
Checking Out
with the Payment
Request API

A Practical Introduction to the HTML5
Payment Request API using Real-world
Examples
—
Alex Libby

Checking Out with the
Payment Request API
A Practical Introduction to the
HTML5 Payment Request API
using Real-world Examples

Alex Libby

Checking Out with the Payment Request API

ISBN-13 (pbk): 978-1-4842-5183-6 ISBN-13 (electronic): 978-1-4842-5184-3
https://doi.org/10.1007/978-1-4842-5184-3

Copyright © 2019 by Alex Libby

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Louise Corrigan
Development Editor: James Markham
Coordinating Editor: Nancy Chen

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484251836. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Alex Libby
RUGBY, UK

https://doi.org/10.1007/978-1-4842-5184-3

This is dedicated to my family, with thanks for
their love

and support while writing this book.

v

Chapter 1: Introducing the API ��� 1

Exploring the Benefits of Using the API ��� 4

Breaking Some Common Misconceptions �� 5

Understanding Terminology Around the API �� 7

Considering the UX Experience ��� 9

Exploring Checkout Flows ��� 11

Sketching a User Flow Using Sketch ��� 12

Customizing the UX ��� 15

Some General UX Advice ��� 17

Giving Feedback Throughout the Journey ��� 22

Addressing Security Concerns �� 24

Summary��� 26

Chapter 2: Setting Up a Basic Checkout ��� 27

Some Basic Housekeeping ��� 27

Setting Up a Suitable Web Server �� 28

Checking Browser Support for the API �� 33

Enabling Browsers to Use the API ��� 34

Creating a Simple Example for Desktop Browsers ��� 35

Exploring What Happened ��� 37

Managing Errors in the Checkout �� 38

Table of Contents

About the Author ��� xi

About the Technical Reviewer ��� xiii

Acknowledgments ���xv

Introduction ���xvii

vi

Understanding the Changes to Our Demo ��� 44

Adapting for Use on Mobile Devices ��� 45

Exploring How the API Works in Detail �� 48

Payment Methods �� 48

Payment Details��� 49

Payment Options ��� 50

Wrapping it All Together��� 51

Summary��� 53

Chapter 3: Configuring and Customizing Our Checkout ��� 55

Setting Up a Payment Method �� 55

Taking the Next Step ��� 56

Understanding How it Works ��� 61

Customizing the API Flow �� 62

Configuring Our Checkout Form �� 63

Setting a Display Icon �� 63

Handling Different Currencies ��� 64

How Can We Handle Multiple Items Better? �� 70

Accepting Gift Cards and Discounts �� 75

Configuring Our Payment Process �� 80

Asking for Details from Customers �� 80

Adding Iframe Support �� 82

Handling Changes ��� 84

Handling Extra Information ��� 85

Exploring the Code in Detail �� 87

Summary��� 88

Chapter 4: Shipping �� 89

Getting Started with Shipping ��� 89

Obtaining the Shipping Address and Method �� 90

Exploring How this Works in Detail �� 93

Making Use of Details in Payment Request API ��� 94

Table of ConTenTs

vii

Expanding Our Shipping Options��� 96

Exploring the Changes Made ��� 98

Dealing with Changes to Shipping �� 99

Breaking Apart Our Code ��� 101

Implementing Delivery Restrictions �� 101

Breaking Apart the Code �� 105

Dealing with Errors ��� 106

Customer-Generated Errors ��� 107

Errors Generated During Development �� 108

Summary��� 112

Chapter 5: Integrating with a Payment Handler ��� 115

Exploring the Options �� 115

API Type ��� 116

Link Type �� 117

Tokenization Type �� 118

Integrating with the Payment Request API �� 119

Choosing between a PSP or Traditional Provider �� 120

Implementing a Provider ��� 123

Dissecting the Code ��� 126

Understanding the Types of Payment Identifiers ��� 127

Implementing Stripe ��� 128

Breaking Apart the Code �� 130

Making it More Local ��� 131

Dealing with Extra Charges ��� 135

Breaking Apart the Code in Detail �� 139

Dealing with No Payment Apps ��� 140

Understanding What Happened ��� 146

Checking for No Apps: An Epilogue �� 146

Taking Care of Pending Transactions �� 147

Summary��� 149

Table of ConTenTs

viii

Chapter 6: Pulling It All Together �� 151

Outlining the Project ��� 151

Building the Product Gallery ��� 153

Dissecting the Code thus Far ��� 155

Setting Up the Basic Basket �� 156

Breaking Apart the Code �� 161

Taking Care of Shipping (Plus Restrictions) �� 161

Exploring the Code in More Detail ��� 167

Handling Payments ��� 168

Integrating a Payment Method �� 168

Exploring the Code in More Detail ��� 170

Displaying Discounts ��� 171

Applying Charges When Necessary �� 172

Exploring the Code in More Detail ��� 175

Applying Charges: A Postscript �� 176

Adding Error Handling ��� 177

Exploring the Code in More Detail ��� 179

Taking Things Further ��� 180

Summary��� 181

Chapter 7: Project: Enabling the API in a Framework or CMS ������������������������������ 183

Outlining the Project ��� 184

Exploring the Options �� 184

Choosing Our Framework ��� 187

Creating the Store Front End ��� 189

Breaking Apart the Code �� 193

Setting Up the Basic Checkout �� 194

Dissecting the Code ��� 200

Taking Things Further ��� 200

Case Study: Adding Geolocation Support �� 201

Getting Prepared �� 201

Table of ConTenTs

ix

Creating Our Demo �� 202

Breaking Apart Our Code ��� 207

What Next for Geolocation: Should We Use It? �� 208

Case Study: Using QR Codes ��� 209

Understanding How It Works ��� 211

Summary��� 212

Chapter 8: Project: The Future of the Web Payments API ������������������������������������� 213

What is the Payment Handler API? �� 214

Understanding the Mix �� 215

Creating a Handler �� 216

Getting Prepared �� 217

Defining a Payment Method Identifier ��� 218

Building the Manifest �� 219

Creating a Payment App �� 221

Installing the Payment Handler ��� 223

Dissecting Our Code �� 230

Streamlining the Process �� 231

Considering Security Implications �� 233

Testing Our Payment Handler�� 234

Dissecting the Code ��� 241

Summary��� 242

Appendix: API Reference �� 243

API Interfaces �� 243

API Properties ��� 244

API Events ��� 244

Useful References ��� 244

Index ��� 245

Table of ConTenTs

xi

About the Author

Alex Libby is an A/B testing developer and seasoned computer book author, who hails

from England. His passion for all things open source dates back to the days of his degree

studies, where he first came across web development, and has been hooked ever since.

His daily work involves extensive use of JavaScript, HTML, and CSS to manipulate

existing web site content; Alex enjoys tinkering with different open source libraries to

see how they work. He has spent a stint maintaining the jQuery Tools library and enjoys

writing about open source technologies, principally for front-end UI development.

xiii

About the Technical Reviewer

François-Denis Gonthier is a graduate of the Université de Sherbrooke computer

science program. He made his first steps on the work market working for a start-up

company delivering cryptographic software using open source technologies. From this

point on, he has never strayed far from the Linux and open source world, without really

settling in a single area. He went from programming front ends in Javascript and HTML

5.0 to coding web site back ends using Java, J2EE, JSF, or plain old Unix daemons. The

cool Web 2.0 kids would call this being a “full stack developer.” Nowadays, he mostly

works on embedded Android projects and writes Javascript running on Node.js when

he’s not doing that.

xv

Acknowledgments

Writing a book can be a long but rewarding process; it is not possible to complete it

without the help of other people. I would like to offer a huge vote of thanks to my

editors – in particular Nancy Chen and Louise Corrigan; my thanks also to François- Denis

Gonthier as my technical reviewer and James Markham for his help during the process. All

four have made writing this book a painless and enjoyable process, even with the edits!

My thanks also to my family for being understanding and supporting me while

writing – I frequently spend lots of late nights writing alone, so their words of

encouragement have been a real help in getting past those bumps in the road and

producing the finished book that you now hold in your hands.

xvii

Introduction

Checking Out with the Payment Request API is for people who want to quickly create

checkouts natively in the browser, without the need for extra libraries or costly

subscriptions to checkout form providers.

First introduced in 2016, the Payment Request API is designed to allow developers to

create checkout forms natively in the browser. It provides a simple, clean interface that

presents a consistent user experience, leaving developers to focus on the mechanics of

hooking in functionality such as payment methods or authorization providers.

Over the course of this book, I’ll take you on a journey through using the API,

showing you how easy it is to quickly create checkout forms quickly and easily, with the

minimum of fuss – we’ll focus on topics such as setting up a basic form, tying in payment

methods, dealing with shipping or different currencies, and more, with lots of simple

exercises to help develop your skills using the API as a tool.

Checking Out with the Payment Request API is for the web site developer who is keen

to learn how to quickly create checkout forms rapidly, without the need for extra libraries

or costly checkout services. It’s perfect for those who are in Agile teams, where time is of

the essence and where developers can produce reusable code that makes use of the API

within their chosen framework or development process.

1
© Alex Libby 2019
A. Libby, Checking Out with the Payment Request API, https://doi.org/10.1007/978-1-4842-5184-3_1

CHAPTER 1

Introducing the API
Let me start with some simple facts:

• $4,574 billion, by the end of the year 2022.

• Over 65% of users are accessing the Internet via a mobile device,

compared to just 15% from a desktop.

• The top three ranking web sites (Apple.com, JD.com, and Amazon.

com) accounted for over $113 billion sales in 2018…yet the average

online conversion rate for desktop users is around 3%, with mobiles

weighing in at just over half this value at 1.6%.

Ouch – this sure makes for sobering reading! Hopefully this got your attention –

anyone reading these facts should be left in no doubt that shopping online is rapidly

overtaking visits to brick-and-mortar stores and that this will just increase over time.

There is one fact though that will bring this into context and might help explain why

these numbers are not higher: a study run by Google found that over 65% of people who

purchase using a mobile device will stop part way through a purchase.

Why? Well there are a number of reasons for this – a classic example is a process

that is too long (on average, this can be as many as 15 steps), or the web site crashed

with errors. Shipping charges has been cited as another reason, along with difficulties in

entering information or the need to have to create an account before making a purchase.

You can see more figures in detail at www.cpcstrategy.com/blog/2018/11/
mcommerce-statistics/, https://baymard.com/blog/checkout-
flow-average- form-fields and https://blog.globalwebindex.com/
trends/device-usage-2019/.

http://www.cpcstrategy.com/blog/2018/11/mcommerce-statistics/
http://www.cpcstrategy.com/blog/2018/11/mcommerce-statistics/
https://baymard.com/blog/checkout-flow-average-form-fields
https://baymard.com/blog/checkout-flow-average-form-fields
https://blog.globalwebindex.com/trends/device-usage-2019/
https://blog.globalwebindex.com/trends/device-usage-2019/

2

We clearly need a different approach – browser vendors have tried to solve this

with various autofill options, but these are not perfect and can end up with us entering

incorrect information. Service providers have also played a role too – there is a healthy

selection of shopping carts available, but many require you to sign up for a service, or

lock you into a single provider, which will cause issues in the event of service failure.

Question – is there any alternative available?

Anyone remember the days when shopping carts (and payment options) first

became available for online sites? This has mushroomed into a healthy industry, with

the likes of heavyweights such as Actinic or Shopify being popular choices for many site

owners.

However, these come at cost – not only do we have to pay for licensing but also allow

for support (and yes, software is never infallible!). There is also the matter of size – these

heavyweights may work well for larger sites, or where there is a good range of products,

but will be overkill for smaller outfits. In an age where simplicity is king, we need an

alternative: let me introduce you to the Payment Request API!

First introduced in early 2016, the Payment Request API is an emerging standard

being developed by the W3C in an attempt to simplify the payment process. Although

the look may vary between browsers, it was designed to provide a consistent approach

that is available natively in the browser - we can see an example of this in Figure 1-1:

Chapter 1 IntroduCIng the apI

3

It removes the need for big bulky carts and payment options and allows us to design

simpler, more efficient payment options that tie in to the cart. The latter is great, as

although we will need to subscribe to payment providers, the built-in cart contains a

mechanism which makes it simpler to hook different payment providers into a common

interface. This is something we will begin to explore in more detail from Chapter 2

onward, but for now let’s dive in and take a look at the benefits of using the Payment

Request API in more detail.

Figure 1-1. An example of the Payment Request API in action in Chrome

Chapter 1 IntroduCIng the apI

4

 Exploring the Benefits of Using the API
As with any new technology, I am sure that one of the first questions you will ask is – how

will it benefit me, my customers, and ultimately, my business? Well, there are a number

of reasons why the API should be considered:

• From a customer perspective, it makes for a vastly simplified flow

through the site, using details already stored in the browser with

just a few clicks (or taps), instead of having to enter them manually,

which can be a real pain particularly on small mobile devices!

Creating a one-click type purchase route was patented by amazon – this was worth
$2.4 billion annually in terms of revenue; now that this patent has expired, it’s open
to anyone to replicate it, which is easy to do with the payment request apI.

• Making use of the Payment Request API allows payment handlers

and service providers to create different types of payment options

which are easier to integrate into the browser, can be more secure

(with fewer points of failure), and ultimately help better serve

customers.

• Implementing the API makes it easier for merchants to set up a

variety of different payment options that use the same common

interface, instead of having to create ones which are bespoke and

might conflict with others.

If an option can help make our service offer easier to use for customers, then clearly

it is something we should consider! This is borne out by three key principles that are the

underlying foundation of the API:

• It’s easy and consistent to use – Web Payments store payment

and address details in the browser, which removes the need for

customers to fill out forms manually. These details are stored locally

in the browser; as the UI is implemented natively, customers will

see a familiar and consistent checkout experience, on web sites that

implement the API.

Chapter 1 IntroduCIng the apI

5

• The API is standard and open – gone are the days of closed source

or proprietary software; the API is an open standard for the Web that

can be implemented and modified as needed by developers.

• The API is also secure and flexible – this second principle is based

on using industry-leading payment technology to the Web, which can

easily integrate a secure payment solution.

This makes the API an even more attractive offer – we live in times where customers

are demanding easy to use sites that offer a simple and consistent experience, so

implementing the API is almost becoming essential! Okay, that comment was probably a

little biased, but anything that offers a better level of transparency, speed, and simplicity

for our customers should be at the top of the list for consideration.

 Breaking Some Common Misconceptions
Hopefully by now I’ve piqued your interest, and that you’re all ready and raring to learn

more about what the API can offer, right? There’s certainly much more to cover – we’re

only just getting started….

Before we go any further though, I have a small confession to make: I have to shatter

a few home truths! Yes, some of you might have read ahead, and formed certain – shall

we say expectations? – about what the API means for your site. I suspect some will be

misconceived though, so without further ado, let’s take a look at some of what those

misconceptions are, and see what it means for us in reality:

• Some of you may be worried about how well it handles different types

of payments, right? You need not fear – the API is designed to be an

open standard that can handle pretty much any type of payment,

such as points, e-money, or even bank transfers. If it doesn’t work in

the API, then it’s very likely that support has not been set up, and not

that it “works better or worse than other methods.”

Chapter 1 IntroduCIng the apI

6

• I suspect a good number of you may be thinking that once the API is

implemented, then you don’t have to do anything about processing

payments, or ensuring your site is PCI compliant, right? Well, I hate

to disappoint on both counts, but you as a developer will still need

to implement both! Remember – the API is about providing a simple,

consistent experience for your customers; treat it as a replacement

for the checkout form you might have otherwise used. You will still

need to ensure payments are processed correctly, and that your site is

PCI compliant.

We’ll revisit the subject of security later in this chapter.

• Hands up anyone who has done a quick Internet search, and come

across terms such as “Google Pay”, “Apple Pay”, and the like? Well, we

can make use of them in our cart, but it’s important to distinguish

that these are not the Payment Request API but the payment

providers that hook into our new cart.

It’s important to make sure we set clear expectations, and appreciate that the API is

not some silver bullet that will auto-magically create the perfect experience for us; it’s a

good step in the right direction that allows us to focus on the more important parts such

as adding in payment providers. There are still some elements we have to work out (such

as totals), but we can rest in the assurance that we’re not having to develop something

really complex that is super complicated to manage and support!

Okay – let’s move on: now that we’ve been introduced to the API and learned

something of the benefits of using it, let’s turn our attention to something a little more

in-depth: some of the terminology used when working with the API. Over the course of

this book, we’ll cover a number of key terms that relate to different processes or features

within the API; let’s take a moment to meet them for the first time.

Chapter 1 IntroduCIng the apI

7

 Understanding Terminology Around the API
Over the last few pages, we’ve covered how the API was designed to be an open, transparent

standard, into which we can connect all manner of different payment types. I also mentioned

the likes of Google Pay, Apple Pay, and so on – how do all of these fit together?

Well, it’s very straightforward – although there will be a fair amount of (two-way)

traffic, the API is just one part of the Web Payments standard:

• Payment Request API (PR API) – this provides a fast, efficient, and

consistent checkout through a native browser UI while at the same

time reducing the need to enter shipping and payment details at

every visit.

• Payment Handler API (PH API) – when using the API, we can

configure any number of web-based payment applications that act

as payment methods, using the Payment Handler API. These are

all provided via a common interface, which reduces the complexity

around building payment options into the checkout process.

• Payment Method Manifest – this acts as the reference book for

each payment method; it defines how it works and participates in the

payment ecosystem.

• Payment Method Identifiers – these let us define how strings are

used to identify each payment method, such as Google Pay, credit

cards, and the like. These allow anyone to create their own payment

method that can use URL-based payment method identifiers.

To put this into context, there are four players – we have customers, who use the

checkout process to purchase items. These are made available for sale on sites operated

by merchants and processed by the appropriate payment service providers (PSP),

based on payment handlers specified in the checkout process. We can see how these all

fit together in Figure 1-2.

Chapter 1 IntroduCIng the apI

8

Although there are only four key entities to any transaction that involves the Payment

Request API, there are nevertheless some important actions that take place between

each entity.

 1. At the point of purchase, the merchant presents a payment

request to the customer in the form of the Payment Request

API, using one of the various payment methods specified by the

payment method handlers.

 2. This can include credit card details saved in the browser or

payment handlers such as Google Pay, Alipay, or Samsung Pay. At

this point, the merchant can also request shipping details and the

customer’s contact information.

 3. At the point the customer chooses their preferred method of

payment – this might be saved credit card details or a web-based

payment app such as Google Pay. After the customer authorizes the

payment, the payment handler returns a response to the Payment

Request API, which relays it to the merchant site. (If the payment is

push type such as bank transfers or cryptocurrencies, the payment

is already processed when the merchant receives the response.)

Figure 1-2. The Payment Request API process explained
Source: Google.com

Chapter 1 IntroduCIng the apI

9

 4. The merchant site sends a payment credential to a PSP to process

the payment, initiates funds transfer, and verifies the payment on

the server.

 5. The PSP then processes the payment, by securely requesting a

funds transfer from the customer’s bank or credit card issuer

to the merchant; it then returns a success or failure result to

the merchant web site, based on the outcome of processing the

payment.

 6. The merchant web site notifies the customer of the success or

failure of the transaction and displays the next step, for example,

shipping the purchased item.

Now that we’ve covered the basic mechanics of the API, let us turn our attention

to how we should create a seamless experience for our customer. It has to be said that

there are still limits on what we can achieve using the Payment Request API; this said,

there are still some pointers we should consider, so let’s take a look at what is involved

in more detail.

 Considering the UX Experience
Up until now, we’ve focused at a high level on some of the key technical terms and

principles that are associated with the API; it is important to also consider the UX

experience for our users.

The Request Payment API is made up of two key UX elements. They are known as

the receipt view and the edit view, with an example of the former shown on the left in

Figure 1-3, and the edit view demonstrated on the right.

Chapter 1 IntroduCIng the apI

10

The receipt view affords the customer a chance to take a look at their payment

details, with the option to edit each as necessary, against each section. When the

customer taps (or clicks on) any of the call to actions from the receipt view, we enter the

edit view which will fill the screen and takes over the journey.

although we’ve talked about the experience from a mobile perspective, the same
concepts apply for those accessing the apI from a desktop pC.

Looking further afield, our number one priority must of course be to provide a

seamless experience for our customers, that keeps them coming back for more – with

this in mind, we should absolutely explore what the Payment Request API means in

terms of the UX experience for visitors to a site.

Figure 1-3. The receipt and edit views in the API
Source: Google.com

Chapter 1 IntroduCIng the apI

11

We may not be able to customize it completely (yet), but we can at least effect

some changes to help tailor the experience for our customers. Before we do so though,

let’s start with exploring some typical checkout flows, so we can see at what point the

Payment Request API fits into the overall flow of our checkout process.

 Exploring Checkout Flows
When using the Payment Request API, it’s important to understand the checkout flow –

customers are fickle creatures, and not everyone will want to follow the same path to our

checkout! So, what does this mean for a Payment Request API-enabled cart?

When a customer selects an item and clicks on Buy, on a Payment Request

API- enabled checkout, they enter the checkout flow, and the browser takes over. If details

have already been entered (such as payment or shipping options), then these will be

displayed by default, or customers can enter them if appropriate.

I would also recommend mapping out the user flow for each way that the customer

can get to the checkout. This is something we’ll explore further toward the end of the

chapter, but in summary, the common entry points that we would need to design for are

• The user is immediately directed to checkout.

• The user starts at the home page, views their cart, and is directed to

checkout.

• The user starts at the home page, looks at an item, and is directed to

buy now.

• The user starts at the home page, clicks to add an item to their cart,

and is directed to checkout.

• The user starts at the item and is directed to the checkout.

A visual representation though is clearly far more useful – for this we can use an

application such as Sketch (for MacOS), or Lunacy for those of you using Windows. It’s

a perfect opportunity for us to get started with something practical, so without further

ado, let’s take a look at what’s involved in creating a sketch diagram of an example flow

through an e-commerce web site.

Chapter 1 IntroduCIng the apI

12

 Sketching a User Flow Using Sketch
For the purposes of this exercise, we’ll use Lunacy, as this runs on the platform used

by the author; the look and feel may be different, but the principles will still be the

same. Before we get stuck in though, we need to avail ourselves of some icons – for this

exercise, you will need the following:

• House

• Empty cart

• Cart with plus sign

• Eye

• Credit card

• Group of people

• Down-facing triangle

There are plenty of online sites with icons you can download – as a start, try out

www.flaticon.com or https://icons8.com. Assuming we have the icons downloaded,

let’s make a start on our exercise:

USING LUNACY TO DRAW AN EXAMPLE FLOW

 1. We’ll begin by downloading and installing Lunacy – head over to https://

icons8.com/lunacy, then click the Windows Installer link to download the

setup file.

 2. once downloaded, double-click the file to begin the installation – for the

purposes of this exercise, accepting the defaults will be sufficient.

 3. next, go ahead and fire up the application – look for the mountain icon on the

left of the main drawing area; this is to add in images to our image.

 4. Click this image, then select the group of people icon we saved at the start of

this exercise – go ahead and position this to the top center of the drawing area.

this represents the customers to our site.

Chapter 1 IntroduCIng the apI

http://www.flaticon.com
https://icons8.com
https://icons8.com/lunacy
https://icons8.com/lunacy

13

 5. next, we need to draw a five-way split, to represent the different routes to the

checkout – for this, we can use the Line tool (two up from the Image tool in the

toolbox). Click this, then draw a five-way split, like an organigram – we should

start to see something like the screenshot shown in Figure 1-4.

Figure 1-4. A (part) completed flow diagram

 6. next, go ahead and add an instance of your home icon – put this at the bottom

of the second from left line; this route represents those who start at the home

page, then go to the cart before checking out from the site.

 7. repeat step 6, but this time put the icons at the bottom from the middle line

and the second from right line.

using the same principles from the last few steps, we can create our example flowchart to

look like the one shown in Figure 1-5 (shown overleaf).

Chapter 1 IntroduCIng the apI

14

once we’ve created our diagram, we can export the content easily – to this, follow these

steps:

 8. use your mouse to select all of the elements on the page, then select the export

tab on the right.

 9. In this tab, select Local files then 1x as the size and format and SVg as the

image format. Make sure also that as a single image is also selected.

Note You will see an option to select png; it’s worth noting that there have been
issues with how these display in some instances, hence the reason for selecting
SVg. SVg gives the added benefit of allowing elements to be restyled if needed.

 10. Click export object, then choose a suitable location to store the exported image

which you can then open in a browser to view the results.

Figure 1-5. Our completed mock-up of the purchase process

Chapter 1 IntroduCIng the apI

15

Although it takes a little practice, it is nevertheless a useful tool that we can use to

mock up the various routes that customers can take to get to our checkout.

This is not the only way we can use it – google has created a stickersheet with the

various elements that make up the Payment Request API, such as the buttons, shipping

section, labels for displaying the total amounts, and the like. It means we can mock up

what our final payment request will look like; it’s worth noting though that although we

can’t change the layout (such as moving shipping below taxes), we can at least see how it

will look when developing any project that makes use of the Payment Request API.

You can see more details and download the stickersheet at https://bit.ly/
2JIn9Y7.

Irrespective of how we design our checkout flow, the one thing we should absolutely

not do is to block a purchase when using the API – if we’re on a browser that does not

yet support it, then we should fall back to an alternative checkout process rather than

generate an error message.

Assuming we now have a handle on how our checkout process flows, we can now

turn our attention to customizing that experience. At this stage we shouldn’t limit

ourselves to just changing labels and the like in the cart – there is a host of other things

we can do, so let’s dive in and take a look at how we can improve the experience for our

customers.

 Customizing the UX
It’s important to understand at the outset that although the Payment Request API was

designed to provide a consistent look and feel across all browsers, you might be forgiven

for thinking that at first glance the same checkout may look different.

This is just down to how the API has been implemented in each browser, and that

browser vendors have not yet reached a common standard, in much the same way that

developers used to have to support vendor prefixes for some other styling attributes such

as border-radius.

This said, there are limits on what we are able to customize with regard to the look

and feel within the cart – it is possible this might change in future updates to the API, but

for now, Figure 1-6 shows the elements we can change.

Chapter 1 IntroduCIng the apI

https://bit.ly/2JIn9Y7
https://bit.ly/2JIn9Y7

16

So – what can we change? Let’s take a look:

 1. The icon at the head of the cart is taken from the site’s favicon; this

can be a high- resolution image but should be recognizable from

within the cart. Ideally, we should provide multiple icons so that

the browser can pick the most appropriate one for the available

screen estate.

 2. The name at the top of the cart is taken from the <title> tag of your

site, so should include the name of the site in the title.

Figure 1-6. Elements we can customize in the API

Chapter 1 IntroduCIng the apI

17

 3. This text label can be modified when constructing the Payments

Request API – we’ll touch on how, later in Chapter 3.

 4. This is the URL of your site.

 5. The price and currency are taken from the total specified in the

API construct.

Although not displayed as a separate section, we can also modify the shipping

label used – this can be selected from a preset list which includes shipping, pickup, or

delivery.

the elements highlighted in Figure 1-6 are based on using Chrome. other
browsers may contain different uI elements as well, or even labels for buttons such
as “pay” and “Cancel” – we’ll explore this topic further when we come to create
our own carts in Chapter 2.

We can, and should, take this further though – the preceding changes are easy to

implement, but I always maintain that the mark of a good developer is someone who has

an understanding of the bigger picture and not just the technical changes required to

configure the API.

I wouldn’t expect every developer to be a UX expert at the same time (indeed, you

will often find that larger companies have dedicated UX resources for this purpose), but

giving some thought to how we link to the API from our shopping cart is a useful skill to

have. With this in mind, let’s dive in further and take a look at some wider tips we can

follow, as a starting point for implementing the API within our site, in more detail.

 Some General UX Advice
When it comes to implementing the API within our site, it’s easy enough to simply drop

it in and not give any thought to the wider picture; we risk missing out on some easy

opportunities! To see what I mean, let’s take a look at a few low-hanging tricks that are

easy to implement, starting with checking small details such as the buttons we use on

the site.

Chapter 1 IntroduCIng the apI

18

 Button Design

One of the easiest changes we can make relates to the buttons we use – are they of the

right size, for example? There are several avenues we can explore, which include (but are

not limited to) the following:

• I would recommend keeping button labels short and aligned to

recognizable branding (as indicated in Figure 1-7) – the API is

designed to work on different devices where space may be at a

premium.

Figure 1-7. Adding Buy now buttons to create a quick experience

Chapter 1 IntroduCIng the apI

19

• When it comes to creating buttons (and particularly ones for

launching the API), we should make sure each touch target is wider

than the visual element. It’s harder to tap a button on a mobile device

and get a response if it is very small! For example, if our button

were 24 x 24 pixels square, then our touch target should be at least

48 pixels square or larger, depending on the size of the image. I’ve

mocked up an example of how we might show a button in a mobile

site, which clearly needs tweaking (Figure 1-8).

Figure 1-8. Determining the size of our buttons

 Shipping

Once a customer has bought something, we clearly need to arrange delivery – the

following list contains a few ideas of what we can easily check and consider fine-tuning

for optimal experience:

• When displaying the shipping options, we should also give some

context to when purchases will be delivered, if a delivery type is

selected (Figure 1-9).

Chapter 1 IntroduCIng the apI

20

This will help give confidence to the customer and reduce the risk of

selecting a date when the customer is not able to receive the goods.

• In an ideal world, we would automatically select the customer’s

default address; it is better practice though to allow them to select it

themselves. We then verify that it is correct and adjust what we display

as available shipping options (e.g., we don’t show international

shipping rates if the customer is based in your home country!)

There is a risk with automatically selecting an address – it might

be one to which you can’t deliver products to, which will only

serve to create friction with the customer and potentially result in

an abandoned sale.

Figure 1-9. Displaying delivery dates

Chapter 1 IntroduCIng the apI

21

 Navigation
Staying with the theme of making simple changes, another area we can examine is

navigation – there are a couple of ideas we can consider:

• Try to eliminate unnecessary steps where possible – keeping the

UI simple with clearly labelled Call to Action (CTA) buttons, such

as “Add to Cart” or “Download PDF”, for a technical schematic

download. Taking steps to make it a one-tap purchase and removing

the need to have to register will give customers a perceived increase

in speed when it comes to checking out. The API was designed with

speed in mind, so requesting these pre-saved details from the user

will avoid the need to require users to log in to your site.

• I would recommend testing your site under poor network

conditions – this will highlight any weak spots where content is not

displayed quickly and allow us to improve the checkout flow. A study

performed by Google found that 70% of users dropped a sale due to

content not rendering sufficiently quickly.

 Fallback Options
There may be instances where customers are not able to make use of the Payment Request

API, because their browser does not support it; this is becoming less of an issue though, as

most mainstream browsers (of the last 2-3 years) support it to some degree. However, for

those who still need to use older browsers, there are a couple of points to consider:

• It may seem as if we’re doubling up our work, but I would strongly

recommend providing a fallback option for customers whose browser

does not yet support the API – support is improving all of the time, so

this is likely to be a short- to medium-term requirement that can be

deprecated once the API is officially supported across browsers. (The

only notable exception is Internet Explorer, which has already been

superseded by Edge; the latter supports the API).

• For those browsers that do support the API, we will need to adjust the

experience for existing, already signed-in customers, to help get them

accustomed to the changes. We might, for example, include a button

marked “Buy Now” or “Pay with a new card” – this will give these

customers an opportunity to start using the API.

Chapter 1 IntroduCIng the apI

22

 Miscellaneous

Last but by no means least are a couple of items to consider – these don’t fall into any

particular group that we’ve covered thus far, but should still be explored:

• The choice of language we use when creating CTA buttons is key – it

may seem odd to need to consider this, but a small change in text can

have a profound effect on overall conversion and ultimately revenue

earned from your site. It’s also important to ensure consistency, and

that your choice makes sense to customers.

• Bear in mind that the API does not deal directly with additional

options such as gift cards or loyalty numbers – this is something

we will need to factor into any design, to help maintain a seamless

experience for our customers.

We’ll cover more on this subject in Chapter 3.

Phew – there’s a lot to consider there! Many of these tips should be common sense

though; we will go through all of these throughout the course of this book, so we can

understand what we need to allow for when configuring the API. Before we move on

though, there is one more key point we should cover off: feedback to customers! No one

likes a system that doesn’t tell you what is happening, so what can we do, particularly if

space is at a premium?

 Giving Feedback Throughout the Journey
Although we’ve already covered a good handful of ideas, there’s always room for one

more, and perhaps one of the most important – feedback!

The browser will already handle some aspects of processing each request, but to

ensure customers are kept informed, we should signal what is going on at each stage to

our customers. This might include:

• Informing the user if their payment has been aborted

• Preparing the user for the checkout process by providing a notice to

tell customers that you will be asking for payments

• Signaling to the user that payment was complete and successful

Chapter 1 IntroduCIng the apI

23

There are plenty of ways to do this, but one we might consider is to use the Snackbar

UI approach. People can normally read between 200 and 400 words a minute, so leaving

a short message of around 5 words near the foot of the screen will work perfectly, as

demonstrated in Figure 1-10.

Figure 1-10. An example of a Snackbar UI message

We should provide feedback throughout each stage of the journey – not just to

inform if the purchase was successful but also if there are any issues with details entered,

such as an invalid date format.

Chapter 1 IntroduCIng the apI

24

If you would like to learn more about Snackbar uI elements, then head over to the
documentation provided on the Material.io design site at https://material.
io/design/components/snackbars.html#usage.

Okay – let’s change tack and move on: before we do so, there is one topic which

should feature at the top of anyone’s list. How do we ensure our checkout process is

secure? It goes without saying that we as humans always fear what we don’t know, but

that said, there are a few things we can consider with regard to security, so let’s take a

look in more detail.

 Addressing Security Concerns
With this new API, we should be mindful of security – this is not just at a basic level on

the site but also as part of the wider picture with regard to customer transactions. When

operating the API, we must maintain a high degree of confidentiality and address any

privacy concerns, so that the customers can be confident in using the new technology.

Over time, there will be a number of security issues that are likely to surface,

including those that might appear from changes to the API – to get us into the mindset of

considering security, let’s start with a few pointers that we should consider:

• Our first concern is that of keeping information confidential. We’ve

already talked about how the API must be run in a secure context;

it’s worth noting that although the API does not directly support

encryption of data fields, we can consider encrypting individual

fields within payment methods to provide additional protection.

• What happens if we happen to lose a mobile device which has been

used to purchase products from sites that use the Payment Request

API? Should we consider the device lost and include those credit

cards that are saved on the device? In some respects, this is no less

secure than carrying the credit card in a wallet – the browser will

always ask for a CVC number which won’t be present, before a

transaction can be authorized.

Chapter 1 IntroduCIng the apI

https://material.io/design/components/snackbars.html#usage
https://material.io/design/components/snackbars.html#usage

25

• The provision of shipping details in a mobile device may be a

concern for some, particularly if on a mobile device that is stolen

or lost – although purchases cannot be completed without the CVC

number, it opens a risk of fraud if someone manages to hack into the

phone and can retrieve the details.

• The API states that no details such as shipping address should be

shared with any developer, unless the customer has given consent –

to help prevent identification of a customer, the API provides an

option to limit the details shared to allow a developer to calculate

shipping costs or tax information, but not enough to identify that

customer.

• Although the API has reached Candidate Recommendation stage,

there is still some inconsistency around how details can be stored –

for example, Chrome will allow details to be added without the need

for a password, whereas Edge requires one before anything can be

added or changed.

• When setting up payment methods to service providers, it is common

to add these via an iframe in code; this helps to reduce the risk of

hacking as the payment method runs in its own environment and is

not part of the host site. The Payment Request can also support this

option if needed; it has a number of methods which can be called to

help ensure that payment requests can be made safely and securely.

I am sure that over time, we will come across other similar concerns – it’s only when

the API becomes mainstream and we see more widespread support will we likely be

more comfortable in using the API. Don’t get me wrong – the API is very solid and can

absolutely be used now; it is just about making sure that we consider all aspects so that

any risks associated with new technologies can be reduced and hopefully eliminated

over time!

Chapter 1 IntroduCIng the apI

26

 Summary
Exploring a new API can be a double-edged sword – there is excitement in what we

might discover but also a certain amount of trepidation as to what this might mean for

our projects and what we must consider in order to make best use of the new feature.

Over the course of these pages, we’ve covered a host of ideas and techniques around the

API, as precursor to starting development – let’s take a moment to review what we’ve

learned in more detail.

We kicked off with a brief introduction of the API, before swiftly moving on to

exploring some of the benefits and misconceptions around this new technology. We

then covered off some of the basic principles around the API, before taking a high-level

look at mapping out and customizing the API. We then rounded out the chapter with a

quick discussion on some of the security concerns that we might face when using the

Payments Request API in a production environment.

We’ve certainly covered a lot of theory; now it’s time to take our first steps into

developing a solution using the API. It promises to be a real ride, with a lot to cover, so

without further ado, we’ll begin with looking at the basic code to initiate an API request,

in the next chapter.

Chapter 1 IntroduCIng the apI

27
© Alex Libby 2019
A. Libby, Checking Out with the Payment Request API, https://doi.org/10.1007/978-1-4842-5184-3_2

CHAPTER 2

Setting Up a Basic
Checkout
Now that we’ve been introduced to the Payment Request API, it’s time to get stuck into

developing code! We’ve already seen snapshots of what it looks like back in Chapter 1 –

before we can get down and dirty with our text editor, there are a few more tools we will

need first, in order to complete the exercises in this book.

 Some Basic Housekeeping
Before we touch on what we need, there is a key principle I want to share: where

possible, we will try to avoid downloading extra tools and make use of what we already

have available in our working environment. There’s a good reason for taking this

approach – I’m a great believer in keeping things simple, and not introducing extra tools

unless they are needed. There is a trade-off in taking this approach, where some tasks

may not be immediately be possible, but hopefully we can keep this to a minimum.

With this in mind, let’s take a look at the tools we need to avail ourselves of, to

help set up our working environment. I suspect many of you will already have suitable

alternatives in place, so feel free to skip steps if this is the case:

• The most important tool we need is a web server – the API must

be run in a secure environment. There are a couple of ways we can

achieve this:

• Use CodePen (https://codepen.io), or any available web space

if you have as long as it can be secured under HTTPs access.

• Make use of the local-web-server package which operates under

NodeJS (see the next section for details on installing it).

https://codepen.io

28

• To help store the results of each exercise, I would recommend

creating a new folder somewhere on your PC – for the purposes of

this book, I will assume you’ve done this, and that it’s called payment.

Please alter this accordingly, if you decide to use a different name.

• We of course need a decent text editor – there are plenty of

examples available, either as freeware, open source, or commercial

offerings. My personal favorite is Sublime Text, available from

www.sublimetext.com/3; it’s a little more expensive than most at $80,

but its flexibility is definitely worth the price! You may already have

one you prefer to use, so feel free to use that – if not, a good one to try

is the cross-platform Atom text editor, available for download from

https://atom.io.

• As an optional extra, I’ve also used a font to help provide some visual

interest to each demo – it’s the Montserrat font, available from the

Font Squirrel web site at www.fontsquirrel.com/fonts/montserrat.

You don’t have to include it if you don’t want to – the demos will work

perfectly fine without it!

Hopefully you’ve managed to get everything set up, or have suitable tools in place –

the key here is that we don’t need anything complex when working with the Payment

Request API; it’s all about simplicity, and working with what works best for your

development environment.

For the purposes of this book, I will assume use of both local-web-server for
desktop clients and CodePen for mobile browsers; we’ll touch on setting up and
using both later in this chapter. If you prefer, you can use CodePen throughout.

 Setting Up a Suitable Web Server
A key part of implementing the Payment Request API is a need to run it in a secure

environment – after all, we’re dealing with payment providers, so security is a must!

ChaPter 2 SettIng UP a BaSIC CheCkoUt

http://www.sublimetext.com/3
https://atom.io
http://www.fontsquirrel.com/fonts/montserrat

29

This may not be an issue on a production web site but isn’t so easy when testing

locally – fortunately there are several local web servers you can implement using

Node.js and NPM. A good example is the local-web-server package, available from

https://github.com/lwsjs/local-web-server; here’s how to install it:

INSTALLING NODE.JS AND LOCAL WEB SERVER

For this exercise, I will assume you don’t have node.js already installed – if you do, then

please feel free to skip the first two steps:

 1. the local-web-server package runs under node.js, so we must install this

first – go ahead and browse to https://nodejs.org/en/, then click the LtS

option to download an appropriate version for your platform.

 2. go ahead and run the install process – if prompted, please accept all defaults,

as this will be sufficient for the purposes of this exercise.

With node.js installed, we can now go ahead and install our web server, using these steps:

 3. go ahead and fire up a node.js terminal session – at the prompt, change the

working folder to our project folder.

 4. next, enter this command at the prompt, to set up a package manifest file:

npm init -y

 5. the resulting manifest will be displayed on screen – at the prompt, enter this

command to install our web server:

npm install -g local-web-server

 6. When complete, we can now fire up the server – to do this, go ahead and enter

this command at the prompt:

ws --https --hostname localhost

ChaPter 2 SettIng UP a BaSIC CheCkoUt

https://github.com/lwsjs/local-web-server
https://nodejs.org/en/

30

 7. If all is well, we will see confirmation of the UrL it is using to serve content, as

shown in Figure 2-1.

Figure 2-2. What we see when first browsing our project area...

Figure 2-1. Firing up our web server

 8. Finally, go ahead and copy the index.html file from the setup folder in the code

download, to our project area – this we will use to test that the page renders as

expected under a secured UrL.

If we browse to this URL in Chrome, we would hope to see something – indeed we

do, but not before we get this ugly message (Figure 2-2).

ChaPter 2 SettIng UP a BaSIC CheCkoUt

31

Ouch – that’s not a great sign! The truth be told is that even though the content is

indeed being hosted securely, the certificate we’re using can’t be independently verified,

hence the warning. This is something we can rectify – it does involve a few steps, but

fortunately the local-web-server package we’re using makes it easier to resolve than had

we’d been using a server such as Apache.

At this point I would suggest this is something worth completing – the demo will

work without it, but given that most search engines now favor secure content, it seems

sensible to replicate this in a local development environment! With that in mind, let’s

take a look at what is involved in properly securing our demo:

MAKING OUR SITE TRULY SECURE

For the purposes of this exercise, we’ll make use of the certificate that is already included

within local-web-server. once configured, this will allow us to browse to https://

localhost:8000 (8000 being the port it uses), without generating a certificate warning

in Chrome. We will assume for the purposes of this demo that we are working on Windows

(as this is the author’s preferred platform) – similar principles though can be used to secure

our test area for other browsers.

Please note these instructions are for setting up a development environment
only and should not be used for production-facing web sites.

With this in mind, let’s make a start:

 1. We’ll start by firing up the web server in httPS mode and browsing to our test

site:

ws --hostname https://localhost --https

 2. When you see the warning message, click advanced then Proceed to localhost

(unsafe).

 3. Press F12 to open Chrome’s Developer tools facility.

 4. next, click the Security ➤ View Certificate ➤ Details.

 5. Click Copy to File, then next, then Cryptographic Message Syntax

Standard – PkCS #7 Certificates (.P7B), then “next” again.

ChaPter 2 SettIng UP a BaSIC CheCkoUt

32

 6. Save the file to the root of our test area for now – it’s a temporary measure, to

allow us to complete the next step.

 7. now go ahead and pen Chrome Settings, then search for SSL and click Manage

Certificates.

 8. Click Import ➤ next, then change the file type to PCkS #7 Certificates, and

browse to the certificate you exported in step 6. Click next.

 9. Click “Place all certificates in the following store,” then click Browse, and select

trusted root Certification authorities.

 10. Click ok if you get a prompt to install the certificate; once you’ve clicked ok in

step 10, then click Yes then ok to accept.

 11. Click next, next and Finish, and restart Chrome for the change to take effect.

For those of you using Linux or MacoS machines, you can find similar instructions for

enabling SSL support at www.freecodecamp.org/news/how-to-get-https-working-

on-your-local-development-environment-in-5-minutes-7af615770eec/.

at this point, if we restart our web server and browse to the project site, we should not see

a warning – instead, we will see something akin to the screenshot shown in Figure 2-3.

Figure 2-3. Our project area, properly secured in Chrome

Okay – enough of the chitchat: it’s time for us to get stuck into some coding! The

first stage in our discovery of this API is to ascertain which browsers can support it, so

without further ado, let’s dive in and take a look.

ChaPter 2 SettIng UP a BaSIC CheCkoUt

http://www.freecodecamp.org/news/how-to-get-https-working-on-your-local-development-environment-in-5-minutes-7af615770eec/
http://www.freecodecamp.org/news/how-to-get-https-working-on-your-local-development-environment-in-5-minutes-7af615770eec/

33

 Checking Browser Support for the API
Although support for the Payment Request API is still in a state of flux, it is nevertheless

getting better as it edges closer to becoming a mainstream standard.

All of the main desktop browsers have implemented the API in some form – at the

time of writing, Safari and Chrome offer the most complete support, with other browsers

either missing support for a retry() method (7) or requiring visitors to enable support

before it can be used. We can see how this shapes up in Figure 2-4.

Figure 2-4. Browser support for the Payment Request API
Source: CanIUse.com

Now – in this age of mobile device usage, one might hope that support should be at a

comparable level, right? A quick check on CanIUse’s web site shows otherwise though –

support would appear to be very poor! Why might this be, I wonder?

A (partial) reason for this might be due to market share, and that features are unlikely

to be developed if usage is low – at the time of writing, CanIUse’s web site was reporting

that those mobile browsers which don’t support it account for less than 6% market share. In

comparison, three browsers form the bulk of mobile support for the API – iOS Safari, Chrome

for Android, and Samsung Internet – and that this accounts for over 40% of market share.

Ultimately though we should not let this put us off from using the API, particularly in

a mobile environment – support is still improving, and with current trends emphasizing

the need for speed and simplicity, it is very likely that support will get better over time.

ChaPter 2 SettIng UP a BaSIC CheCkoUt

34

 Enabling Browsers to Use the API
Irrespective of which browsers we target, we still need to know how to check that

they can support the API – fortunately this is a cinch, and can be achieved with the

following code:

if (window.PaymentRequest) {

 // We can continue with the Payment Request API

} else {

 // Here we could fall back to a legacy checkout form

}

Assuming the browser supports the API and the result of the preceding statement

is truthy, then we can implement it; otherwise we will need to fall back to a legacy

checkout form.

The use of the latter does raise an important question though – if the future

is around using the API, then do we need to implement a fallback mechanism?

The answer to this will depend on which browsers visitors to your site use, and

that checking your site’s analytics will help determine whether there is a need to

implement the fallback checkout form.

This is not about limiting which browsers your customers can use to transact with

your site but prioritizing the time and resource effort required to develop a solution for

those browsers that can support the API.

It’s equally important to note that some visitors to your site may use browsers where

support is disabled by default but can be can be enabled to allow use of the API. For this,

customers will need to change their browser configuration; it is unlikely people will do

this unless they know what they are doing! Fortunately the need to do this is diminishing;

at present most desktop and and mobile browsers support the API in some form, with

only Firefox requiring support to be enabled in its configuration.

For a more in-depth look at how to enable support, search for “browser enable
flags” on google; the article at www.thewindowsclub.com/about-chrome-
flags-config-edge-firefox is one of many that detail how to enable support
in most desktop browsers.

ChaPter 2 SettIng UP a BaSIC CheCkoUt

http://www.thewindowsclub.com/about-chrome-flags-config-edge-firefox
http://www.thewindowsclub.com/about-chrome-flags-config-edge-firefox

35

Okay – let’s move on: now that we’ve seen how to test our browsers for support for

the API, let’s get stuck into developing our first example! For the purposes of this next

demo, we’ll focus on using desktop browsers; we will cover off what to do with regards

mobile devices a little later on in this chapter.

 Creating a Simple Example for Desktop Browsers
So far, so we’ve seen how to check whether our browser supports the API; it’s time to get

to the core of creating our checkout cart! Over the next few pages, we’ll put together a

simple demo using CodePen (we’ll focus on working locally, later), before we dive into

the code in more detail to see how it is all put together.

CREATING OUR FIRST CHECKOUT

our demo makes use of a single image of chillis, taken from the Pexels stock library site at

www.pexels.com/photo/red-chillies-illustration-39390/; I’ve set this up as a

github image, to make it easier to access.

Let’s make a start on creating our demo:

 1. We’ll start by downloading a copy of the code download that accompanies this

book – go ahead and save it in our project folder that we created earlier in this

chapter.

 2. next, browse to https://codepen.io – we first need to add in our markup.

For this, go ahead and open a copy of firstcheckout.html from the code

download that we saved in step 1; copy the contents into the htML pane.

 3. If we run the demo by itself, it won’t look very pretty – to fix this, let’s add in

some styling. the code for this can be found in firstcheckout.css; copy

the contents into the CSS pane.

 4. to make it all work, we need to add in the magic that will display our checkout

form – the script code for this is in firstcheckout.js, so go ahead and copy

the contents into the JS window.

ChaPter 2 SettIng UP a BaSIC CheCkoUt

http://www.pexels.com/photo/red-chillies-illustration-39390/
https://codepen.io

36

 5. at this point we everything in place to display our checkout – go ahead and save

your work. If you have an account already with CodePen, then go ahead and save

it to your account; if you want to save it anonymously, then this is equally fine.

keep a note of the UrL for your CodePen demo – you will need it in the next exercise.

 6. With everything saved, we can now preview the results of our demo – go

ahead and click the red Buy Chillis button in the main pane; we should see our

checkout form appear, as indicated in Figure 2-5.

Figure 2-5. Our first checkout cartGranted, it needs work – it’s unlikely at this
stage that you will have any details already saved such as credit cards, for example!

however the basic principles are now in place; we’ve not needed to create any elaborate

carts or spend ages getting it displaying correctly. If we look through the code in more

detail, I suspect you might be wondering just what is going on within – don’t worry: all will

be revealed! the code contains some useful functionality that you will frequently see when

working with the aPI, so let’s take a moment or two to explore it in more detail.

ChaPter 2 SettIng UP a BaSIC CheCkoUt

37

 Exploring What Happened
If we take a close look at the code in our demo, you might be forgiven for thinking it

looks complicated, but in reality, it is simpler than it might appear! The HTML and

CSS markup is nothing out of the ordinary, and contains the basic elements you might

find when creating a product page (yes, we can add more, but it isn’t necessary for the

purposes of this exercise.)

Where the fun really starts is in the JavaScript code – let’s examine it block by block,

to see how it all fits together. We kick off by creating a simple configuration object that

defines the payment methods (or payment instruments) for our demo:

const methodData = [{

 supportedMethods: 'basic-card',

 data: {

 supportedNetworks: ['visa', 'mastercard', 'amex'],

 supportedTypes: ['credit']

 }

}];

We then set up some variables to store a number of values – in this instance, they

include both the input box and the value within, along with the subtotal displayed on

screen. We then create the (amount.addEventListener) event handler to update the

subtotal displayed on screen, when adjusting the number of items selected.

Next up comes the core of our code – the event handler that takes care of dealing

with clicks on the Buy Chillis button! In this, we start with defining some values for the

quantity, subtotal, tax, and shipping costs, before creating an object array that contains

the values and labels seen when displaying our cart.

We then get into the real meat of our code – at this point, we specify the options

constant, within which we require the customer to enter their email address

(requestPayerEmail: true). This is then tied together to form a new PaymentRequest,

before calling it using request.show and determining what should happen upon

completion or failure.

Okay – let’s move on: we have a working cart (of sorts), but it’s missing a lot of

functionality! How would we deal with errors, for example? What about customers who

decide to abort the process? We clearly need something in place to handle these little

“bumps,” so let’s dive in and take a look at how we might implement error checking

when using the API.

ChaPter 2 SettIng UP a BaSIC CheCkoUt

38

 Managing Errors in the Checkout
In an ideal world, we would expect everything to go smoothly, right? Absolutely...except we

live in reality, not something that is a 100% perfect utopia! Mistakes or errors can and do

happen – it’s up to us as developers to anticipate these possible scenarios and to build in

suitable controls to limit or protect the application or web site from falling over into a heap.

So, to ensure our site doesn’t completely collapse, what type of errors should we

look out for? There are plenty of opportunities that might arise, which might include the

following examples:

• The transaction payment fails to complete successfully.

• Selecting an invalid payment method.

• Not listening for changes in shipping, address, or payment (we’ll

explore shipping in more detail in Chapter 4).

• Customer selects a payment app such as Apple Pay for which they are

not registered (we’ll explore this more in Chapter 5).

• Timing out due to inactivity.

• Validating fields and failing due to invalid entries.

• Handling unsupported browsers.

In each instance, not only do we need to trap and manage the error but also

implement a suitable exit or opportunity to allow the customer to retry the purchase.

If we take a look at the code from our demo in more detail, we can already see a basic

level of error trapping in place (as highlighted):

 .then(console.log("Payment successful: " + JSON.

stringify(result)));

 }).catch(function(err) {

 console.error(err.message);

 });

This will trap any errors that occur, but it’s not perfect – the response we get back

won’t distinguish between customers cancelling a valid purchase attempt, against a

genuine failure, for example.

ChaPter 2 SettIng UP a BaSIC CheCkoUt

39

We can absolutely improve on this in all manner of different ways; this might be as

simple as adding a notification message through to ensuring we select a valid shipping

option or ensuring we have entered a valid delivery address. We will revisit this later in

Chapter 4 when we explore how to manage shipping; for now (and to give you a flavor of

what is possible), we’re going to adapt our previous demo to add in some simple error

handling.

For our next demo (which comes in three parts), we’ll add in some simple

messaging, a timeout safety mechanism, and a check to ensure we at least have one

method of payment available to us in our checkout form – let’s take a look and see what’s

required to make this happen in more detail.

ADDING SIMPLE ERROR HANDLING

remember that CodePen demo you created earlier? Well, we need it again – fire it up, before

continuing with this exercise:

 1. our first step is to add in a placeholder for our messaging – for this, go ahead

and add the following immediately before the closing </div> in the htML

pane of our demo:

 2. the first change we will make is to add in functions that will display suitable

messaging, depending on the outcome of our transaction. the first one is to

confirm a successful transaction – for this, go ahead and add it below the

amount.addEventListener() event handler, leaving a blank line in-

between:

function displaySuccess() {

 document.getElementById("message").classList.add("success");

 document.getElementById("message").innerHTML = "\u2714

Payment received - thanks for your order!";

}

You can find the larger JavaScript functions listed in the errorhandling.js
code file in the accompanying code download, along with the CSS styling in
errorhandling.css.

ChaPter 2 SettIng UP a BaSIC CheCkoUt

40

 3. the next function will be for those instances where an error or fault appears –

we hope this is rare, but nevertheless we still have to allow for issues to

crop up! With that in mind, leave a line, then add this function in below the

displaySuccess() function from the previous step:

function displayError() {

 document.getElementById("message").classList.add("failure");

 document.getElementById("message").innerHTML = "\u2716

There was a problem with payment";

}

 4. our third function takes care of those instances where customers have reason

to abandon the checkout process – for this, add in the following code below the

displayError() function from the previous step:

function displayCancel() {

 document.getElementById("message").classList.add("info");

 document.getElementById("message").innerHTML =

"🛈Request has been cancelled";

}

 5. We have one more ancillary function to add in – this one takes care of

displaying general messages, not already covered in the previous functions. go

ahead and add the following code in, below the displayCancel() function:

function displayMessage(mesg) {

 document.getElementById("message").classList.add("info");

 document.getElementById("message").innerHTML = "🛈

" + mesg;

}

 6. now that we’ve added in functions to take care of displaying messages, we

need to add a reset so that when messages are displayed, styling from one

message doesn’t clash with subsequent messages. go ahead and add the

following line of code, as indicated:

document.querySelector('.pay-button').onclick = function (e) {

 document.getElementById("message").className = ";

 if (window.PaymentRequest) {

ChaPter 2 SettIng UP a BaSIC CheCkoUt

41

 7. to bring our messaging to life, we need to add in some styling – for this, go

ahead and add the following styles in to the CSS pane in our demo:

#message { float: left; margin-top: 10px; width: 320px; display:

none; padding: 10px; font-weight: bold; border-radius: 5px; }

#message.success { background-color: #ace1af; color: #008000;

 display: block; }

#message.success > span { float: left; font-size: 30px; color:

#008000; padding: 0px 10px; }

#message.failure { background-color: #FFD1DC; color: #ff0000;

 display: block; }

#message.failure > span { float: left; font-size: 30px; color:

#ff0000; padding: 0px 10px; }

#message.info { background-color: #FCF75E; display: block; color:

#000000; line-height: 20px; }

#message.info > span { float: left; font-size: 30px; color: #000000;

padding: 0px 10px; }

 8. Save your demo – we’ve completed the first part of our changes.

our next change takes care of adding a check to ensure that at least one method of payment

is available for use in our checkout form. First, we’re going to take the opportunity to tweak

some of the variables in our code, to make them a little more relevant:

 1. at the top of our demo, change the const methodData = line of code to this:

const paymentMethods = [{

 2. For the payment details block, change this line as indicated:

 const paymentDetails = {

 total: {

 label: 'Total due',

 3. on or around line 60 of the JS pane, change the line of text for our payment

options to this:

const paymentOptions = { requestPayerEmail: true};

ChaPter 2 SettIng UP a BaSIC CheCkoUt

42

 4. We now need to update our Payment request object – for this, replace the code

on or around line 61, with this:

 let request = new PaymentRequest(paymentMethods, paymentDetails,

paymentOptions);

 5. next, remove this block of code – we’re going to replace it with an updated

version that performs the check for the presence of at least one stored method

of payment being available:

 //Show the Native UI

 request

 .show()

 .then(function(result) {

 result.complete('success')

 .then(console.log(JSON.stringify(result)));

 }).catch(function(err) {

 console.error(err.message);

 });

 } else {

 // Fallback to traditional checkout

 }

 6. We can now add in our updated event handler that takes care of displaying the

checkout form – for this, add in the following function, which now includes the

canMakePayment() check:

 if (request.canMakePayment) {

 request.canMakePayment().then(function(result) {

 if (result) {

 //console.log(request);

this section handles a successful transaction, logging a suitable response to

console and displaying a customer-friendly message on screen:

 request.show().then(function(result) {

 result.complete('success').then(function() {

 console.log(JSON.stringify(result));

 displaySuccess();

 });

ChaPter 2 SettIng UP a BaSIC CheCkoUt

43

In the event we have an issue or the user cancels the request, we handle it

gracefully by logging a response to console or displaying confirmation that the

request has been cancelled:

 }).catch(function(err) {

 if (err.message == "Request cancelled") {

 displayCancel();

 } else {

 console.error(err.message);

 displayError();

 }

 });

 } else {

 console.log('Cannot make payment');

 displayMessage("Sorry - no valid payment methods

available");

 }

 }).catch(function(err) {

 console.log(request, err);

 });

 }

 7. We’re almost done – the last stage is to add in a function to take care of a

security timeout; this cancels the process after 20 minutes of inactivity:

/* time out requests after 20 mins of inactivity */

 var paymentTimeout = window.setTimeout(function() {

 window.clearTimeout(paymentTimeout);

 request.abort().then(function() {

 document.getElementById("message").classList.add("info");

 document.getElementById("message").innerHTML =

"🛈 Request has been timed out due to

inactivity";

 console.log('Payment timed out after 20 mins.');

 }).catch(function() {

 console.log('Unable to abort, because the user is currently in

the process of paying.');

 });

 }, 20000 * 60); /* 20 minutes */

ChaPter 2 SettIng UP a BaSIC CheCkoUt

44

 8. go ahead and save your work – if we preview the form, then hit the Buy Chillis

button followed by Cancel; we will see the outcome displayed in Figure 2-6.

Figure 2-6. Our demo with updated messaging

Phew – a fair few changes, even if they were to add in some relatively simple

functionality! We’ve only touched the surface of what is possible though; we will cover

more options when we visit the subject of adding in shipping in Chapter 4. In the

meantime, our demo covers some key points we should be aware of, so let’s dive in and

review the changes we’ve made to our demo in more detail.

 Understanding the Changes to Our Demo
Adding in error handling can open a real minefield of questions – what should we

handle? Is an error something we should allow for, or would we be designing a solution

that in effect encourages bad behavior, for example? That aside, there is some basic

handling we can absolutely include – we’ve picked up on three relatively simple

examples as our starting point.

ChaPter 2 SettIng UP a BaSIC CheCkoUt

45

We began by adding in a set of functions (and associated styling) to inform

customers when a transaction has been successful, has cancelled, or has resulted in a

problem. By themselves, these functions are not particularly complicated; they simply

render an appropriate message on screen. If we were to optimize our code, these could

(and should) be refactored as one generic function – I’ve written them out in full for

clarity in our exercise.

The real magic though happens when we fire the request object in response to

clicking the Buy Chillis button – we first trigger canMakePayment() to ensure that we have

at least one valid method of payment already stored within the browser. The outcome of

this (a Boolean value) determines if we then show our checkout cart (using show()) or if

a lack of payment methods (or instruments) mean we must render a message back to the

user to this effect.

Assuming a payment instrument is available, we then show() the checkout form;

once the customer hits Pay, we trigger complete() to determine if the purchase is

successful or a failure. We then display the appropriate message – for the purposes of

some of the messages, we also log an entry to the browser’s console, although you would

very likely want to remove this log entry in a production environment.

The third and final part takes care of timing out the basket after 20 minutes, if there

has been no activity on the part of the user; we use a standard JavaScript setTimeout()

function to achieve this, followed by a request.abort() method to cancel the process if

there has not been any activity.

 Adapting for Use on Mobile Devices
In this age of increasing use of mobile devices, we absolutely must consider those

customers who prefer not to be tied to a desktop or who might need to order goods

remotely (e.g., while on a customer site). Question is: what do we need to do to make our

example work on a mobile device?

At this point, I suspect you’re probably thinking that we have to change the

configuration object defined in the previous exercise, right? Well, I hate to disappoint,

but we actually don’t have to do anything! Okay – perhaps that is something of a glib

response: we don’t have to make any changes to the API itself but do need to ensure our

styling still works in a mobile context.

ChaPter 2 SettIng UP a BaSIC CheCkoUt

46

To test this, try running the CodePen demo you created in the previous exercise on

a cell phone – to get the best effect, I would recommend switching the view to full page

view. If all is well, we should see something akin to the screenshot shown in Figure 2-7.

Figure 2-7. Our example cart shown in mobile format

In this instance, our example doesn’t look materially different – we still have the

same elements, although if truth be told, we clearly need to restyle our main call to

action, so it fits a little better above the fold!

Where we see the real differences is in the next screen – try tapping on the Buy Chillis

button, and we are presented with the same information as before but presented in a

format adapted for mobile. Figure 2-8 shows what appears when we run our previous

example on a cell phone.

ChaPter 2 SettIng UP a BaSIC CheCkoUt

47

The display may look a little different, but the same information is still displayed –

there is one key difference though: on a mobile device you may find sections such as the

order summary in a collapsed state by default. Other than this, we’ve not had to make

any material changes to how our cart works – indeed, if we’d had to make any, then these

would have to have been to styling. If we allow for this during the original design of the

site, then we effectively don’t have to make any additional changes at all, as the design

would allow for both desktop and mobile use.

We’re now at a point where we have a basic cart working for both desktop and

mobile devices, with a modicum of error handling in place to handle typical errors

generated during cart use. We’ve already explored the code used in this demo, but this

only touches the surface of what is possible, so let’s take a moment to dive in and explore

the API in a wider context, so we can understand more about some of the settings used

to configure our demo.

Figure 2-8. Our demo cart displayed on a mobile device

ChaPter 2 SettIng UP a BaSIC CheCkoUt

48

 Exploring How the API Works in Detail
Throughout the course of this chapter, we’ve worked through the steps required to create

a basic checkout form using the Payment Request API – the goal being to learn how to

quickly and effectively implement the API for your customers, to help create a seamless

journey with the minimum of fuss.

Although we can configure the API in a variety of different ways to fit our

requirements (such as using Bitcoin, subscription payments, and the like), the basic

principle of setting up the API revolves around one statement. To put it into context, we

can use the code we created back in the CodePen demo from earlier in this chapter; that

statement would be this:

const request = new PaymentRequest(paymentMethods, paymentDetails,

paymentOptions);

We can specify individual settings for each parameter in turn – using the code from

our demo, let’s take a look at how each parameter is constructed in turn, beginning with

payment methods.

 Payment Methods
The first parameter in our PaymentRequest object, paymentMethods, is a list of the

payment methods that our site will support, in the form of an array variable. This array

is made up of two components – supportedMethods (which is compulsory), plus an

optional data property.

It’s important to note that we should always specify the basic-card method, which

represents standard credit cards and is supported as a standard payment option across

all browsers that implement the API. At the same time, we need to also include the

supportedNetworks property, which defines the various credit cards that are accepted

on our application:

const paymentMethods = [{

 supportedMethods: 'basic-card',

 data: {

 supportedNetworks: ['visa', 'mastercard', 'amex']

 }

}];

ChaPter 2 SettIng UP a BaSIC CheCkoUt

49

However, this is not the only method we can use – we can add in additional, URL-

based, methods such as Google Pay, Alipay, or Apple Pay, using a second instance of the

supportedMethods parameter:

supportedNetworks: ['visa', 'mastercard', 'amex']

 }, {

supportedMethods: 'https://examplecompany.com/pay

}]

These methods only need us to specify the URL to the payment provider’s service

and do not require any additional data values.

 Payment Details
The second parameter, paymentDetails, has to be created as an object and takes care

of specifying the payment details for the transaction. For this, we must include as a

minimum the total value, which specifies the total payment due from the customer.

The remaining values such as subtotal, shipping, and sales tax are optional and can

be specified as needed:

const details = {

 total: {

 label: 'Total due',

 amount: { currency: 'USD', value: (subtotal + tax + shipping).

toFixed(2) }

 },

 displayItems: [{

 label: 'Sub-total',

 amount: { currency: 'USD', value: subtotal.toFixed(2) }

 }, {

 label: 'Delivery',

 amount: { currency: 'USD', value: 3.99 }

 }, {

 label: 'Sales Tax',

 amount: { currency: 'USD', value: tax.toFixed(2) }

 }]

};

ChaPter 2 SettIng UP a BaSIC CheCkoUt

50

It’s worth noting that although we can specify the currency we’re using here, these

are just references only; the amount listed is not updated automatically if we had

decided to change the currency being used in our demo. For this, we would have to work

out the equivalent amount manually in code and post that value instead.

We’ll cover the subject of handling different currencies, in Chapter 3.

This is also true of other updates such as displaying discounted prices; although our

code includes some basic calculations, the API itself does not calculate values. It is up

to us as developers to ensure that we pass the correct values into the API at the point

of defining the details object. Equally, if we don’t include the total value as a required

property, this will generate an error similar to the one displayed in Figure 2-9.

Figure 2-9. The error generated when total is missing

This does not affect the remaining labels that we’ve added in our demo – these are

optional and can be specified as needed in each site.

 Payment Options
In comparison, the next parameter, paymentOptions, is a simple object that indicates

which payment options a customer has to provide, such as a shipping or contact email

address. It takes the following format, where we can specify one or more values:

const options = { requestPayerEmail: true };

Specifying an email address is not the only option available to us; there are six in

total that we can choose to use:

var options = {

 requestShipping: true,

 requestPayerEmail: true,

 requestPayerPhone: true,

ChaPter 2 SettIng UP a BaSIC CheCkoUt

51

 requestPayerName: true,

 shippingType: 'delivery'

};

It’s important to note that with shippingType, we are limited in what can be

specified as a title – we can choose to use shipping, delivery, or pickup. It is also case

sensitive too; specifying pickup as an example will throw the error shown in Figure 2-10.

Figure 2-10. Specifying an invalid shippingType value

Although we are limited in what we can pass as a value for shippingType, this does

not stop us from specifying something a little more customer-friendly in the label! We

might choose to use something like “Delivery” or “Collection,” depending on our needs;

as long as we pass the correct value for shippingType, then it will work fine.

 Wrapping it All Together
Now that we’ve specified each of the settings that we need for our checkout cart, it’s time

to bring it all together by initiating an instance of our PaymentRequest object, request.

This creates a Promise as part of a three-step process – the first is to show() the checkout

form, followed by completing the payment and indicating its success, or switching to the

catch() statement if it detects a failure or the visitor cancels the request:

 //Show the Native UI

 request

 .show()

 .then(function(result) {

 result.complete('success')

 .then(console.log("Payment successful: " + JSON.

stringify(result)));

 }).catch(function(err) {

 console.error(err.message);

 });

ChaPter 2 SettIng UP a BaSIC CheCkoUt

52

 } else {

 // Fallback to traditional checkout

 }

The remaining three lines in bold are not part of the Payment Request execution;

these belong to the check we made at the very beginning, to verify that our browser can

indeed support the Payment Request API:

if(window.PaymentRequest) {

...

 } else {

 // Fallback to traditional checkout

 }

The three sections we’ve covered, payment details, options, and methods, all of

which make up the basic for a Payment Request API call. To fully understand how it all

fits together, take a look at Figure 2-11, which shows the various elements of the payment

process as a flowchart.

Constructor “created” “interactive” User accepts
payment request “closed”show ()

PaymentResponse. prototype. retry ()

abort () or error

Figure 2-11. The various code elements of the payment process

There is a lot more we can add though, such as shipping options, making sure that

we handle any changes or errors, and of course integrating the all-important payment

processing! We’ve touched on some of this during the course of this chapter but will

expand on this later in the book.

ChaPter 2 SettIng UP a BaSIC CheCkoUt

53

 Summary
When one begins to use a new API for the first time, there is always a sense of

trepidation – will it work as expected...what support do I need...how does it work? are

some of the question we might (rightly) want to ask! Over the course of this chapter

we’ve begun to explore the API for the first time; we’ve covered some useful techniques,

so let’s take a few moments to review what we have learnt.

We kicked off our foray into the API with a look at how we can check that target

browsers support the API, and what to do for those that don’t (such as providing a more

traditional checkout form). Next up, we created a basic example of the API as a CodePen

demo, with a view to exploring each of the key elements and how they fit together.

We then moved onto understanding some of the errors that might pop up when

using the API, before building in some additions to our previous demo to show how this

might be achieved. We then explored how the API might work on mobile devices and

learned that despite requiring some style changes, the core of the API needed little or

no change to work on this platform. We finally rounded out the chapter with a look at

the API in detail, revisiting each section of the earlier demo in detail and understanding

some of the wider options we can use at this stage in the development process.

Let’s get a move on to our next topic: now that we’ve created our basic example,

let’s make sure that if our customers change their mind, it will handle and update any

changes accordingly. We’ll see how, and more, in the next chapter, so hold on tight...!

ChaPter 2 SettIng UP a BaSIC CheCkoUt

55
© Alex Libby 2019
A. Libby, Checking Out with the Payment Request API, https://doi.org/10.1007/978-1-4842-5184-3_3

CHAPTER 3

Configuring and
Customizing Our
Checkout
Over the course of the previous two chapters, we’ve been introduced to the Payment

Request API and created our first checkout form using the API; if all is well, we now have a

basic understanding of how it works and seen how easy it is to create something without

the use of additional software...or for that matter, being tied into any ancillary service!

Okay, granted, we would need the latter when it comes to integrating payment

providers, but we’d need at least one with a traditional checkout process, so that

doesn’t count! The key point here though is that we’ve created something that uses a

native feature in more recent browsers (from 2016 onward), using nothing more than a

standard text editor.

This aside, we’ve only scratched the surface of what is possible – now that we have

the basics in place, it’s time for us to take things further and explore how we can tweak

the functionality to our needs. Before we do so, there are two things we should do: the

first is to make sure we have a payment method set up. Let’s take a look at that first,

before setting up our demos locally, so we don’t have to rely on CodePen!

 Setting Up a Payment Method
If we have to do anything in this chapter, this next step is arguably the most important –

we need to make sure we have a valid method of payment set up in our browser.

For the purposes of this book, we’ll assume that you’re using Chrome – we’ll be

adding in fake credit card details, so that the forms we develop operate correctly.

56

Let’s take a look at what needs to happen:

 1. First, fire up Chrome, then click the three dots, and select Settings.

 2. On the next screen, enter Payment in the search box, and press Enter.

 3. It will list all it can find – one of these options will be Manage

Payments; click it.

 4. On the next screen, click Add; enter any fake credit card details

you like, and hit Save.

 5. You can now close the Settings window.

With a new payment method in place, we can now proceed with setting up a local

version of our original demo.

 Taking the Next Step
For our next demo, we’re going to set up an instance of the Payment Request API to work

locally, using the local-web-server package that is available to run under Node.js. Of

course, if you have a preference for a different web server, then by all means use this – it must

be set up with SSL support for our demo to work. Let’s take a look and see what is involved.

MIGRATING TO LOCAL SETUP

For this demo, we’ll assume that you use the hostname value of “localhost” – if you decide to use

something different, then please adjust the steps accordingly. With this in mind, let’s make a start:

 1. We’ll begin by extracting a copy of the next step folder from a copy of the

code download that accompanies this book; save the folder to our project area

that we created back in Chapter 2.

 2. Next, go ahead and fire up your text editor, then open payment.js – we need

to add in the script code that forms the basis of our checkout form. There is

a fair bit to add, so we’ll do it block by block, beginning with the window.

onload() function to initiate our code:

window.onload = function(e) {

}

ChapTer 3 CoNFiguriNg aNd CusTomiziNg our CheCkouT

57

 3. Next, we need to add in the function that take care of initiating the payment

methods that we will support (and first saw in the Codepen version of this

demo) – for this, go ahead and add in the following lines, immediately before

the closing bracket of our window.onload() function:

 const paymentMethods = [{

 supportedMethods: 'basic-card',

 data: {

 supportedNetworks: ['visa', 'mastercard', 'amex']

 }

 }];

 4. immediately after the paymentMethods object, we now need to add in the

various functions that will take care of displaying messages in our demo. We

saw these back in the Codepen version, so let’s add in the following after

the closing double brackets of the paymentMethods const, leaving a line in

between:

function displaySuccess() {

 document.getElementById("message").classList.add("success");

 document.getElementById("message").innerHTML = "\u2714

Payment received - thanks for your order!"; }

function displayError() {

 document.getElementById("message").classList.add("failure");

 document.getElementById("message").innerHTML = "\u2716

There was a problem with payment";

}

function displayMessage(mesg) {

 document.getElementById("message").classList.add("info");

 document.getElementById("message").innerHTML = "🛈

" + mesg;

}

ChapTer 3 CoNFiguriNg aNd CusTomiziNg our CheCkouT

58

 5. We now come to the core part of our code – the event handler that fires the

payment request api, when we hit on our Buy Now button. First, leave a line

after the previous function, then add in this:

document.querySelector(".pay-button").addEventListener("click",

function(e) {

})

 6. staying within the event handler block, we now need to add the meat of our

demo – this is a substantial block, so we’ll do this bit by bit. First up comes a

declaration to clear any classes set against the message <div> element, which

we need to add immediately after the opening line of the pay-button click

event handler:

document.getElementById("message").className = ";

 7. Next up comes the start of the window.PaymentRequest block – this starts

by defining a number of variables, to handle calculations for shipping, tax,

subtotal cost, and total values:

 if (window.PaymentRequest) {

 let subtotal = Number(document.querySelector(".total-price").

innerText);

 let shipping = 2.99;

 let tax = (subtotal + shipping) * 0.175;

 let total = Number(subtotal) + Number(tax) + Number(shipping);

 8. We now need to add in the paymentDetails array object which takes care of

defining the values we see in our checkout form:

 const paymentDetails = {

 total: {

 label: 'Total due',

 amount: { currency: 'USD', value: total.toFixed(2) }

 },

 displayItems: [{

 label: 'Coffee capsules',

 amount: { currency: 'USD', value: subtotal.toFixed(2) }

 },{

 label: 'Shipping',

ChapTer 3 CoNFiguriNg aNd CusTomiziNg our CheCkouT

59

 amount: { currency: 'USD', value: 2.99 }

 }, {

 label: 'Sales Tax',

 amount: { currency: 'USD', value: tax.toFixed(2) }

 }]

 };

 9. Now that our paymentDetails block has been defined, we can initialize

it – we first need to set the paymentOptions variable, before calling the

payment request api instance as request:

 const paymentOptions = { requestPayerEmail: true };

 let request = new PaymentRequest(paymentMethods, paymentDetails,

paymentOptions);

 10. We’re almost done – the contents of this final block is responsible for displaying

the checkout form on screen and determining what action to take, based on

what our customer selects:

 if (request.canMakePayment) {

 request.canMakePayment().then(function(result) {

 if (result) {

 request.show().then(function(result) {

 result.complete('success').then(function() {

 console.log(JSON.stringify(result));

 displaySuccess();

 });

 }).catch(function(err) {

 if (err.message == "Request cancelled") {

 displayMessage("Request has been cancelled");

 } else {

 console.error(err.message);

 displayError();

 }

 });

 } else {

 console.log('Cannot make payment');

 displayMessage("Sorry - no valid payment methods available");

 }

ChapTer 3 CoNFiguriNg aNd CusTomiziNg our CheCkouT

60

 }).catch(function(err) {

 console.log(request, err);

 });

 }

 }

 11. at this point we now have all of our code in place, so go ahead and save this file

as payment.js in the js subfolder under the folder you created back in step 1.

 12. We can now preview the results of our work, so in order to do this, fire up a

Node.js terminal session and change the working directory to the next step

folder within our project area.

 13. at the prompt, go ahead and enter this command:

ws –hostname localhost --https

it will look similar to the screenshot shown in Figure 3-1.

Figure 3-1. Sarting up our local web server

 14. Fire up Chrome (you will need to do this in Chrome; otherwise you will get ssL

errors displayed). Now go ahead and browse to https://locahost:8000/

index.html to preview the results of your work. if all is good, we should see

something akin to the screenshot shown in Figure 3-2, once we’ve added at

least one coffee capsule to our basket and clicked on Checkout securely.

ChapTer 3 CoNFiguriNg aNd CusTomiziNg our CheCkouT

61

Although there were a fair few steps involved in setting up our demo, it was worth

the effort to transition to a local setup – this gives us more flexibility in what we can do

in terms of developing our final solution. There is a fair amount of code involved in

this demo, so let’s take a few minutes to work through it and understand how it all fits

together.

 Understanding How it Works
Assuming we’ve now had a moment to catch our breath, we should take a look at our code

in more detail – it might seem a lot, but the key parts are all within the payment.js file,

which includes code that we’ve already seen working in our previous CodePen demo.

Figure 3-2. Testing our local web server

ChapTer 3 CoNFiguriNg aNd CusTomiziNg our CheCkouT

62

We kick off this part of the demo with an event handler to load the API as soon as the

window is ready – our first task is to define an array object paymentMethods, to store the

various supported methods of payment.

Up next comes a set of functions to take care of the various messages that we display,

such as for cancelled requests, a successful transaction (or heaven forbid) when our

transaction results in a failure. We then initiate an event handler that fires up the API at

the point of clicking our pay button.

Once inside the event handler, we first check to make sure that the browser supports

the API (if not, it would fall back to a traditional checkout process, had we included one).

If it is supported, we then define a number of variables to handle storage of values such

as shipping, before defining the paymentDetails array object that is required for the API.

We then define a constant that covers the various options which require information

from our customers (in this case, requestPayerEmail), before firing up the checkout

form and directing the API to respond with the appropriate outcome based on the

success or failure of our transaction. It finishes with displaying a message, if the API has

been initiated, but is unable to proceed – this might happen if our customers have yet to

embrace storing credit card details within the browser, for example!

Okay – let’s move on: now that we have a demo set up to work locally, it’s time we

took things to the next stage and fine-tuned our example to turn it into a more complete

solution.

 Customizing the API Flow
A key point to remember is that the API itself is somewhat dumb: we can’t use it to

automatically work out discounts for example. At first, you might be forgiven for thinking

that this means you can’t implement features such as gift cards or discounts – this

however is not the case!

The trick to this is remembering that as part of building up the configuration object

that forms the API, we have to provide suitable labels and values, and that these need

to be worked out before we create our API object. At the time of writing, it is likely you

will need to specify these values within the same function; otherwise you may end

up with instances where some values such as the initial “Goods” or “SubTotal” do not

display correctly. As long as we create our API object correctly, then there are lots of

opportunities available to hook in and provide extra features around the API.

ChapTer 3 CoNFiguriNg aNd CusTomiziNg our CheCkouT

63

Over the course of this chapter, we’re going to explore some examples of how we might

add in some of these features that you might typically see on an e-commerce web site,

within the confines of the Payment Request API. There are effectively two types of changes

we can make – those that relate to the form and those that relate to the payment process.

Yes, it is true that they depend on each other: stay with me on this, and I will explain all!

 Configuring Our Checkout Form
Okay – so what do I mean by two different types? Well, it is true that for a properly

configured checkout, it’s unlikely you can have some without others, but there is a

difference between the two.

I mentioned that some fall into the group of form, and others relate to the payment

process, right? Well, the key difference is at what point they are displayed in the overall

process. The form ones are displayed at the point of clicking “Checkout” or “Buy Now” –

but we have not launched the payment process by clicking that button.

The remainder falls into the group relating to the payment process: here we specify

different requirements such as choosing a shipping method or asking the customer for a

contact email address. Let’s begin with taking a look at the form-based options in more

detail first.

 Setting a Display Icon
We’re going to start with a really easy change, although there is a sting in the tail – I will

come to that in a moment. For now, let us consider a typical favicon link we might use:

<link rel="icon" href="favicon.png" sizes="512x512" type="image/png">

Seems a sensible option to use, right? We can insert this within the <head> section

of our markup – assuming the favicon is correctly located, you might assume this would

display both in the browser tab and potentially in the checkout form, right?

Well – here’s the sting in the tail: unfortunately, it does not yet appear anywhere

in the checkout form! The only place we will see it is on the browser tab; the Payment

Request working group have deemed this to not be part of the official specification for

the API but as something best left for browser vendors to implement. At the time of

writing, there doesn’t appear to be any appetite for implementing this in browsers such

as Chrome, but this might change in the future.

ChapTer 3 CoNFiguriNg aNd CusTomiziNg our CheCkouT

64

As a side note if you’re interested in seeing the comments about this, take a
look at issue 707 on the W3C’s github issues log for the payment request api, at
https://github.com/w3c/payment-request/issues/707.

 Handling Different Currencies
Take another look at our code, and in particular the paymentDetails object – notice

how we specify two values for each amount property? In each case we have to provide

both the currency and value; in our demos thus far, we’ve specified USD or United States

dollars as our currency. This clearly won’t work for everyone – not everyone has a web

site operating from the United States, and neither do we want to saddle our customers

with extra costs such as credit card exchange fees!

Unfortunately, the API doesn’t include support for automatically converting

currencies for different countries; this is something we have to build into the shopping

cart process prior to calling the API. Thankfully there is a trick we can use here, where

instead of hard coding our currency value as indicated in this code extract:

const paymentDetails = {

 total: {

 label: 'Total due',

 amount: { currency: 'USD', value: total }

 },

...we can specify a variable placeholder to which we assign our unit of currency.

It means that we can effectively work with lots of different currencies, including even

Bitcoins! In reality though we may choose to support a select few; this might be based on

where you have offices or what customers ask for as feedback.

a good reference for countries and their currency codes can be found at
 www.currency-iso.org/dam/downloads/lists/list_one.xml.

This is an easy change to implement, which will use the chilli demo we’ve already

seen (but with slightly refactored code). Let’s take a look and see what is involved to

bring multicurrency support to our projects.

ChapTer 3 CoNFiguriNg aNd CusTomiziNg our CheCkouT

https://github.com/w3c/payment-request/issues/707
http://www.currency-iso.org/dam/downloads/lists/list_one.xml

65

HANDLING MULTIPLE CURRENCIES

Before we get going on this demo, make sure you have saved a copy of the currencies

folder from the code download that accompanies this book, to our projects area.

in preparation for the demo, i’ve refactored the hTmL markup slightly, to make it easier to

reference prices in code and to render currencies within their own elements and not as part of

the same element as the prices or totals. i’ve also added in some markup – you can see it in

the following and at line 10 in index.html:

 <div id="currencies"><img src="images/

united-states.png">USD | <img src="images/united-kingdom.

png">GBP</div>

With this in mind and once you’ve saved the folder, follow these steps:

 1. We first need to add in two variables to cache these elements in code – for this,

open payment.js then add in the following two lines of code on or around line

18, just after the let subTotalText =.... declaration:

document.getElementById("gbp").classList.add("selected");

document.getElementById("usd").classList.remove("selected");

 2. Next up, we need to add in two event handlers for our icons – these will take

care of converting the prices from usd to gBp and vice versa:

gbp.addEventListener("click", function() {;

 console.log("GBP");

 document.getElementById("unitcost").innerText = 3.89;

 document.getElementById("gbp").classList.add("selected");

 document.getElementById("usd").classList.remove("selected");

 let els = document.querySelectorAll('.currency');

 els.forEach(function(el) {

 el.innerText = "£";

 });

 amount.click();

});

ChapTer 3 CoNFiguriNg aNd CusTomiziNg our CheCkouT

66

usd.addEventListener("click", function() {

 console.log("USD");

 document.getElementById("unitcost").innerText = 4.99;

 document.getElementById("gbp").classList.remove("selected");

 document.getElementById("usd").classList.add("selected");

 let els = document.querySelectorAll('.currency');

 els.forEach(function(el) {

 el.innerText = "$";

 });

 amount.click();

});

 3. With event handlers in place, we now need to update the currencies displayed

in our checkout form. For this, go ahead and add the following code,

immediately before the const paymentDetails = { block, leaving a line

blank between each block:

 if (selected == "$") {

 currencyValue = "USD";

 } else {

 currencyValue = "GBP";

 }

 4. We also need to add in two variables to help with taking care of switching

currencies – go ahead and add in these two lines, immediately after the let

total =... line. make sure you leave a line blank after the second variable.

 5. We now need to update our payment request api array object, so it recognizes

which currency to display when the form is displayed. go ahead and replace all

instances of 'USD' with currencyValue, so you end up with this:

 const paymentDetails = {

 total: {

 label: 'Total due',

 amount: { currency: currencyValue, value: total }

 },

 displayItems: [{

 label: 'Sub-total',

ChapTer 3 CoNFiguriNg aNd CusTomiziNg our CheCkouT

67

 amount: { currency: currencyValue, value: subtotal }

 }, {

 label: 'Shipping',

 amount: { currency: currencyValue, value: 2.99 }

 }, {

 label: 'Sales Tax',

 amount: { currency: currencyValue, value: ax.toFixed(2) }

 }]

 };

 6. The last step is to add in some styling, to make our demo look presentable –

add these at the end of the styles.css file in the currencies folder:

/* currencies update */

#currencies {

 float: right;

 width: 150px;

 display: inline-block;

}

#gbp:hover, #usd:hover { cursor: pointer; }

#currencies > a { line-height: 24px; }

#currencies > a.selected {

 font-weight: bold;

 color: #8b0000;

}

#currencies > a:hover {

 color: #ff0000;

}

#currencies > a > img { width: 24px; height: auto; display:

inline-block; padding-right: 5px; vertical-align: bottom; }

 7. Finally, we can save our work and preview the results. Fire up a Node.js

terminal window, then change the working folder to the currencies folder

within our project area.

ChapTer 3 CoNFiguriNg aNd CusTomiziNg our CheCkouT

68

 8. at the prompt, go ahead and enter this command:

ws –hostname localhost --https

 9. When Node confirms the web server is running, browse to https://

localhost:8000/index.html; we will see the new flags in place (Figure 3- 3).

Figure 3-3. Our chillis demo with currency flags in place

Figure 3-4. Displaying prices in pounds sterling...

 10. Click the gBp flag to display prices in pounds sterling, then add a few to the

basket, and hit the Buy Chillis button. if all is well, we will see something akin to

Figure 3-4, where we now display prices in pounds sterling, not us dollars.

Although our demo was somewhat simplistic in nature (after all, who would only sell

one product, I wonder?), it serves to show the type of changes we need to allow the API

to support multiple currencies. There are a few points we do need to consider though, so

let’s dive in and take a look at the code in more detail.

ChapTer 3 CoNFiguriNg aNd CusTomiziNg our CheCkouT

69

 Exploring Our Code in More Detail

So – allowing for the fact that the API doesn’t support conversion between currencies,

how did we add in that support? Well, the trick here is to do the conversions before we

feed the numbers into the API; as long as we don’t include the currency denominators

separately, the API doesn’t really what the totals represent; they only make sense when

we display the values on the form.

We kicked off by adding in a <div> element to host both the currency text labels

and flag icons; the code was refactored before the start to ensure that the price and total

values were displayed without the currency denominators in the same element (it makes

it easier to switch out each value for its alternative). Once this was in place, we added

two event handlers (usd.addEventListener and gbp.addEventListener) – these took

care of updating the price displayed on screen, swapping over the currency units, and

triggering an update on the total amount displayed on screen.

We then added a check to see what value was stored in currencyValue – this was

switched between GBP and USD, depending on which flag was clicked. To be sure that

the correct currency was displayed on the form, we also replaced all instances of ‘USD’

with currencyValue – this would then display the relevant currency on screen, as a

three-letter code.

As an aside, it’s worth noting that at the time of writing, we can’t use commas as

decimal separators within the API – doing so will generate an error similar to that in

Figure 3-5.

Figure 3-5. Trying to display values with comma separators...

It does mean that for countries which use the comma as a decimal separator, we

will have to revert to using standard decimal notation for the time being. The author has

seen indications that it should be possible to display something using standard browser

localization, but with an ever-changing API that is yet to be fully ratified as a standard,

documentation on this subject is still somewhat scarce!

ChapTer 3 CoNFiguriNg aNd CusTomiziNg our CheCkouT

70

For more details on what is currently accepted in the standard, please
refer to the W3C documentation, available at www.w3.org/TR/payment-
request/#validity-checkers.

 How Can We Handle Multiple Items Better?
By now, I’m sure you can’t have failed to notice that our demos have been somewhat

limited in terms of the number of items we’re selling – there are very few outlets that will

only sell one item!

The vast majority of shops will sell multiple items – hundreds, if not thousands: we’re

not going to go to that extreme though. Instead, we will expand the size of our demo

shop to include a few more products; over the course of the next few pages, we’ll use

coffee pods as our example.

Now – you may be asking what this might have to do with the API, right? Well, there’s

a good reason for this: when it comes to initiating the checkout form, it has an effect on

what we display in the form. Take a look at the screenshot shown in Figure 3-6 – at the

moment, this displays all of the items we need to see, such as a subtotal, shipping, and

sales tax.

ChapTer 3 CoNFiguriNg aNd CusTomiziNg our CheCkouT

www.w3.org/TR/payment-request/#validity-checkers
www.w3.org/TR/payment-request/#validity-checkers

71

If we start adding more products to our cart, we might want to display each – there is

a limit though in terms of what we can display on the checkout form. Although we might

want to display a list of all products at the time of sale, the API was never designed to

display more than a top-level summary. It does not matter how many items we want to

display – we are limited to only showing the first three plus the total.

We can display a longer list of items by clicking the arrow to the right of the order

summary, but this comes at the expense of seeing an entry such as “plus 3 more items...”

appear in the list. If we’re not careful, this could result in us not displaying the key critical

values at all or forcing customers to have to click through to the order summary page to

see them.

Figure 3-6. A typical checkout form using the API

ChapTer 3 CoNFiguriNg aNd CusTomiziNg our CheCkouT

72

What does this mean for us? Well, it does raise some important questions on what

we can (or should) display – for example, we know that the overall total will always be

shown, but what about subtotals, or entries such as discounts? There is one trick in our

favor though: the order of items displayed on screen is controlled by the displayItems[]

array in our code. To see what this means for us, let’s dive into a quick walk-through that

will work through how changing the order can affect what we see on screen and help us

understand how best to display the relevant information effectively.

CHANGING THE ORDER

For this demo, we’ll use a copy of the change order folder that is available in the code

download; go ahead and save a copy of this folder to our project area, before following

these steps:

 1. First, fire up our local web server, then change the working directory to the

change order folder, and browse to https://localhost:8000/index.html.

 2. Click add to Cart under the Fortissimo option, until you have at least 14

capsules added to cart.

 3. go ahead and click Checkout securely – you should see the details listed in

Figure 3-7.

Figure 3-7. Viewing the order of items

ChapTer 3 CoNFiguriNg aNd CusTomiziNg our CheCkouT

73

at first glance, it seems straightforward enough, right? after all, our payment

processor is really only interested in the final figure of $6.76; the form details what the

customer has selected, plus the costs for the products and shipping.

This raises a couple of questions – what about tax (at least for those who need to

know the figure)? The cost of the capsules isn’t the original cost: this figure includes

a $2 discount, but how does our customer know that this has been applied? The

simple answer is that they can always click through to the details – this doesn’t feel

great though!

For argument’s sake, if we had had clicked through, we would have seen the details

listed in Figure 3-8.

Figure 3-8. Our form in more detail

granted, this will show the details our customer might need, but it means “one more

click” is needed – can we do anything about this?

Well, in some respects we can: we might, for example, move the entries around:

 4. revert back to payment.js stored in the js subfolder, under the change order

folder – look for this code:

,{

 label: 'Sales Tax',

 amount: { currency: 'USD', value: tax.toFixed(2) }

}

ChapTer 3 CoNFiguriNg aNd CusTomiziNg our CheCkouT

74

 5. move it up the block, so your code displays this:

displayItems: [{

 label: 'Coffee capsules',

 amount: { currency: 'USD', value: subtotal.toFixed(2) }

},{

 label: 'Sales Tax',

 amount: { currency: 'USD', value: tax.toFixed(2) }

 },{

 label: 'Shipping',

 amount: { currency: 'USD', value: 2.99 }

}, {

 6. save the file, then refresh the browser window, and re-add the same 14

capsules as we did earlier in the walk-through.

 7. Click Checkout securely – if all is well, you will see the change effected in

Figure 3-9.

Figure 3-9. Our updated checkout form

here you will see the shipping entry has been replaced by the entry for sales tax – moving

elements around in the request block will dictate which elements are displayed and in which

order within the form.

ChapTer 3 CoNFiguriNg aNd CusTomiziNg our CheCkouT

75

Although this walk-through only required some simple changes, it has a profound

effect on the overall experience for our customers – some customers may not care a

lot about the details they see, while others want to see everything up front and will

potentially abandon the cart if what they see affects their confidence level. This raises

some important questions for us to consider, so let’s pause for a moment to explore what

this means in practice.

 Exploring What this Means for Our Form

When using the API, we have to bear in mind that the summary was only designed to

display three items – it will have an impact on what we display to our customers.

This means that we have to consider what information we display at this point – do we

simply display the total cost and shipping and include extras such as discounts in the total

cost figure? Our payment processor will only ever be interested in the final figure owed

by the customer; we could potentially bundle everything into one entry which would be

displayed alongside the total amount (the latter being a required field for the form).

Equally we may not really care about the order in which items are displayed – this

might sound flippant, but we may take the view that as customers can see the total

amount present, many will only be interested in this figure and skim over the rest. If this

is the case, then we can choose which order items are presented and let the form handle

how these are displayed in the summary and detail views.

Whichever route we decide to take, it’s important to ensure that we make the labels

sufficiently clear that we might be combining values (such as tax and shipping), or that

in the case of discounts, we either display our subtotal and a separate entry for discounts

or use a label that indicates the subtotal already includes the discounted amount. I

suspect that customers may leave feedback to indicate what they would like to see, so it’s

worth bearing this in mind when choosing the overall order!

 Accepting Gift Cards and Discounts
Ah yes – in this age of the Internet, it’s a now de facto expectation that prices will be

cheaper; if one has a discount or promotion code, then so much the better!

No matter what discounts or cards we offer, we still have to allow for them when

working with the Payment Request API. The API doesn’t include a dedicated feature

to manage these as such; the only discounts (or charges) it can handle are related to

payment by certain methods such as credit cards, which we’ll cover later in this chapter.

ChapTer 3 CoNFiguriNg aNd CusTomiziNg our CheCkouT

76

However, this isn’t an issue for us though: this type of discounting is something

we would have to manage prior to initiating the Payment Request API. The key here is

to remember that in terms of payment, we only need to provide limited details to our

payment processor. We can work out and display the discount separately, as long as the

final figure sent through reflects the discount, shipping, and taxes that the customer

needs to pay.

This brings us nicely to our next demo – for our next exercise we’re going to

implement a basic 20% discount for every 10 coffee capsules a customer buys from our

demo store. I know this may not represent reality (after all, 20% is a big discount!), but

it’s the concept behind it that counts: we’re taking off the discount before we fire up the

API and pass in the values to be displayed on our form. Let’s take a look and see what’s

involved in more detail.

ACCEPTING DISCOUNTS

For this demo, make sure you’ve saved a copy of the discounts folder from the

accompanying code download, into your project area. i’ve already added in some markup

ready for this exercise – you can see it at or around line 12 in index.html:

<input id="amount" type="number" value="0" min="0">

 <div id="getmore">Add 2 more to get discount....</div>

Let’s make a start with the following steps:

 1. We first need to adjust our script – go ahead and open payment.js in your

text editor.

 2. Next, we need to declare a variable to store the amount of discount given. add

in this highlighted line, below the variable that caches the quantity shown in the

amount input:

let qty = parseFloat(document.getElementById("amount").value);

let discountamt;

 3. Next, we can now add in the calculations to determine if the discount

message should be displayed, as well as work out what the discount amount

should be. add this in before the closing double bracket of the amount.

addEventListener event handler:

ChapTer 3 CoNFiguriNg aNd CusTomiziNg our CheCkouT

77

 // apply discount if over 10, or prompt if over 8

 var disc = document.getElementById("amount").value;

 if ((disc > 7) && (disc < 10)) {

 document.getElementById("getmore").style.display="block";

 } else if (disc == "10") {

 discountamt = Number(0.2 * subtotal);

 document.getElementById("getmore").innerText = "A 20% discount

will be applied at checkout"

 document.getElementById("getmore").style.display="block";

 } else {

 document.getElementById("getmore").style.display="none";

 }

 4. although we have our event handler in place, it won’t be any good if we’re not

passing through the right values to the api. For this we need to add in some

additional calculations – look for this line (around line 54):

let qty = document.getElementById("amount").value;

...then add in the following below it:

if (discountamt == undefined) { discountamt = 0.00; }

let subtotal = Number(qty * 4.99);

let totaldisc = Number(subtotal - discountamt);

let shipping = 2.99;

let tax = (subtotal + shipping) * 0.175;

let total = Number(totaldisc) + Number(tax) + Number(shipping);

 5. We have one more alteration to make – in the displayItems block (starting

on or around line 70), add in this code as highlighted:

 amount: { currency: 'USD', value: subtotal.toFixed(2) }

}, {

 label: 'Discount',

 amount: { currency: 'USD', value: discountamt }

}, {

 label: 'Sub Total (after discount)',

ChapTer 3 CoNFiguriNg aNd CusTomiziNg our CheCkouT

78

 6. go ahead and save your work – we can now preview the results. Fire up a

Node.js terminal window, then change the working folder to the discounts

folder within our project area.

 7. at the prompt, go ahead and enter this command:

ws –hostname localhost --https

 8. When Node confirms the web server is running, browse to https://

localhost:8000/index.html; if all is well, we should see something akin

to the screenshot, shown in Figure 3-10, once we’ve added ten bags to our

basket.

Figure 3-11. A 20% discount has been applied

Figure 3-10. Applying a 20% discount...

 9. if we then begin the checkout process, we will see a discount has been applied

(Figure 3-11) – to see proof that the prices have been adjusted, click the arrow

to the right to display the full order.

ChapTer 3 CoNFiguriNg aNd CusTomiziNg our CheCkouT

79

In the high pressure, high stakes world of retail, customers always expect some form

of discount – if these are not offered, then you would need a pretty compelling offer to

survive!

Over the course of this exercise, we’ve worked through implementing the basics

of such a discount – granted, we might not want to offer quite as much in reality, but

nevertheless the same principles still apply, no matter the size or specifics of the

discount. Let’s take a look at how we implemented this functionality in more detail.

 Exploring Our Code in Detail

To set up a discount similar to the one we’ve developed required us to make changes

in several places – we kicked off by adding in the basics of the banner in our markup,

along with a message to encourage customers to buy more if they didn’t have enough to

qualify.

We then moved onto payment.js – we added a placeholder variable, discountamt,

to store the amount of discount we will give; we then adjusted the amount event handler

to determine if our placeholder message should be displayed or kept hidden. The next

change was to put in a check to ensure that discountamt would be zero if the customer

didn’t qualify; otherwise we adjusted our shipping and tax calculations to ensure that the

discount was applied at the right point. We finished off by amending the paymentDetails

constant, to include an extra label to display if a discount had been applied, and the

amount this equated to in dollars.

Thinking further afield, there are some important considerations we should bear

in mind: what about security of discount codes? The API is pretty dumb, inasmuch as

it doesn’t contain support for validating such codes, so the responsibility falls to us

developers to ensure this happens as expected.

Our demo was a simple affair to illustrate the principles of applying a discount

and feeding that through to the API – you will notice that the more we play with it, the

more we see some oddities in terms of what is (or is not) applied. For example, it hides

the message if we add more than ten bags – clearly our demo would need further work

before we could consider putting into production! The key lesson here is that not only

is it important to ensure we pass the right values but that also our discount only kicks in

at the right point and that we are clear with how it should be applied, particularly when

using the API.

ChapTer 3 CoNFiguriNg aNd CusTomiziNg our CheCkouT

80

 Configuring Our Payment Process
Okay – let’s switch focus: so far, we’ve explored some of the changes we might

implement to fine-tune the experience for our customers, before they hit our checkout

form. However, this is just part of the process: what about once our checkout form is

displayed?

In a similar vein, we can easily make changes to the payment process – for example,

how about updating the “Buy Now” button to reflect that the browser is configured for

the API and can allow a quick checkout? We’ve already touched on some of the options

we can elect to use such as requesting email addresses – let’s take a look at some of

the other things we can add, beginning with validating the options we set around the

information we ask for from customers.

 Asking for Details from Customers
We’ve already touched on implementing this next tweak, but as it’s an important one, it’s

worth covering again – configuring the details we ask for from our customers.

This might sound daft that we’re trying to change something we’ve already covered,

but it’s important to understand that these options will not apply across the board to

all projects. When considering requirements for each checkout form that we create, we

should determine which values are required and which we can do without for that project.

In most cases, the information specified will ask customers for their name, phone

number, and email address:

const options = {

 requestPayerName: true,

 requestPayerPhone: true,

 requestPayerEmail: true,

 requestShipping: true,

 shippingType: "delivery"

};

In each case, we will need to provide onchange-type handlers to allow for customers

who change their selected option; we’ll delve into this in more detail later in this chapter.

The odd-one out though is shipping – not only do we need to allow for customers to

change their mind when selecting but also to ensure that our checkout form is updated

to reflect any changes in prices or totals as a result of changing the selected shipping

ChapTer 3 CoNFiguriNg aNd CusTomiziNg our CheCkouT

81

method. This is something we’ve already touched on in previous demos; we’ll explore

shipping as a subject in more detail in Chapter 4, but for now, let’s have a quick look at

how changing this option affects what is displayed in our checkout form.

ADDING THE REQUEST... OPTIONS

For this demo, we’ll use a copy of the options folder that is available in the code download –

save this at the root our project area, then follow these steps:

 1. go ahead and open payment.js within the options folder – look for this line

on or around line 49:

const paymentOptions = { requestPayerEmail: true};

 2. edit it as indicated – we’ll add in the options we covered earlier in this section:

const paymentOptions = {

 requestPayerName: true,

 requestPayerPhone: true,

 requestPayerEmail: true,

 requestShipping: true,

 shippingType: "delivery"

};

 3. save the file – if we then preview our results in a browser, add a few packs of

chillis to the basket, and click our Buy button, we’ll see a typical checkout form

appear. Take a closer look at this section – here, you may see some details,

similar to those indicated in Figure 3-12.

Figure 3-12. Displaying our updated options

ChapTer 3 CoNFiguriNg aNd CusTomiziNg our CheCkouT

82

if it shows nothing, then:

 4. Click the arrow to the right, and hit the add Contact info button to add in some

details.

 5. When you’re done, hit done, and navigate back to the summary page.

Notice how we now see our chosen contact details present, alongside our name? At

first glance this might look like we’ve added all of the available options; however, there is

a problem.

The sharp-eyed among you should see that we’ve only included three options –

what’s happened to the shipping ones? By rights, there should be at least five label

changes present, but we only have three! The reason for this is that the shipping options

are the oddity among the pack; they need a little more configuring before we see the full

benefit of what they can offer.

We’ll complete the shipping options in more detail in the next chapter but suffice to

know that we can enable the others as needed – their need will depend on what your site

sells and whether it makes sense to have one of the options enabled for your site.

 Adding Iframe Support
Our next change isn’t an obvious one, unless you look at the markup we’re about to use

in more detail – the use of iframes.

There are some instances where we might need to use iframes to host our checkout

form – a typical example might be when we’re linking to a payment provider which

requires their use, as part of any service provision or agreement. If we don’t make

any changes, then the checkout form will appear, but inside the iframe – clearly this

won’t work!

Thankfully there is a simple fix we can implement to get around this; as part of the

iframe, we simply need to provide the allowpaymentrequest parameter when defining

the iframe element:

<iframe src="URL_INCLUDING_PAYMENT_REQUEST_CALL" allowpaymentrequest></iframe>

Making this change will allow the checkout form to display correctly – our next

exercise will show how easy it is to effect this change.

ChapTer 3 CoNFiguriNg aNd CusTomiziNg our CheCkouT

83

ADAPTING TO USE IFRAMES

Before we begin, make sure you have a copy of the iframe folder that is available in the code

download that accompanies this book – save it as iframe in our project area, then follow

these steps:

 1. First, fire up your text editor, and add the following lines to a new file – these

will serve as our host file for calling the api demo:

<!DOCTYPE html>

<html>

<head>

 <title>Viewing Payment Request API via an iframe</title>

 <link href="https://fonts.googleapis.com/css?family=Montserrat"

rel="stylesheet">

</head>

<body>

 <h2>Viewing a Payment Request API via an iframe</h2>

 <iframe src="index.html"></iframe>

</body>

</html>

 2. save this as iframe.html at the root of the iframe subfolder.

 3. if we were to run the demo now, it will run the product page, but the checkout

cart will fail – for it to work, we need to add in this tag immediately after

"index.html":

allowpaymentrequest

 4. To make our demo look a little more presentable, add the following style block

immediately before the closing </head> tag in our code.

 <style>

 body { font-family: 'Montserrat', sans-serif; }

 h2 { display: block; width: 565px; margin: 30px auto; }

 iframe { width: 570px; height: 1000px; margin: 20px auto 20px

auto; border: none; display: block; }

 </style>

ChapTer 3 CoNFiguriNg aNd CusTomiziNg our CheCkouT

84

 5. go ahead and save the file – we can now preview the results. Fire up a Node.js

terminal window, then change the working folder to the iframe folder within

our project area.

 6. at the prompt, go ahead and enter this command:

ws –hostname localhost --https

 7. When Node confirms the web server is running, browse to https://

localhost:8000/iframe.html. if all is working as expected, we will see

our shop appear; the checkout form will appear correctly once we’ve clicked on

a few products and hit the Checkout securely button.

A simple change, yet a critical one if we are forced to have to use iframes – the

addition of one keyword is enough to allow the API to operate correctly in the browser,

if the target page is being hosted in an iframe element elsewhere on the site. This would

be the case if we decided to use the API but had to host it away from its host page for

security reasons; making this change will allow the API to work as expected.

 Handling Changes
Throughout the course of this chapter, we’ve worked through a number of options that

we can add to fine-tune the experience for our customers. There is something missing

though: what if customers want to change their mind about something they select?

This might be anything from changing email addresses, right through to changing

shipping options. This might particularly be the case if they’ve chosen a paid for

shipping option, and later realize that if they waited an extra day, they can get shipping

for free!

Don’t worry: we will cover this in more detail. Changes to details such as email

address and phone number arguably fall under this category too, so we’ll explore these

and more in the next chapter, and changes to payment methods (including those that

incur extra charges) in Chapter 5.

ChapTer 3 CoNFiguriNg aNd CusTomiziNg our CheCkouT

85

 Handling Extra Information
Next time you purchase something online, take a careful look at the checkout process –

have you ever needed to provide extra details to the retailer, to help with processing and

delivering your order? This might be anything from a free text field to dedicated tick

boxes with preset details. It doesn’t matter how this is set up though; it’s more important

that we have some form of option to allow customers to pass on extra details if needed,

and when it is made available in our code.

To see what I mean, the best way is to add something into one of our previous

demos – that’s a perfect excuse for another demo, methinks! Let’s take a look at what is

involved in more detail.

ADD IN DELIVERY INSTRUCTIONS

For this demo, take a copy of the next steps folder from the code download, and save it as

extra info into your project area, then follow these steps:

 1. First, go ahead and open index.html from within the folder, in your usual

text editor.

 2. We need to add in our free text area that will serve to capture any messages –

for this, add the following code, as highlighted:

 <div id="message"></div>

 <div id="instructions">

 <h2>Add delivery instructions</h2>

 <p>Have any special requirements? You still have time to let us

know:</p>

 <textarea id="additional-details-container"></textarea>

 <button id="delinstruct">Submit</button>

 </div>

 3. We now need to display this at the appropriate point – go ahead and add in this

code, immediately after the call to the displaySuccess() function:

 console.log(JSON.stringify(result));

 displaySuccess();

 const additionalDetailsContainer = document.getElementById

('instructions');

ChapTer 3 CoNFiguriNg aNd CusTomiziNg our CheCkouT

86

 additionalDetailsContainer.style.display = 'block';

 additionalDetailsContainer.focus();

 });

 4. To finish it off, we just need to add some styling – add the following

declarations at the bottom of the styles.css file in the extra info folder

created at the start of this exercise:

#instructions { display: none; }

#instructions > h2 > span { float: left; }

textarea { width: 325px; height: 200px; }

#delinstruct { background-color: white; border: none; border-radius:

24px; cursor: pointer; font-size: 16px; padding: 16px 32px; width:

170px; background-color: #c21807; color: #ffffff;

 letter-spacing: 2px; font-weight: 700; margin: 20px 0 0 170px;

 display: block; margin-bottom: 20px; }

 #delinstruct:hover { background-color: #f31e09; }

 5. go ahead and save your work before previewing the results. Fire up a Node.js

terminal window, then change the working folder to the extra info folder

within our project area.

 6. at the prompt, go ahead and enter this command:

ws –hostname localhost --https

 7. When Node confirms the web server is running, browse to https://

localhost:8000/index.html, then run through a test purchase, we should

see a new text box appear at the end of the process (Figure 3-13, shown

overleaf).

ChapTer 3 CoNFiguriNg aNd CusTomiziNg our CheCkouT

87

This was a nice and easy change to make, yet one that will be a real boon to anyone

who orders products and has...shall we say...a “less than standard address”? It’s perfect

for those who live in shared accommodation, where there might be an entry number to

get into the building. There isn’t a great deal involved in setting this up, but it’s still worth

taking a look in more detail.

 Exploring the Code in Detail
A closer look at the code should indicate that there were minimal changes need to

implement this option – we kicked off with adding in a <textarea> and button into our

main markup. This works fine as they are both hidden initially; it saves us from hitting

the DOM unnecessarily.

Figure 3-13. Adding a box for delivery instructions

ChapTer 3 CoNFiguriNg aNd CusTomiziNg our CheCkouT

88

We then applied a change after calling displaySuccess(), to unhide the text area

and set focus on it; this was finished off with some rudimentary styling to ensure it fitted

in with the overall design of our test page.

 Summary
When working with the Payment Request API, there are all manner of different ways

to tweak the experience – some sit outside of the boundaries of the API, but many can

directly affect the overall experience for our customer. Over the course of this chapter,

we’ve covered a number of useful techniques to help sharpen that experience; let’s take a

moment to review what we’ve learnt.

We kicked off with setting up a version of the API to work locally – CodePen does

work to an extent, but to get real flexibility, it’s always better to be in control! We then

moved onto starting to configure the checkout process – we started with a quick look at

using favicons, although support for these is limited.

Next up, we covered handling different currencies, and how easy it is to alter the API

to display the chosen currency. We then took a look at how best to display the relevant

information (such as totals or discounts) the API, and we saw how changing the order

has an effect on what is displayed in the checkout form.

We then took a look at how to accept discounts in the API – we focused on offering

a discount for a select number of products, but this could easily be extended to work on

promo codes, with the appropriate security. We then rounded out the chapter with a

look at how we should choose what information to ask for from customers, along with

giving them an opportunity to submit extra information to help with processing and

delivery of their order.

By now, we’ve covered how to create and configure our checkout cart; it’s time we

shipped those products to our customers! There is a lot to cover on this; stay with me,

and I will deliver all in the next chapter....

ChapTer 3 CoNFiguriNg aNd CusTomiziNg our CheCkouT

89
© Alex Libby 2019
A. Libby, Checking Out with the Payment Request API, https://doi.org/10.1007/978-1-4842-5184-3_4

CHAPTER 4

Shipping
Picture the scene if you will – you’ve just been on a well-known web site, to order the

latest tech; you’ve chosen free delivery because you’re a cheapskate who won’t pay

shipping if you can at all help it.

The confirmation email says you’ll get your delivery within 3-4 days, yet you then

get an email a few hours later to say they’ve attempted delivery but failed...then you get

another to say it’s been delivered to your neighbor. A really confusing state of affairs – it

looks like their systems just can’t keep up...Contrast that with a UK online catalogue site

that not only says it will deliver next day (and any day of the week at that), but will also

deliver with a 2 hour window of your choice – yes, a 2 hour window.

See a picture here? Shipping is a key part of any e-commerce experience, yet is often

wildly different between retailers, and not always lives up to expectations! Gone are the

days of only delivering on a Monday to Friday; customers expect to be able to receive

their goods any day of the week.

The one thing we as customers expect is a seamless process that makes it a snap

to order products – granted, we can’t control how well a third-party courier company

performs but as developers can strive to provide the best online experience possible for

our customers. The Payment Request API can absolutely help with this – we’ve covered

the initial stages of setting it up and displaying prices; let’s take a look at shipping works

within the API, beginning with setting up a basic delivery option for customers.

 Getting Started with Shipping
Cast your mind back to Chapter 2, when we first talked about setting up the

paymentOptions constant – remember how we specified requestPayerEmail as the sole

property in that constant?

90

Well, it’s time to revisit it and expand on this: the first part of setting up shipping

within the API requires us to enable the option to request the shipping address, which

we do using the paymentOptions object. We can then set up features to choose the

delivery address and display a basic shipping option for our customers.

Don’t worry though: it’s really easy to do – the first task is to focus on getting the

address, before we add in our supported shipping options. When setting up the address

choices, we first add in the option to display any pre-saved addresses that are available to

choose from, before dropping in an event handler that updates the selected address on

screen. Let’s take a look at how to set this up in more detail.

 Obtaining the Shipping Address and Method
In this next exercise, we’ll set up the option to request a delivery address, as well as

include a basic shipping option; we will expand on the latter in a later exercise in this

chapter. The first task is to enable the display (and selection) of a customer address,

before we can then add in the various shipping options. At the end of this exercise, we

will be able to run through a demo which allows us to select a customer address and

have a default shipping set for us.

To set the address requires us to change the configuration object for the API and

work onShippingAddressChange event handler – here’s how we make use of it:

CHOOSING THE ADDRESS AND SETTING BASIC SHIPPING

For this first part of the demo, we’ll be working with a copy of the basic options folder that

is in the code download which comes with this book. Make sure you have a copy of this folder

saved to our project area, before continuing with these steps:

 1. We’ll start by opening up a copy of the payment.js file from within the customer

address folder – look for this code, on or around lines 45-46:

 amount: { currency: 'USD', value: tax.toFixed(2) }

 }]

Chapter 4 Shipping

91

 2. add a comma immediately after the closing brackets, then drop in this code:

 }], shippingOptions: [{

 id: 'freeShippingOption',

 label: 'Free worldwide shipping',

 amount: {

 currency: 'USD',

 value: '0.00'

 },

 selected: true

 }]

 };

 3. to activate it, we need to set our payment request api object to ask for a

shipping address – go ahead and amend this line as indicated:

const paymentOptions = { requestPayerEmail: true, requestShipping:

true };

 4. next up, we can now add in the event handler to deal with updating the display

if the customer decides to use a different address. as a start, look for this line:

let request = new PaymentRequest...

 5. Leave a blank line, then add in this function:

 request.addEventListener('shippingaddresschange', function(e) {

 e.updateWith(new Promise(function(resolve) {

 // No changes in price based on shipping address change.

 resolve(paymentDetails);

 }));

 });

 6. go ahead and save the file. We can now preview the results of our work, so

in order to do this, fire up a node.js terminal session and change the working

directory to the basic options folder within our project area.

 7. at the prompt, go ahead and enter this command:

ws –hostname localhost --https

Chapter 4 Shipping

92

 8. Fire up Chrome (you will need to do this in Chrome; otherwise you will get SSL

errors displayed). now go ahead and browse to https://locahost:8000/

index.html, then if we select a few products to add into the basket, and click

Checkout securely, we should see the option to choose a delivery address and

shipping method appear (as indicated in Figure 4-1).

Figure 4-1. The initial delivery address and shipping options displayed

Figure 4-2. The updated delivery address option

 9. try clicking the arrow to the right and selecting any address you have already

set up – clicking it will select that address, which is then displayed in our

checkout form, such as the example in Figure 4-2.

For now, it’s worth noting that you won’t be able to change the shipping option, as we only

have one set – this will change in a later exercise.

Although this was a simple change to effect, it is nevertheless a key one – most of the

shipping options we will work with in this chapter require us to have an address of some

description set in our form. With an address in place, this will open up a few options to

us – there are some important points to be aware of, so let’s explore how this code works

in detail.

Chapter 4 Shipping

93

 Exploring How this Works in Detail
When working with the shipping part of the Payment Request API, it’s important to bear

in mind that there are no clear-cut dividing lines in terms of what we can add as code.

The original intention of this exercise was to focus on just adding the address; it soon

became clear that for it to work as expected, we would also have to add in at least one

shipping option! In a way this makes sense, as we wouldn’t be able to fulfill our delivery

promise without both bits of information. Indeed, if we had not specified a shipping

option too, it would result in the error shown in Figure 4-3.

Figure 4-3. Choosing an address with no suitable shipping option set

To avoid this, we have to specify not only the shippingaddresschange event handler

(in this case, on line 49) – which in itself uses a Promise to set and resolve (or fulfill)

changes to selected addresses against our paymentDetails array object. We also have to

add in the shippingOptions property to our paymentDetails constant, in order for us to

be able to display and select a new address.

This means that if we’re planning to use the API, making this change is something

we would need to factor into our planning, so that when it comes to testing the change of

address, it will select the new address without throwing an error!

Once we’ve set this up, there are a number of properties we can access directly –

these are stored in the PaymentAddress interface. They relate to the various elements

that make up a standard postal address, such as recipient, postal code, or city. Most

values are returned in string format, except for addressLine – we can easily test how this

works by adding in one line of code to our event handler, as shown:

 resolve(paymentDetails);

 console.log(request.shippingAddress);

 }));

Chapter 4 Shipping

94

In this case, the response returned will show the full (selected) shipping address of

the customer from our API object, as indicated in Figure 4-4.

Figure 4-4. The response from request.shippingAddress

a full list is available in the cheat sheet pDF that is in the code download
which accompanies this book, or you can see the latest version at https://
developer.mozilla.org/en-US/docs/Web/API/PaymentAddress.

Okay – let’s move on: now that we can choose a delivery address and use the

provided shipping method, it’s time to expand the number of shipping options available

to us, to reflect what we are likely to have in a real-world scenario.

Yes, it is true that some companies may offer just free worldwide shipping, but not

everyone will: it’s more likely we would see several options available. Let’s take a look

to see what changes we need to make to include these extra shipping options in more

detail.

 Making Use of Details in Payment Request API
Before we start to expand on our shipping options, there is one useful little feature that is

worth exploring – if you tried the tip toward the end of the last exercise explanation, you

will have seen a JSON-formatted response be returned from the API, right?

Chapter 4 Shipping

https://developer.mozilla.org/en-US/docs/Web/API/PaymentAddress
https://developer.mozilla.org/en-US/docs/Web/API/PaymentAddress

95

Although it is useful to have this to confirm what has been submitted during testing,

there may be occasions where you might want to use elements from this data elsewhere.

To do this, we can make use of the toJSON method that comes with the API – adding it

in would look something like this:

request.addEventListener('shippingaddresschange', function(e) {

 console.log(request.shippingAddress.toJSON());

 }));

});

When run, we will see output similar to that displayed in Figure 4-5.

Figure 4-5. This output from using the .toJSON method

We can take it one step further and reference specific piece of information – for

example, if we entered this command in the shippingaddresschange event handler:

console.log("Country: " + request.shippingAddress.country);

...we will get just the country of the selected shipping address displayed in console,

as indicated in Figure 4-6.

Figure 4-6. Displaying a specific value from shippingAddress

It’s a small but very useful feature – we will make use of this more, when we explore

adding in delivery restrictions later in this chapter.

Chapter 4 Shipping

96

 Expanding Our Shipping Options
In the previous exercise, we covered how to add in an option to display (and choose) a

customer’s address, as well as having to provide a basic shipping option to allow us to

change the address as expected. I suspect many companies may not want to offer free

worldwide shipping, as it will soon many players out of business very quickly!

Thankfully this is easy enough to rectify – we can add in more realistic shipping

options, by making changes to two arrays – shippingOptions and displayItems. The

former is required to display a shipping item in the checkout form, while the latter

contains the options that we will use to update what is displayed on the form. Let’s dive

in and explore this in more detail.

EXPAND OUR SHIPPING OPTIONS

For the purposes of this exercise, we will use a copy of the completed basic options

folder – make sure you save it as expand options, before continuing with these steps:

 1. We’ll begin by opening a copy of the payment.js file from within the expand

options folder, in your usual text editor – look for this line of code, on or around

line 39:

amount: { currency: 'USD', value: subtotal.toFixed(2) }

 2. immediately below it, you will see the “Free worldwide shipping” option; alter it

as highlighted:

}, {

 label: 'FREE delivery (3-5 days)',

 amount: { currency: 'USD', value: shipping.toFixed(2) }

}, {

 3. next, we now need to add in our updated shipping options – for this, look for

the shippingOptions array, which starts on or around line 46. go ahead and

remove lines 47-53, then add in the new choices as indicated:

 }], shippingOptions: [{

 id: 'standard',

 label: 'FREE delivery (3-5 days)',

 amount: {currency: 'USD', value: '0.00'},

Chapter 4 Shipping

97

 selected: true,

 },

 {

 id: 'express',

 label: 'Express delivery (next day)',

 amount: {currency: 'USD', value: '3.99'},

 },

],

 };

 4. We’re done with making changes – go ahead and save the payment.js file.

We can now preview the results of our work, so in order to do this, fire up a

node.js terminal session and change the working directory to the expand

options folder within our project area.

 5. at the prompt, go ahead and enter this command:

ws –hostname localhost --https

 6. if we browse to https://localhost:8000/index.html to preview the

results, then add in some products to our basket, and hit Checkout securely, we

will see our updated default shipping option (Figure 4-7).

Figure 4-7. Our updated default shipping option

if we were to click the right arrow to try to change the option, it will indeed present the

alternatives and allow you to click them. however, if you do so, it won’t update the selection

shown on screen – instead, we will be presented with the error shown in Figure 4-8, if we

were to look in console.

Figure 4-8. The error when shippingoptionchange event is not present

Chapter 4 Shipping

98

Don’t worry, this is expected – it’s something we need to bear in mind when planning changes

as part of implementing the api. the fix for this will be to add in an event handler – we will do

this in a new exercise shortly, but for now, let’s review the changes we’ve made to our demo

in more detail.

 Exploring the Changes Made
The changes we’ve made in this exercise are probably some of the easiest we need to

make – a part of the structure is already in place, from when we initially specified just

one option for shipping.

In this exercise, the only changes we needed to make were to update the default text

displayed in displayItems and add in new options under the shippingOptions array.

There is however one small point to make – in the shippingOptions array, we need to

specify the selected property against one of the shipping options. This is the one that will

be shown as ticked if we select to change them, as shown in Figure 4-9.

Figure 4-9. Choosing from the available delivery options

This becomes more important when we look at updating the chosen option in the

next exercise; if we don’t, then the selected option will remain unchanged, but that we

won’t see any errors appear in console either!

Okay – let’s move on: we now have our expanded shipping options in place, but

for them to work, we need to alter our demo to reflect any changes made by customers

when choosing an appropriate shipping option during purchase. There are a couple

slightly more involved changes to make to achieve this, so let’s explore what’s required in

more detail.

Chapter 4 Shipping

99

 Dealing with Changes to Shipping
At the end of the last exercise, we ended up with an updated checkout form that now has

a couple of delivery methods set – trouble is, we can try selecting the one not set as much

as we like, but it will not update our form! The reason for this is that we’re missing code:

the shippingoptionchange event handler is used to determine if a new delivery choice

has been made and update the checkout form accordingly.

This method works in a similar way as the shippingaddresschange method we saw

at the beginning of this chapter – both have a similar name, and both initiate a new

Promise that is fulfilled once our customer has selected the appropriate option.

However, there is one key difference – with the shingaddresschange event handler

where we simply select an address; with shippingoptionchange we not only need to

select a delivery method but also need to update the final total to reflect any changes in

shipping costs. Fortunately, this is easy enough to do, so let’s dive into our next exercise

and see what needs to happen in more detail.

DEALING WITH SHIPPING CHANGES

For this demo, we’ll be using a copy of the expand options folder and building on where

we left off from the previous exercise. Save a copy of the updated folder from the previous

exercise as update shipping, then continue with the following steps:

 1. We’ll start by opening up a copy of payment.js from the new folder, into text

editor. Once open, leave a blank line, then add in this code immediately after

the displayMessage() function:

 function updateDetails(details, shippingOption, resolve, reject,

stotal) {

 if (shippingOption === 'standard') {

 selectedOption = details.shippingOptions[0];

 otherOption = details.shippingOptions[1];

 details.total.amount.value = stotal;

 } else if (shippingOption === 'express') {

 selectedOption = details.shippingOptions[1];

 otherOption = details.shippingOptions[0];

 details.total.amount.value = (Number(stotal) + Number(3.99)).

toFixed(2);

Chapter 4 Shipping

100

 } else {

 reject('Unknown shipping option: \" + shippingOption + '\");

 return;

 }

 selectedOption.selected = true;

 otherOption.selected = false;

 details.displayItems.splice(2, 1, selectedOption);

 resolve(details);

 }

 2. next, scroll down to the closing brackets at line 88, then leave a line and add in

this event handler, to take care of updating our chosen shipping option:

request.addEventListener('shippingoptionchange', function(evt) {

 evt.updateWith(new Promise(function(resolve, reject) {

 updateDetails(paymentDetails, request.shippingOption, resolve,

reject, total);

 }));

});

 3. that’s all the changes we need to make – at this point, save the file and close

it. We can now preview the results of our work, so in order to do this, fire up

a node.js terminal session and change the working directory to the next step

folder within our project area.

 4. at the prompt, go ahead and enter this command:

ws –hostname localhost --https

 5. We can now preview the results of our changes – if we browse to https://

localhost/index.html in a browser, then add in some products to the

basket and hit Checkout securely, we will see our now familiar checkout form.

 6. try clicking the arrow to the right of Delivery method, then select the express

delivery option – if all is well, we will now see this appear under Delivery

method, as shown in Figure 4-10.

Chapter 4 Shipping

101

This was a quick and easy change to make but one that means our shipping options

resemble something closer to a real-life example! The code we’ve implemented shows

off usage of a couple of key points we should cover, so let’s take a moment to explore

them in greater detail.

 Breaking Apart Our Code
If we had to pick a single change which was more complex than the others in this

chapter, then this would probably rank in the top few – even though it isn’t as

complicated as it might first seem!

At the heart of this exercise lies the updateDetails function – into this we pass details

of the paymentDetails array object (that stores all of the labels and values you see on the

form), alongside the chosen shipping option and a Promise for this action. We then do a

check of each shipping type (by ID), to determine which was selected before we apply the

changes. In each case we use selectedOption to store the chosen value, the otherOption

variable to store the option we didn’t select, and the paymentDetails value is updated.

The important part is that once updated, we then have to state which shipping

option should be marked as selected (selectedOption.selected = true;), before

splicing in the updated total value as appropriate. These details are then used to update

the paymentDetails array object, before marking our Promise as complete.

 Implementing Delivery Restrictions
Up until now, the shipping options we’ve implemented will suit some retailers, but

not all – many retailers will need to implement certain restrictions on what can be

delivered and where that package can be sent. A typical example might be if they can’t

guarantee safe delivery of a product to some countries, or potentially there may be

export restrictions on certain products. If this is the case, then how might we implement

something using the Request Payment API?

Figure 4-10. Displaying the updated shipping method

Chapter 4 Shipping

102

Although the API doesn’t contain built-in functions to control where deliveries can

be made, we can nevertheless still implement something relatively easily. I say relatively

easily, as the concept is technically very straightforward; what might make things more

complicated are the conditions behind the restrictions! One of the simpler ways to

restrict deliveries is purely by region or country. For example, we can build conditions

that limit free delivery to the retailer’s home state, while those who are out of state will

have to pay postage. Let’s dive in to our next exercise, to see how we might implement

such conditions when it comes to determining delivery options in the API.

IMPLEMENTING SHIPPING RESTRICTIONS

Before we get started on setting up our demo, we will need to take a copy of the update

shipping folder from the previous exercise and save it as restrictions at the root of our

project folder. Once done, go ahead with these steps:

 1. as per before, we first need to open up a copy of payment.js from the

update shipping folder, into our text editor – go ahead and modify the

displayMessage() function. it’s a little complex, so we’ll break down into

sections, beginning with setting an array object to store our base shipping

option:

 function updateDetails(details, shippingAddress, callback, stotal) {

 let shippingOption = {

 id: ",

 label: ",

 amount: {currency: 'USD', value: '0.00'},

 selected: true,

 pending: false,

 };

 2. immediately after it, add in the first part of this condition check – this

determines if we’re shipping to an address in California, USa, or to another

States-based address:

 if (shippingAddress.country === 'US') {

 if (shippingAddress.region === 'CA') {

 shippingOption.id = 'californiaFreeShipping';

 shippingOption.label = 'Free shipping in California';

Chapter 4 Shipping

103

 details.total.amount.value = Number(stotal).toFixed(2);

 } else {

 shippingOption.id = 'unitedStatesStandardShipping';

 shippingOption.label = 'Standard shipping in US';

 shippingOption.amount.value = '3.99';

 details.total.amount.value = (Number(stotal) + Number(3.99)).

toFixed(2);

 }

 details.shippingOptions = [shippingOption];

 delete details.error;

 } else {

 3. the last part of this function takes care of flagging an error message if the

address is not based in the United States:

 // Don't ship outside of US for the purposes of this example.

 shippingOption.label = 'Shipping';

 shippingOption.pending = true;

 details.total.amount.value = '55.00';

 details.error = 'Cannot ship outside of US.';

 delete details.shippingOptions;

 }

 details.displayItems.splice(1, 1, shippingOption);

 callback(details);

 }

 4. next, go ahead and remove the shippingoptionschange() event

handler – this is no longer needed, as the equivalent is built into the

shippingaddresschange() handler.

 5. now, look for the shippingaddresschange() method on or around line 98 –

go ahead and replace it with this function:

request.addEventListener('shippingaddresschange', function(evt) {

 evt.updateWith(new Promise(function(resolve) {

 updateDetails(paymentDetails, request.shippingAddress, resolve);

 }));

});

 6. With the changes made, go ahead and save your work.

Chapter 4 Shipping

104

 7. We can now preview the results of our work, so in order to do this, fire up a

node.js terminal session and change the working directory to the next step

folder within our project area.

 8. at the prompt, go ahead and enter this command:

ws –hostname localhost --https

 9. We can now preview the results in a browser. Browse to https://

localhost:8000/index.html, then add some products into the basket,

and click Checkout securely. When we see the checkout form, notice how the

delivery method section is not present, as shown in Figure 4-11.

Figure 4-11. The new delivery address section

Figure 4-12. Displaying a valid address...

 10. if we click the arrow to the right, and choose a pre-saved address, we might

see one of two things happen. if it is a US-based address, then our checkout

form will display the updated address (Figure 4-12).

 11. if we click an address that happens to be invalid (in this case, not based in the

United States), then we will see the error shown in Figure 4-13, appear.

Chapter 4 Shipping

105

This last exercise opens up some real possibilities for us, in terms of developing any

checkout that uses the API – we can decide to limit deliveries to particular countries,

force others to have to pay for postage, or even block delivery of certain products to

customers!

Even though the conditions behind this feature could potentially become very

complex, the basic principle will still be the same – establishing the condition, verifying

if we’ve met it, and updating the available delivery options as appropriate. The

code we’ve developed covers some important points that we should consider when

developing checkout forms, so let’s take a closer look at that code again, in more detail.

 Breaking Apart the Code
In this latest demo, we take a whole new approach to how we select both the address

and shipping methods – before, we’ve used a shippingaddresschange() method to

trigger the former, with a separate option to manage the selection of our chosen shipping

method. In the case of the restrictions demo, we’ve done away with the latter and rely

solely on the former to manage changes of both the address and shipping options.

How does this work? Well, it’s based on the principle of determining where we send

the package to first, and that this directly influences how we send the package. The key

difference in code this time is that whereas we weren’t changing the address before (so

could resolve it immediately), this time we pass in a different set of parameters (such as

paymentDetails), and can only resolve it once we’ve updated them.

Figure 4-13. ...or prevented from choosing an invalid address

Chapter 4 Shipping

106

The update process is taken care of by the updateDetails function – inside this,

we create a placeholder shippingOption array object, which is then updated based on

(a) which country is referenced in the address, and (b) is it based in California. If the

answer to either (or both) is yes, we then set the shipping.id value to the chosen option,

alongside the appropriate shippingOption. label to use and update the total. Assuming

this was successfully updated, we then update the current paymentDetails object with

the new shipping details before deleting the error placeholder.

If it isn’t successful (i.e. the customer trying to ship to a forbidden location), then we

still update the details but this time set shippingOption.pending to true. This indicates

we are still in the process of updating the delivery address; we also display a suitable

error message on screen using the details.error property. We then finish by splicing

in the new values to the displayItems configuration object, before firing the callback to

update the paymentDetails object in our code.

Okay – time to change tack: our examples thus far haven’t really touched much on

how we might deal with any errors in the API. If we’ve built and tested our solution fully

(as I am sure we would all do!), then we should be able to keep errors to a minimum.

However, it’s likely that customers will still come up with something that causes an issue,

so let’s pause for a moment to consider what errors we might need to handle in our

projects.

 Dealing with Errors
As a developer, I’m sure you’ll agree that no solution will ever be 100% bulletproof and

that we will always have something to fix, right? In an ideal world, customers would use

what we design as we intended – trouble is, customers are fickle creatures at the best of

times, and someone will try to do something that we did not intend should happen!

Although the Request Payment API is still something of a work in progress, it has

nevertheless become pretty stable; there are however places where it might trip us up if

we’re not careful and don’t make suitable allowances in our code.

The type of errors we can encounter can fall into one of two camps, those seen by the

customer and those that we might generate during development or testing. Let’s take a

look at both in turn, starting with those seen by the customer.

Chapter 4 Shipping

107

 Customer-Generated Errors
This group of errors is likely to appear as a result of resolving the Promise that is

generated when initiating an instance of the Payment Request API; these range from

simply aborting the transaction through to security issues that appear during a purchase.

The supported errors that are returned are listed in Table 4-1.

Table 4-1. Errors generated from the initiated Promise

Error message Purpose

AbortError the returned promise rejects with an AbortError if the user agent is

already showing a payment panel. Only one payment panel may be visible

at a time across all documents loaded by the user agent. the promise is

also rejected with AbortError if the user cancels the payment request.

InvalidStateError the promise rejects with an InvalidStateError if the same payment

has already been shown for this request (its state is interactive because it

is being shown already).

NotSupportedError the promise rejects with a NotSupportedError if the user agent does

not support the payment methods specified when the PaymentRequest

constructor was called.

SecurityError the promise rejects with a SecurityError if the call to show() was

not in response to a user action, such as a click or keyup event. this

error can also be thrown at the discretion of the browser, if, for example,

show() is being called while payment requests are blocked by parental

controls.

Source: MDN

There is an important point to note here – if such an error is generated, then the

customer would reasonably expect to want to try again, which might present a problem

for us.

Why? Well, the good news is that the API does have a method that we can use –

paymentResponse.retry() was designed for this purpose. The trouble is, not every

browser supports it yet – at the time of writing, Chrome and Firefox both support it, but

Edge and Opera have yet to implement it in their browsers. It does mean that if we want

Chapter 4 Shipping

https://developer.mozilla.org/en-US/docs/Web/API/PaymentRequest/PaymentRequest

108

to make use of it, we will have to manually set up a get-out, so that we can at least allow

customers to retry. The downside is that they may have to start from the beginning again,

but this is a temporary workaround until browsers fully support the retry() method.

 Errors Generated During Development
From a developer perspective, there are more places where our projects might trip up

if we omit to include certain properties or do not define them correctly. A typical point

of failure is if we don’t specify a total value (which is obligatory) or if we miss out any of

the labels you’ve seen in the exercises, from within the displayItems array. Let’s look

at some of the example errors we might see during development, which are listed in

Table 4-2.

Table 4-2. Types of development errors

Issue Error shown in console

no total value present TypeError: Failed to construct

'PaymentRequest': Must specify total

Missing label, amount,

currency, or value properties in

displayItems[]

Failed to construct 'PaymentRequest': required

member XXXXX is undefined.

– where XXXXX might be amount, currency, value, or label; it does

not specify where the error is in the code.

negative values for total 'PaymentRequest': Total amount value should be

non-negative

invalid currency format 'PaymentRequest': '...' is not a valid ISO 4217

currency code, should be 3 upper case letters [A- Z]

Creating a long promise that

doesn’t resolve in a timely

manner

DOMException: Timed out as the page didn't resolve

the promise from change event

note – this can also appear if we don’t call event.

updateWith() in our code.

Missing options in the

shippingOptions array

DOMException: required member XXXXX is undefined.

where XXXXX might be id, label, amount, currency or value;

it does not specify where the error is in the code.

Chapter 4 Shipping

109

In addition, although it doesn’t generate an error in the strictest sense, we must be

careful to mark at least one option with the selected property. If we don’t, then we run

the risk of putting our customers into an endless loop which puts them back to the start,

ready to select a shipping method again. If we however do the opposite (and set multiple

entries with the selected property to true), then the last entry marked will be the one

displayed with the tick on screen.

Okay – enough chitchat: it’s time we saw some action! Some of the errors we’ve just

talked about don’t just affect shipping; they can crop up at any point in our development.

However, there are four errors that will crop up when configuring the shipping part of

our form – all of them are easy to fix: let’s take a look at them in more detail, as part of the

next exercise.

DEALING WITH ERRORS

For the purposes of this next demo, we will use a copy of the update shipping demo from

earlier – save it as spot errors at the root of our project area, before continuing with these

steps:

 1. the first error we will deal with is one of duplicate iDs – go ahead and open up

a copy of the payment.js file from the spot errors folder, into your text editor.

 2. next, look for this line in the code, on or around line 76:

id: 'express',

 3. Change it to id: 'standard'; and save the file.

 4. We can now preview the results of our work, so in order to do this, fire up

a node.js terminal session and change the working directory to the spot

errors folder within our project area.

 5. at the prompt, go ahead and enter this command:

ws –hostname localhost --https

 6. if we browse to https://localhost:8000/index.html to preview the

results, then add in some products to our basket, and hit Checkout securely.

What happens? We will find that the checkout form doesn’t appear – instead, we will get the

error shown in Figure 4-14 appear in the browser console.

Chapter 4 Shipping

110

Keep the terminal window open – we will make use of it throughout the rest of this exercise:

 1. the next error we might see relates to a shipping object which is empty – for

this, revert back to the payment.js file, and look for this line of code on or

around line 65:

}], shippingOptions: [{

 2. this next change requires a little careful editing – remove the following code ,

as highlighted:

}], shippingOptions: [{

 id: 'standard',

 label: 'FREE delivery (3-5 days)',

 amount: {currency: 'USD', value: '0.00'},

 selected: true,

}, {

 id: 'express',

 label: 'Express delivery (next day)',

 amount: {currency: 'USD', value: '3.99'},

},

],

 3. go ahead and preview the results as before, then add some products to the

basket, and click Checkout securely.

What happens? We will find that the checkout form doesn’t appear – instead, we will get the

error shown in Figure 4-15 appear in the browser console:

Figure 4-15. Specifying an empty shippingOptions array

Figure 4-14. Duplicate IDs error

Chapter 4 Shipping

111

 1. the last error we’re going to explore is what happens when you set an invalid

shipping type. For this revert back to the payment.js file, then look for this

line, on or around line 79:

const paymentOptions = { requestPayerEmail: true, requestShipping:

true };

 2. at the moment, we’re not specifying a value for shippingType, so let’s

say we wanted to use “collection”. go ahead and alter that line of code, as

indicated:

const paymentOptions = { requestPayerEmail: true, requestShipping:

true, shippingType: "collection" };

 3. Save the file then preview the results as before – it would be natural to assume

that “collection” would be a good choice to display as part of the labels for

delivery method and address, right?

Unfortunately, this is where the api would seem to disagree – instead of it displaying

something like “Collection method”, it throws an error similar to the one shown in Figure 4-16.

Figure 4-16. The error we see when specifying an invalid shippingType value

in this instance, the only values we can use are “delivery,” “shipping,” or “pickup” – this is clearly

something we need to bear in mind when it comes to developing anything that uses the api!

All is not lost though – we can go some way to improving on at least one error that

might be returned. If we wanted to, we can edit the last few lines of the paymentDetails

constant to look like this:

 label: 'Sales Tax',

 amount: { currency: 'USD', value: tax.toFixed(2) }

 }],

 error: "Sorry - we can't deliver to that address.",

 shippingOptions: [],

 };

Chapter 4 Shipping

112

We also need to remove the invalid shippingType entry – go ahead and delete the

code highlighted here (from step 11 of the previous exercise):

const paymentOptions = { requestPayerEmail: true, requestShipping: true,

shippingType: "collection" };

If we were to save this and try to select an address, it will throw back the error shown

in Figure 4-17 instead.

Figure 4-17. Customizing at least one error message

None of the errors we’ve covered are complicated – as long as we take care over

how we plan the setup of the key parts such as the paymentDetails constant, then we

should be able to steer clear of introducing them into our code. One in particular, the

shipping type value, will affect how we set up our form; the others are just ones where

we need to ensure that data being fed into the API has been sense-checked as part of the

development process.

 Summary
It goes without saying that shipping is equally key to the whole process as collecting

payment; although we’ve only touched the surface of what might be possible in this

regard, we’ve explored some useful tips to help get you started. Let’s take a moment to

review what we’ve learned in this chapter.

We kicked off by exploring how to choose the delivery address and set a default

shipping option, before learning how to expand on these options so that we had

something that more closely mirrored a real-world scenario.

Chapter 4 Shipping

113

We then moved onto examining how to react to changes made when selecting

addresses or delivery methods, before understanding how to implement some basic

restrictions on delivery, such as offering free postage for a restricted area. We then

rounded out the chapter with a look at some of the typical errors we might see – we

learned about how these may not all apply to shipping, but that some will – we then

explored how to look out for some examples in a demo, and what we might expect to see

if any do appear in our projects.

Our journey doesn’t stop here though: we still have more to cover! Over the last

few pages, we’ve covered a lot of detail about how to configure the form – it’s time we

took this up a notch and began to integrate a payment processor into the mix. There

are dozens available, all offering different variations on the same theme; how we might

choose one and integrate it will be the subject of the next chapter.

Chapter 4 Shipping

115
© Alex Libby 2019
A. Libby, Checking Out with the Payment Request API, https://doi.org/10.1007/978-1-4842-5184-3_5

CHAPTER 5

Integrating with a
Payment Handler
Anyone who knows me personally will know that I’m often in my local corner store – I’ve

become something of a regular, having been visiting it regularly for over a decade. Over

time, I’ve seen people walk up to the checkout, whip out their mobiles or even certain

smart watches, and wave them past the credit card machine. Yep, the days of paying by

card are numbered, or as some might say, fast becoming old-school!

But I digress – only partially though: the reason for talking about this is not only the

use of near-field communications but also the use of services such as Google Pay, Apple

Pay, and the like. I’ll bet that unless you already happen to use one of these services

to pay for goods at your nearest store, you’d be forgiven for thinking – “Google Pay”…

“Android Pay”…“Microsoft Pay”…

What do they all offer? Do I use a merchant or payment provider? Who do I go with?

Is one better than the other? All good questions – over the course of this chapter we’ll

explore all of these and more, so that you’ll be able to make a more informed decision

for your future projects. Let’s make a start though, with a quick recap on some of the

payment methods and concepts we need to be familiar with when using the API.

 Exploring the Options
When working with the API, there are several key concepts we need to be aware of, which are:

• Payment handlers – behind each payment identifier is a payment

handler – these are web-based or native payment applications that

can be created by anyone who processes payments and which will

store the customer’s payment details and provide them to merchants

at the point of authorization by the customer. Examples include

Google Pay, Microsoft Pay, and Samsung Pay.

116

We will explore how to create payment handlers in more detail as a project in
Chapter 8, later in this book.

• Payment instrument – this is the generic name for each type of

payment method, such as Google Pay, Microsoft Pay, or basic-card.

• Basic-card – this is a generic method of payment that is supported in

the Payment Request API, accepts all credit or debit card types, and

ideally should be set up as the default fallback option (if needed). It’s

designed for those who still want to use the API but are not yet ready to

accept companies storing their details in a service such as Apple Pay.

• Payment service provider (PSP) – these are the companies who

process payment requests and arrange transfer of funds from the

customer to the merchant.

• Payment identifiers – these are strings such as basic-card or

https://google.com/pay), which identify a payment method.

When we pay for goods online, we typically see a form asking for details as name,

card number, and the like – this data is sent to a merchant on submission, who will

process the payment on behalf of the customer.

In many cases, merchants will use the services of a payment service provider (PSP)

to process that payment and make the money transfer. There are a host of different PSPs

available; each work in their own way, but all of them can be integrated using one of the

following three patterns:

 API Type
The first of the three integration methods is the API type, where a merchant submits

credit card information to their server through a form. This is sent onto the PSP using

their API, for which the PSP will have a server-side SDK to help with implementing the

service (Figure 5-1).

Chapter 5 IntegratIng WIth a payment handler

https://google.com/pay

117

This option is best suited for those developers who have a relatively strong technical

skill set – this method is straightforward to implement but somewhat more complex than

other integration methods such as Link type.

 Link Type
In comparison, this next method, Link type, is the easiest to integrate – it’s flexible design

and less sophisticated user experience means that anyone can integrate a PSP into the

Payment Request API using this method.

When a customer submits payment, the merchant forwards that customer to a PSP-

hosted page with a form to accept credit card information. The details they then enter

will be submitted directly to the PSP for processing – provided the payment is accepted,

the customer will be brought back to the merchant web page to (hopefully) receive

confirmation of a successful transaction, as shown in Figure 5-2.

Figure 5-1. API type method of integration

Chapter 5 IntegratIng WIth a payment handler

118

 Tokenization Type
The last method, Tokenization type, represents the most flexible and secure option – the

payment form is shown in a page hosted on the merchant’s site but served from a PSP’s

domain through an iframe (Figure 5-3).

Figure 5-2. The Link API method of integration

Chapter 5 IntegratIng WIth a payment handler

119

On submission, the customer’s details are submitted directly to the PSP’s server, and

the merchant will receive a token as a result. The merchant can then verify it through

their server and ask the PSP to process the payment.

This route offers the merchant a good mix of security, convenience, and design

flexibility; most of the processes are handled by the PSP’s client-side SDK. This allows

the merchant to process payments without handling any of the client’s credit or debit

card details during the process.

 Integrating with the Payment Request API
Although we’ve covered three different types of integration, in reality we may only be

able to use two of them. The two we can choose from are the API and Tokenization

methods; the decoupled design of Link type is such that it precludes the use of the

Payment Request API, as API calls must be deferred to the PSP to process.

Figure 5-3. The Tokenization type method of integration

Chapter 5 IntegratIng WIth a payment handler

120

• API type – although this is the easiest method to use (where we

receive the information, parse it and forward it to the PSP), it requires

PCI compliance, at SAQ A-EP or DSS level, as you are handling raw

credit card information. This may preclude all except those who

are sufficiently large, can afford to, and make a concerted effort to

achieve PCI compliance.

• Tokenization type – this method relies on sending payment details

to the PSP server and receiving a token in return. Although it

removes some of the need to handle credit card information, it still

requires PCI compliance. It’s a combination of needing to satisfy the

minimum level of PCI compliance needed (PCI SAQ-A) yet remove

the need for merchants to touch sensitive information and still

integrate it into their system, which makes this method complex and

harder to implement.

you can learn more about pCI compliance at https://www.pcicompliance
guide.org.

Although we’ve covered the three different types of integration and seen how using

the Payment Request API may affect our choices, many payment processors provide

options which abstract away much of the technical considerations. This therefore

makes it easier to implement a solution using the Payment Request API; we still have to

be mindful of concerns such as PCI compliance, but the work required may not be so

onerous, depending on which solution we decide to implement in our projects.

 Choosing between a PSP or Traditional Provider
Once we’ve decided on our preferred integration route, the next decision to make is

whether to use a traditional merchant or payment service provider (PSP). Integrating a

provider into the Payment Request API requires a whole series of decisions to be made –

the outcome of which will affect how successful your site is with customers. Both process

payments, so what is the difference, and why would we choose one over the other?

At a basic level, both process payments, but there are some key differences which are

highlighted in Table 5-1.

Chapter 5 IntegratIng WIth a payment handler

https://www.pcicomplianceguide.org/
https://www.pcicomplianceguide.org/

121

So how do we decide between either type? Much of this will depend on the nature

of your projects – both types will be subject to some form of regulation by the relevant

financial authority for your country and will offer a number of common features such as

card security, acceptance of different card types, reporting, and technical support.

To help narrow down the choices though, there are some key questions we should

ask ourselves:

• Payments made by PSPs are instantaneous, whereas income from

sales made through standard merchants can typically take a few days;

is the size of your business such that this delay (and associated risk of

non-payment) might affect your survival?

• If the size of your business is such that you do not have the staff

available to manually deal with accounting/banking, then the

instantaneous payments offered by PSPs could be a real benefit.

• Although it is straightforward to set up a suitable account for credit

and debit card payments, it can take some time to get approval –

any delay in receiving income can have a detrimental effect on the

bottom line.

Table 5-1. Differences between merchant and PSP accounts

Merchant account Account with PSP

account is held directly with the service

provider, which can typically be a bank or

financial institution.

account held with pSp, who acts on behalf of multiple

providers – this makes it more flexible and can help

reduce the amount of work required to implement a

solution.

Fees are more expensive. Fees generally lower – most do not charge monthly

recurring subscriptions.

accounts will be more robust and likely

require more work to integrate into an

existing site.

accounts can be less robust than traditional

merchants; integration is easier to manage.

Better suited for those who will make

substantial revenue – this would likely be

above £5,000 per annum.

Suited more for retailers who don’t make substantial

revenue.

Chapter 5 IntegratIng WIth a payment handler

122

• PSPs offer the ability for merchants to accept multiple payment

methods, whereas traditional providers may offer a more limited

choice; research has shown that customers prefer having choice and

that a lack of choice may put customers off from buying products

from your company.

• PSPs offer the ability to make payments from any location,

irrespective of borders – this includes those customers who don’t

have a bank account.

• PSPs offer the ability to accept payments in local currencies – when

working with a traditional provider, accounts have to be set up for

each currency, which can become costly to manage. PSPs have

connections with local acquiring banks for your country and so can

offer this facility more easily than through traditional means. What’s

more, offering support for local currencies can save the retailer from

paying conversion fees, costs which otherwise would have to be

recouped from customers!

Judging by some of these questions, it would seem that going with a PSP could be very

beneficial and that one might ask what the future holds for more traditional providers!

The API is still very young though, and that for legal or financial reasons, using the

Payment Request API may not suit companies who work in a B2B environment if they

have to collect extra details – for example, Italian companies have to collect IVA details

(VAT tax number for Italy). It is possible though that once the API has become more

mainstream, some of the older providers are forced to refocus what they offer, so it works

through the API, and not just as a standalone offer.

Okay, so I digress – time to bring things back to the present, methinks! Let us for the

purposes of this book assume that we’ve decided to go with a PSP. Question is – who?

Well, there are plenty of providers available worldwide; this is where names such as

Apple Pay, Microsoft Pay, Google Pay, or even Amazon Pay come into their own. Some of

the more traditional providers such as WorldPay do offer services that include the likes of

Apple Pay, but this tends to be limited, and that they focus more on their own offerings

instead.

A more effective solution would be to go with a PSP that can offer services that are

compatible with multiple partners; this will save both development time and resource,

as a single integration will automatically handle payment for the selected payment

Chapter 5 IntegratIng WIth a payment handler

123

method, without the need to set up a separate facility. A good example of this is Stripe,

who have multiple offices throughout Europe, Asia, and the United States – they offer a

service called Stripe Elements, which is perfect for working with the Request API. In fact,

if you look closely at their code (which we’ll cover in the next but one exercise), you can

begin to see some terms which should begin to look very familiar…

 Implementing a Provider
We’ve talked briefly about how using the services of a PSP such as Stripe will help

simplify matters (as well as time and cost), but before we dive into their code, I have a

small confession to make: we won’t be able to create a fully working version of their code

in this book.

Now – before you all jump up and try to throttle me, there is good reason for this:

Stripe uses an API key which has to be inserted into the code for it to work properly. For

reasons of security, I’m not going to be able to include one in our next demo, but we can

at least do the next best thing: we’ll work through a live example on Stripe’s web site,

explore how we would set up Stripe for our own projects, and use an alternative payment

app so you can get a feel for how things will operate.

To make a start, we’ll first set up a test payment app called BobPay – this has been

designed for use with systems such as the Payment Request API, so you’ll get a feel for

how things should work when using a payment app with the standard basic-card option

in a checkout form. Let’s take a look at this in more detail:

ADDING IN BOBPAY

For this demo, we’ll be using a copy of the bobpay folder from the code download that

accompanies this book – make sure you save a copy to our project area, before continuing

with these steps:

 1. We’ll start by first visiting the Bobpay web site at https://bobpay.xyz – go

ahead and click the link marked “Install Bobpay Web payment app” toward the

bottom of the page.

 2. next, open a copy of payment.js in your usual text editor – the first few lines

contain the paymentMethods constant.

Chapter 5 IntegratIng WIth a payment handler

https://bobpay.xyz

124

 3. go ahead and add in the code highlighted below, then save the file.

window.onload = function(e) {

 const paymentMethods = [{

 supportedMethods: 'basic-card',

 data: {

 supportedNetworks: ['visa', 'mastercard', 'amex']

 }

 }, {

 supportedMethods: 'https://bobpay.xyz/pay'

 }, {

 supportedMethods: 'interledger'

 }];

 4. We can now preview the results of our work, so in order to do this, fire up a

node.js terminal session and change the working directory to the bobpay

folder within our project area.

 5. at the prompt, go ahead and enter this command:

ws –hostname localhost --https

 6. If we browse to https://localhost:8000/index.html to preview the

results, then add in some products to our basket, and hit Checkout securely, we

will see our updated default shipping option (Figure 5-4).

Chapter 5 IntegratIng WIth a payment handler

125

 7. hit pay – on the next screen, you will see this:

Figure 5-4. BobPay implemented using the API

Figure 5-5. Paying with BobPay…

Chapter 5 IntegratIng WIth a payment handler

126

 8. Bobpay will show a fake balance amount – if you click details at the bottom of

the screen, you will see a JSOn object with details of the purchase, including

total cost.

 9. hit the pay with balance ($4.32) button – the form will disappear, and the apI

will show that payment has been received after a few seconds (this will take

longer to complete, when running in a production environment.)

 10. at this point, fire up your browser’s dOm inspector – if all is well, you will see a

response, akin to the details shown in Figure 5-6.

Figure 5-6. The results of the BobPay request

This was an easy change to make, but nevertheless an important one – it shows how

in reality, we might have several methods available to us, when it comes to selecting

how we pay for products. It’s important to note that BobPay is purely a representation of

how things will look when developing the production version of our site; there are a few

important concepts we should explore, so let’s take a moment to dive into our code in

more detail, and what this means for us.

 Dissecting the Code
Take another look back at the code changes we made in payment.js – although we only

added in less than six lines of code, this is only part of the story. Let me explain:

Payment apps, such as Google Pay, Microsoft Pay, and the like, are supported in the

Payment Request API but are not enabled by default. Adding in the six lines of code at

the start of payment.js was only the beginning; when we visited the BobPay web site and

clicked “Install BobPay Web Payment App,” this installed something called a payment

handler.

In short, these store the credit or debit card details for a customer and are sent to

the processor for payment, once authorization has been given by the customer. In our

example, we’ve provided details for both basic-card, BobPay, and interledger

Chapter 5 IntegratIng WIth a payment handler

127

(the latter is just another payment app that can be used through the API). This is

done using the supportedMethods parameter in each instance; we also provide some

additional details such as supported cards using the supportedNetworks attribute.

Creating such a handler is a little complicated – suffice to say that these each represent

a payment method (such as Google Pay), although a handler can be shared between

multiple apps. To make things easier, we’ll keep to a one-to-one relationship; the former is

something to bear once you are more accustomed to using payment handlers.

 Understanding the Types of Payment Identifiers
Now that we’ve begun to talk about using payment handlers, it’s time we explored what

these are – they come in two different guises: standardized and URL-based.

You will already be familiar with the first type, although perhaps not realize it – the

basic-card method we’ve used is supported in all browsers that implement the Payment

Request API.

It’s fine for testing, but as it contains raw credit card data, this is a high security risk

which means it is not something we will continue to use forever! Suffice to say that if

you needed to use this format, you will definitely have to invest in PCI DSS compliance,

which can be costly and may not be worth the resource and time required for your

organization.

there are other standardized candidates that are or have been under discussion,
such as basic credit transfer (to transfer between bank accounts – see
https://w3c.github.io/payment-method-credit-transfer/)
or Interledger payment method, using the Interledger protocol (https://
interledger.org/).

The second type, URL-based payments, can be defined independently and do not

fall under the auspices of the W3C; these contain a specific URL identifier, such as

Google Pay (https://google.com/pay). These methods can be shared across multiple

payment apps and can be created by anyone with an interest in handling payments – the

latter makes it easy to scale up services offered to retailers very easily.

At this point, I’m going to flip things on their head – we can always decide to go

with a specific payment method directly, such as Google Pay; nothing wrong with this

approach, right?

Chapter 5 IntegratIng WIth a payment handler

https://w3c.github.io/payment-method-credit-transfer/
https://interledger.org/
https://interledger.org/
https://google.com/pay

128

Well, yes – and no. Yes, there is nothing wrong technically, but it’s not the best route

from a practical perspective. Why? Simple – what about those people who don’t use your

chosen method? You will have to incorporate multiple payment methods, which brings

an overhead in time and resources to manage.

The more effective method is to use a PSP, as we talked about earlier – this allows

us to combine several payment methods such as Google Pay or Apple Pay into one

unified interface. A great example of this is Stripe, who have offices in multiple locations

worldwide and so can help support payments in multiple currencies, local language

support, and so on – this will be a real boon. Over the course of the next few pages, we’re

going to take a look at how we might implement Stripe and see that it works in a similar

way to the standard Payment Request API.

 Implementing Stripe
At this point, I have a small confession to make – for reasons of security and logistics,

we’re not going to be able to create a fully working demo.

To get around this, we will work through the current steps that are required to set

up Stripe to use the Payment Request API and explore how it works in action through

one of their demos. Hopefully by the end of this demo, it will give you a flavor of how

we might implement the API using a PSP, and that with care, it should not be difficult to

implement a basic system to get you started in your site.

Note If you want to use Stripe in your projects, it’s worth noting that new
forthcoming regulations (the Strong Customer authentication, or SCa) will require
additional changes for european businesses. to reflect this, we will use the
payment Intents apI system offered by Stripe, which is compatible with the SCa.

As an aside – you may also find CodePen demos online too, which show you the

basics of using Stripe; in the interests of fair play, I won’t list any here, but if you search

for “codepen stripe.js demos” using Google, you should find a good few examples to

have a look at during development.

For this next exercise, we’re going to do something a little different – this time around,

we’ll walk through using Stripe’s Payment Request API demo, so we can see how it works in

practice, and that the code used follows the same principle themes as our code.

Chapter 5 IntegratIng WIth a payment handler

129

Note For those interested in exploring more at the end of this walk-through,
the source code is available on Stripe’s github site for this demo, which is at
https://github.com/stripe/stripe-payments-demo.

WALK-THROUGH: ADDING IN STRIPE

the demo in question is available at https://stripe-payments-demo.appspot.com/ –

browse to this first, before you follow through with these steps:

 1. We’re only interested in the purple button at the top (marked pay now), so go ahead

and click on it – you will see the by now familiar payment request apI window

appear; it will likely have a few defaults already set, depending on what you have

set in your browser. It will look similar to the screenshot shown in Figure 5-7.

Figure 5-7. Stripe’s Payment Request API example

Chapter 5 IntegratIng WIth a payment handler

https://github.com/stripe/stripe-payments-demo
https://stripe-payments-demo.appspot.com/

130

If you don’t see the window show, make sure you have some dummy credit card/
debit card details and addresses set in your browser; there are plenty of sites
online that can help generate these details if you’re stuck for inspiration!

 2. try changing the selected card, by clicking the right arrow by payment, then

selecting add Card – it gives an example card at the bottom of the main page.

 3. Click back to the main screen, then click pay and add in the CVC number (any

will do) – stripe will pause for a moment to simulate processing, then display a

“thanks for your order!” message to confirm a successful transaction.

The demo by Stripe shows off perfectly how we can use the Payment Request API,

and that we can create a consistent checkout process with the minimum of code, instead

of creating a monolithic cart that takes resource time and effort to manage.

This allows us to focus more on the various payment methods we want to support

in our site, and how we manage these through our cart, as well as providing the relevant

details. With this in mind, let’s take a quick look at the code Stripe have used for the

demo; you should start to see similarities with code we’ve created in earlier demos!

 Breaking Apart the Code
At this point I know what you might well want to ask – what was the point of that

exercise? It’s a fair question: we didn’t do a great deal and certainly nothing different to

what we’ve done in our own demos from earlier in the book.

That, my friends, was the point of the demo: using a PSP may require writing

different code, but this should be for handling changes and exceptions, not for the

basic checkout. The instance of the Payment Request API that Stripe has set up looks

no different – granted it uses different card details, but the look and feel of the cart itself

should be consistent, no matter how you integrate it into your site.

The real area of interest though is the payments.js file they’ve created (yes, it is

just coincidental that it’s the same name as the ones we’ve created!). I would strongly

recommend saving a copy from https://stripe-payments-demo.appspot.com/

javascripts/payments.js and opening this in a decent text editor; it will make life

easier when we look at the code.

Chapter 5 IntegratIng WIth a payment handler

https://stripe-payments-demo.appspot.com/javascripts/payments.js
https://stripe-payments-demo.appspot.com/javascripts/payments.js

131

Much of this code is for the Stripe Elements form that you saw during the walk-

through – the code of interest to us starts on or around line 128, with this comment:

Implement a Stripe Payment Request Button Element.

The first block at line 139 initiates an instance of the Payment Request API – into this

we provide the country, currency to use, total (amount and label), as well as request

shipping and email details.

The next block (from line 152 onward), takes care of instances where payment

methods are added such as new credit cards; this request then updates the

PaymentIntent request which Stripe uses (we touched on this updated version

earlier). We then perform a similar update if the shipping address is changed; this just

acknowledges the change.

The next block from line 193 looks after any changes made to shipping options – we

use event.updateWith() (which we’ve touched on before), to reflect changes back to the

totals displayed in our checkout. The last two blocks then display the Payment Request

API button, based on whether the browser supports it and that there is at least one

payment method available for us to use.

Note If you are interested in learning more about how Stripe works with the
payment request apI, please refer to their documentation at https://stripe.
com/docs/payment-request-api.

This got me thinking – if we applied Stripe to one of our earlier demos, say the chillis

one from Chapter 2, how would it look? This is a good question – fortunately it’s easy

enough to mock up something that answers this question; it’s not perfect, but it will give

you a flavor of what to expect if you decide to use a PSP such as Stripe.

 Making it More Local
You must forgive the somewhat odd title to this next section – it is a little contrived, but

the “local” is a reference to creating something that can run locally rather than remotely!

While researching for this book, I spent some time mocking up changes to the

original chilli demo we created back in Chapter 2 – I wanted to keep things simple, so

that you can see how easy it is to integrate a system from a PSP such as Stripe into an

existing site. A couple of hours work, and a few coffees later, an updated version was

born: the results are shown in Figure 5-8.

Chapter 5 IntegratIng WIth a payment handler

https://stripe.com/docs/payment-request-api
https://stripe.com/docs/payment-request-api

132

As you can see from the screenshot, it doesn’t look that different! This is deliberate –

had we had to make wholesale changes to the overall design, then this is a good

indication that it’s not fit for purpose, and changing it will likely have a negative impact

on the experience for customers. Indeed, the only noticeable change is the credit card

symbol appearing in the button (and possibly that the text size is a little smaller there

too); the overall experience will remain the same.

To achieve this, I made some changes to the HTML markup – primarily to introduce

that credit card symbol but also to add a slot to display the token response we get back

from Stripe.

The real changes though come in the scripts.js file; the code is completely

rewritten from ground up. Let’s take a look at the updated version block by block,

starting with declaring some variables:

(function () {

 // Switch out the test key here with your own

 let stripe = Stripe('<ENTER API KEY HERE>');

 let paymentRequest = stripe.paymentRequest({

 country: 'US',

Figure 5-8. A mock up using Stripe.js

Chapter 5 IntegratIng WIth a payment handler

133

 currency: 'usd',

 total: {

 label: 'Total to pay',

 amount: 2495,

 },

 requestPayerName: true,

 requestPayerEmail: true,

 requestShipping: true,

 shippingOptions: [

 {

 id: 'free-shipping',

 label: 'Free shipping',

 detail: 'Arrives in 5 to 7 days',

 amount: 0,

 },

],

 });

In this block, we’re declaring our initial PaymentRequest object; we provide basic

details such as total cost, label, and requests for the payer’s name, email, and shipping

details. Although the format looks different, the same terminology has been used here as

we’ve already used before; this will help with the integration.

 // Check the availability of the Payment Request API first.

 paymentRequest.canMakePayment().then(function(result) {

 let button = document.getElementById('payment-request-button');

 if (result) {

 button.style.display = 'inline-block';

 button.addEventListener('click', paymentRequest.show);

 } else {

 button.style.display = 'none';

 }

 });

This next block controls whether we display the pay button – again, this will be

very similar to what we’ve created before. In particular, note the use of Promise()

terminology such as .then() – this is identical to what we’ve already created.

Chapter 5 IntegratIng WIth a payment handler

134

 paymentRequest.on('token', function(ev) {

 document.getElementById('payment-token').innerText = ev.token.id;

 document.getElementById('payment-token-message').style.display =

'block';

 ev.complete('success');

 });

})();

In the final block, we display a token that is returned from Stripe, to confirm success;

the token can then be used by us for further processing. At this stage, we would render

a suitable message on screen to confirm the outcome of the purchase; we must though

mark the Payment Request API part of the process as complete before completing our

part of the overall transaction.

In comparison, have a look at some example Payment Request API code, written for

incorporating Google Pay directly into a site:

const googlePayPaymentMethod = {

 supportedMethods: 'https://google.com/pay',

 data: {

 'environment': 'TEST',

 'apiVersion': 1,

 'allowedPaymentMethods': ['CARD', 'TOKENIZED_CARD'],

 'paymentMethodTokenizationParameters': {

 'tokenizationType': 'PAYMENT_GATEWAY',

 'parameters': {}

 },

 'cardRequirements': {

 'allowedCardNetworks': ['AMEX', 'DISCOVER', 'MASTERCARD', 'VISA'],

 'billingAddressRequired': true,

 'billingAddressFormat': 'MIN'

 },

 'phoneNumberRequired': true,

 'emailRequired': true,

 'shippingAddressRequired': true

 },

};

Chapter 5 IntegratIng WIth a payment handler

135

Source: Google

While there is technically nothing wrong with this approach, if this is the only

payment method that is plumbed into the API, we would miss out on those customers

who prefer using the likes of other clients such as Apple Pay or even Microsoft Pay! This

is one good reason why using a PSP is frequently more beneficial than plumbing in

payment handlers directly into our code.

 Dealing with Extra Charges
Throughout the course of this book, we’ve explored some useful features that we can add

to our checkout form, to help fine-tune the journey for our customers. Some were small,

such as updating the button text, to much larger ones such as implementing discounts –

nevertheless all are just as important.

However, this next change may bring us back to reality with something of a bump –

implementing extra charges. No one likes them, but retailers will say they have to cover

costs; trouble is, some are likely to try to justify higher charges that don’t necessarily

reflect the real cost of the service! The typical one is credit cards; for this, we might

expect to pay a percentage increase on top of the total amount, to reflect the processing

costs involved (and some might also argue, reflect the risk).

No matter what the reason for the charge is, implementing it is very easy and

requires us to modify the payment details object we set up for the API. The W3C’s

specification looks like this:

dictionary PaymentDetailsModifier {

 required DOMString supportedMethods;

 PaymentItem total;

 sequence<PaymentItem> additionalDisplayItems;

 object data;

 };

At first glance, this looks a little complicated but in reality, it’s easier than it looks –

take a look at this example:

 modifiers: [{

 supportedMethods: 'https://bobpay.xyz/pay',

 additionalDisplayItems: [{

Chapter 5 IntegratIng WIth a payment handler

136

 label: 'Processing fee',

 amount: { currency: 'USD', value: '3.00' }

 }],

 total: {

 label: 'Total to pay by card',

 amount: {currency: 'USD', value: Number(total + 3).toFixed(2)}}

 }],

If we break it apart, it resembles something of a mix between the paymentMethods

and paymentDetails objects we’ve created for previous demos. The first section simply

states the final amount to be charged, but the section in bold is key: we have to specify

which payment methods are affected, as well as what the extra charge or discount is

(additionalDisplayItems[]), and how this affects the overall total to be charged to our

customer.

The best way to understand what this means is to see it in action – without further

ado, let’s implement an example in our next demo, where we apply a small processing

charge for those customers who prefer to use credit cards. Beware though – there is

something of a sting in this proverbial tale; I will reveal all after this next exercise.

CREDIT CARD CHARGES

For this demo, we’ll use a copy of the bobpay folder we updated earlier in this chapter –

save this as charges, at the root of our project folder. make sure also that you’ve still got the

payment handler for Bobpay installed; have a quick check to see what it says at the bottom of

the Bobpay web site, if you are unsure.

assuming both are in place, let’s make a start with the demo:

 1. We’ll begin by opening a copy of payment.js from within the charges folder –

look for label: 'Sales Tax', which will be on or around line 48.

 2. go ahead and add in the following (highlighted) code as indicated below:

 label: 'Sales Tax',

 amount: { currency: 'USD', value: tax.toFixed(2) }

}],

 modifiers: [{

 supportedMethods: 'https://bobpay.xyz/pay',

Chapter 5 IntegratIng WIth a payment handler

137

 additionalDisplayItems: [{

 label: 'Processing fee',

 amount: { currency: 'USD', value: '3.00' }

 }],

 total: {

 label: 'Total to pay by card',

 amount: {currency: 'USD', value: Number(total + 3).toFixed(2)}}

 }],

};

 3. go ahead and save the file – we can now preview the results of our work, so

in order to do this, fire up a node.js terminal session and change the working

directory to the bobpay folder within our project area.

 4. at the prompt, go ahead and enter this command:

ws –hostname localhost --https

 5. If we browse to https://localhost:8000/index.html to preview the

results, then add in some products to our basket and hit Checkout securely,

we will see our checkout cart, with Bobpay highlighted as the chosen payment

method (Figure 5-9):

Figure 5-9. Our checkout form, with extra items present...

Chapter 5 IntegratIng WIth a payment handler

138

 6. a quick click on the arrow to the right of the order summary should reveal that

we do indeed have an extra processing fee being applied (Figure 5-10).

Figure 5-10. A processing fee applied when using BobPay

 7. try choosing another payment method – hopefully by now you will at least have

a basic-card method available; if not, click payment (from the previous screen),

then add Card to add in suitable details.

 8. assuming we’ve selected a different method, we should see less items

appear in the summary; a click on the next screen will also confirm that

when using basic-card, we’re not applying any extra processing fees

(Figure 5-11).

Chapter 5 IntegratIng WIth a payment handler

139

As this demo shows, it is very easy to apply additional charges when using a

particular method of payment. However, while it may technically easy to do this, there

are at least two critical points which we should be aware of, if we decide to add charges;

let’s take a look at both these and our code in more detail, to understand why things may

not be as straightforward as they may first appear!

 Breaking Apart the Code in Detail
At the start of this exercise, I did warn of a sting in this tale – and with good reason: there

are two good reasons for not applying charges, unless you absolutely have to! Let me

explain what I mean:

The first one is that although the PaymentDetailsModifier feature has been in

browsers for a while (e.g., it came in Chrome 62), it has nevertheless had something of

a checkered history. Tests and comments made on the W3C GitHub site for Payment

Request API indicate that performance is inconsistent; indications are that support for

Figure 5-11. No processing fees applied when using basic-card

Chapter 5 IntegratIng WIth a payment handler

140

it will likely be altered to only work with external networks. It’s for this reason that our

demo is only set to apply the extra three-dollar charge when using BobPay; this is not

applied when using basic-card.

There is a wider concern though – depending on where you live, you may find that it

will (if not already has) become illegal to apply extra charges in your country.

A good example of this is applying extra charges when certain types of cards are used

for payment online, such as credit cards (whereas debit cards do not incur this charge).

There are two reasons for this: a lack of transparency will put customers off, and that

some retailers add charges that don’t reflect the true cost of using that service to them.

In some senses, it’s better to just steer clear of applying charges unless you absolutely have

to; it is much safer to incorporate the charges into other items so their cost is covered!

That aside, setting up the charge feature is very straightforward – we include all of

the details within a modifiers section at the end of the paymentDetails constant. We first

specify which supportedMethods should be included; in this case it is just BobPay. We

then add in an additionalDisplayItems property, which states what is being added and

how much it is. This is then finished with the total property that states the label to use

and what the final amount to the customer will be. As in previous exercises, we can add

up values from elsewhere in the cart to arrive at the total figure.

Okay – let’s move on: there’s one more feature we should cover, when dealing

with payment exceptions; what happens if our customer doesn’t have a payment app

installed? Without one they clearly can’t take advantage of the quick checkout process;

we should make sure they can easily add something in! Let’s take a look at how we might

achieve this, and what it means for the customer, in more detail.

 Dealing with No Payment Apps
The days of using a traditional credit card are fast disappearing – systems such as Apple

Pay and Google Pay make it a real snap to effect payment for those retailers who support

it via their web site.

However, I know there will be moments when we don’t have a particular payment

app installed, such as Apple Pay – instead of simply dropping customers out (and

incurring a few choice words in the process!), we can affect a very simple change that will

encourage them to go and install that payment app.

Granted, customers may still choose to go elsewhere, but at least we give them the

opportunity to carry on, and not simply drop them at the first point of failure. That aside,

let’s take a look at the steps involved to effect this change:

Chapter 5 IntegratIng WIth a payment handler

141

NO PAYMENT APPS PRESENT

For this demo, we’ll need a copy of the nobob folder – go ahead and save a copy of this as

nobob in our project area, before you continue with these steps:

 1. First, go ahead and open index.html in your text editor – look for the closing

</div> on line 61, and add or edit the following as indicated:

<div class="paylabel">Checkout securely with:</div>

<div class="pay-button">Credit Card</div>

<div class="pay-bob">BobPay</div>

 2. next, go ahead and grab a copy of the bobpay.png image from the images

folder within the nobob folder in the accompanying download – drop this into

the images folder within the nobob folder at the root of our project area.

 3. We now need to add in some styles to adjust how the buttons and label look

in the html markup. For this, go ahead and open styles.css in the nobob

folder within the project area, then edit the .pay-button style rules as

indicated:

.pay-button, .pay-bob {

 width: 210px;

....

}

.pay-button:hover, .pay-bob:hover {

 cursor: pointer;

}

 4. leave a line, then add in these three rules below:

.pay-bob > .img { background: url(../images/bobpay.png) no-repeat;

height: 30px; width: 40px; display: inline-block; margin-top: 1px;

vertical-align: bottom; }

.paylabel { padding: 15px 0 0 0; }

Chapter 5 IntegratIng WIth a payment handler

142

 5. We can close this file – next, open scripts.js, and add the following in at

line 11:

paybobEl = document.querySelector(".pay-bob"),

paylabelEl = document.querySelector(".paylabel");

 6. next, add in the highlighted lines on or around line 90:

 paymentEl.style.display = "block";

 paybobEl.style.display = "block";

 paylabelEl.style.display = "block";

 totalPriceEl.innerHTML = calculateTotalPrice();

 } else {

 emptyCartEl.style.display = "none";

 cartCheckoutEl.style.display = "none";

 paymentEl.style.display = "none";

 paybobEl.style.display = "none";

 paylabelEl.style.display = "none";

 }

 }

 7. We’re almost done with the editing – we need to modify the contents of

payment.js, so go ahead and open this file in your text editor.

 8. the first change we make here will be to delete lines 2 to 11, and replace with

this block of code:

const payCardMethods = [{

 supportedMethods: 'basic-card',

 data: {

 supportedNetworks: ['visa', 'mastercard', 'amex']

 }

 }];

 const payBobMethods = [{

 supportedMethods: 'https://localhost:8000/pay'

 }];

 9. next, in line 36 change the word paymentDetails to payCardDetails.

 10. now go ahead and change paymentOptions in line 53 to payCardOptions.

Chapter 5 IntegratIng WIth a payment handler

143

 11. In line 54, alter the properties passed into the payment request call, to reflect

the changes made earlier in the file – this line should now read thus:

let request = new PaymentRequest(payCardMethods, payCardDetails,

payCardOptions);

 12. look for the err.message code in line 64, and change as highlighted:

}).catch(function(err) {

 if (err.code == DOMException.ABORT_ERR) {

 13. the last big change is to add in a new event handler for the button we created

earlier in the exercise – this will call a separate instance of payment request

apI, which is linked solely to the Bobpay payment method. From line 83

onwards, add in the following code – we’ll do this block by block, as there is a

fair chunk to work through, starting with the opening declarations:

document.querySelector(".pay-bob").addEventListener("click",

function(e) {

 document.getElementById("message").className = ";

 if (window.PaymentRequest) {

 let subtotal = Number(document.querySelector(".total-price").

innerText);

 let shipping = 2.99;

 let tax = (subtotal + shipping) * 0.175;

 let total = Number(subtotal) + Number(tax) + Number(shipping);

 const payBobDetails = {

 total: {

 label: 'Total due',

 amount: { currency: 'USD', value: total.toFixed(2) }

 },

 displayItems: [{

 label: 'Coffee capsules',

 amount: { currency: 'USD', value: subtotal.toFixed(2) }

 },{

 label: 'Shipping',

 amount: { currency: 'USD', value: 2.99 }

 }, {

Chapter 5 IntegratIng WIth a payment handler

144

 label: 'Sales Tax',

 amount: { currency: 'USD', value: tax.toFixed(2) }

 }],

 };

 const payBobOptions = { requestPayerEmail: true };

 let request = new PaymentRequest(payBobMethods, payBobDetails,

payBobOptions);

 14. next, immediately add in the core function that initiates the payment request

apI, provided the browser supports it:

 if (request.canMakePayment) {

 request.canMakePayment().then(function(result) {

 request.show().then(function(result) {

 result.complete('success').then(function() {

 console.log(JSON.stringify(result));

 displaySuccess();

 });

 }).catch(function(err) {

 if (err.code == DOMException.ABORT_ERR) {

 displayMessage("Request has been cancelled");

 } else {

 displayError();

 console.log('Cannot make payment');

 }

 if (err.code == DOMException.NOT_SUPPORTED_ERR) {

 displayMessage("Sorry - BobPay isn't installed:

redirecting...");

 setTimeout(function() {

 window.location.href = 'https://bobpay.xyz/#download';

 }, 5000)

 }

 });

 });

 }

 }

});

Chapter 5 IntegratIng WIth a payment handler

145

 15. go ahead and save all of your files then close them – we can now preview the

results of our work. In order to do this, fire up a node.js terminal session and

change the working directory to the nobob folder within our project area.

 16. at the prompt, go ahead and enter this command:

ws –hostname localhost --https

 17. If we browse to https://localhost:8000/index.html to preview the

results, then add in some products to our basket, and hit Checkout securely,

we will see the error message shown in Figure 5-12, before it redirects to the

Bobpay web site.

Figure 5-12. An indication that BobPay is not installed…

Although this seemed like a lot of steps to work through, the reality is that the

change itself is minimal; it goes to show that we can definitely do more than simply

drop customers out of the payment process at the first hurdle! The extra steps we

covered afforded us an opportunity to tidy up the code and include some cleaner error

handling – let’s take a moment to review what we’ve created in more detail.

Chapter 5 IntegratIng WIth a payment handler

146

 Understanding What Happened
Our somewhat lengthy demo didn’t go into detail as to what happened in each step –

exploring each part in turn wouldn’t make sense until everything was put together as the

final article. We’ve made a fair few changes, so let’s explore these in turn:

The first change we made concerned our markup – we needed to create a separate

instance of the Payment Request API, so you could see more clearly what happens.

For this, we needed a new button using standard markup; it made better sense to also

include a new label so that we could keep the important button text short.

The next changes came in the script.js file – for this, we had to hide the new

button and label initially (done via CSS); these were then revealed as soon as items

were added to our basket. The last set of changes concerned the payment.js file,

where we duplicated the original instance of the Payment Request API and tied this

to the new button created in our initial markup. In the main, this is largely identical

to the existing instance; nevertheless, we had to alter the names so that each

instance called the correct properties such as paymentMethods, paymentDetails and

paymentOptions.

The real crux of the code changes though, centers around this extract:

if (err.code == DOMException.NOT_SUPPORTED_ERR) {

 displayMessage("Sorry - BobPay isn't installed: redirecting...");

 setTimeout(function() {

 window.location.href = 'https://bobpay.xyz/#download';

 }, 5000)

}

This is what makes the whole demo work – we’re using the DOMException object to

trap for errors and redirect if it detects that the payment app is not supported (i.e. not

installed). As this is a better way to trap than simply capturing the text of the error (which

we did in the original BobPay demo), we also took the opportunity to clean up some of

the error handling to make for a cleaner, more accurate experience for our customers.

 Checking for No Apps: An Epilogue
At first glance, you may not have noticed a small but critical change in our payment.js

file, when compared to the original version used in the BobPay demo.

Chapter 5 IntegratIng WIth a payment handler

147

We’ve not included some lines of code in the nobob version in the text, but if you

take a look at the finished code version in the code download, you will notice some

commented out lines. Don’t worry – these don’t affect the demo: they actually make it

work better! Let me explain:

When writing the code for this demo, there were occasions where the desired error

message wasn’t appearing at the right point; it frequently ended up trapping in the very

last else block at the end of the Payment Request instance. This wasn’t right – in a sense

it stopped because the demo didn’t have BobPay installed, but the error that stopped it

was not the intended one! The reason for this was it checking what the result of request.

canMakePayment() was, not whether the BobPay app was installed.

As a result, the code needed to be changed slightly, hence the commented out lines

(on 114, 135, and 136)! This has been done in the nobob demo in the code download, so

that you can compare the changes with the printed text version. The takeaway here is

that given how we’ve had to use several nested if statements, it pays to be very careful

about how you trap for errors, and that you trap for specific errors at the right point in

your code.

I know this goes without saying, but it’s particularly true for the Payment Request

API: there is a possibility you might trap for the wrong error, or that the wrong message

is displayed, even though you’ve allowed for it in your error checking. Our example

duplicates much of the code needed, but this is purely to show you the difference

between the two versions; going forward I would look to create one version that contains

error checking for both and make sure that it responds accordingly during testing.

 Taking Care of Pending Transactions
We’re almost at the end of this chapter, but before we take a look at our final topic, there

is one more thing we should cover off briefly: pending transactions. Before you get

worried, don’t fret: I’m not referring to payments that have been marked as suspicious or

fraudulent and should be marked as pending – no, it’s something much simpler! Let me

explain:

In some cases, you may want to mark an entry in the Payment Request API as

pending, if it is still possible that the total price may change depending on the selections

made. A good example of this might be sales tax, particularly if the customer has yet to

choose their preferred delivery method.

Chapter 5 IntegratIng WIth a payment handler

148

It’s easy to set in code – to do this, simply add in the pending attribute, as indicated

in this code extract:

}, {

 label: 'Sales Tax',

 pending: true,

 amount: { currency: 'USD', value: tax.toFixed(2) }

}],

…yes, it’s that easy, it hardly warrants a demo! The downside though is that you won’t

see any difference in some browsers, particularly Chrome for Windows – it will look to all

intents as if nothing has changed. The only environment you may see it show something

different is Chrome for Android, where it is in a shade of lighter grey, as indicated in

Figure 5-13.

Figure 5-13. A pending transaction

Chapter 5 IntegratIng WIth a payment handler

149

When researching for this book, I’ve seen comments online that suggest it may end

up being confusing for the customer to see this, as it means they are not sure what the

final total will be!

This would be enough to put anyone off – it makes better sense to simply ensure

that totals update every time a customer selects a different payment method or shipping

option in your cart, so that when they check out, they can be confident in knowing the

price displayed will be the final price they pay during checkout.

 Summary
Integrating a payment method or provider into the Payment Request API is where things

really start to come together – we can select the various settings we want in the checkout,

before going through a payment process and end up with what we hope will be a

successful transaction. We’ve covered a fair few tips throughout this chapter to help with

the latter, so let’s take a moment to review what we’ve learnt over the last few pages.

We kicked off with a look at the different types of integration we can use, and how

they might work with the API; we then covered some of the questions we might ask about

whether our integration makes use of a PSP or traditional service provider to process our

payments. Next up we then got stuck into how we might implement a provider, using

Stripe as our example; we began first by exploring BobPay, before walking through a

theoretical example of how Stripe’s system works with the API.

We then moved onto cover some key concepts that might affect payments – the

first was to deal with extra charges such as for using particular payment methods, then

we switched to what to do if payment apps have not been installed, and how our code

structure might affect the checking process, if we’ve not architected our code to the best

possible effect.

Now that we’ve come to the end of the development and theory part of this book, it’s

time to get really practical! In the next chapter, we’re going to pull in everything we’ve

learned and turn it into a practical example that we will run in different browsers. There

will be lots to cover, so buckle up and hold on tight, as we get stuck in our next project!

Chapter 5 IntegratIng WIth a payment handler

151
© Alex Libby 2019
A. Libby, Checking Out with the Payment Request API, https://doi.org/10.1007/978-1-4842-5184-3_6

CHAPTER 6

Pulling It All Together
The combined revenue of the top three ranking web sites was $113 billion in 2018, yet the

average online conversion rate for desktop users is just 3%.

Remember this little icebreaker at the start of Chapter 1? It’s a sobering thought

that three web sites earn so much revenue between them – yes, there are a host of

reasons why, but I will lay good odds that a part of the problem is our humble friend, the

checkout form!

Over the course of this book, we’ve explored the basics of how we might configure

and use the upcoming standard that is the Payment Request API. We’ve seen how easy

it is to implement, and that making use of it will rapidly speed up the checkout process

for customers, keeping them engaged and ultimately increasing conversion. There is one

small problem though: although we’ve covered some useful techniques, many of them

have been in isolation. This isn’t ideal, as it means you don’t get to see the full end to

end process in operation, and how one small change might have a bearing on the whole

setup.

Thankfully we can rectify this small omission – over the course of this chapter, we’re

going to bring together many of the tricks we’ve seen thus far and create a more end

to end solution that incorporates them into the basis of a workable design. Granted, it

won’t be a final polished article, but it will at least give you an idea of how something

might work! Without further ado, let’s dive in and set the scene for what will be our

project throughout this chapter.

 Outlining the Project
I am sure that by now, you will have noticed a common theme in many of the projects

we’ve worked on – yes, it goes without saying that I do have something of an affinity to

coffee! It’s my go-to drink when spending long hours writing code – give me a plate of

(decent!) cookies, plenty of coffee, and good music, and it will keep me happy for hours…

152

Leaving aside the wistful thinking, we’re going to revisit that theme again for one

more time; on this occasion, we’re going to completely reskin the design. We will also

add in most of the features that we’ve created thus far, and as a bonus, we’ll also see how

we can even use a preprocessor to build much of our CSS for us. At the very end of the

chapter, we’ll also explore one or two ideas about how we might be able to take things

even further; they are not directly related to the Payment Request API, but with a little

lateral thinking, anything is possible.

Okay – let’s make a start: to give you a flavor of what we’re creating, a screenshot of

the product gallery and cart is shown in Figure 6-1.

Figure 6-1. The finished article

Looks somewhat different to our previous design, right? For this project (and to keep

things simple), we’re going to forgo mobile for now; it means we can make better use of

the available space on the page. There are a few other changes we’ve made – we have a

lot to cover, so let’s begin with setting up the markup and styling for our demo.

Chapter 6 pulling it all together

153

 Building the Product Gallery
The first step in our project is to lay down the markup and styling for our e-commerce

demo – for this, we will use a reworked version of the coffee demo we’ve covered a few

times throughout this book.

There is one additional change we will make in this project – so far, we’ve used

standard CSS to style the demos we’ve worked on thus far in this book. For this project,

we’re going to change this, and add in the services of a preprocessor to precompile our

CSS styling.

For those of you who have yet to make use of CSS preprocessors, they use the power

of JavaScript to precompile rules into valid CSS; we can use features such as basic

addition, placeholder substitution, and the like to help make our CSS development more

efficient.

if you are interested in learning more about Sass, then i would refer you to my
book introducing Dart Sass, published by apress.

It’s important to note though that using Sass is absolutely not obligatory – if you

prefer to use plain CSS, then a version that hasn’t been compiled from Sass is also

available in the code download that accompanies this book. Okay – enough chitchat:

let’s make a start on the demo!

SET UP PAGE

For the purposes of this demo i will assume Windows, but please alter the instructions

accordingly if you use a Mac- or linux-based machine. i’m also assuming you’ve installed node.

js (or already have it present) and the local web server we’ve used thus far in the book too.

A word of note We’ll be using the command-line version of Dart Sass for this
exercise; if you prefer to install via npM, this is fine. You can find instructions on
how, on the Sass web site at https://sass-lang.com/install.

Chapter 6 pulling it all together

https://sass-lang.com/install

154

With these in place, let’s make a start:

 1. We’ll begin by extracting a copy of the coffee folder from the code download

that accompanies this book; go ahead and save it at the root of our project

folder.

 2. next, we need to download a copy of Sass – for this, browse to https://

github.com/sass/dart-sass/releases/ and click the link for the

appropriate version for your platform.

 3. go ahead and extract the dart-sass folder from within this archive file, and

save it within the css subfolder for this demo.

 4. We now need to add a reference for Sass to our pC’s path environment

variable – if you are unsure on how to do this, then head over to

https://katiek2.github.io/path-doc/ for a good step-by-step

tutorial for Windows, Mac, and linux.

 5. next, fire up a node.js terminal session, then navigate to the Dart Sass folder

you saved in step 3 – on Windows it will look something like this:

<drive>:\payment\coffee\css\dart-sass

 6. at the command prompt, enter the following:

sass C:\payment\coffee\css\styles-sass.scss c:\payment\coffee\

css\styles.css

the format for compiling Sass is sass <path to source file> <path to destination
file> – please alter the locations accordingly, if you are using something different.
notice though that i’ve deliberately set different folders; the results will compile
straight into the css folder by default.

 7. navigate back to the coffee folder, then at the prompt, enter ws --hostname

localhost --https and press enter.

 8. You will see a url for our local web server – enter this into Chrome, to view the

results thus far for our demo.

Chapter 6 pulling it all together

https://github.com/sass/dart-sass/releases/
https://github.com/sass/dart-sass/releases/
https://katiek2.github.io/path-doc/

155

At this point, we will have a basic product gallery in place, where we can select

products and drop them into our basket. The markup we’ve used to create the gallery

area is standard HTML; it’s worth taking a look at both this and the script used to

populate the gallery and operate the cart, in more detail.

 Dissecting the Code thus Far
If we take a look in more detail at the markup we’ve used, we should begin to see some

familiar code in place – elements such as the #message <div> have been lifted from

previous demos elsewhere in the book.

We begin by defining our main #container element, which hosts the whole page –

this contains the <header> element which displays the title, product count, and shopping

basket icon.

Next up comes a rather substantial block for the search box – it’s somewhat ironic

that the largest block in the markup is actually the one block that is only there for

presentation and doesn’t even operate! The set of numbers in the <path...> element at

line 22 relates to the magnifying glass icon, which is an SVG icon; we could have used a

standard JPEG or PNG image instead, but SVG icons can be hosted inline which reduces

the need for the server to have to shell out for another resource.

If we skip past line 41 for a moment, the next block is the shopping cart itself; it

contains an empty unordered list as the placeholder element, ready for populating with

products we’ve selected from the gallery. Next up comes the total box, which will display

the total cost before shipping, sales tax, and any additional charges or discounts; below

this is the Checkout securely button.

We then finish with the extra information area which we’ve lifted from the extra

info demo back in Chapter 3; this simulates an opportunity for customers to give extra

instructions, such as which button to press if the customer lived in a shared block of

apartments.

 Making Our Gallery Work

In our quick run through of the markup, you will have noticed that we’ve skipped

past line 41. There is a good reason for this – that empty placeholder <div> is used to

populate our shopping demo with products, which we do making use of the code in

scripts.js.

Chapter 6 pulling it all together

156

Let’s open this file up in a text editor and take a look at it in more detail – it kicks

off by creating a series of variables and two object arrays; the latter to store the product

details and keep tally of the products we drop into the basket.

Moving on, we then have the generateProductList function at line 67 – this is used

to populate the products <div> from our markup with the items in our store. Within this

function, we create a list item for each product dropped into the cart; this contains the

item.quantity and item.product.name values, along with the subtotal for that product

and total number of capsules ordered.

The remainder of the code in this function takes care of adding a discount – we first

divide the capsule count by 10, using the mod operator. If this gives 0 as a result, then

we know we’ve hit a value where we can apply the discount. If, however, the value is not

zero, we subtract the remainder from 10, to give us the total left that the customer must

add before they qualify for the discount. You might though wonder why the discount

amount is updated using a setTimeout() value, right? There is a good reason for this: it

allows the code time to update the total amount when more products are added; doing it

sooner and the discount value will be overridden by the next update of the cart.

The next function in the scripts.js file is generateCartButtons – this takes care

of making various elements in the cart visible when products have been added. This

is purely for usability purposes only: we don’t want people to try to check out with

an empty cart! We then finish out with setting up some event handlers to take care of

updating the cart (or productsInCart array), before setting up an init function to

initiate the creation of our product list and event handlers.

 Setting Up the Basic Basket
With the basic UI in place, we can now turn our attention to making it work – we already

have the requisite code in place to populate our product gallery and add items into

the basket; this is taken care of by scripts.js within the scripts folder. The next stage

is to add in the code that will initiate an instance of the Payment Request API as our

checkout form – we’ll begin by setting up a basic instance of our basket, before adding

functionality to it over the course of this chapter.

Chapter 6 pulling it all together

157

SETTING UP THE BASIC BASKET

our first task is to set up the basic basket, so let’s make a start:

 1. We’ll begin by opening a new file in your text editor – save this as payment.js

in the js subfolder under the coffee folder.

 2. next, go ahead and the following lines in, to initiate a call to the payment

request api, as soon as the page has loaded:

window.onload = function(e) {

...enter code here...

}

 3. We first need to add in a constant value to define our supported payment

methods – for this, add in the following lines inside the window.onload block,

starting at line 2:

 const paymentMethods = [{

 supportedMethods: 'basic-card',

 data: {

 supportedNetworks: ['visa', 'mastercard', 'amex']

 }

 }];

 4. the next step is to add in an event handler that will be fired in response to

clicks on the Checkout securely button – this is where the bulk of the work

takes place. For this, add in the following placeholder, leaving a blank line under

the function from the previous step:

document.querySelector(".chkoutbutton").addEventListener("click",

function(e) {

 if (document.querySelector(".chkoutbutton").classList

 .contains("enabled")) {

 document.getElementById("message").className = ";

 ...enter code here...

 }

});

Chapter 6 pulling it all together

158

 5. We now come to the crux of our demo – the payment request api call.

We first need to check that our browser can support it, so add this in after the

document.getElementById("message")...line of code from the previous

step, leaving a blank line in-between:

if (window.PaymentRequest) {

...enter code here...

}

 6. We now have to define a number of variables – these will take care of the

relevant values passed to the api, such as shipping, sales tax, and total. add the

code below, inside the window.PaymentRequest condition:

 let subtotal = Number(document.querySelector(".total-price").

innerText);

 let shipping = 2.99;

 let tax = (subtotal + shipping) ∗ 0.175;
 let total = Number(subtotal) + Number(tax) + Number(shipping);

 7. next up comes the paymentDetails block – this will manage the various

labels and values that we display when the checkout form is rendered on

screen:

const paymentDetails = {

 total: {

 label: 'Total to pay by card',

 amount: { currency: 'USD', value: total.toFixed(2) }

 },

 displayItems: [{

 label: 'Coffee capsules',

 amount: { currency: 'USD', value: subtotal.toFixed(2) }

 }, {

 label: 'Sales Tax',

 amount: { currency: 'USD', value: tax.toFixed(2) }

 }],

};

Chapter 6 pulling it all together

159

 8. We have two more variables to declare – these set the information that should

be displayed or requested in the checkout form, as well as initiate an instance

of the payment request api. add these below the variables from the previous

step, leaving a blank line in-between:

const paymentOptions = { requestPayerEmail: true };

let request = new PaymentRequest(paymentMethods, paymentDetails,

paymentOptions);

 9. We’re almost done – the final block takes care of managing the response from

the server and determining what to display; for the purposes of this demo, we

are simulating the response, but this is where we will get notification from our

pSp as to whether the transaction has been successful or has failed. add this

block in below the previous two declarations, leaving a blank line in-between:

if (request.canMakePayment) {

 request.canMakePayment().then(function(result) {

 if (result) {

 request.show().then(function(result) {

 result.complete('success').then(function() {

 console.log(JSON.stringify(result));

 });

 }).catch(function(err) {

 console.error(err.message);

 });

 } else {

 console.log('Cannot make payment');

 }

 }).catch(function(err) {

 console.log(request, err);

 });

}

 10. at this point we’re done with editing – go ahead and save your work. it’s time

now to preview the results of our efforts – for this, fire up a node.js terminal

session, then navigate to the coffee folder we created back in step 1.

Chapter 6 pulling it all together

160

 11. at the prompt, enter this command and press enter:

ws --hostname localhost --https

go ahead and browse to https://localhost:8000 when prompted – if all is

well, we should see our checkout form appear once we’ve added some test products

and hit the Checkout securely button. the form will look something similar to the

screenshot shown in Figure 6-2.

Figure 6-2. The completed base checkout form

Hopefully that wasn’t too difficult – we’re using the same principles first introduced

back in Chapter 2; nothing should be too unfamiliar! If, however you get stuck, there

is an example of how it should look in the Examples folder, in the code download that

accompanies this book.

Assuming all is well, we’ve revisited some key techniques that we first saw earlier in

the book – let’s take a moment to remind ourselves of the key parts to a basic checkout

form created using the API, before we continue with adding more functionality to our

project.

Chapter 6 pulling it all together

161

 Breaking Apart the Code
When creating a checkout form, we have to include at least four different components,

alongside the event handler that will fire up our instance of the API – these are payment

methods, payment details, and payment options. At this point I should make it clear

though that we’re not talking about components in the sense of a framework such as

React but more blocks of code that need to be incorporated for a basic checkout form!

With this in mind, if we take a look at the payment.js file we’ve just created, we start

with defining a const value to store the supported payment methods, which we call

paymentMethods. The bulk of the code is then stored in the event handler that is fired

when clicking on the Checkout securely button – this is parsed only if we can satisfy the

initial check that confirms our Checkout securely button is enabled.

We then define a number of variables to store values for subtotal, shipping tax, and

the final total. We’ve stored these within the window.PaymentRequest object; otherwise

they become inaccessible when rendering the form (you can see them on or around

lines 57-60). Next up, we defined our paymentDetails block, which details what labels

and values should be displayed, before building up the final options that are used to

initiate our instance of the Payment Request API.

The real magic happens in the final condition check – here we determine if we

have at least one payment method available (request.canMakePayment); if so, we go

through the steps of displaying the form and determining if the response back results in

a successful or failed transaction for our customer.

Note For the purposes of this demo, we will simulate a positive or negative
response almost immediately; in reality this is likely to take a little longer as we
would shell out to the pSp at this point in the process.

 Taking Care of Shipping (Plus Restrictions)
We now have a basic checkout form in place, where we can see details such as the total

cost of the purchase, available methods of payment, and the like. This is a good start but,

as we’ve already seen earlier in this book, is only part of the story!

Chapter 6 pulling it all together

162

At this stage, we can now begin to add in the code that will take care of the missing

features, such as updating shipping options, selecting a PSP, and so on. The first of these

options that we will add in is shipping; for this, we’ll begin by setting the form to show

the shipping address, so that our checkout process knows to where we’ll be shipping the

selected products.

CONFIGURING SHIPPING AND RELATED EXCLUSIONS

We have a fair bit of code to add in for this next demo, so let’s crack on:

 1. all of the code we need to add will sit in the payment.js file, so if you don’t

already have it open, please revert back to it.

 2. the first change we need to make is to add in a shipping entry to our

paymentDetails block; this goes in immediately after the displayItems

configuration option, as highlighted in the following:

displayItems: [{

 label: 'Coffee capsules',

 amount: { currency: 'USD', value: subtotal.toFixed(2) }

}, {

 label: 'Standard shipping in US',

 amount: { currency: 'USD', value: shipping.toFixed(2) }

}, {

 3. next, we need to tell our instance of the payment request api that we now

want to ask for shipping details; add in the requestShipping parameter as

indicated:

const paymentOptions = {

 requestPayerEmail: true,

 requestShipping: true,

};

Chapter 6 pulling it all together

163

 4. now that we’ve set up the api to request shipping details, we need to tell it

how to handle any changes; this is the responsibility of two handlers – the first,

shippingaddresschange, responds to any changes in the chosen address.

leave a line after the two variables we declared in the previous step, then add

in this event handler:

request.addEventListener('shippingaddresschange', function(evt) {

 evt.updateWith(new Promise(function(resolve) {

 updateDetails(paymentDetails, request.shippingAddress, resolve,

total);

 }));

});

 5. the second handler, shippingaddressoptions, fires if we need to adjust

the shipping costs based on the selected address. go ahead and add in this

code below the shippingaddresschange event handler:

request.addEventListener('shippingoptionchange', function(evt) {

 evt.updateWith(new Promise(function(resolve, reject) {

 updateDetails(paymentDetails, request.shippingOption,

resolve, reject, total);

 }));

});

this is only part of the story though – while we may not need to initiate any

changes based on altering the selected address, we will likely need to if the

new address qualifies for a change in shipping costs:

 6. the previous step refers to an updateDetails function; go ahead and add

in this block of code after the paymentMethods constant at the top of the file.

it’s a substantial function, so we’ll break it down into sections, starting with an

initial declaration for shippingOption:

 function updateDetails(details, shippingAddress, callback, stotal) {

 let shippingOption = {

 id: ",

 label: ",

 amount: {currency: 'USD', value: '0.00'},

 selected: true,

 pending: false,

 };

Chapter 6 pulling it all together

164

 7. this next block determines where the target address is and swaps over the

shipping options based on where it is in the united States or indicates that we

can’t ship to destinations outside of the united States:

if (shippingAddress.country === 'US') {

 if (shippingAddress.region === 'CA') {

 shippingOption.id = 'californiaFreeShipping';

 shippingOption.label = 'Free shipping in California';

 details.total.amount.value = (Number(stotal)).toFixed(2);

 } else {

 shippingOption.id = 'unitedStatesStandardShipping';

 shippingOption.label = 'Standard shipping in US';

 shippingOption.amount.value = '2.99';

 details.total.amount.value = (Number(stotal) + Number(3.99)).

toFixed(2);

 }

 details.shippingOptions = [shippingOption];

 delete details.error;

} else {

 // Don't ship outside of US for the purposes of this example.

 shippingOption.label = 'Shipping';

 shippingOption.pending = true;

 details.total.amount.value = (Number(stotal)).toFixed(2);

 details.error = 'Sorry - cannot ship outside of USA.';

 delete details.shippingOptions;

}

details.displayItems.splice(1, 1, shippingOption);

callback(details);

}

 8. We have a couple more changes to make to incorporate shipping into our

instance of the payment request api: the first is to add in the options that

should be displayed to the user, based on the selected address. For this,

look for the closing comma at the end of the Sales tax option, and add in the

following code as indicated:

label: 'Sales Tax',

amount: { currency: 'USD', value: tax.toFixed(2) }

}], shippingOptions: [{

Chapter 6 pulling it all together

165

id: 'standard',

label: 'Standard shipping in US',

amount: {currency: 'USD', value: shipping.toFixed(2)},

selected: true,

},

{

id: 'express',

label: 'Express delivery (next day)',

amount: {currency: 'USD', value: '3.99'},

},

],

 9. We’re almost there – the next change is to add in a default error clause that will

kick in if we choose an address that is not supported. add this line in below the

closing], from the previous step:

error: "Sorry - we can't deliver to that address.",

shippingOptions: [],

 10. the last change we need to make is to add in an extra text box – this is

displayed at the end of a successful transaction, to invite the customer to

leave any additional instructions for delivery. add these statements in after the

displayMessage(...) entry inside result.complete (on or around line 123),

within the request.show() block:

 const additionalDetailsContainer = document

.getElementById('instructions');

 additionalDetailsContainer.style.display = 'block';

 additionalDetailsContainer.focus();

 11. all of the changes are now complete for this stage – go ahead and save your

work. We can now preview the results of our efforts: for this, fire up a node.js

terminal session, then navigate to the coffee folder we created back in step 1.

 12. at the prompt, enter this command and press enter:

ws --hostname localhost --https

Chapter 6 pulling it all together

166

 13. go ahead and browse to https://localhost:8000 when prompted – if all

is well, we should see our checkout form appear once we’ve added some test

products and hit the Checkout securely button. the form will look something

similar to the screenshot shown in Figure 6-3.

Figure 6-3. The shipping option displayed, when displaying the form for the
first time

 14. try hitting the Choose button – if you don’t already have one, go ahead and add

in an address that is based outside of the united States. the exact details do

not matter, as long as it is not based in the States. What happens if you then try

to select it? You will see the error displayed in Figure 6-4.

Chapter 6 pulling it all together

167

Phew – that was some demo! It may have seemed a lot of code, but how we handle

shipping is critical to the success of any transaction. We’ve already seen much of this

code from earlier demos, but nevertheless it is worth us taking a moment to review it in

detail, while we have a pause before tackling the next exercise.

 Exploring the Code in More Detail
We first met shipping as a featured part of the API, way back in Chapter 4 – we explored

how we had to add in something to cover both changes to the address and to the chosen

option when displaying the checkout form.

There is nothing new this time around – it might seem like we’ve added a fair amount

of code, but in reality, this is likely to be par for the norm when it comes to configuring

shipping! We kicked off with adding in the necessary label and amount in the checkout

form, before specifying the requestShipping parameter as part of the payment options.

Next up, we then added in two event handlers: the first took care of managing

changes to addresses. In most cases, this doesn’t need to fire any callback event in itself;

we just need the form to render the new address. The second (shippingaddressoptions)

however is more important: it fires a request to the updateDetails function to determine

if we are shipping to a supported location and whether we need to update both the

shipping cost and total amount as a result of changing the address. In both cases, we use

the shippingOption variable to store the updated values, before splicing them back into

our original checkout form.

Figure 6-4. What happens when we select a not-supported address…

Chapter 6 pulling it all together

168

The final changes we made were to specify the details that should be shown,

depending (in this example) on whether we were shipping to an address based in

California, the rest of the United States, or elsewhere. For the former, we set free

shipping; for the rest of the United States, we specify standard shipping, and anything

else is marked as not being available for selection.

 Handling Payments
We’re making steady process on our form – at this stage we have our basic shop front in

place, with an initial checkout form being displayed when we hit the Checkout securely

button. We’ve added in code to take care of updating the shipping options, so we now

know where to ship the products; it’s time to sort out payments!

For these next few exercises, we’re going to build on the basic-card option that

we’ve already included in the initial setup earlier in this chapter. We’ll begin with adding

in a third-party payment method in the form of BobPay, before taking care of displaying

discounts or applying extra charges when needed during checkout.

 Integrating a Payment Method
There are dozens of different payment providers that we can hook into when accepting

payments – although we can choose to go directly with the likes of Google Pay or

Amazon Pay, it makes better sense to hook in the services of a PSP such as Stripe. They

can take care of supporting multiple providers, providing access via a single unified

setup.

Unfortunately, as we touched on earlier in this book, we can’t use the likes of Stripe:

instead, we will make use of BobPay to simulate how integrating a payment method will

work. We’re going to use code we’ve already created from earlier – let’s make a start on

adding it into our project.

Chapter 6 pulling it all together

169

INTEGRATING A PAYMENT METHOD

We only have a couple of changes that need to be made – the first is to install Bobpay:

if, when you browse to the Bobpay web site, you see “uninstall Bobpay Web
payment app,” please skip to step 2.

 1. We’ll start by browsing to https://bobpay.xyz – scroll down to the bottom

of the page and click the link marked “install Bobpay Web payment app.”

the link will change the link to “uninstall Bobpay Web payment app,” when

complete.

 2. next, revert back to the payment.js file we had open from the previous

demo – look for the closing comma on line 7, then add in the following code:

, {

 supportedMethods: 'https://bobpay.xyz/pay'

 }, {

 supportedMethods: 'interledger'

 }

 3. all of the changes are now complete for this stage – go ahead and save your

work. We can now preview the results of our efforts: for this, fire up a node.js

terminal session, then navigate to the coffee folder we created back in step 1.

 4. at the prompt, enter this command and press enter:

ws --hostname localhost --https

 5. go ahead and browse to https://localhost:8000 when prompted – if all

is well, we should see our checkout form appear once we’ve added some test

products and hit the Checkout securely button. the form will look something

similar to the screenshot shown in Figure 6-5, where we see the tree icon

signifying Bobpay:

Chapter 6 pulling it all together

https://bobpay.xyz

170

Unlike other exercises in this chapter, this one was significantly easier to complete,

chuckle! It’s worth noting though that in production, we will have more work to do; we’ll

revisit this shortly, once we’ve quickly reviewed the code we’ve inserted into our demo.

 Exploring the Code in More Detail
One of the challenges we face when working with the Payment Request API is testing

payment methods. Granted, if we decided to use the services of a PSP, then we can make

use of their test environment before publishing our site. We would absolutely do this, but

what about testing to make sure that our site actually works, before committing to a PSP?

This is where BobPay kicks in – it’s perfect for simulating what would happen when

we use a payment method such as Google Pay or Apple Pay. In this demo, we began with

enabling it for our site – as with any third-party payment method, we have to make sure

it is available on our site, before customers can use it to purchase products.

We then updated the paymentMethods constant to include the BobPay option, so that

our checkout form now knows to offer it; as a bonus, it included a link to the Interledger

payment method too, which we touched on back in Chapter 5.

Okay – let’s change tack and move on: we have a couple more areas to cover that can

affect the total amounts we pass through to the API. One of these we already covered

when we created our initial markup: hands up anyone who hasn’t tried to find a

discount or promo code when purchasing something online?

Figure 6-5. Confirmation that BobPay is installed…

Chapter 6 pulling it all together

171

 Displaying Discounts
Any one shopping online will want to find the best price, or get the best discount they

can – retailers operating online should have lower cost base than brick-and-mortar

outfits and so can offer products at reduced prices. Indeed, I’ve heard of countless stories

over the years, where we might go into a brick-and-mortar outfit to window shop, only to

then go online to purchase the same product at a reduced price! It’s tough for brick-and-

mortar outfits, but hey – that’s life….

I digress: time to fall back to reality. If we take a look back at the beginning of this

chapter, you will see that we’ve actually already added in the code for a simple 10% off

the total price when purchasing capsules in blocks of ten.

I can see the next question coming though – how come we’ve not implemented this

as part of the Payment Request API? There is a good reason for this: we only need to

provide it with the final total price. As we’ve already seen, space is a little limited when

it comes to adding in the various labels – the simplest option is to do the math in the

basket, then pass in the final result to the API. In this instance, we would pass through

$1.45 if we were to hit the Checkout Securely button shown in Figure 6-6.

Figure 6-6. Passing the discounted value to the API

Chapter 6 pulling it all together

172

There is a downside to the approach we’ve used: how can we tell if the price we’ve

passed has indeed been discounted? Yes, this does seem somewhat ironic that I’ve

recommended doing the heavy lifting in the basket, yet I still don’t follow my own advice!

It does go to show though that we need to be super clear about what is presented to

the customer. Here, we could put an indication that the price is discounted or perhaps

adjust the message to show how many selected capsules qualify for the discount. These

is absolutely something we need to consider when designing the overall user experience

for our project, so that we pass the right value through and give customers confidence in

the values displayed on screen.

 Applying Charges When Necessary
There comes a point where a retailer might have to apply an additional charge – this

should be to cover additional costs that can’t be absorbed elsewhere.

However, this has been subject to some abuse over the years, with some charging

vastly inflated charges that don’t really represent the true cost incurred, perhaps seen as

a deterrent to customers, so retailers can avoid the paperwork involved. This came to a

head in early 2018, where the EU Payment Services Directive (PSD2) has banned the use

of surcharges on all debit or credit cards within the EU.

It means that using this option can put you on shaky grounds; you will need a very

good reason for needing to use it that doesn’t contravene this directive if dealing with

EU companies! At the same time, research has also indicated that there have been

consistency issues with earlier versions of the API and how charges were being applied.

At the moment, it seems to be a case of these only working when using third-party

providers and not the basic-card option; it is possible that this might change once the

API becomes a mainstream standard.

This aside, let’s take a look at the mechanics of how this will work in our project –

we’ve touched on this from earlier in the book, but this time around we’ll make some

improvements to how the code operates.

Chapter 6 pulling it all together

173

APPLYING CHARGES WHERE NEEDED

 1. We’ll begin by opening a copy of the payment.js file from within the coffee

folder we’ve been working with throughout this chapter – we only need to

make a single change within this file.

 2. look for the closing bracket, brace, and comma after the ‘Sales tax’ entry –

enter the following code immediately afterward on the next line:

modifiers: [{

 supportedMethods: 'https://bobpay.xyz/pay',

 additionalDisplayItems: [{

 label: 'Processing fee',

 amount: { currency: 'USD', value: '3.00' }

 }],

 total: {

 label: 'Total to pay by BobPay',

 amount: {currency: 'USD', value: Number(total + 3).toFixed(2)}}

 }],

 3. go ahead and save your work.

at this point we need to make sure Bobpay is installed – if you don’t already have it set up,

then go back to the previous exercise and complete steps 1 and 2 before continuing:

 1. it’s time to preview our work, so fire up a node.js terminal session, then

navigate to the coffee folder we created at the beginning of this chapter. at

the prompt, enter this command and press enter:

ws --hostname localhost --https

 2. go ahead and browse to https://localhost:8000 when prompted – if all

is well, we should see our checkout form appear once we’ve added some test

products and hit the Checkout securely button. the form will look something

similar to the screenshot shown in Figure 6-7, where we can see the two more

items entry appear, along with Bobpay set as the default payment method.

Chapter 6 pulling it all together

174

 3. try clicking the arrow to the right of order summary. We should see a

processing fee entry for $3.00 appear, and the total label text has changed to

confirm we’re paying by Bobpay, as illustrated in Figure 6-8.

Figure 6-8. Confirmation of the extra charge being applied

Figure 6-7. The initial display, when adding supplementary charges…

 4. if we revert back to the payment review window and select a different card, the

screen will automatically update – this time the two extra items entry will not

be present as we’re using an alternative means of payment (Figure 6-9).

Chapter 6 pulling it all together

175

At face value, this is a very simple change to make – it opens up a route for us to pass

on additional costs to the customer, should the need arise. There is a downside to this

though; customers (quite rightly) will get annoyed if we’re adding costs at this late stage!

When we first covered this back in Chapter 5, we touched on a very important point

about this – it’s worth revisiting this again as we review the code we’ve just added in

more detail.

 Exploring the Code in More Detail
The code we’ve added for this demo is very straightforward – we kick off by adding the

modifiers configuration option, which takes two parameters: supportedMethods and

additionalDisplayItems. For the first, we specify the methods which are supported for

the modifier and thus are the ones where extra charges should be applied (in this case,

the URL for BobPay):

 modifiers: [{

 supportedMethods: 'https://bobpay.xyz/pay',

Figure 6-9. No supplementary charges being added

Chapter 6 pulling it all together

176

For the second, we need to specify both the label and new amount; note that this is

just for the charge and not the new total (that comes shortly):

 additionalDisplayItems: [{

 label: 'Processing fee',

 amount: { currency: 'USD', value: '3.00' }

 }],

The final section requires us to update the total label and new amount – this needs

to include the extra charge which we have to add manually, as the API will not calculate

this for us automatically:

 total: {

 label: 'Total to pay by BobPay',

 amount: {currency: 'USD', value: Number(total + 3).toFixed(2)}

 }

 }],

The API takes care of updating the view automatically for us, when switching

between payment methods; as long as the supported payment types match the existing

name, it will update automatically.

 Applying Charges: A Postscript
At face value this seems to work very well – we can pass on costs to customers if needed,

so there is no pressure to have to absorb costs and therefore inflate prices any further

than is necessary….right?

Wrong – all is not as peachy as it might first seem! When we first explored the application

of extra charges, we touched on a very important point: adding extra charges at this late stage

is more likely to annoy and infuriate customers than keep them happy. Let me explain:

Customers by their very nature do not like extra charges being applied without

warning – it affects the level of confidence they have in our site, as they begin to

think that if we have one extra charge, is what they see really the final price? It is

understandable – after all, how would you feel if you suddenly had to pay out for extra

charges you didn’t anticipate having to pay?

I would absolutely advise using this option with care – I’ve provided it purely as a

technical demonstration of what is possible. I’ve seen indications that modifiers have

had something of a checkered history: they currently only work for third-party payment

Chapter 6 pulling it all together

177

methods and not the basic-card option we’ve used throughout many of the demos in this

book. This doesn’t mean to say that we shouldn’t use it – far from it: I would just make

sure that you absolutely have to use it and that there isn’t an alternative that would be

safer and likely to instill more confidence for customers to your site.

 Adding Error Handling
So far, we’ve put together a workable instance of the Payment Request API, which allows

us to select a preferred method of payment, choose the right delivery address (or add

on), and of course display a high-level summary of our order.

The trouble is, and with the best will in the world, there will always be occasions

where things don’t quite go according to plan! Mistakes can, and do, happen – we might

enter invalid details, or even worse our card or payment method may be declined. The

way we handle this will depend largely on whether we use the basic-card method or a

PSP; this said, we can at least provide some basic error checking to get us started.

There are a few places where we can add in some form of error management – at

a minimum, we should put in a slot to display error messages; we can also put in

something to manage cancellation of the form, confirm that no valid payment methods

exist, or if indeed there’s been a problem with payment. We’ve already seen how to add

these in isolation, so without further ado, let’s put them into our project, so that we can

see them in action as part of a bigger solution.

TAKING CARE OF ERRORS

all of the changes we need to make will be in the payments.js file, so make sure you have this

open first, before continuing with these steps:

 1. add a blank line after the paymentMethods constant, then on the next line,

add in this function, which will take care of rendering the message on screen

for us:

function displayMessage(symbol, state, mesg) {

 document.getElementById("message").classList.add(state);

 document.getElementById("message").innerHTML = "" + symbol +

"" + mesg;

}

Chapter 6 pulling it all together

178

 2. Scroll down the page to the console.log statement on or around line 122;

immediately after it, add in this line of code:

displayMessage("\u2714", "success", "Payment received - thanks for

your order!");

 3. We have two catch blocks within our code – the first takes care of any errors or

issues, assuming that we at least have been able to attempt payment. replace

the contents of the catch() block as indicated:

}).catch(function(err) {

 if (err.code == DOMException.ABORT_ERR) {

 displayMessage("🛈", "info", "Request has been cancelled");

 } else {

 console.error(err.message);

 displayMessage("\u2716", "error", "There was a problem with

payment");

 }

});

} else {

 console.log('Cannot make payment');

 displayMessage("🛈", "info", "Sorry - no valid payment

methods available");

}

 4. We’re done with editing – go ahead and save your work. next, we can now

preview the results of our change – for this, fire up a node.js terminal session,

then navigate to the coffee folder we created at the beginning of this chapter.

 5. at the prompt, enter this command and press enter:

ws --hostname localhost --https

 6. go ahead and browse to https://localhost:8000 when prompted, then

run through a test purchase; if all is well, we should see an example of our

message now being displayed below the cart, as indicated in Figure 6-10.

Chapter 6 pulling it all together

179

There is a real irony about this change – it’s probably one of the simplest we’ve had

to do but can arguably have the most impact for our customers! It’s vitally important that

we add in appropriate messaging; even though this is not strictly part of the API, it is still

something that we must factor into the overall checkout process. There are a couple of

important points that are worth exploring in more detail, so let’s quickly review the code

we’ve added in the last exercise in more detail.

 Exploring the Code in More Detail
The changes made in this exercise are very straightforward – we kicked off by adding in a

generic function displayMessage() to render any messages we create on screen, in the

message <div> below the cart on the right.

Further on down the page, in the response.complete('success') block, we

updated the code to display a suitably-worded success message using this function. At

the same time, we added in calls to display suitable messages if the request had been

cancelled or if there was an issue with payment (details of which we log to the console).

It’s worth noting that in this instance, we used the DOMException object to confirm

if a request has been aborted. We could use err.message to achieve something similar,

although this method isn’t as clean! If we had, we would have had to look for an instance

of “Request cancelled” in the response rather than a purely numerical value that is

returned when using DOMException.

For more details about using DoM exception, please refer to the article on Mozilla’s
Developer network site, available at https://developer.mozilla.org/en-
US/docs/Web/API/DOMException.

Figure 6-10. The finished message being displayed

Chapter 6 pulling it all together

https://developer.mozilla.org/en-US/docs/Web/API/DOMException
https://developer.mozilla.org/en-US/docs/Web/API/DOMException

180

 Taking Things Further
We’ve almost reached the end of constructing our project – while it will work perfectly

fine as it is, there are still a few things we can add to help finesse the overall experience

for our customers. As a minimum, we should absolutely fine-tune some of the selectors

we’ve used – for demo purposes, we can get away with this, but in a production

environment where speed is key, we should ensure our code is fully optimized.

However, there is plenty of scope to take things further in terms of functionality; to

give you a flavor of what might be possible, let’s take a look at a few ideas:

• Currencies – this is not supported by default in the API; we must rely

on browser localization for this to work. However, we can at least

perform basic currency localization, provided we store currency

values as plain floating-point numbers, and define the currency

symbol separately. We’ve touched on this in a limited capacity,

but for a more robust solution, how about retrieving values from

a database as soon as we decide to select a different currency? Of

course, there are concerns with performance (and SEO?) if we’re

doing this for anything more than just a small setup; this is something

we should consider if we decide to use this option.

• Adding in a payment option update – we’ve used event handlers

to determine if changes are made to either the shipping address or

option, but not to the selected payment method. Fortunately, there

is one we can use if need, which is the Payment Method Change Event –

this would need to be called if the customer decided to change to

using a store card, from using something such as Apple Pay.

• Skipping the initial form – this may seem a little controversial (given

this is the main topic of the book!), but it may be worth considering

if skipping the initial selection options could be useful for us? One

of the developers for Chromium, Rouslan Solomakhin, created a set

of demos that does this – his example for Google Pay can be seen at

https://rsolomakhin.github.io/pr/wait-gp/pr.js.

Chapter 6 pulling it all together

https://rsolomakhin.github.io/pr/wait-gp/pr.js

181

• Geolocation – most recent browsers support this protocol; how about

using it to determine if you are within say a 5-mile (8 km) radius,

for example? This would be perfect for food takeaway outlets, who

frequently offer free delivery if you are local but charge if you fall

outside of their target area.

• Adding in support for a payment method if it isn’t available – we’ve

touched on using BobPay, but this is something to consider for

customers. Should we display a message to indicate it isn’t installed

and redirect as we did? Or should we only display buttons for those

payment options that are available?

• Adding in a retry option – this is not something we’ve added in yet, as

the API standard is still in a state of flux and that not all browsers fully

support this option yet. However, I would recommend checking a

site such as CanIUse.com to see if this has changed – you can see the

latest picture at https://caniuse.com/#feat=payment-request.

Hopefully this will give you some idea of where we can go with the Payment Request

API – it’s a good excuse to get really creative and use other libraries or frameworks to

help produce a more rounded experience for customers. The API has yet to reach a

confirmed standard at the time of writing, so things may change; it is worth checking the

W3C documentation on this standard, although it does make for somewhat dry reading!

the W3C documentation can be found at https://github.com/w3c/payment-
request; i would also recommend checking the MDn wiki for the payment
request api too, at https://developer.mozilla.org/en-US/docs/Web/
API/Payment_Request_API.

 Summary
Phew – we’ve reached the end of creating our complete demo! Although we’ve covered

a lot of code, none of it should be unfamiliar by now; it’s all code we’ve met at various

stages throughout this book but brought together to show it in operation as a complete

unit. Let’s take a few moments to recap through what we’ve covered in this chapter.

Chapter 6 pulling it all together

https://caniuse.com/#feat=payment-request
https://github.com/w3c/payment-request
https://github.com/w3c/payment-request
https://developer.mozilla.org/en-US/docs/Web/API/Payment_Request_API
https://developer.mozilla.org/en-US/docs/Web/API/Payment_Request_API

182

We kicked off with a quick introduction to the project we would be working on in this

chapter; this was swiftly followed with a look at setting up the basic markup and styling,

ready for us to add in each feature. We then covered the code we would need to make the

basic basket operate, before starting to add in extra features to fine-tune the experience

for our customers.

The first feature added in was shipping – we covered the methods required to

manage both changes to the address we choose, as well as the method of delivery. We

then switched to installing the additional BobPay payment method, to simulate how

tying in a payment method would work in a working example, before exploring how we

might offer a simple discount for purchasing multiples of our chosen product, coffee

capsules. We also touched on handling extra charges, but with a warning to confirm

that this practice is frowned upon and ideally should not be used unless absolutely

necessary.

The last feature we covered was a look at basic error handling – we saw that although

this is not a standard part of the API, it is nevertheless an important consideration; we

explored some of the various points we might need to hook in appropriate indications to

our customers, based on the outcome of an action. We then rounded out the chapter by

exploring some of the ideas we could look at implementing, such as geolocation, which

will help improve the experience for our customers.

We’ve certainly covered a lot throughout this chapter, but there is one big element

missing though: many developers will use frameworks such as React or Vue.js rather

than code sites from scratch. What does this mean for using the Request Payment API?

Do we need to change things, or will it play happily, without too much change required?

Aha – stay with me on this: I will reveal more in the next chapter.

Chapter 6 pulling it all together

183
© Alex Libby 2019
A. Libby, Checking Out with the Payment Request API, https://doi.org/10.1007/978-1-4842-5184-3_7

CHAPTER 7

Project: Enabling the API
in a Framework or CMS
I’m going to break with convention and ask you to do something – granted, it’s a little

unusual, but stay with me on this: it will all become clear! If you enter “top 10 JavaScript

frameworks,” what do you get back?

I’ll lay good odds that, at least at the time of writing, you’ll see the likes of React,

Vue.js, or Angular feature somewhere in that list, right? One can’t help but notice that

these have become really popular over the last few years, so unless you’ve been hiding

somewhere, there’s going to come a time when we have to work with at least one of these

frameworks over the course of the next few years.

So – how does this fit in? Well, so far, we’ve worked on using the Payment Request

API in a static HTML environment. This works perfectly well, and there is nothing

wrong with this approach. However, I know that some of you will likely work with a

framework, such as Angular, React, or Vue.js; I’ll bet you’re probably asking: “what

does this mean for me?”

The great thing about the Payment Request API is that it can be configured to work

with most of the popular frameworks out there – such as React or Angular – and that

those of you who use one will of course have their personal favorite. Ignoring the use of

frameworks isn’t a good idea – it’s time we stepped up and took a look at an example in

more detail! We’ll do this in the form of a mini project over the course of this chapter;

this will start with a look at setting the scene for our project.

184

 Outlining the Project
As a developer and author, I spend many hours in front of my laptop, writing code or

words – there are times when it feels like I become submerged, only to pop up every so

often for a breath of fresh air. Okay, perhaps that’s a little extreme: the two things I do like to

have with me though when writing is a good mug of steaming coffee and a plate of cookies.

I should point out that we’re not talking about any ol’ cookies here – oh no: they have

to be just right. Soft, chewy with only a thin crispy coating – yes, it’s enough to make your

mouth water.

But I digress – back to reality: we’ve already built a simple e-commerce store around

coffee, so there are no prizes for guessing that our next store will be around cookies!

We’re going to build a simple store to select from a selection of cookies and simulate

processing payments through an instance of the Payment Request API. The next

question though is: what framework are we going to use?

 Exploring the Options
Throughout the course of this book, the emphasis has been on creating static HTML-

based content, to serve as our product store. There is nothing wrong in this approach –

indeed, this will help SEO, as performance will be quick.

However, integrating the Payment Request API into a static HTML-based site is only

part of the story; what about frameworks such as React, Svelte, Vue.js, or a lesser known

one such as Ractive.js? There is increasing emphasis on using a framework to aid with

construction of sites or online applications; thankfully the API can work with a wide

range of frameworks that are used in today’s web development.

To give you a flavor of what is possible, I’ve collated some example links that show

how the API is used with some of the more popular frameworks:

• Angular

The developer Hai Levi has created a wrapper for the Payment

Request API – you can down the code from his GitHub site, at

https://github.com/sleekdevelopment/ng-payment-request-

api. If, as an Angular user, you plan to use Stripe as your PSP, then

head over to https://alligator.io/angular/stripe-elements/ –

this has a good example of how to make use of the UI components

provided by Stripe, with the Payment Request API and Angular.

Chapter 7 projeCt: enabling the api in a Framework or CmS

https://github.com/sleekdevelopment/ng-payment-request-api
https://github.com/sleekdevelopment/ng-payment-request-api
https://alligator.io/angular/stripe-elements/

185

• Vue.js

Loris Leiva has a GitHub gist at https://gist.github.com/lor

isleiva/69e537202d35d4ccd1b4a5cb8ddecf1c, which outlines

a renderless Vue.js component for the Payment Request API. It

focuses on the basic payment and returning of the outcome and

so will likely need to be adapted to include the missing options

such as requestShipping.

• React

There are several examples available online – stripe has a

component library set up for use with React, which you can

download at https://github.com/stripe/react-stripe-

elements.

There are two React components that wrap the Payment Request

API – one by Sara Vieira, which is available from https://github.

com/SaraVieira/react-payment- request, and the other from

Marco Lanaro; his GitHub site is at https://lanaro.net/react-

payment- request-api/.

For those of you who have a keen interest in using React, we can see an example

of the Payment Request in action – marco Lanaro has provided a working demo at

https://lanaro.net/react-payment-request-api/, which is shown in Figure 7-1.

Chapter 7 projeCt: enabling the api in a Framework or CmS

https://gist.github.com/lorisleiva/69e537202d35d4ccd1b4a5cb8ddecf1c
https://gist.github.com/lorisleiva/69e537202d35d4ccd1b4a5cb8ddecf1c
https://github.com/stripe/react-stripe-elements
https://github.com/stripe/react-stripe-elements
https://github.com/SaraVieira/react-payment-request
https://github.com/SaraVieira/react-payment-request
https://lanaro.net/react-payment-request-api/
https://lanaro.net/react-payment-request-api/
https://lanaro.net/react-payment-request-api/

186

if you want to view it in action, you will need to use Chrome – it doesn’t operate in
Firefox.

His version was created as a higher-order component in React; this isn’t strictly speaking

a part of the React API, but an advanced pattern based around React’s way of working.

It has all of the same type of detail that we’ve come to see throughout this book;

it shows the right total, payment method, and so on. It’s a good starting point for

producing something in a React-based project – as long as we follow the same principles

we’ve used thus far; we should be able to incorporate it into any React project where the

API is needed.

Figure 7-1. A React implementation of the Payment Request API

Chapter 7 projeCt: enabling the api in a Framework or CmS

187

if you would like to learn more about higher-order components in react, then head
over to the react documentation at https://reactjs.org/docs/higher-
order- components.html.

 Choosing Our Framework
Now that we’ve seen an example of it working in a framework, it’s time we took a look

at what’s coming up in this chapter – yes, we will work through an example using a

framework, but surprise, surprise, it’s not going to be React!

Yes, I thought I would throw that little sting into the mix: React is indeed incredibly

popular. However, I’ve opted to go with a different framework – we’re going to use Vue.js.

There are two key reasons for this:

• The primary one is space available in this chapter – the amount

of React code we need to create to get a store front running is

substantial, whereas Vue.js can achieve it in less. We could easily

write a whole book on just this part alone, so doing it any justice in 30

pages is already tough!

• This chapter isn’t about how to build a site using framework X;

it’s about how we integrate the Payment Request API into said

framework. Therefore, it doesn’t really matter for the purposes of

this book which framework we use; I prefer Vue.js as it is less bloated

than some of the other frameworks, which makes it easier to integrate

even a basic example of the API into the framework.

With this in mind, the shop we will be building will feature another all-time

favorite food of mine: cookies! This would be perfect as a start point for a smaller outfit,

particularly one who might deliver locally, but use a courier service for customers a little

further away.

For the purposes of this little project, we’re going to keep things simple – our shop

front is too small to take on the likes of a major retailer, so making it complicated will not

help our cause! When done, Figure 7-2 shows a screenshot of how our finished store will

appear.

Chapter 7 projeCt: enabling the api in a Framework or CmS

https://reactjs.org/docs/higher-order-components.html
https://reactjs.org/docs/higher-order-components.html

188

With this in mind, let’s outline what we will cover in this chapter:

• We’ll set up a basic store front to select cookies and add them to a

basket.

• Our payment methods will be limited to basic-card and BobPay for

this exercise.

• We’ll make use of Bootstrap to display the basic layout.

Figure 7-2. The finished store front using Vue.js

Chapter 7 projeCt: enabling the api in a Framework or CmS

189

• We’ll include some shipping options – this to include choosing an

address, setting suitable shipping options, and defaulting to free

shipping if within half a mile of the store’s location.

• We’ll include some basic error handling and suitable feedback, so

the customer knows if things have been successful or something has

gone wrong with their purchase.

• We’ll also take a look at where we might have to change our

approach, to allow for any differences when using a framework such

as Vue.js.

All of these are topics we’ve covered throughout the book, with the one exception –

the defaulting to free shipping for orders nearby is a new addition. For this, we can use

geolocation; it’s a simple matter of comparing distance, and setting the appropriate

delivery charge if the customer lives outside the 2-mile radius.

Okay – enough of the chitchat: it’s time we got stuck into some real coding! Over the

course of this chapter, we will work through constructing our cookie store; you will see

similar principles in use to those we’ve already covered elsewhere in the book. We’ll go

through things in detail section by section, with particular emphasis on where things

might differ when using a framework as an alternative to plain HTML markup. Our first

point of call on this journey is the store front, so let’s dive in and get this set up for use.

 Creating the Store Front End
Although our store front looks different to the previous example, which we created back

in Chapter 6, it nevertheless contains the same key elements that one might find on any

shopping site – product gallery, totals, cart, add buttons, and of course our checkout

button! In this instance, we’ll be using Vue.js, so let’s dive in and see what is required to

get our store front operational.

Chapter 7 projeCt: enabling the api in a Framework or CmS

190

SETTING UP THE STORE FRONT END

we have a fair amount of code to crack through and get set up, so let’s make a start on setting

up our store front:

 1. we’ll begin by creating a new folder called cookies in our project area – into

this, extract the following files from the cookies folder that is in the code

download which accompanies this book.

• fonts folder

• css folder

• images folder

• index.html

 2. next, create a subfolder at the root of the cookies folder – call this js, and

extract the bootstrap.min.js and vue.js files from the code download

into this folder.

 3. with the basic markup in place, we can now turn our attention to adding in

the Vue script to operate the gallery and cart. For this, go ahead and add the

following code to a new document, saving it as script.js in the js subfolder.

we’ll go through it block by block, beginning with creating an array for our

products:

const products = [

 {id: 1,title: 'Cherry Bakewell', price: 0.75, qty: 1, image: './

images/cbakewell.png'},

 {id: 2,title: 'Coconut',price: 0.75, qty: 1,image: './images/

coconut.png'},

 {id: 3,title: 'Dark Choc',price: 0.75,qty: 1,image: './images/dark-

choc.png'},

 {id: 4,title: 'Double Choc',price: 0.75, qty: 1, image: './images/

double- choc.png'},

 {id: 5,title: 'Jaffa', price: 0.75, qty: 1, image: './images/jaffa.

png'},

 {id: 6,title: 'Oatmeal & Raisin',price: 0.75, qty: 1,image: './

images/oatmeal-rasin.png'},

Chapter 7 projeCt: enabling the api in a Framework or CmS

191

 {id: 7,title: 'Raspberry & White Choc',price: 0.75,qty: 1,image: './

images/rasberry-white-choc.png'},

 {id: 8,title: 'Toffee',price: 0.75, qty: 1, image: './images/toffee.

png'}

];

 4. next up is a helper function – formatNumber takes care of formatting the

values in our cart with the correct decimal places and trailing zeros as needed:

function formatNumber(n, c, d, t){

 var c = isNaN(c = Math.abs(c)) ? 2 : c,

 d = d === undefined ? '.' : d,

 t = t === undefined ? ',' : t,

 s = n < 0 ? '-' : ",

 i = String(parseInt(n = Math.abs(Number(n) || 0).toFixed(c))),

 j = (j = i.length) > 3 ? j % 3 : 0;

 return s + (j ? i.substr(0, j) + t : ") + i.substr(j).replace

(/(\d{3})(?=\d)/g, '$1' + t) + (c ? d + Math.abs(n - i).toFixed(c).

slice(2) : ");

}

 5. the next function is a Vue helper function, which calls formatNumber, to

ensure prices and totals are displayed correctly:

Vue.filter('formatCurrency', function (value) {

 return formatNumber(value, 2, '.', ',');

});

 6. the crux of our shopping cart is taken care of by the shopping cart

component – inside of which we first define a property to render a total value

for selected products and a method to remove items if needed:

Vue.component('shopping-cart', {

 props: ['items'],

 computed: {

 Total: function() {

 var total = 0;

 this.items.forEach(item => {

 total += (item.price * item.qty);

 });

Chapter 7 projeCt: enabling the api in a Framework or CmS

192

 return total;

 }

 },

 methods: {

 removeItem(index) {

 this.items.splice(index, 1);

 }

 }

});

 7. we then define a constant placeholder for our component and assign the key

properties required to source the data needed for our component; we then set

up a function to take care of adding items to our cart:

const vm = new Vue({

 el: '#app',

 data: {

 cartItems: [],

 items : products

 },

 methods: {

 checkout: function(event) {

 console.log("Checkout");

 initCheckout();

 },

 addToCart(itemToAdd) {

 var found = false;

 // Check if the item was already added to cart

 // If so them add it to the qty field

 this.cartItems.forEach(item => {

 if (item.id === itemToAdd.id) {

 found = true;

 item.qty += itemToAdd.qty;

 }

 });

Chapter 7 projeCt: enabling the api in a Framework or CmS

193

 if (found === false) {

 this.cartItems.push(Vue.util.extend({}, itemToAdd));

 }

 itemToAdd.qty = 1;

 }

 }

});

 8. our code is now complete – go ahead and save your work. keep the script.js

file open for now: we will continue with it shortly, in the next exercise.

At this point, we will now have a working store front that can be rendered – it won’t

allow us to checkout, but it will at least permit us to add products into the cart and

generate the totals we will later use in the Payment Request API. The code behind this

store front is a little more complex than the previous example we created, so let’s pause

for a few minutes and explore it in more detail.

 Breaking Apart the Code
Over the last few years, I’ve worked with several frameworks, and written about one; a

key part of what attracts me to Vue.js is the simplicity of the markup. Sure, frameworks

such as React are popular, and serve their purposes, but one can’t help but think – do

you really need that much code? I’m sure it’s just a personal choice, but React does seem

somewhat code heavy at times…

But I digress – back to reality. If we take a look at the code behind our markup, you

will see much of it is standard HTML; we’ve also made use of Bootstrap to help with

styling the product gallery. We start with placeholders in place for data, such as the

number of items in our cart, at line 14. We then create a container <div>, inside of

which we render placeholder instances for each of the cookies that we have in our

store, by iterating through the products array created in script.js, using the item in

items method. This markup contains placeholders for the product image, item.qty,

description, and a call to initiate an @click event handler that adds the product to

the cart.

Chapter 7 projeCt: enabling the api in a Framework or CmS

194

as an aside – you may have noticed that we’ve broken with tradition and included
jQuery in this demo. this is purely to help with styling, as it’s a requirement for
bootstrap – it’s not used for the core basket and checkout code.

Moving on, the next block takes care of the shopping cart – it displays “Cart is empty”

if item.length is true, that is, has zero items in the cart. As soon as we add items in, this

is hidden, and each item is displayed as it is added into the cart. The markup is then

rounded off by displaying the check-out div (containing the total) only when we have

more than zero items in the cart, along with the Checkout securely button, ready for

us to begin that part of the process. We then also display the #instructions block on

completion of a successful transaction, to allow customers to add extra delivery details,

should this be a production site!

If we turn our attention to script.js – let’s take a quick look at how this code fits

in: the code of interest starts at line 130. Here we define a products object array (and to

which we’ve just referred to), before running the formatNumber helper function to ensure

that all currency values are correctly formatted in code (with trailing zeros, etc.). This is

referenced several times in the code, using the Vue filter at line 151.

Our main component starts at line 155 – inside this we define a computed method

to work out the total cost of selected products and a removeItem method to take care of

removing products as and when needed. We then bring all of this together by initiating

an instance of Vue – this is where we assign the products array to the items property

and create an addToCart event handler to drop products into our cart. However, the real

magic kicks in at line 186 – this is where we call our instance of the Payment Request API,

as our checkout cart…

 Setting Up the Basic Checkout
Which is a perfect lead into our next exercise! If we were to preview the results from

the previous exercise, we will see the cart appear; we can even add in products and get

the relevant totals displayed. However, we won’t be able to start the checkout process

without updating our code – much of what we will cover in the next exercise should be

somewhat familiar, as we’ve used versions of it already in earlier exercises.

Chapter 7 projeCt: enabling the api in a Framework or CmS

195

This will be one of the first times we’ve pulled it together into a fully working

example; the configuration of some of the elements will look different (such as delivery

costs and methods), but it uses the same principles we’ve already covered throughout

this book. Let’s dive into our next exercise to see how we can configure the Payment

Request API to operate with a Vue.js based site.

CONFIGURING OUR CHECKOUT

For this next exercise, we will do the editing in script.js, so make sure you have this open

before continuing:

 1. we’ll start by entering a couple of blank lines at the top of the file. go ahead

and add in this constant, which will take care of defining the payment methods

we will support via the site:

const methodData = [{

 supportedMethods: 'basic-card',

 data: {

 supportedNetworks: ['visa', 'mastercard', 'amex']

 }

}, {

 supportedMethods: 'https://bobpay.xyz/pay'

}, {

 supportedMethods: 'interledger'

}];

 2. next up, leave a line blank, then add in this function to manage rendering of

any messages to the customer:

function displayMessage(symbol, status, mesg) {

 document.getElementById("message").classList.remove();

 document.getElementById("message").classList.add(status);

 document.getElementById("message").innerHTML = "" + symbol +

"" + mesg;

}

Chapter 7 projeCt: enabling the api in a Framework or CmS

196

 3. this next larger function takes care of updating our instance of the payment

request api, if a customer decides to select an alternative means of delivery; if

the means chosen is invalid, a message is displayed on screen:

function updateDetails(details, shippingOption, resolve, stotal) {

 if (shippingOption === 'standard') {

 selectedOption = details.shippingOptions[0];

 otherOption = details.shippingOptions[1];

 details.total.amount.value = stotal;

 } else {

 selectedOption = details.shippingOptions[1];

 otherOption = details.shippingOptions[0];

 details.total.amount.value = (Number(stotal) + Number(3.99)).

toFixed(2);

 }

 selectedOption.selected = true;

 otherOption.selected = false;

 details.displayItems.splice(1, 1, selectedOption);

 callback(details);

}

 4. this next function is where we tie in everything together, define the values

that will be shown on the checkout, and initiate our instance of the payment

request api, before rendering it on screen:

function initCheckout (e) {

 if(window.PaymentRequest) {

 var subtotal = Number(document.querySelector(".cartamt").

innerText);

 var delivery = 0.00;

 var beforetax = (subtotal + delivery)

 var tax = Number(beforetax * 0.0575);

 var total = Number(subtotal + tax + delivery).toFixed(2);

 const paymentDetails = {

 total: {

 label: 'Total due',

 amount: { currency: 'USD', value: total }

 },

Chapter 7 projeCt: enabling the api in a Framework or CmS

197

 displayItems: [{

 label: 'Sub-total',

 amount: { currency: 'USD', value: subtotal }

 }, {

 label: 'FREE Delivery (3-5 days)',

 amount: { currency: 'USD', value: delivery.toFixed(2) }

 }, {

 label: 'Sales Tax @ 5.75%',

 amount: { currency: 'USD', value: tax.toFixed(2) }

 }],

 modifiers: [{

 supportedMethods: 'https://bobpay.xyz/pay',

 additionalDisplayItems: [{

 label: 'Processing fee',

 amount: { currency: 'USD', value: '3.00' }

 }],

 total: {

 label: 'Total to pay by card',

 amount: {currency: 'USD', value: Number(total +

3).toFixed(2)}}

 }], shippingOptions: [{

 id: 'standard',

 label: 'FREE delivery (3-5 days)',

 amount: {currency: 'USD', value: '0.00'},

 selected: true,

 },

 {

 id: 'express',

 label: 'Express delivery (next day)',

 amount: {currency: 'USD', value: '3.99'},

 },

],

 };

Chapter 7 projeCt: enabling the api in a Framework or CmS

198

 5. these next two variables that we declare take care of defining which details we

need to ask for from the customer, such as shipping and email addresses:

 const options = { requestPayerEmail: true, requestShipping: true };

 const request = new PaymentRequest(methodData, paymentDetails,

options);

 6. we now need to ensure that we respond to any changes in both the shipping

address and method – for this, we fire either one of two event handlers:

 request.addEventListener('shippingaddresschange', function(evt) {

 evt.updateWith(new Promise(function(resolve) {

 updateDetails(paymentDetails, request.shippingAddress, resolve,

total);

 }));

 });

 request.addEventListener('shippingoptionchange', function(evt) {

 evt.updateWith(new Promise(function(resolve, reject) {

 updateDetails(paymentDetails, request.shippingOption, resolve,

total);

 }));

 });

 7. the last function is where the magic really happens – its here where we

determine if we can proceed (as there is at least one method of payment

available) and whether this returns a successful result or failure:

 if (request.canMakePayment) {

 request.canMakePayment().then(function(result) {

 if (result) {

 request.show().then(function(result) {

 result.complete('success').then(function() {

 displayMessage("\u2714", "success", "Payment received -

thanks for your order!");

 const additionalDetailsContainer = document.getElementById('

instructions');

 additionalDetailsContainer.style.display = 'block';

 additionalDetailsContainer.focus();

 });

Chapter 7 projeCt: enabling the api in a Framework or CmS

199

 }).catch(function(err) {

 if (err.code == DOMException.ABORT_ERR) {

 console.error(err.message);

 displayMessage("🛈", "info", "Request has been

cancelled.");

 } else {

 console.error(err.message);

 displayMessage("\u2716", "failure", "There was a problem

with payment");

 }

 });

 } else {

 console.log('Cannot make payment');

 displayMessage("🛈", "info", "Sorry - no valid payment

methods available");

 }

 }).catch(function(err) {

 console.log(request, err);

 });

 }

 }

}

Note as per before, we’re simulating the response back from what would be the
payment method or pSp; in reality, this will take a few seconds to complete.

 8. go ahead and save your work – we can now preview the results: for this, fire up a

node.js terminal session, then change the working directory to the coffee folder.

 9. at the prompt, enter this command and press enter:

ws --hostname localhost --https

if we browse to https://localhost:8000/, we should now see the fruits of our

labor, where our product gallery will display the cookies in all their glory!

Phew – we’ve rattled through the code at a fair pace; it might seem a lot, but most of it

should now be familiar from the previous demos we’ve created from earlier in the book.

Chapter 7 projeCt: enabling the api in a Framework or CmS

200

 Dissecting the Code
If we take a look at the code we’ve created for our store, you might be surprised (or not?)

that we’ve not had to make any allowances for using Vue.js – at all! This is one of the key

attractions of using Vue.js: although our store front code is constructed differently, we’re

still able to use pretty much the same code as before for our back-end checkout.

We kick off with the same methodData constant that we’ve declared in previous

demos; this stores the various payment methods available that are supported in our

demo, such as BobPay or basic-card. This is then subsumed when we initiate our

instance of the Payment Request API, later in the code.

Next up, we have two functions – the first, displayMessage, we’ve seen before;

this handles the display of messages back to the customer, such as confirming a

successful transaction. It’s worth noting that although we’re using Vue.js, the messages

are displayed in the #message <div>, so we can reference this using vanilla JavaScript

directly. The second function is updateDetails, which takes care of changes to the

checkout, if we change the selected shipping address or delivery method. This might

look different to previous examples, but this is purely because we’ve simplified the

options available; we’re still using the same principle of splicing in the updated option

based on what has been selected by the customer.

Moving on, we have the initCheckout function – this operates in the same way

as previous instances where we’ve specified details for our checkout, although we’ve

specified different delivery methods for our customer in this demo. This time, though,

the only change of importance is that the calling event is coming from the methods

configuration property within our Vue.js instance.

The remaining functions (the two event listeners, shippingoptionchange and

shippingaddresschange, and the request.canMakePayment block) are identical to

previous instances that we’ve defined earlier in the book; there is no change required to

allow these to operate in our demo.

 Taking Things Further
At this point we should now have a working example of a checkout form – granted, it’s

not production ready yet, but it does show that we can make use of the Payment Request

API within the context of a framework such as Vue.js.

Chapter 7 projeCt: enabling the api in a Framework or CmS

201

This got me thinking though: how could we take things further, and experiment

with the API? You may remember that at the end of Chapter 6, we touched on this with

a few ideas; while researching for this book, two of those ideas struck a chord with me:

geolocation and QR codes.

How might we implement such facilities within our checkout process? Well, as it

happens, it’s not that difficult to implement technically either of them, although the

former will require you to sign up for a service – let’s dive in and explore them in turn,

beginning with adding geolocation support.

 Case Study: Adding Geolocation Support
Geolocation, or to be more precise, geocoding, is the art of turning a human-readable

address into longitude and latitude values, and has been around in various guises

for years. It was not standardized though until 2008, with early examples of its use in

browsers not appearing until Firefox 3.5, in early 2009.

As a standard today, it’s supported by all of the major browsers – this makes it easier

for us to implement, without the need to worry about providing fallback support. This

then begs the question: how might we make use of it?

For our next demo, we’re going to implement a proof of concept to see how far away

our customer lives from our store. We can use this to work out if it might be quicker to get

someone to walk or bike the goods to them rather than rely on the services of a courier

company; the costs might be higher for the former, but you are paying for the privilege of

a quick service! We will use the longitude and latitude of Apress’ office in Spring Street,

New York; our customer will live in an apartment a couple of blocks away in Varick Street.

Sounds simple enough? Well as it turns out, yes – and no: there is a lot more to it

than just implementing geolocation from a technical perspective! The code we need to

implement is not that complex, but there are a number of considerations we must factor

in, around the logistics of how we implement such a feature. We’ll cover these in more

detail after the next demo, but we’ll start with the biggest one first: who will provide the

geolocation service?

 Getting Prepared
The first consideration we need to allow for is the provision of the geolocation service –

for this, we need to sign up to a service to use it; the most sensible option is to make use

of the Geocoding API provided by Google.

Chapter 7 projeCt: enabling the api in a Framework or CmS

202

To take part in this demo, you will need to sign up for an account with Google –

they do provide a free trial version that is more than enough for the purposes of

evaluating this technique. Google provide full instructions on how to do this at https://

developers.google.com/maps/documentation/geocoding/start; you will need to do

this to get the API key that needs to be inserted into the code provided within this demo.

If you already have access to Google APIs and have a key that can be enabled for the

Geocoding API, then this will work fine.

Note google asks for credit card details as part of activating the account; they
will not charge until the end of the free period and will always ask for details
before charging. as long as you cancel before the end of the trial, then there will be
no costs incurred.

 Creating Our Demo
Hopefully the use of Google hasn’t put you off, and you’ve decided to take the plunge to

try out this API – it opens up some interesting options, in addition to simply getting the

latitude and longitude values for an address! We’ll discuss some of these ideas after the

exercise, but for now, let’s dive in and see what is involved in more detail.

MAKING DELIVERY GEOLOCATION AWARE

let’s make a start with adding in our code:

 1. we’ll start by taking a copy of the cookies folder from the code download and

saving it as geolocate in our project folder.

 2. next, we need to add in links to the google geolocation script – for this, add in

this line of code into index.html, immediately after the link to jQuery, on or

around line 68:

 <script type="text/javascript" src="http://maps.googleapis.com/maps/

api/js?key=YOUR API KEY"></script>

…where YoUr api keY will be the key provided by google for your account.

Chapter 7 projeCt: enabling the api in a Framework or CmS

https://developers.google.com/maps/documentation/geocoding/start
https://developers.google.com/maps/documentation/geocoding/start

203

 3. Save the file then close it – we’re done with editing that file.

 4. next, switch to script.js in your text editor, and add in some placeholder

variables in at line 12 – these take care of the starting coordinates for our

shop, the destination address, destination coordinates, and the calculated

distance:

var CookiesShop_lat = 40.725605;

var CookiesShop_long = -74.0049139;

var destination, latitude, longitude, distance;

 5. next, leave a line blank then add in this function – this calls the geocode plug- in,

into which we pass the destination address so it can calculate the latitude and

longitude for us:

function GetLocation(dest) {

 var geocoder = new google.maps.Geocoder();

 geocoder.geocode({ 'address': dest }, function (results, status) {

 if (status == google.maps.GeocoderStatus.OK) {

 latitude = results[0].geometry.location.lat();

 longitude = results[0].geometry.location.lng();

 console.log("Latitude: " + latitude + "\nLongitude: " +

longitude);

 distance = calcDistance(CookiesShop_lat, CookiesShop_long,

latitude, longitude);

 } else {

 console.log("Request failed.");

 }

 });

};

 6. leave another line blank after the previous step, then add in this function – it

calculates the distance between two pairs of latitude and longitude values:

function calcDistance(userLat, userLong, placeLat, placeLong) {

 //Earth Ray

 var R = 6371;

 //Get latlong value diferences between two points

 var dLat = (placeLat - userLat) * Math.PI / 180;

 var dLon = (placeLong - userLong) * Math.PI / 180;

Chapter 7 projeCt: enabling the api in a Framework or CmS

204

 //Calculate distance with Haversine Formula

 var a = Math.sin(dLat / 2) * Math.sin(dLat / 2) + Math.cos(userLat *

Math.PI / 180) * Math.cos(placeLat * Math.PI / 180) * Math.sin(dLon

/ 2) * Math.sin(dLon / 2);

 var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));

 var distance = R * c;

 return distance;

};

 7. Scroll down to the start of the updateDetails() function – go ahead and add

in these console log statements:

console.log(CookiesShop_lat + ", " + CookiesShop_long);

console.log(latitude + ", " + longitude);

console.log("Distance: " + distance);

 8. we need to alter the conditions to determine which shipping method will be

used – there are a number of changes in this next block, so to make it easier,

we’re going to replace the entire paymentDetails constant. go ahead and

delete lines 101 to 137, and replace it with this:

 const paymentDetails = {

 total: {

 label: 'Total due',

 amount: { currency: 'USD', value: total }

 },

 displayItems: [{

 label: 'Sub-total',

 amount: { currency: 'USD', value: subtotal }

 }, {

 label: 'Standard shipping in US',

 amount: { currency: 'USD', value: delivery.toFixed(2) }

 }, {

 label: 'Sales Tax @ 5.75%',

 amount: { currency: 'USD', value: tax.toFixed(2) }

 }],

 modifiers: [{

 supportedMethods: 'https://bobpay.xyz/pay',

 additionalDisplayItems: [{

Chapter 7 projeCt: enabling the api in a Framework or CmS

205

 label: 'Processing fee',

 amount: { currency: 'USD', value: '3.00' }

 }],

 total: {

 label: 'Total to pay by card',

 amount: {currency: 'USD', value: Number(total + 3).

toFixed(2)}}

 }], shippingOptions: [{

 id: 'standard',

 label: 'Standard shipping in US',

 amount: {currency: 'USD', value: '3.00'},

 selected: true,

 },

 {

 id: 'express',

 label: 'Express delivery (next day)',

 amount: {currency: 'USD', value: '3.99'},

 },

],

 };

 9. go ahead and save your work – we can now preview the results! For this, fire

up a node.js terminal session, then navigate to the geolocate folder we

created back in step 1.

 10. at the prompt, enter this command and press enter:

ws --hostname localhost --https

 11. go ahead and browse to https://localhost:8000 when prompted – if all

is well, we should see our checkout form appear once we’ve added some test

products and hit the Checkout securely button. the form will look something

similar to the screenshot shown in Figure 7-3, once we’ve selected the local

address for delivery.

Chapter 7 projeCt: enabling the api in a Framework or CmS

206

 12. if we open up our developer console area, we should see some figures

displayed – you may find it display “undefined” or “request failed”; this is to be

expected, but you should see something appear after 3-4 attempts (the results

highlighted in red are the reason for showing the “local shipping…” option).

Figure 7-4. Proof that we're using location based on latitude and longitude values

Figure 7-3. Displaying the checkout form, with the local address visible

Chapter 7 projeCt: enabling the api in a Framework or CmS

207

Although our demo isn’t perfect, and that it does have a few wrinkles that need

further work, it does show that we can make use of the basic principles of geolocation

when working with the Request Payment API.

It’s perfect for those occasions where we might offer free delivery if our customer

lives within a certain radius. Or – how about putting a map or location details on the

receipt, if local customers coming to collect goods need to know where you’re based

in town.

Leaving aside the potential uses for a moment (and we will come back to this

shortly), we’ve covered some important techniques in our code, so let’s take a moment

to break it apart and explore it in more detail.

 Breaking Apart Our Code
To implement a geocoding feature on our site required a few changes – we started by

adding in a link to the Google Geocoding API script, before adding in several variables

that hard-code our starting coordinates and provide placeholders for the destination

location values. Next, we created a function that calls the Google Geocoding API; this

turned the destination address of 50 Varick Street into numerical values that represent

the location of our customer’s home address.

We then used a somewhat complicated function to work out the distance between

the two points, around a sphere – this is known as the Haversine formula. The reason

for the reference to a sphere is that the Earth is circular; when we want to calculate the

distances involved, we have to allow for the fact that we’re effectively measuring around

a sphere and not in a flat, straight line. We don’t need to worry about the mechanics of

how the function works – it’s enough to know that as long as we provide valid references,

then it will work out the distance for us.

The remaining changes to our code involve updating the paymentDetails constant,

to allow for the addition of a local delivery option. We’ve included a few console.log

statements as this is a proof of concept – you can see the raw information if you activate

your browser’s developer console.

Hopefully this has provided some food for thought – enabling a geolocation-based

option opens the door to some interesting ideas that could work on any site. There are

however a few things we need to consider though – let’s pause for a moment to explore

some of the logistics of what this technology means for our site.

Chapter 7 projeCt: enabling the api in a Framework or CmS

208

if you would like to learn more about the haversine formula, then wikipedia has
an interesting article at https://en.wikipedia.org/wiki/Haversine_
formula.

 What Next for Geolocation: Should We Use It?
It’s a very good question – I suspect it may depend on how brave or disruptive you want

to be! There are some benefits to using geolocation, although as with any service, it’s

important to bear in mind the costs involved.

If we were to use it, then the biggest two issues we face are that of privacy and

cost – not only do we have an ongoing monetary cost involved, we should also get the

customer’s permission to use their location. However, the latter may not be so critical –

we already ask the customer for their address during the checkout process; we take this a

step further by converting it to suitable coordinates using client-side code. Granted, the

address does have to be sent to the retailer (otherwise how can we ship the product!) –

details of how we selected our shipping method remain client-side with the customer.

If we do decide to use this service, then what might we be able to do? Well, we could

implement a map showing where the selected store is – what if that map also showed

directions too? Assuming we make use of the geolocation (or Geocoding) APIs, then we

can work out if it is quicker to get someone to walk or bike round to the customer – in

a busy city, this would be a more effective means of transporting the goods rather than

sitting in traffic!

There is a good reason therefore to charge something of a premium for this service –

the person delivering the goods may not be able to get as many done as a standard

courier service (as they have to go back to the store each time) but could get each run

done quicker. This could potentially mean we could introduce a timeslot when the goods

will appear – we can predict how long it is likely to take, if we limit the local delivery area

to no more than say 2 miles from the store.

Ultimately it’s all about simplicity and a little lateral thinking – the Payment Request

API was designed to make checkout simpler and quicker to use; it’s all about how we can

make better use of the data available to use, so that customers know when to expect their

delivery and plan their day around its expected time of arrival. Cast your mind back to

Chapter 7 projeCt: enabling the api in a Framework or CmS

https://en.wikipedia.org/wiki/Haversine_formula
https://en.wikipedia.org/wiki/Haversine_formula

209

the start of Chapter 4, where I made a reference to two companies with vastly different

delivery services – now do you see what I mean about making the journey that much

easier for customers?

Okay – let’s move on: in the second of our two case studies, we’re going to switch to

implementing something that is particularly popular in Asian countries such as China

or Japan. It’s a really quick way of communicating information and can appear literally

anywhere – anyone for a QR code?

 Case Study: Using QR Codes
First invented back in 1994 for the Japanese automotive industry, QR codes are a great

way to communicate short bits of information or addresses by simply scanning a matrix

barcode. They can be seen everywhere – on the backs of buses, lorries, in catalogues,

books, and the like; with the advent of the Internet, we can use them to direct customers

to more extensive sources very easily.

In our case, there are several ways we could use QR codes – one might be to

communicate a location map URL, or we might use it as a security check when collecting

goods from a delivery point. In any case, they are really easy to add in: as we’re already

making use of jQuery to support Bootstrap, we can drop in a QR plug-in for this purpose.

For our next demo we’re going to add in a simple QR code, using the plug-in by

Jerome Etienne. We can download it from https://github.com/jeromeetienne/

jquery- qrcode; it’s a few years old but seems to work with the latest version of jQuery

(3.4.1 at the time of writing).

once you’ve downloaded it, it needs to be stored in the js subfolder under the
geolocate folder; there is a copy available in the same folder in the code download
as well.

We’ll add in a simple address for now to illustrate how we might display the QR

code, but this could easily be a link to a Google Map, or a security code used to confirm

identity when collecting goods. Let’s dive in and take a closer look at how we might

implement this feature in more detail.

Chapter 7 projeCt: enabling the api in a Framework or CmS

https://github.com/jeromeetienne/jquery-qrcode
https://github.com/jeromeetienne/jquery-qrcode

210

ADDING QR CODE SUPPORT

For this exercise, we will need to make changes in several places, so we’ll start by opening

index.html first, from within the geocode folder:

 1. the first change we need to make is to add in our placeholder markup, so

that we can position the Qr code and some accompanying text: for this, go

ahead and add the following immediately below the closing </div> of the

#instructions block (which will be on or around line 62):

<div id="qrcode">

<p>Please scan for the location of your store:</p>

</div>

 2. next, switch to script.js and look for this line:

displayMessage("\u2714", "success", "Payment received - thanks for

your order!");

 3. leave a blank line, then add in the following code to generate our Qr code:

$('.code').qrcode({

 text: "234 Spring Street, New York",

 width: 128,

 height: 128

});

$("#qrcode > p").show();

 4. the last change we need to make is to add some limited styling – drop the

following code in at the end of styles.css:

#qrcode { font-family: montserrat, sans-serif; float: right;

margin-top: -265px; margin-right: 100px; }

#qrcode > p { display: none; width: 180px; text-align: center; }

.code { padding: 25px;}

 5. go ahead and save your work then close the files – we can now preview

the results! For this, fire up a node.js terminal session, then navigate to the

geolocate folder we created back in step 1.

Chapter 7 projeCt: enabling the api in a Framework or CmS

211

 6. at the prompt, enter this command and press enter:

ws --hostname localhost --https

 7. go ahead and browse to https://localhost:8000 when prompted – if

all is well, we should see our checkout form appear once we’ve added some

test products, then progressed through a test purchase. the form will look

something similar to the screenshot shown in Figure 7-5, where we can see the

Qr code next to the extra instructions text field.

Figure 7-5. The addition of our QR code

This was an easy change to make – it adds something of a nice touch to the end

of our checkout process! Although the code itself is very straightforward, let’s take a

moment or two to break it apart, so we can understand how it works in more detail.

 Understanding How It Works
If someone asked us to add a QR code to their site, then we would be foolish not to use

a plug-in for this purpose; creating one of these by hand would be a lengthy process!

Although the plug-in we’ve used is a few years old, the basic principle hasn’t changed –

we feed in any information we like, and it converts it to a matrix-style barcode that can

be scanned by any QR reader.

Chapter 7 projeCt: enabling the api in a Framework or CmS

212

In our case, we start by setting up a suitable placeholder element in our markup for

both the code and some accompanying text; we then call the .qrcode method on this

element to render our selected text. It’s worth noting that we’ve set both elements to only

appear on a successful transaction; this is just to make sure they appear at the right time.

The rest of the code simply styles the QR code, so it appears correctly within the extra

information area, once a customer has completed a successful transaction.

 Summary
One of the key strengths of the Payment Request API is its flexibility, and the ability to

integrate it with multiple different frameworks. We may not see examples of how to

achieve this online for a chosen framework – it doesn’t mean it’s not possible, just that

people haven’t posted their attempts online! That said, we’ve covered some useful tips

on how to integrate the API with our chosen framework, so let’s take a moment or two to

review what we’ve covered in this chapter.

We kicked off by outlining a requirement to use a framework with the API, before

exploring some of the options available and settling on our chosen framework, Vue.

js. We then rapidly went through creating the store and initial back-end code, before

exploring how we might take things further to help develop and refine the experience for

our customers.

Next up came two example case studies – we mentioned about how we touched on

one (implementing geolocation) briefly in the previous chapter, and the desire to explore

how we might implement it in a practical sense. We then switched to taking a look at

the use of QR codes and saw how they might be added to the site to help impart further

information to the customer if this is appropriate and that they have a suitable QR reader

available to them.

There is one more topic we should explore, before concluding our journey. The

Payment Request API is part of a larger family of APIs, known as the Web Payment

Handler API; this covers topics such as creating your own payment handler. No longer

are we forced to have to use others; we have control! Hold onto your hats as we take a

whistle-stop tour through the world of the Payment Handler API, in the next chapter.

Chapter 7 projeCt: enabling the api in a Framework or CmS

213
© Alex Libby 2019
A. Libby, Checking Out with the Payment Request API, https://doi.org/10.1007/978-1-4842-5184-3_8

CHAPTER 8

Project: The Future of the
Web Payments API
Cast your mind back to Chapter 1 – remember where we talked about the main

participants in an online transaction? One of those is the payment handler: you know

this better as Google Pay, or perhaps Apple Pay. With their combined resources, I doubt

there will be many of you who won’t have seen at least one of these somewhere – either

online or at your local store.

With enormous resources at their disposal, it’s easy to understand how they have

become so recognizable and why many will immediately mention their names if they

were asked for the top two or three companies who offer this service. They are perfectly

valid options and work well for those who already have accounts with either service. The

question is though – what if we didn’t want to use them and do something different…?

No problem: let me introduce you to the Payment Handler API! This API is a sister to

the Payment Request API; both are part of the Web Payments family of open standards

that are designed to help make online payments easier and more flexible (for both us

and for our customers).

It’s worth noting though that this flexibility does come at something of a price; the

Payment Handler API is somewhat more complex than the Payment Request API and

so more suited to being implemented once you have your e-commerce application up

and running with the basic handlers in place. Don’t let this put you off though – the API

can offer some real tangible benefits; how about accepting Bitcoin or bank transfers, for

example? Over the course of this chapter I’ll take you on a whistle-stop tour of the API, so

you can get a flavor of how it operates: let’s start with understanding how this API fits in

with the Payment Request API.

214

 What is the Payment Handler API?
Throughout this book, we’ve talked about the various aspects of the Payment Request

API and how we can use it to create consistent carts that make the checkout process

simple and fast for customers.

The Payment Request API is just one of several APIs that make up the Web Payments

API, a family of open standards being developed to help make online payments easier

for developers and customers alike. As it so happens, we’ve already touched on using

two earlier in this book, in the form of the payment method identifier and the payment

method manifest; together these all help determine how the various payment options

we decide to support operate from within the Payment Request API.

So – what is the Handler API, and how does it fit into this mix? In a nutshell, it allows

a web site to act as a payment handler, which (with the payment method identifier and

manifest) we can integrate into the Payment Request API. It doesn’t matter if this is

the standardized method (which we know as “basic-card”) or a third-party URL-based

version such as Microsoft Pay; in each case, the handler is responsible for the following

tasks:

• Making sure a payment can be made – this will vary depending

on the payment method and the customer’s payment request. For

example, the customer may choose to pay by Mastercard, when the

retailer only accepts Visa – in this case, the payment can’t be made.

• If merchant validation is supported by the payment handler, respond

to any merchant validation requests from the user agent.

• Verify that the information provided by the user results in a valid

transaction – this process creates and returns a payment-specific

object, which contains the information needed to handle the

transaction.

From a customer perspective, all we see is a list of supported payment options;

these names, or payment method identifiers, hide much of what happens when it comes

to handling transactions! We touched on how these fit into the overall mix back in

Chapter 1, but it’s important to understand how the mix works, so let’s quickly recap this

in a little more detail.

Chapter 8 projeCt: the Future oF the Web payments apI

215

 Understanding the Mix
If you’re like me, I suspect the only time you think about payments is when you have to

get up and find your credit card for that online transaction, right? Or perhaps you use

Google Pay and select this option instead?

Let’s assume for a moment you’ve not embraced the likes of Google Pay (yet – at

least) and that you prefer to use a credit card. Chances are, it will be either Visa or

Mastercard who feature on the front – after all, who could hope to stand a chance against

two of the world’s most recognized brands when it comes to payments? (Just to put

things in perspective: Visa is the world’s seventh most valuable brand, and estimated to

be worth $145 billion… yes you read right: $145 billion….)

With the advent of the Payment Handler API though, this could all change – other

companies now have a chance to create and offer a similar service to the likes of Google

Pay or Apple Pay; we’re no longer tied to having to use standard credit or debit cards.

For us as a developer, it means getting accustomed to some new concepts: we already

touched on these in Chapter 1, but as a reminder, here are the two most important ones:

• Payment method identifiers – these are strings that identify the payment

handler; they can be either the built-in methods to handle standard

credit or debit cards (such as Mastercard or Visa), or URL-based (such

as Google Pay). We can set a property to display a suitable title for the

customer such as “Pay by credit card.” At present, only one built-in

identifier is available (“basic-card”), but others are under discussion.

you can learn more about the supported built-in methods at the W3C reference
source at https://www.w3.org/TR/payment-method-id/.

• Payment handlers – this is the code required to interface between

the payment method and our third-party payment provider. This

might be a company such as Stripe or Square; they will handle

processing of payments in the background and return an appropriate

response to indicate success or failure of a transaction.

Over the course of this chapter, we’re going to make use of these concepts to

work through how we might create a payment handler for use in an e-commerce

application. We’ve touched on using basic-card as one option, along with BobPay as

Chapter 8 projeCt: the Future oF the Web payments apI

https://www.w3.org/TR/payment-method-id/

216

another – we’re going to use the former as a basis for our own handler, as part of an

extended demo. We need to start somewhere, so let’s first take a look at the various

elements that make up a payment handler in more detail.

 Creating a Handler
At the time of writing this book, it was surprising how little information there is

available on the subject of payment handlers – I suspect that with the API still to reach

a ratified status, there is always a risk that features are added, changed, or removed, so

documentation may become outdated. This said, one of the developers for Chromium,

Rouslan Solomakhin, has created some useful examples of how we might build payment

handlers; we’ll reuse his basic-card example as the basis for our own version.

you can see his payment handler demos at https://rsolomakhin.github.io/.

When working with payment handlers, there are several files that are required, or

locations that have to be provided; the exact number depends on whether we use the

built-in basic-card method or a third-party payment app, such as Google Pay. The details

of what we have to provide are listed in Table 8-1.

Table 8-1. List of files or locations required for a payment handler

Path Contents

/ the root path of a web-based payment app that registers a service

worker and a payment handler.

/manifest.json a web app manifest that defines the web-based payment app.

/payment- manifest.json a payment method manifest that defines how a payment method acts

(this is required for third-party apps, not basic-card).

/installer.js javascript code that handles a payment request.

/pay a payment method identifier urL that returns an http header pointing to

the payment method manifest (required for third-party apps only).

/checkout the actual checkout page exposed to users.

Chapter 8 projeCt: the Future oF the Web payments apI

https://rsolomakhin.github.io/

217

For our demo, we will create installer.js and manifest.json – the others are not

needed, as they relate to payment handlers provided by third-party companies, which

we’re not using for this extended demo.

 Getting Prepared
We’re almost at a point where we can start coding, but before doing so, there are a couple

of caveats we should keep in mind, when working through this demo:

• The Payment Handler API is still in a state of flux at the moment –

documentation online on this is somewhat scarce and likely to

become out of date, at least until the standard has become ratified.

At the time of writing it has hit Candidate Recommendations status

(April 2019); the latest version of the standard as published by the

W3C is available at https://www.w3.org/TR/payment-method-id/.

• For the purposes of this book, we’re going to keep things simple and

reuse the standard basic-card identifier as the basis for our handler.

However, this method is inherently insecure, as it transmits data in

plain text; it is very likely not to remain the standard going forward. For

now, we’ll use it as a means to show how we might assemble a payment

handler; things will almost certainly change once the Payment Handler

API and Payment Request API are ratified as a mainstream standard.

Okay – enough chitchat: time to get stuck into coding! Before we do this, there are a

couple of quick housekeeping tasks we need to complete first:

• We need a new folder in our project area – go ahead and create one

called basiccard, saving it at the root of our project folder.

• We need a copy of the basiccard – Completed version folder that

is in the code download that accompanies this book; make sure this

is saved to the root of our project folder. We will make use of some

prepared demo files from within it, when we come to test our handler

later in this chapter.

• We will need a local web server to be running – for the purposes

of this chapter, I will assume you’ve installed the local-web-server

application we referenced back in Chapter 2. If not, go ahead and do

so now; we’ll cover the steps for running it later in this chapter.

Chapter 8 projeCt: the Future oF the Web payments apI

https://www.w3.org/TR/payment-method-id/

218

With these steps out of the way, we can now start with coding! Our payment handler

will be called CoffeePay – this is in homage to those web site owners who might put up

donate buttons, or ask visitors to sub them a coffee as thanks for their work. It does also

happen to be this author’s favorite drink – given the themes used from earlier demos, it

seems very appropriate too!

The first step in the process for building our handler is to define the payment

identifier; in this instance though, we’re going to do things slightly differently, so let’s

dive in and take a look at what this means for us in more detail.

 Defining a Payment Method Identifier
When working with payment handlers, we have a few tasks involved – some easy, others

much more complicated! It makes sense to start with something easy first: this will be

the payment method identifier.

We’ve already seen these in action, although we’ve not dwelled on how they work

in any great detail. Put simply, these tell the browser whether a manifest file is available

at the defined URL; this tells the browser how the payment method should operate, as

indicated in this example:

const request = new PaymentRequest([{

 supportedMethods: 'https://bobpay.xyz/pay'

}], {

 total: {

 label: 'total',

 amount: { value: '10', currency: 'USD' }

 }

});

In this case, we have supportedMethods, which is an obligatory property; this

example also includes the total field, which isn’t compulsory at this stage, and can be

omitted. In all cases though, we don’t actually make use of this configuration object until

much later, during testing of our handler.

If you are using the basic-card method, then a urL is not needed; basic-card is
built into the browser, so it is sufficient to simply specify basic-card as a value instead.

Chapter 8 projeCt: the Future oF the Web payments apI

219

The browser sends a request to the URL, to determine if the manifest file exists – it

will either receive 200 OK or error 204 (No Content); if something is returned, then it will

look similar to this:

Link: <https://bobpay.xyz/payment-manifest.json>; rel=

"payment-method-manifest"

We must specify a URL that is secured (i.e. HTTPs), but it can be a fully qualified

domain name or a relative path; either will work equally fine.

 Building the Manifest
Once we’ve defined our payment method identifier, the next step is to create a payment

manifest. This is a JSON file that resides on our web server and is used to define which

payment apps can use this method. A typical manifest might look like this:

{

 "default_applications": ["https://coffeepay.xyz/manifest.json"],

 "supported_origins": [

 "https://coffeeandmore.com"

]

}

This JSON file uses two properties – the default_applications entry is an array of

fully qualified URLs which point to manifests where the payment apps are hosted; this

would reference the relevant JSON files for development, staging, and production usage.

We also have a supported_origins property in use – here we list all of the third-

party payment apps which implement the same payment method. We touched on how

multiple third-party payment apps can use the same payment method from earlier in the

book; we can use * here to indicate that any origin can host the third-party app, but this

reduces the security so isn’t advisable.

The payment manifest that we’re going to create will look different – as we’re

reusing a built-in standard one, we don’t need to provide a payment method manifest;

we instead need to provide a web app manifest. This works in a similar manner, using

JSON – let’s dive in and take a look in more detail.

Chapter 8 projeCt: the Future oF the Web payments apI

220

CREATING A MANIFEST

the first stage in creating our payment handler is to define the name that appears when

selecting a payment method – for this, run through the following steps:

 1. We’ll begin by opening a new document in your text editor – go ahead and add

the following lines:

{

 "name": "Pay with CoffeePay",

 "icons": [{

 "src": "images/coffee.png",

 "sizes": "600x600",

 "type": "image/png"

 }]

}

 2. save this as manifest.json at the root of the basiccard folder, then

close it – it does not need to be open for the remaining stages of this demo.

The first part of our handler is very simple – it’s so simple that it hardly warrants any

explanation! That said, all we do in this file is specify the name of our handler and the

various icons we want to use. In our example, we’ve only specified one, but we might

want to use a range of different sizes – for this, we might write something like this in

place of the existing icons property:

 "icons": [

 {

 "src": "images/manifest/icon-192x192.png",

 "sizes": "192x192",

 "type": "image/png"

 },

 {

 "src": "images/manifest/icon-512x512.png",

 "sizes": "512x512",

 "type": "image/png"

 }

],

Chapter 8 projeCt: the Future oF the Web payments apI

221

We can see the effects of adding in an icon in the screenshot shown in Figure 8-1.

Figure 8-1. Our payment manifest on display

Okay – let’s move on: the next stage in developing our payment handler is to create

a payment app. This JSON-based configuration file contains some dummy data to

initialize our service worker, with properties such as addressLine and country; in

reality, we would select the required address when our checkout form is displayed. Let’s

take a look at the contents of this file in more detail.

 Creating a Payment App
For the next stage of our extended demo, we’re going to create a payment app, to hard-

code details of a customer into the checkout form.

This will automatically pass properties such as their billing address, country,

and credit card details – it is worth noting that we are doing this in a development

capacity only and that I would absolutely not recommend doing this in a production

environment! The basic-card format passes through unsecured data in plain text (such

as the credit card number) – we’re doing it here to illustrate how you might create a

payment handler, but that in reality we should use one of the other methods of payment

(such as token-based), which handles data far more securely.

Chapter 8 projeCt: the Future oF the Web payments apI

222

This aside, setting up this app file is very straightforward – let’s dive in and take a look:

CREATING THE APP

to set up the application, follow these simple steps:

 1. We’ll begin by creating a new file – save this as app.js at the root of the

basiccard folder.

 2. add the following lines of code:

self.addEventListener('paymentrequest', (evt) => {

 evt.respondWith({

 methodName: 'basic-card',

 details: {

 billingAddress: {

 addressLine: [

 '1875 Explorer St #1000',

],

 city: 'Reston',

 country: 'US',

 dependentLocality: ",

 languageCode: ",

 organization: 'Google',

 phone: '+15555555555',

 postalCode: '20190',

 recipient: 'Jon Doe',

 region: 'VA',

 sortingCode: "

 },

 cardNumber: '4111111111111111',

 cardSecurityCode: '123',

 cardholderName: 'Jon Doe',

 expiryMonth: '01',

 expiryYear: '2020',

 },

 });

});

 3. Go ahead and save then close the file – we don’t need to keep it open for now.

Chapter 8 projeCt: the Future oF the Web payments apI

223

Although this may look like a straightforward list of properties (such as addressLine

and country), in reality, we wouldn’t use this format: it’s completely insecure and is only

suited for development purposes. This said, it contains properties we’ve already used

earlier in the book; we’ve put it into a format which means we don’t have to specify them

manually at the point of displaying our checkout form.

If you would like to learn more about the individual properties used, then

MDN has a good list available at https://developer.mozilla.org/en-US/docs/

Web/API/PaymentAddress. The properties listed in on that page are preceded with

PaymentAddress – this part can be ignored (i.e. PaymentAddress.postalCode is the same

as the postalCode entry listed in our demo). Okay – let’s move on: up next is the real

meat of our demo!

 Installing the Payment Handler
Up until now, we’ve had it fairly easy – this is where things get a little more complicated!

The real meat of setting up any payment handler will be in the installer; for this, we have

to set up a service worker to help install and register our payment handler.

What is a service worker I hear some of you ask? Put simply, they are scripts that

run in the background and open doors to features that don’t need a web page. A good

example would be to operate push notifications (you know, those annoying little notices

that appear, pretending to be informational alerts, yet are anything but…), or we might

use them to perform background synchronization for us.

If you would like to learn more, then Google has a useful article at https://
developers.google.com/web/fundamentals/primers/service-
workers/.

From a coding perspective, this is the most complex part of creating any handler – for

our next exercise, we will work through creating one for our CoffeePay handler that will

reuse the basic-card method we’ve already seen in action earlier in this book.

Chapter 8 projeCt: the Future oF the Web payments apI

https://developer.mozilla.org/en-US/docs/Web/API/PaymentAddress
https://developer.mozilla.org/en-US/docs/Web/API/PaymentAddress
https://developers.google.com/web/fundamentals/primers/service-workers/
https://developers.google.com/web/fundamentals/primers/service-workers/
https://developers.google.com/web/fundamentals/primers/service-workers/

224

INSTALLING A SERVICE WORKER

the last stage of creating a payment handler is setting up the service worker and installer –

this is a fairly substantial block of code, which we’ll go through section by section. Let’s make

a start:

 1. We’ll start by opening a new file in your text editor – go ahead and save it as

installer.js, at the root of the basiccard folder we created at the start of this

chapter.

 2. First go ahead and add in these helper functions – these take care of displaying

or hiding messages on screen:

function showMessage(message) {

 const messageElement = document.getElementById('msg');

 messageElement.innerHTML = message + '\n' + messageElement.

innerHTML;

}

function clearMessages() {

 document.getElementById('msg').innerHTML = ";

}

function showElement(id) {

 document.getElementById(id).style.display = 'block';

}

function hideElement(id) {

 document.getElementById(id).style.display = 'none';

}

function hideElements() {

 const elements = [

 'checking',

 'installed',

 'installing',

 'uninstalling',

 'not-installed',

];

Chapter 8 projeCt: the Future oF the Web payments apI

225

 for (const id of elements) {

 hideElement(id);

 }

}

 3. next, leave a blank line, then add in this function – this initiates a check to

confirm if the payment handler is already installed and degrades gracefully if

installation isn’t supported:

function check() {

 clearMessages();

 hideElements();

 showElement('checking');

 if (!navigator.serviceWorker) {

 hideElement('checking');

 showMessage('No service worker capability in this browser.');

 return;

 }

 navigator.serviceWorker

 .getRegistration('app.js')

 .then(registration => {

 if (!registration) {

 hideElement('checking');

 showElement('not-installed');

 return;

 }

 document.getElementById('scope').innerHTML = registration.scope;

 if (!registration.paymentManager) {

 hideElement('checking');

 showElement('not-installed');

 showMessage(

 'No payment handler capability in this browser. Is chrome://

flags/#service-worker-payment-apps enabled?',

);

 return;

 }

Chapter 8 projeCt: the Future oF the Web payments apI

226

 if (!registration.paymentManager.instruments) {

 hideElement('checking');

 showElement('not-installed');

 showMessage(

 'Payment handler is not fully implemented. Cannot set the

instruments.',

);

 return;

 }

 registration.paymentManager.instruments

 .has('instrument-key')

 .then(result => {

 if (!result) {

 hideElement('checking');

 showElement('not-installed');

 showMessage('No instruments found. Did installation

fail?');

 } else {

 registration.paymentManager.instruments

 .get('instrument-key')

 .then(instrument => {

 document.getElementById('method').innerHTML =

 instrument.enabledMethods || instrument.method;

 document.getElementById('network').innerHTML =

 instrument.capabilities.supportedNetworks;

 document.getElementById('type').innerHTML =

 instrument.capabilities.supportedTypes;

 hideElement('checking');

 showElement('installed');

 })

 .catch(error => {

 hideElement('checking');

 showElement('not-installed');

 showMessage(error);

 });

 }

 });

 })

Chapter 8 projeCt: the Future oF the Web payments apI

227

 .catch(error => {

 hideElement('checking');

 showElement('not-installed');

 showMessage(error);

 });

}

 4. next up comes the rather substantial install() function – this initiates

the service worker we touched on earlier and displays suitable messaging to

confirm if it is still installing or if installation has completed:

function install() {

 hideElements();

 showElement('installing');

 navigator.serviceWorker

 .register('app.js')

 .then(() => {

 return navigator.serviceWorker.ready;

 })

 .then(registration => {

 if (!registration.paymentManager) {

 hideElement('installing');

 showMessage(

 'No payment handler capability in this browser. Is chrome://

flags/#service-worker-payment-apps enabled?',

);

 return;

 }

 if (!registration.paymentManager.instruments) {

 hideElement('installing');

 showMessage(

 'Payment handler is not fully implemented. Cannot set the

instruments.',

);

 return;

 }

 registration.paymentManager.instruments

 .set('instrument-key', {

Chapter 8 projeCt: the Future oF the Web payments apI

228

 name: 'Chrome uses name and icon from the web app manifest',

 enabledMethods: ['basic-card'],

 method: 'basic-card',

 capabilities: {

 supportedNetworks: ['visa'],

 supportedTypes: ['credit'],

 },

 })

 .then(() => {

 registration.paymentManager.instruments

 .get('instrument-key')

 .then(instrument => {

 document.getElementById('scope').innerHTML =

registration.scope;

 document.getElementById('method').innerHTML =

 instrument.enabledMethods || instrument.method;

 document.getElementById('network').innerHTML =

 instrument.capabilities.supportedNetworks;

 document.getElementById('type').innerHTML =

 instrument.capabilities.supportedTypes;

 hideElement('installing');

 showElement('installed');

 })

 .catch(error => {

 hideElement('installing');

 showMessage(error);

 });

 })

 .catch(error => {

 hideElement('installing');

 showMessage(error);

 });

 })

 .catch(error => {

 hideElement('installing');

 showMessage(error);

 });

}

Chapter 8 projeCt: the Future oF the Web payments apI

229

 5. as with all good software, we need to provide an uninstall option too; for this,

leave a line, then add in the following code:

function uninstall() {

 hideElements();

 showElement('uninstalling');

 navigator.serviceWorker

 .getRegistration('app.js')

 .then(registration => {

 registration

 .unregister()

 .then(result => {

 if (result) {

 hideElement('uninstalling');

 showElement('not-installed');

 } else {

 hideElement('uninstalling');

 showElement('installed');

 showMessage(

 'Service worker unregistration returned "false", which

indicates that it failed.',

);

 }

 })

 .catch(error => {

 hideElement('uninstalling');

 showMessage(error);

 });

 })

 .catch(error => {

 hideElement('uninstalling');

 showMessage(error);

 });

}

Chapter 8 projeCt: the Future oF the Web payments apI

230

 6. We finish with a single one-liner – add in this add the end of the file to initiate

our service worker:

check();

 7. Go ahead and save the file – we’ll keep it open for the moment, as part of

reviewing the code in a moment.

Yikes – that was indeed a substantial piece of coding! If you got to this stage, then

congratulations: you deserve a break. It contains some useful key principles that we will

no doubt use or see when creating payment handlers; it’s worth reviewing the code in

more detail. Before we do this though, take a few moments to catch your breath and get a

drink – when you’re good to go, let’s take a look at that code in more detail.

 Dissecting Our Code
Although we’ve covered a lot of code while creating our CoffeePay handler, the great

thing about payment handlers is that we don’t have to worry about how the front end

appears to the customer or how it works. Instead, we can absolutely focus on the back-

end functionality – everything we need can be accomplished using plain JavaScript,

without the need for any external libraries. Let’s take a look in more detail:

The bulk of the code we created sits in installer.js – we started by creating some

helper functions to control how messages displayed back to the customer are rendered

on screen. This includes defining all of the various states of install, such as checking, not

installed, or uninstalling. Most of these you will not have seen in action in our demo, but

that is purely because we are working locally; on a web site where there will be a delay in

response, these states will be more visible.

Next up came the check() function – this performs a check to ensure our browser

can support payment handlers, or their installation using service workers. It’s worth

noting that the code at lines 50-58 could potentially be removed; this relates to a specific

check for Chrome. Chrome has had native support for the Payment Request API since

September 2017; given it’s propensity to update frequently, there is a good chance that

this check could now be redundant for many Chrome users!

I say potentially though, as this code can also be triggered by Firefox Developer

Edition too – a check in your site’s analytics will confirm if this browser is being used and

whether it is safe to remove this check.

Chapter 8 projeCt: the Future oF the Web payments apI

231

The next function is where the real magic happens – install(). Inside this we

perform similar checks to ensure that payment handlers can be supported or that the

payment instruments can be installed correctly; provided these checks are successful, it

will install the handler for us or display a suitable error if installation has failed. We then

complete the code with the uninstall function, which de-registers and uninstalls the

handler for us; the check() call at the end initiates the whole process.

Okay – let’s change tack: now that we’ve worked our way through a proof of concept

example of how a payment handler might work, it’s a good opportunity to consider the

wider picture, and not just the technical innards of creating handlers!

What do I mean by this? Well, throughout all of our demos to date, we’ve always

displayed the checkout sheet, where we can select which payment method to use, the

address detail, and so on. What if we could actually skip this sheet?

 Streamlining the Process
I have a confession to make – when researching for this book, I (against my better

judgement) felt we should broach the subject of “best practice.” Why “against my better

judgement” though? Surely this is what we should always strive for, right?

Yes, it is true that we should always look to follow “best practice” where it is relevant.

However, when anyone mentions those words, I must admit it makes me cringe – I

frequently think “oh no, not again!”

There’s a good reason for this: I hear and see far too many instances where people

claim something is “best practice,” yet it is clear that this isn’t always the case! It’s for this

reason I am reminded of the curse of the “Scottish Play” – where an actor does not utter

the name of a particular play, for fear of instilling a curse on their show. This is why I try

to avoid uttering those words where possible…

If you’ve not heard of this play, then take a look at https://en.wikipedia.
org/wiki/The_Scottish_Play – it explains what the real name of this play is
and the history behind why one should never refer to it by that name.

But I digress. I know people strive to make sure that their implementation follows

best practice where possible (and there is nothing wrong with that concept), but how do

we really define what is “best practice”? Isn’t it more a case of streamlining or optimizing

Chapter 8 projeCt: the Future oF the Web payments apI

https://en.wikipedia.org/wiki/The_Scottish_Play
https://en.wikipedia.org/wiki/The_Scottish_Play

232

our process, at least in part? For me, it should not be about blindly following what others

do – each solution is different, and I would maintain that as long as it includes the right

features that have been tested, we should focus on optimizing it for our customers.

One way to achieve this is to streamline what is displayed – Ian Jacobs from the W3C

posted a blog article on two ideas that are being considered: just-in-time registration,

and skipping the sheet. These take a little explaining, so let’s start with just-in-time

registration and see what this means in practice.

The idea of just-in-time registration process is designed to handle those instances

where browsers display payment handlers which are based on payment methods

that are accepted by the merchant’s web site. Normally customers have to manually

install each handler, but the W3C proposes to allow automatic registration via use of an

authorization code and appropriate payment method manifest.

The second relates to instances where we can skip over the display of the initial payment

sheet – that is, go past the screen where we might select a payment method, or specify a

delivery address. For this to happen, there are certain conditions that have to be met:

• The merchant detects that support for only one payment method,

and it is a URL-based method (i.e. not basic-card).

• The merchant doesn’t require information to be entered (such as

shipping address).

• The customer has said payment handler already installed, or can

install it via just-in-time registration.

If the preceding conditions can be met, then at the point of initiating the checkout

form (e.g., by clicking “Buy”), the initial page will be skipped.

If you would like to learn more, then the original W3C blog article is available at
https://www.w3.org/blog/wpwg/2018/08/20/further-streamlining-
the-payment-request- user-experience/ – please bear in mind though
that certain elements of the apI are still in a state of flux, so features may change
before the apI becomes a ratified standard.

Okay – having considered what we should implement as “best practice” (grr….),

now is an opportune moment to reflect on the wider issue of security around payment

handlers. Payment handlers are by their very nature a very powerful tool; for some it

Chapter 8 projeCt: the Future oF the Web payments apI

https://www.w3.org/blog/wpwg/2018/08/20/further-streamlining-the-payment-request-user-experience/
https://www.w3.org/blog/wpwg/2018/08/20/further-streamlining-the-payment-request-user-experience/

233

is understandably scary as to just how much power they can wield from a standard

browser! With that in mind, let’s explore some of the security concerns that we might

have, and how these can be mitigated when using payment handlers.

 Considering Security Implications
Payment handlers are indeed a powerful tool – when used correctly, we have the ability

to really streamline the checkout process for our customers. This of course will bring up

security concerns; how these are managed will differ between browser vendors.

As an example, Chrome (who were first to ship support), implemented a range of

checks and prevention measures, which include.

• Ensuring that payment handlers only operate in an SSL-secured

environment.

• Disallowing communication with handlers if their security state is

listed as red or grey on the BadSSL web site (https://badssl.com).

• Hiding payment handlers if their origin is listed as unsafe in Google’s

lists of unsafe web sites (which can be queried using Google’s Safe

Browsing API).

the exception to this is localhost – this will permit handlers to work in an http
and https environment, for development purposes only.

Google also limits payment handler functionality, by running it in its own

“sandboxed” environment in the browser; this keeps it separate to the main browser

process. It will also block any content, requests, or scripts that are not secured and

that originate from a cross-domain source. Chrome though has given access to some

additional settings that control payment handler behavior, such as whether we can skip

the payment sheet (or screen) before launching the handler, block handlers from a given

origin (such as ones we don’t want to support), or prevent customers from registering a

handler during the payment process.

Chapter 8 projeCt: the Future oF the Web payments apI

https://badssl.com

234

From a customer perspective though, we need to be mindful of whether the option

to enable payment handlers has been enabled in the browser, and if so, what details are

stored within the browser. Chrome has enabled the option to store details by default

since version 68 (mid-2018), so customers may not automatically realize this is the

case. The setting can be disabled, but the trade-off is that we should provide a fallback

mechanism, at least until the Payment Request API (and handlers) becomes an accepted

mainstream standard.

Ultimately though the Payment Handler (and Payment Request) API is all about

making it easier to purchase online; we can help customers by evangelizing the benefits

of a quick checkout, ensuring our site is fully protected, using reputable third-party

services, thoroughly testing our site, and helping with support FAQs (particularly if

we’re implementing the API into an existing site). We can’t stop customers from doing

something silly, but as long as we can help identify, educate, and minimize risk, this will

help encourage adoption of this new standard into mainstream use.

as an aside, a new 3D secure security standard is due to come into force in
europe – you can learn more about how this will affect the payment handler apI,
from the W3C blog at https://www.w3.org/blog/wpwg/2018/01/26/a-
crisper- picture-of-3d-secure-2-and-payment-request/.

 Testing Our Payment Handler
At this stage, we should have a working handler – it’s time to test it! For this, we’ll do

the testing in two parts: the first will use a restyled version of Rouslan Solomakhin’s

original demo.

The second will revisit one of our earlier demos, to see how the payment handler

might perform in a more realistic environment, where we may elect to do things such as

changing the shipping type or even the destination address. Let’s start with confirming

that our handler actually works first, using Rouslan’s (restyled) demo.

Chapter 8 projeCt: the Future oF the Web payments apI

https://www.w3.org/blog/wpwg/2018/01/26/a-crisper-picture-of-3d-secure-2-and-payment-request/
https://www.w3.org/blog/wpwg/2018/01/26/a-crisper-picture-of-3d-secure-2-and-payment-request/

235

TESTING THE HANDLER – PART 1

For this last exercise, we’ll make use of the Coffeepay handler we’ve just created – we will

focus more on making sure it works rather than delving into building our test page. With this in

mind, let’s crack on:

 1. We’ll begin with firing up a node.js terminal session – once running, change

the working folder to be the basiccard folder we set up in the previous

exercise; this has both the main code and testing page already set up.

 2. at the prompt, enter this command, and press enter:

ws --hostname localhost --https

 3. Go ahead and browse to https://localhost:8000 in Chrome; if all is well,

you should see the page shown in Figure 8-2.

Figure 8-2. Our new payment handler, ready to install

Chapter 8 projeCt: the Future oF the Web payments apI

236

 4. Click the Install button – after a couple of moments, you will see a confirmation

that Coffeepay has been installed; it will show the scope, as well as the

supported payment method (Figure 8-3).

Figure 8-3. Testing our new payment handler

 5. now click the test it out link shown on the page; you will see our preconfigured

test page appear, as indicated in Figure 8-4.

Chapter 8 projeCt: the Future oF the Web payments apI

237

 6. Click the buy button – you will notice that we’ve not asked for any contact

details; these have already been provided earlier, when we set up the payment

app. you will see something akin to the screenshot shown in Figure 8-5.

Figure 8-4. The test page for our payment handler

Figure 8-5. Testing our payment handler

Chapter 8 projeCt: the Future oF the Web payments apI

238

 7. you may see a different handler present – if you do, don’t worry: click the arrow

to the right, to select our newly created payment handler (Figure 8-6).

Figure 8-6. Our new payment handler, in all its glory

 8. back on the previous page, go ahead and select pay – you’ll see the (by now

familiar) processing spinner; it will then display a simulated response, with our

client details listed on the page (an extract of which is shown in Figure 8-7).

Chapter 8 projeCt: the Future oF the Web payments apI

239

Figure 8-7. An extract of the simulated response

Chapter 8 projeCt: the Future oF the Web payments apI

240

So far, we’ve tested our handler in a simulated example; what about a more realistic

example? While it wouldn’t be wise to put our handler out into a real-live site (at least just

yet), we can at least test in a more complete demo – let’s do that as part of our next exercise:

TESTING THE HANDLER – PART 2

the real proof of it working lies in using one of our previous demos – for this, follow these

steps:

 1. We’ll use the cookies demo from Chapter 7 – first, fire up a node.js terminal

session, then change the working folder to the cookies folder inside our project area.

 2. at the prompt, enter this command and press enter:

ws --hostname localhost --https

 3. next, browse to https://localhost:8000; and click add against a couple

of cookies – the exact number isn’t critical for this demo.

 4. Go ahead and hit Checkout securely, to begin the checkout process.

 5. our next step is the moment of truth: click the arrow to the right of the payment

method, and make sure pay with Coffeepay is selected, if this isn’t already

showing (Figure 8-8).

Figure 8-8. Selecting our new payment handler

Chapter 8 projeCt: the Future oF the Web payments apI

241

 6. on the previous screen, hit pay – if all is working oK, we should see our

confirmatory message appear and disappear after a short while, as indicated in

Figure 8-9.

Figure 8-9. Confirmation that our handler has worked

We now have a working proof of concept that hopefully gives you a flavor of how

payment handlers work – we’ve covered some useful tips, so let’s relax for a moment,

grab a drink, and take a closer look at the code in more detail.

 Dissecting the Code
Fire up your text editor, and take a look at these three files from the testing folder in the

basiccard demo: test.html, merchant.js, and util.js. At first glance, you might be

forgiven for thinking that it looks nothing like what we’ve done before, right? In some

respects, this is true; but as someone once said to me, “you’re looking, but you’re not

seeing….”

Okay, I confess: perhaps I should explain what I mean by that somewhat cryptic

comment! The truth of the matter is that we don’t have to follow a rigid set pattern or use

the same code when creating payment handlers or initiating the Payment Request API;

as long as we follow certain principles then we can code them as we wish. In our case,

the code may look different, but we’re using the same principles such as displaying the

form (request.show()), creating our supported instruments (supportedInstruments =

[…]), and canMakePayment(). These are all methods or terms we’ve met earlier in the

book, but implemented slightly differently.

This is one of the great things about the Payment Request API, or even the Payment

Handler API; neither requires external libraries and so can use standard JavaScript

techniques to implement the API as we see fit.

Chapter 8 projeCt: the Future oF the Web payments apI

242

We started with a basic HTML markup page (test.html), which we use to initiate an

instance of our checkout form using the Payment Request API; this calls onBuyClicked()

to first confirm if the API is supported, before initiating our checkout form if the answer

is positive. The initiation is taken care of by the buildPaymentRequest() call at line 145

(just before the onBuyClicked() function); we first perform another check to ensure we

can support the API, before defining objects as placeholders for our supported payment

methods (lines 13-17), and build the transaction details (lines 19-61). This transaction

detail block includes the standard cost, plus taxes, and a discount.

The final stage is to fire up our checkout form, which we do from line 115; we first

confirm that we have at least one valid method of payment available. We then check to

see if there have been any changes to the payment method (if there has, we update the

selected payment method from line 127), before using the done function at line 73 in

util.js, to return a response which lists the results of our transaction.

 Summary
Over the course of this book, we’ve covered a host of interesting concepts around the

Payment Request API and how implementing it could really turn online payments on

its head. The same applies to creating payment handlers; we’ve explored some useful

techniques in this chapter, so let’s take a moment to review what we have learnt.

We kicked off with introducing the new Payment Handler API and saw how it plays a

key role in the checkout process; we then covered off how the Handler API fits in with the

other key elements that make up the Payment Request API.

Next up, we then moved onto creating a proof-of-concept handler, using code based

around the basic-card handler; we covered topics such as defining our payment method

identifier, to building the manifest and creating the installer for our handler.

We then moved onto exploring how we might streamline the process and discussed

a little on the wider topic of security; this was to understand some of the key areas of

concern rather than just focus on the technical innards of our code. We then rounded

out the chapter with a two-part demo to test the new handler, both in a limited

environment and using one of the existing demos we created from earlier in the book.

All good things must eventually come to a close, as we reach the end of this book;

I hope you’ve enjoyed our adventure through the world of the Payment Request API

as I have writing this book, and that this will see you begin to embrace a new API that

promises to disrupt the whole market around checkout forms in modern browsers.

Chapter 8 projeCt: the Future oF the Web payments apI

243
© Alex Libby 2019
A. Libby, Checking Out with the Payment Request API, https://doi.org/10.1007/978-1-4842-5184-3

APPENDIX

 API Reference
 API Inter faces

Interface Purpose

MerchantValidationEvent This enables a merchant to validate themselves as being

allowed to use a particular payment handler, such as Apple

Pay.

PaymentAddress An object that contains address information, such as billing

and shipping addresses.

PaymentMethodChangeEvent This describes the paymentmethodchange event which

is fired by some payment handlers, if a user changes their

chosen payment instrument, such as switching from Apple

Pay to using a store card.

PaymentRequest This is the primary access point for the API, and lets web-

enabled content and applications accept payments from

customers/visitors.

PaymentRequestEvent This event is sent to a payment handler when a

PaymentRequest has been made.

PaymentRequestUpdateEvent This enables the API to update the details of a

PaymentRequest object in response to a user action, such as

changing the chosen shipping method.

PaymentResponse This is returned when a user has selected a payment method

and approves a payment request using the API.

For a complete list of individual properties for each interface, please refer to https://

developer.mozilla.org/en-US/docs/Web/API/Payment_Request_API#Interfaces.

https://doi.org/10.1007/978-1-4842-5184-3
https://developer.mozilla.org/en-US/docs/Web/API/Payment_Request_API#Interfaces
https://developer.mozilla.org/en-US/docs/Web/API/Payment_Request_API#Interfaces

244

 API Properties

API property Purpose

HTMLIFrameElement.

allowPaymentRequest

This Boolean-based value indicates whether the Payment

Request API can be invoked on a cross-origin iframe.

https://developer.mozilla.org/en-US/docs/Web/API/HTMLIFrameElement/

allowPaymentRequest

 API Events
These events are delivered by the Request Payment API to a PaymentRequest object when

users make a change to their personal information in the course of filling out a checkout form:

Event Purpose of event

merchantvalidation This requires the merchant to validate itself as being allowed to use

the payment handler.

payerdetailchange This event handler should be set to check the values in each field

to ensure they are valid and display error messages if fields contain

invalid information. Once updated, the retry() method needs to be

called to update any invalid entries.

paymentmethodchange This is fired when users change the selected payment method within

a given payment handler, such as from credit card to Google Pay.

shippingaddresschange This is triggered when a customer changes the selected shopping

address, including adding a new address for the first time.

shippingoptionchange This is fired when the selected delivery option is changed by the

customer - as an example, this might be from standard 3-5 day delivery,

to express next day, if the customer wants it delivered sooner.

 Useful References
• Mozilla Developer Network has some useful information on the API,

which is available at https://developer.mozilla.org/en-US/docs/

Web/API/Payment_Request_API.

APPendIx API RefeRence

https://developer.mozilla.org/en-US/docs/Web/API/HTMLIFrameElement/allowPaymentRequest
https://developer.mozilla.org/en-US/docs/Web/API/HTMLIFrameElement/allowPaymentRequest
https://developer.mozilla.org/en-US/docs/Web/API/Payment_Request_API
https://developer.mozilla.org/en-US/docs/Web/API/Payment_Request_API

245
© Alex Libby 2019
A. Libby, Checking Out with the Payment Request API, https://doi.org/10.1007/978-1-4842-5184-3

Index

A, B
AbortError() function, 107
Application program interface (API)

autofill options, 2
benefits of, 4, 5
events, 244
interfaces, 243
misconceptions, 5, 6
object flow, 62
payment request, 2, 3
properties, 244
references, 244
terminology, 7–10
Web payments standard, 7

C, D
Checkout form configuration, 63

change order folder
details, 73
displayItems function, 74
exploring form, 75
payment.js, 73
steps, 72
updated form, 74
view items, 72

code details, 69, 70
display icon, 63
gift cards and discounts

amount.addEventListener event
handler, 76

applying discount, 78
code details, 79
displayItems block, 77
index.html, 76
promotion code, 75
steps, 76

handling multiple currencies, 65
screenshot, 70–72

Configuration
payment method

local web server, 60
paymentDetails array object, 58
paymentMethods object, 57
paymentOptions variable, 59
set up, 55, 56
testing, 61
window.onload() function, 57
working process, 61, 62

payment process
customer details, 80–82
iframe support, 82–84
options folder, 81
payment.js, 81
updated options, 81

E
Error handling

amount.addEventListener()
function, 39

canMakePayment() function, 45

https://doi.org/10.1007/978-1-4842-5184-3

246

checkout form, 41–44
CodePen demo, 39
demo messages, 41
demo process, 44
displayCancel() function, 40
displayError() function, 40
displaySuccess() function, 40
error trapping, 38
type of, 38
updated messaging, 44

F
Framework, 183

checkout process
configuration, 194
initCheckout function, 196
payment methods, 195
result/failure function, 198, 199
shipping and email addresses, 198
source code, 200
updateDetails function, 196

geolocation support, 201–209
option exploration, 184

angular, 184
key concepts, 187–189
react, 185, 186
Vue.js, 185, 188

project outline, 184
QR codes, 209–212
store front end

cookies folder, 190
creation, 189
helper function, 191
script.js, 190
set up function, 192
shopping cart component, 191

source code, 193
Vue helper function, 191

Vue.js, 200

G
Geolocation support

demo creation, 202
demo screen, 201–204
Google, 201
index.html, 202
latitude and longitude function, 203
local address visible, 206
option proof, 206
paymentDetails() function, 204
source code, 207
updateDetails() function, 204
use of, 208

H
Handling changes

checkout process, 85
delivery instructions

code details, 87
delivery instructions, 87
displaySuccess() function, 85
extra info folder, 86
source code, 85
steps, 85

email addresses, 84
Handling multiple currencies

comma separators, 69
const function, 66
currency flags, 68
currencyValue, 66
GBP and vice versa, 65
index.html, 65

Error handling (cont.)

INDEX

247

pounds sterling, 68
steps, 65
styles.css file, 67

I, J, K, L
InvalidStateError() function, 107

M, N, O
Mobile devices, 45–47

P
Payment handler, 115

BobPay app
default shipping option, 124
paymentMethods constant, 123
results of, 126
steps, 123

card, 116
extra charges

bump implemention, 135
credit card charges, 136
paymentMethods/payment

Details objects, 136
source code, 139
W3C’s specification, 135

identifiers, 116
instrument, 116
integration

API type method, 117, 118
link type, 117, 118
payment request API, 119, 120
tokenization type method, 118, 119

key concepts, 115
no payment apps, 140–147

BobPay payment method, 143
code changes, 146

core function, 144
err.message code, 143
error message, 145
payment.js file, 142, 146
scripts.js file, 142, 146
styles.css, 141

pending transactions, 147–149
provider implementation

BobPay app, 123
code changes, 126
fully working version, 123–128
payment identifiers, 127, 128
URL-based payments, 127

PSP (see Payment service
provider (PSP))

stripe implementation, 128–135
testing, 234

confirmation, 241
extract of, 239
installation, 235, 236
new windown, 238
screenshot, 237
selection process, 240
source code, 241
test page, 237

Payment Request API
browser support

desktop browsers, 35, 36
checkout, 35
enabling browsers, 34–36
payment methods/

instruments, 37
retry() method, 33
shapes option, 33

catch() statement, 51, 52
errors (see Error handling)
flowchart process, 52
housekeeping method

Index

248

Chrome window, 32
CodePen throughout, 28
project area, 30
working environment, 27, 28

methods, 48, 49
mobile devices, 45–47
paymentDetails, 49, 50
paymentOptions, 50, 51
requirements, 48
secure site, 31
web server and node.js, 29

Payment service provider
(PSP), 7, 116

effective solution, 122
IVA details, 122
key concepts, 121, 122
merchant and accounts, 121

Pending transactions, 147–149
Project outline

basket code
setup, 156

finished article, 151, 152
product gallery, 153

gallery work, 155
Sass, 153
setTimeout() function, 156
set up page, 153
source code, 155

Q, R
QR codes, 209–212

addition of, 211
geocode folder, 210
script.js, 210
styles.css, 210
working process, 211

S
security concerns, addressing, 24, 25
SecurityError() function, 107
Shipping order

address and method
blank line function, 91
comma code, 91
customer address folder, 90
initial delivery option, 92
onShippingAddressChange event

handler, 90
option set, 93
payment request API, 94, 95
request.shippingAddress, 94
shippingAddress, 95
toJSON method, 95
updated option, 92
working process, 93, 94

delivery methods set, 99–102
delivery restrictions

delivery address section, 104
displayMessage() function, 102
error message, 103
implemention, 101
invalid address, 105
shippingaddresschange()

method, 103, 105
source code, 105
states-based address, 102
valid address, 104

displayMessage() function, 99
error handling

collection method, 111
customer-generated errors, 107, 108
development errors, 108–112
duplicate IDs error, 110
error message, 112

Payment Request API (cont.)

INDEX

249

paymentDetails constant, 111
shippingOptions array, 110

expand option
changes, 98
error handling, 97
payment.js file, 97
shippingOptions and

displayItems, 96
text editor, 96
updated default option, 97

order products, 89
paymentOptions constant, 89
source code, 101

Stripe implementation
codepen stripe.js demos, 128
local stripe code

block controls, 133
Google Pay site, 134
scripts.js file, 132
Stripe.js, 132

source code, 130
walk-through

payment request, 129
steps, 129

Strong Customer Authentication (SCA), 128

T
Traditional merchant (see Payment

service provider (PSP))

U, V
User experience (UX)

checkout flows, 11
customization

button design, 18, 19
elements, 16–18

fallback options, 21
miscellaneous, 22, 23
navigation, 21
shipping options, 19, 20

feedback, 22–24
receipt and edit view, 9
sketching

checkout process, 15
flow diagram, 13
online sites, 12
principles, 12
purchase process, 14
stickersheet, 15

Snackbar UI message, 23

W, X, Y, Z
Web payments, 213

handler creation, 216
check() function, 230
demo option, 217
files/locations, 216
housekeeping tasks, 217
install() function, 227
manifest creation, 219–221
payment app, 221–223
payment handler

installation, 223–230
payment method identifier, 218
source code, 230, 231

payment handler, 213
method identifiers, 215
tasks, 214
understanding option, 215

security implications, 233, 234
streamlining process, 231–233

Web Payments standard, 7
window.onload() function, 56

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introducing the API
	Exploring the Benefits of Using the API
	Breaking Some Common Misconceptions
	Understanding Terminology Around the API
	Considering the UX Experience
	Exploring Checkout Flows
	Sketching a User Flow Using Sketch

	Customizing the UX
	Some General UX Advice
	Button Design
	Shipping
	Navigation
	Fallback Options
	Miscellaneous

	Giving Feedback Throughout the Journey

	Addressing Security Concerns
	Summary

	Chapter 2: Setting Up a Basic Checkout
	Some Basic Housekeeping
	Setting Up a Suitable Web Server

	Checking Browser Support for the API
	Enabling Browsers to Use the API
	Creating a Simple Example for Desktop Browsers
	Exploring What Happened

	Managing Errors in the Checkout
	Understanding the Changes to Our Demo

	Adapting for Use on Mobile Devices
	Exploring How the API Works in Detail
	Payment Methods
	Payment Details
	Payment Options
	Wrapping it All Together

	Summary

	Chapter 3: Configuring and Customizing Our Checkout
	Setting Up a Payment Method
	Taking the Next Step
	Understanding How it Works

	Customizing the API Flow
	Configuring Our Checkout Form
	Setting a Display Icon
	Handling Different Currencies
	Exploring Our Code in More Detail

	How Can We Handle Multiple Items Better?
	Exploring What this Means for Our Form

	Accepting Gift Cards and Discounts
	Exploring Our Code in Detail

	Configuring Our Payment Process
	Asking for Details from Customers
	Adding Iframe Support

	Handling Changes
	Handling Extra Information
	Exploring the Code in Detail

	Summary

	Chapter 4: Shipping
	Getting Started with Shipping
	Obtaining the Shipping Address and Method
	Exploring How this Works in Detail
	Making Use of Details in Payment Request API

	Expanding Our Shipping Options
	Exploring the Changes Made

	Dealing with Changes to Shipping
	Breaking Apart Our Code

	Implementing Delivery Restrictions
	Breaking Apart the Code

	Dealing with Errors
	Customer-Generated Errors
	Errors Generated During Development

	Summary

	Chapter 5: Integrating with a Payment Handler
	Exploring the Options
	API Type
	Link Type
	Tokenization Type
	Integrating with the Payment Request API

	Choosing between a PSP or Traditional Provider
	Implementing a Provider
	Dissecting the Code
	Understanding the Types of Payment Identifiers

	Implementing Stripe
	Breaking Apart the Code
	Making it More Local

	Dealing with Extra Charges
	Breaking Apart the Code in Detail

	Dealing with No Payment Apps
	Understanding What Happened
	Checking for No Apps: An Epilogue

	Taking Care of Pending Transactions
	Summary

	Chapter 6: Pulling It All Together
	Outlining the Project
	Building the Product Gallery
	Dissecting the Code thus Far
	Making Our Gallery Work

	Setting Up the Basic Basket
	Breaking Apart the Code

	Taking Care of Shipping (Plus Restrictions)
	Exploring the Code in More Detail

	Handling Payments
	Integrating a Payment Method
	Exploring the Code in More Detail

	Displaying Discounts
	Applying Charges When Necessary
	Exploring the Code in More Detail
	Applying Charges: A Postscript

	Adding Error Handling
	Exploring the Code in More Detail

	Taking Things Further
	Summary

	Chapter 7: Project: Enabling the API in a Framework or CMS
	Outlining the Project
	Exploring the Options
	Choosing Our Framework
	Creating the Store Front End
	Breaking Apart the Code

	Setting Up the Basic Checkout
	Dissecting the Code

	Taking Things Further
	Case Study: Adding Geolocation Support
	Getting Prepared
	Creating Our Demo
	Breaking Apart Our Code
	What Next for Geolocation: Should We Use It?

	Case Study: Using QR Codes
	Understanding How It Works

	Summary

	Chapter 8: Project: The Future of the Web Payments API
	What is the Payment Handler API?
	Understanding the Mix

	Creating a Handler
	Getting Prepared
	Defining a Payment Method Identifier
	Building the Manifest
	Creating a Payment App
	Installing the Payment Handler
	Dissecting Our Code

	Streamlining the Process
	Considering Security Implications
	Testing Our Payment Handler
	Dissecting the Code

	Summary

	Appendix: API Reference
	API Inter faces
	API Properties
	API Events
	Useful References

	Index

