment": "{{ app.env }}"
 "deployedBy": "{{ playbook_dict.deployedBy }}"
 "description": "{{ playbook_dict.ansible_warning }}"
 "role": "load-balancer"
 register: loadbalancer_output

As you can see, we are attaching the Application Elastic Load Balancer to the subnets defined listed
in the subnet_public_ids, and we are attaching the security group with the ID defined in the
elb_group_id fact that registered in the previous task.

We are then configuring a listener on port 80 to accept HTTP traffic and forward it to the Target
Group we launched at the start of the role – which concludes the Application Elastic Load balancer role.

The Elastic File System (EFS) role

The role starts with the task which sets the efs_group_id using the efs_seach_string
variable. Once we know the ID of the security group we are applying to the EFS service, we can move
on to the next task.

This task generates a file using a template and places it in the group_vars folder:

- name: "Generate the efs targets vars file"
 ansible.builtin.template:
 src: "targets.j2"
 dest: "group_vars/generated_efs_targets.yml"
 mode: "0644"

The template file used to populate the file at group_vars/generated_efs_targets.yml
looks like the following:

efs_targets:
{% for item in subnet_storage_ids %}
 - subnet_id: "{{ item }}"
 security_groups: ["{{ efs_group_id }}"]
{% endfor %}

Here, we are using a Jinja2 for loop to loop through the contents of subnet_storage_ids,
which will create a file that looks something like the following:

efs_targets:
 - subnet_id: "subnet01_id"
 security_groups: ["efs_group_id"]
 - subnet_id: "subnet02_id"
 security_groups: ["efs_group_id"]

The Playbook 231

 - subnet_id: "subnet03_id"
 security_groups: ["efs_group_id"]

This means that when we create the EFS file system, it will be available across all the availability zones
in our chosen region.

Well, it will be once we load in the contents of the file we have just loaded, which we do in the next
task, as you can see here:

- name: "Include the efs targets vars file"
 ansible.builtin.include_vars: "group_vars/generated_efs_targets.yml"

We now have everything in place to create the EFS file system, which is done using this task:

- name: "Create the EFS File System"
 community.aws.efs:
 name: "{{ efs_name }}"
 region: "{{ region }}"
 state: "{{ state }}"
 tags:
 "Name": "{{ efs_name }}"
 "projectName": "{{ app.name }}"
 "environment": "{{ app.env }}"
 "deployedBy": "{{ playbook_dict.deployedBy }}"
 "description": "{{ playbook_dict.ansible_warning }}"
 "role": "efs"
 targets: "{{ efs_targets }}"
 wait: "{{ efs.wait }}"
 wait_timeout: "{{ efs.wait_time }}"
 register: efs_output

It can take a few minutes to create the file system, and we must wait until this task has succeeded
before we continue, which is why we are using the wait flag. If we don’t wait, we increase the risk that
the file system will not be ready by the time our virtual machine is launched and unable to mount it,
which will cause the Playbook execution to fail.

Speaking of tasks that take a while, the next role deals with launching the Amazon RDS instance, which
we will use as the database for our WordPress site. This task can take up to 10 minutes to complete.

The Amazon RDS role

There are two main parts to the role; the first does a similar task to the one we had to do in the previous
role when we created the targets for the EFS to be attached to.

The RDS service differs in that rather than passing in the subnets manually when we deploy the service,
we can create a group natively on the AWS side and then reference it when we launch the RDS instance.

Highly Available Cloud Deployments232

The task to create the RDS subnet group looks like the following:

- name: "Add RDS subnet group"
 amazon.aws.rds_subnet_group:
 name: "{{ rds_name }}"
 region: "{{ region }}"
 state: "{{ state }}"
 description: "{{ dict.ansible_warning }}"
 subnets: "{{ subnet_database_ids }}"
 tags:
 "Name": "{{ rds_name }}"
 "projectName": "{{ app.name }}"
 "environment": "{{ app.env }}"
 "deployedBy": "{{ playbook_dict.deployedBy }}"
 "description": "{{ playbook_dict.ansible_warning }}"
 "role": "rds"
 register: rds_subnet_group_output

Once we have created the subnet group, we need to find the security group ID using the rds_seach_
string variable and set a fact called rds_group_id.

Now we have all the information we need to launch the RDS instance, the task for which looks like
the following:

- name: "Create the RDS instance"
 amazon.aws.rds_instance:
 id: "{{ rds_name }}"
 region: "{{ region }}"
 state: "{{ state }}"
 db_instance_class: "{{ rds.instance_type }}"
 engine: "{{ rds.engine }}"
 engine_version: "{{ rds.engine_version }}"
 allocated_storage: "{{ rds.allocated_storage }}"
 username: "{{ rds.db_username }}"
 password: "{{ rds.db_password }}"
 db_name: "{{ rds.db_name }}"
 db_subnet_group_name: "{{ rds_subnet_group_output.subnet_group.
name }}"
 vpc_security_group_ids: ["{{ rds_group_id }}"]
 tags:
 "Name": "{{ rds_name }}"
 "projectName": "{{ app.name }}"
 "environment": "{{ app.env }}"
 "deployedBy": "{{ playbook_dict.deployedBy }}"
 "description": "{{ playbook_dict.ansible_warning }}"

The Playbook 233

 "role": "rds"
 register: rds_instance_output

As mentioned at the end of the previous task, this can take quite a while to deploy, typically just over
10 minutes, so when we run the Playbook, this task will appear to have stalled.

So please do not worry – it is busy working away in the background.

Once this role has finished running, we will have all the core AWS resources we need to launch an
EC2 instance, perform the software configuration, and install WordPress.

The temporary EC2 instance role

Before we work through the tasks that launch the temporary instance, let’s go into a little more detail
on why we need a temporary EC2 instance in the first place.

As we mentioned in the introduction, this instance will be running Ubuntu, and we will be targeting
it with slightly modified copies of the stack_install, stack_config, and wordpress
roles that we first ran locally in Chapter 5, Deploying WordPress, and against a single cloud instance
in Chapter 9, Moving to the Cloud.

One of the modifications we will be making to the roles is installing the software needed to mount
our EFS, which we will then use to store the WordPress code and supporting files for our WordPress
installation, meaning that we have everything we need file-wise for WordPress on a shared file system
we can then mount on multiple virtual machine instances.

The second change is that rather than installing a database server on our local instance, we will be
using the Amazon RDS database service for WordPress, meaning that we can have multiple instances
of WordPress, all being able to connect to a single remote database.

Great, you may be thinking to yourself, but that doesn’t explain why this is a temporary instance.

Well, once everything has been installed, mounted, configured, and WordPress bootstrapped, we will
be making our own Amazon Machine Image (AMI) and terminating the temporary EC2 instance.
Once it’s been terminated, we will take the AMI and configure our Auto Scaling Group to use the newly
created image, which will either trigger the deployment of new hosts if it is our first time running the
Playbook or it will launch more instances and terminate the old ones if we have already had virtual
machine instances running our WordPress installation.

When these virtual machine instances boot up using our custom AMI, they will already have NGINX
and PHP installed and configured, ready to serve WordPress, and the EFS containing our WordPress
files will be mounted, meaning that our servers will be good to go as soon as they are deployed.

All of this means our WordPress installation should be sound to scale up if we have an influx of
traffic hitting the site for whatever reason, and all instances of our virtual machines will be running
a known good configuration; in fact, it will be the same configuration as the other hosts serving our
WordPress site.

Highly Available Cloud Deployments234

Just as important, as we are not relying on anything on the local virtual machine instances filesystem,
we are just as good at automatically scaling down by terminating hosts automatically when the influx
of traffic has subsided without the risk of data loss or availability.

If this approach is planned right – in theory, we don’t even need SSH access to the hosts launched by
the Auto Scaling Group as we should never need to manage them manually, and we can treat them
as short-lived instances where we don’t have to care if they are running or terminated – just that we
have the desired of instances delivering our application.

So, now that we know why we are taking this approach, let’s return to the Playbook and look at the
tasks needed to get this temporary EC2 instance up and running to the point where we can SSH to it
and install our software and WordPress.

The first task is to get a list of all the Ubuntu AMIs using the variables we covered earlier in the chapter:

- name: "Gather information about AMIs with the specified filters"
 amazon.aws.ec2_ami_info:
 region: "{{ region }}"
 owners: "{{ ec2.ami.owners }}"
 filters:
 name: "{{ ec2.ami.filters.name }}"
 virtualization-type: "{{ ec2.ami.filters.virtualization_type }}"
 register: ubuntu_ami_info

The list of AMIs returned will contain all of the various AMI versions for our chosen Ubuntu version;
we only need to know the ID of the latest version published by Canonical (the publisher and maintainer
of Ubuntu) so we know we are using the most up-to-date image that contains the latest patches and
any bug fixes.

Luckily, each AMI returned in the list has a key called creation_date, the value of which, as you
may have guessed, is the date and time the AMI was published. This means we can run the following
task to get the ID of the latest version of the AMI:

- name: "Filter the list of AMIs to find the latest one"
 ansible.builtin.set_fact:
 ami: "{{ ubuntu_ami_info.images | sort(attribute='creation_date')
| last }}"

As you can see, this takes the content of the list, which is defined as ubuntu_ami_info.images,
sorts the list by creation_date, and then takes the ID of the last AMI in the list as, by default,
they are sorted in ascending order.

Now that we know the ID of the most up-to-date Ubuntu AMI, we can progress with more preparation
work before launching our EC2 instance.

The Playbook 235

We now need to create an SSH key pair on the AWS side. This will contain the public portion of the
SSH key we will use to access the EC2 instance when it is launched – the task to configure this looks
like the following and uses the variables we covered earlier in the chapter to get the contents of the
public portion of our SSH key:

- name: "Create a SSH Key Pair"
 amazon.aws.ec2_key:
 region: "{{ region }}"
 state: "{{ state }}"
 name: "{{ ec2.keypair.name }}"
 key_material: "{{ ec2.keypair.key_material }}"
 tags:
 "Name": "{{ ec2.keypair.name }}"
 "projectName": "{{ app.name }}"
 "environment": "{{ app.env }}"
 "deployedBy": "{{ playbook_dict.deployedBy }}"
 "description": "{{ playbook_dict.ansible_warning }}"
 "role": "ssh_keypair"
 register: keypair_output

Finally, before we launch our EC2 instance, we need the ID of the security group, which allows the
public IP address of our host running Ansible SSH access to the EC2 instance. To do this, we set a
fact called ec2_group_id using the ec2_seach_string variable to find the correct group ID.

Now, we have everything in place to launch the EC2 instance using the following task:

- name: "Create the temporary ec2 instance"
 amazon.aws.ec2_instance:
 name: "{{ ec2_tmp_name }}"
 region: "{{ region }}"
 state: "{{ state }}"
 vpc_subnet_id: "{{ subnet_compute_ids[0] }}"
 instance_type: "{{ ec2.instance_type }}"
 security_group: "{{ ec2_group_id }}"
 key_name: "{{ ec2.keypair.name }}"
 network:
 assign_public_ip: "{{ ec2.public_ip }}"
 image_id: "{{ ami.image_id }}"
 tags:
 Name: "{{ ec2_tmp_name }}"
 Description: "{{ dict.ansible_warning }}"
 Project: "{{ app.name }}"
 Environment: "{{ app.env }}"
 Deployed_by: "Ansible"

Highly Available Cloud Deployments236

 Role: "tmp"
 register: ec2_tmp_instance_output

The only thing pointed out in the preceding task is that when we add the value for the vpc_subnet_
id we can only pass in a single ID. As we don’t need this virtual machine instance to be highly
available, that is not a problem, so we are using the first ID in the list of subnet IDs by using the {{
subnet_compute_ids[0] }}.

When launching an EC2 instance in AWS, it goes through a few stages and, by default, the amazon.
aws.ec2_instance module creates the instance and doesn’t wait for the status to change from
creating to running.

Our next task polls the AWS API waiting for the status of our EC2 instance to be running:

- name: "Get information about the temporary EC2 instance to see if it
is running"
 amazon.aws.ec2_instance_info:
 region: "{{ region }}"
 filters:
 instance-id: "{{ ec2_tmp_instance_output.instances[0].instance_
id }}"
 register: ec2_tmp_instance_state
 delay: 5
 retries: 50
 until: ec2_tmp_instance_state.instances[0].state.name == "running"

As you can see, the previous task takes the ID of our newly created EC2 instance and polls the AWS
API every 5 seconds, a maximum of 50 times, until the value of ec2_tmp_instance_state.
instances[0].state.name is equal to running.

You might think to yourself that it seems a bit overkill to do that, and 99% of the time, you would
be correct – it usually takes no more than a few checks for the status to change. Still, there is the odd
occasion that AWS might be on a “go-slow,” and during testing, I have seen it take up to 15 checks, or
just over a minute, for the status to change, so we need to take this delay into account in our Playbook
as it could break the Playbook execution if we don’t.

The next task takes the details, the DNS name and IP address, of our now-running EC2 instance and
adds them to the host group called vmgroup:

- name: "Add the temporary EC2 instance to the vmgroup"
 ansible.builtin.add_host:
 name: "{{ ec2_tmp_instance_output.instances[0].public_dns_name }}"
 ansible_ssh_host: "{{ ec2_tmp_instance_output.instances[0].public_
ip_address }}"
 groups: "vmgroup"

Before we hand off to the next role, we should perform one more check.

The Playbook 237

Sometimes, the Ansible Playbook works through the tasks so quickly that it is possible that even
though our EC2 instance has a status of running, it does not mean that the host has finished booting,
and SSH is started and is accessible:

- name: "Wait for the temporary EC2 instance to be ready to accept SSH
connections"
 ansible.builtin.wait_for:
 host: "{{ ec2_tmp_instance_output.instances[0].public_ip_address
}}"
 port: "{{ ec2.ssh_port }}"
 delay: 10
 timeout: 300

Now that we have confirmation that our EC2 host is accessible to our machine running Ansible using
SSH, we can proceed to the final role in this section of the site.yml file.

The endpoints role

This role has a single task, which creates a file at generated_aws_endpoints.yml containing
the name of the AWS endpoints for the EFS, RDS, and ELB resources we have created:

- name: "Generate the aws endpoints file"
 ansible.builtin.template:
 src: "endponts.j2"
 dest: "group_vars/generated_aws_endpoints.yml"
 mode: "0644"

The endponts.j2 template file looks like the following:

aws_endpoints:
 efs: "{{ efs_output.efs.filesystem_address.split(':')[0] }}"
 rds: "{{ rds_instance_output.endpoint.address }}"
 elb: "{{ loadbalancer_output.dns_name }}"

Both the RDS and ELB endpoints are straightforward enough; for the EFS, you might notice something
at the end – what is that for?

None of the output that is registered under the efs_output.efs variable contains just the address
of the EFS endpoint. The one we are using, filesystem_address, has information on the file
system mount, which is represented by appending :/ to the end of the DNS address we need.

To get around this, we are using the split function, passing : as the delimiter and then taking the
first section, which is defined as 0, meaning that we end up with everything before the :, which is
the DNS name we are after.

Highly Available Cloud Deployments238

Now that we have a populated group_vars/generated_aws_endpoints.yml file, we can
load it into the second section of the site.yml file as a variable file, saving us from having to interact
with the AWS from our EC2 instance.

So, now that we have our EC2 instance up and running, let’s get our software stack installed, configured,
and WordPress bootstrapped.

The stack install role

The tasks in this role remain unchanged from the previous times we have executed the Playbook
because all the changes we have made are in the stack_packages variable we are passing in.

As a reminder, this role does the following:

• Updates the APT cache and ensures that the installed packages are running the latest available
versions – which shouldn’t be too many as we are using the newest AMI

• Imports the APT keys for the additional repositories we will be enabling

• Installs the packages containing details of the additional repositories and enables them

• Installs the packages listed in the system_packages, extra_packages, and stack_
packages variables – system_packages and extra_packages contain the default values
we have been using throughout, and because we are passing the updated stack_packages
variable via the group_vars/common.yml file, this overrides the default values from
previous chapters which are still defined in the roles/stack_install/defaults/
main.yml file

This leaves us with all the base software we need to install on the EC2 instance.

The stack configuration role

Unlike the previous role, there are some amendments to this role, starting with additional tasks out
of the gate.

Three tasks are added to the top of roles/stack_config/tasks/main.yml, the first of
which is a continuation of the checks we did towards the end of the roles in the last section of the
site.yml file:

- name: "Check that the EFS volume is ready"
 ansible.builtin.wait_for:
 host: "{{ aws_endpoints.efs }}"
 port: "2049"
 delay: 10
 timeout: 300

The Playbook 239

As you can see, this checks that port 2049 is accessible at the endpoint defined in aws_endpoints.
efs; the reason why this is there is that while the EFS service is ready, it may take a little while for the
DNS records for the endpoint to be updated and accessible within the VPC. As we will soon attempt
to mount the EFS filesystem, we must ensure it is accessible before proceeding.

The next task is to ensure that the RPC Bind service is up and running; we will need to mount the
EFS file system:

- name: "ensure rpcbind service is running"
 ansible.builtin.service:
 name: "rpcbind"
 state: "started"
 enabled: true

The final additional task mounts the EFS and ensures that it is added to the file system configuration
to ensure that from now on, the EFS is mounted when the EC2 instance boots:

- name: "mount the EFS volume"
 ansible.posix.mount:
 src: "{{ aws_endpoints.efs }}:/"
 path: "{{ nfs.mount_point }}"
 opts: "{{ nfs.mount_options }}"
 state: "{{ nfs.state }}"
 fstype: "{{ nfs.fstype }}"

As you will have already seen from when we covered the variables at the start of the chapter, we are
mounting the EFS at /var/www/; we are making sure to do this before the following two tasks to
ensure that our WordPress users home directory is created on the share.

These two tasks remain unchanged from the last time we installed WordPress, as does the value of
wordpress_system.home, which is /var/www/wordpress.

So, now that we have created our WordPress user and group, we can proceed with the rest of the tasks:

• Update /etc/nginx/nginx.conf with some sensible defaults

• Create the configuration for our default host at /etc/nginx/conf.d/default.conf

• Create the /etc/nginx/global directory and copy the restrictions.conf and
wordpress_shared.conf files there

The next task is more of a quality-of-life improvement to do with the way our Playbook deals with
PHP, as this Playbook is designed to keep our WordPress installation up to date by taking the base
Ubuntu image and bootstrapping from scratch each time rather than managing the configuration
in place. It is possible that the version of PHP could change at some point during the life of our
WordPress installation.

Highly Available Cloud Deployments240

So far, whenever the stack_config role has been executed, it has been using the following variables:

php_fpm_path: "/etc/php/8.1/fpm/pool.d/www.conf"
php_ini_path: "/etc/php/8.1/fpm/php.ini"
php_service_name: "php8.1-fpm"

As you can see, 8.1 is a hardcoded value. While we can overwrite these variables at the variable level
elsewhere in our configuration, it would be better to work out which version of PHP is installed at
runtime and reference that.

To do this, we can update these values as follows:

php_fpm_path: "/etc/php/{{ php_version }}/fpm/pool.d/www.conf"
php_ini_path: "/etc/php/{{ php_version }}/fpm/php.ini"
php_service_name: "php{{ php_version }}-fpm"

This means we now must find a way to populate the php_version variable with the relevant
version of PHP.

To do this, we can run the php -v command, which returns a lot of information on the version of
PHP installed. We then use the head and a few cut commands on the Linux command line using
the ansible.builtin.shell and not a built-in Ansible function:

- name: "Get the PHP version"
 ansible.builtin.shell:
 cmd: "php -v | head -n 1 | cut -d ' ' -f 2 | cut -c 1-3"
 register: php_version_output

Here is a detailed breakdown of the command we are getting Ansible to run:

• php -v: This command, when run, outputs the version information of the PHP installed
on the host the command is being executed on; this output is typically a multi-line text that
includes the PHP version along with additional information on how the version of the PHP
was compiled.

• |: This symbol is known as a pipe. It takes the command output on its left (in this case, php -v)
and uses it as the input for the command on its right. It’s a way of passing data between programs.

• head -n 1: This command processes the input received from the previous command; the
head command outputs the first part of the files or data it receives. -n 1 is an option that
tells head to output only the first line. So, in our case, head -n 1 takes the multiple lines
of output from php -v and returns just the very first line.

• |: Another pipe, which again passes the command output on its left, head -n 1, to the
command on its right.

The Playbook 241

• cut -d ' ' -f 2: This command is used for cutting out sections of each input line. -d
' ' is an option where -d stands for the delimiter, and ' ' (a space) is the delimiter being
used. This tells cut to divide each line into sections based on spaces. -f 2 means field 2. This
option tells the cut command to select the second field of the line in the standard format of
the PHP version output; this field should be the version number.

• |: Again, we have another pipe, passing the output, now just the version number, to the
following command.

• cut -c 1-3: This further processes the version number. -c 1-3 tells cut to return only
the characters in positions 1 through 3 of the string it receives. For a typical PHP version such
as 8.2.1, this would result in 8.2, which is precisely what we need to proceed with the rest
of our tasks.

We can then take the output and register it as php_version_output, and set the php_version
variable as a fact:

- name: "Set the PHP version"
 ansible.builtin.set_fact:
 php_version: "{{ php_version_output.stdout }}"

Now that we have the PHP version, we can proceed with the remainder of the PHP tasks, which copy
the www.conf file to /etc/php/{{ php_version }}/fpm/pool.d/www.conf and also
update the PHP.ini file at /etc/php/{{ php_version }}/fpm/php.ini.

With those files in place, we start the PHP-FPM and NGINX services, ensuring that they are set to
start on boot.

The final task in the role is to create the ~/.my.cnf file and populate it with the information of our
Amazon RDS instance. All of the other MariaDB tasks, which are there to start and configure our
local MariaDB server, are commented out as we no longer install a local database server, so we don’t
need to run the tasks to configure it.

The WordPress role

There are just two tasks commented out in this role. The tasks that create the database and the database
user are not needed because when the Amazon RDS instance started, the database and user were made
for us, meaning these two tasks are redundant.

All other tasks remain; for more details, see Chapter 5, Deploying WordPress.

The EC2 AMI role

Now that our software stack is installed and configured and WordPress is sorted, it is time to create
the AMI from our temporary instance.

Highly Available Cloud Deployments242

The first thing we need to do is get the details on our temporary EC2 instance; as our host group
contains the DNS name of the instance, we can use this:

- name: "Find out some facts about the instance we have been using"
 amazon.aws.ec2_instance_info:
 region: "{{ region }}"
 filters:
 dns-name: "{{ groups['vmgroup'] }}"
 register: our_instance

Now that we have the information on the instance we would like to create the AMI from registered
as our_instance, we can proceed with the AMI creation:

- name: "Create the AMI"
 amazon.aws.ec2_ami:
 region: "{{ region }}"
 state: "{{ state }}"
 instance_id: "{{ our_instance.instances[0].instance_id }}"
 wait: "yes"
 name: "{{ ami_name }}-{{ ansible_date_time.date }}_{{ ansible_
date_time.hour }}{{ ansible_date_time.minute }}"
 tags:
 "Name": "{{ ami_name }}-{{ ansible_date_time.date }}_{{ ansible_
date_time.hour }}{{ ansible_date_time.minute }}"
 "buildDate": "{{ ansible_date_time.date }} {{ ansible_date_time.
time }}"
 "projectName": "{{ app.name }}"
 "environment": "{{ app.env }}"
 "deployedBy": "{{ playbook_dict.deployedBy }}"
 "description": "{{ playbook_dict.ansible_warning }}"
 "role": "{{ playbook_dict.ami }}"
 register: ami_output

There are just a few things to point out here. As you can see, we are using ansible_date_time
to generate the date and get the current time as an hour and minute. We are using this both to
give a unique name for the AMI and add a tag called buildDate.

The reason why we are using both the date and time is that it could be possible that we will need to
create multiple AMIs on a single day, so it is important that we can easily identify them by name.

Once the AMI is created, we do not need the temporary instance, so we can terminate it:

- name: "Remove any temporary instances which are running"
 amazon.aws.ec2_instance:
 region: "{{ region }}"
 state: "absent"

The Playbook 243

 name: "{{ ec2_tmp_name }}"
 filters:
 instance-state-name: "running"
 "tag:Name": "{{ ec2_tmp_name }}"
 "tag:Role": "tmp"
 "tag:Project": "{{ app.name }}"

Once the EC2 instance has been terminated, there is one more task in the role:

- name: "Wait for 2 minutes before continuing"
 ansible.builtin.pause:
 minutes: 2

This does exactly what it says: it pauses the Playbook execution for 2 minutes.

I have included this because there was the odd occasion where the AMI was created and shown as
available. Still, for some reason, it takes a short while for it to appear in the results when we query the
Amazon API to find our AMIs, so rather than introduce a potential error when the next role starts,
I have found it best to wait a minute or two.

The auto-scaling role

We have arrived at the final role of the Playbook; in this role, we will create all the resources needed
to deploy EC2 instances using our newly created AMI and register them with the ELB to access our
WordPress site.

The first thing we need to do is grab a list of all our AMIs from the API:

- name: "Search for all of our AMIs"
 amazon.aws.ec2_ami_info:
 region: "{{ region }}"
 filters:
 name: "{{ ami_name }}-*"
 register: ami_find

Now that we have a list of AMIs, we need to filter out the most recent one. To do this, we use the same
logic that we used when launching the temporary EC2 instance:

- name: "Find the last one we built"
 ansible.builtin.set_fact:
 ami_sort_filter: "{{ ami_find.images | sort(attribute='creation_
date') | last }}"

Highly Available Cloud Deployments244

Now that we have filtered our list of AMIs down to the latest one, we need to set two facts, one for the
name of the AMI and the other containing the ID of the AMI:

- name: "Grab AMI ID and name of the most recent result"
 ansible.builtin.set_fact:
 our_ami_id: "{{ ami_sort_filter.image_id }}"
 our_ami_name: "{{ ami_sort_filter.name }}"

The final bit of information we need before we start creating/updating resources is the ID of the
security group we are using for the EC2 instances.

As before, we use the ec2_seach_string variable to find the correct group ID and set a fact
called ec2_group_id.

Next up, we need to create or update a launch template if one already exists.

A launch template contains the basic configuration for the instances we will be launching in the
auto-scaling group:

- name: "Create the launch template"
 community.aws.ec2_launch_template:
 region: "{{ region }}"
 state: "{{ state }}"
 name: "{{ launch_template_name }}"
 version_description: "{{ our_ami_name }}"
 image_id: "{{ our_ami_id }}"
 security_group_ids: ["{{ ec2_group_id.security_groups[0].group_id
}}"]
 instance_type: "{{ ec2.instance_type }}"
 disable_api_termination: "{{ ec2.asg.disable_api_termination }}"
 tags:
 "Name": "{{ ec2_name }}"
 "projectName": "{{ app.name }}"
 "environment": "{{ app.env }}"
 "deployedBy": "{{ playbook_dict.deployedBy }}"
 "description": "{{ playbook_dict.ansible_warning }}"
 "role": "launchTemplate"

With this task, we create the launch template and then publish a version called after the name of our
AMI so that we can quickly identify it; we then attach the corresponding AMI ID and security group
ID and set the spec of the instances we want to launch.

With the launch template in place, we need to gather a few more bits of information from the AWS
API before creating the auto-scaling group.

The Playbook 245

First, we need the ID of the target group that we created in the ELB role:

- name: "Find out the target group ARN"
 community.aws.elb_target_group_info:
 region: "{{ region }}"
 names:
 - "{{ elb_target_group_name }}"
 register: elb_target_group_output

We then need the IDs of the subnets where we are going to be deploying the EC2 instances launched
as part of auto-scaling group, the following task gathers information on the subnets:

- name: "Get information on the ec2 subnets"
 amazon.aws.ec2_vpc_subnet_info:
 region: "{{ region }}"
 filters:
 tag:role: "*{{ subnet_role_compute }}*"
 register: ec2_subnet_output

Now that we have the information on the subnets, we need to extract just the IDs of each of the
subnets and create a list:

- name: "Create a list of subnet IDs"
 ansible.builtin.set_fact:
 subnet_ec2_ids: "{{ subnet_ec2_ids | default([]) + [item.subnet_
id] }}"
 loop: "{{ ec2_subnet_output.subnets }}"

This is the final bit of information we need, and we can now proceed with creating or updating the
auto-scaling group:

- name: "Create/update the auto-scaling group using the launch
template we just created"
 amazon.aws.autoscaling_group:
 region: "{{ region }}"
 state: "{{ state }}"
 name: "{{ asg_name }}"
 target_group_arns: ["{{ elb_target_group_output.target_groups[0].
target_group_arn }}"]
 launch_template:
 launch_template_name: "{{ launch_template_name }}"
 min_size: "{{ ec2.asg.min_size }}"
 max_size: "{{ ec2.asg.max_size }}"
 desired_capacity: "{{ ec2.asg.desired_capacity }}"
 health_check_period: "{{ ec2.asg.health_check_period }}"
 health_check_type: "{{ ec2.asg.health_check_type }}"

Highly Available Cloud Deployments246

 replace_all_instances: "{{ ec2.asg.replace_all_instances }}"
 replace_batch_size: "{{ ec2.asg.replace_batch_size }}"
 vpc_zone_identifier: "{{ subnet_ec2_ids }}"
 wait_for_instances: "{{ ec2.asg.wait_for_instances }}"
 wait_timeout: "{{ ec2.asg.wait_timeout }}"
 tags:
 - key: "Name"
 value: "{{ ec2_name }}"
 propagate_at_launch: true
 - key: "Project"
 value: "{{ app.name }}"
 propagate_at_launch: true
 - key: "Environment"
 value: "{{ app.env }}"
 propagate_at_launch: true
 - key: "Deployed_by"
 value: "Ansible"
 propagate_at_launch: true
 register: ec2_asg_output

There is quite a lot happening in this, the final resource we will be launching, so let’s go into more detail.

First, we have the basic configuration standard across most of the AWS-related modules we have called
throughout this Playbook; here, we are setting the name, region, and state of the resource, which will
be present for this playbook.

Next up, we must provide the Target Group Amazon Resource Names (ARNs). The target_
group_arns key specifies the ARNs of the target groups for the load balancer, which we set to the
first target group ARN from elb_target_group_output and then the launch_template
key references the launch template by its name, set to the value of launch_template_name.

Now we have the size and capacity settings; the min_size, max_size, and desired_capacity
keys are set using ec2.asg.min_size, ec2.asg.max_size, and ec2.asg.desired_
capacity variables, which define the auto-scaling group’s minimum, maximum, and desired
number of instances.

We then have the health check configuration, setting the health_check_period and health_
check_type keys to control how the health of the instances in the auto scaling group (ASG)
is checked.

Now we have the Instance Replacement Settings. The replace_all_instances and replace_
batch_size keys instruct whether all instances should be replaced and provide the batch size for
replacing instances, respectively.

Running the Playbook 247

Then, we have the Network Configuration, setting vpc_zone_identifier to use the list of subnet
IDs stored in subnet_ec2_ids to distribute the instances in the ASG across those subnets and
availability zones.

Next up are the Wait Settings, which control whether the task should wait for the instances to have a
status of running and the maximum time to wait for that condition to be met.

Finally, you will have noticed that we are tagging in a pretty different way than we have been doing
throughout the rest of the Playbook; the task defines several tags (Name, Project, Environment,
and Deployed_by) with respective values, all marked to propagate at launch, which means that the
EC2 instances launched by the auto-scaling group will each inherit these tags when they are launched.

This concludes our walk-through of the Playbook. As you will have seen, we extended our original AWS
networking Playbook from Chapter 10, Building Out a Cloud Network, to encompass more services
as well as integrating our WordPress roles from the Playbook we covered in Chapter 5, Deploying
WordPress – all that is left now is run the playbook.

Running the Playbook
Now that we have all the roles needed to deploy our resources into AWS, we can run the playbook. To
start with, we need to let Ansible know our access key and secret by running the following commands
with your own credentials to set the environment variables:

$ export AWS_ACCESS_KEY=AKIAI5KECPOTNTTVM3EDA
$ export AWS_SECRET_KEY=Y4B7FFiSWl0Am3VIFc07lgnc/TAtK5+RpxzIGTr

With environment variables set, you kick off the Ansible run by using the following command:

$ ansible-playbook -i hosts site.yml

Unlike previous chapters, where we just looked at the end of the playbook run, here we will look at
some highlights of what happens when we deploy our resources.

Playbook run highlights

This is not the complete playbook output, and when running the playbook, I have not enabled debug,
so all those tasks will be skipped.

We start with the VPC:

PLAY [Deploy and configure the AWS Environment] ***********
TASK [Gathering Facts] ************************************
ok: [localhost]
TASK [roles/vpc : Create VPC] *****************************
changed: [localhost]

Highly Available Cloud Deployments248

We now have somewhere to put the subnets once we have gathered some information on the availability
zones in our chosen region:

TASK [roles/subnets : Get some information on the available zones]

ok: [localhost]

Once we have that information, it will loop through and include the create_subnet.yml tasks:

TASK [roles/subnets : Create all subnets] *****************
included: create_subnet.yml for localhost => (item={'name': 'ec2',
'role': 'compute'})
included: create_subnet.yml for localhost => (item={'name': 'rds',
'role': 'database'})
included: create_subnet.yml for localhost => (item={'name': 'efs',
'role': 'storage'})
included: create_subnet.yml for localhost => (item={'name': 'dmz',
'role': 'public'})

We then get the results of each of the four included task runs, the first of which looks like the following:

TASK [roles/subnets : Create subnet in the availability zone] ********

changed: [localhost] => (item={'state': 'available', 'opt_in_status':
'opt-in-not-required', 'messages': [], 'region_name': 'eu-west-1',
'zone_name': 'eu-west-1a', 'zone_id': 'euw1-az1', 'group_name':
'eu-west-1', 'network_border_group': 'eu-west-1', 'zone_type':
'availability-zone'})
changed: [localhost] => (item={'state': 'available', 'opt_in_status':
'opt-in-not-required', 'messages': [], 'region_name': 'eu-west-1',
'zone_name': 'eu-west-1b', 'zone_id': 'euw1-az2', 'group_name':
'eu-west-1', 'network_border_group': 'eu-west-1', 'zone_type':
'availability-zone'})
changed: [localhost] => (item={'state': 'available', 'opt_in_status':
'opt-in-not-required', 'messages': [], 'region_name': 'eu-west-1',
'zone_name': 'eu-west-1c', 'zone_id': 'euw1-az3', 'group_name':
'eu-west-1', 'network_border_group': 'eu-west-1', 'zone_type':
'availability-zone'})

As you can see, a subnet is created for each of the zones in the eu-west-1 region – this is then
repeated three more times. Once the subnets have all been added, we grab more information on what
has been created.

Next, the Internet Gateway role is run:

TASK [roles/gateway : Create an Internet Gateway] *********
changed: [localhost]
TASK [roles/gateway : Create a route table so the internet gateway can
be used by the public subnets] ****************
changed: [localhost]

Running the Playbook 249

As you may have remembered, there isn’t much happening in that role, unlike the next one, which
adds the network security groups, where we start by getting your current public IP address:

TASK [roles/securitygroups : Find out your current public IP address
using https://ipify.org/] **********************
ok: [localhost]
TASK [roles/securitygroups : Set your public ip as a fact]*
ok: [localhost]

As you may recall, we create the two groups in two parts – first, we create the base groups:

TASK [roles/securitygroups : Create the base security groups] ********

changed: [localhost] => (item={'name': 'learnansible-elb-security-
group', 'description': 'opens port 80 and 443 to the world', 'id_var_
name': 'elb_group_id', 'rules': [{'proto': 'tcp', 'from_port': '80',
'to_port': '80', 'cidr_ip': '0.0.0.0/0', 'rule_desc': 'allow all on
port 80'}, {'proto': 'tcp', 'from_port': '443', 'to_port': '443',
'cidr_ip': '0.0.0.0/0', 'rule_desc': 'allow all on port 443'}]})
changed: [localhost] => (item={'name': 'learnansible-ec2-security-
group', 'description': 'opens port 22 to a trusted IP and port
80 to the elb group', 'id_var_name': 'ec2_group_id', 'rules':
[{'proto': 'tcp', 'from_port': '22', 'to_port': '22', 'cidr_ip':
'86.177.22.88/32', 'rule_desc': 'allow 86.177.22.88/32 access to port
22'}, {'proto': 'tcp', 'from_port': '80', 'to_port': '80', 'group_id':
'', 'rule_desc': 'allow access to port 80 from ELB'}]})
changed: [localhost] => (item={'name': 'learnansible-rds-security-
group', 'description': 'opens port 3306 to the ec2 instances', 'id_
var_name': 'rds_group_id', 'rules': [{'proto': 'tcp', 'from_port':
'3306', 'to_port': '3306', 'group_id': '', 'rule_desc': 'allow access
to port 3306'}]})
changed: [localhost] => (item={'name': 'learnansible-efs-security-
group', 'description': 'opens port 2049 to the ec2 instances', 'id_
var_name': 'efs_group_id', 'rules': [{'proto': 'tcp', 'from_port':
'2049', 'to_port': '2049', 'group_id': '', 'rule_desc': 'allow access
to port 2049'}]})

Then we get information on the bases we have just launched and set them as facts:

TASK [roles/securitygroups : Set the fact for the security group ids]
**
ok: [localhost] => (item={'name': 'learnansible-elb-security-group',
'description': 'opens port 80 and 443 to the world', 'id_var_name':
'elb_group_id', 'rules': [{'proto': 'tcp', 'from_port': '80', 'to_
port': '80', 'cidr_ip': '0.0.0.0/0', 'rule_desc': 'allow all on port
80'}, {'proto': 'tcp', 'from_port': '443', 'to_port': '443', 'cidr_
ip': '0.0.0.0/0', 'rule_desc': 'allow all on port 443'}]})
ok: [localhost] => (item={'name': 'learnansible-ec2-security-group',
'description': 'opens port 22 to a trusted IP and port 80 to the elb
group', 'id_var_name': 'ec2_group_id', 'rules': [{'proto': 'tcp',
'from_port': '22', 'to_port': '22', 'cidr_ip': '86.177.22.88/32',
'rule_desc': 'allow 86.177.22.88/32 access to port 22'}, {'proto':

Highly Available Cloud Deployments250

'tcp', 'from_port': '80', 'to_port': '80', 'group_id': '', 'rule_
desc': 'allow access to port 80 from ELB'}]})
ok: [localhost] => (item={'name': 'learnansible-rds-security-group',
'description': 'opens port 3306 to the ec2 instances', 'id_var_name':
'rds_group_id', 'rules': [{'proto': 'tcp', 'from_port': '3306', 'to_
port': '3306', 'group_id': '', 'rule_desc': 'allow access to port
3306'}]})
ok: [localhost] => (item={'name': 'learnansible-efs-security-group',
'description': 'opens port 2049 to the ec2 instances', 'id_var_name':
'efs_group_id', 'rules': [{'proto': 'tcp', 'from_port': '2049', 'to_
port': '2049', 'group_id': '', 'rule_desc': 'allow access to port
2049'}]})

Lastly, we then add the rules; you will notice from the output that we are passing in the IDs of the
groups we have created so that we can use them as part of the rules:

TASK [roles/securitygroups : Provision security group rules] *********

changed: [localhost] => (item={'name': 'learnansible-elb-security-
group', 'description': 'opens port 80 and 443 to the world', 'id_var_
name': 'elb_group_id', 'rules': [{'proto': 'tcp', 'from_port': '80',
'to_port': '80', 'cidr_ip': '0.0.0.0/0', 'rule_desc': 'allow all on
port 80'}, {'proto': 'tcp', 'from_port': '443', 'to_port': '443',
'cidr_ip': '0.0.0.0/0', 'rule_desc': 'allow all on port 443'}]})
changed: [localhost] => (item={'name': 'learnansible-ec2-security-
group', 'description': 'opens port 22 to a trusted IP and port
80 to the elb group', 'id_var_name': 'ec2_group_id', 'rules':
[{'proto': 'tcp', 'from_port': '22', 'to_port': '22', 'cidr_ip':
'86.177.22.88/32', 'rule_desc': 'allow 86.177.22.88/32 access to port
22'}, {'proto': 'tcp', 'from_port': '80', 'to_port': '80', 'group_id':
'sg-04f31e782e30e1f0a', 'rule_desc': 'allow access to port 80 from
ELB'}]})
changed: [localhost] => (item={'name': 'learnansible-rds-security-
group', 'description': 'opens port 3306 to the ec2 instances', 'id_
var_name': 'rds_group_id', 'rules': [{'proto': 'tcp', 'from_port':
'3306', 'to_port': '3306', 'group_id': 'sg-05bffd3eb96602519', 'rule_
desc': 'allow sg-05bffd3eb96602519 access to port 3306'}]})
changed: [localhost] => (item={'name': 'learnansible-efs-security-
group', 'description': 'opens port 2049 to the ec2 instances', 'id_
var_name': 'efs_group_id', 'rules': [{'proto': 'tcp', 'from_port':
'2049', 'to_port': '2049', 'group_id': 'sg-05bffd3eb96602519', 'rule_
desc': 'allow sg-05bffd3eb96602519 access to port 2049'}]})

Now, with the rules configured, we can start deploying some resources that use them, starting with
the Target Group and ELB:

TASK [roles/elb : Provision the target group] *************
changed: [localhost]
TASK [roles/elb : Provision an application elastic load balancer] ****

changed: [localhost]

Running the Playbook 251

Then EFS:

TASK [roles/efs : Generate the efs targets vars file] *****
changed: [localhost]
TASK [roles/efs : Include the efs targets vars file] ******
ok: [localhost]
TASK [roles/efs : Create the EFS File System] *************
changed: [localhost]

Now RDS:

TASK [roles/rds : Add RDS subnet group] *******************
changed: [localhost]
TASK [roles/rds : Create the RDS instance] ****************
changed: [localhost]

Now it is time to create the temporary EC2 instance. First, we find the AMI to use:

TASK [roles/ec2tmp : Gather information about AMIs with the specified
filters] **
ok: [localhost]
TASK [roles/ec2tmp : filter the list of AMIs to find the latest one]

ok: [localhost]

Then, we create the SSH key pair:

TASK [roles/ec2tmp : Create an SSH Key Pair] **************
changed: [localhost]

Then, we create the EC2 instance itself:

TASK [roles/ec2tmp : Create the temporary ec2 instance] ***
changed: [localhost]

With the instance configured, we need to wait for it to have a status of running:

TASK [roles/ec2tmp : Get information about the temporary EC2 instance
to see if it is running] ***
FAILED - RETRYING: [localhost]: Get information about the temporary
EC2 instance to see if it is running (50 retries left).
. . . .
FAILED - RETRYING: [localhost]: Get information about the temporary
EC2 instance to see if it is running (46 retries left).
ok: [localhost]

Highly Available Cloud Deployments252

Now that the instance is running, we add the newly launching EC2 instance to our host group:

TASK [roles/ec2tmp : Add the temporary EC2 instance to the vmgroup] **
**
changed: [localhost]
TASK [roles/ec2tmp : Wait for the temporary EC2 instance to be ready
to accept SSH connections] ***********************
ok: [localhost]

Before we move on to connecting to the EC2 host to install and configure the software stack and
WordPress, we generate the endpoints variables file:

TASK [roles/endpoints : Generate the aws endpoints file] **
changed: [localhost]

That concludes the first section of the site.yml file, and we can now SSH into the temporary EC2
host and install everything:

PLAY [Install and configure Wordpress] ********************
TASK [Gathering Facts] ************************************
ok: [ec2-18-203-221-2.eu-west-1.compute.amazonaws.com]

We then progress with the installation, which, as we have already discussed, is pretty much the same
set of tasks that we covered in Chapter 5, Deploying WordPress, and Chapter 9, Moving to the Cloud –
except for these tasks, which mount the EFS file system:

TASK [roles/stack_config : Check that the EFS volume is ready] *******

ok: [ec2-18-203-221-2.eu-west-1.compute.amazonaws.com]
TASK [roles/stack_config : ensure rpcbind service is running] ********
**
ok: [ec2-18-203-221-2.eu-west-1.compute.amazonaws.com]
TASK [roles/stack_config : mount the EFS volume] **********
changed: [ec2-18-203-221-2.eu-west-1.compute.amazonaws.com]

These tasks get the PHP version and set it as a fact:

TASK [roles/stack_config : Get the PHP version] ***********
changed: [ec2-18-203-221-2.eu-west-1.compute.amazonaws.com]
TASK [roles/stack_config : Set the PHP version] ***********
ok: [ec2-18-203-221-2.eu-west-1.compute.amazonaws.com]

Once that is complete, NGINX and PHP-FPM are restarted:

RUNNING HANDLER [roles/stack_config : restart nginx] ******
changed: [ec2-18-203-221-2.eu-west-1.compute.amazonaws.com]

Running the Playbook 253

RUNNING HANDLER [roles/stack_config : restart php-fpm] ****
changed: [ec2-18-203-221-2.eu-west-1.compute.amazonaws.com]

This concludes the tasks that bootstrap our temporary EC2 instance. We can now move back to our
local machine and run the final section of the sites.yml file.

First, we create the AMI and terminate the temporary EC2 instance:

TASK [roles/ec2ami : find out some facts about the instance we have
been using] ***************************************
ok: [localhost]
TASK [roles/ec2ami : create the AMI] **********************
changed: [localhost]
TASK [roles/ec2ami : remove any temporary instances which are running]
**
changed: [localhost]

Then, we wait for two minutes:

TASK [roles/ec2ami : wait for 2 minutes before continuing]
Pausing for 120 seconds
(ctrl+C then 'C' = continue early, ctrl+C then 'A' = abort)
ok: [localhost]

Now, we grab the details of the AMI we just created:

TASK [roles/autoscaling : Search for all of our AMIs] *****
ok: [localhost]
TASK [roles/autoscaling : Find the last one we built] *****
ok: [localhost]
TASK [roles/autoscaling : Grab AMI ID and name of the most recent
result] **
ok: [localhost]

Once we have those details, we create (or if we have already run the playbook, update) the Launch Template:

TASK [roles/autoscaling : Create the launch template] *****
changed: [localhost]

Now, we gather the information needed for us to create/update the Auto Scaling Group:

TASK [roles/autoscaling : find out the target group ARN] **
ok: [localhost]
TASK [roles/autoscaling : get information on the ec2 subnets] ********
**
ok: [localhost]

Highly Available Cloud Deployments254

Then we create the list of subnets the Auto Scaling Group will use:

TASK [roles/autoscaling : create a list of subnet IDs] ****
ok: [localhost] => (item={'availability_zone': 'eu-west-1c',
'availability_zone_id': 'euw1-az3', 'available_ip_address_count': 27,
'cidr_block': '10.0.0.64/27', 'default_for_az': False, 'map_public_ip_
on_launch': False, 'map_customer_owned_ip_on_launch': False, 'state':
'available', 'subnet_id': 'subnet-091ea1834c5fc8e48', 'vpc_id':
'vpc-008808ff628883751', 'owner_id': '687011238589', 'assign_ipv6_
address_on_creation': False, 'ipv6_cidr_block_association_set': [],
'tags': {'role': 'compute', 'deployedBy': 'Ansible', 'Name': 'ec2-
subnet-euw1-az3', 'environment': 'prod', 'description': 'Resource
managed by Ansible', 'projectName': 'learnansible'}, 'subnet_arn':
'arn:aws:ec2:eu-west-1:687011238589:subnet/subnet-091ea1834c5fc8e48',
'enable_dns64': False, 'ipv6_native': False, 'private_dns_name_
options_on_launch': {'hostname_type': 'ip-name', 'enable_resource_
name_dns_a_record': False, 'enable_resource_name_dns_aaaa_record':
False}, 'id': 'subnet-091ea1834c5fc8e48'})

The preceding output is repeated twice for the other two subnets we will be using; then, we finally
create/update the Auto Scaling Group:

TASK [roles/autoscaling : Create/update the auto-scaling group using
the launch template we just created] **********
changed: [localhost]

Now, we have come to the end of our Playbook run, and we get the recap:

PLAY RECAP **
ec2-18-203-221-2.eu-west-1.compute.amazonaws.com :
ok=37 changed=28 unreachable=0 failed=0 skipped=1 res-
cued=0 ignored=2
localhost :
ok=56 changed=23 unreachable=0 failed=0 skipped=30 res-
cued=0 ignored=0

When I ran the playbook, it took just over 20 minutes to complete the first time, with subsequent
runs taking around 10 minutes to finish.

So, from a single command and in 20ish minutes, we have a highly available vanilla WordPress
installation. If you find out the public URL of your Elastic Load Balancer from the AWS console or
by checking the value of the elb key in the group_vars/generated_aws_endpoints.yml
file, you should be able to see your site.

Terminating all the resources
Before we complete this chapter, we need to look at terminating the resources; to do this, you can
run the following:

$ ansible-playbook -i hosts destroy.yml

Terminating all the resources 255

This removes everything in the reverse order that we launched it, starting with the Auto Scaling Group:

PLAY [Destroy the AWS Environment created by the site.yml playbook]

TASK [Gathering Facts] ************************************
ok: [localhost]
TASK [Delete the Auto Scaling Group] **********************
changed: [localhost]
TASK [Delete the Launch Template] *************************
changed: [localhost]

As there can be more than one AMI, we gather some facts and then loop through removing everything
that is returned:

TASK [Get information about the AMIs] *********************
ok: [localhost]
TASK [Delete the AMI(s)] **********************************
changed: [localhost] => (item={'architecture': 'x86_64',
'creation_date': '2024-01-12T09:44:07.000Z', 'image_id': 'ami-
0ddfeb5a1fb64c23a', 'image_location': '687011238589/learnansible-
prod-ami-2024-01-12_0944', 'image_type': 'machine', 'public':
False, 'tags': {'Name': 'learnansible-prod-ami-2024-01-12_0944',
'deployedBy': 'Ansible', 'environment': 'prod', 'buildDate': '2024-
01-12 09:44:06', 'description': 'Resource managed by Ansible',
'projectName': 'learnansible', 'role': 'ami'}, 'virtualization_type':
'hvm', 'source_instance_id': 'i-050689909fa289998'})

We then remove more one-off resources:

TASK [Create a SSH Key Pair] ******************************
changed: [localhost]
TASK [Delete the group_vars/generated_aws_endpoints.yml file] ********

changed: [localhost]
TASK [Delete the RDS database] ****************************
changed: [localhost]
TASK [Delete RDS subnet group] ****************************
changed: [localhost]
TASK [Delete the group_vars/generated_rds_passwordfile file] *********
**
changed: [localhost]
TASK [Delete the EFS File System] *************************
changed: [localhost]
TASK [Delete the group_vars/generated_efs_targets.yml file]
changed: [localhost]
TASK [Delete the application elastic load balancer]********
changed: [localhost]

Highly Available Cloud Deployments256

TASK [Delete the target group] ***************************************

changed: [localhost]

As the security groups reference each other, we need to create a list of them in reverse order so we can
attempt to delete a group that is referenced by the next one we are going to delete:

TASK [Create a reversed list of the security group names] *
ok: [localhost]
TASK [Delete the security groups] *************************
changed: [localhost] => (item=learnansible-efs-security-group)
changed: [localhost] => (item=learnansible-rds-security-group)
changed: [localhost] => (item=learnansible-ec2-security-group)
FAILED - RETRYING: [localhost]: Delete the security groups (50 retries
left).
.
FAILED - RETRYING: [localhost]: Delete the security groups (46 retries
left).
changed: [localhost] => (item=learnansible-elb-security-group)

You may have noticed that it failed towards the end; that is because the AWS API is having a little
trouble keeping up, and the playbook is running a little ahead of the results it is returning.

We check a few more tasks:

TASK [Get information about the VPC] **********************
ok: [localhost]
TASK [Get information about the Route Table] **************
ok: [localhost]
TASK [Delete the Route Table] *****************************
changed: [localhost] => (item={'associations': [{'main': False,
'route_table_association_id': 'rtbassoc-0738bb9e5aaf44848',
'route_table_id': 'rtb-04bc7177949ad2c92', 'subnet_id': 'subnet-
07c28d376283741f6', 'association_state'
TASK [Delete the Internet Gateway]*************************
changed: [localhost]

Next, we have the subnets:

TASK [Get information on the subnets] ********************************

ok: [localhost]

TASK [Delete the subnets] *********************************
changed: [localhost] => (item={'availability_zone': 'eu-west-1c',
'availability_zone_id': 'euw1-az3', 'available_ip_address_count': 27,

Summary 257

'cidr_block': '10.0.0.64/27', 'default_for_az': False, 'map_public_ip_
on_launch': False, 'map_customer_owned_ip_on_launch': False, 'state':
'available', 'subnet_id': 'subnet-091ea1834c5fc8e48', 'vpc_id': 'vpc-
008808ff628883751', 'id': 'subnet-091ea1834c5fc8e48'})
.
changed: [localhost] => (item={'availability_zone': 'eu-west-1b',
'availability_zone_id': 'euw1-az2', 'available_ip_address_count':
27, 'cidr_block': '10.0.0.128/27', 'default_for_az': False, 'map_
public_ip_on_launch': False, 'map_customer_owned_ip_on_launch': False,
'state': 'available', 'subnet_id': 'subnet-0fd4610392872d442', 'vpc_
id': 'vpc-008808ff628883751', 'id': 'subnet-0fd4610392872d442'})

Finally, we get to the VPC and recap:

TASK [Delete the VPC] *************************************
changed: [localhost]
PLAY RECAP **
localhost :
ok=23 changed=17 unreachable=0 failed=0 skipped=0 res-
cued=0 ignored=0

Once the playbook has finished running, I recommend you log in to the AWS console and double-
check that everything has been correctly removed, as you don’t want to incur any unexpected costs.

Summary
In this chapter, we have taken our AWS deployment to the next level by creating and launching a highly
available WordPress installation. By leveraging the various services offered by AWS, we engineered
out any single points of failure regarding the availability of instances and our use of availability zones.

We also built logic into our playbook to use the same command to launch a new deployment or update
the operating system on an existing one with a rolling deployment of new instance AMIs that contain
our updated packages, leading to zero downtime during deployment.

While the WordPress deployment is as simple as possible, deploying the production-ready images
would remain similar when using a more complicated application.

In our next chapter, we will look at moving from the public to the private cloud and how Ansible
interacts with VMware.

12
Building Out a

VMware Deployment

Now that we know how to launch networking and services in AWS, we will discuss deploying a similar
setup in a VMware environment and talk through the core VMware modules.

In this chapter, we will cover the following topics:

• An introduction to VMware

• The VMware REST modules

Technical requirements
This chapter will discuss various components of the VMware family of products and how you can
interact with them using Ansible. While there will be example playbook tasks in this chapter, they
may need to be more easily transferable to your installation. Because of this, it’s not recommended
that you use any examples in this chapter without first reviewing the complete documentation.

An introduction to VMware
With over 25 years of history, VMware has evolved significantly from its origins as a stealth startup.
Boasting a revenue of over $13 billion in August 2023, the Vmware product portfolio, which grew to
encompass around 30 products, is best known for its hypervisors, and it is a staple in most enterprises,
enabling administrators to deploy virtual machines rapidly across various standard x86-based
hardware configurations.

However, recent developments have seen significant changes following Broadcom’s acquisition of
Vmware in late 2023.

Building Out a VMware Deployment260

This acquisition has dramatically simplified Vmware’s product portfolio, something that was influenced
by customer and partner feedback, allowing users of all sizes to derive more value from VMware
solutions. Two notable offerings include VMware Cloud Foundation and VMware vSphere Foundation,
each with advanced add-on offers.

The first of the major changes that Broadcom has implemented is transitioning VMware to a
subscription-based model. This aligns with the industry standard for cloud consumption and aims
to provide continuous innovation, quicker time to value, and predictable investments for customers
by phasing out perpetual licenses and replacing them with subscription or term licenses to enable
customer and partner success in digital transformations.

There are concerns from the wider industry about Broadcom’s post-acquisition strategy for VMware.
There’s speculation that Broadcom may focus on retaining only the largest and most profitable VMware
customers and partners. This strategy could lead to a restructuring of VMware’s portfolio to better
align with Broadcom’s business objectives, potentially including asset disposals and an even more
streamlined product range.

At the time of writing (early 2024), the impact of these changes on VMware’s existing customer base
and partner ecosystem is still unknown, with further details expected to emerge throughout the year
as Broadcom continues to implement its strategic long-term plans for VMware.

The VMware REST modules
As already mentioned, there were around 30 products in the VMware range, and Ansible had modules
that allowed you to interact with many of them.

However, due to product streamlining, we will just concentrate on the vmware.vmware_rest
namespace modules and won’t be looking at any of the community.vmware modules as these will
lose all support at some point in 2025.

The difference between the two collections of modules is that, as implied by the name, the vmware.
vmware_rest modules use the VMware REST API to manage resources, whereas the ones in
community.vmware use a Python library to interact with the various VMware endpoints to perform tasks.

The modules in the vmware.vmware_rest namespace are split into three areas:

• Appliance: These modules manage your vCenter appliances, which are underlying resources
that make up your vCenter deployment

• Content: The Content Library modules allow you to manage the services for defining and
managing the library’s items, subscription, publication, and storage

• vCenter: These modules allow you to manage the workloads, such as virtual machines, running
on top of your vCentre deployment

Let’s start by looking at the VMware REST appliance modules.

The VMware REST modules 261

VMware REST appliance modules

At the time of writing, there are over 60 modules; these are split up into their own clearly labeled areas.

Access modules

To start with, we have the access modules:

• appliance_access_consolecli: This module allows you to enable or disable the
console-based controlled CLI (TTY1).

• appliance_access_consolecli_info: This module returns the current state of the
console-based controlled CLI (TTY1); this will either be enabled or disabled.

• appliance_access_dcui: With this module, you can configure the state of the Direct
Console User Interface (DCUI TTY2); again, you only have two options: enabled or disabled.

• appliance_access_dcui_info: As you may have already guessed, this module returns
either enabled or disabled for the DCUI TTY2 state.

• appliance_access_shell: Again, there isn’t much to this one in that you just change the
enabled state of BASH. With this enabled, you will be able to access a BASH shell within the CLI.

• appliance_access_shell_info: This module simply returns BASH access; this will
either be enabled or disabled.

• appliance_access_ssh: This module sets the enabled state of the SSH-based controlled CLI.

• appliance_access_ssh_info: This module returns the enabled state of the SSH-based
controlled CLI.

As already mentioned, each of these modules either allows you to set the state of the access system or
returns the currently configured state:

- name: "Enable SSH access"
 vmware.vmware_rest.appliance_access_ssh:
 enabled: true
 register: access_ssh_result

Each of the non-info modules has a single value of enabled, which accepts either true or false,
as demonstrated earlier.

Health info modules

The next grouping of modules only returns information about the health of your system:

• appliance_health_applmgmt_info

• appliance_health_database_info

Building Out a VMware Deployment262

• appliance_health_databasestorage_info

• appliance_health_load_info

• appliance_health_mem_info

• appliance_health_softwarepackages_info

• appliance_health_storage_info

• appliance_health_swap_info

• appliance_health_system_info

You would call one of the modules like this:

- name: "Get the system health status"
 vmware.vmware_rest.appliance_health_system_info:
 register: health_system_result

This would return the current health of whichever of the services you are querying.

Infraprofile modules

Here, we have just two modules:

• appliance_infraprofile_configs: This module exports the selected profile

• appliance_infraprofile_configs_info: This module lists all the registered profiles

The only valid state for the appliance_infraprofile_configs module is export:

- name: "Export the ApplianceManagement profile"
 vmware.vmware_rest.appliance_infraprofile_configs:
 state: "export"
 profiles:
 - "ApplianceManagement"
 register: infraprofile_configs_result

Here’s the output is JSON containing the profile for the selected configuration. In the preceding
example, this is ApplianceManagement.

Local accounts modules

Here, we have three modules:

• appliance_localaccounts_globalpolicy

• appliance_localaccounts_globalpolicy_info

• appliance_localaccounts_info

The VMware REST modules 263

These modules allow you to set and query the global policy and return information on all or just one
of the local accounts.

Monitoring modules

While there are only two modules here, they can be powerful when you combine them:

• appliance_monitoring_info: This module returns a list of monitors

• appliance_monitoring_query: This module allows you to query the monitors

Here’s an example query:

- name: "Query the monitoring backend"
 vmware.vmware_rest.appliance_monitoring_query:
 start_time: "2024-01-01 09:00:00+00:00"
 end_time: "2024-01-01 10:00:00+00:00"
 names:
 - "mem.total"
 interval: "MINUTES5"
 function: "AVG"
 register: mem_total_result

As you can see, with the preceding task, we are querying the total memory in 5 minutes, which averages
between 9 A.M. and 10 A.M. on January 1, 2024.

Networking modules

This is where things start to get a little more complicated; each of the modules has an info equivalent
where highlighted:

• appliance_networking (plus info): This module resets and restarts network configuration
on all interfaces. It also renews the DHCP leases for DHCP IP addresses.

• appliance_networking_dns_domains (plus info): This module is used to manage
the DNS search domains.

• appliance_networking_dns_hostname (plus info): This module configures the fully
qualified domain name (FQDN) hostname.

• appliance_networking_dns_servers (plus info): This module can manage the DNS
server configuration.

• appliance_networking_firewall_inbound (plus info): This module sets an ordered
list of firewall rules.

• appliance_networking_interfaces_info: This module fetches information on a
single network interface.

Building Out a VMware Deployment264

• appliance_networking_interfaces_ipv4 (plus info): This module manages the
IPv4 network configuration for the named network interface.

• appliance_networking_interfaces_ipv6 (plus info): This module manages the
IPv6 network configuration for the named network interface.

• appliance_networking_noproxy (plus info): This module configures servers for which
no proxy configuration should be applied.

• Appliance_networking_proxy (plus info): This module configures which proxy server
to use for the specified protocol.

The time and date modules

The following modules affect the time and date settings in some way:

• appliance_ntp (plus info): This module manages the NTP server configuration

• appliance_system_time_info: This module gets the system time

• appliance_system_time_timezone (plus info): This module sets the time zone

• appliance_timesync module (plus info): This module configures time sync mode

The remaining modules

The remaining modules cover appliance configuration and management:

• appliance_services (plus info): You can use this module to restart a given service

• appliance_shutdown (plus info): This module allows you to cancel a pending shutdown action

• appliance_system_globalfips (plus info): Using this module, you can enable or
disable Global FIPS mode for the appliance

• appliance_system_storage (plus info): This module resizes all partitions to 100% of
the disk size

• appliance_system_version_info: This module gets version information

• appliance_update_info: This module gets the status of an appliance update

• appliance_vmon_service (plus info): This module lists details of services managed
by vmon

This concludes the appliance section. Next, we’ll look at content modules.

The VMware REST modules 265

VMware REST content modules

There are a small number of modules that allow you to manage and gather information on your
content libraries:

• content_configuration (plus info): This module updates the configuration

• content_library_item_info: This module returns {@link ItemModel} when
provided with an identifier

• content_locallibrary (plus info): This module creates a new local library

• content_subscribedlibrary (plus info): This module creates a new subscription

vCenter modules

This is where the more interesting things happen. Using these modules, you can launch, configure,
and manage the entire life cycle of your virtual machines. Before we look at virtual machines, we’ll
take a look at some of the supporting vCenter modules.

Supporting vCenter modules

These supporting modules allow you to manage things such as data centers, folders, data stores, and
resource pools hosted within your vCenter:

• vcenter_cluster_info: This module retrieves information about the cluster corresponding
to {@param.name cluster_name}

• vcenter_datacenter (plus info): This module adds a new data center to your
vCenter inventory

• vcenter_datastore_info: This module fetches information about the data store using
{@param.name datastore_name}

• vcenter_folder_info: This module retrieves information on up to 1,000 folders in vCenter
matching {@link FilterSpec} that the user you are connecting as has permission to see

• vcenter_host (plus info): This module can be used to add a new standalone host to
your vCenter

• vcenter_network_info: This module returns information about the first 1,000 visible
networks in vCenter matching {@link FilterSpec}, depending on your permissions

• vcenter_ovf_libraryitem: This module is used to create an item in the content library
from a virtual machine or virtual appliance

• vcenter_resourcepool (plus info): This module deploys a resource pool

• vcenter_storage_policies_info: This module fetches information about the storage
policies available in vCenter; it returns a maximum of 1,024 results

Building Out a VMware Deployment266

Virtual machine modules

The final group of modules deals with creating and managing virtual machines and their associated
resources. Let’s start by looking at the main module, vcenter_vm.

The vcenter_vm module is used to create virtual machines. For example, a basic task would look
like this:

- name: "Create a Virtual Machine"
 vmware.vmware_rest.vcenter_vm:
 placement:
 cluster: "{{ lookup('vmware.vmware_rest.cluster_moid', '/
learnansible_dc/host/learnansible_cluster') }}"

folder: "{{ lookup('vmware.vmware_rest.folder_moid', '/learnansible_
dc/vm') }}"
 resource_pool: "{{ lookup('vmware.vmware_rest.resource_pool_
moid', '/learnansible_dc/host/learnansible_cluster/Resources') }}"
 name: "LearnAnsibleVM"
 guest_OS: "UBUNTU_64"
 hardware_version: "VMX_11"
 memory:
 hot_add_enabled: true
 size_MiB: 4000
 register: LearnAnsibleVM_output

As you can see, we are using a few of the different lookup modules to find the cluster, data store, folder,
and resource pool IDs – if we had this information, we could provide the IDs directly.

Once the virtual machine has been created, we can use the remaining modules to configure it more
or manage its state:

• vcenter_vm_guest_customization: This module applies guest customization to the
virtual machine, such as running a script

• vcenter_vm_guest_filesystem_directories: Using this module, you can create
a directory within the guest host operating system

• vcenter_vm_guest_identity_info: This module fetches information about the
guest host

• vcenter_vm_guest_localfilesystem_info: This module grabs details of the local
filesystems in the guest host operating system

• vcenter_vm_guest_networking_info: This module fetches details about the network
configuration within the guest host operating system

The VMware REST modules 267

• vcenter_vm_guest_networking_interfaces_info: This module displays
information about the network interfaces in the guest host operating system

• vcenter_vm_guest_networking_routes_info: This module displays information
about the network routes from within the guest host operating system

• vcenter_vm_guest_operations_info: This module grabs information about the
guest host operating system’s status

• vcenter_vm_guest_power (plus info): This module requests a soft shutdown, standby
(suspend), or soft reboot from within the guest host operating system

• vcenter_vm_hardware: This module is used to update the hardware settings of the
requested virtual machine

• vcenter_vm_hardware_adapter_sata (plus info): This module configures a virtual
SATA adapter

• vcenter_vm_hardware_adapter_scsi (plus info): This module adds a virtual
SCSI adapter

• vcenter_vm_hardware_boot (plus info): This module is used to manage virtual machine
boot-related settings

• vcenter_vm_hardware_boot_device (plus info): This module can set the virtual
devices that will be used as the boot drive for your virtual machine

• vcenter_vm_hardware_cdrom (plus info): This module attaches a virtual CD-ROM to
your virtual machine

• vcenter_vm_hardware_cpu (plus info): This module manages your virtual machine’s
CPU settings

• vcenter_vm_hardware_disk (plus info): This module connects virtual disks to your
virtual machine

• vcenter_vm_hardware_ethernet (plus info): This module connects a virtual Ethernet
adapter to your virtual machine

• vcenter_vm_hardware_floppy (plus info): This module adds a virtual floppy drive to
the virtual machine

• vcenter_vm_hardware_info: This module fetches your virtual machine’s virtual
hardware settings information

• vcenter_vm_hardware_memory (plus info): This module configures the memory settings

• vcenter_vm_hardware_parallel (plus info): This module adds a virtual parallel port

• vcenter_vm_hardware_serial (plus info): This module adds a virtual serial port

• vcenter_vm_info: This module returns information about your virtual machine

Building Out a VMware Deployment268

• vcenter_vm_libraryitem_info: This module retrieves information about the library
item associated with your virtual machine

• vcenter_vm_power (plus info): This module issues a boot, hard shutdown, hard reset, or
hard suspend on a guest – that is, it presses the power button on the front

• vcenter_vm_storage_policy (plus info): This module updates the storage policy of
your virtual machine’s virtual hard disks

• vcenter_vm_storage_policy_compliance: This module updates and gathers
information on your virtual machine’s storage policy compliance

• vcenter_vm_tools (plus info): This module is used to manage the configuration of
VMware Tools

• vcenter_vm_tools_installer (plus info): This module attaches the VMware Tools
CD installer as a CD-ROM, making it available within the guest host operating system

• vcenter_vmtemplate_libraryitems (plus info): This module creates and returns
information on items in the content library

As you can see, there is comprehensive support for managing your virtual machine resources using
the vmware.vmware_rest collection, and what’s better is that the modules are all designed to
consume the official REST API, meaning that you can safely mix and match how you manage your
resources within VMware, regardless of whether you use the CLI, web interface, or Ansible. Everything
is managed via the same REST API.

Summary
As you have seen from the very long list of modules, you can do most of the management and
configuration tasks you would be doing as a VMware administrator day-to-day using Ansible.

Add to this the modules we looked at in Chapter 8, Ansible Network Modules, for managing network
equipment, and modules such as the ones that support hardware such as NetApp storage devices.

By doing this, you can build complex playbooks that span the physical devices, VMware elements,
and virtual machines running within your on-premises enterprise-level virtualized infrastructure.

As mentioned at the start of this chapter, at the time of writing, there is a lot of upheaval at VMware.
This chapter has been written to show the art of the possible rather than be a practical hands-on
guide for managing your VMware resources using Ansible. For more details on the current state of
the vmware.vmware_rest collection, go to https://galaxy.ansible.com/ui/repo/
published/vmware/vmware_rest/.

In the next chapter, we will look at how to ensure that our playbooks are following best practices by
scanning them for common issues and potential security problems.

https://galaxy.ansible.com/ui/repo/published/vmware/vmware_rest/
https://galaxy.ansible.com/ui/repo/published/vmware/vmware_rest/

Part 4: Ansible Workflows

In the final part of this book, you will learn advanced Ansible workflows and best practices, including
security practices, playbook scanning, server hardening, CI/CD integration, Ansible AWX, and Red
Hat Ansible Automation Platform. By the end, you will be equipped with the knowledge you need to
effectively utilize Ansible in real-world scenarios.

This part has the following chapters:

• Chapter 13, Scanning Your Ansible Playbooks

• Chapter 14, Hardening Your Servers Using Ansible

• Chapter 15, Using Ansible with GitHub Actions and Azure DevOps

• Chapter 16, Introducing Ansible AWX and Red Hat Ansible Automation Platform

• Chapter 17, Next Steps with Ansible

13
Scanning Your

Ansible Playbooks

In this chapter, you will learn how to scan your Ansible playbooks using two third-party tools:
Checkov and KICS. Both are open source and can help you identify and fix common configuration
issues within your Ansible code, such as syntax errors, misconfigurations, hardcoded secrets, and
deployment problems, which could lead to potential breaches.

By the end of this chapter, you will have done the following:

• Installed and run Checkov and KICS scans on our Ansible playbooks

• Reviewed the results and reports generated during the scans

• Fixed any issues detected during the scans

The chapter covers the following topics:

• Why scan your playbooks?

• Docker overview and installation

• Exploring Checkov

• Exploring KICS

Technical requirements
Rather than installing the tools locally, we will use Docker to execute the scans; there will be a little
detail on how to install Docker later in the chapter. Additionally, we will be scanning a variation of
the playbook we wrote in Chapter 11, Highly Available Cloud Deployments; this can be found in the
repository at https://github.com/PacktPublishing/Learn-Ansible-Second-
Edition/tree/main/Chapter13.

https://github.com/PacktPublishing/Learn-Ansible-Second-Edition/tree/main/Chapter13
https://github.com/PacktPublishing/Learn-Ansible-Second-Edition/tree/main/Chapter13

Scanning Your Ansible Playbooks272

Why scan your playbooks?
While we have been taking a sensible approach to deploying our cloud resources in previous chapters,
many of the guardrails we have put in place have all been ones I have learned through experience and
by applying a little common sense.

For example, when launching a virtual machine resource in either Microsoft Azure or Amazon Web
Services, we have been locking down the SSH or RDP service to the host’s public IP address, which is
running Ansible; up until now, this has been your local machine rather than just opening SSH or RDP
to the world by using 0.0.0.0/0 as the source address, which is the CIDR notation for “allow all.”

This is not a problem for the workloads we have been working on; having a virtual machine exposed
directly to the internet with its management port open for everyone to access is not considered best
practice, as it will expose you to brute-force attacks, which, if they are successful, will not only lead
to that machine being compromised; it could also act as a gateway to the rest of your network and
other associated resources such as databases and storage.

I would class the preceding example as common sense, but as we launch more and more cloud services
using our playbooks, how can we ensure that we are following best practices for services that maybe
we haven’t had much experience with outside of getting something up and running? How can we put
some guardrails in place to stop us from doing something before resources are deployed?

This is where the two tools we will look at in this chapter come in; they are designed to scan your
playbooks, look at the configuration, and compare them to their best practice policies. Eventually, in
Chapter 15, Using Ansible with GitHub Actions and Azure DevOps, we will build one of the two tools into
our deployment pipelines, but for now, we are going to look at the tools and run them locally using Docker.

Docker overview and installation
Docker, the platform that made containers popular, is both an open source and commercial solution
that enables you to package all of the elements of your application, including libraries and other
dependencies, alongside your own code in a single, easy-to-distribute package; this means that we
won’t need to download and install all of the prerequisites for the tools that we will be running in this
chapter or need to compile the tools from source to get working executables for our system.

To follow the example in this chapter, you must install Docker Desktop on your host.

Installing Docker Desktop on macOS

To install Docker Desktop on macOS, follow these three steps:

1. Choose the appropriate installer for your Mac’s architecture:

I. For ARM64 (Apple Silicon), use https://desktop.docker.com/mac/main/
arm64/Docker.dmg.

https://desktop.docker.com/mac/main/arm64/Docker.dmg
https://desktop.docker.com/mac/main/arm64/Docker.dmg

Exploring Checkov 273

II. For AMD64 (Intel Macs), use https://desktop.docker.com/mac/main/
amd64/Docker.dmg.

2. After downloading, open the Docker.dmg file by double-clicking it. In the opened window,
drag the Docker icon to your Applications folder to install Docker Desktop. It will be installed
at /Applications/Docker.app.

3. To launch Docker, navigate to the Applications folder and double-click on Docker; this will
start Docker Desktop.

When you first launch Docker Desktop, it will walk you through the remaining installation steps and
run in the background once complete.

Installing Docker Desktop on Windows

To install Docker Desktop on Windows, follow these instructions:

1. Download the Docker Desktop Installer for Windows from this link: https://desktop.
docker.com/win/main/amd64/Docker%20Desktop%20Installer.exe.

2. Run the downloaded Docker Desktop Installer.exe by double-clicking on it. Docker Desktop
will be installed at the default location C:\Program Files\Docker\Docker.

3. During the installation, you may be prompted to choose whether to use WSL 2 (Windows
Subsystem for Linux 2) or Hyper-V as the backend. Select the Use WSL 2 instead of Hyper-V
option, as we have used this throughout the book to run Ansible.

4. Follow the on-screen instructions provided by the installation wizard to authorize the installer
and complete the installation process.

5. Once the installation is completed, click Close to finish the setup.

From here, you can open Docker Desktop from the start menu, and it will run in the background.

Installing Docker Desktop on Linux

If you are running a Linux Desktop, the instructions will differ slightly depending on your Linux
distribution; for detailed instructions, see https://docs.docker.com/desktop/linux/
install/.

Now, with Docker Desktop installed, we can look at the first of the two tools we will look at.

Exploring Checkov
Checkov is an open source static code analysis tool maintained by Prisma Cloud designed for
infrastructure-as-code (IaC).

https://desktop.docker.com/mac/main/amd64/Docker.dmg
https://desktop.docker.com/mac/main/amd64/Docker.dmg
https://desktop.docker.com/win/main/amd64/Docker%20Desktop%20Installer.exe
https://desktop.docker.com/win/main/amd64/Docker%20Desktop%20Installer.exe
https://docs.docker.com/desktop/linux/install/
https://docs.docker.com/desktop/linux/install/

Scanning Your Ansible Playbooks274

It helps developers and DevOps teams identify misconfigurations in their files before deployment to
cloud environments. By scanning the code for tools such as Terraform, CloudFormation, Kubernetes,
and others, including Ansible, Checkov checks against best practices and compliance guidelines,
ensuring your infrastructure deployments are secure, efficient, and compliant with industry standards
before it is deployed.

Important note
You may have noticed that Ansible is mentioned as “others” in the preceding description; that
is because support for Ansible was only just introduced at the time of writing this in early 2024.
Because of this, while we will be looking at Checkov during this chapter, we will not be going
into as much detail about Checkov or the second tool, Kics.

Before we run our scan, we need a playbook; open your terminal and check out the scan GitHub
repository by running the following:

$ git clone git@github.com:PacktPublishing/Learn-Ansible-Second-
Edition.git

This repository contains a copy of the final playbook code from Chapter 11, Highly Available
Cloud Deployments.

Now that we have the code checked out, we can download the Checkov container image. To do this,
we need to pull it from Docker Hub by running the following command:

$ docker image pull bridgecrew/checkov:latest

This will download the image from https://hub.docker.com/r/bridgecrew/checkov,
and with it downloaded, we can now scan our playbook code.

To run the scan, issue the following commands:

$ cd Learn-Ansible-Second-Edition/Chapter13
$ docker container run --rm --tty --volume ./:/ansible --workdir /
ansible bridgecrew/checkov --directory /ansible

Before we review the results, let’s quickly break down the command that we have just run:

• docker container run executes a new Docker container.

• --rm instructs Docker to remove the container after it exits automatically.

• --tty allocates a pseudo-TTY, which makes the scan output readable to our session.

• --volume ./:/ansible mounts the current directory, defined as ./, to the /ansible
path inside the container.

• --workdir /ansible sets the working directory inside the container to /ansible.

https://hub.docker.com/r/bridgecrew/checkov

Exploring Checkov 275

• bridgecrew/checkov specifies the Checkov Docker image we have just pulled from the
Docker Hub.

• --directory /ansible instructs Checkov to scan files in /ansible; it is not part of
the Docker command but is sending instructions to the Checkov binary, which is the default
entry point for our container to run the scan. If we had Checkov installed locally, then this
would be the equivalent to running the checkov --directory /ansible command.

Now that we have broken down the command used to run the scan, we can look at the output of the
scan itself, starting with the overview:

ansible scan results:
Passed checks: 5, Failed checks: 3, Skipped checks: 0

As you can see, we have more passes than failed checks, which is a good start; the next section of the
output details the checks, starting with the following passes:

Check: CKV_ANSIBLE_2: "Ensure that certificate validation isn't
disabled with get_url"
 PASSED for resource: tasks.ansible.builtin.get_url.download wp-
cli
 File: /roles/wordpress/tasks/main.yml:11-17

Our first pass checks to see if we are instructing the ansible.builtin.get_url module to
bypass certificate validation when connecting to an HTTPS site to download content.

The next four passes are for the two times our playbook uses the ansible.builtin.apt module:

Check: CKV_ANSIBLE_5: "Ensure that packages with untrusted or missing
signatures are not used"
 PASSED for resource: tasks.ansible.builtin.apt.update apt-cache
and upgrade packages
 File: /roles/stack-install/tasks/main.yml:5-13
Check: CKV_ANSIBLE_5: "Ensure that packages with untrusted or missing
signatures are not used"
 PASSED for resource: tasks.ansible.builtin.apt.update cache and
install the stack packages
 File: /roles/stack-install/tasks/main.yml:27-33

The first pair of passes ensures that we are not installing any packages that are not correctly signed.
The second pair of passes also checks for the same thing:

Check: CKV_ANSIBLE_6: "Ensure that the force parameter is not used, as
it disables signature validation and allows packages to be downgraded
which can leave the system in a broken or inconsistent state"
 PASSED for resource: tasks.ansible.builtin.apt.update apt-cache
and upgrade packages
 File: /roles/stack-install/tasks/main.yml:5-13

Scanning Your Ansible Playbooks276

Check: CKV_ANSIBLE_6: "Ensure that the force parameter is not used, as
it disables signature validation and allows packages to be downgraded
which can leave the system in a broken or inconsistent state"
 PASSED for resource: tasks.ansible.builtin.apt.update cache and
install the stack packages
 File: /roles/stack-install/tasks/main.yml:27-33

However, this time, the check ensures that we are not using the force parameter, which, as you can
see from the description, disables signature checks and can also leave our APT database in a little bit
of a state if things go wrong.

Now, we move on to the failures; the first failure is the one we called out as the example when we spoke
about why you would want to use the tools we are covering in this chapter:

Check: CKV_AWS_88: "EC2 instance should not have public IP."
 FAILED for resource: tasks.amazon.aws.ec2_instance.Create the
temporary ec2 instance
 File: /roles/ec2tmp/tasks/main.yml:53-75
 Guide: https://docs.prismacloud.io/en/enterprise-edition/policy-
reference/aws-policies/public-policies/public-12
 62 | network:
 63 | assign_public_ip: "{{ ec2.public_ip }}"

So, what gives? As you may recall from Chapter 11, Highly Available Cloud Deployments, the instance
we are launching is only temporary and accessible while the playbook is running. However, Checkov
doesn’t know this, so it rightly calls it out and, as you can see, provides details on why this is via the
guide URL, which, for this check, is https://docs.prismacloud.io/en/enterprise-
edition/policy-reference/aws-policies/public-policies/public-12.

Moving on to the next failure in the scan, we see the following:

Check: CKV_AWS_135: "Ensure that EC2 is EBS optimized"
 FAILED for resource: tasks.amazon.aws.ec2_instance.Create the
temporary ec2 instance
 File: /roles/ec2tmp/tasks/main.yml:53-75
 Guide: https://docs.prismacloud.io/en/enterprise-edition/policy-
reference/aws-policies/aws-general-policies/ensure-that-ec2-is-ebs-
optimized

In this case, Checkov believes a parameter is missing from the amazon.aws.ec2_instance block
when we launch the temporary EC2 instance. It is recommended that the parameter ebs_optimized
is set to true rather than keeping the value as false, which is the default for the parameter.

The final failure in the scan output is as follows:

Check: CKV2_ANSIBLE_2: "Ensure that HTTPS url is used with get_url"
 FAILED for resource: tasks.ansible.builtin.get_url.download wp-
cli

https://docs.prismacloud.io/en/enterprise-edition/policy-reference/aws-policies/public-policies/public-12
https://docs.prismacloud.io/en/enterprise-edition/policy-reference/aws-policies/public-policies/public-12

Exploring Checkov 277

 File: /roles/wordpress/tasks/main.yml:11-17
 11 | - name: "download wp-cli"
 12 | ansible.builtin.get_url:
 13 | url: "{{ wp_cli.download }}"
 14 | dest: "{{ wp_cli.path }}"

As Checkov is doing static code analysis, it isn’t designed to check for the contents of variables. Because
the policy checks that we are providing a secure URL (that is, https://domain.com/ in the url
section of the task) it fails, as it is just seeing the {{ wp_cli.download }} variable name rather
than the contents of the variable.

If you are keeping count, that makes two of the three failed checks false positives; for the first failure,
we can accept the risk, as we know the machine is only temporary, and we know that we are locking
the EC2 instance down to trusted IP addresses.

For the third failure, we can confirm that the contents of the {{ wp_cli.download }} variable
is a secure URL, as it is https://raw.githubusercontent.com/wp-cli/builds/
gh-pages/phar/wp-cli.phar.

The second failure is the only one we need to look at; let’s take a look at the tasks, starting with the
Amazon.aws.ec2_instance one.

Here, we need to add two things; the first thing is a comment to instruct Checkov that we accept the risk
being highlighted by the CKV_AWS_88 policy, and then we need to set ebs_optimized to true.

The following code shows the updates I have made to roles/ec2tmp/tasks/main.yml;
everything below the name parameter remains as is:

- name: "Create the temporary ec2 instance"
 amazon.aws.ec2_instance:
 # checkov:skip=CKV_AWS_88:"While a public IP address is assigned
to the instance, it is locked down by the security group and the
instance is temporary."
 ebs_optimized: true
 name: "{{ ec2_tmp_name }}"

As you can see, instructing Checkov to skip a check is straightforward; the comment is split into
four parts:

• # is the standard syntax for starting a comment in a YAML file

• checkov: instructs Checkov to pay attention to the contents of the comment

• skip=CKV_AWS_88: instructs Checkov to skip the CKV_AWS_88 check when it runs

• "While a public IP address is assigned to the instance, it is
locked down by the security group and the instance is temporary."
is the suppress comment that will appear in the output when we run the scan

Scanning Your Ansible Playbooks278

The next line in the update task implements the recommendation that we set the ebs_optimized
parameter to true.

Now, we move on to the second task, which we need to update, and can be found in roles/wordpress/
tasks/main.yml. Here, we just add a comment to make Checkov skip CKV2_ANSIBLE_2:

- name: "download wp-cli"
 ansible.builtin.get_url:
 # checkov:skip=CKV2_ANSIBLE_2:"The URL passed in the variable is
secured with SSL/TLS protocol."
 url: "{{ wp_cli.download }}"
 dest: "{{ wp_cli.path }}"

If you are following along, the repository contains a branch called checkov; with the preceding
detailed changes applied, you can switch to it by running the following:

$ git switch chapter13-checkov

Then, we can re-run the scan using the following command:

$ docker container run --rm --tty --volume ./:/ansible --workdir /
ansible bridgecrew/checkov --directory /ansible

I can see that my changes have both suppressed and resolved the three failures:

ansible scan results:
Passed checks: 6, Failed checks: 0, Skipped checks: 2

We have the pass for CKV_AWS_135:

Check: CKV_AWS_135: "Ensure that EC2 is EBS optimized"
 PASSED for resource: tasks.amazon.aws.ec2_instance.Create the
temporary ec2 instance
 File: /roles/ec2tmp/tasks/main.yml:53-77
 Guide: https://docs.prismacloud.io/en/enterprise-edition/policy-
reference/aws-policies/aws-general-policies/ensure-that-ec2-is-ebs-
optimized

We also have the two false positives now showing:

Check: CKV_AWS_88: "EC2 instance should not have public IP."
 SKIPPED for resource: tasks.amazon.aws.ec2_instance.Create the
temporary ec2 instance
 Suppress comment: "While a public IP address is assigned to the
instance, it is locked down by the security group and the instance is
temporary."
 File: /roles/ec2tmp/tasks/main.yml:53-77

Exploring KICS 279

 Guide: https://docs.prismacloud.io/en/enterprise-edition/policy-
reference/aws-policies/public-policies/public-12

For the second one, we have the following:

Check: CKV2_ANSIBLE_2: "Ensure that HTTPS url is used with get_url"
 SKIPPED for resource: tasks.ansible.builtin.get_url.download wp-
cli
 Suppress comment: "The URL passed in the variable is secured with
SSL/TLS protocol."
 File: /roles/wordpress/tasks/main.yml:11-18

As you can see, our comments are visible for all to see.

So, returning to the call-out at the start of the section, why have we covered this tool if Checkov doesn’t
have full coverage for Ansible? As you can see from the output of the scan of our playbook, while there
is not much coverage now, each new release brings additional Ansible policies. Hence, as time goes
on, coverage should only get more robust, and hopefully, we will bring this promising tool in line with
the second tool we will look at: KICS, or to give it its full title, keeping infrastructure as code secure.

Exploring KICS
KICS is another static code analysis tool, and like Checkov, it is open source. It is designed to help you
find common misconfiguration issues, potential compliance issues, and even security vulnerabilities
within your IaC code. It ships with support for Kubernetes, Docker, AWS CloudFormation, Terram,
and, of course, Ansible, which we will be focusing on in this chapter.

KICS is designed to be easy to install, understand, and integrate into CI/CD pipelines. It includes
over 2,400 customizable rules and is built for extensibility, allowing for the easy addition of support
for new IaC tools and updates to existing integrations.

KICS is maintained and supported by Checkmarx specialists in software application security testing,
meaning that KICS has a good pedigree.

Running the scan

Let’s dive straight in. If you haven’t already, check out the example repository using the following command:

$ git clone https://github.com/russmckendrick/Learn-Ansible-Second-
Edition-Scan.git

Now, we can pull the latest container image from Docker Hub (https://hub.docker.com/r/
checkmarx/kics) by using the following command:

$ docker image pull checkmarx/kics:latest

https://hub.docker.com/r/checkmarx/kics
https://hub.docker.com/r/checkmarx/kics

Scanning Your Ansible Playbooks280

Change to the folder containing our Ansible playbook:

$ cd Learn-Ansible-Second-Edition-Scan

Then run the scan itself:

$ docker container run --rm --tty --volume ./:/ansible checkmarx/kics
scan --path /ansible/

As you can see, the docker command follows the same pattern we discussed when we ran Checkov
up until where we pass the options to the KICS binary; here, we instruct KICS to run scan against
the --path /ansible/, which is the directory we have mounting from our host machine inside
the container using the --volume option.

Reviewing the results

Now, let’s take a look at the result of the scan; KICS presents its output, which is slightly different
from Checkov in that the initial output is designed to give real-time information on the scan itself:

Scanning with Keeping Infrastructure as Code Secure v1.7.12
Preparing Scan Assets: Done
Executing queries: [------------------------------] 100.00%
Files scanned: 33
Parsed files: 32
Queries loaded: 292
Queries failed to execute: 0

Let’s now work through the various results and group them by severity levels.

Info and low-severity results

The first result highlights potentially risky file permissions for the files we create (using templates)
or copy:

Risky File Permissions, Severity: INFO, Results: 5
Description: Some modules could end up creating new files on disk with
permissions that might be too open or unpredictable
Platform: Ansible
Learn more about this vulnerability: https://docs.kics.io/latest/
queries/ansible-queries/common/88841d5c-d22d-4b7e-a6a0-89ca50e44b9f

It then goes on to list all the affected files; here is a snippet of the first few:

[1]: ../../ansible/destroy.yml:52
 051: - name: "Delete the group_vars/generated_aws_endpoints.
yml file"

Exploring KICS 281

 052: ansible.builtin.file:
 053: path: "group_vars/generated_aws_endpoints.yml"

Here is another:

[2]: ../../ansible/destroy.yml:81

 080: - name: "Delete the group_vars/generated_efs_targets.yml
file"
 081: ansible.builtin.file:
 082: path: "group_vars/generated_efs_targets.yml"

Moving on to the next issue, we see the following:

Unpinned Package Version, Severity: LOW, Results: 1
Description: Setting state to latest performs an update and installs
additional packages possibly resulting in performance degradation or
loss of service
Platform: Ansible
Learn more about this vulnerability: https://docs.kics.io/latest/
queries/ansible-queries/common/c05e2c20-0a2c-4686-b1f8-
5f0a5612d4e8

Again, here is a sample of where it has spotted the issue:

[1]: ../../ansible/roles/stack_install/tasks/main.yml:8
 007: name: "*"
 008: state: "latest"
 009: update_cache: true

The next and final low-scoring result is as follows:

EFS Without Tags, Severity: LOW, Results: 1
Description: Amazon Elastic Filesystem should have filesystem tags
associated
Platform: Ansible
Learn more about this vulnerability: https://docs.kics.io/latest/
queries/ansible-queries/aws/b8a9852c-9943-4973-b8d5-77dae9352851

Here are the details:

[1]: ../../ansible/destroy.yml:75
 074: - name: "Delete the EFS File System"
 075: community.aws.efs:
 076: name: "{{ efs_name }}"

Let’s quickly review the low-scoring ones before moving on to the one result with a medium score.

Scanning Your Ansible Playbooks282

So, the first result was, “Some modules could end up creating new files on disk with permissions
that might be too open or unpredictable”. It called out 11 places within our playbook where this
could be an issue, so we should look at resolving these.

First off, if you ran the full scan, you will have noticed that three of the results are from the destroy.
yml file.

Given that these tasks are removing files, we don’t care about the file permissions here. So, rather
than adding the permissions to the individual tasks, we should instruct KICS not to run the check
across the whole file.

To do this, we need to add the following comment at the very top of the file:

kics-scan disable=88841d5c-d22d-4b7e-a6a0-89ca50e44b9f

Next, we have ansible.builtin.template in roles/efs/tasks/main.yml. Rather
than skip the test, I added the permissions using the mode key:

- name: "Generate the efs targets vars file"
 ansible.builtin.template:
 src: "targets.j2"
 dest: "group_vars/generated_efs_targets.yml"
 mode: "0644"

The final result is for the ansible.builtin.get_url module used by the task, which downloads
wp-cli in the roles/wordpress/tasks/main.yml file.

When reviewing the code, it looked like the following:

- name: "Download wp-cli"
 ansible.builtin.get_url:
 url: "{{ wp_cli.download }}"
 dest: "{{ wp_cli.path }}"

This was immediately followed by the following:

- name: "Update permissions of wp-cli to allow anyone to execute it"
 ansible.builtin.file:
 path: "{{ wp_cli.path }}"
 mode: "0755"

Here, KICS highlights that we can set the mode as part of ansible.builtin.get_url, which
means we do not have to do it separately, so I added the following to the download task:

 mode: "0755"

Then, I removed the second task. That clears the file permission issues KICS reported.

Exploring KICS 283

The next LOW score says, “Setting state to latest performs an update and installs additional packages
possibly resulting in performance degradation or loss of service”.

This appears in roles/stack-install/tasks/main.yml, where the task uses ansible.
builtin.apt to update the installed images, as this task is only called when we bootstrap our
temporary EC2 instance and we made allowances for changes to the PHP version in the main playbook.
I think it is safe to accept this as a false positive, so we can tell KICS not to run the test on this file by
adding the following to the very top of roles/stack-install/tasks/main.yml:

kics-scan disable=c05e2c20-0a2c-4686-b1f8-5f0a5612d4e8

This leaves us with “Amazon Elastic Filesystem should have filesystem tags associated”; the task it
is complaining about is in destroy.yml, so the lack of tags does matter.

Let’s exclude the check from being run. To do this, we need to append it to the end of the comment
we already added, which means the comment at the end of destroy.yml now reads this:

kics-scan disable=88841d5c-d22d-4b7e-a6a0-89ca50e44b9f,b8a9852c-
9943-4973-b8d5-77dae9352851

When appending IDs, please ensure that a comma separates them; otherwise, KICS will read them
as one string. Finally, we have the high-severity results.

High-severity results

Luckily, here we have just two problems called out across four tasks, starting with the following:

EFS Not Encrypted, Severity: HIGH, Results: 2
Description: Elastic File System (EFS) must be encrypted
Platform: Ansible
Learn more about this vulnerability: https://docs.kics.io/latest/
queries/ansible-queries/aws/727c4fd4-d604-4df6-a179-7713d3c85e20

These are the two tasks:

[1]: ../../ansible/roles/efs/tasks/main.yml:25
 024: - name: "Create the EFS File System"
 025: community.aws.efs:

The second is in the destroy.yml file:

[2]: ../../ansible/destroy.yml:77
 076: - name: "Delete the EFS File System"
 077: community.aws.efs:

Scanning Your Ansible Playbooks284

I think you can probably guess how we are going to resolve the second one; let’s get it to ignore the
test in destroy.yml:

kics-scan disable=88841d5c-d22d-4b7e-a6a0-89ca50e44b9f,b8a9852c-
9943-4973-b8d5-77dae9352851,050f085f-a8db-4072-9010-
2cca235cc02f,727c4fd4-d604-4df6-a179-7713d3c85e20

For roles/efs/tasks/main.yml, the recommendation is to enable encryption, so let’s take
that advice:

- name: "Create the EFS File System"
 community.aws.efs:
 encrypt: true
 name: "{{ efs_name }}"

As you can see from the preceding snippet, we have added the encrypt parameter and set it to true.

The next issue highlighted by KICS also has to do with EFS filesystem encryption:

EFS Without KMS, Severity: HIGH, Results: 2
Description: Amazon Elastic Filesystem should have filesystem
encryption enabled using KMS CMK customer-managed keys instead of AWS
managed-keys
Platform: Ansible
Learn more about this vulnerability: https://docs.kics.io/latest/
queries/ansible-queries/aws/bd77554e-f138-40c5-91b2-2a09f878608e

The results are for the same files as the previous issue, so we will append the ID to the list of checks
to disable at the top of the destroy.yml file.

Given that this is just a demo environment, I am happy to accept the potential risk of not using a
customer-managed key vault to store my own managed encryption keys; so, in this instance, I will
add the following:

kics-scan disable=bd77554e-f138-40c5-91b2-2a09f878608e

I’ll do so at the very top of the roles/efs/tasks/main.yml file. If this were a fixed production
environment, then I would have added a role to launch and maintain AWS Key Management Service
(https://aws.amazon.com/kms/) as part of the deployment.

The results summary

The final part of the rules gives an overview of everything we have covered, which, for the initial scan
with none of the fixes in place, is as follows:

Results Summary:
HIGH: 4
MEDIUM: 0

https://aws.amazon.com/kms/

Exploring KICS 285

LOW: 2
INFO: 5
TOTAL: 11

Re-running the scan

As before, there is a branch containing all of the updated files we discussed and implemented in the
previous section; to change to it, run the following:

$ git switch chapter13-kics

You can then run the scan again using this:

$ docker container run --rm --tty --volume ./:/ansible checkmarx/kics
scan --path /ansible/

This should now return a clean bill of health:

Scanning with Keeping Infrastructure as Code Secure v1.7.13
Preparing Scan Assets: Done
Executing queries: [------------------------------] 100.00%
Results Summary:
HIGH: 0
MEDIUM: 0
LOW: 0
INFO: 0
TOTAL: 0

As you can see, no problems are being reported now.

Output files

Before we finish the chapter, there is one more thing that we should quickly discuss about KICS: its
ability to output a report in various file formats.

If you were to re-run the scans against the main and kics branches but using the following command,
then you will notice that a file called results.html appears in your repo folder:

$ docker container run --rm --tty --volume ./:/ansible checkmarx/kics
scan --path /ansible/ --report-formats "html" --output-path /ansible/

As you can see, we are passing in two new flags; the first, --report-formats, tells KICS to
output a report as an html file, and the second, --output-path, lets KICS know where to save
the report file; in our case, as we are running KICS in a container that needs to be a location within
the container that persists, once the container has finished running, the container will automatically
be removed along with any files written.

Scanning Your Ansible Playbooks286

When running the command against the main branch, which does not contain any of the fixes, we
applied the header of the report, which looks like the following:

Figure 13.1 – Viewing the report showing issues

Then, re-running the scan against the KICS branch updates it to the following:

Figure 13.2 – A clean bill of health

You can also output in PDF, JSON, and other standard reporting formats. As you can see, this is a little
more digestible than reading the output of the command line report we covered in the previous section.

We will put these reports to good use when we get to Chapter 15, Using Ansible with GitHub Actions
and Azure DevOps, as we will publish the results as part of our pipeline runs.

Summary 287

Summary
In this chapter, we have covered two tools that we can add to our workflows, and we manually ran scans
against the playbook we developed in Chapter 11, Highly Available Cloud Deployments. As mentioned
in the chapter, Checkov's support for Ansible is relatively new, so it has a different coverage to KICS.
However, I am sure you agree that both tools worked well.

Important note
There is one elephant in the room, though; even without the same coverage level, both tools
came up with slightly different results, so you should never rely on them 100% to fully secure
your deployments. Think of them as trusted colleagues reviewing your code for anything obvious
that stands out as being an issue rather than a security-focused cloud platform architect with
a working knowledge of your workload who dictates precisely what measures you should take
when deploying your infrastructure in a secure way fully.

As already mentioned at the end of the previous section, we will be revisiting KICS in Chapter 15, Using
Ansible with GitHub Actions and Azure DevOps. Before we get there, now that we have looked at how
we can review and secure our playbook code, we can now look at how we can secure our workload by
quickly applying security best practices to the host operating systems that we are targeting using Ansible.

Further reading
For more information about the tools and their maintainers, see the following links:

• Checkov: https://www.checkov.io/

• Prisma Cloud: https://www.paloaltonetworks.com/prisma/cloud/

• KICS: http://kics.io/

• Checkmarx: https://checkmarx.com/

https://www.checkov.io/
https://www.paloaltonetworks.com/prisma/cloud/
http://kics.io/
https://checkmarx.com/

14
Hardening Your Servers

Using Ansible

One of the advantages of using an orchestration and configuration tool such as Ansible is that it can
be utilized to generate and deploy a complex set of configurations in a repeatable task across many
hosts. In this chapter, we will look at a tool that scans your hosts using Ansible, dynamically generates
a remediation playbook, and then runs it for you.

We will also look at running two different security tools that scan the WordPress installation we have
used throughout the previous chapters.

This chapter covers the following topics:

• The scanning tools

• The playbook

Technical requirements
Following our excursion into the cloud, we will return to our local machine and launch an Ubuntu
22.04 virtual machine using Multipass; as we will be running a workload that requires a bit more disk
space than we have been used to so far, we will be altering the specs of the virtual machine when we
launch it to increase the disk space and RAM.

As we will be installing a lot of different software on the virtual machine, your Multipass virtual
machine will need to be able to download packages from the internet; there will be around 3 GB of
various packages and configuration files to download.

You can find a complete copy of the playbook accompanying this chapter in the repository at https://
github.com/PacktPublishing/Learn-Ansible-Second-Edition/tree/main/
Chapter14.

https://github.com/PacktPublishing/Learn-Ansible-Second-Edition/tree/main/Chapter14
https://github.com/PacktPublishing/Learn-Ansible-Second-Edition/tree/main/Chapter14
https://github.com/PacktPublishing/Learn-Ansible-Second-Edition/tree/main/Chapter14

Hardening Your Servers Using Ansible290

The scanning tools
Before we dive into the Playbook, let’s quickly look at the three tools we will be running, starting with
the one that does the most, OpenSCAP.

OpenSCAP

First, we will be looking at one of Red Hat’s tools, called OpenSCAP. Before we continue, the next
section will contain many abbreviations.

So, what is SCAP? The Security Content Automation Protocol (SCAP) is an open standard that
encompasses several components, all of which are open standards themselves, to build a framework
that allows you to automatically assess and remediate your hosts against the National Institute of
Standards and Technology (NIST) Special Publication 800-53.

This publication is a catalog of controls applied to all U.S. federal IT systems, apart from those maintained
by the National Security Agency (NSA). These controls have been effected to help implement the
Federal Information Security Management Act (FISMA) of 2002 across U.S. federal departments.

SCAP is made up of the following components:

• Asset Identification (AID) is a data model used for asset identification.

• Asset Reporting Format (ARF) is a vendor-neutral and technology-agnostic data model for
transporting information on assets between different reporting applications and services.

• Common Configuration Enumeration (CCE) is a standard database of recommended
configurations for common software. Each recommendation has a unique identifier. At the
time of writing, the database hadn’t been updated for over a decade.

• Common Configuration Scoring System (CCSS) is the continuation of CCE. It is used for
generating a score for various software and hardware configurations across all types of deployments.

• Common Platform Enumeration (CPE) identifies hardware assets, operating systems, and
software in an organization’s infrastructure. Once identified, this data can then be used to search
other databases to threat-assess the asset.

• Common Weakness Enumeration (CWE) is a common language for dealing with and discussing
the causes of weaknesses in system architecture, design, and code that may lead to vulnerabilities.

• Common Vulnerabilities and Exposures (CVE) is a database of publicly acknowledged
vulnerabilities. Most system administrators and IT professionals will have encountered the
CVE database at some point. Each vulnerability receives a unique ID; for example, most people
will know CVE-2014-0160, also known as Heartbleed. The Heartbleed vulnerability was a
severe security flaw in OpenSSL (a cryptographic software library) that allowed attackers to
steal sensitive information, such as passwords and private keys, from the memory of affected
systems by exploiting a bug in the OpenSSL’s implementation of the transport layer security
(TLS)/datagram transport layer security (DTLS) heartbeat extension.

The scanning tools 291

• Common Vulnerability Scoring System (CVSS) is a method that helps capture the characteristics
of a vulnerability to produce a normalized numerical score, which can then be used to describe
the impact of a vulnerability, for example, low, medium, high, and critical.

• Extensible Configuration Checklist Description Format (XCCDF) is an XML format for
describing security checklists. It can also be used for configuration and benchmarks and
provides a common language for all the parts of SCAP.

• Open Checklist Interactive Language (OCIL) is a framework for expressing questions to an
end user and the procedures to process the responses in a standardized way.

• Open Vulnerability and Assessment Language (OVAL) is defined in XML and aims to
standardize the transfer of security content across all of the tools and services offered by NIST,
the MITRE Corporation, the United States Computer Emergency Readiness Team (US-CERT),
and the United States Department of Homeland Security (DHS).

• Trust Model for Security Automation Data (TMSAD) is an XML document that aims to define
a common trust model that can be applied to the data being exchanged by all components that
make up SCAP.

As you can imagine, thousands of man-years have gone into producing SCAP and its components
to make its foundation. Some of the projects have been around in one form or another since the
mid-90s, so they are well-established and considered the de facto standard when it comes to security
best practices; however, I am sure you think that it all sounds very complicated – after all, these are
standards that have been defined and are being maintained by scholars, security professionals, and
government departments.

This is where OpenSCAP comes in. The OpenSCAP project, maintained by Red Hat and certified by
NIST for supporting the SCAP standard, allows you to apply all the best practices we have discussed
using a command-line client.

Note
The automatic remediation scripts in OpenSCAP are a work in progress, and there are known
issues that we will address toward the end of the chapter. Because of this, your output may
differ from that covered in this chapter.

OpenSCAP, like many Red Hat projects, has support for Ansible, and the current release introduces
support for automatically generating Ansible playbooks to remediate non-conformance discovered
during an OpenSCAP scan.

The next two tools we will be looking at will be scanning our WordPress site, starting with WPScan.

Hardening Your Servers Using Ansible292

WPScan

The second tool we will be running is called WPScan and we will use it to scan our WordPress site.
WPScan is a command-line tool that can perform various security assessments and vulnerability
tests on WordPress installations. It can detect common configuration errors, outdated themes, weak
passwords, and other potential risks. WPScan is easy to install – especially as we will be using the
container version and running it using Docker, which we will also be going for the third and final
tool, OWASP ZAP.

OWASP ZAP

Web vulnerabilities such as SQL injection, cross-site scripting, broken authentication, and insecure
deserialization can threaten our WordPress site’s security and quality. To help identify and prioritize
such vulnerabilities, we can use OWASP ZAP. This tool, the third and final one we will cover in the
chapter, generates reports, alerts, and graphs that assist us in visualizing and addressing the findings.
Moreover, OWASP ZAP is user-friendly and easy to install, making it a valuable resource for enhancing
our site’s security and overall quality.

The playbook
We will split the playbook into a few different roles to run the various scanning tools that will be
running in the chapter – as you can see from the site.yml file, we are adding some conditions to
the roles containing our tasks. The start of the file looks like all of the other playbook files we have
been running:

- name: "Scan our WordPress Ansible Playbook and stack"
 hosts: ansible_hosts
 gather_facts: true
 become: true
 become_method: "ansible.builtin.sudo"
 vars_files:
 - 'group_vars/common.yml'

As mentioned, roles are where this playbook starts to differ from the previous playbooks we have
been running up to this point in the book.

As you can see from the following source, we are defining tags alongside the roles themselves:

 roles:
 - { role: 'common', tags: ['openscap','scan'] }
 - { role: 'docker', tags: ['docker','scan'] }

The playbook 293

As you can see, we are using the openscap, scan, and docker tags followed by wordpress,
which used the roles directly from Chapter 5, Deploying WordPress:

 - { role: 'stack_install', tags: ['wordpress'] }
 - { role: 'stack_config', tags: ['wordpress'] }
 - { role: 'wordpress', tags: ['wordpress'] }

Finally, we have roles that run scans and openscap:

 - { role: 'scan', tags: ['scan'] }
 - { role: 'openscap', tags: ['openscap'] }

So, what does this mean? Well, later in the chapter, when it comes to running the playbook, we will
only be running specific roles; for example, to run OpenSCAP, we will use the following commands:

$ ansible-playbook -i hosts site.yml --tags "openscap" --extra-vars
"scap_options_remediation=true"
$ ansible-playbook -i hosts site.yml --tags "openscap"

When running the first command, it will run just the common and openscap roles and run the
remediation Ansible Playbook and bash script, both of which will be automatically generated during
the initial scan – it will also download a copy of the results, an implementation guide, a copy of the
playbook, and a copy of the bash scripts.

The second of the two commands will rerun the scan host and download a copy of the results again.

Once we have finished running OpenSCAP, we will then redeploy our host and run the following:

$ ansible-playbook -i hosts site.yml --tags "wordpress"

This, as I am sure you will have guessed, will run the three wordpress roles. Then, with WordPress
installed, we can run the following:

$ ansible-playbook -i hosts site.yml --tags "scan"

This will execute the common, docker, and scan roles.

We can also run these commands to run just one of the two scanning tools that the scan role runs:

$ ansible-playbook -i hosts site.yml --tags "scan" --extra-vars "scan_
types=zap"
$ ansible-playbook -i hosts site.yml --tags "scan" --extra-vars "scan_
types=wpscan"

But we are getting ahead of ourselves; let’s work our way through the preceding roles before we think
about running the playbook.

Hardening Your Servers Using Ansible294

The common role

This role contains a single task in roles/common/tasks/main.yml, and its only job is to set
a fact containing the current date and time:

- name: "Set a fact for the date"
 ansible.builtin.set_fact:
 the_date: "{{ lookup('pipe', 'date +%Y-%m-%d-%H%M') }}"

You might think, “That seems a little basic.” However, as we will be using the the_date variable
several times throughout the roles in this playbook, we only want it to be generated once as it will be
used to create file and folder names that are then called later in tasks.

If we use {{ lookup('pipe', 'date +%Y-%m-%d-%H%M') }} to insert the date dynamically
as part of other variables and tasks, we need to be cautious. This is because some parts of the playbook
can take several minutes to finish running.

For instance, we may create a file called myfile-2024-02-16-1300.yml at one point in the
playbook. However, if we dynamically set the date and time, and several tasks later, it takes five minutes
for the playbook to get to that task, we could reference a file called myfile-2024-02-16-1305.
yml. This would result in an error as the file does not exist. Therefore, we should only use the date
and time lookup once during the playbook run.

The Docker role

This role contains all of the tasks and variables needed to install and configure Docker on our target
host, much like the roles discussed in Chapter 4, Deploying a LAMP Stack, and Chapter 5, Deploying
WordPress; this role uses the ansible.builtin.apt, ansible.builtin.apt_key, and
ansible.builtin.apt_repository modules to do the following:

1. Download and install the prerequisites required for Docker to run.

2. Add the GNU Privacy Guard (GPG) key for the official Docker advanced packaging tool
(APT) repository.

3. Configure the official Docker APT repository.

4. Install Docker itself along with the Docker command-line tool.

5. Ensure that Docker is running and set to start on boot.

To review the full list of tasks and variables for this role, see the following:

• https://github.com/PacktPublishing/Learn-Ansible-Second-Edition/
blob/main/Chapter14/roles/docker/defaults/main.yml

• https://github.com/PacktPublishing/Learn-Ansible-Second-Edition/
blob/main/Chapter14/roles/docker/tasks/main.yml

https://github.com/PacktPublishing/Learn-Ansible-Second-Edition/blob/main/Chapter14/roles/docker/defaults/main.yml
https://github.com/PacktPublishing/Learn-Ansible-Second-Edition/blob/main/Chapter14/roles/docker/defaults/main.yml
https://github.com/PacktPublishing/Learn-Ansible-Second-Edition/blob/main/Chapter14/roles/docker/tasks/main.yml
https://github.com/PacktPublishing/Learn-Ansible-Second-Edition/blob/main/Chapter14/roles/docker/tasks/main.yml

The playbook 295

Next, we have the roles that install WordPress.

The WordPress roles

As you have already seen from the site.yml file at the start of the Playbook section of this chapter,
here, we are just reusing the roles that we discussed at length in Chapter 5, Deploying WordPress. If
you want to review these, you can see them at https://github.com/PacktPublishing/
Learn-Ansible-Second-Edition/tree/main/Chapter05/roles.

The scan role

As already mentioned, we will be using Docker to run WPScan and OWASP ZAP; this allows us to
reuse the same tasks. Let’s look at roles/scan/tasks/main.yml; first, we need to pull the
Docker image or images:

- name: "Pull the Docker image for the scanning tool"
 community.docker.docker_image:
 name: "{{ item.image }}"
 source: "{{ item.source }}"
 loop: "{{ scan }}"
 when: "item.name in scan_types"
 loop_control:
 label: "{{ item.name }}"

We are switching it up slightly in that we are using loop rather than with_items; this gives more
control over what happens when looping through. In this task, we are using label to show which
of the scanning tools is currently processing.

You may also notice that we have a when condition; this allows us to run both of the scans or just
one of the two by passing in the name of the scan in the scan_types variable. When we look at the
variables in a moment, you will see that by default, we are passing in the names of both scanning tools.

This pattern of loop, loop_control, and when will be repeated throughout all the tasks in this
role. We have a task that will create a folder on the virtual machine; we will be mounting this folder
into the container at runtime so that we can keep a copy of the scan output:

- name: "Create the folder which we will mount inside the container"
 ansible.builtin.file:
 path: "{{ item.log.remote_folder }}"
 state: "directory"
 mode: "0777"
 loop: "{{ scan }}"
 when: "item.name in scan_types"
 loop_control:
 label: "{{ item.name }}"

https://github.com/PacktPublishing/Learn-Ansible-Second-Edition/tree/main/Chapter05/roles
https://github.com/PacktPublishing/Learn-Ansible-Second-Edition/tree/main/Chapter05/roles

Hardening Your Servers Using Ansible296

Now, with the container image and folder created, we can run the scan:

- name: "Run the scan"
 community.docker.docker_container:
 detach: "{{ item.detach }}"
 auto_remove: "{{ item.auto_remove }}"
 name: "{{ item.name }}"
 volumes: "{{ item.log.remote_folder }}:{{ item.container_folder
}}"
 image: "{{ item.image }}"
 command: "{{ item.command }}"
 register: docker_scan
 ignore_errors: true
 no_log: true
 loop: "{{ scan }}"
 when: "item.name in scan_types"
 loop_control:
 label: "{{ item.name }}"

As you can see, everything is being passed to the container as variables; this is how we can run two
very different tools with a single common task, and more so later when we look at the variables.

You will have also noted that we are adding a few options to the end of this task; these are as follows:

• register: Here, we are just registering the output of the task – nothing special here

• ignore_errors: This tells Ansible to continue running should it detect an error; in our case,
the containers we are running will purposely trigger an error code as they have been designed
to halt and not proceed with any further tasks until the scan does not fail

• no_log: This suppresses the output – as we save the output when running the scan, we do
not need the output printed to the terminal when we run the task

As we are registering an output, the next task is a debug line. This follows the same pattern as debug
tasks in other chapters, so we will be moving to the task that downloads a copy of the reports:

- name: "Download the report"
 ansible.builtin.fetch:
 src: "{{ item.log.remote_folder }}{{ item.log.file }}"
 dest: "{{ item.log.local_folder }}"
 flat: true
 mode: "0644"
 loop: "{{ scan }}"
 when: "item.name in scan_types"
 loop_control:
 label: "{{ item.name }}"

The playbook 297

This uses the ansible.builtin.fetch module setting the flat option to true. This option
copies the file rather than the full directory path. The final task removes the container, meaning that
when we next run a scan, it will start from scratch and spawn a new container rather than reusing
the one we have just finished using:

- name: "Remove the scan container"
 community.docker.docker_container:
 name: "{{ item.name }}"
 state: "absent"
 loop: "{{ scan }}"
 when: "item.name in scan_types"
 loop_control:
 label: "{{ item.name }}"

Now that we know what the tasks look like, let us look at the variables, which can be found in roles/
scan/defaults/main.yml. The first variable sets the scan we want to run, and as already
mentioned, this gives the name of the two scans:

scan_types:
 - "{{ common_scan_settings.dict.wpscan }}"
 - "{{ common_scan_settings.dict.zap }}"

Next up in roles/scan/defaults/main.yml, we have a block of variables that could be
commonly used across both scanning tools:

common_scan_settings:
 detach: false
 auto_remove: false
 source: "pull"
 local_folder: "output/"
 report_name: "{{ the_date }}-results-"
 dict:
 wpscan: "wpscan"
 zap: "zap"

Finally, we have the primary scan variable, which is the one we have been looping over; it starts
with WPScan:

scan:
 - name: "{{ common_scan_settings.dict.wpscan }}"
 image: "wpscanteam/wpscan:latest"
 source: "{{ common_scan_settings.source }}"
 detach: "{{ common_scan_settings.detach }}"
 auto_remove: "{{ common_scan_settings.auto_remove }}"
 container_folder: "/tmp/{{ common_scan_settings.dict.wpscan }}/"

Hardening Your Servers Using Ansible298

 command: "--url http://{{ ansible_host }} --enumerate u --plugins-
detection mixed --format cli-no-color --output /tmp/{{ common_scan_
settings.dict.wpscan }}/{{ common_scan_settings.report_name }}{{
common_scan_settings.dict.wpscan }}.txt"
 log:
 remote_folder: "/tmp/{{ common_scan_settings.dict.wpscan }}/"
 local_folder: "{{ common_scan_settings.local_folder }}"
 file: "{{ common_scan_settings.report_name }}{{ common_scan_
settings.dict.wpscan }}.txt"

The block that follows is the one for OSWAP ZAP:

 - name: "{{ common_scan_settings.dict.zap}}"
 image: "ghcr.io/zaproxy/zaproxy:stable"
 source: "{{ common_scan_settings.source }}"
 detach: "{{ common_scan_settings.detach }}"
 auto_remove: "{{ common_scan_settings.auto_remove }}"
 container_folder: "/zap/wrk/"
 command: "zap-baseline.py -t http://{{ ansible_host }} -g gen.conf
-r {{ common_scan_settings.report_name }}{{ common_scan_settings.dict.
zap }}.html"
 log:
 remote_folder: "/tmp/{{ common_scan_settings.dict.zap }}/"
 local_folder: "{{ common_scan_settings.local_folder }}"
 file: "{{ common_scan_settings.report_name }}{{ common_scan_
settings.dict.zap }}.html"

As you can see, we pass in the different container images and commands to run the scan while using the
same variables. Because of this, we could keep the tasks used in the role completely neutral, meaning
that we didn’t have to consider anything custom to the tool we were running.

That concludes the scan role, leaving us with, as I am sure you will have already guessed from how long
the tool explanation was at the start of the chapter, the most complex role in the playbook: OpenSCAP.

The OpenSCAP role

When writing a playbook, it is essential to know how the tool you are automating works; given that
OpenSCAP is a little complex, let’s review the steps needed to manually run a scan and remediate the
problems it finds using an automatically generated Ansible playbook and a shell script.

Note
While the commands to run OpenSCAP follow, you do not need to follow along; these are
provided to illustrate the process we need to follow in our Playbook role.

The playbook 299

First, we need to download and install OpenSCAP itself, along with a few tools we will also need:

$ sudo apt-get install unzip curl libopenscap8

Next up, we need to download the actual content – these definitions cover several different operating
systems and various levels of compliance. The GitHub repository for this content can be found at
https://github.com/ComplianceAsCode/content, and at the time of writing, the
current release is 0.1.71.

Get the release URL for the zip file, which contains the files we need from the releases page, then
download and unzip on the host:

$ wget https://github.com/ComplianceAsCode/content/releases/download/
v0.1.71/scap-security-guide-0.1.71.zip
unzip scap-security-guide-0.1.71.zip

Now that we have OpenSCAP and the definition files installed, we can get some information on what
is available for our Ubuntu 22.04 operating system:

$ sudo oscap info --fetch-remote-resources scap-security-guide-0.1.71/
ssg-ubuntu2204-ds.xml

This will give us the name of the profile we want to use; in our case, it is xccdf_org.ssgproject.
content_profile_cis_level1_server. Once we have this, we can run the scan itself:

$ oscap xccdf eval --profile xccdf_org.ssgproject.content_profile_cis_
level1_server --results-arf result.xml --report report.html scap-
security-guide-0.1.71/ssg-ubuntu2204-ds.xml

This will generate two output files: an HTML copy of a report containing everything that needs fixing
in a nicely digestible format we can read, and a second XML file containing the same information in
a format OpenSCAP can read.

We can then take the XML file and generate a more detailed guide on how we could resolve the issues
found by running the following:

$ sudo oscap xccdf generate guide --profile xccdf_org.ssgproject.
content_profile_cis_level1_server scap-security-guide-0.1.71/
ssg-ubuntu2204-ds.xml > guide.html

However, as this book is about Ansible, it would be better to have a Playbook to fix as many of the
issues as possible, and running the following command will give us just that:

$ sudo oscap xccdf generate fix --fetch-remote-resources --fix-type
ansible --result-id "" result.xml > playbook.yml

https://github.com/ComplianceAsCode/content

Hardening Your Servers Using Ansible300

Finally, not everything can be resolved using the Playbook method, so having a bash script to fix any
issues that can’t be resolved by running the playbook is also a great idea as it will mean less manual
work for us to do:

$ sudo oscap xccdf generate fix --fetch-remote-resources --fix-type
bash --result-id "" result.xml > bash.sh

Now we have the Playbook and bash script; we need to run them, copy the playbook to our local
machine, and run it using the following:

$ ansible-playbook -i hosts --become -become-method=sudo output/
ansiblevm-playbook.yml

Then we go back to the virtual machine, and run the bash script using the following:

$ sudo bash bash.sh

You will have seen a lot of output, but if everything goes as planned when you rerun the scan, you
should see a lot of issues being reported.

Note
The code in the repo contains the variables and tasks for a feature we will not cover here, as
the content we are downloading from GitHub can take up a lot of space on your drive. These
tasks are included to remove any unneeded files.

So, now that we have an idea of the steps we need to automate, let’s dive straight in.

First, let’s look at the variables, which can be found in roles/openscap/default/main.yml,
and that we will be using within our tasks.

Start with the option that, if set to true, will execute the remediation Playbook and Bash script:

scap_options_remediation: false

Next, we have the packages needed to run OpenSCAP and OpenSCAP itself:

scap_packages:
 - "unzip"
 - "curl"
 - "libopenscap8"

The playbook 301

Then we have information to download the content from GitHub; note that we are passing the API
URL and not the direct download link (more on why later in the chapter):

openscap_download:
 openscap_github_release_api_url: "https://api.github.com/repos/
ComplianceAsCode/content/releases/latest"
 dest: "/tmp/scap-security-guide"

Now we have a long list of filenames and details on the profile we need to use:

openscap_scan:
 ssg_file_name: "{{openscap_download.dest}}/ssg-{{ ansible_facts.
distribution | lower }}{{ ansible_facts.distribution_version |
replace('.','') }}-ds.xml"
 profile_search: "cis_level1_server"
 output_dir: "/tmp/"
 output_file_xml: "{{ inventory_hostname }}-result.xml"
 output_file_html: "{{ inventory_hostname }}-report.html"
 output_file_guide: "{{ inventory_hostname }}-guide.html"
 output_file_playbook: "{{ inventory_hostname }}-playbook.yml"
 output_file_bash: "{{ inventory_hostname }}-bash.sh"
 local_output_dir: "output/{{ the_date }}-openscap-results"

Notice that we are trying not to hardcode any values; for example, when referring to the operating
system, we use {{ ansible_facts.distribution | lower }}{{ ansible_facts.
distribution_version | replace('.','') }}, which, in our case, gives us ubuntu2204.
This means that if OpenSCAP supports it, we can run our Playbook on other Ubuntu distributions
without making any changes.

The tasks that use these variables can be found in roles/openscap/tasks/main.yml; we
begin with two tasks that install OpenSCAP, the first of which makes sure that the APT cache and
our operating system are both up to date:

- name: "Update apt cache and upgrade packages"
 ansible.builtin.apt:
 name: "*"
 state: "latest"
 update_cache: "yes"

The tasks immediately after installing OpenSCAP itself and the other packages we need:

- name: "Install common packages"
 ansible.builtin.apt:
 state: "present"
 pkg: "{{ scap_packages }}"

Hardening Your Servers Using Ansible302

Now, we create the directory where we will be storing the OpenSCAP content we will be downloading
from GitHub:

- name: "Create the directory to store the scap security guide
content"
 ansible.builtin.file:
 path: "{{ openscap_download.dest }}"
 state: "directory"
 mode: "0755"

With our destination folder in place, we can now download the content and unarchive it:

- name: "Download the latest scap security guide content"
 ansible.builtin.unarchive:
 src: "{{ lookup('url', '{{ openscap_download.openscap_github_
release_api_url }}', split_lines=false) | from_json | json_
query('assets[?content_type==`application/zip`].browser_download_url')
| last }}"
 dest: "{{ openscap_download.dest }}"
 creates: "{{ openscap_download.dest }}/README.md"
 list_files: true
 remote_src: true
 register: scap_download_result

On the face of it, while it looks a little complicated, there is quite a bit going on; let’s break down how
we are getting the value to populate into the src key.

We use Ansible’s lookup plugin to fetch and process data from the GitHub API, giving us the latest
release information for the OpenSCAP Content GitHub repository:

• {{ lookup('url', '{{ openscap_download.openscap_github_release_
api_url }}', split_lines=false) }}: The lookup plugin is being used here
with the url lookup type, which fetches data from the given URL that is specified by the
openscap_download.openscap_github_release_api_url variable, which
points to the API endpoint for the latest release of a GitHub repository (https://api.
github.com/repos/ComplianceAsCode/content/releases/latest). The
split_lines=false parameter ensures that the fetched content is not split into lines,
preserving its JSON structure.

• | from_json: This part of the code takes the output from the lookup plugin, which is
expected to be a JSON string, and converts it into an Ansible data structure (such as a dictionary
or a list) that can be further processed.

https://api.github.com/repos/ComplianceAsCode/content/releases/latest
https://api.github.com/repos/ComplianceAsCode/content/releases/latest

The playbook 303

• | json_query('assets[?content_type==`application/zip`].browser_
download_url'): This uses the json_query filter with a JMESPath expression to query
the converted JSON data. The 'assets[?content_type==`application/zip`].
browser_download_url' query looks for items in the assets array where content_
type is application/zip, and then extracts browser_download_url. This URL is
typically used to directly download the asset from a browser.

• | last: Finally, the last filter is used to get the last URL from the list of URLs returned
by the json_query filter. We are doing this as there might be multiple assets with the
application/zip content type, but we are only interested in the most recent or last one listed.

This means that we do not have to hardcode the version number of the latest release into our Playbook,
which is helpful as the OpenSCAP content repo is updated at least once every few weeks.

The other options we are passing to the ansible.builtin.unarchive module are as follows:

• dest: The destination directory on the target machine where the archive will be extracted
is specified

• creates: This parameter is used as a conditional check to prevent re-downloading and
extracting the archive if a particular file exists

• list_files: When set to true, this option lists all the files in the archive file; we will use
this list to copy the files to our destination folder

• remote_src: Setting this to true indicates that the source archive is located on a remote
server, not on the control machine running Ansible; this is needed to download content directly
from a URL

The following two tasks move the files to the root of openscap_download.dest as they would
have been unarchived to a folder containing the version number – which we don’t want to use, as it
could change between runs:

- name: "Move scap security guide content to the correct location"
 ansible.builtin.shell: "mv {{ openscap_download.dest }}/{{ scap_
download_result.files[0] }}/* {{ openscap_download.dest }}"
 when: scap_download_result.changed
- name: "Remove the downloaded scap security guide content"
 ansible.builtin.file:
 path: "{{ openscap_download.dest }}/{{ scap_download_result.
files[0] }}"
 state: "absent"
 when: scap_download_result.changed

Note that we are only running these tasks when the task that downloads the files has changed.

Hardening Your Servers Using Ansible304

The final bit of information we need before we can run the OpenSCAP scan is which profile to
use. To get this, we need to run the command to print information on the profiles available for our
operating system:

- name: "Get information of the SCAP profiles available for the target
system"
 ansible.builtin.command: "oscap info –profiles –fetch-remote-
resources {{ openscap_scan.ssg_file_name }}"
 register: scap_info

Now that we have the information on the available profiles registered as scap_info, we can filter
this list based on the contents of openscap_scan.profile_search and set a fact:

- name: "Extract profile name based on our selection criteria"
 ansible.builtin.set_fact:
 profile_name: "{{ scap_info.stdout_lines | select('search',
openscap_scan.profile_search) | map('regex_replace', '^(.*?):.*$',
'\\1') | first }}"

With the fact set, we can run the scan itself:

- name: "Run OpenSCAP scan"
 ansible.builtin.command: "oscap xccdf eval --profile {{ profile_
name }} --results-arf {{ openscap_scan.output_dir }}{{ openscap_scan.
output_file_xml }} --report {{ openscap_scan.output_dir }}{{ openscap_
scan.output_file_html }} {{ openscap_scan.ssg_file_name }}"
 ignore_errors: true
 no_log: true
 register: scap_scan

As you can see, we are suppressing the output by using no_log: true; this is because we don’t
really need to see the output at this stage and can ignore errors, like in the previous role where we
ran WPScan and OSWAP ZAP.

Now that we have the output of the scan, we need to create a folder on our Ansible host to copy the
output files to the following:

- name: "Ensure the local output directory exists"
 ansible.builtin.file:
 path: "{{ openscap_scan.local_output_dir }}"
 state: directory
 mode: "0755"
 delegate_to: "localhost"
 become: false

As you can see, we are using delegate_to to ensure that Ansible runs the task on localhost,
and we are telling it not to become a privileged user.

The playbook 305

Now we can fetch the output.xml and report.html files:

- name: "Copy the SCAP report and results file to local machine"
 ansible.builtin.fetch:
 src: "{{ item }}"
 dest: "{{ openscap_scan.local_output_dir }}/"
 flat: true
 mode: "0644"
 with_items:
 - "{{ openscap_scan.output_dir }}{{ openscap_scan.output_file_xml
}}"
 - "{{ openscap_scan.output_dir }}{{ openscap_scan.output_file_html
}}"

Next, we need to generate the guide and remediation files:

- name: "generate SCAP guide"
 ansible.builtin.command: "oscap xccdf generate guide --profile {{
profile_name }} {{ openscap_scan.ssg_file_name }}"
 ignore_errors: true
 register: scap_guide

You may have noticed we are not saving a file here; we are just registering the output. That is because
all of the content for the guide is output to the screen when the command is run, so rather than direct
the output to a file on the virtual machine and copy it, we can capture the output and then create a
file on our local machine that contains this content, essentially a fancy copy + paste from the remote
host to our local one:

- name: "Copy SCAP guide to local machine"
 ansible.builtin.copy:
 content: "{{ scap_guide.stdout }}"
 dest: "{{ openscap_scan.local_output_dir }}/{{ openscap_scan.
output_file_guide }}"
 mode: "0644"
 when: scap_guide is defined
 delegate_to: "localhost"
 become: false

This is then repeated for the remediation Ansible Playbook:

- name: "Generate SCAP fix playbook"
 ansible.builtin.command: "oscap xccdf generate fix --fetch-remote-
resources --fix-type ansible --result-id '' {{ openscap_scan.output_
dir }}{{ openscap_scan.output_file_xml }}"
 ignore_errors: true
 register: scap_playbook

Hardening Your Servers Using Ansible306

- name: "Copy SCAP playbook to local machine"
 ansible.builtin.copy:
 content: "{{ scap_playbook.stdout }}"
 dest: "{{ openscap_scan.local_output_dir }}/{{ openscap_scan.
output_file_playbook }}"
 mode: "0644"
 when: scap_playbook is defined
 delegate_to: "localhost"
 become: false

Then again, for the remediation Bash script:

- name: "Generate SCAP fix bash script"
 ansible.builtin.command: "oscap xccdf generate fix --fetch-remote-
resources --fix-type bash --result-id '' {{ openscap_scan.output_dir
}}{{ openscap_scan.output_file_xml }}"
 ignore_errors: true
 register: scap_bash_script

- name: "Copy SCAP bash script to local machine"
 ansible.builtin.copy:
 content: "{{ scap_bash_script.stdout }}"
 dest: "{{ openscap_scan.local_output_dir }}/{{ openscap_scan.
output_file_bash }}"
 mode: "0644"
 when: scap_bash_script is defined
 delegate_to: "localhost"
 become: false

The remaining tasks in the role deal with the remediation work, starting with the playbook:

- name: "Run the remediation playbook"
 ansible.builtin.command: "ansible-playbook -i {{ inventory_file }}
--become --become-method sudo {{ openscap_scan.local_output_dir }}/{{
openscap_scan.output_file_playbook }}"
 when: scap_options_remediation
 delegate_to: "localhost"
 become: false
 register: remediation_playbook

Then, as we never kept a copy of the bash script on the target virtual machine, we need to copy it
back there:

- name: "Copy the remediation bash script to the target machine"
 ansible.builtin.copy:
 src: "{{ openscap_scan.local_output_dir }}/{{ openscap_scan.

The playbook 307

output_file_bash }}"
 dest: "{{ openscap_scan.output_dir }}"
 mode: "0755"
 when: scap_options_remediation

Once copied, we can run the script:

- name: "Run the remediation bash script"
 ansible.builtin.command: "bash {{ openscap_scan.output_dir }}{{
openscap_scan.output_file_bash }}"
 when: scap_options_remediation
 register: remediation_bash_script

With that task, the role is complete, and we now have all the pieces in place to run our playbook.

Running the playbook

In Chapter 1, Installing and Running Ansible, we covered the installation and usage of Multipass; since
then, we have been launching our local virtual machines using the same commands. In this chapter,
as we need a little more disk space and RAM, we are going to be adding a few extra options when we
launch the virtual machine:

$ multipass launch -n ansiblevm --cloud-init cloud-init.yaml --disk
10G --memory 4G

Once the virtual machine has launched, you can get the IP address of the host by running the following:

$ multipass info ansiblevm

Once you have the IP address, create a copy of hosts.example, calling its hosts and updating
the IP address as we have done in previous chapters. Once your hosts inventory file is in place, we
can start to run the playbook, starting with the OpenSCAP scan:

$ ansible-playbook -i hosts site.yml --tags "openscap" --extra-vars
"scap_options_remediation=true"

As you can see, we are running using the openscap tag and setting the scap_options_
remediation variable to true; if you recall, the default for this variable is false, meaning the
remediation tasks will be executed during this playbook run.

Once completed, you will find several files in the output folder on your local machine; if you
are not following along, then you can find a copy of the output at https://github.com/
PacktPublishing/Learn-Ansible-Second-Edition/tree/main/Chapter14/
examples/01-scap_options_remediation_true.

https://github.com/PacktPublishing/Learn-Ansible-Second-Edition/tree/main/Chapter14/examples/01-scap_options_remediation_true
https://github.com/PacktPublishing/Learn-Ansible-Second-Edition/tree/main/Chapter14/examples/01-scap_options_remediation_true
https://github.com/PacktPublishing/Learn-Ansible-Second-Edition/tree/main/Chapter14/examples/01-scap_options_remediation_true

Hardening Your Servers Using Ansible308

As you can see from the following screen, on the initial run, we had 98 failed results:

Figure 14.1 – The initial results

As we ran the remediation tasks as part of the playbook run, we know that the score should now be
improved, so let’s rerun the playbook – this time skipping the remediation tasks altogether:

$ ansible-playbook -i hosts site.yml --tags "openscap"

Once completed, you should have another folder of results; again, you can view the results at https://
github.com/PacktPublishing/Learn-Ansible-Second-Edition/tree/main/
Chapter14/examples/02-scap_options_remediation_false:

Figure 14.2 – The updated results

As you can see, this has dramatically improved the score, and we only have six failures this time.

Next, we need to install WordPress; let’s start afresh with that. To make a fresh start, run the following
commands to terminate the virtual machine and replace it with a new one:

$ multipass stop ansiblevm
$ multipass delete --purge ansiblevm

https://github.com/PacktPublishing/Learn-Ansible-Second-Edition/tree/main/Chapter14/examples/02-scap_options_remediation_false
https://github.com/PacktPublishing/Learn-Ansible-Second-Edition/tree/main/Chapter14/examples/02-scap_options_remediation_false
https://github.com/PacktPublishing/Learn-Ansible-Second-Edition/tree/main/Chapter14/examples/02-scap_options_remediation_false

Summary 309

$ multipass launch -n ansiblevm --cloud-init cloud-init.yaml --disk
10G --memory 4G
$ multipass info ansiblevm

Update the hosts file with the new IP address and then run the following command to install WordPress:

$ ansible-playbook -i hosts site.yml --tags "wordpress"

With WordPress installed, you can run the WPScan and OSWAP ZAP scans with the following command:

$ ansible-playbook -i hosts site.yml --tags "scan"

Once completed, you will have the scan results in the output folder; you can find examples of the results
at https://github.com/PacktPublishing/Learn-Ansible-Second-Edition/
tree/main/Chapter14/examples. The folder also contains the entire output from each of
the playbook runs so far up to this point in the chapter.

Also, as mentioned at the start of the chapter, you can run each of the scans independently of each
other using the following commands:

$ ansible-playbook -i hosts site.yml --tags "scan" --extra-vars "scan_
types=zap"
$ ansible-playbook -i hosts site.yml --tags "scan" --extra-vars "scan_
types=wpscan"

Once you have finished running the playbooks, you can remove the virtual machine by running
the following:

$ multipass stop ansiblevm
$ multipass delete --purge ansiblevm

With the virtual machine cleaned up, that concludes our look at using Ansible to scan and harden
our server.

Before we move on to the next chapter, I recommend you look at the remediation playbook, which
was generated when we first ran OpenSCAP.

It can be found at https://github.com/PacktPublishing/Learn-Ansible-Second-
Edition/blob/main/Chapter14/examples/01-scap_options_remediation_true/
ansiblevm-playbook.yml, and as you can see, it contains over 4,600 lines of code!

Summary
In this chapter, we generated a playbook to remediate any CIS level-1 non-compliance errors found
during a scan. As well as being cool, it is also convenient if you imagine you are running a few dozen
servers that all need to be compliant and that all need an entire audit history.

https://github.com/PacktPublishing/Learn-Ansible-Second-Edition/tree/main/Chapter14/examples
https://github.com/PacktPublishing/Learn-Ansible-Second-Edition/tree/main/Chapter14/examples
https://github.com/PacktPublishing/Learn-Ansible-Second-Edition/blob/main/Chapter14/examples/01-scap_options_remediation_true/ansiblevm-playbook.yml
https://github.com/PacktPublishing/Learn-Ansible-Second-Edition/blob/main/Chapter14/examples/01-scap_options_remediation_true/ansiblevm-playbook.yml
https://github.com/PacktPublishing/Learn-Ansible-Second-Edition/blob/main/Chapter14/examples/01-scap_options_remediation_true/ansiblevm-playbook.yml

Hardening Your Servers Using Ansible310

You now have the foundations of a playbook that you can use to target those hosts daily, audit them,
and store the results away from the host itself. Also, if you need to, depending on your configuration,
you have a way of automatically resolving any non-conformance found during the scan.

We also ran scans against our WordPress installation and again stored the results away from the host
itself – while the WPScan and OSWAP ZAP scans didn’t include any remediation, you could quickly
review the results and update your WordPress deployment script to remediate the issues raised at
deployment time.

So far, we have been running our Ansible Playbooks from our local machine; in the next chapter, it
is time to move from running our Ansible code from our local machines into the cloud and look at
how we can use Azure DevOps Pipelines and GitHub Actions to execute our playbooks.

15
Using Ansible with GitHub
Actions and Azure DevOps

In this chapter, we will start running Ansible in the cloud instead of our local machines, something
we have been doing up to this point.

First, this chapter will examine two services I often use during my day job:

• Running GitHub Actions

• Running pipelines in Azure DevOps

Before we move on, we will examine tools designed to execute Ansible from a central location in
Chapter 16, Introducing Ansible AWX and Red Hat Ansible Automation Platform.

Neither of the two services we will be looking at has what you would call native support for Ansible;
however, they both provide ephemeral compute resources that can be configured using YAML, which
you can ship alongside your playbook code.

This chapter will cover a more complex playbook in both GitHub Actions and Azure DevOps.
We will also discuss some considerations when running Ansible away from your machine.

So, rather than discussing it anymore, let’s dive straight in and look at GitHub Actions.

Technical requirements
If you are following along with the example code that we will be working through, then you will
need access to a GitHub and an Azure DevOps account, as well as an Azure account since we will be
launching a WordPress instance running in Azure as part of this chapter.

You can find a complete copy of the playbook, GitHub Action config, and Azure DevOps Pipeline
code accompanying this chapter in this book’s GitHub repository at https://github.com/
PacktPublishing/Learn-Ansible-Second-Edition/tree/main/Chapter15.

https://github.com/PacktPublishing/Learn-Ansible-Second-Edition/tree/main/Chapter15
https://github.com/PacktPublishing/Learn-Ansible-Second-Edition/tree/main/Chapter15

Using Ansible with GitHub Actions and Azure DevOps312

GitHub Actions
GitHub Actions is a comprehensive platform for continuous integration (CI) and continuous delivery
(CD) from GitHub. It enables you to automate your build, test, and deployment pipeline while hosting
your code and GitHub’s exhaustive suite of code management tools. Using GitHub Actions, you can
define custom workflows that automatically build and test every pull request made to your repository
or deploy merged pull requests to production.

GitHub Actions offers more than just DevOps functionality as it is closely integrated with GitHub.
This allows you to run workflows in response to other repository events. For instance, you can have
a workflow that adds relevant labels automatically when a new issue is created in your repository.

With GitHub Actions, you’re in control. You can run your workflows using GitHub’s Linux, Windows,
and macOS virtual machines. You can also take full charge and operate self-hosted runners in your
own data center or cloud infrastructure.

We will create a GitHub Action workflow to utilize the Linux agents hosted by GitHub.

Preparation

We need to configure a few things before we can start working through our GitHub Action workflow code:

1. Create a GitHub repository to host our code and workflow.

2. Generate an SSH key pair; this will be used to access our Azure-hosted virtual machine instance
from the GitHub-hosted compute resource when the workflow runs.

3. Configure some repository secrets that will be used in our workflow; these will store things
such as our Azure credentials and the SSH key pair we created.

4. Copy the files from https://github.com/PacktPublishing/Learn-Ansible-
Second-Edition/tree/main/Chapter15 to your new repo and run the workflow.

Let’s look at these steps in more detail.

Creating a repository

Let’s start by creating a repository in GitHub that we will use to host our code and workflow.

First, you need to log into GitHub. Once you’ve logged in, go to Repositories and then click on the New
button; you will be taken to the Create a new repository page, where you need to update the following:

• Owner: Here, you need to select an owner for the repository. This will typically be your
GitHub user; however, if you belong to any organization, you may have the option of creating
the repository under one of those organizations. If you do that, please ensure that you have
permission to do so as we will be spinning up temporary compute resources, which may not
be allowed by your organization’s admins.

https://github.com/PacktPublishing/Learn-Ansible-Second-Edition/tree/main/Chapter15
https://github.com/PacktPublishing/Learn-Ansible-Second-Edition/tree/main/Chapter15

GitHub Actions 313

• Repository name: I recommend using something descriptive, such as
Learn-Ansible-Second-Edition-Chapter15.

• Description: While this is optional, it is always best to add one; for example, let’s add Following
along with Chapter 15 of Learn Ansible.

• Public or Private: I recommend setting your repository’s visibility to private.

You can leave the remaining options as-is and then click on the Create repository button at the end of
the form. Once the repository has been created, you should be presented with a page that looks like this:

Figure 15.1 – Our new repository

Let’s move on to the next step.

Generating the SSH key pair and Azure Service Principle

We need to generate an SSH key pair and an Azure Service Principle before adding secrets to our
newly created repository.

Information
Remember to run the commands in Windows Subsystem for Linux if you’re following along
on a Windows machine.

To do this, open a Terminal and run the following command:

$ ssh-keygen -t rsa -C "learnansible" -f ./id_rsa

When prompted to enter a passphrase, just hit Enter; we don’t want to use one. This should give you
two files: one called id_rsa, which contains the private portion of our key – please keep this private
– and another called id_rsa.pub. As its name implies, it includes the public portion of our SSH key.

Using Ansible with GitHub Actions and Azure DevOps314

Next, we need to generate an Azure Service Principle and grant permissions to our Azure subscription.

From Chapter 7, Ansible Windows Modules, and Chapter 9, Moving to the Cloud, we used the Azure
command-line tool to log in using our Azure credentials. However, when interacting with Azure using
services such as GitHub Actions, we don’t want to use our credentials as they will be locked down
with multi-factor authentication, and you don’t want to hand out your credentials.

To get around this, we can create a service principal and grant it permissions to the Azure subscription
so that it can launch resources from the GitHub Action.

To create the service principle, you need to log into Azure using the Azure CLI by running the
following command:

$ az login

If you are already logged in, run the following:

$ az account list

Both commands will return a list of subscription IDs your account can access. Please make a note of
the ID; we will need it momentarily.

Here’s an example of the sort of output you can expect to see; this is the JSON that is being returned
by the API request that the Azure CLI has made:

{
 "environmentName": "AzureCloud",
 "id": "e80d5ad9-e2c5-4ade-a866-bcfbae2b8aea",
 "isDefault": true,
 "name": "My Subscription",
 "state": "Enabled",
 "tenantId": "c5df827f-a940-4d7c-b313-426cb3c6b1fe",
 "user": {
 "name": "account@russ.foo",
 "type": "user"
 }
}

The information we are after is labeled as id against the subscription to which we would like to grant
the service principal access. Using the preceding example, the command I would need to run would
be as follows:

$ az ad sp create-for-rbac –name sp-learn-ansible –role contributor –
scopes /subscriptions/e80d5ad9-e2c5-4ade-a866-bcfbae2b8aea

When you run this command, replace the subscription ID in the scope with your own.

GitHub Actions 315

The output you get will look something like this; please note it down as you will not be able to retrieve
the password again:

Creating 'contributor' role assignment under scope '/subscriptions/
e80d5ad9-e2c5-4ade-a866-bcfbae2b8aea'
The output includes credentials that you must protect. Be sure
that you do not include these credentials in your code or check
the credentials into your source control. For more information, see
https://aka.ms/azadsp-cli
{
 "appId": "2616e3df-826d-4d9b-9152-3de141465a69",
 "displayName": "sp-learn-ansible",
 "password": "Y4j8Q~gVO*NoTaREalPa55w0rdpP-pdaw",
 "tenant": "c5df827f-a940-4d7c-b313-426cb3c6b1fe"
}

Also, as I am sure you will have already guessed, none of the information in the preceding examples
is valid data, so please use your values in the next section.

GitHub personal access token

There is one more set of credentials we need to generate; because our GitHub repository is set to
private, we need to be able to authenticate to check the code out and write logs back to the repository
during the workflow run. To do this, we will need to generate a personal access token.

A personal access token for GitHub is a secure, revocable, and customizable credential that allows
you to authenticate with GitHub and access its API or command-line tools without using your main
account password.

Rather than documenting the process here, as GitHub is moving from classic to fine-grained tokens
at the time of writing, an up-to-date copy of the documentation can be found at https://docs.
github.com/en/authentication/keeping-your-account-and-data-secure/
managing-your-personal-access-tokens.

For our purposes, you need to name your token, select just your repository, and grant it the following access:

• Contents: Read-only

• Metadata: Read-only; this will be selected automatically once the permission is set

Once you have your token, please note it somewhere secure; it will not be displayed again.

https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/managing-your-personal-access-tokens
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/managing-your-personal-access-tokens
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/managing-your-personal-access-tokens

Using Ansible with GitHub Actions and Azure DevOps316

Adding secrets to the repository

Go back to the repository in GitHub by choosing Settings | Secrets and Variables | Actions. Click
the New repository secret button for each of the secrets listed in the following table. Please make sure
that you call each secret as per the following naming conventions since our workflow code references
these secrets by their name:

Secret Name Secret Content
ARM_CLIENT_ID This is the appId value from when you create the service principle. In this

example, this would be 2616e3df-826d-4d9b-9152-3de141465a69.
ARM_CLIENT_
SECRET

This is the password value that was given when you created the service principle.
In this example, this would be Y4j8Q~gVO*NoTaREalPa55w0rdpP-pdaw.

ARM_SUBSCRIP-
TION_ID

This is your Azure subscription ID; use the one you granted the service principal
access to. In this example, this would be e80d5ad9-e2c5-4ade-a866-
bcfbae2b8aea.

ARM_TENANT_ID This is the ID of the tenant value listed when you created the service principle. In
this example, this would be c5df827f-a940-4d7c-b313-426cb3c6b1fe.

SSH_PRIVATE_KEY Open the id_rsa file in a text editor and copy and paste the contents here.
SSH_PUBLIC_KEY Open the id_rsa.pub file in a text editor and copy and paste the contents here.

GH_PAT This should contain your GitHub personal access token.

Table 15.1 – Information needed for GitHub Actions

Once they have all been added, your Actions secrets and variables page should look something like this:

Figure 15.2 – All of the repository secrets have been added

Now that we have all the basic configurations for the GitHub Action, let’s look at the workflow itself.

GitHub Actions 317

Understanding the GitHub Action workflow

The workflow file, which lives in the .github/workflows/action.yml file, contains, as its
name suggests, the YAML code containing the jobs, steps, and tasks that will be executed during the
workflow run. In our case, the workflow will execute the following two jobs, with each job being
made up of multiple steps:

• Scan the Ansible Playbook:

A. Check out the code.

B. Create a folder to store the scan results.

C. Run a KICS scan on the checked-out code.

D. Upload a copy of the results to GitHub.

Now, if KICS detects a problem with our playbook, it will report an error, and the workflow will stop
here – if everything looks good with the KICS scan, then the workflow will proceed by running the
following job:

• Install and run the Ansible Playbook:

A. Check if a cached version of our Ansible modules and Python packages is available.

B. If not cached, download and install the Ansible Azure modules and the supporting
Python packages.

C. Check out the code.

D. Log into Azure using the Azure CLI and the service principle we created.

E. Set the SSH key.

F. Run the Ansible Playbook, logging the output of the Playbook so that we can store a copy
alongside the scan results in the workflow logs.

G. Upload the Playbook execution summary.

Now that we know what the workflow will do, let’s dive into the code. We’ll start with some
basic configuration:

1. The first line disables a KICS check – while the workflow does not form part of our Playbook,
it is stored in the repository and will be scanned as part of the workflow’s execution:

kics-scan disable=555ab8f9-2001-455e-a077-f2d0f41e2fb9
name: "Ansible Playbook Run"
env:
 FAIL_ON: "medium"
 RESULTS_DIR: "results-dir"

Using Ansible with GitHub Actions and Azure DevOps318

We are also setting the name of the workflow, which is how it will appear in the GitHub web
interface, before finally setting up some variables that we will use during the workflow’s execution.

2. Next up, we have the configuration that defines the workflow that should run; for our needs,
we will run the workflow each time the code is committed to the main branch:

On:
 push:
 branches:
 - main

3. Next up, we must define our first job, which is the one that scans the Playbook code:

jobs:
 scan_ansible_playbook:
 name: "Scan Ansible Playbook"
 runs-on: ubuntu-latest
 defaults:
 run:
 shell: bash

As you can see, we are defining it as scan_ansible_playbook, which runs on the latest
version of the Ubuntu image supplied by GitHub, and the default action for tasks is to run
bash. With the job defined, we can move on to the next steps.

4. We start with the ones that check out the code and create the directory where we are going to
be storing the results of the scan we will be running:

 steps:
 - name: "Checkout the code"
 uses: "actions/checkout@v4"
 with:
 token: "${{secrets.GH_PAT}}"

5. The step downloads a copy of the repository in which the workflow is hosted; as you can see,
we are using ${{secrets.GH_PAT}}. We will look at secret variables a little later. Now,
we must create the folder:

 - name: "Create the folder for storing the scan results"
 run: mkdir -p ${{env.RESULTS_DIR}}

The section step creates a directory whose name is referenced as the RESULTS_DIR environment
variable, which we defined in the top section of the workflow file.

GitHub Actions 319

6. When referencing an environment variable, we use the ${{env.VARIABLE_NAME}} format.
So, in our case, we are using ${{env.RESULTS_DIR}}. In the next step, we have a dedicated
task for running KICS, which is managed and maintained by Checkmarx:

 - name: "Run kics Scan"
 uses: "checkmarx/kics-github-action@v1.7.0"
 with:
 path: "./"
 output_path: "${{env.RESULTS_DIR}}"
 output_formats: "json,sarif"
 fail_on: "${{ env.FAIL_ON }}"
 enable_jobs_summary: true

As you can see, we are instructing the task to output the JSON and SARIF files, SARIF, which
stands for Static Analysis Results Interchange Format, is a standardized JSON-based file
format for the output of static analysis tools that allows you to share and integrate analysis
results between different tools and platforms. The results are outputted to the ${{env.
RESULTS_DIR}} directory we created in the previous step and also for the workflow fail if
the results of the scan contain anything with a severity defined in ${{ env.FAIL_ON }}.
We set this to medium at the start of the workflow file.

7. Now that we have completed the scan, we can review the workflow code for the job that installs
and runs Ansible. This is called run_ansible_playbook:

 run_ansible_playbook:
 name: "Install Ansible and run Playbook"
 runs-on: ubuntu-latest
 needs: scan_ansible_playbook
 defaults:
 run:
 shell: bash

As you can see, the job is defined the same as the first job, with one exception: we have added a
needs line with a value of scan_ansible_playbook. This instructs the job to only run
once scan_ansible_playbook has completed with a successful status.

8. The step of the job checks for the presence of three folders; if they exist, a cached version of
those folders will be used, meaning that once the workflow has been run once, subsequent
executions will be much quicker as we don’t have to install the Ansible Galaxy modules and
their requirements each time the workflow runs:

 steps:
 - name: "Cache Ansible collections and Python packages"
 uses: actions/cache@v4
 with:
 path: |

Using Ansible with GitHub Actions and Azure DevOps320

 ~/.ansible/collections
 ~/.cache/pip
 /home/runner/.local/lib/python3.10/site-packages
 key: ${{ runner.os }}-ansible-collections-and-python-
packages
 restore-keys: |
 ${{ runner.os }}-ansible-collections-and-python-
packages

9. Next up, we have the step that checks out our repo:

 - name: "Checkout the code"
 id: "checkout"
 uses: "actions/checkout@v4"

You might be wondering, “Why do we need to check out the code again? We already did that
during the last job.” This is a great question.

The answer is that the compute resource that ran the job was terminated when the last job
finished running, and all data was lost. When the current job started, a new resource was
launched, and we started again with a completely fresh installation.

10. The next step in the workflow uses the Azure/login@2 task to install the Azure CLI if it’s
not already installed and then log in using the service principal information we defined as
repository secrets earlier in this chapter:

 - name: "Login to Azure using a service principal"
 uses: "Azure/login@v2"
 with:
 creds: '{"clientId":"${{secrets.ARM_CLIENT_
ID }}","clientSecret":"${{secrets.ARM_CLIENT_SECRET
}}","subscriptionId":"${{secrets.ARM_SUBSCRIPTION_ID
}}","tenantId":"${{secrets.ARM_TENANT_ID }}"}'

We need to embed secrets using the ${{ secrets.SECRET_NAME }} format. Here, we
are using the following:

 � ${{secrets.ARM_CLIENT_ID }}

 � ${{secrets.ARM_CLIENT_SECRET}}

 � ${{ secrets.ARM_SUBSCRIPTION_ID }}

 � ${{ secrets.ARM_TENANT_ID }}

Because these are all defined as secrets, the values will never appear in any of the Pipeline run logs.

This means that while we know the values, someone else who has permission to run the workflow
will never need to be told the credentials for our service principle as they can consume the
secrets. They will also never accidentally be exposed to them if they check any logs or try and
output them due to the workflow’s execution as they will be automatically redacted.

GitHub Actions 321

11. The final step before we run Ansible is to add and configure the SSH key pair to our host:

 - name: "Setup SSH key for Ansible"
 id: "add-ssh-key"
 run: |
 mkdir ~/.ssh
 chmod 700 ~/.ssh/
 echo "${{ secrets.SSH_PRIVATE_KEY }}" > ~/.ssh/id_rsa
 chmod 600 ~/.ssh/id_rsa
 echo "${{ secrets.SSH_PUBLIC_KEY }}" > ~/.ssh/id_rsa.
pub
 chmod 644 ~/.ssh/id_rsa.pub
 cat ~/.ssh/id_rsa.pub

12. The SSH key pair is the final piece we needed. Now, we can run Ansible:

 - name: "Run the playbook (with ansible-playbook)"
 id: "ansible-playbook-run"
 continue-on-error: true
 run: |
 ansible-playbook -i inv site.yml 2>&1 | tee ansible_
output.log
 echo "summary<<EOF" >> $GITHUB_OUTPUT
 echo "## Ansible Playbook Output" >> $GITHUB_OUTPUT
 echo "<details><summary>Click to expand</summary>" >>
$GITHUB_OUTPUT
 echo "" >> $GITHUB_OUTPUT
 echo "\`\`\`" >> $GITHUB_OUTPUT
 cat ansible_output.log >> $GITHUB_OUTPUT
 echo "\`\`\`" >> $GITHUB_OUTPUT
 echo "</details>" >> $GITHUB_OUTPUT
 echo "EOF" >> $GITHUB_OUTPUT
 env:
 ANSIBLE_HOST_KEY_CHECKING: "False"

As you can see, there is slightly more to running Ansible here than we have been doing on our local
machines. The reason we are running the Ansible playbook is to capture its output and format the
output so that it can be displayed in the GitHub Actions job log.

Here’s a breakdown of what’s happening:

• Name: This step is named Run the playbook (with ansible-playbook) for
clarity in the workflow’s execution log.

• ID: The step is given an identifier of ansible-playbook-run so that we can refer to this
step’s outputs in the subsequent step.

Using Ansible with GitHub Actions and Azure DevOps322

• Continue on Error: By setting continue-on-error to true, we are allowing the workflow
to continue even if this step encounters an error. This is useful for ensuring that the workflow
can proceed to steps that might, for example, provide diagnostic information or perform cleanup
actions, even if the Ansible playbook fails.

• Run: This key starts a multi-line script block that’s executed in the jobs shell. The script does
the following:

ansible-playbook -i inv site.yml 2>&1 | tee ansible_output.log

This command runs the Ansible playbook defined in site.yml with an inventory file, inv.
The 2>&1 part redirects stderr to stdout, so both standard output and errors from the
ansible-playbook command are piped to the tee command. tee ansible_output.
log writes the output to ansible_output.log and displays it in the workflow’s log for
real-time monitoring.

Subsequent echo commands and cat append a formatted summary of the Ansible output to
the special GITHUB_OUTPUT environment variable. As you may have noticed, we are mostly
using Markdown to format the text.

• Env: The env section defines environment variables for this step. ANSIBLE_HOST_KEY_
CHECKING: "False" disables Ansible’s SSH host key checking. This option is often used
in automated environments to avoid manual interventions.

The final step in our workflow takes the output of the previous step and outputs it to $GITHUB_
STEP_SUMMARY. This is a special variable that’s used by a GitHub Actions workflow to record the
results of a step in the workflow executions log:

 - name: "Publish Ansible Playbook run to Task Summary"
 env:
 SUMMARY: ${{ steps.ansible-playbook-run.outputs.summary }}
 run: |
 echo "$SUMMARY" >> $GITHUB_STEP_SUMMARY

While that completes our workflow code review, one more task happens in the background that we
don’t have to define. As you may recall, in the first step of the run_ansible_playbook job, we
had a step that looked for any caches associated with the workflow. Well, by defining that step, there
is a post-deploy task that runs at the end of the workflow and creates the cache if one doesn’t exist.

Now that we understand our workflow code, let’s check out a copy of our newly created repository.
Copy the code from the example repository and then check in the changes.

GitHub Actions 323

Committing the code

As mentioned previously, before running the workflow, we need to check out the empty repository
we created at the start of this chapter. This will vary depending on how you interact with GitHub. I
use the command line, but you might use the GitHub Desktop application or an IDE such as Visual
Studio Code.

Information
For more information on the GitHub desktop application, see https://desktop.github.
com/. For details on how to configure an SSH connection to GitHub, see https://docs.
github.com/en/authentication/connecting-to-github-with-ssh.

If you want to follow along on the command line, you must update the repository’s name to reflect
your own and ensure you have SSH access to your GitHub repositories:

$ git clone https://github.com/PacktPublishing/Learn-Ansible-Second-
Edition.git
$ cd Learn-Ansible-Second-Edition-Chapter15

Once I was in the folder, I copied across the contents of https://github.com/PacktPublishing/
Learn-Ansible-Second-Edition/tree/main/Chapter15, ensuring that I also copied
the .github folder as this contains the workflow we want to execute.

Once copied, I ran the following commands to add the new files and create the first commit, then pushed:

$ git add .
$ git commit -m "first commit"
$ git push

If everything goes as planned, if you go to your repository and click on the Actions tab, you should
see something like this:

Figure 15.3 – Our first commit is running the GitHub Action

https://desktop.github.com/
https://desktop.github.com/
https://docs.github.com/en/authentication/connecting-to-github-with-ssh.
https://docs.github.com/en/authentication/connecting-to-github-with-ssh.
https://github.com/PacktPublishing/Learn-Ansible-Second-Edition/tree/main/Chapter15
https://github.com/PacktPublishing/Learn-Ansible-Second-Edition/tree/main/Chapter15

Using Ansible with GitHub Actions and Azure DevOps324

Clicking the name of the commit should show you the progress of the workflow:

Figure 15.4 – Viewing the progress of the workflow

Click on the running job – in my example, this is the Install Ansible and Run Playbook job. This will
show you its real-time progress:

Figure 15.5 – Viewing the real-time output

If everything works as planned, the Ansible playbook will run, the Azure resources will be deployed,
and we should have a running WordPress instance.

GitHub Actions 325

Clicking on the Summary link at the top of the page will show you the full output. Here, we’ll see
any warnings or information that was logged during the workflow run, followed by the KICS results:

Figure 15.6 – The KICS scan results

You will also be able to expand the Ansible Playbook Output area and view the logs:

Figure 15.7 – Ansible Playbook Output

Using Ansible with GitHub Actions and Azure DevOps326

Before we remove the Azure resources, let’s see what happens when the scan fails. To do this, open
roles/azure/tasks/main.yml and remove the line that reads as follows (it should be around
line 61):

 security_group: "{{ nsg_output.state.name }}"

Once removed, check in the updated code. This will trigger a new workflow run:

Figure 15.8 – Triggering a second workflow run

As the line we removed will trigger a medium severity rule, our workflow run should fail, as shown here:

Figure 15.9 – Our second workflow run failed due to our change

Once you have finished testing, I recommend logging into Azure and manually deleting the resource
group containing the resources we’ve just launched.

Azure DevOps 327

As you can see, while there are considerations you need to make for your deployments – such as
ensuring all the connectivity and steps are in place to interact with your cloud provider securely – the
general gist and approach to running our Playbooks remains much the same as on our local machine.

The same can also be said about the next tool we will examine, Azure DevOps.

Azure DevOps
The description we used for GitHub Actions also applies to Azure DevOps Pipelines and repositories,
two of the Azure DevOps services we will use in this section. Again, we will use platform-provided
computing resources to run our Ansible Playbook, and many approaches will be the same. So, rather
than covering old ground, let’s start with preparing an Azure DevOps project to host our code and
run our Playbook.

Creating and configuring our project

First, you will need to create an Azure DevOps project. Like our GitHub repository, I’ve called
it Learn-Ansible-Second-Edition-Chapter15:

Figure 15.10 – Our newly created Azure DevOps project

Using Ansible with GitHub Actions and Azure DevOps328

We need to configure a few things before checking our code in and adding our pipeline; the first is
to create a service connection to Azure itself. To do this, click on the Project Settings button, which
can be found at the bottom far left-hand corner of the page.

Once Project Settings is open, in the left-hand menu under Pipelines, click Service connections,
then click the Create service connection button.

Select Azure Resource Manager, then click Next; from here, select Service principal (manual) and
click Next again.

We are taking this approach rather than any of the others, which would automatically create the
service principle for us, as we already have the details of a service principle noted from the GitHub
Actions section.

The following table contains the information you need to enter:

Option Content
Subscription Id This is your Azure subscription ID; use the one you granted the service

principal access to. In this example, this would be e80d5ad9-e2c5-
4ade-a866-bcfbae2b8aea.

Subscription Name Enter the name of your Azure subscription. Since we are going to be refer-
ring to the subscription ID in the pipeline code, this can be set to anything
you like.

Service Principal Id This is the appId value from when you create the service principle.
In this example, this would be 2616e3df-826d-4d9b-9152-
3de141465a69.

Service principal key This is the password value that was given when you created the service
principle. In this example, this would be Y4j8Q~gVO*NoTaREal-
Pa55w0rdpP-pdaw.

Tenant ID This is the ID of the tenant value listed when you created the service
principle. In this example, this would be c5df827f-a940-4d7c-
b313-426cb3c6b1fe.

Service
connection name

Enter azConnection here as this is how we are referencing the connec-
tion in the pipeline code.

Security Ensure that Grant access permission to all pipelines is selected.

Table 15.2 – Information needed for your pipeline in Azure DevOps

Once you’ve entered this information, click the Verify and Save button. This will check the details
you entered are correct and save the service connection.

Azure DevOps 329

Next, we need to install a few extensions from the Visual Studio Marketplace, allowing us to publish
our KICS report and an overview of our Playbook run:

• Markdown Reports: https://marketplace.visualstudio.com/
items?itemName=MasamitsuMurase.publish-markdown-reports

• Sarif Tools : h t t p s : / / m a r k e t p l a c e . v i s u a l s t u d i o . c o m /
items?itemName=sariftools.scans

To enable the extensions on your Azure DevOps organization, follow the preceding URLs and the
instructions when you click the Get it free button.

The final configuration piece is adding a pipeline variable group and secure file. To do this, click on
Pipelines in the left-hand side menu and then click Library. Once on the Library page, click the +
Variable group button.

Name the variable group playbook and enter the following variables:

Name Value
breakSeverity MEDIUM

SSH_PUBLIC_KEY Paste the contents of the id_rsa.pub file here
subscriptionName azConnection – this is the name of the connection we created at the

start of this section

Table 15.3 – Information required for the variable group

Once you have filled in the preceding information, click Save. Once saved, return to the pipeline Library
area and click Secure files; once there, click the + Secure file button and upload the id_rsa file.

We now have all the base configurations ready and can upload our code.

Cloning the repository and uploading the code

Next, we must clone the repository and upload our code, including the azure-pipelines.yml
file we will cover in the next section. To do this, click on Repos in the left-hand side menu; you will
be presented with several ways to clone the repository.

I’ve chosen to clone using SSH again; if you are following along, update the git clone command
to reflect your repository:

$ git clone git@ssh.dev.azure.com:v3/russmckendrick/Learn-Ansible-
Second-Edition-Chapter15/Learn-Ansible-Second-Edition-Chapter15
$ cd Learn-Ansible-Second-Edition-Chapter15

https://marketplace.visualstudio.com/items?itemName=MasamitsuMurase.publish-markdown-reports
https://marketplace.visualstudio.com/items?itemName=MasamitsuMurase.publish-markdown-reports
https://marketplace.visualstudio.com/items?itemName=sariftools.scans
https://marketplace.visualstudio.com/items?itemName=sariftools.scans

Using Ansible with GitHub Actions and Azure DevOps330

I then copied the files across from https://github.com/PacktPublishing/Learn-
Ansible-Second-Edition/tree/main/Chapter15. This time, I didn’t worry about copying
the .github directory as it isn’t required. Once the files were in my locally cloned folder, I ran the
following commands to add the new files and create the first commit, then push:

$ git add .
$ git commit -m "first commit"
$ git push

Unlike when we first checked our code into GitHub, nothing will happen because we haven’t configured
our pipeline yet.

The Azure DevOps pipeline

Our pipeline is defined in the azure-pipelines.yml file, which can be found at the root of our
repository file. Let’s quickly review the content before we create the pipeline using that file.

Information
Structurally, our azure-pipelines.yml file is close to what we have already covered for
GitHub Actions; in fact, you might almost think they are interchangeable and compatible –
however, they aren’t, so please be careful not to mix the two up.

Our pipeline file starts with a basic configuration that instructs the pipeline when to trigger, which
variable group to load, and which underlying image to use. Right at the top, there’s an exclusion rule
for KICS, something we covered in Chapter 13, Scanning Your Ansible Playbooks:

kics-scan disable=3e2d3b2f-c22a-4df1-9cc6-a7a0aebb0c99
trigger:
 - main
variables:
 - group: playbook
pool:
 vmImage: ubuntu-latest

Once the basic configuration is complete, we can start the stages:

1. Our first run is the KICS scan on the code:

 - stage: "scan"
 displayName: "KICS - Scan Ansible Playbook"

https://github.com/PacktPublishing/Learn-Ansible-Second-Edition/tree/main/Chapter15
https://github.com/PacktPublishing/Learn-Ansible-Second-Edition/tree/main/Chapter15

Azure DevOps 331

2. This stage is made up of a single job:

 jobs:
 - job: "kics_scan"
 displayName: "Run KICS Scan"
 pool:
 vmImage: "ubuntu-latest"
 container: checkmarx/kics:debian

3. As you may have noticed, here, we are using the checkmarx/kics:debian container
image to deploy KICS. This will spin up the container and run the following steps from within
it. Our step contains two tasks – the first creates the output folder, checks out the code, and
runs the scan:

 steps:
 - script: |
 mkdir -p $(System.DefaultWorkingDirectory)/output
 /app/bin/kics scan --ci -p ${PWD} -o ${PWD}
--report-formats "all" --ignore-on-exit results
 mv results* $(System.DefaultWorkingDirectory)/
output
 ls -lhat $(System.DefaultWorkingDirectory)/output

4. The second task publishes the content of the output directory, which contains all of our scan
results as a build artifact:

 - task: PublishBuildArtifacts@1
 inputs:
 pathToPublish: $(System.DefaultWorkingDirectory)/
output
 artifactName: CodeAnalysisLogs

5. With the files published, we no longer need the resources that were generated during this stage,
so we can move on to the second stage:

 - stage: "scan_parse"
 displayName: "KICS - Parse Scan Resaults"
 jobs:
 - job: "kics_scan_parse_result"
 displayName: "Check KICS Scan Resaults"
 pool:
 vmImage: "ubuntu-latest"
 steps:

Using Ansible with GitHub Actions and Azure DevOps332

6. As you can see, this stage parses our scan results; the first task we run downloads a copy of the
artifact we uploaded during the last stage:

 - task: DownloadPipelineArtifact@2
 displayName: "Download the Security Scan Artifact
Result"
 inputs:
 artifact: CodeAnalysisLogs

Now that we have the results files, we need to review them to figure out if the Ansible Playbook
should be run or not. This task runs a bash script that reads the JSON results and sets some
pipeline variables to control what happens next.

7. We start the task with some configuration:

 - task: Bash@3
 name: "setvar"
 displayName: "Check for issues in the scan result"
 inputs:
 failOnStderr: true
 targetType: "inline"
 script: |

8. Now, we have the script itself, which starts by setting some local variables and printing some
results out to the screen using the echo command. These will appear in our pipeline run:

 resultsFilePath="$(Pipeline.Workspace)/
results.json"
 BREAK=$(breakSeverity)
 echo "Checking for severity level: $BREAK"
 noIssues=$(jq --arg BREAK "$BREAK" '.severity_
counters[$BREAK] // 0' $resultsFilePath)
 echo "Number of issues found: $noIssues"

Then, we create a group, which means that when we review the pipeline output, the following
information will be minimized, making it easier to read.

9. In the group, we have an if statement that states that if less than (-lt) 1 issues are detected
(that is, zero issues), then the output variable, OK_TO_DEPLOY, is set to true:

 echo "##[group]Checking the scan output"
 if ["$noIssues" -lt 1]; then
 echo "##vso[task.setvariable variable=OK_
TO_DEPLOY;isOutput=true]true"
 echo "##vso[task.logissue type=warning]No
issue found. Progressing with pipeline."

Azure DevOps 333

10. If this condition is not met – that is, there are one or more issues – then OK_TO_DEPLOY is
set to false and an error is logged:

 else
 echo "##vso[task.setvariable variable=OK_
TO_DEPLOY;isOutput=true]false"
 echo "##vso[task.logissue type=error]
Pipeline failed due to $noIssues issue(s) found."
 fi
 echo "##[endgroup]"

11. Logging the error will stop the remainder of the pipeline from running. The next and final
stage runs the Ansible Playbook. It has a dependency on the previous stage being successfully
executed and OK_TO_DEPLOY being set to true:

 - stage: "run_ansible"
 displayName: "Run Ansible"
 condition: |
 and
 (
 succeeded(),
 eq(dependencies.scan_parse.outputs['kics_scan_parse_
result.setvar.OK_TO_DEPLOY'], 'true')
)
 jobs:
 - job: "ansible_install"
 displayName: "Ansible"
 steps:

12. The first task logs us into Azure and sets the service principle details as environment variables
for use in a later task:

 - task: AzureCLI@2
 displayName: 'Azure CLI'
 inputs:
 azureSubscription: '$(subscriptionName)'
 addSpnToEnvironment: true
 scriptType: 'bash'
 scriptLocation: 'inlineScript'
 inlineScript: |
 echo "##vso[task.setvariable variable=ARM_
SUBSCRIPTION_ID]$(az account show --query="id" -o tsv)"
 echo "##vso[task.setvariable variable=ARM_
CLIENT_ID]${servicePrincipalId}"

Using Ansible with GitHub Actions and Azure DevOps334

 echo "##vso[task.setvariable variable=ARM_
CLIENT_SECRET]${servicePrincipalKey}"
 echo "##vso[task.setvariable variable=ARM_
TENANT_ID]${tenantId}"

13. Next up, we need to add our SSH key to our environment. This uses the secure file we
uploaded earlier:

 - task: InstallSSHKey@0
 displayName: "Add SSH Key"
 inputs:
 sshKeySecureFile: "id_rsa"
 knownHostsEntry: "azure.devops"

14. Now, we need to add the public portion of the SSH key, install the bits we need to run the Ansible
Playbook, and then actually run it, remembering to add the details for the service principle:

 - task: Bash@3
 name: "ansible"
 displayName: "Run Ansible"
 env:
 AZURE_CLIENT_ID: $(ARM_CLIENT_ID)
 AZURE_SECRET: $(ARM_CLIENT_SECRET)
 AZURE_TENANT: $(ARM_TENANT_ID)
 AZURE_SUBSCRIPTION_ID: $(ARM_SUBSCRIPTION_ID)
 ANSIBLE_HOST_KEY_CHECKING: "False"
 inputs:
 targetType: "inline"
 script: |

15. With the environment ready, we can run the script, which starts by adding the id_rsa.pub
file and adding the right permissions:

 echo "##[group]Add SSH key"
 echo "$(SSH_PUBLIC_KEY)" > ~/.ssh/id_rsa.
pub
 chmod 644 ~/.ssh/id_rsa.pub
 echo "##[endgroup]"

16. The next part of the script installs the Azure Ansible collection from Ansible Galaxy and installs
the requirements. We are using --force here to ensure that the latest copy of all the collection
is pulled down from Ansible Galaxy:

 echo "##[group]Install the Azure Ansible
Collection"
 ansible-galaxy collection install --force
azure.azcollection

Azure DevOps 335

 pip3 install -r ~/.ansible/collections/
ansible_collections/azure/azcollection/requirements-azure.txt
 echo "##[endgroup]"

17. With those installed, we can now run the playbook; we are taking a similar approach to running
the playbook as we did for our GitHub Action:

 echo "##[group]Run the Ansible Playbook"
 ansible-playbook -i inv site.yml 2>&1 |
tee $(System.DefaultWorkingDirectory)/ansible_output.log
 echo "##[endgroup]"

18. The final part of our script takes our Ansible output and creates a Markdown file called summary.
md:

 echo "##[group]Create the mardown file for the
Ansible Playbook Output"
 mkdir -p $(System.
DefaultWorkingDirectory)/markdown
 echo "# Ansible Playbook Output" >
$(System.DefaultWorkingDirectory)/markdown/summary.md
 echo "<details><summary>Click to expand</
summary>" >> $(System.DefaultWorkingDirectory)/markdown/summary.
md
 echo "" >> $(System.
DefaultWorkingDirectory)/markdown/summary.md
 echo "\`\`\`" >> $(System.
DefaultWorkingDirectory)/markdown/summary.md
 cat $(System.DefaultWorkingDirectory)/
ansible_output.log >> $(System.DefaultWorkingDirectory)/
markdown/summary.md
 echo "\`\`\`" >> $(System.
DefaultWorkingDirectory)/markdown/summary.
md echo "</details>" >> $(System.
DefaultWorkingDirectory)/markdown/summary.md
 echo "##[endgroup]"

19. The final task of the pipeline is to upload a copy of the markdown/summary.md file to
our pipeline:

 - task: PublishMarkdownReports@1
 name: "upload_ansible_output"
 displayName: "Upload Ansible Output"
 inputs:
 contentPath: "$(Build.SourcesDirectory)/markdown"
 indexFile: "summary.md"

With that, our pipeline is complete. So, now that we know what it does, let’s add it to our Azure DevOps
project and run it for the first time.

Using Ansible with GitHub Actions and Azure DevOps336

If you click on Pipelines in the left-hand side menu and then click the Create Pipeline button, you
will be asked, Where is your code?. select Azure Repos Git, and then your repository – the azure-
pipelines.yml file will be loaded and you will have the option to Run or Save. We’ll click Run.

You will be presented with something like the following screen:

Figure 15.11 – Running the pipeline for the first time

However, not is all as it seems! If you click on the first stage, you will be presented with the following.
The pipeline needs permissions to access the variable group we created:

Figure 15.12 – Granting the permissions for the variable group

Click View and follow the onscreen instructions to grant the permissions. The KICS scan will run,
and the stage will be complete. It will then move on to the Parse Scan Results stage, which should
be completed again.

Azure DevOps 337

If you go back to the summary, you’ll see that more permissions are required, this time to access the
secure file we uploaded:

Figure 15.13 – Grant the permissions for the secure file

Again, click View and follow the onscreen instructions to grant permission. This should be the last permission
that needs to be given. From now on, when we run the pipeline, permissions will already be given.

If you click on the Run Ansible stage, you can keep track of the Playbook run. If everything goes as
planned, returning to the summary should show you something like the following:

Figure 15.14 – Everything worked!!!

Using Ansible with GitHub Actions and Azure DevOps338

Clicking on Markdown reports will show the result of the Playbook run:

Figure 15.15 – The Markdown report

Clicking Scans will show you the results of the KICS scan:

Figure 15.16 – The scan report

Summary 339

Like GitHub Actions, let’s see what happens when the scan fails. Again, open roles/azure/tasks/
main.yml and remove the line that reads as follows (it should be around line 61):

 security_group: "{{ nsg_output.state.name }}"

Once removed, check in the updated code. This will trigger a new workflow run:

Figure 15.17 – The pipeline has errored

As you can see, we have a message stating Pipeline failed due to 1 issue(s) found, and the Run Ansible
stage was skipped as we didn’t meet the conditions for it to run.

Once you have finished testing, log into Azure and manually delete the resource group containing
the resources we have just launched.

Summary
In this chapter, we looked at running our Ansible Playbooks using the compute resources GitHub
and Azure DevOps provide. We discovered that this is great for running our playbook code as we can
ship code that defines the configuration for the computing resources alongside our Playbook code.

We also learned that by using the built-in tools, we can securely configure our environment so as
not to expose secrets, such as our service principle credentials, to other users who have access to run
the playbook.

The only downside is that we had to create the logic that runs the playbook. Wouldn’t it be great to use
a tool designed to centrally run our Playbooks from a single user interface? Well, in our next chapter,
we will cover exactly that – so if you like the approach we have taken so far, read on.

Using Ansible with GitHub Actions and Azure DevOps340

Further reading
To learn more about the topics that were covered in this chapter, take a look at the following resources:

• GitHub Actions: https://docs.github.com/en/actions

• Azure DevOps: https://azure.microsoft.com/en-gb/products/devops

https://docs.github.com/en/actions
https://azure.microsoft.com/en-gb/products/devops

16
Introducing Ansible AWX

and Red Hat Ansible
Automation Platform

This chapter will examine two graphical interfaces for Ansible: the commercial Red Hat Ansible
Automation Platform and the open source Ansible AWX – or to give it its full name, Ansible
Web eXecutable.

This chapter will focus on the open source Ansible AWX because it is freely available and, outside of
the resources required to run the tool, requires no upfront costs or contracts.

We will discuss how to install Ansible AWX and why you would want to use it. After all, we are 16
chapters into our journey with Ansible and haven’t needed to use a graphical interface yet – so why now?

By the end of this chapter, we will have done the following:

• Discussed Red Hat Ansible Automation Platform versus Ansible AWX

• Installed and configured Ansible AWX

• Deployed our Microsoft Azure cloud application using Ansible AWX

Technical requirements
While we will only deploy Ansible AWX in this chapter, its requirements are complex. Because of
this, rather than running it locally, I will provide instructions for deploying a Kubernetes cluster in
Microsoft Azure using the AKS service.

If you are following along, you will need access to a Microsoft Azure account and have the Azure CLI
installed. For more information, see Chapter 9, Moving to the Cloud.

Introducing Ansible AWX and Red Hat Ansible Automation Platform342

Red Hat Ansible Automation Platform versus AWX
Red Hat Ansible Automation Platform and Ansible AWX are two powerful tools Red Hat provides
for managing and streamlining your Ansible deployments. Both tools offer web-based interfaces that
simplify the execution and management of Ansible playbooks, making it easier for users to leverage
Ansible’s automation capabilities without requiring extensive command-line knowledge.

Red Hat Ansible Automation Platform, formerly known as Ansible Tower, is a comprehensive
enterprise-grade solution that goes beyond the capabilities of Ansible Tower. It integrates various
components to create a cohesive and expansive automation environment. Some key features of Red
Hat Ansible Automation Platform are as follows:

• Centralized control: Red Hat Ansible Automation Platform provides a unified web-based
dashboard for defining, scheduling, and monitoring automation jobs from a central location.

• Role-based access control (RBAC): With granular access, you can ensure that your users have
appropriate access to automation resources, enhancing security and control.

• Workflow management: Create complex workflows that combine multiple playbooks, job
templates, and inventory sources, as well as supporting dependencies, conditionals, and approvals.

• Scalability and flexibility: Automation can be scaled to meet the needs of large enterprises,
supporting diverse infrastructures, including cloud platforms, containers, and network devices.

• Content collections: Access pre-packaged modules and plugins that have been expertly curated
to expedite the implementation of automation projects.

• Automation Hub: This centralized repository hosts certified, partner-supported, and community-
driven content. It fosters collaboration and accessibility to high-quality resources.

• Automation analytics: Utilize sophisticated analytics tools to scrutinize performance, utilization,
and various KPIs across different clusters and instances.

• Integration with Red Hat ecosystem: Seamless integration with other Red Hat products such
as Red Hat Insights and Red Hat Satellite, fostering a cohesive environment.

On the other hand, Ansible AWX is the open source upstream project for Red Hat Ansible Automation
Platform. It provides many of the platform’s core features but follows a community-driven development
model with more frequent releases. While Ansible AWX offers a solid foundation for automation,
Red Hat Ansible Automation Platform may need some enterprise-specific features and integrations.

The choice between Red Hat Ansible Automation Platform and Ansible AWX depends on your
organization’s needs and requirements. Red Hat Ansible Automation Platform is ideal for enterprises
seeking a robust, feature-rich solution with commercial support and seamless integration with the
Red Hat ecosystem. It offers advanced features and is designed to handle complex automation needs
across diverse environments.

Ansible AWX 343

On the other hand, Ansible AWX is a suitable choice for organizations that prefer an open source
solution and are comfortable with community-driven support. It provides a solid foundation for
automation and benefits from more frequent updates and community contributions.

Both Red Hat Ansible Automation Platform and Ansible AWX allow organizations to automate at
scale, reduce manual efforts, and improve the consistency and reliability of their IT operations. They
provide user-friendly interfaces and enable effective team collaboration, increasing efficiency and
improved compliance.

Ansible AWX
To say that installing Ansible AWX is complicated is an understatement. Since Red Hat first open
sourced the project, deploying it has always been difficult.

Luckily, the first release was containerized, and it has slowly transitioned from running in a small
number of containers to being able to run in a Kubernetes cluster and managed by the AWX Operator.

Information
A Kubernetes Operator uses custom resources to automate application and component management
in Kubernetes clusters. It extends the cluster’s behavior without modifying the Kubernetes code
itself. Operators can handle various tasks, such as deployment, backups, upgrades, and service
discovery, reducing manual intervention and increasing the system’s reliability.

Let’s start by launching our own Kubernetes in Microsoft Azure and configuring our local machine
so that we can deploy and configure the AWX Operator.

Deploying and configuring the Ansible AWX Operator

The first thing we need to do is deploy the Kubernetes cluster. To do this, we will use the Azure CLI
to launch an AKS cluster. To start with, we need to set some variables on the command line to define
the resource names, which Azure region we would like the cluster to deploy into, and how many
compute nodes we require:

$ AKSLOCATION=uksouth
$ AKSRG=rg-awx-cluster
$ AKSCLUSTER=aks-awx-cluster
$ AKSNUMNODES=2

Next up, let’s create the Azure Resource Group we will be deploying our cluster into; this will make it
easy to remove once we have finished as we need to delete the group and its contents:

$ az group create --name $AKSRG --location $AKSLOCATION

Introducing Ansible AWX and Red Hat Ansible Automation Platform344

With the resource group in place, we can now launch the AKS cluster:

$ az aks create \
 --resource-group $AKSRG \
 --name $AKSCLUSTER \
 --node-count $AKSNUMNODES \
 --generate-ssh-keys

This will take around 5 minutes to deploy. If you don’t have the kubectl command installed on
your local machine, then you can run the following command to have the Azure CLI install it for you:

$ az aks install-cli

Finally, with kubectl installed, you can configure the credentials and contexts by running the
following command:

$ az aks get-credentials --resource-group $AKSRG --name $AKSCLUSTER

With our cluster now launched and available, we must install and configure the AWX Operator
using Helm.

Information
Helm is a package manager that simplifies Kubernetes deployment by packaging applications
as charts and defining necessary resources and configurations. For more details and installation
instructions, see https://helm.sh/.

First, we need to enable the AWX repository and pull it down to our local machine:

$ helm repo add awx-operator https://ansible.github.io/awx-operator/
$ helm repo update

Now, we need to deploy the AWX Operator to our cluster:

$ helm install -n awx --create-namespace awx awx-operator/awx-operator
--version 2.12.1

It will take a minute or two to deploy.

Please note
You might have noticed that the preceding command specifies an explicit version number
because there are some known bugs with the current release, which is a major update from
the version we are using.

https://helm.sh/

Ansible AWX 345

You can run the following command to check the status of the deployment:

$ kubectl get pods -n awx

Once everything is ready, you should see something like the following screen:

Figure 16.1 – Deploying the AWX Operator

With the AWX Operator deployed with our cluster, we can request that the operator now deploy AWX
itself. To do this, run the following command:

$ kubectl apply -f https://raw.githubusercontent.com/PacktPublishing/
Learn-Ansible-Second-Edition/main/Chapter16/awx/ansible-awx.yaml

This command simply passes the following YAML configuration to the operator to instruct it how to
deploy our AWX installation:

apiVersion: awx.ansible.com/v1beta1
kind: AWX
metadata:
 name: ansible-awx
 namespace: awx
spec:
 service_type: loadbalancer

As you can see, there’s not much to it, so please don’t consider this a production-ready AWX instance.
All we are instructing the AWX Operator to do is deploy AWX and expose the service via a load
balancer so that we can connect to it.

Now, we wait; our AWX installation will take 15 to 20 minutes to deploy the application and bootstrap itself.

You can check the status of the containers and the load balancer service by running the following code:

$ kubectl get pods -n awx
$ kubectl get svc ansible-awx-service -n awx

Introducing Ansible AWX and Red Hat Ansible Automation Platform346

Once the basics have been deployed, you should see something like the following. These are the
containers that service the AWX application. As you can see, there are ones for the database, task
runner, and the web interface:

Figure 16.2 – Checking the status of our AWX deployment

Once your deployment looks like the preceding output, the final step is to grab the admin password.
To do this, run the following command – the secret will always be named ansible-awx-admin-
password:

$ kubectl get secret -n awx ansible-awx-admin-password -o jsonpath="{.
data.password}" | base64 –decode

This will grab the base64 encoded secret from the Kubernetes secret store and decode it for you – it
should look like this:

Figure 16.3 – Grabbing the admin password

As you may have noticed in the preceding output, there is a % icon at the end – this is not part of the
password, and you need everything before that.

Please make a note of the password and the EXTERNAL-IP value from the previous commands as
this tells you where to go to log in and what credentials to use. In the preceding deployment (which
has long since been terminated), these details are as follows:

• URL: http://4.158.66.251/

• Username: admin

• Password: h6VBBzcnDTHiBbl7jZOmA30tpsjka8nF

Ansible AWX 347

When you go to the URL, you should be greeted with a login page that looks like this:

Figure 16.4 – Grabbing the admin password

Once you log in, you will be taken to your empty AWX instance:

Figure 16.5 – Grabbing the admin password

Now, let’s set up our playbook.

Introducing Ansible AWX and Red Hat Ansible Automation Platform348

Setting up our playbook

Before running our playbook, we must import it into Ansible AWX and configure the supporting
credentials, such as our Azure Service Principle. We’ll start with a project.

Adding a new project

First, we need to add a new project, where we tell Ansible AWX about the repository hosting our
playbook. As mentioned previously, we will use a GitHub repository that houses the code. To add a
new project, click on Projects under Resources in the left menu and then click on the Add button.

Here, you will be asked for several bits of information; enter the following:

• Name: Azure WordPress

• Description: Deploy WordPress in Azure

• Organization: Default

• Execution Environment: Select AWX EE (latest)

• Source Control Type: GIT

When you select the Source Control Type value a second section will appear that asks for details
about where your source is hosted:

• Source Control URL: https://github.com/PacktPublishing/Learn-Ansible-
Second-Edition.git

• Source Control Branch/Tag/Commit: Leave blank

• Source Control Refspec: Leave blank

• Source Control Credential: Leave blank

• Options: Just select Clean

Once you have entered these details, click Save. Now, if you return to the Projects page, you should
see that Ansible has already downloaded the source for the playbook:

Figure 16.6 – Adding the project and downloading the code from GitHub

Ansible AWX 349

Adding credentials

Next, we must tell Ansible AWX the credentials to use when accessing our Azure environment; to add
these, click Credentials. This can also be found under the Resources section of the left-hand menu.
Click Add and enter the following:

• Name: Azure

• Description: Credentials for Azure

• Organization: Default

• Credential Type: Select Microsoft Azure Resource Manager

As before, this will open a separate section; here, you will need to enter details of the service principle
we created in Chapter 15, Using Ansible with GitHub Actions and Azure DevOps:

• Subscription ID: Enter the subscription ID; in the example from the previous chapter, this
was e80d5ad9-e2c5-4ade-a866-bcfbae2b8aea

• Username: Leave blank

• Password: Leave blank

• Client ID: Enter the appId value that was returned when you created the service principle; in
the previous chapter’s example, this was 2616e3df-826d-4d9b-9152-3de141465a69

• Client Secret: Enter the password value that was returned when you created the service principle;
in the previous chapter’s example, this was Y4j8Q~gVO*NoTaREalPa55w0rdpP-pdaw

• Tenant ID: Enter the tenant ID; in the example from the previous chapter, this was c5df827f-
a940-4d7c-b313-426cb3c6b1fe

Once the form has been filled in, click Save. Once saved, you will notice that the Client Secret value
is marked as Encrypted:

Figure 16.7 – Adding our Service Principle to Ansible AWX

Introducing Ansible AWX and Red Hat Ansible Automation Platform350

When you save sensitive information in Ansible AWX, it is encrypted, and you only have the option
to Replace or Revert it. At no point can you view this information again.

Next, we need to create a credential that contains the private portion of the SSH key we generated in
Chapter 15, Using Ansible with GitHub Actions and Azure DevOps. To do this click on Add again, but
this time, enter the following:

• Name: AzureVM

• Description: Private SSH Key for Azure VMs

• Organization: Default

• Credential Type: Select Machine

In the additional information boxes, enter the following information:

• Username: azureadmin

• Password: Leave blank

• SSH Private Key: Copy and paste the contents of the private key or upload the private key file

• Remaining options: Leave blank

Once filled in, click Save. Once back on the Credentials screen, click Add once more and enter
the following:

• Name: Ansible Galaxy

• Description: Ansible Galaxy creds for Default org

• Organization: Default

• Credential Type: Select Ansible Galaxy/Automation Hub API Token

Then, enter this information:

• Galaxy Server URL: https://galaxy.ansible.com

• Remaining options: Leave blank

Again, click Save. Now, it’s time to add our final set of credentials:

• Name: WordPress Vault

• Description: Vault Password for WordPress secrets

• Organization: Default

• Credential Type: Select Vault

Ansible AWX 351

In the Type Details section, enter the following:

• Vault Password: I have added the passwords (which I will tell you later in this chapter) as
pre-encrypted Ansible Vault variables in group_vars/common.yml in the Chapter16
playbook. Because of that, you must enter a password of wibble here – if you don’t enter this,
the example playbook will fail.

• Vault Identifier: Leave blank.

That was our final credentials. So, let’s move on to the next configuration step.

Adding an inventory

Now that we have all our credentials in place, we need to recreate the content of the production
inventory file within Ansible AWX. As a reminder, the inventory file we have been using looks like
this (minus the comments):

[local]
localhost ansible_connection=local

[vmgroup]

[azure_vms:children]

vmgroup
[azure_vms:vars]
ansible_ssh_user=adminuser
ansible_ssh_private_key_file=~/.ssh/id_rsa
host_key_checking=False

To add the inventory, click on Inventories, which is again in the left-hand menu. The Add button
now brings up a drop-down list; we want to select Add inventory from that list.

In the form that opens, enter the following:

• Name: Azure Inventory

• Description: Azure Inventory

• Organization: Default

• Instance Groups: We will add these in a moment

• Labels: Leave blank

Introducing Ansible AWX and Red Hat Ansible Automation Platform352

• Variables: Enter the values listed here:

ansible_ssh_user: "adminuser"
ansible_ssh_private_key_file: "~/.ssh/id_rsa"
host_key_checking: false

Once entered, click Save; this will create the inventory. Now, we can add the two groups we need. To
do this, click Groups, which can be found in the row on the buttons above the details of the inventory:

Figure 16.8 – Adding the inventory to Ansible AWX

Click Add and enter the following details:

• Name: vmgroup

• Description: vmgroup

• Variables: Leave blank

Then, click Save, repeat the process, and add a second group using the following details:

• Name: azure_vms

• Description: azure_vms

• Variables: Leave blank

Again, click Save; you should now have two groups listed.

Now that we have our project, inventory, and some credentials for accessing our Azure environment,
we need to add the templates to launch and configure the cluster and terminate it.

Adding the templates

Let’s look at adding the templates.

Ansible AWX 353

Information
We will pass a runtime variable to our playbook, which will contain the public part of the SSH
key – we added the private portion as a credential earlier in this chapter – and will be called
ssh_key_public. Please ensure you have the public key when filling out these details.

Click Templates in the left-hand menu and, in the drop-down menu of the Add button, select Job
Template. This is the most extensive form we have encountered; however, parts will be populated
automatically when we fill in the details. Let’s make a start:

• Name: Launch WordPress

• Description: Launch WordPress in Azure

• Job Type: Select Run

• Inventory: Select Azure Inventory

• Project: Select Azure WordPress

• Execution Environment: Select AWX EE (latest)

• Playbook: Choose Chapter16/site.yml from the drop-down list

• Credentials: Select the following:

 � Machine: AzureVM

 � Microsoft Azure Resource Manager: Azure

 � Vault: WordPress Vault

• Variables: You should enter the ssh_key_public variable here; a truncated version of
what to enter is shown here:

ssh_key_public: "ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABgQDCGosD-
5doqnJgOLpkztaDvIZFaCKoChm9yyU6FPaci9fZR60SCXbOu1zeMmyJouFH7xVB-
v7xw5HBk0FDNLXrssR5B7YHiti8= youremail@example.com"

• Remaining options: Leave blank

Click Save; you will be taken to the overview of the template:

Introducing Ansible AWX and Red Hat Ansible Automation Platform354

Figure 16.9 – The completed template

Once added, we need to repeat this process with the following details for the Playbook that terminates
our deployment:

• Name: Terminate WordPress

• Description: Terminate WordPress in Azure

• Job Type: Select Run

• Inventory: Select Azure Inventory

• Project: Select Azure WordPress

• Execution Environment: Select AWX EE (latest)

• Playbook: Choose Chapter16/destroy.yml from the drop-down list

• Credentials: Select the following:

 � Microsoft Azure Resource Manager: Azure

• Remaining options: Leave blank

Once you’ve filled in these details, click Save.

We have everything we need to run our playbooks, so let’s do that.

Running our playbooks

Back on the Templates page, you should see the two templates we have configured listed:

Ansible AWX 355

Figure 16.10 – Our two templates

To run the playbook from this page, click on the Rocket icon on the Launch WordPress template;
this will initiate the playbook run and take you to a job page where you will be able to review the
status of the playbook job:

Figure 16.11 – Launching WordPress in Azure using Ansible AWX

If everything has worked as planned, after about 5 minutes, you should get confirmation that the
playbook has been completed and that your resources have been launched:

Introducing Ansible AWX and Red Hat Ansible Automation Platform356

Figure 16.12 – Ansible AWX has finished running the playbook

From here, you can re-run the launch playbook again, and it should pick up the newly deployed
resources as it did when we re-ran the playbook on our local machine.

Given the number of Azure resources we have launched, before we review the changes to the playbook
code to run it in Ansible AWX, we should terminate the WordPress resources. Click on the Rocket
icon next to the Terminate WordPress template to tear down the resources we just launched.

Terminating the Kubernetes cluster

Before terminating the Azure AKS resources, I recommend clicking around and exploring the Ansible
AWX interface. Once you’ve finished, you can remove the Azure resources and tidy up your local
configuration by running the following commands:

$ AKSRG=rg-awx-cluster
$ AKSCLUSTER=aks-awx-cluster
$ az aks delete --resource-group $AKSRG --name $AKSCLUSTER
$ az group delete --name $AKSRG
$ kubectl config delete-cluster $AKSCLUSTER
$ kubectl config delete-context $AKSCLUSTER

The cluster will take about 5 minutes to remove. To be safe, please don’t close any windows until it
has finished.

Ansible AWX 357

Information
As always, please double-check that your cloud resources have been terminated – you don’t
want to incur any unexpected costs.

Now that we’ve terminated all the cost-incurring resources, let’s discuss some of the considerations
we had to make in our Playbook.

Playbook considerations

While we touched very lightly on some of the changes that we had to make to our playbook so that
it runs on Ansible AWX, let’s do a deeper dive now.

Changes to the existing playbook

As we were running the code locally, to keep the playbook simple, we created a file called secrets.
yml and loaded the variables from there. Now that we are running Ansible in a shared environment,
we should treat our Ansible execution environment as if it were ephemeral, meaning that we cannot
rely on this approach.

I used Ansible Vault to encrypt the passwords and ship them within the code to get around this.
To do this, I ran the following commands:

$ ansible-vault encrypt_string 'SomeP4ssw0rd4MySQL' --name 'db_
password'
$ ansible-vault encrypt_string 'aP455w0rd4W0rDPR355' --name 'wp_
password'

When prompted to enter the Vault password, I entered wibble as the password, which we then set
the Vault password in Ansible AWX when adding credentials. You can see the results of the preceding
command in the group_vars/common.yml file.

Going back to the playbook code when we ran the playbook from our local machine in Chapter 9,
Moving to the Cloud, the variable that contains the data for the public SSH key looked like this:

vm_config:
 key:
 path: "/home/adminuser/.ssh/authorized_keys"
 data: "{{ lookup('file', '~/.ssh/id_rsa.pub') }}"

As you can see, we populate the vm_config.key.data variable by reading in the contents of
the ~/.ssh/id_rsa.pub file. However, when we moved our playbook to Ansible AWX, this file
no longer exists.

Introducing Ansible AWX and Red Hat Ansible Automation Platform358

Because of that, we added the ssh_key_public variable, which contains the public portion of
the private key we uploaded when adding the machine credential when we configured the template.
This launches the resources in Azure. This meant the code needed to be updated to the following:

vm_config:
 key:
 path: "/home/adminuser/.ssh/authorized_keys"
 data: "{{ ssh_key_public }}"

As far as changes go, there’s nothing too dramatic and hopefully not unexpected.

Ansible Galaxy collections

You may not have noticed, but we didn’t have to consider the modules that interact with Azure, one
of the initial things we covered in Chapter 9, Moving to the Cloud.

Ansible AWX does not support these and other collections of modules we need for our playbook to
run out of the box, so how did our playbook work without giving an error?

When we first added the project, we configured it to use the GitHub repository that supports this
book and contains all the code we have discussed so far. This repository can be found at https://
github.com/packtPublishing/Learn-Ansible-Second-Edition/.

We only instructed Ansible AWX to use the site.yml and destory.yml files from the Chapter16
folder, but in the background, Ansible AWX also used the requirements.yml file, which can be
found in the collections folder in the repository’s root.

This file contains the following code:

collections:
 - name: "azure.azcollection"
 source: "https://galaxy.ansible.com"
 - name: "community.general"
 source: "https://galaxy.ansible.com"
 - name: "community.mysql"
 source: "https://galaxy.ansible.com"

As you can see, this is letting Ansible AWX know that it needs to download the azure.azcollection,
community.general and community.mysql collections from Ansible Galaxy and, in the
background, install their prerequisites.

The only thing we needed to do to get this to work was to create the Ansible Galaxy credential
and attach it to our default organization. This means that whenever Ansible AWX comes across a
collections/requirements.yml file, it will authenticate against Ansible Galaxy using the
credentials provided, which in our case were anonymous as we weren’t pulling a private collection.

https://github.com/packtPublishing/Learn-Ansible-Second-Edition/
https://github.com/packtPublishing/Learn-Ansible-Second-Edition/

Ansible AWX 359

We can also do things such as pin collections to a particular version or add a role:

collections:
 - name: "azure.azcollection"
 source: "https://galaxy.ansible.com"
 version: 2.0.0

roles:
 - name: "russmckendrick.learnansible_example"
 source: "https://galaxy.ansible.com"

You can also provide different URLs if you are self-hosting an installation of Ansible Galaxy or even
provide links to Git repos containing your roles and collections.

This means that Ansible AWX can be as flexible as running Ansible from your local machine.

Before we finish discussing Ansible AWX, let’s look at the pros and cons of running it.

Ansible AWX’s advantages and disadvantages

I am sure you will agree from our time with Ansible AWX that it looks like a great tool. However,
there are some advantages and disadvantages to running it.

Open source

Ansible AWX is an open source project, which means it is freely available for anyone to use, modify,
and contribute to. This can significantly reduce costs compared to proprietary solutions. However, it
has limited Enterprise features.

Ansible AWX offers a good range of features. Still, some advanced enterprise-specific capabilities in
Red Hat Ansible Automation Platform, such as advanced reporting, service-level agreement (SLA)
management, and more comprehensive integrations, may be needed.

Community-driven development

Being open source, Ansible AWX has a strong community of developers and users actively contributing
to its development, providing support, and sharing best practices.

However, as an open source project, Ansible AWX relies on community support rather than official
commercial support. The community is generally active and helpful, but there are no guaranteed
response times or even that someone will be able to help outside of the commercial Red Hat Ansible
Automation Platform offering.

Introducing Ansible AWX and Red Hat Ansible Automation Platform360

Frequent updates and improvements

Ansible AWX follows a more frequent release cycle than Red Hat Automation Platform. This means
that you can gain access to new features, bug fixes, and improvements more quickly.

Ansible AWX’s frequent release cycle means you may need to update more often to access the latest
features and bug fixes. Upgrading Ansible AWX can require more effort to ensure compatibility and
stability, especially in production environments.

Updates and Ansible AWX have always been challenging; they have always been more of a migration
than an in-place update.

Using our quick deployment of Ansible AWX as an example, we would need a way to upgrade it.
We would have to deploy an external database server outside of our Kubernetes cluster for a more
production-like environment – this would contain and persist all our data and configuration.

To update Ansible AWX, we would need to tear down all of the resources in the cluster (minus the
database), update the AWX Operator, and then redeploy Ansible AWX running the latest version – this
would then connect to our external database and run all of the necessary database migration scripts
to update our schema and data to make it compatible with the new version.

Solid foundation

Ansible AWX provides robust features for managing and executing Ansible playbooks, making it
a solid choice for organizations starting their automation journey or having more straightforward
automation requirements.

Flexibility and customization

While Ansible AWX integrates with various tools and systems, it may have a different level of out-of-
the-box integrations and certified content than Red Hat Automation Platform, which is designed to
work seamlessly with other Red Hat products and has a broader ecosystem of supported integrations.

Ansible AWX may also have limitations when managing large-scale deployments or complex enterprise
environments. Additional setup, configuration, and resources may be required to handle high-volume
automation tasks effectively.

Summary
This chapter explored Ansible AWX and touched upon Red Hat Automation Platform, two powerful
graphical interfaces for managing and streamlining Ansible deployments.

We learned about their differences, the benefits they offer, and how to install and configure Ansible
AWX on a Kubernetes cluster in Microsoft Azure. We successfully ran our playbook to launch and
terminate WordPress running in Azure using Ansible AWX by setting up a project, credentials,
inventory, and templates.

Further reading 361

Throughout the process, we discovered the necessary playbook considerations and modifications,
such as using Ansible Vault for sensitive information, handling SSH keys, and leveraging Ansible
Galaxy collections.

While Ansible AWX offers numerous advantages, including its open source nature, community-driven
development, and solid foundation, it is essential to be aware of its potential limitations in enterprise
environments and the challenges associated with updating the platform.

The only thing we didn’t discuss was the costs of running the commercially supported enterprise-
grade Red Hat Automation Platform. Red Hat does not publicly publish them on its website. You must
contact one of its partners or Red Hat directly for details.

In our next and final chapter, we will look at some of the ways you can integrate Ansible into your
daily workflows, debug your playbooks as they run, and some real-world examples of how I have
used Ansible.

Further reading
To learn more about the topics that were covered in this chapter, take a look at the following resources:

• Ansible AWX Project: https://github.com/ansible/awx

• Ansible AWX Operator: https://github.com/ansible/awx-operator

• Ansible AWX documentation: https://ansible.readthedocs.io/projects/
awx/en/latest/

• Red Hat Ansible Automation Platform: https://www.redhat.com/en/technologies/
management/ansible

https://github.com/ansible/awx
https://github.com/ansible/awx-operator
https://ansible.readthedocs.io/projects/awx/en/latest/
https://ansible.readthedocs.io/projects/awx/en/latest/
https://www.redhat.com/en/technologies/management/ansible
https://www.redhat.com/en/technologies/management/ansible

17
Next Steps with Ansible

In this, our final chapter, we will discuss how you can integrate Ansible into your day-to-day workflows.
We will cover continuous integration tools, monitoring tools, and troubleshooting.

We will discuss the following topics:

• Integrating with third-party services

• How you can use Ansible to troubleshoot problems when they occur

• Some real-world examples

Let’s dive straight in and look at how we can hook our playbooks into third-party services.

Technical requirements
This chapter will differ from previous ones. While code examples are given in the chapter and the
GitHub repository, they will not be complete working examples. Instead, we will discuss integrating
them into your projects so they are more of the art of the possible rather than fully formed examples.

Integrating with third-party services
Although you may be running the playbooks yourself, it’s a good idea to keep a log of your playbook
run or update other team members or departments with the results. Ansible has several modules that
allow you to work with third-party services to provide real-time notifications.

Let’s start by looking at Slack.

Slack

Slack has rapidly become the preferred option for team-based collaboration services across different IT
departments. One key benefit of Slack is its support for third-party applications via its App Directory;
Ansible supports Slack Incoming Webhooks via the community.general.slack module.

Next Steps with Ansible364

Remember, you can install the community.general collection if you don’t have it installed by
running the following command:

$ ansible-galaxy collection install community.general

Before we look at the Ansible code, we should quickly discuss how you create a Slack App and
enable webhooks.

First, you must make your own Slack app; you can do this by visiting https://api.slack.
com/apps/new. Once there, click the Create an App button and select the From Scratch option.
From here, you need to fill in the App Name and Pick a workspace to develop your app in, which
for the majority of us will be your primary workspace, as you can see from the following screenshot:

Figure 17.1 – Creating the Slack app

Once the Slack App has been created, you will be taken to your new application settings page. In the
left-hand menu, you should see an option for Incoming Webhooks. Go to this page and toggle the
Activate Incoming Webhooks switch to On. This will extend the options and give you the option to
Add New Webhook to Workspace.

From here, you will need to select where you would like your Slack App to post; as you can see from
the following screenshot, I selected the #general channel:

https://api.slack.com/apps/new
https://api.slack.com/apps/new

Integrating with third-party services 365

Figure 17.2 – Choosing where to post

Once selected, you will be taken back to the Incoming Webhooks page for your application; here, you
will be given a Webhook URL, which should look something like the following, and you will need to
make a note of this and keep it safe (the following one has been revoked):

https://hooks.slack.com/services/TBCRVDMGA/B06RCMPD6R4/
YBTo7ZXZHrRg57fvJXr1sg43

Now that we have everything we need to interact with Slack, we can examine the code. As mentioned
at the start of the chapter, I will only go into some of the code, as much of it will already be familiar.

There is just a single variable we need to add, and it is the token used to identify and authenticate
against the webhook we created: the token is everything after https://hooks.slack.com/
services/ in the webhook URL from Slack, so in my case, the variable, which I put in group_
vars/common.yml, looks like this:

slack:
 token: "TBCRVDMGA/B06RCMPD6R4/YBTo7ZXZHrRg57fvJXr1sg43"

As this token should be treated as a secret, I recommend also using Ansible Vault to encrypt the value,
so to do this, you can run the following:

$ ansible-vault encrypt_string 'TBCRVDMGA/B06RCMPD6R4/
YBTo7ZXZHrRg57fvJXr1sg43' --name 'token'

The token in the repo is encrypted using Ansible Vault, and as it has been revoked, you will need to
update it with your own.

By jumping straight into roles/slack/tasks/main.yml, you can see that the playbook
launches a resource group, virtual network, and subnet in Azure.

Next Steps with Ansible366

There are no changes to the first tasks that launch the Azure resources:

- name: "Create the resource group"
 azure.azcollection.azure_rm_resourcegroup:
 name: "{{ resource_group_name }}"
 location: "{{ location }}"
 tags: "{{ common_tags }}"
 register: "resource_group_output"

Additionally, the debug task we used in previous chapters is still there; immediately after the debug
task, we have the task (well, sort of) which sends the notification to Slack:

- name: "Notify the team on Slack about the resource group status"
 include_tasks: slack_notify_generic.yml

As you can see, it triggers another task in the slack_notify_generic.yml file, and we pass
the registered output’s content as a set of variables, most of the them are self-explanatory:

 vars:
 resource_changed: "{{ resource_group_output.changed }}"
 resource_type: "Resource Group"
 resource_name: "{{ resource_group_output.state.name }}"
 resource_location: "{{ resource_group_output.state.location }}"

The last two are a little different; this one takes the full resource ID and prefixes it with https://
portal.azure.com/#resource, as the resource ID is the URL for the resource in Azure;
this, together with the URL prefix, will give us a clickable link that will take the user directly to the
resource when they follow it:

 azure_portal_link: "https://portal.azure.com/#resource{{ resource_
group_output.state.id }}"

The final variable generates a comma-separated list of tags and values using a Jinja2 template function:

 resource_tags: >
 {% for key, value in resource_group_output.state.tags.items() %}
 {{ key }}: {{ value }}{% if not loop.last %}, {% endif %}
 {% endfor %}

You might also have noticed that the {{ key }} variable has a * on either side; this is not part of
the template function; this is the markdown syntax for bold, and it will style the contents as such.

Before we look at what is in roles/slack/tasks/ slack_notify_generic.yml, let’s
quickly discuss why we are taking this approach.

Integrating with third-party services 367

As we mentioned several times in the title, one of the main goals of automating our deployments is
to streamline everything as much as possible. In this case, the task we are calling will be the standard
throughout the playbook, and the only changes we need to make are the content.

So rather than repeating the community.general.slack task several times in our playbook,
we can define it once and then call it multiple times. This means if we need to change something in
the community.general.slack task, we only have to update it in one place.

The task itself has a little bit of logic added, so let’s review that now:

- name: "Notify the team on Slack about resource changes"
 community.general.slack:
 token: "{{ slack.token }}"
 parse: "none"

As you can see from the preceding code, we are passing our webhook token and setting the parse
option to none. This means that community.general.slack will not touch any content we
post to the webhook to strip out formatting, etc.

Rather than sending a simple message, we use the attachments type. This will nicely format our
message into blocks, and we can also set a status color based on whether there has been a change to
the content or not:

 attachments:
 - fallback: "Notification about Azure resource changes"

The logic for setting the color is as follows: here, we use the Boolean value of true or false that is
passed by the resource_changed variable. If the variable equals true, it means that the resource
has been changed, so we set the color to the pre-defined warning color, which is orange; otherwise,
the color is set to good, which is green:

 color: "{% if resource_changed %}warning{% else %}good{% endif
%}"
 title: "Ansible: {{ resource_type }}"

Next, we have the message content: here, we are using a similar logic as we did for setting the color
based on whether there has been a change to the resource or not:

 text: "{{ resource_name }} has been {% if resource_changed %}
created/updated{% else %}checked (no changes){% endif %}."

Next Steps with Ansible368

Finally, we have the fields; each of these displays the information we are passing to the task in a block,
apart from one:

 fields:
 - title: "Location"
 value: "{{ resource_location }}"
 short: true
 - title: "Azure Portal"
 value: "<{{ azure_portal_link }}|View in Azure Portal>"
 short: true
 - title: "Tags"
 value: "{{ resource_tags }}"
 short: false

The value of the Azure portal link is a little different; Slack uses mrkdwn, a markup language similar
to Markdown but with some differences, especially regarding formatting links. As you can see, we
are setting this to the following:

<{{ azure_portal_link }}|View in Azure Portal>

This is the mrkdwn syntax for creating a clickable link. It will link to the URL being passed in the {{
azure_portal_link }} variable. The text after the pipe | is the visible text that will appear in
the Slack message and act as the clickable link.

When Slack renders this message, it will display View in Azure Portal as clickable text. When someone
clicks on it, Slack will open the URL in the {{ azure_portal_link }} variable, directing the
user to the Azure Portal.

Now that we know what the playbook looks like, let’s run it:

$ ansible-playbook -i hosts site.yml --ask-vault-pass

This will prompt you to provide a valuable password and then deploy the resources; in this case, we
don’t need to know the output of running the playbook and should, instead, turn our attention to
Slack itself:

Integrating with third-party services 369

Figure 17.3 – First run of the playbook

As you can see from the preceding output, three resources have been added, so they are referred to
as created/updated. The orange bar is on the left-hand side of the message.

Let’s now rerun the playbook using the following:

$ ansible-playbook -i hosts site.yml --ask-vault-pass

You will see that the message now looks like this:

Next Steps with Ansible370

Figure 17.4 – Running the playbook a second time

This time, there have been no changes, which the message reflects. The status is also showing green,
so we can quickly see that there have been no changes.

The only thing I would add is that if you look at the code in the repo, you will notice that for the
subnet, we are having to make some allowances:

• resource_location: subnets don’t have a location, so we are using the one from the
virtual network the subnet is being created in

• azure_portal_link: while an ID for the subnet is being returned, it doesn’t precisely
match the logic we use to open the resource directly in the Azure portal, so we link to the
virtual network where the subnet is configured

• resource_tags: you can’t add tags to a subnet, so we set the value to N/A

As you can see from the screens, this is useful for notifying others that your playbook is being run.
It also gives you quick access to the resources being created/updated or checked and an audit trail of
changes being made to your resources.

While the code we discussed only applies to Slack and the resources deployed in Microsoft Azure, the
concept should apply to any integration supported by Ansible.

Integrating with third-party services 371

Other integrations

Dozens of other integrations, both community- and vendor-supported, are available on Ansible
Galaxy. If you can’t find one for your use case and your target service has an API, you could quite
quickly build an integration using the ansible.builtin.uri module, which is designed to
interact with web APIs and services.

What follows are some example use cases for other integration modules.

Say

Most modern computers come with some level of voice synthesis built in; by using this module, you
can have Ansible verbally inform you of the status of your playbook run:

 - name: "Speak an update"
 community.general.say:
 msg: "Hello from Ansible running on {{ inventory_hostname }}"
 voice: "Zarvox"
 delegate_to: localhost

While this is fun, it isn’t very useful and could quickly become annoying, so let’s move on.

Syslog

Suppose you ship the log files from your target hosts. In that case, you may want to send the results
of the playbook run to your target host machine syslog so that it is shipped to your central logging
service for use in external services such as an SIEM, which stands for security information and event
management, product:

- name: "Send a message to the hosts syslog"
 community.general.syslogger:
 msg: "The task has completed and all is well"
 priority: "info"
 facility: "daemon"
 log_pid: "true"

This is a great way to register that something has happened on the target host in a way that logs it
along with everything else that is happening on the target operating system.

ServiceNow

ServiceNow is enterprise-grade IT service management software from ServiceNow, Inc.

Next Steps with Ansible372

By using the servicenow.servicenow.snow_record module, your playbook can open
incidents within your ServiceNow installation:

- name: "Create an incident in SNOW"
 servicenow.servicenow.snow_record:
 username: "{{ snow.username}}"
 password: "{{ snow.passord}}"
 instance: "{{ snow.instance }}"
 state: "present"
 data:
 short_description: "Ansible playbook run on {{ inventory_
hostname }}"
 severity: 3
 priority: 2
 register: snow_incident_result

Once open, you can then add notes to them using something like the following:

- name: "Update the SNOW incident with work notes"
 servicenow.servicenow.snow_record:
 username: "{{ snow.username}}"
 password: "{{ snow.passord}}"
 instance: "{{ snow.instance }}"
 state: present
 number: "{{snow_incident_result['record']['number']}}"
 data:
 work_notes : "{{ resource_name }} has been {% if resource_
changed %}created/updated{% else %}checked (no changes){% endif %}."

At the end of the playbook run, you can close the incident, which will permanently record whatever
information you ship from your playbook in your ITSM tool.

Microsoft Teams

While we covered Slack as the primary example in this chapter, Ansible also supports several Microsoft
365 products, including Microsoft Teams, via the community.general.office_365_
connector_card module. Microsoft 365 Connector cards are very powerful, and their configuration
and, by extension, the Ansible module can get quite complicated; so rather than cover them here, I
would recommend the following links as a starting point:

• https://docs.ansible.com/ansible/latest/collections/community/
general/office_365_connector_card_module.html

• https://learn.microsoft.com/en-us/microsoftteams/platform/task-
modules-and-cards/what-are-cards

• https://adaptivecards.io/

https://docs.ansible.com/ansible/latest/collections/community/general/office_365_connector_card_module.html
https://docs.ansible.com/ansible/latest/collections/community/general/office_365_connector_card_module.html
https://learn.microsoft.com/en-us/microsoftteams/platform/task-modules-and-cards/what-are-cards
https://learn.microsoft.com/en-us/microsoftteams/platform/task-modules-and-cards/what-are-cards
https://adaptivecards.io/

The Ansible playbook debugger 373

As you can see from the preceding links, connector cards can be as simple or complicated as you want.
However, configuring them is probably worth a chapter all by itself, so let’s move on.

Summary of third-party services

One of the key takeaways I hope you get from this book is that automation is great; it is not only a real
time saver, but using tools such as the ones we covered in the previous chapter, Chapter 16, Introducing
Ansible AWX and Red Hat Ansible Automation Platform, can enable people who are not sys-admins
or developers to execute their playbooks from a friendly web interface. We will look at this further in
the final section of the chapter, where I will cover some real-world examples of how Ansible has been
implemented in organizations I have worked with.

The modules we have covered in this section allow you to take your automation to the next level by
not only allowing you to record the results but also automatically doing some housekeeping during
your playbook run and having it notify your users.

For example, you need to deploy a new configuration to your server. Your service desk has made a
change request for you to take action on the work within your ServiceNow installation.

Your playbook could be written so that before the change is actioned, it uses the fetch module to copy
the configuration file to your Ansible Controller. The playbook could then use the servicenow.
servicenow.snow_record module to attach a copy of the existing configuration file to the
change request, proceed to make the changes, and then automatically update the change request
with the results.

Before we look at some real-world examples, let’s take a look at how you can debug your playbooks
as they are running.

The Ansible playbook debugger
Ansible has a debugger built in. Let’s look at how you can build this into your playbook by creating a
simple playbook with an error. As we have just mentioned, we are going to write a playbook that uses
the community.general.say module. The playbook itself looks like this:

- name: "A simple playbook with a mistake"
 hosts: "localhost"

 debugger: "on_failed"

 vars:
 message: "The task has completed and all is well"
 voice: "Daniel"

 tasks:

Next Steps with Ansible374

 - name: "Say a message on your Ansible host"
 community.general.say:
 msg: "{{ massage }}"
 voice: "{{ voice }}"

There are two things to point out: the first is the mistake. As you can see, we are defining a variable
named message, but when I came to use it in the task, I made a typo and entered massage instead.
Luckily, as I developed the playbook, I instructed Ansible to use the interactive debugger whenever
a task fails by setting the debugger option to on_failed.

Debugging the task

Let’s run the playbook and see what happens:

$ ansible-playbook playbook.yml

The first problem is that we are not passing a host inventory file, so there will be warnings that
only the localhost is available; this is fine, as we want to run the Say module only on our Ansible
Controller anyway:

[WARNING]: No inventory was parsed, only implicit localhost is
available
[WARNING]: provided hosts list is empty, only localhost is available.
Note that the implicit localhost does not match 'all'

Next, Ansible runs the play itself; this should result in a fatal error:

PLAY [A simple playbook with a mistake] *******************
TASK [Gathering Facts] ************************************
ok: [localhost]
TASK [Say a message on your Ansible host] *****************
fatal: [localhost]: FAILED! => {"msg": "The task includes an option
with an undefined variable. The error was: 'massage' is undefined.
'massage' is undefined\n\nThe error appears to be in '/Users/russ.
mckendrick/Code/Learn-Ansible-Second-Edition/Chapter17/debugger/
playbook.yml': line 12, column 7, but may\nbe elsewhere in the file
depending on the exact syntax problem.\n\nThe offending line appears
to be:\n\n tasks:\n - name: \"Say a message on your Ansible
host\"\n ^ here\n"}

Typically, the playbook run will stop, and you will be returned to your shell; however, because we have
instructed Ansible to drop into the interactive debugger, we now see the following prompt:

[localhost] TASK: Say a message on your Ansible host (debug)>

The Ansible playbook debugger 375

From here, we can start to investigate the problem a little more; for example, we can review the error
by typing the following command:

p result._result

In Ansible, when using the debug module, the p command is used to prettify the output of a variable
or expression. It stands for pretty or pretty-print. When you use p result._result in an
Ansible debug task, it will display the value of result._result in a more readable and formatted
way. The p command uses the pprint (pretty-print) function from the Python standard library to
format the output.

Once you hit the Enter key, the results of the failed task will be returned:

{'_ansible_no_log': False,
 'failed': True,
 'msg': 'The task includes an option with an undefined variable. The
error was: \'massage\' is undefined. \'massage\' is undefined\n\nThe
error appears to be in \'/Users/russ.mckendrick/Code/Learn-Ansible-
Second-Edition/Chapter17/debugger/playbook.yml\': line 12, column
7, but may\nbe elsewhere in the file depending on the exact syntax
problem.\n\nThe offending line appears to be:\n\n tasks:\n - name:
"Say a message on your Ansible host"\n ^ here\n'}

Let’s take a closer look at the variables used in the task by typing the following:

p task.args

This will return the two arguments we are using in the task:

{'msg': '{{ massage }}', 'voice': '{{ voice }}'}

Now, let’s look at the variables that are available to the task using the following:

p task_vars

You may have noted that we instructed Ansible to execute the setup module as part of the playbook
run, so the list of variables available to the task is very long:

 'inventory_hostname': 'localhost',
 'inventory_hostname_short': 'localhost',
 'message': 'The task has completed and all is well',
 'module_setup': True,
 'omit': '__omit_place_
holder__7da4853be448a08d857e98fbabe7afe1b7c97d00',
 'play_hosts': ['localhost'],
 'playbook_dir': '/Users/russ.mckendrick/Code/Learn-Ansible-
Second-Edition/Chapter17/debugger',
 'voice': 'Daniel'},

Next Steps with Ansible376

As you can see, there is much information about the environment in which our playbook is being
executed. In the list of variables, you will notice that all the information gathered by the setup modules
starts with ansible_, and our two variables are listed at the bottom.

We can find out more about these two variables by running the following commands:

p task_vars['message']
p task_vars['voice']

This will display the contents of the variable:

[localhost] TASK: Say a message on your Ansible host (debug)> p task_
vars['message']
'The task has completed and all is well'
[localhost] TASK: Say a message on your Ansible host (debug)> p task_
vars['voice']
'Daniel'

We know we are passing a misspelled variable to the msg argument, so we will make some changes
on the fly and continue the playbook run. To do this, we are going to run the following command:

task.args['msg'] = '{{ message }}'

This will update the argument to use the correct variable; we can now rerun the task by issuing the
following command:

redo

This will immediately rerun the task with the correct argument and, with any luck, you should hear,
“The task has completed, and all is well:”

changed: [localhost]
PLAY RECAP **
localhost: ok=1 changed=1 unreachable=0 failed=0.
skipped=0 rescued=0. ignored=0

As you can see from the preceding output, because we only have a single task, the playbook is completed.
If we had more, it would carry on from where it left off. You can now update your playbook with the
correct spelling and proceed with the rest of your day. Additionally, if we wanted to, we could have
typed either continue or quit to proceed or stop, respectively.

Summary of the Ansible debugger

The Ansible debugger is a handy option to enable when you are working on creating complex playbooks;
for example, imagine that you have a playbook that takes about 20 minutes to run, but it throws an
error somewhere toward the end, say, 18 minutes after you first run the playbook.

Some real-world examples 377

Having Ansible drop into the interactive debugger shell not only means you can see precisely what
is and isn’t defined, but it also means you don’t have to blindly make changes to your playbook and
then wait another 18 minutes to see whether those changes resolved the fatal error.

Some real-world examples
Before we finish the chapter and the book, I will give a few examples of how I have used and interacted
with Ansible over the last few years.

Automating a complex deployment

In this example, an application was distributed across several dozen servers in a public cloud. Each
application component was installed on at least three different hosts and required updates in a
specific order.

The application developers collaborated with the operations team to streamline the deployment process
to create an Ansible Playbook. The playbook automated the following steps for each component of
the application:

1. Put the application into maintenance mode by connecting to the targeted hosts and executing
a specific command.

2. Create snapshots of all the costs involved in the deployment, ensuring a rollback point if needed.

3. Initiate the deployment process by pulling the latest code from the designated GitHub repository
and executing a series of commands to update the application.

4. Verify the deployment’s success by connecting to the application’s API and running a set of
health checks on each targeted host.

5. If the deployment and health checks pass successfully, take the application out of maintenance
mode and proceed to the next component. However, if any tests fail, halt the deployment
immediately and execute commands to revert the hosts to the previously taken snapshots,
ensuring a safe rollback.

Prior to implementing Ansible automation, the manual execution of these deployment steps took
several hours, as the application and operations teams had to co-ordinate and follow the process
meticulously. This manual approach made deployments challenging and prone to human errors.

By automating the deployment tasks using Ansible, the teams could focus on handling the exceptions
that arose due to genuine issues rather than mistakes caused by manual execution. Before the automation
was put in place, errors were common during almost every release, with many hosts and complex
manual steps involved.

Next Steps with Ansible378

The introduction of Ansible automation significantly improved the deployment process, reducing the
time required and minimizing the risk of human errors. The playbook ensured consistency, reliability,
and repeatability across multiple deployments, enabling the teams to deploy the application components
more frequently and with greater confidence.

This example demonstrates how Ansible can tackle complex deployment scenarios, streamline processes,
and enhance collaboration between development and operations teams in a public cloud environment.

Combining Ansible and other tools

In this real-world scenario, we collaborated with a team that had invested significant effort in developing
their infrastructure automation using Terraform. Their Terraform code successfully deployed the
infrastructure and performed basic host bootstrapping using a simple cloud-init script.

However, as the application requirements grew more complex, it became evident that additional
automation was needed to effectively manage the application on the provisioned hosts. Instead of replacing
the existing Terraform code, we introduced Ansible to complement the infrastructure automation.

To integrate Ansible with the existing Terraform workflow, we utilized the community.general.
terraform module. This module allowed us to execute the Terraform deployment directly from
within an Ansible playbook.

By leveraging this integration, we took the output generated by the Terraform deployment and passed
the relevant information back to Ansible. This enabled Ansible to gather detailed information about
the provisioned hosts and perform the necessary application bootstrapping tasks.

The combination of Terraform and Ansible proved to be a powerful solution:

• Terraform handled the infrastructure provisioning, ensuring the required resources were created
and configured correctly in the target environment.

• Ansible took over the application management, utilizing the host information provided by
Terraform to configure and deploy the application components seamlessly.

This approach allowed the team to maintain their existing Terraform codebase while extending the
automation capabilities with Ansible. The integration between the two tools provided a seamless
workflow, enabling the team to manage both the infrastructure and the application more effectively
without having to throw away the code that they already had.

The team achieved a more comprehensive and efficient automation solution by choosing the right
tools for specific tasks and leveraging their strengths. Terraforms infrastructure-as-code capabilities,
combined with Ansible’s application management and orchestration features, resulted in a robust and
flexible automation pipeline.

Some real-world examples 379

Deploying Ansible AWX

As discussed in Chapter 16, Introducing Ansible AWX and Red Hat Ansible Automation Platform,
Ansible AWX is a powerful tool that offers a wide range of features beyond the basics. In addition to
the core functionalities, Ansible AWX provides capabilities such as surveys, integration with identity
services such as Microsoft Entra, and role-based access controls (RBACs) that enable granular access
management for projects and templates.

Surveys in Ansible AWX allow you to create interactive forms that gather input from users before
running a playbook. This feature is particularly useful when you need to collect specific information
or parameters from end-users without exposing them to the underlying playbook complexities.

Integration with identity services, such as Microsoft Entra, enables seamless authentication and
authorization for Ansible AWX users. This integration allows you to leverage existing user accounts and
access controls, simplifying user management and ensuring secure access to Ansible AWX resources.

RBAC in Ansible AWX provides a flexible and granular way to manage user permissions. With RBAC,
you can define roles and associate them with specific projects, templates, and other resources. This
allows you to control who can access and execute specific playbooks, ensuring that users have the
appropriate level of access based on their responsibilities and expertise.

In the following examples, we’ll explore how Ansible AWX has been utilized in various organizations
that I have worked with to streamline processes, automate tasks, and empower teams to perform their
duties effectively while maintaining security and governance.

Provisioning virtual machines

In this scenario, the IT team needed to provide a self-service portal for developers to provision virtual
machines (VMs) across different environments, such as development, staging, and production. Each
environment had specific requirements and configurations.

To streamline the process, Ansible AWX was deployed, and a survey was created to capture the
necessary information from the developers. The survey included fields for specifying the desired
operating system, VM size, environment, and other relevant parameters.

Upon submitting the survey, Ansible AWX triggered a playbook that automated the provisioning
process. Based on the survey responses, the playbook dynamically generated the appropriate VM
configurations and provisioned the VMs in the specified environment.

Additionally, the playbook integrated with the organization’s ticketing system, automatically creating
a ticket with the VM details and linking it to the change management process for tracking and
auditing purposes.

By leveraging Ansible AWX and surveys, the IT team empowered developers to provision VMs
on-demand while maintaining control and governance over the process.

Next Steps with Ansible380

Managing application deployments

In another use case, a software development team needed to deploy their application across multiple
environments, including development, QA, and production. Each environment had its own set of
configurations and dependencies.

To simplify the deployment process, Ansible AWX was utilized. A survey was created to capture
the necessary deployment parameters, such as the application version, target environment, and any
specific configuration options.

The survey responses were then passed as variables to an Ansible playbook that was responsible for
executing the deployment. The playbook handled the entire deployment process, including the following:

• Retrieving the specified application version from the artifact repository

• Configuring the target environment based on the provided parameters

• Deploying the application components and dependencies

• Running post-deployment tests and health checks

• Updating the deployment status in the organization’s project management tool

By using Ansible AWX and surveys, the development team could initiate deployments through a user-
friendly interface, ensuring consistency and reducing the risk of manual errors. The playbook automated
the complex deployment steps, saving time and effort for the team who needed the deployment while
freeing up the time of the team who would have done the deployment.

Updating DNS records

In this example, the organization managed multiple DNS (or, to give it its full name, domain name
system) zones across different providers, and they needed to allow front-line support teams to update
DNS records without granting them direct access to the providers’ management consoles.

To achieve this, Ansible AWX was used. A survey was created to capture the necessary information
for updating DNS records. The survey included fields specifying the domain name, record type (e.g.,
A, CNAME, MX), record value, and time to live (TTL).

Upon submitting the survey, Ansible AWX triggered a playbook that automated the DNS record
update process. The playbook performed the following steps:

1. Validated the provided survey inputs to ensure data integrity and prevent invalid entries

2. Determined the appropriate DNS provider based on the domain name specified in the survey

3. Connected to the DNS provider’s API using the necessary credentials securely stored in
Ansible Vault

4. Retrieved the existing DNS records for the specified domain and record type

Summary 381

5. Updated the DNS record with the new value and TTL provided in the survey

6. Saved the updated DNS record using the provider’s API

7. Logged the change in the organization’s change management system, such as ServiceNow, for
tracking and auditing purposes

By using Ansible AWX, the front-line support teams could easily update DNS records without
requiring direct access to the DNS providers’ management consoles. The playbook automated the
complex steps involved in updating DNS records across multiple providers, ensuring consistency
and reducing the risk of errors.

Additionally, the integration with the change management system provided a centralized record of
all DNS changes, enabling easy tracking, auditing, and compliance with the organization’s change
control processes.

These examples demonstrate how Ansible AWX can be leveraged to run tasks and simplify processes for
end-users across different domains, such as infrastructure provisioning and application deployment. By
combining Ansible AWX with surveys and integrating with existing tools and processes, organizations
can enable self-service capabilities while maintaining control and governance over critical operations.

Summary
We have reached the end of the chapter and our book. I have been trying to think of a way to summarize
Ansible; I believe the summary from the first edition of Learn Ansible still stands.

In response to a technical recruiter who reached out to him with a job role that required at least three
years of Ansible experience when the tool had only been available for a short time, Ansible creator
Michael DeHaan said the following in a now-deleted Tweet:

“Anyone using Ansible for a few months is as good as anyone using Ansible for three years. It’s a simple
tool on purpose.”

That perfectly sums up my experience of Ansible and hopefully yours.

Once you know the basics, it is straightforward to move on and start building more complex playbooks
quickly. These playbooks can assist with deploying basic code and applications as well as complex
cloud and even physical architectures.

Reusing your roles and accessing an extensive collection of community-contributed roles and modules
via Ansible Galaxy means you have many examples or quick starting points for your next project. So,
you can roll your sleeves up and get stuck in a lot sooner than you would with other tools. Additionally,
if Ansible cannot do something, the odds are that there is a tool it can integrate with to provide the
missing functionality.

Next Steps with Ansible382

Going back to what we discussed back in Chapter 1, Installing and Running Ansible, being able to
define your infrastructure and deployment in code in a repeatable and shareable way that encourages
others to contribute to your playbooks should be the aim of starting to introduce Ansible into your
day-to-day workflows.

Through this book, I hope you have begun to think of day-to-day tasks where Ansible could help you
and save you time, and I wish you luck with developing your own playbooks.

Index

A

Adaptive Cards
reference link 372

Advanced Packaging Tool (APT) 19
amazon.aws 39
Amazon Elastic Compute Cloud

(Amazon EC2) 200
Amazon Elastic File System

(Amazon EFS) 201
Amazon Machine Image (AMI) 233
Amazon Relational Database

Service (RDS) 201
Amazon Resource Names (ARNs) 246
Amazon Simple Queue Service

(Amazon SQS) 200
Amazon Simple Storage Service

(Amazon S3) 200
Amazon Virtual Private Cloud

(Amazon VPC)
overview 201, 202

Amazon Web Services (AWS) 200, 201
services 200
targeting, with Ansible 203, 204

Ansible 3, 5, 39
code 11, 12
combining, with other tools 378
configuration versus orchestration 10

declarative versus imperative 7-10
history 6, 7
installing, on Linux 18-20
installing, on Windows 11 20-23
installing, with Homebrew 13-16
installing, with pip 16, 17
preparing, for Microsoft Azure 181
principles 7
used, for targeting AWS 203, 204

Ansible AWX 341, 343
advantages 359, 360
deploying 379
disadvantages 359, 360
versus Red Hat Ansible Automation

Platform 342, 343
Ansible AWX Operator

configuring 343-347
deploying 343-347

ansible.builtin 39
ansible.builtin.apt module 38
ansible.builtin.debug module 38
ansible.builtin.service module 38
ansible.builtin.setup module 38
ansible.builtin.template module 38
Ansible collections 52, 53
ansible command 58-64

Index384

Ansible community documentation
reference link 372

ansible-config command 64, 65
ansible-console command 65-67
Ansible Core 39
Ansible Galaxy 37, 41

commands 53-55
roles, publishing to 46-49
roles, using from 50-52
URL 41

ansible-galaxy collection
commands 54

ansible-galaxy command 41, 53
ansible-galaxy role

commands 54
Ansible, installing on macOS 13

cons 17, 18
pros 17, 18

ansible-inventory command 67, 68
ansible-inventory-grapher command 75-77
Ansible playbook debugger 373, 376

task, debugging 374-376
Ansible preparation 156, 157

ping module 158
setup module 159

ansible-pull command 68, 69
Ansible release

life cycle 39, 40
Ansible Tower 342
ansible-vault command 69-75
ansiblevm 24
Apache 83

configuring 89-91
Apache packages

installing 88, 89
Apache role, LAMP stack 88

Apache, configuring 89-91
Apache packages, installing 88, 89
index.html file, copying optionally 91, 92

application deployments
managing 380

Application Elastic Load Balancer 201
Application Elastic Load Balancer

(ELB) role 228-230
Asset Identification (AID) 290
Asset Reporting Format (ARF) 290
auto scaling group (ASG) 246
AWS Key Management Service

URL 284
AWS playbook 204

gateway role 210, 211
running 214-216
security group’s role 211-214
subnets role 207-210
variables 204-206
VPC role 206

AWS user
access key and secret, creating 202, 203

azure.azcollection 39
Azure DevOps 327

code, uploading 329, 330
pipeline 330-339
project, configuring 327-329
project, creating 327-329
repository, cloning 329, 330

Azure Resource Group 153
Azure Service Principle

generating 313-315
Azure Virtual Network 153

B
Big Cloud Fabric (BCF) 175
Big Monitoring Fabric (Big

Mon) service 175
bridge domains (BDs) 172

Index 385

C
Cards

reference link 372
CFEngine 7
Checkmarx 279
Checkov

exploring 273-279
reference link 274

Chef 7
Chocolatey

used, for installing applications 164
Classless Inter-Domain Routing (CIDR) 154
cloud-init.yaml 24
Cobbler 6
collections 172

Ansible Net Common [ansible.
netcommon] 178

Apstra Extensible Operating System
(EOS) [arista.eos] 172

Check Point [check_point.mgmt] 172
Cisco 172
Community Network Collection

[Community.Network] 175
F5 BIG-IP Imperative [F5Networks.

F5_Modules] 174
Fortinet 174
Free Range Routing (FRR) [Frr.Frr] 174
Juniper Networks Junos

[junipernetworks.junos] 174
Open vSwitch [Openvswitch.

Openvswitch] 174
Pluribus Networks Netvisor OS [pn] 178
VyOS [vyos.vyos] 175

collections, in Cisco
Cisco Adaptive Security Appliance

(ASA) [cisco.asa] 173
Cisco Application Centric Infrastructure

(ACI) [cisco.aci] 172

Cisco DNA Center (DNAC)
[cisco.dnac] 173

Cisco IOS and IOS XR [cisco.
ios and cisco.iosxr] 173

Cisco Meraki [cisco.meraki] 173
Cisco Network Operating System

Software (NX-OS) [cisco.nxos] 173
Cisco Network Services Orchestrator

(NSO) [cisco.nso] 173
Cisco Unified Computing System

(UCS) [cisco.ucs] 174
Identity Services Engine (ISE) [cisco.ise] 173

collections, in Fortinet
Fortinet FortiManager [fortinet.

fortimanager] 174
Fortinet FortiOS v6 (fortinet.fortios) 174

Common Configuration
Enumeration (CCE) 290

Common Configuration Scoring
System (CCSS) 290

Common Platform Enumeration (CPE) 290
common role, LAMP stack 84

common packages, installing 84, 85
group, creating 85-88
installed packages, updating 84
key, creating 85-88
Network Time Protocol (NTP),

configuring 85
user, creating 85-88

Common Vulnerabilities and
Exposures (CVE) 290

Common Vulnerability Scoring
System (CVSS) 291

Common Weakness Enumeration
(CWE) 290

Community Network Collection
A10 Networks [a10] 175
APCON [apcon] 175

Index386

Arista Cloud Vision [cv] 176
Aruba Mobility Controller [aruba] 175
Avi Networks [avi] 175
Big Cloud Fabric and Big Switch

Network [bcf + bigmon] 175
Cisco AireOS [aireos] 175
Cisco Firepower Threat Defense [ftd] 176
Citrix Netscaler [netscaler] 177
Ericsson [eccli] 176
ExtremeXOS [exos + nos + slxos] 176
Huawei Cloud Engine [ce] 176
illumos [dladm + flowadm + ipadm] 176
Ingate Session Border Controllers [ig] 177
Itential Automation Platform [iap] 177
Lenovo CNOS [cnos] 176
Lenovo Enterprise Networking

Operating System [enos] 176
Nokia NetAct [netact] 177
Nokia Nuage Networks Virtualized

Services Platform (VSP) 177
NVIDIA Network Command

Line Utility [nclu] 177
OpenSwitch [opx] 177
Ordnance Virtual Routers [ordnance] 177
Ruckus ICX 7000 [icx] 177
Ubiquiti EdgeOS [edgeos + edgeswitch] 176

complex deployment
automating 377, 378

continuous delivery (CD) 312
continuous integration (CI) 312
customer relationship management

(CRM) 180
Custom Script Extension 155

D
datagram transport layer

security (DTLS) 290

Debian 136, 137
Department of Homeland

Security (DHS) 291
deployment

high availability 220
instances, launching 220
order 219
planning 218, 219
running, cost 219
WordPress considerations 219, 220

Direct Console User Interface (DCUI) 261
DNS records

updating 380, 381
Docker

overview 272
Docker Desktop

installing, on Linux 273
installing, on macOS 272
installing, on Windows 273

Docker Desktop Installer for Windows
download link 273

Docker Desktop, on Linux
installation link 273

Docker role 294, 295

E
EC2 configuration 225, 226

EFS configuration 227
final block 227
RDS configuration 226, 227
security group configuration 227
VPC and subnet configuration 227

EC2 instances 201
Elastic File System (EFS) role 230, 231
Extensible Configuration Checklist

Description Format (XCCDF) 291

Index 387

F
feature flags 182
Federal Information Security

Management Act (FISMA) 290
fully qualified domain name (FQDN) 263

G
GitHub Actions 312

Azure Service Principle, generating 313-315
code, committing 323-327
GitHub personal access token 315
preparation 312
repository, creating 312, 313
secrets, adding to repository 316
SSH key pair, generating 313-315
workflow 317-322

Global Server Load-Balancing (GSLB) 177

H
handler 32
Heartbleed 290
Helm 344

reference link 344
Homebrew 13

used, for installing Ansible 13-16
hosts files 194

I
inbuilt commands 57

ansible 58-64
ansible-config command 64, 65
ansible-console command 65-67
ansible-inventory command 67, 68
ansible-pull 68, 69
ansible-vault command 69-75

infrastructure-as-a-service (IaaS) 180
infrastructure-as-code (IaC) 273
instances

launching, in Microsoft Azure 180, 181
Internet Information Services (IIS) 160
ipify

URL 152

K
keeping infrastructure as code secure (KICS)

exploring 279
high-severity results 283, 284
info and low-severity results 280-283
output files 285, 286
result of scan, reviewing 280
results summary 284
scan, re-running 285
scan, running 279

Kubernetes cluster
terminating 356

kubernetes.core 39

L
LAMP playbook 102-106
LAMP stack 83

Apache role 88
common role 84
MariaDB role 93
PHP role 99

LEMP 83
Linux 83

Ansible, installing on 18-20
Docker Desktop, installing on 273

Linux, Apache, MySQL, PHP (LAMP) 4

Index388

M
macOS

Docker Desktop, installing on 272
MariaDB 83

configuring 94-96
installing 93

MariaDB role, LAMP stack 93
example database, downloading 97-99
example database, importing 97-99
MariaDB, configuring 94-96
MariaDB, installing 93

Markdown reports
reference link 329

Microsoft Azure
Ansible, preparing for 181
instances, launching 180, 181
running 180
Windows server, launching 152-156

Microsoft Dynamics 180
Microsoft .NET Services 180
Microsoft SharePoint 180
Microsoft SQL Data Services 180
Microsoft Teams 372, 373
modules 171
mrkdwn 368
multi-distribution considerations

Stack Config role 138, 139
Stack Install role 137
WordPress role 139

Multipass 23, 37
installation link 23

Multipass on Windows
installation link 23

MySQL 83

N
namespace 39
National Institute of Standards and

Technology (NIST) 290
National Security Agency (NSA) 290
Network Address Translation

(NAT) rule 189
networking tasks 186-193
Network Security Group 153
NGINX 83
NGINX configuration, stack_

config role 115-118
MariaDB configuration 121, 122
NGINX and PHP-FPM, starting 120
PHP and PHP-FPM configuration 118-120

Nip.io service
reference link 157

O
Open Checklist Interactive

Language (OCIL) 291
OpenSCAP 290

role 298-306
Open Vulnerability and Assessment

Language (OVAL) 291
operating system family 139-141
OWASP ZAP 292

P
PHP 83
PHP Info file

copying 100
PHP packages

installing 99, 100

Index 389

PHP role, LAMP stack 99
Adminer, configuring 100-102
Adminer, installing 100-102
PHP Info file, copying 100
PHP packages, installing 99, 100

ping module 158
pipe 240
pip install packages 16

used, for installing Ansible 16, 17
platform as a service (PaaS) 180
playbook 25-35, 221, 222, 292, 293

common role 294
Docker role 294, 295
EC2 configuration 225, 226
OpenSCAP role 298-307
host inventories 25-27
need, for scanning 272
run highlights 247-254
running 147-309
scan role 295-298
structure 82, 83
variables 222
WordPress roles 295

playbook considerations 357
Ansible Galaxy collections 358, 359
modifications to existing playbook 357, 358

playbook roles 228
Amazon RDS role 231-233
Application Elastic Load Balancer

(ELB) role 228-230
auto-scaling role 243-247
EC2 AMI role 241-243
Elastic File System (EFS) role 230, 231
endpoints role 237
gateway role 228
security groups role 228
stack configuration role 238-241
stack install role 238

subnets role 228
temporary EC2 instance role 233-237
VPC role 228
WordPress role 241

playbook, with Ansible AWX
credentials, adding 349-351
inventory, adding 351, 352
project, adding 348
running 354-356
setting up 348
templates, adding 352-354

Pluribus Networks Netvisor OS
Nokia Networks Service Router

Operating System [sros] 178
Radware [vidrect] 178

preinstallation tasks 110
pretty/pretty-print 375
Puppet 6
Python Package Index (PyPI) 16

R
Red Hat 136
Red Hat Ansible Automation Platform 341

features 342
versus Ansible AWX 342, 343

Red Hat Enterprise Linux (RHEL) 136
Remote Desktop 153
resource group task 185, 186
resources

terminating 254-257
role-based access controls (RBACs) 379
roles 42-46

publishing, to Ansible Galaxy 46-49
using, from Ansible Galaxy 50-52

Index390

S
SaltStack 11
Say 371
scanning tools 290

OpenSCAP 290, 291
OWASP ZAP 292
WPScan 292

secrets
adding, to repository 316

secrets role 194, 195
Secure Shell (SSH) 156
Security Content Automation

Protocol (SCAP) 290
components 290, 291

security information and event
management (SIEM) 371

SELinux 139
service-level agreement (SLA) 359
ServiceNow 371, 372
session initiation protocol (SIP) 177
setup module 159
Simple Object Access Protocol (SOAP) 156
site files 194
Slack 363-370
Slack app creation

reference link 364
software as a service (SaaS) 180
SSH key pair

generating 313-315
stack_config role 114, 138

adapting 144-147
NGINX configuration 115-118
WordPress system user 114, 115

stack_install role 111, 137
adapting 142, 143
NGINX repository, enabling 111-114

Static Analysis Results Interchange
Format (SARIF) 319

Syslog 371

T
tarballs 54
third-party commands 75

ansible-inventory-grapher command 75-77
third-party services 373

integrating with 363
Slack 363-370

third-party services integrations 371
Microsoft Teams 372, 373
Say 371
ServiceNow 371, 372
Syslog 371

time to live (TTL) 380
transport layer security (TLS) 290
Trust Model for Security Automation

Data (TMSAD) 291

U
United States Computer Emergency

Readiness Team (US-CERT) 291

V
variables 222

application 223, 224
resource configuration 223, 224
resource names 225
reviewing 182-185
stack configuration 224

vCenter modules 265
supporting 265
virtual machine modules 266-268

Index 391

VirtualBox
download link 23

virtual machines (VMs)
launching 23-25
modules 266-268
provisioning 379

Virtual Private Cloud (VPC) 218
vmadmin user 29
VMware 259, 260
VMware REST appliance modules 261

access modules 261
health info modules 261, 262
infraprofile modules 262
local accounts modules 262, 263
monitoring 263
networking 263, 264
remaining modules 264
time and date modules 264

VMware REST content modules 265
VMware REST modules 260

W
web application firewall (WAF) 175
Win2022Datacenter 155
Windows

Docker Desktop, installing on 273
Windows 11

Ansible, installing on 20-23
Windows Azure 179, 180
Windows Playbook roles 159

applications, installing with Chocolatey 164
information role 165
user, creating 163
Windows features, enabling 160-163

Windows PowerShell 21
Windows Remote Management

(WinRM) 154

Windows server
launching, in Azure 152-156

Windows Subsystem for Linux (WSL) 23
reference link 23

WordPress
bootstrapping 193
configuring 125-127
downloading 125
installing 125-127
plugins installation 127-129

WordPress playbook
running 129-133

WordPress role 123, 139, 295
facts 123
WordPress CLI installation 123
WordPress database, creating 124

WPScan 292
WS-Management 156

Y
YAML Ain’t Markup Language (YAML) 29

packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos from over

4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packtpub.com and as a print book customer, you
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://packtpub.com
http://packtpub.com
http://customercare@packtpub.com
http://customercare@packtpub.com
http://www.packtpub.com

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Demystifying Ansible Automation Platform

Sean Sullivan

ISBN: 978-1-80324-488-4

• Get the hang of different parts of Ansible Automation Platform and their maintenance

• Back up and restore an installation of Ansible Automation Platform

• Launch and configure basic and advanced workflows and jobs

• Create your own execution environment using CI/CD pipelines

• Interact with Git, Red Hat Authentication Server, and logging services

• Integrate the Automation controller with services catalog

• Use Automation Mesh to scale Automation Controller

https://packt.link/1803244887

395Other Books You May Enjoy

Ansible for Real-Life Automation

Gineesh Madapparambath

ISBN: 978-1-80323-541-7

• Explore real-life IT automation use cases and employ Ansible for automation

• Develop playbooks with best practices for production environments

• Approach different automation use cases with the most suitable methods

• Use Ansible for infrastructure management and automate VMWare, AWS, and GCP

• Integrate Ansible with Terraform, Jenkins, OpenShift, and Kubernetes

• Manage container platforms such as Kubernetes and OpenShift with Ansible

• Get to know the Red Hat Ansible Automation Platform and its capabilities

https://packt.link/1803235411

396

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you’ve finished Learn Ansible, we’d love to hear your thoughts! If you purchased the book from
Amazon, please click here to go straight to the Amazon review page for this book and share your
feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1835088910
https://packt.link/r/1835088910
https://packt.link/r/1835088910

397

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781835088913

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781835088913

	Cover
	Title Page
	Copyright and Credits
	Contributors
	Table of Contents
	Preface
	Part 1: Introducing, Installing, and Running Ansible
	Chapter 1: Installing and Running Ansible
	Technical requirements
	My story: part one
	Ansible’s story
	What is Ansible?
	Ansible, the software

	Ansible versus other tools
	Declarative versus imperative
	Configuration versus orchestration
	Looking at some code

	My story: part two
	Installing and running Ansible
	Installing on macOS
	Installing on Linux
	Installing on Windows 11

	Launching a virtual machine
	An introduction to playbooks
	Host inventories
	Playbooks

	Summary
	Further reading

	Chapter 2: Exploring Ansible Galaxy
	Technical requirements
	The Ansible release life cycle
	The life cycle of a release

	Introduction to Ansible Galaxy
	What is a role?

	Publishing to and using Ansible Galaxy roles
	Publishing your roles to Ansible Galaxy
	Using roles from Ansible Galaxy

	Ansible collections
	Ansible Galaxy commands
	Summary
	Further reading

	Chapter 3: The Ansible Commands
	Inbuilt commands
	Ansible
	The ansible-config command
	The ansible-console command
	The ansible-inventory command
	What is ansible-pull?
	Using the ansible-vault command

	Third-party commands
	The ansible-inventory-grapher command

	Summary
	Further reading

	Part 2: Deploying Applications
	Chapter 4: Deploying a LAMP Stack
	Technical requirements
	The playbook structure
	The LAMP stack
	The common role
	The Apache role
	The MariaDB role
	The PHP role

	The LAMP playbook
	Summary
	Further reading

	Chapter 5: Deploying WordPress
	Technical requirements
	Preinstallation tasks
	The stack_install role
	Enabling the NGINX repository

	The stack_config role
	WordPress system user
	NGINX configuration

	The wordpress role
	Some facts
	WordPress CLI installation
	Creating the WordPress database
	Downloading, configuring, and installing WordPress
	WordPress plugins installation

	Running the WordPress playbook
	Summary
	Further reading

	Chapter 6: Targeting Multiple Distributions
	Technical requirements
	Debian and Red Hat
	Multi-distribution considerations
	The Stack Install role
	The Stack Config role
	The WordPress role

	Adapting the roles
	Operating system family
	The Stack Install role
	The Stack Config role
	The WordPress role

	Running the playbook
	Summary
	Further reading

	Chapter 7: Ansible Windows Modules
	Technical requirements
	Launching a Windows server in Azure
	Ansible preparation
	The ping module
	The setup module

	The Windows Playbook roles
	Enabling Windows features
	Creating a user
	Installing applications using Chocolatey
	Information role

	Running the Playbook
	Summary
	Further reading

	Part 3: Network and
Cloud Automation
	Chapter 8: Ansible Network Modules
	Manufacturer and device support
	The collections

	Summary
	Further reading

	Chapter 9: Moving to the Cloud
	Technical requirements
	An introduction to Microsoft Azure
	Launching instances in Microsoft Azure
	Preparing Ansible for Microsoft Azure
	Reviewing the variables
	The resource group task
	The networking tasks

	Bootstrapping WordPress
	The site and host environment files
	The secrets role
	Other changes

	Running the playbook
	Summary

	Chapter 10: Building Out a Cloud Network
	Technical requirements
	An introduction to AWS
	Amazon VPC overview
	Creating an access key and secret
	Getting Ansible ready for targeting AWS
	The AWS playbook
	The playbook variables
	The VPC role
	The subnets role
	The gateway role
	The security group’s role

	Running the playbook
	Summary
	Further reading

	Chapter 11: Highly Available Cloud Deployments
	Technical requirements
	Planning the deployment
	Costing the deployment
	WordPress considerations and high availability

	The Playbook
	The variables
	EC2 configuration
	The Playbook roles

	Running the Playbook
	Playbook run highlights

	Terminating all the resources
	Summary

	Chapter 12: Building Out a
VMware Deployment
	Technical requirements
	An introduction to VMware
	The VMware REST modules
	VMware REST appliance modules
	VMware REST content modules
	vCenter modules

	Summary

	Part 4: Ansible Workflows
	Chapter 13: Scanning Your
Ansible Playbooks
	Technical requirements
	Why scan your playbooks?
	Docker overview and installation
	Installing Docker Desktop on macOS
	Installing Docker Desktop on Windows
	Installing Docker Desktop on Linux

	Exploring Checkov
	Exploring KICS
	Running the scan
	Reviewing the results
	Re-running the scan
	Output files

	Summary
	Further reading

	Chapter 14: Hardening Your Servers
Using Ansible
	Technical requirements
	The scanning tools
	OpenSCAP
	WPScan
	OWASP ZAP

	The playbook
	The common role
	The Docker role
	The WordPress roles
	The scan role
	The OpenSCAP role
	Running the playbook

	Summary

	Chapter 15: Using Ansible with GitHub Actions and Azure DevOps
	Technical requirements
	GitHub Actions
	Preparation
	Understanding the GitHub Action workflow
	Committing the code

	Azure DevOps
	Creating and configuring our project
	Cloning the repository and uploading the code
	The Azure DevOps pipeline

	Summary
	Further reading

	Chapter 16: Introducing Ansible AWX
and Red Hat Ansible Automation Platform
	Technical requirements
	Red Hat Ansible Automation Platform versus AWX
	Ansible AWX
	Deploying and configuring the Ansible AWX Operator
	Setting up our playbook
	Running our playbooks
	Terminating the Kubernetes cluster
	Playbook considerations
	Ansible AWX’s advantages and disadvantages

	Summary
	Further reading

	Chapter 17: Next Steps with Ansible
	Technical requirements
	Integrating with third-party services
	Slack
	Other integrations
	Summary of third-party services

	The Ansible playbook debugger
	Debugging the task
	Summary of the Ansible debugger

	Some real-world examples
	Automating a complex deployment
	Combining Ansible and other tools

	Summary

	Index
	Other Books You May Enjoy

