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Introduction

/*

* If the new process paused because it was

* swapped out, set the stack level to the last call

* to savu(u_ssav). This means that the return

* which is executed immediately after the call to aretu

* actually returns from the last routine which did

* the savu.

*

* You are not expected to understand this.

*/

if(rp->p_flag&SSWAP) {

rp->p_flag =& ~SSWAP;

aretu(u.u_ssav);

}

—Lions’ Commentary on UNIX 6th Edition, with Source Code

The Compromise

In May 2020, as much of the world was focused on the COVID-19 pan-
demic and as racial justice protests took place across the United States, a 
technical development sparked excitement and fear in narrower circles. 
A computer program called GPT-3, developed by the OpenAI company, 
produced some of the best computer-generated imitations of human writ-
ing yet seen: fake news articles that were, according to the authors, able 
to fool human readers nearly half the time, and poems in the style of Wal-
lace Stevens.1 The program is based on a statistical model that does one 
thing: given a sequence of words, it tries to predict what word will come 
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next. The model was trained on more than 570 gigabytes of compressed 
text scraped from the internet in addition to the contents of Wikipedia 
and a large number of books.2 The system’s creators describe it as a “task-
agnostic” learner—that is, a machine learning model that can perform a 
wide range of cognitive tasks without having to be fine-tuned for any par-
ticular one.3 This new approach to artificial intelligence (AI) aspires to 
transform the practice of computer programming: instead of designing an 
algorithm to solve a given problem, one tells the machine its goal in En
glish, and it works out (one hopes) the correct answer.

From a humanistic standpoint, a striking aspect of this claim is how it 
locates knowledge in language. GPT-3’s input and output consist of text, 
and it is trained on nothing but text; it has no experience, even in the loos-
est notional sense, of anything whatsoever.4 Yet its apparent capabilities 
are not limited to such language-oriented tasks as rewriting paragraphs in 
different styles; to the extent that it really is a multitask learner, it unites 
the functions of writing aid, programmable calculator, and search engine. 
Skeptically viewed, the machine is acting like a parrot, saying things it 
cannot understand. But the idea that a language model can form the basis 
for a universal method could also suggest something like a deconstructive 
insight: that learning language cannot be distinguished from learning to 
think, that there is no limit to the sorts of cognitive operations that go into 
choosing words. If we are to believe the researchers—which we certainly 
should not do uncritically—then natural language is the essential ingredi-
ent needed to create the elusive artificial general intelligence (AGI).

The rise of large language models such as GPT-3 has unsettled the cat-
egories in which people have long understood the relation of computation 
to language. Computers are often described as symbol-manipulating ma-
chines; they work by rearranging electrically represented ones and zeros 
through mechanical rules that do not depend on the symbols’ meanings. 
GPT-3 has rekindled a long-standing philosophical debate over whether 
such a machine can really be said to understand a language.5 But even be-
fore this development, computers have seldom been used as purely un-
interpreted symbol manipulators. In modern interfaces, screens are fes-
tooned with words—save, submit, like—that serve to mediate between 
computational logic and the social conventions by which people com-
municate. Engineers have long treated the communicational elements of 
computer systems as superficial ornaments when compared to the data 
structures and algorithms that form the real core of a computer program. 
Language models such as GPT-3 have blurred the lines. Since these sys-
tems depend, through and through, on data about people’s linguistic prac-
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tices, they make it harder than ever to judge where algorithm ends and lan-
guage begins.

The term algorithm, as it is used in computer science, is notoriously 
easier to illustrate than to define. While the word has recently become as-
sociated with machine learning, textbooks typically explain algorithms, 
quite simply, as precisely defined procedures for solving problems. These 
procedures often take the form of sequences of steps, as in the following 
algorithm for finding the length of the longest sentence in a book:

Write the number 0 on scrap paper
For each sentence in the book, repeat the following:

Count the number of words in the sentence
If the result is greater than the number on the scrap paper:

Replace the number on the scrap paper with the result

Although similar instructions occur in a wide range of contexts—a typi-
cal example is cooking recipes—calling a procedure an algorithm evokes 
a more specific set of disciplinary practices. Programming languages pro-
vide a way of describing procedures with the extreme precision demanded 
by machines. (To make the foregoing procedure a true algorithm, we 
would have to clarify what words and sentences are—not a straightforward 
matter.) Computational complexity theory provides methods for gauging 
and improving the efficiency of these procedures. More broadly, algorith-
mic thinking (in the expansive sense of thinking about algorithms) invites 
abstraction.6 The technical theory of algorithms encourages the develop-
ment of general solutions that can be reused for different purposes and in 
different contexts; the procedures are thought of as mathematical entities 
that exist apart from the complexities of the languages in which they are 
described and the concrete situations in which they are used.

This book is about how this form of abstraction came into being. It fo-
cuses on one thread in the prehistory of algorithms: the use of symbols in 
numerical calculation, algebra, calculus, logic, and, eventually, computer 
science. Standard programming languages such as Python and R draw 
(among other sources) on the symbolic notations of algebra and logic as 
ways of precisely defining operations. Yet these notations, like program-
ming languages, have long combined computation with another function 
that is harder to reduce to mechanical rules: communication. A symbolic 
formula such as Fs = kx provides both instructions for how to compute 
something—in this case, the force required to extend or compress a spring 
by a given length—and a way of conveying a proposition about the world.7 
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It is my contention that the modern idea of algorithm, as the term is used in 
computer science, depends on a particular way of disentangling computa-
tion from the complexities of communication that first took shape in the 
pure mathematics of the nineteenth century.8 Although machine learning 
systems are often called (confusingly) by the same name as the precisely 
defined procedures dealt with in the theory of algorithms, I hope to show 
that machine learning represents a break from this technical concept that 
places centuries-old epistemological boundaries in jeopardy.

The history of algorithms has been told in both long and short ver-
sions. In a broad sense, algorithmic thinking goes back at least as long as 
the written record.9 On clay tablets, the ancient Babylonians wrote down 
rule-based procedures for numerical computation in which the computer 
scientist Donald E. Knuth perceived the rudiments of his discipline.10 
The word algorithm (early on spelled a range of ways, such as algorism, 
algorithmus, algram, or augrym) is less ancient but still very old—it was 
formed in the twelfth century from the name of the Arabic mathemati-
cian Muḥammad ibn Mūsā al-Khwārizmī, who described techniques for 
computing with Hindi–Arabic numerals in the ninth century.11 These 
techniques—including the familiar addition, subtraction, multiplication, 
and division procedures one still learns in school—made up the original 
“algorithm.” As early as the sixteenth century, the word algorithm came to 
encompass a range of other techniques beyond these original ones, often 
involving symbolic algebra. In searching for precursors to the totalizing 
ambitions that now attend computation, popular histories commonly sin-
gle out the German polymath Gottfried Wilhelm Leibniz. Starting in the 
1660s, Leibniz attempted to create what he called a calculus ratiocinator—a 
system of symbolic “calculation” that could resolve disputes about virtu-
ally any topic. The science writer Martin Davis describes the modern com-
puter as a fulfillment of “Leibniz’s Dream” of extending mathematical sym-
bol manipulation into a universal method that can be applied to anything 
whatsoever.12

More focused scholarship by historians including Michael Mahoney 
and Lorraine Daston has shown that such sweeping narratives overlook 
the ways computational practices have changed over the centuries.13 Mark 
Priestley has argued persuasively that computer programming has no in-
trinsic relation to other fields such as symbolic logic but rather came to 
relate to them through intentional choices made by computer scientists.14 
Matthew L. Jones and Maria Rosa Antognazza have placed Leibniz into 
historical context and showed that his work was not exactly algorithmic in 
the modern sense.15 This more historicist perspective has led to a contrast-
ing narrative in which the concept of algorithm is very new. Venerable as 
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the word algorithm may be, its meaning arguably did not reach its modern 
form until the 1960s, when computer science emerged as an academic dis-
cipline. The six authors of the book How Reason Almost Lost Its Mind have 
argued that algorithms were not a model of rationality until the Cold War 
period, when think tank researchers sought to replace human judgment 
with strictly rule-based decision-making.16 The algorithm’s rise to the sta-
tus of a social concern is even more recent, stemming from a confluence of 
technical developments in machine learning with entrenched structures of 
inequality and discrimination.17

This historicization of the idea of algorithm should serve as a warn-
ing against uncritically identifying the symbolic methods of the past with 
modern algorithms. The algorithm as we know it is a complex amalgam 
whose prehistory encompasses a range of practices, including astronomi-
cal and statistical computation, bureaucratic procedures, market econom-
ics, and governmental data-gathering efforts such as the US census. As a 
background to modern algorithms, symbolic methods are important less 
on account of their intrinsic relevance than because of the role they came 
to play in technical discourse. In the 1960s and ’70s, the discipline of com-
puter science came to view algorithms as abstract processes that maintain 
a stable identity even as they are implemented, explained, applied, and in-
terpreted in a range of ways. As I show in this book, this way of thinking 
is implicated in a long series of debates about the relation of symbols to 
language. Should the same symbols be used both to compute results and 
to present them to others? To what extent can their meanings be chosen at 
will, and to what extent does the establishment of meaning require social 
agreement? If a symbol is defined using words, does that entail that it in-
herits the imprecision of natural language?

Such issues would now be seen as extrinsic to computation, involving 
the significance people assign to algorithms, not the algorithms them-
selves. But this boundary has not always been in place, as one can see by 
examining how what counted as an algorithm has changed over time. The 
Indian computational techniques have always involved instructions, taught 
either through direct imperative statements or by example, for what to 
do with symbols: if the sum is greater than 9, write a 1 above the digit to 
the left. As people recognized long before the computer age, this type of 
procedure can potentially be performed by machines.18 Yet the original 
“algorithm” also involved another, less obviously mechanical sort of rule: 
9 means nine. The practice, that is, included rules not just for how to ma-
nipulate the symbols but also for how to interpret them. While mathemati-
cians long recognized that these semantic rules differed from calculating 
procedures, they were a part of the “algorithm” just the same.
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Symbolic algebra complicated these matters by introducing letters to 
indicate unspecified values, as in ax + b. This use of letters, introduced by 
François Viète in the 1590s, laid the groundwork for the modern algorithm 
by enabling procedures to be described in an abstract form that leaves the 
inputs unspecified. But these letters were linked together with operators 
such as + and – that were, at least early on, supposed to have fixed mean-
ings. Establishing these meanings may not have posed a major problem in 
simple cases, but things became trickier as symbolic methods extended 
into theoretically fraught fields such as the infinitesimal calculus, and they 
became yet worse in utopian schemes like Leibniz’s attempt to develop 
symbolic methods for politics. Suppose, for instance, we introduce a sym-
bol to denote equity. How can we be sure that everyone using this symbol 
agrees about what equity is? The importance given to conceptual clarity 
made it difficult to ignore the question of what it takes to make a symbol 
mean something, and disparate answers to this question had strong impli-
cations for what symbolism could do.

The expulsion of meaning from algorithms did not so much resolve 
these issues as divest them of epistemological significance. An early phase 
of this process may be discerned in the nineteenth century, when algebra-
ists like George Boole granted formal rules a newly foundational role in 
their science. The boundary solidified in the twentieth century with the 
development of programming languages. Early programming languages 
such as ALGOL, first introduced in 1958, provided at once a way to control 
computers and a standard medium for publishing algorithms. As means 
of communication, programming languages do not, in general, work au-
tonomously from the languages people speak; code typically uses words, 
both in built-in keywords like if and for and the user-defined names of 
functions and variables, to make its workings easier to understand. The 
received explanation of these linguistic inclusions is that they are mere 
conveniences that aid comprehension without affecting the algorithm it-
self, which is defined in terms of a formal semantics. This division between 
“hard” algorithmic logic and “soft” communicational matters—a division 
that came to pervade the discourse of computer science—gives program-
mers license to push ahead in the design of computational systems without 
worrying about what it would take to establish an accord about meaning, 
if, indeed, this accord is ever established at all.

Historicizing the relation of symbolic methods to language shows that 
this way of thinking is not inherent to symbolic methods; things have been 
otherwise in the past, and they could be otherwise in the future. Language-
based AI systems like GPT-3, with their admixture of computational logic 
and collectively produced linguistic data, push the distinction between 
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computation and communication to its utmost limits, and they thus pro-
vide an occasion to reconsider fundamental assumptions about how com-
putational processes relate to language. The central claim of this book is 
that the modern idea of algorithm depends on a particular sort of subject–
object divide: the separation of disciplinary standards of rigor from the 
complex array of cultural, linguistic, and pedagogical factors that go into 
making systems comprehensible to people. In the discipline of computer 
programming, these standards provide a way of thinking about computa-
tional procedures—of creating them and judging them—that grants these 
procedures an objective existence as mathematical abstractions, apart 
from concrete computer systems. This subject–object divide is deeply em-
bedded not just in textbook definitions of algorithm but also in the design 
of modern programming languages, which generally make algorithmic 
logic as independent as possible from matters of communication; this ab-
straction facilitates the transfer of algorithms across computer systems and 
across application domains. This way of thinking was not firmly in place 
until the nineteenth century, and revisiting the conditions that produced it 
can help us better understand the implications of language-based machine 
learning systems like GPT-3. The idea of algorithm is a levee holding back 
the social complexity of language, and it is about to break. This book is 
about the flood that inspired its construction.

From For mula e to Source Code

In broaching linguistic issues in relation to mathematics, this book joins a 
long tradition in the historiography of science. In the 1990s, scholars such 
as Peter Dear and Robert Markley drew attention to the role of language in 
the emergence of experimental science in the seventeenth century.19 More 
recent scholarship has explored the influence of linguistic disciplines from 
the past on mathematics and computation. There has, in particular, been a 
great deal of research on the intersection of linguistics with early computer 
history, including the importance of theories of syntax for programming 
languages and the emergence of machine translation as a research pro-
gram.20 Looking at earlier time periods, scholars such as Kevin Lambert 
and Travis D. Williams have discussed mathematicians’ engagements with 
philology, which long concerned itself with the histories of mathematical 
symbols, and rhetoric, whose techniques can be discerned in mathemati-
cal proofs.21

With some exceptions, histories of mathematical symbolism have fo-
cused primarily on epistemological matters such as changing standards 
of mathematical proof, the new modes of thought opened by notations 
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like ab, and how mathematical constructs relate (or do not relate) to real-
ity. This book considers these matters, but it places more emphasis on the 
relatively neglected communicational side of symbolism. Communication, 
as the form of the word suggests, requires a common ground between peo-
ple, and it is not self-evident that this common ground works the same way 
with words and symbols. For centuries, it has been recognized that the use 
of words is to some extent constrained by convention. As the seventeenth-
century philosopher Bernard Lamy put it, “We might, if we please, call a 
Horse a Dog, and a Dog a Horse; but the Idea of the first being fixt already 
to the word Horse, and the latter to the word Dog, we cannot transpose 
them, nor take the one for the other, without an entire confusion to the 
Conversation of Mankind.”22 To communicate effectively in English, one 
must, at least broadly, follow the usages of others. The meanings of alge-
braic symbols, on the other hand, appear to bend to the individual will: 
one can write, “let a = 5,” and that is what a will mean.23 To many observ-
ers, such individualistically defined symbols have seemed, paradoxically, 
to convey ideas with a level of transparency that words could not match. 
Historical thinkers have addressed this apparent paradox in a range of 
ways, reflecting changing precepts about language, knowledge, and the 
formation of thought.

An attention to these issues complicates received thinking about the 
role of algebraic symbolism in the origin of modern science. It has long 
been a common narrative that the Scientific Revolution of the seventeenth 
century involved the “mathematization” of the physical sciences. The trend 
more recently has been toward recognizing that the category of mathemat-
ics itself changed in the period. The 2016 edited collection The Language of 
Nature: Reassessing the Mathematization of Natural Philosophy in the Seven-
teenth Century works toward a more nuanced view of what it means for a 
science to be mathematized.24 The present study contributes to this nuanc-
ing by examining the changing ways people made sense of mathematical 
symbols from the early modern period to present. While algebraic notation 
inspired a great deal of excitement in the seventeenth century, this excite-
ment was not, as I hope to show, always tied to a conception of “mathemat-
ics” at all. Early on, the excitement had more to do with the visual nature 
of the symbols, which promised a mode of communication fundamentally 
different from spoken languages such as English and Latin. Understanding 
the place of symbolic methods in the history of science thus requires histo-
ricizing not only the category of mathematics but also the category of lan-
guage; in particular, we must consider changing opinions on the relation 
of writing to speech and on how the common ground of communication 
should be established.
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Attempting to find an absolute beginning for this history would be 
hopeless. Practices that look to us like algorithms have existed at least 
as long as writing itself, developing independently in a range of cultures. 
Aside from some background about ancient and medieval mathematics, 
my account starts in the sixteenth century, when the modern form of al-
gebraic notation began to be codified. As I discuss in chapter 1, between 
the mid-sixteenth century and the mid-seventeenth, this notation revolu-
tionized the practice of algebra: whereas equation-solving procedures had 
previously been expounded largely through words, one could now express 
them in compact formulae. Amid a general climate of suspicion toward 
language, such symbols came to be seen as a superior alternative, a way of 
presenting ideas directly to the eye without the mediation of words. This 
confidence in the transparency of symbols rested, I argue, on a belief that 
certain universal ideas were divinely etched onto all human minds, thus 
enabling perfect communication independently of the contingencies of 
language.

Leibniz’s work was both a culmination of this early modern obsession 
with symbols and an inflection point. In chapter 2, I discuss the role of 
symbols in both his mathematical work and his attempt to create a calculus 
ratiocinator. Leibniz was one of the earlier writers (although not the first) 
to extend the word algorithm to something other than variants of the In-
dian calculating techniques: he used its Latin and French cognates to refer 
to the differentiation procedure of his version of calculus. Yet his meaning 
was not quite the modern one, and an attention to this semantic nuance 
reveals an aspect of the history of algorithmic thinking that has often been 
overlooked. Leibniz modeled his “algorithm” not on common arithmetic 
but on symbolic algebra; it consists not of a precisely defined procedure 
that determines the correct manner of proceeding at each step but rather 
of a collection of equations for use in transforming expressions. This alge-
braic sense of algorithm, which had widespread and enduring influence, 
placed the idea in an intimate relation to the development of new symbolic 
notations.

Leibniz experimented with such notations in a wide range of contexts, 
from the ∫dx notation for integrals to binary numerals to attempts to de-
velop symbolic methods for politics and law. Shifting ideas about lan-
guage were, however, undermining the grounds of this project. In Han-
nah Dawson’s account, a pivotal figure in linguistic thought was Leibniz’s 
intellectual rival John Locke.25 Leibniz’s dispute with Locke is commonly 
interpreted as epistemological, dealing with the legitimacy of nonempiri-
cal forms of knowledge. The debate also, as I show in the chapter, had im-
plications for symbolic methods. Leibniz assumed that concepts already 
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existed in the mind at birth, so that stabilizing the meanings of symbols 
would not be a major problem. Locke troubled this assumption and, by 
doing so, called into question whether the symbols really were so different 
from words. In Locke’s long shadow, mathematicians paid a heightened 
attention to conceptual definitions; clarity, it was now believed, stemmed 
not from the notation itself but from the way mathematical concepts were 
formed in the mind.

Although the rise of Lockean views of language spelled doom for Leib-
niz’s more extreme claims about symbols, it disrupted neither the devel-
opment of symbolic methods nor the desire to turn algebra into a univer-
sal language. In chapter 3, I focus on a relatively little-discussed successor 
to Leibniz’s universal characteristic developed in the 1790s by Nicolas 
de Condorcet. At the height of the Reign of Terror following the French 
Revolution, Condorcet sketched out a system that would provide algebra-
like notations for all manner of subjects. Like Leibniz, Condorcet was out 
to resolve people’s political and cultural differences by means of symbols. 
Yet his method was very different. Unlike Leibniz, Condorcet did not pre-
sume that the ideas expressed by symbols were already universal; rather, 
he wanted to make them universal through a program of education. This 
approach rendered his system overtly politicized, dependent on a particu-
lar vision of what society should look like.

Although Condorcet’s scheme can be assigned little direct influence, 
it typifies a contention over the politics of symbolism that deserves a 
larger place in the historiography of computation. Standard accounts of 
eighteenth-century mathematics emphasize a division between national 
traditions: Continental mathematicians embraced Leibniz’s notation and 
method, whereas the English followed Isaac Newton in rejecting them. 
I argue in chapter 3 that eighteenth-century mathematics was cut across 
by ideological as well as national divides. As Sophia Rosenfeld has shown, 
language became a divisive topic during the French Revolution, as people 
blamed the Revolution’s splintering on a failure to agree on the meanings 
of such terms as liberty, equality, and fraternity.26 A central thinker in the 
linguistic thought of the period, the Abbé de Condillac, held up algebra 
as a model of the clarity needed to resolve such disagreements. Viewing 
algebra as, in Condillac’s terms, a “well-formed language” led to a number 
of debates over whether the symbols really did have clear definitions, as in 
a notorious controversy over the existence of negative numbers. How sym-
bolic methods worked hinged, in this moment, on an issue regarding the 
politics of language: whether the meanings of signs ought to be governed 
collectively by the people or decided on by the learned.

This conflict was less resolved than it was abandoned. In the early nine-
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teenth century, algebraists turned their attention from conceptual defi-
nitions to formal rules, which provided a new standard of mathematical 
rigor. In chapter 4, I focus on the work of George Boole, the English Irish 
mathematician who described the system that would eventually become 
Boolean logic. Boole’s work has seldom been considered part of the uni-
versal language tradition exemplified by Leibniz and Condorcet, being 
typically positioned at the intersection of algebra and logic. But in the 1847 
book in which he first introduced his system, Boole describes symbolic 
logic as “a step toward a philosophical language.”27 Taking this claim seri-
ously, I contend that Boole’s project was enabled by another major shift in 
linguistic thought. While Boole was just an enamored with symbols as his 
precursors, he lacked their hostility toward words; instead, he espoused 
a respect and even a reverence toward the languages people inherit from 
their ancestors. This attitude enabled the two factions that clashed in the 
eighteenth century to arrive at a truce: instead of replacing language, the 
symbols were supposed to work together with it, at once drawing rigor 
from mechanical rules and meaning from words.

The old antagonism toward language would soon enough return in the 
work of Gottlob Frege, Ernst Schröder, and Rudolf Carnap, who once 
again envisioned replacing words with symbols. But even their work did 
not undo the epistemological divisions that formed in Boole’s time. In 
chapter 5, I consider the early programming language ALGOL, whose 
name means “algorithmic language”—a choice that heralds the widespread 
adoption, starting around 1960, of the word algorithm as a general term for 
precisely defined computational procedures. ALGOL’s creators described 
it as a “universal language” that could specify algorithms in a form both 
readable by humans and executable by machines.28 But as with Boolean 
logic, ALGOL’s claims to universality are narrow. Rather than replacing 
the vernacular all the way down to the formation of actual human thought, 
ALGOL employs words (often in English) to help people understand pro-
grams. What was supposed to be universal in ALGOL was only the algo-
rithmic “essence” of a program, which was distinguished sharply from 
issues in which ordinary language still had to play a role, such as communi-
cation and education—in short, from the aspects of computation that were 
coming to be known as “human factors.”

The example of ALGOL shows that the algorithm as we now know it 
depends on a particular way of drawing disciplinary lines. When computer 
scientists started giving theoretical heft to the term algorithm, they were 
trying to identify essential elements of computational systems that could 
be analyzed mathematically, in isolation from the messiness of how those 
machines worked in their social contexts. This division between “hard” 
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algorithmic matters and “soft” social ones remains deeply ingrained in the 
technical design of programming languages and the discourse surround-
ing them. But it is not inevitable. Before the late nineteenth century, “algo-
rithms” were not usually understood to exclude issues of communication; 
through Boole’s time, computational procedures typically included rules 
not just for what to do with symbols but also for what the symbols meant. 
How to establish this meaning was a matter for philosophical contention, 
and disparate views about language entailed divergent visions for what 
universal computation would be.

It is primarily these earlier ways of thinking—the ones that are notice-
ably different from modern computation—that I emphasize in this book. 
In the history of science, it is a methodological precept to avoid falling 
into the style called “Whig history”—to avoid, that is, describing histori-
cal developments through linear narratives of progress that implicitly side 
with the positions that won. Histories of mathematical symbols tend to be 
extremely Whiggish, complimenting authors who use notations that later 
became standard and chastising those who do not. I certainly do not mean 
to deny the advantages of symbolism, but my purpose is less to celebrate 
it than to understand it, and I accordingly hope to describe what was lost 
with the adoption of symbols as well as what was gained. I also hope to 
show that the symbolic method is not a fixed category. The ways people 
have understood symbols changed multiple times over the centuries, and 
the modern idea of algorithm is a product of particular circumstances and 
epistemological commitments.

Signs of another such change began to appear in the early twenty-first 
century. Over the course of the 2010s, the word algorithm came increas-
ingly to refer not to the precisely defined procedures ALGOL was designed 
to represent but to machine learning systems like GPT-3. While the idea of 
machine learning has existed since the early computer era, this shift in the 
meaning of algorithm, as I argue in the coda, represents more of a break 
from twentieth-century conceptions than has generally been recognized.29 
Text generators like GPT-3 promise a new programming paradigm in 
which, instead of designing a computational procedure, programmers give 
the computer orders in English. Even for those (perhaps a minority) who 
are fully comfortable with this idea, it is hard to deny that its widespread 
adoption would give a renewed importance to the flaws of language—to 
the possibility that words are not actually clear or stable enough to form an 
adequate medium for technical knowledge. With the widespread adoption 
of machine learning, the division between “hard” logic and “soft” commu-
nicational matters has become troubled, and algorithms have become a 
site of contestation.



Introduction  ›   13

New as these developments are, they in some ways mark a return to 
the situation in the eighteenth century, before Boole and his contempo-
raries threw up a barrier between symbols and language. Mathematicians 
in the eighteenth century did not view the meanings of words as irrelevant 
to symbolic methods; instead, they heartily debated whether symbols had 
to correspond to received definitions of words or whether they could be 
defined anew. Nor did they set computational systems apart from politics. 
Some viewed symbols as a way of challenging received ways of thinking, 
an idea that came to be associated with the rationalizing reforms of the 
French Revolution. Others took the opposite view, cherishing words as a 
precious inheritance whose influence was needed to keep mathematical 
knowledge in line with the culture of a country. Attending to these earlier 
discourses, as this book aims to do, can provide us with a better sense of 
the possibilities and problems that exist at the intersection of computation 
and language.

It may be helpful to think of this history as a succession of guiding 
terms—ideas that, in particular historical contexts, set the standards by 
which symbolic methods were judged. In the seventeenth century, Eu-
ropeans typically described computation as an artifice or art, meaning a 
systematically developed set of skills. What made computation an art was 
its transmissibility: one could physically demonstrate, articulate, or write 
down the correct way of doing it, thus enabling people to develop and prac-
tice the skill in a controlled fashion. In the eighteenth century, the valuing 
of artifice largely gave way to the cult of natural reason—a guiding principle 
that valued the mind’s inborn faculties. This way of thinking encouraged a 
deemphasis of explicit rules in favor of conceptual explanations that were 
supposed to make the correct way of performing a computation intuitively 
obvious. In Boole’s time, the reaction against Enlightenment thought led 
to a turn away from natural reason to the quite contrary valuing of culture. 
Under this star, the mechanical had to be balanced with the organic, and 
thus abstract mathematical systems and human thought, as fostered by the 
languages that develop in communities, formed two halves of a whole.

While the idea of culture continues to influence computation, the idea 
guiding the modern algorithm is, if anything, technology. Technology is a 
very old word, but it once meant something very different from its pres-
ent sense, referring either to a treatise about a skilled practice or to the 
set of technical terms used in discussing it.30 The modern meaning, which 
became dominant in the late nineteenth century, has more to do with the 
practical application of scientific knowledge. Viewing computation as 
technology encourages defining problems precisely so as to isolate aspects 
of systems that can be subjected to rigorous engineering methods—a per-
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spective that motivated early computer scientists to theorize algorithms as 
abstract procedures that may be analyzed apart from the specific contexts 
in which they are used. The full ramifications of this divide-and-conquer 
strategy did not become apparent until the early twenty-first century, 
when techniques that were developed within an intellectual framework 
that abstracted out almost all human experience became a force that runs 
much of the world.

The history of symbolic methods is in some ways remote from the po-
litical contentions that now surround algorithms. This book largely deals 
with a time when the idea of universal computation was more a mat-
ter of starry-eyed speculation than a social reality. But many of the issues 
that arose from this speculation have remained with us in the computer 
age. Questions like whether symbolic methods can or should be politi-
cally neutral have come up again and again over the centuries at moments 
when these methods were venturing into new territory. The terms of de-
bate, however, have varied widely, and attending to earlier moments can 
be revealing about the assumptions of the present discourse. I begin in 
the early modern period, when excitement about symbolic methods was 
widespread—but for reasons quite opposed to those that have inspired the 
hype surrounding twenty-first-century AI.
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[   Chapter One  ]

Symbols and Language in 
the Early Modern Period

The alphabet is really now superfluous
for in this sign all men can find salvation.

—Goethe, Faust, Part II (trans. Atkins)

Idols a nd Hierogly phs

In the scientific circles of the seventeenth century, words had a bad reputa-
tion. In the 1623 version of his book The Advancement of Learning, Francis 
Bacon warned against what he called the “idols of the market”—the “vul-
gar” notions that, in everyday speech, tend to “insinuate themselves into 
the understanding” by means of words.1 As a protection against “the seduc-
ing incantation of names,” he tentatively suggests definitions and “terms of 
art,” but even these are not enough; truly preventing words from “doing 
violence to the understanding,” he states, will require “a new and deeper 
remedy.”2 At almost exactly the same time, there was an explosion of new 
mathematical symbols.3 In the mid-1500s, algebra often took the form of 
words, with even equations, which we now think of as made out of sym-
bols, appearing in knotty prose. By the mid-1600s, this logorrhea had given 
way to compact symbolic expressions like ax + b = c. Although Bacon 
himself had little interest in mathematics, scholars have long noted an al-
liance between these new symbols and his followers’ hostility toward lan-
guage.4 Algebraic notation, brought into something like its modern form 
by Thomas Harriot and René Descartes in the early decades of the 1600s, 
came to be associated with a philosophical ideal of clarity, and numerous 
thinkers, G. W. Leibniz among them, envisioned developing analogous 
symbols for all manner of subjects.

This chapter gives an overview of the symbolic methods that existed be-
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fore Leibniz’s arrival on the scene in the 1660s. It focuses on two practices 
that would eventually form major sources for the modern idea of algo-
rithm. The first is the set of techniques to which the word algorithm origi-
nally referred. This word (then more commonly spelled algorism) gener-
ally referred to the procedures of numerical computation that probably 
originated on the Indian subcontinent in the medieval period.5 The second 
is the algebraic symbolism that solidified in the early 1600s. Whereas it 
is now a cliché to call mathematical notation a universal language, early 
modern textbooks presented numerals and algebraic symbols less as lan-
guage than as forms of writing comparable to the alphabet.6 Alphabetical 
writing, as the linguist Amalia E. Gnanadesikan explains, “is a transforma-
tion of language, a technology applied to language, not language itself.”7 
To their early modern advocates, symbols promised a way of improving 
the technology of writing so as to free it from the uncertainty of words. 
This view raised theoretical problems that would ultimately explode in the 
debate between Leibniz and John Locke, and that would render symbolic 
methods philosophically contentious for centuries.

The early reception of symbolic algebra reflected a clash between con-
ceptions of mathematical knowledge. As numerous scholars have shown, 
the question of what constituted “mathematics” was far from settled at the 
time; the category traditionally encompassed not just geometry and arith-
metic but also astronomy and music, and some writers extended it to other 
practices such as the construction of machines.8 For many thinkers in the 
period, the heart of mathematics was Euclidean geometry. For instance, 
when Galileo Galilei made his famous statement—in his 1623 book The 
Assayer—that God wrote the book of the world in the language of math-
ematics, he was explicitly referring to geometric diagrams, not to any sort 
of symbolic notation.9 Throughout the sixteenth and seventeenth centu-
ries, Europeans held algebra in lower esteem than geometry, since it was 
not one of the traditional liberal arts and was perceived to lack rigorous 
standards of proof.10 Symbolic algebra transformed a range of practices in 
the seventeenth century, but its methods were widely regarded as practical 
rather than truly scientific, and they would long be hounded by conceptual 
difficulties.

Going back to G. H. F. Nesselmann’s work in the nineteenth century, 
historians of mathematics have explained the development of algebraic 
symbolism with a three-stage model.11 First is the rhetorical phase, in 
which equations are presented entirely in words: “Three unknowns plus 
five equals twenty.” Next is the syncopated phase, in which some symbols 
are used as ligatures or abbreviations of words: “3 co. p. 5 eq. 20.” Finally, in 
the symbolic phase, the symbols replace words altogether and take on an 
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epistemological role: “3x + 5 = 20.” This model captures the gradualness of 
the process by which words gave way to symbols. Some of the basic alge-
braic symbols originated as abbreviations: in his 1557 book The Whetstone 
of Witte, Robert Recorde explains the = sign as a way “to auoid the tediouse 
repetition of these woordes: is equalle to.”12 Such symbols, according to 
Nesselmann, eventually took on uses beyond merely shortening texts, 
making it possible to solve complex problems by transforming arrange-
ments of symbols on a page.

This three-stage account places much of early modern algebra in a gray 
area. As Albrecht Heeffer has argued, Nesselmann’s chronology is un-
clear; the syncopated phase includes both ancient mathematicians such 
as Diophantus and early modern ones such as François Viète, ignoring 
the variety of mathematical practices that existed between them.13 Nes-
selmann’s account also muddles the issues of what symbols people used—
special signs such as + and = versus words such as plus and equals—and 
how they used the symbols. Viète employed a notation that mixed symbols 
with Latin words, which he even inflected in accordance with the rules of 
grammar—instead of =, he used æquatur. Yet he subjected these semiver-
bal equations to rule-based transformations much like the ones now em-
ployed in symbolic algebra. If we are looking for the origins of the style 
now known as symbol manipulation, then the transitions Nesselmann de-
scribes are not necessarily pivotal. As far as problem-solving methods go, 
it makes little difference whether one manipulates words, abbreviations, or 
symbols.

This revision of Nesselmann’s account, however, leaves an explanatory 
gap. Even if trading words for symbols had little effect on the procedures 
of algebra—on what one would now call the algorithms—symbolic nota-
tion was not viewed as a minor development in the seventeenth century. 
Leibniz was far from the only one to see symbols as a basis for a univer-
sal method; numerous thinkers, including Descartes and Isaac Newton, 
considered the possibility of doing for other fields what numerals and al-
gebraic symbols had done for mathematics. Symbolic notation has an ob-
vious advantage in its compactness, but this fact alone cannot explain the 
degree of the fervor. Advocates represented symbols as a way of putting 
thoughts directly on the page without mediation; algebraic notation was 
widely viewed as a way of circumventing Bacon’s idols of the market and 
granting knowledge a degree of certainty that words could not match. To 
understand these attitudes, we must contextualize the development of the 
notation not only in terms of the mathematical thought of the time, but 
also in terms of early modern ideas about language and writing.

To do so, one must step into the mindset of a population for whom 
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reading and writing were not nearly as pervasive as they are today. Prior 
to the late seventeenth century, the word language primarily referred to 
spoken communication, and writing still seemed to many people, as Jona-
than Hope puts it, “a strange technology,” a sometimes unreliable means of 
recording spoken words so that they could be recited later.14 The sixteenth 
century witnessed a number of attempts to make the technology of writ-
ing more efficient and dependable. A 1588 book by Timothie Bright de-
scribes an art of “characterie” that provides a means of “shorte, swifte, and 
secrete writing by Character.”15 Bright’s system consists of a large number 
of “Characters,” each of which has a “value, or signification” defined by a 
word (figure 1.1).16 By this means, one could write a whole word using no 
more space than a single letter. The shorthand movement was, as James 
Dougal Fleming has noted, entirely confined to England in the early mod-
ern period, but shorthand-like practices existed in a range of languages.17 
Alchemy and astrology, for instance, employed complex systems of sym-
bols that were viewed as secret forms of writing akin to cryptographs and 
hieroglyphs.18

The fascination with these “characters” stemmed in part from the fact 
that they placed writing in a different relation to spoken language com-
pared to alphabetical writing. In the early modern period, Europeans 
tended to discuss reading as if it involved a voice, be it literal or imagined.19 
This way of thinking had a classical warrant, albeit one that was increas-
ingly viewed as unsatisfactory. In On Interpretation, Aristotle describes 
the signification of written language as a multistage process: letters signify 
(spoken) words, words signify concepts, and (at least in the interpretation 
of some medieval readers) concepts signify things.20 Whereas the last step 
was endlessly controversial among the Scholastics, the first step was often 
glossed over. In early modern linguistic thought, it was common to use the 
word letter (in Latin, littera or litera) to refer indifferently to both alpha-
betical characters and the speech sounds they represent.21 Nonphonetic 
symbols would seem to change this situation: Recorde’s “=,” for instance, 
does not in any obvious way represent the sounds of the words is equalle to. 
The Aristotelian model provides no clear guidance as to such symbols—the 
equals sign could be taken to signify the words in the manner of Bright’s 
“Characterie,” or else it could be seen as bypassing words and cutting 
straight to the concept of equality.

In the case of numerals and algebraic symbols, there was a major mark 
in favor of the latter. Unlike alphabetical writing, these symbols could be 
read aloud in multiple languages: English speakers read “9 – 1” as nine mi-
nus one, whereas French speakers read it as neuf moins un, and the meaning 
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Figure 1.1.  An example of an early modern shorthand notation, from Timothie Bright’s 
1588 book Characterie. The Bodleian Libraries, University of Oxford, Douce W  3 
(Weston Stack), sig. ¶3v. Images produced by ProQuest as part of Early English Books 
Online. www​.proquest​.com. Images published with permission of ProQuest. Further 
reproduction is prohibited without permission.

appears to be the same in both cases. Borrowing from the Scholastic termi-
nology, early modern thinkers explained such translinguistic symbols by 
distinguishing between nominal characters, which represented the sounds 
of words, and real characters, which referred directly to ideas or things. The 
idea of a real character appears most famously in Bacon’s 1623 Advance-
ment of Learning, where it had particular reference to kanji—a subset of 
the Chinese han characters that can be read in either the Japanese or the 
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Chinese language.22 Bacon explains this quality as a departure from the 
Aristotelian model: the characters “express, not their letters [i.e., speech 
sounds] or words, but things and notions; insomuch, that numerous na-
tions, though of quite different languages, yet, agreeing in the use of these 
characters, hold correspondence by writing.”23 As a result, “a book written 
in such characters may be read and interpreted by each nation in its own 
respective language.”24

Although Bacon does not discuss mathematical symbols in the passage, 
it later became routine to cite numerals and algebraic symbols as examples 
of real characters.25 For instance, the mathematician John Wallis wrote 
that, like Chinese characters, algebraic signs “so little need the interven-
tion of Words to make known their meaning, that, when different persons 
come to express, in Words, the sense of those Characters, they will as lit-
tle agree upon the same Words, though all express the same sense, as two 
Translators of one and the same Book into another Language.”26 Robert 
Hooke made a similar comparison with regard to “Arithmetical Figures.”27 
Since it does not align with how modern linguistics understands writing, 
a number of modern scholars have dismissed the idea of a real character 
as mistaken or absurd; Jaap Maat goes so far as to call the idea a “myth.”28 
But the idea is not wholly senseless when applied to mathematical sym-
bols. Calling these symbols real characters amounts to claiming that they 
express universal ideas that are accessible to all people, regardless of what 
words one chooses when pronouncing them—that the English word mi-
nus and the French word moins really share a common core of meaning 
by means of which the minus sign can be used to communicate the idea of 
subtraction clearly across languages.29

This is not to say that the real-character idea still holds water. The idea 
depended on a faith that the human mind was divinely constructed to mir-
ror the world, which precludes any serious recognition of cultural diver-
sity. Not everyone thought this way in the seventeenth century. But nu-
merals and algebraic symbols really are, in a sense, more like an alternative 
to the alphabet than a language. As the next section shows, seventeenth-
century textbooks taught numerals in a way that emphasized physical pen 
skills and speaking numbers aloud. This pedagogy had more in common 
with learning to read and write (or with learning a shorthand like Bright’s 
“characterie”) than with learning a second language. There was also a dif-
ference in regard to gender: vernacular tongues were largely learned from 
women—from mothers and nurses—whereas writing and mathematics 
alike were both typically learned from male teachers.30 Examining how 
numerals were taught sheds light on why early modern philosophers such 
as Leibniz put so much stock in the power of symbols—and on how the 
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algorism of their time was different from algorithmic thinking as we now 
know it.

The Mea ning of A lgor ism

That computation has anything to do with writing is not a given. Pre
modern cultures developed a wide array of calculating implements, from 
abaci to the intricate, multilevel counting tables developed by the Inca. The 
rise of the Hindi–Arabic numeral system, however, gave computation a 
strong link to writing that would long implicate it in philosophical debates 
about language. This system probably originated on the Indian subconti-
nent; the astronomer Brahmagupta described it in Sanskrit verse around 
628 CE, although there is evidence that it was already in use prior to his 
work.31 The numerals later spread to the Arabic world, where they were 
described by the mathematician and astronomer Muḥammad ibn Mūsā al-
Khwārizmī.32 While al-Khwārizmī did not invent these methods, it was his 
name that inspired the word algorithm, and so it is worth considering the 
contents of his work.

Probably born in what is now Uzbekistan, al-Khwārizmī secured a posi-
tion at the House of Wisdom, a library in Baghdad, where he wrote on a 
number of topics.33 His c. 820 Compendious Book on Calculation by Comple-
tion and Balancing is largely about solving equations; the word algebra is 
derived from the word al-jabr (usually translated as “completion”) in the 
Arabic title of this book.34 His work on arithmetic, unfortunately, survives 
only in unreliable Latin translations.35 The most famous of these transla-
tions is sometimes called “Dixit Algorizmi” (“Algorizmi said”) because 
the translator inserted that phrase at the beginnings of the first two para-
graphs; this bit of scribal happenstance is thought to be the origin of the 
Latin word algorithmus and thus, ultimately, of the English word algorithm.

From what we can gather from the surviving translations, al-Khwārizmī’s 
arithmetic book presented procedures for addition, subtraction, multipli-
cation, division, halving, and doubling.36 In the “Dixit Algorizmi” version, 
the explanation of addition begins like this:

You will add each place to the place that is above it with regard to its own 
kind, i.e., units to units and tens to tens. When ten has been collected in 
one of the places, i.e., in the place of the units or tens or in some other 
place, put a one instead of it and elevate it to a higher place, i.e., if you 
have ten in the first place which is the place of the units, make a one of 
it and raise it to the place of the tens and there it will signify ten. But if 
there remains something from the number that is less than X or the num-
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ber itself is less than X, leave it in the same place. And if nothing remains, 
put a circle (i.e., o), so that the place may not be empty.37

This procedure contains many of the hallmarks of the intellectual style 
that eventually came to bear al-Khwārizmī’s name, including the use of 
conditional, if–then logic and even what we might think of as a loop: “Do 
likewise,” we are instructed, “also in all the places.”38 This is an archetypal 
algorithm: early computer scientists took it as a model for the sort of pro-
cedure that a machine can be programmed to perform.

Through the seventeenth century, the word algorism or algorithm still 
referred primarily to variants of this particular set of procedures. (While 
the spelling with a th appeared in Latin as early as the 1480s and in English 
in the 1650s, I will refer to these historical practices as algorism so as to 
avoid confusion.39) Some authors distinguished algorism from arithmetic, 
which was one of the seven liberal arts set out by the medieval philosopher 
Boethius. Arithmetic, in the Boethian sense, was about types of numbers: 
squares, primes, perfect numbers, and a range of others that are less well 
remembered.40 As the Elizabethan polymath John Dee put it, the purpose 
of this study was “arise, clime, ascend, and mount vp (with Speculatiue 
winges) in spirit, to behold in the Glas of Creation, the Forme of Formes, 
the Exemplar Number of all thinges Numerable: both visible and inuisible, 
mortall and immortall, Corporeall and Spirituall.”41 In contrast to such 
lofty doctrines, algorism was seen as one of the lower branches of math-
ematics. While it was sometimes taught in Latin schools, the art of com-
putation was primarily the business of the (mostly) men E. G. R. Taylor 
dubbed “mathematical practitioners”—people who taught mathematics 
independently of the university system through textbooks, lecturing, and 
tutoring.42 The methods they taught had applications in navigation, trade, 
and finance, in artisanal trades such as bricklaying and construction, and in 
military practices such as ballistics.

In these practical fields, the Hindi–Arabic algorism competed with and 
sometimes worked together with a range of other forms of computation. 
The practitioners sold instruments such as the sector, which consisted of 
a hinged pair of rulers inscribed with scales that could be used to perform 
approximate calculations. Abaci and counting stones had a long history, 
and some people continued to prefer them; counting stones were espe-
cially popular in Germany, and abaci would remain in use for centuries in 
eastern Europe. Calculation could also involve numerical tables, in which 
one could look up certain values without having to compute them oneself. 
The early seventeenth century saw a major advance in such techniques 
with the development of logarithm tables, which were introduced in 1614 
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by John Napier.43 Since adding the logarithms of two numbers produces 
the logarithm of their product, one could use logarithm tables to reduce 
multiplication to the much easier operation of addition. This technique 
was the basis of some of the period’s most advanced mathematical instru-
ments, such as William Oughtred’s “circles of proportion,” a precursor of 
the slide rule that he described in 1632.44

Apart from teaching and selling instruments, the practitioners also pub-
lished books from which one could, at least in principle, learn the art of 
calculation. Most of these books started with “common algorism,” mean-
ing the use of ordinary counting numbers. This doctrine began with “nu-
meration” or “notation,” which meant learning the meanings of the digits; 
afterward came discussions of operations such as addition, subtraction, 
multiplication, and division.45 The exact list varied. Some texts followed al-
Khwārizmī in including special procedures for halving and doubling, and 
some added further operations such as extracting roots. Some textbooks 
also included special “algorisms” for calculations involving currency as 
well as more advanced ones for rational numbers and decimal fractions. 
Algorism also included additional procedures intended to verify results, 
since (no doubt) human computers would often make mistakes.

The procedures described in these books resemble modern algorithms 
in their use of rigidly defined steps that begin and end with arrangements 
of symbols. It is this rigidity that gives the procedures the mechanical qual-
ity that inspired Blaise Pascal and Leibniz to build calculating machines. 
But the first part of algorism—numeration—is different. According to Jo-
hann Lantz’s 1616 arithmetic text, which Leibniz encountered in school, 
numeration is “the enunciation and expression of whatever number is set 
forth.”46 (The Latin enunciatio can mean either pronunciation or proposi-
tion, suggesting a conflation of words and ideas similar to that of the Greek 
logos.) The first step was to familiarize oneself with the nine digits 1, 2, 3, 4, 
5, 6, 7, 8, and 9 as well as the “cipher” 0, which was viewed as a mere place-
holder that had no inherent meaning. Students had to be able to recognize 
and inscribe these symbols dependably; algorism thus, as Jessica Otis has 
argued, required the basic pen skills that were a part of literacy.47 They also 
had to learn the symbols’ values, which were often taught through tables 
similar to the one by which Bright defined the “significations” of his short-
hand characters (figure 1.2). They also had to learn the rules by which nu-
merals are composed into numbers so that they could translate them into 
the number words of a language, as 84 becomes “eighty-four.”

An extended discussion of this translation appears in another text Leib-
niz studied in detail: Johann Heinrich Alsted’s 1630 Encyclopaedia.48 Alsted 
was educated at the Herborn Academy, which was a center of pansophism, 



Figure 1.2.  Hindi–Arabic numerals explained by means of roman ones. From Nicolaus 
Kauffunger’s 1647 German-language textbook Plenaria Arithmetica, p. 8. Kauffunger 
explains that numeration (Numeriren) teaches students how they “actually should 
correctly and tidily write and pronounce each number, just as, in grammar, orthography 
teaches correct writing” (2; translation mine).
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an educational movement that emphasized making knowledge accessible 
to all; his encyclopedia provided a model for Leibniz’s own encyclopedic 
endeavors. Leibniz judged Alsted’s treatment of mathematics to be merely 
“average for his time,” but it is useful as an example of what would have 
been considered typical in the mid-seventeenth century.49 In his chapter 
on arithmetic, Alsted states that the digits are like an “Arithmetical alpha-
bet.”50 Like Lantz, he associates understanding this alphabet with translat-
ing the symbols into words: numeration, he writes, is “the right enuncia-
tion of rightly written numbers.”51 He explains several techniques for this 
translation, including ways of marking the symbols up so as to make the 
translation easier: to help make sense of 89765878910, for instance, one 
can draw dots above or below every third digit after the first, going right to 
left, as in 89̇765̇878̇910.

While Alsted is concerned with the “right enunciation” of numbers, his 
point is not that there is only one correct way to do it. The Greeks and Ro-
mans, he observes, expressed numbers in various ways that are often much 
more verbose than the numeration of modern Latin. According to Alsted, 
Pliny the Elder might have expressed the number of soldiers in Xerxes’s 
army, 5,283,220, as (to translate loosely) “fifty times and twice a hundred 
and eighty-three thousands, two hundred twenty,” whereas one would 
now write “five double thousands, two hundred eighty-three thousands, 
two hundred twenty.”52 Likewise, markup procedures can produce differ-
ent readings depending on how they are done: 10̣000̣000̣000 leads to “ten 
thousand thousand thousand,” whereas 100̣00̣000̣000 leads to “a hundred 
hundred thousand thousand.”53 Grouping the symbols by threes is, Alsted 
tells us, the easiest way of doing it, but he makes it clear that, whichever 
words one chooses, the number itself remains the same.

This mediation between symbols and words has been overlooked in ac-
counts of how language and mathematics related in the early modern pe-
riod. Walter Ong and Robert Markley each have argued that early mod-
ern mathematics was antidialogic—that it suppressed the back-and-forth 
interchange that was valued in classical thought.54 In Phaedrus, Plato has 
Socrates argue that speech is superior to writing because, in conversation, 
one can dynamically respond to questioning.55 When one reads an expla-
nation off a sheet of paper, the words are always the same, but when one 
explains something one genuinely understands, the words come out differ-
ently every time. Measuring intelligence by the ability to hold a conversa-
tion (an idea that persisted all the way to Alan Turing) implies that merely 
having a written text at hand is no guarantee that one knows anything. 
One might suppose that numerals, in their alienation from the phonetics 
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of spoken languages, are even more inimical to this Socratic conception of 
knowledge than alphabetical writing. But in the pedagogical scene evoked 
by algorism texts, the opposite is the case. Contrary to Ong’s association 
of mathematics with a “silent object world,” numerals were not supposed 
to be contemplated mutely.56 Instead, they enable the teacher to prod the 
student to speak: sure, it is that many thousands, but how many hundreds? 
How many tens?

Yet this proliferation of verbalizations had its limits. It may be equally ac-
ceptable to read 4206 as “four thousand two hundred and six” or as “forty-
two oh-six,” but reading it as “twelve” would simply be wrong. Teaching 
people to understand digits required establishing an accord about their 
values, which provided the common ground on which the dialogue took 
place. Alsted does not directly reference Bacon’s idea of a real character 
in this passage, but his account of the “signification” of numerals reveals 
a similar way of thinking. Just like kanji characters, numerals enable peo-
ple from many nations to “read and interpret,” as Bacon put it, a text in 
their own languages; yet the numbers to which the symbols refer remain 
the same (we are supposed to assume) regardless of what language or what 
specific wording one chooses. The numerals thus offload, as it were, the 
signifying function that is ordinarily handled by languages like Latin onto 
the basic operating system of written communication: the alphabet itself.

This background makes it easier to understand Leibniz’s confidence 
that the power of “calculation” could be extended to other areas. While 
the calculus ratiocinator is often discussed together with Leibniz’s work on 
calculating machines, the two are distinct, and it is not clear that the “cal-
culation” by which he hoped to settle disputes was supposed to encompass 
only those aspects of calculation that a machine could perform. Knowing 
how to numerate correctly—being able to choose the right digits at the be-
ginning of the process and read off the results correctly at the end—was 
also part of what calculation meant in his time, and using a machine did 
not render this knowledge irrelevant. Crucially, the fact that numeration 
was less mechanical than the rules of operation did not imply that it was 
any less certain. Alsted’s account of numeration suggests that the Hindi–
Arabic system can express numbers in such a way that there can be no 
doubt about their true values. It thus provides reason to think that symbols 
could extend a similar level of certainty to other areas.

This confidence in the power of symbols depends, however, on the 
stability of the ideas or things those symbols are supposed to signify. One 
might pronounce the symbol 8 with either the English eight or the Latin 
octo, but are the meanings of these two words really the same? If we place 
the languages into their historical contexts, they are arguably not: the Ro-
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mans did not understand numbers the same way we do today. This may 
seem a pedantic distinction, but the problem is more glaring in domains 
that are more obviously contentious than common arithmetic. If we devise 
a character, for instance, to signify grace, it is far from a given that everyone 
will understand its meaning in the same way. As the next section shows, 
such issues were not specific to utopian schemes like Leibniz’s. They also 
arose in another major part of al-Khwārizmī’s mathematical work: algebra. 
While it had clear practical use, algebra also presented answers that could 
not be “said” in the way the results of algorism could. Its adoption thus un-
settled the peaceful relationship numerals instated between symbols and 
language, raising theoretical difficulties that would recur in discussions of 
symbolic methods for centuries.

U nspea k a ble Numbers

The fact that the words algebra and algorithm derive from the work of the 
same person should not be taken to mean they have any necessary con-
nection. If algebra means a way of solving equations—which is what the 
word almost always meant before the nineteenth century—then its history 
goes back millennia. Geometric equation-solving methods existed in Mes-
opotamia and ancient Greece; Chinese mathematicians began developing 
numerical techniques for equation solving around 200 BCE.57 Diophantus 
of Alexandria anticipated some elements of symbolic algebra in the third 
century CE.58 That such practices are algorithmic is far from a given, and 
modern algebra, indeed, contains much that is not. But algebra did play an 
important role in the development of algorithmic thinking. Al-Khwārizmī 
opens his account of algebra by placing it under the scope of calculation: 
“When I considered what people generally want in calculating, I found 
that it always is a number.”59 Algebra, in this form, is an art of calculation 
that produces numbers—not one that is identical to algorism but one that 
can work together with it.

Al-Khwārizmī’s version of algebra survives in the work titled The Com-
pendious Book on Calculation by Completion and Balancing. His book be-
gins with definitions and general techniques for equation solving along 
with geometric proofs, which he performed in the style of Mesopotamian 
geometry.60 The two basic techniques are al-jabr (الجبر), which means 
completion or restoration, and al-muqābala (َالمُْقَابلَة‎), which is translated in 
this context as balancing. While the word algebra derives from al-jabr, it 
now encompasses both of these techniques—moving terms from one side 
of an equation to the other (al-jabr) and canceling terms (al-muqābala). 
Employing these two techniques, al-Khwārizmī describes procedures for 
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solving six types of equation; he then discusses mercantile calculations, 
techniques for computing the areas of geometric figures, and calculations 
involving inheritance. This final section is indicative of the uses to which 
algebra was put in al-Khwārizmī’s context. The Abbasid Caliphate had 
complex rules for inheritance that required fulfilling certain equation-like 
conditions; al-Khwārizmī’s discussion of these issues takes up almost half 
the book.61

Like the surviving translations of al-Khwārizmī’s arithmetic, the alge-
bra is oriented toward teaching the reader a set of practical methods. In 
contrast to the direct instructions of the algorism, he explains his alge-
braic methods through specific problems, such as “half of a square and five 
roots are equal to twenty-eight dirhems [a unit of currency].”62 That is, in 
modern notation, x2/2 + 5x = 28. His solution for this problem begins as 
follows: “Your first business must be to complete your square, so that it 
amounts to one whole square. This you effect by doubling it. Therefore 
double it, and double also that which is added to it, as well as what is equal 
to it. Then you have a square and ten roots, equal to fifty-six dirhems.”63 
What he is instructing us to do here—doubling the coefficients—is specific 
to this instance of the problem: if the first number is something other than 
a half, one has to multiply by some other number. Yet this example is meant 
to stand in for a broader class of problems. “Proceed in this manner,” he 
concludes the section, “whenever you meet with squares and roots that 
are equal to simple numbers: for it will always answer.”64 Al-Khwārizmī’s 
compiling of these instructions marks the beginning of what Victor J. Katz 
and Karen Hunger Parshall call the “algorithmic stage” in the history of 
algebra—a stage in which algebra consisted primarily of procedures for 
solving particular classes of problem.65

Like algorism, algebra was long regarded as a practical matter in Eu-
rope. Al-Khwārizmī himself would have had no strong reason to classify 
his work as either practical or theoretical—Islam, as it was interpreted by 
the Abbasids, encouraged a continuum between secular and holy knowl-
edge.66 European universities had comparatively rigid hierarchies of pres-
tige, and algebra did not self-evidently deserve the status of a learned dis-
cipline. Unlike arithmetic and geometry, algebra had no place among the 
seven liberal arts; its diffusion in Europe was largely due to merchants such 
as Leonardo of Pisa (Fibonacci), who encountered Arabic mathematics 
while accompanying his father on a trading expedition to North Africa and 
described algebraic methods in his 1202 Book of Calculation.67 During the 
Renaissance, the Italian mercantile academies known as “abacus schools” 
taught algebra alongside a range of calculating practices.68 While algebra 
was sometimes taught at universities, its academic status long remained 
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less secure than those of geometry and arithmetic.69 Even in Leibniz’s life-
time, powerful figures such as Isaac Barrow, who became the first Lucasian 
professor of mathematics at Cambridge at 1663, were dismissing algebra 
as a mere problem-solving technique lacking the force of demonstration.70

Algebra’s initial lack of prestige resulted not just from its association 
with commerce but also from conflicting ideas of number. In the early 
modern period, European mathematics was heavily under the sway of 
Euclid, along with other classical Greek thinkers such as Archimedes and 
Plato.71 Whereas we now tend to think of cardinal number as a singular 
concept, Euclid employs two number-like concepts that he treats as en-
tirely distinct: quantity and magnitude. A quantity, for Euclid, is a num-
ber of things, such as four apples, whereas a magnitude is a length, area, or 
volume. Euclidean magnitudes can also be compared by means of ratios, 
which he treats as distinct from the magnitudes themselves; this distinc-
tion persists in the use of the different notations a/b = c/d and a : b :: c : d. 
Euclid also differentiated magnitudes by dimension, which algebra vio-
lated in its use of square numbers: the expression x2 + x would seem to add 
an area to a length, which, in Euclidean terms, is nonsense.72

Arabic mathematicians had extensive access to Greek sources, so their 
work should not be seen as a wholly separate tradition. But the al-jabr 
and al-muqābala did in some ways clash with Euclidean ideas of number. 
When solving a quadratic equation, one has to take square roots. The situ-
ation was clear enough when the root was rational: √—16 = 4. Yet one could 
also end up with a root whose exact value cannot be pinned down. In book 
10 of the Elements, Euclid proves the existence of lines whose lengths can-
not be expressed as multiples of any common unit.73 The proportion of a 
square’s diagonal to one of its sides, for instance, is √—2 , whose value is not 
quite equal to any fraction. Such numbers arose frequently in solving qua-
dratic equations and posed a problem for attempts to “calculate” an exact 
numerical solution.

Euclid provided a suggestive term for these numbers: alogos (άλογος), 
or, as it might be translated, unspeakable.74 If the ratio between two mag-
nitudes is irrational, this term suggests, then its true value cannot be said. 
This suggestion of a lack of speech was widely known in the medieval and 
early modern periods. While a number of thinkers, including the Persian 
astronomer Jamshīd al-Kāshī, had developed methods for calculating 
roots, this could never be done exactly in such cases.75 A marginal note in a 
copy of al-Khwārizmī’s algebra book states that one must be content with 
“an approximation, and not the exact truth: for God alone knows what the 
exact root is.”76 Such attitudes were common among Islamic mathemati-
cians as well as some Christians such as Nicolas of Cusa and Jacques Pele-
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tier, who both connected mathematics to a notion of divine mystery.77 
Others, however, were more disturbed by the apparent unspeakability of 
irrational quantities, whose use in algebra did not seem to measure up to 
Euclidean or Archimedean standards of knowledge.

One potential resolution was to forget about speaking the numerical 
value and be satisfied with saying “the square root of two.” A suggestive, 
albeit equivocal, example appears in Michael Stifel’s 1544 book Arith-
metica integra.78 “It is justly disputed of irrational numbers,” Stifel writes, 
“whether they are true numbers, or fictions.”79 In favor of the existence 
of irrationals is their utility in calculation, on account of which “we are 
moved and compelled to confess, that they truly exist, namely by their ef-
fects, which we perceive to be real, certain, and constant.”80 On the other 
hand, when we “try to subject them to numeration, and proportion them 
by rational numbers, we find that they flee perpetually.”81 The idea that the 
numbers “flee” (a subtly violent metaphor) exemplifies a characteristically 
Protestant emphasis on clear apprehension as a standard of mathematical 
truth. A personal friend of Martin Luther who was repeatedly imprisoned 
for his bold expressions of support, Stifel was not content to take matters 
on authority; he wanted knowledge whose force one could perceive.82

In spite of these reservations, Stifel developed a method, which he calls 
an “algorithm” (Algorithmus), for manipulating irrationals using a nota-
tion somewhat like the modern √—2 .83 For instance, in modern notation, to 
compute √—18 + √—8 , one first determines the ratio between the two roots, 
which in this case turns out to be rational: 18 8 9 4 3 2/ / /= = . The sum 
of the roots, then, must stand in proportion to √—8  as 3 + 2 is to 2; hence, 
the sum, as we would now write it, is equal to 8 22 2(3+2) / . Based on 
this, Stifel determines that √—18 + √—8  = √—50.84 He also includes a more ad-
vanced “algorithm” for working with composites of different types of num-
ber, such as 6 + √—12.85 This work (which has roots in Euclid’s discussion of 
“unspeakable” numbers) indicates that the term algorithm was already, in 
the sixteenth century, beginning to expand beyond its original reference 
to the Hindi–Arabic methods of computation into a broader category of 
symbolic method. In this case, it is notable that the methods in question 
deal with exact relations of irrationals, not numerical approximations—a 
quality that aligns them more with algebra than with computation.

As the example of Stifel indicates, European mathematicians were, by 
the sixteenth century, feeling the limitations of the classical Greek number 
theories that had long reigned in universities. One of the earliest explicit 
repudiations of these theories appeared a few decades later in the work 
of the Flemish mathematician Simon Stevin. In 1585, Stevin published a 
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pamphlet whose title is variously translated as The Tenth or The Tithe, in 
which he introduced decimal notation (versions of which were already 
known in the Middle East and in China) to Europe.86 Rather than a decimal 
point, he used circled numbers to indicate the significance of each digit: 
3①7②5③9④ means three tenths, seven hundredths, five thousandths, 
and nine ten-thousandths, corresponding to what we would write today as 
0.3759.87 He goes on to show that a method much like common algorism 
may be used to perform operations with these numbers; he provides ap-
plications in surveying, measurement, and mercantilism.

Although Stevin’s circled numbers may have been cumbersome com-
pared to the modern decimal point, his work led to a major shift in con-
ceptions of number. For Stevin, a number is constructed not by measuring 
lines or counting indivisible units, but through the digits themselves—the 
tools of the commoners who practiced algorism. As a result, Stevin main-
tains that “there are no absurd, irrational, irregular, inexplicable, or surd 
numbers.”88 Perhaps one cannot write √—2  as a fraction, but one can write 
it (in modern notation) as 1.41421356 .  .  . and continue the expansion as 
far as one likes. In 1594, Stevin described a procedure that can do just that: 
pinning down the root of an equation digit by digit by progressively divid-
ing the number line into tenths.89 (Centuries later, Turing would prove the 
existence of “uncomputable” numbers, as Gregory Chaitin put it, whose 
digits cannot be generated through any clearly defined procedure; Stevin 
was not on as steady ground as he thought.90) While there is some debate 
about the exact nature of Stevin’s numbers, his work points in the direction 
of what is now called the real number continuum, a number concept that 
breaks entirely with classical theories.

Stevin’s redefinition of number does not, however, encompass every 
numerical entity algebra can produce. A procedure like Stevin’s can ap-
proximate the roots of positive numbers, including compounds such as 

6 6– , but it cannot account for the roots of negatives, which can read-
ily emerge from algebraic methods. If, for instance, one were to apply al-
Khwārizmī’s equation-solving method to the equation we would now write 
as x2 + (10 – x)2 = 48, one gets 5 25 26 5 1± = ±– – .91 Unlike irrationals, 
the square root of negative one cannot even be approximated by decimal 
fractions, since no positive or negative number has a negative square. This 
result could simply be rejected as a sign that the equation has no solution, 
and for centuries this would remain the typical reaction. Yet the fact that 
the procedures of algebra could produce such results seemed to imply that 
the procedures themselves were ill founded, and the problems worsened 
as mathematicians attempted to extend their range.
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The best-known instance of this issue appears in the work of the Italian 
polymath Gerolamo Cardano. In his 1545 book The Great Art, or, the Rules 
of Algebra, Cardano described a complete solution for cubic equations—
that is, in modern notation, equations of the form ax3 + bx2 + cx + d = 0. 
The desire for such a solution had been long-standing; the Persian mathe-
matician Omar Khayyam (best known as the presumed author of the poetic 
cycle the Rubaiyat) had analyzed cubic equations in the eleventh century, 
but neither he nor his immediate followers could find an algorithmic solu-
tion.92 Cardano’s solution was attended by a well-known scandal that gives 
a taste of what life as a mathematician was like in sixteenth-century Italy. 
Cardano learned part of the solution, as he acknowledges, from an unpub-
lished poem shared by an acquaintance known as Tartaglia (which means 
“the stammerer”). Tartaglia swore him to secrecy about this result, and yet 
Cardano published it anyway. Cardano had an excuse. Tartaglia, he had dis-
covered, was not the first to discover the result; another mathematician 
named Scipione del Ferro had discovered it over a decade before. Cardano 
took this to mean it was fair game to publish. Yet he failed to acknowledge 
the oath, which led to a bitter dispute culminating in a Renaissance alterna-
tive to a duel: a public mathematics contest between Tartaglia and one of 
Cardano’s students, Ludovico Ferrari, who bested the stammerer and put 
the matter to an end.

The solution Cardano assembled breaks the problem down into more 
specific cases such as x3 + ax = b and x3 = ax2 + b. This division into cases 
is necessary because, like al-Khwārizmī, Cardano does not allow equa-
tions to have negative coefficients; it is thus impossible to combine all cu-
bic equations into one general form. His “rules” take the form of knotty 
prose with the occasional use of an abbreviation, such as ℞ for “root.” To 
solve x3 + ax = b, for instance, one follows these instructions:

Cube one-third the coefficient of the number of things, add it to the 
square of one-half the constant of the equation; & take the square root 
of the whole. You will duplicate this, and to one of the two you add the 
one-half of a number you have already squared and from the other you 
subtract the same. You will then have a binomium and its apotome. Then, 
subtracting the cube ℞ of the apotome from the cube ℞ of the binomium, 
the remainder [or] that which is left is the value of the thing.93

The historian of mathematics Helena M. Pycior characterizes these pro-
cedures as “prose algorithms,” and they can readily be interpreted as al-
gorithms in the modern sense.94 Unlike al-Khwārizmī and Stifel, Cardano 
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presents the rules in general forms rather than by means of specific exam-
ples, prefiguring the abstraction that would later come to characterize the 
programming language. But Cardano’s theory is not wholly algorithmic. 
Along with each “rule,” he presents a geometric demonstration of its va-
lidity, which he includes “so that, beyond mere experimental knowledge, 
reasoning may reinforce belief ” in the results.95 The goal of his book, 
then, was not just to compile procedures for solving practical problems; 
the reader was also supposed to come away with an understanding of why 
those procedures were right.

Such, at least, was the ideal. The geometric basis of Cardano’s methods 
ran into trouble in the so-called irreducible case. As Pycior points out, cer-
tain cubic equations, such as the innocent-looking y3 = 8y + 3, have rational 
solutions that one cannot find via Cardano’s methods without encounter-
ing the square roots of negatives.96 In this case, applying Cardano’s rule 
gives (in modern notation) this rather cumbersome expression:

y = + +
3 33

2
1805
108

3
2

1805
108

– – –

Using a procedure like Stifel’s “algorithm of composite irrational numbers,” 
one can reduce this value to y = 3, which clearly does satisfy the original 
equation.97 This result is correct by the standards of twenty-first-century al-
gebra, but the majority of mathematicians in the sixteenth century viewed 
such expressions as nonsense. Some of Cardano’s early followers, such as 
Raphael Bombelli, managed to overcome their reservations; square roots 
of negative numbers, Bombelli wrote, initially “seemed to me to be based 
more on sophism than on truth, but I searched until I found the proof.”98 
Yet the theoretical basis for such proofs remained highly uncertain.

Cardano’s tentative foray into new realms of number, it should be em-
phasized, did not depend on the use of symbols. Cardano was undeniably 
practicing algebraic reasoning, but apart from numerals and a few abbre-
viations, he explained his procedures in words. This aspect of algebra was 
soon to change. Already in the mid-1500s, the convoluted prose of medi-
eval equation-solving procedures was starting to give way to compact for-
mulae. By the mid-1600s, symbols had taken over. As I discuss in the next 
section, this new notation gained much of its power from the use of letters: 
x, y, z for unknown values and a, b, c for known ones. Unlike numerals, 
with their fixed meanings, these symbols bear different values with every 
problem solved. In his 1650 textbook Arithmetick, Jonas Moore explains 
the difference this way: numerals are “Notation certain, and determinate,” 
whereas algebraic symbols are “Notation uncertain, undeterminate, and ar-
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bitrary.”99 These “uncertain” symbols seemed to many thinkers, paradoxi-
cally, to achieve a level of clarity words could not match—a development 
that almost immediately inspired dreams of a universal method.

From Numbers to Letters

In today’s primary schools, the transition from arithmetic to algebra is 
marked by the sudden appearance of letters. After years of learning about 
fixed values such as 4 + 5, the student is suddenly confronted with expres-
sions such as 4 + x and must learn how to reason about a value that is not 
yet known. The need for some way of referring to unknown quantities is 
essential to algebra, but the use of letters to fill this office is a relatively re-
cent development.100 Modern algebraic notation is based on an idea that 
would later become central to the design of programming languages—the 
use of arbitrary symbols to represent values that are left unspecified for 
the purpose of generalizing a procedure. This use of symbols has become 
deeply entrenched in modern algorithmic thinking, but it was not there in 
the work of al-Khwārizmī himself, and it came at the cost of placing com-
putational procedures in a fraught relation to meaning.

Early iterations of Arabic algebra most commonly represented un-
known quantities with words. Medieval Arabic writers referred to the un-
known as shay (ء  meaning thing; in Latin, this became res, which is the ,(شَْ
word Cardano uses. But long before Cardano’s time, other ways of express-
ing unknowns had appeared. Robert of Chester’s c. 1145 Latin translation 
of the Al-jabr includes a condensed summary of the “rules” (regul[a]e) of 
the art that uses symbols not in the Arabic original. In his critical edition, 
Barabas B. Hughes approximates these symbols as ø, ϑ, and ʒ. For instance: 
“When ø is equal to ϑ and ʒ, ø and ϑ must be divided by ʒ, ϑ halved, the half 
drawn into itself, the product added to the number. The radix of the aggre-
gated whole minus half ϑ reveals what is sought.”101 The letters correspond 
to coefficients attached to terms of specific degrees: ø is a constant, ϑ the 
unknown, ʒ the square of the unknown. In modern terms, then, the equa-
tion is ʒx2 + ϑx = ø.

Yet placing Chester’s symbols in the company of modern notation like 
that is misleading. His ø, ϑ, and ʒ are not interchangeable tokens like the as 
and bs of modern algebra; they function more like common nouns in that 
they have, to borrow a pair of terms from Gottlob Frege, both sense and 
reference.102 In Frege’s terms, reference is what is singled out: the reference 
of the phrase the liar, for instance, is the person being called a liar. Sense is 
the semantic freight the words carry: in this case, all it is to be a liar. Ches-
ter’s symbols employ both types of meaning, at once referring to numeri-
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cal values of the coefficients and conveying information about how those 
values fit into the equation—about, that is, which value is applied to the 
root and which to the square of the root. There is, to be sure, something of 
sense in the symbols of modern algebra; René Descartes instated a conven-
tion of using x, y, and z for unknowns and a, b, and c for knowns, thus using 
the letters as hints as to the purposes different values play. But the rules of 
symbol manipulation do not depend on these conventions; a and x obey 
identical rules. Chester’s “rule,” on the other hand, is incomprehensible 
without a recognition of the different senses of the symbols.

The transition from Chester’s ø, ϑ, and ʒ to our as and xs was not a linear 
process. In his 1494 Summa de arithmetica, Luca Pacioli presented equa-
tions in a compact form that abbreviated unknowns as “co.,” after the Ital-
ian cosa (thing).103 This word inspired a type of symbol that came to be 
known as the “cossic character,” which was placed next to a number to in-
dicate a certain power of the unknown. These symbols first appeared in 
Christoff Rudolff ’s c. 1525 algebra textbook, the shortened title of which—
Die Coss—led a generation of Germans to refer to algebra with a term 
that means, etymologically, “the thing.”104 Rudolff ’s symbols were later 
adopted by Stifel and Recorde, while others employed similar notations 
with different symbols (figure 1.3). Whereas Chester’s symbols represent 
unspecified coefficients, cossic symbols accompany coefficients to indicate 

Figure 1.3.  Robert Recorde’s explanation of cossic characters from The Whetstone of 
Witte (1557), sig. S.i.v. Call no. 56546, Rare Books, The Huntington Library, San Marino, 
California. The first character is a unit indicating a constant value; the second is a unit 
equal to the unknown, the third to the square of the unknown, and so forth. He continues 
the sequence further on the next page.
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Figure 1.4.  The first set of equations presented in Robert Recorde’s The Whetstone 
of Witte, sig. Ff.i.v. Call no. 56546, Rare Books, The Huntington Library, San Marino, 
California.

the degree of the term. The symbols are thus, in a sense, less abstract than 
Chester’s ø, ϑ, and ʒ, providing a notation for the unknown but offering no 
way to leave the parameters of a problem unspecified so that the solution 
can be stated as a general rule.

Combined with Recorde’s = sign, cossic characters enabled the con-
struction of what are sometimes characterized as the first-ever equations 
(figure 1.4). On account of the absence of words in Recorde’s version of 
cossic notation, Heeffer argues that his algebra was fully symbolic.105 
But Recorde’s symbols are, from a semantic perspective, quite different 
from the ones we are used to. In modern notation, the left-hand side of 
the first equation in the figure would be 14x + 15—an expression whose 
value is indeterminate until x is fixed. This indeterminacy is alien to Re-
corde’s algebra.106 Instead, Recorde explains cossic characters as units of 
measurement—one talks about five roots or five squares in the same way 
one talks about “20. shippes.”107 As in common algorism, the cossic charac-
ters have a “numeration” that involves translating them into words—in this 
case, we might say something like fourteen roots more fifteen nombers.108 
These words express not an indeterminate quantity but rather a “com-
pounde nomber” that has, as far as Recorde is concerned, a fixed value 
as much as twelve does.109 While he employed symbols, Recorde was still 
concerned primarily with representing numbers, which he understood as 
numbers of things.

As far as algorithmic thinking goes, a crucial turning point occurred in 
the work of the French lawyer, councillor to Kings Henri III and IV, and 
amateur astronomer François Viète. In his 1591 Introduction to the Art of 
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Analysis, Viète introduced a notation that kept the units but did away with 
numbers:

G A +B Z
B G

in planum in quadratum
in

This would be, in modern notation, 
ga bz

bg
+ 2

.110 Yet the notations are not quite 
equivalent. The “planum” specifies that A is two-dimensional, which is 
necessary because, for Viète, lengths and areas are different types of value 
that may not be added together.111 If these dimensions indicate an attach-
ment to classical ideas of number, Viète’s use of letters pointed in a new 
direction. In contrast to the cossic notations, Viète used letters to repre-
sent both the unknowns and the knowns. He used vowels to represent un-
knowns and consonants for knowns in order, as he wrote, “that this work 
may be assisted by some art.”112 These letters, which he called “species,” 
enabled a practice known in English as “specious arithmetic” (specious 
was probably pronounced with a hard c, as in Latin). Instead of working 
on single equations such as 14x + 15 = 71, one could now draw conclusions 
about general “species” of equation such as Ax + B = C.

There have been a number of differing accounts of where Viète’s As and 
Bs came from, and it is not clear that they have any connection at all to 
the cossic characters used by Rudolff and Recorde.113 In his 1685 Treatise of 
Algebra, John Wallis linked the letters to Viète’s background in law, argu-
ing that they originated from a way lawyers abbreviated people’s names.114 
In his classic study of the history of number concepts, Jacob Klein treats 
them as wholly novel, arguing that Viète initiated the turn away from clas-
sical conceptions of mathematics toward “symbolic formalism.”115 The best 
recent account of Viète is by Jeffrey A. Oaks, who argues that Klein over-
looked the geometric basis of Viète’s method; in Oaks’s account, Viète was 
drawing on the practice of using letters to refer to elements of geometric 
diagrams.116 There is, however, a difference worth noting. Of necessity, 
geometric diagrams show a figure with particular proportions, even when 
the drawing is meant to stand in for a general class of figure. One can draw 
many scalene triangles with various proportions, but one cannot draw a 
scalene triangle with indeterminate proportions. Viète’s notation, on the 
other hand, enables procedures to be described abstractly, without the 
need for any particular example.

Viète’s idea emerged as a part of the humanist push to recover suppos-
edly lost forms of ancient knowledge. There had, in particular, been a re-
vival of interest in the third-century work of Diophantus of Alexandria, 
along with the later Alexandrians Theon and Pappus. Diophantus’s work 
was preserved by Arabic scholars, but it was not widely read in Europe 
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until the 1570s, when portions of it were translated into Latin by Raphael 
Bombelli.117 Probably drawing on a combination of ancient Greek, Egyp-
tian, and Babylonian mathematical traditions, Diophantus had developed 
methods for solving simple equations as well as indeterminate systems of 
equations—that is, systems that do not impose enough conditions to ex-
clude the existence of infinitely many solutions.118 His solutions, which he 
presents in a compact notation somewhat like cossic characters, involve 
making arbitrary assumptions about the relations of values and then work-
ing out their consequences.119 For instance, to solve the problem of find-
ing two squares that sum to 16, he assumed that their roots stood in the 
relation, as we would write it now, y = 2x + 4.120 On this assumption, the 
original equation may be solved to produce a solution to the problem: 256

25
 

and 144
25 .

Fairly or not (almost certainly not), Viète positioned himself as restoring 
the theory of equations to a pristine Alexandrian state. This art, he wrote, 
has been “spoiled and defiled by the barbarians,” on account of which he 
must get “rid of all its pseudo-technical terms (pseudo-categorematis) 
lest it should retain its filth and continue to stink in the old way.”121 The 
unsubtle subtext is that he wishes to expunge Arabic sources in favor of 
Hellenistic ones, a chauvinism manifest in his dislike of the term algebra.122 
Viète hoped to replace al-Khwārizmī’s techniques with what he took to be 
Diophantus’s secret method, which he called analysis.123 In Viète’s defini-
tion, which he attributes to Theon of Alexandria, analysis starts by assum-
ing what is sought and working out its consequences, whereas synthesis 
starts from what is true and deduces other truths.124 Viète divided analysis 
into three phases. The first is the zetetic, which involves the use of specious 
arithmetic to derive a formula for the unknown in terms of what is known. 
The second phase, the poristic, involves the formulation and proof of the 
resulting solution. Last is the exegetic or rhetic phase, in which “from the 
equation set up or the proportion there is produced the magnitude itself 
which is sought.”125 Rhetic analysis, in other words, is the “let A = 5” mo-
ment: the moment in which one sets the values of the letters and resolves 
the formula into a number.

In his later work Zetetics (1593), Viète presents a large number of 
worked-out problems that give a better sense of how this method actually 
worked than the general explanations of the Introduction. For instance, 
he considers this problem: “Given the difference of lines, & difference of 
cubes: to find the lines.”126 That is, find two numbers that differ by B, and 
whose cubes differ by D. Viète solves it like so. Call the sum of the numbers 
E; then E + B is twice the larger number and E − B is twice the smaller 
number. Through some algebraic manipulation, he ends up with this:
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D sol. , B cubo. quatur E quadrato4 –
B3

æ

That is, as we would now write, 4D B E– 3
2

3B
= . Next, he restates the formula 

in words: “The quadruple difference of cubes, minus the cube of the differ-
ence of lines, if applied to triple the difference of lines: appears the square 
of the aggregate line.”127 Finally, he plugs in the values B = 6 and D solidum 
= 504 to get a numerical answer. In a fact often glossed over, he presents 
the result in an entirely different notation from the one he used to manipu-
late equations: “summa laterum 1N, 1Q æquatur 100.”128 Much like cossic 
characters, this notation treats the unknown value as a unit of measure-
ment. In this case, N is a unit set to equal the “sum of the lines” and Q is 
another unit equal to its square; thus, the square of the sum is 100. From 
this, we can deduce that the sum itself is 10, and two numbers that satisfy 
the problem are 2 and 8.129 The approach parallels that of Diophantus, but 
with a difference: whereas Diophantus uses numbers all along, Viète does 
most of the work with letters, only plugging in the numbers at the end.

Viète was grandiose in his ambitions for this art. He ends the 1591 Intro-
duction with an imperialistic statement of purpose set in caps: “To leave 
no problem unsolved.”130 This statement signals the arrival—right 
alongside the first glimmerings of modern algebraic symbolism—of uni-
versalizing ambitions for what those symbols could do. There is a clear res-
onance between Viète’s notation and programming languages and, indeed, 
a historical line of influence linking the two. But the road, again, is not lin-
ear. As the example in the foregoing paragraph shows, what Viète was do-
ing was not quite symbolic algebra as we know it. The verbal statement of 
the formula seems, from a modern point of view, redundant—why bother 
with words if you already have the symbols? The rhetic phase, in which he 
plugs in the numbers to get an answer, raises an issue that is subtler but es-
pecially indicative of the problems that would come to face universal com-
putation schemes. The verb let—in Latin, Viète uses the jussive subjunctive 
sit, as was common in geometric proofs—indicates a mediation between 
the undetermined Bs and Ds of specious arithmetic and the realm of num-
bers. Viète’s self-consciousness about this mediation is apparent from the 
fact that the instant he “lets” the letters have values, he switches to a differ-
ent notation more aligned with classical ideas of number. At the rhetic mo-
ment, then, the symbols change in nature, ceasing to be abstract instruc-
tions and coming to represent numbers of things.

All this complexity would soon vanish. While Viète’s idea of analy-
sis would have a lasting influence, the most consequential element of his 
work was the letters, which were soon extracted from their verbal set-
tings. Among their earliest and most enthusiastic adopters was Thomas 
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Figure 1.5.  Thomas Harriot’s explanation of the rules for division in his algebra system, 
from the 1631 Artis analiticae praxis. © British Library Board, General Reference 
Collection C.74.e.4., p. 10. Images produced by ProQuest as part of Early English Books 
Online. www​.proquest​.com. Images published with permission of ProQuest. Further 
reproduction is prohibited without permission.

Harriot.131 Harriot was best known for accompanying Sir Walter Raleigh to 
Roanoke Island and for writing a book about his experiences in Virginia. 
His algebraic work was not published until 1631, about a decade after his 
death, although it probably circulated in manuscript form earlier.132 After 
a preface and a few pages of definitions in Latin, the 1631 volume con-
sists almost entirely of symbols. Harriot developed a simplified version of 
Viète’s notation that expunged the Latin words: in place of A cubum, he 
wrote aaa (figure 1.5). The preface to the book, probably written by Wal-
ter Warner, states that Viète had performed his analyses with “interpreted 
signs,” whereas Harriot found it more convenient to use “a literal notation: 
that is, the letters of the alphabet.”133 Harriot also broke down the linguistic 
barriers by which Viète had so carefully demarcated the three phases of 
analysis. No more would cossic notations reappear once numbers enter the 
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scene; now, the same symbols could be used for both algebraic manipula-
tion and numerical computation.

It did not take long for admirers of these new symbols to conceive of ex-
tending them to other areas. In the 1630s, John Pell attempted to develop 
the ideas of Viète and Harriot into a more complete and rigorous theory 
of equations.134 Pell connected this interest in algebra to a fascination with 
novel forms of communication such as shorthand, in which his father-in-
law, Henry Reynolds, was deeply interested.135 As did a number of others at 
the time, Pell thought specious arithmetic could provide a model for a new 
form of writing that could express anything in symbols.136 The idea was to 
divide concepts up into simple components—he thought fire, for instance, 
combined “hot thing” and “shining”—and develop symbols for those sim-
ple components that could be placed together in various configurations.137 
The idea of such an “art of combinations” was very old, but Viète’s use of 
the term analysis provided a new way of explaining it. Whether the analy-
sis of concepts into parts really had anything to do with algebraic analy-
sis would long be a topic of debate. Regardless, the example of Pell shows 
that Viète’s early followers were interested in more than solving numerical 
problems—they also saw something in his method that could be applied to 
any number of topics of inquiry.

Harriot and Pell were both located in England, where the mania for 
symbols was strongest in the early seventeenth century. Across the English 
Channel, Pierre de Fermat, Marino Ghetaldi, and Jean-Louis Vaulezard 
applied Viète’s methods to geometric problems.138 In regard to symbols, 
however, the crucial Continental figure was René Descartes, whose 1637 
book Geometry introduced a notation recognizably like the one we use to-
day. It was Descartes who popularized the convention of using x, y, and z 
for unknowns as well as the exponent notation x3. Apart from being more 
compact than Harriot’s aaa, this notation eventually opened the possibility 
of exponents other than integers and, in particular, of a way of unifying ex-
ponents and roots: √—x = x½. Descartes claimed not to have been influenced 
by Viète at all, a statement that remains controversial among scholars.139 
Whatever the case may be, he contributed further to the establishment of a 
fully “literal” notation for expressing formulae.

One practical issue of the new notation was an important precursor to 
the modern algorithm: the formula. Viète’s “species” made it possible to 
explain at least some types of computational procedure entirely through 
symbols. As an example, take Michael Dary’s Interest Epitomized, Both 
Compound and Simple (1677). This text presents rules for computations 
regarding compound interest in a compact form (figure 1.6). The proce-
dure shown in the figure, which gives the principal of a loan based on the 
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Figure 1.6.  A computational procedure for working with compound interest, first 
presented as a formula and then worked out as an example. Note that the notation 
r(t) indicates what we would now write as rt. The calculation is done using base ten 
logarithms; the logarithm used for u is slightly inaccurate, but the error does not affect 
the rounded answer. From Michael Dary’s 1677 book Interest Epitomized. Cambridge 
University Library M.6.29, p. 2. Reproduced by kind permission of the Syndics of 
Cambridge University Library.

amount owed after the accrual of compound interest, is expressed in an ab-
stract formula—(a = u

r t( )
)—that one can apply in short order. The compila-

tion of such computational rules aligned with the Baconian attitudes of ex-
perimentalists like Robert Hooke, with whom Dary was friendly.140 Bacon 
thought that science would be incomprehensible to the masses but would 
nonetheless produce new techniques that would be useful to them.141 Sym-
bolic formulae fit this model nicely: mathematical geniuses could develop 
theories that would trickle down to commoners in the form of practical 
operations that they could use without having to trouble their heads about 
how it all worked.142

Accounts of the emergence of algebraic notation have shown a strong 
tendency toward Whiggish narratives that presume the superiority of sym-
bolic methods. If only Arabic algebraists had developed symbols, Katz and 
Parshall speculate, they could have surpassed their European counter-
parts.143 But the superiority of symbolic methods is not self-evident. The 
Islamic mathematicians Viète denigrated as “barbarians” did gain access 
to Diophantus’s work—indeed, they had more of it than Europeans would 
see until the 1970s—and yet they paid little attention to the symbols.144 
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Perhaps they were right in that. Viète’s program of abstraction—solving 
problems by the hundred rather than one at a time—opened the way for 
the totalizing ambitions that now give the word algorithmic an increas-
ingly ominous ring. That these ambitions should develop in the way they 
ultimately did, however, was not predestined. In pursuing the universal 
method Viète had promised, seventeenth-century mathematicians plot-
ted out two divergent paths, neither of which quite aligns with algorithmic 
thinking as we know it.

Out of the Cov ert of Wor ds

Did the new symbols make algebra easier to understand? It depends on 
what one means by understand. Advocates emphasized the compactness 
of symbolic notation, which, as Robert Hooke wrote, “is of huge Use in the 
Prosecution of Ratiocination and Inquiry, and is of vast Help to the Under-
standing and Memory.”145 These cognitive advantages were not specific to 
mathematical fields: Hooke wishes that natural history could be expressed 
in a similar shorthand employing “as few Letters or Characters as it has con-
siderable Circumstances.”146 William Oughtred, an influential mathemati-
cal practitioner who popularized specious arithmetic in England, went fur-
ther. In the 1647 book The Key of the Mathematicks New Forged and Filed (a 
revised English translation of his earlier Latin textbook), he suggests that 
symbols can reveal the naked truth beneath the veil of language: “Where-
fore that I might more cleerly behold the things themselves, I uncasing the 
Propositions and Demonstrations out of their covert of words, designed 
them in notes and species appearing to the very eye.”147 By claiming to be 
“uncasing” ideas from words, Oughtred positions the symbols as a neutral 
medium devoid of rhetoric—the naked truth, unadorned, all substance, no 
style. If so, they would seem a perfect remedy to the Baconian complaint 
about language.

Yet the symbols did not always appear clear or comprehensible. One of 
Oughtred’s pupils, the Oxford astronomer Seth Ward, notes the potential 
opacity of symbols in a 1654 book on trigonometry: “It does not escape 
me that this little book, which abstains for the most part from words and 
strives to carry the things themselves to the understanding at once, will 
be seen by some as portentous and difficult: Truly it was produced chiefly 
for the sake of those to whom (provided they did not neglect themselves) 
designations of this kind have already become familiar.”148 This passage 
exhibits a tension that would continue to pervade discussions of symbolic 
methods for centuries, all the way to the emergence of the programming 
language. The symbols seemed to represent mathematical ideas with preci-
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sion and transparency, yet to the untrained reader they could be altogether 
opaque.149 To put it another way, notations that serve cognitive functions 
well do not necessarily work equally well for communication; inscriptions 
that seem clear to their writers might make no sense to others.

The major mathematicians in the period largely emphasized individual-
istic uses of symbols and gave little thought to matters of communication. 
In his 1637 Geometry, Descartes shows how geometric problems may be 
translated into algebraic ones and vice versa; it is here that he introduced 
his version of what is now known as the Cartesian coordinate system, al-
though his system was rather different from the one we now know.150 This 
work was supposed to be an example of the method of reasoning that he 
describes in Discourse on Method, in which he resolves “to comprise noth-
ing more in my judgment than what was presented to my mind so clearly 
and distinctly as to exclude all ground of doubt.”151 As Matthew L. Jones has 
emphasized, Descartes was situated in an intellectual culture that devalued 
activities perceived as mechanical, including algebraic calculation.152 Des-
cartes accordingly embraced symbols less as an instrumental means of pro-
ducing results than as a way of making problems easier to grasp mentally.

Descartes discusses symbols at length in his early text Rules for the Di-
rection of Our Native Intelligence (c. 1628). This work was not published un-
til 1701, although Leibniz acquired a manuscript copy of it in 1670.153 Of all 
sciences, Descartes writes, “Arithmetic and Geometry alone are free from 
any taint of falsity or uncertainty” because they derive knowledge wholly 
through deduction, not from experience; he thus takes them as a model 
for a method he calls “universal mathesis.”154 Like Viète, Descartes identi-
fies algebra with a secret art the ancients supposedly used in solving prob-
lems.155 Descartes thinks the power of this art could be extended beyond 
the toy problems Diophantus was out to solve, producing “a more power-
ful instrument of knowledge than any other that has been bequeathed to 
us by human agency.”156 Here appears another instance of the universal-
izing ambitions that we already saw in Viète and Pell: the idea that a single 
method of “analysis” could be used to solve all problems.157

As a part of Descartes’s universal mathesis, symbolic notation was pri-
marily important because its compact form could help people visualize 
complex ideas. In Rules, Descartes emphasizes the importance of running 
ideas over “in a continuous and uninterrupted act of thought.”158 One way 
of doing so is to employ “compendious abbreviations” that leave out irrel-
evant aspects of objects.159 As an example, he introduces a simple algebraic 
notation somewhat like that of Geometry, in which lowercase letters repre-
sent known quantities and uppercase letters unknowns.160 As in the algor-
ism texts of the time, he begins by establishing an equivalency between the 
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symbols and words: the expression 2a3, he writes, “will be the equivalent 
of the words ‘the double of the magnitude which is symbolized by the let-
ter a, and which contains three relations.’”161 The advantage of the symbols 
over these words, as he explains it, is that they present a problem in a way 
that contains nothing “superfluous” and nothing that would “exercise our 
mental powers to no purpose, by requiring the mind to grasp a number of 
things at the same time.”162

This explanation of the cognitive function of symbols can only be fully 
understood in light of Descartes’s commitment to mind–body dualism. 
Contrary to Klein’s account, Descartes does not identify symbolic formu-
lae with mathematical knowledge itself.163 In the opening paragraph of 
Rules, Descartes states that it is an error to compare “the sciences, which 
entirely consist in the cognitive exercise of the mind, with the arts, which 
depend on an exercise and disposition of the body.”164 This dualism places 
philosophy in opposition to the computational practices that were taught 
at the time, in which matters of meaning were mixed up with physical pen 
skills. True science was about clear and distinct perceptions, which were 
not, for Descartes, tied to any particular form of writing. Before presenting 
his symbolic notation, he also suggests some other ways of representing 
quantities that have more in common with Boethius’s theory of arithmetic, 
such as six points arranged in a triangle; he also shows that arithmetical op-
erations can be thought of in terms of geometric diagrams.165 Each of these 
“figures,” he makes it clear, is one form of representation among many; the 
numbers themselves are objects of thought.166

Descartes’s focus on conceptual clarity would continue to influence dis-
cussions of mathematical symbols for centuries, especially in the French 
context. But his account of the function of symbols was only one of a num-
ber of views that arose in the early modern period. An alternative appears 
in the work of his lesser-known contemporary Pierre Hérigone. Hérigone’s 
only major work is the six-volume Cvrsvs mathematicvs (1634–42), which 
aims to give an overview of all of mathematics in both Latin and French. 
At the beginning of the book, he introduces abbreviations and symbols for 
both algebra and geometry, some of which are familiar today and some of 
which are not (figure 1.7). This extensive notation made Hérigone a par-
ticular target for critics of symbolic algebra, including Isaac Barrow; the 
twentieth-century historian Florian Cajori attributed to Hérigone “an al-
most reckless eagerness to introduce an exhaustive set of symbols.”167 His 
goal in developing these symbols, as he states, is to make mathematics 
“brief and intelligible, without the use of any language.”168

Hérigone’s work presents a more expansive vision for what symbols 
could do than that of Descartes.169 Descartes situated his notations within 
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Figure 1.7.  Some of the many symbols introduced by Pierre Hérigone; from his 1634 
Cvrsvs mathematicvs, vol. 1, n.p.

paragraphs of text; even the symbol-besotted Harriot used Latin words 
like sit and ergo to stitch equations together into an argument. Hérigone 
invented symbols and abbreviations to replace these verbal elements of 
mathematical proofs, enabling (at least in principle) an entire proof to be 
developed and communicated without any words at all. On the title page, 
Hérigone states that his purpose of presenting mathematics in “notes real 
& universal.”170 What he means by “universal” is apparent from the poly-
glot nature of the text. When introducing the symbols, he explains them 
in both Latin and French: ~ is “minus, moins.”171 Even his abbreviations 
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are designed so as to resemble (albeit imperfectly) both Latin and French 
words. “Pr.” may be read as either primus or premier; “reg.” is either regula 
or reigle.172 The translingual nature of the symbols is crucial to the structure 
of the book. His prose explanations appear in both Latin and French, but 
in his symbolic proofs, he usually presents a single version that is supposed 
to be readable by both Latinate and Francophone audiences. He was trying 
to create a real character—to outfit mathematics with a set of symbols that, 
like kanji, could be read by speakers of multiple languages.

Hérigone’s work was an early expression of a tendency that would re-
cur time and again, from Leibniz in the later seventeenth century to 
Charles K. Bliss in the twentieth: a desire to improve communication by 
replacing words with symbols.173 There was, however, a problem with the 
way Hérigone and others in the mid-seventeenth century approached this 
goal that would ultimately lead to a philosophical reckoning. Even though 
Hérigone’s notations are supposed to enable “universal” communication, 
they are still defined by words. Their universality thus depends on the ex-
istence of a common stock of ideas shared by Latin and French. If the two 
languages fail to align—if, say, the Latin tangit (it touches, it reaches, it af-
fects) does not suggest quite the same thing as the French elle touche (she/
it touches)—then clear translingual communication has not actually been 
established.174 Seventeenth-century mathematicians were mostly con-
fident that the concepts they dealt with were universally intelligible and 
that, as a result, explaining the meanings of symbols would not be a signifi-
cant problem. Yet hints were bubbling up that communication was harder 
than the real-character view let on.

One of the earliest arguments along these lines came from Thomas 
Hobbes, whose eccentric views about geometry embroiled him in an ex-
tended feud with the Oxford mathematician John Wallis.175 In his 1656 
book Six Lessons to the Professors of the Mathematiques, Hobbes criticizes 
Wallis’s mathematical work along a number of lines, among them his over-
reliance on symbols. Symbols, Hobbes wrote, might be useful in working 
out the details of a proof, but they “ought no more to appear in publique, 
then the most deformed necessary business which you do in your Cham-
bers.”176 This scatological statement implies that the symbols are, in terms 
Hobbes laid out elsewhere, mere “marks” rather than true “signs”—they 
can aid the memory of the person who chose them, but they lack the so-
cial warrant needed to convey meanings to others.177 Hobbes later refers 
to algebraic notation as “a very narrow Language,” suggesting that sym-
bols were not as different from words as the advocates of real characters 
claimed.178 For Hobbes, the idea that symbols could circumvent the need 
for language was illegitimate; all the algebraists were doing by adopting 
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symbols was creating a secret cant comprehensible only to their exclusive 
clique.

Hobbes’s antisymbolic polemics have generally been overlooked in ac-
counts of the prehistory of computation. Much more has been made of his 
1655 book Elements of Philosophy, in which he makes an unprecedented 
comparison that seems to anticipate much later developments in cogni-
tive science: “By ratiocination, I mean Computation.”179 According 
to Hobbes, all reasoning consisted of combining and splitting ideas in 
a manner analogous to addition and subtraction; he thus titles the first 
section of the book “Computation or Logique.”180 This striking compari-
son has led the philosophers Hubert Dreyfus and John Haugeland each 
to frame Hobbes as a founding figure of artificial intelligence.181 Hobbes 
may indeed have led some of his early readers down this track; his state-
ments were probably an inspiration for Leibniz’s logical calculus. But as 
Hobbes’s attack on symbolic algebra shows, viewing the mind as a symbol-
manipulating machine does not entail that it would be a good idea to cre-
ate an externalized system of symbolic reasoning, be it made of paper or 
of metal. If the phrase “artificial intelligence” would have meant anything 
to Hobbes, it would have meant the state—the complex aggregate created 
when many human beings work in consort. For its results to be authorita-
tive from a Hobbesian perspective, a symbol-manipulating machine would 
have to be grounded in a common language, which algebraic symbols (at 
least in his opinion) were not.

Hobbes’s polemics did little to stem the tide of symbols, at least at first. 
Textbooks confidently assumed that the “significations” of symbols would 
readily become transparent to all. As far as numerals went, this confidence 
may have been justified; establishing an agreement about what 7 meant was 
not, generally speaking, a significant problem. While algebra raised larger 
interpretive difficulties, the symbols had advantages over words that were 
(Hobbes’s dissent notwithstanding) hard to deny, and the desire to extend 
these advantages to other areas was widespread. Yet there was a serious 
case to be made that symbols were less autonomous from words than the 
rhetoric of Oughtred and Ward let on. At the beginning of his trigonom-
etry book, Ward maps his symbols onto Latin words, explaining R, for in-
stance, as “Radius.”182 Thus, just after stating that his book “abstains” from 
the use of words in favor of symbols that express things directly, he defines 
those symbols with—words. The use of words in defining symbols went, 
for the most part, unnoted by advocates of real characters, but it posed a 
problem for attempts to develop symbolic notation from a mere special-
ized form of writing into a full-fledged alternative to language.

This tension reached its crisis in the work of Leibniz. Like the proposals 
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of Pell and Hooke, Leibniz’s universal characteristic was supposed to pro-
vide symbolic methods for reasoning about subjects ranging from theology 
to law. The characteristic was only one of a plethora of projects in which 
Leibniz explored the possibilities opened by symbols. Yet the theoretical 
concerns that had been mounting since the sixteenth century only wors-
ened in Leibniz’s wake, as his followers struggled to find a rationale for his 
version of calculus, and as Newton and others attacked him for employing 
“mechanical” methods. In pushing seventeenth-century ideas about sym-
bols to their utmost limit, Leibniz’s work marks the end of the somewhat 
naïve belief in the power of “characters” and the beginning of the long his-
torical process by which, over the course of centuries, the boundaries of 
algorithmic thinking would be contested and ultimately set.
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The Matter Out of Which 
Thought Is Formed

It is impossible to say just what I mean!
But as if a magic lantern threw the nerves in patterns on a screen:

—T. S. Eliot, “The Love Song of J. Alfred Prufrock”

The Dr ea m

To consider Gottfried Wilhelm Leibniz’s position in the prehistory of com-
putation is to peer through a thick fog of anachronism. Leibniz designed 
an early mechanical calculator, and later commentators have found in his 
work anticipations of numerous ideas that would later become important 
to computer science, from Boolean logic to binary numerals. In the mid-
twentieth century, Norbert Wiener ensured Leibniz’s place in the com-
puter history canon by suggesting that he could be “a patron saint for cy-
bernetics,” the field that deals with systems of control and communication 
involving both humans and machines.1 Leibniz has since become a fixture 
in histories of computation: the popular writer Martin Davis refers to the 
idea of a general-purpose computer as “Leibniz’s dream,” and in his ac-
count of the history of algorithms, Wolfgang Thomas considers whether 
the recent expansion of the category of algorithm means we are “Return-
ing to Leibnizian Visions.”2 While Leibniz’s thinking does overlap with the 
concerns of computer science, it also reflects a worldview quite alien to 
modern sensibilities, and this fact tends to get lost amid attempts to make 
Leibniz into a founding figure.

The belief that Leibniz imagined something like a modern computer 
stems in large part from his essays “Preface to the General Science” 
(1677) and “The Art of Discovery” (1685), along with similar remarks in 
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a few other places.3 In both texts, Leibniz expresses a dream that was, as I 
showed in chapter 1, common in the seventeenth century: extending the 
power of symbols to new areas of knowledge. This project, as Leibniz con-
ceives it, would consist of a set of symbols called a universal characteristic 
along with a calculus ratiocinator—a rational calculus—by which any ques-
tion can be resolved. In the 1685 essay, Leibniz explains:

The only way to rectify our reasonings is to make them as tangible as 
those of the Mathematicians, so that we can find our error at a glance, 
and when there are disputes among persons, we can simply say: Let us 
calculate, without further ado, in order to see who is right.4

This passage is often quoted out of context with the implication that the 
“Let us calculate” (calculemus) refers to something like a programmable 
computer. But it is not clear that he understood this “calculation” to be al-
gorithmic in the modern sense. At least some of Leibniz’s efforts, as Mat-
thew L. Jones has shown, involved inductive reasoning about patterns in 
tabular data.5 Moreover, Leibniz’s goals for this system were in some re-
gards more ambitious than those of modern computing machines. The sys-
tem Leibniz describes in “The Art of Discovery” is not just supposed to 
spit out answers; it is supposed to demonstrate them in a way that makes 
them impossible to doubt. This idea is worlds away from the black box al-
gorithms of the twenty-first century. A Leibnizian computing machine, if 
such a thing were really possible, would only compute the truth.

This chapter gives a historically contextual account of Leibniz’s role in 
the development of algorithmic thinking. It focuses, in particular, on two 
projects involving symbols: the universal characteristic and his work on 
mathematical notation. In chapter 1, I showed that seventeenth-century 
mathematicians described numerals and algebraic symbols as writing sys-
tems comparable to the alphabet or to the Chinese han characters. Viewing 
these symbols as writing rather than language highlighted the fact that they 
could be read aloud in multiple vernaculars while bearing (apparently) the 
same meanings for everyone; this made them, in period terms, real charac-
ters. While Leibniz did not intend the universal characteristic to be a real 
character in the strict sense, his work exhibits a similar way of thinking: 
whereas words were inextricable from the histories of particular communi-
ties and thus inevitably divisive, Leibniz’s symbols were supposed to latch 
onto ideas about which everyone could agree. Leibniz used this universal-
ism to explain the cognitive power of symbolic methods in mathematical 
fields such as calculus. But doubts about the conceptual foundations of 
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these methods surfaced in the early reception of Leibniz’s mathematical 
work, which contributed, ironically, to a collapse of the faith in symbols 
that had inspired his utopian project.

Leibniz’s views about symbols can only be fully understood in the con-
text of his philosophical and political commitments. In Leibnizian meta-
physics, human souls, which he called monads, have no direct interactions 
with other beings but exist in a preestablished harmony with one another 
and with the material world.6 This emphasis on harmony had a political 
meaning in Leibniz’s context. In her biography of Leibniz, Maria Rosa 
Antognazza has emphasized the influence of Leibniz’s upbringing on his 
philosophy.7 Leibniz was born in Saxony, which was then part of the Holy 
Roman Empire. In contrast to the centralized monarchy of France, the 
empire consisted of autonomous and sometimes antagonistic principali-
ties with varying cultural identities and religious affiliations. Politically and 
religiously, Leibniz tended strongly toward reconciliation—toward finding 
common ground between antagonistic factions and sects. Antognazza has 
demonstrated his lifelong commitment to irenicism, meaning the project of 
reuniting the Protestants and the Catholics. He viewed the universal char-
acteristic as an integral part of this project, a basis for a unified body of 
knowledge that would bridge religious divides by grounding theology in 
indisputable principles.

Something similar may be said of his attitude toward language. En
glish and French were moving toward standardization in the late seven-
teenth century, as dictionaries and grammars codified the dialects of the 
metropoles (London and Paris) and of the universities as defaults.8 The 
German language, which was spoken across much of the Holy Roman Em-
pire, was less standardized at the time, and the empire was multilingual, 
also including communities speaking Italian, Czech, Yiddish, and other 
languages.9 Communication across regions would have been easier in writ-
ing than in speech, since written forms of German did not reflect all the dif-
ferences between dialects; indeed, the standard German that would form 
in the eighteenth century was at first exclusively written.10 The characteris-
tic might be seen as an alternative to standardization that is more suited to 
this context—an attempt not to instate one dialect as the lingua franca but 
rather to base a new mode of communication on the harmony that already 
existed among all languages and dialects.

Famous as it eventually became, the universal characteristic amounted 
to little more than scattered notes and suggestive comments. It was, in 
modern terms, vaporware. In terms of influence, Leibniz’s most important 
contribution to the history of computation was his work on the infinitesi-
mal calculus, which greatly expanded the scope of what symbols could do. 
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The 1684 article in which Leibniz introduced his version of calculus, titled 
“New Method for Maximums and Minimums,” called this method an al-
gorithm.11 Leibniz’s mathematical innovations had two countervailing ef-
fects in the ensuing decades. The technique that Leibniz called an “algo-
rithm” could do astonishing things, solving numerous problems that had 
puzzled the ancients; his work thus heightened, especially in Continental 
Europe,  the excitement about symbols that had been building over the 
course of the seventeenth century. But Leibniz did not articulate (at least 
publicly) a satisfactory explanation of why his method worked, and so 
symbolic methods came to be subject to a greater degree of critical scru-
tiny and, in some circles, skepticism.

Leibniz hashed out these issues in a series of public debates.12 His work 
on calculus embroiled him in an extended interchange with Isaac New-
ton, since both claimed credit for developing the idea first. Although he 
did employ notation, Newton was more skeptical of the value of symbolic 
methods than Leibniz; even a “bungler,” he reportedly said, can use the 
mechanical methods of algebra.13 Leibniz also had occasion to defend his 
use of symbols in a dispute with John Locke. In his Essay Concerning Hu-
man Understanding (1689), Locke had advanced a kind of protoanthro-
pological relativism that undermined Leibniz’s claims about the power of 
symbols to convey ideas transparently. At issue was nothing less than the 
possibility of the universal characteristic: Locke’s position entailed that 
there was no getting around the need for semantic convention, that mere 
symbolic forms were not enough to ensure that people were genuinely 
thinking the same things. Broadly speaking, Locke’s side won. In the eigh-
teenth century, it would no longer be widely accepted that symbols could 
express prelinguistic ideas, as Leibniz maintained to the end of his life. Yet 
Leibniz’s methods remained—the “algorithm” of his calculus apparently 
worked, even though people could not agree on its conceptual basis. For 
over a century, then, the status of “algorithms” hinged on a question about 
language: what does it take to make symbols meaningful?

A Design aga inst La nguage

As I mentioned in chapter 1, a number of seventeenth-century thinkers, 
including John Pell and Robert Hooke, envisioned a system that could ex-
press anything whatsoever with the clarity of algebraic symbols. Another 
proposal along these lines (although referring to a different type of sym-
bol) came from René Descartes. In a 1629 letter to his friend Marin Mer-
senne, Descartes observes that the Hindi–Arabic numerals can express 
infinitely many numbers using only ten symbols, compounded together 
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according to simple rules. “In a single day,” he writes, “one can learn to 
name every one of the infinite series of numbers, and thus to write infi-
nitely many words in an unknown language. The same could be done for 
all other words necessary to express all the other things which fall within 
the purview of the human mind.”14 Leibniz’s universal characteristic was, 
at least in some versions, similar to this proposal: the system was supposed 
to analyze ideas into components and so enable them to be expressed 
through combinations of a small set of basic symbols.

Although Descartes’s proposal had specific reference to numerals, such 
ideas fit into a tradition that was more linguistic than mathematical—the 
idea of creating what is sometimes called a “philosophical language,” an 
artificial form of communication more precise than the languages people 
presently speak.15 This idea has roots in medieval thinkers such as William 
of Ockham, but it underwent a major resurgence in the seventeenth cen-
tury.16 Jan Amos Comenius, Cyprian Kinner, and Francis Lodwick tried 
to build such systems in the 1640s. In the early 1660s, Athanasius Kircher 
and Johann Joachim Becher made further attempts, both of which Leibniz 
cites as inspirations.17 Around the same time, Isaac Newton tried his hand 
at it as well. The most full-fledged scheme, however, was attributable to 
John Wilkins, a scientific polymath and (eventually) Anglican bishop who 
was involved in the founding of the Royal Society of London. Scholars 
have generally dismissed the importance of Wilkins for Leibniz, and it is 
true that their aims were different: Wilkins was mainly trying to facilitate 
communication, whereas Leibniz wanted to create a method of discovery 
that could produce new knowledge. Leibniz did not encounter Wilkins’s 
system until after he conceived the universal characteristic, so it cannot be 
considered a crucial influence. But Wilkins’s work is a useful point of com-
parison because, as an uncommonly detailed example of the genre, it illus-
trates some misunderstood aspects of the intellectual movement in which 
Leibniz was participating. While Leibniz’s project is habitually likened to 
later developments in formal logic, it existed within a seventeenth-century 
milieu that was worlds away from formalism as we now understand it. For 
Leibniz’s contemporaries, the critical term was not formal; it was artificial.

Wilkins first discussed the idea of a universal character in his 1641 book 
Mercury, or the Secret and Swift Messenger. After explaining Francis Ba-
con’s idea of a real character, Wilkins lists four examples of symbols that 
could be understood by speakers of multiple languages: numerals, astro-
logical symbols, chemical symbols, and musical notes. He then considers 
the possibility of “a generall kinde of writing invented for the expression of 
every thing else” in this manner.18 The symbols would be pronounced dif-
ferently by speakers of different languages, as the astrological symbol ♉ is 
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pronounced toro in Italian (or, one might add, Spanish) and bull in English; 
“yet the sense would be still the same” for everyone.19 While scholars have 
often characterized this proposal as a “universal language,” Wilkins makes 
it clear that he views it as a new form of writing, not a language. “The per-
fecting of such an invention,” he writes, “were the only way to unite the 
seventy two Languages of the first confusion.”20 The point is not to replace 
the languages people already speak; it is to repair the rifts between those 
languages by recording ideas on paper in a way that is unaffected by the 
Confusion of Tongues imposed on humankind after the fall of the Tower 
of Babel.

Wilkins discussed this idea in detail with his friend Seth Ward, who 
published his own thoughts on the matter in his 1654 book Vindiciae aca-
demiarum (Vindications of Academies). For Ward, the best model for a uni-
versal character was symbolic algebra, which presented ideas in their full 
complexity while avoiding the “confusion or perterbati[on] of the fancy 
made by words.”21 Rejecting an opponent’s suggestion that grammarians 
should study algebraic symbols, Ward stridently denies that the symbols 
constitute a language: specious arithmetic “was a designe perfectly in-
tended against Language and its servant Grammar, and that carried on so 
farre, as to oppose the use of numbers themselves, which by the Learned, 
are stiled Lingua Mathematicorum [the language of mathematics].”22 Alge-
braists, that is, replaced numbers with as and xs as a way to expunge the 
linguistic traces that persisted in Hindi–Arabic numerals. While this state-
ment is sometimes cited as evidence of an opposition between mathemat-
ics and language in the period, the rest of the passage suggests otherwise.23 
“The use of Symbols,” Ward continues, “is not confined to the Math-
ematicks only, but hath been applied to the nature of things”; he lists the 
Pythagoreans, cabbalists, and the ars combinatoria of Giovanni Pico della 
Mirandola as examples.24 The tradition Ward assembles under the name 
“Symbolicall writers” includes many of the figures who would soon inspire 
Leibniz.25 What he is celebrating in them is neither mathematics nor lan-
guage; it is symbols, which Ward is careful to distinguish from both.

Ward goes on to propose extending this symbolical style into an ambi-
tious project somewhat like the one Wilkins had previously described. Af-
ter first learning about “the Symbolicall way, invented by Vieta, advanced 
by Harriot, perfected by Mr Oughtred, and Des Cartes,” Ward writes, “I was 
put upon an e[ar]nest desire, that the same course might be taken in other 
things.”26 Doing so would provide a system in which “exact discources may 
be made demonstratively without any other paines then [sic] is used in the 
operations of specious Analyties.”27 Although Ward was almost certainly 
unaware of Descartes’s letter to Mersenne, what he describes is quite simi-
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lar: breaking ideas down into simple elements that could be represented by 
a small set of easily learned symbols. The advantage of symbols, according 
to Ward, is that they enable people “to discourse  .  .  . freely without the 
trouble of words, upon which while the mind of man is intended, it neither 
sees the consequence so cleerely, nor can so swiftly make comparison as 
when it is acquitted of those obstacles.”28 The description of words as “ob-
stacles” is characteristic of the attitudes of the scientific circles of the time: 
language appears as an annoyance, a shackle on humanity that holds back 
the advancement of knowledge.

Ward did not seriously attempt to create a universal character, but 
Wilkins, working together with collaborators such as George Dalgarno and 
John Ray, eventually did.29 In 1668, he published An Essay towards a Real 
Character and a Philosophical Language, which, at over 450 folio pages, 
is one of the most detailed universal character schemes ever produced. 
Wilkins’s project involved two parts: a “real character” that expressed 
ideas through written symbols, along with a “philosophical language” that 
was supposed to replace spoken languages like English.30 The real charac-
ter consists of special symbols assembled according to rules (figure 2.1). 
These symbols are supposed to be “legible by any Nation in their own 
Tongue” just as all of the inhabitants of China use the same writing system, 
each “reading it in his own Language.”31 The other part, the philosophi-
cal language, is meant to provide a substitute for existing languages and is 
printed in a phonetic alphabet loosely based on Latin and Greek charac-
ters. This system is supposed to differ from existing languages in that it was 
formed “according to the rules of Art” at a single founding moment rather 
than emerging through a long, haphazard process like the ones that pro-
duced English and Latin.32 The symbols would thus (according to Wilkins) 
readily become comprehensible to everyone and, once established in use, 
resist the corruption to which words are liable.

The heart of Wilkins’s system is a detailed, hierarchical classification 
scheme (figure 2.2). This hierarchy, Wilkins writes, provides “a just Enu-
meration and description of such things or notions as are to have Marks or 
Names assigned to them,” arranged in a fashion inspired by the Aristote-
lian system of categories and Peter Ramus’s diagramming method.33 The 
symbols each indicate a particular set of coordinates within this hierarchy 
(figure 2.3). Loops and hooks can also be added on to characters to indi-
cate part of speech or conjugation and to modify the meaning in various 
ways. Wilkins also provides smaller characters for pronouns and grammat-
ical words; the way the characters are positioned relative to each other also 
plays a role in determining their meanings. The words of the philosophi-
cal language express more or less (although, as James Dougal Fleming has 
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Figure 2.1.  The Lord’s Prayer in John Wilkins’s real character. Houghton Library 
f *EC65.W6563.668e (A), p. 395. Images produced by ProQuest as part of Early English 
Books Online. www.proquest.com. Images published with permission of ProQuest. 
Further reproduction is prohibited without permission.

pointed out, not exactly) the same information, mapped onto syllables 
rather than shapes.34 The purpose of this system, as Wilkins explains it, is 
in part to clear up scientific communication and in part to aid missionary 
work by presenting religious doctrines in a form that could (supposedly) 
be understood by speakers of any language.



Figure 2.2.  A page of John Wilkins’s categorization scheme. Houghton Library f *EC65.
W6563.668e (A), p. 236. Images produced by ProQuest as part of Early English Books 
Online. www.proquest.com. Images published with permission of ProQuest. Further 
reproduction is prohibited without permission.



The Matter Out of Which Thought Is  Formed  ›   59

Figure 2.3.  John Wilkins’s explanation of the basic structure of the real character. In 
addition to what is shown here, the system contains small symbols for grammatical 
words, notations used to accommodate larger categories, and extra strokes that modify 
the meanings of characters. Houghton Library, Harvard University, f *EC65.W6563.668e 
(A), p. 387. Images produced by ProQuest as part of Early English Books Online. www 
.proquest.com. Images published with permission of ProQuest. Further reproduction is 
prohibited without permission.

From our perspective, Wilkins’s system may seem to have little in com-
mon with the algebra-like system that Leibniz would ultimately create. The 
overall structure of Wilkins’s system is based on grammar, which (as Ward 
would surely remind us) was an entirely separate discipline from algebra. 
Moreover, rather than analyzing ideas into their simple components as 
Leibniz proposed, Wilkins employed a top-down taxonomy. But Wilkins’s 
work does resemble algebraic notation in its use of real characters—visual, 
nonphonetic symbols that can (supposedly) be read in multiple languages. 
Wilkins’s evident fixation on these symbols has long perplexed historians 
of linguistic thought. As Jaap Maat has observed, the real character appears 



60  ‹   Chapter t wo

to be unnecessary, since, with its phonetic alphabet, the philosophical lan-
guage can serve for both written and spoken communication.35 As a way of 
explaining the dual nature of Wilkins’s system, Hans Aarsleff and Michael 
Isermann each have argued that Wilkins believed symbols to have a “mysti-
cal” power to capture the true natures of things.36 But this interpretation 
conflicts with his explicit statements on the matter. In the last section of 
the book, he asserts that the symbols signify “by Institution” rather than 
“Naturally”—a clear indication that he saw the real characters as arbitrary 
signs chosen pragmatically by people.37 Why, then, did he go to so much 
effort to create separate visual and phonetic symbols?

This choice makes more sense if we recognize that he was working 
within what was still, to a large extent, an oral culture. In explaining the 
real character, Wilkins drew on a long-standing intellectual tradition that 
thought of language primarily as speech and viewed alphabetical writing 
as an encoding thereof. Following Aristotle’s theory of signs in On Inter-
pretation, Wilkins states that “Names” are “arbitrary sounds or words” that 
people have agreed to use as signs of “their Mental notions”; “The Writ-
ten word,” he continues, “is the figure or picture of that Sound.”38 In the 
taxonomic tables, he classifies “reading” as one of the “particular kinds 
of speaking”; he defines it as a variety of articulate sound that refers to “such 
words as we see before us.”39 The idea that reading ordinarily involved the 
ability to speak was common at the time, as one can infer from the way 
people discussed the consequences of deafness: it was generally presumed 
that people could not learn to read without first learning a spoken lan-
guage, although John Wallis disagreed.40 Real characters promised to alter 
this situation by making writing fully independent of speech, much as nu-
merals can convey the same meanings to speakers of any language.

This interpretation still leaves some puzzles regarding how the real char-
acter was supposed to work. Certainly, Wilkins’s symbols are not, in spite 
of his claims, nearly as easy to learn as numerals. With regard to Leibniz, 
what is important is less the specifics of Wilkins’s plan than the general way 
of thinking that made the idea of a universal character plausible. As Flem-
ing has argued, Wilkins’s project is premised on the early modern belief 
that the human mind is a mirror of the world, divinely outfitted with ideas 
that suit the true natures of things.41 Wilkins states this principle explicitly 
in the first part of the Essay: “As men do generally agree in the same Prin-
ciple of Reason, so do they likewise agree in the same Internal Notion or 
Apprehension of things.”42 That is, ideas such as horse and heretic are already 
there in every human mind, waiting to be uncovered. A similar assumption 
may be discerned in William Oughtred’s statement about “uncasing” math-
ematical propositions from the “covert of words” by means of algebraic 
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symbols. If one believes that the ideas one wishes to express are already 
waiting in the reader’s mind, then all it takes to create perfect clarity is to 
cut away the verbal thickets that obscure the light of reason.

Opposition to this way of thinking was already mounting by the time 
Wilkins’s Essay was published in 1668. A pointed critique came from 
Wilkins’s erstwhile collaborator George Dalgarno. Dalgarno had worked 
together with Wilkins in the early phase of the project, but the two fell out 
as a result of a difference of opinion about how the system should be de-
signed. Like Ward, Dalgarno thought it would be better to analyze con-
cepts into parts rather than place them in a hierarchy. He also became skep-
tical of the distinction between real characters and languages. In his 1661 
book The Art of Signs, Dalgarno argues at length that “mute characters” are 
not as different from words as his contemporaries tended to assume; “the 
art of characters and sounds,” he maintains, “is one and the same.”43 Dal-
garno’s work, as Maat has argued, marks an important step toward the idea 
of language as an abstract system rather than a set of concrete practices, 
and thus to a de-emphasis of the difference between writing and speech.44 
An implication of this conceptual shift was that written symbols were not 
inherently immune to the Confusion of Tongues; since they depended on 
arbitrary significations, they were subject to the contingencies of commu-
nication just as much as English and Latin were.

Dalgarno’s attack on the division between languages and characters was 
not the only threat that the real-character view faced in Leibniz’s time. A 
more epistemological line of criticism emerged from the Cartesian tradi-
tion. Although Descartes entertained the idea of a universal symbolism in 
his letter to Mersenne, he was skeptical that the dream could be realized. 
Descartes’s philosophy emphasized the importance of what he called clear 
and distinct perceptions, meaning perceptions that are accessible to the 
mind and sharply distinguished from other perceptions.45 As a result, Des-
cartes concludes in his letter to Mersenne that a universal symbolism could 
not be created without “la vraie philosophie” (the true philosophy)—that 
is, a complete and correct theory of everything in the world.46 This argu-
ment, when accepted, put a damper on the idea of extending the clarity 
of mathematical symbols to other areas. From a Cartesian perspective, a 
science can only be expressed with the clarity of numerals when it rests on 
principles as certain as those of arithmetic; until then, the universal char-
acter would have to wait.

As we will see, Descartes’s “vraie philosophie” argument would recur 
frequently in discussions of symbolic methods. Again and again, people 
who attempted to extend the power of these methods to new domains 
would face the criticism that their ideas were insufficiently clear. Yet Leib-
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niz, at least early in his career, thought that the Cartesian objection could 
be overcome. To be sure, Leibniz made less of the language–character 
distinction than Wilkins did; he at times described the universal charac-
teristic as a type of “language,” albeit one that was supposed to work dif-
ferently from words. But he shared Wilkins’s belief in a divinely instituted 
correspondence between mind and reality. Like his English predecessor, 
he located the problems of language primarily in the arrangement of signi-
fiers, presuming that a properly designed system of symbols would readily 
become transparent to everyone. Leibniz’s confidence that he could have it 
both ways, embracing what looks to us like formalism while still maintain-
ing that the symbols had conceptual meanings, is what differentiates his 
approach from algorithmic thinking as we know it—in short, what makes 
him not modern.

Into the Inter ior of Things

Leibniz’s earliest attempts at a philosophical language predate the publica-
tion of Wilkins’s Essay. The Dissertation on the Art of Combinations (1666), 
which he wrote while still a teenager, deals with what is now called combi-
natorics: the problem of determining how many ways simple elements can 
be compounded together, as ABC can (if we disregard order) be combined 
into pairs in three ways: AB, AC, or BC.47 Borrowing a notation from Mer-
senne, he called these assemblages “com2nations”; when three elements 
are combined, they make up “con3nations,” and so forth.48 His ambitions 
for this method are broad. Leibniz wanted to turn combinatorics into a 
general “art” that could be applied to a wide range of fields, from theol-
ogy to jurisprudence. This work marks the beginning of the lifelong proj-
ect that would eventually lead to his famous statements about a universal 
method of calculation.

The idea of an “art of combinations” is often traced back to the medieval 
thinker Ramon Llull.49 Born around 1232 in Majorca, Llull had a spiritual 
vision at the age of thirty that led him to abandon his family and devote 
the rest of his life to evangelism. To this end, he developed what he called 
the Ars Magna (Great Art), a general method of reasoning that is supposed 
to encompass both logic and metaphysics. Some versions of this method 
involved a rotatable device called a volvelle that could generate every com-
bination of a certain set of symbols; others involved intricate tables and 
diagrams. Using Llull’s art, one can iterate through all possible questions 
and statements based on certain fixed terms, such as, “What is great dif-
ference of eternity?” and “What is great and eternal concordance?”50 For 
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Llull, the point of this endeavor was religious: he intended to use his art 
to produce arguments that convinced people of the truth of Christianity. 
Llull’s later admirers, however, turned his ideas to a variety of ends. Johann 
Heinrich Alsted, for instance, employed Llullian ideas in the organization 
of his 1630 encyclopedia, which Leibniz later used as a starting point for his 
own encyclopedic endeavors.

In the Dissertation, Leibniz attempts to extend the Llullian art into a 
general “Logic of invention”—a method for discovering new knowledge in 
the spirit of Francis Bacon’s Advancement of Learning.51 The method be-
gins with the identification of primitive terms that are to be left undefined, 
which he represents by numbers. He links this numerical representation 
to Hobbes’s statement that reasoning is computation.52 He also intro-
duces a shorthand by which complex ideas may be expressed as pseudo
fractions: 3−2  is the third in the sequence of com2nations, as enumerated in 
some particular order.53

Using this notation, Leibniz attempts to develop a method for enu-
merating all possible logical inferences. As an example of how this system 
would work, he lists twenty-seven primitive terms and then derives some 
definitions from them. For example, here is how he defines infinite.54 The 
relevant primitive terms are as follows: 9 is part, 11 is same, 14 is number, 
15 is plurality, 17 is possible, 18 is all, and 19 is given. To get from here to 
infinite, we must follow a series of combinations of increasing complexity. 
First, he defines 1−2  : “Quantity is 14 of 9s (15).” Next,  2−3  : “Equal, A of 11,  1−2  .” 
(That is to say, something of same quantity.) Then,  1−4  : “A is Greater when it 
has a 9,  2−3   more than B.” (Note that  2−3   means equal, not two-thirds!) Finally, 
we can understand the definition of  2−7  : “Infinite,  1−4   than 18, 19, 17.” While 
these definitions include some Latin words linking things together, Leib-
niz suggests that, by reducing grammatical categories to their simple com-
ponents, it would be possible to define new ideas entirely through primi-
tive terms represented by numbers.

Although he initially presents this system as a means of generating syl-
logisms, he then proceeds to another idea that “flows like a corrolary” from 
it: the possibility of developing “a Universal Notation [Scriptura Universa-
lis], that is, intelligible to whatever reader, no matter what his language.”55 
He describes this notation as a “universal polygraphy” comparable to the 
Egyptian hieroglyphs and the Chinese characters.56 Leibniz’s polygraphy 
is supposed to consist of pictorial symbols for primitive terms, such as 
groups of points for numbers and lines for relations; these symbols would 
provide “a kind of alphabet” out of which more complex terms could be 
assembled.57 The result would be “a universal script that will be as easy as 
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it is general, readable without the aid of a dictionary, and allowing fun-
damental knowledge of everything to be absorbed at once.”58 The idea of 
constructing symbols from simple components resembles the proposals of 
Descartes, Ward, and Dalgarno, who all preferred this analytical approach 
to Wilkins’s taxonomic one. The result would be what, later in his life, he 
would come to call a “universal characteristic,” a system of symbols whose 
construction reflected the true natures of things.

Leibniz later came to view the Dissertation as a piece of juvenilia, but he 
continued to revisit the idea of a universal writing throughout his career. In 
the 1677 essay “Towards a Universal Characteristic,” he recounts the devel-
opment of his thinking on the project up to that point. Early on, he writes, 
his hope was to create an “alphabet of human thoughts” to which the com-
binatorial art could be applied: “through the connection of its letters and 
the analysis of words which are composed out of them, everything else can 
be discovered and judged.”59 More recently, he had moved away from the 
alphabetical model toward the idea of representing ideas by “characteris-
tic numbers,” which would be determined based on a comprehensive sys-
tem of knowledge akin to an encyclopedia.60 These numbers would make 
it possible to subject metaphysics and morals to “an infallible method of 
calculation.”61 He sums up the consequences in another statement that is 
often quoted in relation to computation: “Once the characteristic num-
bers are established for most concepts, mankind will then possess a new 
instrument which will enhance the capabilities of the mind to a far greater 
extent than optical instruments strengthen the eyes, and will supersede 
the microscope and telescope to the same extent that reason is superior to 
eyesight.”62 This project, as he describes it here, is far more ambitious than 
that of Wilkins. Leibniz did not want to produce a fixed language for use 
in international communication; instead, he wanted to create a method of 
discovery that could be used to advance scientific knowledge.

Leibniz’s efforts from 1677 and 1678 exhibit an obsession with charac-
teristic numbers that verges on numerology. In 1677, he began writing a 
detailed commentary on Wilkins’s real character that might be seen as an 
attempt to construct the sort of encyclopedic knowledge that would be 
necessary to realize the characteristic.63 Much of the commentary consists 
of Latin definitions for concepts in Wilkins’s hierarchy; Leibniz also briefly 
tried to convert a simple definition into a numerical form, criticized some 
of Wilkins’s assumptions, and constructed his own skeletal version of the 
hierarchy. In 1678, he made two abortive attempts at a characteristic, one 
titled “Lingua Generalis” and the other “Lingua Universalis.” Probably in-
spired by the previous work of Dalgarno, he constructs a set of rules for 
converting between words and numbers:
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a e i o u
1 10 100 10000 100000
[. . .]
b c d f g h l m n
1 2 3 4 5 6 7 8 964

The word is constructed from consonant–vowel pairs, with the consonant 
indicating the digit, the vowel indicating its place, and the order being ar-
bitrary; thus, to use his example, the word “bodifalemu” has the number 
81374. The idea is to represent the compounding of ideas through multipli-
cation; the mathematical statement “48 est 6narius”—that is, 48 is divisible by 
6—could thus, for instance, translate into the logical statement a human is 
rational.65 Or, by Leibniz’s rules, one could say that fema is ha.

Leibniz’s work in these two texts exhibits a close attention to the musi-
cal harmonies of language. As he explains, his system gives no significance 
to the order of syllables, so that one can indifferently choose to write either 
bodifalemu or mubodilefa. This flexibility, he writes, enables a “pleasing, 
apt language to be restored to Music and poetry, and to all other delights 
of discourse.”66 Leibniz goes further in the second fragment, claiming that 
a line of verse could be composed in this language “as if by a sure demon-
stration” with “everything determined.”67 While Louis Couturat takes this 
passage to show that Leibniz drew on mathematical methods even in the 
domain of aesthetics, it should be noted that the desire for rigor is not alien 
to seventeenth-century poetics.68 One thinks, in particular, of German ba-
roque poets such as Martin Opitz, whose 1624 Book of German Poetry cod-
ifies a poetic style that emphasizes rhyme schemes, rigid verse forms, and 
the purity of language; the point is to undertake a virtuosic display of as-
sembling words under heavy constraints.69 Leibniz’s Dissertation contains 
extensive discussions of poetic forms that have a combinatoric aspect, in-
cluding what Julius Caesar Scaliger had called protean verses—verses whose 
parts can be arranged in multiple orders—and palindromes.70 For instance, 
Leibniz calculates that the following line by Scaliger can be rearranged in 
sixty-four ways:

Perfide sperasti divos te fallere, Proteu.
Deceitfully you hoped to cheat the Gods, Proteus.71

Such practices were, indeed, widespread in the period, reflecting the gen-
eral valuing of “art” in the sense of artifice. Leibniz was working within a 
culture that valued the following of rules to a greater extent and in a wider 
range of fields than it would be valued in later periods; at least some of the 
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aspects of his work that look to us like mathematization would have been, 
at the time, matter of course.

This cultural context is important to keep in mind while evaluating 
Leibniz’s significance in the history of computation. The universal charac-
teristic is often viewed as akin to either symbolic logic or a programming 
language; in both interpretations, Leibniz is taken to privilege formal rela-
tions of symbols over their meanings. But his goals are wider than those of 
either modern logic or computer science. The point was not just to provide 
rules for what to do with symbols but also to establish a universal sign sys-
tem that would grant demonstrative certainty to a wide range of domains, 
including law, music, metaphysics, and theology. In a 1678 letter to Walter 
Von Tschirnhaus, Leibniz describes the characteristic as a generalization 
of the algebraic methods of Cardano and Viète to work with “other formu-
las which have nothing in common with magnitude.”72 He assures his skep-
tical friend that this method will not lose its grounding in reality: “No one 
should fear that the contemplation of characters will lead us away from the 
things themselves; on the contrary, it leads us into the interior of things.”73 
This confident statement raises the question of how the characteristic 
numbers are supposed to relate to the ideas and things that the symbols 
were supposed to express.

In this regard, the comparison with Wilkins is illuminating. Although 
Leibniz is clearly following a different plan from the English bishop, the 
two are alike in what they are conspicuously not concerned about—
namely, the role of words in establishing the meanings of symbols. At 
the beginning of the Essay, Wilkins claims that previous authors of real-
character schemes “did generally mistake in their first foundations” be-
cause they attempted “the framing of such a Character from a Dictionary 
of Words, according to some particular Language, without reference to the 
nature of things.”74 Wilkins’s character is not supposed to encode the En
glish language; it is supposed to encode bare ideas that exist in the mind 
prior to any language. But the classification tables are nonetheless built 
from English words, without which they would be meaningless. That the 
use of words in the construction of the system did not seem to bother 
Wilkins at all is characteristic of the pre-Lockean attitudes toward lan-
guage that made the real-character idea possible. As far as Wilkins is con-
cerned, conceptual clarity stems not from how the symbols are explained 
but from the fact that the system as a whole is arranged according to “the 
rules of art” and thus reflective of a scientific understanding of the world.

As far as the issue of meaning goes, Leibniz’s position is more akin to 
that of Wilkins than to modern formalism. Rather than exclude issues of 
communicational meaning from his symbolic system, he presumed that 
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properly designed signifiers would disclose their meanings promptly to 
everyone. In the letter to Tschirnhaus, he makes a (retrospectively) ques-
tionable claim similar to one Wilkins makes in the Essay: that the system 
will be as easy to learn as numerals. On the basis of the universal charac-
teristic, Leibniz writes, “a spoken and written language can also be devel-
oped . . . which can be learned in a few days and will be adequate to express 
everything that occurs in everyday practice, and of astonishing value in 
criticism and discovery, after the model of the numeral characters.”75 His 
confidence that this language would be so much easier to learn than, say, 
English stems from a belief that linguistic confusion results primarily from 
the fact that “the characters we use are badly arranged.”76 With a properly 
designed characteristic in place, we would “need merely to see the char-
acters in order to have adequate notions brought to our mind freely and 
without effort.”77 The assumption is that learning a universal language 
does not involve learning a new set of ideas, a whole way of thinking about 
the world. The “notions” are already there in the mind, waiting to be per-
ceived; all one need do is learn the symbols.

Leibniz never gave up on the idea of characteristic numbers, but he later 
grew somewhat more measured in his claims. For instance, he switched his 
linguistic efforts toward developing a simplified version of Latin; his work 
on logical calculi thus diverged from his attempts at a universal language.78 
His ambitions for what the characteristic could do also contracted. One of 
his most mature, albeit often misunderstood, statements on these issues 
appears in the 1685 “Art of Discovery.” In this essay, Leibniz discusses 
the possibility of an art that would “accomplish in other matters some-
thing similar to what Algebra does with numbers.”79 He contrasts two ap-
proaches to this goal. The first is a system of signs so perfect that it contains 
the seeds of all possible knowledge. “If words were constructed,” he writes, 
“according to a device that I see possible, but which those who have built 
universal languages have not discovered, we could arrive at the desired 
result by means of words themselves, a feat which would be of incredible 
utility for human life.”80 It is important to stress, however, that Leibniz is 
describing this idea here so as to concede to the Cartesian objection against 
it. The dream, Leibniz concludes, is theoretically possible, but it could not 
be achieved without a complete and correct theory of everything—that is, 
without Descartes’s “vraie philosophie.”

Leibniz’s alternative to this unattainable dream is less like a comput-
ing machine than a method of checking one’s work. “In the meantime,” he 
continues, “there is another less elegant road already open to us, whereas 
the other would have to be built completely new.”81 This other approach 
involves “making use as mathematicians do, of characters, which are ap-
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propriate to fix our ideas, and of adding to them a numerical proof.”82 This 
statement might be taken to indicate something like symbolic logic, which, 
although it does not (and, as we now know, cannot) provide a purely me-
chanical procedure for answering any question, does allow proofs to be 
expressed in a form that allows their correctness to be checked mechani-
cally. But Leibniz’s explanation suggests something else. The certainty of 
mathematics, he states earlier in the essay, stems from the fact that “we 
can continually submit to trials or tests not only the conclusion but also, at 
any moment, each step made from the premises, by reducing the whole to 
numbers.”83 It is because of the lack of such “tests,” he continues, that other 
fields are not as certain as mathematics. It is in this context that we find the 
famous “let us calculate” passage. This context suggests that what Leibniz 
has in mind is something like what programmers call a “sanity check”: to 
test that 3 is a root of y3 = 8y + 3, one plugs it in and verifies that 33 does, in 
fact, equal 8 · 3 + 3.

This sort of test was, indeed, a common element of the computational 
practices of the period. As I mentioned in chapter 1, early algorism texts 
often included special procedures, sometimes called “proofs” or “proves,” 
designed to check the results of calculations. One “proof ” of addition, for 
instance, was the procedure called casting out nines. One adds up the indi-
vidual digits of the addends, subtracting nine whenever the total exceeds 
nine, and does the same for the sum. If these numbers are unequal, then 
the sum must be wrong. Leibniz had referenced this procedure explicitly in 
the 1677 version of his “Let us calculate” statement:

Moreover, we should be able to convince the world what we should have 
found or concluded, since it would be easy to verify the calculation ei-
ther by doing it over or by trying tests similar to that of casting out nines 
in arithmetic. And if someone would doubt my results, I should say to 
him: “Let us calculate, Sir,” and thus by taking to pen and ink, we should 
soon settle the question.84

If this is what he means by “numerical proof,” then what he is proposing 
is less a logical calculus in the modern sense, in which the certainty of 
conclusions stems from formal inference rules, than a pragmatic measure 
meant to reveal errors. As Leibniz undoubtedly knew, the casting out nines 
procedure does not always work; it fails to detect errors when the result is 
off by a multiple of nine. The point, then, is not to ensure correctness by re-
placing reasoning with a mechanical process; it is “to examine arguments,” 
as he writes in the 1677 essay, and thus reveal their flaws.85

A similarly pragmatic attitude may be discerned in Leibniz’s remarks 



The Matter Out of Which Thought Is  Formed  ›   69

about calculating machines. In an oft-quoted manuscript written the same 
year as “The Art of Discovery,” he describes the purpose of the machine 
he built: “it is unworthy of excellent men to lose hours like slaves in the 
labor of calculation, which could be safely relegated to anyone else if the 
machine were used.”86 While this reference to slavery has often been taken 
to indicate that he means to liberate people from work by automating cal-
culation, this is a misreading of the passage. The point of the machine is to 
ensure that calculations can be “safely” assigned to a subordinate who, pre-
sumably, cannot be trusted to do them correctly with a pen and paper. As 
in the numerical “tests,” the aim is to compensate for the human tendency 
to err; “it is known,” Leibniz writes earlier in the text, “from the failures 
[of those] who attempted the quadrature of the circle that arithmetic is the 
surest custodian of geometrical exactness.”87 By making calculation easier 
and more reliable, the machine would encourage astronomers and other 
“excellent men” to check their results through numerical tests and thus im-
prove the reliability of knowledge.

If Leibniz was moving away from some of his more extreme claims 
about the characteristic in the 1680s, he retained his faith in the power of 
symbols. In the years following the writing of “The Art of Discovery,” he 
developed some of his most sophisticated attempts at the rational calculus 
he had promised in the Dissertation. The best known of these appear in a 
pair of manuscripts about what is sometimes called the plus–minus calcu-
lus.88 The idea is to generalize arithmetical addition into a “real addition,” 
as he called it in the second manuscript, that deals with collections of enti-
ties rather than abstract quantities.89 As he explains, 2 + 2 = 4 in common 
arithmetic, but this only holds if the two pairs being combined are assumed 
to be different; if one has two coins and adds the same two coins, one still 
has only two coins.90 Real addition is supposed to represent how addition 
works with collections that may overlap like this. Whereas his previous ef-
forts had worked either through placing letters together (ra means rational 
animal) or through prime numbers, this system employed operators simi-
lar to the algebraic + and −, creating an apparent relation between logic 
and algebra.

In the first version of the system, Leibniz uses A + B = L to indicate that 
A is contained in L, with B being the remainder. He also defines a comple-
mentary relation A – B, which expresses whatever is left over when B is 
taken away from A. Leibniz’s system works somewhat like numerical al-
gebra, although it is not exactly the same: if A and B contain something 
in common, then A + B – B ≠ A, since the subtraction “destroy[s]” some-
thing that is contained in A.91 In the second manuscript, he leaves out sub-
traction and focuses on real addition, which he now distinguishes from 
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numerical addition by drawing a circle around the plus sign. He suggests 
two distinct interpretations of this operation. In most cases, he takes it to 
express the combination of attributes, so that R ⊕ A might signify what 
is both rational and animal. The operation can also, he notes in passing, 
express the relation by which multiple species compose a genus, so that 
(to invent an example) F ⊕ B might signify a class containing both fish and 
birds.92 He works out the consequences of this system based on a set of 
axioms, including A ⊕ A = A, which would later become a central law of 
Boolean logic.

The legacy of Leibniz’s logical calculi has long been filtered through a se-
ries of rereadings and revisions that took place in much later periods. While 
some commentators have intimated that George Boole built his system on 
foundations laid by Leibniz, the claim of a direct line of influence is not 
supported by historical evidence; Boole was probably unaware of Leibniz’s 
relevant writings when he developed his logical system.93 When Boole 
finally did read Leibniz’s logical work in the 1850s, he later recalled, he 
concluded that the Leipzig philosopher had stated his views “in language 
which to those imbued with later and juster views of the functions of Logic 
must appear extravagent.”94 Around 1900, Bertrand Russell attempted to 
make a logical formalist of Leibniz, arguing that the universal characteris-
tic “was evidently akin to the modern science of Symbolic Logic” as prac-
ticed by Boole; Louis Couturat, C. I. Lewis, and Ernst Cassirer expanded 
on this view.95 But these readings had to work around aspects of Leibniz’s 
thought that violate the disciplinary bounds of modern logic.

A particular difficulty regards how Leibniz addresses the objection (of-
ten raised against classical deductive logic) that the results were mere re-
statements of definitions and were thus ultimately arbitrary. In an earlier 
manuscript, Leibniz responds that, “even if certain propositions are arbi-
trarily assumed, as the definitions of terms, yet there arises from these a 
truth which is far from arbitrary.”96 As an example, he gives the numeral 
system, which consists of arbitrarily defined symbols but which nonethe-
less produces conclusions of absolute truth. This argument anticipates for-
malism in its focus on the relations of symbols; it resembles how program-
ming languages treat names as arbitrary in the sense of interchangeable. 
Yet formalism does not, in its modern form, license the sort of connection 
Leibniz wanted to make between such symbols and the material world. 
Leibniz did not present the plus–minus calculus as a mere way of work-
ing out the consequences of axioms: the symbols were supposed to express 
truths about the natures of things that would enable one to draw conclu-
sions about them through calculation alone, thus doing for other subjects 
what the Indian calculating techniques did for quantities.
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Leibniz’s confidence that this was possible makes sense only if we con-
sider the seventeenth-century crucible from which his thinking flowed. 
Advocates of universal characters, including Wilkins and Leibniz alike, 
presumed the existence of a universal set of ideas that exist in the mind 
before one learns any language. Leibniz states this position explicitly in 
the 1686 Discourse on Metaphysics: “there is nothing we could ever learn of 
which we do not already have in our mind the idea, which is like the mat-
ter out of which the thought is formed.”97 The assumption that the human 
mind comes already outfitted with ideas entailed that, once an adequate 
symbolism was developed for a given area of knowledge, the symbols 
would readily become comprehensible to anyone intelligent enough. This 
rationale for trusting in the transparency of symbols is incompatible with 
any serious sort of cultural or linguistic relativism. As with Wilkins’s real 
character and Oughtred’s version of specious arithmetic, Leibniz’s charac-
teristic employs symbols as arbitrary signifiers, but if one admits that ideas, 
too, can be arbitrary, put together in ways that depend on the contingent 
circumstances of one’s upbringing, the dream promptly withdraws from 
grasp.

Among Leibniz’s early followers, the most fruitful parts of his work 
toward the characteristic were the attempts at a logical calculus. One of 
Leibniz’s most prominent acolytes (after the tireless Christian Wolff ) was 
the Swiss logician Johann Heinrich Lambert, who attempted, starting in 
the 1750s, to discover what “was concealed in the Leibnizian characteris-
tic and in the ars combinatoria.”98 Lambert developed a logic system based 
on a representation somewhat like Venn diagrams, which was meant, as he 
presented it, to do for qualities what the algebraic notation had done for 
quantities. The goal was to produce a scientific sign system that represents 
the world with such veracity that, he writes, “the theory of things and the 
theory of signs become interchangeable.”99 Lambert presents his attempt 
at such a scientific symbolism in his book Disquisitio, published in 1767.100 
What he developed, however, did not live up to the expectations he had 
created; early readers of the Disquisitio were disappointed to find that his 
logical calculus merely used letters to represent qualities rather than, as 
he had promised, symbols that naturally corresponded to the essences of 
things.101 In spite of Lambert’s efforts, the dream of a system that can pro-
duce true knowledge about all manner of subjects through symbols alone 
remained unrealized.

If the characteristic turned out to be vaporware, Leibniz was a mas-
sive success in another area: mathematics. His version of the infinitesimal 
calculus draws much of its power from his carefully designed symbols, 
such as dx and ∫dx; while the Leibnizian notation has its detractors, it is 
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almost universally viewed as superior to that of Newton. As the next sec-
tion shows, Leibniz’s work on calculus contributed to a reframing of the 
discourse surrounding symbolic methods around the end of the seven-
teenth century. His notational innovations offered proof that, in a way, ad-
vocates of real characters were right: symbols really could do things that 
words could not. But Leibniz’s work also raised new conceptual problems. 
It was easy enough to explain what, say, the + sign meant, but explaining 
the meaning of dx was not so easy. Critics thus questioned whether Leib-
niz’s methods were merely instrumental procedures that fell short of the 
standards of demonstrative knowledge set by Euclid and Archimedes. If, 
in his work on the universal characteristic, Leibniz maintained confidence 
that symbols would remain firmly affixed to universal “notions,” his work 
on calculus troubled that faith, raising the possibility that symbols could 
produce true results even though they meant nothing at all.

A n A lgor ithm, So to Spea k

In his comprehensive history of mathematical notations, Florian Cajori 
states that only two mathematicians ever managed to create more than two 
symbols that caught on: Leibniz and Leonhard Euler.102 Although Leibniz 
did not take symbolism to the extreme that Pierre Hérigone had a few de-
cades before—he did not attempt to replace words altogether—he did give 
symbols a prominent role in his mathematical practice. Central to his view 
of notation is the idea of blind thought. In the Dissertation, Leibniz states 
that it is possible to think of many things at once in a single intellectual act, 
“as, for example, when by reading numerals on a piece of paper we grasp 
in a kind of blind thought some very large number that all the years of Me-
thuselah would not suffice to count up explicitly.”103 The point is that one 
need not have a clear mental image of a million things in order to reason 
correctly about that quantity—one need only understand how the sym-
bol 1000000 is constructed so as to “express,” as Leibniz liked to put it, the 
number.104

Although Leibniz applied his idea of blind thought to some practices 
that we would now see as algorithmic, it would be a mistake to identify it 
with algorithmic thinking in its modern form. Blind thought did not mean 
blind rule following; it was a form of contemplation, not an unintelligent, 
mechanical process.105 Leibniz used symbols not just for computing results 
but also for visualizing mathematical data in a tabular form so as to make 
patterns visible.106 One may find a clear example of this approach in one of 
the texts that has led to outsize claims about Leibniz’s role in the develop-
ment of computers. Leibniz was, as is well known, interested in binary no-
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tation. In an article published in the journal Memoires de l’Académie Royale 
des Sciences in 1703, he introduces the binary numeral system and shows 
how the basic operations of arithmetic can be performed with only 1 and 
0. He argues that binary arithmetic explains the meaning of the I Ching and 
suggests that it may have played some role in the formation of the Chinese 
characters as well, speculating that these characters might reveal “some-
thing considerable about numbers and ideas.”107 He ends the article with 
a suggestive comment linking these ideas to the universal characteristic, 
in which “every reasoning that one can draw from notions could be drawn 
from their characters by a manner of calculation.”108

The binary system that Leibniz discusses in this article is indeed the 
same one that forms the basis of modern computation. But the reasons 
this system interested Leibniz are not the reasons it is important to com-
puter science. Binary arithmetic became central to modern computation 
primarily because it forms a convenient basis for electrical computing ma-
chines. For mechanical calculators using rotating drums, higher bases were 
better, which is why Leibniz used base ten rather than binary for his calcu-
lating machine. Leibniz’s interest in binary stemmed not from its utility in 
mechanization, but from its visual qualities: making patterns in numbers 
easier to see enables the easy perception of mathematical laws that cannot 
readily be discerned in decimal numbers. In a table of binary numbers, for 
instance, one “sees in a single glance the reason for a celebrated property of 
the double geometric progression”—namely, the fact that any number can be 
composed by summing powers of two.109 The point is not to develop a new 
method of computation, for the purpose of which, as he notes in the ar-
ticle, it would be best to stick with the base ten system. The point, rather, is 
to think about what different types of symbol can tell us about mathemati-
cal entities.

Leibniz had the greatest success with symbolic methods in his work 
on calculus. As readers who have studied the field will know, calculus fo-
cuses on two operations that we now call integration and differentiation. 
The basic problem of integration (which was usually called quadrature in 
the seventeenth century) is to determine the area of a shape with a curved 
boundary, such as a circle. In Euclidean geometry, no one had ever been 
able to “square the circle,” meaning to construct a square with the same 
area as a given circle. Mathematicians had long recognized that it was pos-
sible to approximate this area by computing the areas of polygons that 
come close to filling it; the more sides the polygon has, the more accurate 
the approximation can be (figure 2.4). The Persian mathematician Jamshīd 
al-Kāshī had used such techniques to approximate the value of pi in the 
early 1400s.110
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Figure 2.4.  Estimating pi using a twelve-sided polygon. Using some geometric tricks, 
Jamshīd al-Kāshī was able to determine the lengths of the polygon’s sides, which, 
added together, form an approximation of the perimeter of the circle. Using a hexagon 
produces the estimate π ≈ 3, whereas the twelve-sided polygon produces π ≈ 3.106. The 
smaller the sides, the more accurate the estimate.

With the methods of calculus, one can compute, at least in many cases, 
the value that this approximation approaches as the complexity of the poly-
gon grows toward infinity, thus exactly determining the area of a shape. In 
the time of Newton and Leibniz, this method was often explained in terms 
of infinitely small magnitudes—a claim that raised philosophical problems 
that would occupy mathematicians through the eighteenth century. Differ-
entiation, which is the inverse of integration, is about finding the rate of 
change of a function (or, equivalently, the slope of a curve) at a given point. 
Differentiation can be used to find the minimum and maximum points of 
curves, which was a problem that particularly interested Leibniz.

Although Newton famously accused Leibniz of plagiarism, the consen-
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sus now is that the two developed their versions of calculus independently. 
Newton’s version, which he called the “method of fluxions,” involved the 
intuition of flowing numbers; it is a notoriously difficult theory to under-
stand. Leibniz’s version is closer to how calculus is taught today, especially 
in terms of its notation. He first published this work in the 1684 article, 
which focuses specifically on differentiation.111 To differentiate an equation 
is to transform it into another equation that indicates the rate of change 
at a given point. Although there are some important differences, Leib-
niz’s rules for differentiation are recognizably similar to the ones used in 
modern calculus: xa, for instance, becomes axa−1.112 Leibniz published his 
method of integration (which he preferred to call summation) in another 
article two years later; it is here that he introduced the notation ∫dx for 
integrals. The integral sign is supposed to resemble an s for sum; the nota-
tion was originally printed, using the long form of s that was common at 
the time, as “ſdx.”113

While they both employed symbolic notations, Leibniz and Newton 
had different views on the theoretical significance of symbolism. Newton 
was generally opposed to methods that depended heavily on symbols, pre-
ferring geometric demonstration; in a 1715 Philosophical Transactions ar-
ticle about his dispute with Leibniz, Newton declared in the third person 
that “Mr. Newton doth not place his Method in Forms of Symbols, nor con-
fine himself to any particular Sort of Symbols for Fluents and Fluxions.”114 
Leibniz, on the other hand, developed new symbolic notations with aban-
don, and his 1684 article presented abstract rules of operation, which he 
called an “algorithm,” shorn of any detailed proof of the procedure’s valid-
ity. Modern scholars have taken varying views on whether Leibniz man-
aged to develop a rigorous rationale for his calculus; certainly, he did spend 
a significant amount of time thinking about theoretical matters.115 But even 
if he did have a rigorous theory to back up the method, his published work 
did not contain a clear statement of it, nor did his correspondence with 
other mathematicians. He left his followers, instead, to puzzle over the 
conceptual foundations of the new “algorithm.”

Leibniz’s tendency to avoid foundational questions in his published 
work has led some scholars to view him as an instrumentalist.116 But even 
if Leibniz’s followers were content to plow ahead without fretting over 
theory, programmatic instrumentalism was not an available option when 
they were pressed to justify their work. Simply pointing out that the “al-
gorithm” worked was hardly satisfactory since, as long as there was no ac-
ceptable proof of its validity, it remained possible that it would fail in par-
ticular cases that had as yet gone untested. (As we will see in chapter 5, 
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such problems would, centuries later, become a major motivation for the 
development of a theory of algorithms in computer science.) Some of 
Leibniz’s early critics, such as Michel Rolle, attacked him from this angle.117 
Further, the idea of the infinitesimal, which played an important explana-
tory role in Leibnizian calculus textbooks such as those of Guillaume de 
l’Hôpital and Christian Wolff, seemed to contain a logical impossibility.118 
Leibniz’s failure to state (at least publicly) a clear rationale for his use of 
infinitesimals led critics to question whether his methods were mere tricks 
that had no place in serious science.

The best-known attack on this front came from the Irish philosopher 
George Berkeley, who criticized the theories of both Newton and Leibniz 
in his 1734 pamphlet The Analyst: Or, a Discourse Addressed to an Infidel 
Mathematician. Berkeley makes a number of arguments in this text, among 
them the accusation that the calculus falls short of the status of a science 
because it merely provides methods for solving problems without placing 
them on solid conceptual ground. Berkeley asks, “Whether there be not 
a way of arriving at Truth, although the Principles are not scientific, nor 
the Reasoning just? And whether such a way ought to be called a Knack 
or a Science?”119 In Berkeley’s judgment, the calculus was a mere “knack” 
because it only provided procedures for solving problems without (in his 
view) founding those procedures on principles. This line of critique did 
more than try to show that Leibniz’s “algorithm” could produce wrong 
results. For Berkeley, even if the results were always right, the procedure 
could still be unscientific if its conceptual basis were flawed; in particular, 
it might contain two errors that canceled each other out.

A number of scholars have pointed to an apparent inconsistency be-
tween Berkeley’s arguments against calculus and his earlier writings on 
arithmetic and algebra, in which he took an unapologetically instrumen-
talist stance.120 In the early notebooks known as the Philosophical Com-
mentaries, probably written in 1707–8, Berkeley articulated a protofor-
malist view of arithmetic and algebra in which “Numbers are nothing but 
Names, meer Words.”121 Berkeley’s account of numbers is, at least in some 
aspects, reminiscent of Leibniz’s idea of blind thought. Arithmetic and al-
gebra, Berkeley argues, are “sciences purely Verbal, & entirely useless but 
for Practice in Societys of Men. No speculative knowledge, no comparing 
of Ideas in them.”122 The value of these sciences, Berkeley suggests, con-
sists precisely in these names, which tell us something that cannot imme-
diately be perceived in things themselves: “I am better inform’d & shall 
know more by telling me there are 10000 men than by shewing me them 
all drawn up.”123 Earlier he links the certainty of such verbal sciences to the 
fact that symbols (unlike ideas in Berkeley’s view) may be chosen at will: 
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“The reason why we can demonstrate So well about signs is that they are 
perfectly arbitrary & in our power, made at pleasure.”124

To an extent, the apparent disjunction between this argument and the 
polemics of The Analyst stemmed from his political motives in attacking 
Newton and Leibniz. But that Berkeley’s instrumentalist theory of algebra 
should translate into a general acceptance of symbol manipulation in all 
mathematical fields would not have been nearly as obvious in his time as it 
might be in ours. Newton and Leibniz both treated calculus as primarily a 
matter of geometry, which was, as the model demonstrative science, sac-
rosanct at the time in a way that algebra was not. As Douglas Jesseph has 
stressed, Berkeley likewise viewed calculus as a part of geometry, which 
he treated very differently from arithmetic and algebra.125 Newton himself 
stated, in the English edition of Universal Arithmetick, that “Multiplica-
tions, Divisions, and such sort of Computations, are newly received into 
Geometry, and that unwarily, and contrary to the first Design of this Sci-
ence.”126 Applying symbolic methods to geometry was a violation of dis-
ciplinary boundaries, and there was no widely accepted epistemological 
framework in which this violation could be justified.

The problem is manifest in Leibniz’s decision to describe his proce-
dure for differentiation as an “algorithm.” This usage appears, among 
other places, in the 1684 article in which he first introduces the proce-
dure: “From this rule, known as an algorithm, so to speak, of this calculus, 
which I call differential, all other differential equations may be found by 
means of a general calculus.”127 Although Leibniz does call his method an 
algorithm (Algorithmo) here, he qualifies this characterization with “so to 
speak” (ut ita dicam), suggesting that the usage is not quite standard. From 
his other writings, it is apparent that he specifically meant algorithm to im-
ply an analogy with arithmetic. In a 1692 journal article written in French, 
Leibniz describes the calculus as “a new algorithm [algorithme], that is to 
say a new manner of adding, subtracting, multiplying, dividing, extract-
ing [roots], proper to incomparable quantities, that is to say those that are 
infinitely large or infinitely small in comparison to others.”128 For Leibniz, 
algorithm was not yet a general term for any sort of clearly defined proce-
dure, carrying instead a reference to the five (as he counted them here) 
basic operations of arithmetic.

By this use of the word algorithm, Leibniz contributed to the expansion 
of the term’s meaning from a particular set of computational methods to a 
general style of procedure that could be applied in other areas. This pro-
cess had already begun in the sixteenth century, when Michael Stifel de-
scribed an “algorithm” for manipulating square roots. By Leibniz’s time, 
some writers had begun to use algorithm to refer to algebraic procedures 
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as well, and Leibniz pushed it further by extending the term to calculus.129 
This extension took root among Newtonians as well. In 1702, the popular-
izer John Harris referred to the rules of Newton’s differential calculus as 
“the Algorithm or Arithmetick of Fluxions.”130 The term algorithm, then, 
was already, long before the computer age, coming to refer to practices be-
yond the original algorism; computation was, in spite of Newton’s blan-
dishment, encroaching on geometry.

One ought to question, however, just what sort of arithmetic Leib-
niz meant to single out when he called his method an “algorithm, so to 
speak.” His differentiation procedure is less akin to common arithmetic 
than to specious arithmetic—that is, to the seventeenth-century version of 
symbolic algebra. Rather than producing numerical results, specious arith-
metic provides rules for the transformation of symbolic formulae, such as 
B(A + E) = BA + BE or AE

A
 = E. Leibniz’s “algorithm” similarly formulates 

its rules as equations, as in his multiplication rule d—vx = xdv + vdx. While 
Leibniz did indeed inspire an expansion in the use of algorithm, his follow-
ers applied the term mainly to rules of this algebraic sort. For instance, in 
the late eighteenth century, the German mathematician Abel Bürja de-
scribed an “algorithm of logarithms,” meaning “a manner of representing 
them algebraically, with the forms of calculation that result from it”—that 
is, algebraic rules such as log a – log b = log (a−b ).131 The point is not that 
the practice follows a strictly defined sequence of steps, as in modern al-
gorithms, but that it involves operations expressed in symbols; extending 
the reach of “algorithms” thus went hand in hand with the development of 
new notations.

Algebra was already facing theoretical difficulties in the decades fol-
lowing Leibniz’s 1684 article, and the calculus made the problem worse. 
With each expansion of the meaning of algorithm—from arithmetic to al-
gebra to calculus—the conceptual soundness of the practices it denoted 
became more debatable. Arithmetic was more or less uncontroversial, and 
the qualms about negative and imaginary numbers in algebra only surfaced 
now and then; but questions about the foundation of calculus came to 
pervade the discourse. The intensity of this debate stemmed in part from 
the counterintuitive nature of infinitesimals, but it was also stoked by an 
increased awareness of the importance of defining symbols. As the next 
section shows, Leibniz was forced to defend his use of symbols in his en-
gagement with the philosopher John Locke. Locke’s work heralded a new 
cluster of epistemologies for which symbols did not offer a solution to the 
uncertainty of language, as they had for Oughtred and Leibniz; from a 
Lockean perspective, the symbols simply were a language, and their mean-
ings were just as open to questioning as those of words.
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From A rt to Natur e

If Leibniz’s dispute with Newton was partially motivated by personal fac-
tors, his dispute with Locke was partially mitigated by them. In his 1689 
Essay Concerning Human Understanding, Locke famously asserted that 
all knowledge derives from sensory observations rather than from innate 
principles or ideas. After reading the Essay in 1695, Leibniz repeatedly at-
tempted to engage Locke in a debate, but he could not persuade the En
glish philosopher to take him seriously. Starting in 1700, Leibniz began 
writing a book-length response to Locke that would eventually become 
New Essays on Human Understanding. Locke’s death in 1704 led Leibniz 
to scrap his plans out of respect for the dead, and the manuscript went 
unpublished for decades. By the time it finally appeared in print in 1765, 
Locke had already gained the upper hand. Locke’s argument dealt a crush-
ing blow to the early modern belief in universal harmony of which Leibniz 
was a late holdout, a turn that would play a large role in setting the agenda 
for the way symbolic methods would function in the eighteenth century.

The nature and merits of Leibniz’s defense of innatism have been a sub-
ject of much debate among scholars. The dispute had to do in part with 
religion; Locke was widely perceived to sympathize with a dissenting sect 
known as the Socinians, to whom Leibniz was strongly opposed.132 Leib-
niz’s innatism has also been likened to Immanuel Kant’s argument, later in 
the eighteenth century, that certain categories are necessary to all rational 
thought.133 But Leibniz’s domain of innate ideas was rather more populous 
than Kant’s transcendental realm. Leibniz wrote some time around 1680 
that the ease with which children can understand “mathematics, morals, 
jurisprudence, and metaphysical matters” proves that “the seeds of all 
these concepts were already in the child.”134 This list of disciplines, not in-
cidentally, includes just those areas in which Leibniz most fervently hoped 
to apply the calculus ratiocinator. By denying the existence of prelinguistic 
“notions” that may be presumed to exist in all rational minds, Locke’s argu-
ments undermined the way Ward, Wilkins, and (I am arguing) Leibniz had 
justified the view that symbols could circumvent the uncertainty of words. 
At stake was thus the possibility of the universal characteristic—and per-
haps even the status of symbolic methods in mathematics.

In the 1689 Essay, Locke famously considered whether ethics could 
be made as certain as mathematics, in the course of which he gives an ac-
count of how, in his view, symbolic computation works. In Locke’s view, 
the process of “casting up a long sum, either in addition, multiplication, 
or division” is nothing but “a progression of the mind, taking a view of its 
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own ideas, and considering their agreement or disagreement.”135 Notation 
plays an important role, since “without setting down the several parts by 
marks, whose precise significations are known, and by marks, that last and 
remain in view, when the memory had let them go, it would be almost im-
possible to carry so many different ideas in mind.”136 Yet these symbols are 
mere memory aids that are only as good as the meanings assigned to them. 
This account of the function of mathematical symbols goes directly against 
Leibniz’s case, in the letter to Tschirnhaus, that characters can lead us “into 
the interior of things.” In Leibniz’s view, the uncertainty of ethical argu-
ments stems primarily from the fact that the characters we use to express 
them are not as well “arranged” as mathematical notations. For Locke, by 
contrast, simply improving the notation would not suffice to make ethics 
demonstrative like mathematics. The problem lies in the formation of the 
ideas, which cannot be “fixed” by means of characters alone.

Locke’s account of the cognitive function of signs surfaced a difficulty 
that the real-character view tended to gloss over. Words, Locke argues, re-
fer not to things themselves but only to what he called nominal essences—
arbitrarily constructed bundles of qualities such as smooth red sphere. 
Nominalism had a long history in Scholastic thought, but Locke differs 
from earlier nominalists in the extent to which he treats linguistic differ-
ences as irreducible. Locke states that words are “voluntary signs,” mean-
ing that everyone has “a liberty, to make words stand for what ideas he 
pleases.”137 One does not, however, have the liberty to control how other 
people understand words. As a result, to suppose that one can get around 
the dependence of signification on the existence of commensurable ideas 
in the minds of the speaker and hearer—to act as if words can refer either to 
ideas in other people’s heads or to things themselves, unmediated by men-
tal conceptions—is to push language beyond what it can legitimately do. 
This account of the “abuse of words” constitutes Locke’s explanation for 
the linguistic confusion that Bacon and his followers had long lamented.138 
The problem, as Locke has it, is not just the corrupt nature of the languages 
people speak at present. The problem is that language itself, meaning any 
form of signification whether spoken or written, is fundamentally incapa-
ble of establishing the sort of transparent communication that the Bacon
ians desired.

Leibniz was probably not one of Locke’s immediate targets in this argu-
ment, but Wilkins probably was. As Hannah Dawson has stressed, Locke’s 
insistence that signs are “voluntary” was directed against the confidence 
of seventeenth-century semioticians like Wilkins in the unproblematic 
nature of concepts.139 Locke argues this point in part by giving examples 
of cultures whose ways of thinking differ radically from those of his own 
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country. For instance, he lists a variety of societies that supposedly ex-
posed infants in the wilderness, killed people once they reached certain 
ages, and fatted and ate their own children.140 These protoanthropologi-
cal sketches, which Locke borrowed from unreliable travel narratives, are 
supposed to prove that moral ideas develop very differently across cultures 
and thus cannot have been divinely etched on the mind at birth. Locke was 
no moral relativist—he was, for all his heterodoxy, an ardent Christian—
but his philosophy did have dire implications for the idea that a real char-
acter could establish universal agreement on moral issues. The possibility 
of communication, for Locke, depends on the existence of an accord about 
what signs mean, and simply arranging symbols in a table can provide no 
guarantee of such an accord.

Wilkins’s project had already collapsed under its own weight by the 
time Locke published this argument, but Leibniz’s universal characteristic 
was still alive, and its projector set out to show in New Essays that Locke 
was undervaluing the role of signs in reasoning. In opposition to Locke, 
Leibniz maintained that mathematical ideas were innate, present in the 
mind from birth and waiting to be revealed. Citing Julius Scaliger, he de-
scribes these innate ideas as “living fires or flashes of light hidden inside us 
but made visible by the stimulation of the senses, as sparks can be struck 
from a steel.”141 One might question whether this dispute was much ado 
about nothing—does it really matter whether ideas come into the mind 
through sensory input or are merely “sparked” by it? But the answer makes 
a difference in regard to symbolic methods. Blind thought had no place in 
Locke’s conception of rational activity; one had to assemble clearly formed 
ideas to attach to the symbols or they would amount to mere nonsense. 
Leibniz’s innatism enabled him to treat symbols, instead, as a means of re-
vealing new truths whose conceptual bases had not yet been discovered.

Mathematics arose in this debate in part because Locke had used it as 
an example of the difficulties surrounding innatism. If one accepts that the 
mind has an “implicit knowledge” of mathematical principles, Locke had 
argued, then “all mathematical demonstrations, as well as first principles, 
must be received as native impressions on the mind: which I fear they will 
scarce allow them to be, who find it harder to demonstrate a proposition, 
than assent to it, when demonstrated.”142 How, that is, can mathematical 
knowledge be innate if discovering it can be arduously difficult? While 
Leibniz concedes that mathematics can be hard to learn, he nonetheless 
counters that it is built from ideas that exist in the mind from birth: “It 
would indeed be wrong to think that we can easily read these eternal laws 
of reason in the soul, as the Praetor’s edict can be read on his notice-board, 
without effort or inquiry; but it is enough that they can be discovered 
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within us by dint of attention: the senses provide the occasion, and suc-
cessful experiments also serve to corroborate reason, somewhat as checks 
in arithmetic help us to avoid errors of calculation in long chains of rea-
soning.”143 The role Leibniz here assigns to the senses is much like that of 
the universal characteristic as he describes it in “The Art of Discovery”: 
sparking thought and testing conclusions. The senses are not the source of 
all our knowledge, but they provide a necessary means of “rectifying” our 
reasoning so that we can better discover what is within us.

These two positions entail different attitudes toward the role of signs in 
thought. For Locke, signs are arbitrary in both the signifier and the signi-
fied: one is free to choose both what to call trees and how to define a tree. 
Symbols are thus, just like words, no better than the ideas by which they 
are defined. For Leibniz, by contrast, the “sensible traces” we use to record 
our ideas play an essential role in the discovery of the ideas themselves: 
“we cannot have abstract thoughts which have no need of something sen-
sible, even if it be merely symbols such as the shapes of letters, or sounds; 
though there is no necessary connection between such arbitrary symbols 
and such thoughts.”144 If sensory input were not necessary for thought, 
Leibniz continues, “the pre-established harmony between body and soul” 
would not obtain.145 This line of thought suggests that symbols can reveal 
something about the true natures of things, since they take part in the di-
vinely instituted harmony between the soul and the world. It also suggests, 
at a more mundane level, that the problem of communication is less intrac-
table than Locke claimed. Even if the symbols themselves are arbitrary, the 
ideas to which they refer are not, and as a result it would not take a Hercu-
lean effort to ensure that they mean the same thing to everyone.

This rationale for the use of symbols depends, ultimately, on an idiosyn-
cratic variant of the early modern belief that the human mind is a mirror of 
the world. In a Leibnizian universe, every being perceives every other be-
ing; the only reason we do not know everything is that most of these per-
ceptions are to some degree confused. “It can even be said,” Leibniz writes 
in the preface to New Essays, “that by virtue of these minute perceptions 
the present is big with the future and burdened with the past, that all things 
harmonize . . . and that eyes as piercing as God’s could read in the lowliest 
substance the universe’s whole sequence of events.”146 The doctrine of har-
mony enabled Leibniz to recognize the historical contingency of natural 
languages without giving up on the belief that symbols—be they real char-
acters or sounds—could convey truths about mathematics, morals, meta-
physics, and other domains in ways that left no room for disagreement. 
If Locke pointed toward a form of cultural relativism that recognized the 
dependence of moral ideas on the customs of particular countries, Leibniz 
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gestured the opposite way: by harmonizing with ideas rather than signi-
fying them by convention, the universal characteristic would short-circuit 
culture.

By the time Leibniz’s New Essays on Human Understanding was finally 
published in 1765, his opponent had secured the high ground. Locke’s Es-
say was initially condemned by Oxford for heterodoxy, and it faced imme-
diate criticism from numerous quarters.147 But Lockean thought would go 
on to become one of the dominant philosophical strains in the eighteenth 
century, whereas the tide turned against Leibniz. The 1755 Lisbon earth-
quake, which Voltaire famously depicted in Candide and in his “Poem 
on the Lisbon Disaster,” was only one of a number of factors that placed 
Leibniz’s optimistic metaphysics under question. Voltaire’s poem satirizes 
Leibniz’s doctrine that “all is necessary,” which would have entailed that 
the infants and children who died in the earthquake must have in some way 
deserved their fate.148 At a less existential level, ideas about language had 
changed by the mid-eighteenth century so as to erode the distinction be-
tween characters and languages. Wilkins’s real character had failed to catch 
on, and starting in the 1680s, opinion turned against the idea that symbols, 
no matter how “artificially” designed, could suffice to ensure that people 
were understanding things correctly; clearing up the “pipes” of communi-
cation, it was increasingly recognized, would take more than a new form of 
writing.

Locke’s work offered an appealingly humble alternative to such high-
flown schemes. Rather than trusting in the power of symbols to overcome 
cultural differences, Locke emphasized definitions—a pragmatic measure 
for addressing local conceptual problems by clarifying how ideas were 
assembled. He also encouraged cultivating good habits so that rational-
ity would become second nature. In Some Thoughts Concerning Education 
(1693), he argues against the use of explicit rules in pedagogy: “Children 
are not to be taught by Rules which will be always slipping out of their 
Memories. What you think necessary for them to do, settle in them by an 
indispensible Practice, as often as the Occasion returns; and if it be pos-
sible, make Occasions. This will beget Habits in them, which being once 
establish’d, operate of themselves easily and naturally, without the Assis-
tance of the Memory.”149 Locke is not talking about computational rules 
here—he means rules like “No pudding before dinner”—but his argument 
would have significant influence on mathematical pedagogy for well over a 
century. Explicit directions, for Locke, are an ineffective means of shaping 
human behavior; it is better, as he later wrote more in the context of logic, 
to “settle the habit of doing without reflecting on the rule.”150

Whether through Locke’s direct influence or not, eighteenth-century 
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mathematicians generally followed him in emphasizing definitions as a 
means of establishing clarity, as well as in avoiding explicit rules in favor of 
theoretical explanations that were supposed to make procedures intuitively 
obvious. Some authors, especially in Britain, grew suspicious of symbols.151 
In his preface to a widely reprinted eighteenth-century edition of Euclid’s 
Elements, John Kiell declares, “The Elements of all Sciences ought to be 
handled after the most simple Method, and not to be involved in Symbols, 
Notes, or obscure Principles.”152 The turn also affected British populariza-
tions of calculus, which (while they made liberal use of symbols) tended to 
follow Newton in emphasizing geometry over algebra. In his 1742 Treatise 
of Fluxions, an early Newtonian calculus textbook, Colin MacLaurin states 
that algebra “may have been employed to cover, under a complication of 
symbols, abstruse doctrines, that could not bear the light so well in a plain 
geometrical form.”153 The key to avoiding this obscurity, MacLaurin con-
tinues, is “defining clearly the import and use of the symbols, and proceed-
ing with care afterwards.”154 The contrast with Oughtred’s statement of a 
century before is stark. Symbols are no longer treated as a way of placing 
mathematical ideas directly on the page without the interference of words; 
instead, they are suspected to be meaningless until proven otherwise.

Continental mathematicians were more sympathetic to Leibniz than 
MacLaurin was, and their ideas of clarity were more under the sway of 
Descartes. The development of symbolic methods continued unabated. 
Yet the French and German traditions also increased their focus on clarify-
ing the meanings of symbols. Jean Le Rond d’Alembert, who wrote most 
of the entries on mathematics for the great monument of the French En-
lightenment, the Encyclopédie, paid great attention to defining such tricky 
concepts as negative numbers and differentials. He defines differential (dif-
férentiel), for instance, as “a quantity infinitely small, or less than all assign-
able magnitude.”155 His article on negative (négatif) begins by noting that 
some mathematicians define negatives as numbers “smaller than zero,” but 
he thinks this definition is wrong; negatives, he explains in great if some-
what knotty detail, must be understood as positive numbers placed in a 
relation of opposition to certain other numbers, as two curves may extend 
in opposite directions from a given point.156 Like MacLaurin, d’Alembert 
gives a privileged role to geometric interpretability even when employing 
symbolic notation. D’Alembert’s conception of mathematical knowledge 
had no place for methods that were not backed up with some conceptual 
basis, abstract as that basis may be.

This intellectual shift did not defeat Leibniz’s reputation for good. The 
idea of extending “calculation” into a universal method would gain a new 
life in the nineteenth-century work of Charles Babbage and Ada Lovelace, 
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as would Wilkins’s real character: in his memoir, Babbage recounts a 
youthful attempt to create a comparable system.157 Leibniz’s writings on 
logic would return to prominence later in the nineteenth century as Boole, 
Frege, and Russell looked for a kindred spirit in the past. As a result, some 
histories of computation proceed directly from Leibniz to the nineteenth-
century work of Babbage, Boole, or Giuseppe Peano.158 But to skip ahead 
to this revival would be to miss something important. As the next chap-
ter shows, the idea of universal computation was not absent in the century 
between Leibniz and Babbage; it simply took on a different form. The 
culmination of this eighteenth-century version of universal computation 
appeared in the work of Nicolas de Condorcet, who sketched out some-
thing like a calculus ratiocinator within an epistemology more in line with 
Locke’s views than with Leibniz’s. For Condorcet, the purpose of the sys-
tem was not to reveal ideas that were already present in the minds of all 
intelligent people; it was to replace people’s existing conceptions of the 
world with better ones.
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Symbols and the Enlightened Mind

“When I use a word,” Humpty Dumpty said in rather a scornful tone, 
“it means just what I choose it to mean—neither more nor less.”

—Lewis Carroll, Through the Looking-Glass

The Schism

In the winter of 1794, Marie Jean Antoine Nicolas Caritat, Marquis de 
Condorcet, knew that he would not live long. Best known as a mathema-
tician and political thinker, Condorcet was an enthusiastic participant in 
the French Revolution of 1789. A titled aristocrat in the Old Regime, he 
shocked an audience in 1791 with a forthright declaration of support for 
the republic.1 Just over a year after the National Assembly was dissolved, 
however, his support for the moderate Girondin faction made him into an 
outlaw. On October 3, 1793, the Jacobins released a warrant for his arrest, 
and he was forced to flee from his home.2 During his eight months in hid-
ing, he passed the time by writing political texts that show little hint of the 
direness of his situation. In these manuscripts, which include some of his 
best-known work, he sketched out a utopian plan for humanity that stood 
in sharp contrast to the realities of revolutionary France.

In one of the fragments he wrote while a fugitive, later published as 
Sketch for a Historical Picture of the Progress of the Human Mind, Condorcet 
suggests two means by which the improvement of the human race can be 
assured: first, the adoption of “technical methods,” by which he means 
“the art of arranging a large number of subjects in a system so that we may 
straightaway grasp their relations, quickly perceive their combinations 
and readily form new combinations out of them”; and second, a “universal 
language” that “expresses by signs either real objects themselves, or well-
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defined collections composed of simple and general ideas, which are found 
to be the same or may arise in a similar form in the minds of all men, or the 
general relations holding between these ideas, the operations of the human 
mind, or the operations peculiar to the individual sciences or the proce-
dures of the arts.”3 Such a language, he writes, would not have “the dis-
advantages of a scientific idiom different from the vernacular”; it could be 
learned by all, as schoolchildren learn the language of algebra, providing 
universal access to the best knowledge available and ensuring that there 
could be no disagreement about either the meaning of terms or the validity 
of arguments.4

Condorcet’s work has long stood as a metonym for the desire to ex-
tend mathematical reasoning to all domains of knowledge. In The Order 
of Things, Michel Foucault cites Condorcet as one of the French classical 
thinkers who attempted “to mathematize empirical knowledge” in do-
mains outside of physics and astronomy.5 Similarly, Umberto Eco, in The 
Search for the Perfect Language, takes Condorcet’s approach to creating a 
universal language as proof that “the search for perfect languages was de-
finitively turning in the direction of a logico-mathematical calculus,” and 
Roger Chartier holds Condorcet’s project up as an example of a desire for 
“formalizing cognitive operations and logical reasoning.”6 Indeed, Con-
dorcet’s biographer Keith Michael Baker argues that some of his remarks 
anticipate twentieth-century developments in computation.7 But Con-
dorcet treated the communicational side of symbolic methods very differ-
ently from later practitioners of logic and computation. Unlike a modern 
programming language, Condorcet’s system was meant not just to pro-
duce results but also to provide a set of tables that classify all the things 
in the world. Condorcet’s project thus exemplifies a distinctly eighteenth-
century approach to symbolism, one that keeps the human mind at the 
center even as reasoning becomes a mechanical process.

Condorcet did not live to see his remarks about the universal language 
published. On March 27, 1794, he was arrested while attempting to flee 
the house where he was hiding, and two days later he died in his cell of 
unknown causes. His papers, however, survived, and the Sketch was pub-
lished the following year. Along with the manuscript for the Sketch, he left 
behind an unfinished plan for the universal language.8 Over the course of 
about ninety handwritten pages, he shows how the symbolic language of 
algebra can be made to subsist on its own, without the need for sentences 
linking the pieces together (figure 3.1). The method is based on boxlike 
symbols indicating which equations are taken as given, supposed as hy-
potheses, proven, and so forth; he also introduces symbols for different 
types of number as well as for functions, series, approximations, and con-
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Figure 3.1.  Nicolas de Condorcet performs a mathematical proof without using any 
words. My reconstruction follows the 2004 edition (Condorcet, Tableau historique des 
progrès de l’esprit humain, 960) but corrects the omission of a in the second-to-last line.

ditional expressions. Although he begins with algebra, his goal is to extend 
this symbolization to all sciences. The manuscript includes rudimentary 
notations for geometry, mechanics, astronomy, and natural philosophy 
as well as a proposal for a “hieroglyphic” language that represents certain 
ideas pictographically.9 Just before the manuscript cuts off, Condorcet 
promises to explain how his system can be extended to metaphysics, lin-
guistics, morals, and politics.10

This project appeared amid a broad revival of the utopian hopes that 
had attended symbols in the seventeenth century. In a 1785 letter, Con-
dorcet had cited G. W. Leibniz as a precedent for the idea, although he 
probably did not know the details of Leibniz’s attempts at a universal char-
acteristic.11 As another potential source, the editors of the 2004 edition of 
Condorcet’s manuscript suggest Pierre Hérigone’s Cvrsvs mathematicvs—
the early-seventeenth-century book that presents mathematical proofs 
through symbols designed to be readable in both Latin and French.12 Con-
dorcet was one of a number of thinkers who revisited such ideas in the 
last decade of the eighteenth century. A few years later, in 1797, Joseph de 
Maimieux published what he called the Pasigraphie: a system of symbols 
that were supposed to share the translinguistic character of mathematical 
notations.13 Condorcet, however, was after more than just international 
communication. He also wanted to preserve knowledge against catastro-
phe by developing a form of writing that future generations could read 
even if all existing languages were forgotten.

Given what Condorcet came up with, it is not hard to see why his sys-
tem has struck some observers as protocomputational. His universal alge-
bra hints at many of the elements of programming languages, including 
loops, if–then conditionals, and the binding of variables. For instance, us-
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ing the struck-through letters NI to mean integer, he writes the following to 
indicate the value +a if n is even and −a otherwise:14

m
a n m
a n m

=
+ =

= +
NI

,
– ,

2
2 1

   m
a n m
a n m

=
+ =

= +
NI

,
– ,

2
2 1

There is much here that anticipates later developments; indeed, the use 
of m to refer to an arbitrary integer seems to anticipate the “there exists” 
quantifier of modern symbolic logic. But Condorcet’s work points in a dif-
ferent direction from the historical current that leads from early modern 
algebra, via Leibniz and George Boole, to the computer.15 In contrast to 
Leibniz and Boole, Condorcet makes his logical notations entirely distinct 
from algebraic operators, and he gives other sciences such as geometry 
and astronomy their own symbols, including special lines indicating to 
which science each symbol belongs. (This is why the symbol for integer ap-
pears to be crossed out.) Instead of trying to develop a single method that 
could apply to all sciences, he is out to gather multiple sciences together; 
instead of presenting formal rules for how to use the symbols, he focuses 
on teaching people what the symbols mean, leaving the operations to be 
guided by reason.

In the natural sciences, this system works by the ordering device that is, 
for Foucault, distinctive of the Enlightenment period: the taxonomy. For 
example, one could have the number 145702342 designate a plant, with 
145 representing the class, 70 the genus, 23 the species, and 42 a particu-
lar variety.16 This numerical classification, which constitutes Condorcet’s 
“technical method,” would provide both a notation for scientific writing 
and a lookup system that could work with a dictionary or filing bureau. He 
goes to great length to show how one can explain the meanings of signs 
without using any preexisting language—for instance, through pictures, 
analogies, and experimental instructions. This re-creation of language was 
premised on what Tristram Wolff has called linguistic voluntarism—the 
idea that, since the meanings of signs are arbitrary, those meanings can and 
should be altered to better suit the natures of things.17 New terms, Con-
dorcet explains, will be established through explicit definitions, not tacit 
agreement.18 As he states in the discussion of geometry, his goal is to sketch 
out a system complete enough that new symbols may be defined using 
nothing but the other symbols already introduced, “independently of all 
anterior convention.”19

Even before Condorcet begins to move beyond mathematics, however, 
he begins to show some anxiety about the possibility of language finding 
its way back in. Before the universal algebra can be applied in a particular 
case, it is necessary to establish the meanings of the symbols, and it was not 
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apparent that this could always be done without some recourse to words. 
Condorcet considers this a flaw in his scheme, although not a fatal one:

We observe first that if, in a rare circumstance, it were impossible to 
make understood an absolutely new theory, to designate an object 
which had not yet been considered, to develop an operation of which 
one has not yet formed any idea, without having recourse to some ver-
bal explications, the universal language would not merit less the name, 
would not be less useful. It would happen then, but in an opposite sense, 
what happens in spoken language, when sometimes one is obliged to 
show the object itself or its representation, because of a lack of having 
the expressions to describe it. One would need one language to supple-
ment [suppléer] the other. But one might believe that this defect will not 
be encountered but very rarely in the language of universal algebra.20

To make theories understood, to designate objects, to form ideas of 
operations—these are all matters of mediating between the symbols and a 
person’s mental conceptions of the world. When an adjustment has to be 
made to the alignment between symbols and ideas, “verbal explications” 
must intervene. This is an objection that Joseph Marie de Gérando would 
judge, a few years later, to be fatal to the idea of a philosophical language: 
one would have to explain the meanings of the newly minted words in 
an existing, presumably imperfect language, thus tainting the new one.21 
Yet Condorcet is confident that it will not be a problem in the majority of 
cases. One can mostly avoid the taint of language, he thinks, by taking care 
always to proceed “from known to unknown” and by expressing new ideas 
as “generalizations” or “restrictions” of existing ones.22 In this way, the al-
gebraic system can be made as self-contained as possible, and words can, 
for the most part, be held at bay outside the walls.

The urgency with which Condorcet wanted to get rid of natural lan-
guage manifests much the same distrust of words that had motivated his 
seventeenth-century precursors. But his apparent anxiety about the pos-
sibility that, despite his best efforts, language would seep back in—the 
fact that he sees the occasional need for French definitions as a “defect” 
of his plan—is distinctive of the eighteenth century. For Leibniz and John 
Wilkins in the 1660s, the need to use words in establishing the meanings of 
symbols had not arisen as an epistemological problem. The two had differ-
ent views as to how the system should be constructed, but there was never 
much doubt in their time that it would be possible to fix the meanings of 
the characters with certainty, independently of any verbal language.23 By 
the 1790s, however, it had become clear that the idols of the market existed 
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not just in words, but in the minds of people who spoke them. A new at-
tention to the histories of European vernaculars in the mid-eighteenth cen-
tury had led to the widespread belief that different languages embedded 
different ways of thinking, which implied that, contrary to Leibniz’s view, 
the errors of vernaculars could still affect mathematical reasoning even 
when that reasoning was expressed entirely through symbols. To truly dis-
pense with the idols that lurk in one’s mind, one would need not just new 
symbols but also new ideas.

The stakes of this issue were heightened by the conceptual nature of 
eighteenth-century mathematics. As Amir Alexander has argued, math-
ematicians in the period viewed their work as a means of understanding 
quantitative and spatial relations in the material world.24 As I show in this 
chapter, the emphasis on grounding methods in physical reality led to a di-
vide between two ways of relating symbols to language. In the midcentury, 
Jean-Jacques Rousseau praised the virtues of what he called “natural man”; 
for Rousseau, people were naturally virtuous but have been corrupted over 
time by civilization, which creates artificial wants that turn people against 
each other.25 On one interpretation, this primitivism suggests the need for 
reform. Our language has become corrupt through centuries of abuse, the 
thinking goes, so we must start afresh by building a new language from the 
ground up, being sure to avoid tainting it with traces of received concep-
tions and attitudes. Such reasoning led, as de Gérando put it, to the “seduc-
tive hope” that reforming language would resolve disputes and eliminate 
political discord.26 Condorcet picked up on this hope in his universal lan-
guage scheme; the symbols were supposed to put an end to the violence 
that had engulfed France by settling, once and for all, the meanings of such 
divisive words as liberté, égalité, and fraternité.

Yet Rousseau’s argument also admits another interpretation that might 
be called conservative. The earliest languages, the thinking goes, were the 
best—they were the clearest, the most vivid, the least corrupt—and so we 
ought to stay as true as we can to the original meanings of words. This in-
terpretation speaks against linguistic reform, suggesting that any linguistic 
change ought to be lamented and, if possible, suppressed. These two po-
sitions in eighteenth-century linguistic thought translated into divergent 
visions for what symbolic methods could do. If Condorcet wanted to make 
people more rational by replacing words with newly minted symbols, an-
other school of thought located rationality in language as it already existed 
and tried to keep symbols as true to the ordinary meanings of words as 
possible. Both sides, however, shared a set of assumptions about the na-
ture of mathematics. For a time, mathematics was supposed to be based on 
reason, not on arbitrary axioms and methods, and equations had to have 
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meanings that were clearly understood. As a result, the question of how 
the symbols were defined—and thus, their relation to words—could not be 
ignored.

This chapter examines the variety of ways people addressed this ques-
tion in the eighteenth century. For radicals like Condorcet, algebra offered 
a model for how all communication should work, an example of a language 
derived from reason rather than from corrupt social practices. For oth-
ers, the symbols’ apparent independence from established conventions 
was dangerous. As an example of the latter position, I consider the English 
mathematician Francis Maseres, who is best remembered for his vehement 
opposition to the use of negative numbers. Joan L. Richards and others 
have argued that the French and English mathematical traditions had dif-
ferent attitudes toward symbolic methods in the eighteenth century.27 But 
the difference between Condorcet and Maseres was not just a matter of na-
tional cultures; it also had to do with conflicting ideas about language and 
politics. The eighteenth-century disputes about algebra parallel, in some 
striking ways, the twenty-first-century discourse about the political im-
plications of algorithms, raising questions such as whether strict rules can 
serve a liberatory purpose. Yet these disputes took place within Enlight-
enment epistemologies that draw no sharp line between computational 
procedures and human thought even when those procedures were literally 
mechanized. To illustrate the stakes of the issue, I begin with an instance 
where mathematics became expressly political: the division of land.

A lgebr a a nd the Or igin of La nguage

The Hindi–Arabic algorism had long found a major application in survey-
ing. The word geometry means, etymologically, the measurement of land, 
and numerical calculations were necessary for determining the areas of 
variously shaped plots based on measurements of their boundaries. Sur-
veying was important to taxation, since the state had to know exactly how 
much land a person held to determine how much the person owed. This 
practice gained a new political resonance during the French Revolution. 
France had long been divided into thirty-four provinces, but shortly after 
the revolution began, the National Constituent Assembly replaced these 
provinces with other divisions called départements. One faction cam-
paigned for the establishment of départements that were perfectly square 
and thus reminiscent of a checkerboard. In this proposal, calculation was 
no longer just a way of measuring plots of land whose divisions have al-
ready been established; now it would play a role in the reconstruction of 
the country’s administrative structure. Whereas this plan was not enacted 
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in France, a version was put in force in the United States, where it resulted 
in the perfectly square counties that still exist in much of the West.

This geometric model of land division exemplifies a late-eighteenth-
century tendency that John Heilbron calls “the quantifying spirit.”28 Across 
a range of contexts, mathematics was thought to have a persuasive power 
that could break down the structures of monarchical and aristocratic au-
thority with the force of undeniable truth.29 Such reform faced powerful 
opposition. In the 1790 book Reflections on the Revolution in France, Ed-
mund Burke takes the checkerboard scheme as characteristic of the op-
pressive nature of revolutionary reform. In using such a “geometrical dis-
tribution and arithmetical arrangement,” Burke writes, the Jacobins “treat 
France exactly like a country of conquest.”30 Since the checkerboard plan 
pays no attention to the traditions and emotional attachments that defined 
places for residents, it eliminates the possibility of feeling a personal con-
nection to one’s region. For Burke, this is an outrage; but for the reformers 
who advocated such methods, it was precisely the point—the new divi-
sions would supersede the aristocratic attachments that stood in the way of 
equal representation.

On the basis of remarks like Burke’s, one might suppose that mathemat-
ics stood on one side of a political divide—that reformers were attempting 
to impose mathematical rationality on society, whereas counterrevolution-
aries wanted to resist such efforts as a way of maintaining traditional hier-
archies and values. But the reality is more complex than this. The political 
factions of the time were not just tussling over how to use mathematics; 
they also had different ideas of what mathematics was. In the seventeenth 
century, as we saw in chapter 1, Thomas Hobbes had objected that alge-
braic symbols constitute a “narrow” language that is alienated from the 
way most people in a country speak. In the eighteenth century, the appar-
ent disconnect between symbols and ordinary language became a point of 
contention, at times promising a radical break from established practices 
and at others threatening to unmoor mathematics from reality.

Positions regarding the politics of language arose in even the most ab-
stract, theoretical forms of mathematics in the eighteenth century. A strik-
ing example appears in the work of the mid-eighteenth century’s greatest 
mathematician: Leonhard Euler. One of Euler’s interests was the problem 
of computing the sums of infinite series. A well-known infinite series is 
the sum   1−2   +   1−4   +   1−8   +   1−16   + · · ·, or, as we might alternatively express it, 

1
2 ii=1

∞

∑ . As we add up these diminishing numbers, the total gets closer and 
closer to 1, although it never quite reaches it; the sequence is thus said to 
converge to the value of 1, which is usually seen as the sum of this series.  
Some series, however, do not converge on any value. For instance, the se-
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ries 1 − 1 + 1 − 1 + 1 − 1 + · · ·, sometimes known as Grandi’s series, alter-
nates between 1 and 0 forever as we repeatedly add and subtract units. This 
series is thus called divergent.

Even though this series never converges, we might still wonder if the 
series as a whole—including not just the first n terms, but also the whole 
infinity of terms expressed by the “+ · · ·”—might still be assigned a sum. 
We could plausibly argue that the sum is zero by grouping the numbers in 
pairs:

(1 − 1) + (1 − 1) + (1 − 1) + · · · = 0 + 0 + 0 + · · ·

By grouping them differently, however, we could argue with equal plausi-
bility that the sum is one:

1 − (1 − 1) − (1 − 1) − (1 − 1) + · · · = 1 − 0 − 0 − 0 − · · ·

In 1703, Guido Grandi had proposed that the true sum of this series was 
1/2, but this result was not universally accepted.31 Euler constructed what 
he thought was a definitive proof of Grandi’s result, but he could only do so 
by making a theoretical gambit.

Euler’s argument, which was published in 1760 though probably devel-
oped in the 1740s, involves an expansion technique previously applied to 
this problem by Leibniz.32 This argument is often stated in terms of Isaac 
Newton’s generalized binomial theorem, but I will explain it in a more el-
ementary way. We may begin by observing the following identity:
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By applying this identity recursively to itself, we can transform the expres-
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And so forth. From this endless expansion, Euler concludes (in a move that 
would not be accepted in modern mathematics) that 1

1+a  is equivalent to an 
infinite series:
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1 − a + a2 − a3 + a4 − a5 + · · ·

Let a = 1; the fraction evaluates to 1−2   and the expansion reduces to Grandi’s 
alternating series. Euler took this as a proof of Grandi’s claim. This result 
came, however, at the cost of abandoning the usual definition of the word 
sum. Mathematicians, Euler writes, traditionally define the sum of an in-
finite series as “that quantity to which it is brought closer as more terms 
of the series are taken.”33 In this definition, divergent series clearly do not 
have sums. However, we could also define the sum as “that quantity which 
generates the series.”34 Since this new definition coincides (according to 
Euler) with the old one in the case of convergent series, it has no drawback; 
and since it enables a wider array of problems to be solved, it is superior.

Although Euler’s explicit goal was to put an end to the disputes over di-
vergent series, his argument remained controversial for centuries, and it 
later became an emblem of the perceived sloppiness of eighteenth-century 
mathematics. In 1826, the mathematician Niels Henrik Abel called diver-
gent series “the Work of the Devil.”35 For our purposes, what matters is 
less whether Euler was right or wrong by modern standards than the role 
language played in his argument. Those who deny that divergent series 
have sums, he argues, “have stumbled into a mere battle of words”; these 
difficulties will vanish if “we change the accepted notion of sum.”36 Euler’s 
confidence in this rhetorical approach rests on much the same assumption 
that animated Condorcet’s utopian scheme: that one can settle disagree-
ments by more clearly defining words. Whether this was an acceptable 
form of argument came down to the issue of to what extent definitions are 
arbitrary and to what extent that arbitrariness licensed scholars to deviate 
from received usages.

Such issues formed a major topic of discussion in the linguistic thought 
of the time. In his 1746 Essay on the Origin of Human Knowledge, the Abbé 
de Condillac presents a speculative account of the invention of language 
that serves at once as a historical reconstruction and as a model for how sci-
ences should remake their languages anew.37 Later writers debated a num-
ber of aspects of this account. Johann Peter Süßmilch argued that language 
could not have been invented, since there would be no way to define words 
without some preexisting system of communication; he thus concludes 
that language was a divine gift to humankind.38 Johann Gottfried Herder 
disagreed, enthusing over the human ingenuity that produced language.39 
Thinkers also debated whether languages improved or declined over time, 
with Rousseau making a case that the languages of advanced civilizations 
lacked the vibrancy and emotion of primitive ones. A further question was 
whether commoners created language or whether, as the eccentric Lord 
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Monboddo argued of the Greek language, it was designed by a council of 
the learned.40 These origin stories contained such a profusion of evidence-
free speculation that the field of linguistics has all but disavowed them. But 
in regard to uncontroversially artificial languages such as algebra, the ques-
tion of origins made a difference. If language was an object of intentional 
design, then there was no problem in proposing a new definition of sum. 
If, on the other hand, it arose naturally from the activities of commoners, 
such a move would create an impassible barrier between algebra and the 
vernacular tongue.

The Marquis de Condorcet’s narrative of progress incorporates just 
such an origin story, and he makes its implications for mathematical sym-
bols plain. In Condorcet’s view, the first languages were the work “of the 
whole society,” not of any particular genius.41 Yet language later became 
an agent of social division with the invention of writing. The first writing 
systems, according to Condorcet, were hieroglyphs, whose meanings were 
kept secret by the priesthood as a means of deluding the masses.42 The 
transition from hieroglyphs to alphabetical writing was progress because, 
by unifying written and spoken language, the alphabet removed this social 
barrier. Yet through “a strange revolution,” Condorcet hypothesizes, hiero-
glyphs will one day return.43 Condorcet envisions the future development 
of another type of writing, one “reserved exclusively for the sciences,” that 
could facilitate “the precise and calculated operations of the understand-
ing.”44 Whereas in ancient times, such a scheme would only “have helped 
to prolong ignorance,” specialized forms of writing can become agents of 
Enlightenment once they lie “in the hands of philosophy.”45 This three-
stage sequence makes the possibility of a universal algebra contingent on 
social progress. For Condorcet, symbols can only be rational if they arise 
in a rational society.

Condorcet’s confidence that his algebraic hieroglyphs would unite 
rather than divide depends on a belief that the natural reasoning facul-
ties of human beings are basically reliable. Condorcet was, in eighteenth-
century terms, a sensationalist: he maintained that all ideas derive from the 
senses.46 His Sketch opens with a taxonomy of mental faculties that empha-
sizes the analysis of sensory data:

Man is born with the ability to receive sensations; to perceive them and 
to distinguish between the various simple sensations of which they are 
composed; to remember, recognise and combine them; to compare 
these combinations; to apprehend what they have in common and the 
ways in which they differ; to attach signs to them all in order to rec-
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ognise them more easily and to allow for the ready production of new 
combinations.47

The progression from sensations to ideas to signs, which Condorcet later 
attributes to John Locke, suggests that learning to understand a language 
is equivalent to learning a particular way of understanding the world.48 The 
analysis of sensations is not wholly arbitrary; the understanding is devel-
oped “through the action of external objects.”49 The shared nature of these 
objects grounds the intersubjectivity of language and places the perfect 
communication Condorcet wanted to achieve within reach.

This sensationalism is typical of the discussions of linguistic origins. The 
Abbé de Condillac’s work loomed large in this discourse. In his 1749 book 
A Treatise on Systems, he sums up his position with the gnomic, often-
quoted statement that “a well-conducted science is merely a well-formed 
language.”50 A language, in Condillac’s view, provides a “method of analy-
sis,” its words dividing the world into comprehensible chunks and indicat-
ing their relations. As a result of the fundamentally linguistic nature of sci-
ence, he argues, “any science should be within the reach of an intelligent 
mind, since every well-formed language is comprehensible.”51 Condillac 
disarmingly turns the rubric of the well-formed language on himself. “If 
you do not understand me,” he writes, “it is because I do not know how to 
write; and if you happen sometimes not to understand me, that is because I 
sometimes write badly.”52 This statement bears some resemblance to Leib-
niz’s claim that a universal character would rapidly become comprehensi-
ble once it was properly “ordered.” But Condillac expressly rejected Leib-
niz’s doctrine of innate ideas, instead viewing the way we divide up and 
classify the objects of the senses as fundamentally arbitrary. The quality of 
a language, then, was measured by how sharply its concepts were cut.

The exemplary well-formed language, at least in the Abbé de Condil-
lac’s later writings, is algebra. In Logic, published a few weeks after his 
death in 1780, he argues that exact proofs are possible in algebraic nota-
tion because it is tainted by neither “vulgar words that have no determinate 
sense” nor “foreign or barbarous words that are poorly understood.”53 The 
success of symbolic algebra, he continues, proves that “scientific progress 
depends solely on the progress of languages.”54 The Abbé de Condillac 
and the Marquis de Condorcet had disparate views on a number of mat-
ters, including the equivalence of algebra to conceptual analysis. Condillac 
reportedly “detested” Condorcet and blamed the marquis for serving him 
the tainted hot chocolate that, he believed, caused the “putrid bilious fe-
ver” from which he eventually died.55 But it is hard to deny that they were 
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thinking within the same broad terms. Both were under the sway of Locke, 
both took the senses as the origin of knowledge, and both regarded alge-
bra as a model for how a well-constructed language can clarify our under-
standing of the world.

Such thinking provided a way of understanding the function of sym-
bolism that was distinctive of the eighteenth century. In this period, al-
gebraists viewed their science as a highly abstract representation of the 
properties of material things. As Denis Diderot wrote, “Every abstraction 
is merely a symbol devoid of particularized meaning. Every abstract sci-
ence is simply juggling with symbols. The exact picture was dropped when 
the symbol was separated from the physical object, and it is only when the 
symbol and the physical object are brought together again that the science 
once again becomes a matter of real things.”56 This insistence on grounding 
mathematics in the sensible world at once stoked the hope of a universal 
language modeled on algebra and raised theoretical questions. What was 
it that gave algebra its superior clarity? And was it really so clear after all? 
These issues were up for dispute in the eighteenth century, and the answers 
had political stakes—they affected the legitimacy of the sort of rationaliz-
ing reform that Condorcet was trying to undertake.

A Pa rticula r K ind of La nguage

As much as algebra exemplified perspicuous expression in the eighteenth 
century, its advocates were haunted by a lingering suspicion that it did 
not actually make sense. In Elements of Philosophy (1759), Jean Le Rond 
d’Alembert asks why algebra, in spite of the certainty of its principles and 
inferences, “is not yet entirely exempt from obscurity in certain regards.”57 
As a specific example, he offers negative numbers, of which, he writes, he 
does not know a single work that provides a clear theory.58 D’Alembert is 
referring to one of the most notorious conceptual readjustments caused 
by the widespread adoption of symbolic notation. Antoine Arnauld, one 
of the authors of the well-known Port-Royal Logic, argued in a 1667 ge-
ometry text that, intuitively, the proportion of a larger number to a smaller 
one should be larger than the reverse.59 Yet, he points out, this is not the 
case with negative numbers, at least in symbolic algebra: 1

1
1

1–
–

= . This was 
far from the only conceptual conundrum regarding negatives; in his arti-
cle on divergent series, Euler considers the suggestion that the value of 1

1–  
should be higher than infinity because it involves dividing by something 
less than zero.60

What to make of such paradoxes was a matter of dispute among the 
French philosophes. The adoption of symbolic methods fundamentally 
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altered the definition of quantity, leading to an epistemological gap be-
tween the symbols and classical theories of number. As an explanation of 
this gap, d’Alembert concludes that algebra is “a kind of language which 
has, like the others, its metaphysics.”61 Just as blindly following the rules of 
grammar does not lead to an understanding of language, “the vulgar only 
celebrate the result” of algebraic methods, whereas the truly enlightened 
can also “see the germ that produced it.”62 To perceive the meanings of al-
gebraic proofs, one must learn to think algebraically; otherwise, the sym-
bols will only lead to confusion. This argument assigned algebra a narrow 
role within knowledge more generally. For d’Alembert, algebraic analysis 
must especially be distinguished from logical analysis—that is, the division 
of concepts into their component parts—since conflating the two would 
obscure algebra’s basis in notions of quantity.

The Abbé de Condillac took an emphatic stand against this thinking. In 
Logic, he states, “I do not agree with mathematicians who claim that al-
gebra is a kind of language. I say it is a language and cannot be anything 
else.”63 As W. R. Albury points out, two of the mathematicians he means 
are d’Alembert and Alexis-Claude Clairaut, who, in his 1746 book Elements 
of Algebra, calls algebraic notation a “particular kind of language” that uses 
simple signs to make it easier to see one’s operations at a glance.64 The dis-
tinction between algebra being “a language” and being “a particular kind of 
language” might seem pedantic, but something serious is at stake. Against 
the objection that his description of “reasoning” only captures “the way 
we reason in mathematics, where reasoning is carried out with equations,” 
Condillac asserts that “equations, propositions, and judgments are at bottom 
the same thing, and that consequently we reason the same way in all the 
sciences.”65 As a result, the difference between words and algebraic sym-
bols is superficial: “We should not suppose that the sciences are exact—or 
that we prove rigorously—only when we use x’s, a’s, and b’s.”66 This argu-
ment marks a reversal in the relation of symbols to language. In the seven-
teenth century, Seth Ward was vehemently insisting that symbols were not 
a language; a century later, Condillac was insisting with equal vehemence 
that they were a language. At stake in this insistence was whether the sym-
bols really did have the ability to convey ideas clearly or whether, to the 
contrary, they confused things.

In practice, the algebra of the period did not always correspond as 
neatly to language as the Abbé de Condillac asserted. Starting in the early 
1770s, the Italian French mathematician Joseph-Louis Lagrange had been 
attempting to systematize and generalize the equation-solving methods 
of his precursors.67 In 1795, Lagrange delivered a series of lectures at the 
École Normale in Paris, in the course of which he attempted to clear up 
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the difficulties that had surrounded cubic equations since Cardano came 
across the troublesome √—−1 in the 1540s. Even though such expressions 
are not “susceptible of being numerically evaluated,” Lagrange suggests, 
they can still “be employed in the operations of algebra” as a means of solv-
ing problems.68 “It would,” he states elsewhere, “be the height of injustice 
to algebra to accuse it of not yielding results which were possessed of all 
the generality of which the question was susceptible. The sole requisite is 
to be able to read the peculiar hand-writing of algebra, and we shall then be 
able to see in it everything which by its nature it can be made to contain.”69 
He notes, in particular, that mathematicians have overlooked the fact that 
cube roots have three values, some real and some not. Lagrange’s ratio-
nale for accepting such values depends on a distinction between algebraic 
quantities, which are defined by how they relate to each other through 
operations such as √, and ordinary conceptions of number.70 Algebra, as 
d’Alembert might say, had a metaphysics of its own, different from how 
people think in other sciences.

In spite of such difficulties, the quantifiers of late eighteenth century 
mostly shared the Abbé de Condillac’s optimism about the universal com-
prehensibility of mathematical arguments. Although he tended to side 
with d’Alembert on the nature of analysis, the Marquis de Condorcet rhe-
torically equates mathematics with reason in one of his most influential 
works of “social mathematics,” Essay on the Application of Analysis to the 
Probability of Majority Decisions (1785). In this book, he develops a means 
of quantifying the reliability of decision-making bodies such as juries based 
on their size and the degree of “enlightenment” of their members. Rec-
ognizing the difficulty that the book’s thickets of symbols will present for 
readers, Condorcet also explains his argument nontechnically in a “Pre-
liminary Discourse” more than half the length of the main text of the book. 
This way, he writes, “readers who are not Geometers, will only need, in or-
der to judge the work, to admit as true that which is given to be proven by 
calculation.”71 Even though the innumerate reader will have to take Con-
dorcet’s word that the proofs are correct, Condorcet does not expect much 
surprise as to the results: “Almost everywhere one will find results consis-
tent with what the simplest reason would have dictated; but it is so easy to 
obscure reason by sophisms and by vain subtleties, that I would consider 
myself happy when I have done nothing but support by the authority of a 
mathematical demonstration one single useful truth.”72 The assumption is 
that, even if one cannot follow the intricacies of the computations, their 
conclusions will remain intuitively true; the purpose of the proofs is not to 
produce new results but rather to guard against the corrupt forces that lead 
people into error.
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A similar thinking may be discerned in the Marquis de Condorcet’s uni-
versal language project. As Baker points out, Condorcet’s goal in this proj-
ect was to extend the certainty of mathematical analysis to areas of inquiry 
that were ordinarily the domain of other, less reliable forms of analysis.73 
Doing so led him, as Baker points out, to the possibility of mechanizing 
logical inference.74 Yet there is an important difference between Con-
dorcet’s thinking and the instrumental approach to mechanization that 
characterizes modern algorithmic thinking. Mechanical implements for 
reasoning, the marquis writes in a late fragment, “would appear ridicu-
lous” until the “tables” of classification on which they are based are proven 
worthy by experience.75 His universal algebra fed on a faith that these 
tables could be developed methodically enough that there would be no 
problem bringing people to an accord about what the categories meant. If 
this premise turned out to be false, then the system would not fit with his 
leveling politics at all; instead, his mathematical hieroglyphs would, like 
the secret language of the Egyptian priesthood, become an impenetrable 
mystery to all but a few.

The strongest arguments along these lines appeared in the German 
states. A few decades before Condorcet wrote his manuscript, the philolo-
gist Johann David Michaelis had made a detailed, well-argued case against 
philosophical language schemes in the French edition of his Dissertation 
on the Influence of Opinions on Language and of Language on Opinions. This 
essay won a Prussian Academy prize in 1759, and it was well received in-
ternationally, garnering high praise from d’Alembert.76 The French transla-
tion of the essay includes an extensive section arguing against the idea of 
a “learned language,” with apparent reference to Leibniz’s universal char-
acteristic.77 In an argument that would go on to have significant influence 
in the German context and elsewhere, he concludes that, in spite of all the 
problems language causes, we are to a large extent stuck with it—the costs 
of doing away with words, as Leibniz had attempted to do, outweigh the 
benefit.

One of Michaelis’s arguments regards an issue Condorcet raised as well: 
the potentially divisive quality of a learned language. A universal charac-
teristic, Michaelis argues, would throw up a barrier between the learned 
and the uneducated; it could be used to delude the masses by concealing 
the way new inventions work and thus casting them as “false miracles.”78 
In learned writing, “an author treats as sovereign master the technical lan-
guage he makes use of. He says, this is the meaning I fix to this term, this 
is the definition I give of it: we then are all obliged to understand him, as 
he has declared he will be understood, and as little can we contest that 
right with him, as prescribe to the Algebraist what lines he shall call a and 
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what b.”79 In contrast to this “sacred tyranny,” in vernaculars “all is Demo-
cratic: words cannot be deprived of their received meaning but by the con-
sent of the people, and by a contrary usage, that is introduced bit by bit.”80 
Being foreign, as it were, to all nations, a learned language could never be 
absorbed as deeply as we absorb the languages we hear from the cradle.

Michaelis’s essay suggests a different response to the flaws of language 
that would gain a great deal of influence by the end of the century: that 
imaginative literature, in appealing to the feelings as well as to reason, was 
better suited to influence the linguistic practices of a people than explicitly 
prescriptive projects such as Leibniz’s characteristic or Condorcet’s alge-
bra.81 This line of thought would gain dominance in Germany around the 
end of the century with the emergence of German classicism. A key figure 
in this movement was J. G. Herder, who draws a distinction between “the 
culture of the men of learning and the culture of the people”:

So it is that algebra is an occult science, for few in Europe understand 
it, though learning it is prohibited to none. Now we have indeed, in a 
useless and damaging manner, in many respects confused the spheres of 
learned and popular culture, thereby extending the range of the latter 
almost to that of the former; the ancient founders of states, who thought 
in more human terms, thought more wisely on this subject also. They 
rooted the culture of the people in sound morals and useful arts; they 
deemed the people neither qualified nor likely to benefit by grand theo-
ries, even in philosophy or religion.82

Like Michaelis, Herder distinguishes algebra from natural languages, 
which develop organically in communities and have the ability to resist in-
tentional efforts to alter them. In the Herderian view, to suppose that one 
could entirely expunge the influence of one’s mother tongue from one’s 
way of thinking, as Condorcet wished to do, was to overlook the criti-
cal role that membership in a group plays in the development of human 
consciousness.

The arguments of Michaelis and Herder pointed out a practical prob-
lem with schemes like that of Condorcet: they would require not just de-
signing a system of symbols but also training people to think in a new way. 
How one addressed this problem depended on what social function one 
expected science to serve. One option was simply to accept the disconnect 
between the learned and popular spheres; this was essentially the view of 
Leibniz, who had no problem restricting knowledge of science to a select 
group of people. Condorcet, however, was not comfortable with such a di-
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vision. One of the most ancient hindrances to progress, he writes, is “the 
separation of the human race into two parts: the one destined to teach, the 
other for believing.”83 This separation, according to him, was widened by 
the alienation of hieroglyphs from spoken language. Condorcet’s algebraic 
hieroglyphs were not supposed to return us to this ancient situation. The 
goal was to enlighten the whole society. Achieving this end would require 
not only the development of the language itself but also an infrastructure 
to support it—educational institutions that could teach people to read the 
symbols and a free press that could disseminate knowledge widely. Bring-
ing the universal algebra into being would mean installing scientific ideas 
in every mind.

This revolutionary program was not, however, the only alternative to 
Leibniz’s elitism. If Condorcet wanted to replace language with something 
more scientific, one could also go the other way, striving to keep learned 
discourses grounded in the language of the people.84 This was (at least at 
times) the position of Herder, who wrote that, by pursuing Francis Bacon’s 
program of expunging “idols” from language, “one has stripped oneself 
of the aid of all the centuries of one’s fathers, and stands there naked.”85 
Whereas Condorcet viewed the vernacular as a repository of errors and 
prejudices, Herder regarded it as a “treasure” that we inherit from our an-
cestors.86 Similar thinking motivated Burke’s defense of traditional land 
divisions. Condorcet was, from this standpoint, attempting to enact a sort 
of cultural imperialism by replacing practices he judged “barbaric” with 
those he deemed “enlightened” and, by doing so, trying to force a particu-
lar set of values on the world. These arguments might be identified with 
what Isaiah Berlin called the Counter-Enlightenment, a movement that 
valued cultural traditions and looked askance at the program of rationaliza-
tion that Condorcet was trying to enact.87

One should not, however, assume too simplistically that “the Enlighten-
ment” and “mathematics” were always aligned in the eighteenth century. 
Even Herder, for all that he preferred feeling over cold rationality, pro-
pounded a series of pseudoalgebraic “laws” for history and ethics based 
on the mathematical work of Johann Heinrich Lambert.88 There were also 
mathematicians in the period who valued tradition and linguistic continu-
ity and whose use of symbols reflected these values. A notorious exam-
ple is Francis Maseres. An ardent Whig, Maseres supported some liberal 
causes, such as the abolition of slavery, but he sided strongly with Burke in 
the wake of the French Revolution; in 1790, he complained of the “highly 
democratical spirit” that had taken root in France.89 His mathematical 
work is characterized by a heroic effort to keep algebra aligned with what 
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he took to be the common sense of English gentlemen. By doing so, he put 
up resistance against the break from ordinary language that Condorcet and 
other radicals were intentionally trying to create by means of symbols.

Mer e Nonsense a nd U nintelligible Ja rgon

Maseres is now a marginal figure in intellectual history, but he was more 
typical of his time than is generally recognized. Maseres was not an aca-
demic success, losing a bid for the Lucasian Chair of Mathematics at Cam-
bridge, but he published several mathematical books that garnered praise 
from various quarters.90 From 1766 to 1769, he served as the attorney gen-
eral of Quebec, and from 1773 on he held the post of cursitor baron of the 
Exchequer, a position involved in the collection of royal revenues. Maseres 
was part of a school of mathematical thought, also including Robert Sim-
son and William Frend, that viewed the conceptual problems surrounding 
negative numbers as proof that they were simply meaningless.91 This school 
of thought illustrates what an algebra grounded in concepts looked like for 
those who opposed the Enlightenment project of remaking language.

Maseres’s first major mathematical work was his 1758 Dissertation on 
the Use of the Negative Sign in Algebra. This book, he writes, is “an attempt 
to treat the Science of Algebra with the same perspicuity and accuracy of 
reasoning that has usually been thought necessary in books of Geometry, 
but which, through causes not very easy to be fixed upon with certainty, 
has been almost universally neglected in books of Algebra.”92 Different as 
Maseres and Condorcet were, they shared a wariness of the potentially di-
visive nature of symbolic methods as well as a belief that the best hope for 
amelioration lies in the senses. An algebraist, as Maseres has it, may easily 
“fancy he has a meaning where, in reality, he has none” because symbolic 
arguments address themselves only to the understanding, not (as in geom-
etry) to both the understanding and the senses.93 Like Condorcet, Maseres 
expresses the concern that inscrutable symbols could be used to delude the 
underinformed. It is, Maseres states, easier to lie with words or symbols 
than with diagrams; “wherein the senses are not concerned, men are much 
more easily deceived.”94

Grounding algebra in the senses means, for Maseres, eliminating the 
idea of a negative number. He begins the book with the declaration that 
“the clearest idea that can . . . be formed of a negative quantity is that of a 
quantity that is subtracted from another greater than itself.”95 Under this 
definition, a quantity considered in isolation has no sign, and so rules for 
computation with negatives, as in −5 × −5 = +25, are “mere nonsense and 
unintelligible jargon.”96 A dissatisfaction with such rules was not unusual 
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for the time. As we have seen, there were extensive debates in the period 
about what should happen when one performs mathematical operations 
with negative quantities; dividing by a negative seemed to raise conceptual 
conundrums, and the rules for logarithms of negatives remained unsettled. 
Maseres’s theory aims to resolve all this confusion by preventing the issue 
from arising in the first place. There are no negative quantities; there is 
merely subtraction, and all of algebra is supposed to follow from the easily 
intelligible idea of a positive number.

This conceptual approach exemplifies an emphasis on integrating math-
ematics with other forms of knowledge that Joan L. Richards has identified 
as a characteristic of English mathematics.97 Maseres sought, in particular, 
to maintain continuity between symbolic methods and the ordinary mean-
ings of words. The primary sense of multiplication, he writes, “is evidently 
repetition, or the taking a quantity over and over again a certain number of 
times”; the word later came to be applied to fractions, but only, he claims, 
with some degree of distortion.98 This pseudophilological thinking is not 
especially different from the etymological musings with which d’Alembert 
often begins his encyclopedia articles. Nor, indeed, is Maseres’s explana-
tion of negatives wholly distinct from d’Alembert’s: both thought that 
negatives only made sense relative to some other quantity. But unlike the 
French mathematician, Maseres is not seeking to construct a new “meta-
physics” that is more exact than “vulgar” notions of quantity. Instead, he 
is setting out to prove the validity of algebraic methods based on the true 
notions that already existed (he thinks) in the everyday language of his 
country.

From a modern perspective, Maseres’s book hardly seems to clarify 
things. His insistence on avoiding negatives results in a proliferation of dif-
ferent rules for different cases, making algebra far more complex than it 
needs (from our perspective) to be. For instance, if a > b, one must employ 
a different procedure for computing c + a − b and c − a + b. In the first case, 
one may perform the operations in order; but in the latter case, one must 
reverse the order and add b to c before subtracting a.99 Things become 
even more complex when Maseres moves on to solving equations. As in 
the sixteenth-century texts of Robert Recorde and Gerolamo Cardano, 
Maseres divides quadratic equations into multiple types, such as xx + px 
= r, xx − px = r, and px − xx = r.100 Since coefficients cannot be negative, 
these equations cannot be converted into one another; hence Maseres has 
to give different rules for how to solve each one.

On account of this seemingly needless complication, Maseres is often 
cast as a villain in histories of algebra, as a reactionary holding back prog-
ress.101 What he was getting at becomes clearer in a relatively neglected 
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part of his work. In 1783, he published a book that one might place along-
side Michael Dary’s pamphlet on compound interest in the genre of com-
putational manuals. This book, titled The Principles of the Doctrine of Life-
Annuities, presents a series of methods for computing the values  of  life 
annuities, which are investments that pay out in installments from a given 
start date to the end of a person’s life. Maseres published it as part of an at-
tempt to revive a failed parliamentary bill that would have enabled the poor 
to purchase annuities from church wardens, thus reducing the amount of 
state aid needed by poor people who were too old to work.102 Maseres’s 
procedures are prosaic but unmistakably algorithmic:

Find the present value of one pound certain, to be received at the end 
of the given number of years, according to the given rate of interest, by 
the help of Mr. Smart’s second table of compound interest, or otherwise. 
Then find in the given table of the probabilities of the duration of human 
life at the several different ages of it, the number of persons living at the 
age of the purchaser. Then add to the age of the purchaser the number 
of years at the end of which the sum of one pound is made payable to 
him, and find in the said table the number of persons living at the said 
greater age.103

And so forth. The book also presents the same procedure symbolically and 
through examples so as to make it, Maseres writes, “as clear and familiar as 
possible.”104

The dryness of this passage can easily lead one to overlook the fact that it 
is about predicting death.105 Since an annuity pays out for a person’s entire 
life, the eventual cost to the issuer depends on how long the buyer lives, 
and so the issuer could minimize risk by adjusting the price based on infor-
mation about life expectancy (figure 3.2). While mortality tables had long 
been compiled for governmental purposes, their use to set rates was new: 
the first life insurance company to use them was founded in 1762.106 How 
best to use such statistics was a central problem of what Lorraine Daston 
has called “the classical theory of probability.”107 This school of thought, of 
which Condorcet was a major exponent, differed from modern probability 
theory in that it drew no clear distinction between objective probabilities 
and subjective degrees of belief. One of the later adherents of this school, 
Pierre-Simon Laplace, famously stated that probability theory was noth-
ing but “good sense reduced to a calculus”; the goal was to formalize the 
human mind’s innate ability to reason about matters of chance.108

Like Condorcet, Maseres presented his theory as grounded on and le-
gitimized by common sense. But Maseres’s approach left more room for 
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Figure 3.2. A table of death. From Francis Maseres, The Principles of the Doctrine of Life-
Annuities (London, 1783), 6.

individual agency than the theories of his French contemporaries. While 
he maintains that his numbers are solid, he also declines to take the calcu-
lations as the final word: one must use “judgment and discretion” in de-
termining whether exceptions should be made in particular cases.109 Like-
wise, in a pamphlet on the annuity bill, he suggests allowing for deviations 
from the prescribed interest rate “if the Churchwardens or Overseers of the 
poor shall think fit.”110 Mathematically, this stance translated into an insis-
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tence on keeping technical definitions in line with the ways people (in his 
view) ordinarily think. True to his word, he scrupulously avoids negatives 
in the book on annuities; even in tables, he always presents differences as 
positive regardless of their direction. He also undertakes extensive com-
parisons of mortality tables and computational methods, which he judges 
based on both their conceptual soundness and what he takes to be the rea-
sonableness of their results.

To twenty-first-century critics of algorithmic power, this may seem a 
refreshingly humanistic approach. Much like some currents of critical al-
gorithm studies, Maseres pushes against blind trust in rules. Yet his com-
monsense approach has its limitations. The political thrust became more 
overt in the work of Maseres’s most incendiary follower, William Frend. 
Frend was notorious for writing a 1793 pamphlet entitled Peace and Union 
Recommended to the Associated Bodies of Republicans and Anti-Republicans, 
which contained criticisms of the clergy that got him expelled from Cam-
bridge. His 1796 book Principles of Algebra, which includes a lengthy ap-
pendix by Maseres, attempts a comprehensive treatment of algebra on 
commonsense grounds. In Peace and Union, he stresses the importance of 
writing laws that the governed can understand; his algebra was similarly 
supposed to exclude ideas (e.g., negatives) that were incomprehensible 
and that thus had to be taken on trust.111 The anti-Catholic overtones of this 
argument are apparent: Frend likens negatives to the Athanasian Creed, 
declaring with Archbishop Tillotson, “I wish we were fairly rid of it!”112

Frend’s algebra text underscores the centrality of language to the 
eighteenth-century debates about the nature of number. His goal, he tells 
us, is to explain algebra in a language suitable for “English boys and girls”—
that is, direct, nonmetaphorical, idiomatic English that avoids “foreign” 
or technical terms such as quadratic and square number.113 “People err 
much,” he writes, “in supposing that a word is of little consequence, if it is 
explained. If that word has a very different meaning in other respects, the 
learner will confound frequently the different meanings, and pass through 
life without having a clear idea upon the subject.”114 That is, the associa-
tions already attached to the word square will inevitably shape how one 
understands square numbers even if the word is given a wholly new techni-
cal definition. In the context of eighteenth-century algebra, this position 
about the influence of words on thought had epistemological, not just ped-
agogical, ramifications. Demanding adherence to received usage would, 
for instance, preclude argumentation along the lines of Euler’s redefini-
tion of sum. For Euler and Condorcet, mathematicians could freely define 
words however they pleased, and explicit definitions could thus settle con-
troversy. For Frend, such definitions were to be distrusted since they could 
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never wholly displace the conventional meanings of words. As Michaelis 
had declared language a democracy, governed by the people rather than 
by the learned, Frend sought true notions in the everyday vocabulary of 
his country.

And yet Maseres and Frend were pushing more for incremental reforms 
than for a fully democratic society. Making laws more tolerant, Frend ar-
gues in Peace and Union, helps “preserve a steadier attachment to the es-
tablished authority.”115 Frend may have meant this argument as a rhetori-
cal wedge, but it describes just the approach Maseres took while serving 
as attorney general of Quebec. Quebec was a predominantly Catholic 
and Francophone colony that Britain had captured from France in 1759, 
during the Seven Years’ War. On the advice of Burke and others, the Brit-
ish established religious tolerance in Quebec as a pragmatic measure be-
cause outlawing Catholicism would have led to its clandestine practice.116 
Maseres took a similarly tolerant tack in dealing with land rights. In 1767, 
he was involved in an effort to establish property laws that would allow for 
some degree of continuity in the established practices of the country so 
as to avoid alienating the French Canadian populace. This approach con-
trasts with the “geometrical” scheme that Burke would soon criticize. As 
a way to avoid “unsettling men’s ancient and accustomed rights and natu-
ral expectations founded thereon,” states the draft law that Maseres pre-
pared, French customs regarding land rights are “deemed and taken to 
have continued without interruption from the time of the conquest of this 
country.”117 Continuity and tradition serve, in this instance, as a protection 
against the confusion and discontent that sudden change would cause and 
thus, ultimately, as a way of shoring up British rule.

Maseres’s preference for “judgement and discretion” over strict rules, 
then, does not necessarily place power in the hands of the people. Fitting a 
system to the existing practices of a nation can instead solidify the author-
ity of those who write the rules. In his book on annuities, Maseres treats 
rules as necessary primarily to protect commoners from themselves: the 
law must secure the poor who buy annuities “against their own folly and 
weakness, by making it impossible for them to sell their annuities for a 
small part of their true value, over a pot of ale and without a proper degree 
of deliberation.”118 The judgment Maseres trusted, this argument suggests, 
would seem to be primarily that of gentlemen like himself, not that of the 
lower classes. This stance would have had a particular resonance given his 
position on the Court of the Exchequer. The Exchequer operated with 
little oversight from Parliament at the time, and reformers were arguing 
that positions like the one Maseres held were needlessly high-paying sine-
cures given out as political favors.119 In the eyes of such critics, the Exche-
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quer was an opaque institution that operated by its own self-serving tradi-
tions—in short, just the sort of entrenched interest the French Revolution 
was threatening to uproot.

The difference between Condorcet and Maseres—the former keen to 
eliminate language, the latter keen to keep it in sight—may be ascribed 
in part to national context. In the eighteenth century, Continental math-
ematicians adopted Leibniz’s notation for calculus, whereas the English 
largely followed Newton in his aversion to methods that depended too 
strongly on symbols. The received story is that this aversion held English 
mathematicians back until, in the 1810s, Charles Babbage and others intro-
duced French mathematical ideas to Cambridge through their translation 
of Silvestre-François Lacroix’s textbook on calculus.120 But the differentia-
tion of national traditions is not as clear-cut as often supposed. Sensation-
alist epistemology not unlike that of Condorcet was present in England in 
the late eighteenth century. Among the champions of such thinking was 
Condorcet’s English ally Charles Mahon, third Earl of Stanhope, for whom 
mathematical reason served as a weapon against the self-sustaining privi-
lege the Exchequer represented. The example of Lord Stanhope shows that 
the divergent epistemologies of the period are not wholly reducible to na-
tional culture—they also had a political meaning.

Logic M achines in the Age of R eason

The Marquis de Condorcet wrote about mechanizing logical reasoning; 
Stanhope actually did it. An anonymous 1818 obituary of the earl in An-
nals of Philosophy explains: “It has been asserted, upon grave authority, 
that his Lordship conceived the possibility of forming a reasoning ma-
chine, by which the results of certain combinations of ideas, or of elemen-
tary propositions, might be ascertained with as much ease and accuracy 
as those of figures.”121 Stanhope did not build a reasoning machine as we 
might understand the term today. He did, however, construct what Martin 
Gardner calls a logic machine: “a device, electrical or mechanical, designed 
specifically for solving problems in formal logic.”122 Logic was an entirely 
separate discipline from algebra at the time, and so these devices cannot 
be placed in the universal-algebra tradition of Leibniz and Condorcet. Yet 
Stanhope’s machines, which he began building around 1801 based on a 
theory he had been working on for decades, express much the same de-
sire to bring people into agreement by replacing language with something 
clearer. The “Demonstrator” will display reasoning, Stanhope wrote, “by 
means of a symbol purely mechanical, and without using any of those sym-
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bols which are called words.”123 The machine would thus cut through the 
sophistry of verbal argumentation to reveal truths that no one could deny.

Stanhope’s reasons for building “reasoning machines” can only be un-
derstood in light of his radically democratic politics. He was a close friend 
of Condorcet, and the two corresponded on a range of mathematical and 
political matters. The “Jacobin Earl,” as his contemporaries called him, also 
had personal ties to François-Alexandre-Frédéric de La Rochefoucauld 
and other figures involved in the French Revolution, and he continued to 
support them even after France declared war on Britain.124 Predictably, 
this position did not win him many allies in the House of Lords, and Stan-
hope’s own children bristled at his leveling views. His son ran away from 
home at the age of twenty, and his daughter, Lady Hester Stanhope, cut 
ties with him, declaring herself “an aristocrat” and denouncing the “dirty 
Jacobins” with which he associated.125 Through this whole series of disap-
pointments, the earl devoted his time to practical efforts in science and 
engineering. Like Thomas Paine, whose work he often championed, he 
advocated scientific reason as a way of challenging the authority of the ar-
istocracy.126 The Demonstrator was one of his numerous inventions, which 
also included a series of mechanical calculators, a means of fireproofing 
buildings, and a new type of printing press that was widely adopted in the 
early nineteenth century.

Philosophically, Stanhope’s logic system was aligned with the later 
work of the Abbé de Condillac.127 Characteristically of the period, Stan-
hope shows a concern with making logic “productive”—that is, enabling 
it to produce new knowledge about the world rather than merely restat-
ing premises in different forms. Stanhope’s adult life, stretching from the 
1770s to the 1810s, roughly corresponds to the peak of what Wilbur Sam-
uel Howell has called “the new logic.”128 While Leibnizians such as Lam-
bert and Gottfried Ploucquet were experimenting with mathematical ap-
proaches to logic, another school of logical thought, including Condillac 
as well as Thomas Reid and George Campbell, shunned formalism in favor 
of practical education. This school was generally skeptical of the utility of 
Aristotelian syllogisms; in The Philosophy of Rhetoric (1776), Campbell de-
clares that no one “will ever be made a reasoner, who stands in need of 
them.”129 In contrast to the old rule-based system, the “new logic” was 
meant to train people to think clearly, methodically, and without prejudice 
in real-life situations.

Stanhope’s logical theory was in part an attempt to rescue syllogisms 
from this criticism by showing that they could produce more than mere 
tautologies. The basic idea is to introduce numerical quantities into cate-
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Figure 3.3. Text pasted to the front of one version of the Demonstrator devised by 
Charles Mahon, the third Earl of Stanhope. The black square is a window into which two 
panels could be slid from the side of the device for comparison. From Robert Harley, 
“The Stanhope Demonstrator,” Mind 4, no. 14 (1879): 203.

gorical logic. One cannot logically infer anything from the premises “Some 
people are poor” and “Some people are intelligent,” but if one has “Sixty 
percent of people are poor” and “Sixty percent of people are intelligent,” 
one can infer that at least twenty percent of the poor are intelligent. Stan-
hope’s device performs such inferences visually (figure 3.3). It represents 
a whole category using a square aperture, which Stanhope referred to as 
the holos or holon; two sliders are inserted through slots so as to represent 
other categories that make up some proportion of this whole. If the sliders 
are forced to overlap, a conclusion can be deduced about their relation. To 
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take an example from Robert Harley, suppose we have the premises “No 
boaster deserves respect” and “Some heroes are boasters.”130 We use the 
holon to represent boasters, since this is the term that is common to the two 
premises. One slider represents people who do not deserve respect; since 
this includes all boasters, the slider must cover the whole aperture. The 
other slider represents heroes; since there may be other boasters who are 
not heroes, this slider covers only some of the aperture. Because the sliders 
must overlap, we can conclude that “Some heroes do not deserve respect.”

This idea may not seem to have much to do with symbolic computation 
as we now understand it. Certainly, Stanhope’s system lacks the ground-
ing in algebra that characterizes the logical systems of Leibniz and Boole. 
But the Demonstrator raised epistemological questions about symbols not 
unlike the ones those thinkers faced. The 1818 obituary was not sanguine 
about the idea that a logic demonstrator could achieve true certainty:

It is scarcely necessary to observe that, independent of other difficulties, 
no mechanical process for reasoning can ever be employed until man-
kind have agreed upon certain general principles as decidedly as upon 
the value of certain numbers, and until all doubt has been removed re-
specting the import of words, or the combinations of them. A machine 
for resolving political queries would give very different answers, accord-
ing as it was constructed under the superintendance of an advocate for 
reform, or an admirer of the infallible wisdom of our ancestors.131

This critique of Stanhope’s project is arguably a precursor of what has be-
come a critical commonplace in the twenty-first century: machines reflect 
the political biases of their creators. Stanhope, like advocates of algorith-
mic fairness, is looking for technical solutions for problems that properly 
belong to the domain of rhetoric. This stance of neutrality, the obituary 
writer counters, is sleight of hand concealing an agenda.

But Stanhope’s neutrality is not the neutrality twenty-first-century 
technocrats assign to algorithms. As the economic historians Shilov and 
Silantiev observe, using the Demonstrator requires about as much work 
as it would take to think through the syllogism oneself.132 This difficulty is 
precisely the point. Stanhope viewed the mechanization of logic primarily 
as a way to “strengthen the human mind” and provide “an anti-dote to self-
conceit”; as a contemporaneous biographer puts it, the machine is meant 
“not only to detect false reasoning, however sophistically combined, but 
to shew the various links of the chain by which these false conclusions 
have been deduced.”133 This insistence on revealing chains of reasoning, 
which we might liken to the “trials or tests” Leibniz describes in “The Art 
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of Discovery,” had a political thrust in Stanhope’s context. In An Enquiry 
Concerning Political Justice (1793), William Godwin insisted that one must 
know the reasons behind things: “Wherever truth stands in the mind un-
accompanied by the evidence on which it depends, it cannot properly be 
said to be apprehended at all.”134 Although Godwin is here referring to the 
situation in which “government assumes to deliver us from the trouble of 
thinking for ourselves,” his argument could just as well apply to the design 
of a reasoning machine.135 The machine is not supposed to think for you; its 
purpose is to make you think.

This interpretation still leaves a difficulty. If the results are based on the 
application of natural reason to sensory data that are accessible to every-
one, why is the machine needed at all? Why not just, as Godwin writes, 
think for oneself? A clue as to what Stanhope was trying to achieve may be 
found in his political career. As a member of British Parliament, he pushed 
for encoding rational principles in enforceable laws as a way of preventing 
corruption. In 1786, for instance, he published a pamphlet criticizing the 
plan of the prime minister, William Pitt the Younger, for reducing the na-
tional debt. Pitt’s plan involved creating a commission that could redeem 
any annuities they “deem it expedient” to redeem.136 (One of the commis-
sioners, it is worth noting, was to be Maseres’s boss, the chancellor of the 
Exchequer.) Pitt’s plan, Stanhope argued in his pamphlet, would enable 
the commissioners to make fortunes “by gambling in the public funds”—
that is, it would enable them to buy up stocks personally, knowing that 
their values will soon be increased by an infusion of government money.137

This argument did not go over especially well in Parliament. In the en-
suing debate, the Earl of Bathurst took Stanhope’s reference to gambling as 
a slight against the commissioners’ honor.138 But Stanhope was concerned, 
as he stated in the debate, that Pitt’s plan depended on the goodwill of fu-
ture administrators, who may not be so trustworthy. His alternative plan 
would render the fund “unalienable” so that ministers can never divert 
it for personal or political gain.139 Notoriously, Stanhope published this 
plan in a style that mimics the structure of a mathematical proof, beginning 
with “axiom i” and ending with the QED-like pronouncement, “And this 
is the proposition, which I had proposed to prove”; he even, according to a 
later account, employed one of his calculating machines to ensure the cor-
rectness of his numerical results.140 As it happened, Stanhope’s proof did 
not persuade; Pitt’s bill passed.

At issue in this debate was, once again, whose judgment was trusted. 
Pitt’s plan left decisions about how to handle funds to the discretion of ap-
pointed individuals, on whose honor the plan relied. Stanhope’s response 
is characteristic of the Rousseauian picture of human nature that informed 
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so much political radicalism in the late eighteenth century. People are nat-
urally rational and naturally good, but in practice they have been corrupted 
by social forces, and so they cannot be relied on to reason justly. Whereas 
Maseres perceived this corruption in commoners, Stanhope specifically 
distrusted aristocrats since their social attachments and political commit-
ments would give them an impetus to distort the truth.141 In this regard, the 
Demonstrator would have served much the same function that the rule of 
law served for Thomas Paine—it would ensure that no one, not even those 
in power, stood above the laws of reason. If there is an aspect of Stanhope’s 
work that anticipates modern algorithmic thinking, it is this preference for 
intentionally planned systems over informal agreements and individual 
discretion. Like some forces within the French Revolution, Stanhope saw 
a positive value in rules, which promised a way of rooting out entrenched 
interests by ensuring that decisions were made consistently.142

And yet the systems Stanhope wanted to construct were not exactly 
algorithms in the modern sense. Unlike Alan Turing’s “effective proce-
dures,” the Demonstrator was not to be judged solely by how efficiently 
it could produce the correct output; instead, it was supposed to enable 
people to work out their differences rationally. To fulfill this political pur-
pose, the system could not depend on a technical cant that required spe-
cialized training to understand. Stanhope shared this desire for a common 
ground with Condorcet. This desire may also be discerned in Maseres, who 
wanted to root algebra in everyday language as a way to ensure that it is 
comprehensible. The difference between the two factions—Condorcet and 
Stanhope on one side and Maseres and Frend on the other—regarded how 
this common ground would be established and who would be included. 
Maseres located reason in the existing common sense of gentlemen and 
trusted in the existing language of his nation. Stanhope was out to create a 
new, logical form of communication, and he wanted to include everyone.

This leveling program was not destined to be realized. If Maseres was 
too sanguine about received practices, Stanhope and Condorcet were too 
optimistic about the ease of replacing them. Neither side won. By 1801, 
when he began working on the Demonstrators, Stanhope was clinging to 
an epistemology that was already on its way out; in the ensuing century, 
mathematicians and logicians withdrew their ambitions of social reform, 
and the gap between mathematics and common sense became insur-
mountable. The dream of a universal algebra did not, to be sure, disappear, 
but it took on a new form in which aligning the mechanical operations of 
computation with actual human thought no longer seemed so important, 
and in which the perceived perfidy of words no longer seemed like such a 
problem. The clashes between disparate views of language gave way to a 
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compromise: symbols and words could work together, with the symbols 
providing rigor and the words providing the meaning that formed an es-
sential component of the cultivation of human thought. To understand 
how this compromise was possible, it is necessary to consider another in-
tellectual current that existed in a complex relation to the radical and tradi-
tionalist factions in the 1790s: Romanticism.

Out of the Light’s Dominion

The Enlightenment had a problem with culture. When they discussed the 
conceptions people receive from past generations, the philosophes largely 
cast them in negative terms, as “errors” and “prejudices” that had to be 
expunged in the interest of spreading light. According to Condorcet, gov-
ernments have repeatedly erred in the practice “of turning prejudices and 
vices to good account rather than trying to dispel or repress them.”143 This 
practice, he elaborates, stems from the “mistake of identifying the natural 
man with the product of the existing state of civilization, with, that is, man 
corrupted by prejudices, artificial passions and social customs.”144 While 
Condorcet sometimes used the word prejudice—in French, préjugé—to re-
fer to biases against groups of people, it had a broader meaning in the eigh-
teenth century.145 In the Encyclopédie, Louis de Jaucourt defines prejudice 
as a “false judgement that the soul carries of the nature of things, after an 
insufficient exercise of the intellectual faculties.”146 It was often assumed 
that these false judgments were transmitted through language, which 
could therefore serve as scapegoat for broader concerns about the per-
petuation of unwarranted preconceptions, scholastic errors, and mistaken 
folk beliefs. “Hardly are we born,” wrote the polymath Pierre Louis Mau-
pertuis, “but we hear repeating an infinity of words that express rather the 
prejudices of those who surround us than the first ideas that are born in the 
spirit.”147 Condorcet’s version of Enlightenment meant breaking the chain 
of transmission by which prejudices persist across generations by replac-
ing language with something better.

This antipathy toward culture had a flip side. Since the goal was to start 
anew, received practices and, in particular, language appeared as a threat 
to science. Condorcet hoped that his universal algebra could be under-
stood even if all languages were lost; like a Svalbard Seed Vault for knowl-
edge, it would thus provide an insurance against lapses into darkness and 
chaos like the one that, no doubt, he feared France was facing during the 
Reign of Terror.148 His approach to achieving this universal intelligibility 
is modeled on Lockean sensationalism, which, he writes, “has forever im-
posed a barrier between mankind and the errors of its infancy; a barrier 
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that should save it from relapsing into its former errors under the influence 
of new prejudices.”149 But this “barrier” protecting the present from the 
past depended on empirical and thus potentially falsifiable claims about 
the nature of the human mind. What if people were not as naturally ratio-
nal as Condorcet thought? What if he mistook for natural reason what was, 
in reality, only more prejudice—only the arbitrary values and assumptions 
of European society?

The eighteenth century’s most heroic effort to fend off such objections 
seemed not to enter Condorcet’s perception. It was in 1784, around a de-
cade before Condorcet wrote the Sketch, that Immanuel Kant had declared 
his time an “age of enlightenment.”150 Kant wanted, just like Condorcet, 
to free people from traditions and dogmas; he construed enlightenment 
as the courage to think for oneself rather than relying on the guidance of 
others. Yet Kant makes no appearance in Condorcet’s narrative of prog-
ress. This oversight may have stemmed from Condorcet’s preferences or 
the limits of his reading. Yet Kant’s critical philosophy does point in an-
other direction from Lockean sensationalism, and its ultimate effect was 
to undermine the possibility of—and, it is important to note, the necessity 
of—permanently overthrowing culture in the way Condorcet wanted to do 
with his universal algebra.

Kant’s work has long occupied an ambiguous position in intellectual 
history. Self-consciously a proponent of Enlightenment as he was, he also 
influenced Romantic thinkers who are commonly seen as repudiating En-
lightenment thought. This ambiguity has led Clifford Siskin to declare that 
the Enlightenment movement had to come to an end to succeed in chang-
ing the world.151 In Critique of Pure Reason (1781), Kant attempts to show 
that all rational beings must think in terms of twelve universal categories 
that determine the conditions in which empirical knowledge is possible. 
Although these categories include conceptions of space relevant to geom-
etry, they certainly do not include the rules of algebra. Yet Kant provided 
a new set of terms by which mathematicians could redraw the disciplin-
ary boundary around symbolic methods. Kant’s followers appropriated his 
ideas to support a position that went against his own explicit views—the 
idea that algebra is a matter of “pure reason,” stemming from thought alone 
and not (contra Maseres, d’Alembert, and Condorcet) having any depen-
dence on the knowledge we receive through the senses.

Although Kant’s critique is largely about determining the bounds of 
what pure reason can do, it also provided a way of shoring up the auton-
omy of the thinking subject. Like many other philosophers of the period, 
Kant insisted that it was best to think through philosophical matters one-
self; if a student memorizes a philosopher’s system without going through 
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the reasoning, Kant writes, “he has grasped and retained, that is, he has 
learnt well and has become a plaster cast of a living person.”152 In this suspi-
cion of rote learning, Kant is not too different from Locke, who wrote that 
a person who memorizes conclusions “makes his understanding only the 
warehouse of other men’s lumber.”153 Yet this ideal of individual autonomy 
faced practical difficulties in empirical fields. The experimental science 
promoted by the Royal Society, for instance, depended on trust: no one 
could witness every experiment firsthand, and so people had to credit the 
word of others. Such socially transmitted forms of knowledge sat uneasily 
with the Enlightenment credo “dare to know” because they implied that 
authority played a necessary role in how the individual learns.

Kant responded to this difficulty, in effect, by restricting autonomy to 
certain types of knowledge. In the second part of the book, Kant distin-
guishes what he calls “rational” and “historical” knowledge. Knowledge is 
“historical,” he writes, “if he who possesses it knows only so much of it as 
has been given to him from outside, whether through immediate experi-
ence or through narration, or also through instruction (of general knowl-
edge)”; knowledge is rational, on the other hand, if it stems solely from 
reason.154 In subjects that are properly historical—language, zoology, hu-
man history—one often has no choice but to rely on information received 
from other people. Rational knowledge is fundamentally different for 
Kant; it has nothing to do with the specific content of sensory experience, 
and thus it is possible to obtain independence from others in the realm of 
reason without throwing out everything one knows.

In support of this way of setting the bounds of reason, Kant enlisted a 
now familiar pair of terms: objective and subjective. Prior to Kant, these 
terms had been part of the vocabulary of Scholastic logic, in which they 
had roughly the opposite of their current meanings. As the Oxford English 
Dictionary puts it, objective meant “Existing as an object of thought or con-
sciousness as opposed to having a real existence,” whereas subjective meant 
“Relating to the subject as that in which properties or attributes inhere; 
inherent; relating to the essence or reality of a thing; real, essential.”155 Af-
ter Kant, their meanings reversed: objective came to refer to the aspects of 
knowledge that were common to all people, whereas subjective meant those 
specific to the individual. There is some ambiguity in how these terms came 
to be used—subjective could also mean interior to the mind, which does not 
self-evidently exclude certainty or universality—but they provided a pow-
erful way of delineating disciplinary knowledge from the practicalities of 
education.156 Students may understand a philosophical system in different 
ways and to different degrees, but this variation was a mere “subjective” 
matter that did not affect the objective rationality of the system itself.
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While Kant’s realm of pure reason is highly limited, his followers wasted 
no time in outfitting it with a wide range of logical, mathematical, and 
poetic practices. Kantian thought inspired logicians to divide standards 
of validity from empirical facts about human thought.157 A similar divi-
sion took place in algebra, which came (at least in its theoretical forms) 
to be seen as an abstract science detached from empirical reality. In the 
final years of the eighteenth century, this refiguring led to another revival 
of the idea of a universal algebra, this time in a very different guise from 
Condorcet’s scheme. In the untitled series of fragments written in 1798–
99 that their twenty-first-century translator David W. Wood has dubbed 
Notes for a Romantic Encyclopaedia, the German poet, mining engineer, 
and philosopher Novalis (born Friedrich von Hardenberg) revived Leib-
niz’s idea of a universal characteristic on the ground Kant had tilled.158 No-
valis’s fundamental idea is to generalize algebra so as to apply to qualities as 
well as quantities.159 His ambitions were (as they always have been in such 
projects) encyclopedic: he considered applying algebraic methods to fields 
as diverse as music, metaphysics, and poetry. “All sciences,” he declares, 
“should become mathematics.”160

Novalis quotes approvingly from Condorcet’s Sketch in his notes, but 
stylistically the two might as well have come from different worlds.161 If 
Condorcet took pains to ground algebra in the senses through clear defini-
tions, Novalis viewed it as a pure dance of symbols. In the remarkable 1798 
text titled “Monologue,” he suggests that even language itself needs no ref-
erence to the world to be meaningful:

If one could only make people understand that it is the same with lan-
guage as with mathematical formulae. These constitute a world of their 
own. They play only with themselves, express nothing but their own 
marvelous nature, and just for this reason they are so expressive—just 
for this reason the strange play of relations between things is mirrored 
in them.162

Such statements have led the philosopher Paul Redding to place Novalis 
in the protocomputationalist tradition of Leibniz.163 Yet Novalis was far 
from a doctrinaire Leibnizian. Following Kant’s lead, he drew a hard line 
between mathematical and empirical knowledge; from this perspective, 
Leibniz was mixing the two together incoherently. Rather than produce 
knowledge about the world of the senses, Novalis’s universal algebra would 
turn seemingly empirical sciences into matters of pure abstraction.

From a strictly Kantian perspective, this conflation of pure reason with 
algebra was not quite right. Like other idealists such as Johann Gottlieb 
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Fichte, Novalis disobeyed Kant’s stipulations about the limits of pure rea-
son. As a result, the Scottish logician William Hamilton would later ac-
cuse the idealists of being Leibnizians in Kantian clothing.164 Legitimately 
or not, Novalis was venturing boldly toward something like algorithmic 
thinking. “Pure mathematics,” he wrote in a 1799–1800 fragment, “has 
nothing to do with quantity. It is the bare study of names—become me-
chanical, in relationships of orderly conceptual operations. It must merely 
be arbitrarily–dogmatically instrumental.”165 The word instrumental here 
indicates less an embrace of instrumentalism than a comparison with in-
strumental music. Like music with no words, algebra is not about anything 
in particular, gaining its meaning instead from the “operations” by which 
its elements are related. If Condorcet saw the symbolic “hieroglyphs” of 
algebra as a barrier between present and past, Novalis, drawing on Kant, 
repositioned this barrier to lie between rational and historical knowledge 
as they exist here and now. Algebra is pure thought, having no dependence 
on any conceptual content, and it is thus potentially applicable to anything.

Novalis was an unusual figure, and his pronouncements about algebra 
were largely met with puzzlement. But his remarks were not out of line 
with the direction the field was taking. As Novalis declared algebra a pure 
dance of symbols, nineteenth-century algebraists would redefine their sci-
ence to deal only with the operations expressed in symbolic equations, not 
with notions of quantity. This idea had roots in Lagrange’s insistence on the 
generality of algebra, although later mathematicians found some aspects 
of Lagrange’s work lacking in rigor. In his 1797 Theory of Analytical Func-
tions (which Novalis cites in his notes), Lagrange presents an attempt to 
ground the calculus on what he calls “the algorithm of functions”—a us-
age that likely contributed to the wider adoption of the term algorithm in 
the nineteenth century.166 Lagrange’s “algorithm” is based on an approxi-
mation method called the Taylor series, named after the early eighteenth-
century mathematician Brook Taylor. Given a function f that is infinitely 
differentiable for value a, we can often approximate the function as f (x) ≈ 
f (a) + ( f ′(a)/1!)(x – a) + ( f ′′(a)/2!)(x – a)2 + ( f ′′′(a)/3!)(x – a)3 + · · ·, 
where f′ is the first derivative of the function, f″ the second, and so forth. 
Instead of working with Leibniz’s infinitely small dx, Lagrange suggests, 
one could simply define the derivatives as the functions that appear in the 
Taylor series.

Lagrange’s “algorithm of functions” had numerous admirers, among 
them Charles Babbage, who promoted Lagrangian ideas at Cambridge and 
extended Lagrange’s method of generalization to other areas such as the 
analysis of games.167 Around 1820, however, Augustin-Louis Cauchy and 
Bernard Bolzano would undermine Lagrange’s foundational program: it is 
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possible to construct counterexamples in which the Taylor series does not 
converge to the original function, which came (fairly or not) to be seen as 
a fatal flaw in Lagrange’s theory.168 This judgment resulted from much the 
same epistemological shift that led Abel to reject Euler’s work on divergent 
series. Although standards of mathematical proof remained in flux through 
much of the nineteenth century, the turn away from d’Alembert’s “meta-
physical” approach was general. By the late 1800s, mathematicians had 
stopped fretting over how to define such tricky terms as negative and infini-
tesimal; conceptual explanations came to be seen as secondary to formal 
definitions and rules.169 Condorcet’s project of making symbols compre-
hensible by themselves, without any use of language, thus lost its urgency. 
The continued need for verbal explanations could now be filed away as a 
merely “subjective” issue relevant mainly to pedagogy, persuasion, and the 
cultivation of a mathematical community, but not internal to algebra itself.

The outcome, to be sure, was not that all mathematicians became Kan-
tians. Mathematicians had varying evaluations of Kant, with many reject-
ing his ideas or ignoring him altogether; even those who admired him 
drew more on the general spirit of his philosophy than on his specific opin-
ions about mathematics.170 What happened was less a philosophical shift 
than a change in priorities. Due in part to the perceived excesses of the 
French Revolution, the reforms of the 1790s gave way to calls for balance; 
science came to be seen not as a means of making people more rational 
by replacing received modes of thinking but rather as a method or body 
of knowledge that must be balanced with the study of literature and the 
cultivation of sentiment. Some fruits of Enlightenment reform lasted, most 
notably the metric system; weights and measures would only move further 
toward standardization in the nineteenth century. Matters affiliated with 
the emerging category of subjectivity, however, came to be treated with a 
new softness. Advancing science no longer meant expunging old ways of 
thinking from the mind altogether, as Condorcet’s universal algebra was 
supposed to do; genius had to work its mysterious magic, thought given 
room to breathe.

If Condorcet’s predictions came true anywhere, it was in the sphere of 
economics. In the Sketch, he envisions the formation of “a great people 
whose language is universally known and whose commercial relations em-
brace the whole area of the globe.”171 His proclamations about commerce 
herald the rise of international trade and the establishment of a worldwide 
system of monetary equivalences. Yet globalization did not establish the 
brotherhood he desired. With the benefit of hindsight, Condorcet’s po-
litical writings plainly expose the fundamental contradiction of Enlighten-
ment universalism. Condorcet was an opponent of slavery (although this 
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certainly does not mean he was devoid of racism), and he supported gen-
der equality.172 How can these commitments be reconciled with a respect 
for other cultures—how can advocates of Condorcet’s political program 
foster equality worldwide without forcing their ideas on everyone? Con-
dorcet comes down wholly on one side of this question, embracing a form 
of equality that presumes the superiority of a particular set of values. He 
condemns colonial oppression of non-Western peoples, which stemmed 
from a “murderous contempt for men of another colour or creed,” but he 
envisions a future time when, “no longer presenting ourselves as always ei-
ther tyrants or corrupters, we shall become for them useful instruments or 
generous liberators.”173

To say that this position has unsavory implications would be an under-
statement. Conquerors have time and again deluded themselves that they 
would be greeted as liberators. But it would be naïve to suppose that one 
can avoid the trap into which Condorcet fell simply by detaching math-
ematics from politics. The conflict between the desire to spread liberty and 
the need to respect existing cultures was debated openly in the eighteenth 
century, and advocates of symbolic methods took explicit stances as to 
how their systems fell out in regard to these issues. After mathematics lost 
its link to the empirical, it became possible to declare a system universal 
without facing up to the stark choices universalism entails. Such an apoliti-
cal approach may be discerned in Boole, whose intentions were altogether 
quietistic—not to change culture but to find a “harmony” between cul-
tures as they already exist. Boolean logic is arguably the greatest practical 
success of the universal algebra movement, and (although one could dis-
pute how much credit should go to Boole himself ) it really did change the 
world; but this success came at the cost of abandoning all hope that mere 
symbols could create the new beginning of which Condorcet dreamed 
while in hiding from the Jacobins during the Terror.
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Language without Things

We must regard it as more important for Ralph to acquire a just &  
intimate knowledge of Nature & her exact laws, than of the convention
alities of man & of civilization. Language is not knowledge, tho’ a very  

valuable acquisition for its own proper objects & purposes.

—Ada Lovelace to Lady Byron, 1850

The Truce

In discussing the algebra of the nineteenth century, historians of math-
ematics write of a “symbolic turn.” In the eighteenth century, mathema-
ticians such as Jean Le Rond d’Alembert and the Marquis de Condorcet 
had thought of symbols as a “particular kind of language” for analyzing the 
world; the validity of symbolic methods thus came down to whether one 
could attach the symbols to clear ideas. By 1900, symbols had come to be 
viewed, instead, in terms of form. Mathematical rigor came not from the 
clarity of verbal definitions but from the construction of axiomatic systems 
judged primarily by their internal consistency; symbolic algebra could 
be open to multiple interpretations or, perhaps, used without any inter-
pretation at all.1 To connect this development to computing machines is 
not anachronistic: at the forefront of the symbolic turn was Charles Bab-
bage, promoter of French mathematical thought, designer of the never-
completed steam-powered computers called analytical engines, and forth-
right apologist of the factory system.2

The symbolic turn in algebra coincided with a seemingly contrary 
movement in linguistic thought. In the previous century, Enlightenment 
philosophers such as the Abbé de Condillac had held all languages, includ-
ing both French and algebra, to the standard of “natural reason”; this way 
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of thinking had given rise to the revolutionary program of replacing ex-
isting languages with something more precise. In the nineteenth century, 
philologists such as Wilhelm von Humboldt treated language, instead, as 
an organic product of the “mental life” of a people.3 Romantic writers such 
as Samuel Taylor Coleridge pushed to collapse the antithesis of words and 
things implicit in Francis Bacon’s critique of language; while Coleridge 
thought it was possible for individual writers to influence language, he saw 
this process as a negotiation with tradition rather than a reconstruction 
from first principles.4 The debates about who made language were pushed 
to the fringes, as philologists came to agree that language was a collective 
creation rather than an invention of “the learned or the priesthood,” as 
Franz Bopp put it.5 Far from a hindrance to scientific progress, language 
was now seen as something valuable, an important element of the culture 
of a nation that had to be preserved and cherished.6

This chapter argues that this renewed appreciation for vernacular lan-
guages played a role in one of the period’s most important advances in al-
gorithmic thinking: Boolean logic. Developed in the 1840s, George Boole’s 
system of symbolic logic is a precursor of the and and or operators used 
in search engines and in many other aspects of computer systems; it en-
abled the construction of compound expressions with a nested structure 
based on algebra, such as, in modern notation, (mathematics or algebra) 
and logic. By characterizing his work as “a step toward a philosophical lan-
guage,” Boole echoed the claims of G. W. Leibniz, Condorcet, and many 
others before him.7 But unlike the schemes of his precursors, Boole’s logic 
system does not promise a complete, self-sufficient replacement for exist-
ing languages; instead, it provides abstract symbolic forms that must be in-
terpreted within the languages of other disciplines to become meaningful. 
This approach, I hope to show, reflected a dualistic view of culture pro-
moted by Romantic thinkers such as William Wordsworth, who sought to 
balance the rigor of scientific methods with the poetic insight and moral 
feeling that only natural language could provide. Although it was overtly 
anti-mechanistic, this dualism ultimately granted mechanical systems of 
symbol manipulation a greater degree of autonomy from human thought 
than the Cartesian and Lockean epistemologies of the Enlightenment had 
allowed them, thus enabling algorithms—a word that was then coming 
close to its modern sense—to take a newly central role in the production 
of knowledge.

Born in 1815 to a working-class Lincolnshire family, Boole had little for-
mal education. He was, however, a voracious autodidact, teaching himself 
modern and classical languages as well as algebra and calculus, and he es-
tablished himself as a respected mathematician; in 1849, he was appointed 
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the inaugural professor of mathematics at Queens College in Cork, Ire-
land, without ever having earned a degree. In his books The Mathematical 
Analysis of Logic (1847) and An Investigation of the Laws of Thought (1854), 
as well as in a brief 1848 journal article, he presents a method for repre-
senting logical propositions with algebraic symbols.8 This system built 
on nineteenth-century developments in algebra, which he sums up at the 
beginning of Mathematical Analysis: “They who are acquainted with the 
present state of the theory of Symbolical Algebra, are aware, that the valid-
ity of the process of analysis does not depend upon the interpretation of 
the symbols which are employed, but solely upon the laws of their combi-
nation.”9 Starting in the 1810s, a new generation of algebraists, including 
George Peacock and Boole’s mentor Duncan F. Gregory, redefined rigor 
based on the following of formal rules concerning the arrangements of 
symbols.10 Algebraic symbols, as Peacock puts it, are “governed by laws 
which must likewise govern, and to a certain extent determine, their inter-
pretation, and not conversely.”11 This reversal opened the possibility that 
algebraic operators can have multiple interpretations that may or may not 
relate to quantity.

Boole’s logical theory proceeds from the insight that this newly flexible 
form of algebra could be applied to the analysis of logical propositions.12 In 
Boole’s system, addition represents the combination of two categories, so 
that h + z, for instance, might mean the class of things that are either horses 
or zebras. In contrast to the or operator of modern Boolean logic, Boole’s 
addition operator only applies to categories that do not overlap; this is a 
necessary consequence of his insistence on keeping his system aligned 
with ordinary algebra.13 Multiplication represents the intersection of cat-
egories, so that br might represent brown rabbits; and subtraction repre-
sents the exclusion of a subcategory, so that s − c might represent snakes 
that are not cobras. This system uses 1 to represent everything in the uni-
verse of discourse and 0 to represent nothing; thus 1 − s might represent 
everything that is not a snake. Boole also presents a second interpretation 
of his algebra that deals with truth values rather than categories; in this in-
terpretation, 1 represents always true and 0 never true.14

Both interpretations of Boole’s system maintain a close analogy with 
numerical algebra, differing only in the addition of one law: x(1 − x) = 0 
or, equivalently, xx = x. This law, which he called the law of duality, repre-
sents the axiom that no category overlaps with its opposite—nothing can 
be both a snake and not a snake. Adding this law causes the logical equa-
tions to behave somewhat like linear differential equations, which enables 
Boole to develop a general procedure for solving them. To adapt one of his 
examples, suppose we are given the premise that “Every poet is a man of 
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genius,” and we need to know what this tells us about “men of genius.”15 
We express the premise as p(1 − g) = 0, which means, more literally in-
terpreted, that the category of entities that are poets (p) and not men of 
genius (1 − g) is empty; one then solves for g using Boole’s method.16 The 
result, g = p + v(1 − p), states that the category “men of genius” contains all 
poets along with some indefinite number (represented by the special sym-
bol v) of other beings who are not poets.

Much like the previous schemes of Leibniz and Condorcet, this sys-
tem reflected a desire to resolve disputes and bring people with disparate 
backgrounds and beliefs into accord. Boole, in short, wanted everyone to 
get along. This desire for unity reflected his personal background—a reli-
giously unorthodox Englishman who taught at a Protestant university in 
predominantly Catholic Ireland, he was always eager to ease tensions and 
avoid becoming embroiled in conflict. In the introduction to Mathemati-
cal Analysis, he expresses the characteristically early Victorian “convic-
tion, that with the advance of our knowledge of all true science, an ever-
increasing harmony will be found to prevail among its separate branches.”17 
Like Francis Maseres and William Frend, Boole had Unitarian sympathies; 
he believed that all religions and philosophical systems expressed a single 
truth that was directly accessible to all human minds. Boole’s logic sys-
tem was based on similar thinking, offering a symbolic representation of 
the common logical relations that (he thought) already existed in every 
language.

It is hard to deny the Leibnizian resonance of this thinking. Boole first 
found out about Leibniz’s logical work in 1855, after he had already pub-
lished his system.18 His wife later reported that he reacted with “childlike 
delight” upon discovering that the Leipzig philosopher had anticipated 
his law of duality.19 Like Leibniz, Boole was deeply invested in the power 
of symbols, and in The Laws of Thought he echoes Leibniz’s doctrine of 
harmony by speculating (although Boole adds significant caveats) that 
“the constitution of things without may correspond to that of the mind 
within.”20 But Boolean logic is fundamentally different from what Leibniz 
was trying to create. Boole’s system would include no encyclopedic cata-
log of things; instead, it expressed formal relations that did not depend on 
the empirical content of propositions. Making its results meaningful was a 
matter of interpretation, in the undertaking of which the mother tongue 
still reigned. The two positions on the politics of language that clashed in 
the eighteenth century, reform and traditionalism, thus reached a truce: 
one could maintain arbitrary control over mathematical symbols while still 
deferring to received usage with regard to the words used to explain them.

This chapter offers an account of the conditions that made this recon-
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figuration possible. I begin with a general illustration of the intellectual 
climate of Boole’s time and then examine some of his specific sources. 
A major influence on Boole was Immanuel Kant; like some other math-
ematicians in the period, Boole (mis)interpreted Kant’s idea of pure rea-
son to show that mathematical knowledge existed apart from the material 
world.21 Boole’s work also reflects the rise of what was then a relatively 
new value category: culture. Science, in the early Victorian period, was 
no longer about replacing established ways of thinking with more rational 
ones, as Condorcet and so many other thinkers had attempted to do during 
the radical ferment of the 1790s. The trend, instead, was toward seeking a 
balance: scientific methods must work together with people’s organically 
developing languages and modes of thought to produce results that were 
both rigorous and meaningful. This nineteenth-century intellectual turn, 
I hope to show, was a crucial moment in establishing the subject–object 
divide that undergirds the modern idea of algorithm. I begin with a phe-
nomenon that illustrates the shift: mental calculation.

The Genius a nd the Ca lculating Boy

In 1818, two students at the Westminster School in London announced a 
calculating contest.22 One competitor was the thirteen-year-old Zerah Col-
burn, the son of a farmer from Cabot, Vermont. Colburn was remarkable 
in at least two ways: he was born with an extra finger on each hand, and, 
starting at the age of five, he had developed an astounding ability to multi-
ply, extract the roots of, and factor large numbers in his head (figure 4.1). 
Colburn’s challenger was William Rowan Hamilton, an Irish boy about a 
year younger. Hamilton would go on to become one of the most impor-
tant mathematicians of the nineteenth century. But Colburn was the vic-
tor. Using skills he developed almost entirely on his own, Colburn could 
determine the cube roots of numbers as large as 268,336,125 in a matter of 
seconds, with no need for paper.23

Public reactions to such calculating prodigies register shifts in general at-
titudes toward computation. As Lorraine Daston has shown, people in the 
eighteenth century viewed computational prodigies as the epitome of intel-
ligence.24 A 1796 magazine article, for instance, praises the prodigy Jedediah 
Buxton for the “astonishing strength of mind” he showed through such feats 
as counting the number of words spoken by each actor in a performance of 
Richard III; the author regrets that Buxton did not have the ambition to apply 
his talents to great ends.25 Another eighteenth-century prodigy was Thomas 
Fuller, who was born in West Africa and enslaved in a Virginia plantation. As 
he demonstrated to Benjamin Rush, Fuller could mentally compute the in-



Figure 4.1.  A collectible engraving of Zerah Colburn. [London] (11 London House 
Yard, St. Pauls): R. S. Kirby, 7 April 1813. Public domain image from Wellcome Library, 
no. 231i.
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terval between any two points in time down to the second, even accounting 
for leap years.26 Jacques-Pierre Brissot, head of a French abolitionist society 
cofounded with Condorcet and others, took this instance as a proof that Af-
ricans were just as intelligent as their enslavers and would be able to excel in 
all sciences if they were permitted liberty and education.27 This elevation of 
prodigies harmonized with the spirit of the Enlightenment, which empha-
sized the mind’s innate capacity for rational thought. In New Essays, Leib-
niz takes the existence of mathematical prodigies as proof that arithmetical 
knowledge is innate.28 Even for those who sided with John Locke against 
innate knowledge, prodigies seemed to indicate that the human mind had 
reliable natural reasoning abilities that did not require external aid.

Zerah Colburn was initially treated with much the same reverence. 
Francis Baily, who spent a great deal of time with the boy, wrote in 1812 
that he could make a great contribution to mathematics, “for the eluci-
dation of which his mind appears to be peculiarly formed by nature.”29 A 
group of “friends of science” from Dartmouth College proposed a plan 
to give Colburn a liberal education so that he could put his skills to good 
use.30 The hope was not just that he would grow up a genius but also that 
he had already discovered something important: he could rapidly factor 
large numbers, a task for which no general method was known. In his 1812 
article, Baily observes that the idea of “expressing the powers and roots of 
quantities by means of indices”—that is, the notations xn and n√x−—led to the 
development of a general “algorithm of powers” that enabled the inven-
tion of logarithms.31 Baily hopes that, “when his mind is more cultivated,” 
Colburn may be able to explain how he does it and thus contribute to the 
development of more new “algorithms.”32

It was not to be. Colburn ended up less a mathematician than a side-
show attraction, his father parading him around the world and charging 
twenty-two cents to see “the Calculating Boy.” Colburn later took to acting 
and finally returned to Vermont to become a language teacher. He eventu-
ally came to doubt the practical value of his abilities. In his 1833 memoir, 
he writes in the third person: “Were it his opinion that a full account of 
his remarkable gift, and the methods by which he effected his calculations, 
would be of any service to the mathematical world, he should have pub-
lished it long ago.”33 As a boy, he recalls, he told a Boston woman that he 
could not share his gift with others: “God put it into my head, and I cannot 
put it into yours.”34 His fate, sadly, was to be remembered less as a great 
mathematician than as a psychological curiosity. In an 1884 article entitled 
“The Mathematical Failure,” Coleman E. Bishop wrote that Colburn “had 
mathematics in ‘the natural way.’”35 This was not a good thing for Bishop, 
who takes the boy’s example as proof that arithmetic stifles the general 
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development of the mind: “the more he used it the stupider he grew.”36 
This was an uncharitable conclusion—Colburn seems to have been of at 
least normal intelligence—but it indicates how attitudes were turning away 
from the old Hobbesian equation of reasoning with computation.

In regard to what a mathematician was supposed to be in the nineteenth 
century, William Rowan Hamilton is more exemplary than Colburn. Al-
though he could not beat the “Calculating Boy,” Hamilton (who is not to 
be confused with the logician William Hamilton) was himself a precocious 
child. He was initially most interested in languages, and as a young man he 
considered devoting himself to poetry.37 It was his 1818 contest with Col-
burn, as he later recounted, that first inspired him to study mathematics.38 
The two met again when Colburn’s acting troupe visited Dublin in 1820, 
and they discussed the method the American had invented for factoring 
numbers. The method, it turned out, involved knowing all the two digit 
numbers whose products end in a given two digits; Colburn had effectively 
memorized a table of 820 rows.39 As Hamilton determined, this method 
worked well when one of the factors was below two hundred, but in more 
difficult cases it required guesswork.40 This reflectivity about methods set 
Hamilton apart from Colburn, who (as he admitted in his memoir) had 
difficulty with problems that could not be solved through procedures he 
found obvious.41 For Hamilton, mathematics was about discovering proce-
dures, not performing them.

Hamilton is best remembered for developing an algebraic system 
known as the quaternion, which he described in a series of articles pub-
lished between 1844 and 1850. Quaternions are a generalization of complex 
numbers, which are numbers with real and imaginary components, as in 
4  +  6i, where i indicates the square root of −1. Since they contain two 
components, complex numbers may be thought of as points in a two-
dimensional space. A quaternion expands the number of dimensions to 
four by adding two more imaginary components: Q = w + ix + jy + kz. 
Hamilton’s key insight involved working out consistent rules for quaternion 
algebra. The procedure for adding quaternions is obvious, but multiplying 
them produces nine distinct combinations of the imaginaries, whose values 
need to be determined. Hamilton proposes the following rules:

i2 = j2 = k2 = −1
ij = k; jk = i; ki = j
ji = −k; kj = −i; ik = −j

The way Hamilton justifies these rules indicates just how much the field of 
algebra had changed since a century before, when Euler and d’Alembert 
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had disputed the definition of negative. The first objection he anticipates 
is that quaternions break the commutative law: ij ≠ ji.42 He argues that 
this sacrifice is necessary because it makes the system more convenient in 
other ways, and that his equations should be judged by whether they “con-
duct to results of sufficient consistency and elegance.”43 The problem is not 
to find a conceptual justification for the rules, but to set up the rules in such 
a way that the system has as many desirable properties as possible.

By the 1840s, this new approach to algebraic rules was already well es-
tablished. The centuries-long debates about negative and imaginary num-
bers had sputtered out: the clarity of verbal definitions no longer seemed 
as important as determining the rules by which symbols were to be used. 
An important step in working out these rules is attributable to the German 
mathematician Martin Ohm. (The ohm, a unit of measurement for electri-
cal resistance, is named after Martin’s brother Georg, a mathematician and 
later physicist who went on to specialize in the study of electric current.) 
Beginning in 1816, Martin Ohm attempted to eliminate the paradoxes that 
continued to plague arithmetic, developing the first set of consistent rules 
for ab that account for imaginaries. In his 1842 book The Spirit of Math-
ematical Analysis and its Relation to a Logical System (published in an En
glish translation the following year), Ohm explains his thinking in some-
what Kantian terms.44 His solution to the confusions that surrounded 
imaginary numbers is based, he writes, on the realization that mathemati-
cal expressions “do not represent magnitudes (quantities), but mental acts 
(in systematic language: ‘symbolized operations’), which stand in certain 
relations to one another, that are enunciated in ‘equations.’”45 All num-
bers, real or imaginary, are “nothing but forms per se,” and “the whole of 
mathematical analysis is solely employed in the transformation of given 
forms.”46

By reframing calculation in terms of “operations” rather than concep-
tual definitions, Ohm breaks with the sensationalist view that mathemati-
cal expressions must refer to ideas derived from our understanding of or 
intuitions about space and time. Addition and subtraction become matters 
of “mere form,” consisting of “nothing more than the construction of these 
forms a + b, and a − b” which is, “objectively considered, the mere writing 
of them down.”47 The correctness of a mathematical inference, in this view, 
can be determined solely through an examination of the physical marks 
a person makes; “subjective” considerations, such as what one thinks the 
symbols mean, are secondary. Ohm represents his version of formalism as 
a rejection of the prevailing wisdom, claiming that, upon the first publi-
cation of his Attempt at a Perfectly Consequential System of Mathematics in 
1822, several other mathematicians declared his ideas “insane.”48 By the 
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1840s, symbolic methods were winning out over the conceptual ones that 
had reigned from the time of René Descartes to that of Condorcet.

This embrace of symbols was especially abrupt in the British Isles. The 
Cambridge Analytical Society, founded in 1811 by the then undergradu-
ates Charles Babbage and Edward Ffrench Bromhead (not a misspell-
ing), promoted symbolic methods in Britain.49 The stated purpose of the 
society was to advocate the use of Leibniz’s notation for calculus, which 
had (at least in their view) been unfairly overlooked in England because 
of a nationalistic preference for Isaac Newton.50 In 1816, Babbage (along 
with two other members of the society, John Herschel and George Pea-
cock) published an English translation of a calculus textbook by the French 
mathematician Sylvestre-François Lacroix as a way of promoting the sym-
bolic approach of Continental mathematicians. The Analytical Society de-
voted a great deal of attention to the linguistic aspects of algebra, although 
its members were more measured in their ambitions than Condorcet. In 
an 1821 talk titled On the Influence of Signs in Mathematical Reasoning, 
Babbage extensively quotes from the French thinker Joseph Marie de 
Gérando, whose criticisms of philosophical language schemes I mentioned 
in chapter 3. For Babbage, algebraic symbols are fundamentally different 
from words because their definitions are simple, including no extraneous 
meanings to distract from the matters at hand.

The Cambridge Analytical Society was enamored (in a way that was po-
litically dangerous during the Napoleonic Wars) with the late eighteenth-
century French tradition that viewed algebra as a form of “analysis.” Pea-
cock, however, would later take a major step beyond this tradition. In his 
1830 Treatise on Algebra, Peacock argues that symbols such as + and  − 
need not be constrained by the words used to explain them: “The imposi-
tion of the names of Addition and Subtraction upon such operations, and 
even their immediate derivation from a science in which their meaning and 
application are perfectly understood and strictly limited, can exercise no 
influence upon the results of a science, which regards the combinations 
of signs and symbols only, according to determinate laws, which are al-
together independent of the specific values of the symbols themselves.”51 
Peacock’s theory is meant in part to resolve the difficulty surrounding 
negative numbers by showing that, even though algebra was originally de-
veloped on the basis of arithmetic, it need not be limited by this starting 
point.

This shift coincided with the first uses of algorithm in something like 
its modern sense. Although the word had long been used to refer to the 
method of differential calculus, it was now coming to serve as a general 
term for procedures performed using symbols. The Oxford English Diction-
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ary dates the first instance of this sense in English to 1811; an undeniable 
instance appears in the 1836 version of Charles Hutton’s Course of Math-
ematics, in which we are instructed to “apply Horner’s algorithm,” meaning 
a procedure for transforming a polynomial.52 An even more striking use 
of the term appears in the work of the Polish mathematician–philosopher 
Józef Maria Hoëné-Wroński, who declared that the “algorithm of indefinite 
summation . . . may only be one of the divers constituent parts of a system 
of universal algorithms, which, in their collective strength, might embrace 
all the possible generations of quantities, and form thus the absolute system 
of the science.”53 As one of Wroński’s followers defined it, an algorithm is a 
“general form that indicates operations to execute for constructing a nu-
meric quantity,” such as a + b = c.54 Although Wroński existed somewhat 
outside of the mathematical mainstream, this thinking was in line with a 
general trend. Like Ohm, Wroński gave operations primacy over concep-
tions of quantity; “algorithms” were coming to be seen not just as practi-
cal methods of computation but also as the means by which new types of 
number such as irrationals become accessible.

It should, however, be noted that the meaning of algorithm was still 
rather fluid in the nineteenth century. The 1845 Encyclopædia Metropoli-
tana states (citing Michael Stifel’s work from the 1540s) that the word al-
gorithm is sometimes used “to denote any species of notation whatever for 
the purpose of expressing the assigned relations of numbers or quantities 
to each other,” such as the a/b notation for fractions.55 Note that this algo-
rithm does not refer to a procedure: it refers to a notation. While some au-
thors did distinguish algorithms from notations, the word was still strongly 
associated with algebraic symbolism. This association persisted through 
the end of the century, as in James Byrnie Shaw’s 1895 book Mathematics: 
The Science of Algorithms, which uses the word to refer to algebra-like sys-
tems such as quaternions.56 Something like algorithmic thinking was be-
ginning to emerge in the mid-nineteenth century, but the idea of algorithm 
had not fully gained its independence from algebra.

There was also a fair amount of discomfort about the seemingly me-
chanical nature of the new methods. While it is now a cliché that algebra 
involves the “manipulation of symbols,” this phrase was novel in the nine-
teenth century, and it often served as a way of mocking the perceived shal-
lowness of modern algebra. For instance, in a paper read at the Royal Soci-
ety of London, the Reverend James Booth castigates English mathematics 
teachers for focusing on “nimble dexterity in the manipulation of symbols” 
rather than on “the knowledge of principles and familiarity with meth-
ods of investigation.”57 John Venn uses the phrase in a similarly negative 
way in his 1866 book Logic of Chance, questioning whether Pierre-Simon 
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Laplace’s theory of induction can provide anything more valuable than 
“formulæ for the manipulation of symbols.”58 These comments suggest a 
class-based fear of mathematics becoming a physical activity rather than 
an intellectual one—“manipulation” referred primarily to physical acts, 
especially with the hands—as well as an apprehension that mathematical 
theories were becoming disconnected from reality.

Avoiding this lapse into the “merely mechanical” was a matter of intel-
lectual development and, hence, of pedagogy: rather than follow rules 
blindly, one had to grasp their rationales. Thus, while the Babbages and 
Hamiltons of the world were designing mechanical methods of symbol 
manipulation, the textbooks of the period generally continued the previ-
ous century’s emphasis on conceptual underpinnings. Sarah Ricardo Por-
ter’s 1835 Conversations on Arithmetic, later revised under the title Rational 
Arithmetic, teaches computation on Lockean principles. Instead of explain-
ing “the mere mechanical operations of numbers,” the book aims to teach 
“the science, in combination with the cultivation of the reason.”59 The body 
of the book takes the form of a conversation between a young boy and his 
mother, with occasional interjections by his two siblings; this dialogue is 
supposed to lead the student to intuit the rules of algorism without stating 
them directly. Ada Lovelace’s letters on pedagogy reveal a similar emphasis 
on grasping the principles behind procedures. In 1834, she wrote to her 
student Annabella Acheson about what is now called the Euclidean algo-
rithm: “I wish particularly to know if you make out the greatest common 
measure—I mean the rationale of the process—to your satisfaction. It is 
important that you should thoroughly understand the principles of this op-
eration.”60 Lady Lovelace, typically of upper-class educators in the period, 
treated mathematics not as a mechanical skill but as a form of mental “culti-
vation” whose primary purpose was to instill habits of rigorous thinking.61

As the example of Lovelace shows, the nineteenth-century idea of cul-
ture was not at all incompatible with what looks to us like algorithmic 
thinking. It was, after all, Lovelace herself who published (in 1843) what 
is sometimes characterized as the first true algorithm: a procedure for 
computing Bernoulli numbers intended as a program for Babbage’s never-
completed computing engine.62 Mechanical as such “operations” may be, 
understanding the ideas behind them required thinking in a nonmechanis-
tic way that made room for imagination and intuition. Such, indeed, was 
Zerah Colburn’s conclusion. The mind, he writes, has always been “a ma-
chine of gigantic powers,” yet it is not enough to let the machine run on its 
own; true progress requires the mind to be “raised, refined, and regulated 
by suitable culture.”63 This culture cannot be reduced to mechanical rules; 



L anguage without Things  ›   135

it must be allowed to grow organically. Never mind the whir of the analyti-
cal engine in the background.

A W holesome Sepa r ation

“A real mathematician,” Boole reportedly said, “must be something more 
than a mere mathematician, he must be also something of a poet.”64 Boole 
did, indeed, write a large number of poems, and poetry played a role in his 
rationale for algebraizing logic. As Daniel Brown has shown in his study of 
Victorian scientist-poets, the juxtaposition of mathematics and poetry was 
less a paradox than a commonplace at the time.65 I have already mentioned 
Novalis’s claim that “Algebra is poesy” and William Rowan Hamilton’s dal-
liance with becoming a poet. Ada Lovelace famously asked for “poetical 
science” in a letter to her mother, and Edgar Allan Poe’s short story “The 
Purloined Letter” extols the superior intellect of a character who is both 
a poet and a mathematician.66 Later in the century, Karl Weierstrass—a 
central figure in the rigorous formalization of calculus—remarked that “a 
mathematician who is not somewhat of a poet will never be a complete 
mathematician.”67 What was poetry, in particular, supposed to supply that 
“mere mathematics” could not?

In the case of Boole, it is helpful to consider what poetry he was likely 
reading. Boole’s tastes in poetry hewed toward the formal; his favorite 
poet was Dante, and he effusively praised John Milton. He thought that the 
Augustans were unfairly maligned by the Romantics. Boole’s own poetry, 
however, has a conversational quality that Seán Lucy has likened to the 
later work of William Wordsworth.68 Wordsworth’s influence was so wide-
spread by the 1840s that it is hard to imagine that Boole was unfamiliar 
with him, and there are clear traces of Wordsworthian thinking in Boole’s 
prose writings. Wordsworth, along with his sometime collaborator Samuel 
Taylor Coleridge, pushed for a balance between the analytical methods of 
science and the sense of moral direction that those methods left out, and 
Boole employed just this division when he described the limits of symbolic 
logic. Poetry expressed the emotional attachments that governed human 
behavior in actual life but that formal logic abstracted out; logic and poetry 
thus appeared as two halves of a whole.

A consideration of Wordsworth’s views of science sheds light on the 
role poetry played for nineteenth-century mathematicians. The popular 
version of literary history has assimilated Wordsworth to the view of Ro-
manticism as antagonistic toward science. This reading is reinforced by his 
1798 poem “The Tables Turned,” in which he states that “Our meddling 
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intellect / Mis-shapes the beauteous forms of things; / —We murder to dis-
sect.”69 On account of such statements, the Romantic movement is often 
viewed as a reaction against the “disenchantment” of the world produced 
by science. But science did not mean the same thing in the eighteenth cen-
tury that it means today. Wordsworth states in the “Advertisement” to the 
book that “The Tables Turned” was a rebuke to a friend who was too at-
tached to “modern books of moral philosophy.”70 The reference is to what 
Lorraine Daston has called “the moral sciences”—a dissection of morality 
underwritten by an excessive confidence that analytical methods can make 
people virtuous.71 Wordsworth’s quarrel is less with science per se than 
with such incursions of science into the realm of culture.

Like others in the first generation of British Romantics, Wordsworth 
initially supported the French Revolution, and he traveled to France in 
1791 to participate in what he saw as a transformation of the world. He 
later recounted how the Revolution seemed an opportunity to put radical 
ideals into effect, “Not in Utopia, subterraneous Fields, / Or some secreted 
Island, heaven knows where! / But in the very world, which is the world / 
Of all of us,—the place where in the end / We find our happiness, or not at 
all!”72 The reality fell short of these expectations. France descended into 
violence, and the projects of English reformers were disappointing. The 
utilitarians of the 1790s raised a cohort of second-generation intellectu-
als who were traumatized by their parents’ attempts to shape them into 
perfectly rational beings: William Godwin with his daughter Mary Shel-
ley, James Mill with his son John Stuart Mill.73 Lady Hester Stanhope, too, 
reported that her father (whom she called by the nickname “The ‘Logi-
cian’”) was overbearing in attempting to force her to think logically.74 The 
moral sciences had sought to improve people, but people had proven more 
complex than the theories had let on, and so the social function of science 
needed rethinking.

One of Wordsworth’s most explicit statements on the nature of science 
appears in the preface first added to the 1800 edition of Lyrical Ballads, 
the collection he coauthored with Coleridge. In a footnote, Wordsworth 
rejects the “contradistinction of Poetry and Prose” in favor of “the more 
philosophical one of Poetry and Science,” meaning, as he clarifies in the 
revised version of the preface, a distinction between language that deals 
with feeling and language that deals with facts.75 The best poetic language, 
for Wordsworth, is that which has a deep connection to the “durable” ex-
periences of the natural world; it thus provides “a more permanent and a 
far more philosophical language” than that of John Dryden and Alexander 
Pope, whose poetry is hobbled by “false refinement or arbitrary innova-
tion.”76 The problem with such “arbitrary innovation,” from Wordsworth’s 
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perspective, is that its results lack the emotional resonances of natural lan-
guages such as English, which are deeply intertwined with the lives of hu-
man communities and laden with centuries of history.

While Wordsworth’s immediate target in the preface is the highly for-
mal poetic diction of the Augustans, his use of the word arbitrary incul-
cates him in the broader eighteenth-century debates about the nature 
of language. Lockeans such as the Marquis de Condorcet had presumed 
that language could and should be altered to better reflect a rational un-
derstanding of the world. An important example for Wordsworth is Maria 
Edgeworth’s 1798 book Practical Education, which includes a few chapters 
written by her father, Richard Lovell Edgeworth.77 Inspired by Enlighten-
ment philosophers such as the Abbé de Condillac and Dugald Stewart, 
Maria Edgeworth advocates using the “technical terms” of chemistry and 
other scientific fields in ordinary situations, thus enabling children to ab-
sorb their meanings deeply.78 Her pedagogy involves a softer version of 
the sort of linguistic reform that Condorcet proposed: an attempt to outfit 
students with a “philosophical vocabulary” built from the ground up on 
clear definitions.79 For Wordsworth, such analytical methods reach their 
limit when language has to deal with feeling. One might be able to conduct 
a scientific inquiry using an analytical language, but one could not write 
genuinely moving poetry with it.

Some scholars have taken Wordsworth’s preface as an argument for 
disciplinary specialization, a proposal that poets and scientists should con-
cern themselves with different aspects of human life.80 If so, then matters 
of feeling would simply fall outside the scope of scientific disciplines such 
as logic and mathematics. But the distinction Wordsworth is constructing 
is not simply a matter of discipline or genre. If poetry’s end is pleasure, as 
Wordsworth asserts, that does not mean it is irrelevant to science: “We 
have no knowledge, that is, no general principles drawn from the contem-
plation of particular facts, but what has been built up by pleasure, and ex-
ists in us by pleasure alone. The Man of Science, the Chemist and Math-
ematician, whatever difficulties and disgusts they may have had to struggle 
with, know this and feel this.”81 To produce genuine knowledge in any do-
main, one needs both the analytical rigor of science and the pleasure of 
poetry.

One ramification of this call for balance was a withdrawal of science 
from overt social action. In his autobiographical poem The Prelude, Words
worth characterizes geometry as “an independent world / Created out 
of pure intelligence.”82 He treats this “independent world” as an escape 
from both morality and politics; having become disillusioned first with 
the French Revolution and then with Godwinian radicalism, Wordsworth 



138  ‹   Chapter four

“Yielded up moral questions in despair, / And for my future studies, as the 
sole / Employment of the enquiring faculty, / Turned toward mathemat-
ics, and their clear / And solid evidence.”83 There is arguably a biographical 
parallel between Wordsworth and Condorcet here, as both sought com-
fort in mathematics during the political turmoil of the mid-1790s. But Con-
dorcet certainly had not “Yielded up moral questions”—instead, he had 
viewed mathematics as a means of pinning morality down. Wordsworth 
narrates his disillusionment with such incursions of science into the moral 
realm in the later books of The Prelude, stating that he has learned “to keep 
/ In wholesome separation the two natures— / The one that feels, the 
other that observes.”84

Wordsworth’s remarks about mathematics were, whether owing to 
his direct influence or not, indicative of the direction the field took in the 
nineteenth century. Pure mathematics was no longer grounded in physi-
cal reality; over the course of the century, it would come to be seen as a 
way of describing other worlds apart from our own. The field of logic, 
too, withdrew from ambitions of actually making society more logical and 
came to be concerned solely with speculative knowledge. In the 1826 Ele-
ments of Logic, Richard Whately argues that previous logicians have failed 
to be scientific because, in aiming to teach reasoning in general, they left 
the bounds of their discipline vague.85 Whately addresses this vagueness by 
limiting logic to dealing with formal structures of syllogisms, not with the 
full complexity of actual human thought.86 John Stuart Mill similarly sepa-
rates logic from education in his 1843 System of Logic: logic deals only with 
“how to do the thing,” not with “how to make ourselves capable of doing 
it.”87 Science was withdrawing from the sort of all-encompassing social 
reform that Condorcet had envisioned and coming to be concerned only 
with matters of fact; the cultivation of feeling could be left to the poets.

Boole’s system differs from these earlier logics in its symbolic nature, 
but it follows them in this narrow conception of what logic should be. In 
the final paragraph of An Investigation of the Laws of Thought, Boole draws 
the bounds of his discipline in terms quite in line with Wordsworth’s di-
chotomy between science and feeling:

If the mind, in its capacity of formal reasoning, obeys, whether con-
sciously or unconsciously, mathematical laws, it claims through its other 
capacities of sentiment and action, through its perceptions of beauty 
and of moral fitness, through its deep springs of emotion and affection, 
to hold relation to a different order of things. . . . And if we embrace in 
our survey the interests and duties of life, how little do any processes 
of mere ratiocination enable us to comprehend the weightier questions 
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which they present! As truly, therefore, as the cultivation of the math-
ematical or deductive faculty is a part of intellectual discipline, so truly 
is it only a part.88

The pairing of “sentiment and action” here is especially telling. Boole’s 
anatomy of the mind effectively drains mathematics of the overt political 
content that it had had for the French analysts, slotting it away as one disci-
pline among many and distinguishing it, in particular, from the emotional 
factors that motivate actual human behavior.

While this passage might be taken as a mere nod to traditional pieties, 
Boole’s published lectures suggest that he was sincere in his adherence 
to Romantic ideas of culture. In an 1847 address, he criticizes those who 
believe that the physical sciences are fit “to effect a species of intellectual 
regeneration in society.”89 He recommends, instead, “cultivating the love 
of Nature” by going out of the city into the countryside.90 Appreciating 
natural beauty, Boole writes, provides a corrective for those who have be-
come “too artificial,” too attached to “the conventional refinements of so-
ciety.”91 Like Wordsworth, Boole breaks with Enlightenment conceptions 
of nature that emphasize human reason; instead, he associates “Nature” 
specifically with the wilderness and rustic life, which present an antidote 
to the changing fashions of the city. In Boole’s view, an aesthetic apprecia-
tion of landscapes is a better way of developing moral character than sci-
entific study. Elsewhere Boole maintains, echoing an earlier argument by 
Coleridge, that empirical methods can only produce “a mere collection of 
facts” unless they are guided by a higher purpose.92 Science is an important 
part of culture for Boole, but it cannot substitute for the moral feelings that 
poetry is best suited to regulate.

The idea that science had to be balanced with other forms of cultiva-
tion was widespread in the mid-nineteenth century. In a pair of essays 
published in 1838 and 1840, John Stuart Mill cast the poet Coleridge and 
the utilitarian philosopher Jeremy Bentham as two opposing forces in En
glish society.93 Mill argues that each of these thinkers sees what the other 
fails to see. Bentham’s blind spots have to do with culture: he can wrap his 
head around neither the necessity of “self-education” in developing moral 
character nor the differences in “national character” between countries.94 
Coleridge, Mill tells us, has a better understanding of these cultural matters 
as well as a better appreciation for what is valuable in the experiences of 
the past, yet he fails to see the errors in established institutions. While Mill 
expressly sides with the Benthamites’ empiricism over the idealism of the 
Coleridgeans, he asserts the value in both perspectives, concluding that 
“these two sorts of men, who seem to be, and believe themselves to be, 
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enemies, are in reality allies,” their powers forming “opposite poles of one 
great force of progression.”95

This balancing act was, on the surface, reassuring: science would not 
meddle in the moral development of people, as it had so disastrously 
done in the 1790s. Human thought would be allowed to develop organi-
cally, with room left for varieties of feeling and poetic insight that could 
not be reduced to strict rules. Yet this dualistic idea of culture opened the 
way for reasoning to become far more mechanical within certain restricted 
domains. In System of Logic, Mill offers the following “aphorism”: “When-
ever the nature of the subject permits the reasoning process to be, without 
danger, carried on mechanically, the language should be constructed on as 
mechanical principles as possible; while in contrary case, it should be so 
constructed that there shall be the greatest possible obstacles to a merely 
mechanical use of it.”96 The “danger” that mechanization poses, Mill ex-
plains, is the potential that, in their eagerness to extend the power of alge-
bra to other areas of knowledge, philosophers will lose sight of the sensible 
meanings of the symbols. In purely deductive forms of inquiry, however, 
mechanization is safe and, indeed, laudable. The category of culture saved 
universal algebra from its association with revolutionary politics. Bentham 
went down easier when sweetened with Coleridge.

Boole disagreed with Mill on many things, but he shared this keenness 
to separate practices that could legitimately be mechanized from ones that 
could not. In the preface to The Mathematical Analysis of Logic, he (mis)
quotes Mill’s “aphorism” in full.97 For Boole, mechanizing logic safely 
means treating other forms of knowledge with respect: “It were perhaps 
the best security against the danger of an unreasoning reliance upon sym-
bols, on the one hand, and a neglect of their just claims on the other, that 
each subject of applied mathematics should be treated in the spirit of the 
methods which were known at the time when the application was made, 
but in the best form which those methods have assumed.”98 Before one 
can employ symbolic methods, that is, one’s mind must be “prepared to 
receive them”; symbols must be used “with a full understanding of their 
meaning” rather than as “mere unsuggestive characters, the use of which 
is suffered to rest upon authority.”99 Once this preparation is complete, the 
symbols can take over and logic can become purely mechanical.

The rhetoric of this passage might come off as disingenuous. What does 
it really mean to use applied mathematics “in the spirit of ” another disci-
pline? Certainly, to some extent, Boole was looking to rationalize a depar-
ture from received practices and fend off the accusation that he was replac-
ing intelligent thought with a machinelike system. But his algebraic logic 
really did handle culture with a softer touch than previous attempts at a 
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universal algebra did. Unlike Condorcet, Boole places no barrier between 
present and past; instead, his system is supposed to work together with the 
science to which it is applied, as that science has developed up to the pres-
ent. The practical implications of this difference are strongest in the way he 
handled the meanings of the symbols. For once, language was a friend, not 
an enemy.

R igor a nd Spir it

In 1878, Boole’s wife, Mary Everest Boole, published some reminiscences 
about her late husband’s character. She reports that his approach to teach-
ing language was reverent: “I was never allowed to encourage our children 
in any babyish corruption of language. He would sit for a length of time 
with an infant on his knee, teaching it to pronounce its first words with 
perfect distinctness.”100 The care he took in teaching language was partly 
“to give the children habits of accuracy” and also because, she surmises, 
“language being a common property, he wished to discourage the idea of 
individuals having a private right to use it as they pleased.”101 Finally, it re-
flected his belief that “people who make any sort of profession of believ-
ing in the Bible ought to be very reverent in their use of words.”102 George 
Boole was, if this account is just, a linguistic involuntarist: he saw words as 
collective creations that existed outside the control of any individual. This 
reverence toward language gave him a different perspective on what sym-
bols could do than those of Leibniz and Condorcet. For Boole, the task was 
not to expunge all traces of words from algebra but to infuse algebra with 
the meaning that can only come from words.

Instilling respect for language was a common part of the pedagogy of 
the time. In Sarah Porter’s Conversations on Arithmetic, the pupil’s older 
brother repeatedly suggests ways of making the English language more 
rational, and in each instance his mother warns him against such pre-
sumption. He calls the words eleven and twelve “barbarous,” and she re-
sponds that “we must thank our Saxon ancestors” for them.103 Later, he 
asks whether “carrying” a number is not “a very silly mode of expression”; 
his mother responds that “it is well not to make any innovation,” and that 
what matters is that the term is clearly defined.104 The mother also discour-
ages the child from thinking about changing the system of arithmetic. At 
one point, he raises the possibility of numerations other than base ten. “It 
would be just as sensible,” the mother says, “to transpose the characters of 
the alphabet at your arbitrary pleasure, and then to form words and sen-
tences on the supposition.”105 Speculating about alternative systems may 
be pleasing to “eminent mathematicians,” but she wishes her son to follow 



142  ‹   Chapter four

“the higher and more useful path,” for which purpose it is best to follow the 
practices of others.106

This insistence on the sanctity of convention was a departure from the 
radical educational theories of the late eighteenth century. A few decades 
prior, Maria Edgeworth had emphasized building clear conceptions in 
one’s own mind over following the practices of others; following the Abbé 
de Condillac, she averred that the best language was one that was con-
structed from the ground up. The reaction against such individualistic ap-
proaches to language occurred in scientific thought as well as in education. 
In System of Logic, Mill rejects Condillac’s program of linguistic reform in 
favor of “the doctrine . . . of the Coleridge school, that the language of any 
people among whom culture is of an old date, is a sacred deposit, the prop-
erty of all ages, and which no one age should consider itself empowered to 
alter.”107 In his 1845 book Kosmos, the naturalist Alexander von Humboldt 
praises the “animating power” of language, whose “mysterious influence 
still reveals itself most strikingly where it springs among free-minded com-
munities, and attains its growth upon native soils.”108 This overtly nation-
alistic praise of the German language marks a break from the antipathy to-
ward language that stretched from Francis Bacon to Lord Stanhope. Words 
no longer stood like a distorting lens between the observer and reality 
but rather provided an essential link to culture that gave life to scientific 
knowledge.

This rehabilitation of language occurred at just the same time—often 
involving the same people—as the symbolic turn in algebra. Words might 
be collective property, but algebraists could treat their as, xs, and even 
their +s as wholly arbitrary signs whose interpretations could be chosen 
at will. While it may be supposed that the symbols were regarded differ-
ently from words—that tradition was valued in regard to the English lan-
guage but viewed as unimportant in regard to the value of a—matters were 
not so simple. The valuing of tradition could apply to notations, too; in an 
1842 encyclopedia article for “Symbols and Notation,” Boole’s close friend 
Augustus De Morgan stresses the importance of maintaining continuity in 
mathematical symbolism, since excessive innovation renders older texts 
unreadable.109 Conversely, arbitrary control could apply to words. In the 
modern age, wrote William Whewell in 1840, technical language is “con-
structed intentionally, with set purpose, with a regard to its connexion, 
and with a view of constructing a system.”110 In regard to both symbols and 
words, tradition and innovation, backed respectively by collective and sci-
entific governance, were both, in their own ways, viewed as good things.

The coexistence of these two attitudes is best explained as a reconfigu-
ration of the relation of science to the human mind. As it was adopted by 
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mathematicians such as Boole and Ohm, the Kantian distinction between 
rational and historical knowledge enabled an increased separation of dis-
ciplinary criteria of rigor from the “cultivation” of thought. The aspects of 
language that required a connection with tradition were “subjective” mat-
ters that played a crucial role in the education and mental life of the sci-
entist, but that did not bear on matters of truth. Even for mathematicians 
hostile to Kant, such as Bernard Bolzano, formal standards of rigor were 
increasingly privileged over the factors that went into the formation of hu-
man understanding. This division rendered the definitional concerns that 
had been central to mathematics in the eighteenth century—the problem 
of defining such tricky words as sum, negative, or infinitesimal—less im-
portant. It is a general truth that the less people think there is something 
wrong with language, the more easily they can ignore it. When words no 
longer appeared as a threat to scientific certainty, algebra was free to de-
velop in new directions.

Boole discusses the linguistic implications of symbolic methods in the 
most detail in The Laws of Thought. After an introduction explaining his 
overall purpose in the book, he enters into a discussion of “signs and their 
laws.”111 He defines a “sign” as an “arbitrary mark” with a “fixed interpreta-
tion, and susceptible of combination with other signs in subjection to fixed 
laws dependent upon their mutual interpretation.”112 On account of this 
arbitrariness, he finds it “permissible” to replace a subset of words—those 
that express things or qualities of things—with single letters.113 He then at-
tempts to show that these signs follow laws of combination that are equiva-
lent to the basic laws of algebra. The order in which such terms appear, 
he argues, makes no difference; “rivers that are estuaries” means the same 
thing as “estuaries that are rivers.”114 This equivalence translates to the 
commutative law, xy = yx. Likewise, “European men and women” means 
the same thing as “European men and European women,” which translates 
to the distributive law, z(x + y) = zx + zy.115 Boole also shows how if, not, 
and various other connecting words map onto algebraic expressions.

It is on account of these analogies between the symbols and words, as 
his other writings make clear, that he viewed his system as akin to a “philo-
sophical language.”116 Any elements of language that are left out of the alge-
braization, he declares at the end of the chapter, either modify the signifi-
cation of other words or else serve only “to express some emotion or state 
of feeling accompanying the utterance of a proposition, and thus do not 
belong to the province of the understanding, with which alone our present 
concern lies.”117 By “philosophical,” this remark suggests, he means scien-
tific in something like Wordsworth’s sense—that is, concerned primarily 
with facts, not feelings. The logical algebra excludes these emotional as-
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pects of language not necessarily because they are unimportant but be-
cause they are divided from logic by a disciplinary boundary.

While he illustrates his “laws of thought” with English phrases, Boole 
is decidedly not attempting to derive them through an empirical analysis 
of language. In an 1847 book that Boole cites elsewhere, the philologist 
Robert Gordon Latham had argued “that the structure of propositions 
in Language does not always coincide with the structure of propositions 
in Logic.”118 Boole similarly sets logic apart from the conventionalities of 
particular languages. He uses three quotations from John Milton’s Paradise 
Lost to illustrate how a phrase can retain a logical structure even as it vio-
lates the usual rules of English word order:

“Offspring of heaven first-born.”
“The rising world of waters dark and deep.”
“Bright effluence of bright essence increate.”119

Poetry, according to Boole, operates with a “lawful freedom” from the 
conventions of the language, a freedom that is “sanctioned by the intimate 
laws of thought.”120 Boole thus maintains that the law of thought xy = yx “is 
actually developed in a law of Language, the product and the instrument of 
thought,” even though, “for reasons of convenience,” prose writers usually 
follow a uniform word order.121

This argument is worth puzzling over. How does the interpretability of 
some lines from Milton demonstrate the existence of a logical law? What 
kind of interpretation is Boole imagining? The field that dealt with these is-
sues in his time was hermeneutics, the science of interpretation that origi-
nated in Germany and spread to England via the Romantics. Like Boole 
in his discussion of Milton, Romantic hermeneutics valued perceiving the 
spirit of a text over such “mechanical” matters as spelling and syntax.122 An 
instructive example of this value hierarchy, including its potentially trou-
bling implications, appears in Coleridge. In his “Essays on the Principles of 
Method,” Coleridge imagines an illiterate person attempting to make sense 
of a Bible:

Say that after long and dissatisfying toils, he begins to sort, first the para-
graphs that appear to resemble each other, then the lines, the words—
nay, that he has at length discovered that the whole is formed by the 
recurrence and interchanges of a limited number of cyphers, letters, 
marks, and points, which, however, in the very height and utmost per-
fection of his attainment, he makes twentyfold more numerous than 
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they are, by classing every different form of the same character, inten-
tional or accidental, as a separate element. And the whole is without soul 
or substance, a talisman of superstition, a mockery of science.123

Coleridge goes on to imagine a “friendly missionary” arriving and teaching 
the man to read, after which point the “words become transparent, and 
he sees them as though he saw them not.”124 The point is that the analyti-
cal methods employed by Enlightenment thinkers cannot provide a self-
sufficient means of reading a text. A form of writing understandable by the 
wholly uninstructed, as Condorcet’s universal algebra was supposed to be, 
is impossible; all interpretation requires some link to tradition.

Hermeneutics has taken on various guises over the centuries, but in its 
original form it was primarily about interpreting the Bible and other reli-
gious texts. The interpretation Coleridge describes has specifically to do 
with scripture; the Bible becomes “transparent” not just by virtue of lin-
guistic instruction but also because of the reader’s ability to perceive the 
divine truth that shines through the text. Boole’s rationale for his logic 
system was likewise religious.125 He believed, according to his wife, Mary 
Everest Boole, “that there is direct contact between the Divine Magnetism 
and the nervous system of man”; in the last chapter of The Laws of Thought, 
he argues that his algebraic laws have appeared again and again in all reli-
gious and philosophical systems, which he takes as evidence of their au-
thority.126 In this regard, his choice of the Puritan poet Milton is appropri-
ate. It is an old critical saw that Milton used intentionally difficult syntax so 
as to ensure that his readers chose a pious reading by their own free will; 
the meaning of Paradise Lost would be ratified by faith, not by the author-
ity of the text itself.127 What renders Boole’s break from language “lawful” 
is the accordance of his system with the higher truth one perceives when 
one sees through the words of a text.

This, at least, would be Boole taken on his own terms. If we swap in a 
secular form of hermeneutics, the argument becomes more problematic. 
What if it is not the light of God that appears to shine through the text but 
simply the prejudices of a particular culture—or worse, ideology? The ex-
plicitly colonial situation Coleridge describes in his description of reading 
indicates the danger of claiming that a text is transparent. The written text 
is not merely acting as a conduit through which one being can communi-
cate with another but also as an instrument by means of which a particular 
doctrine—in Coleridge’s case, a Christian one—can be instilled. Boole’s 
logic system could inspire a similar critique. To the extent that Boole’s laws 
of thought lacked the divine certification he thought they had, his freedom 
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from language was not truly “lawful.” Instead, he was manipulating sym-
bols through rules that were ultimately arbitrary, and his results therefore 
had no particular meaning that anyone was obliged to accept.

Such concerns arose frequently in discussions of symbolic methods. In 
a review of Peacock’s Treatise on Algebra published in two installments in 
1835, De Morgan writes that Peacock’s work initially appeared like “sym-
bols bewitched, and running about the world in search of a meaning.”128 
This statement is often quoted as an example of the anxieties created by the 
symbolic turn; symbol manipulation, it suggests, is not truly rational, and 
losing oneself in mathematical abstraction is a way to solipsism or mad-
ness. Yet De Morgan ultimately came around to Peacock’s position, and his 
review critiques the work from within the new epistemology that the sym-
bolic turn constructed. De Morgan is not complaining that the symbols 
lacked clear conceptual definitions, as so many in the eighteenth century 
had done. His concern, instead, is to ensure that rules of their manipula-
tion were grounded on sound principles.

De Morgan’s review—which is mainly an essay about his own opinions 
on symbolic methods—attempts to settle the confusion regarding nega-
tive and imaginary numbers by clarifying the nature of algebra. Algebra, 
De Morgan argues, gains its generality from the use of “arbitrary conven-
tions by which terms in common use are made to signify less than their 
vulgar meaning implies.”129 As a result, “certain formulæ may be chosen, 
not as consequences of any meaning given to the symbols, but as the defi-
nitions of the symbols themselves.”130 For example, the formula a + b − b = 
a may be taken as a definition of subtraction that is more general than the 
arithmetical definition because it tells us less—specifically, it does not tell 
us whether a and b represent numbers or something else. Since the inter-
pretation of the symbols + and − is arbitrary, the mathematician is “at lib-
erty” to make those symbols stand for any two operations whose relation-
ship corresponds to the rule.131 This is just the sort of thinking that William 
Rowan Hamilton would soon employ in specifying the rules for multiply-
ing quaternions and that, just a few years later, Boole would apply to logic; 
it points toward the development of what is now called abstract algebra—a 
field which, brought to its full development by Emmy Noether in the early 
twentieth century, studies the properties of generalized algebra-like sys-
tems that may or may not have a connection to numbers.132

This approach to definition suggests, contra the Lockean perspective, 
that algebraic symbols are fundamentally different from words. To ask 
whether formulae may have multiple interpretations, De Morgan writes, 
might seem like asking “whether two different languages might have all 
their words in common, but with different meanings, in such manner that 
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by writing a treatise on astronomy in the first language, we write, totidem 
verbis [by all the same words], a treatise on music in the second.”133 This, 
he agrees, is absurd. But in algebra, the rules are determined not by “pure 
convention,” as the meanings of words are, but by the universal truths of 
mathematics.134 Defining an algebraic symbol is thus different from defin-
ing a word: “We say, let a0 = 1; but the word is a great deal more like ‘I think 
we must let a0 = 1’ than ‘We are perfectly free to choose a meaning for a0, 
and therefore let it be 1.’”135 In hermeneutics, the definitions of words are 
arbitrary, but interpretation is guided by a higher logic by virtue of which 
the truth can shine through. In symbolic algebra, the situation is reversed: 
the definitions are guided by logic and truth, whereas interpretation is 
wholly a matter of choice.

A consequence of this reversal is that the apparent uncontrollability of 
language posed less of a problem for De Morgan than it had for eighteenth-
century mathematicians such as Condorcet and Maseres. Words had not 
become unimportant, but De Morgan locates their relevance primarily in 
pedagogy, where they provide a route from familiar notions into the intri-
cacies of advanced mathematics. Near the end of the review, De Morgan 
proposes “a treatise on the use of words in mathematics, and their con-
nexion with symbols.”136 The new algebra, he writes, “will introduce a 
very new set of idioms” that may pose difficulties for students; an adept 
mathematician can navigate these difficulties by “helping himself to the 
meaning of the terms out of the algebraical context.”137 The conventional 
meaning of the word sum, that is, could aid in understanding a + b even if 
those symbols technically represent a more abstract operation than com-
mon addition. This line of thinking is a direct reversal of William Frend’s 
late eighteenth-century argument that the received meanings of words 
such as square might interfere with their technical definitions by calling 
to mind spurious associations. For De Morgan, the ordinary, nontechni-
cal meanings of words provide a valuable “resource” that students may ex-
ploit in making sense of symbols, provided they have sufficient linguistic 
competency.138

As this passage suggests, the symbolic turn had not done away with 
words; it had merely altered their relation to symbols. Boole, too, treated 
words as a resource, a well from which meaning could be drawn. The role 
of words in Boole’s logic system has often been overlooked. In the form 
used in programming languages, Boolean logic has only two values, 1 and 
0 (or, if we prefer, true and false); using the rules for and and or, we can 
always evaluate a Boolean expression to one of these two values, as (0 and 
1) or 1 has the value 1. Some popular accounts have implied that Boole’s 
system worked like this, too.139 But Boole’s deduction procedure did not 
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involve evaluating logical expressions numerically, nor did he restrict his 
system to the two values 0 and 1. If 1 means everything and 0 nothing, 
Boole’s system also admits an indefinite number of other values that refer 
to specific categories of things, such as ducks and capybaras. These values 
do not correspond to any numbers; if one interprets x as capybara, then 
the value of the symbol simply is the meaning of the word. The rigor of 
the system is supposed to come not from the clarity of these meanings but 
from the fact that the meanings are irrelevant to the formal rules by which 
the logic operates. We may or may not have a clear idea of what a capybara 
is, but either way, we can be sure that Boole’s laws of operation are solid.

The formal turn lifted a weight from the shoulders of language. No lon-
ger was it necessary to debate whether the meaning of negative was clear 
enough or whether the meaning of sum could be altered, except perhaps 
for the purpose of teaching. In the hands of Boole, the distinction be-
tween form and interpretation made it possible for a universal algebra to 
coexist peacefully with words, which could be swapped out at will: in the 
course of a single paragraph, he makes y mean “good” and then changes its 
meaning to “sheep.”140 The symbol does not replace these words; instead, 
it draws its meaning from them, and thus from the English language. This 
is different from how Leibniz and Condorcet handled meaning. Gone are 
the “characteristic numbers”; gone, too, is the attempt to build up com-
plex concepts from scratch, starting with the senses. Even Boole’s laws of 
thought themselves are supposed to be found in “the language of common 
discourse.”141 Language did not arise as a problem for Boole because, un-
like his predecessors, he was not attempting to build a whole new way of 
thinking about the world from the ground up. He purchased arbitrary con-
trol over the interpretation of symbols in exchange for deference toward 
the common tongue.

U ninter pr eta ble R ea lms

Boole’s system does not, however, leave language totally alone. To be of 
any use, symbols cannot bend entirely to the will of the interpreter; they 
must somehow be able to push back. It is not hard to find a particularly 
charged example. In his derivation of the laws of thought, Boole consid-
ers “the two mental operations implied by ‘white’ and ‘men.’”142 The men 
operation selects all things that are men; the white operation then selects 
those who are white. One thus constructs the class of “white men.”143 
One can also, according to Boole, reverse the order: one starts by select-
ing “white objects,” then one selects from those objects the ones that are 
men.144 Hence he derives the law xy = yx. The problem here is not hard 
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to see. He is treating the white in “white men” as equivalent to the white 
in his earlier example, “horned white sheep”—that is, as a literal color.145 
Boole’s system treats words as fixed in their meanings, signifying the same 
things regardless of context. This presumed fixity enables the symbols to 
be tossed around like counting stones.

This tendency would not be a problem if one had a perfect analytical 
language of the sort Leibniz had hoped to create. The early version of Leib-
niz’s universal characteristic—the one that was supposed to resolve ques-
tions with absolute certainty—required the discovery of a universal set of 
basic concepts from which all other concepts could be constructed; the 
meanings of the symbols would be grounded in ideas divinely inscribed on 
the mind and thus wholly unaffected by the niceties of words. Boole’s logic 
system, along with all the technical forms derived from it, demands no 
such quixotic effort to replace language, and therein lies the danger. Does 
“white men and white sheep” really mean the same thing as “white objects 
that are men and sheep”? If not, then the symbols do not necessarily come 
out of Boole’s symbolic process with the same meanings they had when 
they went in.

Boole was far from unaware of these issues. Even if his departure from 
language is “lawful,” it is still a departure—the symbols do not follow the 
same rules that words do in ordinary writing. That is precisely the point; 
if the symbols did nothing other than reflect back what was already in the 
English language, they would be worthless. Boole’s algebra is supposed to 
constitute a different sort of symbolic system from historically contingent 
languages such as English; as he states in the 1848 article, the logical al-
gebra is analogous “with the forms which human speech would assume, 
were its rules entirely constructed upon a scientific basis.”146 Whereas the 
Abbé de Condillac brought algebra and language into an intimate relation, 
Boole opens a rift between them. The symbols may gain their interpreta-
tions from words, but they can also open new realms that words cannot 
describe.

Boole addresses this rift directly in one of the most notorious passages 
in The Laws of Thought. One of the prime dangers of applying algebraic 
methods to logic, he concedes, is that such methods might produce ex-
pressions that are “uninterpretable in that sphere of thought which they 
are designed to aid.”147 Such uninterpretable statements occur frequently 
in Boole’s text. For instance, one of his examples begins with the following 
definition: “Responsible beings are all rational beings who are either free 
to act, or have voluntarily sacrificed their freedom.”148 In symbolic nota-
tion, he renders this statement as “x = yz + yw,” with x being responsible 
beings, y being rational ones, z being those free to act, and w being those 
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who have voluntarily sacrificed their freedom.149 This equation has a clear 
interpretation given Boole’s definitions of multiplication, addition, and 
equality. Yet in analyzing it, he winds up with an equation that does not 
have any logical meaning:

1– –y z w x
z w

=
+
+

This equation is equivalent to x = yz + yw in ordinary numerical algebra.150 
But it bears no meaning that can be translated into English by Boole’s 
method, since, unlike the other basic algebraic operators, division has no 
logical counterpart.151 The only way to make sense of it is to transform it us-
ing Boole’s procedure, which produces a much longer equation that can fi-
nally be translated into an English sentence, albeit a less-than-elegant one: 
“Irrational persons consist of all responsible beings who are either free to act, 
or have voluntarily sacrificed their liberty, and are not free to act; together 
with an indefinite remainder of irresponsible beings who have not sacrificed 
their liberty, and are not free to act.”152

The use of uninterpretable expressions has never been widely accepted 
among logicians. One of Boole’s early champions, William Stanley Jevons, 
criticized his system for employing “dark and symbolic processes,” and 
later practitioners of symbolic logic mostly attempted to ensure that one 
could always, at least in theory, understand the meanings of the symbols.153 
But uninterpretability is worth taking seriously as a side effect of the adop-
tion of symbolic methods. As an example that, in Boole’s view, proves the 
legitimacy of the practice, “the uninterpretable symbol √-1,” although de-
void of any sensible meaning, may be used “in the intermediate processes 
of trigonometry.”154 Although we might question whether imaginary num-
bers such as √—−1 are really “uninterpretable” in an absolute sense, it is true 
that they cannot be interpreted in terms of ordinary notions of quantity 
or magnitude. Yet, as Gerolamo Cardano discovered in the sixteenth cen-
tury, they can nonetheless be used in calculations that produce verifiably 
correct results about quantities. Most mathematicians from Cardano’s time 
to the early nineteenth century were suspicious of such methods because 
they seemed to lack an adequate conceptual foundation. For Boole, as for 
Joseph-Louis Lagrange, the apparent incomprehensibility of imaginary 
numbers has no bearing on their legitimacy as instruments of computa-
tion; all that matters, for the purposes of mathematical validity, is that one 
follows the rules.

The danger of wandering into a realm of uninterpretable nonsense is the 
price one pays for this embrace of formal rules. Uninterpretability, Boole 
explains, is specific to symbolic methods, since “this apparent failure of 
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correspondency between process and interpretation does not manifest it-
self in the ordinary applications of human reason.”155 Boole does not, how-
ever, take this as a knock against algebraization. It is valid, Boole contends, 
to employ symbols “in obedience to laws founded upon their interpreta-
tion, but without any sustained reference to that interpretation, the chain 
of demonstration conducting us through intermediate steps which are not 
interpretable, to a final result which is interpretable.”156 Despite Boole’s 
protestations that one must always clearly understand the meanings of the 
symbols one uses, this requirement is only really relevant at the beginning 
and end of the deductive process, when it is necessary to translate between 
algebraic notation and the language of another field of study. In the midst 
of Boole’s procedure, interpretation is both needless and, in the case of 
“uninterpretable” expressions involving division, futile.

This return from the abyss of the uninterpretable is only possible, how-
ever, if the procedures one is using are the right ones. It is here that the re-
ligious basis of Boole’s system becomes important. As he states in a manu-
script probably written in 1854, because “methods and processes are truly 
the consequences of laws and do not spring up arbitrarily into existence,” 
one can presume that any complete method rests on a basis that is “not 
merely empirical or analogical.”157 This assumption that the “laws” of al-
gebra are nonarbitrary enables Boole to turn deductive reasoning into a 
mechanical procedure without at all embracing instrumentalism. The fact 
that the steps of this procedure were sometimes uninterpretable could be 
brushed off as resulting from the finitude of human understanding. In an 
1855 letter to John Penrose, Boole gives “infinite space, eternal duration, 
. . . perfect goodness and purity, unchanging rectitude and truth etc” as ex-
amples of terms that cannot be given clear and distinct meanings but that 
one can nonetheless reason about with certainty by following the laws of 
thought.158 So long as we use symbols in “obedience” with these laws, we 
cannot produce anything that is out of sync with the order of nature, how-
ever little we mere temporal beings may be able to understand the expres-
sions our reckoning produces.

These explanations bear the distinct markings of Kantian thought and, 
in particular, of the idealists’ elevation of pure reason over understanding. 
Boole read Kant’s Critique of Pure Reason in the original German in the 
1840s, and his work contains numerous Kantian-sounding references to 
the idea that logic and mathematics deal only with the conditions that ex-
perience must meet rather than with the sensory content of any particular 
experience.159 He also expressed such views in his poetry. Daniel J. Cohen 
has pointed out the Kantian influence in Boole’s sonnet “To the Number 
Three”:
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When the great Maker, on Creation bent,
Thee from thy brethren chose, and framed by thee
The world to sense revealed, yet left it free
To those whose intellectual gaze intent
Behind the veil phenomenal is sent
Space diverse, systems manifold to see
Revealed by thought alone; was it that we
In whose mysterious spirits thus are blent
Finite of sense and Infinite of thought,
Should feel how vast, how little is our store;
As yon excelling arch with orbs deep-fraught
To the light wave that dies along the shore;
That from our weakness and our strength may rise
One worship unto Him the Only Wise.160

This sonnet, written in the late 1840s, is as much a hymn to the human in-
tellect as to the Abrahamic God. Whereas the terrestrial wave is transient, 
Boole identifies “yon excelling arch with orbs deep-fraught” with the infi-
nite and eternal. Our ability to grasp such things lies not in our finite senses 
but in “pure thought,” through which we may gaze at “systems manifold” 
that exist “behind the veil phenomenal.” In the final couplet, Boole asserts 
his confidence that our senses and our capacity for “pure thought” will 
harmonize both with each other and with revealed religion. Mathematics 
gains its peculiar power, the poem suggests, from the fact that it works “by 
thought alone,” untainted by the influence of the empirical; as such, it can 
lead us infallibly to truths about quantity and the divine nature alike.

What is paradoxical in this association of symbolic methods with the 
“intellectual gaze”—a paradox that echoed far and wide in the nineteenth 
century—is that, as much as formalization elevated mathematics to the 
ethereal realm of pure reason, it also deepened its dependence on physi-
cal aids. Even if mathematics was supposed to exist apart from empirical 
knowledge, it involved the senses more than ever: the symbols consisted 
of marks on a sheet of paper, which, in Ohm’s formulation, constituted the 
“objective” aspect of algebra. Mathematical rationality was moving from 
the brain to the page. Soon enough, the logical processes that Boole char-
acterized as “pure thought” would be enacted by machines as well. It is one 
of the great ironies of intellectual history that, by delineating pure reason 
from sensory experience, Kant ultimately enabled logic to move out of the 
human mind and into the physical realm.

Boole himself showed little interest in mechanizing thought. He was 
aware of his near contemporary Charles Babbage, but he seemed to be 
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more impressed by Babbage’s work on the theory of functions than by his 
plan for a computing engine.161 The amenability of Boole’s system to mech-
anization does, however, become apparent in his approach to pedagogy. 
According to Mary Boole, he thought it important that children “should 
spend a great deal of time over some mechanical work which could be 
done without the presence of a teacher, and which they must concentrate 
their whole energies upon, and do with perfect accuracy.”162 Students, 
then, must be taught how to work a sum mechanically before the rule is 
explained to them; they are “to obey first and understand afterwards.”163 
The contrast with the Lockean pedagogy of Sarah Porter, which leads stu-
dents toward the rules of computation by explaining the reasoning behind 
them, is plain. After symbolic methods were freed from their dependence 
on concepts, mathematical and logical validity came to have less to do with 
how one thinks than with what one does. It is only a short way from this 
“directive method” to the literal mechanization of logical reasoning.

The inventor of Boolean logic would never have traveled down this 
road. While his students may have begun with mechanical work, they 
were eventually supposed to reach a moment of epiphany in which they 
finally grasped the leading idea behind the rules.164 The need to appreciate 
the reasoning behind algorithms, which we have seen Ada Lovelace state 
directly, persisted. But the epiphany could just as well never come, and 
the machine of logic would go on cranking out symbols that are correct 
by the standards of the system whether one understands them or not. It 
was the fate of Boole’s system to become such a machine. The divine sanc-
tion that was supposed to compensate for the symbols’ occasional uninter-
pretability got lost in the shuffle. To the extent that their rules are, instead, 
merely arbitrary, the formal languages that dominate our modern world—
most prominently, programming languages—sharpen the distinction be-
tween those who understand and those who must be content to obey.

For m a lism a nd the Progr ess of Cultur e

Based on some of his remarks, one would think that Boole’s logic system 
had no practical use at all. In the preface to The Mathematical Analysis of 
Logic, he denies that he is out “to supersede the employment of common 
reason, or to subject it to the rigour of technical forms.”165 His purpose, 
he tells us, is only to contribute to speculative knowledge. The Laws of 
Thought does include applications, but Mary Boole later claimed that her 
husband’s intentions were entirely religious, executed in “obedience to the 
commands of the Pentateuch,” and that he only included these examples 
“to show that his system was not a mere fanciful outcome of religious fer-
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vor.”166 Although they had an Anglican background, the Booles were reli-
gious eclectics; they sought spiritual insight in various traditions includ-
ing Judaism, early Christianity, and Hinduism. The main value of George 
Boole’s logical algebra, if we believe this, is as a way of contemplating the 
harmony of the divine plan.

But Boolean logic as it exists now is a technological matter, not a reli-
gious one. Boole’s followers wasted little time in exploring the possibili-
ties his ideas opened for mechanization. In 1869, Jevons used his simplified 
version of Boolean algebra to develop a “logic piano” that could automati-
cally draw certain types of logical conclusion (figure 4.2).167 Boolean logic 
also formed the basis of a different sort of machine that turned symbolic 
logic into a general-purpose model of signal processing. Credit typically 
goes to the American mathematician C. E. Shannon, later known as the 
founder of statistical information theory, for noticing that Boolean algebra 
corresponded to the structure of certain types of electrical circuits. Shan-
non was not the first to have this insight; C. S. Peirce had a similar idea in 
the 1890s, although he did not put it into practice.168 This analogy between 
logic and switching circuits was an important step in the development of 
modern electronics and, in particular, computers, in the design and pro-
gramming of which Boolean logic still plays a pervasive role.

Boole’s work also inspired a revival of Leibnizian ideas about the power 
of symbols. Starting around 1874, the German mathematician Ernst 
Schröder began to extend the ideas of Boole and Ohm into a general the-
ory of algebra.169 Algebra, for Schröder, was the study of operations, con-
sidered apart from any conceptual interpretation. He formalized these 
operations as “algorithms,” although his meaning is not the modern one. 
In Schröder’s terms, algorithms (Algorithmen) are collections of equations 
determining the properties of invertible operations; for instance, the equa-
tions ab = ba, a(bc) = (ab)c, and (a/b)b = a could be used to construct 
an “algorithm” of multiplication and its inverse, division.170 This use of the 
word algorithm, following Leibniz, refers not to a step-by-step procedure 
but to a collection of equations that may be used to manipulate operations 
algebraically. Schröder later expanded his system into a “pasigraphy” that 
included symbols for a range of logical relations. On this basis, he planned 
out an “absolute algebra” that would, he wrote, constitute “a scientific uni-
versal language” fundamentally different from spoken languages.171

Even if it was not exactly about algorithms in the modern sense, late 
nineteenth-century formalism created an interchange between mathemat-
ics and logic that long would be a fruitful source for algorithmic thinking. 
In his 1879 pamphlet Begriffsschrift (Concept Notation), Gottlob Frege in-
troduced a new logical notation that included several important features 
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Figure 4.2.  William Stanley Jevons’s logical piano, as depicted in the frontispiece of his 
book The Principles of Science (London: Macmillan, 1892).

that Boole’s system lacks, including the quantifiers “there exists” and “for 
all,” which made it possible to formalize the entirety of a mathematical 
proof in purely symbolic terms. Frege’s system is not based on uninter-
preted symbolism—his notation has a “conceptual” aspect—but it does 
share Schröder’s emphasis on formal rules as a path to precision. Similarly 
to Schröder, Frege described his system as a step toward the realization 
of Leibniz’s universal characteristic.172 While Frege concedes that a logical 
“ideography” cannot do everything that Leibniz had intended, he none-
theless frames symbolic logic as a continuation of the long-standing strug-
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gle against language—an aid to philosophers in their quest “to break the 
domination of the word over the human spirit.”173

As this statement indicates, the old Baconian hostility toward words re-
turned in force in the late nineteenth century. This attitude differentiates 
Frege and other late-century formalists from Boole, who was more inter-
ested in making symbols work together with the subjective aspects of lan-
guage.174 Yet the extent of this difference should not be overstated. Boole 
is sometimes charged with what Frege called “psychologism,” meaning 
conflating the rules of logic with empirical facts about the mind.175 But as 
Boole makes clear in the final chapter of The Laws of Thought, he does not 
regard the laws of thought as empirical propositions like the laws of phys-
ics; they are supposed to be general strictures that people may follow more 
or less faithfully in different situations.176 Boole distinguished logic from 
actual human thought just as much as Frege did; what changed in the late 
nineteenth century was the value formalists assigned to the historical pro-
cesses by which thought developed.

For Boole, the progress of human thought is subject to universal, di-
vinely sanctioned laws that direct it toward a single goal. The moral fac-
ulty, he writes in the last chapter of The Laws of Thought, “tends, wherever 
human progress is observable, wherever society is not either stationary or 
hastening to decay, to attach itself to certain classes of actions, consenta-
neously, and after a manner indicative both of permanency and of law.”177 
He goes on to argue that his algebraic “laws” have occurred again and again 
across religions and cultures and throughout history.178 The laws are sup-
posed to be universal because of this general tendency, even if they have 
developed to varying degrees in particular historical and cultural contexts 
and among particular individuals.

This conception of a logical “law” cannot be disentangled from Boole’s 
religious views. Like other algebraists in his time, Boole understood the 
history of mathematics in terms of divine providence. William Rowan 
Hamilton wrote of a “Philological” school of algebra, in which he includes 
Peacock, Ohm, and Gregory—thinkers who all combined symbolic meth-
ods with a deep attention to language.179 In his article on “Arithmetic” in 
the Encyclopædia Metropolitana, Peacock presents extensive research 
about the development of arithmetic from prehistoric times, building on 
the work of philologists such as Friedrich Schlegel and Wilhelm von Hum-
boldt.180 While he considers the differences between a variety of cultures, 
Peacock clearly thinks the Hindi–Arabic system is the one goal toward 
which all progress naturally tends. Boole likewise reduces cultural differ-
ences to levels of progress toward a single truth. In a speech entitled “The 
Social Aspect of Intellectual Culture,” Boole argues, drawing on Whewell’s 
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historiography, that progress is driven by “the slow but combined action of 
the social state,” with each new advance depending on everything that has 
been achieved in the past in both the sciences and the arts.181 The forma-
tion of scientific knowledge, then, depends on and is a part of culture, and 
yet it is guided by divine providence toward the correct theory.

This teleology is distinctive of how science and history intersected in 
the early Victorian period. By the time of Schröder and Frege, discus-
sions of mathematical progress had turned toward a greater recognition 
of multiplicity—of the variation in practices from country to country. In 
some cases, this recognition was attended by racial or ethnic stereotypes. 
In his 1889 History of the Study of Mathematics at Cambridge, for instance, 
W. W. Rouse Ball speculates about “the influence of race in the selection of 
mathematical methods.”182 “The Semitic races,” Ball claims, “had a special 
genius for arithmetic and algebra,” whereas the Greeks were better suited 
for geometry; he thinks that the English are especially fitted for analyti-
cal methods, even though Newtonians suppressed them for more than a 
century.183 The implication is that some groups of people, as classified by 
the racial theories of the time, are inherently attracted to certain types of 
mathematics over others.

It is also worth mentioning that Weierstrass’s oft-quoted remark about 
mathematicians and poets, which appeared in a private letter to one of 
his students, occurred in an anti-Semitic context. Weierstrass claims that 
members of “the Semitic tribes” (and, specifically, the Jewish mathemati-
cian Leopold Kronecker) lack the poetic imagination needed to become 
true mathematicians.184 Such racist distinctions addressed a tension that 
was implicit in the nineteenth-century idea of culture: how can one rec-
oncile the apparent universality of mathematics with the fact that it devel-
ops differently among different groups of people? To the mindset of the 
time, an obvious answer was to rank groups of people against each other.185 
Certainly, not all mathematicians held such views; yet Weierstrass’s re-
mark shows how the concern with elevating pure mathematics above such 
“merely mechanical” activities as computation could reflect and reinforce 
the prejudices of the time.

Opinions about the nature of pure mathematics were changing in the 
late nineteenth century, although the result was hardly a consensus. In 
the 1860s, Weierstrass gave the first modern account of the real numbers, 
which he explained based on the continuity of the number line rather than 
notions of counting or measurement. Starting in the 1870s, Georg Can-
tor introduced the rudiments of set theory, which provided a new way 
of reasoning about the infinite.186 In 1888 and ’89, Richard Dedekind and 
Giuseppe Peano assembled what would become the standard axiomatiza-
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tion of arithmetic.187 The work of these and other late nineteenth-century 
mathematicians implied that numbers were stranger and more counter-
intuitive than before suspected: Cantor, for instance, proved that the real 
numbers, understood to have infinite decimal expansions, are uncount-
able, meaning that any attempt to list them in a linear order will always 
leave some numbers out. The new definitions of number also raised thorny 
questions about the metaphysics of mathematical entities, inspiring Kro-
necker (a critic of Cantor’s work) to state that “God made the integers, all 
else is the work of man.”188

The real number system developed by Weierstrass and his contempo-
raries deepened the gap that algebra had created between mathematical 
and common understandings of number. Three centuries before, Simon 
Stevin had introduced decimal notation as a challenge to classical, geomet-
ric number theories, founding number instead on the workaday computa-
tional techniques of the mathematical practitioners. In the new system, by 
contrast, real numbers stood aloof from geometry and practical computa-
tion alike. Cantor’s theorem implied the existence of numbers that were 
utterly inaccessible by any procedure resembling the Hindi–Arabic algor-
ism: strings of effectively random digits that extended to infinity without 
following any logic that could be described. Dedekind explained the irra-
tionals by what is now called the Dedekind cut, a division of the rational 
numbers into two sets whose elements infinitely approach the position of 
the irrational on the number line. The theories of Cantor and Dedekind 
were arguably antialgorithmic in that they posited the existence of entities 
that could not be constructed through any finite procedure. The historian 
of mathematics Jeremy Gray thus contrasts Dedekind to Kronecker, who 
proposed an alternative view of number that placed computational meth-
ods at the center.189 Yet Cantor’s work opened a philosophical question 
that would, in the hands of later thinkers such as Alan Turing, motivate the 
development of a mathematical theory of computation: if not all numbers 
can be computed, which ones can? Thus, as we have already seen in Boole 
and Lovelace, the relegation of mechanical procedures to a limited role 
within mathematics—the idea that such procedures cannot provide the 
poetic insight needed by a “complete” mathematician, as Weierstrass had 
put it—ultimately spurred on the development of what would eventually 
become the theory of algorithms.

These new conceptions of number relegated the old geometric explana-
tion of calculus to the margins and, in particular, to the realm of pedagogy. 
In the preface to his 1872 pamphlet Continuity and Irrational Numbers, 
Dedekind admits with consternation to having “recourse to geometric evi-
dences” when teaching calculus.190 Geometric intuition, he continues, is 
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“exceedingly useful, from the didactic standpoint, and indeed indispens-
able, if one does not wish to lose too much time. But that this form of intro-
duction into the differential calculus can make no claim to being scientific, 
no one will deny.”191 Here, then, is the subject–object divide in plain form: 
making a system comprehensible to people is an entirely separate matter 
from making it scientific. This division remains encoded in the mathemati-
cal curriculum today: college calculus usually employs informal explana-
tions and visual aids, whereas the truly scientific foundation is taught in 
Mathematical Analysis, typically a senior-level course aimed at majors.

A consequence of this division was a newly absolute alienation of 
mathematical and logical systems from the practicalities of communica-
tion. Although Frege framed his system as a successor to Leibniz’s uni-
versal characteristic, he focused only on a portion of the total Leibnizian 
program—only on the use of symbols in logical reasoning, not so much 
on communication, with regard to which his notation is not, in any mean-
ingful sense, actually universal. The communicational side of Leibniz’s 
project came to perdure less in logic than in the development of interna-
tional auxiliary languages (IALs) such as Esperanto. First introduced by 
L. L. Zamenhof in 1887, Esperanto is a spoken and written language with a 
simple, consistent grammar designed to be easy to learn so as to facilitate 
international communication.192 Such projects had precedents in Leibniz’s 
work just as much as symbolic logic did; one of Leibniz’s projects was a 
simplified version of Latin. This idea would, in the twentieth century, be-
come the basis of several attempted IALs, one of them by a mathemati-
cian: the aforementioned Giuseppe Peano. Yet Peano made it clear that he 
saw this constructed language as entirely distinct from mathematical no-
tation.193 By the turn of the twentieth century, two types of artificial lan-
guage aiming at different sorts of universality—mathematical and logical 
notations meant for scientific purposes and IALs meant to replace spoken 
vernaculars—had diverged.

This divergence coincided with a sharpening of the boundary between 
mathematical and linguistic disciplines. In the eighteenth century, it had 
been a matter for debate whether languages were objects of conscious de-
sign, and the example of algebra offered evidence that they were. By the 
end of the nineteenth century, linguists were nearing a consensus around 
the opposite conclusion. As Andrea Henderson has pointed out, just as 
linguists came to see form as something that could be described with sci-
entific precision, they began to see content—that is, meaning—as mys-
terious, incapable of being pinned down or controlled.194 In the 1830s, 
the philologist Wilhelm von Humboldt had called language “an involun-
tary emanation of the mind” that people use “without knowing how they 
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have fashioned it.”195 This involuntarism became a doctrine in Ferdinand 
de Saussure’s 1916 Course in General Linguistics, which was written down 
by his students based on his lectures. This book contains a detailed argu-
ment that “the individual has no power to alter a sign in any respect once 
it has been established in a linguistic community.”196 Signs, that is, were 
governed collectively, and (contra Locke) one cannot simply choose to un-
derstand a word however one wants.

Saussure’s theory of signs was not the only option available at the time, 
and linguistic involuntarism never went uncontested. In 1903, Lady Victo-
ria Welby introduced a contrasting theory called significs, which was meant 
to elevate language “from the ‘instinctive level’ to the volitional and fully 
rational plane” by providing a set of techniques for developing meaning.197 
In the twentieth century, the desire to improve language would become a 
central concern of analytic philosophy—a predominantly Anglo-American 
tradition that builds upon logical formalism to develop methods of clarify-
ing concepts. Yet Saussure’s involuntarism became dominant in the field 
of linguistics, where it helped solidify the idea that languages were natural 
phenomena governed by forces that no individual could overcome. Lan-
guage may follow rules that can be stated abstractly, but the purview of 
linguistic science is only to describe those rules, not to change them.

The symbols used in mathematics and logic did not clearly fit this 
emerging consensus about language. In these technical fields, meaning was 
governed by explicit, usually written definitions that fixed the symbols’ 
roles within systems. Peak notation occurred with Alfred North White-
head and Bertrand Russell’s Principia Mathematica (1910–13), which at-
tempts to demonstrate all of mathematics in terms of the simplest possible 
set of axioms and rules. Their definition of the symbol “1” gives a flavor of 
this immensely complex system:198

*52·01. 1 = α̂ {(∃x). α = ı′x} Df

*52·1. ⊢: α ∈ 1. ≡. (∃x). α = ı′x [*20·3.(*52·01)]

*52·11. ⊢: . α ∈ 1. ≡: (∃x): y ∈ α. ≡y.y = x [*52·1.*51·14]

In the first line, “1” is defined as the class of all α such that, for some x, α is 
equal to a class containing only x. The next two lines offer equivalent state-
ments of the definition. In contrast to Saussure’s account of signs, Russell 
and Whitehead treat this sort of definition as voluntary, presenting their 
system for consideration and leaving it to readers to choose whether or not 
to adopt it. To the extent that they did persuade, they were doing just what 
Saussure thought was impossible: exerting the power to alter signs.
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The difference comes down to what a definition is supposed to accom-
plish. The Russell-Whitehead system is not fully formal; it employs “primi-
tive ideas” that are left undefined, including the operations of Boolean 
algebra.199 Yet its definitions deal only with relations among the symbols 
and take the shape (like De Morgan’s proposed definition of subtraction) 
of equations. Unlike the linguistic prescriptivism that Saussure deplores, 
such formal definitions do not interfere with the semantic conventions that 
are established in human communities; whatever preexisting associations 
may accompany the symbol 1 are permitted to lurk in the background, 
helping students learn the system, providing intuitions to guide its use, 
and easing translation between the formal notation and the languages of 
other disciplines. This way of thinking differentiates modern formal lan-
guages from what symbolic notations were before the nineteenth century. 
As much as axioms masquerade as an absolute beginning, formal languages 
do not aim at a revolutionary break with established ways of thinking. In-
stead, they serve as guarantors of a disciplinary rigor that must be balanced 
with the cultivation of human practices—notational conventions, informal 
explanations, and educational methods—that make the symbols compre-
hensible to people.

It was the undeniable importance of these human matters that led Flo-
rian Cajori to research the history of mathematical notations in the 1920s. 
I have already cited Cajori’s 1929 book as a secondary source, but the time 
has come to place it in its historical context. Cajori states that his goal is to 
determine what history can tell us about what makes for good notation. He 
sums up one of his main conclusions:

Individualism a failure.—As clear as daylight is the teaching of history 
that mathematicians are still in the shadow of the Tower of Babel and 
that individual attempts toward the prompt attainment of uniformity of 
notations have been failures. Mathematicians have not been profiting by 
the teachings of history. They have failed to adopt the alternative proce-
dure. Mathematical symbols are for the use of the mathematical commu-
nity, and should therefore be adopted by that community. The success of 
a democracy calls for mass action.200

Cajori goes on to recommend an international committee on the model 
of the International Congress of Electricians, which, in Paris in 1881, pro-
pounded international standards for electrical units of measurement. The 
only way to establish uniformity, he argues, is by “breaking the infatuation 
of extreme individualism on a matter intrinsically communistic.”201

In his preference for intentional planning over tradition, Cajori exhib-
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its attitudes toward progress that we might call modernist. In language 
reminiscent of Ezra Pound, Cajori deplores the proliferation of conflict-
ing notations: “O Goddess of Chaos, thou art trespassing upon one of the 
noblest of the sciences!”202 He also laments the hesitancy of mathemati-
cians to adopt new symbols, as in Descartes’s notation for exponents, 
which was not universally adopted for more than fifty years. He attributes 
this hesitancy to the “force of habit”; that seventeenth-century mathemati-
cians actively valued tradition and viewed “innovation” as a bad thing does 
not seem to occur to him.203 “In such redundancy and obsoleteness,” he 
concludes, “one sees the hand of the dead past gripping the present and 
guiding the future.”204 Cajori’s historiography is devoid of the providential 
overtones we find in Peacock’s early nineteenth-century history of arith-
metic, instead emphasizing the practical need for mathematicians to take 
matters into their own hands and establish a common language. Standards 
institutions are supposed to liberate the present from the past by replacing 
haphazardly developing conventions with ones based on agreements that 
are both intentional and collective.

Toward standardization was, indeed, the way things would go in the 
twentieth century. Rhetoric much like Cajori’s would recur in the work 
of the computer scientist Edsger Dijkstra, who called for his discipline to 
shed the baggage of the past. But the conversation about formal languages 
underwent another fundamental change just two years after the publica-
tion of Cajori’s book. The advent of Kurt Gödel’s incompleteness theo-
rems in 1931, with the work of Alonzo Church and Alan Turing following 
close behind, dashed all hopes of a self-sufficient mathematical system of 
the sort Russell and Whitehead thought they had constructed. Gödel’s re-
sults did not undo the distinction between formal and natural languages, 
but they did show that formal rules can never suffice to keep systems out-
side of history. This finding would ultimately have implications not just for 
pure mathematics but also for a technology of great social importance: the 
algorithm.
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Mass Produced  
Software Components

We don’t need paintings or
Doggerel written by mature poets when
The explosion is so precise, so fine.
Is there any point even in acknowledging
The existence of all that? Does it
Exist? Certainly the leisure to
Indulge stately pastimes doesn’t,
Any more. Today has no margins, the event arrives
Flush with its edges, is of the same substance,
Indistinguishable. “Play” is something else;
It exists, in a society specifically
Organized as a demonstration of itself.

—John Ashbery, “Self-Portrait in a Convex Mirror”

The Pur ification

Circa 1900, algorithm usually meant one of two things: a venerable set of 
calculating techniques commonly taught in elementary school or an ab-
stract type of algebraic structure that few nonmathematicians would ever 
encounter. Circa 2000, algorithms were an economic engine, enacted in the 
servers of the recently founded Google and in a growing number of home 
computers. The idea of algorithm that solidified in the late twentieth cen-
tury exists in a complex relation to the story I have told in this book. One 
thing that was new (since the plans of Charles Babbage and Ada Lovelace 
had gone unfulfilled) was the widespread use of programmable computers, 
which certainly changed the task of describing procedures. Precision takes 
on a new meaning when working with a machine that does exactly what it 
is told, no questions asked. The theory of algorithms also came to reflect 
the institutional pressures of the post–World War II period: the competing 
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interests of universities, businesses such as IBM, and military institutions, 
along with the persistent background noise of the Cold War.

But for all that changed in the twentieth century, the theory of algo-
rithms shows the continuing influence of the subject–object divide that 
transformed symbolic algebra in the nineteenth. As I discussed in chap-
ter 4, George Boole’s work of the 1840s restricted logic to the formal as-
pects of reasoning, excluding the many other emotional and cultural fac-
tors that went into the formation of human thought. Whereas earlier 
mathematicians had attempted to ground their methods on clear concep-
tual definitions, algebraists in Boole’s time reversed the terms: the rules of 
algebra, to paraphrase George Peacock, would determine the interpreta-
tion of the symbols and not the other way around. Much like algebra for 
Boole and Peacock, modern algorithms may be interpreted in multiple 
ways, constrained only by their formal qualities. A typical network analysis 
algorithm, for instance, says nothing about what the network represents; 
it could apply equally well to a road map or to a diagram of family rela-
tionships. As formalism detached pure mathematics from physical notions 
of magnitude and quantity, modern algorithmic thinking sets procedures 
apart from the concrete situations in which they are applied and the con-
ceptual means by which people understand them—a division that contrib-
uted greatly to making algorithms the powerful and dangerous force they 
have become.

The emergence of this style of thinking is difficult to localize geographi-
cally. The first detailed study of the topic, A. A. Markov Jr.’s 1954 book 
Theory of Algorithms, came from the Soviet Union. Markov’s book was 
translated into English, with US government sponsorship, by the Israel 
Program for Scientific Translations; the translation was published in 1961, 
although some Americans learned of Markov’s work prior to this time.1 
This scientific exchange continued for decades. In 1979, Andrei Petrovich 
Ershov and Donald E. Knuth organized an international symposium that 
brought both Western and Soviet computer scientists on a “pilgrimage,” 
as Knuth called it, to the presumed homeland of the mathematician and 
astronomer Muḥammad ibn Mūsā al-Khwārizmī—the Khorezm region 
in Uzbekistan, then part of the USSR—to discuss “Algorithms in Modern 
Mathematics and Its Applications.”2 Participants debated a range of ques-
tions, such as how to define algorithm and whether algorithmic methods 
were fundamentally different from algebraic ones. The thinking on the two 
sides of the Iron Curtain showed different affinities—Soviet computer sci-
entists were more influenced by Markov’s theory, which was probably not 
of decisive significance in the West—but the common ground was not in-
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substantial, and so the concept of algorithm cannot be said to be specific to 
Western countries or capitalist economies.

The theory of algorithms did, however, come to reflect tensions that 
existed in Cold War–era capitalist institutions. In the United States, some 
of the first programmable computers were developed at universities and 
government research facilities, although IBM had a stake from early on. As 
the role of private enterprise increased in the 1950s, computer researchers 
expressed resentment over the perceived intrusion of for-profit businesses 
into their field. Some major figures in early computer science, especially in 
Western Europe and to some extent in the United States, were academics 
more interested in pure mathematics than in practical applications. This 
devaluation of practicality fit the value hierarchies of academe. Much like 
algebraists in the seventeenth century, early programmers faced the ac-
cusation that their work was a mere practical skill, and they had to justify 
its place among the university disciplines. In industry, too, programmers 
faced pressure to develop their work into a form of engineering, which 
meant eschewing ad hoc solutions and informally shared “folklore” in favor 
of systematic methods based on scientific principles.

As I show in this chapter, the concept of algorithm, as the word came 
to be used in computer science, assuaged these disciplinary anxieties by 
creating a bridge between practical computation and the lofty theories 
of mathematics and formal logic. In response to the perception that their 
work lacked rigor, some early programmers sought to formalize compu-
tational procedures so that their correctness, efficiency, and elegance 
could be analyzed mathematically. This approach faced opposition from 
others (often working in military and commercial institutions rather 
than universities) who emphasized the importance of communication 
and teamwork—aspects of programming that formal approaches were ill 
suited to address. The discipline ultimately settled on a compromise. By 
the 1980s, programming languages had come to distinguish algorithmic 
logic from the “human factors,” as they came to be called, by which teams 
could communicate and systems be made comprehensible to people. This 
distinction effectively bracketed the political questions that had attended 
symbolic methods prior to the rise of formalism, establishing, in terms 
similar to those employed by Boole, a disciplinary line between the pu-
tatively logical aspects of computer code and the social complexities of 
communication.

In assembling a theory of algorithms, computer scientists referred to a 
conversation about computation that had begun slightly before the com-
puter era. In the 1930s, Alonzo Church, Emil Post, and Alan Turing had 
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independently developed mathematical models of calculation (Church’s 
term), problem solving (Post’s), or computation (Turing’s).3 Church’s 
theory defines mathematical functions using equations, which may then 
be transformed by rules that he calls an “algorithm.” The models of Post 
and Turing are based on analyses of the mental processes undertaken by 
human computers. Although they responded to questions in pure math-
ematics, these theories contain elements that were later adopted by pro-
gramming languages: Church contributed a new notation for functions, 
whereas Turing showed the possibility of virtualization, of a machine that 
could simulate another machine. Church and Turing provided, more-
over, a framework for reasoning mathematically about the properties of 
algorithms.

The papers of Church, Post, and Turing did not, however, provide ex-
plicit definitions of algorithm; indeed, Turing’s paper did not use the term 
at all.4 One of the first modern explications of the term appeared in a 1943 
paper by Church’s student Stephen Kleene, who uses algorithmic theory 
to refer to methods for deciding whether propositions of certain types are 
true or false.5 This sort of “theoretical conquest,” as Kleene puts it, has been 
obtained for propositions of the form “a is divisible by b,” since we have a 
reliable means of testing such statements for a given a and b.6 Markov went 
into greater depth in his Theory of Algorithms, giving both informal and for-
mal definitions. Informally, algorithms are procedures with three charac-
teristics: definiteness, generality, and conclusiveness.7 That is, they must 
be precisely defined, must be applicable to a range of inputs, and must reli-
ably produce the desired output given a proper input. Markov’s book pre
sents a formal theory of algorithms as collections of substitution rules for 
transforming sequences of characters—he repeatedly uses the nonsensical 
example “papagiglema”—drawn from a given alphabet.

The definitions of Kleene and Markov indicate not just a further ex-
pansion of the concept of algorithm but also a shift in priorities. Through 
the late nineteenth century, “algorithms” were primarily valued either as 
practical methods or as ways of making new types of mathematical entity 
such as real and imaginary numbers accessible. Now, the central issue was 
effectiveness—that is, the property of producing the correct result through 
operations that are precisely specified and that can be performed in a fi-
nite amount of time. The interest in effective procedures stemmed in part 
from a continuation of the long-standing quest for a “directive method,” as 
Boole had called it, for discovering truths, but it also reflected a newfound 
awareness of the limitations of such projects. In 1931, Kurt Gödel had 
shown that any axiomatic system powerful enough to represent arithmetic 
must either be inconsistent or leave some problems undecidable.8 As Mar-
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kov points out, there was no need for a rigorous theory of computational 
procedures until the nonexistence of procedures for certain problems be-
came an issue.9 After Gödel, what could be computed and what could not 
became a pressing question, and the nature of computational rules gained 
a newfound theoretical significance.

The interest in algorithms between the 1930s and the 1950s responded 
to philosophical issues about the foundations of mathematics, which ini-
tially had little direct bearing on practical computation. But the term al-
gorithm also had a more workaday meaning at the time. Starting around 
1900, Euclid’s procedure for computing the greatest common divisor be-
gan, for the first time, to be called the Euclidean algorithm, and the word 
algorithm was also applied to the calculations for statistical methods such 
as least squares.10 A pamphlet from 1905 presents a series of “algorithms” 
for use in computing the locations of railway lines (figure 5.1). This usage 
was atypical; such instructions were more often called computing plans. 

Figure 5.1.  A computational procedure for use in railroad surveying. From J. C. L. 
Fish, Mathematics of the Paper Location of a Railroad (New York: M. C. Clark, 1905), 
16. This procedure computes the equation of a line based on the coordinates of two 
points, using base-ten logarithms for division and multiplication; one might compare 
it to chapter 1’s figure 1.6 from more than two centuries before. The purpose of writing 
down the procedure step-by-step like this, as Fish explains, is to further the “economy of 
time and effort” by making the computations into “largely mechanical processes” (12).
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Yet calling them algorithms would not have been a major conceptual leap. 
Even though mathematicians from G. W. Leibniz to Ernst Schröder had 
appropriated the word algorithm to refer to algebra-like systems, its origi-
nal meaning was not forgotten. The medieval algorism had provided tech-
niques for solving numerical problems, and extensions of these techniques 
were now of widespread importance in engineering, accounting, and es-
pecially the growing field of statistics, which by 1906 had large teams of 
human computers cranking away at Brunsviga adding machines.11

By the later twentieth century, these theoretical and practical senses of 
algorithm had collided. Algorithms, as they are studied in computer sci-
ence, are at once abstractions that may be analyzed by logicomathematical 
means and instructions for solving problems. This conceptual hybrid had a 
genealogical connection to mathematics, but it was also turning into some-
thing new, and defining it became something of a cottage industry. In his 
multivolume work The Art of Computer Programming, the first installment 
of which was published in 1968, the computer scientist Donald E. Knuth 
gives a definition based on five criteria, which I will discuss in detail later: 
finiteness, definiteness, input, output, and effectiveness.12 In their 1969 
textbook, Alexandra I. Forsythe and her collaborators compare algorithms 
to recipes and dance choreographies, both of which break complex pro-
cesses down into simple steps.13 Three years later, Harold S. Stone offered 
another informal gloss: “any sequence of instructions that can be obeyed 
by a robot.”14 At the symposium in Uzbekistan, the Soviet mathematicians 
Vladimir Uspensky and Alexei Semenov presented a very different take 
on the issue, arguing that algorithms have a semantic character absent in 
other mathematical entities.15 Unlike equations, that is, algorithms take the 
form of imperative statements, urging whoever will listen: do this! More 
important than definitions, these texts assembled a theory of algorithms 
that provided methods of reasoning about the processes that by the end 
of the century would become one of the dominant technologies of an age.

This chapter offers an account of how the idea of algorithm came to 
be enshrined in the discourse of computer programming. After consider-
ing relevant developments in the early twentieth century, I focus on the 
early programming language ALGOL, whose name is usually explained as 
algorithmic language. Starting around the time of ALGOL’s introduction 
in 1958, programmers adopted the term algorithm to refer to something 
midway between folk knowledge and mathematical entity: computational 
procedures that could be reused by multiple people and for multiple pur-
poses. At first, the word was treated as a synonym of program, but by the 
1980s it had come to refer to something more ethereal, to abstract proce-
dures considered apart from their implementations and conceptual inter-
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pretations. This abstraction depends on a disciplinary boundary: on the 
one side is the “hard logic” of algorithmic systems, on the other the “soft” 
concerns of making those systems work in social contexts. This division, I 
hope to show, is fundamental to the design of ALGOL and its many succes-
sors, including Python, C++ and numerous other programming languages 
in common use today, and it contributes to the ease with which algorithms 
may be transferred from one application context to another. Before I can 
explain this point fully, I must discuss some aspects of the logical and 
mathematical ideas on which early computer science drew.

Pa r a dox a nd the Indiv idua l W ill

The standard account of what happened to logical formalism goes some-
thing like this. Bertrand Russell and Alfred North Whitehead’s monumen-
tal effort in Principia struck readers as unsatisfactory, and David Hilbert 
and Wilhelm Ackerman tried to do better.16 Their project was supposed 
to produce a complete and consistent set of axioms along with a clearly 
defined procedure (one can now say with only slight anachronism, an al-
gorithm) for deciding whether given mathematical statements were true. 
An early critique of Hilbert’s project appeared in the work of L. E. J. Brou-
wer, who advocated for an antiformalist approach he called intuitionism, 
and whose work would be an influence on Turing; this school of thought 
rejects the law of excluded middle and thus does not accept the existence 
of any mathematical entity that cannot be constructed through some re-
alizable procedure.17 Gödel, Church, and Turing, within the span of just a 
few years, proved key elements of the Hilbertian program impossible. In 
papers published in 1936, Church and Turing proved independently that 
Hilbert’s decision algorithm cannot exist: any formal system must leave 
some problems unsolvable. The advent of paradox produced, as a side ef-
fect, the first precise definitions of computation, which would later form a 
central part of theoretical computer science.

Caught up in this intellectual tumult was yet another utopian attempt to 
replace words with symbols. One of Gödel’s mentors at the University of 
Vienna was Rudolf Carnap, whose 1928 book The Logical Structure of the 
World, usually referred to as the Aufbau (after its German title, Der logische 
Aufbau der Welt), outlines a “constructional system” in which complex 
concepts are reduced to simpler ones.18 This project, which Carnap likens 
to Leibniz’s universal characteristic, is supposed to unify the sciences by 
placing them all on the same conceptual basis.19 While this project is not as 
significant to the technical theory of algorithms as the work of Church and 
Turing, it is worth considering first because it shows how the Leibnizian 



170  ‹   Chapter five

program was faring in the early twentieth century. Following the practice 
of Russell and Whitehead, Carnap defines symbols using equations:

114. Similarity Between Qualities (Sim)
Construction: Sim =Df  α̂ β̂{α, β ∈ qual. α ↑ β ⊂ Ps}
Paraphrase: Two quality classes are called similar if each element of 

one of them is part similar to each element of the other.20

The equation is supposed to construct a concept of similarity of qualities by 
showing how statements using this concept can be transformed into ones 
that involve only previously defined concepts—namely, quality and part 
similarity. Carnap managed to create such formulae only for what he took 
to be very basic concepts; when he advances to physical reality and “cul-
tural objects,” he gives only a sketch.

At least in its aims, the Aufbau was as close as anyone came to reviv-
ing the Marquis de Condorcet’s utopian project. Like the marquis, Car-
nap wanted to enact social leveling by expelling received dogmas in fa-
vor of scientific rationality. Carnap’s early work consisted of “conceptual 
engineering”—an attempt to build a better system of concepts which he 
saw as a continuation of the Enlightenment project of the Encyclopédie.21 
The philosopher Richard Jeffrey later described Carnap as a voluntarist; for 
Carnap’s purposes, language was a conceptual technology that ought to be 
judged by its utility for particular purposes and improved when possible.22 
Much like the marquis, Carnap regarded history as a story of progress to-
ward both technological development and political equality, progress that 
would be embodied in a scientific universal language.

Yet Carnap did not reverse the narrowing of the scope of logic that oc-
curred in the nineteenth century. Near the opening of the Aufbau, he notes 
that he will discuss some issues from the “traditional viewpoint,” meaning 
the preexisting language in which people discussed science before his in-
tervention.23 He assigns no epistemological significance to this viewpoint; 
“merely traditional” concepts, he later states, are “objectively speaking, 
merely accidental (just like the historical boundaries of a state).”24 Yet it 
is necessary to engage with these historical legacies to make the new lan-
guage comprehensible to people. This concession to tradition differenti-
ates Carnap from Condorcet, who wanted to avoid making any use what-
soever of prior conventions. Although Carnap was overtly hostile toward 
Immanuel Kant, the Aufbau’s negotiation with “tradition” betrays the 
influence of the fundamental distinction that transformed logic in the af-
termath of Kant’s Critique of Pure Reason: a distinction between the way 
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an individual arrives at knowledge and the knowledge itself. “Even though 
the subjective origin of all knowledge lies in the contents of experiences 
and their connections,” Carnap writes, one can still “advance to an inter-
subjective, objective world, which can be conceptually comprehended 
and which is identical for all observers.”25 Science, for Carnap, need not 
achieve total autonomy from received ways of thinking to be universal; in-
stead, the subject–object divide provides a safe place to stow the influence 
of culture.

Gödel’s proof forced Carnap to regroup, and his later efforts took a dif-
ferent tack from that of the Aufbau. He made a second major attempt at a 
universal language in his 1934 book The Logical Syntax of Language. The ti-
tle change is significant: Carnap is no longer claiming to limn the structure 
of the world. Instead, he has moved further into voluntarism, maintaining 
“that we have in every respect complete liberty with regard to the forms of 
language; that both the forms of construction for sentences and the rules 
for transformation  .  .  . may be chosen quite arbitrarily.”26 This “liberty” 
enables experimentation with forms whose meanings are not yet known: 
“let any postulates and rules of inference be chosen arbitrarily, then this 
choice, whatever it may be, will determine what meaning is to be assigned 
to the fundamental logical symbols.”27 Carnap presents this as a new idea, 
although it is not wholly dissimilar to the approach George Peacock had 
taken in algebra a century before. The difference is in the extent to which 
Carnap permitted the choice of rules to be arbitrary rather than governed 
by universal laws of correctness or truth. Whatever Ferdinand de Saussure 
may say about natural languages, formal languages work by rules that are 
wholly up to the individual.

In Logical Syntax, Carnap set the bounds of this voluntarism by means 
of a distinction between the object language and the syntax language.28 The 
object language is the new symbolic system being constructed; the syntax 
language (also called the metalanguage) is the language used to describe 
it—that is, German or English, supplemented with a few special symbols. 
A hint of this division may be found in the Marquis de Condorcet’s remark 
that it would sometimes be necessary to use words to explain the meanings 
of symbols; the marquis was also, one might further note, actually using 
French to describe his system. But Carnap was working within a subject–
object division that was not in place for his precursor. Condorcet’s uni-
versal language was supposed to be comprehensible to all because of its 
grounding in natural reason; how people came to understand the symbols 
was thus, for him, an epistemological matter just as much as the structure 
of the system itself. Carnap, by contrast, treated the syntax language more 



172  ‹   Chapter five

pragmatically: how the symbols are initially explained is a merely sub-
jective matter irrelevant to the objectivity of the object language, which 
stems, instead, from its governance by formal rules.

Carnap’s utopian plans would not be realized, although they do have an 
oblique relation to computer science. Along with contemporaries such as 
Alfred Tarski, Carnap contributed to an idea that would play a central role 
in the ALGOL project—the idea of a formal language in which, as Tarski 
put it, “the sense of every expression is uniquely determined by its form.”29 
Carnap was, however, concerned less with computation than with pre-
cisely representing empirical knowledge, and in this regard his systems 
are different in purpose from programming languages.30 Turing’s work, 
along with that of Post, Church, and Kleene, provided a bridge between 
the theory of formal languages and computation. Although Turing chafed 
at the rigidity of totalizing systems like Carnap’s Aufbau, his model of com-
putation inhabits much the same subject–object dualism by which Carnap 
divided the “objective” aspects of his system from historically situated hu-
man thought. Just as Carnap made concessions to the “traditional view-
point,” Turing left room for intuition, thus enabling mechanical processes 
to work together with human thought.

Turing’s model of computation is based on an imaginary device that 
later came to be known as the Turing Machine. This machine consists of a 
read–write head that moves left and right along a paper tape divided into 
discrete squares, reading, erasing, and writing symbols as it goes. At each 
point, the machine is in one of a finite number of states; its behavior is de-
termined by a table that specifies what it will do in each state, based on 
which symbol it reads from its current square on the tape. The state of the 
machine is supposed to represent the “state of mind” of a person perform-
ing a computation; Turing argues that a finite number of states is sufficient 
because if there were infinitely many possibilities, some of them would 
have to be “confused.”31 He describes the tape as “the analogue of paper,” 
meaning that, like the notebook of a mathematician, it provides a place to 
record the solution along with “rough notes to ‘assist the memory.’”32 Us-
ing this conceptual model, Turing proved two seemingly contrary things. 
One is the existence of a “universal computing machine”—a Turing Ma-
chine that can simulate any other Turing Machine by reading an encod-
ing of its table from the tape.33 The other is the existence of problems that 
cannot be solved by any rules precise enough to be performed by such a 
machine.

Some popular accounts have incautiously described Turing’s model as 
a “universal machine,” suggesting that it could accomplish anything and 
everything, but for Turing the model functions more as a way of setting 
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disciplinary lines—as a statement about what counts as computation and 
what does not. Turing’s particular way of defining computation aligns it 
strongly with the original algorism. To begin with, the form of “writing” 
employed by Turing Machines involves sequences of discrete symbols, not 
any sort of pictorial representation—not (say) lines whose relative lengths 
represent numerical relations. In this regard, Turing’s theory is aligned 
with the Hindi–Arabic numeral system and against the classical geometric 
tradition founded in the work of Euclid. Moreover, a Turing Machine is 
limited to a fixed, finite vocabulary of symbols—there is no possibility for 
the machine to coin, as it were, a new symbol in the course of its operation. 
Turing justifies this limitation on the grounds that the basic symbols may 
be combined into infinitely many “compound symbols,” a practice that he 
links to numerals and alphabetical writing: “an Arabic numeral such as 17 
or 999999999999999 is normally treated as a single symbol. Similarly in any 
European language words are treated as single symbols (Chinese, however, 
attempts to have an enumerable infinity of symbols).”34 The more distinct 
symbols we introduce, as Turing has it, the greater the chance that two of 
them will look alike and thus become confused; expressing data through a 
small number of basic symbols thus maximizes clarity.

Turing’s view of writing has a further idiosyncrasy. When the machine 
“reads” a square of the tape, all it has to do is identify the type of symbol 
written there and follow the corresponding rule: if the symbol is “A,” do 
this, if the symbol is “D,” do that. The shapes of the symbols only matter in 
their distinguishability from each other; their specific visual qualities—the 
fact that 9 resembles an inverted 6—are of no relevance, nor are any cul-
tural traditions that may exist regarding their use, except insofar as those 
traditions are in some way reflected either in the data or in the design of the 
rules. As a result, one can easily set up a Turing Machine that violates es-
tablished semantic practices—one can create an adding machine, say, that 
swaps the digits 1 and 2, so that 19 + 1 = 32. Such a system might be so 
counterintuitive as to be effectively useless, but such considerations have 
no place in Turing’s theory of computation. In their use of symbols, Tur-
ing Machines are, to coin a word, aconventional: nothing, not even social 
agreement, places any restriction on which symbols may play which roles 
in the system.

This aconventionality must, however, have limits. Clearly, some aspects 
of computational practices (be they human or mechanical) are influenced 
by the conventional meanings of symbols: people do not usually choose 
to construct systems that swap 1 and 2, even if they theoretically could. 
It is here that the influence of the subject–object divide becomes appar-
ent. With respect to the programming of his imaginary machine, Turing 
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was, like the Carnap of Logical Syntax, a voluntarist: he viewed compu-
tational rules as objects of individual choice, to be selected based on how 
well they suit a particular purpose. Turing states this view most explicitly 
in his doctoral thesis, published in 1938. In the thesis, he considers a po-
tential response to Gödel’s incompleteness theorem. Given a logic system 
L, one constructs another logic system L1 that adds some additional ele-
ment; one  then applies the same procedure to L1 to produce L2, and so 
forth. By exerting judgment about how far up this ladder to ascend, one 
can solve at least some problems that cannot be addressed within the origi-
nal system L.

This argument responds to incompleteness, in essence, by backing away 
from formalism. As Turing explains, his purpose is “choosing a particular 
constructive system of logic for practical use”; as a result, formalizing his 
method “would be putting the cart before the horse.”35 This argument res-
onates with the work of Turing’s mentor Ludwig Wittgenstein, who would 
later argue that rules can never be self-sufficient—one always would need 
more rules for how to follow the rules.36 Turing even considers some rules 
that would be impossible to follow, such as a hypothetical Turing Machine 
with access to an “oracle” that can instantly answer certain (possibly un-
computable) questions.37 Which computational systems are usable and 
useful cannot be settled by applying more formal rules, which would only 
increase the level of abstraction without resolving anything. (It is easy to 
prove by contradiction that if the decidability of a problem is itself unde-
cidable, we can never find that out.) Like late-period Wittgenstein, Tur-
ing resolves this regress by abandoning the search for absolute foundations 
and instead situating systems within their social contexts. Ultimately, for 
Turing, computational rules answer to the human purposes of the people 
who use them, which they either serve or do not.

While some later commentators have presumed that Turing saw the hu-
man mind as a sort of biological Turing Machine, the thesis suggests that, at 
least in 1938, he saw it more as a somewhat unreliable oracle machine—as 
a Turing Machine supplemented by an additional element that cannot be 
reduced to mechanical rules.38 Determining the truth or falsity of math-
ematical propositions, he writes, involves “a combination of two faculties, 
which we may call intuition and ingenuity.”39 Intuition involves “making 
spontaneous judgments which are not the result of conscious trains of rea-
soning,” whereas ingenuity involves “aiding the intuition through suitable 
arrangements of propositions, and perhaps geometrical figures or draw-
ings.”40 The purpose of formal logic, according to Turing, is to remove the 
“arbitrariness” introduced by the fact that intuition varies from person to 
person.41 In “pre-Gödel times,” he continues, it was believed that formal-
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ism could be taken so far as to eliminate intuition altogether, but this is 
now seen to be impossible.42 His alternative tactic is to embrace the role 
of intuition and develop practices in which “not all the steps in a proof are 
mechanical, some being intuitive.”43

This aspect of Turing’s work would have an underrated influence on 
the disciplinary practice of computer science, which, as we will see, grants 
an important role to something called “intuition” or “common sense” in 
justifying algorithms. Turing’s model of computation was, however, only 
one of several to appear around the same time, and there was more to the 
emerging theory of computation than his generalization of the Hindi–
Arabic algorism. The contributions of Church and his student Kleene were 
based, instead, on the idea of a recursive function—that is, a function de-
fined in terms of itself in a way that is ultimately resolvable into a single 
value. A simple example would be the following definition of a factorial:

factorial(x) = x · factorial(x − 1) x > 1
factorial(x) = 1 x = 1

Church’s 1936 paper introduces a notation called the λ-calculus (or lambda 
calculus), which provides a way of constructing functions on the spot 
within a formula: instead of defining f with the separate equation f (x) = M, 
one could use λx[M] to refer to this function without giving it a name. Vari-
ants of this notation are now used to construct “anonymous” functions in 
a number of programming languages, including Python. Turing found out 
about Church’s work while his 1936 article was under review and added 
an appendix proving that the two models are equivalent.44 In spite of this 
formal equivalence, the models are based on different types of symbolic 
method. If Turing follows the original algorism by describing step-by-step 
instructions for arranging digits, Church’s calculus has more kinship with 
algebra, involving the transformation of symbolic equations that include 
letters representing unspecified values.

It is notable that Church, not Turing, is the one who used the word al-
gorithm in his 1936 paper. Church’s use of this term is not quite in line with 
the modern sense, and so it is worth examining. The λ notation is often 
taken as a means of formalizing algorithms by representing them as re-
cursive functions, but Church does not present his calculus this way. “It is 
clear,” he writes, “that for any recursive function of positive integers there 
exists an algorithm using which any required particular value of the func-
tion can be effectively calculated”; specifically, the algorithm consists of 
performing a reduction procedure until the desired result is found.45 If we 
think of recursive function definitions as computer programs, then this “al-
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gorithm” is not the program itself—it is a method for running programs. In 
this regard, Church’s work exhibits the continuing association of the word 
algorithm with the manipulation of formulae. While Church was undoubt-
edly aware of the original sense of the word, he was also deeply engaged 
with the work of Schröder, for whom “algorithms” were systems of alge-
braic relations.46 Church does not use the word in Schröder’s idiosyncratic 
sense, but his usage can still be placed in the algebraic lineage going back 
to Leibniz.

That one must think of computing machines in terms of either of these 
models is not self-evident. Babbage had already imagined a programma-
ble computer a century before Church and Turing, and the designers of 
some early computers, such as Konrad Zuse’s Z1 (1936–38) and the IBM 
Mark I (1939–43), were initially unaware of their work.47 John Von Neu-
mann, often held up as the designer of the standard computer architecture, 
knew Turing personally and was deeply familiar with his paper on the de-
cision problem, but it is not clear that Turing’s imaginary machines had 
any strong influence on his plan.48 Yet Church and Turing did eventually 
become common reference points for the discipline of computer science. 
The most important thing they provided was less a paradigm for the design 
of actual machines than a theoretical framework for reasoning mathemati-
cally about what came to be called “algorithms.”

This new discipline would not be firmly established until well after Tur-
ing’s death in 1954. Historians of computation write of a “software crisis” 
brought on, starting in the 1960s, by a perception that programs were 
growing too complex to be trusted. One triggering event was the failure of 
the Mariner 1 spacecraft in 1962, apparently due to a coding mistake.49 In 
1968 and ’69, NATO held conferences on “software engineering” at which 
participants proposed ways of preventing such errors and making large 
systems more manageable.50 It was amid this space-age ferment that the 
word algorithm became a major disciplinary term. The idea of algorithm, 
which in the time of Church and Turing had been associated more with 
pure mathematics than with computing machines, promised to transform 
programming from a practical skill into a science by subjecting procedures 
to rigorous mathematical analysis. This transformation was closely tied to 
the development of one of the most influential systems ever to claim the 
mantle of formalism: the programming language.

A n A lgor ithmic La nguage

The first programmable computers were controlled through punch cards, 
paper tape, or direct manipulation of electrical connections. In modern 
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computers, most programming is done in abstract languages such as C++, 
JavaScript, and Python that are designed not just for directing machines 
but also for presenting computational processes in a human-readable form. 
It would be a mistake to frame programming languages too uncritically as a 
successor of the symbolic methods I have discussed in this book; computer 
code, as Mark Priestley has emphasized, serves a different purpose from 
the notation used in mathematical proofs.51 One difference is the assign-
ment operators that, in some programming languages, instruct the com-
puter to change the value of a variable—a practice that is absent in modern 
algebra.52 Warren Sack has argued for an alternative genealogy in which 
programming languages descend from the “work languages” by which 
Enlightenment thinkers codified knowledge of the mechanical arts.53 But 
algebraic symbols did play a major role in the design of programming lan-
guages, and computer code raises some of the same semiotic questions that 
arose in universal algebra schemes. Programming languages must combine 
technical rigor with communicational clarity, and the particular way they 
came to divvy up these functions draws on the subject–object dualism that 
first emerged in the time of Boole.

While programming languages always combined computation and com-
munication, the boundary between the two was initially malleable. Very 
early programmers represented computational processes through nota-
tions such as flowcharts, which originated in the work of Herman H. Gold-
stine and John Von Neumann in the late 1940s.54 Yet these notations could 
not be fed into a computer without first being translated into numerical 
codes. In her 1952 article “The Education of a Computer,” Grace Hopper 
argues that the need for this translation has become a tedious distraction; 
rather than focusing on the problem at hand, the mathematician “has be-
come a programmer.”55 Hopper thus proposes the creation of what we now 
call a compiler—a program that automatically translates a human-readable 
sequence of instructions into a machine-executable form. With the intro-
duction of this translator, she writes, “the programmer may return to be-
ing a mathematician.”56 As Priestley, Nofre, and Alberts have shown, the 
terminology was different in this early phase of electronic computation.57 
Hopper only uses the word program when referring to machine code; her 
term for the human-readable form is “computer information.” The “pro-
grammer,” in her language, is the agent—typically, at this point, a woman—
whose task is to translate mathematics into machine code. Once this pro-
cess is automated, the machine, not the human, is the programmer.58

Hopper’s article marked an early step toward enabling people to con-
trol machines through something resembling language. She concludes 
that the computer she had been working on, the UNIVAC, currently has “a 
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well grounded mathematical education fully equivalent to that of a college 
sophomore” and hopes that it will soon advance to the graduate level.59 
The capacities of computers would indeed expand, although not always 
in the direction she predicted. Starting in 1955, Hopper directed the de-
velopment of two programming languages, MATH-MATIC and FLOW-
MATIC; the latter evolved into COBOL, which stood for “COmmon Busi-
ness Oriented Language.”60 In spite of her focus on mathematics in “The 
Education of a Computer,” FLOW-MATIC and COBOL code contains 
little mathematical notation, instead taking the form of English impera-
tive sentences such as “ADD a TO b.” As the name COBOL indicates, the 
language was primarily intended for business uses, and its design reflected 
the communicational conventions of bureaucrats at institutions such as the 
Pentagon.

As the example of COBOL shows, programming languages have no 
necessary connection to mathematical symbols. Code could just as well 
draw on the English language. Mathematical notation did, however, be-
come a major source for programming languages. In 1954, an IBM group 
led by John Backus drafted the first specification of the programming lan-
guage FORTRAN, which stood for “The IBM Mathematical FORmula 
TRANslating system”; the language became commercially available in 
1957.61 FORTRAN arose in part in response to the question: “Can a ma-
chine translate a sufficiently rich mathematical language into a sufficiently 
economical program at a sufficiently low cost to make the whole affair 
feasible?”62 The concern with economy is crucial. Some computer opera-
tors were skeptical of “automatic programming” systems because, at least 
with very early compilers, automatically generated machine code was of-
ten slower both to prepare and to execute than handwritten code. Despite 
these concerns, compiled languages such as COBOL and FORTRAN had 
major advantages in regard to human intelligibility that encouraged their 
widespread adoption. What is more, a standardized programming lan-
guage would (at least in theory) enable the same instructions to be used 
with different models of computer, making code easier to share and reuse.

This standardization became a primary focus of another, somewhat 
different programming language: ALGOL. Like LISP (LISt Processor), 
which appeared around the same time, ALGOL was developed largely by 
academics rather than employees of business or military institutions, and 
it reflected a desire to apply the rigor of mathematics and formal logic to 
computer programming. The first version, ALGOL 58, was designed by a 
committee organized at the 1957 joint meeting of the US-based Associa-
tion for Computing Machinery (ACM) and the German Society of Applied 
Mathematics and Mechanics (GAMM) in Zürich.63 ALGOL went through 
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two later revisions known as ALGOL 60 and ALGOL 68. The name 
ALGOL is usually explained as algorithmic language, although the original 
name was International Algebraic Language; a 1958 proposal described it 
as a “universal language for the description of computing processes” that 
followed the conventions of “mathematical formula notation.”64 ALGOL 
was supposed to serve not just as a compilable language like FORTRAN 
but also as a notation for publishing computational procedures in the jour-
nal Communications of the ACM, which launched in January 1958. While 
never as widely adopted as COBOL and FORTRAN, ALGOL influenced 
numerous programming languages that remain popular, including C, C++, 
and their many derivatives.

The adoption of the phrase algorithmic language (in German, algorith-
mische Sprache) was probably due to influence of the ALGOL committee 
member Heinz Rutishauser. Rutishauser had previously worked on the 
ERMETH, a computer developed by the Swiss Federal Institute of Tech-
nology starting in the late 1940s. In a 1955 journal article, he described a 
form of “algorithmic writing” by which users of the ERMETH could spec-
ify the computations they wanted done.65 Drawing on the work of Konrad 
Zuse, who had developed a sophisticated notation for computing plans 
called Plankalkül, Rutishauser’s system contained a number of ideas that 
would become elements of ALGOL, such as for loops and if–then state-
ments.66 That such languages should be called “algorithmic” was contro-
versial; Backus preferred the term “algebraic.”67 Yet the phrase algorithmic 
language eventually came to refer to a certain style of computer language—
one based on branching, looping sequences of instructions, written (in 
contrast to early versions of COBOL) in something resembling mathemati-
cal notation.

ALGOL’s official adoption by Communications of the ACM was, I would 
venture, a major factor in securing the widespread adoption of algorithm 
as a general term for computational procedures.68 Early ACM publica-
tions included numerous procedures, but they are referred to by various 
terms, including procedure, method, or subroutine, and often described in 
a combination of prose and symbolic notation. In the February 1960 issue 
of CACM, the journal added a new section called “Algorithms,” initially ed-
ited by Joseph Henry Wegstein of the US National Bureau of Standards. 
The section solicited readers to share programs and procedures as well as 
“certifications” of their effectiveness and critical feedback; to be eligible 
for inclusion, procedures had to be written in ALGOL and accompanied 
by an informal comment indicating what they do and how to use them. 
In a precursor of open-source licenses, the section included a copyright 
notice permitting free reuse. Most of the procedures addressed numerical 
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problems that would have interested mathematicians, although not all of 
them specifically dealt with numbers. It was in this venue that the famous 
Quicksort algorithm, which would later become a textbook mainstay, was 
first published.69

The goal of this section, as an editorial note explained, was to create a 
“library” of standard procedures that programmers could draw on.70 This 
accumulation of standard procedures—an underappreciated aspect of the 
concept of algorithm—would become a central principle of software engi-
neering. At the 1968 NATO conference, Malcolm Douglas McIlroy called 
for “mass produced software components,” which would make develop-
ment more systematic by providing a shared collection of modules that 
could be reused in various contexts.71 Although the CACM collection did 
not fully live up to McIlroy’s standards, it fit this general way of thinking 
by encouraging programmers to design procedures that could be repur-
posed beyond their initial applications. It is notable that, while they were 
published in ALGOL, the “algorithms” were not only used with ALGOL-
based systems—readers reported testing the procedures in other lan-
guages, such as FORTRAN.72 Creating this open forum encouraged people 
to view algorithms as a common stock of general solutions that could be 
reused in various programming languages, with various hardware, and 
for various purposes. It also encouraged reflection about what made for a 
good algorithm, since some editorial standards were needed; the section 
thus spurred on the development of a theory of algorithms.

The rise of ALGOL coincided with the increasing intellectual status of 
programming. Early in the computer era, hardware was viewed as a sub-
ject fit for engineers, whereas programming was denigrated as tedious 
and often coded as a feminine, secretarial practice.73 Now, academics 
were turning serious attention to it, and they had to justify its inclusion 
among the university disciplines. In a later article, Niklaus Wirth recounts 
the atmosphere of the University of California, Berkeley in 1963, where he 
worked on ALGOL. Wirth’s research group, he writes, faced resistance be-
cause “word passed that some of these people did neither know Ohm’s law 
nor Maxwell’s equations”—that is, they did not understand the electrical 
principles on which the machines were designed.74 Using a rhetoric that 
Wendy Hui Kyong Chun has discussed in detail, Wirth describes this situa-
tion as involving a kind of wizardry.75 “Looking at it from the distance, that 
compiler was a horror; the excitement came precisely from having insight 
into a machinery that nobody understood fully,” Wirth recalled. “There 
was the distinct air of sorcery.”76 This situation is the converse of the one 
algebraists faced in the mid-nineteenth century, when critics worried that, 
with the adoption of symbolic methods, the science was becoming a me-



Ma ss Produced Soft war e Components  ›   181

chanical practice rather than an intellectual one. Now, the physical basis of 
computation threatened to vanish in a cloud of abstraction.

In spite of this initial pushback, computer scientists eventually did over-
come their reservations about abstracting out machinery; “the essence 
of programming,” Wirth would later declare, “is abstraction.”77 The trend 
among ALGOL programmers at Berkeley, Wirth recalls, “was to discover 
the fundamental concepts of algorithms, to extract them from their various 
incarnations in different language features, and to present them in a pure, 
distilled form, free from arbitrary and restrictive rules of applicability.”78 
ALGOL was sometimes described as a problem-oriented language as op-
posed to a computer-oriented language.79 Its purpose was to enable com-
puter operators to turn their attention from circuitry to algorithms—that is, 
general procedures that do not depend on the nature of any particular ma-
chine. An example of this trend, according to Wirth, was Adriaan van Wijn-
gaarden’s description of the hypothetical Generalized ALGOL, which aimed 
(very much in the spirit of Charles Babbage) at “simplicity in generality.”80

Generalized ALGOL was never implemented, but the three main ver-
sions of ALGOL enact a form of generalization that would make Babbage 
proud. Its basic elements will be familiar to readers who know common 
modern programming languages, although there are some subtle differ-
ences.81 I will focus here on ALGOL 60 because it was the most popular 
version. ALGOL 60 programs usually employ variables, which are used to 
store data that (unlike algebraic variables) can change over time. The vari-
ables have types that must be declared, as in “integer A.” The values can be 
set using the assignment operator :=, as in “A := 5.” One can employ alge-
braic expressions on the right side of an assignment, although not on the 
left. The language also includes, among other things, if–then statements 
that perform operations only on certain conditions and for loops, which 
iterate through sequences of numbers. For instance, “for i := 2 step 1 until 
A do” will sequentially set i to each value from 2 to A (which we previously 
set to 5) by increments of 1, and perform the operation following do for 
each. We might assemble the above into the following complete program:

begin
integer A, B, i;
A := 5;
B := 1;
for i := 2 step 1 until A do

B := B × i;
print B;

end
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This will compute the factorial of 5—that is, the product of all the integers 
from 1 to 5—and then print its value to the screen.82

While this program can only compute the factorial of one specific num-
ber (e.g., 5), ALGOL code is usually organized into “procedures” that 
are intended to be applicable as widely as possible. Here, for instance, 
is a procedure from the “Revised Report on the Algorithmic Language 
Algol 60”:83

procedure Absmax (a) size: (n,m) Result: (y) Subscripts: (i,k) ;
comment The absolute greatest element of the matrix a, of size n by m is 

transferred to y, and the subscripts of this element to i and k ;
array a ; integer n, m, i, k ; real y;
begin integer p, q ;
y := 0 ;
for p := 1 step 1 until n do for q := 1 step 1 until m do
if abs(a[p, q]) > y then begin y := abs(a[p, q]) ; i := p; k := q end end 

Absmax

This procedure is a variant of the “high water mark” algorithm, the proce-
dure of finding the largest number in a list by going through the numbers 
one by one and keeping a record of the largest one yet. What makes the 
procedure applicable to a range of inputs and thus (by Markov’s informal 
definition) an algorithm is a certain kind of abstraction: the matrix to be 
processed is not specified but rather referred to only as a. This practice 
is the culmination of the analytical method François Viète introduced in 
1591—the use of arbitrary letters to refer to values that are left unspecified 
so as to present a result in its full generality.

In explaining this system, the creators of ALGOL drew on the idea of 
formal language that had solidified in the early twentieth century. One of 
ALGOL’s most influential innovations was the formal notation used to de-
scribe its syntax, which later came to be known as the Backus–Naur form. 
For instance, the if–then statement is defined as follows:84

〈if clause〉 ::= if 〈Boolean expression〉 then
〈unconditional statement〉 ::= 〈basic statement〉 | 〈compound statement〉 

| 〈block〉
〈if statement〉 ::= 〈if clause〉 〈unconditional statement〉

The first line indicates how an “if clause” may be constructed by placing a 
Boolean expression between an if and a then; the second provides a list of 
three options (separated by “|”) for constructing an “unconditional state-



Ma ss Produced Soft war e Components  ›   183

ment”; the third combines these two into a definition of “if statement.” In-
dicating an emphasis on precision, the section on syntax in the Revised Re-
port takes its epigraph from Wittgenstein’s Tractatus Logio-Philosophicus: 
“What can be said at all can be said clearly, and whereof one cannot speak 
thereof one must be silent.”85 Drawing on the work of logicians such as Tar-
ski, Backus also sketched out a formal semantics (never fully completed) 
that would specify the computational “meanings” of ALGOL programs—
that is, what they tell the machine to do.86

This approach to formalization has a peculiarity worth emphasizing. 
Like FORTRAN and COBOL, ALGOL allows for the use of words in 
identifiers—the names of variables and other program elements, such as 
the procedure name Absmax in the foregoing example. Yet the meanings 
of these words play no role in the computational semantics. The authors 
of the Revised Report list five example identifiers that seem calculated to 
emphasize their total arbitrariness: “q,” “Soup,” “V17a,” “a34kTMNs,” and 
“MARILYN.”87 “Identifiers,” they explain, “have no inherent meaning, but 
serve for the identification of simple variables, arrays, labels, switches, and 
procedures. They may be chosen freely,” provided that they do not inter-
fere with built-in features.88 The sample code mostly follows the conven-
tions of algebraic notation by using single letters for variable names, but 
it also annotates those letters with English words such as “size” and “Re-
sult,” for obvious reasons.89 The code, then, contains words, but its com-
putational “meaning” is wholly separate from whatever those words might 
convey to people.

On account of its standardizing ambitions, ALGOL was sometimes de-
scribed as an “Esperanto” of computing, a universal language for describ-
ing algorithms.90 A closer comparison, however, would be John Wilkins’s 
real character—the system of written symbols that were supposed to ex-
press universal ideas that were shared by everyone and that could therefore 
be read aloud in any spoken language. ALGOL 58 and 60 existed in three 
distinct “representations”: a standard “reference” form, a plaintext form 
designed for entry into machines, and a publication form that allows for 
niceties like Greek letters. The foregoing example is in the reference form. 
As the Revised Report explains, the three forms differ “only in the choice 
of symbols,” whereas “structure and content” are the same.91 Identifiers, 
likewise, could be swapped out at pleasure without affecting this struc-
ture. Like the real character, then, ALGOL seeks unity in multiplicity, rep-
resenting ideas that are common to all regardless of the particular words 
used to express them.

The limitations of this approach to universality became more ap-
parent in later discussions of ALGOL. The final version of the language, 
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ALGOL 68, was intended to exist in localized variants based on different 
languages—one could write if in the English version and если (jésli) in the 
Russian version.92 In some cases, English ALGOL ended up being used in 
contexts where other languages were spoken; one thus finds in Van Wijn-
gaarden’s ALGOL 68 code a mixture of English and Dutch. Consider these 
lines from a puzzle-solving program, which construct an array for keeping 
track of positions that are currently being used (gebruikt), then records the 
current time (tijd) using the system clock:93

[1 : 12] 'BOOL' GEBRUIKT;

'FOR' K 'TO' 12 'DO' GEBRUIKT[K]:= 'FALSE' 'OD';

'REAL' TIJD:= CLOCK;

This mottled history of internationalization shows the extent to which 
ALGOL’s status as a universal language depends on the idea that algo-
rithms exist independently of the particular words or symbols used to ex-
press them. Identifiers like GEBRUIKT may make no difference to the seman-
tics of the program, but the words are still there, and it is not hard to see 
why Van Wijngaarden preferred typing them in his native tongue.

The idea of creating one “algorithmic language” to rule them all would 
not come to fruition. Programming languages, dialects, and variants pro-
liferated. Later languages mostly continued the use of words (often in En
glish), although there were some exceptions. In 1962, Kenneth E. Iverson 
published APL (“A Programming Language”), which eschews words in fa-
vor of symbols such as ← and ⍋; his purpose, as he later explained, was to 
combine the cognitive advantages that thinkers such as Boole and Florian 
Cajori had found in mathematical notation with the “universality” of pro-
gramming languages.94 But ALGOL’s elevation of formal semantics over 
the details of presentation had a lasting influence. Some might favor the 
look of ALGOL’s a + b over LISP’s (SUM,A,B), but the difference is merely 
what the ALGOL programmer Peter Landin called “syntactic sugar”—
linguistic sweetener to help the logical medicine go down.95 The result 
was a disconnect between an epistemologically privileged formal view in 
which words and symbols were wholly arbitrary and a practical view in 
which they played undeniably important cognitive and communicational 
functions. In working out how to manage this disconnect, the emerging 
discipline of computer science was forced to grapple, once again, with the 
questions about symbols and language that had bothered mathematicians 
for centuries. This time, the idea of algorithm became pivotal.
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Cultur e a nd the Sw itching Circuit

What, exactly, is the algorithmic “content” that is supposed to be common 
to all the variants of ALGOL? The Revised Report states that ALGOL 60 
is “suitable for expressing a large class of numerical processes in a form 
sufficiently concise for direct automatic translation into the language of 
programmed automatic computers.”96 Yet the designers of programming 
languages had, from the very beginning, ambitions beyond mere number 
crunching. The founder of Stanford’s computer science program, George 
Forsythe, stressed in a lecture on “Educational Implications of the Com-
puter Revolution” that computers could not be contained within the field 
of mathematics: “Machine-held strings of binary digits can simulate a great 
many kinds of things, of which numbers are just one kind.”97 The ones 
and zeroes may, he continues, “simulate automobiles on a freeway, chess 
pieces, electrons in a box, musical notes, Russian words, patterns on a pa-
per, human cells, colors, electrical circuits, and so on.”98 But a field cannot 
do everything; there had to be something distinguishing it from others. 
As Chad Wellmon has pointed out, modern disciplines are defined less by 
their objects of study than by the communities in which scholars partici-
pate.99 The disciplinary community of computer science (CS) was formed 
around a set of practices that, while they could apparently be applied to 
any object of study, were distinct from those of other sciences.

A central element of this new discipline (although how central de-
pended on whom one asked) was a theory of algorithms. In 1963, Juris 
Hartmanis and Richard E. Stearns—then General Electric employees, al-
though both later became academics—laid out the rudiments of compu-
tational complexity theory.100 They present this theory as an extension of 
Turing’s work that considers not just whether functions are computable 
but also how hard it is to compute them. They measure this difficulty by 
how many operations must be performed by a Turing Machine for input 
of a given size—an abstract conception of time that does not depend on 
the specifics of computing hardware. Suppose, for instance, that we are 
sorting a list with n items. The most obvious sorting algorithms require, 
on average, a number of operations proportional to n2, and they can thus 
become very slow for long lists. With some ingenuity, we can devise al-
gorithms that follow the slower-growing curve n log n, and that can thus 
handle much larger amounts of data in a reasonable amount of time (fig-
ure 5.2). The same thinking can also be applied to memory usage. Com-
plexity theory developed into a classification system that is used to judge 
both the efficiency of algorithms and the difficulty of problems. It also 
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Figure 5.2.  A chart comparing the complexity curves of two algorithms. The per
formance is similar when the input is very small, but the time requirement for the n2 
algorithm grows rapidly as the input size increases. The n log n algorithm scales much 
better.

opened a range of difficult questions about the relationships between com-
plexity classes, thus setting a long-standing research agenda for theoretical 
computer science.

The work of Church and Turing provided a basis for thinking about such 
issues and a rationale for treating algorithms abstractly. Turing’s proof that 
his imaginary machines were equivalent to Church’s λ-calculus was only 
the first of a number of equivalence proofs showing the interchangeabil-
ity of various forms of computation. Kleene later articulated what came to 
be known as the Church–Turing Thesis, the unprovable but widely sup-
ported proposition that all effective methods of computation are equiva-
lent to these two models (and thus to each other).101 This thesis (although 
attended with philosophical difficulties) provided a rationale for viewing 
algorithms as capable of preserving their fundamental identity regardless 
of what formal system is used to express them and what physical process is 
used to enact them.

This mutual convertibility applies to programming languages, at least 
provided that they are powerful enough to simulate a Turing Machine. In 
a well-known 1976 Massachusetts Institute of Technology (MIT) memo 
titled “Lambda: The Ultimate Imperative,” Guy Lewis Steele Jr. and Ger-
ald Jay Sussman show how a number of common ALGOL techniques can 
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be translated into Scheme, a LISP-like programming language inspired by 
Church’s model of computation. These translations, they tell us, “capture 
the essence of the semantics of the construct.”102 A premise of this proj-
ect is that algorithms can retain their fundamental “essence” even when 
they are rewritten in disparate styles (although the authors clearly have an 
opinion about which style is best). The memo has an epigraph attributed 
(probably apocryphally) to Abraham Lincoln, suggesting that the choice 
between these styles is a matter of personal preference: “People who like 
this sort of thing will find this is the sort of thing they like.”103

But Turing equivalence only extends to the range of mathematical 
functions a language can theoretically compute. In other ways, program-
ming languages are not all the same. ALGOL is associated with the para-
digm of structured programming, whereas LISP encourages a functional 
style. Other languages such as Simula and Prolog tread entirely different 
paths. These paradigms were integrated into institutional culture: ALGOL 
was used at many European universities, whereas MIT was LISP terri-
tory and FORTRAN and COBOL ruled the private sector. The prolifera-
tion of languages and coding standards sparked what are sometimes de-
scribed as “holy wars”—bitter exchanges between partisans of particular 
approaches, sometimes over issues as trivial as how many spaces should 
make up a tab.104 Although these disputes were widely mocked, the depth 
of the rancor shows that matters affiliated with subjectivity—aesthetics, 
clarity, intuitiveness of organization—remained crucial to the practice of 
programming, even as they were excluded from formal semantics. Disci-
plines cannot eliminate the human altogether. What they can do is place 
certain questions outside of bounds, leaving them to individual choice, in-
stitutional culture, or pedagogical expediency rather than subjecting them 
to rigorous epistemic norms.

In setting up this boundary, computer scientists underwent yet another 
iteration of the ages-old debate about how much continuity should exist 
between symbols and ordinary language. In 1965, Jean E. Sammet (who 
later became the first woman president of the ACM) gave a talk entitled 
“The Use of English as a Programming Language,” in which she called for a 
natural-language interface that would make computing more efficient and 
accessible by enabling people to “communicate directly with the computer 
without having to learn some specialized intermediate language.”105 The 
idea was that programming languages would eventually incorporate the 
whole of English grammar, thus completing the process of automation that 
Hopper had begun with her compiler—letting the machine take over the 
tedious parts of programming so that people can focus on the problems at 
hand. By advocating for natural language coding, Sammet continued Hop-
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per’s centering of human purposes and institutions, which encouraged a 
view of programming languages primarily focused on communication.

This view sat uneasily with the formal approach Backus had taken in 
the ALGOL project, and it faced pushback from those who embraced the 
aconventionality of Turing-style computation. The transcript of Sammet’s 
presentation records the following, somewhat tongue-in-cheek, response 
by the Finnish computer scientist Reino Kurki-Suonio:

The main reason I find it convenient to use English words and phrases 
for strictly defined programming purposes is that English is not my na-
tive language (laughter). English provides a huge store of symbols to 
which any meaning can be assigned (more laughter) without referring to 
my former knowledge.106

This comment exemplifies a dismissive attitude toward “human factors” 
that would become common among academic computer scientists. At 
stake was the potential to establish voluntary control over the semantics of 
computer code. Viewed through a formalist lens, programming languages 
promised the liberty to assign values to symbols at will in the manner of 
the algebraic let, thus establishing independence from the linguistic prac-
tices of other people.

This individualistic attitude toward meaning was consanguineous with 
a commitment to logicomathematical methods for analyzing systems. 
In a 1962 article, John McCarthy had proposed a “mathematical science 
of computation” that would make it possible “to prove that given proce-
dures solve given problems.”107 The idea was to provide a more rigorous 
method of software development than the trial-and-error processes often 
used in practice. Testing programs by running them on particular inputs 
and checking the output was unsatisfactory since, quite commonly, pro-
cedures will work in some cases and fail in others. Program proofs would 
enable code to be evaluated not by empirical tests but through a mathe-
matical analysis of the algorithm itself, thus ensuring reliability in all cases. 
This goal required algorithms to be expressed in a formal notation, and so 
it conflicted with the natural-language approach advocated by Sammet.

Although mechanically parsing English grammar proved harder than 
Sammet initially thought, formalist approaches to programming raised dif-
ficulties of their own. People, after all, must be able to understand code, 
and for this purpose it was hard to resist the siren call of language. In 1988, 
the Dutch computer scientist Edsger W. Dijkstra, then in an endowed 
chair at the University of Texas at Austin, expressed his views on the matter 
in the provocatively titled “On the Cruelty of Really Teaching Computing 
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Science.”108 A common approach to understanding new things, he writes, 
is that “by means of metaphors and analogies we try to link the new to the 
old, the novel to the familiar.”109 Computers, he argues, present a situation 
so radically novel that this approach breaks down; “though we may glorify 
it with the name ‘common sense,’ our past experience is no longer relevant, 
the analogies become too shallow, and the metaphors become more mis-
leading than illuminating.”110 Dijkstra continues a long tradition by linking 
these received ways of thinking to language. “Coming to grips with a radi-
cal novelty,” he continues, “amounts to creating and learning a new foreign 
language that can not be translated into one’s mother tongue.”111

In effect, creating this new language would mean eliminating meta-
phors, examples, and other traces of the real world from pedagogy. As an 
example, Dijkstra discusses arithmetic, in regard to which he sounds much 
like the presumptuous older child in Sarah Porter’s 1835 Conversations on 
Arithmetic. “Instead of teaching 2 + 3 = 5,” Dijkstra writes, “the hideous 
arithmetic operator ‘plus’ is carefully disguised by calling it ‘and’, and the 
little kids are given lots of familiar examples first, with clearly visible ob-
jects such as apples and pears.”112 He calls this a “silly tradition”; it is bet-
ter, according to him, to teach arithmetic using the “hideous” language of 
symbols.113 He suggests a similar austerity in teaching programming. “In 
order to train the novice programmer in the manipulation of uninterpreted 
formulae,” he suggests, professors should teach logic “more as boolean 
algebra, familiarizing the student with all algebraic properties of the logi-
cal connectives. To further sever the links to intuition, we rename the val-
ues {true, false} of the boolean domain as {black, white}.”114 The point of 
switching from logical terms to colors is to remove any hint that the sym-
bols are anything other than wholly arbitrary, and thus to protect students 
from being tempted into thinking in terms of meaning.

Dijkstra’s hopes for this new symbolic language were (as such hopes al-
ways have been) lofty. Computing, he predicts, will one day “transcend its 
parent disciplines, mathematics and logic, by effectively realizing a signifi-
cant part of Leibniz’s Dream of providing symbolic calculation as an alter-
native to human reasoning.”115 This transcendence, according to Dijkstra, 
has a number of enemies, among them business and military communities 
too enamored with the idea that computers can make their lives easier, as 
well as “all soft sciences for which computing now acts as some sort of in-
terdisciplinary haven.”116 He also differentiates his proposal from the field 
of artificial intelligence (AI), which in 1988 was at something of a nadir: 
“The effort of using machines to mimic the human mind has always struck 
me as rather silly: I’d rather use them to mimic something better.”117 To 
realize Leibniz’s Dream (which Dijkstra imperiously capitalizes), students 
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must learn to think of programs less as descriptions of things machines do 
than as symbolic formulae that must be reasoned about abstractly. This 
rigorous practice would require a painful exorcism of the meanings, meta-
phors, and analogies that fooled people into thinking code had anything to 
do with received notions.

By 1988, when Dijkstra was writing, this austere view of code had al-
ready lost a great deal of ground to what was, by then, coming to be called 
“user friendliness.”118 Taking much the opposite approach to language 
compared to Dijkstra, Knuth developed the idea of literate programming, 
in which code contains a prose explanation of itself.119 Grace Hopper con-
tinued to advocate for the importance of considering the social contexts in 
which programming languages were deployed.120 Sandy Payette has noted 
an undercurrent of sexism in Dijkstra’s description of Hopper’s approach 
as “soft”; a concern with people was treated as feminine and thus extrin-
sic to science.121 While such “soft” matters continued to be devalued in the 
academy, they were harder to ignore in the private sector. Especially after 
the founding of Apple Computer in the late 1970s, the computer indus-
try made room for creativity and aesthetics, which were valued as a way 
of pleasing customers and opening new markets by encouraging people 
to incorporate computers into more aspects of their lives. In commercial 
contexts, the “cruelty” Dijkstra advocated would not do—making software 
that sold meant constructing systems that worked for people, for which 
purpose a radical break with existing languages was not on the table.

One programming language that explicitly privileged “soft” matters was 
Ada. Starting in 1977, the US Department of Defense ran a contest to de-
velop a standard programming language for its operations. The winning 
entry was developed by a team led by Jean Ichbiah, who worked for the 
French company CII Honeywell Bull. Like many modern programming 
languages, Ada is a descendant of ALGOL, but it placed a heightened em-
phasis on “concern for the human programmer.”122 The design of Ada, as 
a rationale document states, rests on the belief “that our understanding of 
programs can be greatly simplified if our intuition is able to rely on tex-
tual forms that convey the logical structure of the program”; as a result, the 
Ada language gives “major consideration to readability and teachability.”123 
Influenced by Barbara Liskov’s CLU programming language, Ada divided 
code into modules called “packages” that included both procedures and 
structures for storing data.124 This approach (a precursor to what is now 
called object-oriented programming) was tailored less toward mathemati-
cal proof than toward facilitating teamwork by making it easier to divvy up 
tasks and communicate the purposes of specific parts of a complex system.

As the choice of the name “Ada” indicates, programmers were by this 
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point assembling a canon of historical precedents for their profession. Ada 
Lovelace, Lord Byron’s daughter and the writer of notes on Charles Bab-
bage’s computing engines, came to stand in part for the role women played 
in the early days of the computer age and in part for the need to supple-
ment mathematical methods with something else. An important figure in 
the canonization of Lovelace was Betty Alexandra Toole, who in 1992 pub-
lished a heavily annotated edition of some of Lovelace’s letters that Toole 
edited in collaboration with some of the developers of the Ada program-
ming language. According to Toole, it is Lovelace’s combination of math-
ematical acumen with poetic imagination that makes her an appropriate 
icon for the digital age. Modern mathematics, Toole writes, requires both 
“digital skills such as objectivity, observation and experimentation, and an-
alogue skills such as imagination, visualization and the use of metaphor.”125 
As Toole reports, a poll of Ada programmers found that its most important 
attribute was “connectivity, the ability and ease of teams of people working 
in the language to communicate.”126 The design of Ada continued the fo-
cus of nineteenth-century mathematicians like Lovelace on balancing the 
advantages of mechanical methods with an organically cultivated intuition 
and an ability to explain ideas clearly and elegantly.

In spite of the general recognition of the importance of communication, 
“soft” approaches faced pushback for a perceived lack of rigor. A promi-
nent criticism of Ada appeared in the 1980 Turing Award lecture of the Ox-
ford computer scientist C. A. R. Hoare, best known as the inventor of the 
Quicksort algorithm. Inverting the story of the Emperor’s New Clothes, 
Hoare implies that Ada is in danger of becoming a pile of clothes without 
an emperor. While his immediate point is that the language is too compli-
cated to rely on, the comparison also suggests superficiality: “Gadgets and 
glitter prevail over fundamental concerns of safety and economy.”127 Ada, 
he argues, contains “dangerous” features that lead to errors because they 
create confusing interdependencies between distant parts of programs.128 
Dijkstra had made a similar criticism of the go to statements that were 
common in early programming languages.129 Like Dijkstra and McCarthy, 
Hoare sought to ensure the correctness of code with demonstrative cer-
tainty—to make it “logically impossible for any source language program 
to cause the computer to run wild.”130 Some techniques along these lines 
have become a part of mainstream software engineering, including strong 
typing and memory protection. But in practice, code did sometimes be-
have unpredictably, and correctness could not always be judged with 
mathematical certainty.

The idea of proving programs correct culminated in the Haskell pro-
gramming language, which was conceived at the 1987 International Confer-
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ence on Functional Programming and first released in 1990.131 Haskell was 
named in honor of Haskell B. Curry, a professor of mathematics at Penn-
sylvania State University who had died a few years before. Along with Wil-
liam Alvin Howard, Curry had discovered a method of converting between 
computer programs and mathematical proofs that came to be known as the 
Curry–Howard correspondence.132 This correspondence provides a way 
to prove that a program will have certain behaviors. This approach only 
works, however, if the language is purely functional, meaning that a unit 
of code cannot affect anything beyond its formally defined output. This 
limitation requires Haskell to encapsulate interactions with other systems 
(such as user interfaces) within a layer of abstraction—called, in what is ap-
parently not a reference to Leibniz’s metaphysics, a monad—to prevent the 
outside world from compromising the logical purity of programs.

Haskell is still actively developed and has an ardent community of users, 
but it is far less widespread than such languages as C++, Python, and Go, 
which all contain elements that are not amenable to strict proofs.133 Even in 
Haskell, formal rules cannot (as Church and Turing proved) wholly deter-
mine the right way of proceeding. The typical experience of programming 
is less like Dijkstra’s analysis of uninterpreted formulae than like Toole’s 
balance between “digital” and “analogue.” A large part of software develop-
ment involves communication: writing code that other team members can 
read, following house styles, portioning out work in sensible ways, dealing 
with “legacy” systems inherited from past employees, and documenting 
new systems for future maintainers and users.

Such matters were incorporated into the academic discipline of com-
puter science. In their influential 1985 textbook Structure and Interpreta-
tion of Computer Programs, the MIT-affiliated computer scientists Harold 
Abelson, Gerald Jay Sussman, and Julie Sussman take the position that 
“programs must be written for people to read, and only incidentally for 
machines to execute”; they de-emphasize “the mathematical analysis of 
algorithms and the foundations of computing” in favor of “the techniques 
used to control the intellectual complexity of large software systems,” in-
cluding an appreciation for style and aesthetics.134 It is telling that the book 
includes an epigraph from John Locke’s Essay Concerning Human Un-
derstanding, indicating a focus on the cognitive act of abstraction.135 Far 
from the purely formal “algorithmic language” envisioned at the ALGOL 
conferences, modern programming languages are complex beasts that 
serve a range of purposes and draw on a range of influences, some logico
mathematical and some not.

Algorithms thus became one topic among many within the discipline. 
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In the early 1960s, computer scientists treated algorithm as a synonym for 
program; the framing of the “Algorithms” section in CACM reinforced 
this.136 By the 1980s, algorithms and programs had diverged. In his forward 
to Structure and Interpretation of Computer Programs, Alan J. Perlis holds 
up the algorithm as an ideal to which programs should aspire:

Among the programs we write, some (but never enough) perform a pre-
cise mathematical function such as sorting or finding the maximum of a 
sequence of numbers, determining primality, or finding the square root. 
We call such programs algorithms, and a great deal is known of their op-
timal behavior, particularly with respect to the two important param-
eters of execution time and data storage requirements.137

Even if only an elite few programs could achieve the status of true algo-
rithms, one could still apply the theory of algorithms to parts of pro-
grams—to procedures that perform clearly defined tasks, considered in 
isolation from the broader software systems in which they are used. Ab-
stracting algorithms from programs enabled computer scientists to analyze 
them with at least some of the rigor ALGOL’s creators envisioned, even 
when that rigor could not extend to actual production code. This rigor was 
and is genuine—it contributed greatly to the reliability and efficiency of 
software—but it came at a cost. The theory of algorithms, as it came to be 
taught in computer science, threw up a barrier between computation and 
the world of human life whose full implications would not become appar-
ent for decades.

Problems a nd Solutions

In critical studies of technology, there has been some discussion about the 
difficulty of locating algorithms.138 Are they in the code, in the executable 
files, or in the running circuitry? How can one tell which parts of a system 
are algorithms and which are not? One answer would be that algorithms 
are not in computers at all—they are on the pages of books and academic 
journals. Computer science degree programs typically require a course on 
Data Structures and Algorithms, in which students learn a canon of well-
known computational procedures along with techniques for reasoning 
about them. The ALGOL project’s goal of providing a standard notation 
for these procedures did not obtain: one of the earliest CS textbooks, Alex-
andra I. Forsythe and colleagues’ Computer Science: A First Course (1969), 
uses flowcharts, while others use either pseudocode (a semiformal nota-
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tion that varies from author to author) or real programming languages.139 
Programmers are expected to know some algorithms by heart. A common 
job interview question, for instance, involves recounting an algorithm for 
determining whether a network contains a loop. Studying algorithms is 
important not just because of their individual utility but also because the 
theory of algorithms is crucial to developing software that can operate ef-
ficiently at scale.

Students hoping to learn about machine learning and predictive model-
ing are sometimes surprised at what they encounter in algorithms courses. 
These courses largely cover what we might call classical algorithms—
human-designed procedures for solving precisely defined problems. The 
paradigmatic problem is sorting, which is ubiquitous in textbooks because 
it illustrates a number of issues that arise in the theory of algorithms. Sup-
pose that one has to sort a shelf of books. A simple approach would be to 
swap all pairs of adjacent books that are in the wrong order, then repeat 
until the books are all sorted. The 1987 edition of the textbook Data Struc-
tures and Algorithms by Aho, Hopcroft, and Ullman presents this method, 
which is called bubble sort, in a notation based on the PASCAL program-
ming language:140

(1)	 for i := 1 to n–1 do
(2)		  for j := n downto i+1 do
(3)			   if A[j].key < A[j–1].key then
(4)				    swap(A[j], A[j–1])

The procedure uses two for loops, which repeat the blocks of code in-
dented beneath them. Loop (2) goes through the unsorted portion of the 
array in reverse order and, in lines (3) and (4), swaps adjacent items that 
are misordered. Loop (1) repeats that process the necessary number of 
times. Note that this algorithm can be used to sort any type of data what-
soever, provided that the desired order (represented by key, which assigns 
each item a numerical value) is specified. This method, however, is ex-
tremely slow when applied to large inputs, on account of which it is taught 
as an example of a bad algorithm. The desire for more efficient sorting led 
to the development of a number of less obvious sorting procedures. The 
most famous is Quicksort, which involves moving the items to one side 
or the other based on their ranking relative to an arbitrarily chosen item, 
then performing the same procedure recursively for each side; this much-
studied procedure became a paradigm of good (meaning efficient) algo-
rithm design.
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While computer scientists never reached a consensus definition of al-
gorithm, the procedures in algorithms textbooks do share some common 
features. One is that the procedures are, in Knuth’s terms, finite, definite, 
and effective—that is, they consist of an eventually terminating sequence 
of clearly defined operations that can each be completed in a finite amount 
of time.141 As Aho, Hopcroft, and Ullman point out, whether a procedure 
meets these criteria can be debatable, since “what is clear to one person 
may not be clear to another, and it is often difficult to prove rigorously that 
an instruction can be carried out in a finite amount of time.”142 Although 
it may be hard to prove that a procedure is an algorithm, it is easier to 
show that some procedures are not. For instance, suppose we wanted to 
verify Michael Stifel’s result, from over four centuries before the computer 
era, that √—8 + √—18 = √—50. We might come up with something like this (in 
pseudocode):

a = √—
8 + √—

18
b = √—

50
if a = b then

return “Stifel was right!”
else

return “Something is wrong.”

But this is not an effective procedure, at least if one interprets it as a solu-
tion to the problem we have set out. The issue is that, as Stifel observed 
with such consternation, the values of those roots can only be approxi-
mated.143 We can compute as many digits of those approximations as we 
like (√—50 = 7.0710678 . . .) but it would take infinitely many steps to com-
pare all the digits of a and b. This point is subtle, but it illustrates an impor-
tant difference between algorithms and other forms of mathematical rea-
soning, such as the geometric method Stifel used to arrive at that equation. 
Classical algorithms inhabit the world of Turing Machines, in which the 
fundamental objects of operation are digits, not numbers.144 They are thus 
haunted by the specter of infinity, by the possibility that a procedure will 
go on forever, the specified stopping criterion never coming true.145

A related point is that algorithms are only able to interact with other 
systems in certain limited ways—namely, through the input and output. 
As Knuth puts it, algorithms must have zero or more inputs “taken from 
specified sets of objects” and one or more outputs that “have a specified 
relation to the inputs.”146 Specifying this relation does not mean knowing 
the output ahead of time—in many cases, that would make the computer 
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redundant—but we must still define the output in some precise way, as an 
equation defines its roots whether we know them or not. In some cases, 
the algorithm includes a random factor or supplies only an approximate 
solution, but the desired output must still be specified. Algorithms in this 
sense cover only a small slice of the things computers do; in particular, sys-
tems that require continuous feedback from an environment, such as robot 
control systems and user interface loops, are not technically algorithmic. 
While computer scientists have long recognized the limits of this concep-
tion and sought to expand the concept of algorithm to include processes 
that are more dynamic, some narrowness of definition is needed to make 
the theory of algorithms tick.147 Complexity theory, in particular, only 
works when that input is clearly circumscribed; otherwise, the outcome 
could depend on any number of intractable factors ranging from the air 
temperature to the whims of the person sitting at the keyboard. It is easier 
to get away with vagueness as to the output, but a precisely specified goal is 
crucial if we hope to prove an algorithm correct.

Just how to determine this goal is a complex matter. “Half the battle,” 
Aho, Hopcroft, and Ullman declare, “is knowing what problem to solve.”148 
Their textbook suggests a two-phase method: first define the problem 
precisely, then figure out an algorithm to solve it. Others have preferred 
a more flexible approach. At the 1968 NATO conference, Dijkstra argued 
that incomplete problem specifications were better than complete ones 
because they made it easier to develop general solutions that could be re-
used in other cases.149 This statement points to another characteristic of 
algorithms that Knuth does not include in his definition but that Markov 
does: generality. Typically, algorithms are not meant to solve only a single 
instance of a problem but to be reused with as wide a range of inputs as 
possible. Another early textbook puts it this way: “Although one may easily 
learn how to solve problems of many types, it is more difficult to recognize 
the common structure of problems which are seemingly quite different 
and to develop general methods for their solution. A precise description 
of how to solve a class of problems is called an algorithm.”150 To the extent 
that they claim generality, classical algorithms carry on the imperial pro-
gram Viète enacted in the 1590s: like his equation-solving theorems, they 
are supposed to conquer problems by the hundreds rather than attacking 
them one by one.

Classical algorithms such as Quicksort should not be conflated with the 
predictive models that later came to be associated with the word algorithm. 
The procedures compiled in algorithms texts are mostly unconnected to 
statistics, nor are they necessarily intended to predict anything. A classi-



Ma ss Produced Soft war e Components  ›   197

cal algorithm is also distinct from the function it computes, meaning the 
specification of what the output should be for a given input. This distinc-
tion is sometimes overlooked in critical scholarship, but it is crucial for 
understanding the disciplinary practices that attend classical algorithms.151 
Often there are multiple algorithms that compute the same function by dif-
ferent means and that are thus, as far as the output goes, interchangeable. 
For instance, as long as there are no ties in the ranking, standard sorting 
algorithms such as bubble sort, merge sort, and Quicksort will all produce 
exactly the same output, given the same input; they differ primarily in their 
speed and memory use.152 Conversely, standard sorting algorithms make 
no assumptions about what order items should be in, instead producing 
whatever ordering the user specifies.153 Classical algorithms deal primarily 
with how to compute things, not with what to compute, and, at least ide-
ally, one can apply them without having to worry about their details, just as 
countless programmers have used Python’s list.sort() method without 
needing to ask which sorting algorithm it employs. (It uses, as it so hap-
pens, an algorithm developed by Tim Peters called Timsort.)

This interchangeability only works, however, to the extent that the 
problem is precisely defined. Sorting problems are typically precise 
enough, but other problems can be much messier. A good illustration is 
the procedure that came to be known as “Dijkstra’s algorithm.” This proce-
dure, which Dijkstra first published in a 1959 article, finds an optimal path 
between two points. His original application was to find routes between 
cities in the Netherlands; much later, this algorithm came to be celebrated, 
fairly or not, as the foundation of GPS navigation.154 Dijkstra’s algorithm 
draws on the methods of graph theory, a mathematical theory of networks 
that was developed in the early twentieth century (figure 5.3). In this sense, 
a graph consists of a set of nodes, or vertices, along with edges that con-
nect pairs of nodes. In Dijkstra’s formulation, the edges also have defined 
lengths. Dijkstra’s method makes use of the fact that if a given path through 
a graph is the shortest one possible, any subpath of that path must also be 
the shortest possible from its starting point to its end. (Dijkstra does not 
refer to his procedure as an algorithm in the article; he calls it a “process” 
and a “solution.”155) Most other common pathfinding algorithms are vari-
ants of Dijkstra’s procedure; for instance, the A* algorithm, which is some-
times used to guide the motion of video game characters, adds a heuristic 
that biases the search toward moves in the general direction of the goal.156

From a mathematical perspective, it is hard to deny that Dijkstra’s al-
gorithm is correct: it does indeed find an optimal path, as one can prove 
by mathematical induction. But applying such an algorithm requires rep-
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Figure 5.3.  An illustration of the pathfinding task. The network, or graph, consists 
of a set of nodes, or vertices (represented by circles), connected by means of edges 
(represented by lines). Each edge has a weight that represents its cost. The goal is to find 
a path from the start to the goal that minimizes the total cost. The optimal path in this 
instance is shown with edges in boldface.

resenting the problem as a network, and the choices involved can make 
real-world differences. In 2017, residents of Leonia, New Jersey, noticed 
a sudden increase in traffic through their residential town, to the point of 
total gridlock.157 As it turned out, construction had led to backups around 
the George Washington Bridge, and navigation apps such as Google Maps 
and Waze were sending cars through side streets as an alternate route. 
While outsiders cannot know exactly which pathfinding algorithms these 
programs were using, the algorithms themselves are less important to this 
issue than how the problem was defined. To employ a network-based path-
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finding algorithm, one must, first of all, choose which locations constitute 
the nodes. For Dijkstra, these were cities, whereas on a street map they are 
typically intersections. Second, one must decide what values to assign to 
the edges. Dijkstra called these values “lengths,” which suggests that they 
represent physical distances, but there are numerous other ways one could 
mark the relative desirability of edges. Navigation apps typically account 
for some factors such as speed limits and current traffic, but in the New Jer-
sey case, they did not consider the cost of routing cars through a particular 
area for the local community.

This incident illustrates the dangers and the opportunities created by 
the classical paradigm.158 By containing the messy details of the application 
within the formally defined input and output, the paradigm opens com-
putational logic to rigorous study within a rarefied mathematical realm 
even as its broader implications remain (as they must be) unfathomably 
complex and incompletely understood. An IBM promotional video from 
2018 states the logic of formalization with striking bluntness: “Researchers 
are helping AI systems understand human values by defining them in engi-
neering terms.”159 Whether human values can even in principle be defined 
in engineering terms is questionable. But algorithmic thinking demands 
the construction of formal definitions that exist alongside the conventional 
meanings of words. From a technical point of view, whether these defini-
tions really do capture the values they are meant to embody is secondary to 
the correctness and efficiency of the algorithms, which is what ultimately 
determines how well they will work when implemented.

The extent to which this disconnect is a problem hinges on how, exactly, 
things like ideas and values come to be translated into those formal defini-
tions.160 While such questions fall outside the official scope of the theory of 
algorithms, they cannot be ignored. As Warren Sack has pointed out, com-
putational systems require rhetoric: their designers must persuade people 
to accept the particular way they have chosen to frame the problem.161 In 
academic computer science, this rhetoric borrows heavily from the dualis-
tic view of knowledge that began to attend symbolic methods with the rise 
of logicomathematical formalism in the nineteenth century. An illustrative 
case is the much-discussed algorithm that formed a key part of the original 
Google search engine: PageRank.162

The purpose of PageRank is to assign web pages numerical scores that 
may be used to prioritize search results. (To be clear, PageRank is a ranking 
algorithm, not a sorting algorithm; a separate procedure such as Quick-
sort must be used actually to arrange the items in order.) In 1998, when 
the Google founder Larry Page was a graduate student at Stanford, he and 
his collaborators explained their method in a white paper titled “The Page
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Rank Citation Ranking: Bringing Order to the Web” as well as in a journal 
article that more broadly describes the prototype of the Google search en-
gine and in two patent applications.163 The white paper spends less time on 
explaining the algorithm itself than on expounding a rationale for its use as 
a ranking of web pages. In doing so, the paper grapples, in a way character-
istic of modern algorithmic thinking, with the conceptual problems that 
have arisen time and again over the centuries when mathematicians have 
traded words for symbols.

Building on the tradition of citation analysis, PageRank scores web 
pages by counting backlinks—that is, counting how many other pages link 
to a given page.164 Compared with simple citation counting methods, Page
Rank gives more significance to the network structure of the web. Like 
Dijkstra’s algorithm, it formalizes the problem in terms of graph theory, 
representing web pages as nodes and hyperlinks as edges. Going back 
to the 1950s, it had been common to measure the relative importance of 
nodes in a graph using various “centrality” measures based on their con-
nections; these methods were initially used in sociometric studies of com-
munication networks.165 PageRank combines this sort of network analy-
sis with citation counting. Rather than treating all connections equally, it 
gives more weight to backlinks that come from pages that themselves have 
higher PageRanks. Similar ideas were proposed decades before by both 
Leo Katz and Phillip Bonacich and around the same time by Jon M. Klein-
berg.166 Weighting the links by PageRank makes the definition circular: 
just as Leibniz’s monads each represent the universe, the rank of each page 
depends on the ranks of all the other pages on the web. This circular defini-
tion reduces to a system of equations that may be solved using techniques 
from linear algebra, thus producing the ranking.

Page and his white paper coauthors state their purpose in developing 
this metric at the beginning of their abstract: “The importance of a Web 
page is an inherently subjective matter, which depends on the readers [sic] 
interests, knowledge and attitudes. But there is still much that can be said 
objectively about the relative importance of Web pages.”167 By ranking the 
importance of pages “objectively and mechanically,” PageRank enables the 
search engine to prioritize results that are shown to the user.168 This phrase 
invokes what Lorraine Daston and Peter Galison have called “mechanical 
objectivity”—mechanization as a way of taking all human judgment out of 
a practice.169 But merely using a machine cannot be a sufficient condition 
for objectivity for a simple reason: computers can be programmed to say 
anything. (The true antagonist of algorithmic objectivity is not subjectivity 
but arbitrariness.) The authors are thus tasked with convincing the reader 
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that their calculation bears a strong enough relevance to the existing idea 
of “importance” to make it worth adopting as a measurement.

This argument takes the form of a gradual progression from words to 
symbols. First, the authors review previous work on citation analysis and 
make a case for how this method could be applied to web links as well as to 
academic citations. Second, they argue that simple citation counting does 
not always correspond to “our common sense notion of importance,” since 
links from major websites are more important than links from obscure 
ones.170 In the next section, which consists of only two sentences, they 
state an “intuitive description of PageRank”: “a page has high rank if the 
sum of the ranks of its backlinks is high.”171 After this verbal definition, they 
present a symbolic equation that “formalizes the intuition.”172 Let Bu be the 
set of pages that link to the page u, Nu be the number of links on page u, and 
c be a constant. The ranking R of a page u may be defined as follows:

R u R v
Nvv Bu

( ) = ( )c
∈

∑

Because of its grounding in an intuitive rationale, this equation is supposed 
to constitute a computable definition of importance.

There then follows some backtracking. While the authors maintain that 
it corresponds to “common sense,” this initial equation has a drawback: it is 
possible for groups of pages to mutually cite each other, which would form 
“rank sinks” that skew the scores.173 As a result, they add an additional cor-
rective factor E, resulting in the following modified equation, which (un-
like the foregoing one) is crowned with the formal heading “Definition 1”:

+
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This equation, it should be made clear, is not itself an algorithm, but rather 
a definition of the function to be computed. This definition is not recursive 
in Church’s sense because it is circular: in expanding the formula for R′(u), 
one will often come back around to that same value. The equation can, 
however, be solved through an iterative method that constitutes the Page
Rank algorithm, which they describe, in a brief section titled “Computing 
PageRank,” by means of a terse pseudocode consisting almost entirely of 
symbols.

This approach to justifying an algorithm bears some resemblance to 
the verbal definitions that came to attend symbolic methods in Leibniz’s 
wake. Recalling Jean Le Rond d’Alembert’s detailed discussion of what 
negative means, Page and colleagues are careful to provide a conceptual 
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basis for their symbolic equation; they even echo Francis Maseres in their 
invocation of “common sense.” Yet, in a way that would have been unac-
ceptable in the eighteenth century, this conceptual basis falls away once 
symbols arrive. Not only do Page and his coauthors revise the intuitively 
justified equation based on mathematical concerns; they also reinterpret 
it. Whereas they initially explain PageRank in terms of citation counting, 
they later present a different rationale based on a simulation of people 
“surfing” (browsing) the web. A “surfer” moves from page to page by ran-
domly clicking links; occasionally the surfer “gets bored” and chooses a 
page at random.174 PageRank is equivalent to a measure of how much time 
this surfer is likely to spend at each page over a large number of trials.

This reinterpretability contributes greatly to the power of classical algo-
rithms. A few years after the Page group’s white paper was published, Alon 
Altman and Moshe Tennenholtz reinterpreted PageRank once more, this 
time as a simulation of a voting process.175 The algorithm found another 
application further afield in biochemistry, where it can be used to ana-
lyze protein interaction networks.176 The idea that algorithms can retain a 
stable logical core even as they are transferred to entirely different disci-
plinary contexts continues the privileging of formal rules over conceptual 
interpretations that transformed symbolic algebra in the time of William 
Roman Hamilton and George Boole, and that is implicit in ALGOL’s dis-
tinction between formal semantics and “syntactic sugar.” The rationale is 
figured as mere window dressing upon the logic, crucial to the practical 
application of algorithms but capable of being swapped out whenever it is 
convenient to do so.

A difficulty of this approach is that it creates an epistemological divide 
between the technical definitions presented (often in the form of equa-
tions) in algorithms textbooks and research papers and the nontechnical 
perspectives of users. The PageRank paper may include an intuitive ra-
tionale for the method, but user interfaces typically skip this step. When 
faced with search results sorted by “relevance,” for instance, the user has to 
trust that whatever calculation the system is using corresponds somehow 
to the meaning of relevance.177 Numerous commentators have expressed a 
concern that algorithms are often kept hidden, cranking away in the server 
farms of companies such as Facebook and Google, concealed from pub-
lic scrutiny. There is nothing in the classical paradigm that says algorithms 
must be hidden; going back to the “Algorithms” section in Communica-
tions of the ACM, it has been a common practice to publish algorithms, and 
explanations of Quicksort, Dijkstra’s algorithm, and PageRank are up on 
Wikipedia for all to see. But the practice of keeping some algorithms as 
trade secrets is only one expression of a deeper divide. By subordinating 



Ma ss Produced Soft war e Components  ›   203

conceptual explanations to mechanical operations, the classical paradigm 
enables programmers to enact their own technical definitions without the 
input of the broader community that, in ordinary writing and speech, has 
some say as to what a word means.

The classical algorithm has proven workable as a set of disciplinary 
practices, even if its limitations are substantial. The barrier that early com-
puter scientists created between “human factors” and algorithmic logic—a 
barrier between the choice of what to compute and the technical details of 
how to compute it efficiently—enabled methods that have borne practical 
fruits, among them the highly complex procedures used to parse the syntax 
of computer languages like such as Python and HTML.178 But computa-
tion began to depart from the classical paradigm in the early twenty-first 
century. In the first two decades of the century, the word algorithm came 
increasingly to refer not to human-designed procedures such as Quicksort 
but to machine learning (ML) systems. Machine learning always involves 
some sort of predefined goal or at least measure of success, but the means 
of defining this goal is entirely different: in ML, the goal is laid out through 
data rather than through a direct specification of the mathematical func-
tion the computer is to compute or approximate. Machine learning has de-
cidedly not replaced classical algorithms, but it did gain a newly prominent 
role in computational systems in the 2010s. In the coda to this book, I con-
sider how the conversation about algorithms changed in the first two de-
cades of the twenty-first century, as ML gained prominence both in techni-
cal fields and in the public imagination of what an “algorithm” is.
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The Age of Arbitrariness

“But what if x should turn out, after all,  
not to be the unknown quantity?”

—Attributed to James Clerk Maxwell

Black Box es a nd A djusta ble K nobs

If classical algorithms are divided from the human understanding, they 
are also divided from data.1 As far as the effectiveness of Quicksort goes, 
it makes no difference what one hopes to sort—provided the order is well 
defined, the procedure would work just as well with videos to be sorted by 
running time, names to be sorted alphabetically, or images to be sorted by 
brightness. Because complexity theory works solely through the analysis 
of computational instructions, it is possible to study a classical algorithm 
rigorously without ever even turning on a computer. Machine learning 
(ML) changes this. The “algorithms” are no longer designed by engineers 
but instead tuned by machines based on large amounts of data. While 
these two types of “algorithm” are often discussed together, ML is not a 
straightforward continuation of the disciplinary practices established by 
early computer scientists such as Edsger Dijkstra and Donald E. Knuth. 
The ML sense of algorithm emerged less from computer science than from 
the newer discipline of data science, and the use of the same word in both 
contexts has led to a great deal of confusion. ML departs from the defini-
tions of algorithm put forth in the twentieth century, and the difference 
has wide-ranging implications for the epistemology of computation.

The term machine learning can refer to a wide range of techniques that 
vary greatly in sophistication.2 The idea goes back to the 1940s, when re-
searchers attempted to formalize the structures of human cognition.3 In 



The Age of Ar bitr ar iness  ›   205

the 1950s, this effort came to be associated with the field of cybernetics, 
which dealt with dynamic relationships between systems, and with arti-
ficial intelligence (AI).4 Although there was some overlap, these research 
programs were largely separate from the subfield of algorithms; rather 
than seeking solutions to precisely defined mathematical problems, they 
considered interactions of machines with their environments and sought 
to automate tasks that were more open-ended, such as translation and pat-
tern recognition. Much of the technical apparatus of modern ML was al-
ready in place by the 1980s, but the practice gained greatly in prominence 
early in the first decade of the twenty-first century, owing in large part to 
an increase in computing power and in the easy availability of very large 
data sets.

As an example that illustrates just one of these techniques, consider a 
common application: image classification. To train an ML system to dis-
tinguish images of horses from images of dogs, one would first need to as-
semble a collection of image examples, all annotated with correct labels; 
these labels are sometimes called, suggestively enough, the gold standard. 
One would also need to construct a model, meaning a mathematical func-
tion whose parameters are to be determined in the training process. Image 
recognition models typically consist of artificial neural networks (ANNs), 
which are inspired by the structure of the human brain, although they ulti-
mately consist of little more than sequences of matrix multiplications and 
other simple mathematical functions. Next, one must specify a loss function 
that measures the quality of the output, lower numbers being better. Since 
the correct labels are known in this case, the loss function would measure 
how badly the model misclassifies the training data.

Once these elements are assembled, one can begin the training. Through 
an optimization procedure such as gradient descent, which uses differen-
tial calculus to determine how local changes in each parameter would af-
fect the output, the machine adjusts the parameters little by little so as to 
decrease the loss. (Optimization was, incidentally, just the problem G. W. 
Leibniz was addressing when he called the method of differentials an “al-
gorithm” in 1684, although the approach is not quite the same.) The result 
is a trained model that can be used to make predictions. The excitement 
over this method stems from the fact that it can apparently handle tasks 
that had formerly been outside the scope of what computers could do. A 
human being would have a hard time devising explicit criteria for whether 
an image depicts a horse, but having a machine “learn” the criteria based 
on a large number of image examples works remarkably well (although it 
certainly does not work perfectly).

ML “algorithms” have some similarities to the procedures cataloged in 
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algorithms textbooks. Trained ANNs can, with no particular problem, be 
expressed as clearly defined steps—namely, sequences of matrix multipli-
cations and other mathematical operations. These procedures also share 
classical algorithms’ independence from specific embodiments; one can 
convert them between file formats such as ONNX and TorchScript while 
preserving their fundamental logic (although, as anyone who has actually 
tried to do this can attest, the conversion is not always lossless in prac-
tice). More broadly, ML shares the classical paradigm’s tendency to judge 
processes primarily by whether they produce the desired output. An ML 
system’s performance can, in theory, be evaluated automatically without 
regard for whether the operations it employs make any sense to people. In 
this way, ML takes the subject–object divide that I have identified as char-
acteristic of algorithmic thinking—a divide between standards of correct-
ness and the formation of human thought—to an extreme.

The content of these models, however, is rather different from the 
problem-solving procedures compiled by Knuth, and the gap ML can cre-
ate between computational logic and human understanding has increas-
ingly appeared as a problem. Classical algorithms usually employ all-or-
nothing rules: if the value of x is this, do that. Some ML models, such as 
decision trees, contain such conditional rules, but ANNs employ calculus-
based optimization methods to which strict either/or logic is inimical. For 
gradient descent to work, every operation must (with some restricted ex-
ceptions) be differentiable, roughly meaning that the transitions between 
states must follow smooth curves.5 As a result, ANNs can only represent 
categorical distinctions fuzzily: an image might be classified as 90 percent 
dog and 10 percent horse. It is true that the models must be reduced to 
ones and zeros to run on computers, but in theory they work with continu-
ous functions over real numbers, not with the discrete symbols of Turing 
Machines.6

Apart from these mathematical differences, ML raises distinct episte-
mological questions from the ones that led early computer scientists to 
develop a theory of algorithms. In realistic cases, the training data stand 
in for a broader range of phenomena: a collection of photographs may be 
very large, but it cannot encompass every form a photograph of a horse 
may take. As a result, even if the model gets perfect results on the train-
ing data, it can still go wrong when tested on other data that have not yet 
been seen. The technical term for this problem is generalization.7 To reason 
about generalization mathematically, ML employs idealizing assumptions 
such as i.i.d. (independent and identically distributed), which asserts that 
the data all come from a single probability distribution and do not affect 
each other.8 But this approach is only as good as the data used in comput-
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ing evaluation metrics. Proving that an image classifier can generalize not 
just to the test data but to any data whatsoever would require nothing short 
of Leibniz’s universal characteristic: a complete and correct theory of 
everything. Absent such a theory, a model will remain open to dispute, and 
whether it can ever attain the level of trustworthiness C. A. R. Hoare and 
John McCarthy sought—an issue especially important in life-and-death ap-
plications such as autonomous cars—will be debatable.

The rise of machine learning coincided with yet another shift in the 
usage of the word algorithm. Both in the popular discourse and in techni-
cal fields, algorithm is now sometimes used to refer to ML systems rather 
than to step-by-step procedures such as Quicksort and A*. The shift stems 
in part from the word’s adoption in a field with disparate priorities from 
those of software engineering: statistics. In a 2001 article titled “Statisti-
cal Modeling: The Two Cultures,” Leo Breiman contrasts two schools of 
thought that he calls “data modeling” and “algorithmic modeling.”9 The 
data modeling approach, which he claims is dominant in academia, at-
tempts to explain the data by producing a model that corresponds to a 
comprehensible theory. Algorithmic modeling, which he claims is more 
common in business, aims only to make predictions, treating the model as 
a “black box” to be judged solely by the accuracy of its output.10 Breiman 
argues that academics have overlooked the potential of black box models, 
sacrificing predictive accuracy for the sake of what he calls “irrelevant the-
ory.”11 In Breiman’s wake, the word algorithm came to be associated less 
with the abstract procedures compiled in computer science textbooks and 
more with a results-oriented flavor of statistical data crunching.

Breiman’s article uses the word algorithm in two distinct ways, neither 
of which exactly corresponds to how it is used by Knuth and other early 
computer scientists. At times, he uses it to refer to what Bernhard Rieder 
has called “algorithmic techniques”: general methods for designing com-
putational systems.12 Breiman refers, for instance, to “neural nets and deci-
sion trees” as “powerful new algorithms for fitting data.”13 Breiman’s claim 
to fame is inventing one such technique: random forests.14 In this sense, an 
algorithm is a set of techniques used to construct and train a model, not the 
model itself. Yet Breiman’s “Statistical Modeling” article contains some us-
ages that suggest otherwise. The goal of algorithmic modeling, he writes, 
is “to find an algorithm f (x) such that for future x in a test set, f (x) will be 
a good predictor of y.”15 The algorithm, in this case, would seem to be the 
predictive function found through the training process. It is in this second 
sense that one talks about algorithms recognizing horses or predicting loan 
defaults: the algorithm is not a general technique but the particular result 
of a computationally intensive process of data crunching.
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The coexistence of these two senses of algorithm led to a misunder-
standing when Breiman moved to defend his position. The “Statistical 
Modeling” article was published along with a collection of responses and 
rebuttals. One of the respondents, the Stanford statistician Bradley Efron, 
notes that the article looks at first glance “like an argument against parsi-
mony and scientific insight” and states: “The new algorithms often appear 
in the form of black boxes with enormous numbers of adjustable param-
eters (‘knobs to twiddle’).”16 Breiman replies:

This is a perplexing statement and perhaps I don’t understand what Brad 
means. Random forests has only one adjustable parameter that needs to 
be set for a run, is insensitive to the value of this parameter over a wide 
range, and has a quick and simple way for determining a good value. 
Support vector machines depend on the settings of 1–2 parameters. 
Other algorithmic models are similarly sparse in the number of knobs 
that have to be twiddled.17

The disagreement, it seems, comes down to whether “algorithm” refers 
to the function whose parameters are set through the training process 
(Efron) or to the method used to produce this function (Breiman, at least 
in this instance). Efron argues that, because of the trade-off between bias 
and variance, models with too many parameters will lead to biased esti-
mates. In this regard, it makes little difference whether a human or a ma-
chine is making the choices. Breiman gives much more significance to the 
machine/human (or at least algorithmic/nonalgorithmic) distinction. An 
ML model may have an enormous number of learned parameters (GPT-3 
reportedly has 175 billion), but these parameters are determined within 
the black box and so Breiman does not count them as “adjustable.”

The dispute between Efron and Breiman is not merely a matter of ter-
minology. As I argued in the discussion of PageRank in chapter 5, apply-
ing computational methods to loosely defined problems such as ranking 
web pages can inspire an anxiety about arbitrariness—a sense that people 
can coax out whatever results they want by tweaking settings. The Page
Rank authors address this anxiety with a conceptual rationale, arguing that 
their definition corresponds to “common sense.” Similarly, Efron writes 
from the traditional position that statistical models should have theoretical 
bases. Breiman’s article is overtly an argument for practicality over such 
theorizing, but it also provides a way of assuaging the anxiety about arbi-
trariness by placing the exclusive focus on predictive accuracy as measured 
through empirical trials. This focus has led (on websites like Kaggle) to a 
gamified form of research in which, rather than justifying their methods 
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rhetorically in the manner of the PageRank paper, data scientists vie for 
top positions on metric-based leaderboards.18

While the usage of the term algorithm in the ML literature varies, the 
equivocation as to which part of an ML system constitutes the “algorithm” 
has become widespread. The 2016 textbook Deep Learning by Ian Good-
fellow, Yoshua Bengio, and Aaron Courville, for instance, gives the fol-
lowing informal definition: “A machine learning algorithm is an algorithm 
that is able to learn from data.”19 Later in the text, they give a more spe-
cific “recipe” for the construction of deep learning algorithms: “combine 
a specification of a dataset, a cost function, an optimization procedure 
and a model.”20 This recipe suggests that a “machine learning algorithm” 
is a reusable set of techniques used to construct and train models, which 
is mainly how the authors use the term: they refer, for instance, to linear 
regression as “a simple machine learning algorithm.”21

The statement that algorithms are “able to learn,” however, sits uneasily 
with this conception—it suggests, at least equivocally, that the algorithm 
changes over time, expanding its capacities as it combs through data. This 
proposition only makes sense if the “algorithm” encompasses not just the 
techniques used in constructing an ML system but also the parameter val-
ues as they are adjusted by the machine during training. The authors re-
inforce this assignment of agency by their use of the phrase learning algo-
rithm rather than training algorithm. The ambiguity is far more prevalent 
in informal discussions, where “algorithms” are commonly said to possess 
a range of acquired abilities, from predicting fraud to identifying faces to 
translating text. The blurring of the lines around algorithms has likely been 
reinforced by new development tools such as Jupyter Notebook, which 
enables programmers to edit a program while its variables are loaded in 
memory; training procedures and learned parameters can thus seem like 
parts of a single dynamically changing system. This type of “algorithm,” if 
the concept really is a coherent one, is a very different beast from Quick-
sort, and the definitions put forth by Markov and Knuth are of limited 
value in explaining it.22

There is some reason to lament this semantic shift. Associating algo-
rithm specifically with machine learning leaves behind no good term for 
the precisely defined procedures covered in algorithms courses, which, 
while less flashy than ML, are and will remain important to the discipline 
of programming. Indeed, classical algorithms play a role in ML itself: the 
Deep Learning textbook includes numerous human-designed procedures 
for use in training and inference, set off with such headings as “Algorithm 
6.3.”23 The book presents these procedures in a pseudocode form that basi-
cally follows the classical paradigm, although it is notable that the authors 
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usually do not specify the desired output. The ambiguity as to whether 
“machine learning algorithm” refers to these human-designed training 
procedures or to trained predictive models has led to a great deal of cross 
talk and confusion. Amid the widespread hype about these methods, the 
word algorithm has taken on a range of connotations more aligned with 
marketing than with serious analyses of technology, and commentators 
would do well to meet imprecise uses of the term with skepticism.24

Yet the broader shift in thinking about computation could be a positive 
development. The classical paradigm abstracts out social issues by contain-
ing them in formal problem definitions, thus encouraging a narrow focus 
on technicalities to the exclusion of the broader contexts in which systems 
will be employed. Machine learning research can take a similarly blinkered 
view to the extent that it sets its sights on fixed benchmarks; yet the practi-
cal adoption of ML methods has made social “externalities” harder to dis-
miss. Someone, after all, must set the goals, and, in the absence of strong 
rhetorical justifications, the numerous decisions that go into the design of 
models, performance metrics, and data sets create opportunities for arbi-
trariness to slip back in. It is not surprising, as a result, that ML has reacted 
so explosively with identity politics: the anxiety about arbitrariness natu-
rally leads one to question who is arbitrating, who is turning the knobs that 
determine what ML models do. For better or worse, ML is breaking down 
disciplinary boundaries, and it opens an opportunity to rethink, once 
again, fundamental assumptions about how computation relates to human 
thought and language. A case in point is GPT-3.

M achine Lea r ning a nd the Liv ing La nguage

Unlike the algorithms I discussed in chapter 5, GPT-3 is black-boxed in a 
strong sense. The trained model, as of this writing, is inaccessible to the 
public; it runs on servers with which one can interface only by permission. 
It is, however, possible to download GPT-2, and there is much to be said 
about the general methods behind these technologies, as described in re-
search papers. As “multitask learners,” the GPT models are supposed to 
be applicable in a range of domains, but not through the sort of concep-
tual reinterpretation we saw with PageRank. Instead, one is supposed to 
induce the program to perform tasks by feeding in inputs written in the 
English language—for example, “What is the capital of Belgium?” 
or “Rewrite the following passage in the style of Herman Mel-
ville.” The words in these prompts are not “inherently meaningless,” as 
identifiers in ALGOL are supposed to be, but instead must be used in ways 
that correspond to their usage in the human writings on which the model is 
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trained. The idea of communicating with a computer in natural language is 
not new; it goes back at least to Jean E. Sammet’s 1965 talk about program-
ming in English. Yet the possibility did not come close to realization until 
the 2010s, and this new technological chimera promises a radical shift in 
how machine and human interact. By granting mathematics and language 
coequal roles, GPT-3 pushes the subject–object dualism that has attended 
symbolic methods since the time of George Boole, and that forms the ba-
sis of both the classical conception of algorithm and the modern program-
ming language, to a breaking point.

The GPT models are based on an ANN architecture called the Trans-
former, which was first introduced in 2017.25 Transformers are language 
models, meaning models trained to predict what word will appear in a cer-
tain context. The GPT models predict the next word after a given sequence 
of words (e.g., I bought some food at the grocery → prediction: store), 
whereas other models such as BERT (Bidirectional Encoder Representa-
tions from Transformers), which was developed by a Google AI Research 
team led by Jacob Devlin, are trained to fill in the blanks, Mad Libs style.26 
The Transformer architecture has two parts, an encoder and a decoder. 
Full Transformers such as T5 are supposed to be able to translate from one 
language to another by encoding the text into a numerical form and then 
decoding it in the target language.27 The GPT models, which are primar-
ily intended for text generation, consist only of decoders. By swapping in 
different “heads”—extra layers added to the end of the neural network—it 
is possible to apply Transformer models to a range of tasks, leveraging 
whatever they learned in the training process for such purposes as answer-
ing questions, finding information, classifying texts, and performing auto-
matic summarization. It is also possible to use text generation heads for 
other tasks by feeding in specially designed inputs that (at least ideally) in-
duce the generator to produce the desired output.

The idea of a language model originated in the twentieth-century work 
of C. E. Shannon and Warren Weaver. In his germinal 1948 paper on infor-
mation theory, Shannon described the “n-gram” model, which (building 
on the prior work of A. A. Markov Sr.) determines which words or char-
acters are most likely to appear after certain sequences of a fixed length.28 
Thus, after “english,” Shannon’s model guesses that the next word will 
be “writer.”29 The original purpose of these models was to describe sta-
tistical properties of language so as to better account for noise in communi-
cation channels. In the second paragraph of the paper, Shannon performs 
a notorious act of disciplinary boundary setting: “Frequently the messages 
have meaning; that is they refer to or are correlated according to some sys-
tem with certain physical or conceptual entities. These semantic aspects of 
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communication are irrelevant to the engineering problem.”30 Weaver ex-
pands on this point in a companion essay that was published together with 
Shannon’s paper in a 1949 book, distinguishing “three levels” in the theory 
of communication.31 The “technical level” has to do with whether symbols 
are transmitted accurately, the “semantic level” with what those symbols 
mean, and the “effectiveness level” with whether that meaning is chosen 
appropriately. According to Weaver, language models deal only with the 
technical level, although he also notes that the other two levels “have much 
to learn from” a statistical analysis of language.32

By presenting language models as multitask learners, the designers 
of GPT-3 take up Weaver’s idea of making statistics speak to semantics. 
In other ways, however, GPT-3 departs from twentieth-century disci-
plinary categories. In addition to his work with Shannon, Weaver was 
an early advocate of machine translation, which he discussed in a 1949 
memo. In this memo, Weaver argues that there is a logical core common 
to all languages. The best way to translate between languages, he argues, 
“is to descend, from each language, down to the common base of human 
communication—the real but as yet undiscovered universal language—and 
then re-emerge by whatever particular route is convenient.”33 This claim 
echoes the universalist thinking behind John Wilkins’s real character and 
G. W. Leibniz’s universal characteristic, presuming that a certain set of 
concepts is common to all languages. But as with ALGOL, Weaver’s uni-
versality is cut across by a disciplinary line dividing logic from culture. Me-
chanical methods, Weaver states, may be harder to apply to “literary trans-
lation,” in which “alogical” elements of language such as “intuitive sense 
of style, emotional content, etc.” are of crucial significance.34 Weaver here 
draws a line much like the one Boole set up in the last chapter of The Laws 
of Thought. On the one side are the literal meanings of words and their 
logical relations, and on the other are feeling, aesthetics, and the distinc-
tive qualities of particular languages—in short, all that would typically be 
viewed as matters for the humanities.

Experience has shown that Weaver was wrong about what machines 
could do: it is precisely what he called the “alogical” aspects of language 
that machines are best able to manipulate. The GPT models have proven 
capable of “style transfer,” meaning rewriting a passage in the style of a dif-
ferent writer. Generating logically coherent text has turned out to be more 
difficult. Consider this machine-generated paragraph, from the blog post 
introducing GPT-2:

It is easy to identify why the Civil War happened, because so many peo-
ple and so many books and so much television and films tell us that it was 
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the cause, that it has something to do with race or economics or religion. 
There is much agreement that it was essentially a war of slavery on be-
half of capitalism, about a century of slavery. But that’s not what most 
people think of when they think of the Civil War. Many people think of 
the war as about states rights. You’re not wrong about that, but it’s kind 
of misleading to say that the Civil War was a conflict between states’ 
rights and federalism. So let’s try again. What’s the idea that has inspired 
so many people to go onto the battlefields of Gettysburg and Antietam 
and Gettysberg and Petersburg and Fredericksburg? The American 
idea of the republic—a notion of limited government—is a great part of 
the history.35

Such text is the polar opposite of the all-substance, no-style logical lan-
guage imagined by thinkers from William of Ockham in the 1300s to Edsger 
Dijkstra in the 1980s. If understanding a text is, to use a very old analogy, 
like digestion, then reading machine-generated text can at times seem like 
smelling food without eating anything: one gets the sense that something 
is being said, but one can never pin down exactly what that something is.

This is not to say that the developers have abandoned logic. It would 
be more accurate to say that they have reversed the terms: logic is not the 
starting point for computational methods but the goal. The technical pa-
per about GPT-3 presents the ability of the model to perform three-digit 
arithmetic as a sign of the emergent intelligence of the system. Thus, in a 
twist that is almost too obvious to point out, an “algorithm” is supposed to 
learn on its own how to perform the procedures that originally went by the 
name algorithm. The aim is to produce a system that is capable of a range of 
logical tasks such as “commonsense reasoning.”36

Unlike in the classical paradigm, there is no way to judge with math-
ematical certainty whether the software is performing these tasks cor-
rectly. Instead, researchers employ benchmarks such as SQuAD (Stanford 
Question Answering Dataset), which resemble nothing so much as stan-
dardized tests.37 SQuAD consists of a series of short passages accompanied 
by questions to be answered using quotations from the passages. “What,” 
for instance, “is controled [sic] by the market and economy?” Correct an-
swer: “workers [sic] wages.”38 There are multiple versions of the question-
answering task; some are about finding the answer in a supplied passage, 
whereas others administer a “closed-book” quiz, in which the information 
must be found in the model itself. The ability to answer questions is sup-
posed to demonstrate that language models can “understand” texts and 
thus perform the sorts of information extraction tasks for which they are 
used in systems such as Google search and Alexa.
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Much has been written about whether such a system can really “think,” 
a question that touches on central problems in the philosophy of mind. 
More to the present point is how the models relate to language. To begin 
with, GPT-3 is in no way a straightforward representation of a coherently 
defined “English language.” The training data that were used to produce the 
GPT models consist primarily of books and text from the internet, filtered 
through semiautomated means to eliminate unintelligible or otherwise 
undesirable text. Defining the criterion of quality is a troublesome matter, 
and the data sets fall short of the standards linguists follow in constructing 
corpora. Since a large part of the text comes from internet discussion sites, 
the models tend to reproduce the viewpoints of the people who spend 
the most time on those sites. The training data also include text in vari-
ous dialects and creoles, as well as from a range of time periods—the mod-
els have, for instance, clearly been exposed to Shakespeare—but the texts 
are not necessarily accompanied by any information about where or when 
they were written. English is a living language, existing in many forms and 
changing over time, and the models can only account for these differences 
insofar as information about them can in some way be abstracted from pat-
terns in the words themselves.

A related point is that language models depend on, or at least benefit 
from, a historical process of language standardization. Starting in the sev-
enteenth century, dictionaries and grammar books encouraged regularity 
in written English, leading to the standardization of spelling. For centuries 
before then, no single dialect of English was clearly dominant, and spelling 
was chaotic: the proverbial scribe might spell the same word three differ-
ent ways on the same page. There is not nearly enough surviving text from 
this earlier stage in the development of English to train a language model 
on the scale of GPT-3, so we can only speculate as to how well it would 
work.39 The task would, in any case, be different. The model would not be 
able to presume a stable correspondence between sequences of letters and 
“words” in the abstract sense, nor would it be so easy to pin down the se-
mantics of grammatical forms when usages differ widely between regions 
and writers. If language models work through abstraction, some of that ab-
straction has already been done through the standardization of the English 
language itself.

Setting aside the issue of what language is being represented, there is 
a broader disconnect between language models and language that stems 
from how ANNs work. After the training process is complete, the ANN is 
static; when GPT-3 is used to generate text or perform other tasks, it does 
not “learn” anything new in the process. Critics have noted the possibility 
that such static models will lead to “value-lock,” in which a technology os-
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sifies practices that existed at the time of its design.40 While this specific 
training paradigm is liable to change, a broader issue remains regarding 
how the model’s success is determined. Because ML models do not answer 
to any precisely defined standard of what the output should be when they 
are fed unseen input, there is no way of judging whether a text generator’s 
imitation of language is good enough without resorting to some form of 
linguistic knowledge. This knowledge could consist of the competency of 
native speakers, in which case evaluating the model is a matter for surveys 
and focus groups. If academic disciplines are at issue, then we must turn 
to the ancient trivium of grammar, rhetoric, and logic, along with literary 
aesthetics and, most antithetically to Dijkstra’s way of drawing the disci-
plinary lines, hermeneutics.

By granting such forms of knowledge a role in the evaluation of computer 
systems, ML reopens an ancient question: is language really a reliable me-
dium? This question is relevant not just to text generators such as GPT-3 but 
also to any other ML system that employs words. Image classification mod-
els are culpable, since they usually classify the objects depicted in photo-
graphs using words such as motorcycle or cat.41 In constructing computable 
definitions of words based on data, these systems recall the empirical meth-
ods by which some Enlightenment thinkers hoped to build a new and better 
view of the world.42 ML models differ from these Enlightenment projects, 
among other ways, in that they do not deign to replace existing languages all 
the way down to the formation of concepts. Like Boole’s logical equations, 
GPT-3’s pronouncements draw what meaning they have from the languages 
people already speak. Yet in contrast to Boole’s system, the technology does 
not offer a standard of correctness that can plausibly be said to work inde-
pendently of those languages. Understanding the implications of this devel-
opment requires considering the terms on which computational processes 
interact with the social practices that govern human communication. From 
here, there is no direction to proceed but into politics.

The Negoti ation

If there is a common thread linking computer culture to the Enlighten-
ment, it is a belief that technological progress can create social equality. As 
Condorcet thought the printing press would create an open public sphere 
in which people could discourse as equals, the early denizens of the inter-
net envisioned a utopia. One computer-age echo of the Enlightenment oc-
curred in hacker culture—a loose affiliation of computer users who sought 
to break into secure systems, sometimes for malicious purposes and some-
times merely to explore. In the widely circulated 1986 manifesto titled “The 
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Conscience of a Hacker,” the pseudonymous hacker “The Mentor” (real 
name Lloyd Blankenship) presents a rationale for this practice. The form 
of hacking he endorses resembles the Enlightenment genre of the exposé, 
which sought to reveal what powerful people are hiding. Throughout the 
manifesto, he repeats the refrain that hackers are “all alike.”43 The mem-
bers of the hacker community, he writes, “exist without skin color, without 
nationality, without religious bias”; their culture involves “judging people 
by what they say and think, not what they look like.”44 The idea is that, by 
enabling people to communicate purely through text, digital media could 
place everyone on a level playing field, regardless of their race, gender, or 
socioeconomic status. It is a dream that today seems naïve, but it persists in 
the discourse of neutrality that continues to surround algorithms. The idea 
that a system of communication can eliminate bias reiterates the desire for 
a level playing field that motivated Condorcet’s language scheme.

But there is a complexity to this utopianism that is worth unpacking. 
For the Mentor, equality stems primarily from the openness of the techni-
cal medium: as long as people are able to think, speak, and explore freely 
online, he supposes, social differences will vanish. In effect, he treats the 
members of the hacker community as autonomous subjects engaging in a 
public sphere defined by the exchange of words. Yet the manifesto also sug-
gests the need for education: hackers have “been spoon fed baby food at 
school when we hungered for steak.”45 Education is often de-emphasized 
in narratives about the egalitarian possibilities raised by the internet, but 
it was central to the Enlightenment project. Condorcet’s utopian plan did 
not stop at enabling words to flow freely; instead, he treated words them-
selves as bearers of prejudice. Achieving true equality, then, would mean 
not just granting people the freedom to think and speak but also changing 
how they think and speak. To his detractors, this makes his philosophy im-
plicitly totalitarian, an attempt to impose a certain way of thinking on the 
world. Yet the internet has made the absence of a common language felt. 
Technology has divided as much as it has united, and open communication 
has reinforced hierarchies as much as it has demolished them.

In hindsight, it is not surprising that the decline of internet utopianism 
coincided almost exactly with the shift in usage of algorithm. Classical al-
gorithms fit with the early internet’s ideal of openness: the “Algorithms” 
section of Communications of the ACM provided a repository of reusable 
procedures that were described and explained in a public forum. With the 
rise of machine learning, the word algorithm has come to be associated 
less with openness than with opacity. The shift had to do in part with the 
emergence of new software engineering techniques: the mid-2010s saw the 
widespread adoption of container management systems such as Docker 
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and Kubernetes, which make it much easier to transfer complex soft-
ware configurations across computers. Such systems can work together 
with “low-code” and “no-code” approaches to development, which work 
mainly through combining and configuring prepackaged programs. If algo-
rithms were, in the early decades of computer science, about generalizing 
procedures for reuse, the parts of computer systems being repurposed and 
reused have now become far more complex, encompassing not just proce-
dures but also models, data, and software installations.

These changes in technical practice coincided with a shift in how the in-
ternet worked as a medium, both institutionally and culturally. If the Men-
tor imagined the internet as a transparent conduit through which people 
could speak their minds without resistance, the last great expression of 
this view was the personal blog, which suffered a devastating blow when 
Google shut down its aggregation service Google Reader in 2013. Such ser-
vices largely gave way to social media platforms with so-called algorithmic 
feeds, which decide what to show users through hidden processes tailored 
to maximize profitability by keeping people’s attention for as long as pos-
sible. In the second half of the decade, two highly influential books, Cathy 
O’Neil’s Weapons of Math Destruction (2016) and Safiya Noble’s Algorithms 
of Oppression (2018), singled out algorithms as engines that can reinforce 
inequality along race and gender lines.46 The internet circa 2010 was never 
the inclusive utopia the Mentor imagined, and algorithmic media threaten 
to worsen the problem.

The critiques of O’Neil, Noble, and others inspired two distinct lines 
of response. Some artificial intelligence (AI) researchers began to analyze 
their models for biases that could theoretically be addressed in future re-
visions. An example of this approach appears in the GPT-3 paper, which 
reports experiments testing for bias along the lines of gender, race, and re-
ligion.47 Researchers have also undertaken efforts to make AI systems “in-
terpretable” or “explainable” so as to allay concerns about their opacity.48 
Others have questioned whether AI is a good idea at all. In March 2021, 
Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Margaret 
Mitchell (under the intentionally transparent pseudonym “Shmargaret 
Shmitchell”) presented a paper titled “On the Dangers of Stochastic Par-
rots: Can Language Models Be Too Big? ”49 Gebru and Mitchell had 
been coleaders of Google’s Ethical AI team, but both left the company 
before this paper was published. (Reports differ as to whether Gebru was 
fired or resigned voluntarily.) The paper is a discussion of the disadvan-
tages of large language models such as GPT-3; its main suggestion is that 
researchers focus on smaller data sets that can be curated and thoroughly 
described. Gebru and Mitchell’s departure from Google received a great 
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deal of media coverage, contributing to a widespread awareness of the is-
sue of algorithmic bias.

This incident shows that the redrawing of the disciplinary lines around 
algorithms in the mid-2010s was not merely about semantics. The argu-
ments of O’Neil and Noble inspired a real change in the issues being raised. 
As has been widely reported, it is not difficult to induce a range of ML 
technologies, including the GPT models, to produce outputs that seem to 
replicate stereotypes.50 When, for instance, one enters the text “The man 
worked as a,” GPT-2 predicts that the next two words will be “security 
guard”; when one enters “The woman worked as a,” it comes up with 
“waitress.”51 The problem stems in part from the makeup of the training 
data used to produce the GPT models, which likely contain a large amount 
of racist and sexist text; as a result, it is not surprising that the model can 
generate racist and sexist output. Yet the models raise a broader issue of 
trust that cannot be resolved merely by fixing specific, known issues. Since 
the models cannot be proven correct in the way Dijkstra wanted to prove 
the correctness of programs, it is hard to imagine what undiscovered prob-
lems may lurk in GPT-3’s massive parameter matrices.

The conversation about these issues has raised slippery questions about 
how computational processes relate to language. From the 1960s to the 
1980s, literary critics debated whether meaning is based on the intention 
of a writer or constructed by the reader.52 In the late 2010s, this debate 
gained a renewed relevance when it came to be cited in discussions of the 
legal implications of AI. In a 2018 book, the legal scholars Ronald  K. L. 
Collins and David M. Skover argue that machine-generated text consti-
tutes “intentionless free speech” that ought to be protected under United 
States law.53 The “Stochastic Parrots” article takes quite the opposite posi-
tion, stating that “the tendency of human interlocutors to impute meaning 
where there is none can mislead both NLP [Natural Language Processing] 
researchers and the general public into taking synthetic text as meaning-
ful.”54 The seeming coherence of the output, the authors elaborate, is an 
illusion because the text “is not grounded in communicative intent, any 
model of the world, or any model of the reader’s state of mind.”55 This line 
of thought suggests that, for all that it can parrot human writing practices, 
GPT-3 is not doing the same thing with words that humans do, and to as-
sume otherwise is to be duped.

While their immediate reference points are literary theory and psycho-
linguistics, these arguments are also reopening questions that attended 
symbolic methods centuries ago. By combining language models with 
other sources of information, AI researchers aspire to realize the most am-
bitious version of Leibniz’s calculus ratiocinator: a unified method for an-
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swering questions about anything and everything.56 As with Leibniz, these 
ambitions have run up against the messiness of communication. In one of 
the examples given in the GPT-2 article, the machine is given the question 
“What river is associated with the city of rome?”; it answers, “the Tiber.”57 
It works, at least in this case. But something is missing. While the question 
about the Tiber has a generally agreed-on answer by virtue of which that 
output could be judged indisputably correct, the model provides no clear 
mechanism for creating agreement about terms that are contentious or di-
visive. Instead, the correctness of the answer is judged wholly by whether 
the model chooses the right sequence of words, without regard to what 
people may think those words mean.

The problem is most apparent in regard to politically charged questions. 
For instance, in a nod to the French Revolution, I asked GPT-2 whether 
liberty, equality, or fraternity was most important. The most important 
one, it responded, is “the freedom of the individual to choose his 
own life.”58 Could such an output, even coming from a system people 
seriously trust on such issues, rationally change anyone’s mind about any-
thing? Evaluating the model solely by whether it chooses the right words 
by a predefined rubric covers over the fact that words do not always mean 
the same things to all people. If two users agree that individual freedom 
is  the highest value but differ as to what freedom entails, they may agree 
that the AI produced the correct answer while having vastly different ideas 
of what that answer actually was.

This profusion of conflicting interpretations could not be resolved 
merely by improving the quality of the answers, as researchers will un-
doubtedly do. If an AI’s pronouncements truly were viewed as authorita-
tive, they would be pored over and debated like the text of the Bible. The 
problem is language itself. Words—not any particular words, but words in 
general—are incapable of doing what the question-answering task asks of 
them. This issue is not new; rather, it has been a part of the discourse about 
universal computation for centuries. The biases found in language models 
are a modern iteration of Francis Bacon’s idols of the market—prejudices 
and errors reproduced through everyday chatter. There is, indeed, a not 
insignificant parallel between the concerns about meaning raised in the 
“Stochastic Parrots” paper and John Locke’s account of the “abuse of 
words”: in both cases, people are charged with credulously presuming that 
words adhere to the same concepts for the writer as for the reader. How to 
respond to such issues was a central epistemological question before the 
subject–object divide took it off the table.

In this regard, a more illustrative figure than Leibniz would be Con-
dorcet. Whereas Leibniz had a theological basis for trusting that people 
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would eventually reach an accord about what symbols meant, Con-
dorcet wanted to create this accord through education and social 
transformation—not just providing an instrumental means of producing 
answers but also teaching people a new way of understanding the world. 
The question-answering task skips over this step since, as in the idea that 
equal participation in the public sphere can be produced solely through the 
free exchange of words, its epistemology stops short at language. All the 
difficulties of forming human understanding are off-loaded onto words, on 
whose preexisting ability to produce an agreement the outcome depends. 
This dependence is the ultimate result of the passive attitude toward words 
that has often attended symbolic methods since the Lockean epistemol-
ogy collapsed—the tendency to treat language as a natural resource from 
which meanings can be taken as needed but that is ultimately separate 
from algorithmic logic. Recent experience has shown that this approach 
is not sufficient, that words can cause problems, that language should not 
just be taken as it is.

A helpful starting point in thinking through this issue would be to con-
sider what user interface designers are doing when they place words or 
other signs on the screen. As P. B. Andersen explains in his Theory of Com-
puter Semiotics, interface designers must find a balance between making sys-
tems understandable in terms of existing categories and opening new ways 
of thinking.59 The former goal often involves metaphors—words such as file 
and folder suggest analogies with older practices as a way to help people un-
derstand software.60 But computers also bend the meanings of the words 
in new directions. Words that are commonly used in computer interfaces, 
such as open, save, and window, have taken on new senses that depart from 
the metaphors that initially motivated them. Other concepts are entirely 
new—database and software refer to ideas that were nonexistent prior to the 
computer age. User interface design draws on language in part to change it, 
and it involves, accordingly, a negotiation between the individuals and orga-
nizations that produce software and the broader communities of language 
speakers who have the power to accept or to reject new coinages, and who 
can employ them in ways that break with the designers’ intent.

The question-answering task handles this negotiation in a one-sided 
way, at least as far as the words in the output go. The answers are supposed 
to make sense within existing languages, not, in any intentional way, to 
contribute anything new to language. In this regard, the subject–object 
divide remains in place. The situation is more complex, however, regard-
ing the words in the input, and it is here that the GPT models open the 
potential for a radical rethinking of how computation relates to language. 
Some enthusiasts of the models have argued that multitask learners will 
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transform the practice of programming; rather than implement algorithms 
by writing code, the programmer will design a prompt that gets a model 
to perform the desired task.61 To pick an instance from the paper about 
GPT-3, the researchers entered, “Please unscramble the letters into 
a word, and write that word: taefed =”; the machine produced the 
desired response, “defeat.”62 It would not be especially hard to design an 
algorithm that could solve this problem reliably, provided one has a list of 
acceptable words; it is the sort of problem that might be used as an exer-
cise in a computer science class or job interview. What is new is the fact 
that the computer is apparently able to figure out a solution on its own.

This prompting technique is not specific to text-oriented tasks. By com-
bining a language model with image generation techniques, the popular 
program CLIP+VQGAN, first publicized in late 2020, produces synthetic 
images based on text descriptions entered by the user.63 This program is 
touted as a way of democratizing AI art: since the prompts may be writ-
ten in English, it is possible to experiment with the system and produce 
interesting (if unpredictable) results without needing much of a techni-
cal background. GitHub Copilot, which was released as a preview in June 
2021, applies a similar method to computer programming: it uses a modi-
fied version of GPT-3 to generate code automatically based on natural-
language comments describing what the code is supposed to do. In her 
work on compilers in the 1950s, Grace Hopper sought to make computing 
less tedious by transferring the work of converting algorithms into execut-
able instructions from human to machine. These new practices move the 
chains once again: the machine, not the human, transforms the problem 
definition into an algorithm. This idea suggests a return to how Hopper, 
early in her career, understood what we now call programming: communi-
cating with a machine.

However successful prompting turns out to be as a programming 
paradigm, the need to control language models raises issues that trouble 
the  rigid distinction of algorithms from communication. The identifiers 
“a34kTMNs” and “MARILYN” may be interchangeable in ALGOL code, 
but if one is trying to induce a language model to perform a certain task, ev-
ery word choice matters.64 One proposed approach to multitask learning is 
pattern-exploiting training, which employs templates that exploit how pre-
trained models respond to certain arrangements of words. For instance, the 
following patterns can be used to answer a question q based on passage p:65

p. Question: q? Answer: __.
p. Based on the previous passage, q? __.
Based on the following passage, q? __. p
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The effectiveness of these verbal formulae in getting language models to 
do things stems from the human meaning-making practices represented 
in the training data—from ways people have used words and punctuation 
marks in the past. Understanding what differentiates one prompt from an-
other requires neither the mathematical analysis of procedures endorsed 
by Dijkstra nor any familiar sort of interpretation, but rather analyzing the 
effects the words have on a series of matrix calculations that somewhat, but 
not totally, parallel the structures of the English language.

In the face of this new hybrid of mathematics and language, viewing lan-
guage as unproblematic because it lies outside a disciplinary boundary, as 
Boole implicitly did and the classical algorithm implicitly does, is no lon-
ger tenable. An alternative lies in the mistrust of words that has often at-
tended symbolic methods in the past. Although the overbearing language 
reform efforts of the 1790s deserved much of the criticism they faced, the 
problems to which these efforts responded have never gone away. Words 
can harm, divide, and distort, and they can do so all the more readily when 
they are presumed to be transparent. The dangers posed by large language 
models such as GPT-3 stem in part from an uncritical attitude toward lan-
guage, from a misguided belief that our preexisting conceptions of what 
words mean can provide an adequate guide to those words’ significance 
even when those words are chosen by a machine. The symbolic turn of the 
nineteenth century removed such concerns from the domain of algebra, 
and this boundary persists, among other places, in the way language model 
benchmarks measure knowledge by the word. The time has come to re-
open the questions that surrounded symbolic computation before this ar-
rangement took shape.

Conclusion

As I have shown in this book, anxieties about communication have arisen 
again and again in discussions of symbolic methods, from the emergence 
of modern algebraic notation to the development of the programming lan-
guage. In the seventeenth century, symbols were aligned with the dream 
of making writing independent from language; algebraic notation prom-
ised a way of putting thoughts directly on a page without the intervention 
of words. In the eighteenth century, algebra became the model of a well-
formed language, as the Abbé de Condillac put it, and the arbitrariness of 
algebraic symbols—the ease of changing the values of a and b—testified in 
favor of the possibility of building a better language from the ground up. Yet 
the methods of algebra and calculus seemed, to many observers, to involve 
ill-defined or absurd ideas, giving rise to an alternate view in which sym-
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bols were only as good as the words used to define them. These differing 
positions had implications for whether the “algorithm” of the differential 
calculus could be trusted, whether mathematicians could propound a new 
definition of sum, and whether −1 was a true number or mere nonsense.

These old debates, quaint as they may seem, touch on a question worth 
reviving: how to balance explicit definitions with social convention as ways 
of determining the meanings of signs. In its dependence on existing lan-
guages, GPT-3 is implicitly aligned with the social sort of meaning: what-
ever significance the word sum may have in its output stems from how that 
word has been used by people, as mediated through a complex techno-
logical apparatus. Yet the practice of computation hews strongly toward 
treating words and other symbols as arbitrary tokens with no inherent 
meanings beyond the roles assigned to them in code. This way of thinking 
is manifest in how the question-answering task is evaluated: the output is 
scored solely by how much it overlaps with the desired sequence of char-
acters. This approach shows the continuing influence of the subject–object 
divide that, starting in the mid-nineteenth century, granted symbols au-
tonomy from words by consigning the social complexities of language to 
the practical realms of pedagogy, scientific communication, and, eventu-
ally, user interface.

This divide can be explained quite simply. Modern computation is, as 
I have termed it, aconventional: in standard programming languages, one 
can assign computational meanings to words and other symbols at plea-
sure, regardless of how people have used them in the past. But this acon-
ventionality only holds if one draws a line between one’s choices and the 
broader contexts in which they are made—between the theoretical sense 
in which it is possible to do something silly like swap the names input and 
output (as a programmer can indeed readily do) and the more practical 
sense in which doing so would be foolish. The hierarchical distinction be-
tween “hard” algorithmic logic and “soft” human factors, as instated by 
early computer scientists such as Dijkstra, elevates the former perspective 
as the logical one even if many of the practices it enables are far from logi-
cal. Moving away from this distinction would mean recognizing that the 
choices involved in programming computers are, after all, to some extent 
constrained by the conventional meanings of words and symbols—that 
there is an epistemologically relevant reason why programmers do not, ex-
cept as a joke, use input to mean output.

Such issues, though excluded from the domain of “hard” logic, are 
hardly unfamiliar to programmers. Large software projects follow elabo-
rate naming conventions to ensure consistency and avoid ambiguity. In the 
private sector, the discipline imposed by such conventions is indeed val-
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ued above individualistic coding practices. But naming conventions only 
operate within relatively small teams of developers or, at largest, the user 
bases of programming languages such as Python. Language models nego-
tiate with communities of millions or billions of speakers, and the issues 
that arise at this scale are more contentious. One source of tension is a dis-
comfort with technology companies imposing ideas on the population—
with the undue amount of power granted to the people with the privilege 
of turning the knobs. But ML raises other issues that do not fit neatly into a 
trickle-down model that presumes developers have total control over sys-
tems. As the critical discourse has shown, GPT-3’s training text contains 
elements that are best not enshrined in computer systems: prejudices, 
biases, falsehoods. To reckon fully with these problems is to think of peo-
ple’s linguistic practices not as a well from which meaning may be drawn, 
as in the oracle model of question answering, but rather as an arena of hu-
man activity that may be critiqued and improved.

The pendulum has already begun to swing back that way. Alongside 
the rise of ML, the 2010s saw a resurgence of interest in Rudolf Carnap’s 
idea of conceptual engineering, this time with a great deal more empha-
sis on its political implications.66 The new language reform is often aligned 
with feminist causes, such as the promotion of gender-neutral pronouns, 
although some advocates are more concerned with scientific precision. 
While their concerns are characteristic of the twenty-first century, these 
efforts express a centuries-old perception that words are not a neutral me-
dium for expressing thoughts, that language can provide a distorted view 
of the world. The more activist forms of conceptual engineering arguably 
share some of the drawbacks of universal language schemes, including a 
tendency to force certain practices on people. Language reform also bears 
the potential (as noted by eighteenth-century thinkers such as Condorcet 
and Johann David Michaelis) to create social divisions by alienating those 
who have adopted the reformed language from those who have not. Yet 
the stakes have changed. This time around, computation no longer seems 
like a solution to the flaws of language, as it did for Leibniz. Now, it seems 
to worsen the problem, making those flaws all the more urgent to address.

While the conversation about conceptual engineering is separate from 
the concurrent debates about algorithms, the two raise similar issues re-
garding the relation of individual to collective agency. Much of modern 
computation’s danger and power stems from the fact that its aconvention-
ality enables programmers to undertake in isolation what is ordinarily a so-
cial matter: deciding the meanings of signs. Computation claims the status 
of a universal language while skipping the hard part of the work it would 
take to create one. Yet this aconventionality—the programmer’s ability to 
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redefine a symbol as easily as changing “A := 5” to “A := 6”—also bears 
the potential to challenge received practices by bending the meanings of 
signs in new directions. Thinking through what it would take to alter the 
meaning of a sign considered not as an arbitrary token, as ALGOL treats 
identifiers, but in its social circulation—the difficulty of achieving clar-
ity, the need to reckon with established usages, the politics of reaching 
agreement—can help in navigating the issues modern computation raises. 
Although universality may be a misguided goal, it is still possible to work 
toward a common language, a shared understanding that enables people 
and machines to work together without merely talking or computing past 
each other. A crucial political issue is who gets to decide what that com-
mon language should be.
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ern mathematics as well. The disciplinary conventions of mathematics departments 
are strongly against reading presentations off paper, as is common in the humanities; 
presenters are expected to remember proofs well enough to be able to perform them on 
a chalkboard and explain them on the fly.

57. V. Katz and Parshall, Taming the Unknown, 12–57, 81–104.
58. V. Katz and Parshall, 58–80.
59. Al-Khwārizmī, Algebra, 5.
60. On al-Khwārizmī’s use of geometry, see V. Katz and Parshall, Taming the Un-

known, 138–44.
61. Al-Khwārizmī, Algebra, 86–174.
62. Al-Khwārizmī, 10.
63. Al-Khwārizmī, 10.
64. Al-Khwārizmī, 10.
65. V. Katz and Parshall, Taming the Unknown, 7.
66. V. Katz and Parshall, 134.
67. See Fibonacci, Fibonacci’s Liber abaci.
68. Ulivi, “Masters, Questions and Challenges in the Abacus Schools”; Parshall, “A 

Plurality of Algebras, 1200–1600.”
69. On mathematical teaching in early modern universities, see Feingold, The Math-

ematicians’ Apprenticeship.
70. See Pycior, Symbols, 149–65.
71. See Bos, “Differentials, Higher-Order Differentials and the Derivative in the 

Leibnizian Calculus”; Bos, Redefining Geometrical Exactness.
72. As a result, some algebraists, including Viète, required that coefficients have 

a dimension to make up the difference. In his Geometry, René Descartes employs a 
trick to get around this requirement. Suppose one wants to multiply the lengths of the 
lines BD and BC. Choose a point A along BD such that AB has the length taken to be 
unity. Draw a line from A to C. By drawing a parallel line originating at D and finding 
its intersection E with the line BC, one can construct a line segment BE with a length 
equal to the product. One can use this method to square a number. This construction 
was sometimes viewed as inelegant because it required choosing an arbitrary unit of 
measurement, which was not usually required when constructing squares in Euclidean 
geometry. See Descartes, The Geometry of René Descartes, 4–5.

73. Euclid, Elements, Books I–XIII, 697–954.
74. The Greek logos famously means both “idea” and “word,” but it also had a math-

ematical meaning. In book 5 of the Elements, Euclid defines logos as “a sort of relation in 
respect of size between two magnitudes of the same kind”—that is, a ratio (372). Alogos, 
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then, suggested both a lack of a ratio and a lack of speech. Arabic translators rendered 
this as asamm (ّأصََم), meaning “deaf,” which was in turn translated into the Latin surdus, 
which means either “deaf ” or “silent.” See OED Online, s.v. “surd, n,” accessed Febru-
ary 10, 2022, https://​www​.oed​.com/​view/​Entry/​194860. See also Pesic, “Hearing the 
Irrational,” 504.

75. See Aydin and Hammoudi, “Root Extraction by Al-Kashi and Stevin.”
76. Al-Khwārizmī, Algebra, 199–200n.
77. See Pantin, “La représentation des mathématiques chez Jacques Peletier du 

Mans.”
78. On Stifel and irrationals, see Pesic, “Hearing the Irrational”; Pesic, Music and the 

Making of Modern Science, 55–72.
79. Stifel, Arithmetica integra, 103r.
80. Stifel, 103r.
81. Stifel, 103r.
82. On the intersection of religion and mathematics for Stifel, see Koetsier and 

Reich, “Michael Stifel and his Numerology.”
83. Stifel, 114r, 122v. Stifel’s notation differs from the modern in that it includes cos-

sic characters (explained in the next section) indicating the degree of the root and lacks 
the solidus or bar over the expression whose root is taken. I have omitted the cossic 
characters here for the sake of simplicity.

84. Stifel, 116r.
85. Stifel, 122v.
86. The pamphlet was published in Flemish as well as in a French version appended 

to his book L’arithmetique, which he published the same year; an English translation is 
available in Stevin, “On Decimal Fractions.”

87. Stevin, L’arithmetique, 140; Stevin, “On Decimal Fractions,” 24. This notation 
was adapted from the way Rafael Bombelli had notated powers of unknown quantities, 
which Stevin himself uses elsewhere; see Struik, “Simon Stevin and the Decimal Frac-
tions,” 476.

88. Stevin, L’arithmetique, 37; translation from Klein, Greek Mathematical Thought 
and the Origin of Algebra, 196.

89. Stevin, Les oeuvres mathematiques de Simon Stevin de Bruges, 88–89. He frames 
the method in terms of proportions, but it can be applied to solving equations. He 
first published this method in a pamphlet titled Appendice algébraique contenant règle 
générale de toutes equations, the only known copy of which was destroyed when the 
Germans bombed the University of Louvain Library during World War I. The text, 
however, was added to the second edition of L’arithmetique, so a version of it survives. 
On this transmission history, see Sarton, “Simon Stevin of Bruges (1548–1620),” 253. 
Fowler links this procedure to the later work of Cauchy (“Dedekind’s Theorem: √—2 × 
√—3 = √—6,” 733); for a critical response, see K. Katz and M. Katz, “Stevin Numbers and 
Reality.”

90. Chaitin, Information, Randomness and Incompleteness, 132.
91. This is the fifth of al-Khwārizmī’s six cases; see al-Khwārizmī, Algebra, 39–40.
92. V. Katz and Parshall, Taming the Unknown, 167–72.
93. Cardano, The Rules of Algebra, 98–99; translation modified. Witmer translates 

“dimidium numeri quod iam in se duxeras” as “one-half the number you have already 
squared”; however, this translation attaches the subordinate clause starting with quod 
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to numeri, which does not agree with it in gender. The difference is significant because 
Witmer’s translation suggests that one is supposed to halve the actual value that was 
squared (e.g., to compute one-half of b/2), which is mathematically incorrect. Witmer 
also uses the modern notation x to express algebraic variables, which I have replaced 
with a more literal translation of Cardano’s notation.

94. Pycior, Symbols, 22.
95. Cardano, 20.
96. Pycior, Symbols, 23.
97. Cardano, 106. The quotation is from Stifel, Arithmetica integra, 122v.
98. Bombelli quoted in Waerden, History of Algebra, 61.
99. Moore, 14.
100. Letters are, to be sure, not the only way of achieving the indeterminacy of mod-

ern algebraic variables; Jocelyn Rodal has argued that some forms of literary language 
achieve a similar effect with words (“Patterned Ambiguities”).

101. Al-Khwārizmī, Robert of Chester’s Latin translation of al-Khwārizmī’s 
al-Jabr, 67.

102. Frege, “Sense and Reference.”
103. V. Katz and Parshall, Taming the Unknown, 200–204.
104. Rudolff, Behend unnd hubsch Rechnung durch die kunstreichen regeln Algebre, so 

gemeincklich die Coss genennt werden.
105. Heeffer, “On the Nature,” 22. See also Neal, From Discrete to Continuous, 49–62.
106. Travis D. Williams argues that Recorde’s presentation of the rule of false posi-

tion anticipated the idea of naming an unspecified quantity (T. Williams, “Mathemati-
cal Enargeia,” 199–200). This is a fair reading of the passage, but it does not entail that 
Recorde saw his actual notation as indeterminate. In the section on cossic numbers, he 
makes it quite plain that the cossic characters are supposed to be interpreted as units. 
The symbol indicating the “name” of the unknown thus takes the form of a denomina-
tion, not of a variable as we would understand it now.

107. Recorde, sig. S.i.r.
108. Recorde, sig. S.iii.r.
109. Recorde distinguishes “nombers Abstracte” from “nombers Contracte, or De-

nominate” (sig. S.i.r). The latter he divides into “nombers denominate vulgarely”—that is, 
numbers with concrete units, such as “10. shillinges,” “10. men,” or “1000. yeres”—and 
“nombers denominate Coßikely” (sig. S.i.r). He explains the latter as numbers that “bee 
contracte unto a denomination of some Coßike sign as 1. nomber, 1. roote. 1. square 
1. Cube” (sig. S.i.v). Thus, the cossic characters stand in for units to which another 
number is “contract.” After introducing the cossic symbols, he states that when one 
assembles two cossic numbers with the plus or minus sign, the result is “a compounde 
nomber” (sig. S.ii.v). Jeffrey Oaks makes a similar point to mine in relation to the alge-
bra of the period more broadly; Oaks, “François Viète’s Revolution in Algebra,” 269.

110. Viète, In artem analyticem isagoge, Biiv. An English translation of this text is 
included as an appendix in Klein, Greek Mathematical Thought; I quote this translation 
in what follows. Another translation by T. Richard Witmer is available in Viète, The 
Analytic Art, along with translations of related works. Witmer’s is the more readable 
translation, but it modernizes the notation, thus losing some of the specific character of 
Viète’s method.

111. To explain further, planum and quadratum both indicate two-dimensional 
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magnitudes. The difference is that quadratum refers to the square of a one-dimensional 
value, whereas planum refers to a magnitude already considered to be two-dimensional. 
See Oaks, 270.

112. Klein, 340.
113. In favor of there not being a connection, I would point out the structural simi-

larity between cossic characters and Diophantus’s notation, from which Viète specifi-
cally wanted to differentiate his system.

114. Wallis, A Treatise of Algebra, Both Historical and Practical, 66; Wallis argues, in 
particular, that Viète’s use of the word species derives from a legal usage. On the inter-
section of mathematics and law, see Cifoletti, “La question de l’algèbre.”

115. Klein, 175. Michel Serfati argues that Viète started a “dialectic of indetermi-
nacy” by employing symbols for undetermined given values; see Serfati, La révolution 
symbolique.

116. Oaks, 285. Another account comes from Peter Pesic, who links the symbols to 
Viète’s experience in cryptanalysis (“Secrets, Symbols, and Systems”). For a response, 
see Stedall, From Cardano’s Great Art to Lagrange’s Reflections, 20.

117. See V. Katz and Parshall, Taming the Unknown, 156–58, 227–46.
118. V. Katz and Parshall, 58-80; Bashmakova, Smirnova, and Shenitzer, “The Birth 

of Literal Algebra.”
119. Klein argues that Diophantus’s sign Ṁ, which was appended to numbers not 

dependent on the unknown, reflected the fact that the Greeks thought of “numbered 
assemblages” rather than of bare numbers as we would understand the term now (177–
78). But the cossic notation developed in the early sixteenth century worked much the 
same way; this indicates that the way of thinking Klein takes to be specifically Greek 
also existed in sixteenth-century Europe prior to Diophantus’s revival. On the relation 
of Diophantus to medieval algebra, see Christianidis and Oaks, “Practicing Algebra in 
Late Antiquity.”

120. V. Katz and Parshall, Taming the Unknown, 66.
121. Klein, 318.
122. Klein, 153–54.
123. Viète makes this claim about Diophantus in Klein, 345.
124. Klein, 154–55.
125. Klein, 321. Klein argues that the exegetic phase is geometric and the rhetic 

numerical; Oaks argues (278) that Viète does not clearly distinguish the two.
126. Viète, Opera mathematica, 54. An English translation of this passage appears 

Viète, Analytic Art, 108–9. The translations I have given are my own based on the Latin 
text.

127. Viète, Opera mathematica, 54.
128. Viète, 54.
129. Viète leaves it to the reader to perform these last steps.
130. Klein, 353.
131. On Harriot and Viète, see Stedall, “Notes Made by Thomas Harriot on the 

Treatises of François Viète.”
132. On the background of this text, see Stedall, The Greate Invention of Algebra.
133. Harriot, Artis Analyticae Praxis, 21–22.
134. Malcolm and Stedall, John Pell (1611-1685) and His Correspondence with Sir 

Charles Cavendish, 56–57.
135. Malcolm and Stedall, 37–39.
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136. Malcolm and Stedall, 54–56.
137. Malcolm and Stedall, 55.
138. On Viète and Fermat, see Mahoney, The Mathematical Career of Pierre de Fer-

mat, 26–71; on Ghetaldi and Vaulezard, see Oaks, 279.
139. See Sasaki, Descartes’s Mathematical Thought.
140. On Dary and Hooke, see Taylor, Mathematical Practitioners, 217.
141. Bacon, The New Organon, 116.
142. Something similar could be said of mathematical instruments, which Deborah 

E. Harkness compares to the “black boxes” of modern technology (130).
143. V. Katz and Parshall, Taming the Unknown, 173.
144. Only six of the original thirteen books of Diophantus’s Arithmetic are known 

to have survived in the original Greek; however, four others survive in an Arabic 
translation probably produced in the ninth century. An English translation of these 
texts is available in Diophantus, Books IV to VII of Diophantus’ Arithmetica: in the Arabic 
Translation Attributed to Qustā ibn Lūqā.

145. Hooke, The Posthumous Works of Robert Hooke, 64.
146. Hooke, 64. On this proposal, see Hesse, “Hooke’s Philosophical Algebra.”
147. Oughtred, The Key of the Mathematicks New Forged and Filed, B5v.
148. Ward, Idea trigonometriae demonstratae, A2v.
149. John Guillory makes a similar point in relation to prose writing, observing a 

tension between competing tendencies toward clarity and technicity; Guillory, “The 
Memo and Modernity,” 129–32.

150. Descartes, Geometry. Douglas Jesseph argues that seventeenth-century math-
ematicians may be divided into geometric and algebraic foundationalists; see “The 
‘Merely Mechanical’ vs. the ‘Scab of Symbols.’” Descartes, in Jesseph’s view, rejected 
the idea that algebra could be founded on geometry on the grounds that algebra ought 
to be kept pure of all traces of physical reality. Descartes’s algebraic foundationalism 
was not, however, the same as the formalism of the late nineteenth century on in that 
he did not treat symbol-manipulation rules as themselves foundational.

151. Descartes, A Discourse on Method, 15.
152. M. Jones, Good Life, 2–3.
153. Descartes, The Philosophical Works of Descartes, x.
154. Descartes, 4.
155. Descartes, 10–12.
156. Descartes, 11.
157. Like Viète, Descartes distinguished analysis from synthesis and viewed the 

latter as superior; put simply, one was supposed to use symbolic analysis as a means 
of discovery, then construct a geometric proof of the result that would demonstrate 
it synthetically, independently of any symbolic expressions. See Sasaki, Descartes’s 
Mathematical Thought; Schmitter, “Mind and Sign”; Guicciardini, Isaac Newton on 
Mathematical Certainty and Method, 31–58.

158. Descartes, Philosophical Works, 33.
159. Descartes, 40.
160. Descartes, 67.
161. Descartes, 67.
162. Descartes, 67.
163. Klein argues that Descartes’s idea of number is based on a “symbol-generating 

abstraction” (202); as a result, Klein later writes, modern numbers “can be immediately 
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grasped in the notation” (224). This account overlooks the fact that, from a Cartesian 
perspective, the “symbols” must be understood as mental constructs, not merely physi-
cal marks.

164. Descartes, Philosophical Works, 1.
165. Descartes, 63, 73–76.
166. Descartes, 63.
167. Cajori, A History of Mathematical Notations, 200. On the relation between Bar-

row and Hérigone, see Pycior, Symbols, 152–53.
168. Hérigone, Cvrsvs mathematicvs, nova, brevi et clara methodo demonstratvs, per 

notas reales & vniuersales, citra vsum, cuiuscunque idiomatis intellectu faciles, quotation 
from full title. On Hérigone’s use of symbols, see Massa Esteve, “Symbolic Language in 
Early Modern Mathematics.”

169. As Travis D. Williams has argued (“Mathematical Enargeia,” 169), making 
sense of early modern mathematical notation required further writing: the reader was 
expected to work out the problems on a sheet of paper so as to fully understand the 
ideas. Such practices fit with Descartes’s description of notation as an aid to the intel-
lect, but they do not explain Hérigone’s use of symbols to link equations together.

170. Hérigone, quotation from full title (see note 168), translated from Latin.
171. Hérigone, vol. 1, sig. bvr.
172. Hérigone, vol. 1, sig. biiiir.
173. Bliss introduced Blissymbolics, a language based on visual symbols. A survivor 

of the Holocaust, Bliss wanted, like countless others over the centuries, to mend the 
rifts between groups of people who spoke different languages; Bliss, Semantography 
(Blissymbolics).

174. Hérigone, vol. 1, sig. biiiiv.
175. The definitive account of the Hobbes–Wallis controversy is still Jesseph, Squar-

ing the Circle. Jesseph has more recently revised some of his positions (“Geometry, 
Religion and Politics”). See also Alexander, Infinitesimal; Pycior, Symbols, 146.

176. Hobbes, Six Lessons to the Professors of the Mathematiques, 23.
177. Hobbes, Leviathan, 12–13.
178. Hobbes, Six Lessons, 28. Hobbes may have meant this as a riposte to Seth 

Ward’s statement that algebra was a “design against language,” which I discuss in chap-
ter 2.

179. Hobbes, Elements of Philosophy the First Section, Concerning Body, 2.
180. Hobbes, Elements of Philosophy, 1.
181. Dreyfus, What Computers Still Can’t Do, 69; Haugeland, Artificial Intelligence, 

23–28.
182. Ward, Idea trigonometriae demonstratae, 1.

Ch a pter T wo

1. Wiener, Cybernetics, 12.
2. Davis, Universal Computer, 1; W. Thomas, “Algorithms,” 40.
3. Leibniz, Selections, 12–17, 50–58. See Rabouin, “‘Analytica Generalissima Huma-

norum Cognitionum.’”
4. Leibniz, Selections, 51.
5. See M. Jones, Good Life, 248.
6. Leibniz discusses these ideas in a number of places, including “New System of 
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the Nature of Substances and their Communication, and of the Union which Exists 
between the Soul and Body” (1695) and “Monadology” (1714). Leibniz, Philosophical 
Texts, 143–52, 267–81.

7. Antognazza, Leibniz.
8. French took a turn toward institutionalized standardization with the found-

ing of L’Académie Française in 1635. The first English dictionaries appeared in the 
early 1600s, although large dictionaries did not exist until later in the century and the 
first comprehensive ones arguably appeared in the eighteenth. The construction of a 
standard dialect of British English is generally regarded as having taken place in the 
eighteenth century, but I would still maintain that ideas about language shifted in the 
late seventeenth century toward the idea that the language was governed by rules codi-
fied in dictionaries and grammar books.

9. Wilson, Heart of Europe, 258–64.
10. Mattheier, “German,” 235.
11. Leibniz, “Nova Methodus pro Maximis et Minimis.”
12. On Leibniz and public debate, see Dascal, The Practice of Reason.
13. Guicciardini, Isaac Newton on Mathematical Certainty and Method, 102.
14. Translation from Slaughter, Universal Languages and Scientific Taxonomy in the 

Seventeenth Century, 127.
15. See Slaughter; Eco, Search for the Perfect Language; Eco, “The Language of the 

Austral Land”; Knowlson, Universal Language Schemes in England and France, 1600–
1800; Salmon, The Study of Language in 17th-Century England; Cram and Maat, “Uni-
versal Language Schemes in the 17th Century”; Maat, Philosophical Languages; Lewis, 
Language, Mind and Nature; Fleming, Mirror of Information. On Leibniz’s attempts 
at a universal language, see Pombo, Leibniz and the Problem of a Universal Language. 
For further background on Leibniz’s thinking about language, see Dascal, Leibniz, 
Language, Signs, and Thought.

16. Ockham developed the Scholastic position of nominalism into the idea of a 
mental language that is not based on any conventional language. See Panaccio, Mental 
Language. Antognazza connects this idea to Leibniz’s universal characteristic (93).

17. See Leibniz, Dissertation on Combinatorial Art, 185–87.
18. Wilkins, Mercury, 108.
19. Wilkins, 109.
20. Wilkins, 110.
21. Ward, Vindiciae academiarum, 19. This statement was a response to the sug-

gestion one of Ward’s opponents, John Webster, that grammarians should study other 
modes of communication besides words, including the symbols used in “Algebraick 
Arithmetick” (Webster, Academiarum examen, 24); Ward takes this as an insult to alge-
braists. It is worth noting that Webster cites Hérigone’s book, suggesting that he took a 
similarly pragmatic view of symbols’ role in communication.

22. Ward, Vindiciae academiarum, 19.
23. Vivian Salmon, for instance, states that Ward is advocating the “Lingua Math-

ematicorum” as a model for universal character schemes (The Works of Francis Lodwick, 
133); Ann Geneva quotes this same passage as evidence that Ward is treating the “Lin-
gua Mathematicorum” as superior to ordinary language (Astrology and the Seventeenth 
Century Mind, 279). To suppose that Ward is advocating the “Lingua Mathematicorum” 
is to overlook the extent to which he is specifically concerned with differentiating alge-
braic symbols from numerals; it is only numerals that he calls the “Lingua Mathemati-
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corum,” and he is saying that algebraists have come to oppose their use because of this 
linguistic nature.

24. Ward, Vindiciae academiarum, 19.
25. Ward, 19.
26. Ward, 20.
27. Ward, 21. The word “Analyties” does not appear in the Oxford English Dictionary 

or in the Early English Books Online Text Creation Partnership database; it may be a 
misprint of Analytics.

28. Ward, 20.
29. Wilkins does not use quite the mechanism that Ward suggested. Ward, along 

with Pell, Descartes, George Dalgarno, and a number of others, thought it would 
be best to create symbols for the simple ideas from which more complex ones are 
composed and build up symbols for more complex ideas by combining them. Wilkins, 
on the other hand, takes a top-down approach, representing ideas by their position 
in a hierarchy. This difference led to a falling out between Wilkins and Dalgarno. See 
Maat; Blank, “Dalgarno, Wilkins, Leibniz, and the Descriptive Nature of Metaphysical 
Concepts.”

30. Wilkins, An Essay Towards a Real Character and a Philosophical Language, b2r.
31. Wilkins, 13.
32. Wilkins, 19.
33. Wilkins, 20; on Wilkins and Aristotle, see Slaughter.
34. In his Mirror of Information, Fleming points out that, contrary to what a number 

of previous scholars have asserted, the language and the character are not entirely 
equivalent (199–208).

35. Maat, 158. See note 34.
36. Aarsleff, From Locke to Saussure, 262; Isermann, “Substantial vs Relational Anal-

ogy in Sixteenth and Seventeenth-Century Linguistic Thought,” 108.
37. Wilkins, Essay, 385. Wilkins goes on to state that, on account of the difficulties of 

constructing signifiers that naturally correspond to things, “this Character must be by 
Institution” (386).

38. Wilkins, 20.
39. Wilkins, 235.
40. In a published letter, Wallis argues that the deaf could be taught to read without 

first learning to speak, offering mathematical symbols as proof that written signs can 
operate independently of speech (“A Letter of Dr. John Wallis to Robert Boyle Esq,” 
1091). Wallis was not merely speculating; he was involved in a series of efforts at deaf 
education, as described in Wallis, Teaching Language to a Boy Born Deaf.

41. Fleming, 22.
42. Wilkins, Essay, 20.
43. Dalgarno, George Dalgarno on Universal Language, 175. In the 1670 pamphlet 

A Defence of the Royal Society, John Wallis takes credit (perhaps unfairly) for turning 
Dalgarno against Wilkins. Wallis suggests that to write all books in Wilkins’s real char-
acter “is the same thing as to Translate all Books into One Language, and to have this 
Language learned by All”; he takes this to undermine the whole project (16).

44. Maat.
45. Descartes, Principles of Philosophy, 20.
46. Descartes, “A Mersenne, Amsterdam, 20 novembre 1629,” 915.
47. Leibniz, Dissertation.
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48. Leibniz, Dissertation, 77.
49. On Llull, see Fidora and Sierra, Ramon Llull; Bonner, The Art and Logic of 

Ramon Llull.
50. Bonner, 149.
51. Leibniz, Dissertation, 157.
52. Leibniz, 159.
53. Leibniz, 161.
54. I am following the translation in Leibniz, 181. However, I have altered the ap-

pearance of the fractions to resemble the original Latin text more closely. 
55. Leibniz, 183.
56. Leibniz, 189.
57. Leibniz, 187.
58. Leibniz, 187.
59. Leibniz, Selections, 20.
60. Leibniz, 22.
61. Leibniz, 23.
62. Leibniz, 23.
63. The commentary is reproduced in Leibniz, Sämtliche Schriften und Briefe, ser. 

6, vol. 4., pt. A, pp. 27–53. On the relation between Wilkins and Leibniz, see Ruther-
ford, “Philosophy and Language in Leibniz,” 230–31; Pombo, 81; Maat; Knowlson; 
Blank.

64. Leibniz, Sämtliche Schriften, ser. 6, vol. 4, pt. A, p. 66. A similar scheme was 
earlier developed by Francis Lodwick; see Salmon, Works of Francis Lodwick, 133.

65. A few years later, Leibniz connected logical analysis to prime numbers in 
another way, arguing that the term multiple of 15 is composed of the two simple terms 
multiple of 3 and multiple of 5 (Logical Papers, 37).

66. Leibniz, Sämtliche Schriften, ser. 6, vol. 4, pt. A, p. 66.
67. Leibniz, Sämtliche Schriften, ser. 6, vol. 4, pt. A, p. 68.
68. Couturat, La logique de Leibniz, 63.
69. Opitz, Buch von der deutschen Poeterei.
70. Leibniz, Dissertation, 229.
71. Leibniz, 271.
72. Leibniz, Philosophical Papers and Letters, 193.
73. Leibniz, 193.
74. Wilkins, Essay, b2r.
75. Leibniz, Philosophical Papers, 193; see also Leibniz, Selections, 16.
76. Leibniz, Philosophical Papers, 193.
77. Leibniz, 193.
78. The extent to which Leibniz separated the formal and informal aspects of his 

project is under dispute. Marcelo Dascal argues that Leibniz made room for both “hard” 
and “soft” forms of proof (“The Balance of Reason”). A number of scholars respond to 
this argument in Dascal, Leibniz: What Kind of Rationalist? See also Lærke, “Leibniz, 
the Encyclopedia, and the Natural Order of Thinking”; Heinekamp, “Ars Characteris-
tica und natürliche Sprache bei Leibniz.”

79. Leibniz, Selections, 50.
80. Leibniz, 51–52.
81. Leibniz, 52.
82. Leibniz, 52.
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83. Leibniz, 51.
84. Leibniz, Selections, 15; see also Leibniz, New Essays on Human Understanding, 

50, 85.
85. Leibniz, Selections, 15.
86. Leibniz, “Leibniz on His Calculating Machine,” 181.
87. Leibniz, 181.
88. Leibniz, Logical Papers, 122–44; see Lenzen, “Arithmetical vs. ‘Real’ Addition.”
89. Leibniz, Logical Papers, 143.
90. Leibniz, 124, 132, 143.
91. Leibniz, 127. This is different from Boole’s system, which was designed to retain 

all the axioms of ordinary algebra, although some later versions of Boolean logic are 
closer to Leibniz’s design.

92. Leibniz, 141.
93. On the (non)relation between Leibniz and Boole, see Grattan-Guinness, 

“Boole’s Quest for the Foundations of His Logic,” xliii.
94. G. Boole, Selected Manuscripts on Logic and Its Philosophy, 188.
95. Russell, A Critical Exposition of the Philosophy of Leibniz, 170; Couturat; C. I. 

Lewis, Survey of Symbolic Logic, 5–18; Cassirer, The Philosophy of Symbolic Forms, 
1:127. Aarsleff criticizes this view in “The Eighteenth Century, Including Leibniz.” On 
Leibniz and Russell, see Goethe, “How Did Bertrand Russell Make Leibniz Into a ‘Fel-
low Spirit’?”; Nachtomy, “Leibniz and Russell.”

96. Leibniz, Logical Papers, 33.
97. Leibniz, Philosophical Texts, 78.
98. Quoted in Capozzi and Roncaglia, “Logic and Philosophy of Logic from Human-

ism to Kant,” 137.
99. Lambert quoted in Nöth, Handbook of Semiotics, 28.
100. Capozzi and Roncaglia, 139.
101. Capozzi and Roncaglia, 141.
102. Cajori, History of Mathematical Notations, 337.
103. Leibniz, Dissertation, 71.
104. To say that symbols express something, for Leibniz, means roughly that one 

can use the symbols to draw conclusions about that thing. See Mates, The Philosophy of 
Leibniz, 38; Debuiche, “La notion d’expression et ses origines mathématiques.”

105. Serfati, “Mathématiques et pensée symbolique chez Leibniz,” 168–73; Jones, 
Good Life, 247–48. See also Serfati, “Symbolic Inventiveness and ‘Irrationalist’ Prac-
tices in Mathematics.”

106. See Beeley, “‘Un de Mes Amis.’”
107. Leibniz, “Explication de l’arithmetique binaire,” 116.
108. Leibniz, 116.
109. Leibniz, 111.
110. Van Brummelen, “Jamshīd al-Kāshī.”
111. Leibniz, “Nova Methodus pro Maximis et Minimis.”
112. The most obvious difference is that Leibniz uses differentials (i.e., dx) rather 

than derivatives (i.e., dy/dx). This aspect of calculus changed with the development 
of the modern notion of the function beginning in the mid-eighteenth century; see 
Bos, “Differentials, Higher-Order Differentials and the Derivative in the Leibnizian 
Calculus.”

113. Leibniz, “De Geometria Recondita,” 297.
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114. Quoted by Cajori, History of Mathematical Notations, 200.
115. A number of scholars have made cases that Leibniz’s calculus was rigorously 

founded after all. David Rabouin, for instance, argues that, around 1675–76, Leibniz 
had attempted to found his theory of integrals on the grounds of an Archimedean 
conception of mathematical rigor (“Leibniz’s Rigorous Foundations of the Method 
of Indivisibles,” 348). Hidé Ishiguro argues that Leibniz thought of infinitesimals as “a 
well-founded fiction” (Leibniz’s Philosophy of Logic and Language, 92). See also Arthur, 
“Leibniz’s Syncategorematic Infinitesimals”; Horváth, “On the Attempts Made by 
Leibniz to Justify His Calculus.” On the basis of such a reading of Leibniz, Mikhail Katz 
and David Sherry argue against the received historiography in which the infinitesimal 
was “slain” by Berkeley (M. Katz and Sherry, “Leibniz’s Infinitesimals,” 593–97). This 
revisionist argument rests on a retrospective judgment about who was right, not on an 
analysis of how the ideas of Leibniz and Berkeley were received by contemporaries. 
The continuity that Katz and Sherry see between Leibniz and modern mathematicians 
such as Cantor and Weierstrass was, if it existed, disrupted by a gap of over a century 
in which foundational questions about the calculus were (rightly or not) considered 
unresolved. For more background about the early stages of the debates on calculus, 
see Mancosu, Philosophy of Mathematics and Mathematical Practice in the Seventeenth 
Century.

116. See Guicciardini, Isaac Newton on Mathematical Certainty and Method, 332.
117. See Mancosu, “The Metaphysics of the Calculus,” 228–35. One of Rolle’s argu-

ments hinged, to put it simply, on treating (x + dx, y + dy) as a value on the curve being 
differentiated; on this basis, he is able to derive the result that dx = 0, and thus that the 
infinitesimal does not exist.

118. On l’Hôpital, see Mancosu, “Metaphysics of the Calculus,” 226–28; on Wolff, 
see Blanco, “Hermeneutics of Differential Calculus in Eighteenth-Century Northern 
Germany,” 140.

119. Berkeley, The Analyst, 85. For a detailed account of Berkeley’s views, see 
Jesseph, Berkeley’s Philosophy of Mathematics.

120. See M. Katz and Sherry, “Leibniz’s Infinitesimals,” 592–93; Pycior, Symbols, 
209–41.

121. Berkeley, Philosophical Commentaries, 100. On the significance of “names” and 
“words” in Berkeley, see Hight, “Why My Chair Is Not Merely a Congeries.” Earlier edi-
tions of this text contained “never” in place of “meer.”

122. Berkeley, 101.
123. Berkeley, 100. Berkeley gives a more detailed account of how signs are used 

in arithmetical computation in his 1710 book A Treatise Concerning the Principles of 
Human Knowlege (169–75). There, the claim that arithmetic works only with signs sup-
ports his anti-abstractionist stance by denying the need for abstract ideas of number.

124. Berkeley, 97.
125. Jesseph, Berkeley’s Philosophy of Mathematics, 116. Elsewhere in the Philosophi-

cal Commentaries, Berkeley states directly that the argument that numbers are mere 
words does not apply to infinitesimals because the latter “are words of no use if not 
supposed to stand for Ideas” (42). It should be noted that Berkeley’s view of geometry 
was far from orthodox and that he represented his doctrine as an alternative to classical 
geometry.

126. Newton, Universal Arithmetick, 227–28. Pycior has questioned whether this 
statement was truly representative of Newton’s views (Symbols, 200–204). However, 
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this is not the only point where Newton employs this sort of standard; in the Principia, 
for instance, he claims that his solution to the Pappus problem is superior to Descartes’s 
because it did not involve any calculations (Guicciardini, Isaac Newton on Mathematical 
Certainty and Method, 101).

127. Leibniz, “Nova Methodus pro Maximis et Minimis,” 469; translation from Leib-
niz, “Leibniz on the Calculus,” 623.

128. Leibniz, “De la chainette,” 148. He glossed the term algorithme similarly in a 
1677 manuscript: “In order to explain myself shortly and clearly, I must introduce some 
fresh characters, and give them a new Algorithm, that is to say, altogether special rules, 
for their addition, subtraction, multiplication, division, powers, roots, and also for 
equations” (The Early Mathematical Manuscripts of Leibniz, 132). On Leibniz’s notion 
of “incomparable quantities,” see Horváth, 53.

129. Elisha Coles’s 1692 dictionary, for instance, states that Algorism, Algorithme, 
and Algrim are all “the same as Algebra” (An English Dictionary, B4r). By the eigh-
teenth century, the idea that algorithm encompassed algebra as well as arithmetic was 
established. Ephraim Chambers’s Cyclopaedia (1728) gives both the arithmetical and 
algebraic definitions of algorithm, although he tells us that the algebraic sense is mainly 
used by “the Spaniards” and that the meaning of the word “is properly the Art of num-
bering truly and readily” (1:60).

130. Harris, A New Short Treatise of Algebra, 118. See Guicciardini, The Development 
of Newtonian Calculus in Britain, 1700–1800, 13–14, 55–62. The usage was inconsistent, 
but in some instances the word seemed to suggest practical rules for problem solv-
ing as opposed to scientific theory. In a 1736 commentary on a work by Newton, for 
instance, its editor John Colson distinguishes the “Algorithm, or Method of Opera-
tions” from the “Principles” of arithmetic (Newton, The Method of Fluxions and Infinite 
Series, 151).

131. Bürja, “Essai d’un nouvel algorithme des logarithmes,” 301; first quotation 
from title. Bürja introduces a different notation using a double line; I have used the 
modern notation here for simplicity. Expanded usages along Leibnizian lines were 
common in the later eighteenth century. A 1784 volume of the Encyclopédie méthodique 
(a revised version of the Diderot and d’Alembert encyclopedia) notes that the word al-
gorithme has come to denote “the method & notation of all species of calculation” such 
as integral calculus and trigonometric functions (Encyclopédie méthodique: Mathéma-
tiques, 37).

132. Jolley, Leibniz and Locke, 162–79.
133. Jolley discusses the limits of this comparison in Leibniz, 211–13. On the influ-

ence of Leibniz on Kant, see Jauernig, “Kant’s Critique of the Leibnizian Philosophy.”
134. Quoted in Blank, 60.
135. Locke, An Essay Concerning Human Understanding, 489.
136. Locke, 489.
137. Locke, 364, 366.
138. Locke, 437.
139. Dawson, Locke, Language and Early-Modern Philosophy, 205. See Slaughter, 206.
140. Locke, Essay, 79–80.
141. Leibniz, New Essays, 49. This book is written in the form of a dialogue between 

Philalethes, who has just read Locke’s book and who recites its claims more or less in 
order, and his friend Theophilus, who responds with Leibnizian rebuttals. All of my 
quotations are either from the preface or from Theophilus.
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142. Locke, Essay, 69.
143. Leibniz, New Essays, 50.
144. Leibniz, 77. Indeed, Leibniz later argues that natural languages are not as 

arbitrary as Locke claims. European vernaculars, he writes, “involve a mixture of 
chosen features and natural and chance features of the languages upon which they 
are built” (278). Leibniz does, however, make an exception: “Perhaps there are some 
artificial languages which are wholly chosen and completely arbitrary, as that of China 
is believed to have been, or like those of George Dalgarno and the late Bishop Wilkins 
of Chester” (278).

145. Leibniz, 77.
146. Leibniz, 55.
147. On some of the religious objections to Locke’s work, see Marshall, “Locke, 

Socinianism, ‘Socinianism,’ and Unitarianism”; Jolley, Leibniz and Locke.
148. Voltaire, Oeuvres completes de Voltaire, 1:848–49.
149. Locke, Some Thoughts Concerning Education, 39.
150. Locke, Conduct of the Understanding, 15. Locke clearly distinguished habit 

from reason; see Grant, “John Locke on Custom’s Power and Reason’s Authority.”
151. See Cajori, 428–29.
152. Euclid, Euclid’s Elements of Geometry, from the Latin Translation of Comman-

dine, A4r.
153. MacLaurin, A Treatise of Fluxions, 2:576.
154. MacLaurin, 2:576.
155. Diderot and d’Alembert, Encyclopédie, 4:985.
156. Diderot and d’Alembert, 11:72–74.
157. Babbage, Passages from the Life of a Philosopher, 25; see Buxton, Memoir of the 

Life and Labours of the Late Charles Babbage Esq. F. R. S., 347.
158. Histories that largely skip ahead from Leibniz to the nineteenth century 

include Davis, Universal Computer; Dasgupta, It Began with Babbage; Berlinski, The 
Advent of the Algorithm.

Ch a pter Thr ee

1. Baker, Condorcet, 304. A classic biographical account appears in Manuel, The 
Prophets of Paris.

2. D. Williams, Condorcet and Modernity, 42.
3. Condorcet, Political Writings, 143, 144.
4. Condorcet, 144.
5. Foucault, The Order of Things, 56.
6. Eco, Search for the Perfect Language, 283; Chartier, “Languages, Books, and 

Reading from the Printed Word to the Digital Text,” 137.
7. Baker, 124.
8. The first published version of this text appeared in 1954 in G. G. Granger, “Langue 

universelle et formalisation des sciences,” which omits some sections of the manu-
script. A critical edition appears in the 2004 book Condorcet, Tableau historique des 
progrès de l’esprit humain. Condorcet’s manuscripts contain numerous cancellations 
and illegible words, on account of which the two editions differ somewhat.

9. Condorcet, Tableau, 994–99.
10. It is here that the project falters. Whereas the objects of mathematical and 
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natural sciences are determinate, he writes, these four sciences are about making the 
objects themselves known, on account of which it is necessary to begin with some 
“first combinations of ideas.” This passage is heavily canceled, and the manuscript ends 
before Condorcet even attempts this. Condorcet, Tableau, 1013–14.

11. Condorcet, Tableau, 953.
12. Condorcet, Tableau, 953–54. Condorcet mentions Hérigone’s system in the 

manuscript as an example of a “hieroglyphic” notation, presumably referring to the 
pictographic symbols Hérigone used for some geometric ideas (995).

13. Maimieux, Pasigraphie.
14. Condorcet, Tableau, 969. The editors take this notation as equivalent to (−1)na, 

implying that it has a value as a whole equivalent either to a or its negation. It might, 
instead, be interpreted to make a statement about what the sign of a is, but this would 
not align with the other notation he uses elsewhere.

15. The editors of the critical edition note the inclusion of something like Boolean 
logic in the notation for conditionals, but they also observe that the system works dif-
ferently from Boolean logic in its modern form; see Condorcet, Tableau, 970n.

16. Condorcet, Tableau, 1008.
17. Wolff, “Arbitrary, Natural, Other.”
18. Condorcet, Tableau, 996.
19. Condorcet, Tableau, 982; see also 989, 993. There is an exception: Condorcet 

uses the first letters of Latin words for some things, such as R for real numbers. He justi-
fies this concession to linguistic convention by the fact that Latin is generally known 
in Europe (962–63); elsewhere he states that wholly arbitrary signs “would uselessly 
fatigue the memory” (994).

20. Condorcet, Tableau, 973–74. Granger’s transcription (“Langue universelle,” 
213) omits the word “but” (mais) at the beginning of the last sentence. As the editors 
of the 2004 edition note, the paragraph from this point on contains a large number of 
canceled words and lines, which I would take to indicate an anxiety about addressing 
this potential flaw in the system.

21. Knowlson, 200.
22. Granger, 213.
23. Maat, 155.
24. Alexander, Duel at Dawn, 8. Eighteenth-century mathematicians did distinguish 

pure mathematics from “mixed mathematics,” which involved particular applications; 
yet even pure mathematics was understood to be about particular aspects of physical 
reality, such as quantity or shape. See Daston, Classical Probability in the Enlightenment, 
53–55.

25. Rousseau, “Discourse on the Arts and Sciences.”
26. De Gérando, Des signes et de l’art de penser considérés dans leurs rapports mutuels, 

1:xxi. De Gérando’s specific target here is Condillac, La langue des calculs.
27. Richards, “Rigor and Clarity.”
28. Heilbron, “Introductory Essay,” 2.
29. See Frängsmyr, “The Mathematical Philosophy”; Manuel, 43.
30. Burke, Reflections on the Revolution in France, 213; see also 62, 202–3.
31. Kline, “Euler and Infinite Series.”
32. Varadarajan, “Euler and His Work on Infinite Series,” 526–28.
33. A translation of Euler’s text appears in Barbeau and Leah, “Euler’s 1760 Paper on 

Divergent Series”; quotation from p. 144.
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34. Barbeau and Leah, 144.
35. Abel quoted in Stubhaug and Daly, Niels Henrik Abel and His Times, 343.
36. Barbeau and Leah, 148.
37. Condillac, Essay on the Origin of Human Knowledge.
38. Süßmilch, Versuch eines Beweises.
39. Rousseau and Herder, On the Origin of Language.
40. Monboddo, Of the Origin and Progress of Language.
41. Condorcet, Political Writings, 10.
42. Condorcet, 25.
43. Condorcet, 5.
44. Condorcet, 5.
45. Condorcet, 5.
46. Condorcet states this position explicitly later in the text, attributing it to Aristo-

tle: “even our most abstract, as it were, our most purely intellectual, ideas have their origin 
in our sensations” (43).

47. Condorcet, 1.
48. Condorcet, 95–96.
49. Condorcet, 1.
50. Condillac, Philosophical Writings of Etienne Bonnot, Abbé de Condillac, 151.
51. Condillac, 151.
52. Condillac, 151.
53. Condillac, 410.
54. Condillac, 410. Condillac expands on this point further in the posthumously 

published La langue des calculs.
55. Baker, 114. On the relation between Condorcet and Condillac, see also Daston, 

Classical Probability, 212.
56. Diderot, Rameau’s Nephew / D’Alembert’s Dream, 221–22.
57. D’Alembert, Oeuvres de D’Alembert, 1:261.
58. D’Alembert, 1:261n.
59. Heeffer, “On the Nature,” 13.
60. Barbeau and Leah, 147.
61. D’Alembert, 1:262.
62. D’Alembert, 1:262.
63. Condillac, Philosophical Writings, 410.
64. Clairaut, Élémens d’algèbre, 3. See Albury, introduction to La Logique, 23.
65. Condillac, Philosophical Writings, 413.
66. Condillac, 410.
67. See Hamburg, “The Theory of Equations in the 18th Century.”
68. Lagrange, Lectures on Elementary Mathematics, 80.
69. Lagrange, 69.
70. See Ferraro and Panza, “Lagrange’s Theory of Analytical Functions and His Ideal 

of Purity of Method.”
71. Condorcet, Essai sur l’application de l’analyse à la probabilité des décisions rendues 

à la pluralité des voix, ii.
72. Condorcet, ii.
73. Baker, 117.
74. Baker, 118.
75. Quoted by Baker, 124.
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76. Lifschitz, “Translation in Theory and Practice,” 38. The English version was a 
pirated book produced without Michaelis’s knowledge. It contains a number of transla-
tion errors and other anomalies, including misnumbered pages. The translations here 
are based on the 1769 English version, but I have corrected them with reference to the 
French text, which was approved by Michaelis himself. The section from which I quote 
is not included in the German version.

77. Michaelis, A Dissertation on the Influence of Opinions on Language, and of Lan-
guage on Opinions, 91; Michaelis, De l’influence des opinions sur le langage et du langage 
sur les opinions, 175.

78. Michaelis, Dissertation, 87; Michaelis, De l’influence, 166.
79. Michaelis, Dissertation, 88; Michaelis, De l’influence, 168.
80. Michaelis, Dissertation, 88; Michaelis, De l’influence, 168.
81. Michaelis, Dissertation, 77; Michaelis, De l’influence, 147.
82. Herder, Johann Gottfried Herder on World History, 246.
83. Condorcet, Political Writings, 11.
84. Referring specifically to the French context, Jessica Riskin identifies these two 

tendencies in eighteenth-century linguistics as the “social” and the “cultural” (“Rival 
Idioms for a Revolutionized Science and a Republican Citizenry”). The social approach 
involved “deliberately orchestrated, rather than organically arising, human activ-
ity” and treated signs as “deliberately chosen” (210; 217). By contrast, in the cultural 
approach, “one did not deliberately invent customs, manners of thought, or sciences 
according to first principles, but only fostered their natural growth” (208).

85. Herder, Philosophical Writings, 144n.
86. Herder, 157.
87. See Berlin, Three Critics of the Enlightenment. Berlin is not especially sympathetic 

to the Counter-Enlightenment, but he does agree with this assessment of Condorcet, 
whose philosophy he takes to be implicitly totalitarian (Four Essays on Liberty 56–60, 
167). Emma Rothschild has disputed this reading of Condorcet (Economic Sentiments). 
Berlin’s idea of the Counter-Enlightenment has also been criticized on the grounds that 
the thinkers he groups together under that banner were more engaged with Enlight-
enment thought than he suggests; see Norton, Herder’s Aesthetics and the European 
Enlightenment; Israel, A Revolution of the Mind.

88. See Nisbet, Herder and Scientific Thought, 92–93.
89. Maseres, Occasional Essays on Various Subjects: Chiefly Political and 

Historical, 168.
90. Pycior, Symbols, 307.
91. On Simson, see Pycior, Symbols, 248; I discuss Frend later in the section.
92. Maseres, Dissertation on the Use of the Negative Sign in Algebra, ii.
93. Maseres, ii.
94. Maseres, iii.
95. Maseres, 1.
96. Maseres, 2.
97. Richards, “Rigor and Clarity,” 307.
98. Maseres, Dissertation on the Use of the Negative Sign, 4.
99. Maseres, 3. On the significance of subtraction for Maseres, see Lambert, “Natu-

ral History of Mathematics,” 288.
100. Maseres, 20.
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101. See Fisch, “‘The Emergency Which Has Arrived’”; Pycior, “George Peacock 
and the British Origins of Symbolic Algebra.”

102. Maseres, Principles of the Doctrine of Life-Annuities, 36; Maseres, A Proposal for 
Establishing Life-annuities in Parishes for the Benefit of the Industrious Poor. On the par-
liamentary effort, see D. Thomas, “Francis Maseres, Richard Price, and the Industrious 
Poor”; Bellhouse, Leases for Lives, 171–75.

103. Maseres, Principles, 27.
104. Maseres, 25.
105. On the history of such statistical tables, see T. Porter, The Rise of Statistical 

Thinking, 1820–1900; Hacking, The Emergence of Probability; Hacking, The Taming 
of Chance; Daston, Classical Probability in the Enlightenment; Poovey, A History of the 
Modern Fact. On annuities in particular, see Bellhouse, Leases for Lives.

106. Daston, Classical Probability, 176.
107. Daston, Classical Probability, xi.
108. Laplace, Essai philosophique sur les probabilités, 95.
109. Maseres, Principles, 2.
110. Maseres, Proposal, 10.
111. Frend, Peace and Union Recommended to the Associated Bodies of Republicans 

and Anti-Republicans, 17; Frend, The Principles of Algebra, xi.
112. Frend, Principles of Algebra, 518.
113. Frend, Principles of Algebra, xii.
114. Frend, Principles of Algebra, xii.
115. Frend, Peace and Union, 34.
116. See Maseres, Occasional Essays, 368.
117. Maseres, A Collection of Several Commissions, 69.
118. Maseres, Principles, 37.
119. Hawtrey, The Exchequer and the Control of Expenditure; Reitan, Politics, Fi-

nance, and the People.
120. Lacroix, An Elementary Treatise on the Differential and Integral Calculus. 

Richards questions this narrative by arguing that the French and English tradi-
tions remained distinct even into the nineteenth century; see Richards, “Rigor and 
Clarity,” 299.

121. Anon., “Biographical Account of Lord Stanhope,” 85. The “grave authority” is 
perhaps Richard Phillips, who discusses Stanhope’s device in the book Public Charac-
ters of 1800–1801 (106).

122. Gardner, Logic Machines and Diagrams, xiii.
123. Quoted in Wess, “The Logic Demonstrators of the 3rd Earl Stanhope (1753–

1816),” 385.
124. G. Stanhope and Gooch, The Life of Charles, Third Earl Stanhope, 110–12; see 

Phillips, 90; Erdman, “Citizen Stanhope and the French Revolution.”
125. G. Stanhope and Gooch, Life, 240–41.
126. G. Stanhope and Gooch, Life, 21, 113, 238.
127. The first public explanation of Stanhope’s logical theory appeared in Robert 

Harley’s 1879 article “The Stanhope Demonstrator.” Another account appears in Martin 
Gardner’s 1958 book Logic Machines and Diagrams, which offers an interesting analysis 
of Stanhope’s ideas but contains little information that is not in Harley’s article. Aspray 
(Computing before Computers, 106–8) and Nilsson (The Quest for Artificial Intelligence, 
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12–13) include very brief discussions of Stanhope’s work in their histories of computa-
tion; both largely follow Gardner. Shilov and Silantiev have, more recently, expanded 
on Gardner’s account, describing some early versions of the Demonstrator of which 
Gardner was unaware (“Logical Machines,” 5). Matthew L. Jones includes an insightful 
study of Stanhope’s work on calculating machines in his 2016 book Reckoning with Mat-
ter, but only briefly discusses the Demonstrator (197–99). The most detailed modern 
account of Stanhope’s theory of logic appears in Wess, “Logic Demonstrators.”

128. Howell, Eighteenth-Century British Logic and Rhetoric, 259. See also Franklin, 
“Artifice and the Natural World”; Capozzi and Roncaglia, “Logic and Philosophy of 
Logic.”

129. Campbell, The Philosophy of Rhetoric, 1:164.
130. Harley, 202.
131. Anon., “Biographical Account of Lord Stanhope,” 85.
132. Shilov and Silantiev, fourth unnumbered page.
133. Quoted in Wess, 381; Phillips, 106. Such thinking was common at the time; see 

Daston, Classical Probability, 198.
134. Godwin, An Enquiry Concerning Political Justice, 596; see also 668.
135. Godwin, 596.
136. C. Stanhope, Observations on Mr. Pitt’s Plan for the Reduction of the National 

Debt, 4. On the background of Pitt’s plan, see Frame, Liberty’s Apostle, 177–86.
137. C. Stanhope, Observations, 5.
138. Cobbett, Cobbett’s Parliamentary History of England, 26:31.
139. C. Stanhope, Observations, 14.
140. C. Stanhope, Observations, 14, 27; Phillips, Public Characters, 83.
141. Stanhope expressly defends the rationality of commoners in C. Stanhope, A 

Letter from Earl Stanhope, to the Right Honourable Edmund Burke, 10.
142. On similar efforts in the context of Revolutionary France, see Kafka, The De-

mon of Writing.
143. Condorcet, Political Writings, 36. Condorcet discussed the idea of “prejudice” 

further in a fragment entitled “Préjugés qui peuvent momentanément arrêter les 
progrès” (Condorcet, Tableau, 940–41).

144. Condorcet, Political Writings, 37.
145. Condorcet, Political Writings, 75.
146. Diderot and D’Alembert, Encyclopédie, 13:284.
147. Maupertuis, Réflexions philosophiques sur l’origine des langues et la signification 

des mots, 6.
148. See Condorcet, Tableau, 994–99.
149. Condorcet, Political Writings, 96–97.
150. Kant, Foundations of the Metaphysics of Morals and What Is Enlightenment? 91.
151. Siskin and Warner, This Is Enlightenment, 11. For an alternate view, see Fleis-

chacker, What Is Enlightenment? Fleischacker argues that Kant employed two distinct 
ideas of Enlightenment: a “maximalist” one that involves replacing traditional ways of 
life and a “minimalist” one focused on “how one holds one’s views, not what views one 
holds” (169). One might identify Condorcet as a maximalist to the extent that he was 
trying to “suppress” prejudices rather than merely open free debate.

152. Kant, 655.
153. Locke, Conduct of the Understanding, 93.
154. Kant, Critique of Pure Reason, 655.
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155. OED Online, s.v. “objective, adj. 3a,” s.v. “subjective, adj. 2,” accessed Febru-
ary 10, 2022, https://​www​.oed​.com/​view/​Entry/​129634; https://​www​.oed​.com/​
view/​Entry/​192702.

156. For an example of how these terms were defined in the nineteenth century, see 
Tennemann, Manual of the History of Philosophy, vii; see also W, Hamilton, “M. Cous-
in’s Course of Philosophy,” 196–97n. As Daston and Galison point out in Objectivity, it 
was Kant, along with, in the English-speaking world, Samuel Taylor Coleridge, who 
spurred this reversal in the definitions of subjective and objective (30).

157. Capozzi and Roncaglia, 147.
158. Dyck, Novalis and Mathematics; Schlutz, Mind’s World, 162–213.
159. Dyck, 42.
160. Novalis, Notes for a Romantic Encyclopaedia, 195.
161. Novalis, Notes, 147–48.
162. Novalis, Philosophical Writings, 83.
163. Redding, “Mathematics, Computation, Language and Poetry.”
164. W. Hamilton, “M. Cousin’s Course of Philosophy,” 197.
165. Quoted in Dyck, 81.
166. Lagrange, Théorie des fonctions analytiques, 80. The heavily revised 1813 version 

of the book attaches the heading “Fonctions dérivées; leur notation et leur algorithme” 
(“Derived functions; their notation and their algorithm”) to the chapter explaining the 
procedure; Lagrange, Théorie des fonctions analytiques, 2nd ed., 17. See also Lagrange, 
Œuvres de Lagrange, 7:327. For a general account of Lagrange’s theory, see Ferraro and 
Panza, “Lagrange’s Theory of Analytical Functions and His Ideal of Purity of Method.” 
Novalis cites Lagrange in Notes, 37.

167. See Grattan-Guinness, “Charles Babbage as an Algorithmic Thinker,” 36–37. 
Babbage suggests that Lagrange’s approach could be applied to games in On the Influ-
ence of Signs in Mathematical Reasoning, 19–20.

168. See Grabiner, “Who Gave You the Epsilon?”; Laugwitz, “Definite Values of 
Infinite Sums”; Robinson, Non-Standard Analysis, 267. Ferraro and Panza argue that this 
judgment depends on a modern conception of function alien to Lagrange’s own (99); La-
grange, in their account, viewed functions in terms of algebraic formulae and would not 
have accepted the piecewise definitions used to construct the counterexamples (129).

169. As the philosopher Brian Rotman puts it, modern mathematics “bifurcates its 
discourse into a privileged formal mode and an informal one considered as supplemen-
tary and epiphenomenal” (Ad Infinitum, 7).

170. Bernard Bolzano, for instance, was a sharp critic of Kant; see Rusnock, “Phi-
losophy of Mathematics.”

171. Condorcet, Political Writings, 6.
172. For a critique of Condorcet’s views on race, see Sala-Molins, Dark Side of the 

Light.
173. Condorcet, Political Writings, 127, 128.

Ch a pter Fou r

1. This turn affected a range of mathematical practices, not just algebra; see Daston, 
Classical Probability, 4. The symbolic turn in British algebra did not, however, parallel 
developments in geometry, which remained tied to classical notions until much later in 
the nineteenth century; see Richards, Mathematical Visions.
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2. On Babbage and industrialism, see Babbage, On the Economy of Machinery and 
Manufactures; Schaffer, “Babbage’s Intelligence”; W. Ashworth, “Memory, Efficiency, 
and Symbolic Analysis”; Zimmerman, “The Ideology of the Machine and the Spirit of 
the Factory”; Kuskey, “Math and the Mechanical Mind.”

3. W. Humboldt, On Language, 167.
4. Coleridge wrote, in an 1800 letter to William Godwin, that he “would endeavor to 

destroy the old antithesis of Words & Things, elevating, as it were, words into Things, & 
living Things too” (Letters of Samuel Taylor Coleridge, 1:626).

5. Bopp, Analytical Comparison of the Sanskrit, Greek, Latin and Teutonic 
Languages, 14.

6. Due in large part to the influence of Raymond Williams, the nineteenth-century 
idea of culture is often seen as antimechanistic. More recently, a number of scholars, 
such as Amir Alexander and Andrea Henderson, have complicated this narrative, show-
ing the engagement of industrialists and mathematicians with artists, poets, and fiction 
writers. See R. Williams, Culture and Society, 1780–1950; Alexander, Duel at Dawn; 
Henderson, Algebraic Art; Tresch, The Romantic Machine.

7. Boole, Mathematical Analysis, 5.
8. G. Boole, Mathematical Analysis of Logic; Boole, An Investigation of the Laws of 

Thought; Boole, “The Calculus of Logic.”
9. Boole, Mathematical Analysis, 3.
10. As Ivor Grattan-Guinness observes, Boole never mentioned Peacock in his 

writings, so it is uncertain whether there was a direct influence (“Boole’s Quest,” 
xliv). However, Peacock certainly exerted an indirect influence on Boole by means of 
Gregory’s 1840 essay “On the Real Nature of Symbolical Algebra,” which is framed as 
an attempt to clarify and further develop Peacock’s ideas. On Gregory’s influence on 
Boole, see Laita, “The Influence of Boole’s Search for a Universal Method in Analysis on 
the Creation of his Logic,” 52; Despeaux, “‘Very Full of Symbols,’” 49. Other important 
influences include William Rowan Hamilton and Arthur Cayley, who were developing 
algebraic systems that worked with arrays of numbers rather than individual numbers, 
and that obeyed different laws than ordinary algebra; see MacHale, The Life and Work 
of George Boole, 65–66.

11. Peacock, Treatise of Algebra, xiv. For an account of the context surrounding the 
composition of Peacock’s book, see Fisch, “The Making of Peacock’s Treatise.” Fisch 
argues that, in this first edition of the book, published in 1830, Peacock held back from 
embracing a totally formalist position, instead trying to split the difference between 
the symbolic methods of Babbage and the Pauline epistemology of Francis Maseres 
and William Frend (168); Peacock did not, in Fisch’s account, embrace fully symbolic 
methods until around 1840. His second edition of Treatise of Algebra, published in 1842, 
eliminates the passage quoted.

12. For an overview of the difference between Boole’s system and modern Boolean 
logic, see Hailperin, “Boole’s Algebra Isn’t Boolean Algebra.”

13. The requirement that categories be mutually exclusive is a notable difference 
between Boole’s system and Leibniz’s calculus of “real addition.” This requirement 
is sometimes viewed as a mistake on Boole’s part, but it is in fact necessary given his 
axioms. One can prove this as follows. Suppose that x and y are logical variables and x + 
y is a logically meaningful expression. Then, by Boole’s definition of logically meaning-
ful, it must obey the law of duality, so that (x + y)(x + y) = x + y. Expanding this and 
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applying the law of duality again, one gets x2 + 2xy + y2 = x + y ⟹ x + 2xy + y = x + y ⟹ 
2xy = 0 ⟹ xy = 0. The latter equation means, logically interpreted, that x and y have an 
empty intersection, QED. Boole’s exclusive interpretation of disjunction is inconve-
nient in practice, and most later systems of algebraic logic deviate from Boole on this 
point; however, in doing so, they create a greater divergence between symbolic logic 
and ordinary algebra than Boole intended. Boole addresses this issue directly in an 1856 
manuscript titled “On the Foundations of the Mathematical Theory of Logic and on 
the Philosophical Interpretation of Its Methods and Processes” (in G. Boole, Selected 
Manuscripts on Logic and Its Philosophy, 91–92). See also Jevons, Pure Logic and Other 
Minor Works, 72; Hailperin, Boole’s Logic and Probability, 87–96.

14. The interpretation of 1 and 0 is one of the few points on which Boole changed 
his mind between Mathematical Analysis and Laws of Thought. In the 1847 version of 
his theory, 1 means true in all circumstances and 0 means false in all circumstances. In the 
1854 version, he interprets 1 as true at all times and 0 as false at all times. He does not 
explain the reason for this change very clearly, but I would venture that it is because 
introducing the idea of time into the interpretation enables him to connect 1 to the idea 
of eternity, thus making the religious implications of his theory more apparent. See 
G. Boole, Mathematical Analysis, 48–50; G. Boole, Laws of Thought, 162–67.

15. G. Boole, Mathematical Analysis, 26. Boole’s inference procedure is primarily 
intended to determine what properties a thing must have based on a given statement; as 
such, it is analogous to solving an equation. Corcoran and Wood argue that this aspect 
of Boole’s system rests on the logical fallacy of conflating roots of equations with logical 
consequences (“Boole’s Criteria for Validity and Invalidity,” 111–14); however, Frank 
Markham Brown has disputed this point (“George Boole’s Deductive System” 307). 
Alonzo Church and Alan Turing would later prove, building on the work of Kurt Gödel, 
that a general procedure for determining the truth or falsehood of logical statements 
cannot exist. Boole’s system did not include quantifiers such as for all and there exists, so 
it is not powerful enough to produce the paradoxes that lead to such problems.

16. This is how one might work out the problem in detail. We have p(1 − g) = 0. One 
can express g as a function of p in the general form g = vp + v′(1 − p), where v and v′ are 
indeterminate values. Expressing the equation in this form is possible regardless of how 
g and p are defined because of the law of duality, as Boole demonstrates. We substitute 
this into the original equation, getting p(1 − (vp + v′(1 − p))) = 0 ⟹ p − vp2 − v′p(1 − p) 
= 0. By the law of duality, the third term vanishes and the exponent disappears from 
the second, so we have p − vp = 0 ⟹ vp = p. Substituting this into the general form of 
g gives us g = p + v′(1 − p). I removed the prime mark from v′ in recording the result 
for clarity. Boole’s use of v to represent indeterminate quantities is widely regarded as 
problematic, since the symbol appears to be a variable even though it does not behave 
as one; see Hailperin, Boole’s Logic and Probability, 97–98.

17. G. Boole, Mathematical Analysis, 14.
18. Grattan-Guinness, “Boole’s Quest,” xliii.
19. M. Boole, Symbolical Methods of Study, 35.
20. G. Boole, Laws of Thought, 417.
21. Cohen, Equations from God, 29–30.
22. See Greene, “A Taste for Figures,” 70–71.
23. Baily, “Some Particulars Respecting the Arithmetical Powers of Zerah 

Colburn,” 121.
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24. Daston, “Enlightenment Calculations.”
25. Anon., “Anecdotes of Great Memory, and Astonishing Powers of Calculation,” 

239.
26. See Ball, Mathematical Recreations and Essays, 268; Poole, Anti-Slavery Opinions 

before the Year 1800, 21.
27. Brissot de Warville, New Travels in the United States of America, 241.
28. Leibniz, New Essays, 77–78.
29. Baily, 124.
30. Colburn, A Memoir of Zerah Colburn, 13, 28.
31. Baily, 125. This claim is historically inaccurate.
32. Baily, 125.
33. Colburn, 164–65.
34. Colburn, 181.
35. Bishop, “The Mathematical Failure,” 276.
36. Bishop, 278.
37. See Brown, “William Rowan Hamilton and William Wordsworth.”
38. R. Graves, Life of Sir William Rowan Hamilton, 1:111.
39. Colburn, 185–89.
40. R. Graves, Life of Hamilton, 1:79–80.
41. Colburn, 104.
42. W. R. Hamilton, “On Quaternions,” 11.
43. W. R. Hamilton, 11.
44. Ohm, The Spirit of Mathematical Analysis, and its Relation to a Logical System. 

On Ohm’s relations to Kant and to Hamilton, see Martin, Arithmetic and Combinatorics, 
39–41, 46–47.

45. Ohm, 11.
46. Ohm, 12, 13.
47. Ohm, 20.
48. Ohm, 10.
49. On the history of the Analytical Society, see Wilkes, “Herschel, Peacock, Bab-

bage and the Development of the Cambridge Curriculum”; Becher, “Radicals, Whigs 
and Conservatives”; Grier, “The Inconsistent Youth of Charles Babbage.” The consen-
sus is that, in its short existence as an active organization, the society failed in its goal 
of reforming the Cambridge curriculum; however, some of the members later gained 
positions of influence at Cambridge, and symbolic methods were eventually accepted 
there.

50. Babbage, Passages from the Life of a Philosopher, 29; see Becher, 406.
51. Peacock, Treatise on Algebra, vii.
52. OED Online, s.v. “algorithm, n,” accessed February 10, 2022, https://​www​.oed​

.com/​view/​Entry/​4959; Hutton, A Course of Mathematics, 1:231.
53. Hoëné-Wroński, Address of M. Hoene Wronski to the British Board of Longi-

tude upon the Actual State of the Mathematics, 9; see Hoëné-Wroński, Introduction à 
la philosophie des mathématiques, et technie de l’algorithmie. Although an advocate of 
infinite summation, Wroński was critical of Lagrange; see Schubring, Conflicts between 
Generalization, Rigor, and Intuition, 407.

54. Montferrier, Encyclopédie mathématique, 1:150.
55. Smedley, Rose, and Rose, Encyclopædia Metropolitana, 1:438. A similar defini-

tion appears in the French version of Lacroix’s calculus text: algorithme sometimes 
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means “the system of characters that one employs to express quantities subjected to 
certain laws: digits are the algorithm of numeration” (Lacroix, An Elementary Treatise 
on the Differential and Integral Calculus, 3:545). This definition does not, however, refer 
to algebraic notation but rather to alternative systems of digits such as binary.

56. Shaw defines algorithm in this way: “Any system of deduction of necessary 
conclusions, or transmutation of laws or ideas into other forms, is an algorithm. 
Thus quaternions is an algorithm. Graphical mechanics is an algorithm.” Shaw, 
Mathematics, 3.

57. Booth, “On Tangential Coordinates,” 176.
58. Venn, The Logic of Chance, 164.
59. S. Porter, Conversations on Arithmetic, v, vi.
60. Lovelace, Ada, the Enchantress of Numbers, 68.
61. For instance, she writes in an 1850 letter to Lady Byron, “The very excitable 

intellect & imagination of Ralph is trained & soothed by the acquisition of true science 
& by the cultivation of exact reasoning power,—this last cultivation being peculiarly 
necessary to his sensitive & passionate nature- & best attained thro’ that mathematical 
course of study”; Lovelace, 374.

62. See Babbage, Babbage’s Calculating Engines, 21–50. This procedure was prob-
ably designed by Babbage.

63. Colburn, 176, 77.
64. As reported by his wife: M. Boole, “Home-Side of a Scientific Mind,” 106.
65. D. Brown, The Poetry of Victorian Scientists; see also Forbes-MacPhail, “The 

Enchantress of Numbers and the Magic Noose of Poetry.”
66. Lovelace, 319; Poe, Collected Works of Edgar Allan Poe, 3:986.
67. Weierstrass quoted in Compte rendu du deuxième Congrès international des 

mathematiciens, 149.
68. MacHale, 197–98.
69. Wordsworth and Coleridge, Lyrical Ballads, 105.
70. Wordsworth and Coleridge, 4.
71. Daston, Classical Probability, 55.
72. These lines are a part of Wordsworth’s long poem The Prelude, which was not 

published in full until 1850; however, the passage from which they are extracted also 
appeared as a separate poem titled “French Revolution” in an 1810 edition of The 
Friend and in Wordsworth’s 1815 volume of poems. See Wordsworth, Poems by William 
Wordsworth, 2:71.

73. See Sunstein, Mary Shelley: Romance and Reality, 39; St. Clair, The Godwins and 
the Shelleys. On James Mill’s pedagogy, see J. S. Mill, Autobiography, 1–37. Bruce Ma-
zlish gives a psychohistorical reading of the relationship between James and John Stuart 
Mill in James and John Stuart Mill.

74. Cleveland, The Life and Letters of Lady Hester Stanhope, 16. See Meryon, Mem-
oirs of the Lady Hester Stanhope.

75. Wordsworth and Coleridge, 164n.
76. Wordsworth and Coleridge, 156, 157.
77. Wordsworth and Coleridge, 162n.
78. Edgeworth and Edgeworth, Practical Education, 1:vi.
79. Edgeworth and Edgeworth, 1:77.
80. Siskin and Warner, 170; Valenza, Literature, Language, and the Rise of the Intel-

lectual Disciplines in Britain, 144.
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81. Wordsworth and Coleridge, 167n.
82. Wordsworth, The Prelude, 1799, 1805, 1850: Authoritative Texts, Context and 

Reception, Recent Critical Essays, 194.
83. Wordsworth, Prelude, 406–8.
84. Wordsworth, Prelude, 476.
85. Whately, Elements of Logic, 10.
86. Whately, 37.
87. Mill, A System of Logic, Ratiocinative and Inductive, 1:439; see also 2:201–2.
88. Boole, Laws of Thought, 423.
89. Boole, The Right Use of Leisure, 14.
90. Boole, 23.
91. Boole, 23.
92. Quoted in MacHale, 111. Boole goes on to state that the mind “feels the pres-

sures of impulses, it is conscious of the existence of powers and faculties which urge it 
to reduce the scattered details of its knowledge into form and order” (112); this impulse 
to organize knowledge must not be pursued at random but rather must serve “the true 
welfare of our species,” which “essentially contains a moral element” (114). Whether 
or not there was any direct influence, the resemblance to Coleridge’s “Essays on the 
Principles of Method” is apparent. See Coleridge, The Collected Works of Samuel Taylor 
Coleridge, vol. 4, pt. 1, pp. 448–524.

93. Mill, Mill on Bentham and Coleridge, 40.
94. Mill, 71, 73.
95. Mill, 140; see also 114.
96. Mill, System of Logic, 2:292.
97. Quoted in G. Boole, Mathematical Analysis, 2. Boole misquotes the passage 

slightly, substituting “obstacle” for “obstacles” and “mere” for “merely” and altering 
the punctuation in a way that does not significantly affect the meaning. The fact that 
Boole quotes Mill should not be taken to indicate that he endorsed Mill’s views on the 
nature of logic. Specifically, whereas Mill made a sharp distinction between logic and 
psychology, Boole understood logic to be a part of psychology. Boole did not, however, 
construe “psychology” in the modern sense of the term, as I discuss in the final section 
of this chapter. See Cook, “Minds, Machines and Economic Agents”; Maas, “Mechani-
cal Rationality.”

98. G. Boole, Mathematical Analysis, 10.
99. G. Boole, Mathematical Analysis, 10.
100. M. Boole, “Home-Side,” 108. Although Mary’s writings should be treated with 

some caution in drawing conclusions about her husband, scholars have often turned 
to them for evidence as to his views on religion, education, and other matters that he 
did not address much in writing. Luis M. Laita argues, based on a comparison of her 
writings and his, that her representations of his views are basically accurate (“Boolean 
Algebra and its Extra-Logical Sources”). See also MacHale, Life, 25–33.

101. M. Boole, “Home-Side,” 108.
102. M. Boole, “Home-Side,” 108.
103. S. Porter, Conversations on Arithmetic, 2.
104. S. Porter, 18.
105. S. Porter, 6–7.
106. S. Porter, 6.
107. Mill, System of Logic, 2:261.
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108. A. Humboldt, Kosmos, 1:42.
109. “Symbols and Notation,” in The Penny Cyclopaedia of the Society for the Diffu-

sion of Useful Knowledge, 23:444.
110. Whewell, The Philosophy of the Inductive Sciences, 1:xlix.
111. G. Boole, Laws of Thought, 24.
112. G. Boole, 25.
113. G. Boole, 28.
114. G. Boole, 29.
115. G. Boole, 33.
116. In “The Calculus of Logic,” Boole writes, “That the forms under which proposi-

tions are actually exhibited, in accordance with the principles of this calculus, are 
analogous with those of a philosophical language” (184). In a footnote in Mathematical 
Analysis, he links the idea of a philosophical language to the idea that logic describes 
some aspects of the structure of language, including a citation to the philologist Robert 
Gordon Latham; see note 118.

117. G. Boole, Laws of Thought, 38.
118. Latham, First Outlines of Logic, Applied to Grammar and Etymology, 12. Boole 

cites this book in Mathematical Analysis (5n). In a note in Laws of Thought, Boole 
disagrees with Latham as to the nature of conjunctions (401n); one of Boole’s innova-
tions was to treat and and or as parts of propositions rather than (as for Latham) ways of 
linking propositions together.

119. G. Boole, Laws of Thought, 30.
120. G. Boole, Laws of Thought, 30–31; see also G. Boole, Selected Manuscripts, 70.
121. G. Boole, Laws of Thought, 30, 31.
122. See Kittler, Discourse Networks 1800/1900, 178.
123. Coleridge, Collected Works, vol. 4, pt. 1, pp. 512–13.
124. Coleridge, vol. 4, pt. 1, p. 513.
125. The religious aspects of Boole’s thought are not incidental to his philosophy of 

logic; without the faith that the laws of thought are imposed by divine will, his system 
lacks a foundation. One is supposed to be able tell that the laws of thought are correct 
because they generate a correct method for reasoning. But how can one tell that the 
method is correct without already knowing the laws of logical validity? Since Boole 
has no notion of a metalogic or metamathematics in which to judge the correctness of 
method, he falls into circular reasoning at this point without the deus ex machina of 
religious faith. See Grattan-Guinness, “Boole’s Quest,” xli.

126. M. Boole, “Home-Side,” 107; G. Boole, Laws of Thought, 399–424.
127. A classic study of Paradise Lost is S. Fish, Surprised by Sin; Fish argues that the 

text is designed to tempt readers to sympathize with Satan so as to train them to resist 
such temptation. For a critique of this reading, see Walker, “On Reason, Faith, and 
Freedom in ‘Paradise Lost.’”

128. De Morgan, “A Treatise on Algebra (No. II),” 311.
129. De Morgan, “A Treatise on Algebra,” 103.
130. De Morgan, 103.
131. De Morgan, 103.
132. On the relation of Boole and De Morgan to abstract algebra, see Koppelman, 

“The Calculus of Operations and the Rise of Abstract Algebra.”
133. De Morgan, “Treatise on Algebra,” 105.
134. De Morgan, 106.
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135. De Morgan, 106.
136. De Morgan, “Treatise on Algebra (No. II),” 310.
137. De Morgan, 310.
138. De Morgan, 310.
139. E.g., MacHale, xvii.
140. G. Boole, Laws of Thought, 28.
141. G. Boole, 41.
142. G. Boole, 44.
143. G. Boole, 44.
144. G. Boole, 45.
145. G. Boole, 29.
146. G. Boole, “Calculus of Logic,” 187.
147. G. Boole, Laws of Thought, 67.
148. G. Boole, 94–95.
149. G. Boole, 95.
150. In modern algebra, this is only true if z + w ≠ 0. However, Boole was working 

in an algebraic tradition that allowed division by zero in solving equations; indeed, 
the values 0/0 and 1/0 play important roles in Boole’s method. See Boole, Laws of 
Thought, 156.

151. In a manuscript written some time after Laws of Thought, Boole discusses an 
“inverse” mental operation “by which from the conception of a given class of things 
we ascend to the conception of some larger class from which the given class would be 
formed from the mental selection of those individuals which possess a given property” 
(Selected Manuscripts, 58). This “inverse operation” would seem to correspond to 
division in the logical calculus. Boole writes that this operation “has no verbal symbol 
or equivalent construction in language” and is “only conceivable by means of that 
operation of which it is the inverse”—that is to say, the composition of attributes (58). 
Thus it would seem that, at least at this later point in his career, he believed that divi-
sion corresponded to an operation that can occur in the human mind but that cannot 
be expressed in ordinary language. This argument is problematic, however, because 
there is no guarantee that the “larger class” he discusses is unique; indeed, there could 
be infinitely many classes that satisfy this definition of p/q. Boole does not treat division 
as corresponding to a mental operation in Laws of Thought. Hailperin developed an 
alternative interpretation of Boolean quotients using Venn diagrams and the mathemat-
ical idea of a multiset (Boole’s Logic and Probability, 109–12); Frank Markham Brown 
has criticized this interpretation for adding a layer of complexity that is not present in 
Boole’s own work (“George Boole’s Deductive System,” 304).

152. Boole, Laws of Thought, 98.
153. Jevons, Pure Logic, 66.
154. Boole, Laws of Thought, 69
155. Boole, 67.
156. Boole, 69.
157. Boole, Selected Manuscripts, 53.
158. Boole, 200.
159. In his 1848 article, for instance, he states that relations such as conditional 

and disjunctive “are referred by Kant to distinct conditions of thought” (G. Boole, 
“Calculus of Logic,” 197). The Kantian resonances are also apparent in his later writings 
on probability theory, in which he refers to a series of theorems about the properties 
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of statistical data as “conditions of possible experience” (G. Boole, Studies in Logic and 
Probability, 319). Boole differs from Kant in his focus on algebraic relations rather than 
on spatial and temporal intuitions, but he did seem to conceive of the relation between 
logical and conceptual truth in terms of the Kantian division between pure reason and 
understanding, legitimately or not.

160. Quoted in M. Boole, Symbolical Methods of Study, 17; see Cohen, Equations 
from God, 91.

161. Boole and Babbage did not meet in person until 1862, which was late in both 
of their careers (Hyman, Charles Babbage, 249). Although Babbage disagreed with 
Boole on some points (see Grattan-Guinness, “Boole’s Quest,” xliv), Babbage wrote on 
his copy of Boole’s Mathematical Analysis of Logic “This is the work of a real thinker” 
(quoted by Hyman, 244). Boole cites Babbage in his 1860 textbook A Treatise on the 
Calculus of Finite Differences, noting that “in the state to which it has been brought, 
more especially by the labors of Mr Babbage,” the calculus of functions “is much too 
extensive a branch of analysis to permit of our attempting here to give more than a 
general view of its objects and methods” (208). Whereas George Boole did not show 
much interest in Babbage’s calculating machines, his wife, Mary Everest Boole, was an 
admirer of Babbage’s computing machines and wrote enthusiastically about Babbage’s 
theological arguments (M. Boole, Logic Taught by Love, 34–39).

162. M. Boole, “Home-Side,” 109. Compare Novalis: “The apprentice must not 
yet reason. First he must become mechanically skilled, and only then may he begin to 
reflect and strive for insight and order concerning that which was learned” (Notes for a 
Romantic Encyclopaedia, 6).

163. M. Boole, “Home-Side,” 109.
164. In the first pages of Laws of Thought, Boole suggests a rationale for expecting 

the understanding of logic to come in a sudden burst of insight. Boole’s example is Aris-
totle’s dictum de omni et nullo—the principle that if something is true of a category, then 
it is also true of any subcategory of that category. The logical truth of this principle, 
he argues, “is made manifest in all its generality by reflection upon a single instance of 
its application”; the fact that one need not offer multiple examples to convince people 
of its truth is evidence that it “is founded upon some general law or laws of mind” (4). 
Gérard Bornet argues convincingly that this passage is directed at Mill’s argument in 
System of Logic that logical truths are founded on induction (Bornet, “Boole’s Psy-
chologism as a Reception Problem”). Whereas Mill’s theory implies that adding more 
examples would strengthen the induction and thus provide further evidence of the 
truth of the principle, Boole holds that one can perceive the truth of the principle with 
certainty all at once.

165. G. Boole, Mathematical Analysis, 2.
166. M. Boole, Logic Taught by Love, 55.
167. See Barrett and Connell, “Jevons and the Logic ‘Piano’”; Maas, “Mechanical 

Rationality.”
168. See Sack, The Software Arts, 122. On the developments leading from Boolean 

logic to logic circuits, see Stanković and Astola, From Boolean Logic to Switching Cir-
cuits and Automata.

169. Schröder, On the Formal Elements of the Absolute Algebra.
170. Schröder, “Ueber Algorithmen und Calculn,” 225–28. In the terminology of 

modern abstract algebra, these equations would make the system an Abelian group, at 
least if we assume the existence of an identity element and that the operation is closed 
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over some given set. For Schröder, an “algorithm” includes not just the stated axioms 
but also all other equations that can be deduced from them.

171. Schröder quoted in Peckhaus, “19th Century Logic between Philosophy and 
Mathematics,” 442. See also Peckhaus, “Ernst Schröder on Pasigraphy.”

172. Frege, “Begriffsschrift,” 6. On Frege’s position in the history of computation, 
see Von Plato, The Great Formal Machinery Works.

173. Frege, 7.
174. On the role of subjectivity in Romantic science, see Tresch, “Even the Tools 

Will Be Free.”
175. On the charge of psychologism against Boole, see Bornet; Vassallo, “Psycholo-

gism in Logic”; Corcoran, “Aristotle’s Prior Analytics and Boole’s Laws of Thought.”
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Backus–Naur form into an algorithm for parsing the language, albeit subject to some 
constraints. See Knuth, “On the Translation of Languages from Left to Right.” A classic 
textbook on this topic is Aho, Sethi, and Ullman, Compilers, also known as the “dragon 
book.”

Coda

1. Priestley argues that the practice of data abstraction led to “The Unification of 
Data and Algorithms” during the 1970s (A Science of Operations, 277–96). However, he 
is referring more to data structures than to the data themselves, so this argument does 
not conflict with mine.

2. The account given here primarily focuses on the approach known as deep learn-
ing. For overviews, see Goodfellow, Bengio, and Courville, Deep Learning; Skansi, 
Guide to Deep Learning Basics.

3. The idea of a neural network is often traced to a 1943 article by Warren S. Mc-
Culloch and Walter Pitts, titled “A Logical Calculus of the Ideas Immanent in Neural 
Activity.” Their theory, however, is based on propositional logic, which gives the model 
an “all-or-none” character that conflicts with how modern ML works (118). The ANN 
as we know it depends on the backpropagation algorithm, which provides a means of 
adjusting network parameters to improve predictions; see Rumelhart, Hinton, and Wil-
liams, “Learning Representations by Back-Propagating Errors.”

4. See Minsky and Papert, Perceptrons.
5. One exception is the Rectified Linear Unit (ReLU) function, commonly used 

in neural networks; it contains one undifferentiable point, whose derivative is simply 
chosen arbitrarily. While differentiability does not fit with Alan Turing’s model of 
computation, Alex Graves, Greg Wayne, and Ivo Danihelka have proposed a “Neural 
Turing Machine,” which aims to reconcile the two by making Turing Machines dif-
ferentiable (“Neural Turing Machines”; see also Kaiser and Sutskever, “Neural GPUs 
Learn Algorithms”). It should also be noted that, while modern Boolean algebra is 
not differentiable, George Boole’s own algebra system arguably was; he did not treat 
logical statements as resolvable to one or zero but rather manipulated them as symbolic 
equations that behaved analogously to linear differential equations. This connection to 
calculus is totally lost in the version of Boolean logic used in programming languages.

6. The disconnect between real numbers and their binary representations leads to 
well-known practical difficulties that are dealt with in the subfield of numerical com-
puting. On such issues in particular relation to deep learning, see Goodfellow Bengio, 
and Courville, 78–95.

7. Generalization is usually defined in relation to a test data set that is specifically 
prepared for the purpose of evaluation. This test data set serves as an imperfect stand-in 
for the range of data that may be encountered in production, about which it is usually 
hard to reason with certainty.

8. Goodfellow, Bengio, and Courville, 109.
9. Breiman, “Statistical Modeling,” 199. For a contextual account of Breiman’s work, 

see M. Jones, “How We Became Instrumentalists (Again).”
10. The idea of a “black box” has become a figure for a broader form of social organi-

zation; see Pasquale, The Black Box Society.
11. Breiman, “Statistical Modeling,” 199.
12. Rieder, Engines of Order, 13.
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13. Breiman, “Statistical Modeling,” 205.
14. Breiman, “Random Forests.”
15. Breiman, “Statistical Modeling,” 205.
16. Breiman, 218, 219.
17. Breiman, 230.
18. For a critique of this approach, see Raji et al., “AI and the Everything in the 

Whole Wide World Benchmark.”
19. Goodfellow, Bengio, and Courville, 97.
20. Goodfellow, Bengio, and Courville, 151.
21. Goodfellow, Bengio, and Courville, 105.
22. For one attempt at an alternative definition, see Amoore, Cloud Ethics.
23. Goodfellow, Bengio, and Courville, 208.
24. In a 2015 piece in the Atlantic, Ian Bogost argues that the cultural fixation on al-

gorithms has taken on a quasi-religious character as people have allowed computers “to 
replace gods in their minds”; the repeated mantra that we live in an age of algorithms, 
he argues, contributes to an irrational belief in their power (“The Cathedral of Compu-
tation,” n.p.). What it means to study algorithms from a social perspective has become a 
matter of controversy. Paul Dourish has warned of the importance of being clear about 
what algorithms are and are not (“Algorithms and Their Others”). Nick Seaver, on the 
other hand, has argued that social scientists should avoid defining the term algorithm 
and instead study how “algorithmic systems” function in practical contexts (“Algo-
rithms as Culture”). Seaver is right to note that an exclusive focus on technicalities can 
distract from social issues, but his approach bears the danger of reinforcing the ten-
dency Bogost describes by turning the word algorithm into a floating signifier. I would 
argue, in particular, that an uncritical acceptance of the claim that algorithms are “able 
to learn” can serve the interests of those who profit from ML technology by assigning 
agency to an ambiguously defined entity.

25. Vaswani et al., “Attention Is All You Need.”
26. Technically, it is token by token, not word by word; the GPT models break some 

words down into parts. On BERT, see Devlin et al., “BERT.”
27. Raffel et al., “Exploring the Limits of Transfer Learning with a Unified Text-to-

Text Transformer.”
28. Shannon, “A Mathematical Theory of Communication,” 387.
29. Shannon, 388.
30. Shannon, 379.
31. Shannon and Weaver, The Mathematical Theory of Communication, 24.
32. Shannon and Weaver, 27.
33. Weaver, Translation, 11.
34. Weaver, 10.
35. Radford et al., “Better Language Models and Their Implications.”
36. Radford et al., “Language Models Are Unsupervised Multitask Learners,” sixth 

unnumbered page.
37. Rajpurkar et al., “SQuAD: 100,000+ Questions for Machine Comprehension of 

Text”; Rajpurkar, Jia, and Liang, “Know What You Don’t Know: Unanswerable Ques-
tions for SQuAD.”

38. Stanford NLP Group, “Economic_inequality.”
39. There are, to be sure, language models trained on historical English. The model 
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MacBERTh, released in December 2021, was trained on English texts from the years 
1450–1950. The training data for this model are approximately a hundredth of the size 
of GPT-3’s training data. See Manjavacas.

40. Bender et al., “On the Dangers of Stochastic Parrots,” 614.
41. On the politics of labeling in image recognition training data, see Crawford and 

Paglen, “Excavating AI.”
42. I am not the first to draw this comparison; Ted Underwood made a similar point 

while responding to the question of how one could explain machine learning to an 
eighteenth century person: Ted Underwood (@Ted_Underwood), “I’d say, turns out 
Locke (1689) was right that we form general Ideas by abstracting detail from particular 
sensations, and Hartley (1749) was right that this happens through the mathematical 
concord of electrical vibrations in nerves. We can do the same thing in tiny wires,” 
Twitter, May 15, 2021, 6:11 a.m., https://​twitter​.com/​Ted​_Underwood/​status/​
1393524414646521861.

43. Mentor, “The Conscience of a Hacker,” n.p. For a critique of this form of utopia-
nism, see Chun, Discriminating Data.

44. Mentor, n.p.
45. Mentor, n.p.
46. O’Neil, Weapons of Math Destruction; Noble, Algorithms of Oppression.
47. T. Brown et al., “Language Models Are Few-Shot Learners,” 35–38.
48. See Barratt, “InterpNET”; Došilović, Brčić, and Hlupić, “Explainable Artificial 

Intelligence: A Survey.”
49. Bender et al., “On the Dangers of Stochastic Parrots.”
50. For an examples in the popular press, see Vincent, “OpenAI’s Latest Break-

through Is Astonishingly Powerful, but Still Fighting Its Flaws.”
51. I generated these predictions myself using the HuggingFace transformer library.
52. In the mid-twentieth century, a common position among literary critics was that 

meaning is created by the reader; this was taken furthest in the school called reader-
response criticism. A famous critique of this position came from Steven Knapp and 
Walter Benn Michaels, who ask what one would think if waves spontaneously carved 
some lines from Wordsworth into the sand: one would either suppose some supernatu-
ral power was at work or else view the shapes as mere meaningless accidents (“Against 
Theory” 727–28).

53. Collins and Skover, Robotica, 42. For a critique of this argument, see Siraganian, 
“Against Theory, Now with Bots!”

54. Bender et al., 611.
55. Bender et al., 616.
56. Metzler et al., “Rethinking Search.”
57. Radford et al., “Language Models Are Unsupervised Multitask Learners,” sev-

enth unnumbered page.
58. I did this by entering the text “Is liberty, equality, or fraternity the most impor-

tant? The most important one is” and generating a completion. To be sure, I was not 
using the system in quite the right way—it should be fine-tuned or in some other way 
primed for this particular type of task. But the problem goes beyond the issues of where 
the information is coming from and how the model is set up.

59. Andersen, A Theory of Computer Semiotics, 10.
60. N. Katherine Hayles adopted the term skeuomorph, which originated in archae-
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ology, to refer to an element of an older technology that persists in a newer one, such 
as the use of an image of a floppy disk to indicate save; see Hayles, How We Became 
Posthuman, 17.

61. Branwen, “GPT-3 Creative Fiction.”
62. Brown et al., “Language Models Are Few-Shot Learners,” 56.
63. Esser, Rombach, and Ommer, “Taming Transformers for High-Resolution Im-

age Synthesis.” This program can be run online at https://​colab​.research​.google​.com/​
github/​eps696/​aphantasia/​blob/​master/​CLIP​_VQGAN​.ipynb

64. On the potential spuriousness of some of these differences, see Veitch et al., 
“Counterfactual Invariance to Spurious Correlations.”

65. Schick and Schütze, “It’s Not Just Size That Matters,” fourth unnumbered page.
66. See Cappelen, Fixing Language; Burgess, Cappelen, and Plunkett, Conceptual 

Engineering and Conceptual Ethics. Carnap’s work, to be clear, is only one of a number 
of reference points for this intellectual program, and not all advocates are strongly 
influenced by his approach.
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