

Praise for Principles of Web API Design

“I’ve had the good fortune to work alongside and learn from James over the past several years.
His varied institutional knowledge, along with his depth of experience and eye for practical
application, makes him unique among his peers. I am ecstatic that others now have the opportu-
nity, in this book, to benefit from James’s compelling, pragmatic vision for how to make better
APIs. Principles of Web API Design surveys the gamut of available techniques and sets forth a
prescriptive, easy-to-follow approach. Teams that apply the guidance in this book will create
APIs that better resonate with customers, deliver more business value in less time, and require
fewer breaking changes. I cannot recommend Principles of Web API Design enough.”

—Matthew Reinbold, Director of API Ecosystems, Postman

“James is one of the preeminent experts on API design in the industry, and this comprehensive
guide reflects that. Putting API design in the context of business outcomes and digital capabili-
ties makes this a vital guide for any organization undergoing digital transformation.”

—Matt McLarty, Global Leader of API Strategy at MuleSoft,
a Salesforce company

“In modern software development, APIs end up being both the cause of and solution to many of
the problems we face. James’s process for dissecting, analyzing, and designing APIs from concepts
to caching creates a repeatable approach for teams to solve more problems than they create.”

—D. Keith Casey, Jr., API Problem Solver, CaseySoftware, LLC

“Following James’s clear and easy-to-follow guide, in one afternoon I was able to apply his
process to current real-world use cases. I now have the practical guidance, techniques, and
clear examples to help me take those next vital steps. Recommended reading for anyone con-
nected to and working with APIs.”

—Joyce Stack, Architect, Elsevier

“Principles of Web API Design uncovers more than principles. In it, you’ll learn a process—a
method to design APIs.”

—Arnaud Lauret, API Handyman

“This insightful playbook guides API teams through a structured process that fosters produc-
tive collaboration, valuable capability identification, and best-practice contract crafting.
James distills years of experience into a pragmatic roadmap for defining and refining API
products, and also provides a primer for API security, eventing, resiliency, and microservices
alignment. A must-read for architects either new to the API discipline or responsible for
onboarding new teams and instituting a structured API definition process.”

—Chris Haddad, Chief Architect, Karux LLC

This page intentionally left blank

Principles of Web API Design

The Pearson Addison-Wesley Signature Series provides readers with
practical and authoritative information on the latest trends in modern
technology for computer professionals. The series is based on one
simple premise: great books come from great authors.

Vaughn Vernon is a champion of simplifying software architecture and
development, with an emphasis on reactive methods. He has a unique
ability to teach and lead with Domain-Driven Design using lightweight
tools to unveil unimagined value. He helps organizations achieve
competitive advantages using enduring tools such as architectures,
patterns, and approaches, and through partnerships between business
stakeholders and software developers.

Vaughn’s Signature Series guides readers toward advances in software
development maturity and greater success with business-centric
practices. The series emphasizes organic refinement with a variety
of approaches—reactive, object, and functional architecture and
programming; domain modeling; right-sized services; patterns; and
APIs—and covers best uses of the associated underlying technologies.

Visit informit.com/awss/vernon for a complete list of available publications.

Pearson Addison-Wesley
Signature Series

Make sure to connect with us!
informit.com/socialconnect

http://informit.com/awss/vernon
http://informit.com/socialconnect

Principles of
Web API Design

Delivering Value with
APIs and Microservices

James Higginbotham

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City
São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Cover image: Anna Om/Shutterstock

Figures 7.8–7.11: © 2021 SmartBear Software

Figure 10.12, icons: dependency by Knut M. Synstad from the Noun Project; plug by Vectors Market from the Noun Project;
database by MRK from the Noun Project; filter by Landan Lloyd from the Noun Project; command line by Focus from the
Noun Project; algorithm by Trevor Dsouza from the Noun Project; name tag by Cindy Clegane from the Noun Project; task
list by Royal@design from the Noun Project; quality by Flatart from the Noun Project; broadcast by Yoyon Pujiyono from the
Noun Project.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed
with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any
kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic
versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding
interests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2021947541

Copyright © 2022 Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission must be obtained from the publisher prior
to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic,
mechanical, photocopying, recording, or likewise. For information regarding permissions, request forms and the appropriate
contacts within the Pearson Education Global Rights & Permissions Department, please visit www.pearson.com/permissions.

ISBN-13: 978-0-13-735563-1
ISBN-10: 0-13-735563-7

ScoutAutomatedPrintCode

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearson.com/permissions

Pearson’s Commitment to Diversity, Equity, and Inclusion

Pearson is dedicated to creating bias-free content that reflects the diversity of all
learners. We embrace the many dimensions of diversity, including but not limited to
race, ethnicity, gender, socioeconomic status, ability, age, sexual orientation, and
religious or political beliefs.

Education is a powerful force for equity and change in our world. It has the
potential to deliver opportunities that improve lives and enable economic mobility.
As we work with authors to create content for every product and service, we
acknowledge our responsibility to demonstrate inclusivity and incorporate diverse
scholarship so that everyone can achieve their potential through learning. As the
world’s leading learning company, we have a duty to help drive change and live up
to our purpose to help more people create a better life for themselves and to create
a better world.

Our ambition is to purposefully contribute to a world where:

 • Everyone has an equitable and lifelong opportunity to succeed through
learning.

 • Our educational products and services are inclusive and represent the rich
diversity of learners.

 • Our educational content accurately reflects the histories and experiences of the
learners we serve.

 • Our educational content prompts deeper discussions with learners and
motivates them to expand their own learning (and worldview).

While we work hard to present unbiased content, we want to hear from you about
any concerns or needs with this Pearson product so that we can investigate and
address them.

 • Please contact us with concerns about any potential bias at https://www.pearson
.com/report-bias.html.

https://www.pearson.com/report-bias.html
https://www.pearson.com/report-bias.html

This page intentionally left blank

To my wife,
 whose support and encouragement

makes everything possible.

To my grandfather, J.W.,
who gave me a Commodore 64 when I was eight years old

because he believed “computers are going to be big someday,
and my grandson should know how to use one”

and who inspired me to follow in his footsteps as an author.

To my dad,
who continued the work

of J.W. I miss you.

To my son,
who continues the tradition with
his endless coding in Minecraft.

And to my daughter,
who inspires me every day

to write better copy.

This page intentionally left blank

xi

Contents

Series Editor Foreword . xxi

Foreword . xxv

Preface . xxvii

Acknowledgments . xxxi

About the Author . xxxiii

Part I: Introduction to Web API Design . 1

Chapter 1: The Principles of API Design . 3

The Elements of Web API Design . 4
Business Capabilities . 4
Product Thinking . 4
Developer Experience . 5

API Design Is Communication . 6
Reviewing the Principles of Software Design . 7

Modularization . 8
Encapsulation . 8
High Cohesion and Loose Coupling . 9

Resource-Based API Design . 10
Resources Are Not Data Models . 10

Resources Are Not Object or Domain Models . 11
Resource-Based APIs Exchange Messages . 12
The Principles of Web API Design . 13
Summary . 14

Chapter 2: Collaborative API Design . 15

Why an API Design Process? . 15
API Design Process Antipatterns . 16

The Leaky Abstraction Antipattern . 16
The Next Release Design Fix Antipattern 19

Contentsxii

The Heroic Design Effort Antipattern . 19
The Unused API Antipattern . 20

The API Design-First Approach . 20
Remaining Agile with API Design-First . 22

The Agile Manifesto Revisited . 22
The Agility of API Design-First . 23

The Align-Define-Design-Refine Process . 23
The Role of DDD in API Design . 26
API Design Involves Everyone . 26
Applying the Process Effectively . 28
Summary . 28

Part II: Aligning on API Outcomes . 29

Chapter 3: Identify Digital Capabilities . 31

Ensuring Stakeholder Alignment . 32
What Are Digital Capabilities? . 33
Focusing on the Jobs to Be Done . 34
What Are Job Stories? . 35
The Components of a Job Story . 36
Writing Job Stories for APIs . 37

Method 1: When the Problem Is Known . 37
Method 2: When the Desired Outcome Is Known 37
Method 3: When the Digital Capability Has Been Identified . . . 38

Overcoming Job Story Challenges . 38
Challenge 1: Job Stories Are Too Detailed 38
Challenge 2: Job Stories Are Feature Centric 39
Challenge 3: Additional User Context Is Needed 40

Techniques for Capturing Job Stories . 40
A Real-World API Design Project . 41
Job Story Examples . 42
Summary . 42

Chapter 4: Capture Activities and Steps . 45

Extending Job Stories into Activities and Steps 46
Identify the Activities for Each Job Story 47
Decompose Each Activity into Steps . 47
What If Requirements Aren’t Clear? . 48

Contents xiii

Using EventStorming for Collaborative Understanding 49
How EventStorming Works . 50

Step 1: Identify Business Domain Events 51
Step 2: Create an Event Narrative . 51
Step 3: Review the Narrative and Identify Gaps 54
Step 4: Expand Domain Understanding 54
Step 5: Review the Final Narrative . 56

The Benefits of EventStorming . 58
Who Should Be Involved? . 59

Facilitating an EventStorming Session . 60
Prepare: Gathering Necessary Supplies . 60
Share: Communicating the EventStorming Session 62
Execute: Conducting the EventStorming Session 63
Wrap-up: Capture Activities and Activity Steps 63
Follow-up: Post-Session Recommendations 63
Customizing the Process . 64

Summary . 65

Part III: Defining Candidate APIs . 67

Chapter 5: Identifying API Boundaries . 69

Avoiding API Boundary Antipatterns . 70
The Mega All-in-One API Antipattern . 70
The Overloaded API Antipattern . 70
The Helper API Antipattern . 71

Bounded Contexts, Subdomains, and APIs . 72
Finding API Boundaries Using EventStorming . 73
Finding API Boundaries through Activities . 73
Naming and Scoping APIs . 75
Summary . 78

Chapter 6: API Modeling . 79

What Is API Modeling? . 80
The API Profile Structure . 81

The API Modeling Process . 81
Step 1: Capture API Profile Summary . 83
Step 2: Identify the Resources . 85
Step 3: Define the Resource Taxonomy . 87

Contentsxiv

Step 4: Add Operation Events . 88
Step 5: Expand Operation Details . 91

Validating the API Model with Sequence Diagrams 93
Evaluating API Priority and Reuse . 95
Summary . 96

Part IV: Designing APIs . 99

Chapter 7: REST-Based API Design . 101

What Is a REST-Based API? . 102
REST Is Client/Server . 104
REST Is Resource-Centric . 104
REST Is Message Based . 105
REST Supports a Layered System . 105
REST Supports Code on Demand . 107
Hypermedia Controls . 107
When to Choose REST . 111

REST API Design Process . 112
Step 1: Design Resource URL Paths . 112
Step 2: Map API Operations to HTTP Methods 115
Step 3: Assign Response Codes . 116
Step 4: Documenting the REST API Design 118
Step 5: Share and Gather Feedback . 124

Selecting a Representation Format . 125
Resource Serialization . 126
Hypermedia Serialization . 127
Hypermedia Messaging . 128
Semantic Hypermedia Messaging . 129

Common REST Design Patterns . 132
Create-Read-Update-Delete . 132
Extended Resource Lifecycle Support . 133
Singleton Resources . 134
Background (Queued) Jobs . 134
Long-Running Transaction Support in REST 135

Summary . 136

Chapter 8: RPC and Query-Based API Design . 137

What Is an RPC-Based API? . 138

Contents xv

The gRPC Protocol . 139
Factors When Considering RPC . 141

RPC API Design Process . 142
Step 1: Identify RPC Operations . 142
Step 2: Detail RPC Operations . 142
Step 3: Document the API Design . 145

What Is a Query-Based API? . 146
Understanding OData . 147
Exploring GraphQL . 149

Query-Based API Design Process . 150
Step 1: Designing Resource and Graph Structures 151
Step 2: Design Query and Mutation Operations 151
Step 3: Document the API Design . 154

Summary . 157

Chapter 9: Async APIs for Eventing and Streaming 159

The Problem with API Polling . 160
Async APIs Create New Possibilities . 161
A Review of Messaging Fundamentals . 162

Messaging Styles and Locality . 164
The Elements of a Message . 165
Understanding Messaging Brokers . 166
Point-to-Point Message Distribution (Queues) 167
Fanout Message Distribution (Topics) 167
Message Streaming Fundamentals . 168

Async API Styles . 171
Server Notification Using Webhooks. 171
Server Push Using Server-Sent Events . 172
Bidirectional Notification via WebSocket 174
gRPC Streaming . 176
Selecting an Async API Style . 177

Designing Async APIs . 178
Command Messages . 178
Event Notifications . 179
Event-Carried State Transfer Events . 180
Event Batching . 182
Event Ordering . 183

Contentsxvi

Documenting Async APIs . 184
Summary . 186

Part V: Refining the API Design . 187

Chapter 10: From APIs to Microservices . 189

What Are Microservices? . 190
Microservices Reduce Coordination Costs . 192
The Difference between APIs and Microservices 193
Weighing the Complexity of Microservices . 193

Self-Service Infrastructure . 194
Independent Release Cycles . 194
Shift to Single-Team Ownership . 194
Organizational Structure and Cultural Impacts 195
Shift in Data Ownership . 195
Distributed Data Management and Governance 196
Distributed Systems Challenges . 196
Resiliency, Failover, and Distributed Transactions 197
Refactoring and Code Sharing Challenges 197

Synchronous and Asynchronous Microservices 198
Microservice Architecture Styles . 201

Direct Service Communication . 201
API-Based Orchestration . 201
Cell-Based Architecture . 203

Right-Sizing Microservices . 204
Decomposing APIs into Microservices . 204

Step 1: Identify Candidate Microservices 205
Step 2: Add Microservices into API Sequence Diagrams 206
Step 3: Capture Using the Microservice Design Canvas 208
Additional Microservice Design Considerations 208

Considerations When Transitioning to Microservices 210
Summary . 211

Chapter 11: Improving the Developer Experience 213

Creating a Mock API Implementation . 214
Static API Mocking . 215
API Prototype Mocking . 216
README-Based Mocking . 217

Contents xvii

Providing Helper Libraries and SDKs . 219
Options for Offering Helper Libraries 220
Versioning Helper Libraries. 220
Helper Library Documentation and Testing 221

Offering CLIs for APIs . 221
Summary . 224

Chapter 12: API Testing Strategies . 225

Acceptance Testing . 226
Automated Security Testing . 226
Operational Monitoring . 227
API Contract Testing . 227
Selecting Tools to Accelerate Testing . 229
The Challenges of API Testing . 230
Make API Testing Essential . 231
Summary . 231

Chapter 13: Document the API Design . 233

The Importance of API Documentation . 234
API Description Formats . 234

OpenAPI Specification . 235
API Blueprint . 238
RAML . 240
JSON Schema . 244
API Profiles Using ALPS . 245
Improving API Discovery Using APIs.json 247

Extending Docs with Code Examples . 248
Write Getting Started Code Examples First 249
Expanding Documentation with Workflow Examples 249
Error Case and Production-Ready Examples 251

From Reference Docs to a Developer Portal . 251
Increasing API Adoption through Developer Portals 251

Elements of a Great Developer Portal . 252
Effective API Documentation . 253

Question 1: How Does Your API Solve My Problems? 254
Question 2: What Problem Does Each API Operation

Support? . 254

Contentsxviii

Question 3: How Do I Get Started Using the API? 254
The Role of Technical Writer in API Docs. 255

The Minimum Viable Portal . 256
Phase 1: Minimum Viable Portal . 256
Phase 2: Improvement . 257
Phase 3: Focusing on Growth . 258

Tools and Frameworks for Developer Portals . 259
Summary . 260

Chapter 14: Designing for Change . 261

The Impact of Change on Existing APIs . 261
Perform an API Design Gap Analysis . 262
Determine What Is Best for API Consumers 262
Strategies for Change . 263
Change Management Is Built on Trust 264

API Versioning Strategies . 264
Common Nonbreaking Changes . 265
Incompatible Changes . 265
API Versions and Revisions . 266
API Versioning Methods . 267
Business Considerations of API Versioning 268

Deprecating APIs. 268
Establish a Deprecation Policy . 269
Announcing a Deprecation . 269

Establishing an API Stability Contract . 270
Summary . 271

Chapter 15: Protecting APIs . 273

The Potential for API Mischief . 273
Essential API Protection Practices . 274
Components of API Protection . 276

API Gateways . 276
API Management. 276
Service Meshes . 277
Web Application Firewalls . 278
Content Delivery Networks . 278
Intelligent API Protection . 279

Contents xix

API Gateway Topologies . 279
API Management Hosting Options . 279
API Network Traffic Considerations . 282
Topology 1: API Gateway Direct to API Server 283
Topology 2: API Gateway Routing to Services 283
Topology 3: Multiple API Gateway Instances 283

Identity and Access Management . 284
Passwords and API Keys . 285
API Tokens . 286
Pass-by-Reference versus Pass-by-Value API Tokens 287
OAuth 2.0 and OpenID Connect . 288

Considerations before Building an In-House API Gateway 289
Reason 1: API Security Is a Moving Target 290
Reason 2: It Will Take Longer than Expected 290
Reason 3: Expected Performance Takes Time 290
What about Helper Libraries? . 291

Summary . 291

Chapter 16: Continuing the API Design Journey . 293

Establishing an API Style Guide . 293
Methods for Encouraging Style Guide Adherence 294
Selecting Style Guide Tone . 295
Tips for Getting Started with an API Style Guide 296
Supporting Multiple API Styles . 296

Conducting API Design Reviews . 297
Start with a Documentation Review . 298
Check for Standards and Design Consistency 299
Review Automated Test Coverage . 299
Add Try It Out Support . 299

Developing a Culture of Reuse . 300
The Journey Has Only Begun . 301

Appendix: HTTP Primer . 303

Index . 319

This page intentionally left blank

xxi

Series Editor Foreword

My signature series emphasizes organic growth and refinement, which I describe in
more detail below. Before that, I will tell you a little about how organic reactions
brought the author and I together for the first time.

If you’ve ever spent a summer in a desert, you know that your flesh-and-blood
organism becomes very uncomfortable with the heat. That’s certainly the case
with summer in the Sonoran Desert of Arizona. Temperatures can rise to near
120°F, or 49°C. At 118°F/47.8°C, the Phoenix Sky Harbor Airport shuts down
operations. So, if you are going to break free from the heat, you get out before you
are stuck in the desert. That’s what we did in early July 2019, when we escaped to
Boulder, Colorado, where we had previously resided. Knowing that the author of
this book, James Higginbotham, had relocated to Colorado Springs, Colorado,
gave us the opportunity to meet up for a few days in that nearby Colorado city. (In
the western US, 100 miles/160 km is considered to be nearby.) I’ll tell you more
about our collaboration once I’ve introduced you to my signature series.

My Signature Series is designed and curated to guide readers toward advances in
software development maturity and greater success with business-centric practices.
The series emphasizes organic refinement with a variety of approaches—reactive,
object, as well as functional architecture and programming; domain modeling; right-
sized services; patterns; and APIs—and covers best uses of the associated underlying
technologies.

From here I am focusing now on only two words: organic refinement.
The first word, organic, stood out to me recently when a friend and colleague

used it to describe software architecture. I have heard and used the word organic in
connection with software development, but I didn’t think about that word as care-
fully as I did then when I personally consumed the two used together: organic
architecture.

Think about the word organic, and even the word organism. For the most part
these are used when referring to living things, but are also used to describe inani-
mate things that feature some characteristics that resemble life forms. Organic
originates in Greek. Its etymology is with reference to a functioning organ of the
body. If you read the etymology of organ, it has a broader use, and in fact organic
followed suit: body organs; to implement; describes a tool for making or doing; a
musical instrument.

Series Editor Forewordxxii

We can readily think of numerous organic objects—living organisms—from the
very large to the microscopic single-celled life forms. With the second use of organism,
though, examples may not as readily pop into our mind. One example is an organiza-
tion, which includes the prefix of both organic and organism. In this use of organism,
I’m describing something that is structured with bidirectional dependencies. An organ-
ization is an organism because it has organized parts. This kind of organism cannot
survive without the parts, and the parts cannot survive without the organism.

Taking that perspective, we can continue applying this thinking to nonliving
things because they exhibit characteristics of living organisms. Consider the atom.
Every single atom is a system unto itself, and all living things are composed of atoms.
Yet, atoms are inorganic and do not reproduce. Even so, it’s not difficult to think of
atoms as living things in the sense that they are endlessly moving, functioning. Atoms
even bond with other atoms. When this occurs, each atom is not only a single system
unto itself, but becomes a subsystem along with other atoms as subsystems, with
their combined behaviors yielding a greater whole system.

So then, all kinds of concepts regarding software are quite organic in that nonliv-
ing things are still “characterized” by aspects of living organisms. When we discuss
software model concepts using concrete scenarios, or draw an architecture diagram,
or write a unit test and its corresponding domain model unit, software starts to come
alive. It isn’t static, because we continue to discuss how to make it better, subjecting
it to refinement, where one scenario leads to another, and that has an impact on the
architecture and the domain model. As we continue to iterate, the increasing value in
refinements leads to incremental growth of the organism. As time progresses so does
the software. We wrangle with and tackle complexity through useful abstractions,
and the software grows and changes shapes, all with the explicit purpose of making
work better for real living organisms at global scales.

Sadly, software organics tend to grow poorly more often than they grow well. Even
if they start out life in good health they tend to get diseases, become deformed, grow
unnatural appendages, atrophy, and deteriorate. Worse still is that these symptoms
are caused by efforts to refine the software that go wrong instead of making things
better. The worst part is that with every failed refinement, everything that goes wrong
with these complexly ill bodies doesn’t cause their death. (Oh, if they could just die!)
Instead, we have to kill them and killing them requires nerves, skills, and the intestinal
fortitude of a dragon slayer. No, not one, but dozens of vigorous dragon slayers. Actu-
ally, make that dozens of dragon slayers who have really big brains.

That’s where this series comes into play. I am curating a series designed to help
you mature and reach greater success with a variety of approaches—reactive, object,
and functional architecture and programming; domain modeling; right-sized ser-
vices; patterns; and APIs. And along with that, the series covers best uses of the

Series Editor Foreword xxiii

associated underlying technologies. It’s not accomplished at one fell swoop. It
requires organic refinement with purpose and skill. I and the other authors are here
to help. To that end, we’ve delivered our very best to achieve our goal.

When James and I got together for a few days in July 2019, we covered a lot of
ground on APIs and Domain-Driven Design, along with related subjects. I’d con-
sider our conversations organic in nature. As we iterated on various topics, we
refined our knowledge exchange, gauged by our level of interest in whatever direc-
tion our hunger led us. Feeding our brains resulted in growing our own desire and
determination to extend our software building approaches in order to help others
expand their skills and grow toward greater successes. Those who read our books, as
well as our consulting and training clients, are the ones who have gained the most.

To say the least, I was impressed by James’s encyclopedic knowledge of every-
thing APIs. While we were together, I asked James about writing a book. He
informed me that he had self-published one book but wasn’t at that time intent on
writing another book. That was approximately nine months before I was offered
the Signature Series. When the series planning was in the works, I immediately
approached James about authoring in the series. I was so happy that he accepted
and that he proposed organic software design and development techniques, such as
with Align-Define-Design-Refine (ADDR). When you read his book, you will
understand why I am so pleased to have James in my series.

—Vaughn Vernon

This page intentionally left blank

xxv

Foreword

According to a recent IDC report on APIs and API management, 75 percent of those
surveyed were focused on digital transformation through the design and implemen-
tation of APIs and more than one half expected call volume and response time to
grow dramatically. And most organizations admitted they faced challenges in meet-
ing expectations for both internally and externally facing APIs. At the heart of all of
this is the need for consistent, reliable, and scalable API design programs to help lead
and transform existing organizations. As James Higginbotham puts it in this book:
“The biggest challenge for today’s API programs continues to be successfully design-
ing APIs that can be understood and integrated by developers in a consistent and
scalable fashion.”

It was for this reason that I was so happy to have this book cross my desk. I’ve had
the pleasure of working with James over the years and, knowing his work and his
reputation, was very happy to hear he was writing a book that covers Web API
design. Now, after reading through this book, I am equally happy to recommend it to
you, the reader.

The field of Web APIs and the work of designing them has matured rapidly over
the last few years, and keeping up with the latest developments is a major undertak-
ing. Issues like changing business expectations for the role of APIs; maturing pro-
cesses for gathering, recording, and documenting the work of API design; as well as
evolving technology changes and all the work of coding, releasing, testing, and mon-
itoring APIs make up an API landscape large enough that few people have been able
to successfully tackle it. Through his Align-Define-Design-Refine process, James
offers an excellent set of recommendations, examples, and experience-based advice
to help the reader navigate the existing space of Web APIs and prepare for the inevi-
table changes ahead in the future.

One of the things about James’s work that has always stood out is his ability to
reach beyond the technical and into the social and business aspects of APIs and API
programs within organizations. James has a long list of international clients across
the business sectors of banking, insurance, global shipping, and even computer
hardware providers, and the material in this book reflects this depth of experience.
The techniques and processes detailed here have been tried and tested in all sorts of
enterprise settings, and James’s ability to distill what works into this one volume is

Forewordxxvi

impressive. Whether you are looking for advice on general design, business-
technology alignment, or implementation details for various technologies such as
REST, GraphQL, and event-driven platforms, you’ll find important and actionable
advice within these pages.

In particular, I found the material on how to refine your API design and imple-
mentation efforts within an ever-growing enterprise API program particularly timely
and especially valuable. For those tasked with launching, managing, and expanding
the role of Web-based APIs within a company, Principles of Web API Design should
prove to be a welcome addition to your bookshelf.

As the aforementioned IDC report indicates, many companies around the globe
are faced with important digital transformation challenges, and APIs have a major
role to play in helping organizations meet the needs of their customers and in con-
tinuing to improve their own bottom line. Whether you are focused on designing,
building, deploying, or maintaining APIs, this book contains helpful insights and
advice.

I know this book will become an important part of my toolkit as I work with
companies of all stripes to continue to mature and grow their API programs, and I
expect you, too, will find it useful. Reading this book has reminded me of all the
opportunities and challenges we all have before us. To borrow another line from
James: “This is only the beginning.”

—Mike Amundsen, API Strategist

xxvii

Preface

It’s hard to pinpoint the beginning of the journey to writing this book—perhaps it
started about ten years ago. It is the result of thousands of hours of training, tens of
thousands of miles traveled, and too many written words and lines of code to count.
It comprises insights from organizations across the globe that were just starting their
API journey or had already begun the adventure. The book incorporates the insights
of API practitioners across the world whom I have had the pleasure to meet.

Or perhaps the journey started almost twenty-five years ago, when I first entered
the software profession. So many advisors provided their insight via books and arti-
cles. Mentors along the way helped to shape my way of thinking about software.
They laid the foundation of how I prefer to realize software architecture.

Maybe the journey really started almost forty years ago, when my grandfather
gifted me with a Commodore 64. He was a civil engineer and cost engineer who
attended night school while working to support his family during the day. He was
thirsty for knowledge, reading and absorbing everything he could. He always made
us laugh when he said, “I’m still amazed at how television works!” after seeing a
computer operate. Yet, he was the one who gifted me that magical computer, saying
“computers are going to be big someday, and my grandson should know how to use
one.” This single action started my lifelong love of software development.

In reality, the journey started more than seventy years ago when the pioneers of
our current age of computing established many of the foundational principles we
still use today to construct software. Though technology choices change, and the
trends come and go, it all builds on the work of so many in the software industry and
beyond. Countless people have helped to carve the way for what we do today.

What I am saying is that APIs would not be what they are today without all the
hard work that came before us. Therefore, we must thirst for understanding the
history of our industry to better understand “the how” and “the why” behind what
we do today. Then, we must seek to apply these lessons to all that we do tomorrow.
Along the way, we need to find ways to inspire others to do the same. This is what
my grandfather and father taught me, so I pass this lesson on to you. This book
reflects the things I’ve learned thus far in my journey. I hope you gain some new
insights by building upon what is presented here while you seek to prepare the next
generation.

Prefacexxviii

Who Should Read This Book

This book is for anyone who wants to design a single API or a series of APIs that will
delight humans. Product owners and product managers will gain a deeper under-
standing of the elements that teams need to design an API. Software architects and
developers will benefit from learning how to design APIs by applying principles of
software architecture. Technical writers will identify ways that they not only can
contribute to the clarity of API documentation but also can add value throughout
the API design process. In short, Principles of Web API Design is for everyone
involved in API design whether they are in a development or nondevelopment role.

About This Book

This book outlines a series of principles and a process for designing APIs. The Align-
Define-Design-Refine (ADDR) process featured in this book is designed to help indi-
viduals and cross-functional teams to navigate the complexities of API design. It
encourages an outside-in perspective on API design by applying concepts such as the
voice of the customer, jobs to be done, and process mapping. Although Principles of
Web API Design walks through a greenfield example from the ground up, the book
may also be used for existing APIs.

The book covers all aspects of API design, from requirements to arriving at an
API design ready for delivery. It also includes guidance on how to document the API
design for more effective communication between you, your team, and your API con-
sumers. Finally, the book touches on a few elements of API delivery that may have an
impact on your API design.

The book is divided into five parts:

• Part I: Introduction to Web API Design—An overview of why API design
is important and an introduction to the API design process used in this book.

• Part II: Aligning on API Outcomes—Ensures alignment between the team
designing the API and all customers and stakeholders.

• Part III: Defining Candidate APIs—Identifies the APIs, including the API
operations required, necessary to deliver the desired outcomes into API profiles.

• Part IV: Designing APIs—Transforms the API profiles into one or more API
styles that meet the needs of the target developers. Styles covered include REST,
gRPC, GraphQL, and event-based asynchronous APIs.

Preface xxix

 • Part V: Refining the Design—Improves the API design based on insights from
documentation, testing, and feedback. It also includes a chapter on decompos-
ing APIs into microservices. Finally, the book closes with tips on how to scale
the design process in larger organizations.

For those who need a refresher on HTTP, the language of the Web used for Web-
based APIs, the appendix provides a nice primer to help you get started.

What’s Not in the Book

There are no code listings, other than some markup used to capture API design
details. You don’t need to be a software developer to take advantage of the process
and techniques described in this book. It doesn’t dive into a specific programming
language or prescribe a specific design or development methodology.

The scope of the full API design and delivery lifecycle is big. While there are some
insights provided that extend beyond API design, it is impossible for me to capture
every detail and situation that could occur. Instead, this book tackles the challenges
teams encounter when going from an idea to business requirements and, ultimately,
to an API design.

Let’s get started.

Register your copy of Principles of Web API Design on the InformIT site for
convenient access to updates and/or corrections as they become available. To
start the registration process, go to informit.com/register and log in or create
an account. Enter the product ISBN (9780137355631) and click Submit. Look
on the Registered Products tab for an Access Bonus Content link next to this
product, and follow that link to access any available bonus materials. If you
would like to be notified of exclusive offers on new editions and updates,
please check the box to receive email from us.

http://informit.com/register

This page intentionally left blank

xxxi

Acknowledgments

First, I would like to thank my wife and kids who have supported me in so many ways
throughout the years. Your prayers and encouragement have meant so much to me.

Special thanks to Jeff Schneider, who suggested that we should write the first
enterprise Java book in 1996, before Java was enterprise. Your insights and endless
hours of coaching set me on an amazing career path. Your friendship guided me
along the way.

Keith Casey, thank you for inviting me to coauthor a book and deliver API
workshops to people all over the world. This book wouldn’t have been written
without your friendship, encouragement, and insight.

Vaughn Vernon, who sent me a message years ago asking how we could collabo-
rate, which ultimately turned into this book—thank you for inviting me on your
journey.

Mike Williams, who encouraged me to risk it all to realize my dreams, you have
been an inspiration and a great friend.

A special thank you to the many reviewers of this book. Your dedication to
reviewing the chapters, often under a time crunch, to help produce this book is
appreciated: Mike Amundsen, Brian Conway, Adam DuVander, Michael Hibay,
Arnaud Lauret, Emmanuel Paraskakis, Matthew Reinbold, Joyce Stack, Vaughn
Vernon, and Olaf Zimmermann.

To all API evangelists and influencers, thank you for the personal and professional
discussions. Here are just a few of the many people I’ve had the pleasure of meeting:
Tony Blank, Mark Boyd, Lorinda Brandon, Chris Busse, Bill Doerfeld, Marsh Gardiner,
Dave Goldberg, Jason Harmon, Kirsten Hunter, Kin Lane, Matt McLarty, Mehdi
Medjaoui, Fran Mendez, Ronnie Mitra, Darrel Miller, John Musser, Mandy Whaley,
Jeremy Whitlock, and Rob Zazueta. And to those on the Slack channel, thanks for your
support!

I would like to acknowledge everyone at Pearson who supported me throughout
the process. Haze Humbert, thank you for making this process as easy as it can be for
an author. And thank you to the entire production team: your hard work is greatly
appreciated.

Finally, to my mom, thank you for spending endless hours at the library while
I researched computer programming books before I was old enough to drive.

This page intentionally left blank

xxxiii

About the Author

James Higginbotham is a software developer and architect with over twenty-five years
of experience in developing and deploying apps and APIs. He guides enterprises
through their digital transformation journey, ensuring alignment between business and
technology through product-based thinking to deliver a great customer experience.
James engages with teams and organizations to help them align their business, prod-
uct, and technology strategies into a more composable and modular enterprise plat-
form. James also delivers workshops that help cross-functional teams to apply an API
design-first approach using his ADDR process. His industry experience includes bank-
ing, commercial insurance, hospitality, travel, and the airline industry where he helped
to get an airline off the ground—literally. You can learn more about his latest efforts at
https://launchany.com and on Twitter @launchany.

https://launchany.com

This page intentionally left blank

1

Part I

Introduction to Web
API Design

APIs are forever. Once an API is integrated into a production application, it is
difficult to make significant changes that could potentially break those existing inte-
grations. Design decisions made in haste become future areas of confusion, support
issues, and lost opportunities far into the future. The API design phase is an impor-
tant part of any delivery schedule.

Part 1 examines the fundamentals of software design and how it produces a posi-
tive or negative impact on API design. It then examines the API first design process
and presents an overview of an API design process. This process incorporates an
outside-in perspective to deliver an effective API to meet the needs of customers,
partners, and the workforce.

This page intentionally left blank

3

Chapter 1

The Principles
of API Design

All architecture is design, but not all design is architecture.Architecture represents
the set of significant design decisions that shape the form and the function of
a system.

— Grady Booch

Organizations have been delivering APIs for decades. APIs started as libraries and
components shared across an organization and sold by third parties. They then grew
into distributed components using standards such as CORBA for distributed object
integration and SOAP for integrating distributed services across organizations.
These standards were designed for interoperability but lacked the elements of effec-
tive design, often requiring months of effort to successfully integrate them.

As these standards were replaced by Web APIs, only a few APIs were needed.
Teams could take the time to properly design them, iterating as needed. This is no
longer the case. Organizations deliver more APIs and at greater velocity than ever
before. The reach of Web APIs goes beyond a few internal systems and partners.

Today’s Web-based APIs connect organizations to their customers, partners,
and workforce using the standards of the Web. Hundreds of libraries and frame-
works exist to make it cheap and fast to deliver APIs to a marketplace or for internal
use. Continuous integration and continuous delivery (CI/CD) tools make it easier
than ever to build automation pipelines to ensure APIs are delivered with speed and
efficiency.

Yet, the biggest challenge for today’s API programs continues to be successfully
designing APIs that can be understood and integrated by developers in a consistent
and scalable fashion. Facing this challenge requires organizations to recognize that
Web APIs are more than just technology. Just as works of art require the balance
of color and light, API design benefits from the blending of business capabilities,
 product thinking, and a focus on developer experience.

Chapter 1 The Principles of API Design 4

The Elements of Web API Design

An organization’s collection of APIs provides a view into what the business values in
the marketplace. The design quality of its APIs provides a view into how the business
values developers. Everything an API offers—and doesn’t offer—speaks volumes
about what an organization cares most about. Effective Web API design incorporates
three important elements: business capabilities, product thinking, and developer
experience.

Business Capabilities

Business capabilities describe the enablers an organization brings to market. They
may include external-facing capabilities, such as unique product design, amazing
customer service, or optimized product delivery. They may also include internally
facing capabilities such as sales pipeline management or credit risk assessment.

Organizations deliver business capabilities in three ways: directly by the organiza-
tion, outsourced via a third-party provider, or through a combination of organiza-
tional and third-party processes.

For example, a local coffee shop may choose to sell custom coffee blends. To
do so, it sources coffee beans through a third-party distributor, roasts the coffee
beans in-house, then utilizes a third-party point-of-sale (POS) system for selling
its coffee blends in a retail store. By outsourcing some of the necessary busi-
ness capabilities to specialized third parties, the coffee shop is able to focus on
delivering specific business capabilities that differentiate them from others in the
marketplace.

APIs digitize the business capabilities that an organization brings to a market-
place. When embarking on designing a new API or expanding an existing API, the
underlying business capabilities should be well understood and reflected into the
API design.

Product Thinking

Organizations were integrating with partners and customers prior to the growth of
Web APIs. The challenge most organizations face, however, is that each integration
has been custom made. For each new partner or customer integration, a dedicated
team consisting of developers, a project manager, and an account manager were
tasked with building a custom integration. This involved tremendous effort and was
often repeated, with per-partner customizations.

The Elements of Web API Design 5

The growth of the software-as-a-service (SaaS) business model, along with the
increase in demand for Web APIs, have shifted the discussion from one-off integra-
tion with partners and customers to a focus on product thinking.

Applying product thinking to the API design process shifts the team focus from
a single customer or partner to an effective API design that is able to handle new
automation opportunities with little to no customization effort for a given customer
segment. It also enables a self-service model for workforce, business-to-business, and
customer-driven integration.

The focus of an API product becomes less on custom implementations and more
on meeting market needs in a scalable and cost-effective way. Reusable APIs emerge
from considering multiple consumers at once. When embarking on the design of a
new API, use a product thinking approach to obtain feedback from multiple par-
ties that will consume the API. Doing so will shape the API design early and lead to
increased opportunities for reuse.

Developer Experience

User experience (UX) is the discipline of meeting the exact needs of users, from their
interactions with the company to their interactions with its services and with the
product itself. Developer experience (DX) is just as important for APIs as UX is for
products and services. The DX focuses on the various aspects of engagement with
developers for an API product. It extends beyond the operational details of the API.
It also includes all aspects of the API product, from first impressions to day-to-day
usage and support.

A great DX is essential to the success of an API. When a great DX is delivered,
developers quickly and confidently consume a Web API. It also improves the mar-
ket traction of productized APIs by moving developers from being integrators to
becoming experts on the API. The expertise translates directly into the ability to
deliver real value to their customers and their business quickly and with reduced
effort.

As API teams seek to understand how to design a great experience for their API,
remember that DX is an important factor for internal developers, also. For example,
great documentation enables internal developers to understand and consume an API
quickly, whereas an API that has poor documentation requires contacting the inter-
nal team responsible for the API to learn how to use it properly. While they may be
able to gain direct access to the developers that designed and implemented an API,
it adds unnecessary communication overhead. Internal developers benefit from great
DX because they can create business value faster.

Chapter 1 The Principles of API Design 6

CASE STUDY
APIs and Product Thinking Meets Banking

Capital One started its API journey in 2013 with the goal of developing an
enterprise API platform. The initial set of platform APIs focused on deliver-
ing automation throughout the organization to increase velocity of delivery
while breaking down siloed barriers.

As the number of digital capabilities in its API platform grew, Capital
One’s focus shifted from internal APIs to several product opportunities
in the marketplace. It launched its public-facing developer portal called
DevExchange at South by Southwest (SXSW)1 with several API products.
These product offerings included bank-grade authorization, a rewards
program, credit card prequalification, and even an API to create new sav-
ings accounts.

Capital One extended the idea further by leveraging its digital capabili-
ties to develop an omnichannel presence. APIs used to power its Web site and
mobile app formed a foundation for a voice-based interactive experience2
using Amazon’s Alexa platform and interactive chat using a chatbot named
Eno (the word one spelled backwards).

Taking a product-based approach to its APIs, along with a robust API
portfolio of digital capabilities, allowed Capital One to explore opportunities
with its customers and partners. It didn’t happen overnight, but it did happen
because of an API focus that started with an executive vision and execution
by the entire organization.

1. “Capital One DevExchange at SxSW 2017,” March 27, 2017, https://www.youtube.com/watch?v=
4Cg9B4yaNVk

2. “Capital One Demo of Alexa Integration at SXSW 2016,” September 6, 2016, https://www.youtube
.com/watch?v=KgVcVDUSvU4&t=36s

API Design Is Communication

When developers think of software design, thoughts of classes, methods, functions,
modules, and databases likely spring to mind. UML sequence and activity diagrams,
or simple box and arrow diagrams if preferred, are used to convey understanding
across a codebase. All these elements are part of the communication process devel-
opment teams use for understanding and future developer onboarding.

https://www.youtube.com/watch?v=4Cg9B4yaNVk
https://www.youtube.com/watch?v=4Cg9B4yaNVk
https://www.youtube.com/watch?v=KgVcVDUSvU4&t=36s
https://www.youtube.com/watch?v=KgVcVDUSvU4&t=36s

Reviewing the Principles of Software Design 7

Likewise, API design is a communication process. Rather than communicating
inwardly between the members of a single team, APIs shift the communication
outward. The lines of communication are extended in three distinct ways:

1. Communication across network boundaries: An API’s design, including its
choice of protocol, has an impact on the chattiness of the API. Network protocols,
such as HTTP, are better for coarse-grained communication. Other protocols,
such as Message Queuing Telemetry Transport (MQTT) and Advanced Message
Queuing Protocol (AMQP), often used for messaging APIs, are better suited for
fine-grained communication within a defined network boundary. The API design
reflects the frequency of communication between systems and the impact it may
have on performance because of network boundaries and bottlenecks. The API
design process has a heavy impact on performance of the client and server.

2. Communication with consuming developers: API design and associated
documentation are the user interface for developers. They inform developers
how and when they are able to use each API operation. They also determine
whether and how developers can combine operations to achieve more complex
results. Communication early and often during the API design process is essen-
tial to meet the needs of developers consuming the API.

3. Communication to the marketplace: API design and documentation inform
prospective customers, partners, and internal developers what outcomes the
APIs make possible through the digital capabilities they offer. Effective API
design helps to communicate and enable these digital capabilities.

API design is an important part of communication. An API design process helps
us to consider these aspects of communication during the design phase.

Reviewing the Principles of Software Design

Software design focuses on the organization and communication of software com-
ponents within a codebase. Techniques such as code comments, sequence diagrams,
and the judicious use of design patterns help improve the communication effort
among team members.

Web API design builds on these principles of software design, but with a
broader audience that extends beyond the team or organization. The scope of
communication expands beyond a single team or organization to developers all
over the world. Yet, the same principles of software design apply to Web-based

Chapter 1 The Principles of API Design 8

API design: modularization, encapsulation, loose coupling, and high cohesion.
While these may be subjects familiar to most developers, they are fundamental to
API design and need review before approaching any API design process.

Modularization

Modules are the smallest atomic unit within a software program. They are com-
posed of one or more source files that contain classes, methods, or functions. Mod-
ules have a local, public API to expose the functionality and business capabilities that
they offer to other modules within the same codebase. Modules are sometimes
referred to as components or code libraries.

Most programming languages support modules through the use of namespaces
or packages that group code together. Grouping related code that collaborates into
the same namespace encourages high cohesion. Internal details of a module are
protected through access modifiers provided by the programming language. For
example, the Java programming language has keywords such as pu b lic, protected,
pack ag e, and priv ate that help to encourage loose coupling through limited expo-
sure of a module.

As more and more modules are combined, a software system is created. A sub-
system combines modules into a larger module in more complex solutions, as
shown in Figure 1.1.

Applying the same concepts of modularization to Web-based API design helps to
reveal the boundaries and responsibilities of every API. This ensures clear responsi-
bilities across complementary APIs that focus on externalizing digital capabilities
while hiding the internal implementation details. Consuming developers benefit by
understanding the API quickly and effectively.

Encapsulation

Encapsulation seeks to hide the internal details of a component. Scope modifiers are
used to limit access to a module’s code. A module exposes a set of public methods
or functions while hiding the internal details of the module. Internal changes may

System

Subsystem Subsystem

Module Module

Module Module

Subsystem Subsystem

Module Module

Figure 1.1 Modules combine into ever-larger units, resulting in a software system.

Reviewing the Principles of Software Design 9

occur without impacting other modules that depend on its public methods. Some-
times encapsulation is referred to as information hiding, a concept applied to soft-
ware development since the 1970s by David Parnas.

Web APIs extend this concept a bit further. They hide the internal details of pro-
gramming language, choice of Web framework, the classes and objects of a system,
and database design behind an HTTP-based API. Internal details, encapsulated
behind the API design, encourage a loosely coupled API design that depends on mes-
sages rather than underlying database design and models for communication. No
longer do organizations need to understand all the internal implementations details,
such as for a payment gateway. Instead, they only need to understand the operations
that the API offers and how to use them to achieve the desired outcomes.

High Cohesion and Loose Coupling

High cohesion is a term used when the code within a module is all closely related to
the same functionality. A highly cohesive module results in less “spaghetti code,” as
method calls aren’t jumping all over the codebase. When code is scattered across the
entire codebase, calls frequently jump across modules and back again. This style of
code is considered to exhibit low cohesion.

Coupling is the degree of interdependence between two or more components.
Tightly coupled components indicates that the components are very constrained by
the implementation details of the other. Loosely coupled components hide the compo-
nents’ internal details away from others, restricting the knowledge between modules to a
public interface, or programming language API, that other areas of the code can invoke.

Figure 1.2 demonstrates the concepts of high cohesion and loose coupling within
and across modules.

Figure 1.2 Loose coupling and high cohesion are fundamentals of modular API design.

Package Methods

Public Methods

Client Code
Scope keywords
limit client code
access to public
methods

The result is high cohesion within modules
and loose coupling across modules

... ...

... ...

...

Package Methods

Chapter 1 The Principles of API Design 10

Web APIs extend these concepts by grouping related API operations for high
cohesion while ensuring that the internal details are encapsulated to encourage a
loosely coupled API design.

Resource-Based API Design

A resource is a digital representation of a concept, often an entity or collection of
entities that may change over time. It consists of a unique name or identifier that can
reference documents, images, collections of other resources, or a digital representa-
tion of anything in the real world such as a person or thing. Resources may even rep-
resent business processes and workflows.

Resource-based APIs focus on interactions across a network, independent of how
they are stored in a database or manifested as objects. They offer different opera-
tions, or affordances, as possible interactions with a specific resource. In addition,
resources support multiple representations that allow a Web app, mobile app, and
reporting tool to interact with the resource using different media formats such as
JSON or XML.

Resources Are Not Data Models

It is important to recognize that resources are not the same thing as a data model
that resides with a database. The data model, often reflected as a schema design in a
database, is optimized for the read and write interactions necessary to support the
required I/O performance and reporting needs of a solution.

While data may be part of an API, the data model should not be used as the basis
of API design. Data models meet a specific set of requirements, including read and
write performance, optimized data storage, and optimized query support. Data
models are optimized for the internal details of an application.

Like the choice of programming languages and frameworks, the choice of data-
base types and vendors changes over time. APIs designed to directly map to a data
or object model expose these internal implementation details to API consumers. The
result is a more fragile API that must introduce significant design changes when the
data model changes.

Web API design seeks to achieve a different set of goals, including delivering
outcomes and experiences, optimized network access, and programming language
independence. Because APIs involve integration between systems, they should
remain stable over a long period of time, whereas data models may change to
accommodate new or changing data access requirements.

While APIs may have an impact on the data model, an API design should evolve
independently from the latest database trends.

Resources Are Not Object or Domain Models 11

What Happens When Teams Expose a Data Model as an API?

Constant code changes: Database schema changes will result in a constantly
changing API, as the API must keep in lockstep with the underlying database.
This change to the data model forces consumers into a complex conformist
relationship in which they must rewrite their API integration code every time
the underlying data model changes. This hindrance may be overcome by an
anticorruption layer that isolates a unit of code from these changes. How-
ever, the constant flux of the API creates a high cost of development as down-
stream developers maintain the anticorruption layer.

Create network chattiness: Exposing link tables as separate API endpoints
causes API “chattiness,” as the consumer is forced to make multiple API calls,
one for each table. It is similar to how an n+1 query problem degrades data-
base performance. While an n+1 problem can be a performance bottleneck
for databases, API chattiness has a devastating impact on API performance.

Data inconsistencies: Not only does performance suffer from network chat-
tiness, but the n+1 problem also results in data inconsistencies. Clients are
forced to make multiple API calls and stitch the results together into a single
unified view. This may result in incomplete or corrupted data due to inconsis-
tent reads, perhaps across transactional boundaries, that occur from multiple
API requests necessary to obtain necessary data.

Confuse API details: Columns optimized for query performance, such as
a C HAR (1) column that uses character codes to indicate status, become
 meaningless to API consumers without additional clarification.

Expose sensitive data: Tools that build APIs that mirror a data model expose
all columns with a table using S EL EC T * F R OM [tab le name] . This also exposes
data that API consumers should never see, such as personally identifiable
information (PII). It may also expose data that helps hackers compromise
 systems through a better understanding of the internal details of the API.

Resources Are Not Object or Domain Models

API resources are not the same as objects in an object-oriented codebase. Objects
support collaboration within a codebase. Objects are often used to map data models
into code for easier manipulation. They suffer from the same issues as exposed data
models: constant code changes, network chattiness, and data inconsistencies.

Chapter 1 The Principles of API Design 12

Likewise, domain models, typically comprised of objects, represent the specific
business domain. They may be used in a variety of ways to address the needs of
the system. They may even traverse different transactional contexts based on how
they are applied. Web APIs, however, are most effective when they take transactional
boundaries into consideration rather than directly exposing internal domain or
object model behavior.

Keep in mind that API consumers don’t have the luxury of seeing the details of
a data model and all the code behind an API. They didn’t sit in on the endless meet-
ings that resulted in the multitude of decisions that drove a data model design. They
don’t have the context of why data model design decisions were made. Great API
designs avoid leaking internal details, including database design choices, by shifting
from data design to message design.

Resource-Based APIs Exchange Messages

Resource-based APIs create a conversation between the business and a user or remote
system. For example, suppose a user of a project management application was con-
versing with the API server. The conversation may look something like what’s shown
in Figure 1.3.

Does it seem strange to think about APIs as a chat session? It isn’t far off from what
Alan Kay originally intended when he coined the term object-oriented programming.
Rather than a focus on inheritance and polymorphic design, he envisioned object-
oriented programming as sending messages between components:

I’m sorry that I long ago coined the term “objects” for this topic because it gets many
people to focus on the lesser idea.
The big idea is “messaging.”3

Like Kay’s original vision for object-oriented programming, Web APIs are mes-
sage based. They send request messages to a server and receive a response message as
a result. Most Web APIs perform this message exchange synchronously by sending a
request and waiting for the response.

API design considers the conversational message exchange between systems to
produce desired outcomes by customers, partners, and the workforce. A great API
design also considers how this communication evolves as requirements change.

3. Alan Kay, “Prototypes vs Classes was: Re: Sun’s HotSpot,” Squeak Developer’s List, October 10, 1998,
http://lists.squeakfoundation.org/pipermail/squeak-dev/1998-October/017019.html.

http://lists.squeakfoundation.org/pipermail/squeak-dev/1998-October/017019.html

The Principles of Web API Design 13

Client: Could you send me
a list of the projects I am
allowed to see?

Server: Sure, here is what
we have for you

Today 8:32 AM

Client: Could you create a
new project for me, with a
name of ‘My Project’?

Server: Done. Here is
where you will find it

Today 8:32 AM

Client: Could you send me
the details for project
12345 (I know it as ‘My
Project’)?

Server: Oh, sure thing.
Here are the details for
you

Today 8:32 AM

Figure 1.3 An example interaction between an API client and API server, as if the user was
talking to the server in conversational terms.

The Principles of Web API Design

An API design approach must include a balance between robust digital capabilities
and a focus on a great developer experience that supports quick and easy integration.
It must be rooted in a series of principles that create a solid foundation. These five
principles establish the necessary foundation and are detailed throughout this book:

Principle 1: APIs should never be designed in isolation. Collaborative API design
is essential for a great API. (Chapter 2)

Chapter 1 The Principles of API Design 14

Principle 2: API design starts with an outcome-based focus. A focus on the
outcome ensures the API delivers value to everyone. (Chapters 3–6)

Principle 3: Select the API design elements that match the need. Trying to find the
perfect API style is a fruitless endeavor. Instead, seek to understand and apply the
API elements appropriate for the need, whether that is REST, GraphQL, gRPC, or
an emerging style just entering the industry. (Chapters 7–12)

Principle 4: API documentation is the most important user interface for
developers. Therefore, API documentation should be first class and not left as
a last-minute task. (Chapter 13)

Principle 5: APIs are forever, so plan accordingly. Thoughtful API design com-
bined with an evolutionary design approach makes APIs resilient to change.
(Chapter 14)

Summary

Web API design incorporates three important elements to deliver a successful API:
business capabilities, product thinking, and developer experience. These cross-
functional disciplines mean that organizations cannot ignore the process of API
design. Developers, architects, domain experts, and product managers must work
together to design APIs that meet the needs of the marketplace.

In addition, Web API design builds on the principles of software design, includ-
ing modularization, encapsulation, loose coupling, and high cohesion. API designs
should hide the internal details of the systems they externalize. They should not
expose underlying data models but rather focus on a system-to-system message
exchange that is both flexible in design and resilient to change over time.

So, how do teams go from business requirements to an API design that is evolvable
while delivering the desired outcomes to customers, partners, and the internal work-
force? That is the subject of the next chapter, which introduces a process that bridges
business and product requirements into an API design. The process is explored in
detail in subsequent chapters.

15

Chapter 2

Collaborative API Design

Big design up front is dumb but doing no design up front is even dumber.

— Dave Thomas

An API design that looks good to the designer may not be the best design to solve the
problems at hand. The initial assumptions about an API design may be incorrect as
the API encounters the real world of customer, partner, and workforce needs.

API contract design is a separate and critical step of software delivery. Following
an API design process encourages communication internally within the organization
and externally between the organization and the developers ultimately tasked
with integrating the API. It helps to identify incorrect assumptions and validate
the assumptions that are correct. Finally, it encourages collaboration between API
designers and the developers that will integrate the API.

This chapter presents a design process that is flexible to meet the needs of a single
API product or mid- to large-scale enterprise API platform. Organizations from as
small as 10 employees to those with a staff of more than 10,000 developers have
used this collaborative design process. Ultimately, it delivers business value with
a customer-centric focus by applying outside-in design using the five principles
outlined in Chapter 1, “The Principles of API Design.”

Why an API Design Process?

Before presenting the design process overview, it is important to recognize that teams
can design and deliver an API successfully without the need for a formal API design
process. I have worked with many companies across the world that have managed to
deliver an API into production without any kind of consistent approach to API
design. However, the APIs they produced took longer to deliver, as they required

Chapter 2 Collaborative API Design16

multiple iterations of breaking design changes. The APIs that weren’t properly
designed lacked sufficient insights into how to use the API compared to those
designed with an API design process.

An API design process encourages efficiency throughout the delivery process.
By focusing on the API contract first, the design represents the needs of users and
developers as a primary concern. Also, implementation details are less likely to leak
into the API design, resulting in a fragile API design that must introduce breaking
changes as implementation details change over time.

A backend API is the primary blocker for any frontend delivery schedule. If
frontend developers are forced to wait until the backend developers have completed
the API implementation, the end-to-end delivery process will take too long. Any
errors in design won’t be identified until the frontend developers start to integrate
the API. Customer feedback isn’t available until all of the integration work has
been completed. Figure 2.1 visualizes this problem and the impact it has on the
delivery schedule.

An API design process encourages an iterative, team-oriented design effort that
allows for greater overall efficiency. The frontend and backend API teams work
together to arrive at a design, then parallelize their specific tasks. Customer feedback
may be incorporated earlier as well, avoiding last-minute rework efforts. As depicted
in Figure 2.2, the process is repeated for each release, ensuring the design process
becomes more rapid while incorporating feedback iteratively. Remember that the
sooner that API design mistakes are caught, the cheaper they are to fix.

API Design Process Antipatterns

Failing to adopt an API design process or adopting a process that is less than effective
can lead to the antipatterns that result in negative impacts for the team and the entire
organization. Review the common API design antipatterns detailed here and see if
any of them resonate.

The Leaky Abstraction Antipattern

API designers without a formal API design process will start with code and work
backward into an API design. The API design will incorporate internal technology
decisions, sometimes to the point of requiring familiarity with a particular database
or cloud vendor.

For example, a public API product for a recommendation engine required the
understanding of Apache Lucene to use the API. The API accepts configuration
files via an HTTP POST using the Lucene configuration file format to manage the

API Design Process Antipatterns 17

Fi
g

ur
e

2.
1

T
he

 n
eg

at
iv

e
im

pa
ct

 o
f

de
liv

er
in

g
A

PI
s

in
 is

ol
at

io
n.

 T
he

 m
in

im
um

 c
al

en
da

r
ti

m
e

re
qu

ir
ed

 is
 T

1 +
 T

2 +
 T

3.

B
ac

ke
nd

 A
P

I I
m

p
le

m
en

ta
tio

n

Fr
on

te
nd

 d
ev

el
op

er
s

st
ar

t p
ro

vi
di

ng
A

P
I d

es
ig

n
fe

ed
ba

ck
 h

er
e

C
us

to
m

er
s

st
ar

t p
ro

vi
di

ng
A

P
I d

es
ig

n
fe

ed
ba

ck
 h

er
e

T 1

R
el

ea
se

Fr
o

nt
en

d
 Im

p
le

m
en

ta
tio

n
C

us
to

m
er

 F
ee

d
b

ac
k

T 2
T 3

Chapter 2 Collaborative API Design18

A
P

I D
es

ig
n

Fr
on

te
nd

 d
ev

el
op

er
s

co
lla

bo
ra

tiv
el

y
w

or
k

w
ith

th
e

ba
ck

en
d

te
am

 to
 d

es
ig

n
th

e
A

P
I a

nd
 o

�e
r

fe
ed

ba
ck

C
us

to
m

er
s

st
ar

t p
ro

vi
di

ng
A

P
I d

es
ig

n
fe

ed
ba

ck
 h

er
e

A
P

I D
es

ig
n

Fr
o

nt
en

d
 Im

p
le

m
en

ta
tio

n
Fr

o
nt

en
d

 Im
p

le
m

en
ta

tio
n

C
us

to
m

er
 F

ee
d

b
ac

k
C

us
to

m
er

 F
ee

d
b

ac
k

A
P

I D
el

iv
er

y
A

P
I D

el
iv

er
y

R
el

ea
se

 1
R

el
ea

se
 2

T 2

T 3

T 1

Fi
gu

re
 2

.2
 T

he
 p

os
iti

ve
 im

pa
ct

 o
f

de
liv

er
in

g
A

PI
s w

ith
 a

 d
es

ig
n

pr
oc

es
s t

ha
t o

pt
im

iz
es

 fo
r e

ffi
ci

en
cy

 a
nd

 re
pe

at
ab

ili
ty

. T
he

 m
in

im
um

 c
al

en
da

r
tim

e
re

qu
ir

ed
 is

 T
1 +

 m
ax

(T
2 +

 T
3)

.

API Design Process Antipatterns 19

recommendation engine. The leaking of internal implementation details to API con-
sumers resulted in the need to become Apache Lucene experts rather than experts in
using the recommendation engine API.

There is value in prototyping APIs or producing evolutionary API design through
a mixture of code and design. However, this approach requires a focused effort to
find the right balance of prototyping, followed by an outside-in design effort that
incorporates the lessons learned. An effective API design process supports this
iterative learning approach.

The Next Release Design Fix Antipattern

Teams without an API design process may find themselves already planning the next
API release, perhaps before the current version has been pushed to production. This
is a result of API design decisions that become unchangeable with the current release.
Design improvements that would result in breaking changes get moved as technical
debt to the backlog.

This antipattern starts as an innocent design decision due to the complexity of
the underlying code change. Perhaps the code change will take too long. Teams
are forced to push an inadequate API design into production and support it for
the foreseeable future. The needed change can be something as small as a spelling
mistake or a minor typo that has to remain part of the API to avoid introducing a
breaking change to a large number of developers.

An API design process, combined with an API stability contract, as discussed in
Chapter 14, “Designing for Change,” can mitigate this kind of problem.

The Heroic Design Effort Antipattern

Those more familiar with the business domain incorporate their understanding of
customer and market needs to deliver an API that meets the needs of their target
market. This approach may work well for small teams with a deep understanding of
the customer and the market.

However, it doesn’t offer a predictable way to engage in emerging areas where
subject matter expertise is in short supply, resulting in the need for heroic API
design efforts. Long days of chaotic development that are filled with multiple design
changes per day during the march to production are the signs of the heroic design
effort antipattern. Last-minute calls with pilot customers that result in discovering
significant design flaws are commonplace. Teams scramble to find a design solution
that addresses the flaws before the release. Code is quickly patched to “make it work”
with the limited time available.

Chapter 2 Collaborative API Design20

While an API design process does not guarantee a perfect design the first time, it
helps challenge assumptions quickly. It also encourages early communication with
subject matter experts and customers to address flawed design issues before they are
too expensive to rectify.

The Unused API Antipattern

Teams do not want their project to be considered a failure, or worse, to languish with
little to no use in production. Yet, this is often the case, as API designs may miss the
underlying goals and desires of the target audience. An API may be released to great
fanfare, only to languish with few, if any, integrations. When an integration is finally
started, bugs are encountered due to brittleness of the design and implementation.
Rather than designing in isolation, an API design process should encourage
validation early and often from stakeholders to avoid an API going unused.

The API Design-First Approach

An API design process is a predictable method of moving from business requirements
to an API design. The goal of API design is to make it easier to discover, integrate, and
deploy solutions in a way that is scalable for the organization and external parties.

An API design-first approach is important, as APIs last forever. Once an API has
at least one integration in production, it is nearly impossible to migrate consumers
to the next version of an API.

Taking an API design-first approach starts by identifying the capabilities to
deliver, then moves toward an API design to meet the desired outcomes—all before
writing a line of production code.

Of course, reality doesn’t work exactly in this way. Code and data may already
exist and must be leveraged from an existing system. API design-first doesn’t require
strict adherence to a greenfield process that assumes no preexisting code or data. It
should, however, emphasize the API design effort as a separate and critical step of
software delivery.

An API design-first approach has five rapidly executed, iterative phases, as shown
in Figure 2.3:

1. Discover: Determine the digital capabilities the API needs to deliver, searching
for APIs that may already exist to meet the requirements.

2. Design: Produce an initial API design or improve an existing API design to
address the digital capabilities required but not available.

The API Design-First Approach 21

Figure 2.3 The five phases of API design-first

1. Discover 2. Design 3. Prototype

4. Deliver

5. Onboard

4a. Code 4b. Test/QA 4c. Docs

3. Prototype: Produce a prototype or mock API to gain feedback from stakeholders
regarding the current design. Revisit previous steps based on the feedback.

4. Deliver: Deliver the API through a parallelized effort across developers, quality
assurance, operations, and documentation teams. API capabilities are released
iteratively rather than through a single release, driven by the agreed-upon API
design.

5. Onboard: Ensure customers, partners, and/or internal developers are onboard
with the API, integrating it with their solutions. Support is critical at this stage
to help teams with complex integration needs.

Notice the iterative design process that occurs as stakeholder input is gath-
ered. Feedback is incorporated early and often, making design changes along the
way. This results in an API contract, which provides the specific details of how the
design is realized. Prototypes or mock implementations demonstrate the API in
action, prior to the full delivery process. Once delivery begins, the effort is paral-
lelized across all teams, with the API contract as the primary communication arti-
fact. After developers are onboarded with the API, additional feedback results in a
new design effort.

Principle 1: APIs should never be designed in isolation

Collaborative API design is essential for a great API. Both technical and nontech-
nical participants should be involved throughout the API design process. Leaving
the API design effort only to development teams will greatly reduce the chances of
maximizing the API’s potential.

Chapter 2 Collaborative API Design22

Remaining Agile with API Design-First

An API design-first approach is focused on frequent feedback and opportunities to
make adjustments throughout the design and delivery process. An API design-first
approach does not specify that all design work must be complete before proceeding
into code. To understand how, it is time to revisit the Agile Manifesto and see how it
can be applied to an API design-first approach.

The Agile Manifesto Revisited

A quick review of the Agile Manifesto principles helps to help us to better under-
stand how API design-first fits with agile development. Following are a few princi-
ples relevant to the concerns of API design-first:1

• Our highest priority should be to satisfy the customer.

• We should welcome changing requirements, even late in development.

• We must strive to deliver working software frequently.

• Business people and developers must work together daily.

• Working software is the primary measure of progress.

• Be attentive to technical excellence and good design, as this enhances agility.

• Seek the simple by maximizing the amount of work not done.

Keeping these principles in mind, teams have the opportunity to remain agile
while communicating early and often with stakeholders on the API design. These
stakeholders may include internal development teams, channel partners, and the
developers tasked with integrating the API.

Delivering an API design progressively, rather than all at once, allows teams to
meet the principle of welcoming changing requirements and delivering working
software frequently. It also helps teams avoid last-minute scrambles that can
negatively impact API design.

The “seek the simple” principle encourages teams to design in a simple way.
Teams should design an API that avoids clever designs that require a higher cognitive
load to understanding. Instead, designs should be intuitive based on the use cases
it addresses and should use vocabulary that is appropriate for the solution domain.
They should offer only the necessary information to support the use case.

1. Kent Beck, et al., “Principles behind the Agile Manifesto,” https://agilemanifesto.org/principles.html.

https://agilemanifesto.org/principles.html

The Align-Define-Design-Refine Process 23

The Agility of API Design-First

The goal of API design-first should be to gather sufficient details to limit the risk of
a breaking change in the future. It doesn’t mandate that an entire design process
must be completed before development begins. Agile development and API design-
first make terrific companions.

Remember

Teams can always add to an API design, but it is impossible to take things away
without breaking integrations that depend on them. Take advantage of agile
software development to incrementally design APIs with the needs of customers,
partners, and the workforce in mind.

An API design-first process enables teams to move quickly, thoughtfully, and
with the agility to make changes early in the process. It is the complete opposite of a
waterfall approach to API design.

The Align-Define-Design-Refine Process

One of the biggest challenges most API design teams encounter is how to deliver an
API design from business requirements in any variety of forms: use cases,
spreadsheets, wireframes, and so on. Those with a background in software business
analysis may find this to be an easier task. However, there are still challenges when it
comes to mapping a domain model and capabilities into a Web-based API design.
One of those challenges is the need to ensure alignment of scope and deliverables
among all technical and nontechnical team members.

As the name suggests, the Align-Define-Design-Refine (ADDR) process2 guides
teams through an API design-first approach. The process groups the step-by-step
process into four distinct phases:

 1. Align: Ensures alignment of understanding and scope across business, product,
and technology around a set of desired outcomes

 2. Define: Maps business and customer requirements into digital capabilities that
will form the basis of one or more APIs to deliver the desired outcomes

2. The ADDR process is based on the many lessons learned during my years of experience in API design
coaching.

Chapter 2 Collaborative API Design24

3. Design: Applies specific design steps for each API to meet the desired outcomes
using one or more API styles

4. Refine: Refines the API design through feedback from developers, in addition
to documentation, prototyping, and testing efforts

There are seven steps across the phases, which are explored in-depth for the
remainder of this book:

1. Identify digital capabilities: Identify the customer needs and desired out-
comes, including the corresponding digital capabilities that are required.

2. Capture activity steps: Expand the digital capabilities to include a unified
understanding and clarity through collaborative API design sessions.

3. Identify API boundaries: Group the digital capabilities into API boundaries
and determine whether the APIs already exist or new APIs are required.

4. Model API profiles: Use a collaborative API modeling session to define the
high-level API design, including resources and operations into an API profile.

5. High-level API designs: Select one or more API styles that each API profile
will offer and document the high-level design elements.

6. Refine the design: Incorporate design feedback from API consumers using
techniques that encourage improvement in the developer experience.

7. Document the API: Complete the API documentation, including reference
documentation and getting started guides, to accelerate integration.

Figure 2.4 summarizes the ADDR process that supports an API design first
approach.

The process achieves the following goals:

 • Deliver an API design that emphasizes and solves the customer problems using
a vocabulary they understand.

 • Reduce the constant design churn common with informal design processes.

 • Optimize the entire organization, not just developers, for API design and
delivery.

 • Avoid unnecessary steps whenever possible to expedite delivery.

 • Create a repeatable process that delivers an API design with a mixture of
technical and nontechnical roles, some of whom don’t fully understand the
nuances of API design but are able to contribute their insights.

The Align-Define-Design-Refine Process 25

ADDR
PROCESS

Align

Design

Refine Define

4. Model API
Profiles

5. High-Level
Design

6. Refine
the Design

7. Document
the API

2. Capture
Activity
Steps

3. Identify
API

Boundaries

1. Identify
Digital

Capabilities

Figure 2.4 The ADDR process overview

 • Produce artifacts that may be referenced within the team and shared across the
organization rather than some scribbles on a whiteboard that fail to communi-
cate reason and intent about the resulting API design.

These outcomes contribute to a healthy, sustainable, and successful API program.
The remainder of this book examines the ADDR process in detail and applies each
step using a real-world design project:

 • Aligning and defining the APIs required to deliver desired outcomes based on
the jobs to be done by developers and end users (Chapters 3–6)

 • Designing APIs that help meet the desired outcomes of the target audience
using the appropriate API styles along with common patterns and practices
(Chapters 7–9)

 • Decomposing APIs into smaller services to shift complexity when needed
(Chapter 10)

 • Improving the developer experience through a combination of robust documen-
tation, helper libraries, command-line interfaces, and testing strategy to ensure
consumers get up and running quickly and with confidence (Chapters 11–13)

Chapter 2 Collaborative API Design26

 • Evolving the API design, which is critical to sustainable, long-lived APIs
(Chapter 14)

 • Protecting APIs to ensure that data is not leaked to unauthorized parties
(Chapter 15)

 • Scaling the API design effort, which is important for larger initiatives
(Chapter 16)

The Role of DDD in API Design

As mentioned, an API design process should emphasize and solve the customers’
problems using a vocabulary they understand. This requires a deep understanding of
how the API will address market and customer needs, combined with business
strategy. If the design and development of an API occurs without factoring in these
concerns, it will often miss the mark for being a great API that is a joy to use.

Domain-driven design (DDD) is an approach to software development that encour-
ages collaboration between business domain experts and software developers to address
complex solutions. DDD’s core principles include discussion, listening, understanding,
discovery, and delivering differentiating, strategic business value. Every member of the
team across technical and nontechnical roles contributes to the insightful depth of busi-
ness innovations in the software solutions. Those new to DDD may wish to refer to the
seminal book on DDD by Eric Evans3 and Vaughn Vernon’s Implementing Domain-
Driven Design,4 which provides insights on implementing DDD in an organization.

The ADDR process is built loosely on concepts and practices found in DDD. However,
organizations do not need to be practicing DDD, or even familiar with it, to be effective
at applying the process. Those familiar with DDD may recognize some of the concepts
and techniques used. However, it is important to recognize that the ADDR process may
deviate from DDD practices when necessary to ensure that it remains approachable and
repeatable in a variety of situations. As such, those familiar with DDD may wish to
make adjustments to the process to best fit their needs and preferences.

API Design Involves Everyone

Most software development involves several people across a variety of roles.
Business leaders and product owners analyze market needs. Software architects
and technical leads map out the important design decisions for the solution.

3. Eric Evans, Domain-Driven Design: Tackling Complexity in the Heart of Software (Boston: Addison-
Wesley, 2003).

4. Vaughn Vernon, Implementing Domain-Driven Design (Boston: Addison-Wesley, 2013).

API Design Involves Everyone 27

Developers design and write the code that makes it all work. Designers and user
experience (UX) experts pull everything together as a user interface, with an eye
toward usability.

Each person contributes their experience and can leverage their strengths and
skills as part of the API design process. For smaller organizations, a single person
may be required to fill multiple roles. Whenever possible, assign the more technical
roles separately from the product and business roles to ensure a healthy balance of
perspectives when designing APIs.

The roles typically involved in API design sessions may include, but are not limited
to, the following:

 • API designers and architects help facilitate the design process and bring in
API design expertise.

 • Subject matter experts (SMEs) and domain experts help to clarify require-
ments and shape the vocabulary used in API design.

 • Technical leads are responsible for guiding implementation efforts and may
require additional clarifying questions for estimation purposes.

 • Product managers incorporate market opportunities and customer needs into
the API design.

 • Technical writers ask clarifying questions during scope and design sessions
that will impact the capabilities delivered and drive the production of API doc-
umentation and getting started guides.

 • Scrum Masters and project managers provide input to assist in scheduling
and identifying risks.

 • QA teams can provide input on designing testable APIs, determine how and
when to test Web APIs, and design test plans in parallel with development
efforts.

 • Infrastructure and operations ensure network, server, container platforms,
message brokers, streaming platforms, and other necessary resources are avail-
able for the teams that are building and consuming APIs.

 • Security teams review API designs for personally identifiable information
(PII) and nonpublic information (NPI) concerns, identify risks, limit the
surface area of attacks, and help to design APIs that will access sensitive
data.

An API design process integrates perspectives from each of these roles to align
the business with development teams, define the clear goals and outcomes of an
API, and design the API to meet the defined goals. Upcoming chapters explore this
process in further detail.

Chapter 2 Collaborative API Design28

Applying the Process Effectively

The ADDR process may be integrated with any existing process. However, be
prepared that some steps may seem uncertain or awkward at first. Over time, the
processes will become more familiar, and the labor will be rewarded. Give the
organization time to become familiar with the process. It may also be useful to spend
time listing previous challenges and how the process seeks to address them.

Organizations may wish to incorporate this process incrementally. In this case,
it is recommended to start with identifying the activities and steps needed for an
API, as detailed in Chapter 4, “Capture Activities and Steps,” then proceed with
Chapter 6, “API Modeling.” Additional steps may be introduced over time as they
are needed.

Summary

The design of an API’s contract is a separate and critical step of software delivery.
API design requires communication within the organization and with the developers
using the API. It helps to course-correct wrong assumptions. It also encourages
communication between business, product, and technology teams.

An API design-first approach takes an outside-in perspective on the design of
an API by focusing on the customers and developers who are building the solution.
Combined with design techniques that take a bottom-up approach, APIs will have
a more balanced design that both reflects the domain and the needs of customers
and developers. An API design process requires a variety of roles that help to align,
define, and design the capabilities and outcomes that APIs will provide.

With the introduction to the art and fundamentals of API design complete, it is
time to dive into the details of the ADDR process with the first phase: Align.

29

Part II

Aligning on API Outcomes

One of the challenges teams face when designing an API is determining how to move
from business requirements into an API design. Teams want to have the confidence
that the API they plan to deliver meets stakeholder needs. In addition, they want to
know that business and tech teams are aligned to prevent last minute overhauls of the
API design and underlying implementation.

Part 2 addresses these concerns by introducing the Align phase of the ADDR
process. The process and techniques presented in Chapter 3, “Identify Digital Capa-
bilities,” and Chapter 4, “Capture Activities and Steps,” guide teams through the
process of translating business requirements into digital capabilities required by
customers, partners, and the workforce. After teams have applied the recommended
steps of the process, they will have the confidence of scope and alignment with stake-
holders to proceed into defining and designing the necessary APIs.

This page intentionally left blank

31

Chapter 3

Identify Digital Capabilities

When we buy a product, we essentially “hire” it to help us do a job. If it does the job
well, the next time we’re confronted with the same job, we tend to hire that product
again. And if it does a crummy job, we “fire” it and look for an alternative.

— Clayton M. Christensen, Taddy Hall, Karen Dillon, and
David S. Duncan

ADDR
PROCESS

Align

Design

Refine Define

4. Model API
Profiles

5. High-Level
Design

6. Refine
the Design

7. Document
the API

2. Capture
Activity
Steps

3. Identify
API

Boundaries

1. Identify
Digital

Capabilities

Figure 3.1 The Align phase begins with identifying digital capabilities.

Chapter 3 Identify Digital Capabilities32

APIs are the most common manifestation of digital capabilities, as they power Web
and mobile apps, partner integrations, and workforce solutions. They allow the
casual or expert developer to take advantage of data, business processes, and internal
systems programmatically to produce desired outcomes. Organizations must develop
the skills to identify digital capabilities (see Figure 3.1) and use them to shape the API
design to help users produce results.

The ADDR process starts with defining the digital capabilities necessary to deliver
customer outcomes. It also elaborates on the specific activities and steps needed to
deliver the outcomes, prior to designing the APIs.

This chapter introduces the concepts of digital capabilities, explains how they
relate to APIs, and outlines an approachable method for mapping requirements into
a format that identifies necessary digital capabilities. These digital capabilities are
then used to inform the design of product and platform APIs.

Ensuring Stakeholder Alignment

As discussed in Chapter 2, “Collaborative API Design,” API design is a communication
process. It communicates the digital capabilities offered by an API to external and
internal developers across team and organizational boundaries. Those outside of the
API-producing team that will consume the API cannot, and should not, be required
to read the actual code of the API to fully understand how it works. In fact, external
developers may not have access to the source code at all. Therefore, the API design
and any subsequent documentation should strive to communicate with developers in
the simplest way.

Effective API design incorporates the needs of customers. In this context, customers
are defined as a segmented group of developers and end users whose experience will
be shaped, for better or worse, by the API design. Keeping an API design in alignment
with customer needs helps to deliver a great user and developer experience.

An API design that misses the mark will deliver a poor experience, often requiring
significant changes that will break existing integrations. Once an API has at least one
integration in production, it is very difficult to convince internal or external teams to
spend the time and money necessary to upgrade to the next version of an API. This leaves
no room for an API design that breaks existing integrations. Therefore, arriving at an API
design that meets the needs of customers requires focused effort rather than guesswork.

Unless the organization is small enough to support direct communication between
developers and customers, multiple roles often are involved with product definition:
product owners, product managers, business analysts, software analysts, and account

What Are Digital Capabilities? 33

managers, to name just a few. These roles represent the needs of the customers. An
effective API design includes input from many roles across the organization, not just
the technical details of how to push data in and out of a data store or legacy system.

It is also necessary to create alignment between stakeholders and the development
teams responsible for implementing the API. If the API lacks business context, it may
meet the needs of customers but lack sufficient factors to meet business goals. If the
API lacks a customer context, it may meet the needs of business but fail to deliver the
desired outcomes of customers. If it lacks both, the API will serve no real purpose and
efforts will have been wasted. In the ADDR process, digital capabilities are used to
create alignment between business, customers, and technology to avoid these negative
consequences.

What Are Digital Capabilities?

Business capabilities describe the enablers an organization brings to market.
Examples of business capabilities include consumer product design, product
manufacturing, and customer support.

Digital capabilities are assets that turn desired outcomes into reality through
automation. They offer the workforce, partners, and customers the ability to interact
with the organization digitally. Digital capabilities may take the form of one or more
technology solutions. Examples include REST APIs, Webhook-based asynchronous
APIs for integration, SOAP services, message streams, and bulk data exchange
through a nightly, weekly, or monthly file-based export process.

Reviewing the digital capabilities offered by an in-house or competitor’s product
or service provides greater insights into what the organization values, including the
market segments they address.

A digital capabilities portfolio is the collection of digital capabilities offered by
a product or organization. For organizations building a platform to connect two
or more parties within a marketplace, the terms digital platform and platform
capabilities may be more familiar.

While digital capabilities may be mapped to business capabilities, they operate at
different levels of concern. Business architects define business capabilities, such as
customer service, and may associate key performance indicators (KPIs) or objectives
and key results (OKRs) to track growth. Digital capabilities focus on producing
outcomes and include the activities required to deliver the business capabilities of the
organization. Business capabilities describe the “what” of the organization; digital
capabilities describe the “how.”

Chapter 3 Identify Digital Capabilities34

Table 3.1 Digital Capabilities Realized by a REST-Based Project Management API

Digital Capability Example REST-Based API Design

Manage project from start to finish POS T /projects

Add collaborators to a project POS T /projects/{projectI d}/collab orators

Subdivide a project into issues POS T /issu es

Mark issue complete POS T /issu es/{issu eI d}/completed

View incomplete issues GET /issu es? statu s= incomplete

View active projects GET /projects? statu s= activ e

Table 3.1 provides an example for a typical project management application to
demonstrate the differences between digital capabilities for a project management
application and how they may be realized through a REST-based API.

Notice how the digital capabilities are written with a focus on customers and their
desired outcomes. The choice of API design style, such as REST, GraphQL, or gRPC
(detailed in Chapters 7 and 8), is not explicitly part of a digital capability but rather
a part of how the digital capability is manifested. In some cases, multiple API design
styles may be offered for a single digital capability.

There are a few ways that business and product requirements may be captured
and used to drive the design of digital capabilities as APIs. The ADDR process
recommends using job stories, which are rooted in the jobs to be done approach to
design.

Focusing on the Jobs to Be Done

Jobs to be done (JTBD) are the identified needs fulfilled by a product or service
offering. JTBD includes capturing how a customer problem, the task to be
performed, and the desired outcome that should result.

JTBD1 was formulated by Clayton Christensen, author of The Innovator’s
Dilemma,2 as a method of taking the viewpoint of the customer when designing
a product or service. JTBD ensures that the product addresses a specific need and
therefore has a better chance of gaining market adoption. It starts by identifying
the needs of customers, the job, and then defining how a product or service will fill
that need.

1. Christen Institute, “Jobs to Be Done,” accessed August 12, 2021, https://www.christenseninstitute.org/
jobs-to-be-done.

2. Clayton M. Christensen, The Innovator’s Dilemma: When New Technologies Cause Great Firms to
Fail (Boston: Harvard Business Review Press, 2016).

https://www.christenseninstitute.org/jobs-to-be-done
https://www.christenseninstitute.org/jobs-to-be-done

What Are Job Stories? 35

In JTBD, jobs are more than just functions that need to be performed. Jobs are
really about the desired outcome or accomplishment. Jobs may be new and unsolved
or may be solved in some way that doesn’t quite meet the customers’ needs. A product
that produces the desired outcome is one that considers all of these factors about the
jobs to be done. JTBD applies to APIs as well as all other aspects of product and
software design with the organization.

The idea behind JTBD is rooted in the voice of the customer (VOC)3 from the
mid-1980s, where product managers attempted to improve product performance by
getting into the mindset of the customer. VOC combines market research data with
specific wants and needs that have been identified through surveys and customer
interviews.

Christensen also reminds us that there is an emotional and social side to the jobs
that a product attempts to solve. The job extends beyond the immediate problem to
include a reduction or removal of the anxiety involved. The product should provide a
positive experience while producing progress toward the desired outcome. Some may
even go so far as to offer enjoyment while completing the job.

Principle 2: API design starts with an outcome-based focus

A focus on the outcome ensures the API delivers value to everyone. This requires
a product-thinking approach to API design rather than one that is driven purely
by data and systems integration. The ADDR process is focused on identifying and
realizing these outcomes.

What Are Job Stories?

Customers and users don’t care about APIs, microservices, serverless, or the flavor of
frontend framework used. They want a solution to a problem. They care about
outcomes.

Job stories capture the jobs to be done for any product, including the customer
motivations, events, and expectations for a new product, service, or API. They
frame every design problem from the perspective of the customer. Job stories seek
to identify the problems that customers have and the eventual outcome they wish
to achieve. Jobs are identified that will solve these problems. APIs will offer digital
capabilities that will power these JTBD to produce the desired outcome.

3. Wikipedia, s.v. “Voice of the Customer,” last modified July 15, 2021, 12:112, https://en.wikipedia.org/
wiki/Voice_of_the_customer.

https://en.wikipedia.org/wiki/Voice_of_the_customer
https://en.wikipedia.org/wiki/Voice_of_the_customer

Chapter 3 Identify Digital Capabilities36

Job stories were created by Alan Klement4 and are based on JTBD formulated by
Christensen. They offer a simple framework to capture all of the aspects of the job
to be done.

Teams producing job stories will find that their API designs focus more on the
desired outcomes of the audience. They will also have the details necessary to cre-
ate acceptance criteria for automated tests. It is important to note that job stories
shouldn’t contain implementation specifics. Instead, they should elaborate on what
needs to happen to make the necessary progress to deliver the outcome.

The ADDR process leans heavily on job stories to capture business requirements in
a customer-centric way. Job stories express customer requirements in a simple format
and provide a natural way to identify digital capabilities that will drive API design.

The Components of a Job Story

Job stories are composed of three components using the “When, I want to, so I can”
format:

1. When: The triggering event to establish causality is the situation or reason
why the customer desires the outcome. Triggering events are key indicators for
when an API will be used.

 2. I want to: The capability is what the customer has identified as the action that
needs to be taken. The capability identifies the important role that the API will
play to deliver the desired outcome. It is also used to deconstruct the opera-
tions that the API will deliver.

 3. So I can: The outcome is the desired end state. It is the result of applying the
capability when the triggering event occurs. The outcome drives the accep-
tance criteria for the API design.

Figure 3.2 shows an example Forgot Password job story, highlighting its three
components.

The example job story in Figure 3.2 demonstrates how a job story may be used to
inform the design of a digital capability. In this case, it captures a digital capability
titled Reset My Password. This is one of many digital capabilities the API must offer
to meet the needs of the target customers.

4. Alan Klement, “Replacing the User Story with the Job Story,” JTBD.info, November 12, 2013, https://
jtbd.info/replacing-the-user-story-with-the-job-story-af7cdee10c27.

http://JTBD.info
https://jtbd.info/replacing-the-user-story-with-the-job-story-af7cdee10c27
https://jtbd.info/replacing-the-user-story-with-the-job-story-af7cdee10c27

Writing Job Stories for APIs 37

Job Story 1 – Forgot Password

When I can't recall my password for an account

that I've logged into successfully in the past

I want to reset my password to something new

So I can login successfully to the application

once again

The triggering event or situation

The capability required

The outcome or goal desired

Figure 3.2 A job story and its three components.

Writing Job Stories for APIs

The details used to create job stories may exist in different forms. Some details may
identify a problem that needs to be solved. Other details may indicate the desired
outcome but lack other information.

Because there is no right or wrong way to approach creating job stories, three
methods are provided here to help teams navigate the many situations that are
encountered in the real world. Apply one, two, or all three methods to compose job
stories that capture customer needs. Then formulate the insights into the job story
format of “When, I want to, so I can.”

Method 1: When the Problem Is Known

This method is the most common, as customers are usually good at identifying the
problems that they need resolved. In this case, use some or all of the following
questions to explore the problem space and identify the remaining two components
necessary to compose the job stories:

 • What is the desired outcome that the customer wish to experience to solve the
problem?

 • What is the job required to achieve the outcome?

 • Given these two answers, does the original problem best describe the trig-
gering situation, or is there a better way to express the problem in job story
format?

Method 2: When the Desired Outcome Is Known

There are times when the desired outcome is understood, but the triggering situation
is not. This may be the case when customers have a desired outcome in mind but may

Chapter 3 Identify Digital Capabilities38

not be sure why they need it. Use the following questions to guide the discussion and
help to formulate job stories based on their desired outcomes:

 • What is the problem, as described by the customer, that drives the desired
outcome?

 • What is the job required to achieve the outcome? If multiple tasks are identified,
summarize them into a single job description.

 • Does the desired outcome still best express their need, or should it be rewritten?

Method 3: When the Digital Capability Has Been Identified

There may be times when a customer has identified the digital capability that they
desire. This is common when customers are subject matter experts or have spent
considerable time thinking about the problem. In this case, ask the following
questions to help validate the digital capability that they identified and fill in the
missing pieces of the job stories:

 • What is the desired outcome that the customer wishes to experience?

 • What is the problem or triggering situation that demands the outcome, as
described by the customer or stakeholder?

 • Does the identified digital capability help to produce the desired outcome? If
not, is there a better way to word the digital capability or one better suited to
solve the problem?

Overcoming Job Story Challenges

When teams begin to construct job stories, they may encounter three issues: the
job stories become too detailed, they become feature centric, or they may need
additional user context. All of these issues may be resolved using the suggestions
that follow.

Challenge 1: Job Stories Are Too Detailed

Job stories should contain enough context to enable future deconstruction of the job
story into independent tasks (more on this in Chapter 4). However, job stories may
become littered with all kinds of details that will be important in the near future.
This is a common occurrence when job story authors are concerned about losing

Overcoming Job Story Challenges 39

track of specific details that have been previously discussed. Consider the following
example that has too many details:

When I find a product I want to buy,

I want to provide the quantity, color, and style of the product

So I can add it to my shopping cart and see the current subtotal, shipping costs,
and estimated sales tax.

When a job story contains too many details, extract the details as additional
items below the job story. Doing so ensures the details are not lost and keeps the job
story clear and focused. Here is the same job story, rewritten with the details moved
outside of the job story narrative:

When I find a product I want to buy,

I want to add the product to my shopping cart

So I can include it in my order.

Additional details:

 • The following fields will be required when adding an item to a cart: quantity,
color, and style.

 • The shopping cart will then show the current subtotal, shipping costs, and esti-
mated sales tax.

These details can be extracted into bullet points in a document or Markdown file
or added as an additional notes column in a spreadsheet.

Challenge 2: Job Stories Are Feature Centric

Those familiar with writing user stories tend to craft job stories with a focus on
features rather than outcomes. This challenge may be encountered for existing
products that already have a user interface or high-fidelity wireframes. Instead of
focusing on the problem and desired outcome, the author of the job story immediately
jumps to the solution.

The following is an example of a job story that focuses on feature details:

When I find a product I want to buy,

I want to add the product to my shopping cart by clicking a yellow button

So I can include it in my order.

Chapter 3 Identify Digital Capabilities40

Consider adjusting job stories that contain features into a standard job story
structure. If the team is concerned about losing details about the feature in the job
story, move feature details into an “additional details” section of the job story. The
feature details can then be referenced at a later point in the design process.

For example:

When I find a product I want to buy,

I want to add the product to my shopping cart

So I can include it in my order.

Additional details:

 • The button to add a product to a cart should be yellow.

 • The label should say “Add to Cart.”

Challenge 3: Additional User Context Is Needed

User stories have the benefit of the “As a” phrase used to start the story. This phrase
helps to identify the persona that the user story is designed to address. However,
some products may end up with a long list of user stories that start with the same
prefix—for example, “As a user, . . .”. If this is the case, then the persona isn’t a
necessary detail after all and just clutters the user story.

The job story format by default doesn’t concern itself with the persona. However,
there are times when the details about a persona help to shed additional context in
a job story. In this case, substitute the persona name in the “I want to” clause, as
demonstrated in this example:

When a decision is needed on the dates for a special sale,

A manager wants to produce a sales report with customized criteria

So the manager can view the sales history and determine the best days to run the
sale.

This approach provides a nice blend between job stories and user stories.

Techniques for Capturing Job Stories

Currently, there is no tool designed specifically for capturing job stories, so teams
have the flexibility to select a tool that works best for them. Following are a few

A Real-World API Design Project 41

recommendations, but feel free to use anything that enables communication and
collaboration within and across teams.

 • Spreadsheets: Spreadsheets are the universal tool and are quite useful for cap-
turing job stories. One job story per row in a spreadsheet will suffice. The first
column should be a job story identifier. Dedicate the next columns to each of
the three components, “When,” “I want to,” “so I can.” Finally, add a fifth
column for notes. Many spreadsheets support collaborative editing, enabling
multiple people to review, comment, and contribute as needed.

 • Documents: Documents are also useful, though they are a bit less structured.
They are useful when teams wish to mimic an index card style for capturing
job stories. Start with a heading that indicates the job story identifier, such
as a number or brief description. Place each of the three components of a job
story, “When,” “I want to,” “so I can,” on a separate line for readability. Leave
room for capturing additional insights or details as a list of bulleted items. Add
a blank space between each job story to help separate each one, or assign one
job story per page.

 • Markdown files: Markdown is a text file with an approachable syntax use-
ful for capturing job stories. Markdown files may be used to export job sto-
ries into HTML, PDF, and other formats. Use a single Markdown file with
all job stories, or create a Markdown file for each job story. Combine with
a version control system, such as git, to view a history of changes to the job
stories. Of course, this approach is targeted at teams with deeper technical
expertise.

A Real-World API Design Project

To explore the API design process, a fictitious bookstore called JSON’s Bookstore
is used. The bookstore is a SaaS-based online book company that ships books
from its warehouse to customers all over the world. This fictitious business
derives from many consulting engagements I have had over the years. It opens the
opportunity to better explore and apply the various concepts of API design with
a real-world context. Teams will see the various challenges involved with
designing APIs that are meant to support different audiences and to support
operations, commerce, and partner integration. The bookstore project will also
help teams explore the challenges involved with applying design techniques to
existing APIs.

Chapter 3 Identify Digital Capabilities42

JSON’s Bookstore must design a series of APIs to support online commerce,
order fulfillment, inventory management, and catalog management. The company
also needs to support integration with partners and customers. Along the way, the
API surface area will increase, requiring JSON’s Bookstore to find ways to manage
and govern the APIs in a scalable way that doesn’t slow down its development
velocity.

Job Story Examples

The job stories in Table 3.1 were identified to support the shopping and purchase
experience for JSON’s Bookstore. As an exercise, review the job stories and try
writing some additional ones to practice the job story format.

Refer to the full list of job stories using the API workshop examples5 available on
GitHub.

Summary

APIs are digital capabilities that help turn desired outcomes into reality through
automation. An API designed with these outcomes will help to deliver a better API
design for the target audience.

Table 3.2 Job Stories for JSON’s Bookstore

ID When. . . I want to. . . So I can. . .

1 I want to see the new books
that have been released

List recently added books Keep up with the latest
watercooler talk

2 I want to find a book that will
be entertaining or teach me
something new

Search for a book by topic or
keyword

Browse related books

3 I encounter an unfamiliar
book

View a book’s details and
reviews

Determine if the book is of
interest to me

4 I find one or more books that
I wish to buy

Place an order Buy the books and have them
shipped to my preferred
address

5 I am uncertain of when my
order will arrive

View the status of an order Confirm the date that the
order will arrive

5. https://bit.ly/align-define-design-examples

https://bit.ly/align-define-design-examples

Summary 43

Job stories offer contextual understanding of the desired outcomes and the digital
capabilities that will be necessary to make them a reality. Through the process of
composing job stories, a shared understanding of business and customer needs for
all stakeholders is established. The more effort that is placed into composing job
stories, the more likely the API will meet the needs of customers. Job stories are the
first artifact needed to align all stakeholders prior to API design. The next chapter
discusses how to expand job stories into the activities and activity steps that will be
the foundation for API design.

This page intentionally left blank

45

Chapter 4

Capture Activities and Steps

The real story is that software developers are spending a relevant amount of
their time learning, in order to do things they don’t have a clue about. Differ-
ently from other professions, we’re doing things for the first time, most of the
time (even if it looks like the same old typing from the outside).

— Alberto Brandolini

ADDR
PROCESS

Align

Design

Refine Define

4. Model API
Profiles

5. High-Level
Design

6. Refine
the Design

7. Document
the API

2. Capture
Activity
Steps

3. Identify
API

Boundaries

1. Identify
Digital

Capabilities

Figure 4.1 The next step in the Align phase is to capture activity steps.

Chapter 4 Capture Activities and Steps46

This quote from Alberto Brandolini resonates with many teams that are faced with
building software in less familiar domains. While some developers can stay in the
same business vertical for most or all of their career, most do not have that luxury.
Developers are required to understand a new domain quickly, translate it into soft-
ware, and repeat throughout their career. They must quickly become familiar with a
domain such that they are able to turn it into working software that includes user
interfaces, APIs, and data models.

The ADDR process helps to bridge this gap through a series of rapid design
steps. Chapter 3, “Identify Digital Capabilities,” detailed the first step of the API
design process through the understanding of desired outcomes. The next step is
the gathering of details from stakeholders, development teams, and business
domain experts to better understand the concepts, processes, and workflows of the
domain.

This chapter addresses how to capture domain details and expected behavior
using an activity-based structure (see Figure 4.1). It also introduces the
EventStorming framework as a collaborative way to explore the domain. The result
is a deeper understanding of the domain, alignment between all team members,
and a foundation for defining and designing the APIs that will deliver the necessary
digital capabilities.

Extending Job Stories into Activities and Steps

Creating job stories helps identify the desired outcomes along with the digital
capabilities necessary to produce the outcomes. This topic was covered previously in
Chapter 3. The next step is to detail the digital capabilities as the activities and
activity steps required to achieve these outcomes.

An activity is work that contributes toward a desired outcome. Activities may be
performed by only one participant or by a combination of multiple participants that
collaborate together. A participant may be a person, an internal system, or a third-
party system.

Activity steps decompose activities into individual tasks that need to be performed
to complete the activity. Once all necessary activities are completed, the job story
outcome will be met.

There are two quick steps to capture these details: identify the activities for each
job story, then decompose each activity into individual steps. The results are then
used to identify API boundaries, which is detailed in Chapter 5, “Identifying API
Boundaries.”

Extending Job Stories into Activities and Steps 47

During this part of the process, all team members gain deeper understanding and
alignment on the solution. If requirements are vague or uncertainty remains, the
team may choose to proceed into a collaborative EventStorming session to explore
the solution further. EventStorming is detailed later in this chapter.

Identify the Activities for Each Job Story

Start by identifying any activities to be performed that produce the desired outcome
for each job story. The goal is to find the bigger units of work that will contribute to
the outcome.

Examples of activities for the JSON’s Bookstore Place an Order job story 4,
identified in Table 3.2 of Chapter 3, are shown in Table 4.1.

Notice that the activities are high level and will often require one or more steps to
accomplish the activity. If individual activity steps are identified during this step, go
ahead and note it. Then seek to determine the activity that it belongs to and capture
that as well.

Decompose Each Activity into Steps

Activities are composed of steps, with each step captured at a level of granularity
that ensures it is executed by one participant at a time. If an activity step requires
two or more participants to execute it simultaneously, continue to decompose the
activity step into smaller, independent steps for each participant.

Decomposing an activity into its individual steps requires a deeper understanding
of how the API will solve real-world problems. This requires the insights of a domain
expert or subject matter expert (SME). Include SMEs in the process of capturing
activities and activity steps. If an SME is unavailable, spend some time interviewing
SMEs and customers to better understand the needs. Be sure to allow sufficient time
for this research to ensure all questions have been addressed, leaving no room for
making assumptions about the problem space. When available, the product manager
should be responsible for the interview process.

Table 4.1 Example Activities for JSON’s Bookstore Place an Order Job Story

Digital Capability Activity Participants Description

Place an Order Browse for Books Customer Browse or search for books

Place an Order Shop for Books Customer, Call Center A customer adds books to a cart

Place an Order Create an Order Customer, Call Center A customer places the order using
the contents of the shopping cart

Chapter 4 Capture Activities and Steps48

Table 4.2 Example Activity Steps for JSON’s Bookstore

Digital Capability Activity Activity Step Participants Description

Place an Order Browse for Books List Books Customer,
Call Center

List books by category
or release date

Place an Order Browse for Books Search for Books Customer,
Call Center

Search for books by
author, title

Place an Order Browse for Books View Book
Details

Customer,
Call Center

View the details of a
book

Place an Order Shop for Books Add Books to
Cart

Customer,
Call Center

Add a book to the
customer’s cart

Place an Order Shop for Books Remove Books
from Cart

Customer,
Call Center

Remove a book from
the customer’s cart

Place an Order Shop for Books Clear Cart Customer,
Call Center

Remove all books from
the customer’s cart

Place an Order Shop for Books View Cart Customer,
Call Center

View the current cart
and total

Place an Order Create an Order Checkout Customer,
Call Center

Create an order from
the contents of the cart

Place an Order Create an Order Pay for Order Customer,
Call Center

Accept and process
payment for the order

Table 4.2 decomposes the activities for JSON’s Bookstore into activity steps.
Notice that some activities may have only a single step, whereas others may have

multiple steps. This is common, as some activities are more complex than others.
Repeat this process for each job story. Review the activities and steps with SMEs to

gain feedback and to ensure proper alignment. Once completed, proceed to the Define
phase detailed in Chapter 5. If requirements are not clear enough to produce activities
and steps, more work will need to be done. The API workshop examples,1 available
on GitHub, provide templates and examples for capturing job story activities.

What If Requirements Aren’t Clear?

The activities and activity steps examples detailed in Table 4.1 and Table 4.2 are
easily understood, as most people have experienced an online ecommerce Web
site. For domains not familiar to the team, it may be necessary to explore the
problem space further before the activities and activity steps are clear. Event-
Storming is the recommended technique to understand and align on requirements
in a collaborative way.

1. https://bit.ly/align-define-design-examples

https://bit.ly/align-define-design-examples

Using EventStorming for Collaborative Understanding 49

Using EventStorming for Collaborative Understanding

EventStorming2 is a collaborative process to help surface the business processes, require-
ments, and domain events as a visual model. It is a tool designed by Alberto Brandolini
that has been adapted in different ways to fit the needs of organizations around the world.

EventStorming is most effective when conducted as an in-person session. Remote
sessions may be used, when necessary, though they result in limited dynamic con-
versation. A facilitator helps the group navigate the process and helps to keep the
session on track. Everyone is expected to contribute throughout the entire session
by offering insights, asking clarifying questions, and identifying missing facts that
require follow-up research.

Unlike other techniques that focus on the software design of a solution, Event-
Storming seeks to create a shared understanding of all or a portion of a domain.
Artifacts and learnings from EventStorming sessions are used as input to the soft-
ware design process, including the API design process.

2. https://www.eventstorming.com

CASE STUDY
EventStorming for International Wire Transfers

A recent EventStorming session was conducted for a group developing sup-
port for sending international wire transfers. The team was very familiar with
the mechanics of performing the wire transfer but wished to explore the pro-
cess leading up to the transfer. It was decided that EventStorming would be a
useful tool for the exploration process.

In the weeks leading up to the EventStorming session, job stories were
used to capture the requirements. A specific set of job stories was selected for
the upcoming EventStorming session. The selected job stories expressed jobs
to be done for the areas the group wished to explore. The participant list was
selected, and the team met for a remote session.

During the remote session, several insights were achieved:

 1. Team alignment regarding the overall process to support international
wire transfers

 2. Identification of open questions regarding some fundamental business
policies

 3. Clear definitions of key terminology, referred to as ubiquitous language
in domain-driven design, that included input from business

https://www.eventstorming.com

Chapter 4 Capture Activities and Steps50

How EventStorming Works

EventStorming sessions are very interactive. They benefit from a dedicated
facilitator to ensure the sessions make the most effective use of the attendees’
time. In-person sessions require a large wall space, called the EventStorming
canvas, where color-coded sticky notes are placed and moved around to construct
a narrative of how the solution will work. Remote sessions are also possible
when teams are distributed or unable to locate a single room of sufficient size or
duration.

The ADDR process separates the EventStorming session into five distinct
steps. Each step seeks to add more detail and understanding until a better
understanding of the domain is gained. Along the way, assumptions are clarified
to ensure greater alignment between the team and the SMEs. The resulting
output of an EventStorming session is used immediately to capture activities
and steps. It is also used later in the process to help identify API boundaries, as
detailed in Chapter 5.

The most valuable insight, however, was the number of unknowns around
the specifics of currency conversion. No one was familiar with the internal
policies regarding when a currency conversion was conducted. There were
several options, from performing the conversion at the time of wire initiation
to waiting until the wire transfer process started. The gap in knowledge was
identified within an hour of starting the session. It was decided that further
investigation was necessary. Domain experts were brought into the session to
clarify the matter.

With better knowledge at hand, some significant decisions needed to be
made. The session was halted to gain further clarification on the scope of
the release. The EventStorming was concluded at a future time when more
information was known, ensuring that the initial release met all business and
customer needs.

Had the EventStorming session not been conducted, developers would
have assumed a specific set of business policies with regard to currency con-
version. SMEs would have required a different set of business policies, forc-
ing developers to make last minute changes and incur significant technical
debt to deliver on time.

How EventStorming Works 51

Table 4.3 Domain Event Past-Tense Naming Examples

Avoid Preferred

User Authentication Successful User Authenticated

Place an Order Order Placed

Print Shipping Label Shipping Label Printed

Step 1: Identify Business Domain Events

Scheduled Time: 30–60 minutes

The EventStorming process starts by identifying business domain events for a job
story or group of job stories. Everyone captures these events on stickies, all of the
same color (typically orange), and places them on the canvas. (Brandolini recommends
using consistent colors for specific items. See color list under “Step 4: Expand Domain
Understanding.”)

Domain events are phrased in the past tense to indicate that something has
already happened. Phrasing domain events in the past tense can be challenging for
some attendees. Help them rephrase the domain events until the habit is built. Being
consistent in this effort pays off during subsequent steps. Table 4.3 demonstrates the
preferred naming conventions for domain events and those to avoid.

This step should offer two passes of 15 to 30 minutes each. For a session with a
larger scope, more passes may be required. The result is a large number of unordered
sticky notes scattered all over the canvas.

As events are placed, attendees may start to slow down. This is common and
easily remedied. Between each pass, review some areas of the canvas to identify
missing domain events. Ask attendees to review all domain events and identify
causation events that may come before a business domain event. If the causation
event is missing, have them add it as a new domain event sticky note.

Figure 4.2 demonstrates what this would look like when capturing the business
domain events for JSON’s Bookstore job stories 1 and 4 captured in Chapter 3,
Table 3.2.

Once the session is complete, take a brief break, then proceed to the next step.

Step 2: Create an Event Narrative

Scheduled Time: 90–120 minutes

Next, the domain event stickies are ordered into a narrative from beginning to end.
Along the way, duplicate events are removed, and clarifications are made to ensure
the events start to frame the narrative.

Chapter 4 Capture Activities and Steps52

The facilitator is responsible for asking the group clarifying questions to ensure
the narrative is composed properly. Find the starting domain event for the narrative,
then seek to find the next domain event and place it after the first. Leave plenty of
space on the canvas to insert domain events as needed.

It is common for sessions to become stuck if there are branching or parallel
narratives. To help expedite the session, select a single narrative and order the
domain events accordingly. Branching or parallel narratives may be captured below
the primary narrative, if desired.

Figure 4.3 illustrates creating a narrative from the business domain events previ-
ously identified.

While this step may appear to require very little time, expect conversations to
emerge as the narrative is established. Therefore, allocate between one and two
hours minimum. If necessary, turn some of the domain events to a 45-degree angle
to note that they need to be revisited and proceed with the remainder of the narra-
tive. Once the overall narrative is established, revisit the domain events in question
or mark them with hotspot (typically hot pink) stickies for follow-up.

Figure 4.2 An example of domain event sticky notes for the JSON’s Bookstore online store.
The events have now been captured and will be organized in the next step.

Search
Results

Displayed

Book
Search
Issued

Book
Removed
from Cart

Book Details
Displayed

Recent
Books

Requested
Recent
Books
Listed

Book
Added to

Cart
Cart with

Total
Displayed Valid

Payment
Received

Checkout
Started

Checkout
Completed

How EventStorming Works 53

Fi
g

ur
e

4.
3

Bu
si

ne
ss

 d
om

ai
n

ev
en

t s
ti

ck
y

no
te

s
ar

ra
ng

ed
 in

to
 a

 li
ne

ar
 n

ar
ra

ti
ve

 fo
r

JS
O

N
’s

Bo
ok

st
or

e.

R
ec

en
t

B
oo

ks
R

eq
ue

st
ed

R
ec

en
t

B
oo

ks
Li

st
ed

B
oo

k
D

et
ai

ls

D
is

pl
ay

ed

B
oo

k
S

ea
rc

h
Is

su
ed

S
ea

rc
h

R
es

ul
ts

D

is
pl

ay
ed

Li
st

 R
ec

en
tly

 A
d

d
ed

 B
o

o
ks

 +
 S

ea
rc

h
fo

r
a

B
o

o
k

B
oo

k
A

dd
ed

 to
C

ar
t

B
oo

k
R

em
ov

ed
fr

om
 C

ar
t

C
he

ck
ou

t
S

ta
rt

ed
C

ar
t w

ith
To

ta
l

D
is

pl
ay

ed

V
al

id
P

ay
m

en
t

R
ec

ei
ve

d

C
he

ck
ou

t
C

om
pl

et
ed

P
la

ce
 a

n
O

rd
er

Chapter 4 Capture Activities and Steps54

Step 3: Review the Narrative and Identify Gaps

Scheduled Time: 60–90 minutes

Once all events have been cleaned up and grouped in a general timeline, the group
seeks to ensure that no events are missing. To do this, the group starts to walk from
left to right to tell the full narrative. If events are missing or need clarification, they
are changed immediately. It is at this step that a large surface area is beneficial to
ensure sticky notes may be moved around and for filling in gaps in the narrative.

It is also at this step that all domain concepts need to be unified to establish a
common vocabulary. This vocabulary will evolve into the ubiquitous language for
each bounded context that will be identified in the next step of the ADDR process.
Figure 4.4 demonstrates cards that may be attached to the EventStorming canvas to
unify common vocabulary. If necessary, rewrite existing domain events to use the new
vocabulary. It won’t take long for the group to start adopting the new terminology.

Expect this step to take at least an hour as questions are raised and discussions
emerge.

Step 4: Expand Domain Understanding

Scheduled Time: 30–60 minutes

After the events have been ordered, additional sticky note colors are used to expand
domain understanding. Figure 4.5 illustrates a portion of the Place Order job story
for JSON’s Bookstore using these additional types of sticky notes.

Figure 4.4 Two examples of cards used to capture vocabulary clarifications during a
session. These cards will become part of the ubiquitous language for a bounded context
identified in the next step of the process.

O�ered by the online
bookstore to shoppers.

Synonyms: products, items

Maintains a list of books under
consideration for purchase.

Note: A cart is not an order
but is used to create an

order at checkout.

Book Cart

Carts have 0...n items, which
reference the book and

the quantity desired.

How EventStorming Works 55

Figure 4.5 The Place Order job story for JSON’s Bookstore, expanded to include additional
color-coded sticky notes for commands, aggregates, and users. There is also a hotspot sticky
with an open question to resolve after the session.

Shopper

Shopper

Add Book
to Cart

Remove Book
from Cart

Book Added
to Cart

Book
Removed
from Cart

<User>

<User>

<Command>

<Command>

<Event>

<Event>

<Aggregate>

<Aggregate>

Shopping
Cart

Shopping
Cart

Use third
party?

<Hotspot>

Following is a summary of the common sticky note types—and the colors typi-
cally designated for each type—that are used throughout an EventStorming session:

 • Business event (orange): The result of an action or policy that indicates for-
ward progression through a workflow or process

 • Hotspot (bright pink): Unknown or missing data that requires research and
follow-up after the session.

 • Command (dark blue): An action taken by a user or system.

 • Aggregate (large, pale yellow): Behavior or logic that executes as a result of
a command and behavior and often results in one or more events. In domain-
driven design (DDD), Aggregates are defined as units of transactional consist-
ency. In EventStorming, this is a higher-level representation of workflows, state
machines, and other behavior.

 • Policy (lilac): The triggering event or motivation for why a new command is
executed and is always required. It acts as the bridge or glue between an event
and a command. Policies may start with the word when or whenever.

Chapter 4 Capture Activities and Steps56

 • External system (pale pink): Systems outside of the solution. These may be
external to the team but internal to the organization or a third-party system.
They are best thought of as aggregates outside of the group’s control.

 • User interface (white): A user interface that will offer one or more roles the
capability to execute a command against an aggregate.

 • User (yellow, small): A specific role that is interacting with the system,
typically via a UI, but also perhaps as a result of an automated call, email, or
other mechanism.

Start by adding commands (blue stickies) to capture what actions are taken by
a system or user that will result in one or more of the identified business domain
events. Commands are sent to aggregates, so capture those as well. Business
rules, often phrased as “when xyz happens, . . .” may be captured as policies
(lilac). Hot pink stickies are used as hotspot indicators where more information
is required.

Step 5: Review the Final Narrative

Scheduled Time: 30 minutes

Finally, the narrative is reviewed from both directions, start to end and end to start,
to ensure all elements have been captured. Important events and triggers are clearly
marked to denote key transitions between steps. Figure 4.6 shows a fully explored
Place an Order job story using the sticky notes necessary to express the understanding
gained during the session.

This completes the EventStorming session. The canvas should be saved for
future reference, as it will be useful for informing future steps in the API design
process. Consider taking photos of the canvas and sharing them with the team.
Rolling the canvas up or relocating it to a shared space is helpful for team mem-
bers colocated in the same office space. If the team used a digital tool, such as
Miro,3 export the work as a PDF or image for sharing on a wiki or as part of
other project assets.

Finally, write the activities and activity steps identified during the session using
the format outlined previously.

3. https://miro.com

https://miro.com

How EventStorming Works 57

Figure 4.6 A completed EventStorming canvas for the JSON’s Bookstore Place Order
job story. Because of space limitations, the single line of sticky notes is wrapped into two
additional lanes.

Submit
Payment

Details

Create
Order from

Cart

Valid
Payment
Received

Which
payment
service?

Order
Management

Shopper

Shopper

Shopper

Checkout
Started

Shopper

Payment
Details
Model

Add Book
to Cart

Remove Book
from Cart

Checkout

Order Details
Model

Payment
Success
Screen

Book Added
to Cart

Book
Removed
from Cart

<User>

<User>

<User>

<Event>

<User>

<Read Model>

<Command>

<Command>

<Command>

<Read Model>

<Command>

<User Interface>

Order Details
Screen

Payment
System

Checkout
Completed

<Event>

<Event>

<Policy>

<Event>

<Event>

<User Interface>

<External>

<Event>

<Aggregate>

<Aggregate>

<Aggregate>

Shopping
Cart

Shopping
Cart

<Hotspot>

Order with
Total

Displayed

Chapter 4 Capture Activities and Steps58

The Benefits of EventStorming

Alignment between stakeholders and development teams is achieved through a
shared understanding of terminology, processes, goals, and required integrations
with other internal and external systems. Questions are surfaced for follow-up
after the session to prevent assumptions or misunderstandings from being
captured into the API design and code. An EventStorming session helps everyone
to surface these insights and communicate effectively through a fun and effective
exercise.

There are five additional benefits of conducting an EventStorming session:

1. Shared understanding of requirements and scope of the problem being
modeled

2. Shared understanding of the workflow processes, business rules, and
constraints

3. Establishment of a shared domain vocabulary, replacing multiple terms with a
ubiquitous language

4. Identification of unknowns that require follow-up and clarification prior to
software design and development

5. Identification of boundaries within the solution, useful for scoping
team efforts and division of labor to minimize cross-team dependency
coordination

There are circumstances when EventStorming is most effective:

• Prior to API and microservice design and implementation to help establish
outside-in design thinking

• Prior to software design and development to clarify assumptions and address
open questions

• After clearly documenting desired outcomes, typically through the use of job
stories, discussed in Chapter 3

• When all roles are represented in the session

• When embarking on a significant scope of effort or one that spans multiple
teams

The Benefits of EventStorming 59

There are also circumstances when the value of an EventStorming session may be
reduced. To avoid spending unnecessary time in an EventStorming session, consider
these factors that contribute to an ineffective session:

 • The business process is well known and documented, as results will likely pro-
duce the same insights.

 • The scope of the problem is small enough that the identified business require-
ments are sufficient and complete.

 • The business requirements have not yet been identified. In this case, start with
constructing job stories, covered in Chapter 3, to clearly define the desired out-
comes and parties involved.

 • Business stakeholders cannot attend or do not see value in the exercise. While
development teams may still conduct a session, doing so may lead to modeling a
process based on too many technical assumptions that do not meet business needs

 • Software delivery has begun, and delivery dates are fixed. If the teams are early
enough in the delivery process, the output of the session may be used to make
software architectural and design adjustments prior to a release. Otherwise,
teams will be forced to proceed with existing decisions rather than the insights
obtained through an EventStorming session

Who Should Be Involved?

Including the right mix of attendees is critical for a successful EventStorming session. A
session must involve a few representatives from various roles and responsibilities. It
should be kept to no more than twelve people to ensure full participation by all attendees.
Larger groups can prevent less assertive attendees from engaging in the session.

Optional participants that may raise the group size should be considered for
inclusion on a case-by-case basis to avoid overloading the session with too many
voices. Sessions with dozens of people often slow down or result in participants
looking down at their phone or checking email. Smaller groups benefit from the need
for smaller conference space when conducting an in-person session. Avoid observers
whenever possible, as they don’t add value and may distract from the session. Rarely
do observers strictly observe.

When selecting the participants for an EventStorming session, be sure to consider
the following roles, in priority order:

1. Business owners, including those helping to define the requirements, such as
product managers and product owners

Chapter 4 Capture Activities and Steps60

2. SMEs with familiarity of the domain space

3. Technical leads, architects, and senior developers involved in leading the soft-
ware delivery

4. Security experts, especially when the problem space requires the involvement
of privacy or security concerns

5. Individual software developers and contributors not involved with decision
making (on a case-by-case basis only)

Facilitating an EventStorming Session

A facilitator familiar with EventStorming is important. Facilitators are responsible
for moving the process forward and keeping everyone engaged throughout the
process.

Emails and message notifications may lead to distractions, slowing down progress,
causing clarifying questions to be missed, or preventing SMEs from answering
clarifying questions. Remote sessions only add to the number of distractions possible,
as it is easy to task switch. Facilitators must work toward preventing these issues by
controlling the pace of the session and the frequency of breaks and providing clear
transitions between each step in the process.

When in doubt, facilitators need to evaluate discussions to determine if they are
clarifying intent or becoming a digression. If necessary, apply the hotspot sticky to
capture an area of contention and revisit. Otherwise, the session will slowly become
a forum for opinion by one or two people.

Because EventStorming is relatively new and experienced facilitators are in short
supply, this section provides insights and tips from recently conducted sessions.

Prepare: Gathering Necessary Supplies

When conducting an in-person session, EventStorming requires some essential
supplies. Be sure to have all the necessary supplies ordered and on hand several days
prior to the session. Avoid gathering supplies the day before or the morning of the
session.

The session will require a large number of sticky notes that includes a variety of
colors. Typically, orange stickies are used the most, so having more of that color is
important. Most office supply stores offer boxes of colors that match the needs for
EventStorming. However, feel free to adjust colors to team preferences or to what is
available. Remember that most attendees will be attending their first EventStorming

Facilitating an EventStorming Session 61

session, so they won’t know the “proper colors” anyway. If experienced participants
complain about the wrong colors, request that they be in charge of the supplies for
any future sessions.

A large wall is also required for hanging a large paper sheet as a modeling surface
where sticky notes are applied and moved around as needed. Some organizations
prefer to use paper sheets that are no more than 18 to 24 inches (45–60 cm) to allow
two or three lanes of sheets along the wall.

A legend should be visible to ensure that everyone is reminded of each color of
sticky note used. Be sure to write out a legend that shows all sticky note colors, their
type (e.g., “Business Domain Event” for orange stickies), and arrows that show how
they are typically combined to produce a narrative. An example legend is shown in
Figure 4.7.

Black markers should be used to write on the sticky notes, ensuring words are
easy to read when stepping away from the modeling surface. Ensure there is at least
one marker for each participant, with a few extra scattered around the room in case
some are lost.

Remote sessions may choose to use a diagramming tool to simulate sticky notes.
Another option is to use a shared document that is accessible by each attendee,
applying similar color-coding to text as those used with sticky notes. Whatever is
chosen, practice using the tool prior to the event to ensure an effective use of time
during the session.

Figure 4.7 A legend that shows how common color-coded sticky notes work together to
capture the domain during an EventStorming session.

User

Policy

Payment
System

<External>

Domain
Event

 Read
Model

Hotspot

User
Interface

 AggregateCommand

Chapter 4 Capture Activities and Steps62

Share: Communicating the EventStorming Session

Achieving a successful EventStorming session requires preparation and effective
communication before a session, at the start of a session, and after a session has been
completed. The following are suggestions for facilitators to communicate effectively
via email, video, and face to face before the session:

 • Product management attendance is essential. Insist that product owners and
product managers attend. A developer-heavy session will focus on how things
work today, existing systems, and delivering the status quo. In addition, mis-
alignment will occur, rendering an incorrect understanding of the domain and
desired outcomes.

 • Share the purpose and scope of the session. If the purpose and scope are not
shared ahead of time, many will be confused or will fail to participate. Com-
municating the purpose and scope will also ensure the right people are in the
room, which is key for EventStorming to be most effective. Establish expecta-
tions initially and reinforce at the start of the session.

 • Establish mutual expectations. Confusion or unmet expectations will lead to
an ineffective session or a poor view of EventStorming. Establish expectations
regarding the process, desired outcome, and design assets to be produced.
Reiterate these at the start of the session to reinforce the goals and establish a
proper mindset.

 • Ensure that API design has not started yet. Teams that have already started
API design will likely ignore the output of the session in favor of moving
forward with the current design. The session should be used to guide future
vision with immediate execution. Teams unwilling or unable to incorpo-
rate the output of the session will likely fail to obtain the highest possible
value of an EventStorming session. Ensure team buy-in from everyone before
proceeding.

 • Reinforce how EventStorming fits into the overall API design process.
Share a progress indicator or revisit the overall process often to demon-
strate where the session fits into the bigger picture. Remind the audience
that EventStorming produces valuable insights that will inform the upcom-
ing API modeling and design steps. Otherwise, the session may seem like
busy work.

At session kickoff, review the items once more. Reviewing everything the day of
the session helps to bring everything top-of-mind and sets the expectations for the
session.

Facilitating an EventStorming Session 63

Execute: Conducting the EventStorming Session

At the start of a session, review the expectations, process, and scope of the session.
Then start with the first step of the session. Most first-time attendees will be a bit
uncertain how to get started. Be ready to help them along or allow those more
familiar to start the process.

Show how the process works by first demonstrating it. Post the first business
domain event by taking input from the group, phrase it into the past tense to
demonstrate the expected format, then post it on the timeline at an approximate
location. Then request that the group start to create their own independently. Use the
same technique for each step in the session.

Establish clear reasons for each step of the process. Most first-time attendees won’t
fully understand why each step in the process is necessary. Help them understand the
value of the time spent. While the process may be obvious to the facilitator, most
attendees will need time to adapt to the process of EventStorming.

Wrap-up: Capture Activities and Activity Steps

Once the session is complete, take photos of canvas with the sticky notes for sharing.
Before leaving the area, the photos should be checked to ensure that all handwriting
is legible. If not, move closer to the board and take more photos.

To make the canvas available digitally, use a tool to produce a single panoramic
photo, or number the photos from left-to-right to ensure they can be reassembled
as needed. If the team resides in a shared office space, the canvas may be carefully
removed and placed in a new location for reference.

Digital tools, such as Miro, may be helpful for remote sessions and support
PDF or image export of the final canvas. It is also possible to use a shared
document, such as Google Docs or a Word document hosted on SharePoint, if
other tools are not readily available. Experience shows that color-coded text
works just as well as virtual sticky notes and is easier to cut-and-paste as the
canvas is manipulated.

Finally, use the canvas to identify and capture activities and activity steps, as
described at the start of this chapter.

Follow-up: Post-Session Recommendations

The facilitator should send a follow-up email two days after the session. The two-
day email should thank everyone for their participation and share the new location
of the sticky notes and the digital folder where the photos reside. A survey link may
also be provided to gather input for process improvement.

Chapter 4 Capture Activities and Steps64

A second email from the facilitator should be sent two weeks after the
session. This email should ask how the output of the session is being used by the
team. Use this opportunity to find blocking issues that prevent the team from
proceeding. Schedule a follow-up discussion to coach the team on next steps if
they are blocked.

Finally, consider writing up a case study of the session and including quotes
from attendees, if permission is provided. This helps teams uncertain about the
EventStorming process understand the value that it provides and increase their
willingness to invest the necessary time. It also helps to share team wins across the
organizations.

Customizing the Process

Remember that EventStorming is a tool that offers discovery-based learning in a
collaborative environment. Customizing the process helps organizations gain the
most from sessions. The following additions or modifications have been explored
beyond the original process suggested by Brandolini:

 • The three-lane approach: Rather than a single sheet of paper covering the
wall, using narrow paper that allows for creating three separate lanes in paral-
lel. All initial events are attached to the top lane during business event iden-
tification. When ordering them into a narrative, the events are moved to the
middle lane. The top lane is then used to expand the available space when
expanding the canvas with new sticky notes beyond the initial business events.
The bottom lane is used as a “parking lot” for events considered out of scope
or identified as duplicate. This approach was built out of necessity, as the only
available paper rolls from an organization’s supply closet were only 12 inches
(30 cm) high.

 • 45-degree angle sticky notes: When a note isn’t clear, needs to be rewritten
into past tense, or is revisited for another reason, anyone is empowered to tilt
a sticky note at a 45-degree angle. This flags the note for follow-up before pro-
ceeding to the next step of the process.

 • Multipart EventStorming sessions: With the introduction of remote sessions,
fatigue often sets in more quickly than with high-energy in-person sessions. In
this case, consider breaking an EventStorming session into multiple parts that
take no more than two hours before a minimum of a one-hour break. If neces-
sary, a session may be spread across two days as long as all attendees will be
available to participate both days.

Summary 65

 • Shared facilitation: The facilitator is encouraged to ask different people to
lead the narration/storytelling effort. Shared facilitation encourages co-
ownership of the session, keeps team members engaged and away from email,
and helps cross-train others in the EventStorming process. The facilitator dem-
onstrates what is expected, facilitates for a time, then asks for a volunteer or
selects someone to facilitate a portion of the process. This continues through-
out the session until everyone has had a chance to facilitate some portion of
the session. During the activity, the original facilitator remains available and
coaches everyone as needed.

Summary

It is essential for teams to establish a detailed understanding of domain concepts,
processes, and workflows. Capturing these details as activities and activity steps
helps to align all team members and establish a foundation for future API design
work. The EventStorming framework may be used as a collaborative method for
exploring the domain concepts in detail alongside domain and subject matter
experts.

The next step in the API design process is to start defining the bounded contexts
and APIs needed to realize the digital capabilities offered by an API product or API
platform.

This page intentionally left blank

67

Part III

Defining Candidate APIs

At this point in the API design process, digital capabilities have been identified using
job stories. Activities required to produce the outcomes have been captured and are
based on insights from an EventStorming session. By starting with a focus on out-
comes and activities, teams remain aligned with the needs of customers and business
goals.

The next step in the API design process is to identify candidate APIs. These
candidate APIs will reflect one or more boundaries that are identified using an
EventStorming canvas or list of activities produced from the previous step. As the
boundaries are identified, one or more API profiles begin to emerge.

Each API profile provides more detailed clarity about the API and informs the
eventual API design. It reflects the API resources that need to be designed, along with
the operations to be offered. This definition step is essential in designing an API
that is focused on delivering the desired outcomes of customers, partners, and the
workforce.

This page intentionally left blank

69

Chapter 5

Identifying API Boundaries

Total unification of the domain model for a large system will not be feasible
or cost-effective.

—Eric Evans, Domain-Driven Design

Figure 5.1 The first step in the Define phase is to identify API boundaries.

ADDR
PROCESS

Align

Design

Refine Define

4. Model API
Profiles

5. High-Level
Design

6. Refine
the Design

7. Document
the API

2. Capture
Activity
Steps

3. Identify
API

Boundaries

1. Identify
Digital

Capabilities

Chapter 5 Identifying API Boundaries70

Every API provides a mental model for how developers will integrate with it to pro-
duce the desired outcomes. Establishing the scope and responsibilities of an API
also helps guide the design of this mental model, contributing to a more positive
developer experience. By borrowing techniques from domain-driven design (DDD)
used in identifying bounded contexts, candidate APIs are identified and the respon-
sibility of each API is clearly defined from the artifacts produced in the Align phase
(see Figure 5.1).

Output from activity step identification, as detailed in Chapter 4, “Capture Activities
and Steps,” is useful in finding boundaries and therefore candidate APIs. These
candidate APIs realize the digital capabilities that will produce the desired outcomes
captured in job stories, as detailed in Chapter 3, “Identify Digital Capabilities.” Before
getting started with the process, it is important to understand how some mistakes in
defining API boundaries can lead to a poor developer experience.

Avoiding API Boundary Antipatterns

It is important to clarify the intent and scope of an API. Identifying the scope of an
API helps developers find the right one for the job. Without a clear scope and set of
associated responsibilities, APIs will suffer from common API boundary antipatterns.

The Mega All-in-One API Antipattern

Even the most experienced API designers are faced with challenges when trying to
determine how many separate API products they need.

Creating a single, large API product makes it difficult for developers to find
what they need quickly. Likewise, many small API products, perhaps as a result of
externalizing microservices individually, may result in fragmentation and frustration.
Applying clear API boundaries helps to reduce confusion around very large or many
small APIs.

The Overloaded API Antipattern

Organizations with multiple products or that offer a platform comprised of
multiple APIs have additional challenges ahead. All too often, organizations want
to design the perfect Accounts API or Customer API that will be the single place to
find out all the details about an account or customer. What starts as a well-
intentioned goal eventually leads to a single API that tries to do everything but
ultimately does nothing well.

Avoiding API Boundary Antipatterns 71

In the bookstore example, books could imply one of several contexts:

 • Books that are entries in the catalog of available products to purchase

 • Books available as part of the warehouse inventory

 • Books added to a shopping cart

 • Books that are part of a placed order

 • Books that have been shipped as part of an order

Creating a single Books API is likely not the best route to clarity or sanity. API
changes would be constant as new contexts around the term books are introduced.
The result would be operations that mix and match the term in different ways until
the API becomes a confusing mess. Not only does this lead to a poor developer expe-
rience, it also contributes to significant delays when delivering new enhancements in
the future.

In larger organizations, a single team may become responsible for most of the API
through this incorrect assumption that a single Books API is the best way to organize
support across the book catalog, inventory, shopping, and fulfillment processes of
the organization. The velocity of delivery is greatly reduced as the remainder of the
organization waits for the single team to add the operations needed to support new
functionality.

Instead, seek to clarify single-word terms such as book with more context. For
example, a Books Catalog API helps to limit the scope of API operations to those
involved to catalog management. Within this clearly defined scope are additional
responsibilities, including managing public descriptions, associated author metadata
to each book, book covers, sample chapters, and more. Only those interested in cata-
log management need to work with this API.

The Helper API Antipattern

Nearly every development team has at one time built a helper library. This library
has a mixture of little utilities that are scattered all around the codebase. The
namespace used to store the helpers (e.g., com.mycompany.u til) is referenced all over
the codebase.

Some APIs suffer the same challenges as the sad, overused helper API. These are
APIs that have a mixture of uses but aren’t cohesive as a unit. Developers integrating
with the API struggle to understand when and where to apply each one. The lack of
scope and responsibility of the API makes the developer confused and unable to use
it effectively.

Chapter 5 Identifying API Boundaries72

Bounded Contexts, Subdomains, and APIs

The goal of an API boundary is to unify on the ubiquitous language while reducing
overall coordination between teams as much as possible. In the case of Web APIs,
boundaries may offer one or more network interfaces to support all the operations
within the bounded area. Each boundary should be owned by a single team that is
empowered to build and own everything within the boundary.

Defining clear boundaries is an important factor for APIs, as it helps to accelerate
the API design and development process by scoping APIs to a specific set of
responsibilities. The terminology used for API operations and resources should
reflect the bounded context’s ubiquitous language as well. For larger or more
complex boundaries, further decomposition may be required, perhaps resulting in
additional APIs and/or services hidden behind the API. Over time, boundaries may
shift as more is learned about the solution.

The challenge most teams face is how to identify bounded contexts for their
APIs. Team members may just know it when they see it, whereas others may place
boundaries around a specific portion of a domain model. Neither of these methods
results in a repeatable, teachable process that clearly identifies the scope of an API.
Instead, it is recommended to use the EventStorming canvas and activity steps
artifacts from the Align phase to help identify boundaries.

A Note about API Boundaries and DDD

While this chapter seeks to incorporate common DDD terminology and
practices for identifying API boundaries, it is also meant to support organi-
zations that have not adopted common DDD practices.

This chapter seeks to find a middle ground that supports practitioners
familiar with the intricacies of DDD as well as those less familiar. In either
case, there are many useful lessons within DDD that still apply to organiza-
tions not fully engaged in DDD practices. Organizations more familiar with
DDD may wish to introduce additional practices that go beyond the scope of
this chapter.

As teams complete their API design, refer to Vaughn Vernon’s excellent
book, Implementing Domain-Driven Design,1 for further details on imple-
menting DDD.

1. Vaughn Vernon, Implementing Domain-Driven Design (Boston: Addison-Wesley, 2013).

Finding API Boundaries through Activities 73

Finding API Boundaries Using EventStorming

As mentioned in Chapter 4, EventStorming helps to unify terminology while aligning
teams with an understanding of processes, business policies, and system interactions.
By examining the language used throughout the EventStorming canvas, developers
find hints about possible API boundaries begin to emerge as terms and focus shift.
This is demonstrated by language pattern shifts, as indicated in Figure 5.2.

As terminology shifts, boundaries start to emerge. Identify and name each of the
boundaries. Then, assign a Web-based API for each boundary as a starting point.
The API will offer the API operations necessary to deliver the digital capabilities for
that boundary.

Teams may also choose to use the aggregates identified in EventStorming as
hints to API scope. While this offers some additional insights into API boundaries,
it may not always be the case. Aggregates that were captured on the basis of fine-
grained responsibilities and focused on a single responsibility are more useful for
identifying internal modules or services behind the API. However, if aggregates
were grouped at a more coarse-grained level, they may succeed in identifying an
API that is responsible for orchestrating outcomes.

For some EventStorming sessions exploring a limited scope, there may be only a
single boundary. For most solutions, however, there will be at least two boundaries
identified on an EventStorming canvas.

Figure 5.3 highlights three specific boundaries that qualify as separate APIs, based
on the insights provided from EventStorming.

Finding API Boundaries through Activities

While EventStorming helps to find boundaries by design, it isn’t the only method for
guiding the identification process. The same approach may be used by reviewing the
activities and activity steps produced by subject matter experts already familiar with
the necessary processes and workflows, as described in Chapter 4. This is a
particularly effective approach when considerable effort has already been invested in
capturing requirements.

Look for shifts in language like what was described previously using EventStorming.
Often, the activity step names and/or descriptions have a basic sentence structure with
nouns and verbs. Make note of where the nouns shift in the activity steps. The nouns
acted upon may offer clues to where boundaries exist. When steps shift to a new set of
nouns, mark the location and use it as the starting point of a new boundary. While not
as comprehensive as EventStorming, the activities and activity steps will offer insights
into shifts in language that demonstrate a shift in a boundary.

Chapter 5 Identifying API Boundaries74

Figure 5.2 An EventStorming canvas is helpful in finding shifts in language, leading to the
identification of bounded contexts.

Shopper

Shopper

Shopper

Checkout
Started

Shopper

Payment
Details
Model

Remove Book
from Cart

Checkout

Order Details
Model

Submit
Payment
Details

Payment
Success
Screen

Book Added
to Cart

Book
Removed
from Cart

Create
Order from

Cart

Order with
Total

Displayed

<User>

<User>

<User>

<Event>

<User>

<Read Model>

<Command>

<Command>

<Command>

<Read Model>

<Command>

<User Interface>

Order Details
Screen

Checkout
Completed

<Event>

<Event>

<Policy>

<Event>

Valid
Payment
Received

<Event>

<User Interface>

<Event>

<Aggregate>

<Aggregate>

<Aggregate>

Shopping
Cart

Shopping
Cart

Order
Management

<Aggregate>

Payment
Management

Which
payment
service?

<Hotspot>

Add Book
to Cart

Naming and Scoping APIs 75

Figure 5.3 APIs identified through the shift in language on the EventStorming canvas.

Shopper

Shopper

Shopper

Remove Book
from Cart

Checkout

Book Added
to Cart

Book
Removed
from Cart

Create
Order from

Cart

Shopping
Cart

Shopping
Cart

Order
Management

Add Book
to Cart

Shopping
API

Creation
API

Order

<User>

<User>

<User>

<Command>

<Command>

<Command>

<Event>

<Event>

<Policy>

<Aggregate>

<Aggregate>

<Aggregate>

As an example, the activities and activity steps from Table 4.2 in the previous
chapter are presented in Table 5.1. Notice the shift from Books to Cart, then to
Order and Payment. These shifts provide a starting point for identifying boundaries,
from which APIs are formed.

Naming and Scoping APIs

Next, the boundary is given a name to represent the API that will be designed. Seek
to assign a name that includes the scope, outcome, or target audience. Examples of
well-known API names include Twitter’s Followers API and eBay’s Seller API.

Chapter 5 Identifying API Boundaries76

Checkout
Started

Shopper

Payment
Details
Model

Order Details
Model

Submit
Payment
Details

Payment
Success
Screen

Order with
Total

Displayed

Order Details
Screen

Checkout
Completed

Valid
Payment
Received

Payment
Management

Which
payment
service?

Payment
Processing

API

<Event>

<User>

<Event>

<Event>

<Command>

<User Interface>

<Event>

<Event>

<User Interface>

<Event>

<Aggregate>

<Hotspot>

Figure 5.3 (continued)

Table 5.1 Activity Steps for JSON’s Bookstore; Separators Indicate Shifts in Vocabulary That
Identify Boundaries

Digital
Capability

Activity Activity Step Participants Description

Place an Order Browse for Books List Books Customer,
Call Center

List books by category or
release date

Place an Order Browse for Books Search for
Books

Customer,
Call Center

Search for books by author,
title

Place an Order Browse for Books View Book
Details

Customer,
Call Center

View the details of a book

Place an Order Shop for Books Add Books
to Cart

Customer,
Call Center

Add a book to the customer’s
cart

Place an Order Shop for Books Remove Books
from Cart

Customer,
Call Center

Remove a book from the
customer’s cart

Place an Order Shop for Books Clear Cart Customer,
Call Center

Remove all books from the
customer’s cart

Place an Order Shop for Books View Cart Customer,
Call Center

View the current cart and
total

Place an Order Create an Order Checkout Customer,
Call Center

Create an order from the
contents of the cart

Place an Order Create an Order Pay for Order Customer,
Call Center

Accept and process payment
for the order

Naming and Scoping APIs 77

Avoid using the terms service and manager, as they are generally not useful in
understanding the purpose of the API.

The APIs in Figure 5.3 are named Shopping API, Order Creation API, and
Payment Processing API. This is a good start and clearly articulates the scope and
responsibility of each API.

Note

Some API designers may prefer to combine the Order Creation and Payment Pro-
cessing APIs, as they could be considered cohesive and therefore should exist as a
single API. They are separated in this simple example for instructional purposes.
However, field insights dictate that separating order creation and payment through
clearly defined boundaries allows for more complex payment processing at a future
time without burdening the order creation boundary with the added complexity.

Finally, separate the activity steps into the corresponding API based on the
boundary it represents. Table 5.2 captures the Shopping API, including the activity
steps relevant to the API.

Table 5.3 captures the checkout process for the Place an Order digital capability.
Finally, Table 5.4 captures the payment step as part of the Place an Order digital

capability.

Table 5.2 Shopping API, Discovered through Boundary Identification, with Corresponding
Activity Steps from JSON’s Bookstore

Digital
Capability

Activity Activity Step Participants Description

Place an Order Browse for Books List Books Customer,
Call Center

List books by category or
release date

Place an Order Browse for Books Search for
Books

Customer,
Call Center

Search for books by author,
title

Place an Order Browse for Books View Book
Details

Customer,
Call Center

View the details of a book

Place an Order Shop for Books Add Books to
Cart

Customer,
Call Center

Add a book to the
customer’s cart

Place an Order Shop for Books Remove Books
from Cart

Customer,
Call Center

Remove a book from the
customer’s cart

Place an Order Shop for Books Clear Cart Customer,
Call Center

Remove all books from the
customer’s cart

Place an Order Shop for Books View Cart Customer,
Call Center

View the current cart and
total

Place an Order Create an Order Checkout Customer,
Call Center

Create an order from the
contents of the cart

Place an Order Create an Order Pay for Order Customer,
Call Center

Accept and process payment
for the order

Chapter 5 Identifying API Boundaries78

Table 5.3 Order Creation API, Discovered through Boundary Identification, with
Corresponding Activity Steps from JSON’s Bookstore

Digital
Capability

Activity Activity Step Participants Description

Place an Order Create an Order Checkout Customer,
Call Center

Create an order
from the contents
of the cart

Table 5.4 Payment Processing API, Discovered through Boundary Identification, with
Corresponding Activity Steps from JSON’s Bookstore

Digital
Capability

Activity Activity Step Participants Description

Place an Order Create an Order Pay for Order Customer,
Call Center

Accept and
process payment
for the order

With the boundaries clearly defined, API modeling can begin. This effort leads to
API profiles that define the operations and events each API will offer. API modeling
is detailed in the next chapter.

Summary

APIs benefit from careful scoping and assignment of responsibilities. Applying
boundaries helps to identify one or more APIs that will be required to deliver the desired
outcomes captured as job stories. This prepares the way for the next step, API modeling,
in which a blueprint of the API is formed and the foundation is laid for API design.

79

Chapter 6

API Modeling

You can use an eraser on the drafting table or a sledgehammer on the
 construction site.

— Frank Lloyd Wright

Figure 6.1 The final step of the Define phase is to create API profiles in preparation for
transitioning to the Design phase.

ADDR
PROCESS

Align

Design

Refine Define

4. Model API
Profiles

5. High-Level
Design

6. Refine
the Design

7. Document
the API

2. Capture
Activity
Steps

3. Identify
API

Boundaries

1. Identify
Digital

Capabilities

Chapter 6 API Modeling80

Developers are often tempted to start writing code immediately. Code is the primary
tool for developers. It is everything—the hammer, screwdriver, ruler, and saw. When
code is seen as the one and only tool to design an API, the quality of the API design
can suffer. The march to produce code for production becomes more valued than the
outcomes the API is meant to produce.

Of course, code produces value when it is used to explore a specific area of
a solution to reduce risk. It is also valuable to use code to experiment, surface
unknowns, or explore a new technology. The term tracer bullet was applied
to software by David Thomas and Andrew Hunt in their book The Pragmatic
Programmer.1 The term describes the use of code as a means of exploration and
risk reduction. Tracer bullet code delivers value through learning rather than
through production-ready code.

API modeling is a tracer bullet for API design. It is a technique for exploring the
necessary elements of an API prior to the design and delivery process. API modeling
(see Figure 6.1) helps to bring together the insights and artifacts from the previous
steps into an API profile that describes the scope and intent of the APIs needed to
deliver the desired outcomes of end users.

What Is API Modeling?

Just as a beautiful Web design begins from a wireframe, a great API design begins
with an API model that helps define its scope and responsibilities. The goal of API
modeling is to fully understand and validate the needs of developers and end users.
Unlike a wireframe, which focuses strictly on end user interaction, API modeling
focuses on both developer and end user goals. Often, these goals are aligned, but
sometimes they are not. API modeling helps to surface issues quickly so that they
may be resolved prior to writing code.

API modeling uses job stories, activities, and activity steps as inputs to produce a
cohesive view of each API, called an API profile. An API profile captures character-
istics about the API, including its name, scope, operations, and emitted events that
will be used to deliver desired outcomes. API modeling is done before designing and
developing begins—while the cost of change is significantly lower.

After completing API modeling, teams will be ready to migrate the API profiles
produced into an API design. API modeling can be used as input for a single API
design style of choice, such as REST, GraphQL, or gRPC. It may also be used to

1. David Thomas and Andrew Hunt, The Pragmatic Programmer: Your Journey to Mastery, 20th
Anniversary Edition, 2nd ed. (Boston: Addison-Wesley, 2020).

The API Modeling Process 81

inform the design of an API that uses a combination of these API styles to support
the various digital channels for customers and partner integration needs.

The API Profile Structure

API profiles capture all necessary information about an API, independent of the API
style or styles that it will expose (e.g., REST and GraphQL). The API profile is used to
drive the design of an API, but also provides the beginnings of the API documentation
effort during the early stages of API definition.

An API profile captures the following details about each API:

 • The name and a short description of the API

 • The scope of the API (internal, public, partner, etc.)

 • API operations with input and output message details

 • Participants allowed to perform each operation, in preparation for securing
the API

 • Events generated by each API operation, to drive extensibility beyond the API’s
original intent

 • (Optional) architectural requirements identified, such as a service-level
agreement (SLA)

A spreadsheet or document is sufficient to capture each API profile. Using a
collaborative spreadsheet allows teams to capture and refine API profiles without
the need to email changes among team members. Some teams prefer to use tools
such as wikis for capturing API profiles. No matter what tool is selected, be sure that
everyone in the organization has access to read and comment on the API profiles
produced. Using a tool that is provisioned for only a subset of the organization is not
recommended.

Figure 6.2 shows a template that is easy to read and fits both spreadsheet and
document formats.

The API Modeling Process

The goal of the API modeling process is to produce one or more API profiles, one for
each API identified during modeling. The modeling process is divided into five quick
steps. Each step adds additional detail to the API profile until a blueprint of the API
emerges.

Chapter 6 API Modeling82

M
y

A
P

I—
D

es
cr

ip
tio

n
g

o
es

 h
er

e
A

P
I s

co
p

e
(in

te
rn

al
, p

ub
lic

, p
ar

tn
er

, e
tc

.)
A

rc
hi

te
ct

ur
al

 r
eq

ui
re

m
en

ts
 (s

er
vi

ce
-l

ev
el

 a
g

re
em

en
ts

, s
ta

nd
ar

d
s

co
m

p
lia

nc
e,

 e
tc

.)

O
p

er
at

io
n

N
am

e
D

es
cr

ip
tio

n
P

ar
tic

ip
an

ts
R

es
o

ur
ce

(s
)

E
m

itt
ed

 E
ve

nt
s

O
p

er
at

io
n

D
et

ai
ls

lis
tT

hi
ng

ie
s(

)
Li

st
/s

ea
rc

h
fo

r t
hi

ng
ie

s
C

us
to

m
er

,
S

ho
pp

er
Th

in
gy

Th
in

gi
es

.L
is

te
d

R
eq

ue
st

 P
ar

am
et

er
s:

 v
en

do
rId

, …
R

et
ur

ns
: T

hi
ng

y[
]

…
…

…
…

…

Fi
g

ur
e

6.
2

A
 te

m
pl

at
e

fo
r

ca
pt

ur
in

g
A

PI
 p

ro
fil

es
 in

 a
 s

pr
ea

ds
he

et
 o

r
do

cu
m

en
t.

The API Modeling Process 83

What about Using the OpenAPI Specification?

The OpenAPI Specification (OAS) is a machine-readable format used
to capture the description of REST-based and gRPC-based APIs. The
format was designed to aid in the generation of API reference documen-
tation and boilerplate code. As such, the OAS structure is rooted in URL
paths. Because API modeling precedes a complete API design that includes
resource paths, OAS isn’t an appropriate format for API profiles. However,
API profiles will help accelerate the creation of OAS-based API descriptions
later in the design process.

API teams have found that using the Application-Level Profile Semantics
(ALPS) specification, detailed in Chapter 13, “Document the API Design,”
is a useful way to produce a machine-readable API profile that may be used
to accelerate the API modeling and design process independent of the chosen
API style(s).

The specifics about using the OAS to capture the API description of a
REST-based API design is addressed in Chapter 7, “REST-Based API Design.”

Those who have produced the artifacts from the previous Align-Define-Design-
Refine (ADDR) process steps will typically complete the API modeling process in
under two hours. For those who skipped some of the steps, API modeling may take
several hours to complete.

Step 1: Capture API Profile Summary

The first step in the process is to fill out the basic details of the API profile, including
the API name, a short description, and the scope of the API. The scope of the API
should correspond to the scopes that the organization supports, which are typically
internal, public, and partner. Remember that these details can be changed as the
team gains more understanding about the purpose and responsibilities of each API.

Next, capture the API operation names and participants based on the activities
and activity steps captured previously. For each activity step identified previously,
convert it into an operation name that uses a consistent naming format. It is
suggested to use lowerCamelCase, which makes it easier for the team to explore the
API model using sequence diagrams, as recommended later in this chapter.

Figure 6.3 demonstrates how to capture the start of an API profile using JSON’s
Bookstore’s Shopping API, previously identified during the Align phase of the design
process.

Chapter 6 API Modeling84

S
ho

p
p

in
g

 A
P

I—
S

up
p

o
rt

s
th

e
b

o
o

k
b

ro
w

si
ng

 e
xp

er
ie

nc
e

an
d

 c
ar

t m
an

ag
em

en
t

P
ub

lic

O
p

er
at

io
n

N
am

e
D

es
cr

ip
tio

n
P

ar
tic

ip
an

ts
R

es
o

ur
ce

(s
)

E
m

itt
ed

 E
ve

nt
s

O
p

er
at

io
n

D
et

ai
ls

lis
tB

oo
ks

()
Li

st
 b

oo
ks

 b
y

ca
te

go
ry

or

 re
le

as
e

da
te

C
us

to
m

er
,

C
al

l C
en

te
r

se
ar

ch
B

oo
ks

()
S

ea
rc

h
fo

r b
oo

ks
 b

y
au

th
or

, t
itl

e
C

us
to

m
er

,
C

al
l C

en
te

r

vi
ew

B
oo

k(
)

V
ie

w
 b

oo
k

de
ta

ils
C

us
to

m
er

,
C

al
l C

en
te

r

ad
dB

oo
kT

oC
ar

t(
)

A
dd

 a
 b

oo
k

to
 th

e
 cu

st
om

er
’s

 c
ar

t
C

us
to

m
er

,
C

al
l C

en
te

r

re
m

ov
eB

oo
kF

ro
m

C
ar

t(
)

R
em

ov
e

a
bo

ok
 fr

om
 th

e
cu

st
om

er
’s

 c
ar

t
C

us
to

m
er

,
C

al
l C

en
te

r

cl
ea

rC
ar

t(
)

R
em

ov
e

al
l b

oo
ks

 fr
om

th

e
cu

st
om

er
’s

 c
ar

t
C

us
to

m
er

,
C

al
l C

en
te

r

vi
ew

C
ar

t(
)

V
ie

w
 th

e
cu

rr
en

t c
ar

t a
nd

to

ta
l

C
us

to
m

er
,

C
al

l C
en

te
r

Fi
gu

re
 6

.3
 J

SO
N

’s
Bo

ok
st

or
e’s

 S
ho

pp
in

g
A

PI
 w

ith
 a

 n
am

e,
 d

es
cr

ip
tio

n,
 sc

op
e,

 a
nd

 o
pe

ra
tio

n
na

m
es

 fi
lle

d
in

 u
si

ng
 th

e
de

ta
ils

 fr
om

 th
e

bo
un

de
d

co
nt

ex
t e

xe
rc

is
e

in
 C

ha
pt

er
 5

, “
Bo

un
de

d
C

on
te

xt
s i

n
A

PI
 D

es
ig

n.
”

The API Modeling Process 85

Step 2: Identify the Resources

The next step is to use the API profile to identify resources for the API. Resources are
often domain entities that will be operated upon by the API. Finding the target for
each operation helps to identify the initial set of resources. This is often a difficult
task when first starting an API design. However, the Align and Define phases of the
process provide sufficient understanding to inform designers of an initial set of
candidate resources.

Using the Shopping API example to illustrate the resource identification process,
Figure 6.4 shows that the Book and Cart resources are used by the operations and are
therefore resource candidates.

For each candidate resource, create a table that captures the resource name and
any properties that are currently known. Including a description helps to align
understanding and is useful when moving into the API design phase.

When creating an API profile, focus on capturing only the properties that are
essential to the operation. So doing speeds up the modeling process and ensures the
focus remains on the API profile rather than on implementation details.

Figure 6.5 shows the Shopping API resources, including a new resource called
Book Author that was discovered while enumerating the properties for the Book
Resource.

A Word of Caution on Resource Identification

While it may be tempting to use a database schema as the starting point for
resource identification, keep in mind that API designs should not leak internal
implementation details. A database schema reflects optimizations for trans-
actional read and write operations rather than exposing business domain
concepts over a network API.

It is best to work top-down when modeling an API to avoid leaking inter-
nal data model decisions into the API design. If the implementation phase
demonstrates a one-to-one relationship between resources and a database
schema, then it becomes a “happy accident,” as painter Bob Ross2 would say.

2. Bob Ross, “We Don’t Make Mistakes,” clip from The Joy of Painting, season 3, episode 5, “Distant Hills”
(Schmidt1942, 2013; originally aired Feb. 1, 1984), https://www.youtube.com/watch?v=wCsO56kWwTc.

https://www.youtube.com/watch?v=wCsO56kWwTc

Chapter 6 API Modeling86

C
us

to
m

er
,

C
al

l C
en

te
r

C
us

to
m

er
,

C
al

l C
en

te
r

C
us

to
m

er
,

C
al

l C
en

te
r

C
us

to
m

er
,

C
al

l C
en

te
r

C
us

to
m

er
,

C
al

l C
en

te
r

vi
ew

B
oo

k(
)

V
ie

w
 b

oo
k

de
ta

ils

ad
dB

oo
kT

oC
ar

t()
A

dd
 a

 b
oo

k
to

 th
e

cu
st

om
er

’s
 c

ar
t

re
m

ov
eB

oo
kF

ro
m

C
ar

t()
R

em
ov

e
a

bo
ok

 fr
om

th
e

cu
st

om
er

’s
 c

ar
t

cl
ea

rC
ar

t()
R

em
ov

e
al

l b
oo

ks
 fr

om
th

e
cu

st
om

er
’s

 c
ar

t

vi
ew

C
ar

t()
V

ie
w

 th
e

cu
rr

en
t c

ar
t

an
d

to
ta

l

S
ho

p
p

in
g

 A
P

I—
S

up
p

o
rt

s
th

e
b

o
o

k
b

ro
w

si
ng

 e
xp

er
ie

nc
e

an
d

 c
ar

t
m

an
ag

em
en

t
P

ub
lic

O
p

er
at

io
n

N
am

e
D

es
cr

ip
tio

n
P

ar
tic

ip
an

ts
R

es
o

ur
ce

(s
)

E
m

itt
ed

 E
ve

nt
s

O
p

er
at

io
n

D
et

ai
ls

lis
tB

oo
ks

()
Li

st
 b

oo
ks

 b
y

ca
te

go
ry

or
 r

el
ea

se
 d

at
e

C
us

to
m

er
,

C
al

l C
en

te
r

C
us

to
m

er
,

C
al

l C
en

te
r

se
ar

ch
B

oo
ks

()
S

ea
rc

h
fo

r
bo

ok
s

by
au

th
or

, t
itl

e

Fi
g

ur
e

6.
4

Id
en

ti
fy

in
g

th
e

Bo
ok

 a
nd

 C
ar

t r
es

ou
rc

es
 fo

r
JS

O
N

’s
Bo

ok
st

or
e’

s
Sh

op
pi

ng
 A

PI
 p

ro
fil

e.

The API Modeling Process 87

Book Resource

Property Name Description

title The book title

isbn The unique ISBN
of the book

authors List of Book
Author resources

Cart Resource

Property Name Description

books The books currently in
the cart for purchase

subtotal The total cost of all
books in the cart

salesTax The sales tax to be
applied

vatTax Any value-added tax
to be applied

cartTotal The total cost
of the cart

Book Author Resource

Property Name Description

fullName The full name of
the author

Figure 6.5 Capturing each resource for the Shopping API, along with some basic details
about each one as a starting point.

Step 3: Define the Resource Taxonomy

Once the resources have been identified, it is time to find the relationships among
resources to define the API taxonomy. A taxonomy3 is a classification of concepts
and how they are arranged. An API taxonomy captures the set of resources the API
will offer and their relationships to other resources.

There are three relationship types that resources may have between one another:

 1. Independent: The resources exist standalone and do not require another
resource’s existence. Independent resources may reference other independent
or dependent resources.

 2. Dependent: One resource cannot exist without the existence of a parent resource.
Be sure not to confuse a dependent resource relationship with one resource referenc-
ing another. This is a very specific case and not frequently encountered.

 3. Associative: The resources may exist independently; however, their relation-
ship requires additional properties to describe it. The result is a third resource
that represents the relationship between the two resources. The third resource
may have an independent or dependent relationship between each of the other
two resources.

3. Dan Klyn, “Understanding Information Architecture,” TUG, https://understandinggroup.com/ia-theory/
understanding-information-architecture.

https://understandinggroup.com/ia-theory/understanding-information-architecture
https://understandinggroup.com/ia-theory/understanding-information-architecture

Chapter 6 API Modeling88

Book Resource

Property Name Description

title The book title

isbn The unique ISBN
of the book

authors List of Book
Author resources

Cart Resource

Property Name Description

books The books currently in
the cart for purchase

subtotal The total cost of all
books in the cart

salesTax The sales tax to be
applied

vatTax Any value-added tax
to be applied

cartTotal The total cost
of the cart

Book Author Resource

Property Name Description

fullName The full name of
the author

Is this an
independent
relationship?

Where does
quantity go?

Independent

Figure 6.6 Reviewing the resource relationships introduces a challenge: where does the quantity
of books belong?

Figure 6.6 shows the resources identified for the Shopping API, along with pos-
sible relationships. The relationship between a Book resource and Book Author
resource is independent. There may be a reference between them, but each one exists
independently of the other.

Notice in Figure 6.6 that a question needs to be addressed regarding where the
quantity is specified when a book is added to a cart. This issue needs to be explored
further. When a book is added to a cart, additional details that may be important include
the quantity and the price of each book. This indicates an associative relationship that
requires a new resource, in this case a Cart Item. The result is shown in Figure 6.7.

The operation addB ook ToC art() is renamed addI temToC art() , and remov eB ook -
F romC art() is renamed remov eI temF romC art() to reflect the introduction of the Cart
Item resource, as shown in Figure 6.8.

Step 4: Add Operation Events

When the API taxonomy is completed, expand each API operation with the significant
events that it will emit. These events may be used for data analytics purposes or as
events that other systems may react to when they occur because of the operation.

The EventStorming canvas, created during the Align phase of the project, provides
a starting point for important business events that were captured using the color-
coded domain event sticky notes. If you didn’t use EventStorming, capture the events
as they are identified during the modeling process.

The API Modeling Process 89

Fi
g

ur
e

6.
7

A
 n

ew
 re

so
ur

ce
, C

ar
t I

te
m

, i
s

ad
de

d
be

ca
us

e
of

 th
e

as
so

ci
at

iv
e

re
la

ti
on

sh
ip

 b
et

w
ee

n
Bo

ok
 a

nd
 C

ar
t.

ca
rtT

ot
al

Th
e

to
ta

l c
os

t o
f t

he
ca

rt

sa
le

sT
ax

Th
e

sa
le

s
ta

x
to

 b
e

ap
pl

ie
d

va
tT

ax
An

y
va

lu
e-

ad
de

d
ta

x
to

be
 a

pp
lie

d

B
o

o
k

R
es

o
ur

ce

P
ro

p
er

ty
 N

am
e

D
es

cr
ip

tio
n

tit
le

Th
e

bo
ok

 ti
tle

is
bn

Th
e

un
iq

ue
 IS

BN
of

 th
e

bo
ok

au
th

or
s

Li
st

 o
f B

oo
k

Au
th

or
 re

so
ur

ce
s

C
ar

t
It

em
 R

es
o

ur
ce

P
ro

p
er

ty
 N

am
e

D
es

cr
ip

tio
n

bo
ok

Th
e

bo
ok

s
cu

rr
en

tly
 in

th

e
ca

rt
fo

r p
ur

ch
as

e

As
so

ci
at

iv
e

qt
y

Th
e

qu
an

tit
y

of
 th

e
ite

m
in

 th
e

ca
rt

(d
ef

au
lt

1)

un
itP

ric
e

Th
e

un
it

pr
ic

e
re

pr
es

en
te

d
as

 a
 w

ho
le

nu
m

be
r.

Fo
r e

xa
m

pl
e,

$1
.9

9
US

D
 w

ou
ld

 b
e

19
9

B
o

o
k

A
ut

ho
r

R
es

o
ur

ce

P
ro

p
er

ty
 N

am
e

D
es

cr
ip

tio
n

fu
llN

am
e

Th
e

fu
ll

na
m

e
of

th
e

au
th

or

In
d

ep
en

d
en

t

In
d

ep
en

d
en

t

D
ep

en
d

en
t

C
ar

t
R

es
o

ur
ce

P
ro

p
er

ty
 N

am
e

D
es

cr
ip

tio
n

ca
rtI

te
m

s
Th

e
ite

m
s

cu
rr

en
tly

 in
th

e
ca

rt
fo

r p
ur

ch
as

e

su
bt

ot
al

Th
e

to
ta

l c
os

t o
f

al
l b

oo
ks

 in
 th

e
ca

rt

Chapter 6 API Modeling90

Fi
g

ur
e

6.
8

T
he

 S
ho

pp
in

g
A

PI
 p

ro
fil

e,
 re

vi
se

d
to

 re
fle

ct
 th

e
in

tr
od

uc
ti

on
 o

f
th

e
C

ar
t I

te
m

 re
so

ur
ce

.

S
ho

p
p

in
g

 A
P

I—
S

up
p

o
rt

s
th

e
b

o
o

k
b

ro
w

si
ng

 e
xp

er
ie

nc
e

an
d

 c
ar

t m
an

ag
em

en
t

P
ub

lic

O
p

er
at

io
n

N
am

e
D

es
cr

ip
tio

n
P

ar
tic

ip
an

ts
R

es
o

ur
ce

(s
)

E
m

itt
ed

 E
ve

nt
s

O
p

er
at

io
n

D
et

ai
ls

lis
tB

oo
ks

()
Li

st
 b

oo
ks

 b
y

ca
te

go
ry

or

 re
le

as
e

da
te

C
us

to
m

er
,

C
al

l C
en

te
r

B
oo

k,
 B

oo
k

A
ut

ho
r

se
ar

ch
B

oo
ks

()
S

ea
rc

h
fo

r b
oo

ks
 b

y

au
th

or
, t

itl
e

C
us

to
m

er
,

C
al

l C
en

te
r

B
oo

k,
 B

oo
k

A
ut

ho
r

vi
ew

B
oo

k(
)

V
ie

w
 b

oo
k

de
ta

ils
C

us
to

m
er

,
C

al
l C

en
te

r
B

oo
k

ad
dI

te
m

To
C

ar
t(

)
A

dd
 a

 b
oo

k
to

 th
e

 cu
st

om
er

’s
 c

ar
t

C
us

to
m

er
,

C
al

l C
en

te
r

C
ar

t I
te

m
, C

ar
t

re
m

ov
eI

te
m

Fr
om

C
ar

t(
)

R
em

ov
e

a
bo

ok
 fr

om

th
e

cu
st

om
er

’s
 c

ar
t

C
us

to
m

er
,

C
al

l C
en

te
r

C
ar

t I
te

m
, C

ar
t

cl
ea

rC
ar

t(
)

R
em

ov
e

al
l b

oo
ks

 fr
om

th

e
cu

st
om

er
’s

 c
ar

t
C

us
to

m
er

,
C

al
l C

en
te

r
C

ar
t

vi
ew

C
ar

t(
)

V
ie

w
 th

e
cu

rr
en

t c
ar

t
an

d
to

ta
l

C
us

to
m

er
,

C
al

l C
en

te
r

C
ar

t

The API Modeling Process 91

Event names should be presented in past tense and should apply the preferred
standards and practices used within the organization. Figure 6.9 expands the previ-
ous model with events that each operation will emit. Notice the past-tense naming in
the Emitted Events column.

The API profile now reflects the events that the identified operations will emit.
Some operations may emit only one event, some more than one event, and some may
not need to emit any event at all.

Step 5: Expand Operation Details

The final step is to expand the details of each operation to include important input
and output details. Don’t be too concerned with capturing everything at this point,
as it is unnecessary. Focus on the essential input and output resources and
parameters necessary to convey understanding across the team. There is no need to
capture the type of each property or define a schema in the API model at this stage.
Avoid being overly concerned with finding every parameter, as there will be plenty
of time during the design phase to capture the complete design. If necessary, use a
“parking lot” to capture important items that will need to be addressed as the
design emerges.

An additional level of detail that is used to inform the upcoming API design is the
matter of operations being synchronous or asynchronous. Synchronous APIs operate
in a traditional request/response manner common to HTTP. Asynchronous APIs
operate in the background rather than providing an immediate result. Asynchronous
APIs are discussed in detail in Chapter 9, “Messaging, Streaming, and Event-Based
Async APIs.” For now, note the synchronous nature of each operation.

An often-overlooked detail for operations is safety. Safety and idempotence are
important concerns when selecting the appropriate HTTP method. Each HTTP
method specification describes the safety and idempotence that a server must
implement. Safety classifications are also important for clients to consider as part of
their error-handling code.

There are three classifications of safety for HTTP operations:

1. Safe: The operation does not make any state changes to the target resource(s).
This safety classification is assigned to all read-based (GET) operations.

 2. Idempotent: The operation makes state changes to the target resource(s),
but if the operation is executed with the same input, it will produce the same
result. This is important, as it informs API clients if they can reissue a request
that previously failed, without additional side effects. This safety classification
is assigned to replace and delete operations (PU T and D EL ETE).

Chapter 6 API Modeling92

S
ho

p
p

in
g

 A
P

I—
S

up
p

o
rt

s
th

e
b

o
o

k
b

ro
w

si
ng

 e
xp

er
ie

nc
e

an
d

 c
ar

t m
an

ag
em

en
t

P
ub

lic

O
p

er
at

io
n

N
am

e
D

es
cr

ip
tio

n
P

ar
tic

ip
an

ts
R

es
o

ur
ce

(s
)

E
m

itt
ed

 E
ve

nt
s

O
p

er
at

io
n

D
et

ai
ls

lis
tB

oo
ks

()
Li

st
 b

oo
ks

 b
y

ca
te

go
ry

or

 re
le

as
e

da
te

C
us

to
m

er
,

C
al

l C
en

te
r

B
oo

k,
 B

oo
k

A
ut

ho
r

B
oo

ks
.L

is
te

d

se
ar

ch
B

oo
ks

()
S

ea
rc

h
fo

r b
oo

ks
 b

y
au

th
or

, t
itl

e
C

us
to

m
er

,
C

al
l C

en
te

r
B

oo
k,

 B
oo

k
A

ut
ho

r
B

oo
ks

.S
ea

rc
he

d

vi
ew

B
oo

k(
)

V
ie

w
 b

oo
k

de
ta

ils
C

us
to

m
er

,
C

al
l C

en
te

r
B

oo
k

B
oo

k.
V

ie
w

ed

ad
dI

te
m

To
C

ar
t(

)
A

dd
 a

 b
oo

k
to

 th
e

 cu
st

om
er

’s
 c

ar
t

C
us

to
m

er
,

C
al

l C
en

te
r

C
ar

t I
te

m
, C

ar
t

C
ar

t.I
te

m
A

dd
ed

re
m

ov
eI

te
m

Fr
om

C
ar

t(
)

R
em

ov
e

a
bo

ok
 fr

om

th
e

cu
st

om
er

’s
 c

ar
t

C
us

to
m

er
,

C
al

l C
en

te
r

C
ar

t I
te

m
, C

ar
t

C
ar

t.I
te

m
R

em
ov

ed

cl
ea

rC
ar

t(
)

R
em

ov
e

al
l b

oo
ks

 fr
om

th

e
cu

st
om

er
’s

 c
ar

t
C

us
to

m
er

,
C

al
l C

en
te

r
C

ar
t

C
ar

t.C
le

ar
ed

vi
ew

C
ar

t(
)

V
ie

w
 th

e
cu

rr
en

t c
ar

t
an

d
to

ta
l

C
us

to
m

er
,

C
al

l C
en

te
r

C
ar

t
C

ar
t.V

ie
w

ed

Fi
g

ur
e

6.
9

JS
O

N
’s

Bo
ok

st
or

e’
s

Sh
op

pi
ng

 A
PI

, n
ow

 w
it

h
em

it
te

d
ev

en
ts

 a
dd

ed
 fo

r
ea

ch
 o

pe
ra

ti
on

 in
 th

e
A

PI
 p

ro
fil

e.

Validating the API Model with Sequence Diagrams 93

3. Unsafe: The operation makes state changes to the target resource(s) and can-
not guarantee the same results if called multiple times with the same input.
This safety classification is typically assigned to create and update (POS T and
PATC H) operations.

Review each operation to determine the safety classification type that is required
of the operation. Doing so during API modeling provides additional insights during
the design process.

Figure 6.10 shows the Shopping API example expanded to include input and
output details for each operation, synchronicity, and safety classification.

The API profile may then be finalized by capturing any architectural requirements,
such as SLAs, necessary to support consumers and industry standards that may need
to be considered during design (e.g., adherence to an open banking standard).

Refer to the API workshop examples repository4 available on GitHub for API pro-
file templates and examples to help jumpstart the effort.

Validating the API Model with Sequence Diagrams

The API design team has a responsibility to ensure the APIs will meet the
requirements of everyone using it. This requires two final actions: validating the API
model to ensure no gaps exist and gathering feedback from stakeholders.

Validate the API profiles against the previously produced original job stories and
activities to validate that all requirements have been met. To validate the API model,
create sequence diagrams that demonstrate typical usage scenarios. These scenarios
may be sourced from the EventStorming canvas, job stories, and other sources.
Figure 6.11 shows an example scenario that supports a shopping and checkout
experience using the modeled APIs.

During the validation process, clarify all details to ensure full alignment and
definition of the API scope and operations. If operations are missing to complete the
scenario, revisit the modeling steps to capture the missing operations.

Once the model has been validated, share the model with all stakeholders and
obtain feedback. If API modeling was performed with the entire team, including
business and product stakeholders, then feedback was obtained during the process.
Otherwise, share the produced assets and seek to incorporate feedback prior to
moving into the design phase of the process.

4. https://bit.ly/align-define-design-examples

https://bit.ly/align-define-design-examples

Chapter 6 API Modeling94

Fi
g

ur
e

6.
10

 J
SO

N
’s

Bo
ok

st
or

e
Sh

op
pi

ng
 A

PI
 w

it
h

op
er

at
io

n
de

ta
ils

 a
dd

ed
 to

 th
e

A
PI

 p
ro

fil
e.

S
ho

p
p

in
g

 A
P

I—
S

up
p

o
rt

s
th

e
b

o
o

k
b

ro
w

si
ng

 e
xp

er
ie

nc
e

an
d

 c
ar

t m
an

ag
em

en
t

P
ub

lic

O
p

er
at

io
n

N
am

e
D

es
cr

ip
tio

n
P

ar
tic

ip
an

ts
R

es
o

ur
ce

(s
)

E
m

itt
ed

 E
ve

nt
s

O
p

er
at

io
n

D
et

ai
ls

lis
tB

oo
ks

()
Li

st
 b

oo
ks

 b
y

ca
te

go
ry

or

 re
le

as
e

da
te

C
us

to
m

er
,

C
al

l C
en

te
r

B
oo

k,
 B

oo
k

A
ut

ho
r

B
oo

ks
.L

is
te

d
R

eq
ue

st
 P

ar
am

et
er

s:
 c

at
eg

or
yI

d,
 re

le
as

eD
at

e
R

et
ur

ns
: B

oo
k[

]
sa

fe
 /

sy
nc

hr
on

ou
s

se
ar

ch
B

oo
ks

()
S

ea
rc

h
fo

r b
oo

ks
 b

y
au

th
or

, t
itl

e
C

us
to

m
er

,
C

al
l C

en
te

r
B

oo
k

B
oo

ks
.S

ea
rc

he
d

R
eq

ue
st

 P
ar

am
et

er
s:

 s
ea

rc
hQ

ue
ry

R
et

ur
ns

: B
oo

k[
]

sa
fe

 /
sy

nc
hr

on
ou

s

vi
ew

B
oo

k(
)

V
ie

w
 b

oo
k

de
ta

ils
C

us
to

m
er

,
C

al
l C

en
te

r
B

oo
k

B
oo

k.
V

ie
w

ed
R

eq
ue

st
 P

ar
am

et
er

s:
 b

oo
kI

d
R

et
ur

ns
: B

oo
k

sa
fe

 /
sy

nc
hr

on
ou

s

ad
dI

te
m

To
C

ar
t(

)
A

dd
 a

 b
oo

k
to

 th
e

 cu
st

om
er

’s
 c

ar
t

C
us

to
m

er
,

C
al

l C
en

te
r

C
ar

t I
te

m
, C

ar
t

C
ar

t.I
te

m
A

dd
ed

R
eq

ue
st

 P
ar

am
et

er
s:

 c
ar

tId
, b

oo
kI

d,
 q

ua
nt

ity
R

et
ur

ns
: C

ar
t

un
sa

fe
 /

sy
nc

hr
on

ou
s

re
m

ov
eI

te
m

Fr
om

C
ar

t(
)

R
em

ov
e

a
bo

ok
 fr

om

th
e

cu
st

om
er

’s
 c

ar
t

C
us

to
m

er
,

C
al

l C
en

te
r

C
ar

t I
te

m
, C

ar
t

C
ar

t.I
te

m
R

em
ov

ed
R

eq
ue

st
 P

ar
am

et
er

s:
 c

ar
tIt

em
Id

R
et

ur
ns

: C
ar

t
id

em
po

te
nt

 /
sy

nc
hr

on
ou

s

cl
ea

rC
ar

t(
)

R
em

ov
e

al
l b

oo
ks

 fr
om

th

e
cu

st
om

er
’s

 c
ar

t
C

us
to

m
er

,
C

al
l C

en
te

r
C

ar
t

C
ar

t.C
le

ar
ed

R
eq

ue
st

 P
ar

am
et

er
s:

 c
ar

tId
R

et
ur

ns
: C

ar
t

sa
fe

 /
sy

nc
hr

on
ou

s

vi
ew

C
ar

t(
)

V
ie

w
 th

e
cu

rr
en

t c
ar

t
an

d
to

ta
l

C
us

to
m

er
,

C
al

l C
en

te
r

C
ar

t
C

ar
t.V

ie
w

ed
R

eq
ue

st
 P

ar
am

et
er

s:
 c

ar
tId

R
et

ur
ns

: C
ar

t
sa

fe
 /

sy
nc

hr
on

ou
s

Evaluating API Priority and Reuse 95

listB ook s()

Customer Shopping API Order Creation
API

Payment Processing
API

Customer Shopping API Order Creation
API

Payment Processing
API

B ook []

addB ook ToC art(b ook ld)

C art

remov eB ook F romC art(b ook ld)

search B ook s(search Q u ery)

B ook []

addB ook ToC art(b ook ld)

C art

v iew C art()

C art

Order

PaymentD etails

createOrderF romC art(cartld)

payF orOrder(orderld)

Figure 6.11 JSON’s Bookstore’s Place an Order job story, represented as a sequence diagram
to ensure all operations were identified as part of the API modeling process to implement job
story outcomes and associated activities.

Evaluating API Priority and Reuse

Not every API has equal weight in the delivery schedule. A sizing exercise is an
optional step before moving into API design. The results of this exercise help teams
avoid building APIs unnecessarily or in the wrong priority order.

Chapter 6 API Modeling96

First, assess the business and competitive value that the API offers. Ask the
following questions to assess the value that each API brings:

 • Does the API help provide a competitive advantage over other market offerings?

 • Does the API reduce the cost of doing business, perhaps by reducing manual
processes?

 • Does the API create a new revenue stream or improve an existing revenue
stream?

 • Is the API producing business intelligence, market insights, or decisioning
factors?

 • Does the API automate repetitive tasks that free the organization for more
critical business functions?

If the answer to all the questions is no, then the value produced is low. Answering
yes to one or more questions results in the API offering value to the business or
marketplace.

Next, size the effort to build each API from scratch. One approach is to use a
relative sizing approach by classifying the APIs as small, medium, or large. Consider
the details surfaced during EventStorming and write activity steps to roughly
estimate the size and complexity to build the API from the ground-up.

Finally, determine if there are existing APIs that could be leveraged or extended.
These APIs may be commercial off-the-shelf (COTS) APIs, internal APIs produced
by another team, or open-source solutions that could be leveraged to speed delivery.
Organizations often forget this step, resulting in wasted time and effort building
duplicate or noncore APIs. Performing this step encourages organizations to reuse
APIs first and build new APIs only when necessary.

Figure 6.12 shows a tabular format that captures examples of these details for
JSON’s Bookstore API profiles modeled in this chapter.

Summary

API modeling helps to bring together the insights and artifacts produced in the Align
phase of the design process into a model that describes the scope and intent of the
APIs required. Review the following checklist to ensure nothing was missed:

 • Resource taxonomies identify the properties of each resource along with the
relationships and dependencies among them.

Summary 97

A
P

I P
ro

fil
e

B
us

in
es

s
an

d
C

o
m

p
et

iti
ve

 V
al

ue
In

-H
o

us
e

B
ui

ld
 E

ff
o

rt
E

xi
st

in
g

 In
te

rn
al

/T
hi

rd
-P

ar
ty

 A
P

Is

S
ho

pp
in

g
A

P
I

M
ed

iu
m

M
ed

iu
m

Th
ird

-p
ar

ty
 e

S
to

re
 s

ol
ut

io
ns

 (h
ig

h
co

m
pl

ex
ity

 to

cu
st

om
iz

e
an

d
ad

d
ou

r i
nt

er
na

l r
ec

om
m

en
da

tio
n

en
gi

ne
 s

up
po

rt
)

O
rd

er
 C

re
at

io
n

A
P

I
M

ed
iu

m
M

ed
iu

m
Th

ird
-p

ar
ty

 o
rd

er
 p

ro
ce

ss
in

g
A

P
Is

 (m
ay

 in
cl

ud
e

fu
lfi

llm
en

t
su

pp
or

t a
ls

o)

P
ay

m
en

t P
ro

ce
ss

in
g

A
P

I
S

m
al

l
La

rg
e

Va
rio

us
 th

ird
-p

ar
ty

 p
ay

m
en

t p
ro

ce
ss

or
s

Fi
g

ur
e

6.
12

 A
 s

iz
in

g
an

d
pr

io
ri

ti
za

ti
on

 e
ffo

rt
 fo

r
th

e
cu

rr
en

t s
et

 o
f

JS
O

N
’s

Bo
ok

st
or

e’
s

A
PI

 p
ro

fil
es

 c
ap

tu
re

d
du

ri
ng

 A
PI

 m
od

el
in

g.

Chapter 6 API Modeling98

 • API profiles are created to offer a high-level specification of each API, inde-
pendent of how the APIs will be designed and implemented.

 • Sequence diagrams help to validate how the APIs deliver the outcomes cap-
tured in the job stories.

 • Sizing and prioritization help to ensure that APIs are reused when possible
and built when necessary.

By spending time modeling APIs, teams can clearly articulate the needs of each
API. They are also able to identify the effort involved in building them from scratch
and to consider internal or third-party APIs that may meet requirements. Reusing
existing APIs saves weeks or months of delivery effort.

With API modeling complete, the Define phase of the ADDR process has reached
an end. The API Design phase is next. This phase migrates the API profiles into a
specific API style. Chapter 7 shows how to use API profiles to inform the design
of a REST-based API. If the target API style is not REST, feel free to jump to the
appropriate chapter.

99

Part IV

Designing APIs

Now that APIs have been modeled as part of the Define phase, the team has a better
understanding of the scope of each API and the operations it needs to support to
realize the desired outcomes. The next phase of the Align-Define-Design-Refine
(ADDR) process is to migrate the modeled API profiles into API designs.

There are many choices of API styles, from REST to RPC and beyond. This
section details a step-by-step process on producing a high-level design using the
artifacts created during the Align and Define phases of the process. Feel free to
jump to the specific chapter needed to apply the API style of choice.

This page intentionally left blank

101

Chapter 7

REST-Based API Design

The REST interface is designed to be efficient for large-grain hypermedia data
transfer, optimizing for the common case of the Web, but resulting in an interface
that is not optimal for other forms of architectural interaction.

— Roy Thomas Fielding

ADDR
PROCESS

Align

Design

Refine Define

4. Model API
Profiles

5. High-Level
Design

6. Refine
the Design

7. Document
the API

2. Capture
Activity
Steps

3. Identify
API

Boundaries

1. Identify
Digital

Capabilities

Figure 7.1 The Design phase offers several options for API styles. This chapter covers REST-
based API design.

Chapter 7 REST-Based API Design102

As teams move from the modeling to the design phase, they are faced with a variety
of decisions. Some of these will resolve easily, while others will take time and delib-
eration. Just know that it is difficult to get an API design right the first time. There-
fore, teams are encouraged to spend time designing and prototyping their APIs to
gain feedback from early adopters before coding begins.

This chapter presents an overview of REST, along with a step-by-step process
for migrating an API profile, created during the API modeling phase, into a
REST-based API design. Along the way, various decisions and common design
patterns are explored. The result will be a high-level API design (Figure 7.1) that
applies REST-based principles.

Principle 3: Select the API design elements that match the need

Trying to find the perfect API style is a fruitless endeavor. Instead, seek to
understand and apply the API elements appropriate for the need, whether that
is REST, GraphQL, gRPC, or an emerging style just entering the industry. The
next three chapters provide insights into popular API styles to help teams select
the right style or styles that fit the need. The chapters discuss when to apply
each style, when to select synchronous or asynchronous interaction models, and
whether to offer SDK libraries.

What Is a REST-Based API?

Representational State Transfer (REST) is an architectural style for distributed
hypermedia systems. Unlike HTTP, REST is not a specification that is managed by a
standards group. The term was coined by Roy Thomas Fielding in his PhD
dissertation, “Architectural Styles and the Design of Network-based Software
Architectures.”1 This paper outlines the core concepts and constraints for
understanding an architectural style and how these constraints were applied in
varying degrees to architect the World Wide Web.

When discussing REST APIs or REST-based APIs, many people reference
Fielding’s work without realizing that it extends far beyond Web-based APIs.
The paper seeks to establish fundamental constraints for designing evolvable and
scalable distributed systems. Those interested in software architecture, particularly
distributed software, should read Fielding’s paper as part of their studies.

1. Roy Thomas Fielding, “Architectural Styles and the Design of Network-based Software Architectures”
(PhD diss., University of California, 2000), https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm.

https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

What Is a REST-Based API? 103

The paper does not require the use of HTTP as the underlying protocol for
REST-based architecture. It does, however, discuss how the authors of the HTTP
specification relied on the outlined architectural constraints to make it more
evolvable. Because HTTP is the protocol of choice for most network-based APIs,
the details offered in this and later chapters rely on HTTP as the protocol of
choice.

The set of architectural properties outlined in Fielding’s paper serve to establish
constraints to create agreement around flexibility and evolvability when applied to
distributed systems, including network-based APIs:

 • Client/server: The client and the server act independently, and the interaction
between them is only in the form of requests and responses.

 • Stateless: The server does not remember anything about the user who uses
the API, so all necessary information to process the request must be pro-
vided by the client on each request. Note: This isn’t about storing server-
side state.

 • Layered system: The client is agnostic as to how many layers, if any, there are
between the client and the actual server responding to the request. This is a key
principle of HTTP, allowing for client-side caching, caching servers, reverse
proxies, and authorization layering—all transparent to the client sending the
request.

 • Cacheable: The server response must contain information about whether or
not the data is cacheable, allowing the client and any middleware servers to
cache data outside of the API server.

 • Code on demand (optional): The client can request code from the server, usu-
ally in the form of a script or binary package, for client-side execution. This is
performed today by browsers requesting JavaScript files to extend the behavior
of a Web page. Code on demand is an opportunity for API teams to provide
JavaScript files for clients to retrieve that perform form validation and other
responsibilities. Thus, evolvability can be extended to clients through code on
demand.

 • Uniform interface: Encourages independent evolvability by leaning on
resource-based identification, interaction using representations, self-descriptive
messages, and hypermedia controls.

The architectural constraints outlined in Fielding’s paper are important when
considering the design of a Web-based API. When taken together, these constraints
contribute to the design of evolvable Web APIs.

Chapter 7 REST-Based API Design104

REST Was Never about CRUD

As already mentioned, REST is not a specification or a protocol. Contrary to
popular opinion, a REST-based API does not require JSON or the use of the
create-read-update-delete (CRUD) pattern of data interaction. REST is simply
a set of constraints and agreements on how the individual components should
work together. This offers flexibility to address architectural issues. Many of
today’s Web-based APIs use JSON and the CRUD pattern as design elements.

Unfortunately, a challenge emerges when people apply the REST label to an
API that uses CRUD and JSON but may not intentionally apply the constraints
as originally described in Fielding’s paper. This has resulted in many disagree-
ments on what is “RESTful” and whether something is “REST enough.”

Frankly, these disagreements are not beneficial. Instead, it is best to approach
an API labeled as RESTful or REST-based with a mindset of grace and under-
standing that not everyone has read and fully applied the original REST paper.
Use the opportunity to gently coach teams on how their architecture and API
design can be improved over time. Whatever you do, please don’t use the oppor-
tunity to show how much more you know about REST than they do.

REST Is Client/Server

The client/server architecture is an essential REST constraint. The server hosts
available resources, supporting operations through synchronous, message-based
interactions that use one or more representations as the client interacts with it.

Separating the client and server allows the user interface of the client to change
over time. New devices and interface styles may be used without requiring changes
to the server.

Most important is that the client is able to evolve independently of the server.
The server may offer new resources or additional representation formats without
negatively impacting the client. This is fundamental to why APIs may be offered as
products, with or without a preexisting user interface provided by the vendor.

REST Is Resource-Centric

The key abstraction of information in REST is a resource. As mentioned in Chapter 1,
“The Principles of API Design,” a resource consists of a unique name or identifier that
can reference documents, images, collections of other resources, or a digital
representation of anything in the real world, such as a person or thing.

What Is a REST-Based API? 105

Resource representations capture the current state or intended state of a resource.
Every resource must support at least one representation format but may support
more than one. These representations may include a data format such as JSON,
XML, CSV, PDF, image, and other media types.

The representation formats supported for any given resource may vary depending
on the needs of the client. For example, JSON may be a default media format offered
by a REST-based API. However, some resources may need to be manipulated in a
spreadsheet and therefore offer an alternative CSV-based representation of the same
resource.

For example, a resource may represent a person named Vaughn Vernon. The
resource may have one or several representations. There may be a JSON-based
representation, along with an XML representation. If a historical record is kept of
all changes, each change may also exist as a representation that is available in JSON
and XML media formats.

REST Is Message Based

Readers of Fielding’s dissertation may have noticed that it focuses on the message
exchange between client and server. Notice the use of the terms REST messages and
self-descriptive messages in the paper. REST-based API design goes beyond the prop-
erties within a JSON or XML representation.

A resource representation is the message body within the overall message.
Transport protocol design is also part of a complete REST-based API design. The
URL path, URL query parameters, and HTTP request/response headers must all be
considered as part of the design process. Focusing only on the message body results
in an incomplete design.

The combination of the HTTP method, URL, request headers, and request body
is a command message sent from the client to the server. It tells the server what you
would like to do. The response headers, response status code, and response payload
comprise the reply message to the client. When developers think of REST-based
APIs as exchanging messages with clients, their API designs become more capable of
evolving over time as the message evolves and the API grows and matures.

REST Supports a Layered System

The REST architecture style is a layered system, which means that a client should
not be built on the assumption it is communicating directly with the server. There
may be multiple middleware layers between the client and server that offer caching,
logging, access controls, load balancing, and other infrastructure needs, as shown
in Figure 7.2.

Chapter 7 REST-Based API Design106

Figure 7.2 REST supports a layered architecture, allowing middleware servers to exist
between the client and server.

Logging

Client

API Implementation

OAuth

CDN / EdgeCache

Rate Limiting

Caching

Custom

Your Code

Network Infra

API Management Layer

Client Cache

HTTP

HTTP

HTTP

HTTP

Load Balancer

What Is a REST-Based API? 107

REST Supports Code on Demand

Code on demand is a powerful but underutilized constraint. When a client requests a
resource, it may also request code to act upon it. The client does not have to know
what is in the code, it just has to understand how to execute it. The primary benefit is
that the API can extend itself without requiring the client applications to perform a
specific upgrade.

This technique is something that browsers do every day by downloading
JavaScript files to execute locally within the browser. The browser does not need
to know what is in the JavaScript files it downloads, only that they require the
built-in JavaScript engine and therefore may be executed within the confines of the
security sandbox offered by the browser. As new features and functionality become
available, they are immediately available to the user without requiring a browser
upgrade.

While used heavily by Web-based applications, this REST constraint is one
of the least utilized for REST-based Web APIs but one of the most powerful.
Imagine an API that offers the option of downloading code to create Web forms
and client-side validation behavior without the need to code and maintain it on
the client side!

Hypermedia Controls

A hypermedia API is one driven by self-descriptive links in the representation.
These links point to other, related API operations that reference related resources.
They may also be used to reference other possible uses of the API, commonly
referred to as affordances. Fielding considered hypermedia important to a REST-
based architecture.

APIs that use hypermedia controls extend the conversation between client
and server by offering runtime discovery of operations. They may also be used to
convey server-side state to the client through the presence or absence of links in the
representation. This powerful concept is explored later in this section.

Hypermedia controls help connect the dots of various resources within and
across APIs, making it operate more like the Web. Imagine using a search engine
to find some results, only to never be offered links to click to explore the results.
Unfortunately, that is the way most design their APIs, offering only data and not
hypermedia controls that afford the client the opportunity to explore the depth of
the data and operations offered by the API.

Chapter 7 REST-Based API Design108

A common use of hypermedia controls includes pagination, as shown in this
Hypertext Application Language (HAL)-based response:

{

 "_ link s": {

 "self ": {"h ref ": "/projects" },

 "nex t": {"h ref ": "/projects? since= d26 6 f 6 cd& max R esu lts= 20" },

 "prev ": {"h ref ": "/projects? since= 43b e8 07 d& max R esu lts= 20" },

 "f irst": {"h ref ": "/projects? since= ef 2426 6 a& max R esu lts= 20" },

 "last": {"h ref ": "/projects? since= 4e8 c7 4b e& max R esu lts= 20" },

 }

}

API clients can be designed to use the nex t link to follow the search results page
by page until the next link is no longer present, indicating all search results have been
processed.

APIs that offer hypermedia controls help to create context-driven responses.
These controls are able to indicate what operations are possible, or not possible,
based on the presence or absence of hypermedia links. This capability avoids the
need to send Boolean fields or state-related fields that the client interprets to decide
what actions may be taken. Instead, the server determines this ahead of time and
conveys what can and cannot be done by the presence or absence of the links
provided.

What Is HATEOAS?

Hypermedia as the engine of application state, or HATEOAS, is a con-
straint within REST that originated in Fielding’s dissertation. It describes the
absence or presence of links as indicators of what operations the client may
perform. Because the server understands both the user executing the oper-
ation and the authorization requirements of the operation itself, it is better
positioned to determine what the client is able to do. Without this constraint,
clients are required to reimplement the same server-side business logic and
keep that logic in sync at all times.

It is important to note that Fielding has expressed a preference to use the
term hypermedia controls rather than HATEAOS. Through the remainder of
the book, the term hypermedia controls will be used in place of HATEOAS
for clarity.

What Is a REST-Based API? 109

Following is an example HAL-based response for an article within a content
management system that offers hypermedia links to valid operations based on the
status of the article and the user’s role as an author:

{

 "articleI d":"12345",

 "statu s":"draf t",

 "_ link s": [

 { "rel":"self ", "u rl":"..."},

 { "rel":"u pdate", "u rl":"..."},

 { "rel":"su b mit", "u rl":"..."}

] ,

 "au th ors": [...] ,

 ...

}

Once the author is ready to submit the article for editorial review, the editor
would retrieve the article and receive the following actions based on the submitted
status of the article and the editor’s role:

{

 "articleI d":"12345",

 "statu s": "su b mitted",

 "_ link s": [

 { "rel":"self ", "u rl":"..."},

 { "rel":"reject", "u rl":"..."},

 { "rel":"approv e", "u rl":"..."}

] ,

 "au th ors": [...] ,

 ...

}

Hypermedia controls have big implications for API-driven workflows that use
context-driven hypermedia controls. They help to reduce the amount of business
logic that has to be repeated in the client to mimic intended server behavior. Without
them, the client would need to be coded to know what actions are allowed based
on the status of the article and the role of the user. Instead, the client may be coded
to look for specific hypermedia links that indicate if specific buttons are displayed
or disabled for the end user, avoiding the need to keep in sync with the server-side
business logic. This ensures the API is evolvable without breaking client code.

Chapter 7 REST-Based API Design110

REST-based APIs offer four primary hypermedia control types:

1. Index hypermedia controls: Offer a list of all available API operations,
typically as an API homepage

2. Navigation hypermedia controls: Include pagination links within payload
responses or by using the L ink header

 3. Relationship hypermedia controls: Links that indicate relationships with
other resources or for master-detail relationships

 4. Context-driven hypermedia controls: Server state that informs the client
what actions are available

It is important to note that any API style that does not encourage a unique URL
per resource is unable to take advantage of hypermedia controls. This is the case for
GraphQL and gRPC API styles, detailed in Chapter 8, “RPC- and Query-based API
Design,” along with older network API styles and messaging specifications such as
SOAP and XML-RPC.

Measuring REST Using the Richardson Maturity Model

The Richardson Maturity Model, or RMM for short, is a maturity model
created by Leonard Richardson that describes four levels of REST-based API
design maturity. The four levels are generally defined as the following:

 • Level 0: A single API operation, or endpoint, that receives all requests.
Further, the name of the desired action is reflected with some sort of
action parameter or even embedded within the payload of the request
(e.g., POS T /api? op= g etProjects)

 • Level 1: Incorporation of resource-based design through URL-based
naming but with additional action parameters where needed (e.g., GET
/projects? id= 12345)

 • Level 2: Addition of properly applied HTTP methods, such as GET,
POS T, PU T, and response codes to improve client/server interaction

 • Level 3: Self-descriptive APIs that include hypermedia controls
to suggest related resources and client affordances based on server-
side state

What Is a REST-Based API? 111

RMM was meant to be used as a general classification of an API’s improve-
ment as designers seek to reach a design that uses hypermedia controls.
Unfortunately, it has been used to denigrate the efforts of designers by prov-
ing that an API labeled as REST-based has not met sufficient criteria to be
truly labeled as REST.

Richardson addressed the confusion and intent of RMM in a 2015 REST
Fest talk titled “What Have I Done?”2 Richardson described the whole idea
of RMM as “very embarrassing” and said it was meant simply as one possi-
ble measurement of improvement and maturity when attempting to target a
hypermedia API. It was not meant to be a canonical method of classifying all
APIs as REST-compliant. Instead, design to meet the needs of clients rather
than trying to measure a specific level of design maturity.

2. Leonard Richardson, “What Have I Done?” (lecture, REST Fest, Greenville, SC, September 18, 2015).

When to Choose REST

Fielding’s dissertation explicitly defines REST as an architectural style for course-
grained data transfer:

The REST interface is designed to be efficient for large-grain hypermedia data transfer,
optimizing for the common case of the Web, but resulting in an interface that is not
optimal for other forms of architectural interaction.

While Fielding doesn’t define large grain explicitly, the Web is a good example. An
HTML page is sent as a single, complete resource. It is not split into separate assets
and retrieved separately. Once the HTML resource has been received and parsed, all
referenced images, JavaScript, and style sheets are retrieved individually.

REST is a good architectural style choice when the interaction level requires
course-grained resources over HTTP. This is common for APIs exposed over
the Internet that may encounter additional network latency or unpredictable
connectivity.

For finer-grained interaction styles, RPC or other styles may be a better fit. Some
RPC styles offer improved performance and long-running connections that do not
meet the REST constraints outlined by Fielding. This includes the choice of gRPC
and asynchronous API styles, discussed in Chapter 8 and Chapter 9, “Messaging,
Streaming, and Event-Based Async APIs,” for service-to-service and client-to-service
interactions.

Chapter 7 REST-Based API Design112

In addition, many organizations default to REST for their API style choice when
offering customer- and partner-facing Web APIs. Most select the REST-based API
style internally because of the abundance of tooling, infrastructure, operational, and
management support. Because REST builds on the patterns of the Web, it is familiar
to developers, easily managed by ops teams, and offers an abundance of tools and
libraries for producing and consuming APIs.

REST API Design Process

Now that one or more APIs have been modeled, as described in Chapter 6, “API
Modeling,” it is time to start the API design process. While the goal of API modeling
is to explore and capture the API requirements into a series of API profiles, the API
design process maps the API profiles into HTTP using the REST-based principles
discussed earlier in this chapter. Because most of the effort involved in API design
was focused on modeling the API to produce the API profile, there are five quick
steps to a high-level API design.

Step 1: Design Resource URL Paths

The first step uses the API resources and resource relationships identified in the API
modeling process, captured previously in Figure 6.7 of Chapter 6. Migrate the list of
resources identified in the API profile into a tabular list, as shown in Figure 7.3. For
dependent resources, indent the name slightly to denote the relationship. This will
help when establishing the URL paths for each resource.

Next, convert each resource name into a URL-friendly name using all lowercase
letters and using hyphens in place of spaces. Start the path with a leading slash,
followed by the resource name in pluralized form to denote that this is a collection of
resource instances.

Figure 7.3 Begin by migrating the list of resources from the API profile created during
modeling into a preliminary API design. Note that Cart Items is a dependent relationship, as
detailed in Chapter 6, so it is indented slightly.

Resource Path

Books

Book Authors

Carts

 Cart Items

REST API Design Process 113

Dependent resources are nested under the parent, requiring the parent identifier
in the path to interact with the dependent resources.

A Warning about Dependent Resources

It is common to see a considerable number of dependent resources when APIs
are designed from the bottom up from a relational database or by using a
relational style to resource design.

Nesting dependent resources is for constraining the navigability of chil-
dren to the scope of the parent. While it may be tempting to create dependent
resources, keep in mind that each nested level requires the API consumer to
include the parent identifier in the path. For example:

GET /u sers/{u serI d}/projects/{projectI d}/task s/{task I d}

For an API consumer to retrieve a task by a given identifier, it also needs
to have the parent project and user identifiers. This places additional work on
the client to track these parent identifiers.

Nesting dependent resources is a useful design option but should be used
only when it improves the usability of the API.

The results are shown in Figure 7.4. Notice that the resource collections are plural
names. While not required, this convention is commonly found with REST APIs.

Migrate the list of operations, including their descriptions and request/response
details, into a new tabular format designed to capture the high-level design. This is
shown in Figure 7.5.

Resource Path

/books

/carts

/carts/{cartId}/Items

/authors

Figure 7.4 Convert each resource name into a URL-friendly name with dependent resources
nested under the parent.

Chapter 7 REST-Based API Design114

Fi
g

ur
e

7.
5

M
ig

ra
te

 th
e

A
PI

 p
ro

fil
e’

s
lis

t o
f

op
er

at
io

ns
, d

es
cr

ip
ti

on
s,

 a
nd

 re
qu

es
t/

re
sp

on
se

 d
et

ai
ls

 in
to

 a
 n

ew
 d

es
ig

n-
ce

nt
ri

c
ta

bu
la

r
fo

rm
at

.

R
es

o
ur

ce
 P

at
h

O
p

er
at

io
n

N
am

e
H

T
T

P
 M

et
ho

d
D

es
cr

ip
tio

n
R

eq
ue

st
R

es
p

o
ns

e

/b
oo

ks
lis

tB
oo

ks
()

Li
st

 b
oo

ks
 b

y
ca

te
go

ry

or
 re

le
as

e
da

te
ca

te
go

ry
Id

re
le

as
eD

at
e

B
oo

k[
]

/b
oo

ks
/s

ea
rc

h
se

ar
ch

B
oo

ks
()

S
ea

rc
h

fo
r b

oo
ks

 b
y

au
th

or
, t

itl
e

se
ar

ch
Q

ue
ry

B
oo

k[
]

/b
oo

ks
/{

bo
ok

Id
}

vi
ew

B
oo

k(
)

V
ie

w
 b

oo
k

de
ta

ils
bo

ok
Id

B
oo

k

/c
ar

ts
/{

ca
rt

Id
}

vi
ew

C
ar

t(
)

V
ie

w
 th

e
cu

rr
en

t c
ar

t
an

d
to

ta
l

ca
rt

Id
C

ar
t

/c
ar

ts
/{

ca
rt

Id
}

cl
ea

rC
ar

t(
)

R
em

ov
e

al
l b

oo
ks

 fr
om

th

e
cu

st
om

er
’s

 c
ar

t
ca

rt
Id

C
ar

t

/c
ar

ts
/{

ca
rt

Id
}/

ite
m

s
ad

dI
te

m
To

C
ar

t(
)

A
dd

 a
 b

oo
k

to
 th

e

cu
st

om
er

’s
 c

ar
t

ca
rt

Id
C

ar
t

/c
ar

ts
/{

ca
rt

Id
}/

ite
m

s/
{c

ar
tIt

em
Id

}
re

m
ov

eI
te

m
Fr

om
C

ar
t(

)
R

em
ov

e
a

bo
ok

 fr
om

th

e
cu

st
om

er
’s

 c
ar

t
ca

rt
Id

ca
rt

Ite
m

Id
C

ar
t

/a
ut

ho
rs

ge
tA

ut
ho

rD
et

ai
ls

()
R

et
rie

ve
 th

e
de

ta
ils

 o
f

an
 a

ut
ho

r
au

th
or

Id
B

oo
kA

ut
ho

r

REST API Design Process 115

Step 2: Map API Operations to HTTP Methods

The next step is to determine which HTTP method is appropriate for each opera-
tion. Chapter 6 outlined three safety classifications that each HTTP method may be
assigned: safe, idempotent, or unsafe. Table 7.1 outlines the safety classifications for
common HTTP methods based on their intended use.

During modeling, common verbs were likely identified in the operation name
and/or description of the API profile. These verbs often provide clues to the HTTP
method that best matches the operation. By combining the safety classification of
HTTP methods, as outlined in Table 7.1, with the operation mappings listed in
Table 7.2, the appropriate HTTP method can be selected.

Using Table 7.2 as a reference, along with the list of resource paths created
previously in step 1, assign the appropriate path and HTTP method to each
operation based on the intended usage. If the operation is interacting with a specific
resource instance, include the resource identifier in the path. The results are shown
in Figure 7.6.

Table 7.1 Safety Classifications for Common HTTP Methods

HTTP Method Method Description Safety Classification Safety Description

GET Returns requested data Safe No state changes are made

POS T Used in a variety
of scenarios, from
calculations to creating
new resources

Unsafe Cannot guarantee the same
results for multiple calls with
the same input

PU T Representation from
client used to replace
resource

Idempotent Guarantees the same results
for multiple calls with the
same input as the client
is providing to the entire
resource representation

PATC H Performs a partial
update of a resource

Unsafe Cannot guarantee the same
results for multiple calls
with the same input, as the
client provides only a partial
representation of the resource

D EL ETE Deleted a resource from
the server

Idempotent Multiple calls to delete the
same resource will still result
in the resource being deleted
(even if it doesn’t exist)

Chapter 7 REST-Based API Design116

Table 7.2 Mapping Common Verbs Found in Operation Names/Descriptions to HTTP

Operation Verb Typical HTTP Method + Resource with Examples

List, Search, Match, View All GET resource collection
GET /b ook s

Show, Retrieve, View GET resource instance
GET /b ook s/12345

Create, Add POS T resource collection
POS T /b ook s

Replace PU T resource instance or collection
PU T /carts/123
PU T /carts/123/items

Update PATC H resource instance
PATC H /carts/123

Delete All, Remove All, Clear, Reset D EL ETE resource collection
D EL ETE /carts/123/items

Delete D EL ETE resource instance
D EL ETE /carts/123/items/456

Search, Secure Search POS T custom search action on the resource collection
POS T /carts/search

<other verbs> POS T as a custom action on a resource collection or instance
POS T /b ook s/123/deactiv ate

Step 3: Assign Response Codes

The API design is starting to emerge. The next step is to assign the expected response
codes for each operation. HTTP response status codes belong to three primary
response code families:

 • 200 codes indicate success, some with more clarity (e.g., 201 CREATED vs.
200 OK).

 • 400 codes indicate a failure in the request that the client may wish to fix and
resubmit.

 • 500 codes indicate a failure on the server that is not the fault of the client. The
client may attempt a retry at a future time, if appropriate.

Be sure to use the right code for the right reason. When in doubt, refer to the
most current RFC that details the intended usage for the code. If a specific code isn’t
available within the response code family, then use the default 200, 400, or 500 code
as appropriate.

REST API Design Process 117

Fi
g

ur
e

7.
6

U
si

ng
 th

e
lis

t o
f

pa
th

s
id

en
ti

fie
d

ea
rl

ie
r,

as
si

gn
 th

e
ap

pr
op

ri
at

e
pa

th
 a

nd
 H

T
T

P
m

et
ho

d
to

 e
ac

h
op

er
at

io
n

ba
se

d
on

 th
e

in
te

nd
ed

us

ag
e.

R
es

o
ur

ce
 P

at
h

O
p

er
at

io
n

N
am

e
H

T
T

P
 M

et
ho

d
D

es
cr

ip
tio

n
R

eq
ue

st
R

es
p

o
ns

e

/b
oo

ks
lis

tB
oo

ks
()

G
E

T
Li

st
 b

oo
ks

 b
y

ca
te

go
ry

or

 re
le

as
e

da
te

ca
te

go
ry

Id
re

le
as

eD
at

e
B

oo
k[

]

/b
oo

ks
/s

ea
rc

h
se

ar
ch

B
oo

ks
()

P
O

S
T

S
ea

rc
h

fo
r b

oo
ks

 b
y

au
th

or
, t

itl
e

se
ar

ch
Q

ue
ry

B
oo

k[
]

/b
oo

ks
/{

bo
ok

Id
}

vi
ew

B
oo

k(
)

G
E

T
V

ie
w

 b
oo

k
de

ta
ils

bo
ok

Id
B

oo
k

/c
ar

ts
/{

ca
rt

Id
}

vi
ew

C
ar

t(
)

G
E

T
V

ie
w

 th
e

cu
rr

en
t c

ar
t

an
d

to
ta

l
ca

rt
Id

C
ar

t

/c
ar

ts
/{

ca
rt

Id
}

cl
ea

rC
ar

t(
)

D
E

LE
TE

R
em

ov
e

al
l b

oo
ks

 fr
om

th

e
cu

st
om

er
’s

 c
ar

t
ca

rt
Id

C
ar

t

/c
ar

ts
/{

ca
rt

Id
}/

ite
m

s
ad

dI
te

m
To

C
ar

t(
)

P
O

S
T

A
dd

 a
 b

oo
k

to
 th

e

cu
st

om
er

’s
 c

ar
t

ca
rt

Id
C

ar
t

/c
ar

ts
/{

ca
rt

Id
}/

ite
m

s/
{c

ar
tIt

em
Id

}
re

m
ov

eI
te

m
Fr

om
C

ar
t(

)
D

E
LE

TE
R

em
ov

e
a

bo
ok

 fr
om

th

e
cu

st
om

er
’s

 c
ar

t
ca

rt
Id

ca
rt

Ite
m

Id
C

ar
t

/a
ut

ho
rs

ge
tA

ut
ho

rD
et

ai
ls

()
G

E
T

R
et

rie
ve

 th
e

de
ta

ils
 o

f
an

 a
ut

ho
r

au
th

or
Id

B
oo

kA
ut

ho
r

Chapter 7 REST-Based API Design118

Don’t Invent Your Own Response Codes

Over the years, some strange decisions have been made by API designers.
One is the decision to use UNIX-style codes, where 0 indicates success and
1 through 127 indicate an error, for HTTP response code. Please do not invent
your own response codes. HTTP is designed to be layered, which means that
middleware servers that you don’t own might be involved between the client
and server. Creating your own codes will only cause problems with these
intermediary layers.

While the list of HTTP response codes is quite large, there are several that are
commonly used in API design. These are detailed in Table 7.3.

API clients should be prepared for any kind of response code, but it is not
necessary to capture every possible response code. Start by identifying at least one
success response code for each operation, along with any error codes that the API
may explicitly return. While the list of errors may not be comprehensive, start by
identifying the typical error codes that may be returned. Figure 7.7 shows the possible
success and error codes for the Shopping API.

Step 4: Documenting the REST API Design

Upon the completion of step 3, the high-level API design work is finished. Using the
work done so far, it is now time to capture the API design using an API description
format. This will allow for sharing the API design within and across teams for feedback.

Table 7.3 Common HTTP Response Codes Used in API Design

HTTP Response Code Description

200 OK The request has succeeded.

201 Created The request has been fulfilled and resulted in a new resource being created.

202 Accepted The request has been accepted for processing, but the processing has not
been completed.

204 No Content The server has fulfilled the request but does not need to return a body.
This is common for delete operations.

400 Bad Request The request could not be understood by the server due to malformed
syntax or invalid input.

401 Unauthorized The request requires user authentication.

403 Forbidden The server understood the request but is refusing to fulfill it.

404 Not Found The server has not found anything matching the requested URL/URI.

500 Internal Server Error The server encountered an unexpected condition which prevented it from
fulfilling the request.

REST API Design Process 119

Fi
g

ur
e

7.
7

Ex
pa

nd
in

g
th

e
Sh

op
pi

ng
 A

PI
 d

es
ig

n
w

it
h

su
cc

es
s

an
d

er
ro

r
re

sp
on

se
 c

od
es

 c
ap

tu
re

d
in

 th
e

R
es

po
ns

e
co

lu
m

n
of

 th
e

ta
bl

e.

R
es

o
ur

ce
 P

at
h

O
p

er
at

io
n

N
am

e
H

T
T

P
 M

et
ho

d
D

es
cr

ip
tio

n
R

eq
ue

st
R

es
p

o
ns

e

/b
oo

ks
lis

tB
oo

ks
()

G
E

T
Li

st
 b

oo
ks

 b
y

ca
te

go
ry

or

 re
le

as
e

da
te

ca
te

go
ry

Id
re

le
as

eD
at

e
B

oo
k[

]
20

0

/b
oo

ks
/s

ea
rc

h
se

ar
ch

B
oo

ks
()

P
O

S
T

S
ea

rc
h

fo
r b

oo
ks

 b
y

au
th

or
, t

itl
e

se
ar

ch
Q

ue
ry

B
oo

k[
]

20
0

/b
oo

ks
/{

bo
ok

Id
}

vi
ew

B
oo

k(
)

G
E

T
V

ie
w

 b
oo

k
de

ta
ils

bo
ok

Id
B

oo
k

20
0,

 4
04

/c
ar

ts
/{

ca
rt

Id
}

vi
ew

C
ar

t(
)

G
E

T
V

ie
w

 th
e

cu
rr

en
t c

ar
t

an
d

to
ta

l
ca

rt
Id

C
ar

t
20

0,
 4

04

/c
ar

ts
/{

ca
rt

Id
}

cl
ea

rC
ar

t(
)

D
E

LE
TE

R
em

ov
e

al
l b

oo
ks

 fr
om

th

e
cu

st
om

er
’s

 c
ar

t
ca

rt
Id

C
ar

t
20

4,
 4

04

/c
ar

ts
/{

ca
rt

Id
}/

ite
m

s
ad

dI
te

m
To

C
ar

t(
)

P
O

S
T

A
dd

 a
 b

oo
k

to
 th

e

cu
st

om
er

’s
 c

ar
t

ca
rt

Id
C

ar
t

20
1,

 4
00

/c
ar

ts
/{

ca
rt

Id
}/

ite
m

s/
{c

ar
tIt

em
Id

}
re

m
ov

eI
te

m
Fr

om
C

ar
t(

)
D

E
LE

TE
R

em
ov

e
a

bo
ok

 fr
om

th

e
cu

st
om

er
’s

 c
ar

t
ca

rt
Id

ca
rt

Ite
m

Id
C

ar
t

20
4,

 4
04

/a
ut

ho
rs

ge
tA

ut
ho

rD
et

ai
ls

()
G

E
T

R
et

rie
ve

 th
e

de
ta

ils
 o

f
an

 a
ut

ho
r

au
th

or
Id

B
oo

kA
ut

ho
r

20
0,

 4
04

Chapter 7 REST-Based API Design120

Organizations typically have a preferred API description format, such as the
OpenAPI Specification (OAS) or API Blueprint. If a format hasn’t been selected or
standardized, refer to Chapter 13, “Documenting APIs,” to learn more about the
various formats available. No matter what format is selected, the result is to have
a machine-readable version of the API design for review, rendering API reference
documentation and tooling support.

For the purposes of demonstrating the key areas of documentation during the
API design phase, the examples in this chapter use the OpenAPI Specification v3
(OAS v3). Screenshots show the OAS v3 description file using the Swagger Editor3 to
render the result side by side for illustrative purposes.

Start the documentation process by leveraging details about the API captured
throughout the API modeling and design process. Includes an API name, descrip-
tion, and other details about the API. The description should reference any other
APIs that may be used in collaboration with this one. Summarize the purpose of the
API and the kinds of operations offered. Avoid referencing internal details of how
the API is implemented, as those details can be stored outside the API description in
a wiki or similar collaboration tool for future developer reference. Figure 7.8 shows
the result of capturing these details in OAS v3.

3. https://swagger.io

Figure 7.8 Capturing the Shopping API design into the OpenAPI Specification v3, starting
with the name, description, and other important details.

https://swagger.io

REST API Design Process 121

Figure 7.9 Expanding the Shopping API design documentation to include each operation.

Next, capture the details of each operation. For OAS v3, this begins with the path,
followed by each HTTP method supported at the path. It is also recommended to
add an operationI d property to each operation. Use the operation name from the
API profile, defined in Chapter 6. This makes the documentation process effortless
and helps to map the OAS description back to the API profile.

Using the details captured in the associated job stories created in Chapter 3,
“Identify Digital Capabilities,” write a short summary of the API to help readers
understand its purpose. Expand the details in the description field using the informa-
tion captured in the API profile in Chapter 6. Also, ensure all path parameters and
query arguments are captured. This is shown in Figure 7.9.

Chapter 7 REST-Based API Design122

Finally, capture all schema elements for resource representations in the schema
definitions section of the OAS v3 description. Use the resource models created dur-
ing API modeling, as described in Chapter 6. This is shown in Figure 7.10, where a
ListBooksResponse captures the response of the ListBooks operation.

Note in Figure 7.10 that the ListBooks operation returns an array of Book Sum-
mary instances that contain the basic details of each book in a search result. Adding
schema definitions that wrap an array response or that limit the acceptable proper-
ties for each operation’s request/response payload is often necessary. Operations that

Figure 7.10 Finalizing the Shopping API design documentation to include schema definitions.

REST API Design Process 123

Figure 7.11 Keep in mind that some operations may require custom schema definitions to
exclude specific fields not permitted for specific operations or to wrap search responses that
contain only summary details.

create or update a resource may also require separate schema definitions to prevent
read-only fields from being submitted. This is shown in Figure 7.11.

Use sequence diagrams to validate that the API design meets the needs captured
during the creation of job stories, EventStorming, and API modeling. Figure 7.12
shows a sequence diagram with a simplified form of HTTP for demonstrating
typical interaction patterns to produce the desired outcomes.

Once the API design has been captured in an API description format, the generated
documentation and sequence diagrams can be shared with others to obtain feedback
on the design. This is the final step in the API design process.

Chapter 7 REST-Based API Design124

GET /b ook s

B ook []

POS T /carts {b ook ld: 12345,q ty: 1}

C art{cartid: 456 }

D EL ETE /carts/456 /items/1

POS T /b ook s/search {q : "API "}

B ook []

POS T /carts/456 /items {b ook ld: 12345,q ty: 1}

C art{cartid: 456 ,...}

GET /carts/456

C art{cartid: 456 ,...}

Shopping API

Shopping API

Customer

Customer

Figure 7.12 Use sequence diagramming to validate that the API design meets the needs
previously modeled.

Step 5: Share and Gather Feedback

The final step is to share the API design for feedback from the immediate team, API
architects from the organization, and internal/external teams planning to
immediately integrate the API once ready.

Once the API has been officially released and integrated, the API design is locked, and
only nonbreaking changes may be made. New endpoints may be added, and perhaps
new fields added to existing resource representations, but renaming or modifying
existing endpoints will break existing API consumers, leading to upset customers and
perhaps customer churn. Getting it right the first time is important. Sharing the API
design early for feedback helps to avoid significant design changes post release.

Mock implementations of an API are also helpful to explore API designs. Because
reading API documentation provides only a basic understanding of an API, mock

Selecting a Representation Format 125

implementations offer a chance for developers to experience how the API may work
using mock data. Tools are beginning to emerge that accept an API description
format, such as OAS, and generate a mock API implementation without writing a
single line of code.

Refer to Chapter 16, “Continuing the API Design Journey,” regarding other API
lifecycle techniques that help to gain feedback on an API, even after it has been
developed and deployed.

Selecting a Representation Format

So far, the discussion of resource design has been centered on the resource names and
properties. However, the representation format of an API’s resources needs to be
determined as well. Selecting a representation format is an important step.

For some organizations, the preferred representation format has already been
determined as part of the API style guide and standards. In that case, the decision
has been made already and no further action is required. However, if this is a new
API product or one of the first APIs of a new API program or API platform, then
there is more work to be done to complete the design effort.

Whenever possible, select a single format as the default representation format
that will be offered across all APIs. Using a single format ensures consistency
when a developer integrates with this and other existing and future APIs from the
organization.

Additional formats may be added for operations over time, allowing an
existing API to slowly migrate to a new format without disrupting existing
integrations. A multiformat approach requires the use of content negotiation,
a technique offered in HTTP to allow clients to specify the preferred represen-
tation format desired. Content negotiation is discussed further in the HTTP
primer offered in Appendix I.

Table 7.4 summarizes the four categories of representation formats available.
Each category builds upon the previous one, adding more options for repre-

senting resource and messaging formats. However, with more options often comes
more complexity. Each category is explained, and an example presented to inform
the selection process. The examples provided in this chapter are available in the API
workshop examples4 GitHub repository.

4. https://bit.ly/align-define-design-examples

https://bit.ly/align-define-design-examples

Chapter 7 REST-Based API Design126

Table 7.4 Categories of API Representation Formats

Category Overview

Resource Serialization The representation reflects the serialization of a resource into various
formats, e.g., JSON, XML, Protocol Buffers, and Apache Avro

Hypermedia Serialization A serialized representation with support for embedded hypermedia
controls

Hypermedia Messaging A general message format that supports resource properties with
hypermedia controls

Semantic Hypermedia
Messaging

A general message format that supports semantic field mapping with
hypermedia controls

Resource Serialization

The resource serialization category of representation formats is the most commonly
encountered. They directly map each property of the resource and its value into the
desired format, often in JSON, XML, or YAML. Binary formats such as Protocol
Buffers5 and Apache Avro6 are gaining acceptance as well.

These representation formats require explicit code that handles the serialization
between the resource and the target format. This mapping logic may be created
through code generators or hand coded. Formatter and representer libraries often
help to manage some of the mapping between the target format and an object or
struct that represents the resource in code.

No matter how serialization is handled, the parsing and mapping code is unique
to the resource, as it must be aware of the expected fields and any nested structures.
Listing 7.1 provides an example of a Book resource using a serialized representation
in JSON.

Listing 7.1 Serialized Representation Using JSON

{

 "b ook I d": "12345",

 "isb n": "9 7 8 - 03218 3457 7 ",

 "title": "I mplementing D omain- D riv en D esig n",

 "description": "W ith I mplementing D omain- D riv en D esig n, V au g h n h as made an

important contrib u tion not only to th e literatu re of th e D omain- D riv en D esig n

commu nity, b u t also to th e literatu re of th e b roader enterprise application

arch itectu re f ield.",

 "au th ors": [

 { "au th orI d": "7 6 5", "f u llName": "V au g h n V ernon" }

]

}

5. https://developers.google.com/protocol-buffers/docs/proto3
6. https://avro.apache.org/docs/current

https://developers.google.com/protocol-buffers/docs/proto3
https://avro.apache.org/docs/current

Selecting a Representation Format 127

Resource serialization–based formats offer only the properties of the resource
using key-value pairs.

Hypermedia Serialization

The hypermedia serialization category is similar to resource serialization but adds
specifications on how hypermedia links are represented. It may also include specifi-
cations for including related and/or nested resources, called embedded resources, in a
uniform way.

Formats such as Hypertext Application Language (HAL)7 enable resource
serialization formats to be extended with hypermedia with few to no changes. This
prevents breaking existing API clients while migrating existing serialization-based
APIs to include hypermedia controls. This is why HAL tends to be a popular choice
when moving to hypermedia APIs. Listing 7.2 shows an example of a HAL-based
representation that extends Listing 7.1 with hypermedia links and a related list of
author resources.

Listing 7.2 Hypermedia Serialization Approach Using HAL

{

 "b ook I d": "12345",

 "isb n": "9 7 8 - 03218 3457 7 ",

 "title": "I mplementing D omain- D riv en D esig n",

 "description": "W ith I mplementing D omain- D riv en D esig n, V au g h n h as made

an important contrib u tion not only to th e literatu re of th e D omain- D riv en

D esig n commu nity, b u t also to th e literatu re of th e b roader enterprise ap-

plication arch itectu re f ield.",

 "_ link s": {

 "self ": { "h ref ": "/b ook s/12345" }

 },

 "_ emb edded": {

 "au th ors": [

 {

 "au th orI d": "7 6 5",

 "f u llName": "V au g h n V ernon",

 "_ link s": {

7. Mike Kelly, “JSON Hypertext Application Language” (2016), https://tools.ietf.org/html/draft-kelly-json-
hal-08.

https://tools.ietf.org/html/draft-kelly-json-hal-08
https://tools.ietf.org/html/draft-kelly-json-hal-08

Chapter 7 REST-Based API Design128

 "self ": { "h ref ": "/au th ors/7 6 5" },

 "au th oredB ook s": { "h ref ": "/b ook s? au th orI d= 7 6 5" }

 }

 }

]

 }

}

Not all hypermedia formats offer the same features. Mike Amundsen has created
a list of these factors, called H-Factors,8 that support reasoning about the level and
sophistication of hypermedia support across formats.

Hypermedia Messaging

Hypermedia messaging formats differ from serialization in that they propose a
uniform message-based format to capture resource properties, hypermedia controls,
and embedded resources. This makes it easy to use a single parser across all resources
represented by the message format rather than unique mapping code for each
resource type to parse a serialized format such as JSON or XML.

While the differences are nuanced between serialization and message-based
formats, consider that teams will no longer need to argue about what the JSON or
XML payload should look like. Instead, they focus on the resource representations,
relationships, and hypermedia controls within the message format itself. No more
meetings to decide if a data wrapper is required around a JSON-based response!

Hypermedia messaging formats include JSON:API9 and Siren.10 Both of these
formats offer a single structured message that is flexible enough to include simple
or complex resource representations and embedded resources, and both offer
hypermedia control support.

Siren’s messaging capabilities are similar to JSON:API’s, but it also adds metadata
that is useful for creating Web-based user interfaces with minimal customization
effort.

JSON:API is an opinionated specification that removes the need to decide on
many design options commonly included in an API style guide. Representation
format, when to use different HTTP methods, and how to optimize network
connections through response shaping and eager fetching of related resources are
just a few of the decisions already provided by JSON:API.

Listing 7.3 provides an example of a JSON:API message-based representation.

 8. http://amundsen.com/hypermedia/hfactor
 9. https://jsonapi.org
10. https://github.com/kevinswiber/siren

http://amundsen.com/hypermedia/hfactor
https://jsonapi.org
https://github.com/kevinswiber/siren

Selecting a Representation Format 129

Listing 7.3 A JSON:API Demonstrating Message-Based Representations

{

 "data": {

 "type": "b ook s",

 "id": "12345",

 "attrib u tes": {

 "isb n": "9 7 8 - 03218 3457 7 ",

 "title": "I mplementing D omain- D riv en D esig n",

 "description": "W ith I mplementing D omain- D riv en D esig n, V au g h n h as

made an important contrib u tion not only to th e literatu re of th e D omain-

D riv en D esig n commu nity, b u t also to th e literatu re of th e b roader enterprise

application arch itectu re f ield."

 },

 "relationsh ips": {

 "au th ors": {

 "data": [

 {"id": "7 6 5", "type": "au th ors"}

]

 }

 },

 "inclu ded": [

 {

 "type": "au th ors",

 "id": "7 6 5",

 "f u llName": "V au g h n V ernon",

 "link s": {

 "self ": { "h ref ": "/au th ors/7 6 5" },

 "au th oredB ook s": { "h ref ": "/b ook s? au th orI d= 7 6 5" }

 }

 }

 }

}

Semantic Hypermedia Messaging

Semantic hypermedia messaging is the most comprehensive category, as it adds
semantic profile and linked data support, making APIs part of the Semantic Web.

By applying semantics of resource properties through linked data, more meaning
is assigned to each property without requiring an explicit name to be used. Linked

Chapter 7 REST-Based API Design130

data usually relies on a shared vocabulary from Schema.org or other resources.
With the growth of data analytics and machine learning, linking data to shared
vocabularies enable automated systems to easily derive value of the data provided
from APIs. Common formats that support semantic hypermedia messaging include
Hydra,11 UBER,12 Hyper,13 JSON-LD,14 and OData.15

Listing 7.4 provides an example of the UBER representation format.

Listing 7.4 UBER Semantic Hypermedia Messaging Format

{

 "u b er" :

 {

 "v ersion" : "1.0",

 "data" :

 [

 {"rel" : ["self "] , "u rl" : "h ttp://ex ample.org /"},

 {"rel" : ["prof ile"] , "u rl" : "h ttp://ex ample.org /prof iles/b ook s"},

 {

 "name" : "search B ook s",

 "rel" : ["search ","collection"] ,

 "u rl" : "h ttp://ex ample.org /b ook s/search ? q = {q u ery}",

 "templated" : "tru e"

 },

 {

 "id" : "b ook - 12345",

 "rel" : ["collection","h ttp://ex ample.org /rels/b ook s"] ,

 "u rl" : "h ttp://ex ample.org /b ook s/12345",

 "data" : [

 {

 "name" : "b ook I d",

 "v alu e" : "12345",

 "lab el" : "B ook I D "

 },

 {

11. Markus Lanthaler, “Hydra Core Vocabulary: A Vocabulary for Hypermedia-Driven Web APIs”
(Hydra W3C Community Group, 2021), http://www.hydra-cg.com/spec/latest.

12. Mike Amundsen and Irakli Nadareishvili, “Uniform Basis for Exchanging Representations (UBER)”
(2021), https://rawgit.com/uber-hypermedia/specification/master/uber-hypermedia.html.

13. Irakli Nadareishvili and Randall Randall, “Hyper - Foundational Hypermedia Type” (2017), http://
hyperjson.io/spec.html.

14. https://json-ld.org
15. https://www.odata.org

http://Schema.org
http://www.hydra-cg.com/spec/latest
https://rawgit.com/uber-hypermedia/specification/master/uber-hypermedia.html
http://hyperjson.io/spec.html
http://hyperjson.io/spec.html
https://json-ld.org
https://www.odata.org

Selecting a Representation Format 131

 "name" : "isb n",

 "v alu e" : "9 7 8 - 03218 3457 7 ",

 "lab el" : "I S B N",

 "rel" : ["h ttps://sch ema.org /isb n"]

 },

 {

 "name" : "title",

 "v alu e" : "Ex ample B ook ",

 "lab el" : "B ook Title",

 "rel" : ["h ttps://sch ema.org /name"]

 },

 {

 "name" : "description",

 "v alu e" : "W ith I mplementing D omain- D riv en D esig n, V au g h n

h as made an important contrib u tion not only to th e literatu re of th e D omain-

D riv en D esig n commu nity, b u t also to th e literatu re of th e b roader enterprise

application arch itectu re f ield.",

 "lab el" : "B ook D escription",

 "rel" : ["h ttps://sch ema.org /description"]

 },

 {

 "name" : "au th ors",

 "rel" : ["collection","h ttp://ex ample.org /rels/au th ors"] ,

 "data" : [

 {

 "id" : "au th or- 7 6 5",

 "rel" : ["h ttp://sch ema.org /Person"] ,

 "u rl" : "h ttp://ex ample.org /au th ors/7 6 5",

 "data" : [

 {

 "name" : "au th orI d",

 "v alu e" : "7 6 5",

 "lab el" : "Au th or I D "

 },

 {

 "name" : "f u llName",

 "v alu e" : "V au g h n V ernon",

 "lab el" : "F u ll Name",

 "rel" : "h ttps://sch ema.org /name"

 }] }] },

] }] }}

Chapter 7 REST-Based API Design132

Notice how the size of the representations grows compared to the more compact
resource serialization formats. With the increased size comes the addition of linked
data and more powerful interactions with API clients. These representation formats
offer more insight into how to navigate related resources and tap into new operations,
including operations that were not available when the client was built.

The goal is to enable generic clients to interact with APIs without the need for custom
code or user interfaces. Instead, a client can interact with an API it has never seen before,
all using the details provided in a semantic, message-based resource representation.

Remember that is always better to include additional details in the message than
to force clients to write more code that infers behavior. This is the essence of why
HTML works so well, as browsers are not required to implement custom code for
every Web site that exists. Instead, the browser implements rendering logic, and the
HTML message is crafted to deliver the desired result. While this may result in a
more verbose message, the result is a more resilient API client that avoids hardcoded
behavior.

Common REST Design Patterns

While covering REST API design patterns is the subject of a separate book, this sec-
tion provides some basic patterns commonly encountered in REST-based API
designs. Each of the following patterns offers an overview of when they should be
applied to help API designers address commonly encountered design requirements.

Create-Read-Update-Delete

CRUD-based APIs are APIs that offer resource collections that contain instances.
The resources instances will offer some or all of the create, read, update, and delete
lifecycle pattern.

The CRUD pattern may offer a complete or partial CRUD lifecycle around a
resource collection and its instances in a consistent way. The CRUD pattern follows
this familiar pattern:

 • GET /articles—List/paginate/filter the list of available articles

 • POS T /articles—Create a new article

 • GET /articles/{articleI d}—Retrieve the representation of an article instance

 • PU T /articles/{articleI d}—Replace an existing article instance

 • PATC H /articles/{articleI d}—Update specific fields (i.e., a selective update)
for an article instance

 • D EL ETE /articles/{articleI d}—Delete a specific article instance

Common REST Design Patterns 133

It is recommended to avoid fine-grained CRUD-based APIs, which result in
multiple API calls that cross transactional boundaries. Not only does it force the
client to orchestrate multiple API requests across fine-grained resources, but clients
will be unable to rollback previously successful requests when encountering failures
in subsequent API requests. Instead, design resources around digital capabilities
rather than based on backend data models.

Extended Resource Lifecycle Support

It is not uncommon to identify a state transition that goes beyond the typical CRUD
interaction model. With the limited selection of HTTP methods, designers must
find new ways to offer the extended lifecycle while honoring the HTTP specification.

For example, consider a content management system that manages a resource
collection, Articles, that now needs to add basic review and approval workflows
beyond the standard CRUD-based lifecycle. Additional operations may be provided
to facilitate the workflow, such as

 • POS T /articles/{articleI d}/su b mit

 • POS T /articles/{articleI d}/approv e

 • POS T /articles/{articleI d}/decline

 • POS T /articles/{articleI d}/pu b lish

Using this functional operation approach, article resource instances are able to
support the workflow necessary. In addition, it offers a few advantages:

 • Fine-grained access control can be enforced at the API management layer because
each specific action is a unique URL that can be assigned different authoriza-
tion requirements. This avoids coding specific authorization logic into a single
update operation, such as a PU T or PATC H, when the state of a field is changed

 • Hypermedia controls are used to signal to clients the possible action(s) availa-
ble based on the user’s authorization scope, as discussed earlier in this chapter.

 • The workflow supported by the API is more explicit, as clients don’t have to
look at the PATC H endpoint documentation to understand the valid status values
available, along with re-creating the state machine rules for every API client.

For teams that prefer to avoid this style of functional operations for a resource
instance or collection, an alternative approach is to support hypermedia controls
that reference the same PU T or PATC H operation but support different message struc-
tures based on the type of action being taken.

Chapter 7 REST-Based API Design134

Singleton Resources

Singleton resources represent a single resource instance outside of a resource
collection. Singleton resources may represent a virtual resource for direct interaction
of an existing resource instance within a collection (e.g., a user’s one and only profile).

APIs may also offer nested singleton resources when there is a one and only one
instance in the relationship between the parent resource and its child resource (e.g., a user’s
configuration). The following examples illustrate possible uses of a singleton resource:

 • GET /me—Used in place of GET /u sers/{u serI d}, avoiding the need for consum-
ers to know their own user identifier or risk accessing another user’s data due
to an insecure security configuration

 • PU T /u sers/56 7 8 /conf ig u ration—Used to manage a single configuration resource
instance for a specific account

Singleton resources should already exist and therefore should not require a cli-
ent to create them ahead of time. While singleton resources may not offer the full
spectrum of CRUD-style lifecycles like their collection-based brethren, they may still
offer GET, PU T, and/or PATC H HTTP methods.

Background (Queued) Jobs

HTTP is a request/response protocol, requiring that a response be returned for any
submitted request. For operations that take a long time to complete, it may not be
optimal for applications to block with an open connection waiting for a response.
HTTP provides the 202 Accepted response code for this purpose.

For example, suppose an API operation exists to support bulk importing user
accounts. The API client could submit the following valid request:

POS T /b u lk - import- accou nts

C ontent- Type: application/json

{

 "items": [

 { ... },

 { ... },

 { ... },

 { ... }

]

}

Common REST Design Patterns 135

The server could return the following response to indicate that the request was
valid but that that it could not be processed fully:
HTTP/1.1 202 Accepted

L ocation: h ttps://api.ex ample.com/import- job s/7 9 37

The client could then follow up to determine the status by submitting a request to
the URL provided in the L ocation header:

HTTP/1.1 200 OK

{

 "job I d": "7 9 37 ",

 "importS tatu s": "I nProg ress",

 "percentC omplete": "25",

 "su g g estedNex tPollTimestamp": "2018 - 10- 02T11:00:00.00Z ",

 "estimatedC ompletionTimestamp": "2018 - 10- 02T14:00:00.00Z "

}

This is called a fire-and-follow-up pattern. If the client doesn’t need to monitor
the job status, then it can ignore the URL provided and move on to other tasks. This
is known as the fire-and-forget pattern.

Long-Running Transaction Support in REST

There may be times when a transaction requires more than one API operation to
complete. During the days of SOAP, the WS-Transaction specification was provided
to manage transactions across one or more requests. This often required a transaction
manager that was costly in terms of both licensing and integration effort. To avoid
this requirement with REST-based APIs, the builder design pattern can be applied to
support similar semantics.

For example, imagine an API that is meant to support reserving seats for a music
or sporting event. Perhaps the API must require payment within a specific time frame
before the seats are placed back into the pool of available seats. A Seats resource may
be used for searching for that favorite group of four seats together in a premium area:

GET /seats? section= premiu m& nu mb erOf S eats= 4

Perhaps a group of four seats is available. Yet, we cannot use the Seats resource
to reserve the seats, as it would require four separate API calls that are not able to be
wrapped in a transaction:

PU T /seats/seat1 to reserv e seat # 1

PU T /seats/seat2 to reserv e seat # 2

https://api.example.com/import-jobs/7937

Chapter 7 REST-Based API Design136

PU T /seats/seat3 to reserv e seat # 3 < - - th is one f ailed. W h at now ?

PU T /seats/seat4 to reserv e seat # 4

Instead, consider creating a Reservation resource that represents the transaction:

POS T /reserv ations

{

 "seatI ds": ["seat1","seat2", "seat3", "seat4"]

}

If successful, a new Reservation is created and can be used to complete the
payment process. It may also be used to further customize the reservations with add-
ons, group meal plans, and so on. Alternatively, if the time limit is exceeded, the
reservation is invalidated or deleted from the system and the API client begins again.

Looking for More Patterns?

These are only a few of the many design patterns useful for REST and other
API styles. Refer to the API workshop examples16 GitHub repository for
more pattern resources.

Summary

When speaking about REST-based APIs, many conflate the idea of CRUD-based
APIs that use JSON with the REST architectural style. However, REST defines a set
of architectural constraints that help APIs mimic the best aspects of the Web. Of
course, REST APIs may apply various design patterns, including CRUD, to produce
an approachable interaction model for resources.

By applying a five-step design process, a resource-based API design is created that
applies the REST constraints to the API profiles created during the API modeling
process. Mapping the design into machine-readable API description allows tools to
generate documentation for review by the team and the initial set of developers that
will consume the API.

What if REST isn’t the right API style for some or all the APIs identified during
API modeling? Chapter 8 examines how GraphQL and gRPC are two additional API
styles available when REST may not be the best choice or needs to be expanded with
new interaction styles.

16. https://bit.ly/align-define-design-examples

https://bit.ly/align-define-design-examples

137

Chapter 8

RPC and Query-Based
API Design

Choosing the right architectural style for a network-based application requires
an understanding of the problem domain and thereby the communication
needs of the application, an awareness of the variety of architectural styles
and the particular concerns they address.

— Roy Fielding

ADDR
PROCESS

Align

Design

Refine Define

4. Model API
Profiles

5. High-Level
Design

6. Refine
the Design

7. Document
the API

2. Capture
Activity
Steps

3. Identify
API

Boundaries

1. Identify
Digital

Capabilities

Figure 8.1 The Design phase offers several options for API styles. Alternatives to REST-based
APIs are detailed in this chapter.

Chapter 8 RPC and Query-Based API Design 138

While the REST-based API style comprises most API products available in the market
today, that may not always be the case. Nor is a REST-based API style always the best
option for every API. As an API designer, it is important to understand the options
available and the tradeoffs of each API style to determine the best fit for the target
developers that will consume the API.

Remote procedure call (RPC)–based and query-based API styles are two
additional API styles beyond REST. RPC-based APIs have been available for decades
but have begun to experience a resurgence through the introduction of gRPC. Query-
based APIs are gaining popularity owing to the introduction of GraphQL, making
it the choice for many frontend developers who wish to have greater control over the
shape of API responses.

With multiple API styles available, it is important to understand the advantages
and challenges of each API style. For some API products and platforms, a single API
style may be sufficient. For others, a mixture of intended uses and preferences for the
developers tasked with integrating the API may require a mixture of API styles.

This chapter explores RPC- and query-based API styles and how they may be
used as an alternative or supplement to REST-based (Figure 8.1). The chapter also
defines a design process for RPC- and query-based API styles based on the API
profiles captured during the Define phase outlined in Chapter 6, “API Modeling.”

What Is an RPC-Based API?

RPC-based APIs execute a unit of code, the procedure, over the network as if it were
being executed locally. The client is given a list of available procedures that may be
invoked on the server. Each procedure defines a typed and ordered parameter list and
the structure of a response structure.

It is important to recognize that the client is tightly coupled to the server’s
procedure. If the procedure on the server is modified or removed, it then becomes the
responsibility of developers to accommodate the changes. This includes modifying
the client code so that the client and server are in sync and communicating properly
once more. However, with this tight coupling often comes better performance.

RPC-based APIs must agree to a specification that supports the marshaling
of the procedure invocation for the target programming language(s). In the early
days of Java, the use of the remote method invocation (RMI) libraries supported
Java-to-Java communication, with Java’s object serialization capabilities used
as the binary format exchanged between Java processes. Other popular RPC
standards include CORBA, XML-RPC, SOAP RPC, XML-RPC, JSON-RPC,
and gRPC.

What Is an RPC-Based API? 139

Following is an example of a JSON-RPC call over HTTP. Notice the explicit
mention of the method (the procedure) and the ordered parameter list that results in
a tight coupling between client and server:

POS T h ttps://rpc.ex ample.com/calcu lator- serv ice HTTP/1.1

C ontent- Type: application/json

C ontent- L eng th : ...Accept: application/json

{"jsonrpc": "2.0", "meth od": "su b tract", "params": [42, 23] , "id": 1}

Most RPC-based systems take advantage of a helper library and code generation
tooling to generate the client and server stubs that are responsible for network com-
munications. Those familiar with the fallacies of distributed computing1 recognize
that failures can occur whenever code is executed remotely. While one of RPC’s goals
is to make remote invocation behave as if it is calling a local procedure, network
outages and other failure-handling support is often incorporated into the client and
server stubs and raised as an error.

The remote procedures are defined using an interface definition language (IDL).
Code generators use the IDL to generate the client stub and a server stub skeleton
that is ready for implementation. RPC-based APIs are generally faster to design and
implement for this reason but are less resilient to method renaming and reordering
of parameters.

The gRPC Protocol

gRPC was created by Google in 2015 to speed the development of services through
the use of RPC and code generation. Initially started as an internal initiative, it has
since been released and adopted by many organizations and open-source initiatives,
including Kubernetes.

gRPC is built upon HTTP/2 for transport and Protocol Buffers2 for serialization.
It also leverages the bidirectional streaming offered by HTTP/2, allowing the client to
stream data to the server and the server to stream data back to the client. Figure 8.2
shows how multiple programming languages communicate using generated client
stubs with a gRPC server within a GoLang-based service.

1. Wikipedia, s.v. “Fallacies of Distributed Computing,” last modified July 24, 2021, 20:52, https://en.
wikipedia.org/wiki/Fallacies_of_distributed_computing.

2. https://developers.google.com/protocol-buffers.

https://rpc.example.com/calculator-service
https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing
https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing
https://developers.google.com/protocol-buffers

Chapter 8 RPC and Query-Based API Design 140

GoLang Service

Java Client

Ruby ClientgRPC Server

gRPC Client
Stub

gRPC Client
Stub

gRPC Response

gRPC Request

gRPC Response
gRPC Request

Protocol Bu�ers

Protocol Bu�ers

Figure 8.2 An overview of how gRPC server and client stubs, generated for each programming
language, work together.

By default, gRPC uses the proto file format used by Protocol Buffers to
define each service, the service methods offered, and the messages exchanged.
Listing 8.1 shows an example IDL file for a calculate service that offers a subtract
operation.

Listing 8.1 gRPC-Based IDL That Defines a Subtract Operation

// calcu lator- serv ice.proto3

serv ice C alcu lator {

 // S u b tracts tw o integ ers

 rpc S u b tract(S u b tractR eq u est) retu rns (C alcR esu lt) {}

}

// Th e req u est messag e containing th e v alu es to su b tract

messag e S u b tractR eq u est {

 // nu mb er b eing su b tracted f rom

 int6 4 minu end = 1;

 // nu mb er b eing su b tracted

 int6 4 su b trah end = 2;

}

What Is an RPC-Based API? 141

// Th e response messag e containing th e calcu lation resu lt

messag e C alcR esu lt {

 int6 4 resu lt = 1;

}

Factors When Considering RPC

RPC-based APIs often trade performance for tighter coupling. Code generation
offered by many RPC protocols, such as gRPC, speed the development process by
autogenerating client stubs and producing skeleton code for server implementation
purposes. These factors result in teams selecting RPC-based APIs when they own
both API client and server sides, allowing for development-time and runtime
performance improvements.

However, there are several disadvantages to using an RPC-based API style that
should be considering before proceeding:

 • The integration between client and server are tightly coupled. Once in pro-
duction, the order of the fields cannot be changed without breaking API
clients.

 • The serialization format for marshaling and unmarshaling of procedure calls
is fixed. Unlike REST-based APIs, multiple media types cannot be used, and
HTTP-based content negotiation is therefore not possible.

 • Some RPC protocols, such as gRPC, require custom middleware to work with
browsers and to enforce authorization and role-based access when operations
are tunneled through a single URL.

Finally, keep in mind that gRPC depends on HTTP/2 and requires overriding
default security restrictions to perform considerable customization of HTTP request
headers; browsers cannot support gRPC natively. Instead, projects such as grpc-
web3 offer a library and gateway to transform HTTP/1 requests into gRPC-based
 procedure calls.

In summary, RPC-based APIs are best used when the organization owns both the
API client and server. The API team exposes an RPC-based service or API for other
teams within the organization to consume as needed but must strive to keep their
 client code up to date with the latest changes.

3. https://github.com/grpc/grpc-web

https://github.com/grpc/grpc-web

Chapter 8 RPC and Query-Based API Design 142

RPC API Design Process

The RPC design process leverages the API profiles created during API modeling, as
described in Chapter 6. Because the API profiles already identified operations and
basic input/output details, the RPC API design process is a rapid three-step process.
While the examples provided use gRPC and Protocol Buffers 3, the process may be
adapted with little or no modification for other RPC-based protocols.

Step 1: Identify RPC Operations

Migrate the list of operations, including their descriptions and request/response
details, into a new tabular format designed to capture the high-level design. This is
shown in Figure 8.3.

Though not necessary, following a verb-resource operation naming pattern, such
as listB ook s() , helps the RPC-based API to be more resource-centric and therefore
more familiar to those who have used REST-based APIs.

Step 2: Detail RPC Operations

Expand each operation’s request and response details using the resource definitions
and fields captured during API modeling. Most RPC protocols support a parameter
list of fields, much like a local method invocation. In this case, list the input
parameters that will be part of the request and the value(s) that will be returned in
the response.

For gRPC-based APIs that use Protocol Buffers, the parameter list must be
wrapped within the definition of a message. Ensure each request has an associated
message type defined that includes each input parameter. Likewise, each response
will return a message, an array of messages, or an error status response. Figure 8.4
shows the Shopping Cart API design for a gRPC-based API.

It is important to standardize on an error response type so that clients are able
to process server-side errors consistently. For gRPC, it is recommended to use the
g oog le.rpc.S tatu s message type, which supports an embedded details object with
any additional details that the client may need to process.

RPC API Design Process 143

Fi
g

ur
e

8.
3

A
 ta

bl
e

th
at

 c
ap

tu
re

s
th

e
in

it
ia

l R
PC

 o
pe

ra
ti

on
s

ba
se

d
on

 th
e

pr
ev

io
us

 A
PI

 p
ro

fil
e

ex
am

pl
es

 fr
om

 C
ha

pt
er

 6
.

O
p

er
at

io
n

N
am

e
D

es
cr

ip
tio

n
R

eq
ue

st
R

es
p

o
ns

e

lis
tB

oo
ks

()
Li

st
 b

oo
ks

 b
y

ca
te

go
ry

 o
r r

el
ea

se
 d

at
e

se
ar

ch
B

oo
ks

()
S

ea
rc

h
fo

r b
oo

ks
 b

y
au

th
or

, t
itl

e

vi
ew

B
oo

k(
)

V
ie

w
 b

oo
k

de
ta

ils

vi
ew

C
ar

t(
)

V
ie

w
 th

e
cu

rr
en

t c
ar

t a
nd

 to
ta

l

cl
ea

rC
ar

t(
)

R
em

ov
e

al
l b

oo
ks

 fr
om

 th
e

cu
st

om
er

’s
 c

ar
t

ad
dI

te
m

To
C

ar
t(

)
A

dd
 a

 b
oo

k
to

 th
e

cu
st

om
er

’s
 c

ar
t

re
m

ov
eI

te
m

Fr
om

C
ar

t(
)

R
em

ov
e

a
bo

ok
 fr

om
 th

e
cu

st
om

er
’s

 c
ar

t

ge
tA

ut
ho

rD
et

ai
ls

()
R

et
rie

ve
 th

e
de

ta
ils

 o
f a

n
au

th
or

Chapter 8 RPC and Query-Based API Design 144

Fi
g

ur
e

8.
4

T
he

 g
R

PC
 d

es
ig

n
co

m
pl

et
e

w
it

h
re

qu
es

t a
nd

 re
sp

on
se

 b
as

ic
 m

es
sa

ge
 d

et
ai

ls
.

O
p

er
at

io
n

N
am

e
D

es
cr

ip
tio

n
R

eq
ue

st
R

es
p

o
ns

e

lis
tB

oo
ks

()
Li

st
 b

oo
ks

 b
y

ca
te

go
ry

 o
r r

el
ea

se
 d

at
e

Li
st

B
oo

kR
eq

ue
st

-c
at

eg
or

yI
d

-r
el

ea
se

D
at

e

Li
at

B
oo

kR
es

po
ns

e
-B

oo
k[

]
or go

og
le

.r
pc

.S
ta

tu
s

+
P

ro
bl

em
D

et
ai

ls

se
ar

ch
B

oo
ks

()
S

ea
rc

h
fo

r b
oo

ks
 b

y
au

th
or

, t
itl

e
S

ea
rc

hQ
ue

ry
-q

ue
ry

S
ea

rc
hQ

ue
ry

R
es

po
ns

e
-B

oo
k[

]
or go

og
le

.r
pc

.S
ta

tu
s

+
P

ro
bl

em
D

et
ai

ls

vi
ew

B
oo

k(
)

V
ie

w
 b

oo
k

de
ta

ils
V

ie
w

B
oo

kR
eq

ue
st

-b

oo
kI

d
B

oo
k

or go
og

le
.r

pc
.S

ta
tu

s
+

P
ro

bl
em

D
et

ai
ls

vi
ew

C
ar

t(
)

V
ie

w
 th

e
cu

rr
en

t c
ar

t a
nd

 to
ta

l
V

ie
w

C
ar

tR
eq

ue
st

-c
ar

tId
C

ar
t

or go
og

le
.r

pc
.S

ta
tu

s
+

P
ro

bl
em

D
et

ai
ls

cl
ea

rC
ar

t(
)

R
em

ov
e

al
l b

oo
ks

 fr
om

 th
e

cu
st

om
er

’s
 c

ar
t

C
le

ar
C

ar
tR

eq
ue

st
-c

ar
tId

C
ar

t
or go

og
le

.r
pc

.S
ta

tu
s

+
P

ro
bl

em
D

et
ai

ls

ad
dI

te
m

To
C

ar
t(

)
A

dd
 a

 b
oo

k
to

 th
e

cu
st

om
er

’s
 c

ar
t

A
dd

C
ar

tIt
em

R
eq

ue
st

-c
ar

tId
-q

ua
nt

ity

C
ar

t
or go

og
le

.r
pc

.S
ta

tu
s

+
P

ro
bl

em
D

et
ai

ls

re
m

ov
eI

te
m

Fr
om

C
ar

t(
)

R
em

ov
e

a
bo

ok
 fr

om
 th

e
cu

st
om

er
’s

 c
ar

t
R

em
ov

eC
ar

tIt
em

R
eq

ue
st

-c
ar

tId
-c

ar
tIt

em
Id

C
ar

t
or go

og
le

.r
pc

.S
ta

tu
s

+
P

ro
bl

em
D

et
ai

ls

ge
tA

ut
ho

rD
et

ai
ls

()
R

et
rie

ve
 th

e
de

ta
ils

 o
f a

n
au

th
or

G
et

A
ut

ho
rR

eq
ue

st
:

-a
ut

ho
rId

B
oo

kA
ut

ho
r

or go
og

le
.r

pc
.S

ta
tu

s
+

P
ro

bl
em

D
et

ai
ls

RPC API Design Process 145

Step 3: Document the API Design

Use the design details from the previous two steps to compose the IDL file for the
RPC-based API. In the case of gRPC, the IDL file is in the Protocol Buffers format.
Listing 8.2 provides a skeleton of a gRPC-based Shopping Cart API to demonstrate
the documentation process.

Listing 8.2 IDL File for the gRPC Version of the Shopping Cart API

// S h opping - C art- API .proto3

serv ice S h opping C art {

 rpc L istB ook s(L istB ook sR eq u est) retu rns (L istB ook sR esponse) {}

 rpc S earch B ook s(S earch B ook sR eq u est) retu rns (S earch B ook sR esponse) {}

 rpc V iew B ook (V iew B ook R eq u est) retu rns (B ook) {}

 rpc V iew C art(V iew C artR eq u est) retu rns (C art) {}

 rpc C learC art(C learC artR eq u est) retu rns (C art) {}

 rpc AddI temToC art(AddC artI temR eq u est) retu rns (C art) {}

 rpc R emov eI temF romC art(R emov eC artI temR eq u est) retu rns (C art) {}

 rpc GetAu th orD etails() retu rns (Au th or) {}

}

messag e L istB ook sR eq u est {

 string categ ory_ id = 1;

 string release_ date = 2;

}

messag e S earch B ook sR eq u est {

 string q u ery = 1;

}

messag e S earch B ook sR esponse {

 int32 pag e_ nu mb er = 1;

 int32 resu lt_ per_ pag e = 2 [def au lt = 10] ;

 repeated B ook b ook s = 3;

}

messag e V iew B ook R eq u est {

 string b ook _ id = 1; }

messag e V iew C artR eq u est {

 string cart_ id = 1;

}

messag e C learC artR eq u est {

 string cart_ id = 1;

}

Chapter 8 RPC and Query-Based API Design 146

messag e AddC artI temR eq u est {

 string cart_ id = 1;

 string b ook _ id = 2;

 int32 q u antity = 3;

}

messag e R emov eC artI temR eq u est {

 string cart_ id = 1;

 string cart_ item_ id = 2;

}

messag e C artI tem {

 string cart_ item_ id = 1;

 B ook b ook = 2;

 int32 q u antity = 3;

}

messag e C art {

 string cart_ id = 1;

 repeated C artI tem cart_ items = 2;

}

That’s it! The RPC-based API now has a high-level design. Details can now be
added to complete the API and code generators used to jumpstart the development
and integration work. Generating human-readable documentation is also recom-
mended using a tool such as protoc-gen-doc.4

Keep in mind that owing to RPC’s tight coupling with code, many code changes
will have a direct impact on the design of an RPC-based API. Put another way,
RPC-based API designs are replaced, not modified, when code changes are applied.

Notice how most of the effort took place in the API modeling step. By using the
API modeling technique as the foundation of the design effort, the work of bridging
the desired outcomes of the customer is easily mapped into an RPC-based design.
Should additional API styles be required, such as REST, the same API modeling work
can be reapplied to the design effort for the API style of choice.

What Is a Query-Based API?

Query-based APIs offer robust query capabilities and response shaping. They
support fetching a complete resource representation by identifier, paginated listing
of resource collections, and resource collection filtering using simple and advanced

4. https://github.com/pseudomuto/protoc-gen-doc

https://github.com/pseudomuto/protoc-gen-doc

What Is a Query-Based API? 147

filter expressions. Most query-based styles support mutating data as well,
supporting a full create-read-update-delete (CRUD)-based lifecycle along with
custom actions.

Most query-based API styles also offer response shaping, allowing API clients to
specify the fields to include in the response. Response shaping also supports deep
and shallow fetches of resource graphs. Deep fetches allow nested resources to be
retrieved at the same time as the parent, avoiding multiple API calls to recreate a
large graph on the client. Shallow fetches prevent this from happening to avoid
sending unnecessary data in the response. Response shaping is often used for mobile
apps, when a smaller amount of data is required compared to a Web application that
can render more information in a single screen.

Understanding OData

Two of the most popular query-based API styles are OData and GraphQL. OData5

is a query-based API protocol that is standardized and managed by OASIS. It is built
upon HTTP and JSON and uses a resource-based approach familiar to those already
familiar with REST.

OData queries are made through specific resource-based URLs via GET. It also
supports hypermedia controls for following related resources and data linking for
expressing resource relationships using hypermedia links rather than identifiers dur-
ing a create or an update operation. OData supports custom actions, which may
mutate data in ways beyond the standard CRUD pattern. Functions are also sup-
ported to support calculations. Listing 8.3 demonstrates the use of a filtered GET to
retrieve any airports located in San Francisco, California, using an OData query.

Listing 8.3 OData Using a Filter to Find Airports in San Francisco

GET /OD ata/Airports? $ f ilter= contains(L ocation/Address, ' S an F rancisco')

{

 "@ odata.contex t": "/OD ata/$ metadata# Airports",

 "v alu e": [

 {

 "@ odata.id": "/OD ata/Airports(' KS F O') ",

 "@ odata.editL ink ": "/OD ata/Airports(' KS F O') ",

 "I caoC ode": "KS F O",

 "Name": "S an F rancisco I nternational Airport",

5. https://www.odata.org/documentation

https://www.odata.org/documentation

Chapter 8 RPC and Query-Based API Design 148

 "I ataC ode": "S F O",

 "L ocation": {

 "Address": "S ou th McD onnell R oad, S an F rancisco, C A 9 4128 ",

 "C ity": {

 "C ou ntryR eg ion": "U nited S tates",

 "Name": "S an F rancisco",

 "R eg ion": "C alif ornia"

 },

 "L oc": {

 "type": "Point",

 "coordinates": [

 - 122.37 47 22222222,

 37 .6 18 8 8 8 8 8 8 8 8 8 9

] ,

 "crs": {

 "type": "name",

 "properties": {

 "name": "EPS G:4326 "

 }

 }

 }

 }

 }

]

}

Some developers find the complexity of adopting the OData specification
too much for simple APIs. However, the mixture of REST-based API design with
robust query options makes OData a popular choice for larger API products and
platforms.

OData has considerable support and investment from companies such as
Microsoft, SAP, and Dell. The Microsoft Graph API,6 which unifies the Office
365 platform under a single API, is built on OData and is an excellent example of
 constructing data-centric REST-based APIs with advanced query support.

6. Microsoft, “Overview of Microsoft Graph,” June 22, 2021, https://docs.microsoft.com/en-us/graph/
overview.

https://docs.microsoft.com/en-us/graph/overview
https://docs.microsoft.com/en-us/graph/overview

What Is a Query-Based API? 149

Exploring GraphQL

GraphQL7 is an RPC-based API style that supports the querying and mutation of
data. It is a specification that was developed internally by Facebook in 2012 before
being publicly released in 2015. It was originally designed to overcome the challenges
of supporting Web and mobile clients that need to obtain data via APIs at different
levels of granularity and with the option of retrieving deeply nested graph struc-
tures. Over time, it has become a popular choice by frontend developers who need to
bridge backend data stores with single-page applications (SPAs) and mobile apps.

All GraphQL operations are tunneled through a single HTTP POS T- or GET-based
URL. Requests use the GraphQL query language to shape the response of desired
fields and any nested resources in a single request. Mutations support modifying
data or performing calculation logic and use a similar language to queries to express
the data input for a modification or calculation request. All resource structures are
defined in one or more schema files, ensuring that clients may introspect resources at
design time or runtime. Listing 8.4 provides an example of a GraphQL query.

Listing 8.4 GraphQL Query to Fetch the San Francisco Airport by IATA code

POS T /g raph q l

{

 airports(iataC ode : "S F O")

}

{

 "data" : {

 {

 "Name": "S an F rancisco I nternational Airport",

 "iataC ode": "S F O",

 "L ocation": {

 "Address": "S ou th McD onnell R oad, S an F rancisco, C A 9 4128 ",

 "C ity": {

 "C ou ntryR eg ion": "U nited S tates",

 "Name": "S an F rancisco",

 "R eg ion": "C alif ornia"

 },

7. https://graphql.org

https://graphql.org

Chapter 8 RPC and Query-Based API Design 150

 "L oc": {

 "type": "Point",

 "coordinates": [

 - 122.37 47 22222222,

 37 .6 18 8 8 8 8 8 8 8 8 8 9

]

 }

 }

 }

 }

}

While GraphQL is popular with frontend developers, it has also gained significant
traction across enterprises as a means to stitch multiple REST APIs together into a
single query-based API. It is also useful for producing query-only reporting APIs
alongside existing REST-based APIs, offering a best-of-breed approach to API
platforms.

Many of the challenges around GraphQL are centered on its choice to tunnel
through a single endpoint rather than take advantage of the full capabilities of HTTP.
This prevents the use of HTTP content negotiation for the support of multiple media
types beyond JSON. It also prevents the use of concurrency controls and optimistic
locking offered by HTTP conditional headers. Similar challenges were experienced
with SOAP-based services, which was designed to work across multiple protocols
including HTTP, SMTP, and JMS-based message brokers.

Enforcing authorization is also a challenge because traditional API gateways that
expect to enforce access control by URL are limited to the single GraphQL operation.
However, some API gateways are extending their capabilities to include authorization
enforcement around GraphQL-based queries and mutations. Likewise, rate limiting,
often associated to a combination of path and HTTP method, must be rethought to
accommodate this new interaction style.

Query-Based API Design Process

The process used to design a query-based API is similar to that of other API design
styles, such as RPC and REST. The primary difference is that the steps require the
creation of a resource graph prior to designing the operations. To demonstrate the
process, a GraphQL-based API is designed based on the API modeling effort shown
in Chapter 6.

Query-Based API Design Process 151

Step 1: Designing Resource and Graph Structures

The first and most important step for query-based APIs is to design the graph
structure of all resources. If the API modeling work outlined in Chapter 6 has been
done, then this step is already complete. If the API modeling work hasn’t been
completed, go back to Chapter 6 and complete those steps before proceeding.
Figures 8.5 and 8.6 revisit the resources and relationships identified in Chapter 6 for
the bookstore example.

Once all top-level resources, along with related resources, have been identified,
proceed to the next step to design the query and mutation operations.

Step 2: Design Query and Mutation Operations

The next step is to migrate all operations captured in the API profile during API
modeling in Chapter 6. The API profiles capture each operation and include a
safety classification of safe, idempotent, or unsafe. Classify each operation marked
as safe as a query. Operations marked as idempotent or unsafe will be mutations.
For the Shopping Cart API, there are both query and mutation operations, as
shown in Figure 8.7.

Figure 8.5 The Book resource is the first top-level resource that needs to be supported for
the Shopping Cart API modeled in Chapter 6.

Book Resource

Property Name Description

title The book title

isbn The unique ISBN
of the book

authors List of Book
Author resources

Book Author Resource

Property Name Description

fullName The full name of
the author

Is this an
independent
relationship?

Where does
quantity go?

Independent

Book Resource

Property Name Description

title The book title

isbn The unique ISBN of the
book

authors List of Book Author
resources

Book Author Resource

Property Name Description

fullName The full name of the author

Chapter 8 RPC and Query-Based API Design 152

C
ar

t R
es

o
ur

ce

P
ro

p
er

ty
 N

am
e

D
es

cr
ip

tio
n

ca
rt

Ite
m

s
Th

e
ite

m
s

cu
rr

en
tly

 in

th
e

ca
rt

 fo
r p

ur
ch

as
e

su
bt

ot
al

Th
e

to
ta

l c
os

t o
f a

ll
bo

ok
s

in
 th

e
ca

rt

sa
le

sT
ax

Th
e

sa
le

s
ta

x
to

 b
e

ap
pl

ie
d

va
tT

ax
A

ny
 v

al
ue

-a
dd

ed
 ta

x
to

 b
e

ap
pl

ie
d

ca
rt

To
ta

l
Th

e
to

ta
l c

os
t o

f t
he

ca

rt

C
ar

t I
te

m
 R

es
o

ur
ce

P
ro

p
er

ty
 N

am
e

D
es

cr
ip

tio
n

bo
ok

Th
e

bo
ok

 c
ur

re
nt

ly
 in

th

e
ca

rt
 fo

r p
ur

ch
as

e

qt
y

un
ItP

ric
e

B
o

o
k

R
es

o
ur

ce

P
ro

p
er

ty
 N

am
e

D
es

cr
ip

tio
n

tit
le

Th
e

bo
ok

 ti
tle

is
bn

Th
e

un
iq

ue
 IS

B
N

 o
f

th
e

bo
ok

au
th

or
s

Li
st

 o
f B

oo
k

A
ut

ho
r

re
so

ur
ce

s

B
o

o
k

A
ut

ho
r

R
es

o
ur

ce

P
ro

p
er

ty
 N

am
e

D
es

cr
ip

tio
n

fu
llN

am
e

Th
e

fu
ll

na
m

e
of

 th
e

au
th

or

Fi
g

ur
e

8.
6

T
he

 C
ar

t r
es

ou
rc

e
is

 th
e

se
co

nd
 to

p-
le

ve
l r

es
ou

rc
e

th
at

 n
ee

ds
 to

 b
e

su
pp

or
te

d
fo

r
th

e
Sh

op
pi

ng
 C

ar
t A

PI
 m

od
el

ed
 in

 C
ha

pt
er

 6
.

Query-Based API Design Process 153

Fi
g

ur
e

8.
7

T
he

 S
ho

pp
in

g
C

ar
t A

PI
 p

ro
fil

e,
 m

od
el

ed
 in

 C
ha

pt
er

 6
, i

s
m

ig
ra

te
d

to
 a

 ta
bu

la
r

fo
rm

at
 th

at
 h

el
ps

 w
it

h
qu

er
y-

ba
se

d
A

PI
 d

es
ig

n.

O
p

er
at

io
n

Ty
p

e
O

p
er

at
io

n
N

am
e

D
es

cr
ip

tio
n

R
eq

ue
st

R
es

p
o

ns
e

Q
ue

ry
lis

tB
oo

ks
()

Li
st

 b
oo

ks
 b

y
ca

te
go

ry
 o

r r
el

ea
se

da

te

Q
ue

ry
se

ar
ch

B
oo

ks
()

S
ea

rc
h

fo
r b

oo
ks

 b
y

au
th

or
, t

itl
e

Q
ue

ry
vi

ew
B

oo
k(

)
V

ie
w

 b
oo

k
de

ta
ils

Q
ue

ry
vi

ew
C

ar
t(

)
V

ie
w

 th
e

cu
rr

en
t c

ar
t a

nd
 to

ta
l

M
ut

at
io

n
cl

ea
rC

ar
t(

)
R

em
ov

e
al

l b
oo

ks
 fr

om
 th

e
 cu

st
om

er
’s

 c
ar

t

M
ut

at
io

n
ad

dI
te

m
To

C
ar

t(
)

A
dd

 a
 b

oo
k

to
 th

e
cu

st
om

er
’s

 c
ar

t

M
ut

at
io

n
re

m
ov

eI
te

m
Fr

om
C

ar
t(

)
R

em
ov

e
a

bo
ok

 fr
om

 th
e

 cu
st

om
er

’s
 c

ar
t

Q
ue

ry
ge

tA
ut

ho
rD

et
ai

ls
()

R
et

rie
ve

 th
e

de
ta

ils
 o

f a
n

au
th

or

Chapter 8 RPC and Query-Based API Design 154

If the chosen protocol supports only query operations, then mutations must
be handled using a different API style. GraphQL supports both, so the design can
include both query and mutations within the same API definition.

Once the basic operation details have been captured, expand the request and
response columns with further details about the input and output values. These
input and output values were already determined during the API modeling in Chap-
ter 6. Migrate these values into the new API design table. The Shopping Cart API
operations are expanded in Figure 8.8.

Step 3: Document the API Design

Finally, document the resulting API using the preferred format for the chosen
protocol. In the case of GraphQL, a schema is used to define the queries and
mutations available, as shown in Listing 8.5.

Listing 8.5 Shopping Cart API Captured as a GraphQL Schema

API Name: "B ook store S h opping API Ex ample"

Th e B ook store Ex ample R ES T- b ased API su pports th e sh opping ex perience of

an online b ook store. Th e API inclu des th e f ollow ing capab ilities and opera-

tions...

type Q u ery {

 listB ook s(inpu t: L istB ook sI npu t!) : B ook sR esponse!

 search B ook s(inpu t: S earch B ook sI npu t!) : B ook sR esponse!

 v iew B ook (inpu t: GetB ook I npu t!) : B ook S u mmary!

 g etC art(inpu t: GetC artI npu t!) : C art!

 g etAu th orD etails(inpu t: GetAu th orD etailsI npu t!) : B ook Au th or!

}

type Mu tation {

 clearC art() : C art

 addI temToC art(inpu t: AddC artI temI npu t!) : C art

 remov eI temF romC art(inpu t: R emov eC artI temI npu t!) : C art

}

type B ook sR esponse {

 b ook s: [B ook S u mmary!]

}

type B ook S u mmary {

 b ook I d: S tring !

Query-Based API Design Process 155

 isb n: S tring !

 title: S tring !

 au th ors: [B ook Au th or!]

}

type B ook Au th or {

 au th orI d: S tring !

 f u llName: S tring !

}

type C art {

 cartI d: S tring !

 cartI tems: [C artI tem!]

}

type C artI tem {

 cartI temI d: S tring !

 b ook I d: S tring !

 q u antity: I nt!

}

inpu t L istB ook sI npu t {

 of f set: I nt!

 limit: I nt!

}

inpu t S earch B ook sI npu t {

 q : S tring !

 of f set: I nt!

 limit: I nt!

}

inpu t GetAu th orD etailsI npu t {

 au th orI d: S tring !

}

inpu t AddC artI temI npu t {

 cartI d: S tring !

 b ook I d: S tring !

 q u antity: I nt!

}

inpu t R emov eC artI temI npu t {

 cartI d: S tring !

 cartI temI d: S tring !

}

Chapter 8 RPC and Query-Based API Design 156

Fi
g

ur
e

8.
8

T
he

 S
ho

pp
in

g
C

ar
t G

ra
ph

Q
L

A
PI

 d
es

ig
n

is
 n

ow
 e

xp
an

de
d

w
it

h
ad

di
ti

on
al

 d
et

ai
ls

 a
bo

ut
 q

ue
ri

es
 a

nd
 m

ut
at

io
ns

.

O
p

er
at

io
n

Ty
p

e
O

p
er

at
io

n
N

am
e

D
es

cr
ip

tio
n

R
eq

ue
st

R
es

p
o

ns
e

Q
ue

ry
lis

tB
oo

ks
()

Li
st

 b
oo

ks
 b

y
ca

te
go

ry
 o

r r
el

ea
se

 d
at

e
qu

er
y

{
 B

oo
k

(c
at

eg
or

yI
d,

 re
le

as
eD

at
e)

 {

…
 } }

B
oo

k[
]

Q
ue

ry
se

ar
ch

B
oo

ks
()

S
ea

rc
h

fo
r b

oo
ks

 b
y

au
th

or
, t

itl
e

qu
er

y
{

 B
oo

k
(s

ea
rc

hQ
ue

ry
) {

…

 } }

B
oo

k[
]

Q
ue

ry
vi

ew
B

oo
k(

)
V

ie
w

 b
oo

k
de

ta
ils

qu
er

y
{

 b
oo

k(
bo

ok
Id

) {

...

}
}

B
oo

k

Q
ue

ry
vi

ew
C

ar
t(

)
V

ie
w

 th
e

cu
rr

en
t c

ar
t a

nd
 to

ta
l

qu
er

y
{

 c
ar

t(c
ar

tId
) {

…

 } }

C
ar

t

M
ut

at
io

n
cl

ea
rC

ar
t(

)
R

em
ov

e
al

l b
oo

ks
 fr

om
 th

e
cu

st
om

er
’s

ca

rt
m

ut
at

io
n

cl
ea

rC
ar

t {
 c

ar
tId

}

C
ar

t

M
ut

at
io

n
ad

dI
te

m
To

C
ar

t(
)

A
dd

 a
 b

oo
k

to
 th

e
cu

st
om

er
’s

 c
ar

t
m

ut
at

io
n

ad
dI

te
m

To
C

ar
t {

 c
ar

tId

 b
oo

kI
d

qu
an

tit
y

}

C
ar

t

M
ut

at
io

n
re

m
ov

eI
te

m
Fr

om
C

ar
t(

)
R

em
ov

e
a

bo
ok

 fr
om

 th
e

cu
st

om
er

’s

ca
rt

m
ut

at
io

n
re

m
ov

eI
te

m
Fr

om
C

ar
t {

 c
ar

tId
 c

ar
tIt

em
Id

}

C
ar

t

Q
ue

ry
ge

tA
ut

ho
rD

et
ai

ls
()

R
et

rie
ve

 th
e

de
ta

ils
 o

f a
n

au
th

or
qu

er
y

{
 B

oo
kA

ut
ho

r (
au

th
or

Id
) {

…

 } }

B
oo

kA
ut

ho
r

Summary 157

It is recommended to generate human-readable documentation using a tool
such as graphql-docs.8 Be sure to offer an interactive interface using GraphQL Play-
ground9 to enable developers to craft requests directly in the browser before writing
their integration code.

All examples provided in this chapter are based on the API workshop examples10

available on GitHub.

Summary

REST is not the only API style available. RPC- and query-based APIs provide
additional interaction styles that help developers integrate with an API product or
platform quickly. They may also be combined with REST-based APIs to provide
robust query operations for reporting and fast code generation options.

While the design process is slightly different for each API style, all styles build
upon the investment of aligning the needs of business, customers, and developers.
The next step in the design process is to determine if one or more asynchronous
APIs would benefit the API consumer. This topic is discussed in detail in Chapter 9,
“Messaging, Streaming, and Event-Based Async APIs.”

8. https://www.npmjs.com/package/graphql-docs

9. https://github.com/graphql/graphql-playground

10. https://bit.ly/align-define-design-examples

https://www.npmjs.com/package/graphql-docs
https://github.com/graphql/graphql-playground
https://bit.ly/align-define-design-examples

This page intentionally left blank

159

Chapter 9

Async APIs for Eventing
and Streaming

The key to safety lies in the encapsulation. The key to scalability lies in how
messaging is actually done.

— Alan Kay

Figure 9.1 The Design phase offers several options for API styles. This chapter covers asynchronous
API design.

ADDR
PROCESS

Align

Design

Refine Define

4. Model API
Profiles

5. High-Level
Design

6. Refine
the Design

7. Document
the API

2. Capture
Activity
Steps

3. Identify
API

Boundaries

1. Identify
Digital

Capabilities

Chapter 9 Async APIs for Eventing and Streaming 160

Most discussions that surround Web-based APIs center on synchronous request/
response interaction styles common with REST-based, query-based, and remote
procedure call (RPC)–based APIs. They are easy to understand and approacha-
ble for developers and non-developers with minimal experience working with
HTTP.

Yet, synchronous APIs have their limitations. The API server is unable to
inform interested parties about changes in the representation of a resource or
notify when a workflow between multiple parties have completed. Instead, they
require the client to initiate the interaction with an API server before receiving
any notifications.

Asynchronous APIs, or async APIs, unlock the full potential of a digital product
or platform. They extend the API conversation from client-originated to server-
originated, allowing clients to react to an event rather than start a conversation. New
capabilities may be built based on a single type of event notification. And all of this
may be done without the involvement of the team that owns an API.

Including async API design as part of an overall API design effort empowers
teams to craft new solutions based on notifications or data streams. But it takes a
few considerations to unlock the full potential of an async API. This chapter presents
some of the challenges and design patterns around designing async APIs. It also
demonstrates how to design and document an async API by building on the previous
API modeling steps outlined in Chapter 6.

The Problem with API Polling

If an API client wishes to know when new data is available, it must periodically check
with the server to see if any new resources have been added or existing resources have
been modified. This pattern is known as API polling and is a common solution for
clients that need to become aware of new resources or modifications to existing
resources.

API polling is flexible and may be implemented by the client on top of just about
any API that uses a request/response style. However, API polling isn’t an ideal solu-
tion. Coding the logic necessary to detect and track modifications is complex, waste-
ful, and can result a poor user experience. The API client must send a GET request to
a resource collection to fetch the latest list of resources, compare the list to the last
list retrieved by the API client, and determine if anything new has been added. Some
APIs offer an operation to provide recent changes based on a timestamp since the last
request, but it is up to the API client to continue to perform API polling to determine
when changes have been made.

Async APIs Create New Possibilities 161

Yet, many developers are forced to build API polling code to constantly check for
changes in server-side state. Building polling code includes additional challenges to
the developer:

 • The API sends responses back with default, nonoptimal sorting (e.g., oldest-to-
newest). The consumer must then request all entries to find out if anything new
is available, often keeping a list of the IDs already seen to determine what is new.

 • Rate limiting may prevent making requests at the desired intervals to detect
change in a timely fashion.

 • The data offered by the API doesn’t provide enough details for the client to
determine if a specific event has occurred, such as a resource modification.

The ideal situation is to have servers inform any interested API consumers about
new data or recent events. However, this isn’t possible with traditional request/
response API styles common with HTTP, as API clients are required to submit a
request before the API server can communicate any changes.

Async APIs help address this need. Rather than constantly polling and
implementing change detection rules on the API client, API servers send asynchronous
push notifications to interested API clients when something on the server has changed.
This opens a whole new series of possibilities compared to traditional, synchronous
Web-based APIs that are rooted in HTTP request/response.

Async APIs Create New Possibilities

As discussed in Chapter 1, “The Principles of API Design,” APIs provide interfaces
to data and behavior to deliver digital capabilities, typically over HTTP. Digital
capability examples include a customer profile search, customer registration, and
attaching a customer profile to an account. These digital capabilities are combined
to create API products and API platforms that empower business units within an
organization and among partners and customers to create new outcomes.

Async APIs are digital capabilities as well. They go beyond traditional REST-
based Web APIs to open new possibilities for digital business:

 • Reacting to business events in real-time: Solutions can react to internal state
changes and critical business events when they happen.

 • Extending the value of solutions with message streams: Additional value
is unlocked from existing solutions and APIs. New opportunities emerge to

Chapter 9 Async APIs for Eventing and Streaming 162

take advantage of internal events by surfacing them alongside the capabilities
offered by their APIs. New solutions are built on top of existing APIs through
an event-driven interaction style.

 • Improving API efficiency: Constant API polling is no longer needed to check
for state changes. This reduces the resources required to support an API by push-
ing state change events to those interested, thereby reducing infrastructure costs.

CASE STUDY
GitHub Webhooks Created a New CI/CD Marketplace

GitHub Webhooks have been around for some time, allowing teams to be
notified when new code has been pushed to a GitHub-hosted repository.
While Git supports writing scripts to react to these kinds of events within
a source code repository, GitHub was one of the first vendors to turn these
script-based hooks into Webhooks. Any individual or organization hosting
their code with GitHub could be notified, via an HTTP-based POST, when
new code was available and trigger a new build process.

Over time, continuous integration and delivery (CI/CD) tools that were pre-
viously restricted to on-premises installation could now be offered via a soft-
ware-as-a-service (SaaS) model. These solutions would be granted permission
to receive the Webhook-based notification and start a new build process.

This one async API notification ultimately created an entire SaaS market
of hosted CI/CD tools. That is the power of async APIs.

Before the full potential of async APIs can be unlocked, it is important to
understand messaging fundamentals.

A Review of Messaging Fundamentals

Messages contain data that are published by a message producer to a message
receiver. Receivers may be a local function or method, another process on the same
host, a process on a remote server, or middleware such as a message broker.

There are three common types of messages: commands, replies, and events:

 • A command message requests that work be done immediately or in the future.
Command messages are often imperative: C reateOrder, R eg isterPayment, and
so on. Command messages are sometimes referred to as request messages.

A Review of Messaging Fundamentals 163

 • A reply message provides the result, or outcome, of a command message.
Reply messages often add the suffix R esu lt or R eply to differentiate them from
their command counterparts: C reateOrderR eply, R eg isterPaymentR esu lt, and
so on. Reply messages are also referred to as response messages. Not all com-
mand messages result in a reply message.

 • Event messages tell the receiver about something that happened in the past.
A good event name uses past tense to indicate that an action has taken place:
OrderC reated, PaymentS u b mitted, and so on. Event messages are typically used
when a business event has occurred, a workflow state has changed, or data has
been created or modified.

Messages Are Immutable

It is important to note that messages are immutable. Once they are published,
they may not be modified. Therefore, a message that requires modification must
be republished as a new message. If necessary, include a correlation identifier to
map the new message to the original message.

Figure 9.2 shows an example of each kind of message and the context that it
provides.

Component A
Calculate the
30-day sales
average

Command Message:

30-day sales
average report
scheduled

Reply Message:

30-day sales
average
updated

Event Message:

<Message Producer>

Component A

<Message Receiver>

Component A

<Message Producer>

Component B

<Message Receiver>

Component B

<Message Producer>

Component B

<Message Receiver>

Figure 9.2 Examples of the three primary types of messages.

Chapter 9 Async APIs for Eventing and Streaming 164

Messaging Styles and Locality

An application or service may choose from one or more styles of messaging:

 • Synchronous messaging involves the message producer sending a message
and waiting while the receiver processes it and returns a reply.

 • Asynchronous messaging allows the message producer and receiver to
operate in their own time rather than waiting upon one another. The mes-
sage producer sends the message to the receiver, but the receiver may not
be able to process it immediately. The message producer is free to perform
other tasks while waiting for a reply from the message receiver.

In addition, messages may be exchanged across different localities:

 • Local messaging assumes that messages are sent and received within the
same process. As such, the programming language and host will be the same
as well. The Smalltalk programming language was built to support send-
ing and receiving messages between objects. Actor-based frameworks, such
as Vlingo,1 also support this kind of messaging. A “mailbox” sits between
the code that produces the message and the code that will process the mes-
sage. The consumer code processes each message as soon as possible, some-
times using threads or dedicated CPU cores to process multiple messages in
parallel.

 • Interprocess messaging exchanges messages between separate processes but
on the same host. Examples include UNIX sockets and dynamic data exchange
(DDE).

 • Distributed messaging involves two or more hosts for messaging. Messages
are transmitted over a network using the desired protocol. Examples of dis-
tributed messaging include message brokers using Advanced Message Queuing
Protocol (AMQP), Message Queuing Telemetry Transport (MQTT), SOAP-
based Web services, REST-based APIs, and so on.

The combination of synchronous and asynchronous messaging styles, along
with the locality of the messaging, determines the possibilities of a message-based
solution.

1. https://vlingo.io

https://vlingo.io

A Review of Messaging Fundamentals 165

The Elements of a Message

When a discussion around message design emerges, most of the focus is on the mes-
sage body. The message body is usually in a structured format, such as JSON or
XML, though binary or plain text are also valid. Some organizations choose to wrap
the message body within a message envelope that contains useful metadata about the
message contents and the message publisher.

There is more to a message than just the message body, however. Messages
may also include transport protocol semantics. Network protocols such as HTTP,
MQTT, and AMQP include message headers with details such as creation times-
tamps, time-to-live (TTL), priority/quality of service, and so on. A message is not
fully described unless it includes all necessary information to process the message
over the protocol. Figure 9.2 demonstrates the elements of each message exchanged
between an API client and API server for a REST-based API.

HTTP REQUEST GET /b ook s

Accept: application/json
...

<empty>

200 OK

C ontent- Type:application/json
...

{
"b ook s":[
{"title":"My b ook title",
...}
]

}

Protocol
Semantics

Message
Body

Protocol
Semantics

Message
Body

HTTP RESPONSE

Message

Message

Figure 9.3 A REST API example that shows the elements of the request and response messages
exchanged between the API client and the API server.

Chapter 9 Async APIs for Eventing and Streaming 166

Understanding Messaging Brokers

Message brokers act as an intermediary between message producers and message
receivers. The result is a more loosely coupled design, as producers are only aware of
the message broker but not the components ultimately receiving the messages.
Examples of message brokers include RabbitMQ,2 ActiveMQ,3 and Jmqtt.4

Message brokers also offer additional features such as the following:

 • Transactional boundaries ensure that messages are published or marked as
delivered only if the transaction is committed.

 • Durable subscriptions store messages prior to dispatching to message receiv-
ers. Undeliverable messages, perhaps because the message receiver is offline,
are stored on the client’s behalf until they reconnect (i.e., the store and forward
pattern).

 • Client acknowledgement mode specifies how a message is considered
acknowledged by the client to provide flexibility in balancing performance
with failure recovery. A message is considered dispatched successfully either
(1) automatically upon delivery or (2) upon client acknowledgment that the
message was processed successfully.

 • Message processing failures are handled by dispatching messages to a differ-
ent receiver in the event of a failure or outage of the original message receiver.
This behavior is controlled by the client acknowledgment mode established by
the client upon connecting to the broker.

 • A dead letter queue (DLQ) stores messages that could not be processed
because of unrecoverable errors by message receivers. Allows automated or
manual review and processing of failed message delivery.

 • Message priority and TTL assist the message broker in prioritizing the deliv-
ery of messages and removing unprocessed messages if they exceed a specific
period of time without being processed.

 • Standards-based connectivity is achieved through the AMQP protocol, along
with optimized protocols for Java via Java Message Service (JMS) and other
language bindings.

2. https://www.rabbitmq.com

3. http://activemq.apache.org/index.html

4. https://github.com/Cicizz/jmqtt

https://www.rabbitmq.com
http://activemq.apache.org/index.html
https://github.com/Cicizz/jmqtt

A Review of Messaging Fundamentals 167

Message brokers offer two methods of message distribution: point-to-point
and fanout.

Point-to-Point Message Distribution (Queues)

Point-to-point messaging allows a publisher to send a message to a single
subscriber selected from a pool of registered subscribers. The broker is responsible
for selecting the subscriber that will receive the published message for processing
via a round robin or similar selection process. Only one subscriber will receive a
message published to the queue. If the subscriber fails to process the message
within a given timeout period, the broker selects a new subscriber for message
processing. Figure 9.4 demonstrates an example of a point-to-point queue.

Point-to-point queues are useful for publishing command messages that should
have only one consumer processing a message at a time to ensure consistency and
predictability and to avoid duplicate message processing. This is a common pattern
for background job processing, where each job should be processed only once by a
pool of workers.

Fanout Message Distribution (Topics)

Fanout messaging allows every message published to a topic to be distributed to
every subscriber currently registered (see Figure 9.5). The broker doesn’t care if the
message was processed by all subscribers or just a subset of them. Unlike point-to-
point queues, a message will be processed by all subscribers.

All topic subscribers will receive a copy of each published message. This
distribution method supports independent, parallel processing logic for each
published event message. Subscribers are not aware of each other or the publisher,
only that a new message has been sent to them for processing.

Component

Component

Component

M
es

sa
ge

 B
ro

ke
rA

B

Message

A

Message

B

Message

Message

Figure 9.4 A point-to-point queue that dispatches each message to a single message receiver
subscribed to the queue.

Chapter 9 Async APIs for Eventing and Streaming 168

Figure 9.5 A fanout topic that dispatches each message to all subscribed message receivers.

Publisher

Subscriber

Subscriber

Subscriber

Message

A

Message

A

Message

A

Message

A

M
es

sa
ge

 B
ro

ke
r

A Note about Message Broker Terminology

The terms queues and topics, as used in this chapter, are commonly found in
resources about distributed messaging. Keep in mind that some vendors, such as
RabbitMQ, offer more distinct options for topics. Options range from general
broadcasting of messages, termed fanout, to selective broadcasting, which they
term topics. Be sure to read the vendor documentation carefully to understand the
terminology vendors prefer to achieve the desired goals.

Message Streaming Fundamentals

Message brokers are most often transactional and are designed to manage the state
of durable subscriptions for failure recovery of offline receivers. While useful for a
number of application and integration solutions, transactional support and other
characteristics limit the scalability of traditional message brokers.

Message streaming builds on the decades of message broker expertise but
shifts some responsibilities away from the server while adding new capabilities to
address today’s complex data and messaging needs. It uses a fanout pattern for push

A Review of Messaging Fundamentals 169

notification of new messages to one or more subscribers, much like message broker
topics. Examples of streaming servers include Apache Kafka,5 Apache Pulsar,6 and
Amazon Kinesis.7

Unlike message brokers, subscribers may request messages at any point from
the topic’s available message history. This allows for the replay messages or for sim-
ply picking up where processing previously left off. Unlike message brokers, most
streaming servers shift state management from the server to the client. The client
is now responsible for tracking the last message seen. Error recovery is also pushed
to the client, forcing the client to resume processing messages at the last known
message.

Support for this style of interaction is accomplished by shifting message manage-
ment from a traditional queue or topic to an append-only log. These logs may store
all messages or limit the history of messages for specified retention period. A topic
using a distributed log with two consumers is shown in Figure 9.6.

Topic A

O�set: 5 O�set: 10

R
ec

or
d

1

R
ec

or
d

2

R
ec

or
d

3

R
ec

or
d

4

R
ec

or
d

5

Consumer A Consumer B

R
ec

or
d

6

R
ec

or
d

7

R
ec

or
d

8

R
ec

or
d

9

R
ec

or
d

10

Figure 9.6 A streaming topic comprising a distributed log of recorded messages, consumed
by two separate consumers who have two separate offsets to reflect their current message.

5. https://kafka.apache.org

6. https://pulsar.apache.org

7. https://aws.amazon.com/kinesis

https://kafka.apache.org
https://pulsar.apache.org
https://aws.amazon.com/kinesis

Chapter 9 Async APIs for Eventing and Streaming 170

With the ability to specify the offset of where they wish to start, clients are able
to solve new kinds of problems using solutions that were not possible with message
brokers:

 • Achieve near real-time data processing and data analytics as soon as incoming
data is received from other systems or third parties due to the highly scalable
and low-latency design of message streaming servers.

 • Use historical messages to verify the results of code changes prior to pushing
new code to production.

 • Execute experimental data analytics against historical messages.

 • Remove the need to subscribe to all message broker queues and topics in an
effort to store all messages processed by a message broker for auditing purposes.

 • Push data into a data warehouse or data lake for consumption by other sys-
tems, without the need for traditional extract-transform-load (ETL) processes.

The higher scalability of message streaming lends itself to a shift in the way data
is managed and shared. Rather than sharing access to a data store or replicating the
data store, each new or modified data event message is pushed to a topic stream. Any
consumers are then able to process the data change, including storing it locally for
caching or for further analysis.

Message Streaming Considerations

In certain circumstances, message streaming may not be the best option:

 • Duplicate message processing: Subscribers must keep track of their
current location in the stream. Therefore, duplicate message processing
must be expected and handled. This may be the case if the current loca-
tion was not able to be stored prior to a failure.

 • No message filtering: Message brokers support filtering messages on
a queue or topic based on specific values. Message streaming does not
support this filtering out of the box. Instead, it requires receivers to pro-
cess all messages from a given offset or to apply a third-party solution,
such as Apache Spark.

 • Authorization is limited: Because message streaming is relatively new,
fine-grained authorization control and filtering is limited or nonex-
istent for today’s solutions. Be sure to verify authorization needs are

Async API Styles 171

satisfied by the chosen vendor before proceeding. There are solutions
beginning to emerge that bridge streams with REST, which may allow
API gateways to apply more rigorous authorization strategies.

Async API Styles

Async APIs are an API interaction style that allows the server to inform the consumer
when something has changed. There are a variety of API styles that support asynchronous
APIs: webhooks, Server-Sent Events (SSE), and WebSocket are the most common.

Server Notification Using Webhooks

Webhooks allow API servers to publish notifications to other interested servers when an
event has occurred. Unlike traditional callbacks, which occur within the same codebase,
webhooks occur over the Web, using an HTTP POS T. The term webhooks was coined by
Jeff Lindsay8 in 2007. Since then, the REST Hooks patterns9 have been developed to offer
a standard way to manage and secure webhook subscriptions and notifications.

Webhooks are dispatched when the API server sends a POS T request to a URL that
is provided by the system wishing to receive the callbacks. For example, an interested
subscriber may register to receive new task event notifications on a specific URL they
provide, such as https://myapp/callbacks/new-tasks. The API server then sends a
POS T request to each subscriber’s callback URL with a message containing the event
details. The full sequence is shown in Figure 9.6.

Webhooks must be network accessible by the API server and must be able to host
an API server of its own to receive the POS T requests. As such, webhooks are a good fit
for server-to-server communication between systems but not useful for browser and
mobile applications.

8. Jeff Lindsay, “Webhooks to Revolutionize the Web” (blog), Wayback Machine, May 3, 2007,
https://web.archive.org/web/20180630220036/http:/progrium.com/blog/2007/05/03/web-hooks-
to-revolutionize-the-web.

9. https://resthooks.org

Implementing Webhooks Effectively

Webhooks require a variety of considerations, including handling delivery fail-
ures, securing communications between client and server, and callbacks that take
too long to acknowledge the notification. Refer to the REST Hooks documenta-
tion10 for tips on implementing webhook servers effectively.

10. https://resthooks.org/docs

https://myapp/callbacks/new-tasks
https://web.archive.org/web/20180630220036/
http://progrium.com/blog/2007/05/03/web-hooks-to-revolutionize-the-web
http:///progrium.com/blog/2007/05/03/web-hooks-to-revolutionize-the-web
https://resthooks.org
https://resthooks.org/docs

Chapter 9 Async APIs for Eventing and Streaming 172

Webhook
Dispatcher

W
eb

ho
ok

S
ub

sc
rib

er
 1

POST /callbacks/new-tasks POST /my-callback POST /…

API Server

W
eb

ho
ok

S
ub

sc
rib

er
 2

W
eb

ho
ok

S
ub

sc
rib

er
 ..

.

Figure 9.7 An API server’s webhook dispatcher that sends a message to each registered URL
that wishes to receive the callback using HTTP POST.

Server Push Using Server-Sent Events

SSE is based on the EventSource browser interface,11 standardized as part of HTML5
by the W3C. It defines the use of HTTP to support longer-lived connections to allow
servers to push data back to the client. These incoming messages contain event
details that are useful to the client.

SSE is a simple solution that supports server-push notification while avoiding the
challenges of API polling. While SSE was originally designed to support pushing
data to a browser, it is becoming a more popular way to push data to a mixture of
browsers and server-side subscribers.

SSE uses a standard HTTP connection but holds onto the connection for a longer
period of time rather than disconnecting immediately. This connection allows API
servers to push data back to the client when it becomes available.

The specification outlines a few options for the format of the data coming back,
allowing for event names, comments, single- or multiline text-based data, and event
identifiers.

Subscribers submit a request to the SSE operation using a GET with the media
type of tex t/ev ent- stream (see Figure 9.8). Existing operations are therefore able to
support both standard request/response interactions using JSON, XML, and other

11. https://developer.mozilla.org/en-US/docs/Web/API/EventSource

https://developer.mozilla.org/en-US/docs/Web/API/EventSource

Async API Styles 173

supported media types using content negotiation. Clients interested in using SSE
may do so by specifying the SSE media type instead of JSON or XML in the Accept
request header.

Once connected, the server then pushes new events, separated by a newline. If the
connection is lost for any reason, the client is able to reconnect to start receiving new
events. Clients may provide the L ast- Ev ent- I D HTTP header to recover any missed
events since the last event ID seen by the client. This is useful for failure recovery.

The format for the data field may be any text-based content, from simple data
points to single-line JSON payloads. Multiple lines may be provided using multiple
data-prefixed lines.

SSE supports several use cases:

 • State change notifications to a frontend application, such as a browser or
mobile app, to keep a user interface in sync with the latest server-side state

 • Receiving business events over HTTP, without requiring access to an internal
message broker or streaming platform such as RabbitMQ or Kafka

 • Enabling clients to process data incrementally, rather than all at once, by
streaming long-running queries or complex aggregations results as they become
available

API Consumer
Web/Mobile/Server

Accept: tex t/ev ent- stream

task _ created:

data: {"id": "12345"}

id: 12345

task _ created:

data: {"id": "6 7 8 9 "}

id: 6 7 8 9

…

GET /task s/sse- ev ent- stream

Accept: tex t/ev ent- stream

L ast- Ev ent- I d: 6 7 8 9

<<Disconnected>>

REST API Server

GET /task s/sse- ev ent- stream

Figure 9.8 Using Server-Sent Events (SSE) to allow API servers to push events to the client
over a long-lived connection. Connections may be resumed using the Last-Event-Id request
header.

Chapter 9 Async APIs for Eventing and Streaming 174

SSE does have a few cases where it may not be a fit:

 • The API gateway isn’t capable of handling long-running connections or has a
brief timeout period (e.g., less than 30 seconds). While this isn’t a showstop-
per, it will require the client to reconnect more often.

 • Some browsers do not support SSE. Refer to Mozilla’s list of compatible
browsers12 for more information.

 • Bidirectional communication between client and server is required. In this
case, the WebSocket protocol may be a better option, as SSE is server push only.

The W3C SSE specification is easy to read and offers additional specifications and
examples.

Bidirectional Notification via WebSocket

WebSocket supports the tunneling of a full-duplex protocol, called a subprotocol,
within a single TCP connection that is initiated using HTTP. Because they are full-
duplex, bidirectional communication becomes possible between API clients and
servers. Clients are able to push requests to the server over a WebSocket connection,
all while the server is able to push events and responses back to the client.

WebSocket is a standardized protocol maintained by the Internet Engineering
Task Force as RFC 6455.13 Most browsers support WebSocket, making it easy to
use for browser-to-server, server-to-browser, and server-to-server scenarios. Because
WebSocket connections are tunneled through HTTP connections, they can also
overcome proxy restrictions found in some organizations.

An important factor to keep in mind is that WebSocket doesn’t behave like HTTP,
even though it uses HTTP to initiate the connection. Instead, a subprotocol must be
selected. There are many subprotocols officially registered with IANA.14 WebSocket
supports both text and binary format subprotocols. Figure 9.9 shows an example
WebSocket interaction using a plain text subprotocol.

WebSocket is more complex to implement but supports bidirectional
communication. This means that they allow clients to send data to the server as well
as receive data pushed from the server using the same connection. While SSE is easier

12. MDN Web Docs, “Server-Sent Events,” last modified August 10, 2021, https://developer.mozilla.org/
en-US/docs/Web/API/Server-sent_events.

13. Internet Engineering Task Force (IETF), The WebSocket Protocol (Request for Comments 6455,
December 2011), https://tools.ietf.org/html/rfc6455.

14. Internet Assigned Numbers Authority (IANA), WebSocket Protocol Registries, last modified July 19,
2021, https://www.iana.org/assignments/websocket/websocket.xhtml.

https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events
https://tools.ietf.org/html/rfc6455
https://www.iana.org/assignments/websocket/websocket.xhtml

Async API Styles 175

HT
TP

/1
.1

 1
01

 W
eb

So
ck
et
 P
ro
to
co
l
Ha
nd
sh
ak
e

Da
te

:
Th

u,
10

 S
ep

t
20
20
 1
4:
53
:1
8
GM
T

Co
nn

ec
ti

on
:

Up
gr

ad
e

Up
gr

ad
e:

 W
eb

So
ck

et
…

GE
T
ws

:/
/e

ch
o.

we
bs

oc
ke

t.
or

g/
?e

nc
od

in
g=

te
xt
 H

TT
P/

1.
1

Or
ig
in

:
ht

tp
:/

/w
eb

so
ck

et
.o

rg
Co
nn
ec

ti
on

:
Up

gr
ad

e
Up
gr
ad

e:
 w

eb
so

ck
et

Se
c-
We

bS
oc

ke
t-

Ve
rs

io
n:

 1
3

…

A
P

I C
o

ns
um

er
W

eb
/M

o
b

ile
/S

er
ve

r
R

E
S

T
 A

P
I S

er
ve

r
w

ith
W

eb
S

o
ck

et
 s

up
p

o
rt

We
bS

oc
ke

t
up

gr
ad

e
re

sp
on

se

He
ll

o,
 c

li
en

t

We
bS

oc
ke

t
up

gr
ad

e
re

qu
es

t

<<
W

eb
S

o
ck

et
 E

na
b

le
d

>>

He
ll

o,
 s

er
ve

r

Fi
gu

re
 9

.9
 A

n
ex

am
pl

e
in

te
ra

ct
io

n
be

tw
ee

n
an

 A
PI

 c
lie

nt
 a

nd
 se

rv
er

 u
si

ng
 W

eb
So

ck
et

 a
nd

 a
 p

la
in

 te
xt

 su
bp

ro
to

co
l t

o
cr

ea
te

 a
 c

ha
t a

pp
lic

at
io

n.

Chapter 9 Async APIs for Eventing and Streaming 176

to implement, clients are not able to send requests on the same connection, making
WebSocket a better option when full duplex communication is necessary. Keep this
in mind when choosing an async API style.

gRPC Streaming

TCP protocol is optimized for long-lived bidirectional communications. HTTP/1.1
was built on top of TCP but required multiple connections to allow clients to achieve
concurrency. While this multiconnection requirement is easy to load balance and
therefore scale, it has a considerable performance impact, as each connection requires
establishing a new TCP socket connection and protocol negotiation.

HTTP/2 is a new standard built on the work of the SPDY protocol by Google
to optimize portions of HTTP/1.1. Part of the optimization includes request and
response multiplexing. In response multiplexing, a single HTTP/2 connection is
used for one or more simultaneous requests. This avoids the overhead of creating
new connections for each request, similar to how HTTP/1.1 supports keep-alive
connections. However, HTTP/2 multiplexing allows all requests to be sent at once
rather than sequentially using a keep-alive connection.

In addition, HTTP/2 servers may push resources to the client rather than require
the client to initiate the request. This is a considerable shift from the traditional Web-
based request/response interaction style of HTTP/1.1.

gRPC takes advantage of HTTP/2’s bidirectional communication support,
removing the need to separately support request/response alongside WebSocket,
SSE, or other push-based approaches on top of HTTP/1.1. Because gRPC supports
bidirectional communication, async APIs can be designed and integrated alongside
traditional request/response RPC methods using the same gRPC-based protocol.

There are three options for gRPC streaming: client-to-server, server-to-client, and
bidirectional, illustrated in Figure 9.10.

Like WebSocket, gRPC can send and receive messages and events across a single,
full-duplex connection. Unlike WebSocket, there are no subprotocol decisions to be
made and supported, as gRPC uses Protocol Buffers by default. However, brows-
ers have no built-in gRPC support. The grpc-web project15 is working on bridging
gRPC to browsers, but with limitations. Therefore, gRPC streaming is often limited
to service-to-service interactions.

15. https://github.com/grpc/grpc-web

https://github.com/grpc/grpc-web

Async API Styles 177

gRPC Client gRPC Client

gRPC Client

gRPC Server gRPC Server

gRPC Server

gRPC Async Option 1: Client Streams to Server gRPC Option 2: Server Streams to Client

gRPC Async Option 3: Bidirectional Streaming

serv ice Main {
rpc GetL atestOrders(stream OrderQ u ery)
retu rns (OrderR esu lts) {}

}

serv ice Main {
rpc GetL atestOrders(OrderQ u ery)
retu rns (stream Order) {}

}

serv ice Main {
rpc GetL atestOrders(stream OrderQ u ery)
retu rns (stream Order) {}

}

Figure 9.10 The three gRPC-based streaming options available: client-to-server, server-to-
client, and bidirectional.

Selecting an Async API Style

While there are several choices available for async APIs, it is important to note that
some choices may be a better option than others, depending on the circumstances
and constraints of the solution. Following are some considerations for each async
API style to help teams determine which style(s) may be the best options for an API:

 • Webhooks: Webhooks are the only async API style that may be server-
originated—that is, they don’t require the client to initiate a connection first.
Because subscriptions require being able to receive a POS T-based callback, use
Webhooks when server-to-server notification is needed. Web browsers and
mobile apps are unable to take advantage of Webhooks, as they cannot estab-
lish an HTTP server to receive the callback. Subscribers that have inbound
communication restricted by a firewall will not be able to receive the callback,
as there won’t be a network path to the callback server.

 • Server-Sent Events: SSE is typically the easiest to implement on the server and
client sides but has limited browser support. It also lacks bidirectional commu-
nication between client and server. Use SSE when there is a need for the server-
push of events that follows RESTful API design.

Chapter 9 Async APIs for Eventing and Streaming 178

 • WebSocket protocol: WebSocket is more complex to implement due to the
need to support one or more subprotocols, but it supports bidirectional com-
munication. WebSocket is more broadly supported across browsers as well.

 • gRPC streaming: gRPC takes full advantage of HTTP/2, so all infrastructure
and subscribers must be able to support this newer protocol to take full advan-
tage of gRPC streaming. Like WebSocket, it offers bidirectional communica-
tion. gRPC isn’t supported fully by browsers, so gRPC streaming is best suited
for service-to-service communication or for APIs that manage and configure
infrastructure.

Designing Async APIs

Designing async APIs is similar to the process used to design traditional request/
response APIs using a REST-, RPC-, or query-based style. Begin with the resources
identified during the API modeling step, as outlined in Chapter 6, “API Modeling.”
Revisit the events identified while capturing the operation details of each API profile.
Then, determine what commands and events would be beneficial for API consumers.

Command Messages

Command messages incorporate all of the details necessary to request another com-
ponent to perform a unit of work. When designing commands for async APIs, it is
important to design the command message with sufficient details to process the
request. It may also include a target location where the result message may be pub-
lished. This target location may be a URL to POS T the results, a URI to a message
broker topic, or perhaps a URL to a shared object store such as Amazon S3.

When designing commands, it may be easy to use built-in language mechanisms
such as object serialization to simplify the development of the command producer and
consumer. However, this will limit the systems that will be able to consume and pro-
cess these commands. Instead, seek to use a language-agnostic message format, such
as the UBER hypermedia format, Apache Avro, Protocol Buffers, JSON, or XML.

The following is an example JSON-based command message to request a
customer’s billing address to be updated asynchronously:

{

 "messag eType": "cu stomerAddress.u pdate",

 "req u estI d": "123f 456 7 ",

 "u pdatedAt": "2020- 01- 14T02:56 :45Z ",

Designing Async APIs 179

 "cu stomerI d": "330001003",

 "new B illing Address": {

 "addressL ine1": "...",

 "addressL ine2": "...",

 "addressC ity": "...",

 "addressS tate": "...",

 "addressR eg ionProv ince": "...",

 "addressPostalC ode": "..."

 }

}

An additional replyTo field could be provided with the URL for callback, or other
subscribers could listen for a cu stomerAddress.u pdated event to react to the change,
perhaps updating the billing address in a third-party system.

Event Notifications

Event notifications, sometimes referred to as thin events, notify subscribers that a
state change or business event has occurred. They seek to provide only the necessary
information sufficient for the subscriber to determine if the event is of interest.

The event subscriber is responsible for fetching the latest representation of the
details via an API to avoid using stale data. Providing hypermedia links as part
of a thin event helps to integrate API operations for retrieving the latest resource
representation(s) with async APIs such as events. This is shown in the following
example event payload:

{

 "ev entType": "cu stomerAddress.u pdated",

 "ev entI d": "123e456 7 ",

 "u pdatedAt": "2020- 01- 14T03:56 :45Z ",

 "cu stomerI d": "330001003",

 "_ link s": [

 { "rel": "self ", "h ref ":"/ev ents/123e456 7 " },

 { "rel": "cu stomer", "h ref ":"/cu stomers/330001003" }

]

}

Thin events are used for events related to resources that change frequently, forcing
the event subscriber to retrieve the latest resource representation to avoid working
with stale data. While not necessary, thin events may also include details about

Chapter 9 Async APIs for Eventing and Streaming 180

the specific properties that changed when an update occurred to help consumers
determine if the event is of interest.

Event-Carried State Transfer Events

Event-carried state transfer events contain all available information at the time of the
event. This avoids the need to contact an API for the complete resource representation,
although additional APIs may be used to augment the data required by the subscriber
to perform any processing.

There are a few reasons why event-carried state transfer may be preferred over
thin events:

 • Subscribers want a snapshot of the resource associated with the event rather
than the few details and associated hypermedia links offered by thin events.

 • Data state changes are using message streaming to support replaying message
history, requiring a complete point-in-time snapshot of a resource.

 • Messaging via async APIs is used for interservice communication, requiring
the publication of a full resource representation to avoid increased API traffic
and tighter coupling between services.

It is common for this style of message design to mimic API representation
structures whenever possible. Deviation is common when the event must offer the
old and new values of any modified properties on an update event.

Finally, use nested rather than flat structures to group related properties for
medium-to-large payloads. This helps drive evolvability, as property names are
scoped to the parent property, avoiding property name collisions or long property
names to clarify relationships. The following is a demonstration of a flat structure to
event-carried state transfer message styles:

{

 "ev entType": "cu stomerAddress.u pdated",

 "ev entI d": "123e456 7 ",

 "u pdatedAt": "2020- 01- 14T03:56 :45Z ",

 "cu stomerI d": "330001003",

 "prev iou sB illing AddressL ine1": "...",

 "prev iou sB illing AddressL ine2": "...",

 "prev iou sB illing AddressC ity": "...",

 "prev iou sB illing AddressS tate": "...",

Designing Async APIs 181

 "prev iou sB illing AddressR eg ionProv ince": "...",

 "prev iou sB illing AddressPostalC ode": "...",

 "new B illing AddressL ine1": "...",

 "new B illing AddressL ine2": "...",

 "new B illing AddressC ity": "...",

 "new B illing AddressS tate": "...",

 "new B illing AddressR eg ionProv ince": "...",

 "new B illing AddressPostalC ode": "...",

 ...

}

A more structured approach is demonstrated in the following example:

{

 "ev entType": "cu stomerAddress.u pdated",

 "ev entI d": "123e456 7 ",

 "u pdatedAt": "2020- 01- 14T03:56 :45Z ",

 "cu stomerI d": "330001003",

 "prev iou sB illing Address": {

 "addressL ine1": "...",

 "addressL ine2": "...",

 "addressC ity": "...",

 "addressS tate": "...",

 "addressR eg ionProv ince": "...",

 "addressPostalC ode": "..."

 },

 "new B illing Address": {

 "addressL ine1": "...",

 "addressL ine2": "...",

 "addressC ity": "...",

 "addressS tate": "...",

 "addressR eg ionProv ince": "...",

 "addressPostalC ode": "..."

 },

 ...

}

When applying structured composition to the event-carried state transfer style,
the consumer is able to reuse value objects to contain the details of each nested object

Chapter 9 Async APIs for Eventing and Streaming 182

and easily detect differences in fields or visualize the changes within a user interface
at a later date. Without the pattern, a large value object plus additional coding effort
are required to associate the flattened fields for performing things such as detecting a
difference between the previous and new address.

Event Batching

While most async APIs are designed to notify a subscriber when each message is
available, some designs may benefit from grouping events into a batch. Event
batching requires that subscribers handle one or more messages within each
notification. A simple example is to wrap the notification with an array and enclose
each message within the response, even if there is only one event message at the time:

[

 {

 "ev entType": "cu stomerAddress.u pdated",

 "ev entI d": "123e456 7 ",

 "u pdatedAt": "2020- 01- 14T03:56 :45Z ",

 "cu stomerI d": "330001003",

 "_ link s": [

 { "rel": "self ", "h ref ":"/ev ents/123e456 7 " },

 { "rel": "cu stomer", "h ref ":"/cu stomers/330001003" }

]

 },

...,

...

]

Another design option is to provide an envelope that wraps each batch of events
along with additional metadata about the batch:

{

 "meta": {

 "app- id- 1234",

 ...

 },

 "ev ents": [

 {

 "ev entType": "cu stomerAddress.u pdated",

Designing Async APIs 183

 "ev entI d": "123e456 7 ",

 "u pdatedAt": "2020- 01- 14T03:56 :45Z ",

 "cu stomerI d": "330001003",

 "_ link s": [

 { "rel": "self ", "h ref ":"/ev ents/123e456 7 " },

 { "rel": "cu stomer", "h ref ":"/cu stomers/330001003" }

]

 },

 ...,

 ...

]

}

Keep in mind that batching messages or events allows for grouping based on a
specific timeframe, number of events per batch, or through other grouping factors.

Event Ordering

Most event-based systems offer delivery of messages in order when possible.
However, this may not always be the case. Event receivers may go offline and must
restore missing messages while also accepting new inbound messages as they arrive.
Or the message broker is unable to provide the guarantee of ordered message delivery.
In complex distributed systems, multiple brokers and/or message styles may be used
in combination, making it difficult to keep messages in order.

When event ordering is necessary, considerations must be made regarding mes-
sage design. For a single message broker, the broker may offer message sequence
numbering or timestamp-based ordering using the timestamp of when the mes-
sage was received. In distributed architectures, the timestamp cannot be trusted,
as each host may have slight variations in system time, called clock skew. This
requires a centralized sequence-generation technique to be used and assigned to
each message.

Be sure to factor order needs into the message design and across various architec-
tural decisions. It may be necessary to research and understand distributed synchro-
nization using techniques such as a Lamport Clock16 to overcome clock skew across
distributed nodes while ensuring proper ordering of messages across hosts.

16. Wikipedia, s.v. “Lamport Timestamp,” last modified March 22, 2021, 00:201 https://en.wikipedia.
org/wiki/Lamport_timestamp.

https://en.wikipedia.org/wiki/Lamport_timestamp
https://en.wikipedia.org/wiki/Lamport_timestamp

Chapter 9 Async APIs for Eventing and Streaming 184

Documenting Async APIs

The AsyncAPI specification17 is a standard for capturing definitions of async mes-
saging channels. AsyncAPI supports traditional message brokers, SSE, Kafka and
other message streams, and Internet of Things (IoT) messaging such as MQTT. This
standard is becoming popular as a single solution to define message schemas and the
protocol binding specifics of message-driven protocols. It is important to note that
this specification isn’t related to the OpenAPI Specification (OAS) but has been
inspired by it and strives to follow a similar format to make adoption easier.

Listing 9.1 demonstrates an Async API description file with message definitions
for the Shopping API’s notification events, modeled in Chapter 6.

Listing 9.1 AsyncAPI Definition of Shopping API Events

#

S h opping - API - ev ents- v 1.asyncapi.yaml

asyncapi: 2.0.0

inf o:

 title: S h opping API Ev ents

 v ersion: 1.0.0

 description: |

 An ex ample of some of th e ev ents pu b lish ed du ring th e b ook store' s sh op-

ping cart ex perience...

ch annels:

 b ook s.search ed:

 su b scrib e:

 messag e:

 $ ref : ' # /components/messag es/B ook sS earch ed'

 carts.itemAdded:

 su b scrib e:

 messag e:

 $ ref : ' # /components/messag es/C artI temAdded'

components:

 messag es:

 B ook sS earch ed:

17. https://www.asyncapi.com

https://www.asyncapi.com

Documenting Async APIs 185

 payload:

 type: ob ject

 properties:

 q u eryS tring F ilter:

 type: string

 description: Th e q u ery string u sed in th e search f ilter

 categ oryI dF ilter:

 type: string

 description: Th e categ ory I D u sed in th e search f ilter

 releaseD ateF ilter:

 type: string

 description: Th e release date u sed in th e search f ilter

 C artI temAdded:

 payload:

 type: ob ject

 properties:

 cartI d:

 type: string

 description: Th e cartI d w h ere th e b ook w as added

 b ook I d:

 type: string

 description: Th e b ook I D th at w as added to th e cart

 q u antity:

 type: integ er

 description: Th e q u antity of b ook s added

Keep in mind that the AsyncAPI specification also supports the addition of pro-
tocol bindings for each channel’s publish and subscribe messages. This flexibility
allows the same message definition to be used across multiple messaging proto-
cols, including message brokers, SSE, message brokers, and message streams. Visit
the AsyncAPI Web page18 for more information on the specification and additional
resources to help get started using this async API description format. For example
asynchronous API descriptions, refer to the API workshop examples19 available on
GitHub.

18. https://asyncapi.com
19. https://bit.ly/align-define-design-examples

https://asyncapi.com
https://bit.ly/align-define-design-examples

Chapter 9 Async APIs for Eventing and Streaming 186

Summary

Teams can benefit from shifting the API design approach from strictly request/
response APIs to thinking in terms of how APIs can offer both synchronous request/
response operations and asynchronous events. These events enable the API to push
notifications to other teams that can build entirely new capabilities and perhaps
product offerings on top of the original API. The result will be increased innovation
and more transformative APIs as part of an API product or API platform initiative.

187

Part V

Refining the API Design

Following the Align-Define-Design-Refine (ADDR) process so far, the outcomes are
identified and digital capabilities captured during the Align phase. The Define phase
then elaborates on these details, forming API profiles with bounded scope and
responsibilities. The Design phase applies one or more API styles to the API profile,
producing a high-level design of the APIs needed to deliver the desired outcomes.

The Refine phase seeks to improve the developer experience and prepare for deliv-
ery of the API. Topics addressed in Part V include decomposing an API into services
to shift complexity, applying proper API testing strategies, and strategies for offering
robust API documentation. Offering helper libraries and command-line interfaces
is also explored. Finally, tips are provided for scaling the ADDR process for larger
organizations.

This page intentionally left blank

189

Chapter 10

From APIs
to Microservices

The biggest fallacy about monoliths is you can have only one.

— Kelsey Hightower

ADDR
PROCESS

Align

Design

Refine Define

4. Model API
Profiles

5. High-Level
Design

6. Refine
the Design

7. Document
the API

2. Capture
Activity
Steps

3. Identify
API

Boundaries

1. Identify
Digital

Capabilities

Figure 10.1 Refining the API design may include decomposing it into smaller services to
reduce the overall complexity of the solution.

Chapter 10 From APIs to Microservices 190

Monolithic
(a single unit)

Microservices
(better granularity)

Service-Oriented
(a few course-grained units)

Figure 10.2 The traditional way of thinking about monolithic, service-oriented, and
microservice architectures. Dashed lines represent traditional course-grained boundaries that
are further decomposed to reduce the complexity of more course-grained services.

All organizations want to deliver business value as fast as possible. At the same time,
they must ensure their software consistently works as expected. Increasing the speed
of development risks an increase in bugs and decrease in reliability. The larger a soft-
ware solution becomes, the greater this risk.

To mitigate these risks, organizations are required to reduce velocity in software
delivery by coordinating through meetings. These meetings seek to optimize delivery
while addressing any risks along the way. The larger the software solution, the more
meetings that are required to mitigate associated risks. Yet, every meeting slows
down the delivery process. Therefore, the balance between speed and delivering
quality software is important.

Decomposing APIs into microservices (Figure 10.1) is one option for teams
to address this need for balance. This chapter explores the topic of microservices,
including benefits, challenges, and alternatives to microservices.

What Are Microservices?

Microservices are small, independently deployed components that deliver one or a
small number of bounded digital capabilities. Each service offers one of the many
digital capabilities required, ensuring that each service has a limited scope. When
combined, microservices deliver a highly complex solution using smaller building
blocks than the traditional service-oriented approach, as shown in Figure 10.2.

Microservice adoption has typically been used to decompose highly complex
systems into independently deployed components rather than containing the com-
plexity within a single codebase. The cognitive load required to understand a sin-
gle microservice is lowered compared to that of understanding a single codebase.

What Are Microservices? 191

Service

DB DB DB

Service Service

User Interface

Figure 10.3 Microservices decompose high complexity into smaller, independently deployable
components.

Testing becomes more approachable, and automated test suites become more
focused on the single component (see Figure 10.3).

The idea of microservices has been around for more than a decade but only
recently have microservices gained widespread use by the late majority. In the early
days of microservices, teams had to weigh the effort required to establish and main-
tain the infrastructure necessary for a microservices architecture. Over time, many
of these factors were addressed through cloud-native infrastructure, the growth of
the DevOps culture, better delivery pipeline automation, and the use of containeri-
zation for producing self-contained deployment packages.

A Warning about the Term Microservices

It is important to recognize that there are a variety of definitions and scope
assigned to microservices. Some organizations or individuals may define
microservices as individual entities that offer a Web API, resulting in many
network calls between services unnecessarily. Other definitions exist as well.
Use caution when the organization makes a broad declaration that it is mov-
ing to microservices.

First, be sure to understand what is meant by the term. Be specific in the
definition and intent. Next, seek a reference architecture and one or more
reference applications to demonstrate the desired target state. Ask questions
as necessary to ensure a shared understanding of the purpose and outcomes
desired when shifting to microservices. Otherwise, everyone will assign their
own definition of a microservice, and chaos will reign across the organization.

Finally, recognize that organizations may be using the term microservices
in a specific way, while others may simply use the term to indicate that teams
should “think smaller” than large, siloed systems that exist today. Do not
assume understanding without following these recommended steps to align
on a mutual definition and goals when shifting to microservices.

Chapter 10 From APIs to Microservices 192

Microservices Reduce Coordination Costs

With many of these factors addressed today, organizations are now taking a
microservice-based approach by default. However, it is important to understand
both the benefits and the challenges of architectural decisions around microservices.
Both technical and nontechnical factors that can have a positive or negative impact
on the people behind the services and must be considered in the decision making.

The cost of coordinating many teams working within the same codebase is
extremely high. Meeting after meeting is required to ensure that developers don’t
introduce bugs and that merge conflicts are avoided. For large organizations, the
introduction of additional middle managers is required to coordinate the coordination.

The single greatest benefit of microservices is to reduce team coordination.
A team operating independently to maintain one or a few microservices can
coordinate within their team with limited coordination points outside their team.

Based on Metcalfe’s law,1 smaller teams result in fewer communication paths.
The benefit is that it takes fewer meetings to communicate intent and resolve issues
across the organization. The result is a team with more time to design, code, test,
and deliver their services.

Coordination across teams is not eliminated with microservices, however. Integra-
tion must be coordinated to ensure that all the microservices fit the solution needs.
Timelines must still be coordinated between product managers, business, and service
teams. Therefore, the number of smaller team meetings may increase, whereas the
number of attendees and the scope of discussion is greatly reduced for each meeting.
Teams are given more independence and meetings are more efficient as coordination
efforts are limited to the scope of the team’s deliverables.

To achieve the goal of reduced team coordination, several factors are required:

• Self-service, automated infrastructure resources that ensure rapid onboarding
of new services. These resources are commonly associated with a DevOps cul-
ture of automation tooling combined with continuous delivery processes.

• Team ownership of services throughout the software development lifecycle,
including enhancements and support services. Team ownership across the life-
cycle results in a culture of “you own it, you manage it” rather than siloed
delivery to operations teams but may also include software reliability engineers
and other roles to augment the team.

• Removal of centralized data ownership, allowing each service to own and man-
age the data associated with their services.

1. Wikipedia, s.v. “Metcalfe’s Law,” last modified April 13, 2021, 13:48, https://en.wikipedia.org/wiki/
Metcalfe%27s_law.

https://en.wikipedia.org/wiki/Metcalfe%27s_law
https://en.wikipedia.org/wiki/Metcalfe%27s_law

Weighing the Complexity of Microservices 193

Without incorporating these important factors, any shift to microservices will be
met with challenges, including bloated microservices, slower velocity of delivery, and
even project failure. This topic is discussed further in Chapter 6 of Strategic Mono-
liths and Microservices2 in the section “Open-Host Service.”

The benefits of moving to microservices have less to do with technology
choices and more to do with the impact they have on the organization. The shift
to microservices must be considered thoughtfully, as they may have a positive or
negative impact on day-to-day development and operations.

The Difference between APIs and Microservices

While API products and microservices each offer network-based APIs, the differences
between them are vast:

 • API products target stability and evolvability, whereas microservices enable
experimentation. Consumers of an API expect the contract to never break
unless migrating to a new version of an API. Microservices are designed for
experimentation and constant change. As such, microservices may be split,
combined, or removed at any time.

 • API products offer a set of digital capabilities for integration into solutions.
Microservices decompose a solution into distributed components. They are
not an external contract with the developer beyond the immediate boundary. If
an external contract becomes a requirement, the service must be transitioned
to an API product with a stable interface.

Just because the codebase is small doesn’t make it a microservice. A microservice
is an internal component and shouldn’t be shared directly with external consumers.
API products may be shared within a specific team, across teams, across the
organization, and/or with partners/public developers.

Weighing the Complexity of Microservices

The most important factor when considering microservices is the complexity of the
solution. Complexity cannot be fully removed from a software solution. However, it
may be distributed across the solution. Microservices allow the complexity to be

2. Vaughn Vernon and Tomasz Jaskula, Strategic Monoliths and Microservices: Driving Innovation
Using Purposeful Architecture (Boston: Addison-Wesley, 2021).

Chapter 10 From APIs to Microservices 194

spread across components, making each individual component easier to build and
manage. However, separating the problem into distributed components introduces
other complexity.

Each team and organization must consider both the complexity of a solution
and the complexities that microservices introduce to determine if a shift to
microservices will help or hinder the organization’s ability to deliver solutions with
both speed and safety. While a single microservice may offer lower complexity, the
infrastructure and automation requirements to deliver, monitor, and protect the
service at runtime increases.

If the solution has a low factor of complexity, then microservices are often
unnecessary and may even be detrimental to solution success. If the complexity of
the solution is unknown, weigh the factors that follow and then consider starting
with a minimal solution that balances these factors, migrating to microservices when
and if the complexity increases.

Self-Service Infrastructure

Microservices require a self-service, fully automated infrastructure. Teams must be
able to design a microservice, build it, and deploy code without any manual processes
or approvals. Organizations that have not fully automated their provisioning and
deployment pipeline will encounter considerable friction. Without full automation
support, new code will be added to existing microservices to avoid manual processes,
resulting in a few very large, siloed services.

Independent Release Cycles

Microservices must have their own release cycle. Some organizations opt to use their
existing release processes, such as a two-week sprint and release, rather than allowing
microservices to be released when they are ready. This coordinated deployment of all
microservices at once results in a large release process rather than independent teams
that may deploy their microservices as needed.

Shift to Single-Team Ownership

Each microservice should be owned, monitored, and managed by a single team.
Teams should own only one or a few microservices to focus their efforts. They must
own the service from definition to design and delivery. They must support the
service, much like a product that seeks to incorporate improvements as feedback is
received from other teams.

Weighing the Complexity of Microservices 195

Smaller organizations find it challenging to assign single-team ownership,
instead sharing the ownership of all services across a small number of developers.
Developers spend more time moving between codebases and dealing with the
challenges of distributed computing than they spend delivering solutions to
market.

Organizational Structure and Cultural Impacts

Microservices require proper organizational support and structure. Organizational
structure and culture may be at odds with the ownership and independence of
microservices teams. Reporting structures may be optimized for larger delivery
teams. Challenges may arise in trying to coordinate service integrations across teams
that span managers. Organizations that prefer centralized oversight may encounter
difficulties shifting control to individual teams.

These organizational challenges may create an unhealthy tension that makes
it difficult to move to microservices while achieving the speed and safety often
promised with microservices. Keep the organization’s structure in mind before
shifting to microservices by ensuring that buy-in exists from the executive team and
managers who oversee service teams.

Tip

Don’t discount the organizational and cultural impacts of adopting micros-
ervices. The shift from product- or project-based ownership to the ownership
of one or a few microservices within a bounded area will have an impact on
reporting structures and team alignment. Count the cost before proceeding.
Otherwise, the organization may be trading code complexity for organizational
complexity.

Shift in Data Ownership

Microservices must own their own data. This can be a challenging item, as rarely do
teams think beyond the source code when it comes to shifting to microservices. When
services do not own their data, the coordination cost of underlying schema changes
can ripple across multiple microservices that share the data. It can require large,
coordinated release efforts to bring every service in line with a breaking schema
change within a shared data source.

Chapter 10 From APIs to Microservices 196

Distributed Data Management and Governance

Microservices require considerable data management and governance. Because
microservices own their own data, investment must be made to ensure that proper
data management policies exist for reporting and analytics. Today data management
is typically handled through extract-transform-load (ETL)–based processes that
migrate data into an online analytical processing (OLAP)–based data store for
optimized queries and decision support.

Shifting to microservices requires shifting to data streaming rather than ETL processes
to bring together data from multiple services for the purposes of data aggregation and
reporting. More emphasis needs to be placed on managing glossaries that create a strong
ontology and taxonomy to unify distributed data models. Organizations with centralized
data model governance and large shared databases must use caution when migrating to a
microservices architecture. Finally, don’t underestimate the effort required to separate a
monolithic data store into a data store per service.

Distributed Systems Challenges

The journey toward microservices requires a deep understanding of distributed sys-
tems. Those not as familiar with the concepts of distributed tracing, observability,
eventual consistency, fault tolerance, and failover will encounter a more difficult
time with microservices. The eight fallacies of distributed computing,3 written by L.
Peter Deutsch and others at Sun Microsystems in 1994 and still applicable today,
must be understood by every developer.

In addition, many find that architectural oversight is required to initially
decompose and subsequently integrate services into solutions. Teams unable to
have architectural support may suffer from lack of architectural consideration in the
design of their microservices, resulting in poor boundaries and overlapping team
responsibilities that produce increased cross-team coordination. The Align phase of
the ADDR process seeks to address this concern early.

Finally, layered architectures are common within a monolithic codebase but are
frowned upon with microservices. If microservices are layered incorrectly, a change to
a single microservice may ripple to other services and require additional coordination
efforts to synchronize the changes. Microservices that apply a layered approach must
ensure that the impact of a service change is limited. Revisit the layered principle of
REST to see how layers may be used to add independence between components.

3. Wikipedia, s.v. “Fallacies of Distributed Computing,” last modified July 24, 2021, 20:52, https://
en.wikipedia.org/wiki/Fallacies_of_distributed_computing.

https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing
https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing

Weighing the Complexity of Microservices 197

Resiliency, Failover, and Distributed Transactions

With more microservices comes greater complexity when calls between services are
required. Synchronous microservices require call chaining across a network and are
therefore susceptible to network failure.

Resilience must be built into each microservice to ensure retries and failover
occur in the event of a temporary network outage. The concept of a service mesh,
discussed further in Chapter 15, “Protecting APIs,” was introduced to address
these crosscutting concerns, but a service mesh introduces further deployment and
operational complexity that may be unnecessary for simple solutions.

Another side effect of synchronous call chaining is that failures beyond
the first call require previous service calls to roll back transactions. During the
height of service-oriented architecture (SOA), transaction managers were used
to create distributed transactions, usually through the use of two-phase commit
(2PC) transactions. This isn’t an option with a highly distributed microservice
architecture.

Instead, distributed transactions are often implemented using the Saga pattern.4

A transactional context is applied within each service call, with compensating transac-
tions used to apply the opposite operation when a rollback is required. State machines
are required for each resource involved. Event sourcing is often used alongside the Saga
pattern to ensure that all operations are atomic transactions backed by a ledger for
auditing and troubleshooting purposes.

Refactoring and Code Sharing Challenges

Refactoring code is more challenging with microservices, as integrated development
environments (IDEs) and other refactoring tools can only refactor within a single
codebase. Refactoring code across multiple microservice codebases becomes more
error prone.

When microservices use the same programming language, the tendency is to
utilize a shared codebase for common code. Sharing code between services can
create coordination coupling, requiring more meetings to ensure a change to code
shared across microservices doesn’t negatively impact others. When sharing code
between services, all changes must be optional to avoid forcing other teams to be
in lockstep.

4. Chris Richardson, “Pattern: Saga,” Microservice Architecture, accessed August 19, 2021, https://
microservices.io/patterns/data/saga.html.

https://microservices.io/patterns/data/saga.html
https://microservices.io/patterns/data/saga.html

Chapter 10 From APIs to Microservices 198

Do You Really Need Microservices?

After weighing the challenges of microservices and the underlying opera-
tional complexity, it may be determined that an API boundary doesn’t need to
be decomposed into microservices. Instead of microservices, perhaps all that
is needed is one or more monolithic APIs that are designed to be modular,
known as modular monoliths.

Modular monoliths apply loose coupling and high cohesion within a sin-
gle codebase to avoid the complexity of distributed computing. Over time,
the monolith may be decomposed into microservices if the solution becomes
too complex for a single codebase. However, only apply this approach once
all paths to refactoring and reorganizing the modules of a single codebase
have been exhausted.

Remember that organizations aren’t limited to a single monolith. Multiple
modular monoliths may be sufficient for the needs of the team. Each mono-
lith offers one or a few APIs that support the operations within the bounded
contexts contained within the monolith.

Synchronous and Asynchronous Microservices

Microservices may be designed to be synchronous or asynchronous. Synchronous
microservices apply a more traditional request/response model, typically via HTTP
using REST, RPC, or a query API style.

While synchronous, request/response–based APIs are more familiar to develop-
ers, the result can be the creation of fragile integrations. Services that orchestrate
API calls between services may fail midstream if a problem occurs with a single ser-
vice, requiring a reversal of previously successful API calls. Services that call other
services, termed call chaining, may also fail midstream but are unable to reverse the
previous API calls themselves. Figure 10.4 illustrates this concern, as the service cli-
ent only called Service A, which results in more service calls that can fail in the event
of a downstream error.

Alternatively, an asynchronous access pattern may be used for microservice inte-
gration. In this style, messages are submitted to a message queue or topic hosted
on a message broker or streaming server. One or more microservices listen for mes-
sages, process them in turn, and then emit messages containing business events as the
result.

Synchronous and Asynchronous Microservices 199

S
er

vi
ce

 A

se
rv

ic
eA

.c
al

cS
om

et
hi

ng
()

S
er

vi
ce

 C
lie

nt
S

er
vi

ce
 A

S
er

vi
ce

 B

S
er

vi
ce

 B

se
rv

ic
eB

.c
al

cS
om

et
hi

ng
E

ls
e(

)

se
rv

ic
eC

.c
al

cM
or

eS
tu

�(
)

X
X

S
er

vi
ce

 C

S
er

vi
ce

 C

Fi
g

ur
e

10
.4

 M
ic

ro
se

rv
ic

es
 th

at
 u

se
 a

 s
yn

ch
ro

no
us

, r
eq

ue
st

/r
es

po
ns

e
st

yl
e

re
su

lt
 in

 c
al

l c
ha

in
s

th
at

 c
an

 fa
il

w
it

ho
ut

 th
e

cl
ie

nt
’s

kn
ow

le
dg

e.

Chapter 10 From APIs to Microservices 200

Fi
g

ur
e

10
.5

 A
sy

nc
hr

on
ou

s
m

ic
ro

se
rv

ic
es

 a
re

 a
bl

e
to

 re
ce

iv
e

co
m

m
an

d
m

es
sa

ge
s

an
d

re
sp

on
d

w
it

h
re

su
lt

s
w

it
ho

ut
 th

e
ne

ed
 fo

r
fr

ag
ile

 c
al

l
ch

ai
ni

ng
.

se
rv

ic
eA

.c
al

cS
om

et
hi

ng
()

S
er

vi
ce

 A
Q

ue
ue

S
er

vi
ce

 B
Q

ue
ue

S
er

vi
ce

 C
Q

ue
ue

no
tifi

ca
tio

n
of

 re
su

lt

no
tifi

ca
tio

n
of

 re
su

lt

no
tifi

ca
tio

n
of

 re
su

lt

S
er

vi
ce

 A
S

er
vi

ce
 A

se
rv

ic
eC

.c
al

cM
or

eS
tu

�(
)

se
rv

ic
eB

.c
al

cS
om

et
hi

ng
El

se
()

S
er

vi
ce

 C
lie

nt

S
er

vi
ce

 C

S
er

vi
ce

 B

S
er

vi
ce

 C

S
er

vi
ce

 B

Microservice Architecture Styles 201

Asynchronous microservices offer several advantages. The greatest advantage
is that new microservices can be brought online to replace older ones without the
knowledge of the consumer. The new microservice subscribes to the same topic or
queue and begins processing messages.

In addition, consumers have the flexibility to use one or more of the following
interaction patterns, as needed: fire-and-forget, fire-and-listen for events, or fire-and-
follow-up using the provided response URL.

Finally, asynchronous error handling and recovery is built in to message brokers
and streaming solutions. Avoiding the need for synchronous call chaining error
recovery greatly simplifies the infrastructure requirements, reducing or eliminating
the need for a service mesh.

Of course, asynchronous integration is a more complex interaction than a
standard request/response approach. Developers must learn to integrate with asyn-
chronous services and handle failures by checking for error response messages and
process unprocessed messages using dead letter queues (DLQs).

Microservice Architecture Styles

A microservice-based architecture is not limited to a single style or approach. There
are three common styles of applying microservices. Each one offers a slight variation
on how microservices may be used to reduce coordination between teams. Some have
chosen to apply one or more of these styles in combination to support the needs and
culture of the organization.

Direct Service Communication

In this style, each service communicates with other services directly using a synchro-
nous or asynchronous model. This approach is the most common style found during
the early days of microservices. Those using a synchronous model encounter chal-
lenges such as service communication failure and call chain fragility. The introduc-
tion of a service mesh helps to overcome these challenges, as does the shift to a more
asynchronous model that is message driven. Figure 10.6 depicts this more traditional
microservice architecture style.

API-Based Orchestration

This style starts with the design of an API that is further decomposed into
microservices as appropriate. The API becomes the stable orchestration layer
across one or more microservices, offering a more stable contract externally while

Chapter 10 From APIs to Microservices 202

Figure 10.6 Direct service communication allows any service to invoke any other service.

supporting experimentation and splitting of microservices internally. This is a
style chosen by organizations that have struggled with some of the challenges of
the direct service communication model. Many of the organizations that were
early adopters of microservices are moving to this model. This model is shown in
Figure 10.7.

Figure 10.7 The API-based orchestration style offers increased contract stability while
hiding the internal microservices.

API

API

API

API
Gateway

Microservice Architecture Styles 203

API
Gateway

API
Gateway

API
Gateway

API

API

Figure 10.8 A cell-based architecture blends the direct service communication and API-
based orchestration styles into a more modular approach for large organizations or complex
systems.

Cell-Based Architecture

A cell-based architecture (see Figure 10.8) blends the previous two styles to bring a
more modular approach to microservices. Each cell offers one or more digital capa-
bilities, provided through a synchronous or asynchronous API. The API is external-
ized via a gateway, hiding the internal details of service decomposition through
encapsulation. Cells are combined to create larger solutions. Because of the modular
composability of this style, it is often found in large organizations, as it offers better
management for their evolving systems.

Uber Engineering recently shifted from the integration of many small services
to this cell-based architecture model. It discovered that complexity increases are far
outweighed by the value that microservices provided. Uber refers to this approach as
Domain-Oriented Microservice Architecture (DOMA) and offers a helpful article5

that summarizes the approach. It resembles many of the elements of a cell-based
architecture by reducing the complexity of a large-scale microservice architecture
while maintaining the flexibility and benefits that it provides.

5. Adam Gluck, “Introducing Domain-Oriented Microservice Architecture,” Uber Engineering, July 23,
2020, https://eng.uber.com/microservice-architecture.

https://eng.uber.com/microservice-architecture

Chapter 10 From APIs to Microservices 204

Right-Sizing Microservices

Organizations on the path to microservices often struggle with finding the right size
for microservices. Teams often ask, “What is the maximum allowable size for a
microservice?” A better question would be, “What is the right size for this microservice
based on what is needed today?”

Microservices aren’t frozen in time. Instead, they grow and become more complex.
Over time, a microservice may need to be split. At other times, two microservices
may become codependent and benefit from being combined into a single service.
Therefore, the size of a microservice will change over time.

It is also important to note that services tend to grow over time, requiring that the
boundaries of a microservice be reevaluated often. This can only be done efficiently
if service ownership resides with a single team. Services shared across teams require
further coordination meetings.

Right-sizing microservices requires a continuous process of design and reevaluation:

1. Identify where transactional boundaries exist to find candidate service bound-
aries. Defining boundaries helps to reduce the chances of spreading transac-
tions across services.

2. Design two or a few course-grained microservices based on the identified
boundaries. This step ensures your microservice operations retain integrity
within a transactional boundary and avoids the challenges of rolling back
transactions across multiple microservice calls over the network.

3. Keep splitting services as they grow, being guided by the needs of transactional
boundaries while keeping team coordination costs low.

Tip

It is best to focus less on the size of the microservice and more on the purpose of
the service. Microservices should seek to make future change easier, even if that
means the service is more course-grained at the start.

Decomposing APIs into Microservices

If the team has determined that decomposing the API into two or more microservices
would be beneficial, then there are a few additional steps needed when starting the
delivery phase: extending previously created API sequence diagrams with more
detail, identifying candidate services, and capturing the service design details.

Decomposing APIs into Microservices 205

Step 1: Identify Candidate Microservices

The first step in decomposing APIs is to identify candidate microservices. Start by
expanding the web sequence diagrams, created during the API modeling and design
phases, to include external systems and data stores. The diagrams help to identify
natural boundaries between services. Figure 10.9 expands the Shopping API with the
inclusion of an external search engine that will support basic and advanced query
support.

Because the search engine integration is read-only within the Search Books opera-
tion of the Shopping API, this is a good candidate for decomposing into a separate
service. The team that will own this candidate microservice will be responsible for

GET /b ook s

B ook s[]

POS T /carts{b ook I d: 12345, q ty: 1}

C art{cartI d: 456 }

D EL ETE/carts/456 /items/1

POS T /b ook s- index ? q = API

S earch R esu lts

POS T /carts/456 /items{b ook I d: 12345, q ty: 1}

C art{cartI d: 456 , ...}

GET /carts/456

C art{cartI d: 456 , ...}

B ook s[]

Search
Engine

Shopping
API

Search
Engine

Shopping
API

Customer

Customer

POS T /b ook s/search {q : “ API ” }

conv ertR esu ltsToB ook R esou rces

Figure 10.9 Expanded Shopping API web sequence diagram that now includes any
external system.

Chapter 10 From APIs to Microservices 206

GET /b ook s

B ook s[]

D EL ETE /carts/456 /items/1

POS T /b ook s- index ? q = API

S earch R esu lts

B ook s[]

Search
Engine

Shopping
API

Search
Engine

Shopping
API

Customer

Customer

conv ertR esu ltsToB ook R esou rces

POS T /carts{b ook I d: 12345, q ty: 1}

C art{cartI d: 456 }

POS T /carts/456 /items{b ook I d: 12345, q ty: 1}

C art{cartI d: 456 , ...}

GET /carts/456

C art{cartI d: 456 , ...}

POS T /b ook s/search {q : “ API ” }

Figure 10.10 The search engine integration will require specialized knowledge of how to
properly index and search entities, so the Search Books operation is a good candidate for a
separate microservice.

ensuring the search engine indexes are both performant and deliver the search capa-
bilities required by customers. Figure 10.10 show the boundary for the candidate
microservice that will support book searches.

Step 2: Add Microservices into API Sequence Diagrams

Next, revise the sequence diagram to show the introduction of the candidate micros-
ervice. Determine if the integration should use a synchronous API, such as REST, or
if an asynchronous service would be better. An updated sequence diagram for the
Shopping API is shown in Figure 10.11.

Decomposing APIs into Microservices 207

GE
T

/b
oo

ks

Bo
ok

[]

PO
ST

 /
bo

ok
s-

in
de

x?
q=

AP
I

Bo
ok

[]

Se
ar
ch
Re
su
lt
s

PO
ST

 /
bo
ok
s-
in
de
x?
q=
AP
I

Bo
ok

[]

B
oo

k
S

ea
rc

h
S

er
vi

ce
S

ea
rc

h
E

ng
in

e
S

ho
pp

in
g

A
P

I
C

us
to

m
er

B
oo

k
S

ea
rc

h
S

er
vi

ce
S

ea
rc

h
E

ng
in

e
S

ho
pp

in
g

A
P

I
C

us
to

m
er

co
nv

er
tR

es
ul

ts
To

Bo
ok

Re
so
ur
ce
s

PO
ST
 /
ca
rt
s{
bo
ok
Id
:
12
34
5,
 qt

y:
 1
}

Ca
rt
{c
ar
tI
d:
 4
56
}

DE
LE
TE
 /
ca
rt
s/
45
6/
it
em
s/
1

PO
ST
 /
ca
rt
s/
45
6/
it
em
s{
bo
ok
Id
:
12
34
5,
 q
ty
:
1}

Ca
rt
{c
ar
tI
d:
 4
56
,
..
.}

GE
T
/c
ar
ts
/4
56

Ca
rt
{c
ar
tI
d:
 4
56
,
..
.}

PO
ST
 /
bo
ok

s/
se
ar
ch
{q
:
“A
PI
”}

Figure 10.11 Updated sequence diagram with the candidate microservice involved, which
allows for identifying possible network or transaction challenges.

Chapter 10 From APIs to Microservices 208

Review the updates and determine if the candidate microservice is doing too
much and should be further decomposed. Or, perhaps the service is doing too little,
introducing too many network calls and therefore should be combined into a slightly
larger service.

Step 3: Capture Using the Microservice Design Canvas

Finally, capture the design details of the candidate microservice. The use of the Micros-
ervice Design Canvas (MDC)6 is recommended, as it helps to focus on the commands,
queries, and events that the service will support. If the details of the service cannot fit
into a single-page MDC, it may be responsible for too much. In this case, revisit the
design to see if it should be further decomposed or if it is right-sized for supporting the
needs of the API. Figure 10.12 shows an example MDC for the Book Search Service.

At this point, the MDC provides sufficient details to proceed with building and
integrating the service with one or more APIs. However, there are some additional
design considerations to address before proceeding.

Additional Microservice Design Considerations

Note that not all APIs will benefit from service decomposition. Anytime there is a
new microservice involved, there is an opportunity for increased network latency
that could negatively impact API clients.

Increased network latency is of particular importance when service call chaining
occurs as a result of a synchronous service calling another, which may call another, and
so on. The total time for a client to receive a response is the sum of the time required
to execute each service call sequentially. For highly efficient service implementations
that are less than 10 milliseconds each, latency may not be too much of a concern.
Services that integrate with legacy systems that may suffer from degraded performance
during peak usage, resulting in several seconds of wait time for an end user. Finally, for
some microservice ecosystems, it may not be possible to know how many services are
involved or to predict the total time required for execution.

When possible, keep a transaction within a single service boundary. Transaction
boundaries that span multiple service calls require additional design considerations.
If a service call fails, any previous service calls must be rolled back. Because each
service manages its own transactional boundary, a compensating transaction may
be required to reverse the transaction—this is the Saga pattern in action. Whenever
possible, seek to decompose microservices such that transaction integrity is
maintained.

6. https://launchany.com/canvas

https://launchany.com/canvas

Decomposing APIs into Microservices 209

Th
ird

-p
ar

ty
 s

ea
rc

h
en

gi
ne

, e
.g

.,
E

la
st

ic
se

ar
ch

se
ar

ch
B

oo
ks

(q
ue

ry
)

Fi
gu

re
 1

0.
12

 A
 M

ic
ro

se
rv

ic
e

D
es

ig
n

C
an

va
s t

ha
t c

ap
tu

re
s t

he
 c

an
di

da
te

 m
ic

ro
se

rv
ic

e,
 in

cl
ud

in
g

de
si

gn
 c

on
si

de
ra

tio
ns

, p
ri

or
 to

 im
pl

em
en

ta
tio

n.

Chapter 10 From APIs to Microservices 210

In addition, consider whether a dedicated team will own the microservice. If so,
does the introduction of the candidate microservice reduce or increase cross-team
coordination? Not all decisions about service decomposition are about reducing
code size.

Finally, avoid splitting services based on the CRUD lifecycle, creating one service
per operation (e.g., Create Project Service, Update Project Service, Read Project
Service, List Projects Service, Delete Project Service). This pattern creates more
coordination requirements between each service team. A change to the resource
representation for a project requires coordinating with each of the teams that own
the service. The exception is when complexity dictates the need to split one part of a
CRUD lifecycle due to increased complexity. For example, the complexity of payment
processing integration may merit shifting this behavior to a separate microservice.

Considerations When Transitioning to Microservices

While there are many benefits to moving to microservices, the transition shouldn’t be
taken lightly. After some time and reflection, some organizations choose to simplify
their microservice journey, others decide to abandon their journey in favor of
thinking smaller but without microservices, and the rest continue to move forward
with microservices.

First, verify that a microservices-based approach is being applied to the correct
context. Some microservices initiatives are dictated from the executive team without
proper context. It usually starts with an executive who mandates microservices so
that teams can increase the velocity of delivery. However, context isn’t provided to
inform teams to avoid microservices complexity when the solution is simple (e.g., an
application that offers CRUD-based forms to manage a dataset). The result is wasted
time and effort to decompose a simple solution into microservices that introduce
unnecessary complexity around runtime management, troubleshooting complexity,
and distributed transaction management.

Next, be sure that the organization’s reporting structure and culture are ready to shift
alongside the move to microservices. Some organizations are not prepared for teams
to own services for the long term. Instead, they treat microservices as projects that are
delivered but never owned beyond delivery. The team that built the service moves on to
other projects and higher priority initiatives. Teams that could benefit from a minor
change to an existing service are required to build their own service as a result.

Finally, find ways to build smaller. Modularize code within a single codebase.
Design clear APIs for consumers to use. Decompose APIs into microservices only
when high complexity makes it necessary.

Summary 211

Summary

Microservices are independently deployable units of code that are combined to
create distributed systems. Moving to microservices requires a combination of new
technologies and top-down organizational support. After an organization reflects
carefully on the decision factors, its shift to microservices may result in the primary
benefit of reduced coordination costs across multiple teams.

Be wary of technology trends that do not inject more benefit than the complexity
they require. Microservices have offered benefits to some organizations, but
not without their challenges. Organizations must count the cost of moving to
microservices to determine if the complexity of designing, building, and operating
microservices outweighs the complexity of a single, monolithic codebase.

Alternatives, such as modular monoliths and cell-based architectures, support
many of the goals of microservices but with varying support for reduced coordination
and local decision optimization. When in doubt, apply the “you ain’t gonna need it”
(YAGNI) principle of agile software by starting with a modular monolith API and
decomposing it into microservices when the need arises.

This page intentionally left blank

213

Chapter 11

Improving the
Developer Experience

Every useful API that delivers value will typically have multiple consumers.
This is a natural asymmetry, which will only increase over time.

— Mark O’Neill

ADDR
PROCESS

Align

Design

Refine Define

4. Model API
Profiles

5. High-Level
Design

6. Refine
the Design

7. Document
the API

2. Capture
Activity
Steps

3. Identify
API

Boundaries

1. Identify
Digital

Capabilities

Figure 11.1 Refining the API design includes improving the developer experience through
helper libraries and command-line interfaces.

Chapter 11 Improving the Developer Experience 214

When teams think about delivering an API, the primary focus is on the code that
must be built. They focus on considerations such as the target programming lan-
guage, frameworks that aid in building the API, continuous integration and delivery
(CI/CD) pipelines, and other factors. While all of these decisions are important, they
involve the API provider only. They do not directly empower the tens, hundreds, or
thousands of future API consumers that will use the API.

As an API provider, it is important to keep the API consumers first in everything
that is designed and delivered. This responsibility includes creating mock APIs
to help early adopters provide feedback early on the API design (Figure 11.1). It
also requires consideration of whether to offer helper libraries and command-
line interfaces to reduce the integration time by developers across all skill levels
consuming the API. This chapter addresses these concerns in an effort to multiply
the impact across the many current and future API consumers that will integrate
the API.

Creating a Mock API Implementation

API design is a mixture of patterns and subjective design decisions. What makes
sense during the API design phase may not make sense to developers once they
integrate the API. API mocking is the creation of a simulated version of an API
design. Generating a mock version of an API design helps to verify that the API
design will meet the needs of target developers.

Mock implementations are quick to deliver, as they lack production-ready
code. They also bypass backend database servers and legacy systems. Mock APIs
implement the API design while returning static responses or responses based on
synthesized data sets.

With mock implementations, developers are able to integrate portions of an API
before the implementation has begun. Consequently, API teams can see if the API
design is missing critical functionality. Mock implementations also help teams to
identify important data elements that may be missing from the API design.

API design includes making compromises. Once developers start to integrate with
an API, they will provide feedback on how it should be changed. If the API design is
frozen, this change must wait until a new version of the API is released. Integrating
with a mock implementation identifies these problem areas early, when the cost of
change is much lower.

An added benefit is that mock implementations help accelerate the delivery process.
Rather than waiting until the entire API has been coded, mock implementations may
be used to produce API integration code for frontend development. They may also

Creating a Mock API Implementation 215

be used to drive automated test creation. Over time, the mock integration is replaced
with the actual API until the mock is no longer needed and is removed completely.
The interface remains constant, but the implementation is replaced over time.
Meanwhile, teams are able to proceed in parallel.

There are three primary types of API mock implementations: static mocking,
prototyping, and README-based mocking. Each may be used independently or
in combination to explore an API design prior to delivery. Mocks may also be used
for standing up a local or cloud-based learning environment that is separate from
production.

Static API Mocking

One of the easiest ways to explore an API design before writing code is to write a
static version of some or all of the expected API requests and responses. Static mocks
capture API interactions through JSON- or XML-based files that may be shared
with developers and API design reviewers. They offer examples to view and to
improve upon before coding.

The following mock response demonstrates a Book resource instance for the
Shopping API example using the JSON:API specification:

{

 "data": {

 "type": "b ook s",

 "id": "12345",

 "attrib u tes": {

 "isb n": "9 7 8 - 03218 3457 7 ",

 "title": "I mplementing D omain- D riv en D esig n",

 "description": "W ith I mplementing D omain- D riv en D esig n, V au g h n h as

made an important contrib u tion not only to th e literatu re of th e D omain-

D riv en D esig n commu nity, b u t also to th e literatu re of th e b roader enterprise

application arch itectu re f ield."

 },

 "relationsh ips": {

 "au th ors": {

 "data": [

 {"id": "7 6 5", "type": "au th ors"}

]

 }

 },

Chapter 11 Improving the Developer Experience 216

 "inclu ded": [

 {

 "type": "au th ors",

 "id": "7 6 5",

 "f u llName": "V au g h n V ernon",

 "link s": {

 "self ": { "h ref ": "/au th ors/7 6 5" },

 "au th oredB ook s": { "h ref ": "/b ook s? au th orI d= 7 6 5" }

 }

 }

 }

}

Static mocks may be provided using a Web server, such as Apache or nginx, to
allow frontend developers to integrate the mock API responses into the user interface.
They will then be able to provide feedback early and often as they start to parse and
integrate the static mocks into their code.

It is important to note that static mocks lack any implementation, so mock inte-
gration will be limited to GET-based operations only. However, creating a static mock
of an API operation that retrieves a resource representation is quite useful, easy to
build, and provides opportunities for plenty of feedback.

API Prototype Mocking

A throwaway prototype provides greater validation of an API design than a static
mock. Unlike a static mock, which is often limited to GET-based operations, an API
prototype is able to support all types of operations, including those that create or
modify resource state.

However, API prototypes take more effort to produce manually. Typically,
teams select a preferred programming language and framework that is optimized
for rapid delivery. Ruby, Python, PHP, and Node.js are popular choices because of
their fast development and abundant libraries for producing APIs and synthesized
data sets.

Note

Teams may wish to select a language and framework that isn’t supported for
production by the organization. Doing so will ensure that prototypes intended to
be throwaway don’t suddenly become production code.

Creating a Mock API Implementation 217

The use of an API mocking tool, often based on an API description format such
as the OpenAPI Specification (OAS), allows teams to skip most or all development
efforts. These tools produce simple mock implementations that store data
temporarily for common create-read-update-delete (CRUD)–based operations.
Some tools generate code for the mock implementation, and others create the mock
API on the fly.

It is recommended to keep API prototypes simple at first. Expand the prototype
as needed to deep-dive into any contentious areas that need further exploration or
areas that can encourage parallel development.

README-Based Mocking

README-based mocking provides an alternative prototyping style without the need
to write code. A README file is created to demonstrate how to use an API to
accomplish one or more desired outcomes. README-based mocks help to validate
the API design before implementation starts by sharing the intent of API usage to
produce desired outcomes.

Most README-based mocks use Markdown, enabling the combination of text
and code examples to be easily produced and rendered in a browser. Tools such as
GitHub and GitLab have built-in Markdown support, although static site generation
tools such as Jekyll or Hugo may also be used.

Following is a README-based mock that demonstrates how to retrieve book
details, then add the book to a cart using the JSON:API media format:

1. R etriev e B ook D etails

GET /b ook s/12345 HTTP/1.1

Accept: application/v nd.api+ json

HTTP/1.1 200 OK

C ontent- Type: application/v nd.api+ json

...

{

 "data": {

 "type": "b ook s",

 "id": "12345",

 "attrib u tes": {

 "isb n": "9 7 8 - 03218 3457 7 ",

Chapter 11 Improving the Developer Experience 218

 "title": "I mplementing D omain- D riv en D esig n",

 "description": "W ith I mplementing D omain- D riv en D esig n, V au g h n h as

made an important contrib u tion not only to th e literatu re of th e D omain-

D riv en D esig n commu nity, b u t also to th e literatu re of th e b roader enterprise

application arch itectu re f ield."

 },

 "relationsh ips": {

 "au th ors": {

 "data": [

 {"id": "7 6 5", "type": "au th ors"}

]

 }

 },

 "inclu ded": [

 {

 "type": "au th ors",

 "id": "7 6 5",

 "f u llName": "V au g h n V ernon",

 "link s": {

 "self ": { "h ref ": "/au th ors/7 6 5" },

 "au th oredB ook s": { "h ref ": "/b ook s? au th orI d= 7 6 5" }

 }

 }

 }

}

2. Add B ook to C art

POS T /carts/6 7 8 9 /items HTTP/1.1

Accept: application/v nd.api+ json

HTTP/1.1 201 C reated

C ontent- Type: application/v nd.api+ json

...

{

 "data": {

 "type": "carts",

 "id": "6 7 8 9 ",

 "attrib u tes": {

Providing Helper Libraries and SDKs 219

 ... tru ncated f or space ...

 }

 }

}

3. R emov e a B ook f rom a C art

...

Using this approach gives teams time to think through the API design and how
it will be used to produce outcomes—without the overhead of writing or changing
code. It also increases the quality of documentation and the surrounding conver-
sations about the design. README-driven design can be thought of as the hand-
written version of an acceptance test using behavior-driven development (BDD)
frameworks such as Cucumber.1

Providing Helper Libraries and SDKs

Client-side helper libraries wrap all of the HTTP connection management, error
detection, JSON marshaling, and other concerns for a single programming language.
Some developers prefer helper libraries, as they help speed development by avoiding
the need to deal with low-level HTTP concerns. They also enable code completion
within popular integrated development environments (IDEs) that isn’t possible when
working directly with HTTP.

A software development kit, or SDK, is a packaged solution that includes helper
libraries, documentation, example code, reference applications, and other resources
for developers. While SDKs may be distributed by API providers, the growth of API
developer portals have replaced the need to package a complete SDK.

Many developers tend to use the terms interchangeably, but there is a distinct
difference between an SDK and helper library. The important thing is to be clear about
what is provided in the distribution to set proper expectations with the developer.

Don’t expect all developers to take advantage of helper libraries, however. Those
familiar with HTTP generally prefer working with it directly rather than with a
helper library. This preference is centered on the inflexibility of some helper libraries
that, because of missing features within the library, may prevent developers from
being able to fit the exact needs of the use case.

1. https://cucumber.io

https://cucumber.io

Chapter 11 Improving the Developer Experience 220

Options for Offering Helper Libraries

There are three options for offering helper libraries:

 • Provider supported: Provider-supported helper libraries are built and main-
tained by the API provider. The provider owns them, manages them, and keeps
them in sync as API operations are added or enhanced through manual coding
or code generation.

 • Community contributed: Instead of the vendor offering the helper library, the
community contributes the SDK. This may be the case for all programming
languages or just for currently unsupported programming languages. Vendors
may choose to allow the community-contributed helper libraries to thrive on
their own, work with the authors to make them better, or eventually offer to
take over maintenance. Be aware that community-contributed SDKs have a
tendency to lose the interest of contributors or available maintainers over time
and may be abandoned. Communication with community supporters is criti-
cal, as many developers may assume that they are vendor-backed and complain
if they are no longer maintained.

 • Consumer generated: With the growth of API definition formats such as
Swagger, RAML, Blueprint, and others, it is becoming easier for API consum-
ers to generate their own client library from any of these formats. Consumer-
generated helper libraries give consumers the most flexibility, as they may opt
to create a lightweight wrapper around the HTTP layer or perhaps generate a
robust library with objects/structures that mimic API resources.

API teams must determine how they plan to provide helper libraries, which
programming languages they plan to support, and how community- or consumer-
generated helper libraries may impact their developer support program.

Versioning Helper Libraries

Helper libraries will have their own version numbering scheme, which may confuse
developers. Versioning is common when helper libraries make breaking changes to
how they surface the API as objects.

For example, version 1 of a helper library may return a hash of name/value
pairs containing resource properties, eventually choosing to abandon this
approach in favor of returning objects. The API may still be version 1, but the
helper library may be on version 2.1.5 for Ruby, and the Python module may be
on version 1.8.5.

Offering CLIs for APIs 221

Including SDK language and version number in the U ser- Ag ent header for all
requests can help. However, the most important factor is to ensure that everything is
logged on the client side and server side.

Support emails will become more confusing when trying to determine the
language, helper library version, and API version being used. Add community-
contributed helper libraries into the process, and more confusion will occur. This
confusion can exist for even the most experienced developer.

The addition of a request identifier or correlation identifier is a common solution
to this problem. These identifiers help to correlate client requests with server-side
logs as developers correspond with API support team. Application performance
management (APM) tools may be useful for diagnosing issues as well.

Helper Library Documentation and Testing

Developers integrating an API will not want to move between API documentation and
an undocumented helper library while trying to figure out how to code up their idea.
To overcome this poor developer experience, thorough helper library documentation is
required for every programming language. In addition, example code in the developer
portal should include examples for each supported programming language.

For each release, API teams need to factor in sufficient time to keep helper library
documentation updates across all supported programming languages. Automated
tests for each helper library must also be maintained to ensure that libraries are in
sync with the latest API operation enhancements as they are released.

Offering CLIs for APIs

While most APIs target developers who will integrate it into a larger application, it is
important not to overlook command-line interfaces (CLIs) as another developer use
case. It is not uncommon to encounter CLIs that wrap an API, much like helper
libraries offer programming language–specific wrappers around a Web-based API.

Unlike helper libraries, CLIs offer a human-friendly method of interacting with
remote systems without requiring coding skills. The CLI is both an API consumer
and an automation tool. It may be used for many purposes, including the following:

 • Providing quick, one-off scripting for automation engineers

 • Extracting data locally for proofs of concept (POCs)

 • Automating infrastructure using tooling such as Kubernetes, Heroku, Amazon
Web Services (AWS), Google Cloud (gcloud)

Chapter 11 Improving the Developer Experience 222

Offering a CLI tool expands the reach of an API beyond full-time developers
to automation engineers who are better equipped to write shell scripts rather than
applications to integrate with APIs. CLI tools may offer human-friendly output, in
addition to JSON, CSV, or other output formats that support better automation and
tool chaining.

Designing a CLI tool that wraps an API is no different than designing the API
itself. It requires understanding the desired outcomes, activities, and steps required to
accomplish the jobs to be done (JTBD). Then, design the CLI interface to meet these
outcomes. The following code block shows how a CLI interface could be designed to
support the Shopping API designed in previous chapters:

$ > b ook cli b ook s search "D D D "

| Title | Au th ors | B ook I D |

| - | - - - - - - - - - - - - - - - - | - - - - - - - - - - - - - - - - |

| I mplementing D omain- D riv en ... | V au g h n V ernon | 12345 |

$ > b ook cli cart add 403218 3457 7

S u ccess!

$ > b ook cli cart sh ow

C art S u mmary:

| Total | Estimated S ales Tax |

| - - - - - - - - - - - - - - | - |

| $ 42.9 9 U S D | $ 3.44 U S D |

C art I tems:

| Title | Price | Q ty | B ook I D |

| - | - - - - - - - - - - - - | - - - - - | - - - - - - - - - - - - - - - - |

| I mplementing D omain- D riv en ... | $ 42.9 9 U S D | 1 | 12345 |

$ > ...

Offering CLIs for APIs 223

To offer a great CLI experience, API teams need to become students of human-
first CLI design. The excellent Command Line Interface Guidelines2 site offers in-
depth details on how to design a human-first CLI based on 40 years of patterns and
practices across tooling and operating systems.

Also, teams should seek to understand the pipe and filter design pattern commonly
seen across *nix tools such as sed, aw k , and g rep to better understand how tool chain-
ing works. Finally, carefully examining popular CLIs from Kubernetes, Heroku, and
others help teams to see how to design a user-friendly CLI that wraps remote APIs.

Using Code Generators for Helper Library and CLI Generation

Whether a small team is tasked with delivering multiple APIs in quick succes-
sion or an organization is scaling its API program, leveraging code-generation
tools is essential. Code generation ensures APIs are delivered consistently and
at scale by incorporating boilerplate code and common patterns. While some
API styles such as gRPC rely heavily on code generation, other API styles
consider code-generation support as optional. Code generators are helpful
to generate SDKs and helper libraries consistently across a variety of target
programming languages.

For REST-based APIs, the Swagger Codegen3 project is the most popu-
lar. This project offers open-source client-side code generators for a variety
of programming languages. Another popular option for REST-based APIs
is APIMatic,4 which is a freemium tool that offers code-generation support.
All of these tools generate client code based on an OAS description file. The
resulting code may be packaged up and distributed by the API team.

Some organizations have found that creating their own client-side code
generators is a better option. While doing so requires more investment, the
generated code may be customized as needed. For example, code can be
customized to track rate limiting, detect special error response codes, and
incorporate retry loops where appropriate.

2. Aanand Prasad, Ben Firshman, Carl Tashian, and Eva Parish, Command Line Interface Guidelines,
accessed August 20, 2021, https://clig.dev.

3. https://swagger.io/tools/swagger-codegen
4. https://www.apimatic.io

https://clig.dev
https://swagger.io/tools/swagger-codegen
https://www.apimatic.io

Chapter 11 Improving the Developer Experience 224

Summary

API design doesn’t stop with the details of API operations and protocol semantics. It
requires thoughtful consideration regarding how the API will be integrated by
developers. While some code decisions are important for the API provider, these are
internal concerns that do not have a direct impact on the many API consumers that
will use the API. The more complex the API, the more tooling (e.g., API mocks,
helper libraries, CLIs) is required to support the design and delivery process.

API teams must consider how their decisions may have a positive or negative
impact on future API consumers. Avoid making decisions that provide local
optimizations for a few developers, instead opting to make global optimizations for
the many current and future consumers of the API.

225

Chapter 12

API Testing Strategies

Software defect removal is the most expensive and time-consuming form
of work for software.

— Caspers Jones

ADDR
PROCESS

Align

Design

Refine Define

4. Model API
Profiles

5. High-Level
Design

6. Refine
the Design

7. Document
the API

2. Capture
Activity
Steps

3. Identify
API

Boundaries

1. Identify
Digital

Capabilities

Figure 12.1 API testing refines the API design by identifying API quality issues early.

Chapter 12 API Testing Strategies226

When building an API product or platform, it is important to have an API testing
strategy established. Selecting the right approach for API testing contributes to the
success of an API program’s supportability. It also contributes to faster delivery
while avoiding one of the costliest aspects of software development: defect removal.
Finally, it offers another perspective on the developer experience of an API because
of the consumer-oriented nature of automated testing.

Acceptance Testing

Acceptance testing, also called solution-oriented testing, ensures that the API
supports the captured job stories. It seeks to answer the following questions:

 • Does the API solve real problems that our customers have?

 • Does it produce the desired outcomes for the jobs to be done?

Acceptance testing verifies the collaboration of API operations required to achieve
a desired outcome. Composing acceptance tests entails using only the API interface
to verify that the system meets all expected end-to-end functionality. The internals of
the API can and likely will change over the course of development, but this should
not affect the results of the acceptance tests.

Acceptance testing is the most valuable style of testing for an API. The process
of writing acceptance tests helps identify poor developer experience for a single API
operation or across the end-to-end integration. It is where the most testing effort
should be spent, after code testing, when limited time is available.

Automated Security Testing

Each week, a new headline appears that indicates a company has been hacked and
private information exposed. Security is a process, not a product, and a continual
one at that. Security testing aims to answer the following questions:

 • Is the API protected against attacks?

 • Does the API offer opportunities for sensitive data to be leaked?

 • Is someone scraping my API and compromising business intelligence through data?

While not typically associated with automated testing, security testing is an active
process that includes design-time review processes, development-time static and
dynamic code analysis, and runtime monitoring.

API Contract Testing 227

Design-time and development-time security testing often comprise policies and
tools that are designed to prevent leaking sensitive data through design reviews
that identify potential concerns. It also includes authorization policies for each API
operation to ensure proper access is enforced.

An API management layer may be employed to apply runtime monitoring and
enforcement. Authorization enforcement is managed through configuration,
avoiding the need to implement access restrictions within the API implementation.
Log analysis may be used to detect and block malicious attacks. More details on
security protection are offered in Chapter 15, “Protecting APIs.”

Operational Monitoring

APIs can and often do provide the primary interface for applications to interact
with a system. Because the API service plays the role of a dependency, it is critical
for the service to be available, whether to other services that are internal to an
organization or to external partners and customers. In addition, there may be
service-level agreements (SLAs) that the company has agreed to undertake with
customers and partners regarding the performance and uptime of an API. Failing
to meet an SLA could yield a negative financial result as well as angry or upset
customers.

Operational monitoring answers the following questions:

 • Is the API available and performing as expected?

 • Is the API staying within expected SLAs?

 • Is there a need to provision more infrastructure to meet performance goals?

Monitoring and analytics solutions are an important component to API
operational monitoring. Analytics verify that real-world usage matches what was
seen in testing for both correctness and performance. Analytics measurements
can be as simple as logging of performance counters or as complex as integrating
third-party libraries with extensive monitoring and visualization support.

API Contract Testing

API contract testing, sometimes referred to as functional testing, is used to verify
that each API operation meets the expected behavior and honors the API’s defined
contract for the consumer.

Chapter 12 API Testing Strategies228

Contract testing answers the following questions:

 • Is each operation working to the specification for all success cases?

 • Are input parameters being followed? How are bad inputs handled?

 • Are the expected outputs received?

 • Is response formatting correct? Are the proper data types used?

 • Are errors being handled correctly? Are they reported back to the consumer?

In the Align-Define-Design-Refine (ADDR) process, API descriptions are defined
during the design process, prior to implementation. These description files may be
used to verify the API contract as part of the contract testing process. Some common
contract specification formats for REST APIs include OpenAPI (Swagger), API
Blueprint, and RESTful API Modeling Language (RAML). GraphQL APIs have
a schema defined, which helps drive contract testing. gRPC APIs define service
contracts using an interface definition language (IDL) file. This topic is discussed
further in Chapter 13, “Documenting the API.”

API contract testing must first ensure the correctness of each API operation. Handling
thousands of clients per minute does no good if the information that the API is providing
or acting on does not meet the API’s specification. Identifying and eliminating bugs,
hunting out inconsistencies, and verifying that an API meets the specification against
which it has been designed all fall under the umbrella of testing for correctness.

Next, API contract testing must focus on reliability. The API should provide the correct
information every time an operation is called. Executing the same action repeatedly
for an API operation designed to be idempotent should produce the same results. API
operations that support pagination should page through results in a predictable way.

Finally, API contract testing should submit invalid and missing data and verify that
the expected error response is received. String values may be submitted in place of
numeric values, along with values outside the range of acceptable values. Date formats
should be incorrect or result in dates outside an expected range of acceptable dates.

User Interface Testing versus API Testing

Some team members may suggest that building dedicated tests for an API is
wasteful. They may attempt to make the case that user interface (UI) tests
cover the API sufficiently, given that the UI calls the API. However, this is not

Selecting Tools to Accelerate Testing 229

the case. Instead, the UI tests the API only as far as the UI exercises the API.
This means that if the UI is performing client-side validation of user input,
then UI tests would never verify the API’s ability to handle bad data.

While some may say that this level of testing is sufficient, they may be for-
getting the recommendation of the Open Web Application Security Project
(OWASP): do not trust user input. A user or client will not always submit
data in a way that an API expects. Always validate the data that comes from
forms as well as from HTTP request headers.

One of the goals of API testing is to ensure that the API is able to handle a
multitude of good and bad values that may be submitted outside of a specific
UI. If we depend only on UI tests, then the API should not be considered suf-
ficiently tested.

Another goal of API testing is to ensure that the API cannot be deployed
into production without passing tests. This requires that API tests become
part of the continuous integration and delivery pipeline, just like all other
types of automated testing.

Selecting Tools to Accelerate Testing

Some organizations may have an established quality assurance (QA) group that
specializes in automated testing and manual exploratory testing. QA teams may be
comprised of those who write code and others who use testing tools that help
compose test automation suites without the need to write code. Other organizations
may not have dedicated QA teams at all, instead relying on developers to write and
maintain API test code. These factors must be considered when selecting API testing
tools.

A number of open source and commercial testing tools are available today that
support the creation of API testing using API specification formats to help jumpstart
the testing process. Some are designed to support the creation of tests through a
UI to reduce or eliminate the need to write test code. Others are designed to offer a
scripting environment or test libraries that require coding. Be sure to select the right
solutions that match the testing preferences and skills found in the organization.

Performance and monitoring solutions, offered as third-party API monitoring-
as-a-service solutions, are available from a range of companies and often start as
a freemium service for a small number of tests. Open-source monitoring tools are
available that can be run on on-premises or cloud-hosted infrastructure. Custom
tools built to perform load and performance testing can be modified to run less
frequently and at a smaller scale for the purpose of monitoring or soak testing.

Chapter 12 API Testing Strategies230

API testing is often automated through code or test scripts and executed in a
dedicated test environment. Automating these tests has a higher infrastructure
cost because of the need for additional nonproduction environments that contain
infrastructure resources. Be sure to take into consideration how tests will be
automated and the infrastructure cost required to support them.

Finally, consider how test-driven development (TDD) may be extended through
the strategic selection of API testing tools. Dedicated QA teams may build automated
test suites that can be executed by developers as they implement the API. Developers
who are tasked with writing the API tests themselves may wish to take a similar
approach, much like they apply TDD to their day-to-day development process. This
approach helps to demonstrate progress and validate that an API implementation
handles all success, invalid, and error cases.

The Challenges of API Testing

One of the challenges that must not be overlooked when establishing an API test
strategy is the need for test data sets. While unit testing may not require complex
data sets, API testing has the exact opposite demands. API testing often involves a
tremendous amount of effort to build a cohesive set of data that will support the
necessary test cases.

There are two common approaches to creating test data sets for APIs: snapshot
of existing data sets and cleanroom data set creation. Taking a snapshot of a
production system and cleansing the data set of sensitive data is often the most direct
path. It requires less effort to try to separate the necessary data, instead opting to
accept an entire data store snapshot as a starting point. The snapshot may be used
to restore the test data back to a known state. This is a great approach when existing
production data exists.

Cleanroom data set creation is a bit more challenging and takes considerable time,
but once completed, it enables more robust test cases. Cleanroom data involves the
creation of cohesive data sets from the ground up to support the API testing process.
Tools such as Mockaroo1 may be used to synthesize some of the data while provid-
ing more real-world values than simply using random values. However, handcrafting
data elements is often required to construct deeply nested data sets that represent
entire scenarios rather than just a single table of data.

For example, JSON’s Bookstore would require books, carts, orders, and custom-
ers that are not easily generated randomly. Instead, it is often necessary for domain

1. https://mockaroo.com

https://mockaroo.com

Summary 231

experts to construct these elements manually, perhaps using a spreadsheet. A script
then loads this data into the appropriate data stores, ensuring the elements are prop-
erly connected through shared identifiers, foreign keys, and link tables. Tests could
then use the API to retrieve a customer, examine their orders, execute a new shop-
ping experience, and verify that the API functions as expected.

Some API testing may depend on third-party services that do not offer their own
sandbox or test environments. In this case, techniques such as API mocking may be
used to isolate external dependencies and prevent the need to involve production sys-
tems as part of an API test suite. Rather than directly connecting to the system, a
mock response may be created to take the place of the system. Of course, this often
requires additional data preparation work to ensure that the mock data properly sat-
isfies the use cases that are to be supported.

Make API Testing Essential

Too often, teams choose to take shortcuts when time is short, and this typically
involves poor or no API testing. Like documentation, testing is often seen as a nice-
to-have in the development process. However, we should view testing and
documentation as essential steps to truly calling the API done and ready to deploy.
Otherwise, we are creating opportunities for bugs to creep into partner and customer
interactions. Worse, it could open the organization up to malicious attacks through
one or more APIs.

Summary

A robust API testing strategy is an important step to API delivery and is a formidable
foe against regressions sneaking into an API. A proper API testing strategy helps to
ensure API correctness and reliability while ensuring the desired outcomes are
achievable. It should also extend beyond the development phase and into runtime
testing to maintain a secure and performance environment. An API should not be
considered complete until all tests have been created, executed, and passed.

This page intentionally left blank

233

Chapter 13

Document the API Design

Documentation is the third user interface for APIs, and the most important.

— D. Keith Casey

ADDR
PROCESS

Align

Design

Refine Define

4. Model API
Profiles

5. High-Level
Design

6. Refine
the Design

7. Document
the API

2. Capture
Activity
Steps

3. Identify
API

Boundaries

1. Identify
Digital

Capabilities

Figure 13.1 The final step in the Refine phase is to produce robust documentation,
incorporating learnings back into the API design.

Chapter 13 Document the API Design234

Documentation is a very important element of the developer experience. Most API
teams assume that reference documentation for each operation is sufficient. How-
ever, that is only the beginning of the API documentation effort.

Establishing an API documentation strategy is part of API design. Developer
portals must support a variety of personas that all contribute to the success of an API.
This chapter outlines the essentials of any API documentation effort and provides
insights from the field on how to establish and improve an API developer portal.

The Importance of API Documentation

API documentation is the most important user interface for developers who will
integrate the API. It is the primary communication medium between the API
provider, tasked with designing and delivering the API, and the many developers who
will integrate the API into applications and automation scripts.

Unless the API is part of an open-source product, API consumers will never have
access to the source code. Even if access to the source code is possible, reading code
to understand an API is unacceptable. It slows down the developer. At best, it causes
frustration. At worst, the developers move on to a competitor or build the required
functionality themselves.

In addition, organizing the API documentation is important. When API providers
create clear areas for getting started guides and reference documentation, developers
can locate exactly what they need when they need it. Even the most well-written API
documentation suffers if it isn’t organized properly into a developer portal.

Principle 4: API documentation is the most important user interface
for developers

Documentation is the primary communication medium between the API
provider, tasked with designing and delivering the API, and the many developers
who will integrate the API into applications and automation scripts. Therefore,
API documentation should be first class and not left as a last-minute task.

API Description Formats

Traditionally, technical documentation was captured and shared in PDF, Microsoft
Word documents, or plain HTML. While these formats are better than no
documentation at all, they limit the usefulness of the documentation to human
consumption.

API Description Formats 235

API description formats provide the details of an API in machine-readable format.
Tools may convert the description into human-readable documentation, generate
client-side libraries, and produce a skeleton of server-side code with common
patterns and practices already established.

Some API description formats support adding vendor-specific extensions. These
may be used to further define authorization, routing, and configuration rules for
use in automating deployment processes and API management layer configuration.

API styles such as GraphQL and gRPC provide their own respective formats. For
REST-based or remote procedure call (RPC)–based APIs that are built directly on
top of HTTP, a separate description format is needed. This section provides an over-
view of popular formats to help teams select the format or formats that teams would
like to use to drive their API description and documentation efforts.

Documentation examples are available in the API workshop examples1 repository
available on GitHub.

OpenAPI Specification

Formerly known as Swagger, the OpenAPI Specification (OAS) is currently one of
the most popular formats for describing the details for an API. It is managed by the
Linux Foundation under the stewardship of the OpenAPI Initiative (OAI). The
Swagger brand is now owned by SmartBear, which continues to maintain and
support various open-source API projects under the Swagger name.

OAS came into popularity owing to the try-it-out feature that is built into the
SwaggerUI project. This project was designed to generate HTML-based API
reference documentation for developers. The try-it-out feature allows developers
and nondevelopers to explore an API against a live server from within the generated
documentation. It supports JSON and YAML-based formats.

OAS is currently in version 3 of the specification, although OAS v2 is still
encountered in some organizations and open-source projects. The tools ecosystem is
vast and continues to grow, making this a popular choice for teams building their first
or thirty-first API. An example of OAS v3 is provided in Listing 13.1, based on the API
design for the Shopping Cart API created in Chapter 7, “REST-Based API Design.”

Listing 13.1 Example of OpenAPI Specification v3

openapi: 3.0.0

inf o:

 title: B ook store S h opping Ex ample

 description: Th e B ook store Ex ample R ES T- b ased API su pports th e sh opping

1. https://bit.ly/align-define-design-examples

https://bit.ly/align-define-design-examples

Chapter 13 Document the API Design236

ex perience of an online b ook store. Th e API inclu des th e f ollow ing

capab ilities and operations...

 contact: { }

 v ersion: ' 1.0'

path s:

 /b ook s:

 g et:

 tag s:

 - B ook s

 su mmary: R etu rns a pag inated list of b ook s

 description: Prov ides a pag inated list of b ook s b ased on th e search

criteria prov ided...

 operationI d: L istB ook s

 parameters:

 - name: q

 in: q u ery

 description: A q u ery string to u se f or f iltering b ook s b y title and

description. I f not prov ided, all av ailab le b ook s w ill b e listed...

 sch ema:

 type: string

 responses:

 200:

 description: S u ccess

 content:

 application/json:

 sch ema:

 $ ref : ' # /components/sch emas/L istB ook sR esponse'

 401:

 description: R eq u est f ailed. R eceiv ed w h en a req u est is made w ith

inv alid API credentials...

 403:

 description: R eq u est f ailed. R eceiv ed w h en a req u est is made w ith

v alid API credentials tow ards an API operation or resou rce you do not h av e

access to.

components:

 sch emas:

 L istB ook sR esponse:

 title: L istB ook sR esponse

 type: ob ject

 properties:

API Description Formats 237

 b ook s:

 type: array

 items:

 $ ref : ' # /components/sch emas/B ook S u mmary'

 description: "A list of b ook su mmaries as a resu lt of a list or

f ilter req u est..."

 B ook S u mmary:

 title: B ook S u mmary

 type: ob ject

 properties:

 b ook I d:

 type: string

 description: An internal identif ier, separate f rom th e I S B N, th at

identif ies th e b ook w ith in th e inv entory

 isb n:

 type: string

 description: Th e I S B N of th e b ook

 title:

 type: string

 description: "Th e b ook title, e.g ., A Practical Approach to API

D esig n"

 au th ors:

 type: array

 items:

 $ ref : ' # /components/sch emas/B ook Au th or'

 description: ' '

 description: "S u mmariz es a b ook th at is stock ed b y th e b ook store..."

 B ook Au th or:

 title: B ook Au th or

 type: ob ject

 properties:

 au th orI d:

 type: string

 description: An internal identif ier th at ref erences th e au th or

 f u llName:

 type: string

 description: "Th e f u ll name of th e au th or, e.g ., D . Keith C asey"

 description: "R epresents a sing le au th or f or a b ook . S ince a b ook may

h av e more th an one au th or, ..."

Chapter 13 Document the API Design238

API Blueprint

API Blueprint originated from an API tools vendor called Apiary, now a part of
Oracle. It combines the idea of easy documentation generation using Markdown
with a structure that makes it machine-readable for supporting code generation and
other tooling needs.

Because API Blueprint is based on Markdown, any tool capable of rendering
and editing files using the Markdown format, including integrated development
environments (IDEs), is able to work with this format. While the ecosystem of
tooling isn’t as vast as that of OAS, it does have considerable community support
owing to the preacquisition efforts of Apiary. As Listing 13.2 shows, it is easy to
work with and therefore a popular choice for those seeking to combine Markdown-
based documentation with a machine-readable API description format.

Listing 13.2 Example of API Blueprint

F OR MAT: 1A

HOS T: h ttps://w w w .ex ample.com

B ook store S h opping API Ex ample

Th e B ook store Ex ample R ES T- b ased API su pports th e sh opping ex perience of an

online b ook store. Th e API inclu des th e f ollow ing capab ilities and opera-

tions...

Grou p B ook s

B ook s [/b ook s{? q ,of f set,limit}]

L istB ook s [GET]

Prov ides a pag inated list of b ook s b ased on th e search criteria prov ided...

+ Parameters

 + q (string , optional)

 A q u ery string to u se f or f iltering b ook s b y title and description.

I f not prov ided, all av ailab le b ook s w ill b e listed...

 + of f set (nu mb er, optional) -

 A of f set f rom w h ich th e list of b ook s are retriev ed, w h ere an of f set

of 0 means th e f irst pag e of resu lts...

 + D ef au lt: 0

https://www.example.com

API Description Formats 239

 + limit (nu mb er, optional) -

 Nu mb er of records to b e inclu ded in API call, def au lting to 25 records

at a time if not prov ided...

 + D ef au lt: 25

+ R esponse 200 (application/json)

 S u ccess

 + Attrib u tes (L istB ook sR esponse)

+ R esponse 401

 R eq u est f ailed. R eceiv ed w h en a req u est is made w ith inv alid API

credentials...

+ R esponse 403

 R eq u est f ailed. R eceiv ed w h en a req u est is made w ith v alid API

 credentials tow ards an API operation or resou rce you do not h av e access to.

D ata S tru ctu res

L istB ook sR esponse (ob ject)

A list of b ook su mmaries as a resu lt of a list or f ilter req u est...

Properties

+ ' b ook s' (array[B ook S u mmary] , optional)

B ook S u mmary (ob ject)

S u mmariz es a b ook th at is stock ed b y th e b ook store...

Properties

+ ' b ook I d' (string , optional) - An internal identif ier, separate f rom th e

I S B N, th at identif ies th e b ook w ith in th e inv entory

+ ' isb n' (string , optional) - Th e I S B N of th e b ook

+ ' title' (string , optional) - Th e b ook title, e.g ., A Practical Approach

to API D esig n

+ ' au th ors' (array[B ook Au th or] , optional)

B ook Au th or (ob ject)

R epresents a sing le au th or f or a b ook . S ince a b ook may h av e more th an one

au th or, ...

Chapter 13 Document the API Design240

Properties

+ ' au th orI d' (string , optional) - An internal identif ier th at ref erences th e

au th or

+ ' f u llName' (string , optional) - Th e f u ll name of th e au th or, e.g ., D . Keith

C asey

RAML

RAML stands for RESTful API Modeling Language and was designed with the full
API design lifecycle in mind. It originated within MuleSoft but included contributors
from many other industry leaders. The design of RAML was intended to support
design tooling alongside documentation and code-generation tools. RAML is built
on the YAML format.

While RAML originated with the help of MuleSoft, the specification and much
of the tooling is vendor neutral. RAML focuses on describing resources, methods,
parameters, responses, media types, and other HTTP constructs common to REST-
based APIs. However, it can be used to describe nearly any HTTP-based API format.
Listing 13.3 uses RAML for the Shopping Cart API.

Listing 13.3 Example of RAML v1.0

% R AML 1.0

title: B ook store S h opping API Ex ample

v ersion: 1.0

b aseU ri: h ttps://w w w .ex ample.com

b aseU riParameters:

 def au ltHost:

 req u ired: f alse

 def au lt: w w w .ex ample.com

 ex ample:

 v alu e: w w w .ex ample.com

 displayName: def au ltHost

 type: string

protocols:

- HTTPS

docu mentation:

- title: B ook store S h opping API Ex ample

 content: Th e B ook store Ex ample R ES T- b ased API su pports th e sh opping ex pe-

rience of an online b ook store. Th e API inclu des th e f ollow ing capab ilities

and operations...

https://www.example.com
http://www.example.com
http://www.example.com

API Description Formats 241

types:

 L istB ook sR esponse:

 displayName: L istB ook sR esponse

 description: A list of b ook su mmaries as a resu lt of a list or f ilter

req u est...

 type: ob ject

 properties:

 b ook s:

 req u ired: f alse

 displayName: b ook s

 type: array

 items:

 type: B ook S u mmary

 B ook S u mmary:

 displayName: B ook S u mmary

 description: S u mmariz es a b ook th at is stock ed b y th e b ook store...

 type: ob ject

 properties:

 b ook I d:

 req u ired: f alse

 displayName: b ook I d

 description: An internal identif ier, separate f rom th e I S B N, th at

identif ies th e b ook w ith in th e inv entory

 type: string

 isb n:

 req u ired: f alse

 displayName: isb n

 description: Th e I S B N of th e b ook

 type: string

 title:

 req u ired: f alse

 displayName: title

 description: Th e b ook title, e.g ., A Practical Approach to API

D esig n

 type: string

 au th ors:

 req u ired: f alse

 displayName: au th ors

 type: array

Chapter 13 Document the API Design242

 items:

 type: B ook Au th or

 B ook Au th or:

 displayName: B ook Au th or

 description: R epresents a sing le au th or f or a b ook . S ince a b ook may

h av e more th an one au th or, ...

 type: ob ject

 properties:

 au th orI d:

 req u ired: f alse

 displayName: au th orI d

 description: An internal identif ier th at ref erences th e au th or

 type: string

 f u llName:

 req u ired: f alse

 displayName: f u llName

 description: Th e f u ll name of th e au th or, e.g ., D . Keith C asey

 type: string

/b ook s:

 g et:

 displayName: L istB ook s

 description: Prov ides a pag inated list of b ook s b ased on th e search

criteria prov ided...

 q u eryParameters:

 q :

 req u ired: f alse

 displayName: q

 description: A q u ery string to u se f or f iltering b ook s b y title and

description. I f not prov ided, all av ailab le b ook s w ill b e listed...

 type: string

 of f set:

 req u ired: f alse

 def au lt: 0

 ex ample:

 v alu e: 0

 displayName: of f set

 description: A of f set f rom w h ich th e list of b ook s are retriev ed,

w h ere an of f set of 0 means th e f irst pag e of resu lts...

 type: integ er

 minimu m: 0

 f ormat: int32

API Description Formats 243

 limit:

 req u ired: f alse

 def au lt: 25

 ex ample:

 v alu e: 25

 displayName: limit

 description: Nu mb er of records to b e inclu ded in API call, def au lting

to 25 records at a time if not prov ided...

 type: integ er

 minimu m: 1

 max imu m: 100

 f ormat: int32

 h eaders:

 Au th oriz ation:

 req u ired: tru e

 displayName: Au th oriz ation

 description: An OAu th 2.0 access tok en th at au th oriz es you r app

to call th is operation...

 type: string

 responses:

 200:

 description: S u ccess

 h eaders:

 C ontent- Type:

 def au lt: application/json

 displayName: C ontent- Type

 type: string

 b ody:

 application/json:

 displayName: response

 description: S u ccess

 type: L istB ook sR esponse

 401:

 description: R eq u est f ailed. R eceiv ed w h en a req u est is made w ith

inv alid API credentials...

 b ody: {}

 403:

 description: R eq u est f ailed. R eceiv ed w h en a req u est is made w ith

v alid API credentials tow ards an API operation or resou rce you do not h av e

access to.

 b ody: {}

Chapter 13 Document the API Design244

JSON Schema

The JSON Schema specification offers a machine-readable format for capturing the
structure and validation rules for JSON-based structures. The specification is divided
into core foundational rules and validation rules, making it a comprehensive solution
for defining JSON schemas that require validation. JSON Schema can be thought of
as the JSON equivalent to XML Schema.

While independent of any one API style, JSON Schema may be used to describe
resource representations for REST-based APIs and other API styles. It is also found
in organizations as a single format for defining schema formats for domain objects
across the enterprise.

While the schema definition portion of OAS is quite flexible, it lacks some of the
robust definition support offered by JSON Schema. Recent efforts with OAS v3.1
have helped to bring JSON Schema and OAS into alignment to allow for the use
of both formats. Expect JSON Schema to continue gaining tooling support moving
forward given its acceptance within the OAS description format. JSON Schema is
demonstrated in Listing 13.4.

Listing 13.4 Example JSON Schema

{

 "$ id": "h ttps://ex ample.com/B ook S u mmary.sch ema.json",

 "$ sch ema": "h ttp://json- sch ema.org /draf t- 07 /sch ema# ",

 "description": "S u mmariz es a b ook th at is stock ed b y th e b ook store...",

 "type": "ob ject",

 "properties": {

 "b ook I d": {

 "type": "string "

 },

 "isb n": {

 "type": "string "

 },

 "title": {

 "type": "string "

 },

 "au th ors": {

 "type": "array",

 "items": {

 "$ ref ": "# /def initions/B ook Au th or"

API Description Formats 245

 }

 }

 },

 "def initions": {

 "B ook Au th or": {

 "type": "ob ject",

 "properties": {

 "au th orI d": {

 "type": "string "

 },

 "f u llName": {

 "type": "string "

 }

 }

 }

 }

}

API Profiles Using ALPS

Application-Level Profile Semantics (ALPS) is a description format for defining
application-level and domain semantics, independent of the API style(s) and
protocol(s) available. It helps to define a profile of the digital capabilities and
messages exchanged for an API rather than the specifics of how to interact with the
API. ALPS is a machine-readable format that is useful for capturing API profiles
produced during API modeling (detailed in Chapter 6, “API Modeling”).

ALPS was designed to power API and service discovery, API catalogs, and tooling
metadata where an API profile may be implemented using one or multiple API styles,
including REST-based, gRPC, and/or GraphQL. The specification provides support
for XML, JSON, and YAML formats.

ALPS supports the combination of two fundamental elements: data (the message)
and transitions (operations). When combined, these two elements capture the
operational and message semantics for an API profile. The default format for ALPS
is XML, though a JSON-based specification is planned.

Listing 13.5 provides an example API profile that could be used to describe the
operations and messages for any number of API style implementations that are
available.

Chapter 13 Document the API Design246

Listing 13.5 An API Profile in XML Using the ALPS Draft 02 Format

< alps v ersion= "1.0">

 < doc f ormat= "tex t"> A contact list.< /doc>

 < link rel= "h elp" h ref = "h ttp://ex ample.org /h elp/contacts.h tml" />

 < ! - - a h ypermedia control f or retu rning B ook S u mmaries - - >

 < descriptor id= "collection" type= "saf e" rt= "B ook S u mmary">

 < doc>

 Prov ides a pag inated list of b ook s b ased on th e search criteria

prov ided.

 < /doc>

 < descriptor id= "q " type= "semantic">

 < doc> A q u ery string to u se f or f iltering b ook s b y title and

description.< /doc>

 < /descriptor>

 < /descriptor>

 < ! - - B ook S u mmary: one or more of th ese may b e retu rned - - >

 < descriptor id= "B ook S u mmary" type= "semantic">

 < descriptor id= "b ook I d" type= "semantic">

 < doc> An internal identif ier, separate f rom th e I S B N, th at identif ies

th e b ook w ith in th e inv entory< /doc>

 < /descriptor>

 < descriptor id= "isb n" type= "semantic">

 < doc> Th e I S B N of th e b ook < /doc>

 < /descriptor>

 < descriptor id= "title" type= "semantic">

 < doc> Th e b ook title, e.g ., A Practical Approach to API D esig n< /doc>

 < /descriptor>

 < descriptor id= "au th ors" type= "semantic" rel= "collection">

 < doc> S u mmariz es a b ook th at is stock ed b y th e b ook store< /doc>

 < descriptor id= "au th orI d" type= "semantic">

 < doc> An internal identif ier th at ref erences th e au th or< /doc>

 < /descriptor>

 < descriptor id= "f u llName" type= "semantic">

 < doc> Th e f u ll name of th e au th or, e.g ., D . Keith C asey< /doc>

 < /descriptor>

 < /descriptor>

 < /descriptor>

< /alps>

API Description Formats 247

Improving API Discovery Using APIs.json

Multiple API description formats may be necessary to help developers consume the
API using various tools. APIs.json is a description format that assists in API discovery
through a machine-readable index file. It is similar to a site map for a Web site that
helps direct search engine indexers to important areas of the Web site.

A single APIs.json file may reference multiple APIs, making this format useful for
bundling multiple, separate API description files into a single product or platform
view. When combined with other machine-readable formats, APIs may be discovered,
indexed, and made available within a public or private API catalog.

As the name indicates, the default format is JSON, although the YAML-based
format, shown in Listing 13.6, is also available.

Listing 13.6 APIs.json Example Offering an Indexed View of an API and Its Various
Machine-Readable Description Files

name: B ook store Ex ample

type: I ndex

description: Th e B ook store API su pports th e sh opping ex perience of an online

b ook store, along w ith ...

tag s:

 - Application Prog ramming I nterf ace

 - API

created: ' 2020- 12- 10'

u rl: h ttp://ex ample.com/apis.json

specif icationV ersion: ' 0.14'

apis:

- name: B ook store S h opping API

 description: Th e B ook store Ex ample R ES T- b ased API su pports th e sh opping

ex perience of an online b ook store

 h u manU R L : h ttp://ex ample.com

 b aseU R L : h ttp://api.ex ample.com

 tag s:

 - API

 - Application Prog ramming I nterf ace

 properties:

 - type: D ocu mentation

 u rl: h ttps://ex ample.com/docu mentation

Chapter 13 Document the API Design248

 - type: OpenAPI

 u rl: h ttp://ex ample.com/openapi.json

 - type: J S ONS ch ema

 u rl: h ttp://ex ample.com/json- sch ema.json

 contact:

 - F N: API s.json

 email: inf o@ apisjson.org

 X - tw itter: apisjson

specif ications:

 - name: OpenAPI

 description: OpenAPI is u sed as th e contract f or all of ou r API s.

 u rl: h ttps://openapis.org

 - name: J S ON S ch ema

 description: J S ON S ch ema is u sed to def ine all of th e u nderlying ob jects

u sed.

 u rl: h ttps://json- sch ema.org /

common:

 - type: S ig nu p

 u rl: h ttps://ex ample.com/sig nu p

 - type: Au th entication

 u rl: h ttp://ex ample.com/au th entication

 - type: L og in

 u rl: h ttps://ex ample.com/log in

 - type: B log

 u rl: h ttp://ex ample.com/b log

 - type: Pricing

 u rl: h ttp://ex ample.com/pricing

Extending Docs with Code Examples

Code examples provide the important guidance necessary for developers to be
able to apply the documentation in practice. They help developers to connect
the dots between the reference documentation and the actual work of integrating
the API.

Extending Docs with Code Examples 249

Code examples come in a variety of forms, from just a few lines that demonstrate
how a specific operation works to more complex examples that demonstrate a
complete workflow.

Write Getting Started Code Examples First

Initially, the developer must overcome basic understanding of the API and how it will
help solve their problem. It is important to remember that during this phase, the
developer just wants to see something work.

Time to First Hello World, or TTFHW, is a key metric for determining API
complexity. The longer it takes to get developers to their first “win,” the more likely
they are to struggle with the API and perhaps abandon it or build their own solution.

To help developers get started quickly, provide concise examples that remove the
need for explicit coding. Look at the following example from Stripe:

req u ire "stripe"

S tripe.api_ k ey = "you r_ api_ tok en"

S tripe::Tok en.create(

 :card = > {

 :nu mb er = > "4242424242424242",

 :ex p_ month = > 6 ,

 :ex p_ year = > 2024,

 :cv c = > "314"

})

Notice in this example that there is no code to write. The developer only needs to fill
in their API key to obtain a credit card token in their sandbox environment.

Example code that requires developers to write lots of code should be avoided
at this stage to achieve a lower TTFHW. Never require developers to write code
to complete an example when first trying out the API. Instead, make it easy to get
started and see the request work successfully.

Expanding Documentation with Workflow Examples

After developers have had time to try the API using some code examples, the next
step is to begin to demonstrate common use cases and workflows.

Workflow examples focus on achieving specific outcomes. These examples must
offer complete understanding of production-ready coding conventions. The use of
inline comments is helpful to explain why each step is necessary. Use hardcoded

Chapter 13 Document the API Design250

values to increase understandability. Choose variable and method names that make
the code easy to read.

Following is an example of charging a credit card using Stripe’s Ruby-based
helper library:

R ememb er to ch ang e th is to you r API k ey

S tripe.api_ k ey = "my_ api_ k ey"

Tok en is created u sing S tripe.js or C h eck ou t!

Get th e payment tok en su b mitted b y th e f orm:

tok en = params[:stripeTok en]

C reate a C u stomer:

cu stomer = S tripe::C u stomer.create(

 :email = > "paying .u ser@ ex ample.com",

 :sou rce = > tok en,

)

C h arg e th e C u stomer instead of th e card:

ch arg e = S tripe::C h arg e.create(

 :amou nt = > 1000,

 :cu rrency = > "u sd",

 :cu stomer = > cu stomer.id,

)

Y OU R C OD E: S av e th e cu stomer I D and oth er inf o

 # in a datab ase f or later.

Y OU R C OD E (L ATER) : W h en it' s time to ch arg e th e

 # cu stomer ag ain, retriev e th e cu stomer I D .

ch arg e = S tripe::C h arg e.create(

 :amou nt = > 1500, # $ 15.00 th is time

 :cu rrency = > "u sd",

 :cu stomer = > cu stomer_ id, # Prev iou sly stored, th en retriev ed

)

Note that workflow code examples are more complex than those used to achieve a
quick TTFHW. These examples need to be short enough to explain the concepts but

From Reference Docs to a Developer Portal 251

not too long that they require considerable time to understand. It is often best to
demonstrate scenarios that are easily understood and likely map to customer needs.

Error Case and Production-Ready Examples

While some developers may be more familiar than others with making their code
production ready, assistance can smooth the road for developers during the last mile
of API integration. Error case and production-ready examples help developers
understand how to integrate the API into their production environment.

The examples should help developers properly troubleshoot problems and
incorporate retry loops when an API outage occurs. Adding examples that
demonstrate how to catch and recover from bad data provided by end users is also
important. Finally, show how to obtain the current rate limits for their account and
detect when rate limits have been exceeded.

From Reference Docs to a Developer Portal

API documentation is a blanket term for all the work that describes an API and how
to use it. Although the term is used as if there is only one kind of documentation,
API documentation encompasses more than just the reference docs. It includes
having a developer portal that pulls together all of the elements that API consumers
need to be successful. It also addresses additional personas, beyond the developer,
that participate in the API adoption process.

Increasing API Adoption through Developer Portals

While developers are often the target persona for an API developer portal, other
personas also benefit from a developer portal:

 • Executives involved in the process of discovering, reviewing, and approving a
new API

 • Business and product managers searching for ways to leverage internal and/
or third-party APIs to speed delivery of new solutions

 • Solution architects and tech leads who are defining a new solution that may
leverage existing APIs from an enterprise portfolio

A developer portal helps bring together the different styles of communication
needed to ensure that APIs can be found, an understanding of the benefits of using

Chapter 13 Document the API Design252

the API, and assistance to developers on how to integrate the API. It also provides the
interface on top of the many faceless APIs that exist within an organization’s API
portfolio for evangelism across the organization.

CASE STUDY
Enterprise Developer Portal Success

An API program initiative for a large enterprise IT group started with just
a few key people. After a year of investment, the team had produced several
APIs that offered a number of high-value capabilities to the business. How-
ever, the team produced only reference documentation—no developer por-
tal. As a result, information about how to start using the API wasn’t readily
available. With help, the team expanded the reference documentation into a
complete developer portal.

Their revised developer portal guides developers through an introduction
to the API’s structure and capabilities, onboarding in a sandbox environment
for integration, and production access through a lightweight certification
program.

Influential executives use the developer portal to evangelize the API pro-
gram throughout the organization, resulting in increased demand for adopt-
ing APIs. The developer portal now serves as a central communication tool
and a method of promoting the program to both technical and nontechnical
teams.

Elements of a Great Developer Portal

A great developer portal consists of the following elements that address the needs of
the variety of personas involved in adopting an API:

 • Feature discovery: An overview of the API addresses concerns such as ben-
efits, capabilities, and pricing to qualify prospects.

 • Case studies: Case studies highlight applications that have been built using the
API. They help readers understand how the API is used within their specific
vertical business domain or for specific types of app.

 • Getting started guide: Sometimes called a quick start guide, it introduces
developers to common use cases that the API solves and provides a step-by-
step guide to getting started for each case.

Effective API Documentation 253

 • Authentication and authorization: This element describes how to obtain an
API token with the appropriate authorization scopes necessary to use the API
as desired.

 • API reference documentation: Details on each operation, including URL path
structures, input and output data structures, and error data structures, are
given in the reference documentation.

 • Release notes and changelog: The changes in each release, including new
operations and enhancements to existing operations, are summarized in a his-
torical format.

Beyond these essential elements, developer portals seek to inform and deliver on
the following experiences:

 • Easy onboarding: APIs rarely gain adoption if it is difficult to get started.
Easy onboarding, from self-registration to a guided tour and API token crea-
tion, helps developers overcome the challenges to adopting a new API. Integra-
tion between the developer portal and the API gateway that is responsible for
provisioning API tokens is important to effective onboarding.

 • Operational insight: Is the API available or temporarily down? A simple sta-
tus page that reflects an API’s availability helps to inform developers and oper-
ations staff who see increased errors in their applications.

 • Live support: Including a chat solution, whether embedded into the developer
portal or through a communication platform such as Slack, WebEx, or Micro-
soft Teams, provides direct access to those who can help resolve integration.
The team responsible for live support is often called developer relations, or
DevRel for short. They might be responsible for the developer portal alongside
developer support.

Effective API Documentation

To write clear documentation, it is important to answer the questions commonly
asked by those considering the adoption of an API. The answers to these questions
may be obtained through interviews conducted with developers integrating the API.

It is important to engage in conversations with them whenever possible. Engaging
in discussions with API consumers will lead to those critical “aha!” moments that
API providers need to improve their documentation.

Chapter 13 Document the API Design254

When discussion with API consumers isn’t possible, try to find other developers
to review the documentation. Conduct a documentation audit by defining a mythical
scenario, then writing some code to call the API to produce a prototype. Along the
way, ask questions to identify areas of improvement for the API documentation
offered.

Question 1: How Does Your API Solve My Problems?

Ensure that the API documentation has an introduction that covers what the API
solves and what it doesn’t solve and that it offers example use cases that the API has
solved in the past. This information establishes a context for the reader, who may be
trying to decide whether the API is the right fit for their need.

Question 2: What Problem Does Each API Operation Support?

Add documentation to clarify what each operation does and when it may be applica-
ble. “Gets all accounts” is not a helpful description of an API operation. Add addi-
tional details about what kinds of filters, implied or explicit, are supported.

Offer some example scenarios describing when an API operation may be used or
how it may be combined with other operations to achieve particular outcomes. The
job stories and API profiles created during the Align-Define-Design-Refine (ADDR)
process is a good source for this detail.

Question 3: How Do I Get Started Using the API?

If the API offers self-service onboarding, call out this feature in the documentation
as a benefit to getting started faster. For those who require time to go through a
partnership program, include details of the program in the documentation as well.
This information ensures that the appropriate lead time is factored in prior to
developers beginning the first hello world integration.

It is important to offer links to the onboarding process in various locations of the
API documentation. Not all developers start from the homepage of the developer
portal. Publicly accessible reference documentation will be indexed by search engines,
creating organic entry points into a developer portal. Be sure to include a link to the
onboarding process somewhere near the top of the reference API documentation.

Finally, don’t assume that all developers can figure out how to use an API. Every
developer is at a different stage in their career. Some may have the same, more, or less
experience than others using Web APIs. Take the time to explain, step by step, how
to get started.

Effective API Documentation 255

The Role of Technical Writer in API Docs

Traditionally, technical writers focused on delivering manuals for software, often in
PDF or HTML format. These manuals consisted of screenshots and step-by-step
guidance for using software. Extensive knowledge of the user interface, including
features that are often overlooked, was required. The role was critical for ensuring
end users were able to use the software effectively and efficiently while reducing
support costs. Rarely, technical writers were required to have a deep knowledge of
one or more programming languages, such as C/C++, Java, or Python.

Over the past decade, the role of technical writers has undergone a transition. In
some organizations, technical writers have been replaced by user experience (UX)
experts who design user interfaces that require minimal or no documentation.
Other organizations have replaced technical writers with marketing and product
roles that improve the copy of an app to encourage conversion or increased usage
metrics.

With the growth of APIs, technical writers are again in heavy demand. They are
required to understand how to use APIs directly via HTTP, along with a variety of
programming languages to demonstrate API integration using Java, Python, GoLang,
Ruby, JavaScript, Objective-C, Swift, command-line automation, and more. Their
target audience spans end users, experienced developers, and developers right out of
college. Rather than documentation efforts focused on a few large releases per year,
now releases may occur on a weekly or daily basis owing to deployment automation
and cloud infrastructure.

The value that technical writers offer to any product is enormous. For APIs, their
talent is invaluable. They provide an outside-in perspective on an API’s design and
documentation to ensure it provides value to the target audience. Questions around
the purpose and intended use of each API operation help to hone the API design
early.

The challenge for most technical writers is building a sufficient team to handle
the vast amount of work before, during, and after every release of every API offered
by the organization. A single technical writer for a small API may be able to keep
documentation updated. If the organization is large and offers multiple APIs,
perhaps even API products, the challenge increases beyond the capabilities of even
the most talented technical writer.

Therefore, it is critical that organizations have a team of technical writers. This
team should be able to dedicate a few technical writers for emerging APIs while
others are focused on maintaining documentation for existing APIs. They must be
considered in all API design decisions early and should be part of any API design
process from start to finish. All decisions regarding API documentation tools and
process should be made by the technical writers, not by developers forcing specific

Chapter 13 Document the API Design256

tools upon them. They should be considered first-class team members rather than
a siloed team that has API implementations thrown at them at the last minute for a
quick-and-dirty documentation effort.

Finally, remember that API documentation is the user interface for developers.
Technical writers can make or break an API’s success. The same can be said for
enterprise API platforms where some APIs are targeting partners, customers, and
third-party service integrators.

The Minimum Viable Portal

The minimum viable portal (MVP) builds on the idea of the minimum viable product
from lean processes to establish a phased approach to delivering a developer portal.
The MVP provides prioritization as three phases, the first being the minimal
developer portal needs. As the team matures the API, the developer portal may be
enhanced by taking it from minimum documentation to a robust developer portal.

Phase 1: Minimum Viable Portal

The checklist in Table 13.1 lists the five most important modules to provide in an
initial API developer portal. Included in the table are questions to answer and infor-
mation to include in each section to help guide the process.

Table 13.1 Minimum Viable Portal Checklist

Section Questions to Answer Information to Include

Overview What type of API do you have? Type of API (RESTful, SOAP, gRPC,
GraphQL, etc.)

What can users do with your API? Brief use cases and examples (two or
three sentences)

Are there any access details or
restrictions users need to know about?

Base URL, rate limits

Authentication If your API requires an authentication
token or key, how do users get one?

Authentication method

Do tokens/keys expire? Expiration intervals (if any)

What should users do if their token/key
expires?

Refreshing expired tokens/keys

How do users pass authentication to
your API?

Example authorization header

The Minimum Viable Portal 257

Section Questions to Answer Information to Include

Workflows What is the optimal/assumed workflow
for the two or three most useful things
users can do with your API?

Link to the reference for each operation
mentioned in the workflow

Code samples What does the code look like for a
“hello world” and common use cases?

Complete code samples and code
snippets that users can copy and paste

Reference What do users need to know to use each
operation?

For each operation: HTTP method
(GET, PU T, POS T, D EL ETE)

Complete request URL

Parameters (path and query): name,
type, description, and whether the
parameter is required

Example request (including header and
body)

List of each element in the example
request, including the type, description,
and whether the element is required

Example response

List of each element in the example
response, including type and description

List of error and status codes, including
the code, message, and meaning

Once all items on this list are checked off for all sections, the API developer portal is
in good shape to support the needs of initial consumers involved in the early stages
of API design as well as the needs of future consumers who may discover the API.
Depending on available expertise and the number of API operations, the effort
required to complete this phase may take between one and three weeks. If necessary,
focus on the most common use cases that the API addresses, then incorporate addi-
tional documentation in future phases.

Phase 2: Improvement

The best place to spend time improving the portal will depend on the characteristics
of the API. If the API has changed, has new operations, or works differently than
previously documented, the first priority is updating the docs to incorporate the
changes. But if everything is up to date, consider some of the ideas in Table 13.2 as
time allows.

Chapter 13 Document the API Design258

Table 13.2 Improving the Developer Portal

Type of Improvement Recommended Improvements

Quick (one or two days) Add a changelog to list API enhancements and fixes

Standardize terminology—make sure you always use the same
terms to mean the same thing throughout the docs

Tweak use cases and examples to make sure they’re business
oriented

Add chat-based support or public discussion forum for the API

Add a page that links to users’ projects and blog posts about
your API (e.g., Sunlight Foundation lists projects that need
help and projects that are ready to use)

Create a shared product roadmap

Not-so-quick (three or more days) Revise all content with a user-centric rather than
developer-centric focus

Update text to include terms users are likely to search for

Review the references for missing, incomplete, or confusing
information

Reorganize to improve logical order of sections and content

Add business-focused content for nontechnical or less-
technical users and decision makers

Implement a new publishing tool

Extend code examples into complete tutorials

Create reference apps, available via GitHub, to help
developers get started quickly

Phase 3: Focusing on Growth

Once the items from the first two phases that are relevant to team needs have been
completed, consider a few additional improvements to shift the portal from
supporting customers to generating growth in adoption:

 • Add case studies: Case studies demonstrate an API’s value by describing how
clients have used it to solve a problem, expand business, or succeed in some
way. They add depth and meaning to API documentation by offering real-
world context, which helps readers understand how the API has already ben-
efited others and could benefit them too. Case studies can even inspire new
ideas for using an API. If “Case Studies” sounds a little dry or academic, try
something like “Success Stories” or “Client Stories” instead.

 • Add getting started guides: Readers who understand how APIs work might
be able to start using an API with authentication details alone, but what about

Tools and Frameworks for Developer Portals 259

users who are less comfortable? A getting started guide should build users’
confidence that they can use the API and inspire them to dig deeper into the
rest of the documentation.

 • Incorporate analytics: Analytics help portal administrators tailor the portal
to the needs of the audience based on real data about traffic patterns and help
readers move more smoothly through the content.

 • Move to single-page format: Consider restructuring some portions of the
portal on a single page. The benefit of this format is that users can navigate the
documentation either with the menu that links to all the section headings or by
using Ctrl/Cmd+F to search for text on the page.

 • Translate the documentation: As the API gains traction, consider whether
documentation translation would be helpful. Professional translation is
expensive and takes time, so a clear and persuasive business case is necessary
before starting this journey. It’s rare, but some teams discover that most of
their users are in another country and therefore would benefit from translated
documentation.

Finally, continually check around to see what other companies with successful
APIs are doing with their documentation. Then produce a plan for incorporating
these new ideas into the developer portal to benefit customers, partners, and internal
developers.

Tools and Frameworks for Developer Portals

One of the challenges of establishing a developer portal is to select a tool, or a series
of tools, that helps produce the developer portal. Outlined here are tools that
organizations have used to produce their developer portal:

 • Static site generators: Tools such as Jekyll, used to power GitHub pages, and
Hugo are popular choices for creating and managing developer portals. Pages
are authored using Markdown or similar notation and are stored in a code
repository. Deployment is typically automated to ensure the latest version of
the documentation is published once changes are merged into the main branch.

 • SwaggerUI: This is the tool that started it all for the Swagger API description
format, now separated from the tool as the OAS. This open-source codebase
renders any OAS v2 or v3 specification, plus older Swagger specification files,
into API reference documents in HTML format.

Chapter 13 Document the API Design260

 • MVP template: I have collaborated with others to create a GitHub project for
starting an API developer MVP that is based in Jekyll. It helps to combine the
static site generator with some placeholders for content and integrating Swag-
gerUI or similar reference documents into a single location. Fork the reposi-
tory at https://github.com/launchany/mvp-template and customize as needed
to get started quickly.

Whatever tools are selected, be sure to provide any machine-readable descriptions,
such as OAS files, as part of the portal. This will allow developers to apply their own
tooling, such as custom code generators, for speeding up the integration process.

Finally, be sure to research open-source and commercial tools that can assist in the
creation and management of the developer portal. Some API management (APIM)
layers, detailed in Chapter 15, offer portal management support as well.

Summary

Establishing an API documentation strategy is part of delivering a successful API
product, formalized API program, or enterprise API platform. Developer portals
must support a variety of personas. It is critical to ensure that documentation is part
of the overall API design and delivery lifecycle. Otherwise, it becomes a last-minute
task that results in poor documentation that fails to meet the needs of the target
personas.

Seek to include documentation and API portal updates as part of the overall
delivery schedule. An API should be considered done only when the documentation
is updated alongside the release. This approach to documentation will produce a
more complete API that encourages rapid adoption by developers and other decision
makers.

https://github.com/launchany/mvp-template

261

Chapter 14

Designing for Change

You have to be really consciously careful about API design. APIs are forever.
Once you put the API out there, maybe you can version it, but you can’t take it
away from your customers once you’ve built it like this. Being conservative and
minimalistic in your API design helps you build fundamental tools on which
you may be able to add more functionality, or which partners can build layers
on top of.

— Werner Vogels

Managing change is not easy, yet it is an inevitable part of maturing an API. For
developers working within a single codebase, change can be difficult but is manage-
able. Refactoring tools and automated test coverage are leveraged to assess the
impact of a change.

When the change involves Web-based APIs, change becomes even more challenging.
Some teams may have a direct relationship with every API consumer, allowing for
changes to be introduced gradually and in coordination with all parties. However,
that is usually not the case. Instead, most consumers of an API have no personal
relationship with the team that owns the API. Extra care is required to manage changes
to an API design to avoid customer churn. This chapter presents some considerations
to determine the impact of change and strategies to introduce change to API designs
that minimize the impact to API consumers.

The Impact of Change on Existing APIs

The Align-Define-Design-Refine (ADDR) process will work for any organization,
whether an early-stage startup or an organization with hundreds of existing APIs.
The process surfaces the outcomes and activities needed by customers, partners, and
the workforce. This approach is useful whether a team is designing their first or
fiftieth API.

Chapter 14 Designing for Change262

The fictional online bookstore example used throughout this book assumes
that the APIs identified throughout the process did not already exist, resulting in a
greenfield project. The reality is that organizations already have APIs in production
for a variety of purposes, and any proposed API designs must fit the reality that
brownfield development will be required.

These brownfield initiatives are forced to reconcile the findings from the
ADDR process with any existing API designs to determine the best path forward.
This chapter details some considerations for handling change when APIs already
exist.

Perform an API Design Gap Analysis

Teams should perform a gap assessment of the ideal API design identified during
the process with the way it is designed today. The team must then determine
whether to follow the same style and design decisions of the API design for
consistency, mix the new design alongside the older design decisions, or consider
other alternatives.

Factors to consider when performing this design gap analysis include the
following:

 • Introduction of differing terminology for resources and resource properties
during the design process

 • A shift from data-centric to resource-centric API design styles

 • Change in vision and direction for the API product compared to what exists
today

Using these factors as a starting point, itemize the differences between existing
APIs and the ideal API design created as a result of the ADDR process. Assign a
sizing for the value provided to API consumers by the new API design and the size
of the impact in API design change. Using t-shirt sizing (e.g., small, medium, large,
extra-large) ensures the measurement is an effective way to size the value and impact.
Then determine what is best for API consumers.

Determine What Is Best for API Consumers

Making an API design decision, particularly when breaking changes will be required,
involves more than the direct impact to the organization. It must also include what is
best for API consumers.

The Impact of Change on Existing APIs 263

Consider the following questions to determine the impact of API changes to
current and future API consumers:

 • Who are the API consumers? Internal consumers may offer easier change
coordination, whereas partners may be resistant to making changes to integra-
tions. Customers and third parties acting on behalf of customers may be una-
ble to make changes because of limited or no development resources available.

 • What kind of relationship has been established with API consumers? An
internal or external party that the team knows personally can more easily
negotiate for breaking changes. API consumers that have no relationship may
be more challenging. API consumers that are heavy influencers in the market-
place may have a negative impact on current and future customer prospects if
they are cornered into adopting unnecessary API changes.

 • What value is being delivered to API consumers as a result of the change?
API changes that improve the use of the API may be well received. Changes
may also unlock new capabilities that consumers have been requesting, even
with the cost of change. For others, it may give them pause to consider moving
to a different vendor, resulting in customer churn.

How an organization manages change with its API consumers tells a lot about
who and what it values. If the API provider prefers to deliver API design elegance at
the cost of constant breaking changes, API consumers may soon start shopping for
alternatives. If, however, the API provider values the API consumer above having the
perfect API design, it may just find itself the leader in the marketplace.

Strategies for Change

Proceeding with an existing design style may require compromises in the API design
that are less than ideal. These compromises may include minor annoyances, such as
continuing forward with a misnamed resource that doesn’t necessarily reflect the
insights gained during the ADDR process.

Compromises such as supporting the old message formats alongside the new are
commonly found in the real world. In this case, the server first checks for the new
request message format, falling back to the older message format when necessary.
The versioning responsibility is placed on the server rather than on the API
consumers, ensuring that no breaking changes are introduced.

Another example is adding the new design style alongside the older style. New
operations use the new design style, and the older ones remain as-is for a time.
Gradually, older operations are replaced by newer operations using a deprecation

Chapter 14 Designing for Change264

strategy that encourages existing integrations to migrate to the new operations one
at a time.

However, some compromises may be more significant, such as an existing API
design that is too low level. This issue is common for APIs that opt to expose database
tables directly compared to the new proposed API design that would apply a more
coarse-grained design with an outcome-based focus. Mixing low-level and high-level
APIs may create too much cognitive dissonance for developers and therefore are less
than ideal.

Teams must determine if they wish to add the new design to an existing API,
start a new API as if it were a brand-new product offering, or deliver the new design
as a new version of the existing API. Each option will have an impact both on the
organization and on current and future API consumers.

If the existing API design impedes the API consumer’s ability to use the API
effectively, a more greenfield approach may be required. Keep in mind that if the
team chooses to release a new API product or version, additional resources will be
required to maintain both APIs for some amount of time in the future. The next
section discusses API versioning strategies and considerations.

Change Management Is Built on Trust

The most important thing is that the ADDR process helps to align business and API
teams in a unified understanding of the problem space. A unified understanding may
create a vision of the design target state of the API design and reality. Work through
the process using the recommendations provided in this chapter. Doing so ensures
that enhancements to an existing API or the delivery of a new API meets the needs of
the API consumers and that the trust between API provider and consumer is not lost.

Principle 5: APIs are forever, so plan accordingly

Thoughtful API design combined with an evolutionary design approach makes
APIs resilient to change. Extra care is required to manage changes to an API
design. This helps to avoid frustrating developers who are required to stay updated
with the latest changes.

API Versioning Strategies

APIs are contracts established between the providers of an API and their consumers.
Ideally, they will never have to alter this contract. However, the ideal may not be the
reality. There may be times when a change to the contract is required. When this

API Versioning Strategies 265

happens, teams should try to ensure that they do not introduce breaking changes that
will force their API consumers to fix code. For some API consumers, updating code to
adapt to an API change may not be an option at all. Therefore, it is important to
understand what may constitute a breaking change, then establish an API versioning
policy that encourages the evolution of an API over time without breaking existing API
consumers.

Common Nonbreaking Changes

Nonbreaking changes tend to be additive in nature, although this isn’t always the
case. These kinds of changes may include

 • Adding a new API operation. Existing client code won’t use the operation, so
no harm is done to existing integration.

 • Adding an optional field to a request message. In this case, existing client code
will not be forced to add the new field.

 • Adding a required field to a request message with a default value. For cli-
ent code written prior to the addition, the server will apply the default value
because it would be missing from the request.

 • Adding a field to a response message. Existing client code should safely ignore
the new field(s) unless they opted to use a mapping library that raises an error
if the newly added field cannot be found in the destination object. This is an
antipattern for API consumption but may be encountered in some circum-
stances, so use caution.

 • Adding a value to an enumeration field type. A new enum value that is deserial-
ized on the client may not have a known display string associated to it. To be
a nonbreaking change, older clients must run correctly when receiving a new
enum value. Not all clients may be designed in this way, so caution is advised.

Incompatible Changes

Changes that are incompatible with existing integration code include, but are not
limited to, the following:

 • Renaming fields and/or resource paths, as existing client code will require a
code change to adapt to the renamed value

 • Renaming or removing fields in a request or response

 • Removing API operations used by existing API client code

Chapter 14 Designing for Change266

 • Changing fields from a single value to a one-to-many relationship (e.g., moving
from one email address per account to a list of email addresses for an account)

 • Changing the HTTP method or the response codes returned by an API
operation

Remember that once an API is released into production and has at least one
integration, the design decisions are permanently a part of the API. This is why
the ADDR process is so important—it helps teams to validate design decisions
before an API goes into production. However, a proper API versioning strategy
can assist in mitigating some of these issues while allowing an API design to
evolve over time.

API Versions and Revisions

There have been many discussions, articles, and debates about API versioning. The
most critical aspect of every discussion must be the differentiation between safely
evolving an API design and introducing breaking changes that force code
modification as a result. One of the biggest tools in the API versioning toolbox is the
introduction of API versions and revisions.

API versions represent a grouped set of API operations. Within each version, all
modifications to an API should be backward compatible. However, across versions
there is no guarantee of compatibility. Each version of an API is often treated as a
separate product with differing behaviors and capabilities. API consumers opt into a
specific version and write code against that version. They migrate to a new version
only when they are ready, which may be a long time after the new version is released—
or perhaps never. Versions may be numbers or strings (e.g., v1 or 2017-01-14). For those
familiar with semantic versioning (semver), this is the same thing as a major version.
Figure 14.1 illustrates two versions of an API, each offered as a different product that
the API consumer selects when making the API request.

An API revision identifies an internal enhancement that should have no
negative impact to API consumers of a specific API version. Revisions should be
transparent to the API consumer, as consumers should be subscribed to a specific
version only. The provider opts to release a new revision of a specific API version
with or without the knowledge of the API consumer. Internally, a team may
release v1.2, but API consumers only know that they are using v1 of the API (see
Figure 14.2). API consumers may review changelogs for each revision to see if
an enhancement would be useful but otherwise take no action when the provider
releases a new API revision. This is equivalent to increasing the minor version
number when using semver.

API Versioning Strategies 267

POST /v1/calculate-sales-tax

POST /v2/calculate-sales-tax

API consumer selects
v1 for now but may or may not

opt into v2 in the future

API server o�ers
the current
version (v2)

and the previous
version (v1)

Mobile App

v1

v2

Figure 14.1 API versions are selected by the API consumer, and the API server offers both
the current version (v2) for new applications and the previous version (v1) for existing
applications until they migrate their code to v2.

API consumer still using
API v1 and is not aware

of the newly deployed revision

Mobile App

v1.1

v1.2

POST /v1/calculate-sales-tax API server selects
the most current revision,

sending requests to v1.2 once
it is ready to replace v1.1

Figure 14.2 API revisions are not exposed to API consumers, allowing the API provider to
upgrade to the latest revision without explicit knowledge by the application.

API Versioning Methods

There are three popular methods of implementing API versioning: header-based,
URI-based, and hostname-based versioning.

Header-based versioning places the desired version as part of the Accept header in
the HTTP request (e.g., Accept: application/v nd.g ith u b .v 3+ json). Many consider
it the preferred form of versioning, as the URI remains the same across versions, and
the media type defines which version of the resource representation is desired.

URI-based versioning includes the version as part of the URI, either as a prefix
or as a suffix. Examples include /v 1/cu stomers. This method of versioning tends

Chapter 14 Designing for Change268

to be the most commonly encountered, as it works across a variety of tools that
may not support customizing request headers. The downside is that resource URIs
change with each new version, which some consider counter to the intent of support-
ing evolvability through a resource URI that never changes.

Hostname-based versioning includes the version as part of the hostname rather
than the URI (e.g., h ttps://v 2.api.myapp.com/cu stomers). This approach is used
when technology limitations prevent routing to the proper backend version of the
API based on the URI or Accept request header.

No matter which option is selected, API versions should include only the version
number. Minor numbers should not be used; otherwise, code changes are required and
thus cause typically nonbreaking changes to become breaking changes. For example,
code changes would be required to move from /v 1.1/cu stomers to /v 1.2/cu stomers,
even if the only difference between versions is the addition of a new operation.

Business Considerations of API Versioning

Each time a new version is released, customers must decide whether or not they wish
to opt in. The decision is based on the cost versus the reward. Is the effort to migrate
worth the cost it will take to migrate?

Moving to a new API version is a forcing factor. Just because an API design isn’t
perfect doesn’t mean the team should release a new version with breaking changes to
get the design exactly right. Every time a new version is released to accommodate a
desired breaking change, the organization risks introducing customer churn because
the customer must weigh the cost of migration versus moving to a competitor.

In addition, introducing a new version often requires keeping the current API
version around for some indeterminate period of time. While some organizations
may have the leverage to force customers to upgrade by some period of time, this isn’t
always the case. Consequently, any previous versions of an API must be supported
for the foreseeable future.

Every new API version is like a completely new product that requires additional
infrastructure, support, and development costs to maintain. Keep this in mind
when the temptation arises to release a new API version to fix that annoying design
decision that crept in last year.

Deprecating APIs

Nothing will ruin a team’s week more than scrambling to find a replacement to an
API that has been shut down overnight. To avoid this kind of impact on existing API
consumers, teams must define their deprecation policy and communicate it to their
API consumers.

https://v2.api.myapp.com/customers

Deprecating APIs 269

Deprecating an API operation or product provides an opportunity for an API
provider to maintain a level of trust with its API consumers. But this requires
a clear policy and planning to deprecate and eventually sunset an API. When
executed properly, API consumers are notified early and often of the deprecated
API and are given a chance to move to an alternative solution prior to the
retirement of the API.

Establish a Deprecation Policy

The organization should have a clearly documented deprecation policy and
process as part of the API program standards and practices. This policy should
include

 • Details on when deprecations are allowed

 • Steps to establish a deprecation process

 • The minimum duration of the deprecation period prior to retirement of the
API or operation

 • A requirement to establish a migration path for consumers, even if that includes
other vendors that provide a solution similar to the deprecated operation or
product

 • A clear definition of the organization’s deprecation policy in the API’s terms
of service

Organizations that establish a deprecation policy will be better equipped to
deprecate an API operation or product while maintaining the trust of their API
consumers.

Announcing a Deprecation

Communicating a deprecation is a significant factor in maintaining API consumer
trust. The methods of communication vary, but should include

 • Well-written emails that address the deprecated operation(s) or product(s)

 • Notification banners at the top of a Web-based dashboard

 • Warnings embedded in all related API documentation

 • Blog posts or a dedicated landing page for deprecations that discuss the deci-
sion and address frequently asked questions

 • Frequent social media notifications with a link to the blog post

Chapter 14 Designing for Change270

The announcement strategy should include most or all of these methods of
communication. Keep in mind that employee turnover may result in email addresses
that are not current, so using a variety of methods ensures the most effective
communication possible.

For APIs using OpenAPI descriptions, use the deprecated: tru e indicator, result-
ing in the rendering of a deprecation warning in generated HTML documentation.
GraphQL and gRPC-based APIs have similar provisions for their schema and inter-
face definition language (IDL) formats.

Use the Sunset Header RFC1 to programmatically communicate when it will be
retired. Consider including a step-by-step guide to using the Sunset Header as part
of the API documentation. It will help API consumers receive automated notifica-
tion of deprecated API operations.

Finally, if API helper libraries are offered, include a warning in the log file or con-
sole regarding the existence of the Sunset Header. Backend code that uses the library
may redirect log files to log aggregators, resulting in internal alerts in monitoring
dashboards.

Establishing an API Stability Contract

As the quote at the start of this chapter indicates, an API design isn’t finished until
someone is using it. So, how can teams design an API that lasts forever if the design
isn’t finished until after it is being used? This requires a few disciplines that encourage
evolutionary API design, including listening to early feedback, continually seeking
additional insights, and establishing expectations through an API stability contract
with developers.

The ADDR process is designed to engage with stakeholders early and often to
ensure that the API design meets the needs of its target audience. API designers must
be willing to listen, learn, and adjust their API designs according to the feedback
they receive. Anything short of this will only serve the needs of the API owners
rather than serve the needs of current and future API consumers.

Not only must teams listen to feedback during the initial design process, but they
must continue to listen after the initial release. Seek to better understand how the
API is being used beyond its original intent. Conduct interviews with customers and
developers to see how API design and documentation improvements can help them.
Communication must be continuous rather than a one-time discussion at the start of
the API design process.

1. E. Wilde, “The Sunset HTTP Header,” February 3, 2016, https://tools.ietf.org/html/draft-wilde-
sunset-header-01.

https://tools.ietf.org/html/draft-wilde-sunset-header-01
https://tools.ietf.org/html/draft-wilde-sunset-header-01

Summary 271

An API stability contract is a method of establishing expectations of change
between the API provider and its API consumers. The contract defines the level of
support and longevity of API operations or entire API-based products. Following is a
recommended starting point for organizations:

 • Experimental: This is an early release for experimentation and feedback.
There is no guarantee that it will ever be supported. The design may change, or
it may be removed completely in a future release.

 • Prerelease: The design has been prereleased for feedback and will be supported
in the future. However, the design is not frozen and therefore may introduce a
breaking change.

 • Supported: The API is in production and is supported. Any design changes
must not break existing consumers.

 • Deprecated: The API product or API operation(s) is still supported but will
soon be retired.

 • Retired: No longer available or supported.

Applying an API stability contract gives API providers the freedom to introduce
new API operations or experimental APIs early for design feedback prior to support-
ing it on a long-term basis.

Summary

Changes to API design cannot be avoided. Whether internal or external, consumers
depend on the API to remain stable in the face of improvements. Introducing changes
to an API’s design provides an opportunity for the owning team and the organization
to maintain the trust of their API consumers. By applying an appropriate API
versioning strategy, taking appropriate steps to deprecate APIs when they are no
longer needed, and establishing an API stability contract, teams are able to manage
change while avoiding negative impacts to their API consumers.

This page intentionally left blank

273

Chapter 15

Protecting APIs

Organizations must apply an integrated approach to API security or else leave
the door open to further threats.

— D. Keith Casey

API design doesn’t stop at HTTP methods, paths, resources, and media types. Pro-
tecting APIs from malicious attackers is an essential part of API design. If left unpro-
tected, an API will become an open door that can do irreparable damage to an
organization and its customers. An API protection strategy involves the implementa-
tion of the right components, selection of an API gateway solution, and integrating
an identity and access management to tie it all together.

This chapter outlines some foundational principles and provides guidance
on common practices along with antipatterns to avoid when approaching an API
protection strategy. Resources are provided for further reading and research on the
journey.

The Potential for API Mischief

Some API providers may choose to implement no API security or only basic API
security measures using passwords or API keys. Mischievous attackers prefer to seek
out poorly secured APIs and exploit them as the means to gain access to data and
internal systems.

Recent API security breaches show some of these key vulnerabilities and the
consequences that can occur when using APIs:

 • Gaining access to a user database via an unsecured API, allowing the bad guy
to confirm the identities of 15 million accounts on Telegram while remaining
undetected.

Chapter 15 Protecting APIs274

 • Exploiting a password reset API that returns the reset token, allowing the con-
firmation email to be bypassed and accounts to be taken over, exposing sensi-
tive health and personal details.

 • Combining large data sets from previous hacks to confirm authorization of
users, resulting in the ability to pass security screening and download tax
returns from the US Internal Revenue Service.

 • Reverse-engineering undocumented APIs intended for internal, private use by
a company for its mobile apps, allowing the bad guy to access data easily with
minimal or no implemented protective measures. This security risk is common
for many API vendors that consider an undocumented API as secure, such as
Snapchat.

 • Exposing the exact location, by latitude and longitude, of users because a
previously private Tinder API was opened for end users. A thorough security
review prior to opening the API to developers would have identified that the
mobile app, not the API, was responsible for hiding the actual physical loca-
tion of their users.

These recent breaches span from low-reward results, such as disclosing business
intelligence as a competitive advantage, to high-reward results that can disclose
extremely sensitive data. One even jeopardized the safety of individuals by disclosing
their exact location!

Unfortunately, some API providers may take shortcuts in securing their internal
APIs. Perhaps they mistakenly think that if they do not document the potential access
to the API, no one will go looking for it. This misguided belief is naïve at best and risks
exposing the organization to various attack vectors that it could otherwise avoid.

Essential API Protection Practices

Whether the API is available for use by public developers or hidden for private use,
protecting the API is important. API protection requires a variety of practices that
are essential to an overall API security strategy:

 • Authentication (authn): Used to determine the identity of callers and verify
their identity. Using username and a password is most common for Web apps
but is not recommended for API use because passwords may change often.
Instead, use OpenID Connect or similar solution to ensure the identity of the
caller is verified before allowing API requests to be processed.

Essential API Protection Practices 275

 • Authorization (authz): Prevents unauthorized access to individual or groups
of API operations based on the caller’s assigned scopes. API keys, API tokens,
and/or OAuth 2 are commonly used authorization techniques for APIs.

 • Claims: Assigns access controls at a finer-grained level than authorization
allows, ensuring that API resource instances are protected.

 • Rate limiting (throttling): Restricts API request thresholds to prevent traffic
spikes from negatively impacting API performance across consumers. Also
prevents denial-of-service attacks, either malicious or perhaps unintentional
due to developer error. Rate limits are typically based on an IP address, API
token, or a combination of factors and are limited to a specific number over a
period of time.

 • Quotas: Limits an application or device from using the API more than permit-
ted within a specific time frame. Quotas typically have a monthly limit and
may be established on the basis of the assigned subscription level or through
formal agreements between organizations.

 • Session hijack prevention: Enforces proper cross-origin resource sharing
(CORS) to allow or deny API access based on the originating client. Also pre-
vents cross-site request forgery (CSRF), which is often used to hijack author-
ized sessions.

 • Cryptography: Applies encryption in motion and at rest to prevent unau-
thorized access to data. Keep in mind that encryption requires additional
precautions to protect private keys used to encrypt data elements; otherwise,
attackers will easily decrypt the data from API responses using a compromised
private key.

 • Mutual TLS: Mutual TLS, or mTLS, is used when a guarantee of client iden-
tity is required. mTLS may be applied when communicating between services
or when HTTP-based callbacks using webhooks are used to prevent malicious
parties from attempting to forge their identity.

 • Protocol filtering and protection: Filters requests from API clients that may
be used for malicious purposes. This security measure detects invalid combi-
nations of the HTTP method and path, enforces the use of secure HTTP via
Transport Layer Security (TLS) for encrypted communications, and blocks
known malicious clients.

 • Message validation: Performs input validation to prevent submitting invalid
data or overriding protected fields. It may also prevent parser attack such as
XML entity parser exploits, SQL injection, and JavaScript injection attacks
sent via requests to gain access to unauthorized data.

Chapter 15 Protecting APIs276

 • Data scraping and botnet protection: Detects intentional data scraping via
APIs, online fraud, spam, and distributed denial-of-service (DDoS) attacks
from malicious botnets. These attacks tend to be sophisticated and require
specialized detection and remediation.

 • Review and scanning: Manual and/or automated review and testing of API
security vulnerabilities within source code (static reviews) and network traffic
patterns (real-time reviews).

Not all of these practices are included in a single solution. Instead, several
components must be considered as a necessary part of an API protection strategy.

Components of API Protection

There are several components that may be used to protect APIs. When combined,
these components form the foundation of a security strategy for APIs.

API Gateways

API gateway is both a pattern and a classification of middleware. The API gateway
pattern involves the addition of an extra network hop that the client must traverse to
access the API server.

API gateway middleware is responsible for externalizing APIs across network
boundaries. They may act as a pass-through or perform protocol transformation as
part of the process. The API gateway becomes a central gatekeeper for all traffic in
and out of the API.

API gateway middleware may be standalone products or a component within a
larger product offering, such as an API management layer. While API gateways may
be built from the ground up, some gateways are composed from building blocks such
as a reverse proxy and plug-ins to realize the features needed. API gateways rarely
address more advanced features needed to manage APIs as products. These concerns
are offered by API management layers.

API Management

API management layers, or APIMs, include an API gateway but also extend their
capabilities to include a complete API lifecycle management solution. The solution
includes publishing, monitoring, protecting, analyzing, and monetizing APIs. It may
also include community engagement features.

Components of API Protection 277

Subscription-level support involves defining the API operations to be included
or excluded at each level. It also allows for more advanced rate limiting and quota
support based on the assigned subscription level for a registered application.

APIMs may also offer extended security measures not found in most API
gateways. As a result, they may overlap with the duties of Web application firewalls
(WAFs).

Service Meshes

Service meshes shift the needs of network reliability, observability, security,
routing, and error handling away from each process to separate out-of-process
infrastructure. This new infrastructure is portable and independent of any specific
programming languages and frameworks selected by each process, making it
portable. Service meshes have grown in popularity due to the introduction of
microservices but may be used for any architecture or combination of architectural
styles.

Service meshes replace the direct communication of processes with a series
of proxies that direct the communication and error handling on behalf of the
process. A proxy is deployed alongside each running process to eliminate any
central point of failure. Deployment is often to a single virtual machine (VM)
or alongside each container as a sidecar. A centralized management control
plane is used to configure the proxies, communicate outages, and oversee the
network health. The controller, however, does not involve itself with network
data communications.

The components of a service mesh are shown in Figure 15.1.
Service meshes may be seen as a competitor to API gateways and APIMs. How-

ever, this is not the case. While service meshes manage on OSI layer 4 (TCP/IP) and
OSI layer 7 (HTTP), they are often paired with an API gateway or APIM. This offers
the best of both worlds by providing resilient, observable network communications
using a service mesh, with API product and lifecycle management offered by an
APIM or API gateway.

Service meshes introduce additional network hops and therefore may have a nega-
tive impact on network performance. However, the capabilities offered by a service
mesh may offset the negative impact and may produce a net gain when factoring in
the many separate network management elements that have to be coordinated when
a service mesh is not present.

Finally, bear in mind that smaller organizations may not see the need for the
added complexity of a service mesh. However, larger organizations managing many
developer teams producing a multitude of services across one or more cloud environ-
ments may benefit from the use of a service mesh.

Chapter 15 Protecting APIs278

Service Mesh Control Plane

Service Proxy

Service

Service Proxy

Service Proxy

Service

Service Proxy

Service Proxy

Service

Service Proxy

Proxy Proxy Proxy

Figure 15.1 The components of a service mesh, including the proxy instances, each
connected to a central control plane for oversight and configuration.

Web Application Firewalls

WAFs protect APIs from network threats, including common scripting and injection
attacks. Unlike API gateways, they monitor OSI layer 3 and layer 4 network activity,
allowing for deeper packet inspection than what is possible with API gateways that
focus on the HTTP protocol only. As such, they can detect more attack vectors and
prevent common ones before request traffic reaches backend API servers.

WAFs offer an additional layer of protection against DDoS attacks that may be
sourced from a variety of locations and IP addresses.

It is important to note that while the capabilities offered by WAFs are important,
they are sometimes merged into APIMs, content delivery networks, and other layers
that may eliminate the need to install an explicit WAF.

Content Delivery Networks

Content delivery networks (CDNs) distribute cacheable content to servers spread
across the world, reducing load on API servers. They improve application
performance by responding with cached data to API clients more quickly than
waiting for API servers to handle the request.

Some CDN vendors are taking on many of the aspects of a WAF by acting as
a reverse proxy for dynamic content alongside caching static content. This reduces
unwanted traffic on APIs and Web applications. Some CDNs also offer an additional
layer of protection against DDoS attacks before they ever reach cloud infrastructure.

API Gateway Topologies 279

Intelligent API Protection

Even with one or more of these components in place, API providers are still vulnerable
to automated attack vectors, sometimes referred to as botnet attacks. These attacks are
often coordinated across multiple hosts and even multiple IP ranges, resulting in
attacks that may go undetected. Botnet attacks are difficult to detect because most
components evaluate an incoming request in isolation. They aren’t designed to evalu-
ate incoming traffic across multiple clients spread across the Internet.

Data scraping is also a risk for APIs that surface an entire catalog of data at once.
API quotas and rate limits might be large enough to support an attacker scraping
all data at once, even if the related API operations are protected by an API gateway,
APIM, and WAF.

Therefore, it is becoming more essential to have advanced detection techniques in
place to analyze API traffic across multiple originating IP addresses. This capability is
delivered through more advanced versions of the components described previously or by
dedicated components that monitor and assess traffic for more complex attack vectors.
This protection goes beyond traditional WAFs by extending beyond single IP address
rules to a more comprehensive traffic assessment that includes multiple IP addresses.

API Gateway Topologies

Every organization will require a specific API topology that includes one or more
API gateway or APIM instances. The topology should seek to make the API platform
or product easily managed and flexible to handle the various functional and
nonfunctional requirements demanded by the marketplace, regulatory requirements,
and business goals.

This section outlines some considerations and common topologies from the field.
Keep in mind that not all organizations may fit one of these specific scenarios. When
a deviation is identified, seek to verify that the business and operational aspects of
the intended scenario merit the need for an uncommon approach.

API Management Hosting Options

There are three primary options for hosting an API gateway or APIM layer: hosted,
on-premises, and hybrid. Each one offers advantages and disadvantages to the
organization.

Hosted APIMs are offered as a software-as-a-service (SaaS)–based solution by
vendors. Some vendors may offer a hosted solution up to a maximum number of
requests per second before they recommend self-hosting. Other vendors may support

Chapter 15 Protecting APIs280

a large number of API requests, with a variety of subscription levels and service-level
agreements (SLAs) offered to customize the solution. Hosting an APIM is a great
option for smaller organizations or for organizations beginning to embark on the
API journey. However, they may become costly and are often moved on-premises as
the API program matures. Figure 15.2 illustrates the hosted APIM option.

On-premises APIMs are installed in a data center or cloud infrastructure. They
place more burden on the operations teams to ensure proper reliability and availabil-
ity than hosted APIMs but also offer more customization options. In addition, on-
premises installations allow organizations to install multiple instances of the gateway
to isolate APIs involved in regulatory audits or to isolate the impact of API usage
across partners and customers. They are also useful when API gateways are desired
to manage internal-facing APIs that are not externalized to the public Internet.
Figure 15.3 illustrates the on-premises APIM option.

The third type of APIM management option is hybrid. Hybrid installations use a
hosted dashboard and reporting infrastructure offered by the vendor while support-
ing API gateway instances to be deployed using an on-premises model. This is the
option that is seen least in the field. The primary advantage is to reduce the burden
of supporting the various processes involved in analysis and reporting systems, par-
ticularly if the organization lacks in-house expertise for some of the related compo-
nents or database vendors. Figure 15.4 illustrates the hybrid APIM model.

Keep in mind that some cloud infrastructure providers offer their own API gate-
way or APIMs. While this may be useful in the short term, some organizations
may find the customization effort required to be too great. Organizations that are
required to take a multicloud approach may opt to select a third-party APIM vendor
rather than try to support multiple cloud-provided API gateways. Whatever the case,
select the best fit for the current stage of the API program, reevaluating to ensure the
best option continues to be in use.

Your API

Reporting

A
P

I P
ro

xy

API Management
Platform

Infrastructure

https://api.example.com

Your
Infrastructure

Figure 15.2 The hosted API management option.

https://api.example.com

API Gateway Topologies 281

https://api.example.com
Your API

Reporting

A
P

I P
ro

xy

Your
Infrastructure

Figure 15.3 The on-premises API management option.

Your API

Reporting

A
P

I P
ro

xy

API Management
Platform

Infrastructure

https://api.example.com

Your
Infrastructure

Figure 15.4 The hybrid API management option.

Multicloud API Management Retail Case Study

Multicloud strategies aren’t new. In fact, anyone delivering solutions in the
retail space may have encountered challenges when using a competitor’s
cloud. One example is Walmart, who prefers that hosted SaaS offerings not
use AWS. The initial assumption to this demand may be concerns about plac-
ing data on a competitor’s cloud. However, the real reason is simpler than
that: Walmart doesn’t want operational revenue to go toward its competitor.
As such, those using AWS for their primary cloud provider may be required
by retail companies to use another cloud provider, such as Azure.

https://api.example.com
https://api.example.com

Chapter 15 Protecting APIs282

This preference had a considerable impact on the organization’s choice for
API management deployment. It also forced the organization to consider an
independent APIM vendor to avoid supporting two separate API gateways,
one for each cloud vendor.

Be sure to factor such considerations into an API management strategy
architecture to avoid vendor lock-in and losing potentially lucrative business.

API Network Traffic Considerations

It is important to include network communication considerations as part of
establishing an API security strategy. The traffic entering an existing data center
requires different treatment than traffic moving within the data center. This
difference has an impact on how organizations manage their API network traffic.

To better understand the decisions involved in API network traffic protection, it is
important to review network topology concepts. When in doubt, consult a network
engineer to establish a secure and efficient network topology for an on-premises or
cloud-based infrastructure.

North–south traffic describes the flow of data in and out of the data center.
Northbound traffic is data exiting the data center. Southbound traffic is data entering
the data center. East–west traffic denotes the flow of data within a data center.

In the case of request/response API styles, all API requests from applications
outside the data center are considered southbound traffic, and API responses
are northbound. The traffic between an API and a database, or service-to-service
communications, is east–west traffic.

Note that with the introduction of zero trust architecture (ZTA), the differen-
tiation between north–south and east–west traffic is decreasing. In ZTA, all pub-
lic traffic, corporate network traffic, and virtual private network (VPN) traffic is
viewed with no initial trust factors. Instead, all devices and services are required to
establish their trust through per-request access decisions. This places even greater
emphasis on establishing well-architected access policies that incorporate identity
and access management, authentication, and authorization services combined
with a comprehensive access control policy for every API, service, and application.
More details on ZTA may be found in the NIST special publication on Zero Trust
Architecture.1

1. Scott Rose, Oliver Borchert, Stu Mitchell, and Sean Connelly, Zero Trust Architecture (National Insti-
tute of Standards and Technology (NIST) Special Publication 800-207, August 2020), https://nvlpubs.
nist.gov/nistpubs/SpecialPublications/NIST.SP.800-207.pdf.

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-207.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-207.pdf

API Gateway Topologies 283

Mobile App API Gateway

Partner
Integration

Web App

API Server
Cluster

Figure 15.5 API topology 1 showing an API gateway routing to a monolith.

Topology 1: API Gateway Direct to API Server

The most common topology for standalone API products is the direct routing of
incoming requests through the API gateway to the API backend. The API backend is
often a cluster composed of a load balancer and multiple API server instances. In this
scenario, there is no need for a service mesh. Figure 15.5 demonstrates this tradi-
tional approach to API management.

Topology 2: API Gateway Routing to Services

Another option is to compose an API of multiple backend services. The API gateway
uses the path of the request to determine which service is responsible for handling
the request. Services may be managed behind a load balancer or may be part of a
service mesh, allowing the API gateway to leverage the service mesh to communicate
with an available instance. Figure 15.6 demonstrates how an API gateway is used to
route incoming requests to multiple backend services.

Topology 3: Multiple API Gateway Instances

For organizations that have regulatory requirements with frequent audits, or for
those that must handle a variety of customer, partner, and Web/mobile app deploy-
ments, multiple API gateway instances may be required. Each gateway instance
may route to a single monolith, as demonstrated in topology 1, or to multiple
backend services, as shown in topology 2. Alternatively, API gateway instances

Chapter 15 Protecting APIs284

Mobile App

Partner
Integration

Web App

Create Order
Service

/carts

/orders

/orders/{orderId}/payments

Payment Service

Shopping Cart
Service

API Gateway

Figure 15.6 API topology 2 showing an API gateway routing to multiple backend services
based on the base path of the incoming API request.

may be dedicated to one or several tenants of a multitenant SaaS. Issues with avail-
ability of one gateway instance should not negatively impact the other gateway
instances, limiting the impact during peak usage scenarios. This topology is shown
in Figure 15.7.

Identity and Access Management

So far, the assumption has been that there is an API client, an API server, and now an
API gateway and perhaps other middleware that helps to prevent malicious attack
vectors. There is one more important ingredient to protecting an API product or
platform: identity and access management (IAM). IAM provides authentication and
authorization services, often through the integration with other vendors using
industry standards. It also includes the generation of API tokens that take the place
of passwords when representing a user and the user’s assigned access controls. IAM
is the glue that ties together all other API protection components.

Identity and Access Management 285

/carts

/orders

Web App

Mobile App

Public
API Gateway

Shopping Cart
Service

Create Order
Service

Payment Service
Mobile App

Web App

PCI-Compliant
API Gateway

/orders/{orderId}/payments

Supplier
Integration

Partner API
Gateway

/inventory-fulfillment/orders

Inventory Reorder
Service

Figure 15.7 API topology 3 showing multiple API gateway instances that support various
internal and external API clients, including the isolation of payment processing for PCI
compliance and auditing.

Passwords and API Keys

Some APIs choose to allow API clients to provide their username and password
credentials that are used to log in to the Web or mobile application. While this is an
easy way to get started, it is highly discouraged for several reasons:

 • Passwords are fragile because they change often, which would render any code
unable to use the API until it is updated with the new password.

 • Delegating access to some or all data to third parties requires sharing the
password with them.

 • The use of username and password does not support multifactor authentication.

Chapter 15 Protecting APIs286

To avoid these challenges, the use of API keys or API tokens is preferred for
most situations. These two concepts are often used interchangeably but are quite
different.

API keys are simple replacements for a password and have no expiration date.
They are often found in a user profile page or in the settings page for a Web applica-
tion. An API key may be a long alphanumeric value (e.g., l5v z a8 u a8 9 6 max h m). Because
API keys have no expiration date assigned, anyone who obtains the key maliciously
may be able to use the API to access data and backend systems for an indefinite
period of time. Resetting an API key usually requires a manual step within the same
user profile or settings page, assuming that the API provider offers API key reset
capabilities at all.

API Tokens

API tokens are a robust alternative to API keys. They represent a session where a user
is authorized to interact with an API. While they may be alphanumeric and look
similar to an API key, they are not the same. An API token may represent a user or a
third party who has been given limited or full access to the API on the user’s behalf.
API tokens also have an associated expiration time.

An API token’s expiration time may vary from a few seconds to a few days
depending on various configuration elements. With an API token also comes a refresh
token, which allows the API client to request a new API token when the previous one
has expired or is no longer valid.

An API token may have one or more access controls associated with it. These
controls are often referred to as scopes. Multiple API tokens may be generated
on behalf of a user, including one with an assigned scope for read-only access of
a specific API resource, another with assigned scopes for read/write access to all
resources, and yet another that offers a single scope assignment for limited API
resource access by a delegated third-party application. API tokens are illustrated
in Figure 15.8.

APIs often use a variety of methods for passing an API token to the server, includ-
ing as a query argument on the URL, as a POS T parameter, and through an HTTP
header. Avoid using query arguments in the URL, as the API token will be logged by
Web servers and reverse proxy servers, and JavaScript code may also be allowed to
access the API token easily. POS T parameters tend to be more secure, but the location
of the token will vary across APIs.

Therefore, it is recommended to use the standardized HTTP Au th oriz ation
header. Access to HTTP headers can be limited through the use of CORS response
headers, and headers are less likely to be logged by intermediary servers.

Identity and Access Management 287

Mobile App

Mobile App

Web App

API
Server

Token Expired? No
Required scopes supplied? Yes

Token Expired? No
Required scopes supplied? No

Token Expired? Yes
Required scopes supplied? Yes

API Gateway

X

X

Figure 15.8 Three separate API tokens, only one of which is valid and allowed to pass to
the API server by the API gateway.

Pass-by-Reference versus Pass-by-Value API Tokens

Pass-by-reference API tokens do not contain any content or state, only a unique
identifier for dereferencing on the server side. For example:

GET h ttps://api.ex ample.com/projects HTTP/1.1

Accept: application/json

Au th oriz ation: B earer a7 17 d415b 4f 1

It is the responsibility of the API server to dereference the API token to determine
the specific user making the API call, along with any other details.

Pass-by-value API tokens contain name/value pairs included within the token.
This reduces the number of lookups required to dereference a token to its associated
values by the API server.

API tokens that use pass by value typically allow the API client to access the same
name/value pairs that are available to the API server. Therefore, pass-by-value API tokens
should embed feature flags or other sensitive data that could be used to compromise a
system. Instead, use them to convey minimal details, such as opaque identifiers.

https://api.example.com/projects

Chapter 15 Protecting APIs288

A popular pass-by-value API token standard is the JSON Web Tokens (JWTs),
typically pronounced “jot.” JWTs are composed of three elements: a header, pay-
load, and signature. Each element is Base64 encoded and dot-separated to compose
an opaque token that may be used as an Authorization bearer token between client
and API. JWTs are signed to ensure they haven’t been tampered with by the client
before being sent to the server. Using a private key signature provides further protec-
tion against tampering and verifies the identity of the client. The JWT.io2 Web site is
an excellent resource for learning more about JWTs.

JWTs tend to be more popular for communicating authorization details for east–
west traffic, while pass-by-reference API tokens are used for north–south traffic.

OAuth 2.0 and OpenID Connect

The workflow to authenticate a user, generate an API token, and support delegated
access to third-party applications requires a complex workflow between the data
owner, the API server, an authorization server, and the third party. OAuth 2.0 is an
industry-standard framework designed to prevent every API server from
implementing a different form of this workflow. It offers specific authorization flows
for Web applications, desktop applications, mobile phones, and devices. These flows
support multiple grant types, integrated or third-party authorization servers, a
variety of token formats, authorization scopes, and support for extensions.

This complex workflow is commonly seen with Web sites that support logging
in with a Google, Twitter, Facebook, or other kind of supported account. While the
Web site itself isn’t owned or managed by any of these vendors, they do provide the
login screen for authenticating with a user account on their system. The Web site
implements a specific flow to send the user to the login page of the chosen vendor
(e.g., Google). Once the login is successful, the Web site user is returned to the Web
site and is now authenticated. Behind the scenes, the Web site and the authentication
provider exchange sufficient details to verify that the user is who they claim to be.
The core components of an OAuth 2.0 interaction are shown in Figure 15.9.

OAuth 2.0 is a complex framework but one that can be understood given sufficient
time and effort. As with other API security topics, it merits a dedicated book. For
now, more information on OAuth 2.0, including links to resources, can be obtained
by visiting Aaron Parecki’s excellent OAuth Community3 Web site.

As mentioned earlier, OAuth 2.0 is focused on the authorization workflow.
 OpenID Connect is an identity layer on top of the OAuth 2.0 protocol that offers a
standard way of verifying and obtaining identity details. It allows Web and mobile

2. https://jwt.io

3. https://oauth.net/2

http://JWT.io
https://jwt.io
https://oauth.net/2

Considerations before Building an In-House API Gateway 289

Web AppUser API
Gateway

Third-Party
IAM Server

Resource Owner Resource ServerClient

Authorization Server

API
Server

Figure 15.9 The core components and basic interaction of OAuth 2.0.

clients to verify the identity of the end user as well as to obtain basic profile informa-
tion using a REST-like API. Without this protocol, custom integration is required to
bridge identity and profile details between the authorization server and the API. The
specification details, along with an updated list of OpenID Connect–compliant serv-
ers, is available on the OpenID Connect4 Web site.

Enterprises that require federated identity management across multiple internal
and third-party vendors lean heavily on single sign-on (SSO) for their Web applica-
tions. Security Assertion Markup Language (SAML) is a standard used to bridge
APIs into an existing SSO solution within the enterprise, making the transition bet-
ter for enterprise users accessing an API through an application. More details are
available on the OASIS SAML5 Web site.

Considerations before Building an In-House
API Gateway

Teams often consider building their own API gateway or using a helper library to
implement their own authentication and authorization support. While some
organizations had to take this on early in their API journey, there is no longer a need
to build an API gateway in-house. In fact, building a custom API gateway is highly
discouraged for three reasons.

4. https://openid.net/connect

5. https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security

https://openid.net/connect
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security

Chapter 15 Protecting APIs290

Reason 1: API Security Is a Moving Target

Want to make it easier for an attacker to find and exploit a security hole in an API?
Build a custom API gateway. Ask any company that has experienced a breach through
its API—security is hard, even with the right components in place.

Applying proper security requires focused attention to detail at every aspect of
the organization. Unless the organization has a staff of security experts on hand,
building an in-house, secure API gateway will take much longer than it takes to build
a proof-of-concept version. And it will require continued resources to keep it up to
date with the latest vulnerabilities.

Reason 2: It Will Take Longer than Expected

Building a custom API gateway often starts as a romantic notion. Rationalization
begins with “It shouldn’t take too long” and continues with “It will do exactly what I
need it to do—no more—and it will be much faster as a result,” only to end with the
dreaded rhetorical question, “How hard could it be?”

The reality is that building and maintaining a production-worthy API gateway
isn’t trivial. There is a reason why API gateway and APIM vendors are able to charge
for their product. Beyond the baseline set of features, deviations by nonstandard
clients and proxy servers will force all sorts of troubleshooting throughout the life
of the API gateway. In addition, implementing OAuth 2.0, OpenID Connect, SAML,
and other specifications is complex and takes considerable time to build, test, and
support.

It is important to first ask if the time spent building a custom API gateway is
time well spent by the organization. Count the full cost of building and maintaining
the API gateway, including patches and improvements to handle new and emerging
attack vectors that are not currently handled. Many organizations have gone down
this path only to never deliver their intended solution to market.

Reason 3: Expected Performance Takes Time

In software, there are three recommended phases of development: make it work,
make it right, and make it fast. Often, developers are good at the first step—make it
work. They experiment with code to see if something is possible or perhaps to see
what the result might look like before proceeding.

The effort required to go from making it work to making it right for production
is vast. The edge cases are numerous and unforeseen. It takes time to make it right.
To make it fast requires even more investment. Is the organization ready to dedicate
staff on building a solution that already exists?

Summary 291

What about Helper Libraries?

Perhaps a team is considering that the features of an API gateway could be included
right inside the source code. Maybe an existing helper library offers API token
generation and some basic security features. That might work for today. However,
will it be sustainable in the long term?

In addition, many developers assume that the library was written by security
experts, designed to address the needs of the organization, and will be maintained in
the future against all forms of exploits, bugs, and language/framework major version
releases. Unless it is a library offered by a commercial company, at least one of these
assumptions will be wrong. Is that a risk the organization is willing to take?

Leverage third-party IAM solutions that offer authentication and authorization
services whenever possible. Avoid implementing a custom authentication and
authorization solution, as it will expose the API to malicious attacks that take
advantage of weak or abandoned code.

Summary

API design requires considering how an API will be protected from malicious
attackers. Unprotected APIs are an open door that welcome attackers to damage an
organization and its customers. An API protection strategy involves the
implementation of the right components, selection of an API gateway solution, and
integrating an identity and access management to tie it all together.

Don’t leave API protection to someone’s side project or to a well-intentioned
team within the organization. Select the right approach with vendor-supported
components that ensure that the front door of the organization’s APIs is barred shut
rather than left unlocked.

This page intentionally left blank

293

Chapter 16

Continuing the API
Design Journey

When done effectively, governance can provide clear direction, remove obstacles,
and allow different parts of the organization to function independently.

— Matt McLarty

An organization that produces more than one API product must learn to scale its API
design process. Otherwise, designs will lack consistency across the portfolio of APIs
produced by the organization. Authentication and authorization will vary between
APIs. Naming conventions and error responses will deviate. In short, the API pro-
gram will become a mess.

This chapter explores the factors required to scale API design efforts within
an organization. These factors include establishing a style guide for consistency,
incorporating design reviews, and encouraging a culture of reuse. Once these measures
are applied, teams will be able to function independently while maintaining consistency
across the API portfolio. Finally, the chapter takes a look back at the topics covered in
this book and offers some guidance on how to continue the API design journey.

Establishing an API Style Guide

Many API programs begin as a single API or a few small APIs. Over time, more APIs
emerge across the company. Consistency for all API consumers is an important
component of a great developer experience. A common design approach makes
integration more intuitive and can reduce troubleshooting and support costs.

Great style guides go beyond basic design decisions to include common error
strategies, applying patterns consistently across APIs, and even suggest common
architecture styles for teams looking to get started quickly.

Chapter 16 Continuing the API Design Journey 294

An API style guide commonly includes the following topics:

 • Introduction: The scope of the style guide, who to contact for questions,
clarifications, or enhancements

 • API fundamentals: Used to educate and coach those less familiar with the
basics; may consist of links to internal or external training materials

 • Standards: Naming conventions, guidance for selecting HTTP methods and
response codes, organizing resource paths, resource lifecycle design, payload
and content formats, when and how to use hypermedia

 • Design patterns: Common patterns encountered, including pagination, error
responses, bulk processing, singleton resources

 • Lifecycle management: Recommendations for moving an API into production,
along with deprecation and sunset procedures

 • Tools and technologies: List of tools that are recommended, including those
with site licenses already available

 • Operational recommendations: Recommended API management tools, con-
figurations, processes, marketing recommendations, and common practices
for highly available, robust, and resilient APIs

 • Further reading: Additional resources that may be interesting to the reader,
including both internal and publicly available papers, articles, and videos

Too often, style guides are used to push an agenda. Full compliance, or else. That
isn’t what style guides should be about. Their goal should be to advise teams designing
APIs toward a more consistent API with other APIs across the organization. A newly
hired developer should be able to work with a variety of APIs across the organization
without realizing that different teams designed them.

Methods for Encouraging Style Guide Adherence

Style guides, without some kind of incentive to adhere to the recommendations, will
be ignored. There are three common methods to enforcing style guide compliance:

1. Incentivized: A centralized team oversees and enforces the guide. Reviews
are conducted by the centralized team for any new API prior to production
deployment. API teams are incentivized to adhere to the style guide to gain

Establishing an API Style Guide 295

access to shared services and support (e.g., API management layer, opera-
tional and infrastructure support) rather than being forced to implement it
themselves.

2. Federated: A centralized team oversees and maintains the style guide, but
coaches, embedded locally within the business unit and/or region, are available
to address their specific needs. This method avoids the ivory tower problem of
a committee designing standards without understanding the needs of specific
business units.

3. Clone and customize: A single group manages the style guide. Teams clone
the standards as a starting point, making minor enhancements locally for
business unit consistency. For organizations that have many independent teams
within and/or across business units, this is the most effective method.

These methods may be used independently or in combination to achieve the
desired results that best meet the needs of the organization.

Selecting Style Guide Tone

Some style guides are informal, and others are very formal, including the use of
RFC 21191 for requirement levels. Deciding upon a tone and formality for the style
guide depends upon the answers to three questions:

 • Will the organization be enforcing the standard? If so, then use RFC 2119 rec-
ommendations to enforce what MUST, SHOULD, and MAY be implemented.

 • Will enforcement be deferred to a future date? Then go ahead and start using
RFC 2119, but keep the wording to lowercase (e.g., must, should, may) until it
is enforced. This demonstrates expectations and likely future enforcement but
with less of a formality during the initial introductory period.

 • Is the guide shared across business units, limiting the organization’s ability to
control or strictly enforce the guidelines? Then soften the tone and focus on
design consistency by encouraging teams to adopt as many of the guidelines as
possible rather than using a more formal tone.

1. S. Bradner, “Key Words for Use in RFCs to Indicate Requirement Levels,” March 1997, https://
datatracker.ietf.org/doc/html/rfc2119.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Chapter 16 Continuing the API Design Journey 296

Tips for Getting Started with an API Style Guide

 • Browse Arnaud Lauret’s (aka the API Handyman) API Stylebook.2 API Style-
book aims to help API designers to solve API design matters and build their
API design guidelines. Browse other publicly available style guides as well for
insights.

 • Start small. The scope of an API style guide may be too much for one indi-
vidual or a small team to take on initially. Start simple and expand over time.

 • Socialize the style guide. Just because the style guide exists doesn’t mean peo-
ple in the organization know about it. Spend time evangelizing the style guide
with teams. Gain their insights from early release candidates before releasing
an official version.

Remember

The goal of an API style guide is to advise teams designing APIs toward
consistency with other APIs across the organization.

Supporting Multiple API Styles

While most organizations may suggest or mandate a single API style, this won’t
always be the case. As new API styles emerge, API portfolios become challenged with
the push for new ways of interacting with the enterprise. Remember, it was only a
decade ago that most organizations stopped developing SOAP-based Web services.
API programs must consider how new API styles will be evaluated, approved, and
supported as they gain popularity.

API programs must consider async APIs, such as Webhooks, WebSockets,
Server-Sent Events (SSE), data streaming, and internal messaging as part of the API
portfolio. Like the design of synchronous APIs, the design of async APIs must be
governed and managed as part of the overall API portfolio.

The API style guide must address each of these API styles as they are introduced
into the organization. While it is possible to share elements of the style guide between
different API styles, it is highly recommended to write a style guide for each API style
at the start.

Over time, common recommendations such as naming conventions and reserved
words may be shared between API style guides. However, most organizations find

2. API Stylebook: Collections of Resources for API Designers, maintained by Arnaud Lauret, accessed
August 24, 2021, http://apistylebook.com.

http://apistylebook.com

Conducting API Design Reviews 297

that there is significant deviation in standards and common practices across API
styles. Remember that it is better to follow common practices for each API style than
to try to unify all API styles into a single set of recommendations.

Finally, keep in mind that there is a cost to supporting each API style. Take time
to understand the needs for the new API style. Then determine if the needs outweigh
the cost required to build and support yet another API style guide.

Conducting API Design Reviews

API design reviews seek to improve the design of APIs through constructive review
and feedback. Implementing a healthy API design review process helps to capture
insights, patterns, and lessons learned into a repeatable process, guiding organizations
toward a more consistent design and a better developer experience.

API design reviews offer an organization a chance to

 • Share knowledge of upcoming APIs.

 • Incorporate design feedback before coding begins.

 • Become an advocate for the many developers who will use the API once it is
released.

 • Offer a more consistent developer experience through consistently designed
APIs.

 • Catch missing or incorrect assumptions before code changes become more
expensive or time is limited.

Following are some tips and insights on conducting healthy API design reviews.

A Word of Caution about Design Reviews

Design reviews can go two ways: constructive or destructive. A constructive
design review provides an opportunity to coach those newer to API design
and build up and edify the entire organization. Destructive design reviews are
the opposite, typically sowing the seeds of frustration and mistrust. Worst
case, design reviews will be a cause for team attrition as caustic team mem-
bers invade an otherwise healthy and useful process.

Therefore, use caution when conducting an API design review. Seek to
ask questions first. Too often, biases and assumptions are incorporated into

Chapter 16 Continuing the API Design Journey 298

design reviews. Instead, seek to first understand by asking questions and
listening. Don’t claim to know everything about API design—everyone can
benefit from learning something new. Never accuse someone of deliberately
designing a poor API—no one sets out to do so. Assume good intentions,
 listen carefully, seek to understand, then provide some recommended next
steps for design improvement.

Remember: Everyone starts out as a newbie API design reviewer. Model the
proper reviewer behavior that encourages improvement in a constructive way.

Start with a Documentation Review

API design reviews are not code reviews. API design reviewers are acting as an
advocate for the developers who will consume the API. Therefore, it is important to
start with the API documentation.

APIs exist for a variety of reasons, including data access, customer automation,
system-to-system integration, marketplace creation, and workforce automation.
An API’s introduction should be clear about why the API exists and how it might
collaborate with other APIs to accomplish more complex workflows or outcomes.

Use the following as a review checklist for all areas of documentation:

 • API name: The name should be descriptive and make it easy to determine the
scope of the API when first discovered.

 • API description: The description should be comprehensive, starting with an
overview of the API and including a list of use cases it solves.

 • API operations: Each operation should offer a summary of what task, activity,
or outcome it produces along with a description that includes detailed usage
instructions. Ensure all input and output values are captured and properly
described, including expected formats that could cause errors if violated.

 • Example usage: Examples of API usage are often the most important, yet
missing, element of an API’s documentation. These examples do not need to
be in a specific programming language (although that helps when trying to
offer an API to a broad audience). Simple HTTP request/response examples,
perhaps complemented with Postman collections, will go a long way toward
accelerating developer understanding and completing the integration effort.

 • Avoid internal references: Great documentation assumes that readers have no
idea about any of the internal systems or implementation choices behind the
scenes. They just want to get something done and they want to find out if the
API will help them achieve their goals.

Conducting API Design Reviews 299

Check for Standards and Design Consistency

One of the common challenges for many mid- to large-sized organizations is API
design consistency. It is easy to spot APIs that were independently designed by teams
without any cross-organization consistency applied. Commonly, lack of consistency
is associated with organizations that lack a design review process. Even with a review
process in place, inconsistencies may creep in from time to time.

Part of the API design review should be to verify that the standards and design
choices match any established style guides and standards. This task may be
performed by a combination of a manual review and the use of an API linter such as
Spectral.

Finally, look for opportunities to apply common design patterns consistently.
Examples include create-read-update-delete (CRUD), consistent use of pagination
techniques, multipart MIME for file uploads, and so on. While these common
patterns may be captured as part of the style guide, identifying deviations and
discussing them with the team will help to provide consistency whenever possible
and making exceptions when appropriate.

Review Automated Test Coverage

While an API design review does focus on the design, reviewing test coverage is
important as well. Including test coverage review ensures that the testing strategies
for the API have been considered as part of the design. It also helps to ensure that the
API’s operations can be used in combination to produce the desired outcomes
identified during the align phase.

If the review is conducted early in the process, there may not be any specific
code or test coverage in place. In this case, review test plans to surface missing or
incorrect design assumptions. A good starting place is to review job stories, API
profiles produced during modeling, and other artifacts. This will help surface any
missing test plans and ensure the test coverage will be sufficient to verify operational
functionality along with acceptance tests that will verify intended outcomes.

Add Try It Out Support

Nothing provides a better review of an API design than interacting with it. If code
already exists for the API, go ahead and try out the API. This will help to exercise the
documentation, the API design, and the implementation.

If the team took a design-first approach, little or no code exists yet. Mocking tools
help to address this issue. Mocking tools are a great way to fill the gap and catch bad
design decisions or missing endpoints sooner rather than later in the delivery process.
These tools often accept a definition in OpenAPI Specification, API Blueprint, and

Chapter 16 Continuing the API Design Journey 300

other description formats to produce a mock version of the API design. While the
mock API won’t be fully formed, it will provide a basic understanding of how the
API will be used once completed and catch suboptimal design decisions early.

Developing a Culture of Reuse

API consumers are an essential ingredient of any program. However, many
organizations focus on strategy, objectives, and governance to create APIs without
addressing the need to make adoption of APIs easy through discovery.

For most organizations, API documentation is an afterthought. This is
unfortunate, as it leads to serious consequences for API discovery and adoption,
resulting in reduced reuse of valuable APIs. Organizations implementing effective
API discovery subscribe to the following mantra: Discover digital capabilities when
possible; build them when necessary.

API documentation is the first encounter most developers will have with an API,
so providing great documentation is essential to helping them understand what the
API offers, how to use it, and what to do when they are ready to start integrating.
This topic is addressed in detail in Chapter 13, “Documenting the API.”

Developers who are new to an API platform do not have an easy journey. In fact,
development teams go through several phases as they evaluate and integrate the API,
as shown in Figure 16.1.

To ensure developers can quickly get started with using the API, define a clear
onboarding process. Set the expectations for the path from discovery to mapping
and integrating their solution to the API. Don’t stop with winning developers

Consumption Goal

Onboarding Register for portal and API access

Discovery Identify API capabilities

Mapping Map solution to platform API capabilitics using reference documentation

Exploration Prototype consumption (“try-it-out”)

Integration Consume via code

Certification Obtain approval for production API access

Usage monitoring Production access monitoring and throttling for compliance

Platform improvement Request platform API enhancements to meet the needs of the solution

Platform updates Update notifications for new API endpoints, enhancements, case studies

Figure 16.1 The API consumption lifecycle, showing the phases that a development team
experiences when they find a new API.

The Journey Has Only Begun 301

with an API—stay in contact with them through newsletters or distribution lists.
Announce new and upcoming improvements, success stories, and common use
cases through consistent developer communication. Highlight the teams that are
responsible for building and supporting APIs to demonstrate their commitment to
meeting developers’ needs.

The Journey Has Only Begun

The focus of this book has been on principles of Web API design that produce a
repeatable, collaborative API design process that helps to deliver value using an
outcome-based focus. These principles are as follows:

 • Principle 1: APIs should never be designed in isolation. Collaborative API
design is essential for a great API. (Chapter 2)

 • Principle 2: API design starts with an outcome-based focus. A focus on the
outcome ensures the API delivers value to everyone. (Chapters 3–6)

 • Principle 3: Select the API design elements that match the need. Trying
to find the perfect API style is a fruitless endeavor. Instead, seek to under-
stand and apply the API elements appropriate for the need, whether that is
REST, GraphQL, gRPC, or an emerging style just entering the industry.
(Chapters 7–12)

 • Principle 4: API documentation is the most important user interface for devel-
opers. Therefore, API documentation should be first class and not left as a last-
minute task. (Chapter 13)

 • Principle 5: APIs are forever, so plan accordingly. Thoughtful API design com-
bined with an evolutionary design approach makes APIs resilient to change.
(Chapter 14)

The principles are the foundation for a four-phase process: Align-Define-Design-
Refine (ADDR). The ADDR process focuses on aligning stakeholders, defining the
digital capabilities required, designing the API to produce the outcomes, and then
refining the design based on feedback.

The process recognizes that an API should never be designed in isolation. It
requires the collaboration of a variety of roles, including subject matter experts.
When those involved in API design are aligned on the outcomes first, the API
remains focused on the value delivered. Along the way, stakeholders are aligned in
their understanding using collaborative techniques such as EventStorming and API

Chapter 16 Continuing the API Design Journey 302

modeling prior to designing the API. The API is then designed and refined through
feedback with those who will integrate the API into their solution.

While some may think that the journey has been completed, this is only the
beginning. The API design will now be delivered and managed. It will meet real-
world usage, perhaps even encountering new use cases never considered. The
ADDR process will be used once again as the API grows and matures. For larger
organizations, this API design lifecycle will be repeated for many new APIs, requiring
the ADDR process to be scaled for use by multiple teams. The journey has only
begun.

303

Appendix

HTTP Primer

To better understand how Web APIs work, it is important to start with an under-
standing of HTTP, the language of the Web. While the HTTP protocol can be hid-
den behind various libraries and frameworks, understanding the protocol provides a
foundation for troubleshooting API integrations and improved API design.

This primer offers an introduction to the HTTP protocol, the elements that are
involved in using HTTP for interacting with Web APIs, and some advanced features
that help to shape more powerful API interactions.

Overview of HTTP

The HTTP protocol is a client/server protocol. An HTTP client sends a request to a
server. The HTTP server then determines if it can service the request with the
information given. The server then returns a response that includes a code indicating
success or failure, along with a response payload containing the information
requested or details about the error. This request/response flow is illustrated in
Figure A.1.

HTTP is comprised of several elements:

 • The Uniform Resource Locator (URL) where the request is sent

 • The HTTP method that informs the server how the client wishes to interact
with the resource

 • The request headers and body

 • The response headers and body

 • A response code that indicates whether the request was successfully processed
or an error was encountered

304 Appendix

The Uniform Resource Locator

HTTP uses a URL as a unique address where data or services are located. Requests
are sent to the URL, where the server processes the request and sends a response back
to the client. The URL is commonly seen in the location bar in a browser. Examples
include:

 • https://www.google.com

 • https://launchany.com/effective-api-programs/

 • https://deckofcardsapi.com/api/deck/new/shuffle

A URL is comprised of the following items:

 • Protocol: The protocol used to connect (e.g., http [unsecure] or https [secure]).

 • Hostname: The server to contact (e.g., api.example.com).

 • Port number: A number ranging from 0 to 65535 that identifies the process on
the server where the request is to go (e.g., 443 for https or 80 for http).

 • Path: The path to the resource being requested (e.g., /projects). The default
path is /, which indicates the homepage.

 • Query string: Contains data to be passed to the server. Starts with a ques-
tion mark and contains name= v alu e pairs, using an ampersand as a separator
between them (e.g., ? pag e= 1& per_ pag e= 10).

API Client API Server

GET /projects/12345 HTTP/1.1

Accept: application/json

HTTP/1.1 200 OK

{

"id": "12345",

"projectName": "My Project"

…

}

Figure A.1 An overview of the HTTP protocol.

https://www.google.com
https://launchany.com/effective-api-programs/
https://deckofcardsapi.com/api/deck/new/shuffle
http[unsecure]orhttps[secure]
http://api.example.com
httpsor80forhttp

305HTTP Request

Figure A.2 demonstrates the elements of a URL.

HTTP Request

An HTTP request is composed of several parts: the HTTP method, the path, the
header, and the message body.

The HTTP method informs the server what kind of interaction the client would
like to request. Common HTTP methods are GET, to request data, and POS T to submit
data. The methods commonly used for Web-based APIs are detailed later in this
appendix.

The path is the portion of the URL that references a resource on the server. The
resource may be a static file, such as an image, or a piece of code that performs
dynamic request processing.

The header tells the server about the client and specifics about the request. The
header is comprised of header fields in name:v alu e format. Common HTTP request
headers used with Web-based APIs include the following:

 • Accept: Informs the server what content types the client is able to support.
Examples may include imag e/g if and imag e/jpeg . If the client is willing to
accept any kind of response, * /* is used. This header is often used with content
negotiation, detailed later.

 • Content-Type: Informs the server the content type of the request message
body. Used when submitting data using a HTTP method that requires a mes-
sage body (e.g., POS T).

 • User-Agent: Provides a free-form string indicating the kind of HTTP client
that is making the request. This may indicate a specific browser type and version
or may be customized to indicate a specific helper library or command-line tool.

Figure A.2 The elements of a Uniform Resource Locator (URL).

h ttps://api.mycompany.ex ample:443/projects? pag e= 2

Protocol Hostname Path

Port

Query string

https://api.mycompany.ex

306 Appendix

 • Accept-Encoding: informs the server what, if any, compression support the
client is able to process. This allows the server to compress the response using
gzip or compress formats to reduce the byte size of the response.

The message body provides details to the server when data is being submitted and
may be human-readable or binary, as required by the server. For a retrieval request
using GET, the message body may be empty.

Figure A.3 shows an example of an HTTP request sent to Google to request the
homepage that contains the search form, documented line by line.

HTTP Response

Once the request is received by the server, the server processes the request and sends a
response. The response is composed of three parts: the response code, the response
header, and the response body.

The response code is a number that corresponds to a success or error code
indicating whether the request could be fulfilled. The response code sent must be
one of the those outlined in the HTTP specification and are detailed later. Only one
response code is allowed per response.

The response header tells the client specifics about the result of the request. The
header is comprised of header fields in name:v alu e format. Common HTTP response
headers used with Web-based APIs include the following:

 • Date: The date of the response.

 • Content-Location: The fully qualified URL of the response. Useful if the
request resulted in redirects that may require the client to update its URL for
the resource.

 • Content-Length: The length, in bytes, of the response message body.

 • Content-Type: Informs the client of the content type of the message body.

GET http://www.google.com/ HTTP/1.1

User-Agent: Mozilla/5.0 [en] (X11; I; Linux 2.2.3 i686)

Host: google.com

Accept: image/gif, image/x-xbitmap, image/jpeg, */*

Accept-Encoding: gzip

Accept-Language: en

Accept-Charset: iso-8859-1, *, utf-8

HTTP method + URL

The type of browser

The host being sent the request

The media types supported by the client

The client supports compressed responses

The client supports the English language

The character sets supported by the client

Figure A.3 A line-by-line examination of an HTTP request to https://www.google.com.

http://www.google.com/
https://www.google.com

307Common HTTP Methods

HTTP/1.0 200 OK

Date: Fri, 13 Nov 2020 18:52:26 GMT

Content-Location: https://www.google.com/index.html

Last-Modified: Wed, 29 Mar 2020 20:21:05 GMT

Content-Length: 7931

Content-Type: text/html

<html>...

Figure A.4 A line-by-line examination of an HTTP response to a request sent to https://www
.google.com.

 • Server: A string that provides details about the vendor and version of the
server that processed the request (e.g., ng inx /1.2.3). The server may choose
to provide little or no detail to avoid exposing details that might indicate a
 possible vulnerability exists.

The response message body provides the content back to the client. It may be an
HTML page, an image, or data in XML, JSON, or another format, as indicated by
the C ontent- Type response header.

Figure A.4 shows an HTTP response sent back from Google based on our earlier
request for the homepage.

It is important to note that the response in Figure A.4 includes only the HTML
in the response and not additional images, stylesheets, JavaScript, and so on. The
HTTP client is responsible for parsing the HTML, identifying the tags that reference
these additional assets, and sending subsequent HTTP requests for each one. For a
Web page with 20 images, 21 separate HTTP requests are required to gather all of
the files necessary to render the Web page—one request for the HTML page, along
with the 20 requests necessary to retrieve each image.

Common HTTP Methods

HTTP methods inform the server what kind of operation or interaction the client
would like to perform. Common interactions include retrieving a resource, creating a
new resource, performing a calculation, and deleting a resource.

The following HTTP methods are commonly encountered when using Web-based
APIs:

 • GET: Retrieves a resource from the server—response may be cached by the
server or an intermediary caching server

 • HEAD: Requests only the response headers but not the actual response body

Response code

The date/time of the response

The canonical URL of the requested resource

The last modified date of the resource

The length of the response (in bytes)

The media type of the response

Blank line to indicate the end of the headers

The response body

https://www.google.com/index.html
https://www.google.com
https://www.google.com

308 Appendix

 • POST: Submits data to the server, often for storage or for calculations—
response not cacheable

 • PUT: Submits data to the server, often as a replacement of existing data—
response not cacheable

 • PATCH: Submits data to the server, often as a partial update of existing data—
response not cacheable

 • DELETE: Deletes an existing resource on the server—response not cacheable

HTTP methods have additional semantics that are important for clients to take
into consideration: safety and idempotence.

A safe method indicates that the HTTP method used will not generate side
effects, such as altering data. This is common for GET and HEAD methods, as they
are intended for resource retrieval and do not alter data. APIs that implement data-
altering operations using safe HTTP methods risk generating unpredictable results,
especially when middleware servers, such as caching servers, are involved.

Idempotent methods ensure that the same side effects are produced when identical
requests are submitted. This is true for GET and HEAD retrieval methods because no
data is altered. PU T and D EL ETE are guaranteed by the HTTP specification to be
idempotent, as PU T replaces the resource with a completely new representation and
D EL ETE removes the resource from the server.

POS T is not guaranteed to be idempotent, as it may create new resources on each
subsequent request or alter data in some way that is not guaranteed to produce the
same results (e.g., incrementing a value). Likewise, PATC H is not idempotent, as only a
subset of fields, rather than the entire representation, is altered.

Figure A.5 summarizes the semantics of the common HTTP methods used for
Web-based APIs.

Method Safe Idempotent

GET Yes Yes

POS T No No

PU T No Yes

PATC H No No

D EL ETE No Yes

HEAD Yes Yes

OPTI ONS Yes Yes

Figure A.5 Common HTTP methods used with APIs, including safety and idempotency
traits that help to guide the client on how to recover from errors.

309HTTP Response Codes

HTTP Response Codes

HTTP responses include a response code that indicates to the API consumer whether
the request succeeded or failed. HTTP provides a series of response codes that the
API server can send back to the client to indicate the result.

HTTP response status codes belong to four primary response code families:

• 200 codes indicate that the request was processed successfully.

• 300 codes indicate that the client may need to take additional action(s) to
complete the request, such as follow a redirect.

• 400 codes indicate a failure in the request that the client may wish to fix and
resubmit.

• 500 codes indicate a failure on the server that is not the fault of the client. The
client may attempt a retry at a future time, if appropriate.

Table A.1 offers a list of the common response codes from the HTTP specification
that are used by REST-based APIs.

Table A.1 Common HTTP Response Codes Used in API Design

HTTP Response Code Description

200 OK The request has succeeded.

201 Created The request has been fulfilled and resulted in a new resource being
created.

202 Accepted The request has been accepted for processing, but the processing has
not been completed.

204 No Content The server has fulfilled the request but does not need to return a
body. This is common for delete operations.

304 Not Modified The server determined that the content has not changed since the
last request as determined by the client-provided I f - Modif ied-
S ince or I f - None- Match request header.

400 Bad Request The request could not be understood by the server due to malformed
syntax.

401 Unauthorized The request requires user authentication.

403 Forbidden The server understood the request but is refusing to fulfill it.

404 Not Found The server has not found anything matching the requested URL/
URI.

412 Precondition Failed The client submitted a request with a condition based on the last
modified timestamp or ETag , and the condition failed. The client
should refetch the resource and attempt the change again, if desired.

310 Appendix

Content Negotiation

Content negotiation allows clients to request one or more preferred media type(s) for
the server response. With content negotiation, a single operation may support
different resource representations, including CSV, PDF, PNG, JPG, SVG, and others.

The client requests the preferred media type using the Accept header. This example
demonstrates an API client requesting a JSON-based response:

GET h ttps://api.ex ample.com/projects HTTP/1.1

Accept: application/json

More than one supported media type may be included in the header, as shown in
this example:

GET h ttps://api.ex ample.com/projects HTTP/1.1

Accept: application/json,application/x ml

The asterisk may be used as a wildcard when selecting media types. A tex t/*
indicates that any subtype of the text media type is acceptable. Specifying a value
of * /* indicates that the client will accept any media type in the response. This is a
common scenario for browsers, which will prompt the user whether to save the file or
launch a chosen application when encountering an unknown media type. However,
for clients working with an API, it is important to be explicit to avoid runtime errors
that could occur when encountering an unknown or unsupported content type.

Requests may specify preference for specific media types supported within the Accept
header through the use of quality factors. Quality factors are expressed as a qvalue
between 0 and 1 that helps to assign a preferred order of media types. The API server
reviews the header values and return the response using the content type that matches
both what the server supports and what the client requested. If the server cannot respond
with an accepted content type, it returns a 415 Unsupported Media Type response code.

415 Unsupported Media Type The server was unable to respond with any of the client-supplied
media types supported as specified in the Accept header.

428 Precondition Required The server requires that a precondition header be supplied before
the request may be processed. Often enforced where concurrency
control headers are required.

500 Internal Server Error The server encountered an unexpected condition that prevented it
from fulfilling the request.

Table A.1 (continued)

https://api.example.com/projects
https://api.example.com/projects

311Cache Control

Here is an example of using qvalues to specify a preference for XML, with JSON
also supported if XML is unavailable:

GET h ttps://api.ex ample.com/projects HTTP/1.1

Accept: application/json; q = 0.5,application/x ml; q = 1.0

The use of qvalues allows API client code to support a specific type, perhaps XML
for improved transformation capabilities and JSON as a fallback.

Because API clients may specify more than one media type, they must pay
special attention to the C ontent- Type response header to determine which parser is
appropriate. The following is a response that provides XML based on the previous
example request:

HTTP/1.1 200 OK

D ate: Tu e, 16 J u ne 2015 06 :57 :43 GMT

C ontent- Type: application/x ml

< project> ...< /project>

Content negotiation extends the media type support of an API beyond a single
type, such as JSON or XML. It allows some or all operations of an API to respond
with the content type that best meets the needs of the API client.

Likewise, language negotiation allows APIs to support multiple languages in a
response. The approach is similar to content negotiation using the Accept- L ang u ag e
request header and C ontent- L ang u ag e response header.

Cache Control

The fastest network request is the one that doesn’t need to be made. A cache is a
local store of data to prevent re-retrieval of the data in the future, thereby optimizing
network communications. Developers familiar with the term have likely used server-
side caching tools such as Memcached to keep data in memory and reduce the need
to fetch unchanged data from a database to improve application performance.

HTTP cache control allows for cacheable responses to be stored locally by
API clients or intermediary cache servers. This moves the cache closer to the API
client and reduces or removes the need to traverse the network all to the way to
the backend API server. Users experience better performance and reduced network
dependence.

https://api.example.com/projects

312 Appendix

HTTP makes available several caching options through the C ach e- C ontrol
response header. This header declares whether the response is cacheable and, if so,
for how long it should be cached.

Here is an example response from an API operation that returns a list of projects:

HTTP/1.1 200 OK

D ate: Tu e, 22 D ecemb er 2020 06 :57 :43 GMT

C ontent- Type: application/x ml

C ach e- C ontrol: max - ag e= 240

< project> ...< /project>

In this example, the max age indicates that the data may be cached for up to 240
seconds (4 minutes) before the client should consider the data stale.

APIs may also explicitly mark a response as not cacheable, requiring a new request
each time the response is required:

HTTP/1.1 200 OK

D ate: Tu e, 22 D ecemb er 2020 06 :57 :43 GMT

C ontent- Type: application/x ml

C ach e- C ontrol: no- cach e

< project> ...< /project>

Applying thoughtful use of the cache control header to APIs reduces network
traffic and speeds up Web and mobile applications. It also is the building block for
conditional requests.

Conditional Requests

Conditional requests are a lesser known but powerful capability offered by HTTP.
Conditional requests allow clients to request an updated resource representation
only if something has changed. Clients that send a conditional request will either
receive a 304 Not Modif ied response if the content has not changed or a 200 OK
response along with the changed content.

There are two precondition types for informing the server about the client’s local
cached copy for comparison: time-based and entity tag–based preconditions.

313Conditional Requests

Time-based preconditions require that the client store the L ast- Modif ied response
header for later requests. The I f - Modif ied- S ince request header is then be used to
specify the last modified timestamp that the server will use to compare against the
last known modified timestamp to determine if the resource has changed.

Following is an example of a client/server interaction that uses the last modified
date in a subsequent request to determine if the resource has changed on the server:

GET /projects/12345 HTTP/1.1

Accept: application/json; q = 0.5,application/x ml; q = 1.0

HTTP/1.1 200 OK

D ate: Tu e, 22 D ecemb er 2020 06 :57 :43 GMT

C ontent- Type: application/x ml

C ach e- C ontrol: max - ag e= 240

L ocation: /projects/12345

L ast- Modif ied: Tu e, 22 D ecemb er 2020 05:29 :03 GMT

< project> ...< /project>

GET /projects/12345 HTTP/1.1

Accept: application/json; q = 0.5,application/x ml; q = 1.0

I f - Modif ied- S ince: Tu e, 22 D ecemb er 2020 05:29 :03 GMT

HTTP/1.1 304 Not Modif ied

D ate: Tu e, 22 D ecemb er 2020 07 :03:43 GMT

GET /projects/12345 HTTP/1.1

Accept: application/json; q = 0.5,application/x ml; q = 1.0

I f - Modif ied- S ince: Tu e, 22 D ecemb er 2020 07 :33:03 GMT

D ate: Tu e, 22 D ecemb er 2020 07 :33:04 GMT

C ontent- Type: application/x ml

C ach e- C ontrol: max - ag e= 240

L ocation: /projects/12345

L ast- Modif ied: Tu e, 22 D ecemb er 2020 07 :12:01 GMT

< project> ...< /project>

314 Appendix

The entity tag, or ETag, is an opaque value that represents the current resource
state. The client may store the ETag after a GET, POS T, or PU T request, using the value
to check for changes via a HEAD or GET request.

An ETag is a hashed value of the entire response. Alternatively, servers may
provide a weak ETag, which is semantically equivalent but perhaps not an exact byte-
for-byte equivalency.

Here is a client/server interaction but using ETags rather than the last modified
date:

GET /projects/12345 HTTP/1.1

Accept: application/json; q = 0.5,application/x ml; q = 1.0

HTTP/1.1 200 OK

D ate: Tu e, 22 D ecemb er 2020 06 :57 :43 GMT

C ontent- Type: application/x ml

C ach e- C ontrol: max - ag e= 240

L ocation: /projects/12345

ETag : “ 17 f 0f f f 9 9 ed5aae4edf f dd6 49 6 d7 131f ”

< project> ...< /project>

GET /projects/12345 HTTP/1.1

Accept: application/json; q = 0.5,application/x ml; q = 1.0

I f - None- Match : “ 17 f 0f f f 9 9 ed5aae4edf f dd6 49 6 d7 131f ”

HTTP/1.1 304 Not Modif ied

D ate: Tu e, 22 D ecemb er 2020 07 :03:43 GMT

GET /projects/12345 HTTP/1.1

Accept: application/json; q = 0.5,application/x ml; q = 1.0

I f - None- Match : “ 17 f 0f f f 9 9 ed5aae4edf f dd6 49 6 d7 131f ”

HTTP/1.1 200 OK

D ate: Tu e, 22 D ecemb er 2020 07 :33:04 GMT

C ontent- Type: application/x ml

C ach e- C ontrol: max - ag e= 240

L ocation: /projects/12345

ETag : “ b 252d6 6 ab 3ec050b 5f d2c3a6 26 3f f af 51db 10f cb ”

< project> ...< /project>

315Concurrency Control in HTTP

Conditional requests reduce the effort required to validate and refetch cached
resources. ETags are opaque values that represent the current internal state, whereas
last modified timestamps rather than ETags may be used for time-based comparison.
They may also be used for concurrency control when making modifications to
resources.

Concurrency Control in HTTP

Concurrency control with HTTP is a challenge encountered by teams that need to
support APIs that modify data by different users at the same time. Some API
designers find clever ways to implement resource-level locking over HTTP. However,
HTTP has built-in concurrency control that prevents teams from building it
themselves.

Conditional requests are also used to support concurrency control in HTTP.
By combining ETags or last modified dates with state change methods such as PU T,
PATC H, or D EL ETE, we can ensure that data is not overwritten accidentally by another
API client via a separate HTTP request.

To apply a conditional request, the API client adds a precondition to the request
to prevent modification if the last modified timestamp or ETag of the resource has
changed. Should the precondition fail, a 412 Precondition F ailed response is sent
by the server. API servers may also enforce the requirement of a precondition header
to enforce concurrency control by responding with a 428 Precondition R eq u ired
response if neither of the conditional headers was found in the request.

Following is an example in which two API clients are trying to modify a project.
First, each client retrieves the project resource using a GET request, then each attempts
a change, but only the first API client is able to apply the change:

GET /projects/12345 HTTP/1.1

Accept: application/json; q = 0.5,application/x ml; q = 1.0

HTTP/1.1 200 OK

D ate: Tu e, 22 D ecemb er 2020 07 :33:04 GMT

C ontent- Type: application/x ml

C ach e- C ontrol: max - ag e= 240

L ocation: /projects/12345

ETag : “ b 252d6 6 ab 3ec050b 5f d2c3a6 26 3f f af 51db 10f cb ”

< project> ...< /project>

316 Appendix

PU T /projects/1234

I f - Match : “ b 252d6 6 ab 3ec050b 5f d2c3a6 26 3f f af 51db 10f cb ”

{ “ name” :” Project 1234” , “ D escription” :” My project” }

HTTP/1.1 200 OK

D ate: Tu e, 22 D ecemb er 2020 08 :21:20 GMT

C ontent- Type: application/x ml

C ach e- C ontrol: max - ag e= 240

L ocation: /projects/12345

ETag : “ 1d7 209 c9 d54e1a9 c4cf 7 30b e411ef f 1424f f 2f b 6 ”

< project> ...< /project>

PU T /projects/1234

I f - Match : “ b 252d6 6 ab 3ec050b 5f d2c3a6 26 3f f af 51db 10f cb ”

{ “ name” :” Project 56 7 8 ” , “ D escription” :” No, it is my project” }

HTTP/1.1 412 Precondition F ailed

D ate: Tu e, 22 D ecemb er 2020 08 :21:24 GMT

The second API client that received the failed precondition response must now
refetch the current representation of the resource instance, inform the user of the
changes, and request whether the user wishes to resubmit the changes made or leave
it as-is.

Concurrency control may be added to an API through HTTP preconditions in
the request header. If the ETag/last modified date hasn’t changed, then the request is
processed normally. If it has changed, a 412 response code is returned, preventing the
client from overwriting data as a result of two separate clients modifying the same
resource concurrently. This is a powerful capability built in to HTTP, preventing the
need for teams to invent their own concurrency control support.

317Summary

Summary

HTTP is a powerful protocol with a robust set of capabilities, including some that
are less known. Using content negotiation allows API clients and servers to agree on
a supported media type. Cache control directives provide client-side and intermediary
caching support. HTTP preconditions can be used to determine if expired caches are
still valid while protecting resources from overwriting changes. By applying these
techniques, teams are able to build robust APIs that drive complex applications in a
resilient and evolvable way.

This page intentionally left blank

319

Index

A
Acceptance testing, 226
ActiveMQ, 166
Activity steps captured in ADDR process,

24, 25
ADDR. See Align-Define-Design-Refine (ADDR)
Advanced Message Queuing Protocol (AMQP),

7, 164, 165, 166
Affordances, 10, 107
Aggregate sticky note, 55
Agile Manifesto principles, 22
Agility of API design-first, 22–23
Alexa, Amazon’s, 6
Align, in ADDR process, 23
Align-Define-Design-Refine (ADDR), 23–26

feedback in, 23, 24
goals achieved by, 24–25
phases of, 23
process overview, 25
steps in phases of, 24
steps used in real-world design project, 25–26

Align phase of ADDR process, 23, 29
capture activities and steps, 45–65
digital capabilities, 31–43

ALPS (Application-Level Profile Semantics), 83,
245–46

Amazon Kinesis, 169
Amazon’s Alexa, 6
Amazon Web Services (AWS), 221, 281
AMQP (Advanced Message Queuing Protocol),

7, 164, 165, 166
Amundsen, Mike, 128
Analytics, in MVP, 259
Anticorruption layer, 11
Antipatterns

avoiding, 70–71
helper API antipattern, 71

mega all-in-one API antipattern, 70
overloaded API antipattern, 70–71

Apache Avro, 126, 178
Apache Kafka, 169, 173
Apache Lucene, 16, 19
Apache Pulsar, 169
Apache Spark, 170
Apiary, 238
API-based orchestration, 201, 202
API Blueprint, 238–40
API boundaries, 69–78

antipatterns, avoiding, 70–71
bounded contexts, subdomains, and APIs, 71–72
finding, 72–75

activities for, 74–75
DDD for, 72
EvenStorming for, 72–74

identified in ADDR process, 24, 25
identifying, 69–78
naming and scoping APIs, 75–77, 78

API consumption lifecycle, 300
API contract testing, 227–28
API description formats, 234–48

ALPS, 245–46
API Blueprint, 238–40
improving API discovery using APIs.json, 247–48
JSON Schema, 244–45
OAS, 235–37
RAML, 240–43

API design
antipatterns, 16–20

coding, 16–19
heroic design effort antipattern, 19–20
next release design fix antipattern, 19
unused API antipattern, 20

approach, 13, 14
business capabilities of, 4
for change, 261–71

320 Index

API stability contract, establishing,
270–71

API versioning strategies, 264–68
deprecating APIs, 268–70
determining what is best for API

consumers, questions for, 262–63
impact of, on existing APIs, 261–64
management built on trust, 264
perform API design gap analysis, 262
strategies for, 263–64

collaborative, 13
as communication, 6–7
data model exposed as, 11
developer experience in, 5
documentation, 5, 7, 14
elements of, 4–6, 14, 102
outcome-based focus of, 14
principles of, 13–14
process, 15–28

ADDR in, 23–26
API design antipatterns in, 16–20
API design-first approach in, 20–23
applying effectively, 28
applying product thinking to, 5
communication in, 6–7, 15
DDD in, 26
reasons for, 15–16
roles involved in API design sessions, 27

product thinking and, 4–5, 6
refined in ADDR process, 24, 25
resiliency to change, evolutionary approach

for, 14, 264, 301
resource-based, 10–11
reviews, conducting, 297–300

automated test coverage, 299
benefits of, 297
caution about, 297–98
documentation review, starting

with, 298
standards and design consistency,

checking for, 299
try it out support, adding, 299–300

scaling, within organization, 293–302
API consumption lifecycle, 300
API style guide, establishing, 293–97
culture of reuse, developing, 300–301

software design and, reviewing principles of,
7–10

API designers and architects, 27
API design-first approach, 20–23

agility of, 22–23
phases of, 20–21
principles relevant to concerns of, 22

API design gap analysis, 262
API documentation, 233–60

in ADDR process, 24, 25
API description formats, 234–48
areas of improvement, questions

to identify, 253–56
async APIs, 184–85
developer portals, 251–53
extending docs with code examples,

248–51
helper libraries, 221
importance of, 234
as most important user interface for

developers, 14, 234, 301
MVP, 256–59
in query-based design process, 154–57
REST API design, 118, 120–23
review, 298
role of technical writer in API docs, 255–56
in RPC API design process, 145–46

API fundamentals, in API style guide, 294
API gateways, 276

direct to API server, 283
in-house, 289–91
management hosting options, 279–81
middleware, 276
multicloud API management retail (case

study), 281–82
multiple instances of, 283–84, 285
network traffic considerations, 282–83
routing to services, 283
topologies, 279–84

API keys, 285–86
API management layers (APIMs), 260,

276–77
APIMatic, 223
API modeling, 79–98

API priority and reuse, 95–96, 97
API profile structure, 81, 82
defined, 80–81

321Index

OAS in, 83
process, 81–93

add operation events, 88, 91, 92
capture API profile summary, 83–84
expand operation details, 91, 93, 94
resource identification, 85–87
resource taxonomy, defining, 87–88,

89–90
sequence diagrams for validating, 93–95

APIMs (API management layers), 260, 276–77
API polling, 160–61
API priority and reuse

assess business and competitive value, 96
evaluating, 95–96, 97
sizing and prioritization, 96, 97

API profile, 80
modeled in ADDR process, 24, 25
structure, 81, 82
summary, 83–84

API protection, 273–91. See also API gateways
APIMs in, 276–77
authentication (authn) in, 274
authorization (authz) in, 275
CDNs in, 278
claims in, 275
components of, 276–79
cryptography in, 275
data scraping and botnet protection in, 276
gateway topologies, 279–84
IAM in, 284–89
intelligent API protection in, 279
message validation in, 275
mutual TLS in, 275
practices in, essential, 274–76
protocol filtering and protection in, 275
quotas in, 275
rate limiting (throttling) in, 275
review and scanning in, 276
security breaches, 273–74
service meshes in, 277–78
session hijack prevention in, 275
WAFs in, 278

API prototype mocking, 216–17
APIs differentiated from microservices, 193
API security breaches, 273–74
APIs.json, 247–48
API stability contract, 270–71

API Stylebook (Lauret), 296
API style guide, 293–97

adherence, 294–95
getting started with, tips for, 296
multiple API styles, supporting, 296–97
tone, selecting, 295
topics included in, 294

API testing, 225–31
acceptance testing, 226
automated security testing, 226–27
challenges of, 230–31
contract testing, 227–28
helper libraries, 221
importance of, 231
operational monitoring, 227
tools to accelerate, selecting, 229–30
user interface testing versus, 228–29

API versioning, 264–68
business considerations of, 268
common nonbreaking changes, 265
incompatible changes, 265–66
methods, 267–68

header-based, 267
homename-based, 268
URI-based, 267–68

revisions, 266–67
versions, 266–67

APM (application performance management)
tools, 221

Application-Level Profile Semantics
(ALPS), 83, 245–46

Application performance management
(APM) tools, 221

Architects, 27
“Architectural Styles and the Design of Network-

based Software Architectures” (Fielding),
102

Architecture styles in microservices, 201–3
API-based orchestration, 201, 202
cell-based architecture, 203
direct service communication, 201, 202

Associative relationship, 87, 88, 89
Async APIs for eventing and streaming,

159–86
async API styles, 171–78

bidirectional notification via WebSocket
protocol, 174–76

322 Index

gRPC streaming, 176–77
selecting, 177–78
server notification using webhooks,

171–72
server push using SSE, 172–74

benefits of, 160
designing, 178–83

command messages, 178–79
event batching, 182–83
event-carried state transfer events, 180–82
event messages, 179–80
event notifications, 179–80
event ordering, 183

documenting, 184–85
limitations of, 160
messaging fundamentals, review of, 162–71
new possibilities created with, 161–62
polling, problem with, 160–61

AsyncAPI specification, 185
Asynchronous messaging, 164
Asynchronous microservices, 198–201
Authentication (authn), 274
Authentication, in developer portal, 253
Authorization (authz), 275
Automated security testing, 226–27
Automated test coverage, reviewing, 299
AWS (Amazon Web Services), 221, 281

B
Backend API, 16, 17, 18
Backend developers and implementation, 16,

17, 18
Background (queued) jobs, 134–35
BDD (behavior-driven development), 219
Behavior-driven development (BDD), 219
Bidirectional notification via WebSocket, 174–76
Bidirectional streaming, 139, 177
Booch, Grady, 3
Botnet attacks, 279
Botnet protection, 276
Bounded contexts, 71–72
Brandolini, Alberto, 45, 49, 51, 64
Browsers

gRPC and, 176
HTML and, 132
HTTP and, 141

JavaScript files and, 107
middleware and, 141
SSE and, 172–74
webhooks and, 177
WebSocket and, 174–76, 178

Business capabilities, 4
Business domain events, 51
Business event sticky note, 55
Business value, assessing, 96

C
Cacheable (architectural property), 103
Call chaining, 197, 198–201, 208
Capability, in job story, 36–37
Capital One, 6
Capture activities and steps, 45–65

EventStorming, 58–65
job stories in, 46–48

Case studies
in developer portal, 252
as element of great developer portals, 252
enterprise developer portal success, 252
to generate growth in adoption, 258
GitHub webhooks create new CI/CD

marketplace, 162
multicloud API management retail, 281–82
in MVP, 258
product thinking meets banking, 6

Casey, D. Keith, 233, 273
CDNs (content delivery networks), 278
Cell-based architecture, 203
Chaining API calls, 197, 198–201
Changelog, in developer portal, 253
Christensen, Clayton M., 31, 35, 36
CI/CD (continuous integration and continuous

delivery) tools, 3
Claims in API protection, 275
Cleanroom data set creation, 230
Client acknowledgement mode, 166
Client/server, 103, 104
CLIs. See Command-line interfaces (CLIs)
Clock skew, 183
Clone method, to enforce style guide compliance,

295
Coarse-grained communication, 7

323Index

Code
in API design antipatterns, 16–19
in API design-first approach, 20–21
changes, 11
in coupling, 9
on demand, 103

supported by REST, 107
in encapsulation, 8
examples, extending docs with, 248–51

error case and production-ready
examples, 251

expanding documentation with workflow
examples, 249–51

write getting started code examples first,
249

generators
for CLI generation, 223
for helper libraries generation, 223

grouping related, 8
in heroic design effort antipattern, 19
in high/low cohesion, 9
libraries, 8
in modularization, 8
in next release design fix antipattern, 19
objects used to map data models into,

11, 12
refactoring and sharing, 197
response, in REST, 116, 118, 119
role of developers in writing, 27
sharing in microservices, 197

Codebase, object-oriented, 11–12
Collaborative API design, 15–28
Command-line automation, 255
Command Line Interface Guidelines, 223
Command-line interfaces (CLIs), 221–23

for APIs, 221–23
using code generators for CLI generation, 223

Command message, 162, 163
designing, 178–79

Command sticky note, 55
Commercial off-the-shelf (COTS) APIs, 96
Communication, in API design process,

6–7, 15
Community-contributed helper libraries, 220
Competitive value, assessing, 96
Components, 8
Consumer-generated helper libraries, 220

Consuming developers, communication
with, 7

Content delivery networks (CDNs), 278
Continuous integration and continuous delivery

(CI/CD) tools, 3
Coordination costs reduced by, 192–93
Coordination costs reduced by microservices,

192–93
CORBA, 3
CORS (cross-origin resource sharing), 275
COTS (commercial off-the-shelf) APIs, 96
Create-read-update-delete (CRUD)

API mocking tool to store data for, 217
lifecycle, 132, 147, 210
pattern, 132–33
REST and, 104

Creation timestamps, 165
Cross-origin resource sharing (CORS), 275
Cross-site request forgery (CSRF), 275
CRUD. See Create-read-update-delete (CRUD)
Cryptography, 275
CSRF (cross-site request forgery), 275
Cucumber testing tool, 219
Cultural impacts of microservices, 195
Culture of reuse, developing, 300–301
Customers, defined, 32
Customize method, to enforce style guide

compliance, 295

D
Data

in API design-first, 20
API mocking tool for storing, 217
exposing sensitive, 11
inconsistencies, 11
models

exposing as API, 11
microservices architecture and, 196
objects for mapping, 11
resource-based API design differentiated

from, 10
mutating, 147
ownership in microservices, shift in, 194–95
scraping in API protection, 276
test data sets for APIs, 230

324 Index

DDD. See Domain-driven design (DDD)
DDE (dynamic data exchange), 164
DDoS (distributed denial-of-service) attacks, 276
Dead letter queue (DLQ), 166, 201
Decomposing APIs into microservices, 204–10

additional design considerations, 208, 210
candidate microservices, identifying, 205–6
MDC to capture, 208, 209
microservices added to API sequence

diagrams, 206–8
Define, in ADDR process, 23
Define phase of ADDR process, 23, 67

API boundaries, identifying, 69–78
API modeling, 79–98

Delivery process
in API design-first approach, 21
API modeling and, 80
efficiency in, 16, 17–18
EventStorming and, 59
mock implementations, 21, 214
in reduced team coordination, 192
speed in, 190

Dependent resources, 87, 112–13
Deprecated stability contract, 271
Deprecating APIs, 268–70

announcing deprecation, 269–70
deprecation policy, establishing, 269

Design
in ADDR process, 23
in API design-first approach, 20, 21
consistency, 299
flaws, 19
patterns, in API style guide, 294

Designer experience, 27
Design phase of ADDR process, 23, 99. See also

High-level design
Developer experience (DX), 5
Developer experience, improving, 213–24

CLIs for APIs, 221–23
creating mock API implementation, 214–19
helper libraries and SDKs, providing, 219–21

Developer portals, 251–53
API adoption through developer portals,

increasing, 251–52
API reference documentation in, 253
authentication and documentation in, 253

case studies in, 252
easy onboarding in, 253
elements of great, 252–53
enterprise developer portal success (case

study), 252
feature discovery in, 252
getting started guide (or quick start guide)

in, 252
live support in, 253
operational insight in, 253
release notes and changelog in, 253
tools and frameworks for, 259–60

Developer relations (DevRel), 253
DevExchange at South by Southwest

(SXSW), 6
DevOps, 191–92
DevRel (developer relations), 253
Digital capabilities, 31–43

in ADDR process, 24, 25
defined, 33–34
identifying, 31–43
job stories, 35–42
JTBD, 34–35
stakeholder alignment, ensuring, 31–33

Dillon, Karen, 31
Direct service communication, 201, 202
Discover, in API design-first approach, 20, 21
Distributed data management in microservices,

196
Distributed denial-of-service (DDoS) attacks, 276
Distributed messaging, 164
Distributed systems challenges in microservices,

196
Distributed transactions in microservices, 197
DLQ (dead letter queue), 166, 201
Documenting API design. See API documentation
Documents, for capturing job stories, 41
DOMA (Domain-Oriented Microservice

Architecture), 203
Domain-driven design (DDD)

aggregates in, 55
for finding API boundaries, 69, 72
role of, in API design, 26

Domain events, 51
Domain experts, 27
Domain models, 11–12

325Index

Domain-Oriented Microservice Architecture
(DOMA), 203

Domain understanding, 54–56
Duncan, David S., 31
Duplicate message processing, 170
Durable subscriptions, 166
DX (developer experience), 5
Dynamic data exchange (DDE), 164

E
Easy onboarding, in developer portal, 253
Embedded resources, 127
Emerging styles, 14, 102
Encapsulation, 8–9
Eno chat bot, 6
Enterprise developer portal success

(case study), 252
Error case examples, 251
ETL (extract-transform-load) processes, 170, 196
Evans, Eric, 26, 69, 72
Event batching, 182–83
Event-carried state transfer events, 180–82
Eventing. See Async APIs for eventing and

streaming; EventStorming;
Server-Sent Events (SSE)

Event message, 163
designing, 179–80

Event notifications, 179–80
Event ordering, 183
EventStorming, 58–65

attendees, 59–60
benefits of, 58–60
for collaborative understanding, 49
for finding API boundaries, 72–74
for international wire transfers

(case study), 49–50
process, 50–57

create event narrative, 51–53
customizing, 64–65
expand domain understanding, 54–56
identify business domain events, 51
review final narrative, 56–57
review narrative and identify gaps, 54

session, 60–65
executing, 63
follow-up, 63–64

preparing for, 60–61
sharing in, 62
wrap-up, 63

sticky note types in, 55–56
Evolutionary design approach, 14, 19
Exchange messages, 12–13
Experimental stability contract, 271
External system sticky note, 56
Extract-transform-load (ETL) processes, 170, 196

F
Failover in microservices, 197
Fanout, use of term, 168
Feature discovery, in developer portal, 252
Federated method, to enforce style guide

compliance, 295
Feedback

in ADDR process, 23, 24
in API design-first approach, 21
in design process, 16, 17–18
product thinking approach to obtain, 5
prototype or mock API to acquire, 21
in REST, 124–25

Fielding, Roy Thomas, 101, 102–4, 105, 107, 108,
111, 137

Fire-and-follow-up pattern, 135
Fire-and-forget pattern, 135
45-degree angle sticky notes, 64
Frontend developers and implementation,

16, 17, 18
Functional testing, 227–28
Further reading, in API style guide, 294

G
Getting started code examples, 249
Getting started guide

in developer portal, 252
in MVP, 258–59

GitHub
API workshop examples on, 42, 48, 93, 136
CI/CD marketplace created by webhooks

(case study), 162
documentation examples on, 235

326 Index

example asynchronous API descriptions on, 185
job stories on, 42
REST pattern resources on, 136

GitLab, 217
GoLang, 139, 255
Google

Cloud, 221
Docs, 63
gRPC, 139–41, 176–77
logging in with account, 288
SPDY protocol, 176

Governance in microservices, 196
GraphQL, 14, 102, 149–50, 154–57
Graph structures, designing, 151, 152
GRPC, 14, 102

in RPC-based API design, 139–41
selecting, 178
Shopping Cart API design for, 142, 145–46
streaming, 176–77, 178

H
HAL (Hypertext Application Language), 108, 127
Hall, Taddy, 31
HATEOAS, 108
Header-based versioning, 267
Helper API antipattern, 71
Helper libraries

documentation and testing, 221
in-house gateway and, 291
offering, options for, 220
providing, 219–21
using code generators for generating, 223
versioning, 220–21

Heroic design effort antipattern, 19–20
Heroku, 221, 223
H-Factors, 128
High cohesion, 9–10
High-level design, 24, 25

async APIs for eventing and streaming,
159–86

query-based API design, 146–57
REST-based API design, 101–36
RPC-based API design, 138–46

Hightower, Kelsey, 189
Homename-based versioning, 268

Hotspot sticky note, 55
HTML

API reference documentation, 234, 235, 259,
270

in browsers, 132
deprecation warning in, 270
Markdown files and, 41
in Rest-based APIs, 111
SSE as part of HTML5, 172

HTTP
API protection and, 275, 278
in async APIs, 161, 162, 171–76, 177, 178
browsers and, 141
for coarse-grained communication, 7, 111
content negotiation in, 125
in helper libraries, 219, 220
methods

incompatible changes in, 266
invalid combinations of, 275
JSON:API for determining, 128
mapping API operations to, 115–16, 117
as protocol of choice, 103
safety classifications for, 91, 93, 115
selecting, 91, 294
via TLS, 275

in Query-based APIs, 147, 149, 150
request headers, 105, 141, 229, 267, 286
response codes, 116, 118–19
in REST-based APIs, 102–3, 105, 106, 110,

111, 112, 133, 134, 235, 240
in RMM, 110
in RPC-based APIs, 139, 141, 235
service meshes and, 277
in synchronous microservices, 198

HTTP methods
mapping API operations to, 115–16, 117
safety classifications for, 91, 93, 115

HTTP POST, 16, 19
Hugo, 217, 259
Hunt, Andrew, 80
Hypermedia controls, 107–10
Hypermedia messaging, 128–29

semantic, 129–32
Hypermedia serialization, 127–28
Hypertext Application Language (HAL),

108, 127

327Index

I
IAM. See Identity and access management (IAM)
Idempotent HTTP operation, 91, 115
Identifier, 10
Identity and access management (IAM), 284–89

API tokens, 286–88
pass-by-reference versus pass-by-value,

287–88
OAuth 2.0, 288, 289
OpenID Connect, 288, 289
passwords and API keys, 285–86

IDEs (integrated development environments),
197, 219, 238

IDL (interface definition language), 139–40, 145,
228, 270

Implementing Domain-Driven Design
(Evans and Vernon), 26, 72

Incentivized method, to enforce style guide
compliance, 294–95

Independent release cycles in microservices, 194
Independent resources, 87
Information hiding, 9
Infrastructure and operations, 27
Integrated development environments (IDEs),

197, 219, 238
Intelligent API protection, 279
Interface definition language (IDL), 139–40, 145,

228, 270
Interface testing versus API testing, 228–29
Internet Engineering Task Force, 174
Internet of Things (IoT), 184
Interprocess messaging, 164
Introduction, in API style guide, 294
IoT (Internet of Things), 184
Isolation, APIs designed or delivered in,

13, 17, 20, 33

J
Java Message Service (JMS), 150, 166
Java programming language, 8, 138, 166
JavaScript, 103, 107, 111, 255, 275, 286
Jekyll, 217, 259, 260
Jmqtt, 166
JMS (Java Message Service), 150, 166

Jobs to be done (JTBD), 34–35, 222
Job stories, 35–42

in activities and steps, 46–48
decompose each activity into steps, 47–48
identify activities for each job story, 47
when requirements aren’t clear, 48

capturing, 40–41
challenges in, 38–40

detailed job stories, 38–39
feature centric job stories, 39–40
need for additional user context, 40

components of, 36–37
defined, 35–36
examples of, 42
real-world API design project, 41–42
writing, for APIs, 37–38

Jones, Caspers, 225
JSON, 10
JSON Schema, 244–45
JSON Web Tokens (JWTs), 288
JTBD (jobs to be done), 34–35, 222
JWTs (JSON Web Tokens), 288

K
Kay, Alan, 12, 159
Key performance indicators (KPIs), 33
Klement, Alan, 36
KPIs (key performance indicators), 33
Kubernetes, 139, 221, 223

L
Lauret, Arnaud, 296
Layered system

in Fielding’s paper, 103
supported by REST, 105–6

Lifecycle management, in API style guide, 294
Lifecycle support, in REST, 133–34
Lindsay, Jeff, 171
Link tables, 11, 231
Live support, in developer portal, 253
Local messaging, 164
Long-running transaction support in REST,

135–36
Loose coupling, 9–10

328 Index

M
Management hosting options, 279–81
Markdown files, 39, 41, 217, 238, 259
Marketplace, communication to, 7
McLarty, Matt, 293
MDC (Microservice Design Canvas), 208, 209
Mega all-in-one API antipattern, 70
Message broker

examples of, 166
fanout message distribution (topics), 167–68
features offered by, 166
point-to-point message distribution (queues),

167
terminology, 168
understanding, 166–67

Message Queuing Telemetry Transport (MQTT),
7, 164, 165, 184

Message streaming. See also Async APIs for
eventing and streaming

considerations, 170–71
fundamentals, 168–70
gRPC, 176–77, 178
servers, 169

Messaging/messages, 162–71
elements of, 165
exchanged through resource-based API

design, 12–13
filtering, 170
immutable nature of, 163
message validation in API protection, 275
priority and TTL, 166
processing failures, 166
styles and locality, 164
types, 162–63

Microservice Design Canvas (MDC), 208, 209
Microservices, 189–211

APIs differentiated from, 193
architecture styles, 201–3
complexity of, 193–97
coordination costs reduced by, 192–93
decomposing APIs into, 204–10
defined, 190–91
distributed data management and governance

in, 196
distributed systems challenges in, 196
distributed transactions in, 197

failover in, 197
independent release cycles in, 194
need for, 198
organizational structure and cultural impacts

of, 195
reduced team coordination and, 192–93
refactoring and code sharing in, 197
resiliency of, 197
right-sizing, 204
self-service infrastructure in, 194
shift in data ownership in, 195
shift to single-team ownership in, 194–95
synchronous/asynchronous, 198–201
transitioning to, considerations in, 210
warning about term, 191

Middleware, 141, 276
Minimum viable portal (MVP), 256–59

checklist, 256–57
growth in adoption, 258–59

analytics for, 259
case studies for, 258
documentation for, 259
getting started guides for, 258–59
single-page format for, 259

improving, 257–58
template, 260

Mock API implementation, 214–19
API prototype mocking, 216–17
README-based mocking, 215, 217–19
static API mocking, 215–16

Mockaroo, 230
Modularization, 8
Modular monoliths, 198
Modules, 8
Mozilla, 174
MQTT (Message Queuing Telemetry Transport),

7, 164, 165, 184
MTLS (mutual TLS), 275
MuleSoft, 240
Multicloud API management retail (case study),

281–82
Multipart EventStorming sessions, 64
Multiple API gateway instances, 283–84, 285
Mutation operations, designing, 151, 153–54
Mutual TLS (mTLS), 275
MVP. See Minimum viable portal (MVP)

329Index

N
N+1 query problem, 11
Namespaces, 8
Naming APIs, 75–77, 78
Narratives, in EventStorming

creating, 51–53
identify gaps, 54
review of final narrative, 56–57

National Institute of Standards and Technology
(NIST), 282

Network boundaries, communication across, 7
Network chattiness, 7, 11
Network protocols, 6
Network traffic considerations, 282–83
Next release design fix antipattern, 19
NIST (National Institute of Standards and

Technology), 282
Nix tools, 223
Node.js, 216
Nonpublic information (NPI), 27

O
OAI (OpenAPI Initiative), 235
OAS (OpenAPI Specification), 83, 120–22, 184,

217, 235–37
OAuth 2.0, 288, 289
Objective-C, 255
Objectives and key results (OKRs), 33
Object-oriented programming, 12
Objects, in domain models, 11–12
OData, 147–48
OKRs (objectives and key results), 33
OLAP (online analytical processing), 196
Onboarding, 6, 21
O’Neill, Mark, 213
Online analytical processing (OLAP), 196
OpenAPI Initiative (OAI), 235
OpenAPI Specification (OAS), 83, 120–22, 184,

217, 235–37
OpenID Connect, 288, 289
Open Web Application Security Project

(OWASP), 229
Operational insight, in developer portal, 253
Operational monitoring, in API testing, 227

Operational recommendations, in API style
guide, 294

Operation details, in API modeling, 91, 93, 94
Oracle, 238
Organizational structure of microservices, 195
Outcome, in job story, 36–37
Outcome-based focus, APIs designed or delivered

in, 14, 35, 264, 301
Outsourcing, 4
Overloaded API antipattern, 70–71
OWASP (Open Web Application Security

Project), 229

P
Parnas, David, 9
Pass-by-reference API tokens, 287–88
Pass-by-value API tokens, 287–88
Passwords, 285–86
Personally identifiable information (PII), 11, 27
PHP, 216
PII (personally identifiable information), 11, 27
Pipe and filter design pattern, 223
POCs (proofs of concept), 221
Point-of-sale (POS) system, third-party, 4
Policy sticky note, 55
Polling, 160–61
POS (point-of-sale) system, third-party, 4
POS (third-party point-of-sale) system, 4
The Pragmatic Programmer (Thomas

and Hunt), 80
Prerelease stability contract, 271
Product definition, 32
Production-ready examples, 251
Product managers, 27
Product thinking, 4–5, 6
Product thinking meets banking (case study), 6
Programming languages, 8
Project managers, 27
Proofs of concept (POCs), 221
Protecting APIs. See API protection
Protocol Buffers, 126, 139–40, 142, 145, 176, 178
Protocol filtering, 275
Prototype, in API design-first approach, 21
Prototyping APIs, 19
Provider-supported helper libraries, 220

330 Index

Public-facing developer portal, 6
Python, 216, 220, 255

Q
QA (quality assurance), 229–30
QA teams, 27
Quality assurance (QA), 229–30
Query-based API design, 146–57

defined, 146–47
GraphQL, exploring, 149–50
OData, understanding, 147–48
process, 150–57

designing resource and graph structures,
151, 152

design query and mutation operations,
151, 153–54

document API design, 154–57
Query operations, designing, 151, 153–54
Queues, use of term, 168
Quick start guide. See Getting started guide
Quotas, 275

R
RabbitMQ, 166, 168, 173
RAML (RESTful API Modeling Language), 228,

240–43
Rate limiting (throttling), 275
README-based mocking, 215, 217–19
Refactoring in microservices, 197
Reference documentation, in developer portal,

253
Refine, in ADDR process, 23
Refine phase of ADDR process, 23, 187

documenting API design, 233–60
API description formats, 234–48
developer portals, 251–53
extending docs with code examples,

248–51
importance of, 234
MVP, 256–59
questions to identify areas of

improvement for API documentation,
253–56

role of technical writer in API docs,
255–56

refining the design
API testing strategies, 225–31
improving developer experience, 213–24
microservices, 189–211

Refining the design
API testing strategies, 225–31
improving developer experience, 213–24
microservices, 189–211

Release notes, in developer portal, 253
Remote method invocation (RMI), 138
Remote procedure call (RPC)–based API design.

See RPC-based API design
Reply message, 163
Representation format, 125–32

categories of, 126
hypermedia messaging, 128–29
hypermedia serialization, 127–28
resource serialization, 126–27
semantic hypermedia messaging, 129–32

Request messages, 162
Resiliency of microservices, 197
Resource, defined, 10
Resource-based API design, 10–11

data models differentiated from, 10
messages exchanged through, 12–13
object or domain models differentiated from,

11–12
Resource-centric REST, 104–5
Resource identification, in API modeling, 85–87
Resource serialization, 126–27
Resource structures, designing, 151, 152
Resource taxonomy, in API modeling, 87–88,

89–90
Response messages, 163
REST-based API design, 101–36

architectural constraints in Fielding’s paper,
102–3

client/server, 104
code on demand supported by, 107
CRUD and, 104
defined, 102
dependent resources, 113
hypermedia controls, 107–10
layered system supported by, 105–6
measuring REST using RMM, 110–11

331Index

message based, 105

patterns, 132–36

API workshop examples on GitHub, 136

background (queued) jobs, 134–35

CRUD-based APIs, 132–33

extended resource lifecycle support,

133–34

long-running transaction support, 135–36

singleton resources, 133

process, 112–23

assign response codes, 116, 118, 119

design resource URL paths, 112–14

documenting REST API design, 118,

120–23

map API operations to HTTP methods,

115–16, 117

share and gather feedback, 124–25

representation format, selecting, 124–32

resource-centric, 104–5

when to choose, 111–12

RESTful API Modeling Language (RAML), 228,

240–43

REST Hooks documentation, 171

Retired stability contract, 271

Review and scanning, 276

RFC 2119, 295

RFC 6455, 174

Richardson, Leonard, 110

Richardson Maturity Model (RMM), 110–11

Right-sizing, 204

RMI (remote method invocation), 138

RMM (Richardson Maturity Model), 110–11

RPC-based API design, 138–46

defined, 138–39

factors when considering, 141

gRPC protocol, 139–41

process, 142–46

detail RPC operations, 142, 144

document API design, 145–46

identify RPC operations, 142, 143

RPC (remote procedure call)–based API design.

See RPC-based API design

Ruby, 216, 220, 250, 255

S
SaaS (software-as-a-service), 5, 41, 162, 279, 281,

284
Safe HTTP operation, 91, 115
SAML (Security Assertion Markup Language),

289
Schema definitions, 122–23
Scope modifiers, 8
Scopes, 286
Scoping APIs, 75–77, 78
Scrum Masters, 27
SDKs (software development kits), 219–21
Security Assertion Markup Language (SAML),

289
Security teams, 27
Self-service infrastructure in microservices, 194
Self-service model, 5
Semantic hypermedia messaging, 129–32
Sequence diagrams

microservices added to, 206–8
for validating API modeling, 93–95

Serialization
hypermedia, 127–28
resource, 126–27

Server push using SSE, 172–74
selecting, 177

Server-Sent Events (SSE), 184, 185, 296
for multiple API styles, 296
selecting, 177
server push using, 172–74
use cases not supported by, 174
use cases supported by, 173

Service-level agreement (SLA), 81, 227
Service meshes, 277–78
Service-oriented architecture (SOA), 197
Session hijack prevention, 275
Shared facilitation, in EventStorming, 65
Shopping Cart API, 142, 145–46, 151–54, 235,

240
Single-page applications (SPAs), 149
Single-page format, in MVP, 259
Single sign-on (SSO), 289
Single-team data ownership in microservices,

194–95
Singleton resources, in REST, 134
Sizing and prioritization, 96, 97

332 Index

SLA (service-level agreement), 81, 227
SMEs (subject matter experts), 27, 47
Snapshots, 80, 230
SOA (service-oriented architecture), 197
SOAP, 3, 33, 110, 135–36, 138, 150, 296
Software-as-a-service (SaaS), 5, 41, 162, 279, 281,

284
Software design, reviewing principles of, 7–10

encapsulation, 8–9
high cohesion and loose coupling, 9–10
modularization, 8

Software development
agile, 23
DDD approach to, 26
defect removal and, 226
information hiding in, 9
people involved in, 26–27
in reduced team coordination, 192

Software development kits (SDKs), 219–21
Solution-oriented testing, 226
Spaghetti code, 9
SPAs (single-page applications), 149
Spreadsheets, for capturing job stories, 41
SSE. See Server-Sent Events (SSE)
SSO (single sign-on), 289
Stakeholders

alignment with, ensuring, 31–33
in API design-first, 22
in EventStorming, 58, 59
feedback from, 21, 93, 270
gathering domain details from, 45
unused API antipattern and, 20

Standards
in API design reviews, 299
in API style guide, 294
connectivity based on, 166

Stateless (architectural property), 103
Static API mocking, 215–16
Static site generators, 259
Sticky notes, 55–56
Streaming. See Async APIs for eventing and

streaming; Message streaming
Subdomains, 71–72
Subject matter experts (SMEs), 27, 47
Subprotocol, 174
Supported stability contract, 271

Surface area, 27, 42, 54
Swagger, 120, 228, 235
Swagger Codegen project, 223
Swagger Editor, 120
SwaggerUI, 235, 259, 260
Swift, 255
SXSW (DevExchange at South by Southwest), 6
Synchronous messaging, 164
Synchronous microservices, 198–201

T
TCP/IP, 277
TDD (test-driven development), 230
Technical leads, 27
Technical writer, roles of

in API design, 27
in API docs, 255–56

Technologies, in API style guide, 294
Test-driven development (TDD), 230
Thin events, 179
Third-party point-of-sale (POS) system, 4
Thomas, David, 15, 80
Three-lane approach, 64
Throttling (rate limiting), 275
Time to First Hello World (TTFHW), 249–51
Time-to-live (TTL), 165, 166
TLS (Transport Layer Security), 275
Tone, in API style guide, 295
Tools

to accelerate API testing, 229–30
API mocking, 217
in API style guide, 294
APM, 221
CI/CD, 3
for developer portals, 259–60
for Markdown support, 217

Topics, in API style guide, 294
Topics, use of term, 168
Tracer bullet, 80
Transactional boundaries, 166
Transport Layer Security (TLS), 275
Triggering event, in job story, 36–37
Try it out support, 299–300
TTFHW (Time to First Hello World), 249–51
TTL (time-to-live), 165, 166

333Index

U
Uber Engineering, 203
Ubiquitous language, 49
UI (user interface) tests, 228–29
Uniform interface, 103
Unique name, 10
UNIX, 118, 164
Unsafe HTTP operation, 93, 115
Unused API antipattern, 20
URI-based versioning, 267–68
URL paths, in REST, 112–14
User experience (UX), 5, 27, 255
User interface sticky note, 56
User interface (UI) tests, 228–29
User sticky note, 56
UX (user experience), 5, 27, 255

V
Vernon, Vaughn, 26, 72
Versioning helper libraries, 220–21
Virtual machine (VM), 277
Virtual private network (VPN), 282
VM (virtual machine), 277
VOC (voice of the customer), 35
Vogels, Werner, 261
Voice of the customer (VOC), 35
VPN (virtual private network), 282

W
W3C, 172, 174
WAFs (Web application firewalls), 277, 278
Web APIs, 3–5, 9–10

boundaries, 12, 71
customer- and partner-facing, 112
evolvable, 103
high cohesion and loose coupling in, 10
information hiding, 9
message-based, 12
REST-based, 107, 112, 161–62

Web application firewalls (WAFs), 277, 278
Webhooks

dispatcher, 171, 172
implementing effectively, 171
selecting, 177
server notification using, 171–72

WebSocket
bidirectional notification via, 174–76
selecting WebSocket protocol, 178

Wright, Frank Lloyd, 79
Writing job stories, for APIs, 37–38

when desired outcome is known, 37–38
when digital capability has been identified, 38
when problem is known, 37

WS-Transaction specification, 135–36

X
XML Schema, 244

Y
YAML, 126, 235, 240, 245, 247
“You ain’t gonna need it” (YAGNI) principle, 211

Z
Zero trust architecture (ZTA), 282

Addison-Wesley • Adobe Press • Cisco Press • Microsoft Press • Pearson IT Certif ication • Que • Sams • Peachpit Press

Register Your Product at informit.com/register
Access additional benefits and save 35% on your next purchase

• Automatically receive a coupon for 35% off your next purchase, valid
for 30 days. Look for your code in your InformIT cart or the Manage
Codes section of your account page.

• Download available product updates.
• Access bonus material if available.*

• Check the box to hear from us and receive exclusive offers on new
editions and related products.

*Registration benefits vary by product. Benefits will be listed on your account page under
Registered Products.

InformIT.com—The Trusted Technology Learning Source
InformIT is the online home of information technology brands at Pearson, the world’s
foremost education company. At InformIT.com, you can:

• Shop our books, eBooks, software, and video training
• Take advantage of our special offers and promotions (informit.com/promotions)
• Sign up for special offers and content newsletter (informit.com/newsletters)
• Access thousands of free chapters and video lessons

Connect with InformIT—Visit informit.com/community

Photo by izusek/gettyimages

http://informit.com/register
http://InformIT.com
http://InformIT.com
http://informit.com/promotions
http://informit.com/newsletters
http://informit.com/community

	Cover
	Half Title
	Title Page
	Copyright Page
	Contents
	Series Editor Foreword
	Foreword
	Preface
	Acknowledgments
	About the Author
	Part I: Introduction to Web API Design
	Chapter 1: The Principles of API Design
	The Elements of Web API Design
	Business Capabilities
	Product Thinking
	Developer Experience

	API Design Is Communication
	Reviewing the Principles of Software Design
	Modularization
	Encapsulation
	High Cohesion and Loose Coupling

	Resource-Based API Design
	Resources Are Not Data Models

	Resources Are Not Object or Domain Models
	Resource-Based APIs Exchange Messages
	The Principles of Web API Design
	Summary

	Chapter 2: Collaborative API Design
	Why an API Design Process?
	API Design Process Antipatterns
	The Leaky Abstraction Antipattern
	The Next Release Design Fix Antipattern
	The Heroic Design Effort Antipattern
	The Unused API Antipattern

	The API Design-First Approach
	Remaining Agile with API Design-First
	The Agile Manifesto Revisited
	The Agility of API Design-First

	The Align-Define-Design-Refine Process
	The Role of DDD in API Design
	API Design Involves Everyone
	Applying the Process Effectively
	Summary

	Part II: Aligning on API Outcomes
	Chapter 3: Identify Digital Capabilities
	Ensuring Stakeholder Alignment
	What Are Digital Capabilities?
	Focusing on the Jobs to Be Done
	What Are Job Stories?
	The Components of a Job Story
	Writing Job Stories for APIs
	Method 1: When the Problem Is Known
	Method 2: When the Desired Outcome Is Known
	Method 3: When the Digital Capability Has Been Identified

	Overcoming Job Story Challenges
	Challenge 1: Job Stories Are Too Detailed
	Challenge 2: Job Stories Are Feature Centric
	Challenge 3: Additional User Context Is Needed

	Techniques for Capturing Job Stories
	A Real-World API Design Project
	Job Story Examples
	Summary

	Chapter 4: Capture Activities and Steps
	Extending Job Stories into Activities and Steps
	Identify the Activities for Each Job Story
	Decompose Each Activity into Steps
	What If Requirements Aren’t Clear?

	Using EventStorming for Collaborative Understanding
	How EventStorming Works
	Step 1: Identify Business Domain Events
	Step 2: Create an Event Narrative
	Step 3: Review the Narrative and Identify Gaps
	Step 4: Expand Domain Understanding
	Step 5: Review the Final Narrative

	The Benefits of EventStorming
	Who Should Be Involved?

	Facilitating an EventStorming Session
	Prepare: Gathering Necessary Supplies
	Share: Communicating the EventStorming Session
	Execute: Conducting the EventStorming Session
	Wrap-up: Capture Activities and Activity Steps
	Follow-up: Post-Session Recommendations
	Customizing the Process

	Summary

	Part III: Defining Candidate APIs
	Chapter 5: Identifying API Boundaries
	Avoiding API Boundary Antipatterns
	The Mega All-in-One API Antipattern
	The Overloaded API Antipattern
	The Helper API Antipattern

	Bounded Contexts, Subdomains, and APIs
	Finding API Boundaries Using EventStorming
	Finding API Boundaries through Activities
	Naming and Scoping APIs
	Summary

	Chapter 6: API Modeling
	What Is API Modeling?
	The API Profile Structure

	The API Modeling Process
	Step 1: Capture API Profile Summary
	Step 2: Identify the Resources
	Step 3: Define the Resource Taxonomy
	Step 4: Add Operation Events
	Step 5: Expand Operation Details

	Validating the API Model with Sequence Diagrams
	Evaluating API Priority and Reuse
	Summary

	Part IV: Designing APIs
	Chapter 7: REST-Based API Design
	What Is a REST-Based API?
	REST Is Client/Server
	REST Is Resource-Centric
	REST Is Message Based
	REST Supports a Layered System
	REST Supports Code on Demand
	Hypermedia Controls
	When to Choose REST

	REST API Design Process
	Step 1: Design Resource URL Paths
	Step 2: Map API Operations to HTTP Methods
	Step 3: Assign Response Codes
	Step 4: Documenting the REST API Design
	Step 5: Share and Gather Feedback

	Selecting a Representation Format
	Resource Serialization
	Hypermedia Serialization
	Hypermedia Messaging
	Semantic Hypermedia Messaging

	Common REST Design Patterns
	Create-Read-Update-Delete
	Extended Resource Lifecycle Support
	Singleton Resources
	Background (Queued) Jobs
	Long-Running Transaction Support in REST

	Summary

	Chapter 8: RPC and Query-Based API Design
	What Is an RPC-Based API?
	The gRPC Protocol
	Factors When Considering RPC

	RPC API Design Process
	Step 1: Identify RPC Operations
	Step 2: Detail RPC Operations
	Step 3: Document the API Design

	What Is a Query-Based API?
	Understanding OData
	Exploring GraphQL

	Query-Based API Design Process
	Step 1: Designing Resource and Graph Structures
	Step 2: Design Query and Mutation Operations
	Step 3: Document the API Design

	Summary

	Chapter 9: Async APIs for Eventing and Streaming
	The Problem with API Polling
	Async APIs Create New Possibilities
	A Review of Messaging Fundamentals
	Messaging Styles and Locality
	The Elements of a Message
	Understanding Messaging Brokers
	Point-to-Point Message Distribution (Queues)
	Fanout Message Distribution (Topics)
	Message Streaming Fundamentals

	Async API Styles
	Server Notification Using Webhooks
	Server Push Using Server-Sent Events
	Bidirectional Notification via WebSocket
	gRPC Streaming
	Selecting an Async API Style

	Designing Async APIs
	Command Messages
	Event Notifications
	Event-Carried State Transfer Events
	Event Batching
	Event Ordering
	Documenting Async APIs

	Summary

	Part V: Refining the API Design
	Chapter 10: From APIs to Microservices
	What Are Microservices?
	Microservices Reduce Coordination Costs
	The Difference between APIs and Microservices
	Weighing the Complexity of Microservices
	Self-Service Infrastructure
	Independent Release Cycles
	Shift to Single-Team Ownership
	Organizational Structure and Cultural Impacts
	Shift in Data Ownership
	Distributed Data Management and Governance
	Distributed Systems Challenges
	Resiliency, Failover, and Distributed Transactions
	Refactoring and Code Sharing Challenges

	Synchronous and Asynchronous Microservices
	Microservice Architecture Styles
	Direct Service Communication
	API-Based Orchestration
	Cell-Based Architecture

	Right-Sizing Microservices
	Decomposing APIs into Microservices
	Step 1: Identify Candidate Microservices
	Step 2: Add Microservices into API Sequence Diagrams
	Step 3: Capture Using the Microservice Design Canvas
	Additional Microservice Design Considerations

	Considerations When Transitioning to Microservices
	Summary

	Chapter 11: Improving the Developer Experience
	Creating a Mock API Implementation
	Static API Mocking
	API Prototype Mocking
	README-Based Mocking

	Providing Helper Libraries and SDKs
	Options for Offering Helper Libraries
	Versioning Helper Libraries
	Helper Library Documentation and Testing

	Offering CLIs for APIs
	Summary

	Chapter 12: API Testing Strategies
	Acceptance Testing
	Automated Security Testing
	Operational Monitoring
	API Contract Testing
	Selecting Tools to Accelerate Testing
	The Challenges of API Testing
	Make API Testing Essential
	Summary

	Chapter 13: Document the API Design
	The Importance of API Documentation
	API Description Formats
	OpenAPI Specification
	API Blueprint
	RAML
	JSON Schema
	API Profiles Using ALPS
	Improving API Discovery Using APIs.json

	Extending Docs with Code Examples
	Write Getting Started Code Examples First
	Expanding Documentation with Workflow Examples
	Error Case and Production-Ready Examples

	From Reference Docs to a Developer Portal
	Increasing API Adoption through Developer Portals
	Elements of a Great Developer Portal

	Effective API Documentation
	Question 1: How Does Your API Solve My Problems?
	Question 2: What Problem Does Each API Operation Support?
	Question 3: How Do I Get Started Using the API?
	The Role of Technical Writer in API Docs

	The Minimum Viable Portal
	Phase 1: Minimum Viable Portal
	Phase 2: Improvement
	Phase 3: Focusing on Growth

	Tools and Frameworks for Developer Portals
	Summary

	Chapter 14: Designing for Change
	The Impact of Change on Existing APIs
	Perform an API Design Gap Analysis
	Determine What Is Best for API Consumers
	Change Management Is Built on Trust
	Strategies for Change

	API Versioning Strategies
	Common Nonbreaking Changes
	Incompatible Changes
	API Versions and Revisions
	API Versioning Methods
	Business Considerations of API Versioning

	Deprecating APIs
	Establish a Deprecation Policy
	Announcing a Deprecation

	Establishing an API Stability Contract
	Summary

	Chapter 15: Protecting APIs
	The Potential for API Mischief
	Essential API Protection Practices
	Components of API Protection
	API Gateways
	API Management
	Service Meshes
	Web Application Firewalls
	Content Delivery Networks
	Intelligent API Protection

	API Gateway Topologies
	API Management Hosting Options
	API Network Traffic Considerations
	Topology 1: API Gateway Direct to API Server
	Topology 2: API Gateway Routing to Services
	Topology 3: Multiple API Gateway Instances

	Identity and Access Management
	Passwords and API Keys
	API Tokens
	Pass-by-Reference versus Pass-by-Value API Tokens
	OAuth 2.0 and OpenID Connect

	Considerations before Building an In-House API Gateway
	Reason 1: API Security Is a Moving Target
	Reason 2: It Will Take Longer than Expected
	Reason 3: Expected Performance Takes Time
	What about Helper Libraries?

	Summary

	Chapter 16: Continuing the API Design Journey
	Establishing an API Style Guide
	Methods for Encouraging Style Guide Adherence
	Selecting Style Guide Tone
	Tips for Getting Started with an API Style Guide
	Supporting Multiple API Styles

	Conducting API Design Reviews
	Start with a Documentation Review
	Check for Standards and Design Consistency
	Review Automated Test Coverage
	Add Try It Out Support

	Developing a Culture of Reuse
	The Journey Has Only Begun

	Appendix: HTTP Primer
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

