
API
Management

An Architect’s Guide to Developing and
Managing APIs for Your Organization
—
First Edition
—
Brajesh De

API Management
An Architect’s Guide to Developing

and Managing APIs for Your
Organization

First Edition

Brajesh De

API Management: An Architect’s Guide to Developing and Managing APIs for Your
Organization

Brajesh De				
Bangalore, Karnataka, India			

ISBN-13 (pbk): 978-1-4842-1306-3		 ISBN-13 (electronic): 978-1-4842-1305-6
DOI 10.1007/978-1-4842-1305-6

Library of Congress Control Number: 2017935977

Copyright © 2017 by Brajesh De

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Celestin Suresh John
Development Editor: Matthew Moodie
Technical Reviewer: Chandresh Pancholi
Coordinating Editor: Prachi Mehta
Copy Editor: Kim Burton-Weisman
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover image designed by Freepik

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit
http://www.apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-1306-3.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://orders-ny@springer-sbm.com
www.springeronline.com
https://rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
www.apress.com/978-1-4842-1306-3
http://www.apress.com/source-code

Dedicated to my family for their constant encouragement and support

v

Contents at a Glance

About the Author�� xv

About the Technical Reviewer�� xvii

Acknowledgments��� xix

■■Chapter 1: Introduction to APIs��� 1

■■Chapter 2: API Management�� 15

■■Chapter 3: Designing a RESTful API Interface������������������������������� 29

■■Chapter 4: API Documentation�� 59

■■Chapter 5: API Patterns��� 81

■■Chapter 6: API Version Management��� 105

■■Chapter 7: API Security��� 111

■■Chapter 8: API Monetization�� 143

■■Chapter 9: API Testing Strategy��� 153

■■Chapter 10: API Analytics�� 165

■■Chapter 11: API Developer Portal�� 171

■■Chapter 12: API Governance�� 179

Index��� 189

vii

Contents

About the Author�� xv

About the Technical Reviewer�� xvii

Acknowledgments��� xix

■■Chapter 1: Introduction to APIs��� 1

The Evolution of APIs�� 3

APIs Are Different from Web Sites�� 5

Defining an API and Its Characteristics�� 5

Types of APIs�� 6

Examples of Popular APIs��� 8

The Difference Between a Web Service and a Web API������������������������� 10

How Are APIs Different from SOA?��� 11

The API Value Chain�� 13

Business Models for APIs��� 14

■■Chapter 2: API Management�� 15

Secure, Reliable, and Flexible Communication��������������������������������������� 17

The API Gateway�� 18

API Auditing, Logging and Analytics��� 23

API Analytics�� 24

Developer Enablement for APIs�� 25

Developer Portal�� 25

■ Contents

viii

API Lifecycle Management��� 27

API Creation��� 27

API Publication��� 27

Version Management��� 27

Change Notification��� 28

Issue Management�� 28

■■Chapter 3: Designing a RESTful API Interface������������������������������� 29

REST Principles�� 29

Uniform Interface��� 30

Client-Server��� 30

Stateless�� 30

Cache��� 30

Layered Systems��� 31

Code on Demand��� 31

Designing a RESTful API��� 31

Identification of Resources�� 31

Manipulation of Resources through Representation��� 33

Self-Descriptive Messages�� 33

Hypermedia as the Engine of Application State (HATEOAS)������������������������������������� 33

Resource Identifier Design Using URIs��� 34

Resource Naming Conventions�� 34

Modelling Resources and Subresources��� 34

Best Practices for Identifying REST API Resources��� 35

URI Path Design��� 35

URI Format��� 36

Naming Conventions for URI Paths�� 37

HTTP Verbs for RESTful APIs��� 37

GET�� 38

POST�� 39

■ Contents

ix

PUT�� 39

DELETE�� 40

PATCH�� 41

OPTIONS�� 41

HEAD�� 42

Idempotent and Safe Methods�� 42

HTTP Status Code��� 42

Resource Representation Design��� 45

Hypermedia Controls and Metadata��� 46

Accept (Client Request Header)��� 47

Accept-Charset (Client Request Header)��� 47

Authorization (Client Request Header)��� 48

Host (Client Request Header)��� 48

Location (Server Response Header)�� 48

ETag (Server Response Header)�� 49

Cache-Control (General Header)�� 49

Content-Type (General Header)�� 49

Header Naming Conventions�� 49

Versioning�� 50

Querying, Filtering, and Pagination�� 50

Limiting via Query-String Parameters��� 51

Filtering��� 51

The Richardson Maturity Model��� 52

Level 0: Swamp of POX (Plain Old XML)��� 53

Level 1: Resources��� 54

Level 2: HTTP Verbs��� 55

Level 3: Hypermedia Controls�� 56

■ Contents

x

■■Chapter 4: API Documentation�� 59

The Importance of API Documentation��� 59

Audience for API Documentation�� 60

Model for API Documentation��� 60

Title�� 61

Endpoint�� 62

Method�� 62

URL Parameters��� 62

Message Payload��� 62

Header Parameters�� 63

Response Code�� 64

Error Codes and Responses��� 64

Sample Calls�� 65

Tutorials and Walk-throughs�� 65

Service-Level Agreements��� 66

API Documentation Standards: Swagger, RAML, and API Blueprint�������� 66

Swagger�� 66

RAML��� 69

API Blueprint�� 75

Comparing Swagger, RAML, and API Blueprint�� 77

Other API Documentation Frameworks�� 80

■■Chapter 5: API Patterns��� 81

Best Practices for Building a Pragmatic RESTful API����������������������������� 81

API Management Patterns�� 86

API Facade Pattern�� 86

API Throttling��� 92

Caching�� 93

Logging and Monitoring��� 94

API Analytics�� 95

■ Contents

xi

API Security Patterns�� 95

Common Forms of Attack�� 95

API Risk Mitigation Best Practices��� 96

API Deployment Patterns�� 100

Cloud Deployment��� 100

On-Premise Deployment�� 102

API Adoption Patterns��� 102

APIs for Internal Application Integration�� 103

APIs for Business Partner Integration�� 103

APIs for External Digital Consumers�� 103

APIs for Mobile�� 104

APIs for IoT�� 104

■■Chapter 6: API Version Management��� 105

API Versioning vs. Software Versioning�� 105

The Need to Version APIs�� 106

API Versioning Principles�� 106

The API Version Should Not Break any Existing Clients��� 106

Keep the Frequency of Major API Versions to a Minimum������������������������������������� 106

Make Backward-Compatible Changes and Avoid Making New API Versions��������� 106

API Versioning Should Not Be Directly Tied to Software Versioning���������������������� 107

Approaches to API Version Management�� 107

Versions Using URLs�� 107

Versions Using an HTTP Header�� 108

Versions Using Query Parameters��� 108

Versions Using a Host Name�� 109

Handling Requests for Deprecated Versions��� 109

API Version Lifecycle Management�� 109

■ Contents

xii

■■Chapter 7: API Security��� 111

The Need for API Security��� 111

API Security Threats��� 112

API Authentication and Authorization��� 113

API Keys��� 113

Username and Password��� 114

X.509 Client Certificates and Mutual Authentication��� 115

OAuth��� 115

OpenID Connect �� 123

Protecting Against Cyber Threats��� 133

Injection Threats�� 134

Insecure Direct Object Reference�� 136

Sensitive Data Exposure�� 136

Cross-Site Scripting (XSS)��� 137

Cross-Site Resource Forgery (CSRF or XSRF)��� 138

Bot Attacks�� 139

Considerations for Designing an API Security Framework������������������� 140

API Security Threat Model�� 140

API Security Recommendations��� 141

■■Chapter 8: API Monetization�� 143

Which Digital Assets Can Be Monetized?��� 143

How to Increase Revenue Using APIs?��� 143

Increase Customer Channels��� 143

Increase Customer Retention�� 144

Upsell Premium and Value-Added Services��� 144

Increase Affiliate Channels�� 145

Increase Distribution Channels�� 145

■ Contents

xiii

API Monetization Models�� 145

Free Model��� 146

Fee-Based Model (a.k.a. Developer Pays Model)�� 147

Revenue-Sharing Model�� 148

Monetization Concepts��� 149

API Product�� 149

API Package��� 150

Rate Plan��� 150

Billing Documents�� 151

Monetization Reports��� 151

■■Chapter 9: API Testing Strategy��� 153

The Importance of API Testing�� 153

Challenges in API Testing��� 153

API Testing Considerations��� 154

API Interface Specification Testing�� 155

API Documentation Testing�� 156

API Security Testing��� 156

Testing API Gateway Configuration��� 157

API Performance Testing�� 158

Preparing for the Load Test��� 158

Setting up for the Load Test��� 160

API Performance Test Metrics��� 161

Selecting The Right API Testing Tool��� 162

Must-Have Features�� 162

Nice-to-Have Features��� 163

Common API Testing Tools��� 164

■ Contents

xiv

■■Chapter 10: API Analytics�� 165

The Importance of API Analytics��� 165

API Analytics Stakeholders��� 166

API Metrics and Reports��� 168

Custom Analytics Reports�� 169

■■Chapter 11: API Developer Portal�� 171

The API Lifecycle�� 171

Publishing and Sharing APIs�� 171

The Importance of the API Developer Portal��� 172

Supporting App Developers�� 172

Invitations�� 173

Social Forums�� 173

Federated Developer Communities��� 174

Types of Portal Users�� 174

API Developer Portal Features�� 175

The Relationship Between a Developer Portal and an API Gateway����� 177

■■Chapter 12: API Governance�� 179

The Scope of API Governance�� 179

The Aim of API Governance�� 182

API Governance Model��� 182

Index��� 189

xv

About the Author

Brajesh De is a seasoned technology expert with
over 18 years of experience in technology consulting,
architecture, design and implementation of highly
distributed and scalable application integration
solutions using REST API, SOA and JEE technologies.
He is an Accenture certified Senior Technology
Architect. With specialization in API Management,
he currently leads the API Management capability for
Accenture’s India Development Center. Prior to joining
Accenture, he has worked as a Principal Architect
with Apigee, architecting API Management solutions
for large enterprises in Telco domain. He has also
worked with Dell, where he was responsible for SOA
governance rollout and building integration solutions
for Dell’s internal applications using SOA technologies.

Before Dell he was working as a Senior Technical Architect with Wipro Technologies
where he has been instrumental in building complex integration solution for their tier
one clients.

Brajesh is also an experienced trainer, providing corporate training in advanced API
and SOA technologies. He holds a B. Tech degree in Electrical Engineering from IIT-BHU,
Varanasi. He was awarded the IIT BHU gold medal for securing the first position and first
division in B.Tech. Electrical Engineering Examination, 1998.

xvii

About the Technical
Reviewer

Chandresh Pancholi is SDE-3 at nnnow.com (Arvind Internet group). Prior to that, he
worked with Flipkart Internet Pvt. Ltd. as a senior software developer. He has worked on
multiple back-end frameworks, such as Spring, Dropwizard, Flask, Golang, and Spring
Boot. Chandresh graduated from LNMIIT, Jaipur and received a master’s degree from
BITS, Pilani. He is also a keen contributor to Apache open source foundations projects.

xix

Acknowledgments

First and foremost, I would like to thank my wife, Roopa, for her constant love, support
and sacrifice throughout the lengthy process of authoring this book. She has been my
source of encouragement and inspiration from start to finish. Her timely reminders
helped me to pen down each chapter at a steady pace. My son Bornik deserves special
thanks for his subtle yet valuable inputs, which helped me to plan the contents of each
chapter. Without his patience and sacrifice, getting time to write this book would have
been an uphill task. Last but not the least, no words can express the love and blessings of
my parents, Bamapada and Minakshi; without them, I could not have authored this book.

I would also like to thank Celestin Suresh John, Prachi Mehta, Baby Gopalakrishnan,
Mercy Thomas and all the editors of this book for their support, review comments and
input that helped to constantly improve the quality of each chapter.

1© Brajesh De 2017
B. De, API Management, DOI 10.1007/978-1-4842-1305-6_1

CHAPTER 1

Introduction to APIs

API stands for application programming interface. An API helps expose a business
service or an enterprise asset to the developers building an application. Applications can
be installed and accessed from a variety of devices, such as smartphones, tablets, kiosks,
gaming consoles, connected cars, and so forth. Google Maps APIs for locating a place on
a map, Facebook APIs for gaming or sharing content, and the Amazon APIs for product
information are some examples of APIs. Developers use these APIs to build cool and
innovative apps that can provide an enriching user experience. For example, developers
can use APIs from different travel companies to build an app that compares and displays
each travel companies’ price for the same hotel. A user can then make an informed
decision and book the hotel through the company that is providing the best offer.
This saves the user from doing the comparison on his own—thus improving his overall
experience. APIs thus help provide an improved user experience.

An API is a software-to-software interface that defines the contract for applications to
talk to each other over a network without user interaction. When you book a hotel room
online from a travel portal with your credit card, the travel portal/application sends your
booking information to the hotel’s reservation system to block the room. It also sends the
credit card information to a payment application. The payment application interacts with
a remote banking application to validate the credit card details and process the payment.
If the processing is successful, the hotel room is reserved for you. The interaction of
the travel portal with the hotel’s reservation system and the payment application both
use APIs. As a user, you see only one interaction to collect the booking and credit card
information. But behind the scenes, the applications work together using APIs. An API
does this by “exposing” some of the business functions to the outside world in a limited
fashion. That makes it possible to share the business services, assets, and data in a way
that can be easily consumed by other applications, without sharing the code base. APIs
can be thought of as windows to the code base. They clearly define exactly how a program
will interact with the rest of the software application—saving time and resources, and
avoiding any potential legal entanglements along the way. The API contract defines how
the service will be provided by the provider and consumed by a consumer. The contract
can include things like the definition and terms of service, SLAs like uptime/availability,
licensing agreements for the usage of the service, pricing and support model etc.

Chapter 1 ■ Introduction to APIs

2

The contract defines the protocol, the input and output formats, and the underlying
data types to be used for the software components to interact. It defines the functionality
that is independent of the underlying implementation technologies of the component.
The underlying implementation may change, but the contract definition should remain
constant. The contract helps increase the confidence and thus the use of a component.
An API with a well-defined contract provides all the building blocks needed to easily
create a software application.

The term API in this book refers to web APIs, a.k.a. REST APIs; such APIs are
implemented using REST principles, the details of which are covered in subsequent
chapters of this book.

This chapter covers the following topics:

•	 The evolution of APIs

•	 The difference between web APIs and web sites

•	 The characteristics of an API

•	 The types of APIs (using some popular examples)

•	 The difference between web APIs, a web services, and service-
oriented architecture

•	 An API value chain

•	 Various business models for APIs

Consumer Applications

Network

API

Enterprise Services

API API

Figure 1-1.  An API provides an interface for consumer applications to interact with
enterprise services over a network

Chapter 1 ■ Introduction to APIs

3

The Evolution of APIs
The term API may mean different things to different people, depending on the context.
There are APIs for operating systems, applications, and the Web. For example, Windows
provides APIs that are used by system hardware and applications. When you copy text
or a picture from Microsoft PowerPoint to Word, the APIs are at work. Most operating
environments provide an API so that programmers can write applications consistent with
the operating environment. Today when you talk about APIs, you are probably referring
to web APIs built using REST technologies. Hence, web APIs are synonymous to REST
APIs. Web APIs allow you to expose your assets and services in a form that can be easily
consumed by another application remotely over HTTP(s). The following describes the
evolution of the modern-day web API:

2000: Roy Thomas Fielding’s dissertation, “Architectural
Styles and Design of Network Based Software Architectures,”
is published.

February 2000: APIs are first demonstrated by SalesForce
during the launch of its XML APIs at the IDG Demo 2000.

November 2000: eBay launches the eBay API, along with the
eBay Developers Program. It is made available to a number of
licensed eBay partners and developers.

July 2002: Amazon Web Services is launched. It allows third
parties to search and display Amazon.com products in an
XML format.

February 2004: Marks the beginning of the social media era,
with Flickr launching its popular photo sharing site.

August 2004: Flickr launches its API, which help it to become
the most preferred image platform. The Flickr API allows
users to easily embed their Flickr photos into their blogs and
social network streams.

June 2005: The Google Maps API launches, allowing
developers to integrate Google Maps into their web sites.
Today, over a million web sites use the Google Maps API,
making it one of the most heavily used web application
development APIs.

August 2006: Facebook launches its Developer API platform,
allowing developers access to Facebook friends, photos,
events, and profile information.

September 2006: Twitter introduces its APIs to the world in
response to the growing usage of people scraping its web site
or creating rogue APIs.

Chapter 1 ■ Introduction to APIs

4

By the year 2006, web APIs are demonstrating the power of the Internet. They are
being used to share content and made available to social networks. But they are still not
considered fit for mainstream businesses. This year also marks the beginning of the cloud
computing era.

March 2006: Amazon S3 is launched. It provides a simple
interface to retrieve and store any amount of data at anytime
from anywhere on the Web.

September 2006: Amazon launches EC2, also known as
the Elastic Compute Cloud platform. It provides resizable
compute capacity in the cloud, allowing developers to launch
different sizes of virtual servers within Amazon data centers.

With cloud computing, web APIs witness their real power. APIs can now be
used to deploy global infrastructure. APIs move from being used only for social fun
and interaction to actually run real businesses. The emergence of mobile devices,
smartphones, and app stores becomes the next big game changer.

March 2009: Foursquare is launched to provide a local
search-and-discovery service mobile app. It provides a
personalized local search experience for its users. By taking
into account the places a user goes, the things they have
told the app that they like, and the other users whose advice
they trust, Foursquare aims to provide highly personalized
recommendations on the best places to go near the user’s
current location. By March 2013, the Foursquare API has more
than 40,000 registered developers building a new generation
of apps using of Foursquare’s location-aware services.

June 2009: Apple launches the iPhone 3G. iPod Touch and
iPhone owners can download apps through iTunes desktop
software or the App Store onto their devices. The APIs emerge
as the driving force for the growth of the app economy.

October 2010: Instagram launched its photo-sharing iPhone
app.

By 2012—after the introduction of powerful smartphones, iPads, tablets, and the
growth of Android and Windows Mobile, the need for APIs to provide resources to build
apps has grown exponentially. Mobile is the last piece in the digital strategy puzzle, which
includes ecommerce, social media, and the cloud. The growth of Android smartphones
and iPhones complemented the growth of digital technology, and APIs grew beyond
powering ecommerce, social media, and the cloud to delivering valuable resources to the
average person via smartphones. APIs make valuable resources modular, portable, and
distributed. They have become the perfect channel for building apps for mobile devices,
tablets, and handheld devices. Today, the success of the digital strategy for any company
depends on the use of SMAC (social, mobile, analytics, and cloud) technologies—all
powered by APIs.

https://en.wikipedia.org/wiki/Mobile_app#Mobile app

Chapter 1 ■ Introduction to APIs

5

APIs Are Different from Web Sites
Web sites publish information that can be consumed by a user, but web sites do not have
contracts. The layout, content, and the look and feel of a web site can change without prior
notice to users. There is no contract around a web site’s structure and content. When a web
site changes its content, visitors see the update; perhaps it has a new look and feel. When a
web site is dramatically redesigned, the only impact is users getting accustomed to the new
layout. Users might initially find it difficult to find their favorite information at a particular
place or in a particular form, but most get used to the changes over time.

An API, on the other hand, has a well-defined contract. Other applications depend
on this contract to use it. Unlike humans, programs are not flexible. So if the contract of
the API changes, there is a ripple effect on the apps built using the contract. The effect
could be potentially large. This does not mean that an API cannot change. Changes
necessary to meet evolving business needs are inevitable. Changes could be in the
business logic, or the back-end infrastructure, or to the interface defining the API
contract. Changes to the implementation or to the infrastructure do not necessarily
require changes to the API interface. Such changes can happen frequently. However, any
change to the API interface will impact the applications using them, and hence, should be
versioned and backward compatible.

Defining an API and Its Characteristics
In technical terms, an API defines the contract of a software component in terms of the
protocol, data format, and the endpoint for two computer applications to communicate
with each other over a network. In simple terms, APIs are a set of requirements that
govern how two applications can talk to each other.

An API provides a framework for building services that can be consumed over
HTTP by a wide range of clients running on different platforms, such as iPhone, tablets,
smartphones, browsers, kiosks, connected cars, and so forth. These applications can be
web applications or apps running on devices.

An API provider should provide the following information about the API:

•	 The functionality provided.

•	 The location where the API can be accessed. An HTTP URL is
normally used to specify the location.

•	 The input and output parameters for the API, such as parameter
names, message format, and data types.

•	 The service-level agreement (SLA) that the API provider adheres
to—such as response time, throughput, availability, and so forth.

•	 The technical requirements about the rate limits that control the
number of requests that an app or user can make within a given
period.

Chapter 1 ■ Introduction to APIs

6

•	 Any legal or business constraints on using the API. This can
include commercial licensing terms, branding requirements, fees
and payments for use, and so on.

•	 Documentation to aid the understanding of the API.

Optionally, the API provider may provide the following to aid developers in building
and monitoring their apps:

•	 A portal on which developers can register themselves and their
apps before they start using the APIs.

•	 Example programs and tutorials for using the APIs.

•	 A developer community forum and blogs to support developers
and help them collaborate.

•	 Tools to expose and test the APIs.

•	 Health and usage information on the APIs used by developer
apps.

Types of APIs
Broadly classifying, APIs can be divided into two types: public APIs and private APIs
(see Figure 1-2). Going by name, public APIs are open to all for use. Private APIs, on the
other hand, are accessible only by a restricted group. Private APIs may be for B2B partner
integrations or for internal use. Those used for partner integration are also known as
partner APIs. Those for internal use are referred to as internal APIs. An internal API can
ease and streamline internal application integrations. It can also be used by internal
developers for building mobile apps for an organization’s own use.

Chapter 1 ■ Introduction to APIs

7

The interface of a public API is designed to be accessible by a wider developer
community for building mobile and web apps. Public APIs can be accessed by internal app
developers within an organization, as well as the outside developer community that wants
to build apps using them. By being open to a wider audience of app developers, public
APIs can help an organization to add value to its core business through innovation. Open
developers use their imagination to build cool apps using public APIs. Public APIs also
help increase the use of company assets and add business value without direct investment
in app development. Public APIs can help generate new business ideas and decrease
development costs. The success of a public API depends on its ability to attract developers
and help them create truly great apps. A well-designed, well documented, clean, and
intuitive interface helps developers quickly understand the functionality of an API and
how to use it.

However, public APIs can significantly add a lot of management overhead. For
example, when a lot of third-party apps are actively using an API, it is challenging to
upgrade the interface without impacting the apps that are in production.

Increased security risks are another major challenge for public APIs. Since public
APIs expose the back-end systems of an organization through the enterprise firewall that
can be accessed by all, they are open doors for hackers to intrude into the system. Hence,
when an enterprise uses public APIs, they need to build in additional layers of security to
protect their systems from hacker attacks via these APIs.

Private/Internal APIs
Used for internal application
integrations and B2E apps

Private/Partner APIs
Used for B2B Partner integration

Public APIs
Open to all for use

Increased degree of visibility and access of APIs

Figure 1-2.  Types of APIs

Chapter 1 ■ Introduction to APIs

8

Private APIs are behind the closed doors of your organization. They are mostly
intended for internal app integration or B2B integration with partners, or for developing
mobile and web apps for internal consumption. Every enterprise developing a public
API probably first developed a private API. Be it Facebook, or Twitter, or Google, or
any enterprise—their public APIs, web sites, and mobile apps are all powered by their
private APIs behind the scenes. The visible public APIs are only the tip of the iceberg.
Private APIs form the large underwater mass of the iceberg. Most of these APIs are private
and internal to companies, used exclusively by their own developers or by partners
with contractual agreements. These APIs are not exposed to the external developer
community but are actually driving the entire API economy. Sometimes the internal
use of a company’s private APIs for business transformation can derive more business
benefits than public APIs. Hence, the importance of building private APIs should never
be underestimated.

How do you make an API private? One simple way is to host it on a public network
but not publicize its existence and documentation to the developer community. This
approach can work initially, but can lead to problems in the future. Developers have a
habit of trying out uncanny things and could accidentally discover your unpublicized,
private API—and then start using it for app development. If the app becomes popular and
then the API publisher decides to modify or retire their private API, it can lead to public
outcry. A better approach is to provide security and access control to your APIs and
restrict their use to a limited set of known developers and partners. Approaches to secure
your APIs are discussed later in this book.

Examples of Popular APIs
The history of web APIs dates back to 2005. Since then, the growth in the number of APIs
is exponential. ProgrammableWeb maintains a repository of public APIs and has more
than 13,000 APIs under different categories. The number of private APIs is estimated
to be more than 10 to 15 times greater than this. Some of the most popular APIs are by
Facebook, Google, Twitter, Flickr, and Instagram—to name a few. The following list
provides an overview of some popular APIs.

•	 Facebook APIs provide a platform for building applications
that can be used by a member of the Facebook community.
Developers can build more engaging and interesting applications
using the social connections and profile information provided
by these APIs. Facebook APIs can be used by other third-party
applications to publish activities to the newsfeed and profile
pages of Facebook—subject to an individual user’s privacy
settings. The API uses the RESTful protocol and the responses
are in JSON format. The Facebook API home page is at https://
developers.facebook.com.

https://developers.facebook.com/
https://developers.facebook.com/

Chapter 1 ■ Introduction to APIs

9

•	 Google APIs allow communication with Google services, such
as Search, Translate, Gmail, Maps, social, and advertising.
These APIs can be used by developers to build apps that extend
the functionality of existing services. The Google+ APIs for
user registration and login are used to include a “Sign in with
Google” button in Android apps. This helps to improve the user
experience, because manually typing login credentials on a small
screen is time-consuming. Since a user is usually signed into
her Google account on her mobile device, signing in/signing up
for a new Google service is usually only a matter of a few button
clicks. The Google Maps APIs can embed Google maps using a
JavaScript or a Flash interface in a variety of applications. For
example, Uber uses Google Maps APIs for its app. Developers can
build collaborative apps for document editing or picture/video
editing through Google’s Drive API. Custom Search APIs can
provide a search within a web site. The Google API home page is
at https://developers.google.com.

•	 Yelp APIs provide rich content about local businesses around the
world. These APIs can enhance an app with a Yelp rating, reviews,
photos, and much more. The API uses the RESTful protocol and
the responses are in JSON format. These APIs are protected using
a secure authentication protocol. The Yelp API home page is at
https://www.yelp.com/developers/.

•	 AccuWeather APIs provide subscribers with access to location-
based weather data via a simple RESTful web interface. These
APIs provide current weather conditions, forecasts, severe
weather alerts, and much more. The AccuWeather API home page
is at https://api.accuweather.com/developers/.

•	 The Flickr API is used to build applications for sharing, editing,
and managing photos on Flickr. It consists of a set of callable
methods and some API endpoints. The API uses a RESTful
protocol and the responses are in XML and JSON format. The API
homepage is at https://www.flickr.com/services/api.

•	 Instagram APIs allow you to get photos from Instagram and
display them on your own web site or app. The Instagram API
console is on the home page at https://www.instagram.com/
developer/.

•	 Twitter provides three types of APIs: REST APIs, search APIs, and
streaming APIs. The REST APIs provide programmatic access
to read and write core data about individual Twitter users, their
timelines, and status updates. The search APIs help retrieve
tweets with specific filters. The streaming APIs continuously
deliver new responses to REST API queries over a long-lived
HTTP connection. It helps receive updates on the latest tweets
matching a search query. The Twitter API homepage is at
https://dev.twitter.com.

https://developers.google.com/
https://www.yelp.com/developers/
https://api.accuweather.com/developers/
https://www.flickr.com/services/api
https://www.instagram.com/developer/
https://www.instagram.com/developer/
https://dev.twitter.com/

Chapter 1 ■ Introduction to APIs

10

•	 The YouTube API, which is part of the Google API offering, lets
developers integrate YouTube videos and functionality into web
sites or applications. YouTube APIs include the YouTube Analytics
API, the YouTube Data API, the YouTube Live Streaming API, the
YouTube Player API, and others. The YouTube API homepage is at
https://developers.google.com/youtube/.

•	 Amazon provides APIs for In-App Purchasing, Mobile Ads, and
Mobile Accessories. It also offers a host of other engaging services,
such as push notifications to send targeted messages to devices
running the app, to sync game data across devices and platforms
to improve the player experience, and retention and login with
Amazon to provide a personalized user experience. Building
an app using these APIs can help monetize the app. More
information about the Amazon APIs and its developer program
can be found at https://developer.amazon.com/.

•	 AT&T provides a wide range of APIs that expose their internal
assets and services. These APIs can be used to build apps that can
send messages (SMS/MMS), locate users, do text-to-speech and
speech-to-text conversion, monetize apps through embedded
advertisements, use M2X capabilities, and much more. For a
detailed list of available APIs, visit the AT&T developer home page
at http://developer.att.com/apis.

The Difference Between a Web Service and
a Web API
Wikipedia defines a web service as “a method of communication between two electronic
devices over a network”. It is a software function provided at a network address over the
Web, with the service always on—as in the concept of utility computing. The W3C defines
a web service generally as “a software system designed to support interoperable machine-
to-machine interaction over a network”.

Going by these definitions, a web API can be considered as a subset of a web service.
The W3C Web Services Architecture Working Group states that a web service architecture
requires specific implementation of a web service. In this, a web service “has an
interface described in a machine-processable format (specifically WSDL). Other systems
interact with the web service in a manner prescribed by its description using SOAP
(Simple Object Access Protocol) messages, typically conveyed using HTTP with an XML
serialization in conjunction with other web-related standards”.

SOAP web services typically use HTTP as a transport protocol, although this is
not mandatory. SOAP can be over JMS/FTP/SMTP or any layer 7 protocol. The SOAP
message structure consists of an SOAP envelope, inside of which are the SOAP headers
and the SOAP body. The SOAP body contains the actual information we want to send. It is
based on the standard XML format, designed especially to transport and store structured
data. SOAP is a mature standard and is heavily used in many systems, but it does not use
many of the functionalities built into HTTP.

https://developers.google.com/youtube/
https://developer.amazon.com/
http://developer.att.com/apis

Chapter 1 ■ Introduction to APIs

11

A web API is a special kind of web service, where the emphasis has been moving
to a simpler RErepresentational State transfer (REST)-based communications. RESTful
APIs do not need XML-based web service protocols like SOAP and WSDL to support their
interfaces. REST is another architectural pattern (resource-oriented), an alternative to
SOAP. Unlike SOAP, RESTful applications use the HTTP built-in headers (with a variety of
media types) to carry meta-information and use the GET, POST, PUT, and DELETE verbs
to perform CRUD operations. REST is resource-oriented and uses clean URLs (or RESTful
URLs). The body of can be JSON or XML, the former being preferred more due to its
simple structure. Later in this book, we look into the principles of RESTful APIs.

So far web services have been synonymous to SOAP web services. With the advent
of REST, web APIs have been commonly referred to as RESTful web services. SOAP is
preferred for service interactions within enterprises. REST, on the other hand, is the
choice for services that are exposed, such as public APIs using HTTP(s).

In terms of performance, SOAP-based web services are heavyweight, requiring
additional processing of extra SOAP elements in the payload. REST-based web services
are simpler with lightweight request and responses in JSON format, which provides a
performance advantage and reduced network traffic. RESTful services have better cache
support and are preferred for mobile and web apps. Since JSON is lighter, apps run faster
and more smoothly.

How Are APIs Different from SOA?
Many often ask what the difference between APIs and SOA is. Most enterprises are
already using SOA. Are APIs still needed? If yes, why? Then what is the real difference
between the two? There is a lot of confusion about whether APIs are different, or similar
to SOA. Let’s look at their characteristics to understand it better.

SOA stands for service-oriented architecture. Its core concept is the notion of service.
A service can be defined as “a logical representation of a repeatable activity that has a
specific outcome.” Service-oriented architecture defines the architecture and principles
for designing services for an application to increase its reuse. Services are well contained
and have a well-defined interface that defines the contract between the service provider
and the consumer.

From a technical perspective, APIs also share the same characteristics. But they
are more open, developer centric, easily consumable, and support human-readable
formats, such as JSON. APIs are designed with consumer needs in mind. What makes
APIs different from SOA is the objective behind them: SOA helps in the agility and pace
of the delivery of a service, whereas APIs help in the pace of innovation for building apps.
SOA emerged as a means to shield service consumers from back-end changes. With the
growing needs of omnichannel front-end application channels, there is also a need to
protect these services. APIs can provide a layer to shield the services from the rapidly
changing demands of front-end apps. With APIs and SOA together, you can create a calm
eye in the middle of the hurricane of change.

Services are the means by which providers codify the base capabilities of their
domains. APIs are the way in which those capabilities are repackaged, productized, and
shared in an easy-to-use format. In that fashion, APIs and services are complementary
rather than contradictory, and applied together, dramatically increase the overall
effectiveness of enterprise innovation.

Chapter 1 ■ Introduction to APIs

12

At a technology level, SOA is related to XML and SOAP, whereas APIs are related to
REST and JSON. SOA services are described using WSDL, whereas APIs are described
using Swagger or RAML. SOA services are normally published in an UDDI registry that
is internal to the organization. APIs are published by an API provider in a portal that is
normally used by developers for onboarding and finding information about the APIs.

Keeping the technical differences aside, the real difference between SOA and APIs
center on scope and governance. SOA is more focused on building reusable enterprise
services that enable integration within the enterprise. It provides controlled access to the
services for trusted and well-known partners; whereas APIs open services for developers
to access them on the public internet using REST principles. APIs are managed as a
product that app developers can consume. RESTful design, a JSON data format, and a
simple versioning approach complemented with well-documented and human-readable
interface, makes it easier for developers to adopt and consume APIs.

API technology focuses on the consumption of the back-end services created using
SOA principles. Hence, APIs can be thought of as an evolution of SOA, imbibing a lot of
the same concepts and principles of creating and exposing reusable services. The main
difference between them is that APIs are focused more on making consumption easier,
whereas SOA is focused on control and has an extensive and well-defined description
language (see Figure 1-3).

APIs provide an agile, flexible, and robust approach to building mobile apps. SOA
cannot provide the agility and flexibility required to meet growing customer demands.
SOA does not match the preferred design for today’s mobile apps. API management
has become a necessary component to build, manage, and scale apps for the digital
economy. With the help of an API tier to connect your systems of record to your systems
of engagement, you can extend your SOA capabilities to match the data requirements of a
digital economy.

From a governance perspective, SOA is managed through a governance model that
is more formal, heavyweight, and prescriptive in nature. Data schemas and interface
specifications have been a strong focus of SOAP services. Any change in the data type for
the SOA services has to go through rigorous governance approval. This makes SOA slow.
API initiatives, on the other hand, are more agile and focused on developer adoption
and usage. The success of an API is measured by the agility that it offers to application
delivery.

API is the
Contract

Defines the
Product

What
consumers

need

What
providers

offer

WSDL
defines
contract

Backend app
is the

Product

API M
anagem

ent

APIs SOA

Service ExposureApp Consumption

Figure 1-3.  APIs vs. SOA

Chapter 1 ■ Introduction to APIs

13

The API Value Chain
APIs provide a means to expose business assets to the end user. To understand the API
value chain, you need to understand what is happening when an API is being advanced
by a business and identify the actors involved at each step (see Figure 1-4).

The business asset marks the beginning of the API value chain. The business
identifies the asset and its value and decides to make it available for others to use. The
business asset can be any data or business functionality. It can range from product
catalogs, to customer information, to Twitter feeds, to postal tracking information, to
payment and banking services. The value derived through the use of the asset depends
on multiple factors. The following questions might help understand the value of the asset:

•	 What business asset is being exposed as an API and what is the
value to its owner?

•	 What benefits would the provider get by creating a channel for
using the assets via API?

•	 Who are the potential users of the asset and how would the end
users get access to the assets?

•	 What benefits would the end user get by the using the asset? Of
what potential value could these assets be to the others?

•	 How easily can the end user access and use it?

The value of the asset determines the success of the API. Exposing the assets to
others should also benefit the owner.

Once an asset has been identified, the next step is to create an API to expose the
business assets. The API provider’s job is to design the API so that it can be used easily by
the intended audience. In most cases, the asset owners are themselves the API provider.
In this case, the benefits of the API flow directly to the asset owner. But in some cases, the
owner may have an agreement with another organization to create APIs to expose it assets.
In such cases, the rewards get distributed between the asset owner and the API provider.

The app developers then assess the APIs and create apps using them. Developers
can be an individual entity or a group belonging to an organization. If they belong to an
organization, they are sometimes referred to as company developers.

The apps created by the developers can be mobile apps or web apps. These apps
should be made available to the end user in order to add value to the business. An app
store is the most popular channel for distribution. But there may also be other channels
for distribution and marketing. Apps can be either freely downloadable or paid.

End User

App

App Developer
API Provider

Team

Assets{ api }

Figure 1-4.  API value chain

Chapter 1 ■ Introduction to APIs

14

The end users are the final actor in the API value chain. They are the users of the
app. They can use the app on their mobile devices, smartphones, tablets, iPhones, or
desktops, or from other connected devices, such as connected cars, kiosks, and so forth.

The success of the API strategy depends on the various links in the API value chain.
It depends on the involvement and commitment of the key stakeholders in the value chain.
It is important to get them all involved for the success of your API. There has to be a proper
handshake among all the stakeholders. The API provider needs to understand the value
of the business asset and decide on the best interface to expose it. The developer has to
understand the business asset and its interface, and create an app that meets the needs
of the end user and adds value for them. All the stakeholders should understand the core
business needs and the value for creating the API. The app built using the API should be
easy to use, and its purpose and value should be easily understood by the average person.
Only then can the API strategy be successful.

Business Models for APIs
APIs form the foundation of digital business. The business model to adopt depends on
the asset being exposed as an API. The asset can be the data, the business logic, or the
presentation. Some of the business drivers for building APIs include (but are not limited
to) the following:

•	 Growing new business capabilities and opportunities

•	 Opening new marketing channels and lines of business

•	 Improving customer reach and loyalty

•	 Innovating at the edge of business

•	 Accelerating time to market

•	 Advancing operational efficiency and control

•	 Driving traffic and accelerate internal projects

As APIs help to drive business agility, growth and open new channels for revenue,
there are many business models for API exposure. The model to choose from depends on
the business goals of the API provider. Depending on the goals, a provider may choose
to adopt an available API business model. The business model can be free, developer
pays, and developer gets paid or indirect. Details on the various monetization models are
discussed later in the book.

15© Brajesh De 2017
B. De, API Management, DOI 10.1007/978-1-4842-1305-6_2

CHAPTER 2

API Management

Customers today want to have access to enterprise data and services through a variety of
digital devices and channels. To meet customer expectations, enterprises need to open
their assets in an agile, flexible, secure, and scalable manner. APIs form the window
into an enterprise’s data and services. They allow applications to easily communicate
with each other using a lightweight protocol like HTTP. Developers use APIs to write
applications that interact with the back-end system. Once an API has been created, it
needs to be managed using an API management platform. An API management platform
helps an organization publish APIs to internal, partner, and external developers to unlock
the unique potential of their assets. It provides the core capabilities to ensure a successful
API program through developer engagement, business insights, analytics, security, and
protection. An API management platform helps business accelerate outreach across
digital channels, drive partner adoption, monetize digital assets, and provide analytics to
optimize investments in digital transformation (see Figure 2-1).

Accelerate
Digital

Channels

Analyze
Business

Performance

Drive
Adoption

Monetize
Digital Assets

APIs

Figure 2-1.  API management offerings

Chapter 2 ■ API Management

16

An API management platform enables you to create, analyze, and manage APIs in a
secure and scalable environment (see Figure 2-2). An API management platform should
provide the following capabilities:

•	 Developer Enablement for APIs

•	 Secure, Reliable and Flexible Communications

•	 API lifecycle Management

•	 API Auditing, Logging and Analytics

API management capabilities can be delivered by any API management vendor in
a public cloud as a hosted service or can be deployed on-premise in a private cloud. A
hybrid approach can also be followed, with some components of the API management
platform being offered as a hosted solution and others deployed on-premise for increased
security and control.

An API management platform provides these capabilities as three major types of
services (and as illustrated in Figure 2-3):

•	 API gateway services allow you to create and manage APIs from
existing data and services. They allow you to add security, traffic
management, interface translation, orchestration, and routing
capabilities into your API.

API
Management

Developer Enablement for APIs Secure, Reliable and Flexible Communications

API Lifecycle Management API Auditing, Logging and Analytics

• API Discovery
• Developer and App Onboarding
• Collaboration and Community
• Developer Enablement Administration

• Authentication and Authorization
• Threat Detection
• Data Privacy
• Traffic Management
• Interface Translation
• Service Orchestration and routing

• API Publication
• Version Management
• Change Notification
• Issue Management

• Activity Logging
• User Auditing
• Business Value Reporting
• Contract Management
• Advanced Analytics
• Service Level Monitoring

Figure 2-2.  API management capabilities

Chapter 2 ■ API Management

17

•	 Analytics services monitor traffic from individual apps and
provide business with insight and operational metrics, API and
app performance, and developer engagement metrics.

•	 Developer portals provide capabilities for developer and app
registration and onboarding, API documentation, community
management, and API monetization.

This chapter introduces you to the different capabilities required for an API
management platform and shows how the different services provided by the platform
help enable these capabilities. In the process, it also introduces the various concepts and
technologies for API management.

Secure, Reliable, and Flexible Communication
APIs help digital apps to communicate with back-end services. Communication forms
the core of APIs. Communication can use REST, SOAP, Plain Old XML (POX), or any
other protocol of choice. REST is by far the most preferred communication protocol for
APIs due to its inherent characteristics, which are described later in this book. An API
management platform must provide a framework that allows secure, reliable, and flexible
channels of communication. The API gateway within the API management platform
provides the services that form the core capabilities required for API communications.

</>

App Developers
API Team

Backend Services

Business Users

Digital Apps

Developer Services

Developer
Onboarding

Business Metrics

API Security Traffic
Management

Interface
Translation

Orchestration &
Routing

Operational
Metrics

Developer
Metrics

App
Performance

API
Documentation

Community
Management

Monetization

Analytics Services

API Gateway Services

API Management Platform

Figure 2-3.  API management platform services

Chapter 2 ■ API Management

18

The API Gateway
An API gateway forms the heart of any API management solution that enables secure,
flexible, and reliable communication between the back-end services and digital apps
(see Figure 2-4). It helps to expose, secure, and manage back-end data and services as
RESTful APIs. It provides a framework to create a facade in front of the back-end services.
This facade intercepts the API requests to enforce security, validate data, transform
messages, throttle traffic, and finally route it to the back-end service. The static response
may be cached to improve the performance. The API gateway can optionally orchestrate
requests between multiple back-end services and also connect to databases to service
the request. All of these functionalities can be implemented in a gateway, mostly through
configurations and scripting extensions.

The main features of an API gateway include—but are not limited to—the following.

API Security
APIs provide access to valuable and protected data and assets. Therefore, security for
APIs is of utmost importance to protect the underlying assets from unauthenticated and
unauthorized access. Due to the programmatic nature of APIs and their accessibility
over the public cloud, they are also prone to a different kind of threat attack. The API
management platform should therefore address the following aspects of API security.

API

Apps

API Gateway

Backend Services

Secure

Validate

Throttle

Transform

Orchestrate

Cache

Route

Figure 2-4.  API Gateway capabilities

Chapter 2 ■ API Management

19

•	 Authentication: Authentication is the process of uniquely
determining and validating the identity of a client. An app acts
like a client making an API call. It is a piece of software that
consumes an API to get access to enterprise assets, data, and
services. It can run on the Internet, a computer, smartphones,
tablets, or any other electronic device. Apps are usually made
available by their developers through a distribution platform,
such as Apple’s App Store, or Google Play, or the Windows Phone
Store. Every app is identified by its name and a unique UUID
known as the app key. The app key often serves as an identity
for the app making a call to the API. It is normally issued and
managed via the API management platform of the API provider.
An app key is also known as an API key, an app ID, or a client ID.
The API management platform must have the ability to issue,
track, and revoke the app key. Authentication services may also
require integration with identity management systems that
control user access to applications and other services.

•	 Authorization: Authorization controls the level of access that
is provided to an app making an API call. It controls which API
resources and methods that an app can invoke. When an app
makes an API call, it normally passes an OAuth access token in
the HTTP headers. This token is generated as part of the OAuth
handshake and is associated with scopes that determine the APIs
that can be accessed using the token. An access token can be
associated with one or multiple scopes. Each access token may
have an expiry duration that controls the duration for which the
token is valid. If the token is expired, a new access token would
be required to be generated. An app can do this automatically by
presenting a refresh token. The refresh token may be exchanged to
get a new access token with a renewed validity period. The use of
a refresh token by an app to regenerate the access token helps to
improve the overall user experience.

•	 Identity mediation: APIs normally use OAuth protocols for
implementing security. However, the back-end services may
be secured using SAML or any other WS-Security headers.
Hence, the API management platform must have the capability
to integrate with back-end IDM platforms and do identity
mediation. OAuth to SAML is a very common identity mediation
requirement.

Chapter 2 ■ API Management

20

•	 Data privacy: APIs expose data that may be sensitive; such data
should be visible only to its intended recipient. Any sensitive data
in transit should be encrypted. If such data gets logged anywhere,
it must be masked. The API management platform must therefore
possess data privacy capabilities. Data privacy can be achieved
through encryption and data masking. Sensitive data should be
encrypted with digital certificates in transit. The API management
platform should have support for SSL/TLS. For some use cases,
additional encryption of specific elements within the payload
may also be required. Masking sensitive data at rest within audits
and log files is yet another data privacy requirement that an API
management platform should provide.

•	 Key and certificate management: The API management
platform should also provide the capability to manage keys and
certificates required for data privacy.

•	 DoS protection: APIs open valuable data and assets outside
the firewalls of the enterprise. This increases the attack surface
and makes them more prone to attacks. Hackers may try to
bring down back-end systems by pumping unexpectedly high
traffic through the APIs. Denial-of-service (DoS) attacks are very
common on APIs. Hence, the API management platform should
be able to detect and stop such attacks.

•	 Threat detection: For public APIs, the likelihood of bad actors
making attacks using malicious content is high. Content-based
attacks can be in the form of malformed XML or JSON, malicious
scripts, or SQL within the payload. Such attacks can also happen
to private and enterprise APIs. The API management platform
should be able to identify malformed request formats or
malicious content within the payload and then protect against
such attacks. Error visualization capability can also help detect
any hacker attempting to find an exploitable weakness in APIs.

API Traffic Management
Depending on the nature of data and services provided by the API, traffic management
offers a different business value to different classes of customers. Each customer class
may be willing to pay differently for access. For example, some app developers prefer to
try out APIs for free. The API provider may provision such users to make a small number
of API calls in a day/week/month. Paying customers, however, want access to a higher
or an unlimited number of API calls. Again, the API provider may allow customers a
different level of access depending on their location or the time of the day; for example,
internal enterprise users may get unlimited access to a high-performing API, whereas
public Internet users may have limited access. More API calls may be allowed during
off-peak hours but there is a limited number allowed during peak business hours.
The API provider may have different requirements to throttle and manage the API traffic.
The API platform should provide the following capabilities for traffic management.

Chapter 2 ■ API Management

21

•	 Consumption quota: Defines the number of API calls that an
app is allowed to make to the back end over a given time interval.
Calls exceeding the quota limit may be throttled or halted. The
quota allowed for an app depends on the business policy and
monetization model of the API. A common purpose for a quota is
to divide developers into categories, each of which has a different
quota and thus a different relationship with the API. For example,
free developers who sign up might be allowed to make a small
number of calls. But paid developers (after their verification)
might be allowed to make a higher number of calls.

•	 Spike arrest: Identifies an unexpected rise in the API traffic. It
helps to protect back-end systems that are not designed to handle
a high load. API traffic volume exceeding the spike arrest limit
may be dropped by the API management platform to protect
back-end systems in the event of DoS attacks.

•	 Usage throttling: Provides a mechanism to slow down
subsequent API calls. This can help to improve the overall
performance and reduce impacts during peak hours. It helps to
ensure that the API infrastructure is not slowed down by high
volumes of requests from a certain group of customers or apps.

•	 Traffic prioritization: Helps the API management platform
determine which class of customers should be given higher
priority. API calls from high-priority customers should be
processed first. Not all API management platforms support this
capability. Hence, an alternative approach or design may be
required to implement traffic prioritization.

Interface Translation
When an enterprise creates an API to expose its data and services, it needs to ensure that
the API interface is intuitive enough for developers to easily use. APIs should be created
with an API-First approach, which promotes API creation with a consumer focus. Hence,
the interface for the API will most likely be different from that of the back-end services
that it exposes. The API gateway should therefore be able to transform the API interface
to a form that the back end can understand. To support interface translation, the API
gateway should support the following:

•	 Format translation: The back-end system might expect data in
SOAP, or XML, or CSV or any other proprietary format. Such data
format cannot be easily consumed by the API consumer. Hence,
the API gateway should have the capability to easily transform
from one format to other. Most API management platforms
provide the capability to transform data from XML to JSON
(and vice versa) with a one-to-one mapping of the data elements.
Mapping from JSON to any other data format may be supported
through customization.

Chapter 2 ■ API Management

22

•	 Protocol translation: Most back-end systems that host
services provide a SOAP interface for consumers. However,
SOAP is not a protocol that is suitable for APIs to build apps
for digital devices. API management platforms must be able to
do a protocol transformation from SOAP to REST to provide a
lightweight interface for consumers. Support for other protocol
transformations—like HTTP(s) to JMS/FTP/JDBC—may be a nice
to have feature in the API management platform.

•	 Service and data mapping: An API management platform should
provide a graphical representation of the different back-end
service component that maps to provide an API service. It should
incorporate service mapping tools that enable the discovery and
description of existing service delivery assets so that they can be
wired into your API design.

Caching
Caching is a mechanism to optimize performance by responding to requests with static
responses stored in-memory. An API proxy can store back-end responses that do not
change frequently in memory. As apps make requests on the same URI, the cached
response can be used to respond instead of forwarding those requests to the back-end
server. Thus caching can help to improve an API’s performance through reduced latency
and network traffic.

Similarly, some static data required for request processing may also be stored
in-memory. Instead of referring to the main data source each time, such data can be
retrieved from the cache for processing the request. An expiry date/time can be set for the
cached data or the data can be invalidated based on defined business rules. If the data is
expired, new data would be retrieved from the original data source and the cache would
be refreshed with the updated data.

Service Routing
APIs need to route requests from consumers to the right back-end service providing the
business functionality. There may be one more backend systems providing the backend
functionality. Hence, the API management platform should be able to identify and route
the request to the correct instance of the back-end. The API management platform
should support the following routing capabilities:

•	 URL mapping: The path of the incoming URL may be different
from that of the back-end service. A URL mapping capability
allows the platform to change the path in the incoming URL
to that of the back-end service. This URL mapping happens
at runtime so that the requested resource is retrieved by the
consumer via service dispatching.

Chapter 2 ■ API Management

23

•	 Service dispatching: This allows the API management platform
to select and invoke the right back-end service. In some cases,
multiple services may have to be invoked to perform some sort of
orchestration and return an aggregated response to the consumer.

•	 Connection pooling: The API management platform should be
able to maintain a pool of connections to the back-end service.
Connection pooling improves overall performance. Also, it may
be required for traffic management purposes to ensure that only a
fixed maximum number of active connections are opened at any
point in time to the back-end service.

•	 Load balancing: Load balancing helps to distribute API traffic to
the back-end services. Various load balancing algorithms may be
supported. Based on the selected algorithm, the requests must
be routed to the appropriate resource that is hosting the service.
Load balancing capabilities also improve the overall performance
of an API.

Service Orchestration
In many scenarios, the API gateway may need to invoke multiple back-end services in a
particular sequence or in parallel and then send an aggregated response to the client. This
is known as service orchestration. The service orchestration capability helps to create a
coarse-grained service by combining the results of multiple back-end services invocation.
This helps to improve overall performance of the client by reducing latency introduced
due to multiple API calls. Service orchestration capability may require the API gateway to
maintain states in-between the API calls. However, the API gateway should be kept as light
and stateless as possible. Hence, it is recommended that the API gateway only be involved
in the orchestration of read-only services that are non-transactional in nature.

API Auditing, Logging and Analytics
Businesses need to have insight into the API program to justify and make the right
investments to build the right APIs. They need to understand how an APIs is used, know
who is using it, and see the value generated from it. With proper insight, business can
then make decisions on how to enhance the business value either by changing the API or
by enriching it. An API gateway should provide the capability to measure, monitor, and
report API usage analytics. Good business-friendly dashboards for API analytics measure
and improve business value. A monetization report on API usage measure business value;
hence, it is yet another desirable feature on an API management platform.

Chapter 2 ■ API Management

24

API Analytics
Analytics provide you with information to make future decisions about your API. When
you see an increase in API traffic, you need to know whether this indicates the success of
your API program or whether it is being used in a malicious way, resulting in inflated traffic.
How do you determine the adoption of your API? Is there an increased interest in your
APIs within the developer community? Is there an increase in the number of apps built
using your APIs? How has the performance of the APIs been in terms of response time and
throughput? What are the different kinds of devices being used to access the APIs? How
have the APIs been adopted across the globe? As an API provider and consumer, you need
to know the answer to these questions and many others. The more you know, the better you
are able to determine what’s going on. You need metrics to decide which features should be
added to your API program. API analytics is the answer to all queries.

The API management platform should be able provide the following capabilities
required for analytics.

Activity Logging
Activity logging provides basic logging of API access, consumption, performance, and any
exceptions. The platform should capture and provide information on who is using an API,
what types of apps and devices the API are being called from, and which geographical
region is the source of the API traffic. It should log the IP address of the clients, as well as
the date and time when a request was received and the response was sent. The gateway
within the API management platform should log which API and method is being invoked
by the client. Various metainformation, such as URI, HTTP verb, API proxy, developer
app, and other information can be logged into the gateway for every API call. The
platform can process this information at a later time to provide meaningful reports for
API analysis. API performance metrics and response/error codes should also be logged as
part of activity logging.

User Auditing
User auditing can help the API administrator review historical information to analyze
who accesses an API, when it is accessed, how it is used, and how many calls are made
from the various consumers of the API.

Business Value Reports
Business value reports gauge the monetary value associated with the API program.
Monetization reports of API usage provide information on the revenue generated
from the API. The API gateway should be able to provide API usage monetization
reports. Some APIs may be directly monetized, but many have an indirect model for
monetization. Hence, additional value-based reporting should also be possible within
an API management platform to measure customer engagements. Engagements can
be measured by the number of unique users, the number of developers registered, the
number of active developers, the number of apps built using the APIs, the number of
active apps, and many other items.

Chapter 2 ■ API Management

25

Advanced Analytics
The API management platform should be able to extract and log custom variables from
within the message payload for advanced analytics reporting. It should provide API
administrators and product managers the capability to create pluggable and custom
reports from the captured information.

Service-level Monitoring
The API management platform should provide performance statistics that track the
latency within the platform and the latency for back-end calls. This helps the API
administrator find the source of any performance issues reported on any API. The
platform should have the capability to provide reports on errors raised during the
processing of the API traffic within the platform, or ones that are received from the back
end. Classifying the errors by type, frequency, and severity gives API administrators a
valuable aid for troubleshooting.

Developer Enablement for APIs
An API program cannot be successful without the active involvement of a developer
community. Application developers use APIs to build mobile apps or to build a custom
integration between two or more applications. Hence, developers need to know which
APIs are available, what their functionalities are, and how they can be used. Developers
should have a playground to experience and test APIs to effectively use them in their
applications. An API management platform should provide services that enable
developers to build apps using the APIs. A developer portal can provide these services.

Developer Portal
A developer portal is a customized web site that allows an API provider to provide
services to the developer community. It is essentially a content-management system
that documents the APIs—their functionalities, interfaces, getting-started guides, terms
of use, and much more. Developers can sign up through the portal and register their
applications to use the APIs. The can interact with other developers in the community
through blogs and threaded forums. The portal can also be used to configure and control
the monetization of the APIs. Monetization gives developers self-service access to billing
and reports, catalogs and plans, and monetization-specific settings.

An API management platform developer portal should include the capabilities
described in the following sections.

API Catalog and Documentation
As an API provider, you need a platform to publicize and document your APIs. Developer
enablement services should allow an API provider to publish a discoverable catalog of
APIs. An API catalog is also sometimes referred to as an API registry. Developers should

Chapter 2 ■ API Management

26

be able to search the catalog based on various metadata and tags. The catalog should
document the API functionality, its interface, how-to guides, terms of use, reference
documents, and so forth. Information about the API versions available should also be
included in the documentation.

Developer Support
Properly designed REST APIs are normally very intuitive for developers to understand. App
developers can easily start using them for app development. Still, the API provider should
provide resources that developers can use to build innovative apps. Good API documentation
and accelerators in the form of test and development kits can help speed up the adoption of
APIs. API documentation should not only describe the API interface, but must also provide
how-to guides for interacting with the APIs. The developer portal can provide embedded
test consoles that developers can use to play with an API and get a feel for it. Sample code
that demonstrates the use of APIs can act as a quick start guide and be very helpful to app
developers. App developers often look for device-specific libraries to interact with the services
exposed by the APIs, such as downloadable SDKs within the developer portal.

Developer Onboarding
To start consuming the APIs, developers must register with the API provider to get access
credentials. Developers can either sign up independently or as part of a company. The
signup process should be simple and easy. Developers should be able to go through a
self-registration process and view the APIs available from the API provider. Developers can
then select an API product and register their apps to use it. After successful registration and
approval, an API key is generated along with a secret to uniquely identify the app. The API
key is also referred to as an app key or a client ID. The approval process may be automatic or
manual, based on the terms and conditions and the monetization model setup. In a manual
approval, a member of the API management team approves the registration request. The
API key is generated only after successful approval of the app. In some cases, developers
may form part of a company. In such scenarios, a key management capability is important
so that API consumers can add, modify, or revoke the API keys within their organization.

Community Management
App developers often like to know the views of other developers in the community.
They may want to collaborate and share their API usage learnings and experiences
with one another. Blogs and forums form a major part of collaboration and community
management. Developers may share their experiences with API usage via blog posts;
such posts may need to be moderated by the API provider before they become visible
to everyone. An API provider may also create a blog to share updates and future plans
with the API consumer community. Advice and best practices on API usage may also be
shared on blogs and discussion forums. A developer should also be able to report any
issues with an API or its usage to the API provider’s support team. The developer portal
may have a link to raise support tickets. Integrated blogs and forums can help build a
truly dynamic community to enhance the use of the provider’s APIs.

Chapter 2 ■ API Management

27

API Lifecycle Management
API lifecycle management provides the capability to control how an API is developed and
released to consumers. Published APIs can be can be used by consumers to build apps.
They can report problems or raise a request for a new API feature. An API management
platform should provide the following capabilities required for API lifecycle management.

API Creation
An API acts as a facade to interact with the back-end services. The API team should be
able to design the REST interface for the API and create an API proxy to interact with the
back-end services. An API proxy acts as a facade to securely expose the back-end services
to its consumers. Policies attached in the flow paths of the API proxy should be able
to implement security, traffic management, message translation, encryption, filtering,
caching, orchestration, and routing. Once the development is complete, the API team
must be able to deploy and test the API through a console. An embedded console to test
APIs can be very handy and can help reduce development time. The API management
platform should provide tools that enable the creation of the APIs and subsequently
deploy and test them on an environment before they are published for production.

API Publication
Once an API has been created, it must be published to an environment before it can be
discovered and consumed. The API management platform must therefore provide tools
that can be used to migrate the APIs from lower environments and deploy to production.
Once it is deployed to production, the API specifications and other details should be
published in the developer portal for consumers to discover and use in their apps. In
case of any incorrect deployment, the platform must provide the ability to roll back to a
previously deployed version of the API.

Version Management
APIs evolve over time with newer business requirements. Hence, managing multiple
versions of an API to support existing consumers is an important capability that must be
provided by the API management platform. Version management should also provide the
ability to deprecate and retire older versions smoothly. When an API version is marked
as deprecated, the existing consumers should be notified though deprecation warnings.
Deprecated APIs may continue to serve traffic from existing consumers. However, new
consumers should not be able to sign up to use deprecated APIs. With proper notice and
period, deprecated APIs should be retired and removed from the platform so as to avoid
any maintenance overheads. The API management platform should therefore provide the
capability to manage the retirement of an API.

Chapter 2 ■ API Management

28

Change Notification
Changes to an API may adversely affect its consumers. Hence, consumers must be
notified of any planned changes to the API. Developers using the APIs should be made
aware of any changes to the API. The API management platform must therefore provide
a mechanism to notify API consumers of any API upgrades or outages. Notification can
be made via email, SMS, or social media. Release notifications can provide updates about
new releases and features added to the API. API consumers should be notified about
planned or unplanned downtimes. An API developer portal can be used to send release
and availability notifications to subscribed users.

Issue Management
The API management platform should provide API consumers with the facility to log
issues found in the APIs. App developers consuming APIs must be able to report any
issues or shortcomings related to their APIs. They should be able to raise support tickets
and seek help regarding API usage. The issues can be reported through the developer
portal. The API management platform should provide the capability to integrate defects
reporting and issue management capabilities in existing systems within the enterprise.

29© Brajesh De 2017
B. De, API Management, DOI 10.1007/978-1-4842-1305-6_3

CHAPTER 3

Designing a RESTful API
Interface

REST is an architectural style. It is not any strict standard but provides certain guidelines
and constraints to be followed. Roy Fielding originally described these constraints in his
doctoral dissertation and coined the name Representational State Transfer.

REST relies on stateless, cacheable, and client-server communication protocols such
as HTTP. By following the principles of REST and applying it to stateless protocols such as
HTTP, developers can build API interfaces that can be used from any device or operating
system. Well-designed REST APIs attract developers to build apps that use them. An API
interface should be easy to understand and intuitive to the developers. Creating a well-
crafted, aesthetically designed REST API is a must-have for the success of any enterprise
API program. This chapter looks at the different constraints advocated by REST and how
they can be used to design a truly RESTful API interface.

REST Principles
REST is a set of design principles for building scalable web services. Roy Fielding
described the following six constraints in his PhD dissertation for building a RESTful
architecture:

•	 Uniform interface

•	 Client-server

•	 Stateless

•	 Cache

•	 Layered system

•	 Code on demand

Let’s look at each of these constraints in more detail.

Chapter 3 ■ Designing a RESTful API Interface

30

Uniform Interface
A uniform interface helps to define the communication contract between client and
the server. It helps to decouple the architecture. Client and server applications can be
developed independently as long as they abide by the interface. The interface defines the
mechanism and format for interaction—where and how the client can access a server
resource. A resource URI identifies resources. Each resource has its own unique URI.
However, the physical resources are themselves separate from their representation; for
example, the server does not send information about the back-end database storing the
product information. Instead, it sends an XML or JSON representation of a product or a
collection of products to the client.

Client-Server
The client-server constraint builds a loosely coupled and scalable web architecture.
As long as the client and the server follow a uniform interface, they can be developed
independently, using any language or technology. The client need not be worried about
the database used for the server to store data and assets. Similarly, the server need not be
worried about the client implementation technologies or the user interface or user state.
It helps to achieve separation of concerns and build simpler and scalable architecture.

Stateless
Statelessness is one of the key principles of a RESTful service. It dictates that a web server
is not required to remember the state of the client application. All relevant contextual
information should be sent by the client application in the request to the server for all its
interactions. The state information can be included as part of the URI as a variable or it
can be included as a query parameter, header parameter, or in the body. Once the request
is processed by the server, the updated state of the resource is sent back in the response
via headers and the body. If the state must span multiple requests, the responsibility of
resending the state information lies with the client. This helps to reduce the burden of the
server to maintain, update, and communicate the state information of each of its client,
thus helping to increase the server scalability. Additionally, even load balancers do not
have to worry about the session affinity for stateless systems.

Cache
Caching is yet another REST constraint that increases the scalability and overall
performance of the server application. The cache may reside anywhere in the network
path between the client and server. It can reside in the server, or an external location
like the CDN, or inside the client application itself. By following the caching constraint,
the server can specify if a particular response can be cached or not. If the response is
cacheable, the server may specify the lifetime of the cached response. Based on the
lifetime, the client can decide if it wants to use a cached response or make a separate
request to get the live data. Caching the response data can reduce the client-perceived
latency and increase the overall availability and reliability of the application.Providing a

Chapter 3 ■ Designing a RESTful API Interface

31

cached response from the API layer can also reduce the load on the back-end systems,
which may not have been originally designed for high loads. Well-managed caching
can partially or completely eliminate some client–server interactions, further improving
scalability and performance.

Layered Systems
The layered system principle enables a network intermediary to be installed between the
client app and the actual back-end server. The layered system can be a proxy or a gateway
that acts as a facade for the back-end system. It can be used to implement security,
caching, rate limiting, load balancing, and so forth. The client never gets to know if it is
connected directly to the source of the service or to an intermediary. The caching and
load balancing implemented on the intermediary node can improve the scalability of the
system.

Code on Demand
The code-on-demand constraint enables a web server to transfer executable programs to
a client. This constraint tends to establish a technology coupling between the client and
the web server. The client must be able to understand and execute the code it downloads
on demand from the server. This is the only optional constraint for the REST architectural
style. Examples of code-on-demand are Java applets, scripts, plug-ins, and Flash.

Designing a RESTful API
Now that you understand the fundamentals of REST principles, let’s look at the various
considerations for designing a REST API interface.

A uniform interface is one of the fundamental principles of the RESTful architectural
style. Web components interoperate consistently within the uniform interface’s four
constraints, which Fielding identified as follows:

•	 Identification of resources

•	 Manipulation of resources through representation

•	 Self-descriptive messages

•	 Hypermedia as the engine of application state (HATEOS)

Identification of Resources
Before we can identify a resource, we need to understand what a resource is.
A resource is any web-based concept that can be referenced by a unique identifier and
manipulated via the uniform interface. While designing a REST API for a travel portal,
your resources could be customer, reservation, ticket, hotel, flight, bus, car, and so forth.
A resource can be a single entity or a collection of entities. According to Roy Fielding’s
dissertation: “The key abstraction of information in REST is a resource. Any information

Chapter 3 ■ Designing a RESTful API Interface

32

that can be named can be a resource: a document or image, a temporal service (e.g.,
today’s weather in Los Angeles), a collection of other resources, a non-virtual object
(e.g., a person), and so on.”

A resource is identified by a URI (Uniform Resource Identifier). A URI provides the
name and the network address of a resource. All the information that a server provides
can be identified as a resource. For example, the URI http://www.foo.com/v1/customers
identifies a resource by name— "customers". To manipulate a resource, the client
connects to the server address specified in the URI (in this case www.foo.com) using a
method like GET and access it using the relative path (/v1/customers). If the request is
successfully executed, the response is a collection of customers. Again, resources can
be related to each other; for example, a customer may have multiple reservations for
different dates and hotels in different places. So a reservation is related to the customer as
a subresource; for example, http://www.foo.com/v1/customers/12345/reservations.

The resources themselves are conceptually separate from the representations that
are returned to the client. For example, the resource may be residing in some database,
but when the server responds to a request for a resource, it does not send the database
itself; rather it responds with some representation of the resource that represents a record
in the database. For example, the record of a resource instance may be represented
in XML, JSON, or HTML format, when it is returned to the client. The following is
an example of a customer resource representation in JSON format with a reservation
subresource:

{
 "firstName": "Mark",
 "lastName": "Johnson",
 "CustId": "John123",
 "age": 26,
 "address":
 {
 "streetAddress": "28 2nd Street",
 "city": "New York",
 "state": "NY",
 "postalCode": "10021"
 },
 "reservations":
 [
 {
 "type": "official",
 "number": "212-555-4321",
 "date": "03-12-2016"
 },
 {
 "type": "personal",
 "number": "646-555-9765",
 "date": "02-06-2015"
 }
]
}

http://www.foo.com/v1/customers
http://www.foo.com/
http://www.foo.com/v1/customers/12345/reservations

Chapter 3 ■ Designing a RESTful API Interface

33

Manipulation of Resources through Representation
Clients modify a representation of a resource. The same exact resource may be
represented in different ways for different clients. For example, for a UI client, it might
be represented in HTML format; whereas for application clients, it might be represented
in either JSON or XML format. The representation is a way for clients to interact with the
resource, but it is not the resource itself.

Self-Descriptive Messages
Each message (request/response) must be self-descriptive. That mean that the message may
contain additional information to tell the recipient how to process it. Information such as
format (JSON/XML), size, payload itself, and other metadata information included in the
message can be used by the recipient for processing. An HTTP message provides headers to
organize the various types of metadata into uniform fields. For example, Content-Type can
he used to specify the format of the message; Content-Length can be used to specify the size
of the payload. Many such HTTP headers can be included in the message to describe to the
recipient on how they should process the message.

Hypermedia as the Engine of Application State
(HATEOAS)
A resources’ state information may include links to other resources. These links provide
information on what to do next and how to traverse through other related resources in
a meaningful manner; for example, after getting information about the account, you
may want to deposit, withdraw, or transfer money. So the response of a RESTful service
providing the account information may include links for the next action that the customer
may want to do, as follows:

GET /account/12345 HTTP/1.1
HTTP/1.1 200 OK
{"account_number":"12345",
 "balance":"100.0",
 "currency":"USD",
 "links": [{
 "rel": "deposit",
 "href": "http://localhost:8080/account/12345/deposit"
 },
 {
 "rel": "withdraw",
 "href": "http://localhost:8080/account/12345/withdraw"
 },
 {
 "rel": "transfer",
 "href": "http://localhost:8080/account/12345/transfer"
 }]
}

Chapter 3 ■ Designing a RESTful API Interface

34

The presence or absence of a link in a resource representation is an important part of
resource’s current state.

While designing a REST API interface, you should keep all of these constraints in
mind. The next few sections look at how to build a REST API interface by following these
constraints.

Resource Identifier Design Using URIs
In a RESTful API, designing the resource is one of the most important tasks for its success.
A well-designed resource makes the API intuitive, simple to understand, and easy to use.
Let’s look at some of the best practices for designing RESTful APIs.

Resource Naming Conventions
Every resource should have a meaningful name to identify itself. Name a resource using
a noun as opposed to a verb or an action. The URI for the resource should refer to a
thing rather than an action. Also CRUD function names should not be used in the URI
or resource names; for example, while designing resource for a customer’s entity, the
resource URI should be named /customers instead of /getCustomers.

Modelling Resources and Subresources
According to Roy Fielding’s dissertation a resource is “any concept that might be the
target of an author’s hypertext reference must fit within the definition of a resource.” It can
be single instance of an object or a collection of objects. Even business processes and
capabilities can fit the definition of a resource according to Roy Fielding. Resources form
the core of REST API design. The starting point of modelling resources is to analyze the
current business domain and identify all the relevant objects in it that can be named. The
focus for identifying resources and modelling them should be from the consumer’s point
of view. It is important to select the right resources and model them at the right level of
granularity.

For example, a resource can be a collection of customers in an online store or it
can be a single customer. You can identify a collection of ‘customers’ using /customers,
while a single instance of a customer can be identified using /customers/{customerId}.
Each customer may further have multiple orders. The URI to refer to the subcollection
of ‘orders’ is modelled as /customers/{customerId}/orders. A single instance of the
order may be identified by /customers/{customerId}/orders/{orderId}. By following a
logical grouping or resources and their hierarchy, you can model the resource URI path to
access a collection of resources or an individual resource.

Chapter 3 ■ Designing a RESTful API Interface

35

Best Practices for Identifying REST API Resources
The following are some of the best practices for identifying resources for RESTful API
design.

•	 Resources should not be too fine grained because they lead to
chatty communication between the consumer and the provider.
Chatty communication degrades overall performance of the app
that is using the API; hence, it should be avoided.

•	 Resources should not be too course grained because this leads to
APIs that are too difficult to use and maintain.

•	 Resources should be designed such that they do not lead to
migration of control flow business logic to the API consumer side;
for example, if updates to the customer information requires
multiple fields to be updated in a specific sequence that depends
on some logic, then the API to update the customer information
should be designed so that the client is not responsible for
executing the required flow logic. The responsibility of executing
the logic should lie with the resource server hosting the resource.
Shifting the logic to the consumer side has the risk of putting the
resource data in an inconsistent state, especially in the event of
failure. Fine-grained APIs that perform CRUD operations may
put the business logic on the client side, creating tight coupling
between the API consumer and the provider. Any change in
business logic at the provider end would require corresponding
changes on the API consumer side. They may not be possible
in many cases, where consumers do not want to make frequent
changes to the applications on their side.

•	 Resource selection should be independent of the underlying
domain implementation details. Hence, even a business
process can be modelled as a resource if the process involves
the operation of multiple low-level resources. For example, the
process of setting up a customer in a bank may be modelled as
a resource. So there can be a resource created for a customer
account setup—such as /accountSetup—that needs to call
operations on related resources for entities such as customer and
account. By modeling a business process as a resource, the API
consumer does not need to apply the business logic in the code.

URI Path Design
Every collection and resource in an API has its own URL. It is recommended to design
URLs using an alternate combination of collection/resource path segments, relative to the
API entry point. Table 3-1 explains the concept better, with guidelines on how to define
the top-level resource and related subresources.

Chapter 3 ■ Designing a RESTful API Interface

36

There may be arbitrary levels of nesting for subresources. However, it is
recommended to limit the depth to two or three, if possible, because longer URLs are
more difficult to work with.

A URI design that follows a predictable pattern with a hierarchical approach
to traverse through the resources eases developer adoption; for example, /stores/
{storeId}/products/{productId}. This helps developers to guess the URI for a given
resource; and hence, it can make direct calls without going through links.

URI Format
Let’s now look at the recommended format of a URI and learn how this format can be
effectively used for designing an API. As per RFC 23964: “a Uniform Resource Identifier
(URI) is a compact string of characters for identifying an abstract or physical resource.”
This identifier can be realized in one of two ways: as a Uniform Resource Locator (URL)
or a Uniform Resource Name (URN).

URLs (e.g., http://www.foo.com/users/mike) are used to identify the online
location of an individual resource; whereas URNs (e.g., urn:user:mike) are intended to
be persistent, location-independent identifiers. The URN functions like a person’s name;
whereas a URL is like that person’s street address. In other words, the URN defines an
item’s identity (the user’s name is Mike) and the URL provides a method for finding it
(Mike can be found at www.foo.com/users/).

The syntax of an URI is a hierarchical sequence of components as follows:

scheme:[//authority][/]path[?query][#fragment]:

•	 Scheme name: Identifies the protocol (e.g., FTP, HTTP, HTTPS, IRC:)

•	 Authority: Refers to the actual DNS resolution of the server. It
consists of the hostname or IP address of the server, optionally
along with the port number. The credentials to access the
server can also be included as part of the authority as follows:
[user:password@]host[:port].

•	 Path: Pertains to a sequence of segments separated by a forward
slash (/).

Table 3-1.  Top-Level Resources and Related Subresources

http://www.foo.com/users/mike
http://www.foo.com/users/

Chapter 3 ■ Designing a RESTful API Interface

37

•	 Query: Contains additional identification information that is non-
hierarchical in nature and often separated by a question mark (?).

•	 Fragment: Provides direction to a secondary resource within the
primary one identified by the authority and path, and separated
from the rest by a hash (#).

Naming Conventions for URI Paths
Keep URIs short and simple because this helps you write, remember, and spell it easily.
The following are some of the recommended naming conventions for URI paths.

•	 Name a collection resource with a plural noun; for example,
http://www.foo.com/api/customers

•	 Name a singular resource with a singular noun; for example,
http://www.foo.com/api/customers/customer1234

•	 Name a controller resource using a verb; for example, http://
www.foo.com/api/customers/customer1234/register

•	 Avoid using CRUD operation names in URIs. For example, do not
use URIs such as http://www.foo.com/api/getcustomers.

•	 Use lowercase letters for naming URIs. Avoid mixed and
uppercase letters in URIs. Mixed case is harder to type and read.

•	 Use hyphens instead of a space or an underline. They are more
aesthetic and easier to read. Spaces in URLs get transformed into
URL encoded %20s, further degrading readability. For example,
use URIs such as http://www.foo.com/api/about-us.

•	 Avoid using characters that require URL encoding, such as spaces.

HTTP Verbs for RESTful APIs
Once the resources have been identified, these are next set of questions to ask:

•	 What would a consumer like to do with the resource?

•	 What aspects of the resource would be of interest to a consumer?

The answers to these questions identify the HTTP verbs to be used for each of the
identified resources.

http://www.foo.com/api/customers
http://www.foo.com/api/customers/customer1234
http://www.foo.com/api/customers/customer1234/register
http://www.foo.com/api/customers/customer1234/register
http://www.foo.com/api/getcustomers
http://www.foo.com/api/about-us

Chapter 3 ■ Designing a RESTful API Interface

38

HTTP verbs form an important part of a RESTful API design. They identify the
actions to be performed on a resource. A consumer’s actions with a resource can be
mapped to an HTTP verb in most cases; for example, creating a product can be done
using the HTTP verb POST. The primary and most commonly used HTTP verb are POST,
GET, PUT, and DELETE. These verbs perform the CRUD operations on the resource as
follows:

•	 POST verb creates a new instance of the resource

•	 GET is used to read

•	 PUT is used to update

•	 DELETE is used to delete

There are other verbs—such as HEAD, OPTIONS, TRACE, and CONNECT—in the
HTTP 1.1 spec. Let’s look at the detailed usage of these verbs in the design of a REST API
interface in the next few sections of this chapter.

GET
The GET verb is used by the client to retrieve information about the requested resource
entity identified by the request URI. Requests using GET should only retrieve data and
should never modify the data in any way. The GET request is considered safe. GET is a
read-only method and does not make any changes to the resource data. Hence, it can be
used without risk of data modification or corruption. Also, calling the GET method on
a resource once has the same effect as calling it multiple times. Hence, the GET verb is
idempotent and safe.

If the request has been executed successfully, the server returns the requested data
normally in XML or JSON, depending on the format requested by the client. The HTTP
‘Accept’ header is used by the client to specify the expected format of the response.
The request may contain additional HTTP headers that can control the data returned
by the server in response to the GET request. For example, if the request message includes
headers such as If-Modified-Since, If-Unmodified-Since, If-Range, If-Match, or
If-None-Match, it is processed as a conditional GET method. The server responds with the
entity only if the conditions described by the header field(s) are satisfied. The conditional
GET method is used to reduce unwanted network usage. These conditional headers are
inspected by the server to determine if the client is already in possession of some of the
data it is requesting. Data is returned only if the condition is satisfied; otherwise, no data is
transferred in the response. Thus, conditional GET headers help reduce network traffic.

On successful execution of the GET request, the server responds with HTTP
response code of 200 OK. In the event of an error, the server usually responds with the 404
Not Found or 400 Bad Request status code.

The following are examples of GET request for a resource:

GET https://www.foo.com/customers
GET https://www.foo.com/customers/{customerId}

Chapter 3 ■ Designing a RESTful API Interface

39

POST
The POST verb is normally used to create a new resource. In particular, it is used to create
a subresource, which is subordinate to the parent resource identified by the request URI.
To create a new resource, send a POST request to the URI of the parent resource and the
server takes care of creating the new resource as a subresource of the parent, based on the
information provided in the payload. Each new resource created is assigned a name or an
ID to uniquely identify it. This identifier may be used to retrieve the resource information
using a GET request at a later time.

On successful execution of the POST request, the origin server should respond
with a 201 Created status code. The response payload should contain the details of the
resource created in a format expected by the client. The response should also contain a
'Location' header to specify the location of the newly created resource. If the resource
cannot be created, the server may respond with a 204 No Content status code.

POST is neither safe nor idempotent. It is therefore recommended for non-
idempotent resource requests. Making two identical POST requests usually results in two
resources containing the same entity.

The following is an example of a POST request to create a 'customer' resource:

POST http://www.foo.com/customers HTTP/1.1
{
 "customers": {
 "customerId": "12345",
 "customerName": "Brajesh De",
 "Address":{
 "AddressLine1":"206 Lane 1",
 "AddressLine2":"22 Cross",
 "City":"Bangalore",
 "State":"Karnataka"
 }
 }
}

PUT
The PUT method is generally used to update an existing resource entity identified by
the request URI. If the resource identified by the request URI exists, then the message
payload should be considered as the changed version of the existing resource entity. If
the resource does not exist, and the URI is capable of being defined as a new resource, the
server can create a new resource with the information provided in the message payload.
On successful execution of the PUT request, if a new resource is created, the server must
respond with a 201 Created status code. If an existing resource is modified, the server
must respond with either the 200 OK or the 204 No Content status codes to indicate
successful execution of the request. In the event of errors in modifying or creating a PUT
request, the server should respond with an HTTP error response status code and an error
message that indicates the nature of the problem.

Chapter 3 ■ Designing a RESTful API Interface

40

PUT is idempotent but not safe. This means invoking the PUT method multiple times
with the same request payload has the same effect on the resource—it continues to exist
in the same state. But since the PUT method updates the resource entity, this method is
not safe.

The following is an example of a PUT request.

PUT http://www.foo.com/customers/12345 HTTP/1.1
{
 "customers": {
 "customerId": "12345",
 "customerName": "Brajesh De",
 "Address":{
 "AddressLine1":"206 Lane 1",
 "AddressLine2":"22 Cross",
 "City":"Bangalore",
 "State":"Karnataka"
 }
 }
}

The Difference Between PUT and POST
It is recommended to use POST for creating new resources and PUT for updating an
already existing resource. Use POST if the server is responsible for creating the resource
name or ID and hence is the URI of the new resource. PUT may be used for creating
a new resource only when the client is responsible for deciding the new URI (via its
resource name or ID) for the resource. A POST verb should be used if the client doesn’t
or shouldn’t know the resulting URI of the new resource before creation. If the resource is
already created, PUT should be used to update the resource.

DELETE
The DELETE verb is used to delete the resource represented by the request URI.

On successful execution, the server responds with 200 OK or 204 No Content status
codes. If the 200 OK status code is returned, it may also contain the representation of the
deleted resource. Since additional bandwidth requirements for the response payload
may impact the overall performance, it is recommended to respond with HTTP 204 No
Content on successful deletion of the resource.

The DELETE verb is idempotent and not safe. The resource is removed or is marked
as deleted in the database on successful execution of the DELETE request.

Repeatedly calling DELETE on a resource ends up the same: the resource is gone.
However, there is a caveat about DELETE idempotence. Calling DELETE on a resource
a second time will often return a 404 (NOT FOUND) since it was already removed and
hence can no longer be found. This makes DELETE operations no longer idempotent.
However, this is an appropriate compromise if resources are removed from the database
instead of being simply marked as deleted.

Chapter 3 ■ Designing a RESTful API Interface

41

The following is an example of a DELETE request:

DELETE http://www.foo.com/customers/12345 HTTP/1.1

PATCH
The PATCH method was added to HTTP specs in March 2010. This method is similar
to the PUT method and can be used to update an existing resource definition. The
difference between PUT and PATCH is that PATCH can be used to do a partial update of
an existing resource definition; whereas PUT does a complete update. With the PATCH
method, only certain attributes of the resource can be specified for update.

The following is an example of a PATCH request:

PATCH http://www.foo.com/customers/12345 HTTP/1.1
{
 "customers": {
 "Address":{
 "AddressLine1":"205 Lane 2"
 }
 }
}

OPTIONS
The OPTIONS verb allows the client to determine the options and/or requirements
for interacting with a resource or a server. The OPTIONS verb determines the HTTP
methods and headers allowed for interacting with a resource. It indicates to the client
the capabilities of a server without actually performing any of the CRUD operations.
The client can specify a URL for the OPTIONS method to refer to a specific resource. An
asterisk (*) should be used if the client is interested in knowing or testing the capabilities
of the entire server. Responses of this method cannot be cached.

This is an optional method that is not always supported by all service
implementations. Many popular sites do not support this method; for example, GitHub
responds with a 500, Google Maps with 405 Method Not Allowed. If this method is
supported, the response should be 200 OK and have an 'Allow' header containing a list
of HTTP methods that may be used on this resource.

The OPTIONS method can be used by the client to provide support for cross-origin
resource scripting (CORS) implementation. Chapter 7 looks at how to implement CORS
for building secure web APIs.

The following is an example of an OPTIONS request:

OPTIONS * HTTP/1.1

http://dx.doi.org/10.1007/978-1-4842-1305-6_7

Chapter 3 ■ Designing a RESTful API Interface

42

HEAD
The HEAD method is identical to GET. The difference is that with HEAD method, the
server responds only with a response line and headers. The response to the HEAD
method does not contain the entity-body. The metainformation contained in the HTTP
headers in response to a HEAD request is identical to the information sent in response
to a GET request. This gets only the metainformation about the resource entity, without
actually transferring the resource entity-body in the response payload. It reduces network
bandwidth usage. This method is often used for testing recent modifications, the validity
of hypertext links, and accessibility.

Idempotent and Safe Methods
Some HTTP methods can be called multiple times without any change in the result or
the state of the resource. This brings in the concept of a method being idempotent and/
or safe. An idempotent HTTP method can be called many times without getting a different
outcome. It does not matter if the method is called one time or 100 times—the result
is going to be the same. A point to note is that idempotency refers to the result of the
method execution and not to the resource itself. For example, calling a GET method on a
particular resource always gives the same result unless the resource has been changed in
some other way. An HTTP method is considered safe if it does not modify the state of the
resource. For example, calling a GET or HEAD method on a resource URL never modifies
the resource itself; hence, it is considered safe.

Table 3-2 summarizes whether an HTTP method is idempotent and/or safe.

HTTP Status Code
The HTTP response communicates the status of the request processing. The response
contains certain metadata and optional payloads. The Status-Line part of the HTTP
response message is used to inform clients of their request processing results in the
following format:

Status-Line = <HTTP-Version> SP <Status-Code> SP <Reason-Phrase> CRLF

Table 3-2.  Idempotent and/or Safe HTTP Methods

HTTP Verb Name Idempotent Safe

GET Yes Yes

POST No No

PUT Yes No

DELETE Yes No

HEAD Yes Yes

OPTION Yes Yes

PATCH No No

Chapter 3 ■ Designing a RESTful API Interface

43

HTTP defines 40 status codes to communicate the execution results of a client's
request. The status code is divided into the following five categories.

•	 1xx Informational: Communicates transfer protocol level
information.

•	 2xx Success: Communicates that the request from the client was
successfully received, understood, and accepted.

•	 3xx: Redirection: Communicates that additional action needs
to be taken by the user agent like browser in order to fulfil the
request.

•	 4xx Client Error: Indicates errors caused by the client.

•	 5xx Server Error: Indicates that server is aware that an error
occurred while processing the request and cannot process it
further.

Normally, 2xx and 3xx status codes are treated as success codes. Any 4xx or 5xx status
code is treated as an error code.

Table 3-3 lists the most commonly used success codes.

Table 3-3.  The Most Commonly Used Success Codes

Status Code Reason-Phrase Meaning

200 OK Indicates that the request has been
processed successfully.

201 Created Indicates that the request has been
processed and a new resource has been
created successfully.

202 Accepted Indicates that the request has been
received by the server and is being
processed asynchronously.

204 No Content Indicates that the response body has been
purposely left blank.

301 Moved Permanently Indicates that a new permanent URI has
been assigned to the client’s requested
resource.

303 See Others Indicates that the response to the request
can be found in a different URI.

304 Not Modified Indicates that the resource has not been
modified for the conditional GET request
of the client.

307 Use Proxy Indicates that the request should be
accessed through a proxy URI specified in
the Location field.

Chapter 3 ■ Designing a RESTful API Interface

44

Table 3-4 lists the most commonly used error codes.

Table 3-4.  The Most Commonly Used Error Codes

Status Code Reason Phrase Meaning

400 Bad Request Indicates that the request had some
malformed syntax error due to which it
could not be understood by the server.
Probable reason is missing mandatory
parameters or syntax error.

401 Unauthorized Indicates that the request could not
be authorized, possibly due to missing
or incorrect authentication token
information.

403 Forbidden Indicates that the request was
understood by the server but it could
not be processed due to some policy
violation or the client does not have
access to the requested resource.

404 Not Found Indicates that the server did not find
anything matching the request URI.

405 Method Not Allowed Indicates that the method specified in
the request line is not allowed for the
resource identified by the request URI.

408 Request Timeout Indicates that the server did not receive
a complete request within the time it was
prepared to wait.

409 Conflict Indicates that the request could not
be processed due to a conflict with the
current state of the resource.

414 Request URI Too Long Indicates that the request URI length is
longer than the allowed limit for the server.

415 Unsupported Media Type Indicates that the request format is not
supported by the server.

429 Too Many Requests Indicates that the client sent too many
requests within the time limit than it is
allowed to.

500 Internal Server Error Indicates that the request could not be
processed due to an unexpected error in
the server.

501 Not Implemented Indicates that the server does not support
the functionality required to fulfill the
request.

(continued)

Chapter 3 ■ Designing a RESTful API Interface

45

Resource Representation Design
A REST API resource entity representation is used to convey the state of the resource. The
message body of the request/response is used to convey the state of the resource entity.
The client sends the resource entity to the server in the request message payload of a
POST, PUT, or PATCH message. The server sends the resource entity state in the response
message payload for a GET, POST, PUT, or optionally, DELETE request.

A text-based format is normally used to represent the resource state. JSON and
XML are the most commonly used text formats for representing the state of the resource
entity. JSON is lightweight and provides a simple way to represent a resource. Due to
the seamless integration of JSON with the browser’s native runtime environment, JSON
is the preferred choice for data representation in the design of a REST API. XML, on the
other hand, is verbose, hard to parse, hard to read, and its data model is not compatible
with many programing languages. This makes JSON a preferred choice over XML for
representing the resource entity for a REST API. Many popular API providers have already
moved away from XML to the JSON format. However, if the API consumer base consists of
a large number of enterprise customers, you still have to support the XML data format for
your APIs.

As a general guideline, it is advisable to support JSON data format by default and
provide additional support for the XML format, if required. With support for both JSON
and XML formats, how does the client specify the preferred format for the response?
There are the following options:

•	 Use the ‘Accept’ header.

•	 Append .json or .xml extensions to the endpoint URL.

•	 Include a query parameter in the URL to specify the response
format.

Table 3-4.  (continued)

Status Code Reason Phrase Meaning

502 Bad Gateway Indicates that the server, while acting as
a gateway or proxy, received an invalid
response from the back-end server.

503 Service Unavailable Indicates that the server is currently
unable to process the request due to
temporary overloading or maintenance
of the server. Trying the request at a later
time might result in success.

504 Gateway Timeout Indicates that the server, while active as a
gateway or proxy, did not receive a timely
response from the back-end server.

Chapter 3 ■ Designing a RESTful API Interface

46

Of the three options, use of 'Accept' header to specify the response message format
is most preferred. The following are some of the basic best practices for the JSON format
representation of the resource entity.

•	 JSON should be in a well-formed format, with the variable names
and their values enclosed in double quotes.

•	 JSON names should use mixed lowercase and uppercase letters.
Special characters should be avoided whenever possible. JSON
names like fooName is preferred over foo-Name because it allows the
use of the cleaner dot notation for property access in JavaScript.

•	 The 'Content-Type' header in the message should be set to
application/json when a JSON format payload is included in
the message.

Hypermedia Controls and Metadata
HTTP headers in the request/response convey metadata about the messages and about
the resource entity contained in the message. HTTP specification defines a set of standard
headers that can be used for various purposes. The specification also allows extension
mechanisms to include custom HTTP headers. HTTP headers are classified under four
types.

•	 Entity headers: This type of header provides metainformation
about the entity body or resource in the message. Information
such as the allowed HTTP methods, the media type, size, and
location of the resource entity or cache expiration date-time, and
so forth, are some of the examples of Entity Header types.

•	 General headers: This type of header provides information
that can be applicable for both request and response messages.
Caching directive, connection information, message origination
date-time, and any message transformation applied on the whole
message, are some examples of General Header types.

•	 Client request headers: This type of header is included only in
the request message sent by the client or browser to the server.
Authorization information, user agent information, information
about the character set, encoding, or language that the client can
accept, are some examples of information provided by Client
Request headers.

•	 Server response headers: This type of header is included only
by the server in the response sent to the client. Information
about the age of the response generated by origin server, ETag
information for caching purposes, the duration for which the
server is unavailable for the requesting client, are some examples
of Server Response headers.

This section looks at the most commonly used HTTP headers and how they can be
used to design a better RESTful interface.

Chapter 3 ■ Designing a RESTful API Interface

47

Accept (Client Request Header)
The Accept header is used in the request message to specify the media types that are
acceptable by the client for the response. It is a mechanism for the client application or
browser to indicate to the server which MIME types it is expecting.

The client can specify a range of media types using an asterisk (*) or multiple media
types using comma-separated values. Media ranges can be overridden by specific media
ranges or specific media types. If more than one media range applies to a given type, the
most specific reference has precedence.

For example,

Accept: text/*, application/xhtml+xml, application/xml;q=0.9, */*

has the following precedence:

	 1.	 application/xml;q=0.9

	 2.	 application/xhtml+xml

	 3.	 text/*

	 4.	 */*

The client can specify its relative preference for a media type using an optional q
parameter. The following is an example:

Accept: audio/*; q=0.3, audio/basic

These examples indicate that audio/basic is preferred, but any audio type is also
acceptable if it is the best available after a 70% markdown in quality.

If no Accept header field is specified, then it is assumed that the client accepts all
media types. If an Accept header field is present but the server cannot send a response
that is acceptable according to the Accept field value, then the server should respond with
a HTTP status code of 406 Not Acceptable.

Accept-Charset (Client Request Header)
The Accept-Charset request header is used by the client to specify the character sets that
it understands and therefore can be included by the server in the response. As with the
Accept header, the client can specify multiple charsets in a comma-separated list.
A q value on a scale of 0 to 1 can also be included to specify the acceptable quality level
for non-preferred character sets.

If the client does not include an Accept-Charset header in the request, it is assumed
that any character set is acceptable. If a Accept-Charset header is present but the server
cannot send a response that is acceptable according to the Accept-Charset header, then
the server should send an error response with the 406 Not Acceptable HTTP status code,
though the sending of an unacceptable response is also allowed as per the HTTP specs.

The following is an example of Accept-Charset header:

Accept-Charset: iso-8859-5, unicode-1-1;q=0.8

Chapter 3 ■ Designing a RESTful API Interface

48

Authorization (Client Request Header)
The Authorization header is used by the client to include authentication information
needed to access a server resource. If the server needs authentication and the
Authorization header is not present in the request or is having an incorrect value, the
server should send an error response with a 401 Unauthorized HTTP status code. The
server should also include the WWW-Authenticate header in the response, which indicates
the authentication scheme(s) required. The authentication schemes can be basic or
digest access.

The following is an example of Authorization header:

Authorization: BASIC Z3Vlc3Q6Z3Vlc3QxMjM=

Host (Client Request Header)
The Host request header specifies the server address and the port of the resource
requested. A Host without any port information implies the default port. The default port
is 80 for HTTP and 443 for HTTPS.

The following is an example of Host header:

Host: http://www.foo.com

Location (Server Response Header)
The Location response header is used by the server to redirect the recipient to a URI
other than the request URI for completion. This header is returned by the server in the
following two scenarios.

•	 When a new resource is created after the successful execution of
a POST or a PUT request. In this scenario, the Location header
contains the location information of the newly created resource
and the HTTP response status code should be 201 Created.

•	 When the resource has moved temporarily or permanently, or is
the result of a request execution is available at a different location.
In this scenario, the Location header contains the redirected URI
and the HTTP response status code should be 3xx. The Location
information is then used by the browser to load a different
web page, as specified in the header, thus helping in automatic
redirection.

The following is an example of Location header:

Location: http://www.foo.com/http/index.htm

Chapter 3 ■ Designing a RESTful API Interface

49

ETag (Server Response Header)
The ETag (entity tag) response header provides a mechanism for the server to send
information about the current state of the entity. It is an alphanumeric string that
uniquely identifies a specific version of the resource. If the resource has changed, the
ETag value changes. Hence, the ETag value can be compared to determine if the cached
resource entity on the client side matches that on the server.

It is a mechanism used for web cache validation that allows a client to make
conditional requests. It makes caches more efficient and saves bandwidth because the
server does not need to send the full response if the content has not changed.

The following is an example of ETag header:

ETag: "686897696a7c876b7e"

Cache-Control (General Header)
The Cache-Control general header field is specifies instructions on caching response
information by the client and/or any intermediary along the request/response chain.
Directives contained in this header provide information about the cache-ability of the
response. It specifies if the response can be cached or not. If yes, can it be cached in
public or private cache? It also specifies if the cache can be archived and stored. This
header also contains information about the maximum duration for which the response
can be cached.

The following is an example of Cache-Control header:

cache-control: private, max-age=300, no-cache

Content-Type (General Header)
The Content-Type header specifies the media type of the payload included in the
message.

The following is an example of Content-type header:

Content-Type: text/html; charset=ISO-8859-4

Header Naming Conventions
Earlier sections looked at the best practices for naming resources and URIs. For good API
design, even the HTTP headers should be named according to a convention. This section
looks at some of the recommended best practices for naming headers.

HTTP specifications provide names for all standard HTTP headers and their syntax.
It also provides extension mechanisms to include custom headers, if required. The
following conventions are recommended for naming custom HTTP headers.

Chapter 3 ■ Designing a RESTful API Interface

50

•	 Historically, X- has been used as a prefix for naming non-
standard custom headers. RFC 6648 has deprecated the use of
this convention because it causes more problems than it solves.
Hence, do not prefix custom header names with X- or similar
constructs.

•	 Name custom headers meaningfully and with the assumption
that all custom headers may become standardized, public,
commonly deployed, or usable across multiple implementations.

•	 Use hyphens in header names if required; for example, My-
Header-Name.

•	 Do not use spaces in header names.

Versioning
Versioning is one of the most important considerations for web API design. Regardless of
the approach followed, REST APIs should always be versioned. It helps to develop APIs in
an iterative approach.

There are multiple approaches for versioning an API. The following are some
questions to ask when thinking about API versioning.

•	 Which versioning approach should be used?

•	 When should a new version of the API be created?

•	 How and where to indicate the version of the API?

•	 How many versions should be maintained?

•	 How long should the older versions of the API be maintained?

•	 What are the deprecation mechanisms for older versions?

This and many other considerations and approaches for API versioning are
discussed later in this book.

Querying, Filtering, and Pagination
Enterprises use REST APIs to expose their data and services. The resource collection
returned by REST API may be huge. Transmitting the entire payload over the network is
heavy on the bandwidth. Additionally, processing an entire collection on the client side
would be processor intensive. Since a UI can display only a limited amount of data, this
becomes important from UI processing standpoint as well; for example, 20 results per
page. Hence, the need arises to be able to query, filter, and paginate the response. The
API should provide a mechanism for the consumer to specify the query parameters and
filter criteria. They should also be able to specify a range of data to be returned in the
response. The range can be in terms of the number of elements, a date and time range, or
in terms of offset and a limit.

Chapter 3 ■ Designing a RESTful API Interface

51

It is important to note that it is not mandatory to provide support for querying,
filtering, and pagination for all REST APIs. This is a resource-specific requirement and
by default is not required to be supported on all resources. Consider designing the API to
support filtration and pagination only if the number of entities in the resource collection
that can be returned by default is high. The API documentation should specify if these
complex functionalities are available for any specific service.

Limiting via Query-String Parameters
Filtering and pagination for an API is best implemented by designing the API interface
with offset and limit query-string parameters. The offset parameter indicates the
beginning item number in a collection and the limit specifies the maximum number of
items to return.

The following is an example:

GET http://www.foo.com/products?offset=0&limit=25

In this example, the offset value 0 and limit value 25 indicate to return the first 25
items in the list. If the number of items fetched from the back end is more than 25, only
the first 25 are returned. To retrieve the next set of items, the client has to make another
call with a changed value for offset (=25) and limit (=25). If the number of items in
the list is less than 25, all the items are returned in the response. This approach helps
implement pagination support in the API.

It is important to understand that offset and limit are query-string parameters
and are not dictated by any standards or specifications. Hence, different API providers
may implement the same concept by using different parameter names. start, count,
page, and rpp (records per page) are other examples of query-string parameters that can
be used to implement pagination. An API designer can name them anything to suite the
business context.

Filtering
Filtering is an approach to restrict the results returned in the response by specifying
additional search criteria. These search criteria must be met on the data returned in the
result. The filtering can become complex if the API has to support a complicated set of
search criteria. The filtering criteria is based on the resource attribute. The complexity
increases if filtering involves a complex combination of comparison operators. However,
filtration can be achieved by supporting simple criteria, such as starts-with or
contains, and so forth.

The filtering criteria can be specified by using the filter query-string containing
a delimiter-separated list of name/value pairs. The delimiters that have conventionally
worked are the vertical bar (|) to separate individual filter phrases and a double colon
(::) to separate the names and values. This approach supports a wide range of use cases
for filtering and also makes the filter criteria user-readable. The following is an example:

GET http://www.foo.com/customers?filter="name::matt|city::delhi"

Chapter 3 ■ Designing a RESTful API Interface

52

Note that the property names in the name/value pairs match the name of the
properties returned by the service in the payload. Wild cards can also be included in the
filter values by using the asterisk (*).

Filtering can be implemented for an API by using one of the following approaches.

•	 Map the filter criteria to the back-end database SQL queries and
implement filters at the database layer. This would retrieve the
data matching the criteria from the data store; the same can be
passed to the client with minimal messaging.

•	 Implement filter criteria in the service implementation layer. The
service accepts the filter criteria as inputs and applies them on the
data fetched from the data store. This may be required when the
search criteria is complex or requires some business logic to be
executed on the data set returned from the data store.

•	 Implement filter criteria on the API’s intermediary layer. In
the event that there is no change to the database or service
implementation layer, the filtering is done on the intermediary
API node that is generally introduced for creating and exposing
REST APIs. Implementation of the filter on the intermediary API
node might be complex due to the limited programming support
provided by these tools.

When deciding on which of these approaches to adopt, it is recommended to
implement filtering as close to the resource data store as possible.

The Richardson Maturity Model
The Richardson Maturity Model defines the levels to assess the maturity of a REST API
service. It defines the following four levels (0–3) based on services support for URI, HTTP
verbs, and hypermedia.

•	 Level 0: Swamp of POX

•	 Level 1: Resources

•	 Level 2: HTTP verbs

•	 Level 3: Hypermedia controls

Figure 3-1 shows the three core technologies with which Richardson evaluates
service maturity. Each layer builds on top of concepts and technologies of the layer
below. The higher up the stack an application sits, and the more it employs the
technologies in each layer, the more mature it is.

Chapter 3 ■ Designing a RESTful API Interface

53

Let’s look at each of these levels in detail.

Level 0: Swamp of POX (Plain Old XML)
This is the most basic level of maturity. At this level, the service is characterized as having
a single URI that acts as the entry point. HTTP is used as the transport system for remote
interactions. The payload content can be described in XML, JSON, YAML, key-value pairs,
or any format of your choice. Normally, the POST method is used for sending the request
to the server. SOAP and XML RPC are examples of services at Level 0 maturity. Figure 3-2
below shows a client making a request to an appointment service to get the availability of
slots for a given date and doctor. The search parameters are sent in plain old XML format
using POST request.

Level 3:
Hypermedia

Level 2:
Http Verbs

Level 1:
Resources

Level 0: Plain
Old XML

Figure 3-1.  Richardson’s Maturity Model for REST APIs

Chapter 3 ■ Designing a RESTful API Interface

54

Level 1: Resources
The first step toward RESTful maturity is the introduction of resources. At this level,
instead of having a single URI as an endpoint for all services, you start interacting with
individual resources through separate URIs. So instead of going through an endpoint
like http://www.foo.com/searchAppointmentService, you start using resource URIs
like http://www.foo.com/api/doctors/{doctorId}. Here doctors is a resource and
you get access to an individual doctor’s information by using {doctorId}. At this level,
you still use POST as the only HTTP method for all of your communication. Figure 3-3
below shows a client making a request to an appointment service to get the availability of
slots for a given date and doctor. The URL used to get the slot availability of the doctor is
resource oriented.

Figure 3-2.  Level 0- Plain Old XML way of communication

http://www.foo.com/searchAppointmentService
http://www.foo.com/api/doctors/{doctorId}

Chapter 3 ■ Designing a RESTful API Interface

55

Level 2: HTTP Verbs
At Level 0 and 1, the applications use the POST method for all communication. Level 2
maturity moves toward using the HTTP verbs more closely to how they are used in HTTP
itself. To fetch the slot availability of a particular doctor, it should be using the HTTP
verb GET at this level. As you’ve seen, the GET verb is safe because it is read-only and
does not make any significant changes to the state of the resource. Hence, you can use
the GET verb any number of times, in any order, and still get the same result every time,
unless the resource has been modified using a different method. If you have to create
a new appointment, you can use the POST method. If you want to update an existing
appointment, you may use the PUT method.

In addition to the use of HTTP verbs, Level 2 also introduces the use of HTTP
response codes to indicate the status of an operation on a resource. If a resource was
successfully created, the service returns with HTTP response code 201. If the operation on
a resource was successful, the 200 status code is used in the response. If the operation on
a resource resulted in an error, an appropriate 4xx or 5xx response code should be used in
the response. Figure 3-4 below shows a client making a request to an appointment service
to get the availability of slots for a given date and doctor. ‘GET’ Http verb is used to access
the resource oriented URL to get the appointment slots of the doctor. Http response code
200 OK is returned to indicate successful response.

Figure 3-3.  Level 1- Using resources for communication

Chapter 3 ■ Designing a RESTful API Interface

56

Level 3: Hypermedia Controls
This is the final level for REST maturity and it is where HATEOS enters the picture.
It addresses the question of what to do next. After receiving the response for a service
invocation, what are the next logical steps for the client? At a given node, what are the
possible branches for traversal in a tree? This helps the client to be more intelligent and
decide or prompt the user for the necessary possible actions.

At Level 3 maturity, the response of a REST service may contain a list of URIs. These
URIs are the resources that the client wants to act upon as the next course of action. So
rather than the client having to know where to post the next request, the hypermedia
controls in the response tells how to do it. Figure 3-5 below shows a client making a
request to an appointment service to get the availability of slots for a given date and
doctor. The response returned for the GET request contains hyperlinks for the next
possible actions that the client can do to book a slot.

Figure 3-4.  Level 2- Using resources and verb for communication

Chapter 3 ■ Designing a RESTful API Interface

57

An obvious advantage of hypermedia controls is that it allows the server to change its
URI scheme without breaking clients. It also helps client developers expose the protocol.
The link gives client developers a hint on what the next possible options are. It may not
provide all the information, but it at least gives developers a starting point to think about
more information for the API and to look for a similar URI in the API documentation.
Currently, there are no absolute standards on how to represent hypermedia controls. It
is up to the service implementation team to decide how to implement HATEOS in their
service.

As per Martin Fowler's article on Richardson Maturity Model, RMM provides a good
way to think of the different elements of a RESTful service, but it is not a definition of
levels of REST itself. Roy Fielding has made it clear that Level 3 RMM is a precondition of
REST.

Figure 3-5.  Using Resource, Verb and HATEOAS for communication

59© Brajesh De 2017
B. De, API Management, DOI 10.1007/978-1-4842-1305-6_4

CHAPTER 4

API Documentation

Documenting a REST API is important for its successful adoption. APIs expose data
and services that consumers want to use. An API should be designed with an interface
that the consumer can understand. API documentation is key to the app developers
comprehending the API. The documentation should help the developer to learn about
the API functionality and enable them to start using it easily. This chapter looks at the
aspects of documenting an API and some of the tools and technologies available for API
documentation, including RAML, Swagger, API Blueprint, and others.

The Importance of API Documentation
As an API provider or developer, you may master your API. You have inside knowledge
about its functionality, what it is supposed to do, how it is to be used, its security,
limitations, error scenarios, and so forth. As an API provider, you have gradually learned
everything about the API through various discussions, documentation, and references.
However, this is not the case for the consumers of your API. The app developer
community or API consumers look at the API’s interface and wonder what the API does,
how it should be used, what to expect when an error occurs, what security credentials to
use, how and where to get the security credentials to use the API, and so forth. Hence,
what is easy and simple to the API developer may not be intuitive to the API consumer.
Good API documentation can help bridge the gap and make the API successful. API
documentation communicates a vast amount of information about the API.

As enterprises move along in the digital transformation journey, there has been
exponential growth in public and private APIs. In this competitive world, it is very likely
that the data and services exposed by your API may also be exposed by another API
provider. If the API is being monetized, it becomes more important to make it successful
for your business. Good user-friendly API documentation is a key to its successful
adoption. An API document is like an entrance into your API and provides a warm
welcome to the API’s consumers.

The API documentation should

•	 Get users started quickly

•	 Include useful and relevant information

•	 Provide sample code

Chapter 4 ■ API Documentation

60

•	 Document a list of REST endpoints

•	 Document the message payload

•	 Provide Response status code and error messages

Audience for API Documentation
API documentation is used by various groups of people for various reasons. It is like
a user manual for a product. Like a user manual, API documentation should have a
quick-start guide, which quickly makes the first API call and lets consumers have a feel
of it. At the next level, it should document the API’s features, the resources and the APIs
to access them, and finally, the error conditions for troubleshooting. Hence, the API
documentation can be used primarily by the following types of audiences.

•	 CTO: Evaluates similar and competing APIs from a business,
technology, and monetization perspective.

•	 App or integration architect: Explores the API to match the
requirements for building an app or an integration solution.

•	 App developer: Wants to get started using the API with a quick-start
guide and a detailed tutorial. Sample SDKs and API calls in the API
documentation is of immense use to an app developer.

•	 IT support specialist: Supports the app and is interested in the
error and troubleshooting information for debugging any issues
with the app.

Model for API Documentation
A good API document communicates all information about the usage of the API— for
both humans and machines. The API document should provide all necessary information
to app developers or API consumers in a human-readable format. The documentation
should help them assess its suitability for use in their client app. It should provide
information about its licensing policy and usage requirements-input and output
parameters, message format, error messages, and more. Similarly, the API interface
should be documented such that its interface can be parsed by a machine to generate
client stubs and server-side skeleton code that can be further developed. To make API
documentation effective, it should include the following aspects about the API:

•	 Title

•	 Endpoint

•	 Method

•	 URL parameters

•	 Message payload

Chapter 4 ■ API Documentation

61

•	 Header parameters

•	 Response code

•	 Error code

•	 A sample request and response

•	 Tutorials and walkthrough

•	 Service-level agreement

Figure 4-1 shows an example of API documentation using Swagger.

Title
The title should provide the name of the API, which can be used for its identification.

Figure 4-1.  API documentation using Swagger

Chapter 4 ■ API Documentation

62

Endpoint
The endpoint is the entry point for the API. It defines the URL that clients need to use to
invoke the API.

Method
The method defines the HTTP verbs used to access the API. GET, POST, PUT, and DELETE
are the most common HTTP verbs used in a REST API. The client should specify the
methods along with the URI to access the API. If an API supports multiple methods to be
used for an URI, it should be specified in the API document as separate entities, as shown
in Figure 4-1.

URL Parameters
The URL parameters define the parameter names and their format, which are used in
the API call as a query string. The documentation should clearly state the purpose of
each parameter, as well as which parameters are mandatory and which are optional. Any
requirements for URL encode should be documented.

Message Payload
The message payload should specify the structure and format of the request and response
message. JSON and XML are the most common formats used for a REST API. Other
formats can be used as well. The message structure should specify the schema of the
message payload. Any data constraints in the request payload should be documented. It
is a good practice to include a table that provides the name, data type, description, and
remarks, if any. Figure 4-2 shows a snippet of a Swagger format specification of an API,
with the message format for a request and response payload.

Chapter 4 ■ API Documentation

63

Header Parameters
The header parameters should specify the standard and custom HTTP headers included
in the request and response headers. At a minimum, all mandatory headers should be
specified here. Any specific format for the header values must be included.

Figure 4-3 shows a snippet of an API documentation in Swagger format with the
header parameters defined.

Figure 4-2.  A snippet of a Swagger format specification with the message format for a
request and response payload

Chapter 4 ■ API Documentation

64

Response Code
The HTTP response codes that the client can expect from the API under various
conditions should be included in documentation. It is important to document which
response codes are considered successful and which are considered errors. All possible
response codes, what each of them means, and their root causes should be specified. This
helps the API consumer more easily troubleshoot issues.

Error Codes and Responses
Normally 4xx and 5xx HTTP response status codes are considered errors. HTTP
specifications define the purpose of these status codes. Not all HTTP response status
codes may have been implemented for an API. The API documentation should include
the HTTP response status codes that the API consumer can expect in different error
scenarios. Along with the HTTP response status code, the sample error response payload
should also be specified. This helps the consumer application parse error messages. The
error response payload may include specific business error codes and descriptive error
messages that offer information about the exact cause of the error. All error codes and
error messages should be defined in the API documentation.

Figure 4-4 shows a snippet of a Swagger format specification in an API document,
with the response code and error codes defined.

Figure 4-3.  A snippet of a Swagger format specification with the header parameters defined

Chapter 4 ■ API Documentation

65

Sample Calls
As part of the documentation, include sample HTTP calls with all parameters and
expected sample responses. This gives the developer a visual sense of what the message
structure should look like. Include samples for all the various message formats supported,
such as XML, JSON. Sample calls can be included in a wiki format or as interactive smart
docs. Figure 4-5 is an example of a sample GET call for an API.

Tutorials and Walk-throughs
An example is always better than tons of documentation. Hence, a tutorial with example
code on how the API can be called from an app is always very helpful to the developer
community. Sample SDKs for making API calls in some of the most popular languages—
such as Java, Node.js, C#, PHP, Ruby, and Python—helps developers quickly adopt
the API. Including SDKs for different digital platforms—such as Android, iOS, and
Windows—is highly recommended. Including code for all languages and platforms may
not be always feasible; hence, you should evaluate the most popular languages and focus
on including tutorials and sample code for them.

Figure 4-4.  A snippet of a Swagger format specification with the response code and error
codes defined

Figure 4-5.  A sample GET call

Chapter 4 ■ API Documentation

66

Service-Level Agreements
A service-level agreement (SLA) defines the API’s non-functional requirements.
This can include the expected throughput, response time, rate limits for various tiers
(if applicable), maintenance or downtime information, and so forth.

API Documentation Standards: Swagger, RAML,
and API Blueprint
The daunting task of API documentation is keeping the documentation in sync with
the actual implementation. If you take a bottom-up approach and create the API
documentation manually after the implementation, you risk the documentation falling
out of sync if there are enhancements to the API interface in the next version, especially
if the process does not enforce regeneration or validation of the API document. Similarly,
with a top-down approach, you may start with the API documentation and manually
create the skeleton of the API interface according to the defined interface. But later,
you still run the risk of the API documentation getting out of sync with the actual
implementation when enhancements are required. Hence, defining the API Interface
and keeping the documentation in sync is a big challenge. This challenge can only be
addressed if there are tools that autogenerate API documentation from the API Interface
in a bottom-up approach, or tools that generate the API skeleton and client code from
the API interface document in a top-down approach. Standards and tools based on these
approaches are definitely needed to aid in API documentation.

There are many competing tools for API documentation. Some of them are in a fairly
matured state, while others are still evolving. The next few sections look at the Swagger,
RAML, and API Blueprint frameworks so that you can see how they are used to document
an API interface. The tools that they provide are also discussed.

Swagger
Swagger is one of the most popular API documentation frameworks. It provides a
standard, language-agnostic way of defining a REST API interface. This approach allows
the client to understand the capabilities of the REST service without any prior access to the
service implementation code or network inspection. The goal of Swagger is to keep
the client, API documentation, and API server implementation in sync. The Swagger
framework comes with the following:

•	 OpenAPI Specifications for documenting RESTful APIs

•	 Swagger UI to graphically display the API interface

•	 Tools like Swagger Codegen to generate clients for different
languages

On January 1, 2016, the Swagger specification was renamed the OpenAPI
Specification when it was donated to the Open API Initiative.

Chapter 4 ■ API Documentation

67

The Swagger specification defines the format to describe the REST API. The Swagger
specification describes the following information about the REST API.

•	 URL endpoint

•	 HTTP verbs supported for the URI

•	 Description

•	 Query parameters to be passed in the URL

•	 Header parameters in the input request message

•	 Payload format and data type for the request and response
messages

•	 HTTP response status codes

•	 Security requirements

•	 Vendor extensions

An API’s Swagger specifications are documented in JSON or YAML format. Swagger-
enabled APIs expose JSON files that adhere to the specifications. The API specification
can be a manually generated static file or automatically generated from the application.
The API specification needs to be documented in a certain way as per the structure
defined by the Swagger specifications. We look at the high-level structure of a Swagger
definition file for an API later in this chapter.

The Swagger UI provides a framework to dynamically generate beautiful interactive
documentation from a Swagger-compliant API. It is an independent collection of HTML,
CSS, and JavaScript that can be hosted on any server. It can be used by consumers to
explore and interact with the API and understand its behavior. API users can use the
Swagger-UI to test the API and learn about how the API responds to various parameters
and options. The Swagger-UI can be used as-is or customized to meet an organization’s
needs. The Swagger-UI provides support for HTTP verbs, such as GET, POST, PUT,
DELETE, PATCH, and OPTIONS for API invocation. Authorization and custom HTTP
headers can be added to the Swagger-UI. It also provides support for localization and
translation.

Swagger Codegen provides tools for generating code for the client and server
from the Swagger-defined API spec. It is a command-line tool that can generate code
for different languages and frameworks. Some of the frameworks that are supported for
server stub generation are Node.js, PHP Silex, Python Flask, Scala Scalatra, Java JAX-RS,
and Java Spring MVC. Client-side stubs can be generated for languages such as Scala,
Java, JavaScript, Ruby, and PHP—to name a few. Refer to the documentation at https://
github.com/swagger-api/swagger-codegen for more information on this tool.

The Swagger Editor can be used to edit the Swagger API specification in YAML
format. The editor is opened in a web browser to edit the specification and preview the
API documentation in real time.

https://github.com/swagger-api/swagger-codegen
https://github.com/swagger-api/swagger-codegen

Chapter 4 ■ API Documentation

68

Generating Swagger Specifications
Both top-down and bottom-up API development processes can be adopted to create a
Swagger-enabled API.

•	 Top-down approach: Creates a Swagger definition using Swagger
Editor and uses integrated Swagger Codegen tools to generate
server implementation.

•	 Bottom-up approach: Uses Swagger Editor to manually generate
Swagger definitions, or autogenerates Swagger definitions created
using Swagger supported tools, such as JAX-RS or Node.js.

The Swagger File Structure
The Swagger-based API specification is documented in JSON or YAML format. The
Swagger specifications include the following in the API interface.

•	 swagger: Describes Swagger specification version

•	 info: Shows the API’s metadata

•	 host: The hostname or IP serving the API

•	 basePath: The base path on which the API is served relative to the
host

•	 schemes: The protocol that the API uses

•	 consumes: The MIME type for the API’s input data type

•	 produces: The MIME type for the API’s output data type

•	 paths: The API’s available paths and operation

•	 definitions: Holds the data types produced and consumed by
the operation

•	 parameters: Describes a single operation parameter

•	 responses: Describes the schema of a single response of an API
operation

•	 securityDefinitions: Describes the security mechanisms
without enforcing them on the operation

•	 securitySchemes: Specifies the security definitions that are
enforced for the API’s operation

•	 tags: Specifies any additional information on the API

•	 externalDocs: Specifies links to any additional external
documentations related to the API

Chapter 4 ■ API Documentation

69

For more information on each of these Swagger objects, please refer to the Swagger
specification at https://github.com/OAI/OpenAPI-Specification/blob/master/
versions/2.0.md.

Table 4-1 lists the various major Swagger tools available at the time of this writing.
OpenAPI community is constantly generating new tools to expand the reach of Swagger
for different platforms in API development.

RAML
RAML stands for RESTful API Markup Language. It is a Markdown-based language for
modeling APIs. It makes it easy to manage the entire lifecycle of an API: design, build,
test, document, and share. RAML is both machine-readable and human friendly. RAML is
designed to support an API-First top-down development approach. It provides the format
for the contract between the API provider and the API consumer.

Why RAML?
RAML designs API interfaces that are developer- and user-friendly. Using RAML, API
interfaces can be designed, tested, and shared with users to get feedback without writing
a single line of code. APIs can be described in a human-readable text format. Tools like
API Workbench and API Designer provide visual design. The RAML construct lets you
reuse libraries, code, and design patterns in the API design, which saves lot of work.

Table 4-1.  Swagger Tools

Tools Description

Major Tools

Swagger Core A set of Java libraries for generating and consuming Swagger
definitions built around JAX-RS.

Swagger Codegen Tools that generate client libraries and server stubs based on the
Swagger definition.

Swagger UI A browser-based UI for exploring Swagger-defined APIs.

Swagger Editor A browser-based editor for authoring Swagger definitions in
YAML or JSON format.

Other Tools

Swagger JS A JavaScript client for use with Swagger-enabled APIs.

Swagger Node Tools for designing and developing Swagger-compliant APIs
entirely in Node.js.

Swagger Socket This protocol allows any existing REST resources to be executed
on top of the WebSocket protocol.

Swagger Parser A standalone library for parsing Swagger definitions from Java.

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md

Chapter 4 ■ API Documentation

70

RAML code generation tools create server-side code from the spec for different
languages, such as Node.js, Java, JAX-RS, .NET, Python, Mule, IoT, and others. A RAML
specification can also generate test cases for the API using many of the open source
and commercially available API testing tools. This takes advantage of the test- driven
development approach and generates test cases than can be integrated with the
continuous improvement process.

API documentation can be easily generated dynamically on the fly from RAML with
tools such as API Console, RAML2HTML, API Notebook, and others. This keeps the API
documentation in sync with the implementation. API definitions in RAML can integrate
with other systems. Many open source and commercial tools available today can generate
SDKs for different languages from RAML definitions.

Professional services such as APIMatic.io and REST United offer to generate up
to two SDKs at no cost. Oracle and MuleSoft provide built-in functionality in their API
management products to import the RAML definition, which automatically pulls in the
API resources, methods, and other properties, thus avoiding any manual setup of API
calls in these tools. With API Notebook, developers can use RAML definitions to create
interactive API walk-throughs and sample use cases using simple JavaScript.

More information on API Notebook is at https://api-notebook.anypoint.
mulesoft.com.

RAML Structure
This section looks at the high-level structure of a RAML-based API specification
document. The detailed schema and syntax can be found in the RAML specifications
document at https://github.com/raml-org/raml-spec/blob/master/versions/raml-
10/raml-10.md.

A RAML API specification can be structured and organized into the following
sections.

•	 Security scheme information: Describes the basic information
about the API, such as title to identify the API, its version, the
baseURI to specify its network location for invocation, supported
protocols, and default media type and security requirements. Any
user documentation that can serve as user guide or reference
documentation can also be optionally included in this section.

•	 Data type: The data type is used to describe any data that is
passed as a parameter for the API. A parameter can be in the
URI as query parameters, in the header as header parameters, or
in the request/response body. The data can be described using
built-in types or by a new custom type definition created using
a combination of the built-in data types. The data types can be
defined using XML or JSON schemas, or RAML types. These can
coexist as well. For more information on the data types definitions
allowed in the RAML spec, please refer to https://github.com/
raml-org/raml-spec/blob/master/versions/raml-10/raml-10.
md#raml-data-types.

https://api-notebook.anypoint.mulesoft.com/
https://api-notebook.anypoint.mulesoft.com/
https://github.com/raml-org/raml-spec/blob/master/versions/raml-10/raml-10.md
https://github.com/raml-org/raml-spec/blob/master/versions/raml-10/raml-10.md
https://github.com/raml-org/raml-spec/blob/master/versions/raml-10/raml-10.md#raml-data-types
https://github.com/raml-org/raml-spec/blob/master/versions/raml-10/raml-10.md#raml-data-types
https://github.com/raml-org/raml-spec/blob/master/versions/raml-10/raml-10.md#raml-data-types

Chapter 4 ■ API Documentation

71

•	 Resources: Specifies how to access the API’s resources and
subresources using URIs relative to the baseURI. The resources
definition should start with a slash (/). A resource defined at the
root level is called the parent resource. Each parent-level resource
is identified using its own URI relative to the baseURI. Each parent
resource may optionally have one or more child resources defined
under it. This approach builds and defines a nested hierarchy of
resources. The relative URI of a resource may consist of multiple
URI path fragments separated by slashes; for example, /cart/
items. This approach can be used only if an individual path
item is not a resource. If the path items are themselves separate
resources, then they should be defined as nested subresources.
These is no limit to the level of resource nesting that is allowed.
Template URIs containing URI parameters can be used when
the resource identifier is a variable; for example, /products/
{productId}. For more information on defining resources and
nested resources using RAML, refer to https://github.com/
raml-org/raml-spec/blob/master/versions/raml-10/raml-10.
md#resources-and-nested-resources.

•	 Method: Describes the allowed HTTP verbs and the request
parameters that can be used to manipulate a resource. The HTTP
verbs that can be specified are GET, POST, PUT, PATCH, DELETE,
HEAD, and OPTIONS. Each method can have an optional friendly
name and description to describe its functionality. Any optional
or mandatory HTTP headers required for a method should be
specified under this section. The structure and any constraints or
patterns of the header parameters that the API consumer should
be aware of needs to be specified here. Similarly, any optional and
mandatory query parameters to be passed as query string should
also be specified. The request body for POST and PUT methods
can be optionally described in this section. For more information
on using method in a RAML definition, please refer to https://
github.com/raml-org/raml-spec/blob/master/versions/raml-
10/raml-10.md#methods.

•	 Response: Contains the schema and description of the response
object received from the service for a method invocation. The
response has two main sections: header and body. The header
describes the possible HTTP status codes expected in the
response header under various conditions. The body is optional
and describes the media type and the structure of the message
payload included in the response body. The structure can be
defined using types defined in the data type section. For more
information on the response definition, refer to https://github.
com/raml-org/raml-spec/blob/master/versions/raml-10/
raml-10.md#responses.

https://github.com/raml-org/raml-spec/blob/master/versions/raml-10/raml-10.md#resources-and-nested-resources
https://github.com/raml-org/raml-spec/blob/master/versions/raml-10/raml-10.md#resources-and-nested-resources
https://github.com/raml-org/raml-spec/blob/master/versions/raml-10/raml-10.md#resources-and-nested-resources
https://github.com/raml-org/raml-spec/blob/master/versions/raml-10/raml-10.md#methods
https://github.com/raml-org/raml-spec/blob/master/versions/raml-10/raml-10.md#methods
https://github.com/raml-org/raml-spec/blob/master/versions/raml-10/raml-10.md#methods
https://github.com/raml-org/raml-spec/blob/master/versions/raml-10/raml-10.md#responses
https://github.com/raml-org/raml-spec/blob/master/versions/raml-10/raml-10.md#responses
https://github.com/raml-org/raml-spec/blob/master/versions/raml-10/raml-10.md#responses

Chapter 4 ■ API Documentation

72

•	 Resource types and traits: Resource types and traits define
reusage patterns and resources across the RAML definition. You
may want to define the pattern for a HTTP header, or a query
parameter, or a message payload, and then reuse it at different
places within the RAML definition. A resource type is a partial
definition of a resource that can specify security schemes,
methods, and other properties. A resource that uses a resource
type inherits its properties. A resource type can use another
resource type. Traits are similar to resource types. The difference
is that a trait is a partial method definition. It can be used to
define method parameters, such as headers, query strings, and
responses. Resources and resource types can also use and inherit
from one or more traits. For more information on resource types
and traits, refer to https://github.com/raml-org/raml-spec/
blob/master/versions/raml-10/raml-10.md#resource-types-
and-traits.

•	 Security: The API security scheme definition is specified in this
section of the RAML definition. This section defines the OAuth,
Basic Authentication, or Digest Authentication mechanism
for API security. Any other forms of authentication can also
be specified using x-<other> headers. Any headers or query
parameters that pass through can also be specified in this section
under the ‘passthrough’ attribute. If any API method requires a
special security mechanism, it can be specified by the ‘securedBy’
attribute for that method. This overrides whichever security
scheme has been applied to the API as a whole. If a method
does not require any security scheme, it can be specified by the
‘securedBy’ attribute for that method with a null value. Multiple
security schemes for a method can also be specified using the
securedBy element with an array list of security schemes.

RAML Tools and Projects
RAML is supported by the developer community with a long list of tools and projects that
address different API needs. These tools address different aspects of the API development
lifecycle—from designing the API spec to sharing it with the broader community. New tools
are also evolving to address newer requirements and languages. Some of the languages
supported at the time of this writing are Java, JavaScript, .NET, Ruby, Node.js, Python, Go,
and Haskell. This section briefly previews the most commonly used RAML tools.

•	 API Workbench is a tool by MuleSoft that provides a full-featured
integrated development environment (IDE) that design, build,
test, document, and share RESTful APIs. Using API Workbench,
you can create RESTful APIs using a simple design-first approach
based on RAML specifications. It supports both RAML 0.8 and

https://github.com/raml-org/raml-spec/blob/master/versions/raml-10/raml-10.md#resource-types-and-traits
https://github.com/raml-org/raml-spec/blob/master/versions/raml-10/raml-10.md#resource-types-and-traits
https://github.com/raml-org/raml-spec/blob/master/versions/raml-10/raml-10.md#resource-types-and-traits

Chapter 4 ■ API Documentation

73

RAML 1.0 versions of the specifications. This tool is based on
Atom code editor developed by GitHub. The following are some of
the main features of API Workbench.

•	 An IDE that supports autocomplete, advanced search, live
debugging, and symbol based navigation

•	 Dynamic generation of API Mocking Service and API
Console

•	 Wizard-driven creation of API definitions based on RAML
specifications

•	 Automatic validation of RAML-based API definitions

•	 Built-in support for integration with Git for source control
and versioning

•	 An integrated scripting engine and tooling for API testing
and documentation

•	 API Designer is a tool from MuleSoft that allows a user to see
real-time post-processing of their API definition. It provides three
panels with areas to organize RAML files and folders, displays the
contents of the document, and offers an interactive text editor.
The text editor provides features such as autocomplete, export,
and contextual tag lists. It also saves the API definition. For more
information, please refer to https://github.com/mulesoft/api-
designer.

•	 Restlet Studio provides a lightweight integrated development
environment that can help accelerate API design. Built using
Angular.js, it provides a web-based UI for API design. The
following are some of the main features for Restlet Studio:

•	 Visual web-based editor to define and edit API definitions for
endpoint, resources, methods, and so forth.

•	 The ability to group resources and representations into
sections with scrollable a navigation panel helps extend
support for even the most complex API definition

•	 A built-in language translator switches between Swagger and
RAML definitions

•	 Generates server skeleton code using a built-in code
generator service based on APISpark and Swagger

•	 Generates client SDKs using a built-in code generator service
based on APISpark and Swagger.

•	 For more information on Restlet Studio, please refer to
http://restlet.com/products/restlet-studio/#.

https://github.com/mulesoft/api-designer
https://github.com/mulesoft/api-designer
http://restlet.com/products/restlet-studio/#

Chapter 4 ■ API Documentation

74

•	 API Notebook is another RAML tool by MuleSoft. It helps with
live testing and exploring APIs. An API RAML definition can
be imported into Notebook to create a client for the API, send
requests, and view responses. Notebook’s autocomplete feature
explores the API. Once a RAML definition for the API has been
imported, the method definitions will appear in the tool-tip hints.
The path segments of the API resource, separated by slashes (/),
become nested JavaScript objects; for example, /my/myresource
becomes {clientName}.my.myresource.

•	 RAML for JAX-RS provides a set of tools that generate a Java +
JAX-RS-based application from a RAML API definition. It also
provides roundtrip support by doing the reverse to generate a
RAML API definition from an existing Java + JAX-RS definition.

•	 Abao provides a REST API testing tool for APIs defined using
RAML. It tests the RAML definition for the API against the back-
end implementation. This tool can be integrated with continuous
integration (CI) tools such as Jenkins to test API documentation
and keep it up-to-date. It uses the Mocha framework to test the
validity of the API response. The following are some of its features:

•	 Validates the API endpoint definition

•	 Validates that each URL parameter defined in the RAML API
spec is supported in the back-end service

•	 Validates that each HTTP request and response header
parameter defined in the RAML API spec is supported in the
back-end service

•	 Validates that the JSON schema for the request and response
payload meets RAML specifications

•	 RAML Tools for .NET provides a Visual Studio extension for
RAML-based APIs. It allows you to easily integrate and consume
APIs defined using RAML and to create a new ASP .NET REST
API implementation from a RAML definition using a design-first
approach.

There are many other tools available as RAML projects that address the various needs
of the developer community building and consuming REST APIs from a RAML definition.
Based on the functionality, these tools can be primarily categorized by design, prototype,
build, frameworks, test, document, share, parser, and converters. Most of the design tools
provide a visual interface or plugins that can be used with other visual editors to design the
RAML definition for the API. The prototype tools can be used to mockup response for APIs
defined using RAML. They can test the API interface and create stubs as a replacement for
the actual implementation for testing purposes. The build tools and frameworks generate
the client SDK and server skeletons based on the RAML definition of various languages.
This promotes the design-first approach for API development.

Chapter 4 ■ API Documentation

75

These tools test API documentation and implementation. They can generate
test cases for APIs based on the RAML definition for the API. They validate the RAML
definition against the actual implementation and thus keep the two in sync. The
documentation tools create API documents in various formats; graphical API consoles,
HTML, wikis, PDFs, and other formats can be shared with API consumers. The parser
tools are libraries for different languages, which parse the RAML definition of the API.
The converters convert the RAML to other API specification formats, such as Swagger.

Differences in RAML Specification Versions
At the time of writing, RAML has two versions: RAML 0.8 and RAML 1.0, which is in a
release candidate (RC) state. RAML 1.0 provides more extensibility, code reuse, and
flexibility features than the previous version. It introduces new features, such as libraries,
overlays, improved security schemas, data typing, annotations, and enhanced examples.

•	 Libraries let you to include predefined sets of data types, resource
types, security schemas, traits, and reusable assets.

•	 Overlays give the flexibility to include new information, such as
descriptions, examples and annotations, which are defined in a
different RAML file; for example:

#%RAML 1.0
types: !include myTypes.raml

•	 Security schemas have been enhanced to provide better support
for OAuth 1 and 2, a new API key, and new custom security
schemes.

•	 Data types can be used in place of schemas and examples. The
data type definition can be converted to XML or JSON format
on the fly using some of the RAML tools. API designers can thus
define only the data type for their input and output parameters
and RAML takes care of the REST.

API Blueprint
API Blueprint is a document-oriented language for describing REST API using Markdown
syntax. This specification, brought in by Apiary.io, uses Markdown syntax to describe the
complete specification of an API or its parts.

Chapter 4 ■ API Documentation

76

API Blueprint Document Structure
An API Blueprint document is structured into logical sections. For example, headers, URL
parameters, and request/response can each be described in logically grouped sections.
Each section is defined by predefined keywords. Depending on the section, the keyword
is written either as a Markdown header entity or a list item entity. The following are the
reserved keywords for defining the header and list entities in an API Blueprint document:

•	 Header keywords

•	 Group

•	 Data structure

•	 HTTP methods

•	 URI templates

•	 Combination of HTTP methods and URI templates

•	 List keywords

•	 Request

•	 Response

•	 Body

•	 Schema

•	 Model

•	 Header and headers

•	 Parameter and parameters

•	 Values

•	 Attribute and attributes

•	 Relation

At a high level, the API Blueprint description for a REST API is organized in the
following structure:

•	 Metadata describes the version of the API Blueprint specification
used for documenting the API interface. It also contains the API
name and a brief description.

•	 Resource and resource group describe the resources and the
group of related resources used by the API. For example, in an
online shopping experience, a customer may have one or more
orders. So orders is defined as a resource group; within this group
there can be a resource that returns a collection of orders.

Chapter 4 ■ API Documentation

77

•	 Actions describe the operations that can be performed on a
resource. It is specified using one of the HTTP verbs within
square brackets.

•	 URI templates specify the variable parameters in the URI; for
example, an order may be identified using an order ID. So to
get the details of a specific order, you specify it using /orders/
{order_id}.

•	 URI parameters describe the variables being passed in a
request URI or as a query parameter; for example, /path/to/
resources/{varone}?path=test{&vartwo,varthree}.

For more information on each of these keywords, please refer to the API Blueprint
Specification document in GitHub at https://github.com/apiaryio/api-blueprint/
blob/master/API%20Blueprint%20Specification.md#def-api-blueprint-language.

API Blueprint Tools
The API Blueprint spec is supported by a good number of tools. This section discusses
some of the most commonly used API Blueprint tools.

•	 Apiary.io provides a comprehensive tool that supports
collaborative design, creation of API mockups, automated testing,
autogeneration of interactive API documentations, API traffic
inspection, and more.

•	 Dredd is an HTTP API testing tool. It is a command-line tool
that can be used to test the API documentation written in API
Blueprint against the back-end implementation. This tool can be
integrated with CI tools to ensure that API documentations are
always up-to-date.

•	 Drakov provides a Node.js implementation of a mock server for
APIs written using API Blueprint.

There are many other open source tools that support the API Blueprint format for
SDK generations. They have various language formats, testing API interfaces, and plugins
for API test clients; they can also convert API definitions from other formats to API
Blueprint and vice versa. Since API Blueprint and its tools are open source, they can be
freely integrated with all kinds of products to extend support for API Blueprint.

Comparing Swagger, RAML, and API Blueprint
Tables 4-2, 4-3, and 4-4 compare Swagger, RAML, and API Blueprint.

https://github.com/apiaryio/api-blueprint/blob/master/API Blueprint Specification.md#def-api-blueprint-language
https://github.com/apiaryio/api-blueprint/blob/master/API Blueprint Specification.md#def-api-blueprint-language

Chapter 4 ■ API Documentation

78

Table 4-3.  Tool Support

Criteria Swagger 2.0 RAML API Blueprint

Authoring tool Swagger.io API Designer Apiary.io

Ad-hoc testing Swagger UI API Console Apiary.io

Documentation Supported Supported Supported

Mocking Extended support
provided by third
party

Extended support
provided by third
party

Extended support provided
third party

Server code Supported by
third party

Supported by
third party

Supported by third party

Client code Supports multiple
languages

Supports multiple
languages

Supports a few languages

Generate from
code

Supported by Java
(third party)

Supported by
third party

Supported by third party

Validation Supported Supported Supported

Parsing Java.js Java.js C++(Node.js, C#)

Table 4-2.  Overview Comparison

Criteria Swagger 2.0 RAML API Blueprint

Format JSON, YAML YAML Markdown

Availability on Web GitHub GitHub GitHub

Primary sponsor Reverb MuleSoft Apiary

Is there a workgroup? Yes Yes No

When was it first
committed?

July 2013 September 2013 April 2013

Design approach Top-down and
bottom-up

Top-down Top-down

Current version 2.0 1.0 A4

Chapter 4 ■ API Documentation

79

Table 4-4.  REST Modeling Capabilities

Criteria Swagger 2.0 RAML API Blueprint

Resources Supports resource
definition

Supports resource
definition

Supports resource
definition

Nested resources Supports nested
resource definition

Supports nested
resource definition

Supports
nested resource
definition

Representation
metadata

Supports the JSON
schema

Supports inline and
external definitions
in any format

Supports only
inline definitions
in any format

Composition/
inheritance

Inheritance
supported by sub
types

Supports
inheritance of traits
and resource types

Supports resource
model inheritance

API version metadata Supported via
apiVersion tag

Supported via
version tag

No explicit tag to
specify the API
version

Authentication Has tags defined to
support Basic, API
Key, and OAuth2

Supports Basic,
Digest, and OAuth2

Supported via
custom header
definitions

Methods/action Supported Supported Supported

Query parameters Supported Supported Supported

Path/URL parameters Supported Supported Supported

Header parameters Supported Supported Supported

Documentation Supported Supported Supported

Chapter 4 ■ API Documentation

80

Other API Documentation Frameworks
Swagger, RAML, and API Blueprint are the most popular API documentation standards.
Most API management vendors include support (in various forms) in their tools for one
or more of these languages. However, these specs are still evolving. In parallel, there have
been efforts from various corners to create specs that address competitors’ shortcomings.
As a result, many competing specs are available today from various vendors. These are in
various levels of maturity. The following is a list of some of the other API standards used
for modeling and documenting APIs:

•	 WADL

•	 ioDocs from Mashery

•	 Doxygen

•	 ASP.NET API Explorer

•	 Apigee Console To-Go

•	 Enunciate

•	 MireDot

•	 Dexy

•	 Docco

•	 TurnAPI

81© Brajesh De 2017
B. De, API Management, DOI 10.1007/978-1-4842-1305-6_5

CHAPTER 5

API Patterns

APIs should be designed for longevity. Any change to an API carries the risk of breaking
the client’s application code. Frequent changes to an API frustrate the developers and
the consumers using it. Building APIs from robust and proven patterns fosters a happy
developer community and saves the company a lot of money. This chapter looks at
some of the API design principles and patterns that have stood the test of time and make
developers happy.

Best Practices for Building a Pragmatic
RESTful API
APIs are the face of your enterprise. They provide users with access to enterprise data,
services, and assets. Hence, while security should be ingrained in it, the API interface
should be simple and elegant to attract developers. It should be intuitive and developer-
friendly to make adoption easy and pleasant. Adherence to web standards is equally
important. APIs should be designed with user experience in mind. Many of these
principles were covered in earlier chapters. The following summarizes some of the
approaches for designing a pragmatic RESTful API interface.

•	 Design APIs with RESTful URLs. Design an API based on the
logical grouping of identified resources. The API URL should
point to either a collection of resources/subresources or an
individual entity within the collection. For example, /customers
should refer to a collection of customers, while /customers/
{customerId} should refer to an individual customer entity with
in the collection. The URL should be intuitive enough to identify
the resources and navigate through them easily.

•	 Use HTTP verbs for CRUD action on resources. Use the HTTP
verbs to perform CRUD action on the resources. Use POST
to create a new resource, GET to read, PUT to update, and
DELETE to delete a resource. Additionally, you may consider
providing support for the PATCH verb in the API resource for
partial updates. OPTIONS verb can be used to determine the
metainformation about the resource, such as the methods
supported, HTTP headers allowed, and so forth.

Chapter 5 ■ API Patterns

82

•	 Use operation in the URL when HTTP verb cannot map to
the action. Often, an action on a resource cannot be directly
mapped to an HTTP verb. For example, actions such as register,
activate, and so forth, cannot be directly mapped to an HTTP
verb. These operations may be applicable on a resource collection
or a single resource entity, or to a group of resources of different
types. In such cases, it makes sense to have this operation in the
URL and treat as a subresource. For example, the resource URI /
customers/customer123/activate can be used to activate the
account of customer with ID customer123.

•	 Use SSL/TLS for all communications with REST APIs. RESTful
APIs expose enterprise data and assets. These can be accessed
from within the company or from outside the firewall over the
Internet from anywhere. This poses a security threat to the
data transferred over the network. Hence, to protect the data
against any eavesdropping or any impersonation in case security
credentials are compromised, it pays off to use SSL/TLS for all
API communication. Using SSL communication also simplifies
authentication efforts. Mutual authentication with SSL/TLS can
help the server to validate the identity of the client in addition to
the client validating the server.

•	 Do not redirect from non-SSL API endpoints to SSL endpoints.
This is a practice to always avoid when designing REST APIs.
Malicious clients may gain access to actual secured and encrypted
API resources through such redirections. It is recommended to
respond with a proper error message if the non-SSL endpoint is
not supported in the API.

•	 API versions. Versioning iterates and improves APIs by
providing a smooth transition path. It supports multiple versions
of the APIs simultaneously and provides time for clients to
upgrade to new version and provider to retire the old version.
There are multiple approaches to versioning the API. The most
common of them is to include the version information in the URI
base path. Version information can also be included in custom
HTTP header. A hybrid approach of including the major version
in the URI and minor version in the HTTP header can also be
adopted. Information about API versioning approaches are
covered in Chapter 6.

http://dx.doi.org/10.1007/978-1-4842-1305-6_6

Chapter 5 ■ API Patterns

83

•	 Design the API interface to support filtering on the result
set. The response to a GET request for an API resource may
sometimes be quite large. Displaying this large response in
the consumer app may be quite challenging considering the
limited form factor and processing power on the device. Also
transmitting a large payload over the network would also impact
the bandwidth and the overall performance. Hence, the client
app using the API would obtain a lean and filtered response for
a GET request. This can be achieved only if the API supports
filtering on the result set. Filtering criteria may be specified as
unique query parameters for each field that supports filtering. For
example, when querying for a customer’s orders, you may want
to limit it by the order date, such as orders placed in the previous
month, six months, or year. This can be specified using a GET
request with a orderDate such as GET /customers/customer123/
orders?orderDate>'YYYY-MM-DD' query parameter.

•	 Design the API to support pagination. Pagination is yet another
feature that is useful in handling large responses from an API.
Even the filtered response from the back-end service for an API
may contain hundreds of records. In such a scenario, it makes
sense to display only ten of them on a page in the consumer app
and provide a link to the next page with the next set of records.
Supporting pagination for an API response can address this
need to the app developer. This includes pagination parameters
in the request as query parameters. 'limit' and 'offset'
are the most commonly used query parameters to specify the
pagination requirements. For example, orderDate is like
GET /customers/customer123/orders?orderDate>'YYYY-MM-
DD&limit=5&offset=0. 'limit' indicates the number of records
to be included in a page and 'offset' denotes the page number.
Also the API response should include the pagination metadata in
the response. This can be included in human-readable format as
envelope within the response or in a machine-readable format
using the Link header. Following is an example of pagination
metadata included as an envelope within the response:

"_metadata":
 {
 "offset": 2,
 "limit": 5,
 "page_count": 25,
 "total_count": 127,
 "Links": [
 {"self": "/orders?offset=2&limit=5"},
 {"first": /orders?offset=0&limit=5"},
 {"previous": "/orders?offset=1&limit=5"},

Chapter 5 ■ API Patterns

84

 {"next": "/orders?offset=3&limit=5"},
 {"last": "/orders?offset=25&limit=5"},
]
 },
 "orders": [
 {
 "id": 1,
 "item-name": "Widget #1"

 },

]
}

Machine-readable metadata can be included by using the Link header, as follows:

Link: </orders?offset=2&limt=5>;rel=self,</orders?offset=0&limit=5>;rel=fir
st,</orders?offset=4&limit=5>;rel=previous,</orders?offset=3&limit=20>;rel=n
ext,</orders?offset=25&limit=5>;rel=last

The total count of records can be included in the response using custom headers
such as X-Total-Count.

•	 Return resource representation in response to creating and
updating. The response for POST, PUT, and PATCH operations
results in creating and/or updating a resource. The API response
payload for these methods should include metainformation
such as 'created_at' or 'updated_at' along with the created
or updated representation of the resource. Successful execution
of a POST request should return a HTTP 201 Created status code
along with the 'Location' header containing the URL of the
newly created resource. Successful update requests should return
with HTTP status code 200 OK.

•	 Use HTTP headers to specify the media type for the message
payload. When sending a request or a response, include the
'Content-Type' header to specify the content type for the
message payload. This helps the message recipient to easily
identify the parser to be used for processing the message. For
example, the 'Content-Type' header with the value application/
json indicates that the payload is in JSON format and the recipient
should use a JSON parser to process the message. Similarly, use
the 'Accept' header in the request to indicate the format of the
response expected by the consumer from the provider.

Chapter 5 ■ API Patterns

85

•	 Use HTTP headers to support caching. HTTP provides built-
in features to support caching. HTTP provides a number of
useful headers to efficiently communicate caching information.
The 'ETag' header contains a hashed value of the resource
information. Instead of including the entire resource
representation in the message payload in XML or JSON format, the
'ETag' header with the hash value can be used to communicate
information about the resource. Similarly, headers can be used to
communicate resource modification date/time, expiry time of the
cache, validation rules, and the cacheability of a resource. These
headers should be used effectively for handling cache.

•	 Secure APIs using authentication information in HTTP
header. APIs exposing data and assets should always be secured.
Authentication credentials should be included in the HTTP
Authorization header. Since REST services are stateless, cookies
should not be used. Session information if any should be passed in
custom HTTP headers. Basic Authentication should be used when
the API needs to identify the end user. OAuth-based authentication
can be used when a third-party application needs to access the API
on the behalf of another user. In case of authentication failure, the
API should respond with 401 Unauthorized. All communications
containing sensitive information or any security credentials should
be encrypted using TLS.

•	 Handle Errors using HTTP Status code and appropriate error
messages. In case of errors, APIs should respond with useful
error messages in a consumable format. Appropriate HTTP
error response codes in 4XX or 5XX series should be used. 4XX
response codes should be used if the error occurred due to fault
of the client. 5XX response codes should be used in case of server
errors in processing the request. The error response payload
should at a minimum communicate the following:

•	 Error message code: A unique alphanumeric code to
uniquely identify the error.

•	 Error message: A brief summary of the error.

•	 Error description or reason: A description of or reason for
the error.

Chapter 5 ■ API Patterns

86

This is an example of an error response payload:

{
 "code" : Err_POL0001,
 "message" : "Address missing",
 "reason" : "No Address specified in the 'Address' field"
}

API Management Patterns
Enterprise services provide access to assets and legacy systems. SOAP and REST APIs
are the two most common implementation technologies used for building services. An
API management platform is used to transform and manage these services to make them
more flexible, scalable, and secure. Various implementation patterns have emerged to
help address different challenges. This section looks at some of the most common API
management patterns.

API Facade Pattern
The API facade pattern helps the API team create developer-friendly API designs and
connect to complex enterprise legacy record systems.

Back-end and internal system of records are often quite complex. They could be
built using variety of technologies and sometimes even legacy ones. These are difficult to
change due to the strong dependencies built over time and the complexity involved. A lot
of investment was made to make them robust and stable. Hence, it is difficult to replace
them as well. Therefore flexibility and agility needed for the digital business becomes
difficult to achieve. Creating an API for a single system of record may still be possible, but
the real problem is in creating an API for a group of complementary systems that needs
to be used to make an API really valuable to the developer. In this situation, API facade
patterns come in handy for creating a simple API interface for a set of complex back-
end systems that are hard to change for digital transformation. This pattern provides a
layer between the back-end systems and the consumer apps. This layer not only build
a simple API interface but can also implement other functionalities such as security,
data transformation, version management, orchestration, error handling, routing and
much more. Apps access the API exposed through this facade. The facade handles the
complexities to interact with the back-end systems (see Figure 5-1).

Chapter 5 ■ API Patterns

87

The API Facade can be used in a variety of ways as described in the next few sections.

API Composition
Take for example that an app needs to interact with three different services for one of its
transactions (see Figure 5-2). In this case, the client app has to be built so that it makes
multiple calls directly to services, negotiates any security challenges, and does data
format changes as required. With this approach, the client app is responsible for all the
orchestration, data transformation and normalization, security, service connectivity, and
retry mechanisms. This is indeed an overhead on the client app, considering the limited
processing power available on the mobile devices. It is helpful for the developer building
the app, if all these tasks can be off-loaded somewhere.

Figure 5-1.  API facade pattern

Figure 5-2.  API composition pattern

Chapter 5 ■ API Patterns

88

Implementing the API composition pattern in the API facade layer can be a solution
to this problem. With API composition, the developers can concentrate on the UI and
business functionality. It makes the communication less chatty with reduced network
calls between the app and the back-end services. Security negotiations with the back-
end service are handled by the API composition at the facade. The client app or device
only needs to authenticate once at the API facade layer. API composition also shields the
client from changes to the back-end systems. Different service provider can be plugged
in without having to change the app. The new API composition can help validate and
throttle requests before it reaches the back-end. Any data format change or intermediate
message processing can be done using this pattern. The API composition pattern can also
help improve the overall performance by bringing in some parallelism in making calls to
the back-end system.

Using an API gateway to implement the API facade pattern for composition is a
common practice. An API gateway is a server that acts as a single point of entry into
the system. It encapsulates the internal system architecture and provides an API that is
customized for the client. It handles the responsibilities of request routing, orchestration,
protocol translation, and finally, composing an interface as required by the client.
The client communicates with the API gateway, which then fans out the request to
all the back-end APIs. It invokes multiple back-end microservices and aggregates
their responses. It also does the translation between web protocols such as HTTP(s),
WebSockets, and other web-unfriendly protocols used within the enterprises. The API
gateway provides an interface that is customized for the client’s needs by following the
composition pattern. It reduces the client overhead for making multiple calls to different
services and aggregating them, thus simplifying the client code.

Session Management
API services should be designed to be stateless. But sometimes state management
becomes necessary for designing an app with better user experience. Shopping cart, hotel
booking are some examples where session management is necessary. Sessions maintain
the client context on the server. In the API world, managing session information in the
client apps running on devices is difficult. Devices are already constrained for memory
and processing capacity. Hence, session management is an additional overhead, which
can slowdown the overall performance. Managing the state information in the back-
end server is expensive too. An API facade can use HATEOS principles to facilitate state
management. Using these principles, the resource state information can be returned
in the response payload as a URI from the facade. This URI can be used by the client in
subsequent interactions to communicate the state of the resource. For example, in the
shopping cart API, the GET request to fetch product information by a user may look like
the following:

GET https://www.foo.com/products/sku/2345?user=USR123&cart=CT1234

Chapter 5 ■ API Patterns

89

The response for this request can be as follows:

{
"Product":{
 "item-name":"Canon EOS 5D Mark III",
 "description":"DSLR camera",
 "price": "2500 USD",
 "sku": "2345",
 "link":{
 "AddPrdURL":
 https://www.foo.com/cart/CT1234/product/sku/2345?user=USR123
 }
 }
}

Note that the response contains a URL that has the cart id (CT1234) and the user id
(USR123), which acts as the session information. The app can use this URL for the next call
to add the product to the user’s cart. The session information can also be communicated
as custom HTTP response headers.

Two-Phase Transaction Management
In a two-phase transaction, the transaction coordinator prepares the participating
resources for a transaction in the first step. If the first step is successful, the commit is
issued to the participating resources in the second step. The two phases for a two-phase
commit transaction is shown in Figure 5-3.

Figure 5-3.  Two-phase transaction management of APIs

Exposing each transaction phase as an API and expecting the client app to coordinate
the transaction, and roll over in case of failure, is an over kill. Managing all transaction
from the client app is going to result in a chatty conversation. The complex processing
logic in the app for transaction coordination and management definitely yields a poor app
performance. The solution is to handle the conversation from an API facade. The logic to
prepare, commit, and roll back two-phase transaction management is implemented in the
facade. The facade exposes only one API that is invoked by the client. For example, a hotel

Chapter 5 ■ API Patterns

90

booking service can expose only one endpoint to access it (/hotelbooking). This endpoint
may in turn invoke two separate endpoints: one to reserve the hotel (/reserve) in the
prepare phase and the second to make the payment (/payment) to confirm the
reservation in the commit phase. This way the client need not directly access both
/reserve and /payment services and nor does it have to manage the two-phase
transaction. Figure 5-4 shows how the two-phase transaction is handled by APIs.

Figure 5-4.  Two-phase conversion pattern

Synchronous to Asynchronous Mediation
In many scenarios, the application client needs to access a back-end service that is long
running and may not provide an immediate response. The mobile app cannot wait for
the entire duration till the response is received. A typical example is sending a message.
Suppose that you are building a mobile app that sends an SMS to a given number. After
the message is sent, the mobile network takes its own time to deliver the message to the
recipient depending on various factors. The message delivery status may be available
almost immediately or after sometime depending on the network traffic and other factors.
The back-end service is asynchronous. However, the mobile app expects a synchronous
response. So how do you implement this? An API facade can provide a solution to this.
Implementing a callback pattern on the API facade is the first step to this solution. The
high-level steps for the solution are as follows.

	 1.	 The client app makes a call to the API facade.

	 2.	 The API facade makes a call to the back end with a callback
URL pointing back to the facade layer.

Chapter 5 ■ API Patterns

91

	 3.	 The API facade sends response back to the client with URL to
check on the response status.

	 4.	 After sometime the target system sends the updates (Eg.
delivery status) to the API Facade at the callback URL. API
facade layer forwards the notification to the notification URL
of the mobile app.

Figure 5-5 shows the steps on how to implement a synchronous to asynchronous
mediation using an API facade.

Mobile App API Facade Target Messaging
System

Send Message
POST /messaging/1/outbound

Send Async Message (CallbackURL)
POST /messaging/1/outbound

201 Created

Wait for Callback

Message Delivery Notification at CallbackURL
POST /messaging/notification (Delivery Status)

200 OK

Process Notification
Callback

Send Message Delivery Status

Initial Message
Validation

Synchronous to Asynchronous Mediation

200 OK

201 Created

Figure 5-5.  Synchronous to asynchronous mediation pattern

Routing
In a complex service composition scenario, the routing rules may not be fixed. The back
end to which the request should be routed may have to be dynamically determined based
on parameters in the incoming request. This is also known as content-based routing. The
parameters for routing may be present in the request header or the message payload. In
the API facade, these parameters are extracted and inspected to determine the back-end
endpoint to which the request should be routed. A common example where this pattern
can be applied is when routing a request to a back-end based on the originator of the
request. Based on the customer category (Platinum/Gold/Silver) you may want to route
the request to different back-end services that contains business logic for each category of
customer (see Figure 5-6).

Chapter 5 ■ API Patterns

92

API Throttling
When an enterprise opens their API to the external world, it is expected to see an increase
in the API traffic. Developers use these APIs to build new innovative apps. As more apps
are built and adopted by users, the overall traffic is bound to increase. Also since the
APIs are now open to the public, there may be some unexpected and unwanted load
coming from some malicious apps, which may try to bring down the system. The current
back-end systems may not have been designed to scale up and withstand this increased
load. To maintain the performance and overall stability, it is important to maintain the
overall traffic within the capacity limits of the back-end system by throttling the API. The
following are the common approaches to throttling.

•	 Spike Arrest: With Spike Arrest, you can detect sudden
unexpected changes to the traffic pattern. Applying a Spike
Arrest policy smooths out the traffic by uniformly distributing the
traffic across each smaller interval. For example, if the set spike
arrest limit is 60 per minute, then only one request is allowed
every second. If in any second there is more than one request,
they would all be throttled. Similarly, if the spike arrest is 200
per second, then only one request is allowed per 5 milliseconds.
If there is more than one request in any 5-millisecond interval,
subsequent requests is throttles. The value of the spike arrest
should be calculated based on the capacity of the back-end
services. The limits should be configured for shorter intervals
such as sec or minutes. This feature protects the back-end
services against sudden traffic burst coming from some malicious
users or apps.

Figure 5-6.  API routing pattern

Chapter 5 ■ API Patterns

93

•	 Rate Limit or Quota: With a Rate Limiting approach (also
sometime referred to as Quota), the requests are throttled based
on the originating app or user, region of origination, time of the
day and various other factors over a period of time. The request
within the specified limit is routed successfully to the target
system. Those beyond the limit are rejected. For example, if
the quota is defined as 1,000 requests per day, all requests after
the 1,000th request are rejected. It doesn’t matter when these
1,000 requests are made. They could have been made in the
first minute, or in the final minutes, or evenly paced. Additional
requests are allowed only after the quota is reset at the end of the
time interval. The rate-limit values depend on the API product
sold to the user. It controls the number of calls allowed for APIs
in that product. For trail product, the limits might be less. For
high-value products, the limits allowed could be more. Unlike
spike arrest, rate limit allows calls to go through till the limit is
reached. Hence, the rate-limit values should be carefully derived
by looking at the overall capacity of the back-end systems and the
expected load. The rate limit values are normally specified for a
longer duration such as minute, hour, day, or month.

•	 Concurrent back-end connections: Sometimes legacy back-
end systems might have the strict restrictions on the number
of connections that can be made. By implementing throttling
using concurrent connections, you can limit the number of
simultaneous connections that can be made from the API to
the back-end services at any given point of time. Based on the
value specified, the API gateway container controls the number
of connections made to the back-end and rejects requests once
the connection limit is reached. The limits to be set should be
determined based on the capacity of the back end services.

Caching
Caching pattern can be used within an API gateway to cache backend responses or
any information required for processing the request. When a client makes the same
request, the cached response is returned to the client instead of forwarding the request
to the back-end. This improves the overall API performance and improves the stability
of the system by reducing the load on the back-end servers. Each cached response is
normally stored against a unique key. The key is derived based on the parameters in the
request. Hence, if the app or client makes requests using the same URI, the cached data
is sent in the response, if not expired. If the cache is expired, the request is forwarded
to the back-end system to fetch the latest data, which can then be cached in the API
gateway to serve subsequent requests. Caching the response data is useful when the
data is updated only periodically. The cache expiry time should be set based on the
update interval of the back-end data. Static data such as list of stores or hotels is a good
example of where caching can be beneficial as these dint change frequently. Dynamically

Chapter 5 ■ API Patterns

94

changing data should not be cached. Also if the data changes very frequently, the caching
strategy should be examined carefully, else it can result in incorrect response to the client.
The caching strategy should consider the cache expiry time, cache key, the cache skip
conditions, size of the cache object as some of the top factors.

Logging and Monitoring
Logging is one of the best ways to identify and track problems. It is no different in the
world of APIs. In fact, given the distributed nature of APIs, the importance of logging and
monitoring increases significantly. To help identify problems during the processing of API
requests, critical information should be logged. The information for logging should be
collected at all stages of message processing and logged at the end of message processing
or in the event of an error. Logging can be done to syslog or to a local file system. The
ability to log to a local file system is generally available on a private cloud setup of API
management platforms. While using a public cloud instance of the API management
platform, it is recommended to log information to a syslog server. If syslog server is not
available, public log management services such as Splunk, Loggly, Sumo Logic, and so
forth, may be used.

Once you know how to log, it is important to determine what information should be
logged. The information logged should provide sufficient data to detect, find, and analyze
the issue. Since APIs are used for distributed communication, log information should
help locate the source of the issue. It should also provide information about the date/time
of the issue, description of the issue with error codes and messages and a correlation ID
to relate it to events in other applications of the system.

It is a good practice to log certain metainformation from the request and response
even in success scenarios (see Figure 5-7). It can be used for auditing purposes. All
logging should be done using asynchronous mechanisms to avoid impact to the actual
API performance. Using a separate thread to send the log information to a messaging
queue is a common approach followed by most API management vendors to send logs to
their destinations.

Figure 5-7.  API message logging pattern

Chapter 5 ■ API Patterns

95

API Analytics
Implementing APIs for digital transformation is not enough. You need visibility into
your API program to measure the success and make strategic investments. API analytics
provide insight into the API program through information about the API traffic pattern
and performance metrics. An API analytics dashboard can tell you which APIs are used
most frequently and how traffic varies over time. You can also get behavioral information
about the target services in terms of response time, errors rates, size of the payload,
and so forth. Information about the developer adoption of an API and the geographic
distribution of API traffic can also be gathered from API analytics. Additionally, you
can collect custom data from the message payloads and derive useful analytics data for
making informed business decisions. Analytics data is normally stored in databases and
later processed, aggregated, and analyzed. Hence, like the logging information, analytics
data should also be collected at different points in the message flow and processed
asynchronously to move it to the back-end database for dashboard reporting.

API Security Patterns
When APIs provide access to enterprise data and assets to a wide audience, they are
also opening a larger variety of threats and security challenges for the company. The
number of malicious assault and denial-of-service (DOS) attacks are increasing as APIs
make back-end systems more accessible. Since APIs can be accessed programmatically,
the vulnerability is even greater. Hence, over time, new security patterns have emerged
to secure the access to APIs and protect back-end systems against various attacks. The
challenge is in providing an easy access to legitimate and authorized users while making
it difficult for unauthorized users to access APIs. Hence, getting API security right can be
a challenge. This section looks at the different approaches that have emerged as patterns
for securing APIs against various types of attacks from potential hackers.

Common Forms of Attack
Hackers can attack to get access to the system, steal valuable information, or even bring
down the system that impacts your business. The following are the most common forms
of attack on APIs.

•	 DoS attacks: Malicious users flood your system with high-volume
API traffic that the back-end systems cannot handle, bringing it to
a halt.

•	 Scripting attacks: In this kind of attack, attackers inject malicious
code into the system to get access and possibly tamper back-end
data and assets. The malicious code can be an SQL statement,
XPath or XQuery statement, or some script that tries to exploit
design flows in the system to get access to back-end data.

Chapter 5 ■ API Patterns

96

•	 Eavesdropping: In this kind of attack, the hacker gets access to an
API request or response while the data is in transit over a non-
secure API communication channel. He can then manipulate the
message and send it to the ultimate recipient.

•	 Session attack: In this kind of attack, the hackers gain access to
the session ID used by a user or app. This information is then
used for personification and access to the user’s account and
resources. In this common form of attack, an app makes an API
call and passes the credentials or session information in the
header, that can provide access to the underlying assets. The risk
is worse in scenarios that use a multiparty authentication scheme,
such as OAuth, to grant permissions to a third party to access to
access their private data.

•	 Cross-site scripting (XSS): This is a special form of
scripting attack that takes advantage of known vulnerabilities
in a web site or web application. An attacker injects a malicious
link or code that is executed on the victim’s web browser. This
form of attack bypasses the same-origin policy that requires
everything on a web page to come from the same source. When a
same-origin policy is not enforced, the attacker can inject a script
or modify the web page to achieve their purpose. An XSS attack
delivers tainted content to the API from a trusted source that has
permissions to the system. Hence, the API must protect itself by
validating the 'Origin' header in the request payload to check
for the origin before allowing access to back-end resources.

API Risk Mitigation Best Practices
There are different approaches and patterns that have emerged to protect APIs from
various forms of security threats and provide comprehensive security. The approaches
for securing APIs should control access to APIs as well as monitor and limit API usage.
Controlling access to an API should authenticate and authorize users or apps making
API calls. It should also scan incoming messages for well-formedness and any potential
threats in it. A monitoring approach should detect any sudden changes in the API traffic
pattern and block the user from making calls. A comprehensive API security approach
should look at all the links in API value chain: starting from the users and apps that
consume the API, to the API team that builds the API, all the way to the API provider that
exposes the data and services in the back-end systems. Since APIs provide omnichannel
access, the API security approaches should also be omnichannel security. The security
architecture should be flexible and responsive enough to prevent, detect, and react to all
forms of API threats in near real time.

Next, let’s discuss some of the best practice approaches for building a security into
an API management solution.

Chapter 5 ■ API Patterns

97

Authentication and Authorization
Identifying and authenticating API consumers is critical in mitigating security threats.
Apps consume APIs and consumers use the app. Hence, it is essential to differentiate
between the app and the consumer/user and control the operations that they can
perform. Every app is associated with a unique API key. Hence, API key validation on
an API management layer can help identify the app and thus control access to the APIs.
Once an app has been identified and validated, the user using the app should be verified
to validate the end user permissions to access an API resource. This can be done through
OAuth scope validation in the API management layer or by integrating with another
identity and access management system, such as LDAP, Tivoli Access Manager, Microsoft
Active Directory, and so forth. This kind of integration perform single sign-on and
provide a seamless experience to the user. While authenticating the user, the API provider
should also take into account the context in which the app or the API is being used.
Validating context information such as geolocation, device capability, and time, as part of
the security framework can help build a strong security for APIs.

API keys identify the app. It is the responsibility of the app to store them securely
and protect them from misuse. The app should encrypt the key and store it in a secure
vault to prevent any misuse. HMAC-based encryption can be used for encrypting API
keys. Also keys should be transmitted in encrypted form over the network using SSL for
any authentication between the app and the API gateway. The API key is the identifier
of an app and not the end user. Hence, it should not be used as substitute for end user
authentication or authorization.

OAuth should be used as a mechanism to provide authorization to a third-party
application for access to an end user resource on behalf of them. OAuth helps with
granting authorization without the need to share user credentials. OAuth 2.0 uses SSL for
all of its communications. Hence, all user and app information in the OAuth dance with
the OAuth provider is secured in transit. Many prominent API management platforms,
such as Apigee, Mashery, and Layer 7, take out the complexity of implementing OAuth
and integrating with external identity and access management systems. This should be
leveraged instead of natively implementing it.

Protect Against Attacks
Since APIs expose a lot of valuable business data, they are prone to different kinds of
attacks. API management platforms come with in-built features to detect and eliminate
such attacks. These platforms provide configurable policies or assertions, which when
activated or attached in the request pipeline, can detect attacks using malicious contents
or malformed XML or JSON. Some API platforms can also detect virus signatures. Schema
validation policies or threat detection policies attached in the request-processing pipeline
can mitigate the risk of SQL injections, malicious code injection, and business logic or
parameter attacks. CORS header validation protects against XSS attacks. IP whitelisting is
another approach to reduce risk from untrusted sources.

Preventing APIs against denial-of-service attacks is another important security
consideration. Most API management platforms provide protection against DoS attacks
using Spike Arrest and Quota policies. The Spike Arrest policy identifies unexpected surge
in the API traffics and reject all requests exceeding the configured limit. This maintains

Chapter 5 ■ API Patterns

98

a uniform distribution of request flowing to the back-end systems as per their capacity.
The Quota policy, on the other hand, restricts the number of API calls that a client app is
allowed over a time interval. Alerts should be sent if APIs are getting overloaded or any
suspicious pattern of API calls is detected. Using rate limits and quota policies alongs
with a licensing model that establishes a contractual obligation between the API provider
and the consumer app and enforces payments for violation of contracts, can minimize
the risk of DoS attacks.

Encrypt Message Exchanges
Often, message payloads sent in API calls contain sensitive information that can be the
target for man-in-the-middle attacks. An API management platform sits in between the
client app and the API service provider as an API gateway. All communication between
the client app and the API service provider through the intermediate API gateway should
be secured using SSL/TLS encryption by default (see Figure 5-8). A two-way SSL
between the client app and the API gateway also helps with client authentication. SSL
should also be enforced for all communications between the API gateway and the
back-end service. A pervasive security approach for encrypting data using SSL prevents
against man-in-the-middle attacks.

Clients HTTPS HTTPSAPI Proxy Service

HTTPS should be enabled for entire communication channel

Figure 5-8.  API transport security using HTTPS

Monitor, Audit, and Log API Traffic
The API management solution should monitor, log and analyze API traffic. It understands
API usage patterns. An API provider is interested in knowing which is their most popular
API operation, who is the most popular user of the API, what is the rate of growth of API
consumers, what is the traffic pattern over a period of time. An insight into all of this
information helps with planning the API extensions to strengthen API security.

Logging metainformation from an API traffic flow is also useful in the root cause
analysis of any problem. In the event of any security breach, it provides information
about the time of the incident, the message payload, and the mechanism of attack. If
appropriate information is logged, it can also identify the source of the attack. Hence,
monitoring APIs and capturing the right information from the API traffic logs is an
essential step in securing APIs.

Chapter 5 ■ API Patterns

99

Logging and Auditing is also one of the major regulatory compliance
requirement. Various national and industry-specific laws require minimum logging.
Regulatory compliance requirements in financial industry mandate that you log certain
API traffic information and make it available as part of the audit and compliance process.
For example, you might be required to provide proof that you mask sensitive data, or
can detect unauthorized users in the logs captured from API request and response
processing.

Build API Security into the SDLC Process
API security is not possible without a comprehensive set of security policies and
processes ingrained within the development life cycle of API development. API
architects should plan to address security for APIs at the start of the API program. They
should provide guidelines for authentication and authorization to make APIs secure.
Policies to protect APIs against various forms for attacks and vulnerabilities should
be defined as part of the security architecture and design. These security policies
should be implemented and thoroughly tested during the development and testing
phases. Penetration testing of APIs should be a mandatory step in the testing phase.
Post deployment, APIs should be continuously monitored for any potential threats and
performance issues that could potentially indicate any security incident.

Use a PCI-Compliant Infrastructure
PCI compliance specifications define a set of guidelines for handling credit card and
other sensitive information during a transaction or at rest. The consortium of industries
began in 2006 and includes payment card processing companies like Visa, Mastercard,
JCB, and Discover. The PCI-DSS compliance requirements apply to all organizations
that store, process, or transmit credit card or payment information. The intent of this
specification is to protect card holder data and give confidence to the consumers that
their sensitive information would not be misused. The following are the some of the
important guidelines for PCI compliance.

•	 Build and maintain a secure firewall. Do not use any default
passwords.

•	 Protect stored data and encrypt sensitive data in transit.

•	 All application and systems should be secured and protected
against unauthorized access using strong access control
measures.

•	 Anti-virus and vulnerability management programs should be
kept updated.

•	 Monitor network access and test systems regularly.

•	 Maintain an information security policy.

Chapter 5 ■ API Patterns

100

There is no product that will make you PCI compliant. Product and processes can
help you implement and enable PCI compliance requirements. If an API is handling any
sensitive payment information, it needs to adhere to the PCI guidelines. Also, the API
gateway infrastructure on which such APIs are deployed should be PCI complaint.

API Deployment Patterns
APIs need to be deployed on a platform that is scalable and flexible. The platform should
simplify API development and deployment. It should also enable the business to manage
the entire API ecosystem. The platform should drive the customer reach of the APIs and
support business growth. To meet all of these demands, most API platforms provide two
deployment models: cloud and on-premise. The decision to choose the right deployment
model would depend on the business needs. Let’s look at the characteristics of each
deployment model.

Cloud Deployment
The cloud deployment of API gateways is hosted and managed by API platform providers
on a public cloud, such as AWS or Azure. For example, the Apigee cloud instance is
hosted on AWS. Cloud deployment provides customers with seamless product upgrades
and improves the pace of innovation. The cloud deployment option leverages the
economics of scale. However, it also puts the data and services outside the traditional
enterprise firewall, which is can be a security and regulatory concern.

The main advantages of public cloud platform are as follows:

•	 Higher reliability and availability: Cloud platforms provide
clustered environments that are distributed across multiple data
centers and regions. This mitigates the risk of data center and
network outages, and increases the reliability and availability of
the platform. The API platform vendor handles traffic fluctuations
and makes capacity adjustments to meet the guaranteed SLA.

•	 Faster time to market: The cloud instances of the API platforms
can be spun off almost immediately by the API vendors. This
saves time and hassle of hardware procurement, setup, and
configuration. The cloud instances are up and running very
quickly thus reducing the overall time to market for the API
program.

•	 Reduced capital and operational expenditure: Cloud
deployments are generally available in a subscription model. You
pay by usage like number of API calls. This avoids upfront capital
expenditures and reduces ongoing in-house operational costs.

Chapter 5 ■ API Patterns

101

•	 Reduced management overhead: Letting the API vendor focus
on the data center infrastructure helps enterprises focus on
building their API services. The API platform provider takes
care of management over heads of running and managing
the data center. They address all availability and performance
management of the underlying infrastructure. Software updates
and fixes are rolled out seamlessly by the vendors. The API
provider can focus on creating the API and its back end.

•	 Increased scalability and agility: The licensing for the cloud
platforms are generally by API traffic volume. If the traffic
increases, API providers only pay additional licensing fee for
the increased traffic. They do not need to bother about capacity
planning, procurement of hardware, installation, configuration,
and training needs for the operations personnel. The platform
vendor makes the required changes to provision the additional
capacity requested. This makes cloud environments ideal for
horizontal scaling to meet the increased demand.

•	 Regulatory compliance: Often regulatory compliance
requirements come in the way of adoption for cloud-hosted
solutions. But most of the leading API management vendors
have achieved industry compliances for their cloud-hosted
platforms and their products. PCI DSS for the payment industry
and HIPAA for the health industry are the most common
industry compliance requirements. Since the platform is already
compliant to the industry standards, it helps the client to easily
meet the PCI requirements for security and log management on
the cloud and other industry compliances.

These are the main disadvantages of cloud deployment.

•	 Network latency: The distributed nature of the cloud
infrastructure and additional network hops on the cloud
introduces additional network latency. Using an API Delivery
Network (API-DN) can route the traffic intelligently and help
decrease the latency disadvantages. API-DNs route the request
to the closest data center, thus reducing some of the network
latencies.

•	 Control over data: On a cloud-hosted platform, all API traffic
data is available in the cloud. This reduced the amount of control
and security the client can have for their data passing through a
cloud-hosted API solution.

Chapter 5 ■ API Patterns

102

On-Premise Deployment
In an on-premise deployment model, the API provider purchases the software and
takes the responsibility of setting up and running the entire platform in its data centers.
The API provider takes up all the management overhead of installing, running, and
maintaining the API platform. They are responsible for the hardware procurement,
data center setup, and network configuration. The responsibility to monitor the API
platform performance, deal with outages, update and manage software versions and
capacity scaling lies with the API provider. Managing the entire API platform also needs
additional training about the platform. Though there are initial challenges for setting up
the on-premise infrstructure, following reasons can be the main drivers for on-premise
deployment.

•	 Enhanced security: With an on-premise deployment model, the
API service provider has full control on the data security. They
can manage where the under lying data stores would be present,
how infrastructure and the data in it is secured, and who can have
access to it. This also meets the increased security audit needs of
the enterprise.

•	 Reduced network latency: Since the API gateway is installed
within the enterprise’s network, it cuts down on multiple network
hops. API providers may also plan to install the API gateways
within the same network as the back-end services. This reduces the
network latency and increases the overall performance of the APIs.

•	 Better management and control: On-premise versioning
provides better management and control over performance and
scaling. You can decide on the number of instances of the product
components to be installed to support increased load. You have
control over changes to the environment configuration, such as
software and hardware upgrades.

API Adoption Patterns
APIs are used by businesses to move ahead with their digital transformation initiatives
and increase revenue and customer reach. RESTful APIs are used to expose data and
services and deliver an engaging experience to the customers. APIs have also been used
by business for internal application integration and partner integration. It makes data
more readily available for consumption. As APIs have evolved and used by a greater
variety of consumers, there has been a pattern that has emerged in their adoption. The
following are the four most common API adoption patterns:

•	 APIs for internal application integration

•	 APIs for business partner integration

•	 APIs for external digital consumers

•	 APIs for mobile and IoT

Chapter 5 ■ API Patterns

103

Let’s look at the business drivers for each of these different adoption patterns and the
different considerations for architecting and sharing the APIs for consumption.

APIs for Internal Application Integration
Enterprises use SOA for building services to achieve loose coupling and reusability.
These services are used for internal application integration. SOAP and other protocols
are used for integration. SOA provided the right level of security and governance, but
faced with the challenge of making the services easily discoverable and consumable.
The complexities associated with UDDI and service registries to publish and discover
service were one of the main. APIs built on top of SOA address the consumption side of
it. It makes services easily to publish and discover through the API portal. The developer-
friendly and intuitive interface of a REST API makes it easy for developers to consume
and build apps using them. APIs have been used for integration within and across lines of
business.

With huge investments already placed in SOA services, and with many business
processes built around them, companies are less likely to throw it all out to embrace
REST APIs. Hence, building an API on a clean slate is a rare opportunity. APIs have to be
built on top of the SOA services that expose the back-end services to make them more
consumer-friendly. APIs address the consumption side of the equation—making it easy
for developers to discover and consume services. API management platforms provide the
functionality to create developer-friendly REST APIs from SOAP services that are easy to
consume. An internal API portal publishes an API catalog, making the APIs searchable
and visible to internal consumers. It brings in an open and collaborative practice for
developer, while controlling the visibility of APIs and combining it with the right level of
security and governance required for internal consumption.

APIs for Business Partner Integration
Enterprise have been consuming third-party APIs to simplify and expand business
partnership. When APIs are used for B2B partner integration, they grow the business
rapidly. APIs provide faster integration and an improved partner/customer experience.
The technicalities of creating APIs for partner integration are not much different.
However, they are more rigorous and have a commercial aspect tied to it. Instead of being
open to all, they are available to a select list of business partners. The API consumers
and providers are bound by the legal business contracts for the use of the APIs. These
business contracts govern the service levels and other aspects of API delivery and
consumption. Both API consumers and API providers are responsible for the success of
an API program.

APIs for External Digital Consumers
APIs have been adopted by enterprises to accelerate digital transformation, increase
customer reach and loyalty, and discover new streams of revenue. Companies can now
expose their business assets and service to a larger community of developers with an easy
to use and intuitive API interface. External developers and partners adopt these APIs to

Chapter 5 ■ API Patterns

104

build innovative apps. These apps can bring in a completely new business model for the
enterprise. Hence, it is important for companies to create external-facing APIs to expose
their data and services.

APIs exposed to external digital consumers need a platform that is interactive
and provides proactive support to developer community. An API portal provides
such a platform. It publishes information about the APIs that developers can use for
building apps. Interactive API documentation, blogs, and forums help the developer
determine the suitability of an API. It also fosters collaboration with a bigger community
of developers. An API portal quickly onboards external developers through a smooth
developer onboarding process. Developers register theirs apps to get app keys and secrets
on the portal, which are required for secured access to the APIs.

Externalization of APIs and collaboration with other developers build an ecosystem
of innovation. It helps developers to share ideas and read about the experiences of others.
It generates new and innovative ideas that otherwise would not have been possible. Many
companies have seen a northbound trend in their API traffic due to the new experiences
brought in by apps created by external developers using their APIs.

APIs for Mobile
Mobile apps have changed the way that humans interact with enterprises. Even though
computing power is shifting from server rooms to mobile devices, mobile apps are
still limited in resources and restricted by bandwidth. Hence, building a mobile app
mandated a simpler interface that can be consumed easily. Also the interface should be
such that it can be easily shared with developers to consume them in the apps. RESTful
APIs have all of these characteristics, which make them popular for mobile consumption.
The API provider should take into considerations the design, security and operational
aspects of the API to make them suitable for mobile consumption. Additionally, caching
should be looked as an alternative for improving performance and reducing chattiness.
Instead of sending bulk payloads, paginations, filtering and other mechanisms should be
supported to reduce processing overhead on the mobile app. Standard web API security
protocols such as OAuth and OpenID Connect should be supported to secure APIs and
make them suitable for mobile consumption.

APIs for IoT
The Internet of Things (IoT) refers to the network of devices, sensors, and actuators that
communicate with each other over the Internet using API technologies to build a new
customer experience. This refers to wearable devices such as iWatch, connected cars,
connected sensors—such as Nest thermostats, intelligent bulbs—such as Philips Hue,
and many others. It is estimated that by 2020 there will be 50 billion connected devices.
APIs form the communication foundation for these connected devices. But the challenge
is with the diverse and the newer communication protocols, such as MQTT, AMQT,
XMPP, and many others that need to be supported by the API platform. A new generation
of infrastructure powered by autoscalling capabilities, may also be needed in furture to
support the scale of IoT communication traffic.

105© Brajesh De 2017
B. De, API Management, DOI 10.1007/978-1-4842-1305-6_6

CHAPTER 6

API Version Management

Change is inevitable and this is no different with APIs. If APIs are successful, they evolve
over time. New requirements may drive you to make changes to your APIs. Advancements
in technology are also a contributor to changes to APIs. Handling these changes in a way
to minimize the impact on the clients is the art of versioning.

Once you publish a REST API, developers start using it in their client app as per what
is defined in the contract. Developers write software that relies on the API contract. So
whenever there is a change to the API, there is the potential to break the client software
that relies on the contract. Hence, API changes need to be done in a controlled and
predictable way. This brings in the need for API version management. In this chapter, we
would look at how API versioning is different from normal software versions, the need to
version APIs, and the different approaches to API versioning.

API Versioning vs. Software Versioning
Every software release is versioned. The common format for versioning software is as
follows:

<MajorVersion>.<MinorVersion>.<PatchVersion><OptionalPackageIdentifier>

For example, v2.4.16-RC4.
The checksum of the software package is normally used to identify a particular

version. If the checksum changes, the version is considered different. However, this
approach does not apply to REST API versioning; because if a new version is introduced
for every minor change to the API, it would cause a maintenance nightmare. Apps
dependent on the API might stop working, leading to a frustrated developer community.
Also, maintaining too many versions of the API for the client would be a nightmare.

The REST API version should correspond to the service version and not the software
or the package version implementing the service. Every new version of the service
implementation need not warrant a change in the service version; hence, the REST API
exposing the service. A new API version should be created only when there is a change in
the service interface or the contract that is being used by the client.

Chapter 6 ■ API Version Management

106

The Need to Version APIs
An API defines a contract for communication between the client and a server hosting
a resource to operate on them. The client may want to create, read, update, or delete a
resource as defined in the contract. A change in the resource may or may not require
a change in the contract. Some changes, such as minor bug fixes, may not require any
alteration to the contract. Others, such as a change in the structure of the resource or the
way of communication, may require a change in the contract. Changes may or may not be
backward compatible. If the change is backward compatible, it may be possible to handle
it within the same API version. Changes that are not backward compatible require a new
version of the API to be introduced. This lets the consumer know that they may need to
make changes to their app code. Versioning APIs helps maintain compatibility, enabling
debugging and dependency control.

API Versioning Principles
Some of the main principles of API versioning are as follows:

•	 An API version should not to break any existing clients

•	 Keep frequency of major API versions to a minimum

•	 Make backward-compatible changes and avoid making new API
versions

•	 API versioning should not be directly tied to software versioning

The API Version Should Not Break any Existing Clients
As APIs are adopted by app developers, introducing new versions of the API brings with
it the risk of breaking the client’s apps. The API versioning strategy should be such it that
does not break any existing client apps; otherwise, it will easily frustrate the developer
community and slow down the API adoption.

Keep the Frequency of Major API Versions to a Minimum
Every time a new API version is released, it kick-starts a fresh cycle for app developers.
They need to understand the new API, analyze the impact on their apps, debug issues,
and so on. This is a huge burden on both sides in terms of time and money. Even the
API provider has to maintain multiple versions of the API for a sufficient time in order to
enable a smooth transition. Supporting multiple versions requires significant investment
by both the API provider and the consumers.

Make Backward-Compatible Changes and Avoid Making
New API Versions
The simplest way to avoid making new API versions is to make the changes backward
compatible. Changes such as the addition of new API resource methods or support for a
new data format do not impact the client. Some changes to the input data elements may

Chapter 6 ■ API Version Management

107

be backward compatible; for example, adding an optional element in the input request in
the body or introducing support for an additional query parameter does not mandate any
change to the client code; these are backward compatible. These kinds of changes do not
necessarily require changes to the client app. Hence, it is not necessary to introduce a new
version of API backward-compatible changes. However, adding a new mandatory parameter
in the request or changing the name of a field in the response requires a new version of the
API to be created, because these require changes to the client application code.

API Versioning Should Not Be Directly Tied to Software
Versioning
As discussed at the start of the chapter, software evolves very rapidly. Every major release,
enhancements, and bug fixes result in a new version of the software. If we start tying the
API version to its software implementation, it would result in an unprecedented number
of API versions. This would not only frustrate the consumers dealing with the API, but also
results in maintenance nightmares for API providers. Hence, the API version should never
be tied to the software version of the back-end data/service. A new API version should be
created only if there is a change in the contract of the API that impacts the consumer.

Approaches to API Version Management
There are multiple approaches to introduce versioning in your API. The next few sections
discuss the most common ways to version an API.

Versions Using URLs
An API is normally identified by its URL. So in API versioning, it makes sense to introduce
the version information in the URL as follows:

http://www.foo.com/v1/customers

In this URL, v1 defines the major version identifier. When this identifier changes, it
is assumed that all resources under it changes—in this case, the customers resource. If a
new version of the customer is introduced in the next version, it should use a new version
identifier, like /v2/customers. The new version can be accessed as follows:

http://www.foo.com/v2/customers

This approach to API versioning is followed by the likes of Google, Yahoo!, and many
others. Using a dot notation for API versioning to indicate the minor revision eg, V1.1, is
also a common practice. However, that does not add much value compared to just using
the major version and incrementing the version number to the next integer. Some popular
API providers, like Twilio, use the date as a version identifier for their APIs. For example, if
the API was released in the year 2015, the provider may use the following URL format:

http://www.foo.com/2015/customers

http://www.foo.com/v1/customers
http://www.foo.com/v2/customers
http://www.foo.com/2015/customers

Chapter 6 ■ API Version Management

108

The version that came up in the next year would use this URL format:

http://www.foo.com/2016/customers

This could be extended to include the month, as follows:

http://www.foo.com/2016/02/customers

or

http://www.foo.com/2016-02/customers

This approach might be needed only if there are multiple versions of API releases in a
year. However, monthly or very frequent release is against the API versioning best practices.

The advantage of this approach is that it is easy for users to understand which
version of the API they are using.

Versions Using an HTTP Header
Another approach to API versioning is to use an HTTP header. With this approach, an
HTTP header is used by the client to specify the API version that it wants to invoke. The
advantage of this approach is that it helps to keep the API version out of the URI that is
used to refer to a resource. The other benefit of this approach is that you can easily ignore
or silently upgrade if the user does not specify any version or specifies a deprecated
version of the API.

The use of an HTTP 'Accept' header is one of the preferred choices. The GitHub API
follows this approach and expects it to be passed in the request as follows:

Accept: application/vnd.github[.version].param[+json]

Using a custom HTTP header like 'X-API-Version' in the request is yet another
approach to API versioning. However, this has its own disadvantages. What if the client
does not add this header in the request? What should the default behavior be? Should
the server respond with an error message or handle it according to the latest API version?
If handling using the latest version of the API is the default approach, how do you then
handle breaking changes when introducing a new API version?

Versions Using Query Parameters
This is yet another common approach to versioning API. In this approach the client
specifies the version number as a query parameter in the request, as follows:

http://www.foo.com/customers?version=v2

The server may choose to honor the query parameter or even ignore it. One
advantage of this option is that the version parameter can be optional or required,
depending on how you want the API to be used. In this case, the version is optional, a
default behavior may be assumed to be the latest version when it is left off. Being in the
URL, this is very easy to see and understand.

http://www.foo.com/2016/customers
http://www.foo.com/2016/02/customers
http://www.foo.com/2016-02/customers
http://www.foo.com/customers?version=v2

Chapter 6 ■ API Version Management

109

This approach works well when the resource representation is versioned. In such
cases, it is necessary to also put in transformation logic to transform the resource
representation based on the version specified.

Versions Using a Host Name
Another approach to API versioning using a URL is to use a different host name. For
example, Facebook’s first version of an API is available at api.facebook.com, whereas
their new graph API is available at graph.facebook.com. This approach is used only when
there is an extensive revamp of the API.

The downside of this approach is that it not only requires a change in the URL used
by the client to access a resource, it may also require changes in the security settings
on the client side due to the change in the hostname. Also, this may require setting up
a completely new infrastructure to support the new version, adding to the cost. The
only advantage of this is that you can completely revamp the URI structure and route
client requests to a different server, without the need to change the older version. Client
requests for older API versions are processed by the old instance.

Handling Requests for Deprecated Versions
As new API versions are introduced, the API provider should notify the expected behavior
when a client makes calls to older and deprecated API versions. During the transitions
phase, the provider may choose to handle requests to older versions by responding with
a redirection URL pointing to the new API version. Alternatively, the API provider may
respond with an HTTP 404 error code that indicates that the requested resource version
was not found. If a client makes calls to a deprecated API version, it should fail with the
404 HTTP status code.

API Version Lifecycle Management
Introducing non-breaking changes to APIs is fairly simple and can be pushed out without
much fanfare. As a best practice, however, such changes should be published through
a blog post, updated in API documentation, or at least logged in the API release notes
change log. However, making changes requires a lot more planning, extensive testing,
customer handholding, and voluminous communication. Since there may be a lot of
consumers for the API, it is important to notify them of any changes to the APIs. There are
multiple ways to do that. The following are some of the most common approaches:

•	 Announce new upcoming version and versioning schedules, if
any, in the API developer portal

•	 Send emails to registered developers about upcoming new API
versions

•	 Introduce “warning” headers in alerts on older versions being
deprecated

•	 Define a migration period and cut-off date for support to older
API versions

Chapter 6 ■ API Version Management

110

Releasing a new API version as a beta release to a restricted group of developers is a
good approach to introducing new API versions. Provide enough time for the developers
to test and provide feedback on the new API version. Only after a successful launch of a
beta version should it be taken to production and opened for general availability. Even
after the successful release of the new API version, never immediately deprecate or
remove support for older versions. Once in production, old and new versions of an API
should run simultaneously to give enough time for developers to migrate their code to the
new version. Set a date for deprecation of the older version of the API so that developers
have a clear target to migrate their apps over to the new API version. There should be
clear communication and coordination between the API provider and the consumer
community when new versions are introduced. This helps to reduce the risk of breaking
trust with any version upgrades.

111© Brajesh De 2017
B. De, API Management, DOI 10.1007/978-1-4842-1305-6_7

CHAPTER 7

API Security

APIs provide a very good opportunity to build engaging and innovative customer
experiences. They help businesses build new channels of integration and partnership.
As companies look to expose their assets and data as REST APIs in an effort to provide
new customer experiences and expand their business, security becomes a main concern.
To a chief security officer at an enterprise, it is of paramount importance to secure the
APIs and protect underlying assets from misuse, attacks, or any kind of threat. The
security threats to APIs can be of various types. The security model to protect against
these threats depends on the type of asset or service exposed and the associated risk.
For example, APIs dealing with sensitive financial data over public networks require
stronger security measures than APIs dealing with publicly available data over a restricted
network. There is no one-size-fits-all approach that can be applied to protect APIs against
various threats. This chapter looks at some of the important security threats to consider
when building a security solution. It also looks at the various approaches and the security
models for protecting APIs against these threats.

The Need for API Security
APIs allow consumers to interact with and access an enterprise’s data and services. It is no
good to have assets locked down within the enterprise. Exposing assets helps enterprises
grow business and revenue. Creating APIs that enable customers to use their assets
builds enriching customer experiences and increases customer engagement and loyalty.
However, since assets have a business value, they are prone to theft and attacks to gain
unauthorized access. APIs that act as the front door to these assets should therefore be
secured. An API without security is like keeping the door to your vault open. Since APIs are
used by in-house developers, trusted partners, and third-party developers, they should be
protected intelligently. Considering that APIs may sit at the edge of the enterprise and can
be accessed by a wide variety of customers through different channels, such as mobiles,
smartphones, tablets, web apps, connected cars, kiosks, IoT devices, and more, they
should be secured thoroughly to prevent any kind of misuse of the underlying assets.

Today, APIs introduce a new form of security threats by hackers. Earlier hackers used
to sit behind a console and try out attacks to find vulnerabilities. Due to the programmable
nature of APIs, hackers can now use them to automate their attacks and try out different
things to find system vulnerabilities. Hence, the security model in the APIs should be able
to identify such attacks and reject requests in order to protect the back-end assets.

Chapter 7 ■ API Security

112

APIs today form a critical part of any digital strategy. Lack of API security can bring
your digital transformation journey to a grinding halt. Hence, having a well-defined
strategy for API security is of principal importance.

API Security Threats
APIs provide channel of access to enterprise assets. Hence, they introduce many more
types of security threats that were previously non-existent or were not considered a
genuine threat. The different API security threats can be broadly classified into the
following categories:

•	 Authentication

•	 Authorization

•	 Message or content-level attacks

•	 Man-in-the-middle attacks

•	 DDoS attacks (distributed denial-of-service)

APIs allow a new range of third parties to access enterprise assets. Without proper
security policies in place, anyone can access these assets—even before a formal
relationship has been established with third parties. Apps built by third parties can
compromise enterprise security. Hence, it is important to have a proper registration and
onboarding process for third-party organizations and app developers. Apps built by third
parties should be registered with the API provider before they can use the APIs. Only
authenticated systems, apps, and developers should be allowed access to the APIs in
order to eliminate any risk of security compromise.

Third-party apps often access information on behalf of the end users. This
information may be sensitive and private and can be accessed only after proper
authorization has been obtained from the end user. Hence, APIs should be secured to
check for the right level of authorization to grant in the request. Access to the resource
should be granted only after authorization checks succeed.

Attackers can place malicious content, such as malware, in API requests to attack
the system. They can also inject scripts in the request that are executed in the back-end
systems. The impact can be devastating. It can corrupt systems and provide an outsider
with unauthorized access to sensitive and business critical data. This can put a company’s
reputation at stake. APIs should be protected to detect any such malware or scripts, or
malformed payloads in the request.

In a man-in-the-middle attack, hackers get access to credentials and tokens that
can be used to get access to APIs. These credentials and tokens may be harvested and
used nefariously. All data should therefore be encrypted in transit and protected from
unauthorized access while at rest.

Attackers can launch DDoS attacks from one or more IP addresses via APIs to bring
down the system. Since APIs provide a programmatic access to underlying resources,
launching a DDoS attack is very easy. An API security model should be able to identify a
DDoS attack and take the right action to protect back-end systems.

Chapter 7 ■ API Security

113

The next few sections look at how to design a security framework to protect APIs and
their underlying resources against various forms of attack.

API Authentication and Authorization
Authentication determines the identity of the end user or the party requesting access to a
protected resource. It helps validate who you are.

Authorization determines the access level and permissions of the end user to
perform a certain operation. It determines the actions that the client is allowed to
perform on the protected resource.

The following are some of the most commonly used forms of authentication and
authorization used for API security:

•	 API keys

•	 Username and password

•	 X.509 client certificates and mutual authentication

•	 SAML

•	 OAuth

•	 OpenID Connect

API Keys
An API key identifies the application using an API. It provides a simple mechanism to
authenticate the apps. API keys allow an API to determine which applications are using
it. API keys are generally long series of random characters typically passed as an HTTP
query parameter or header. This makes it easy to use an API key in an API request for
application authentication. API keys are also known by other names, such as app ID,
client ID, app key, or consumer key.

When a developer registers his app with an API provider, a unique API key is
provided to the developer. The developer needs to secretly store this API key and use it in
the application requests when making an API call from the application. The key identifies
the application making the request and helps the provider monitor which application is
making the request. The developer also gets insights into how his application is used by
end users.

An API key is normally a long alphanumeric string that is opaque and without any
signature or encryption. This makes API keys less secure for authentication purposes.
The use of API keys is best for auditing and identification. An API key validation policy in
the request flow of the API can help to validate the API key and also capture important
metadata information, such as developer, organization, and so forth, related to the
application. This may be good for APIs that only need to know who is using it. API keys
can also be used to enforce API call quotas for an application (see Figure 7-1).

Chapter 7 ■ API Security

114

Thus, API keys can be also used to filter or turn off access to rogue applications that
might be flooding the system with API calls. Providers can revoke an API key to block
traffic coming from that application. Where enhanced security is required, API keys can
be used to generate tokens using OAuth and OpenID flows.

Username and Password
A username and password is the most common form of authentication and is useful
when dealing with sensitive data in an API call. In this form of authentication, the client
presents the server with a unique name (username) and a secret code (password). The
server validates the username and password against its credential store and provides
access to the client only on successful validation.

For a REST API call, the client can pass the credentials (username and password)
in an HTTP header using the Basic Authentication scheme. As per this scheme, the
client sends the server authentication credentials using an Authorization header. The
Authorization header is constructed as follows:

	 1.	 The username and password are combined with a single colon (:).

	 2.	 The resulting string is then Base64 encoded.

	 3.	 The authorization method and a space (Basic) are then
entered before the encoded string.

The username John and password John@123, results in a header that looks like this:

Authorization: Basic Sm9objpKb2huQDEyMw==

HTTP Basic Authentication is the most common form of authentication; it is
supported by nearly all clients and servers. It is easy to implement without the need for
any special processing. The client needs to ensure that the password is protected and
kept secret. If the client needs to store the password, it must be encrypted in some way to
protect it against any attackers reading it from the store. SSL should be used for all client-
server communications to protect credentials in transit from eavesdroppers.

API key validation with Basic Authentication can be combined for better API
security. For example, the app identity may be sent as API key and the end user
credentials may be passed in as Basic Authentication header. The API server may first
validate the app identity from the API key and then validate the credential of the end-user
accessing the client using the Basic Authentication headers.

Figure 7-1.  API key usage to secure back-end services

Chapter 7 ■ API Security

115

X.509 Client Certificates and Mutual Authentication
An X.509 certificate contains a public key that validates an end entity, such as a
web server or an application. It is a good alternative to a username/password for
authentication purposes in application-to-application communication. The X.509
certificate contains the identity of the subject. The subject information is described as
a distinguished name (DN), common name (CN), along with other optional attributes,
such as country (C), state (ST), location or address (L), organizational unit (OU), and
organization name (O). All of this certificate information is digitally signed by a trusted
certificate authority (CA). This helps certify the public key of the subject and ensure that
the certificate is not tampered with. The certificate’s private key is always kept secret with
the user and is never divulged to the signing authority or anyone else.

After the subject receives a signed certificate from the certificate authority, it
can be used as identification. It allows secure access to protected APIs. For a mutual
authentication using two-way SSL, the API resource server needs to import the client
certificate in its trust store. The SSL handshake starts with the API resource server sending
its X.509 certificate to the client. After the client app has validated the server certificate, it
sends its public key to the API resource server. The server validates the client certificate
against the list of certificates present in its trust store. A two-way SSL is established after
the mutual authentication by the server and the client is successful. Only then can the
app can make an API call. Figure 7-2 shows a high-level view of the message exchanges to
establish a two-way SSL and make an API call.

Figure 7-2.  Two-way SSL for mutual authentication

OAuth
OAuth 2.0 is a protocol that allows clients to grant access to server resources without
sharing credentials. As per the IETF specifications, the OAuth 2.0 authorization
framework enables a third-party application to obtain limited access to an HTTP service,
either on behalf of a resource owner by orchestrating an approval interaction between the
resource owner and the HTTP service, or by allowing the third-party application to obtain

Chapter 7 ■ API Security

116

access on its own behalf. For example, a shopping app can use access to its customer
data in Facebook. When a customer accesses the shopping app, he is redirected to log in
via Facebook. The customer is redirected to the shopping app after he has successfully
logged in. The shopping app can now access customer data and can even post status
updates on Facebook on behalf of the customer (if authorized to do so).

So what problem is OAuth trying to solve? Let’s look at the scenario where a user
wants to post some reviews about a product from the shopping app (say, Amazon)
to Facebook but doesn’t want to type their Facebook password on Amazon. This is
possible if the Amazon app is able to store the user’s Facebook password somewhere
and use that to post on their Facebook page. But why should the user trust Amazon with
their Facebook password? Also, what happens when the user changes their Facebook
password, which is now stored in multiple locations with different apps? The user now
has to manually go and update their Facebook password in all the locations that it is
stored, which definitely is not a good user experience.

Instead of storing the Facebook password on every application that wants to access
the Facebook account, what if we create a token that is authorized to perform limited
actions, such as post on Facebook on their behalf. This token is generated after the end
user has authorized Amazon to access their Facebook account.

The token has a defined validity and is understood and recognized by Facebook. So
when Amazon presents the token to Facebook within the validity period of the token, it is
allowed to access and post reviews on the user’s Facebook page. In this way, users do not
need to share their Facebook password with every other application that needs to access
their Facebook account to post any updates. The access is automatically revoked when
the validity of the token expires. The token can be revoked even earlier than its expiry
time, if required.

Using OAuth tokens for API security makes APIs more resilient to security breaches,
since they don’t rely on passwords. In the previous example, if the user finds out that their
Facebook password has been compromised, they only need to change it in one place,
without impacting other applications that need to access their Facebook account. Those
applications continue to access the Facebook account using the access token until it has
expired or has been revoked.

OAuth Basic Concepts
To understand OAuth better we will now look at some of the basic concepts involved in
the next few sections.

Actors in OAuth

OAuth protocol defines a sequence of message exchanges that need to happen between
the various parties to grant the client access to a server resource. The various actors
involved are resource owner, client, resource server, and authorization server.

Chapter 7 ■ API Security

117

•	 A resource owner is the end user who authorizes an application
to access various resources in their account. For example, the user
of a Facebook account can be the resource owner. The photos and
activities like the posts and likes in the Facebook account are the
data owned by the resource owner. The list of resources that an
application can access or the operation that an application can
do, is determined by the “scope” of the authorization granted.

•	 A client is the application that is trying to get access to a resource
owner’s account.

•	 A resource server hosts the protected resources of the user. In the API
world, it is the server where the API resources are hosted. For example,
Facebook is the resource server hosting the APIs to view or edit photos
and user activities. Access to the API resources is allowed only after the
client has been authorized by the resource owner or the user.

•	 An authorization server validates the identity of the user and
then issues the access token to the client, which can be used to get
access to resources.

Figure 7-3 shows the various actors involved in an OAuth flow.

Figure 7-3.  The various actors involved in an OAuth flow

In most cases, the server on which the API is hosted acts both as the resource server
and the authorization server. An API gateway can play this combined role, as shown in
Figure 7-4.

Chapter 7 ■ API Security

118

Tokens

Tokens are issued to allow access to specific resources for a specified period of time and
may be revoked by the user that granted permission or by the server that issued the token.
There are two different kinds of tokens used in the OAuth flow: access tokens and refresh
tokens.

•	 Access tokens allow access to a protected resource for a specific
application to perform only certain actions for a limited period
of time. They are a long string of characters that serve as a
credential. They are generally passed as bearer tokens in an
authorization header. An access token can also have restrictions
or scope associated with it that specify the API resources that
can be accessed using the token. An access token generally has
an expiry duration and can be refreshed using refresh tokens
for certain grant types. In situations where an access token is
compromised, it can be revoked to prevent any further use of that
token.

•	 Refresh tokens represent a limited right to reauthorize the
granted access by obtaining new access tokens.

Scope

Scope identifies what an application can do with the resources that it is requesting
access to. Scope names are defined by the authorization server and are associated with
information that enables decisions on whether a given API request is allowed or not.
When an application requests an access token, the scope names are optional.

Figure 7-4.  Role of API gateway in OAuth

Chapter 7 ■ API Security

119

Grant Type

An OAuth grant type can be thought of as the interactions that an app goes through to get
an access token. OAuth 2.0 defines the following four grant types:

•	 Authorization code

•	 Client credentials

•	 Resource owner password credentials

•	 Implicit

Each of these grant types have their own pros and cons. The grant type used
for generating a token depends on the business use case. One of the important
considerations for choosing a grant type is the trust in the app accessing the resource.

Let’s now look at each of the grant types in detail and learn about the flows involved
for generating an access token for them.

Authorization Code
An authorization code is one of the most commonly used grant types. It is considered the
most secure because it involves authorization from the end user, who actually owns the
resource. The experience of using an authorization code grant type is similar to signing
in to an app using a Facebook or Google account. This is sometimes referred to as
“three-legged OAuth” since it involved three parties:

•	 End user

•	 Client app

•	 Authorization server

The following is the high-level process involved with the authorization code grant type:

	 1.	 Generate an authorization code.

	 a.	� The end user logs in and grants consent to the application
to access resources.

	 b.	� The authorization server generates an authorization
code that contains the scope information for which
authorization was given.

	 2.	 Exchange authorization code for access token. The client
application exchanges the authorization code for an access
token from the authorization server. A refresh token is also
generated and given to the client.

	 3.	 Use the access token. The client app uses the generated access
to make API calls.

Figure 7-5 shows a detailed sequence of flow for generating an access token using an
authorization code grant type.

Chapter 7 ■ API Security

120

Client Credentials
The client credentials grant type is suitable for machine-to-machine interaction and does
not require any user permissions to access data. The following describes the high-level
flow sequence (shown in Figure 7-6).

	 1.	 Generate access token.

a.	 The client sends a message with its identity and the scope
of access required to the authorization server.

b.	 The authorization server validates the client’s identity
and issues an access token.

	 2.	 Use the access token. The client app uses the generated access
token to make API calls.

Figure 7-5.  Authorization code grant flow for OAuth 2

Chapter 7 ■ API Security

121

Resource Owner Password Credentials
Resource owner password credentials grant type are used when the end user’s credentials
need to be authenticated before access can be granted. The following describes the
high-level flow sequence (see Figure 7-7).

	 1.	 Generate access token.

a.	 The client sends a request with its identity, scope, and
the user’s username and password.

b.	 The authorization server validates the client’s identity
and user credentials.

c.	 The authorization server issues an access token.

	 2.	 Use the access token. The client app uses the generated access
token to make API calls.

Figure 7-6.  Client credential flow

Chapter 7 ■ API Security

122

Implicit
Implicit grant type is used by mobile apps and JavaScript applications running in the web
browser. In this flow, the access token URL is given to the user-agent to be forwarded to
the client app via a redirect URL. Since the access token is encoded into the redirect URI,
it may be exposed to the user and other applications running on the same device. The
identity of the client is also not validated by the authorization server in this flow. Unlike
the authorization code flow, where the client makes separate calls for authorization and
for the access token, in the implicit flow, the client gets the access token as a result of the
authorization request without any client authentication. The resource server only verifies
the redirect URI that was originally registered. This makes the implicit flow easy but less
secure. No refresh token is generated with implicit flow. Figure 7-8 shows the sequence of
flow for the implicit grant type.

Figure 7-7.  Resource owner password credential flow

Chapter 7 ■ API Security

123

OpenID Connect
OpenID Connect 1.0 is an authentication protocol that builds on top of OAuth 2.0 specs
to add an identity layer. It extends the authorization framework provided by OAuth 2.0
to implement authentication. OpenID connect introduces an ID token in addition to
the access and refresh tokens provided by OAuth 2.0. The ID token contains the identity
information of the end user in JWT format. OpenID Connect defines identity as a set of
claims or attributes related to an entity, which can be a person, a service, or a machine.

Actors in OpenID Connect
The following are the various actors involved in an OpenID Connect
authentication flow:

•	 OpenID Connect provider (OP): An OAuth 2.0 authorization
server that provides authentication as a service. It authenticates
the end user entity and provides the claims or attributes of the
entity to the client.

•	 Relying party (RP): An OAuth 2.0 client that requires end user
authentication or claims from the OpenID Connect provider.

•	 End user: The entity that requests identity or claims information
from the OpenID provider. The entity can be a human participant,
a machine, or a service and is the owner of the resource that the
client is trying to access.

Figure 7-9 is a high-level illustration of how different actors in an OpenID Connect
protocol interact with each other.

Figure 7-8.  Implicit flow

Chapter 7 ■ API Security

124

By using OpenID Connect, clients can request and receive identity and
authenticated session–related information about the end user from a central identity
provider, and validate it. OpenID Connect can be used by clients of all types—including
web-based, JavaScript, and native/mobile clients—to create a distributed and federated
model for SSO.

ID Tokens
ID tokens are the main enhancements introduced by OpenID Connect on top of OAuth
2.0. An ID token is like an identity card that contains claims information about the
authenticated end user. The ID token is represented as a JSON web token that is signed by
the OpenID provider. The ID token contains the following claims information related to
the end user in JSON format.

•	 Subject identifier (sub) is locally unique and asserts the identity
of the end user.

•	 Issuer identifier (iss) identifies the issuing authority of the
token. It is a case-sensitive URL using the https scheme. It
contains the scheme, host, and optionally the port and path
components.

•	 Audience information (aud) is what the ID token is intended for.
It identifies the relying party and other audiences that can use
this token. The OAuth 2.0 client_id of the relying party must be
present in the audience information.

Figure 7-9.  Interaction between parties in OpenID Connect flow

Chapter 7 ■ API Security

125

•	 An alphanumeric string (nonce) associates a client session
with the ID token to prevent replay attacks. The nonce value
is normally passed unmodified from the client authentication
request to the ID token. If this value is present in a client
authentication request, it must be included in the ID token
response by the authorization server acting as the OpenID
provider. If the nonce is present in the response, the relying party
must validate that the value received in the response is equal to
the value passed in the original request.

•	 The time (auth_time) when the end user authentication
occurred.

•	 The authentication context class reference (acr).

•	 The time that the ID token was issued (iat).

•	 The expiry date of the ID token (exp).

•	 Optionally, it may contain other details about the entity, such as
name and email address.

The following is a sample JSON format of the set of claims in an ID token.

The ID token is a JWT token created from the JSON format of the claims. JWT
generally has three parts: a header, a payload, and a signature.

•	 The header specifies the algorithm used for signing and the token
type in JSON format, as follows:

•	 The payload contains the claims in JSON format.

Chapter 7 ■ API Security

126

•	 The signature is calculated by Base64 encoding the header and
the payload, concatenating them with a period separator, and
then applying the signature algorithm on the concatenated string.

•	 The ID token is created by concatenating together the Base64-
encoded value of the header, payload, and the signature with a
period as the separator between them, as follows. This is done so
that the token can be easily passed around.

OpenID Authentication Flows
OpenID performs authentication to log in an end user or to determine if the end
user is already logged in. The result of the authentication is securely retuned by the
authorization server to the client in an ID token so that the client can rely on it. For this
reason, the client is also referred to as the relying party. OpenID Connect defines the
following three paths or flows for authentication to obtain the ID token:

•	 Authorization code flow

•	 Implicit flow

•	 Hybrid flow

Authorization Code Flow

In this flow’s first step, an authorization code is returned directly to the client after
authenticating the end user and receiving consent. In the second step, the client
exchanges the authorization code to get an ID token and an access token. Since OpenID
Connect is built on top of OAuth 2.0, the sequence of message exchange is almost same
for both. The main difference being that the end-user is authenticated against an Open ID
Provider and an ID token is generated and returned to the client in addition to the access
token. The following are the high-level steps for the authorization code flow.

	 1.	 The client sends an authentication request to the
authorization server containing the client_id, secret, redirect
URI, and scope.

	 2.	 The authorization server authenticates the end user accessing
the client against the identity provider.

Chapter 7 ■ API Security

127

	 3.	 The authorization server obtains consent and authorization
from the end user for the client to access resources owned by
the end user.

	 4.	 The authorization server sends the end user back to the client
with an authorization code via HTTP 302 redirect.

	 5.	 The client sends a request using the authorization code to the
token endpoint.

	 6.	 The client receives a response that contains an ID token and
an access token in the response body.

	 7.	 The client validates the ID token and passes the access token
to retrieve the end user’s subject identifier.

An authorization server must implement the following endpoints to support the
OpenID connect authorization code flow:

•	 Authorization endpoint (/authorize)

•	 Token endpoint (/token)

•	 User information endpoint (/userinfo)

An authorization endpoint is used to authenticate the end user and provide an
authorization code to the client. The user agent is sent to the authorization endpoint
hosted by the authorization server for authentication and authorization. The
authorization request contains the following information:

•	 scope: Mandatory information sent in the request. For OpenID
connect flows, this must have the openid value. It can also have
other values for which the client is requesting access on behalf of
the end user.

•	 response_type: This value determines the authorization
processing flow to be used. For an authorization code flow, it
must have the value of code.

•	 client_id: The identifier of the client making the request. The
client gets this at the time of registration.

•	 redirect_uri: The redirection URL to which the response is sent.
For security reasons, it must match the value of the redirect URI
provided by the client at the time of registration to the OpenID
provider.

•	 state: An opaque value that is used to maintain the state
between the request and the callback. It is typically used to
mitigate cross-site resource forgery (CSRF) attacks.

Other request parameters defined by OAuth 2.0 specifications may also be used.

Chapter 7 ■ API Security

128

The authorization endpoint must validate all the information sent in the
authentication request according to OAuth 2.0 specifications. If the request is valid,
the authorization server attempts to authenticate the end user or determines if the end
user is authenticated. The method used for authentication is beyond the scope of the
OpenID specification. The authorization server may display an authentication user
interface to the end user, depending upon the values in the request parameters and the
authentication method. The authorization server must authenticate the end user if not
already authenticated or if the authenticate request contains the prompt parameter with
the login value. After the end user has been authenticated, the authorization server
must obtain consent from the end user before releasing any information to the relying
party. The end user consent can be obtained through an interactive dialog with the end
user. After the authorization server has successfully authenticated the end user and
received the consent, it responds with a successful authentication response containing
the authorization code and the state information. This information is returned as a query
parameter added to the redirect_uri specified in the authentication request. The
following is a sample response from the authorization server.

After successful authentication of the user, the client uses a token endpoint to obtain
the following:

•	 ID token

•	 Access token

•	 Refresh token

The client or the relying party makes a token request by presenting the authorization
code received from the authorization endpoint. The token request can be made using an
HTTP POST call over TLS (Transport Layer Security) 1.2, as follows:

The token endpoint must validate the token request, as follows.

	 1.	 Authenticate the client and validate its client credentials.

	 2.	 Validate that authorization code was issued to the
authenticated client.

Chapter 7 ■ API Security

129

	 3.	 Verify the validity of the authorization code and ensure that it
has not already been used.

	 4.	 Validate that the redirect_uri presented in the token request
is same as that included in the authorization request.

After successful validation of the token request received from the client, the
authorization server returns a successful token response containing the following:

•	 ID token

•	 Access token

•	 Refresh token

The following is a sample token response containing the three tokens:

The client receiving the token response must validate the received ID token as follows.

•	 If the ID token is encrypted, the client must first decrypt it using
the keys and the algorithms that the client specified during the
time of registration with the OpenID provider.

•	 The client must—at a minimum—validate the following
information in the ID token:

•	 The issuer identity of the OpenID provider must exactly
match the value in the iss claim attribute.

•	 The audience (aud) claim attribute must contain the client_
id value that was issue to the client by the OpenID provider at
the time of registration.

•	 The algorithm value (alg) must be as negotiated at the time
of registration.

Chapter 7 ■ API Security

130

•	 The expiry (exp) claim of the ID token must be greater than
the current time.

•	 The issued at (iat) claim of the ID token is not too far from the
current time. The client can decide on the value of this duration.

•	 The nonce value, if sent in the authentication request, must
match with the value received in the ID token.

•	 Other information, such as acr claim and auth_time claim,
should also be provided by the client.

The userinfo endpoint (/userinfo) is an OAuth 2.0 protected resource that returns
claims about an authenticated end user. The client makes a request to this endpoint using
the access token received from the token endpoint to get claims and attribute information
about the end user. The end user claims are returned as a name:value pair in a JSON
object. All communication to the userinfo endpoint must use TLS. This endpoint must
support both HTTP GET and POST methods. The endpoint must be able to accept and
process a request containing an accept token in bearer format sent in the authorization
header. The following is a sample userinfo request:

On successful processing of the request, the endpoint returns the end user claims in
a JSON format, as follows:

Implicit Flow

Implicit flow is mostly used for browser (JavaScript)–based apps. In this flow, the client
obtains the ID token and optionally the access token from the authorization endpoint.
The authorization endpoint does not perform any explicit client authentication, but
uses the redirect URI as an alternative way to verify the client’s identity. After the client
receives the tokens, it may expose the tokens to the end user and applications using the
same user agent. Hence, this flow is used only for untrusted clients to obtain identity
tokens. Unlike the authorization code flow, no refresh token is generated in this flow.

Chapter 7 ■ API Security

131

The implicit flow consists of the following steps.

	 1.	 The client prepares and sends an authentication request to
the authorization server.

	 2.	 The authorization server authenticates the end user.

	 3.	 The authorization server obtains the end user’s consent.

	 4.	 The authorization server sends the end user back to the client
with the ID token and optional access token, if requested.

	 5.	 The client validates the token and retrieves the end user’s
subject identifier.

When the relying party wishes to validate the client, it prepares the authentication
request and sends it to the authorization endpoint. The client can send this request
either using the HTTP GET or the POST methods. For an implicit flow, the value of the
response_type parameter in the request must consist of id_token and token as a space
delimited list, as shown in the following example:

After authenticating the end user and obtaining consent, the authorization server
responds with the id_Token and optionally access_token, as follows:

Hybrid Flow

The hybrid flow is a combination of the authorization code flow and the implicit flow and
hence the name. This flow allows the client to make immediate use of the ID token to get
access to the client’s identity and retrieve an authorization code that can request a refresh
token. The refresh token can gain long-term access to back-end resources.

Chapter 7 ■ API Security

132

The hybrid flow consists of the following high-level steps.

	 1.	 The client prepares and sends an authentication request to
the authorization server.

	 2.	 The authorization server authenticates the end user.

	 3.	 The authorization server obtains end user consent.

	 4.	 The authorization server sends the end user back to the
client with the authorization code. Depending on the
response_type parameter, one or more parameters may also
be returned.

	 5.	 The client requests a response using the authorization code at
the token endpoint and received a response containing the ID
token and the access token in the response body.

	 6.	 The client validates the ID token and retrieves the end user’s
subject identifier.

In the hybrid flow, the client makes the authentication request to the authorization
server. The response_type parameter in the request can have the following values:

•	 code id_token

•	 code token

•	 code id_token token

The following is an example request using the hybrid flow that would be sent by the
user agent to the authorization server in response to a corresponding HTTP 302 redirect
response by the client:

On receipt of the authentication request, the authorization server does the following
validations before responding with a code and the ID token.

	 1.	 Validates the scope parameter present in the request.

	 2.	 Validates the client_id provided in the request and that the
redirect_uri is the same as provided by the client at the time
of registration.

	 3.	 Validates that all the mandatory parameters are present in the
request as per the specifications.

Chapter 7 ■ API Security

133

	 4.	 Authenticates the end user or determine if the end user is
already authenticated.

	 5.	 Obtains end user consent for the client to access the protected
resources.

After successfully processing the authentication request, the authorization endpoint
returns the authorization code. Depending on the value in the response_type parameter,
the authorization endpoint returns the id_token and optionally the access_token in a
response format, as shown in the following example:

Benefits of Integration with an Open Identity Provider
Applications often need to validate the identity of an end user. The following are possible
ways to achieve this.

•	 A local database for user accounts and credentials for each app

•	 A central identity provider used by all end users to register apps
and validate their information

With a local database for each app, end users have to register for each new app
that they want to use. Many people find the registration process very tedious and not a
good customer experience. For an enterprise providing multiple apps, maintenance of
separate user databases brings in additional administrative and operational overhead.
Hence, having a central identity provider provides a better option from user experience,
as well as maintenance and administrative standpoints. Organizations such as Google
and Facebook, which have large registered user bases, provide identity provider services
than can be used with OpenID Connect. Organizations can streamline and simplify their
customer onboarding and login processes by integrating with identity provider services.

Protecting Against Cyber Threats
In the era of social, cloud, and mobile technologies, where enterprises expose their
sensitive data and information via APIs in a zero-trust environment, protecting APIs
against malicious attacks is of paramount importance. Adding authentication and
authorization to protect APIs is not enough. The API security framework must be able
to detect any kind of cyber threat and take necessary actions to protect the back-end
resources. To protect its APIs from different types of threats, an organization must build
an API proxy in front of the APIs with an API management platform and implement

Chapter 7 ■ API Security

134

security policies in these proxies to protect against such threats. Some of the most
common types of threats are as follows:

•	 Injection threats

•	 Insecure direct object reference

•	 Sensitive data exposure

•	 Cross-site scripting (XSS)

•	 Cross-site resource forgery

•	 Bot attacks

The next few sections go into detail about each of these threats and exposes options
of protecting against them.

Injection Threats
Injection threats are common forms of attacks, in which attackers try to inject malicious
code that, if executed on the server, can divulge sensitive information. Malicious code can
be in any of the following forms:

•	 XML and JSON bombs

•	 Script injection attacks

XML and JSON Bombs
Attacks using XML and JSON bombs try to use structures that overload the parsers
thereby crash the service. Parsing corrupt or extremely complex XML/JSON payloads
with long list of elements and attributes or long tag names and values or multiple levels of
nesting can easily use up system resources—such as memory and CPU—and thus induce
an application-level DOS attack. Such attacks can be mitigated by using XML and JSON
threat protection policies.

XML threat protection policies can be used to check the message payload for the
following, and reject the message if any of the allowed limits are exceeded:

•	 The length of the names of elements, attributes, and namespace
prefixes

•	 The length of the values of elements, attributes, and namespace
prefixes

•	 The node depth of an element

•	 The number of attributes in an element

•	 The number of namespaces defined for an element

•	 The number of child elements for an element

Chapter 7 ■ API Security

135

JSON threat protection policies can be used to check the message payload for the
following, and reject the message if any of the allowed limits are exceeded:

•	 The length of a property’s name within a JSON object

•	 The length of a property’s string values within a JSON object

•	 The container depth of the JSON object

•	 The number of entries allowed in the JSON object of an element

•	 The number of array elements entries allowed within a JSON
object

Script Injection Attacks
Script injection attacks can be in various forms

•	 SQL injection

•	 Script injection

SQL Statement Injection

SQL statement injection is a technique in which a hacker presents a malicious SQL
query to an application’s input parameter. This can be dangerous if the application
takes this input in the request to directly query into the database. For example, an API
(/employees?EmpName=<Employee Name>) that provides the details of an employee from
the employee database. This API is implemented in a way to execute the following SQL
statement in the database:

"select * from Employees where employeename =" + queryparam.EmpName + ";"

In this situation, if an attacker invokes the API with the following parameters, the
effect can be catastrophic:

/employees?EmpName=Lary;drop table Employees;

SQL statements like the following can be used by hackers to bypass authentication:

select userid FROM customerdata WHERE username = ' ' OR 1 = 1
-- customer_passwd = 'abcd';

Hence, it is important that any API that accepts input that can be inserted into an
SQL database must be protected against SQL injection attacks. Regular expressions that
match certain SQL keywords can be used to detect malicious SQL content in the API
request.

Chapter 7 ■ API Security

136

Script Injections

Script injections can be in various forms: JavaScript injection, XPath injection, or Java
exception injection.

JavaScript is a powerful technology that modifies and sends data. If such scripts are
injected though an API, they can reveal sensitive data. For example, hackers can get an
unsuspecting user to execute a script in an API request to get access to their authorization
token or cookies. The token or the cookie can then be used to log in to the system and steal
sensitive information. This kind of attack is known as a cross-site scripting (XSS) attack.

XPath injections are also used by hackers to gain unauthorized access to sensitive
stored in an XML format.

Input data in API request parameters should be validated and sanitized to harden
the APIs and protect against script injection attacks. Regular expressions can detect the
presence of malicious JavaScript and XPath in the payload of an API request. However,
no regular expression can stop all content-based attacks. Hence, multiple mechanisms
should be combined to enable defense-in-depth.

Insecure Direct Object Reference
In an Insecure Direct Object Reference attack, the hacker modifies an existing API request
to get access to information. The hacker may try to modify parameters in the request
to get a higher level of access. For example, the following API provides access to user
account information identified by the account number specified in the URI:

GET http://api.myownbank.com/user/account/1234

A hacker can attempt to change the account number to get access to a different
account. Alternatively, they may try to get admin access to an account using the
following URL:

GET http://api.myownbank.com/admin/account/1234

This kind of attack can be prevented by using OAuth2/OpenID Connect with the
right scopes set for the API.

Sensitive Data Exposure
APIs expose internal services and enterprise data. Some of this data may be customer
sensitive and highly confidential. Such sensitive data should always be kept private
and hence should always be encrypted and masked. Regulatory compliance standards
such as PCI, HIPPA, and so forth, require that all sensitive data— such as credit card
information and customers’ private data—should always be stored in encrypted mode.
When sensitive data is sent in an API response, it should be encrypted and tokenized
to prevent inadvertent exposure. Again, there may be scenarios where only certain API
users may be authorized to view certain information sent in an API response. If the same
API is called by another user, some of the response data may have to be either filtered or
masked. Sensitive data logged in debug trace should also be obfuscated.

Chapter 7 ■ API Security

137

Encryption of data in transit can be achieved by using SSL. Using SSL to encrypt
sensitive data is the least any API should do. Another alternative is to selectively encrypt part
of API message that contains the sensitive information. This requires the API provider and
the client to take on the additional overhead of managing the private/public key. Hence,
deployment of APIs that require selective encryption of sensitive data can be complex.

Cross-Site Scripting (XSS)
Cross-site scripting (XSS) is among the top 10 open web application security threats.
It is a type of script injection attack that exploits a vulnerability in a web site that the
victim visits. The attacker injects malicious code, generally in the form of JavaScript, into
otherwise benign and trusted web sites. When a user visits the web site, the malicious
JavaScript is delivered to the victim’s browser, which appears to be a legitimate part of the
web site. The user information or data is compromised when these scripts are executed
on the non-suspecting user’s browser.

Figure 7-10 shows an example of how an XSS attack is done.

Figure 7-10.  XSS attack approach

The following describes the process of an XSS attack.

	 1.	 The attacker injects malicious JavaScript into a web site’s
database using a POST request to submit a form.

	 2.	 An unsuspecting victim requests a page from the web site
using a GET request.

	 3.	 The web site responds to the GET request with the malicious
script from its database.

	 4.	 The victim’s browser executes the malicious script in the
response, sending sensitive data to the attacker’s server.

Chapter 7 ■ API Security

138

Hence, to protect against XSS attacks, all user input for an API request must be
encoded and validated. Encoding helps to escape the user input so that the browser
interprets it only as data and not as code. Validations must include schema and data
type validations, and check for the presence of any malicious scripts. Adding a Content-
Security-Policy header in the HTTP response constrains the browser viewing a web page
to only use resources (script/stylesheet, etc.) loaded from a trusted site. With a properly
defined Content-Security-Policy, even if the attacker succeeds in injecting the malicious
code, it will not be executed on the browser, since the attacker’s site is not among the list
of trusted sites.

Cross-Site Resource Forgery (CSRF or XSRF)
Cross-site resource forgery is a type of attack where a user is tricked into executing
unwanted actions on a web application in which they are already logged in. This way,
the attacker can target the web application, via victim’s already authenticated browser.
Using social engineering like email or chats, the victim is tricked into clicking a link that
sends a forged request to a server where they are already authenticated. Since the user
is authenticated, it is difficult for a web application to distinguish between a legitimate
request and a forged one. This type of attack is different from XSS. In XSS, the attacker
exploits the trust of the user on a web site; in CSRF, the attacker exploits the trust the web
site has for the user. Figure 7-11 shows an example of how an attacker can launch and
execute a CSRF attack.

Figure 7-11.  CSRF attack approach

Chapter 7 ■ API Security

139

An attacker uses CSRF to execute unauthorized fund transfers, change passwords or
customer data, and many other things that can be detrimental to both the business and
the user. The following techniques can be used to protect APIs against CSRF attacks:

•	 Use OAuth tokens to validate the requests. Tokens are long
alphanumeric strings that are difficult for attackers to guess.

•	 Use a nonce that is unique for every URL and form, in addition to
the standard session.

•	 Check for a “referrer” header in the HTTP request to ensure that
the request has come from the original site.

Bot Attacks
In addition to the known threats, a new type of security vulnerability is arising from the
use of automated software programs called bots. Since APIs provide a programmable
interface, it becomes easier for hackers to target APIs using bots. Bot programs constantly
scan the application infrastructure for security vulnerabilities. Bot traffic probes for
weakness in APIs, abuses guest accounts with brute force, and uses customer API keys
to access private APIs. Bot traffic can be identified by analyzing API traffic and access
behavior patterns. Using machine learning and statistical models, an adaptive security
system constantly learns “good behaviors,” which helps it distinguish “bad behaviors” and
enforce dynamic policies that block bots from accessing a protected resource. Bot traffic
can be identified in the form of anomalous activities, as follows:

•	 Logical walk-throughs of the application resource paths by bots.

•	 Requests originating from a bot network, low-reputation IP
address, ISP, or compromised proxies and devices. Malwares
installed in rooted devices and PCs may be used to generate bot
traffic.

•	 Unexpected high traffic volumes from certain IP addresses or
endpoints.

•	 High traffic volumes to URIs (resources) that are not generally
accessed by end users.

•	 High rates of form submissions with slight variations in the input
parameters. This is one of the common techniques used by bots
when applying brute force techniques to get access.

•	 High error rates on access to resources, especially those that are
available to privileged users or applications.

API security strategies must consider how Bot activities can be easily identified
through the analysis of API access anomalies. Research has shown that more than 50%
of Internet traffic involves bot activities. Retailers and ecommerce service providers that
provide dynamic pricing, loyalty programs, financial services, and so forth, are in the
radar of bot attacks. Bots are known to target APIs with any valuable or sensitive data.

Chapter 7 ■ API Security

140

Bot traffic can have a major load impact on API infrastructure, cause performance
concerns, and hurt a company’s brand and bottom line due to content theft. Advanced
API analytics functionality with machine learning capabilities that can identify malicious
bot activities should be considered for building a robust and adaptive API security
system.

Considerations for Designing an API Security
Framework
There are many aspects to consider in building the right API security framework. Some of
the most important considerations include (but are not limited to) the following.

•	 The nature of the asset or the service being exposed as APIs. What
is the impact/loss if data gets into the hands of someone who is
not supposed to see it or if a service goes down?

•	 The regulatory compliance requirements for securing an API.
Which regulatory standards should be followed for securing an API?

•	 The authentication requirements for using the API. Is it OK to
authenticate only the client? Or is it necessary to authenticate
even the end users before they can use the APIs?

•	 The authorization needs before a client app can access an API
resource. Should the end user authorize access to an API before
the client app can access it?

•	 Threats from API consumers. How can consumers and attackers
possibly misuse the API and use loopholes to gain unauthorized
access?

API Security Threat Model
To come up with the right security strategy for APIs, the security architect must create a
threat model for API exposure and consumption. The following are some of the security
threats that need to be considered in API security:

•	 Unauthorized applications and users may imitate that of another
app or user

•	 Denial of service due to rogue apps or inadvertent errors

•	 Replay attacks

•	 Man-in-the-middle attacks

•	 Data tampering

•	 Malicious data injection attacks

•	 Theft of credentials, API keys, and tokens

•	 Network eavesdropping

Chapter 7 ■ API Security

141

API Security Recommendations
An API-centric security architecture that enables defense-in-depth security practices
must be adopted to protect data and services from API security threats. This approach
builds a security capability that includes role-based access control, fine-grained policies
for authentication and authorization, and threat protection against malicious payload
content and DoS attacks. The following are some API security recommendations for
building a robust API security architecture.

•	 All API communication involving sensitive data must be secured
and encrypted using TLS.

•	 Build a mechanism to detect malicious content injections and
defend against such attacks. This protection is ideally built at the
beginning of the API request flow at the edge of the network.

•	 All incoming and outgoing data must be validated and sanitized.
Input data type and format validation must be done at a
minimum for all APIs that have input request parameters. This
prevents any malicious content from entering the system.

•	 APIs accepting input parameters via HTTP POST or PUT methods
must validate the payload. Such validations help detect large
payloads or malformed content that can potentially overload
computing resources. Replay attacks and message tampering
can also be detected early through these validations. Input
parameters passed as query parameters in GET methods should
also be validated to check for any malicious contents.

•	 Use a combination of approaches to identify the source of the
request. IP address validation may not be sufficient to identify the
originator of a request since IP addresses can be easily spoofed.

•	 Protection via API key validation can be used only for non-
sensitive and read-only data. API key validation identifies the
applications and developers making API calls. It also implements
API quotas and monitors usage by applications. If the data
exposed is non-sensitive and read-only, such as Google Maps
APIs, tracking consumer identities through API key validation
might be sufficient.

•	 Use OAuth2 for public or private APIs that are intended for use by
native and mobile apps. With OAuth2, the user is not required to
share his password with the app and device that he uses. When a
user authenticates in an OAuth flow, he enters his credentials in a
web browser screen, rather than the application itself. Hence, the
application never gets to see the user’s password. This becomes a
crucial factor when these apps are built by untrusted developers.
Since OAuth uses tokens for authorization, API providers can
revoke these tokens in any compromise, without the need for
users to change their passwords.

Chapter 7 ■ API Security

142

•	 Use OpenID Connect for APIs that need end user identity and
authentication. The ID token provided in the OpenID Connect
flow can be used by the client or relying party to validate the end
user. It can also be used by the API provider to validate the end
user trying to get access to a protected API resource.

•	 Use two-way SSL or TLS with mutual authentication for APIs
that are used by a limited number of internal or partner systems
authenticating the client. If the API is open to all, maintaining
client certificates for a large number of clients to implement two-
way SSL may become a real challenge. The Basic Authentication
scheme can also be a suitable alternative for authenticating
partners.

•	 All sensitive information must be encrypted in transit using SSL.

Figure 7-12 shows the recommended order in which API security policies must be
implemented in an API gateway.

Figure 7-12.  Approach for building end-to-end API security

143© Brajesh De 2017
B. De, API Management, DOI 10.1007/978-1-4842-1305-6_8

CHAPTER 8

API Monetization

APIs securely expose digital assets and services that are of real value to end users and
partners. Since they provide value to end users, it makes more sense to monetize the
services and the APIs and build a business model for them. Having the right monetization
model for APIs helps businesses reap the benefits of their investment in APIs. In this
chapter, we look at the various API monetization models and how an API management
platform can monetize APIs and open the doors to new revenue opportunities.

Which Digital Assets Can Be Monetized?
APIs share your data and services with front-end applications in an easy and scalable
manner. With APIs, you can track usage and billing information in real time. But what
kind of data or services can be monetized via APIs? Here are some examples:

•	 Digital content such as maps, images, and analytical data are
assets that developers are willing to pay to get access to

•	 Digital services such as address verification, credit checks,
messaging, and location services

•	 Payment gateway providers charge a certain percentage fee for
every payment transaction processed through their gateway

•	 APIs facilitating the sale of products on an ecommerce platform

How to Increase Revenue Using APIs?
Now let’s look at how APIs can be used to increase revenue.

Increase Customer Channels
APIs expose enterprise services to third-party consumers. Developers build apps that
consume these services via the APIs. These apps solve different business problems for
different use cases. New avenues of customer interaction are opened up by these apps.
Traffic through the APIs increase as more number of third-party applications are built

Chapter 8 ■ API Monetization

144

and consumed. APIs can also be used by other applications for faster integration with
your services. With this integration, additional traffic gets routed to services. Thus, with
a variety of apps and newer integrations using APIs, the inbound traffic to your services
continues to grow as they are used by end consumers.

To summarize, APIs can be used to increase the inbound traffic as follows:

•	 To provide extensions to build apps that can be used by end users

•	 To build a platform for integration on which numerous apps can
be created and marketed

Using APIs to build a platform for integration takes advantage of the cross-marketing
potential of the app economy. For example, APIs provided by Uber can be used by travel
aggregators within their applications to book cabs and provide a completely integrated
travel experience for customers. This helps the aggregator to provide a better customer
experience and also brings in increased traffic and revenue for Uber.

The goal of an API provider should be to create a growing ecosystem of third-party
developers who can build innovative apps using APIs that provide a richer customer
experience. This helps multiply the chances of acquiring new consumers and increasing
revenue. It also reduces business risks due to referral traffic brought in by other third-
party apps using you APIs.

Increase Customer Retention
Customer retention is the next important factor in generating more revenue and profit.
After a certain point, business coming from repeat customers is more than that from new
customers. Hence, customer retention becomes a key to the success of your business.
The more people use apps that rely on your API, the higher the market share for that
type of API. After a critical mass of users using an app is reached, it becomes difficult
for the third-party app developer to migrate them to another API provider. When end
users become accustomed to your apps and APIs, it is even harder for competitors to
beat you. Thus it becomes harder for uses to switch to the competition, which increases
your retention rate. For example, Evernote is showcasing the work done by third-party
developers in their app center. This promotes the work done by third-party developers
and encourages users to build products using Evernote APIs. This increases user
engagement and retention for Evernote.

As an API provider, you need to build a platform that grows the customer base and
increases retention. Build APIs that are easy to use. A smooth and easy developer onboarding
process with well-documented and easy-to-use APIs encourages more third-party developers
to use your APIs. A well-designed developer portal aids the process. Happy and engaged
developers who build good apps increase customer retention and company revenue.

Upsell Premium and Value-Added Services
Value-added and interesting API features can be made available at a premium to those
who have purchased access. For example, a communication app may provide two-party
voice services for free, but a multi-party voice conferencing service is available at a cost.

Chapter 8 ■ API Monetization

145

Alternatively, customers may be charged after they have exceeded a particular limit. For
example, the Google Maps APIs is available for free and with paid options. By default,
Google Places API users get free access to 1,000 requests per day. Enhanced access
requires credit card validation. This model attracts users to use the API and they pay for
increased usage only if they see a value in it.

To use this model, the business should be well established in the market and have
a good consumer base. Alternatively, the service provided by the API should be of high
business value to the consumer.

Increase Affiliate Channels
As an API provider, sometimes it makes sense to turn third-party developers building apps
using company APIs into an affiliate. With an affiliate program, the third-party app developer
is also motivated to build apps for your APIs and drive more traffic. This promotes your APIs
and drives additional revenue for the company. If any of the apps from the affiliate partners
become successful, it can drive tremendous revenue to the API program.

A reverse model can also be adopted, in which the API provider becomes the
affiliate for the app. As an API provider, you may want to showcase how various apps have
integrated your APIs. From the showcase page, you may drive traffic to your partners and
gain a finder’s fee for yourself. In this way, third parties help you with app development
and joint marketing, and even pay you to drive customers to them.

Increase Distribution Channels
Often a company’s business depends on the number of people that get access to its
contents and services. The greater the number of people interacting or using the
content, the more revenue generated. In this situation, it makes sense to increase the
number of distribution channels for its content. New distribution channels via APIs can
be used to share the content. Smaller companies may use APIs provided by large API
providers to access data and resources shared by them in a revenue-sharing model. For
example, small travel companies may use APIs provided by Expedia and Booking.com
to provide hotel information within their web sites. Expedia and Booking.com use APIs
as a distribution channel to share the hotel information in a revenue-sharing model
with others looking to use it. This model of content distribution helps the API provider
increase their revenue though integration of their APIs into a third-party platform
that needs to use their services. Smaller companies can quickly start their business by
integrating these APIs into their platforms, while large companies providing these API
gain from the additional business brought in through the integration of these newer
distribution channels.

API Monetization Models
An organization’s data and services can be exposed and shared with partners via APIs.
APIs extend the reach of an organization’s core assets and bring in new channels of
revenue. The monetization model can be simple or complex depending on the value and
use of the assets. However, they can be broadly classified into the following four categories.

Chapter 8 ■ API Monetization

146

•	 Free model: This model is used when the organization has a set
of lower-value assets that it wants to advertise through different
channels and devices. This model can be used even when the
asset has a high demand, but the organization does not yet have
the budget to develop and market all use cases for asset use. APIs
that provide information about a store branch, or a store location,
or product catalog information are examples.

•	 Fee-based model: This model can be used when the organization
had assets that are of high value to the consumer. The consumer
of this API is ready to pay for the value derived from it. The value
to the consumer can be based on per use or based on the kind of
data provided. APIs for payment processing, or credit checks, or
that provide valuable analytics data are examples.

•	 Revenue-sharing model: In this model, the organization shares
revenue earned from the use of its service or product with the
app developer consuming the APIs. This serves as an incentive
for the developer to build apps for the API provider that can
expand its customer reach. An advertising API is a good example.
Developers can embed advertisements within their apps by using
the advertising APIs. The revenue earned by the organization
through advertisements served on these apps can be shared
with the app developer. Revenue sharing can also be through
an affiliate program. Affiliates get paid a share of the revenue as
long as the customers brought in through their network programs
remain customers of the API provider. For example, the Rdio
affiliate program paid a cut of the subscription fee to their affiliates
as long as the subscriber recruited by an affiliate remained a Rdio
subscriber. The revenue sharing for an affiliate program can also
be based on the type of service the subscribers sign up for.

•	 Indirect model: In this model, the API provider and the
consumer mutually benefit. For example, using Facebook and
Twitter APIs provide an easy way to sign up users, which helps to
continuously expand their consumer base.

The first three monetization models can be further categorized, as described in the
next few sections.

Free Model
Free APIs are available for consumption at no charge to the consumer or the end user.
Making APIs available for free drives adoption and popularity. As the adoption increases,
the brand value of the provider organization goes up. This can also help the API provider
expand into newer channels to increase customer reach. Facebook APIs are an example
of free APIs. The company’s Like and Share APIs embed the Like and Share buttons into
any web site or app. This helps Facebook expand its reach and enrich the company’s
social reach and position. Facebook is a leader in the social recommendation space. As of

Chapter 8 ■ API Monetization

147

2015, Facebook had about 2.7 billion likes per day and around 2.5 billion web sites using
its Like button.

The freemium model is a variation of the free model. The different variations are
based on duration, quantity, or a combination thereof. In a freemium model, the API
consumer gets to freely access the API for a certain duration or usage quantity, or
a combination of both. Another approach to freemium model is based on the API’s
features. With a photo API, the free model may provide photos with watermarks or in
a lower resolution. However, a paid model may provide images with higher resolution
without any watermark.

•	 Duration-based free model: In this model, the consumer is not
charged for API usage for a certain duration. For example, the
consumer may sign up and get free access to the APIs for the first
month and then be charged from the second month onward.

•	 Quantity-based free model: In this model, the API provider
provides free access to the API for a certain number of calls. For
example, Pearson provides 5,000 API calls for free for its FT Press
API. This means that the developer does not get charged for the
first 5,000 calls, which gives them the flexibility to try out the
APIs before they decide to buy. The Google Maps API provides
geocoding services for free for up to 2,500 requests per day. So if a
consumer app is making up to 2,500 requests per day, it continues
to use the API for free, but has to pay if the daily traffic exceeds
this limit.

•	 Hybrid free model: In this model, the API provider combines
duration and quantity with free access. The consumer is charged
as soon as either of these thresholds is reached. For example, an
API call can be free for the first 5,000 calls or the first 30 days. In
this case, the API consumer is charged as soon as 5,000 calls are
made or after 30 days have passed, whichever occurs first.

Fee-Based Model (a.k.a. Developer Pays Model)
An organization often exposes many assets of high value to its consumers. An
organization assigns a price point to its digital assets that consumers are willing to pay
to get access to it. For example, Amazon Web Services (AWS) provides a host of services,
including storage, databases, computing power, deployment, and management options
via APIs. Consumers are willing to pay to use these services rather than hosting them in
their own data centers. A fee-based model is perfect for monetizing these assets via API.
With a pay-as-you-go model, Amazon generated $750 million in revenue in 2011. NASA
saved $1 million after it moved its IT assets to AWS. A fee-based model can be used to
monetize APIs that provide access to such assets. Analytical data or payment processing
services are examples. The fee-based model can also have different variations, as follows.

•	 One-time fee: In this model, the provider charges the consumer
a one-time fee for subscribing. The consumer then gets unlimited
access to the APIs that she paid for.

Chapter 8 ■ API Monetization

148

•	 Subscription fee: In this model, the consumer is charged at a
regular interval—weekly, monthly, or any other period that the
API provider chooses—for use of APIs. A subscription fee for
a group of APIs is a typical example of this model. The volume
of API calls allowed in a time period may be fixed or volume-
banded, in which the subscriber pays for the excess use of APIs
beyond the set limit.

•	 Pay-per-API transaction: In this model, there is no minimum fee
and the consumer pays for the number of API transactions made.
AWS uses this model to monetize its APIs; developers pay only for
what they need to use.

•	 Pay by transaction volume: This monetization model is based
on the volume of API calls made or the volume of data accessed
or returned in the response. This leads to a tiered approach for
monetization, in which the rate applied depends on the usage
tier. Google charges its AdWords API consumers a certain fee for
every 1,000 API calls.

•	 Tiered pricing model: With a tired pricing approach, the
consumer is charged different rates for different bands of API
calls. For example, 0 to 1,000 API calls in a month may cost $0.02
per API call; whereas 1,001 to 5,000 API calls may cost $0.01
per transaction; and an even lower rate for more than 5,000
calls within the same time period. Typically, higher-usage band
rates are less per call than lower bands. Charging lower rates for
high-volume usage promotes developers/partners to use higher
volumes. The API provider may also set other custom attributes
for payment, such as the number of records accessed or returned
in the response or the number of bytes/megabytes stored.

Revenue-Sharing Model
In a revenue-sharing model, the API provider exposes its digital assets with partners who
sell them on their web sites and via apps. The provider shares a percentage of the revenue
earned through the sale of these assets with the third party. Companies like Walgreens,
Expedia, and Sears have successfully used this model to sell their products through
third-party apps and web sites hosted by their affiliate partners. This model helps the API
provider extend reach by expanding business through various digital channels, increase
sales through affiliates, and reduce overhead cost with reduction in physical branches.
There are various types of revenue-sharing models, as follows.

•	 Cost per action (CPA) : The API provider pays only when a
specific action happens, such as a product is purchased or a video
is watched.

Chapter 8 ■ API Monetization

149

•	 Revenue sharing: The API provider shares a part of the revenue
earned through API traffic routed from third-party apps. The
revenue sharing can be as follows.

•	 Fixed revenue share: The API provider shares a fixed
percentage of the sales revenue earned.

•	 Flexible revenue share: The API provider shares a variable
percentage of the sales revenue earned through API sales.
The percentage varies based on the volume of sales made
over time.

•	 One-time revenue: In this model, the affiliate partner gets
a one-time referral payment for every subscribing customer
routed through its web site or app.

•	 Recurring revenue: In this model, the affiliate partner receives a
recurring referral payment for every customer routed to the API
provider through a web site or app until the subscriber remains
a customer of the API provider. For example, Rdio paid their
affiliates each time a new subscriber signed up.

In a revenue-sharing model, the API provider needs to generate periodic billing
documents and apply a commonly used tax model to the generated statement.

Monetization Concepts
In order to set up monetization of your APIs, you need to be aware of the various concepts
for API monetization. This section explains the basic concepts of API monetization.

API Product
APIs should be sold as a product that developers or consumers are willing to use and pay
for. An API product is a collection of APIs. Related API resources can be bundled together
into an ‘API product’ and published to the developer community. Developers sign up to
use APIs in an API product of their choice.

An API provider can create different products by combining APIs for different use
cases. So instead of providing all APIs as a list of resources, related APIs that solve a
specific business need can be combined into separate API products. For example, in
the telco industry, APIs for sending SMS and MMS and retrieving their statuses can
be clubbed together into a single Messaging APIs product, whereas billing-related API
resources can be combined into a Billing APIs product.

API products can also control access to a specific bundle of API resources. Internal
APIs resources can be bundled into one API product, while external APIs can also be
bundled into another product. API product attributes can also be used to limit the
number of API calls allowed for a consumer within a given time interval. So, multiple
API products can be created to club the same resources, with different limits set for each
of them. For example a Silver API product might allow a consumer to make 1,000 API

Chapter 8 ■ API Monetization

150

requests per day, while a Gold API product could allow unlimited API requests in a day.
Another way to configure API products is to club APIs that provide read-only access to
resources into a free API product, while APIs that provide read/write access to resources
are in a paid API product.

Developers can register their apps and select one or more API product to associate
with their apps. The API key associated with an app gets access to all the API resources
available within the associated API product.

API Package
An API package is a collection of API products that an API provider wants to monetize.
An API provider may create one or more API packages with different combinations of API
products. An API package is presented to the developer, who selects the rate plan that
they want to sign up for. One or more rate plans for monetization may be associated with
an API package.

Rate Plan
A rate plan specifies the monetization approach of your APIs. It specifies how you want
to charge developers for API usage or share revenue. The rate plan can be a prepaid or a
post-paid plan with a charging model that is a fixed fee, or a variable fee, or a freemium
model, or may even be customized for the developer. The rate plan depends on the model
followed for monetizing the APIs. At the time of registration, developers select an active
rate plan associated with the API package. If an API package does not have an associated
rate plan, then developers can use the APIs within that package without any fee.

The rate plan can have an associated scope, which controls the availability of the
plan to all developers, a select group of developers, or a developer category. This controls
the rate plans, which a developer logged into a developer portal can view and select while
registering an app.

A rate plan normally defines the following:

•	 The name and a brief description of the rate plan

•	 The developers (or the developer category) who can view the plan

•	 The currency for payment of the rate plan

•	 Frequency of payment for the rate plan, such as weekly, monthly,
quarterly, or yearly

•	 Payment due dates

•	 Any recurring or setup fee information

Figure 8-1 below shows the relationship between the API Product, API Package and
Rateplan.

Chapter 8 ■ API Monetization

151

Billing Documents
Billing is another important aspect of API monetization. Once APIs have been monetized,
it is the necessary to generate consumer bills at regular intervals. Some API management
platforms provide an integrated billing solution that automatically generates billing
documents such as invoices and revenue share statements at prescheduled intervals.
These documents may be viewed in draft state before publishing to their intended
recipients. An API provider may want to first make adjustments to the billing documents
to increase or decrease the revenue share or fees for a variety of reasons. API monetization
also requires that the API provider manage credits, prepaid balances, and refunds. Credits
can be provided by reducing the charge in the invoice or by reducing the usage count of
the developer’s API traffic. API monetization should also allow the API provider to refund
a developer’s purchase transactions.

Monetization Reports
Monetization without adequate reporting facilities creates havoc. API monetization
should also be supported with reports that help reconcile the data, if required. The
following are some of the reports that should be generated:

•	 Billing report: This report should provide details of the developer
activities that are charged. The report could cover a single billing
month or a configurable period.

Figure 8-1.  Relationship between components for API Monetization

Chapter 8 ■ API Monetization

152

•	 Prepaid balance report: This report should provide a view of the
balance refills that a prepaid developer has done in a month so as
to be able to reconcile the payments received from the payment
processor

•	 Revenue report: This report should provide a view of the
activities that result in revenue through API usage. It helps to
analyze the performance and popularity of the API package
across developers.

•	 Variance report: This report helps to compare the activities and
the revenue generated for two date/time ranges. It shows if there
has been any upward or downward trend in API usage.

153© Brajesh De 2017
B. De, API Management, DOI 10.1007/978-1-4842-1305-6_9

CHAPTER 9

API Testing Strategy

API testing is different from other GUI-based application testing. It tests the
programmatic interface that allows access to the data or business logic. Instead of testing
the look and feel of the application, API testing concentrates on testing the business
logic of the remote software component and its communication mechanism. Hence,
API testing is performed using special-purpose software that sends requests to the API
and reads the response received. This chapter looks at the importance of API testing, the
challenges therein, various testing considerations, and approaches for testing an API.

The Importance of API Testing
An API exposes business data and services through a defined standard-based interface.
Developers use the interface to build applications that are dependent on the API. These
applications use the API per the defined contract. The application invokes the API with
a wide range and combination of data input. The API response depends on the input
data and parameter combination. The API traffic pattern also varies by app usage. The
API should be able to gracefully handle the traffic at different loads. With all of these
permutations and combinations, the importance of API testing greatly increases. The API
should be tested against all expected data inputs to validate that it is behaving as defined
in the contract. There should also be testing for different load scenarios. API security
testing is yet another important aspect.

Challenges in API Testing
API testing is like white-box testing. Testing an API involves special software that sends
messages to an API endpoint as defined in the interface, get the output, and log and
analyze the response. The test software should programmatically generate messages with
different combinations of input parameters to test the API interface and the underlying
business logic. The real challenge with testing APIs is automating the test cases. APIs
developed for a business may require the execution of multiple APIs in a particular
sequence. It could be a fixed sequence or a dynamic sequence based on the result of the
previous API. The test execution may also require passing in dynamic values for different
input parameters for the API. Some of these parameters’ values may need to be derived

Chapter 9 ■ API Testing Strategy

154

from an earlier API execution in the test scenario. All of these requirements necessitate
the need for an automated API testing approach. It requires tools and framework that
help with automating the test scenarios and reduces the execution time for running API
tests with different permutations and input parameter combinations.

Often, APIs are exposed via an API management platform configured to implement
different policies on top of the API business logic. These policies may implement security,
traffic throttling, data transformation, routing, or orchestration. API testing strategy must
consider testing these policies in the API gateway.

Testing API traffic management is tricky. APIs might be protected by policies that
throttle traffic based on the nature of the consuming app, the time of day, or other
parameters, such as location, originating IP, and so forth. The traffic management policies
allow a certain number of requests within a given time interval. The interval can be
calendar time or a rotating time. Accurately testing API traffic management rules may
require the precise coordination of test executions, which can be a challenge. Traffic
management policies may also control the number of simultaneous connections to back-
end services. Ensuring that excess connections are not made to the back-end services and
that calls are rejected with proper error messages when the threshold limit is reached are
also challenges in API testing.

Test data management is another challenge in API testing. Testing a set of APIs
may involve managing a wide range of data sets to cover different permutations and
combinations of API input parameters. Managing these data sets in multiple test
environments could easily become a challenge. It needs a proper test data management
approach to effectively manage the test data. If not managed properly, the test results are
erroneous and misleading. For example, if an API key or OAuth access token generated in
a SIT environment is used to test APIs in a UAT environment, would result in errors.

The other big challenge with API testing is cultural. Since automation is necessary
for API testing, testers need to code to test the APIs. Some of the traditional UI testing is
manual in nature. And getting testers with experience in coding may not be always easy.
Additionally, testers may need to have knowledge of latest API testing frameworks, such
as Chai and Mocha, which adds to the challenges.

API Testing Considerations
APIs provide an interface for communicating with back-end business data and assets.
The actual business logic is normally out of the scope of the API implementation. Only
some exceptional cases—such as peripheral business logic like data validation—may be
implemented in the API layer. Hence, API testing should focus on testing the following
aspects of the API:

•	 API interface specifications

•	 API documentation

•	 API security

Chapter 9 ■ API Testing Strategy

155

API Interface Specification Testing
An API interface defines the way to communicate with the API. It defines the input
parameters required by the API and the expected response from the API. The input
parameters may be passed as query parameters, in the body as form parameters, or as
payload in JSON or XML formats or even Http headers. API testing should validate the
API response when the parameters are passed as documented in the specification. If the
API specification describes the parameters to be passed in a query parameter, testing
should verify the success and error scenarios for the right and wrong combination of
parameters and parameter values. For example, consider testing an API that fetches the
product details using an API interface (for example, such as at https://api.foo.com/v1/
products). This API may accept multiple optional query parameters as inputs—including
category, name, and SKU, which may be passed as follows:

https://api.foo.com/v1/products?<queryParamName>=<queryParamValue>

Or, for example, https://api.foo.com/v1/products?category=Electronics
The approach to test this API should include the following:

•	 What is the default API behavior when no query parameters are
passed?

•	 What is the API behavior when the right query parameter with the
right value is passed?

•	 What is the API behavior when the parameter name passed is
incorrect?

•	 What is the API behavior when the parameter does not have any
value?

•	 What is the API behavior when the parameter value is incorrect?

•	 What is the API behavior when multiple query parameters are
passed in the right combination?

•	 What is the API behavior when multiple query parameters are
passed in incorrect combinations?

•	 What is the default data format for the API response when no
information about the requested data format is passed?

•	 What is the data format for the API response for both success and
error conditions?

•	 What is the HTTP response status code for different success and
error conditions?

•	 What is the API response for unexpected HTTP methods, headers,
and URLs?

https://api.foo.com/v1/products
https://api.foo.com/v1/products
https://api.foo.com/v1/products?<queryParamName>=<queryParamValue
https://api.foo.com/v1/products?category=Electronics

Chapter 9 ■ API Testing Strategy

156

API Documentation Testing
The API test team needs to validate that the API interface documentation is correct and
up-to-date. When new versions of APIs are released, the API documentation should be
updated to reflect the changes; otherwise, this can cause frustration among the developer
community consuming the APIs due to hindering effective adoption. Hence, with every
release of a new version of an API, its corresponding documentation should be tested
to ensure that it reflect the latest updates. The API rest team should also ensure that
the documentation provides enough information to interact with the API. If the API
documentation is interactive, it should also be tested to validate proper responses for
every API operation.

API Security Testing
APIs provide an access point for business services and data to consumers—internal and
external. Depending on the criticality of the data, the API is a point of attack. Hackers may
want unauthorized access to system resources for undue benefits. Hackers are always in
search of security holes through exposed APIs. There could also be DoS attacks that put
an API in an unavailable or unstable state. Hacked APIs can damage the brand value of an
enterprise. Hence, testing API security is very important. This section looks at the various
aspects of API security testing.

Authentication and Authorization
Testing access mechanism and access control policies of an API is of paramount
importace. If an API is exposing a protected resource, the security testing must ensure
that only authenticated clients are able to access the APIs. Testing the security policies
can include testing API access protected via API Key or Mutual Authentication using
PKI or OAuth/OpenID token. Testing OAuth scope validation to ensure that APIs can be
accessed using tokens having the right OAuth scope, should form part of the API testing
strategy. It is important to validate that right http error codes are returned in case of
authentication or authorization failure while accessing an API.

API Fuzzing
API fuzzing is an attack in which the attacker tries to get information about the API and
the system resources by sending random input parameters. The attacker sends all possible
permutations and combinations of input parameters and analyzes the response in an
effort to gain insight into the system resources. The attacker may try to analyze the error
messages for various data combinations to understand system behavior. Hence, APIs
should be tested with all permutations and combinations of input parameters, and the
responses should be analyzed to ensure that the information provided in the responses is
appropriate. Error responses provided under different combinations of invalid input data
should only provide optimum information as required for the API. It should not reveal
information about the internal data structure or database query, file system information,

Chapter 9 ■ API Testing Strategy

157

or any other information that can potentially be used to get unauthorized access to the
system. For example, for an invalid input to fetch data for an entity, the response should
not have any information about the SQL queries that failed to execute in the back end. The
error response should indicate only the parameters that are invalid.

Malformed Payload Injection
APIs need to be protected against malformed or unexpected message injection
attacks. Very large JSON or XML payloads, JSON payloads with long attribute names or
values, and payloads with highly nested structures are used as means for attacking the
underlying systems. Processing complex payload structures can take up lot of system
resources and CPU cycles. A high volume of such requests may potentially bring down
the underlying systems, thus impacting the overall system availability. Hence, API
testing should test the API’s ability to withstand such vulnerabilities. An API testing
strategy should include test cases that test API behavior when a request payload is an
unexpectedly large size or has an unexpectedly complex and heavily nested structure.

Malicious Content Injection
Injecting SQL scripts, JavaScript, shell script through input parameters or payloads is also
a common form of attack. These scripts, if executed on the server or by a third party, may
provide vital information to unauthorized users. The scripts might also be damaging
enough to modify or delete data—impacting the business severely. Hence, API testing
should test the API behavior when such scripts are injected in the API requests. The API
should reject such messages with appropriate error messages. Testing the presence of
malicious script should include testing the API behaviour when different types of script
like SQL, javascript, shell script, regular expression, XPath, XQuery, python or groovy
script are injected throuogh the API payload.

Testing API Gateway Configuration
In many scenarios, a business service is exposed through an API gateway. The API
gateway enforces policies in the request and response flow of the API, which may
perform one or more of these depending on the requirements: security, throttling, data
validation, transformation, routing, error handling, caching, and mashup. Most of these
are implemented either using policy blocks or filters within the flow. Unit testing of the
API proxy must test the execution of these policy blocks and the conditions applied, if
any. Verification methods look at the input and output of each of these policy blocks in
the debug trace. If a policy block is to set a local variable or an HTTP header, you can
validate whether it is being done properly by looking at the trace output. Similarly, if a
policy is supposed to transform the message payload, the output of the policy execution
should be the successfully transformed payload. It is also important to look at the average
execution time of each of these policy blocks, either in debug logs or in the debug trace of
the message flow execution. This can help identify potential performance bottlenecks at

Chapter 9 ■ API Testing Strategy

158

an early stage of the testing and reduce efforts to troubleshoot API latency issues at a later
stage of performance testing.

API Performance Testing
APIs are no longer seen only as mechanisms for integration but have become mainstream
for the delivery of data and services to end users through various digital channels. This
increases the demand on APIs to perform well under loads. The overall performance of
a client app is dependent on the performance of the underlying APIs powering the app.
Hence, the importance of performance and load testing for APIs increases greatly. This
section looks at the strategy for load testing an API.

Preparing for the Load Test
It is important to plan well and have a well-defined load testing strategy. Planning for
API load testing starts with identifying the list of APIs to be tested. Load testing is most
effective when the workload for the API is as close to the real expected traffic. It is not
useful to know that an API can handle say 500 transactions per second without knowing
whether the real traffic is higher than or lower than that. The first step in preparation for
a load test is to gather information on the performance requirements that the APIs are
expected to handle. This includes the following information:

•	 The average throughput in terms of the number of requests per
second for each API deployed on the platform

•	 The peak throughput that projects the maximum number of
requests that each API is expected to handle at any given point in
time (normally during peak loads)

•	 Throughput distribution across all the APIs deployed on the
platform.

•	 The traffic distribution patterns of client apps using the API helps
predict accurate API usage

•	 The number of concurrent users expected for each client app using
the API, which predicts the total number of concurrent connections
that the API platform is expected to handle under load.

Having decided on the performance requirements for API testing, there may be
different approaches to actual test execution. Actual test execution can start with the
generation of repetitive loads for each of the API endpoints. This establishes the upper
bounds of the performance that may be achieved in the test platform. If it is low, you
should look at options to tune and optimize the API and platform parameters for a better
throughput. Adding hardware or instances in the cluster configuration can be the second
option to look at if the results from the repetitive load test are not satisfactory.

Once the platform has stabilized and the upper bounds of load testing have been
determined from repetitive load tests, it is time to simulate a realistic traffic pattern. Using

Chapter 9 ■ API Testing Strategy

159

a real traffic scenario might be ideal, but not practical for various reasons. The simulated
traffic should consider the following:

•	 Traffic distribution across various deployed APIs. For example,
45% of calls are to product catalog APIs, 35% of calls are to
customer information APIs, and 20% of calls are o payment APIs.

•	 Traffic growth pattern during the day. For example, gradual
increase or sudden spikes or a constant load through out.

•	 API traffic for both success and failure responses.

•	 Geographically distributed API traffic to test for any network
traffic congestion at high loads.

Data from production traffic logs of already deployed services can provide
information to simulate realistic traffic scenarios for load testing.

API performance testing should consist of the following, with an aim to find the
different performance parameters of the APIs and the API platform.

•	 Baseline testing: The objective of this testing is to find out how
the system performs under normal expected load. The results
from this test should be used to analyze the average and peak API
response time and error rates. The CPU and memory utilization of
the platform should also be looked into to eliminate any resource
bottlenecks.

•	 Load testing: During load testing the load is increased to study the
API performance under growing API traffic volumes. Performance
metrics, such as response time, throughput of the APIs should be
looked at to review the performance under load. The aim of this
testing is not to find the breaking point, but to understand the
expected system behavior and capability to handle expected peak
loads. Server performance metrics, such as CPU utilization, heap
memory utilization, network port utilization should be analyzed to
understand the state of the platform and its ability to handle high
load.

•	 Stress testing: The goal of stress testing is to find the breaking
point of the platform. It is used to determine the maximum
throughput that the system can handle. In this form of testing
the API traffic load is gradually increased till a breaking point is
reached when the performance starts to degrade or errors from
API calls start to increase.

Chapter 9 ■ API Testing Strategy

160

•	 Soak testing: Soak testing determines whether there are any
system instabilities in long duration testing. The baseline test
may be executed over several days or weeks to learn about any
unwanted behaviors that may occur when the system is used for a
long time. The aim is to discover any issues with releasing system
resources and make them available for the next cycle of execution.
If system resources are not getting released periodically, there is a
high probability of the system crashing under sustained high loads.
Normal baseline testing or load testing may not be able to unearth
such problems, and then the importance of soak testing increases.

The load test strategy should consider the environments for doing the load test. A pre-
production setup that is a replica of the production setup would be an ideal for load test.
However, that may not be available all the time due to practical reasons. Hence, a dedicated
load test environment that is a scaled down version of the production environment may
be used for load and performance testing. Considerations should be made to scale down
expected throughput by the same factor while performing the load test.

Setting up for the Load Test
Having identified the environment for the load test and approach, it is time to identify the
right set of tools to execute the load test. There are many tools available to perform API
load testing. Let’s talk about the most commonly used tools for doing the execution testing.

•	 JMeter is an open source Java-based tools with a powerful GUI
used to easily simulate non-trivial HTTP requests to test REST
APIs. It allows you to model complex workflows using conditions.
A test plan in JMeter allows you to define the thread group that
is used to simulate end user behavior in terms of the number of
concurrent users, the ramp-up time, and the REST API request
sent by them. The HTTP request is parameterized. Parameterizing
the test requests reuses it with different parameter values and
dynamically passes the execution results from one test to another.
Assertions are added to validate the test results automatically.
Listeners provide widgets that are used to view the test results.
JMeter is one of the best open source tools for functional
testing used to model complex user flows using conditions. The
availability of a large number of community plugins extends the
built-in behavior. Its non-GUI-based option runs JMeter for test
execution in an environment that does not support rich GUIs,
such as Linux-based environments.

•	 LoadUI is a commercial API load-testing tool from SmartBear.
LoadUI has an advanced feature that allows you to do distributed
load testing by distributing the load tests to any desired number
of LoadUI agents. It also allows running multiple test cases
simultaneously and long running tests that may run days or weeks.

Chapter 9 ■ API Testing Strategy

161

•	 Wrk provides a command-line interface to test REST APIs. Being
multithreaded, it is able to take advantage of the underlying
multicore processor; hence, it is used to simulate really high
loads. The default reporting format for Wrk is limited to text only,
which sometimes makes it difficult to interpret test results easily.
However, its ease of use to simulate high loads makes it one of the
best tools, when the goal is to find the load than an API can handle.

•	 Vegeta is an open source HTTP load testing tool for performance
testing of REST APIs. It is useful when the aim of the testing is
to learn how long the service can sustain a constant load of x
requests per second. This is important when you have data about
the peak load that is expected for an API and you want to find out
how long the service can sustain that peak load before you start
seeing a drop in performance.

•	 BlazeMeter and Loader.io are two tools that run the load
test for APIs in a cloud platform. They provide load-testing
infrastructures as a service in the cloud. The cloud-based
approach reduces efforts to set up the environment for load
testing. BlazeMeter provides the option to upload a JMeter test
plan and run it from its cloud infrastructure.

API Performance Test Metrics
Performance testing of API should look at the following metrics to measure the
performance of the individual API and the platform.

•	 API response time: Measures the overall end-to-end response
time of the API. Determines the time in which an end user is
expected to get a response from the API. Minimum, average,
and peak API response times should be measured as part of API
performance testing.

•	 API target response time: Determines the time it takes for the
API back-end systems to respond. If an API is exposed through an
API gateway, it measures the response time of the target back end
for the gateway API proxy.

•	 API latency: Measures the latency introduced by any
intermediary, such as an API gateway used in the API
architecture.

•	 Throughput: Measures the number of requests processed in a
second. Normally, this is measured in transactions per second
(TPS).

•	 Success and error rates: These metrics are important for API
performance testing. They measure the number of requests
successfully processed under load.

Chapter 9 ■ API Testing Strategy

162

•	 CPU utilization: Measures the capacity of the system under load.
A low CPU utilization means that the system can handle a higher
load. Higher CPU utilization is indicative of a system under stress.

•	 Heap memory utilization: Indicates how system memory is
being utilized to process requests under load. The system RAM
may need to be increased if heap memory utilization stays at its
peak throughout the performance test. Low available memory
may impact the overall performance of the APIs.

Selecting The Right API Testing Tool
Having looked at the various aspects of API testing, it becomes important to look at the
feature that should be in an API testing tool to make it a success. The following lists can
help with selecting the right API testing tools. They cover the features that an API testing
tool should have and other nice-to-have features.

Must-Have Features
The following are must-have API testing tool features.

•	 API test tools should support automated API testing to cover a
wide range of scenarios.

•	 It should test success conditions with different data
combinations

•	 It should test error conditions and corner cases

•	 The automation of functional test cases should support the
following and must be repeatable for multiple deployments and
environments. The tool must have the following capabilities for
API functional testing:

•	 It should support the creation of HTTP requests with
different combinations of verb, headers, query parameters,
and payloads

•	 It should support payload generation in multiple data
formats (JSON, XML, SOAP) and even binary format

•	 It should support automated creation of API request
templates by importing WADL, RAML, Swagger, API
Blueprint, and so forth

•	 It should support automatic data validation for request/
response messages based on a defined schema

•	 It should support parameterized test creation

Chapter 9 ■ API Testing Strategy

163

•	 It should provide the ability to define test flow logic

•	 It should support test visualization to understand the failure
points of API executions

•	 Test asset management capabilities

•	 It should group and tag test cases

•	 It should search test cases and make changes to a group of
test cases through find and replace

•	 It should easily create new tests or update existing test assets
based on changing API demands

•	 It should manage test data for different environments

•	 Security testing capabilities

•	 API authentication and authorization using protocols such
as OAuth, OpenId, SAML, Basic Authentication, and SAML

•	 Message encryption and decryption

•	 Penetration attacks, such as SQL/ script injection, malformed
payload, virus attacks, parameter fuzzing, and so forth

•	 Performance testing capabilities

•	 It should calculate API response times, throughput, and error
rates

•	 It should simulate regular performance loads

•	 It should simulate unpredictable and volatile performance
load with valid payload

•	 It should simulate spikes and sudden bursts of traffic in
consuming apps

Nice-to-Have Features
The following are some of the nice-to-have features in an API testing tool.

•	 Record and replay API traffic

•	 Integration with requirements management and issue tracking
systems, such as JIRA and QC

•	 Integration with CI tools such as Jenkins, Cloud Bees, Cruise
Control, and so forth

•	 Federated and cloud testing ability to execute test cases in a
distributed scenario

Chapter 9 ■ API Testing Strategy

164

•	 The ability to run in non-GUI mode with a command-line
interface

•	 The ability to schedule test cases

Common API Testing Tools
The following are some common API testing tool products.

Unit Testing Tools Integration Testing Tools Performance Testing Tools

JUnit JMeter JMeter

Curl SOAPUI LoadUI

Postman APICLI Grinder

Advanced REST Client Cucumber Curl-Loader

Mocha Jasmine Wrk

Chai Mocha Vegeta

TestNq jBehave BlazeMeter

QUnit NSpec

PyUnit SpecFlow

Hurl.it

165© Brajesh De 2017
B. De, API Management, DOI 10.1007/978-1-4842-1305-6_10

CHAPTER 10

API Analytics

As the old saying goes: “You can’t manage what you cannot measure.” This holds true
even for the enterprise API programs. API analytics provide data and trends about
APIs. API traffic flowing through an API management platform can provide lot of useful
insights to businesses, which can help to effectively govern an enterprise API program.
It is important for an enterprise to measure the success of its API program. This can help
provide information that can be used by actors in various roles in a wide variety of ways to
make the right decision. In this chapter, you look at the various API metrics and learn how
to effectively use API analytics to drive the success of an API program.

The Importance of API Analytics
An API management platform collects a wide variety of operational and business data
as traffic flows through it. The data collected is then analyzed to provide metering and
monitoring capabilities. This data should be regularly analyzed by the business to make
improvements for the API program and channelize its investments. Only then can
the business reap the benefits of the investments made in its API program for digital
transformations. Depending on the data collected, API analytics data can provide
answers to the following questions:

•	 How has API traffic trended over time?

•	 Who are the top users of the API—apps as well as end users?

•	 Which developer app is generating the maximum traffic for the
API?

•	 How many developers have signed up for the API program?

•	 What is the most recent trend for developer adoption of APIs?

•	 How has been the performance of the APIs? How has been the
performance of the backend services?

•	 What is the API usage pattern across geographical regions?

API Analytics dashboard can provide information about API traffic trend. It shows
how APIs are used over time - the peaks and the troughs of API traffic. Aggregated
API traffic data can show traffic distribution over a day, week, month, quarter, or even

Chapter 10 ■ API Analytics

166

a year. Average API response time aggregated over time can help you understand
API performance during peak and low traffic. API traffic distribution identifies the
most popular APIs. Data on an API’s users identifies the most popular app. All of this
information can help improve the quality and performance of APIs and provide valuable
insights into API governance.

API Analytics Stakeholders
The data collected from API traffic for analytics can be used by different stakeholders in a
variety of ways. The following are the main stakeholders for API analytics:

•	 API product owner

•	 API team

•	 App developer

•	 Operations team

APIs are products that you sell to your customers. Hence, as a product owner of
the API, the business user would be interested in knowing how their product is doing.
Without proper insight, it is difficult to make the right investments into the API program
and make it successful. A business owner of an API program would be interested to get
answers to the following questions:

•	 How has the API been adopted? An insight into API traffic
data can provide an answer to this. A continuously increasing
traffic trend over a period of time can be a fair indication of the
successful adoption of the API. A constant or a falling trend in API
traffic means that there has been low adoption of the APIs.

•	 How many new applications are using the API? A report on the
new apps registered to use an API can help you understand the
interests of the developers. The number of new apps registered
over a period of time is a good indicator. But just looking at the
new app registration data can be misleading because developers
may register apps but not use them to invoke the APIs. Hence, it
is also important to look at the traffic generated by these apps to
measure the real adoption of APIs.

•	 How many active developers are there? A report showing the
top developers’ app traffic can provide information about the
developers who are actively using the APIs.

Chapter 10 ■ API Analytics

167

•	 What is the geographic distribution of API usage? As an
API product owner, I would be interested in knowing how the
API has been adopted across different geographic regions.
Depending on the services provided by the API, its adoption
could be concentrated in only a few geographic locations or it
could be widespread. For example, Google Maps APIs have a
wide geographic distribution, indicating that it is widely adopted
by users in different geographic locations. If an API is designed
to be used across the world, traffic distribution by geographic
region would be of interest to the API product owner to see their
adoption in different countries. If the traffic is coming only from
one geographic region, it means that its adoption is limited.

•	 How are investments in the API being used? Is the API
program bringing in new business? An API traffic report
can help answer these questions for the business owner. An
increasing API traffic trend means end users like the API.
Depending on the monetization model setup, this would mean
an increasing trend in direct or in-direct revenue from the API.
Custom analytics reports can help drill down to specific business
transactions to get more insight into the API’s business impact.

An API team is the technical team involved in the development of APIs. API
analytics reports can provide the following information to help analyze and optimize the
performance of an API:

•	 Traffic

•	 Response time

•	 Message payload size

•	 Errors

•	 Cache performance

•	 Back-end service performance

•	 Developer adoption

With this information, the API team knows how the API program is doing overall,
how individual APIs are performing, and how to improve the API performance. A higher
than expected response time may impact the adoption of the APIs due to a poor overall
user experience. Hence, the API team needs to look at the root cause to reduce the
response time and improve overall performance. Response caching may help improve
response time and may be an option to consider for performance improvement. Message
payload size is another consideration in improving API performance. Large payloads not
only impact network performance due to bandwidth constraints, but can consume more
CPU cycles for message processing. Hence, optimizing the message payload size can
improve API performance and help drive its adoption.

Chapter 10 ■ API Analytics

168

App developers are the consumers of APIs. These developers are innovating with
your APIs and building creative apps that help drive revenue to your enterprise. Their
innovative apps help provide better user experiences. By sharing analytics information
with app developers, you get better apps. Analytics help app developers know how their
apps are doing and how much they are contributing to the bottom line of your enterprise.
App developers want to know how they can improve their apps. Ultimately, everyone
wants happy end users.

The operations team uses API analytics reports to understand traffic patterns
and anticipate when to add back-end resources or make other critical adjustments.
An increasing API traffic trend associated with a degradation of API performance may
indicate that the underlying infrastructure is reaching its capacity and may need to be
supplemented.

API Metrics and Reports
A lot of operational and business data can be collected from API traffic. The metrics can
be divided into traffic metrics and developer metrics.

Some of the key API metrics that should be analyzed are as follows:

•	 API traffic

•	 Total API traffic across all APIs

•	 Traffic distribution and trends by API proxy

•	 API traffic by business or technical assets

•	 Top APIs and methods

•	 Response time

•	 Average response time of the API

•	 Target service response time

•	 Request and response processing latency on the API gateway

•	 Error rates

•	 Error distribution over a period of time

•	 Error distribution by APIs

•	 Target service error rate

•	 Error distribution by HTTP error code: 5xx, 4xx

Chapter 10 ■ API Analytics

169

•	 Message payload size

•	 Average request payload size

•	 Average response payload size

The following are some of the key API developer metrics:

•	 Developer engagement

•	 The total number of developers registered with the API
program

•	 The number of developers with apps

•	 The number of active developers

•	 Traffic volume trend by developer

•	 Traffic generated from developer apps

•	 Traffic composition

•	 Top 10 apps’ traffic

•	 Top 10 developers’ traffic

•	 Top 10 API products’ traffic

•	 End user engagement

•	 Geographic distribution of API traffic

•	 API traffic distribution by device: device type, OS families,
agents, browser type

•	 App error rates

Custom Analytics Reports
Many times, default analytics data captured by the API management platform from
API traffic may not be sufficient enough to provide all business insights. You may need
to capture certain custom data from the message payload and derive useful analytics
information from it. Many API management platforms provide the facility to extract
custom data from messages and log it into their analytics database. This data may be
extracted from message headers, query parameters, or payloads, and used to create
meaningful custom analytics reports. For example, in a hotel reservation API, a business
might be interested in knowing the distribution of reservations by city or hotel. Such
information can help businesses take actions that result in better customer satisfaction
and grow business across cities.

Chapter 10 ■ API Analytics

170

Ensuring good API performance and helping highly engaged developers build apps
with your APIs is key to the success of an API program. API analytics provide insights
into metrics that should be monitored regularly to ensure the success of an API program.
A dip in API traffic can mean user interest is shifting away from the API, the reasons
for which could be many. It could be due to the API’s poor performance or customers
moving to services provided by other competitors in the market. Business owners
should critically look at API analytics reports on a regular basis and reflect on how they
should further fuel and tweak their APIs to make them more competitive and popular
in the market. Proper implementation of API analytics holds the key to the success of an
enterprise’s API program. API management is incomplete without the proper insights
provided by API analytics.

171© Brajesh De 2017
B. De, API Management, DOI 10.1007/978-1-4842-1305-6_11

CHAPTER 11

API Developer Portal

Success of an API Program for an enterprise depends on the proper planning to build
the right API at the right time to meet the current and growing needs of the consumers.
APIs that power the digital business should not only be built correctly with clean and
well documented interface, but should also be published and socialized with a developer
community that can help in the adopting the APIs at pace. A good API developer portal
helps to easily onboard developers onto the API program. In this chapter we would look
at the role of an API Developer Portal in API Lifecycle and what should be the features of
a good Developer Portal so that it can attract developers and facilicate their onboarding
onto the enterprise API program.

The API Lifecycle
The life of an API starts with designing the right interface using an API-First approach.
Once the interface is designed and documented, it is built and deployed on an API
platform that provides the runtime infrastructure. The API platform should also help
publicize and socialize the APIs with the developer community to accelerate their
adoption. To support the evolving requirements, older versions of APIs should be slowly
deprecated and retired, giving way to publish newer versions of the API. An API developer
portal plays a vital role in managing the lifecycle of the API by providing a mechanism to
publish and socialize APIs.

Publishing and Sharing APIs
A well-built API will not fetch the desired business benefits unless it is publicized.
People—especially developers—looking to build apps using APIs need to know about
it. So an enterprise needs to have a mechanism to publish the details of the APIs and
provide a platform for the developers to easily find and use the APIs. Developers need to
know the details about the API.

An API should be well documented to provide information about the endpoint,
the input/output parameters, the SLAs, monetization model/rate plans, and other
information. The API provider needs a social enterprise API platform to publish
information about the APIs, whether the API is for internal or external use.

Chapter 11 ■ API Developer Portal

172

It needs to be marketed well. An API provider needs a platform to market his API
with a powerful search-driven catalog that offers social features such as ratings, reviews,
likes, and more. The API needs to be published in a catalog with appropriate descriptions
and tags to easily search for potential consumers.

After developers have found an API in a catalog, they would like to know its fitness
for their app development. This is where developers browse through API documentation,
blogs, and forums to read user feedback on the API and evaluate it. They would like
to know how interested the community is in the API to better understand the level
of adoption and support for the API. An active community allows developers to ask
questions and get honest feedback from fellow developers who are using the API. Good
feedback in forums helps drive faster adoption.

The Importance of the API Developer Portal
A developer portal provides the platform for an API provider to communicate with the
developer community. It helps communicate static information about the API, such as
documentation and terms and conditions for use. It can also include dynamic social
content contributed by the developer community, such as forums and blogs.

Creating a good API is only a small step in building a successful API program.
API providers need to expose and publicize information about the API, provide
documentation to educate developer communities about the API, and provide a platform
to easily register developers and their apps. Developers and users of the APIs should be
able to provide feedback, get support, and make new feature requests that can help the
APIs to evolve. App developers should also be able to submit and share their own content
for others to use.

An API portal is a single point of information for an app developer looking to use
APIs in building an app. In addition to providing documentation for the API, the portal
should provide a platform that allows users to easily play around with and test the APIs;
this helps developers better understand its usage in building apps. Embedded API test
consoles and smart docs generated from API specifications can be used for testing the
API interface within the portal.

A developer portal should provide developers with analytics information for API
usage. App developers should be able to monitor the API usage pattern for their apps. API
analytics information can include traffic trends, API performance metrics, and error rates
for the API and apps.

Supporting App Developers
App developers are the real users of the API. Innovative apps built by app developers
increases API adoption and usage. Hence, as an API provider, it becomes even more
important to effectively support the app developer community to accelerate the adoption
of your API. An API provider should provide support to app developers to drive the API’s
social adoption. The support provided can be in various forms.

Chapter 11 ■ API Developer Portal

173

•	 Good documentation to easily understand the API interfaces

•	 A test bench to play with the API and understand its behavior

•	 SDKs and code samples that developers can readily use in their
apps to invoke the API

•	 A Q&A forum for developers to help each other by answering
questions asked by others

•	 An indexed forum to search for errors, issues, or questions and get
immediate answers to already solved problems

An API provider should put lot of effort and time in building a thriving community.
The right investments in building the app developer community with the rights folks
can help pay enormous dividends later and make the API program successful. An API
Developer Protal should provide the following social collaboration features to support the
developer comnunity.

Invitations
Invitations are a popular way to socialize your APIs. They are an easy and effective way to
build a community for API users. A developer portal should facilitate sending invitations
that create a community of interests around the API. Any user—an API or app developer,
or a business administrator—should be able to invite others to start using or following
an API. You can encourage people to invite their contacts too. This can help build a huge
social community connected to the API.

Social Forums
A social forum helps app developers share their experiences with using APIs. It can
connect developers who are building apps with the APIs. They can discuss best practices
for using the API, as well as any limitations and how to overcome them. They can post
their comments and ideas, ask questions, and even raise support ticket with the API
provider. The view available to an app developer can depend on the assigned role. An
administrator might be able to see all issues logged and all unanswered questions;
whereas an app developer may only see the answered questions and the check status
on the issues that they logged. As the community around the API matures, the forum
might act as a platform where API users and app developers answer questions or make
comments on questions asked by fellow users.

An enterprise API platform needs to be social. App developers and API users should
be able to follow APIs, apps, business organizations, developer groups, or other users. A
personalized dashboard for each app developer should provide them an aggregated view
of all items of interest. It should provide a centralized dashboard where they can keep
track of what’s going on with everything that they are interested in.

Chapter 11 ■ API Developer Portal

174

Federated Developer Communities
The success of an API initiative depends on its adoption by the developer community.
A developer portal allows developers to sign up for the API program and get access to
the API. The portal helps API providers build their own developer community. But a
federated developer community might be a better idea. With a federated approach,
developers of other API providers, who are partners or are like-minded, may want to
share the same API keys with developers. So if a developer signs up with a company’s API
program and obtains an API key, the same API key can be used to access APIs provided
by other partners of the company.

An enterprise API program should support the concept of an API provider
federation. This brings together communities by providing developers with access
(through proper authorization) to any API from any provider by using a single API key.
This helps API providers easily extend the reach of their APIs to a wider community of
developers. However, all of this first needs a deeply federated trust and permissions
model to be established between the API providers. The model should allow API
providers to opt in or out of the federation model and to choose the partners with whom
they want to federate.

Types of Portal Users
There are three types of portal users: app developers, the API team, and the API product
owner. The app developers use the APIs to build apps. They refer to the API portal to
learn more about the APIs that they can use for developing apps. They look for API
documentations and a sandbox environment to try out the APIs. They register for an
account in the portal, register their apps that will use the APIs, review the terms and
conditions for API usage, interact with other developers in the community through
forums, and view statistical information about their app usage on a dashboard.

The API team is the provider of the APIs. They create the developer portal to publish
information about their APIs for the developer community. The API team sets up the
portal and the workflow for developers to register and obtain an API key. The workflow
may be simple automatic approval or it might involve manual verifications and approvals.
The API team sets up the API portal to do the following:

•	 Automatic or manual approval for API key generation

•	 Publish and maintain API documentation

•	 Provide and maintain a forum for app developers to connect with
other developers in the community

•	 Provide a test bed for app developers to test the API interface
through an embedded test console

•	 Provide contact and support for app developers

Chapter 11 ■ API Developer Portal

175

•	 Enforce a role-based access control mechanism for developers to
access various features in the portal

•	 Customize email notifications sent to administrators and
developers for user creation, app registration, and approval

The API product owner is the person or organization responsible for the
productizing the APIs. They are responsible for identifying the APIs to be built based on
market research and user stories. They work with sales, marketing, and other stakeholders
to create an API product that will sell. They are responsible for understanding what the
app developers want. They help to translate the business requirements into terms that
the API team can use to actually build APIs that will sell. The API product owner would be
responsible for the following:

•	 Defining how APIs should be packaged into a product

•	 Defining the process and rules for app approval

•	 Define the pricing and billing plans for the API products

API Developer Portal Features
As an API provider, it is important to understand the features that the API portal should
have. The portal should attract app developers and provide all the necessary information
that they might be looking for to get started with using the API. The following are some of
the features to consider while building or customizing a developer portal.

•	 User registration and login: The app developer should be able
to easily sign up for the API program and start using the APIs. The
registration process should be simple and easy. Requiring a lot
of information to register or a complicated registration process
may annoy developers and hold them back from signing up for
the API program. Hence, the developer registration form should
be simple and easy. A minimalistic approach for user registration
is recommended. When a developer registers, the approval
process can be automatic or manual. In either case, an email
should be sent to the developers that confirms registration. The
administrator should also be notified of developer registration
and be provided with a link to approve, if so required. In a manual
approval process, an email should be sent to the developer once
their registration request is approved. The login process after the
registration should be easy but secure.

Chapter 11 ■ API Developer Portal

176

•	 User management: A developer portal administrator should
be able to create and edit users. Administrators may directly
create developer accounts through the portal. Upon successful
registration, the portal should send an email to the developer
informing her that the account is created. The administrator
should be able to modify the status of the developer from
active to blocked if so required, or update a developer’s profile
information. Role assignment is yet another aspect of user
management. Admins should be able to assign roles to registered
users to control the privileges and access rights of the user based
on custom roles, and signed-in and anonymous users.

•	 API documentation: The portal should be the source of all
information about the APIs. It should provide all documentation
for the API, such as interface specifications, FAQs, tutorials,
examples, and sample code. Getting started and how-to guides
on using the APIs help accelerate API adoption. Including
request and response messages using real-world examples
helps developers easily understand the API interface. The API
documentation can also include a reference guide that explains
common vocabulary, data formats, best practices, common HTTP
response codes, and error messages.

•	 API test console: A console for developers to test an API helps
them explore and play around with it without writing any code.
Developers can use the console to submit a request to the API and
view the response. A smart doc for an API also helps developers
easily learn how to use the API.

•	 Forums and blogs: Community-contributed content, such
as threaded discussion forums and blogs that describe the
developers’ experiences, help build an engaged developer
community.

•	 App registration and key management: When an app developer
wants to create an app using the API, he needs to get an API
key. For this, developers need to register their apps with the
API provider in the portal. The portal should allow developers
to register their apps. The approval for the app registration can
be automatic or manual. In an automatic approval, the API
key is generated immediately upon registration. The approval
process can be manual if any background verification needs to be
performed before approval. In a manual approval, the API key is
generated only after the app registration has been reviewed and
approved by the administrator. An administrator may also revoke
keys or regenerate new ones.

Chapter 11 ■ API Developer Portal

177

•	 Email configuration: The API portal should send email
notifications when developers sign up for the API program or
register their apps. The API portal administration should provide
the facility to configure the email templates with the content and
format of the emails to be sent. The admin should also be able to
configure when emails should be sent to developers.

•	 Dashboard: App developers like to view statistical information
about their apps and the APIs used by their apps. They like to
know the number of users using their apps, the number of calls
made by their apps, and the various APIs and methods used by
the apps. The developer portal should provide a dashboard for
app developers to view all of this information and much more.

•	 Support information: The API support information in the portal
should provide the developers’ contact information so as to reach
in case of any queries or issues with using the API. The contact
information can be a phone number or an email address. The
support page in the portal can include quick API status information.
The status could be active, under maintenance, deprecated, or
retired. The support page can also include FAQs, notices, or
coming soon information of interest to the developer community.
Notices could cover latest updates or activities related to the API.
Coming-soon information provides a list of upcoming API features.

•	 Search: A search facility within the developer portal is very useful
feature. It helps developers quickly search for information. They
can search for APIs of interest, or for specific information within
the API catalog, or specific content within the forums or blogs.

The Relationship Between a Developer Portal and
an API Gateway
The API developer portal is the door to an enterprise’s API program. It lets developers
sign up and register their apps to use the APIs. An API gateway provides the API runtimes.
An API key is generated on successful registration and is stored in a database that is
referenced by the gateway for API key validation. Not only that, all app attributes, developer
information, and details about the organization are provided as part of the onboarding
process is stored in the database that the gateway references for validation purposes.

The portal acts as a client for the API gateway to store and fetch API-related
information. Normally, the portal makes REST API calls over HTTP or HTTPS to
communicate with the gateway. For example, when a developer registers a new app, it
makes a request to the gateway to send information about the app to the gateway data
store. Every instance of an API developer portal must be associated with an API gateway
that hosts the APIs and provides the runtime support. Both the portal and the gateway
can be deployed on cloud or on-premises. A hybrid deployment model in which the
portal is on the public cloud while the gateway is set up on-premise is also possible.

179© Brajesh De 2017
B. De, API Management, DOI 10.1007/978-1-4842-1305-6_12

CHAPTER 12

API Governance

API governance is distinct from SOA governance. API governance provides a policy-driven
approach that helps to enforce standards and checkpoints throughout the API lifecycle.
It encompasses not only the API runtime, but also design through development processes.
It includes the guidelines, standards, and processes to be followed for API identification,
interface documentation, development, testing, deployment, run, and operation.
Standards and principles defined by API governance provide API quality assurance, such
as security, availability, scalability, and reliability. It underpins the API enablement aspect
that is critical for the successful adoption of APIs.

The Scope of API Governance
API governance encompasses activities, starting with the API proposal all the way to its
adoption, through requirements gathering, build and deploy, and operations during
general availability. Figure 12-1 shows the high-level phases where API governance plays
a critical role.

Figure 12-1.  API Governance Phases

Chapter 12 ■ API Governance

180

The following describes the phases.

•	 API proposal: This is the first stage, where new API or change
requests are proposed by the organization. This is done due
to new business agreements, changes in existing business
agreements, or a new change request submitted to the API
governance body. Community managers create an ecosystem:
talk to partners, competitors, regulators, and independent
developers to identify and propose APIs that are aligned to the
business strategy.

•	 Technical requirements gathering: After the API proposal,
the next step is to gather the requirements and create the
specifications for the API. API architects and business analysts
work together to create API definitions. The API governance
defines the process and standards for the API interface definition.
The following are some important questions that API governance
must consider and enforce:

•	 Which API specifications standards should be used?
Swagger or RAML, or any other standards for API interface
documentation?

•	 Who is responsible for the review and approval of the API
specifications?

•	 What is the API versioning approach? When is a new version
created?

•	 Is there JSON schema versioning?

•	 Which back-end services are connected to these APIs? Are
there field mappings?

•	 Build and validate: After the API specification and requirements
are finalized, the development process starts. The scrum master,
API team, and all the members in the API program work together
in this phase. Test scripts are created and APIs are validated for
compliance to API specification. API governance during the
build and validate phase must define guidelines for the following
questions:

•	 What tools are to be used for the entire API development
lifecycle?

•	 Which source code repository must be used for configuration
management?

•	 Which best practices must be followed for API development?

•	 What should be the testing approach and the tools to be used
for API interface, functional and load testing?

Chapter 12 ■ API Governance

181

•	 What is the review process? What are the checkpoints to
ensure the quality of APIs?

•	 Which policies must be implemented for APIs?

•	 Is there isolation between the non-production and
production environments?

•	 How should the API interface lifecycle be managed?

•	 What is the promotion process, from the lowest development
environment to production, and eventually to the retirement
of the APIs?

•	 General availability: After the implementation is done and the
APIs are deployed, they need to be published to the developer
portal for API subscribers. Before publishing an API, consider
commercial questions, such as how to monetize the API. Since
APIs may expose data to the consumers, the terms and conditions
for the use of the APIs and the associated data should be finalized
with the legal team. The marketing team should review and
ensure that brand use and quality are satisfactory. After approval
from the commercial, legal, and marketing teams, the API can be
deployed to the production server and released for beta or general
availability. After an API has been made available for general use,
there must be proper tracking and metrics to provide information
that answers the following questions:

•	 Which API is deployed to what environment?

•	 What is the performance of the deployed API?

•	 Which apps are using which API?

•	 What are the usage patterns for the API by app, geography,
and time?

■■ Note T he API governance process must define all the API metrics to be tracked and how
the tracking is done. It must define the necessary steps to be taken in case of any service-
level agreement violations.

•	 Adoption and sunsetting: During this phase, developers start
exploring and using APIs to build apps around them. API governance
should facilitate the easy but secure signup and onboarding of
developers and their apps. The governance process should monitor
how the APIs are performing and being used by developers. Some
important metrics to look for must answer the following:

Chapter 12 ■ API Governance

182

•	 What are the top 10 APIs being used?

•	 Who are the top 10 users of an API?

■■ Note  This step should cover mechanisms that address any issues reported by
developers on API usage. When new versions of an API are introduced, the API governance
process must address how to sunset and retire older versions with minimal to no impact on
the apps still using them.

The Aim of API Governance
API governance must address the following.

•	 Governance at the time of the API proposal (new/updates) must
ensure that the identified APIs align to the business strategy and
meet the business requirements. Funding for API development
must be approved by the business and other stakeholders.

•	 API design and development time governance must ensure
that the API software quality is maintained. It must address API
versioning strategy and focus on development standards and best
practices to be followed. Appropriate reviews and checkpoints
must be enforced to ensure quality of he API.

•	 API governance must help define the right API testing strategy
to ensure that APIs are delivering the necessary level of security,
reliability, and governance.

•	 API runtime governance must look at aspects such as API
monitoring, deployment, and dynamic provisioning to guarantee
API runtime quality.

•	 API governance must ensure that the service-level agreement is
followed by the API provider and the consumer.

API Governance Model
The high-level API governance activities, checkpoints, preconditions, and the roles
required for each of the phases of the API governance model are described in Tables 12-1
to 12-5.

Chapter 12 ■ API Governance

183

Table 12-1.  API Proposal

Title Description

Input •	 New API requests made by business analysts and solution
architects. An outline solution document for the new API to
be submitted for review.

•	 API change requests can be made by solution architects and
an outline solution document for the API is submitted.

•	 Design lead, tech arch and solution architect review the
submitted API proposal. Proposal should be approved by
architecture review board. The approval process can be
similar to an existing SDLC. A lighter version of the existing
approval process can be followed for API proposals.

Process For new APIs

•	 New API request/business agreement to be submitted for review.

•	 API details to be completed in a template that captures the
requirements of the API. It should highlight the use cases
related to the API. This evaluates the alignment of the API
to business needs. The template must also highlight the
information model and the related entities that used by the
API. This explains the business assets that are API-enabled.
The service interface definition of the API should also be
documented at this stage.

•	 Governance review by architecture review board (ARB) of the
new API proposal decides if the API should be built or not.

For API change requests

•	 Business analyst/solution architects submit a change
request to an existing API.

•	 API details to be completed in the same template as that of a
new API.

•	 ARB governance review of the API change request decides if
the API should be built or not.

Output •	 API profile template document with API specification for
new APIs.

•	 Updated API profile template for API change requests.

•	 A new project (for a CR there is a new version of the project)
for the creation of API.

Checkpoint •	 Fortnightly or monthly governance reviews organized to
review new API requests or change requests. The frequency
may change depending on the business needs for the APIs.

(continued)

Chapter 12 ■ API Governance

184

Table 12-1.  (continued)

Title Description

Exit Pre-Conditions •	 Resourcing availability for API development (an API team to
be formed).

•	 An API spec should be reviewed and approved by the ARB or
API governance body.

•	 Funding for API development should be approved by
business and other stakeholders.

Actors and Roles •	 API business owner: Responsible for establishing
and validating the business needs of the API and the
requirements for approval of funding.

•	 API product owner: Responsible for interfacing with various API
delivery teams to ensure the quality and delivery of the APIs.

•	 API spec lead: Responsible for the creation of API
specification.

•	 API architect: Responsible for the technical architecture of
the API solution.

•	 API leadership team: Responsible for validating the business
requirements and providing funding to build the API.

Table 12-2.  Technical Requirements Gathering

Title Description

Input •	 API profile template

Process •	 Create API specifications document from the
business requirements.

•	 Define data mappings between API interfaces and
back-end services.

•	 Requirements should be stored and/or updated in a
central requirements management tool.

Output •	 API specification and data mappings document

Checkpoint •	 Review with the business analyst and the API
architect, and sign off the API specification.

Exit Pre Conditions •	 Governance guidelines and rules followed

•	 API profile requirements are updated in JIRA

Cross-functional Implication •	 API specification review for any impact on existing
functionality

(continued)

Chapter 12 ■ API Governance

185

Table 12-3.  Build and Validate

Title Description

Input •	 Approved API specification and data mapping
documents

•	 Business requirements document

Process In the API build and validate phase, the API team
consists of scrum master, API architect, API designer,
API developers, API testers, and DevOps team, who
work together to build the API per specifications and
business requirements. API development is done in
short sprints of three to four weeks using the agile
development methodology. The high-level activities
are as follows:

•	 The scrum master grooms the requirements and
fills in action log in a requirements management
tool like JIRA.

•	 The API development lead reviews the API
specifications, captures comments, and updates
action logs.

(continued)

Title Description

Actors and Roles •	 API business analyst: Gathers the business
requirements for API enablement and identifying
the services to be exposed as APIs.

•	 API solution architect: Works with the business
analyst to define the API specification document
and data mapping to back-end services.

•	 API spec lead: Defines the API specifications and
working with the business analyst and solution
architect.

•	 API project team: Informed about the new API
requirements at this stage. Reviews the API
specifications.

•	 API governance committee: Ensures that the
process is followed, criteria are met, and quality is
maintained.

•	 Scrum master: Conducts a spec jam.

Table 12-2.  (continued)

Chapter 12 ■ API Governance

186

Title Description

•	 The API teams are responsible for the following:

•	 Reviewing the specification, update business
agreement (after revival) and update action logs

•	 API implementation

•	 Committing to SCM

•	 Creating test kits

•	 Code review

•	 Demoing to the client and validation by the
client

•	 Publishing deployable artifacts to repository

•	 Updating developer portal links

•	 Publishing information on the developer
portal for API subscribers

Output •	 Completed action list captured during previous
discussions

•	 Follow-up action plan created in action log

•	 Reference implementation running in
development

•	 Artifacts uploaded to a repository, like GitHub

•	 Developer portal updated

Checkpoint •	 Implementation should be compliant to
API specification document (mappings are
validated)

Exit Pre-Conditions •	 Final review (config review, demo to the client)

•	 Governance guidelines and rules followed

•	 API conformant to design guidelines

•	 API versioning policies followed

•	 Any deviations are documented

Cross-functional Implication •	 Review for any impact on existing functionality

Table 12-3.  (continued)

(continued)

Chapter 12 ■ API Governance

187

Table 12-4.  General Availability

Title Description

Input •	 API interface definition in repository

•	 API test console availability

•	 Developer portal updated

•	 Pre-prod environment running reference implementation

•	 API config uploaded to SCM or repository

Process During the general availability phase the following activities are
performed to publish the APIs:

•	 API deployment from the repository to production and sandbox

•	 API documentation published on the developer portal for API
subscribers

•	 Developers access APIs and create apps

•	 API health monitoring is set up

Output •	 APIs deployed to production and sandbox environments

•	 API documentation updated in the developer portal

•	 Apps built against APIs

Checkpoint •	 Check API’s running status

•	 Check API documentation and test console in the developer portal

•	 Check API analytics for API traffic and performance

•	 API health monitors are configured

Actors and Roles •	 Project team: Responsible for overall API delivery.

•	 API support team: Supports reported issues.

•	 Operations/run team: Deploys APIs and monitors their health.

Title Description

Actors and Roles •	 API program manager: Responsible for the overall
program delivery of the APIs.

•	 API architect: Architects the API solution and
defines the API REST interface.

•	 API designer: Designs the APIs for proxy
configurations.

•	 API developers: Configures API proxies in the API
gateway

•	 API testers: Creates automated test cases and
testing API interfaces.

•	 API DevOps: Builds a DevOps framework to
support CI and CD for API enablement.

Table 12-3.  (continued)

Chapter 12 ■ API Governance

188

Table 12-5.  Adoption

Title Description

Input •	 The number of developers signed up

•	 API traffic reports

•	 The number of hits on developer portal

•	 The number of mentions in social networks

•	 The number of blogs and forum posts

Process •	 During the adoption phase of an API, it is important to have a
plan that facilitates easy onboarding of developers and apps,
and tracks the usage of the API. For this, the following activities
need to be performed:

•	 Develop an adoption plan and identify targets.

•	 Target and inform specific development communities about
the availability of the new API.

•	 Target/organize hackathons to support adoption.

•	 Track/follow up with members who are in the member
adoption forum.

•	 Update the adoption list, developer portal, and API website.

•	 Ensure the publicity of API through various developer
channels

•	 Identify and inform other ecosystems of API availability.

•	 Conduct webinars driven by members to share experience
in adoption.

Checkpoint •	 The number of developers and apps onboarded

•	 The number of active developers and apps

•	 API traffic patterns

•	 The number of API issues reported from different channels

Actors and Roles •	 API operations team: Facilitates the developer onboarding and
monitors API traffic.

•	 API support team: Resolves issues reported about the APIs.

189© Brajesh De 2017
B. De, API Management, DOI 10.1007/978-1-4842-1305-6

�       � A
Abao, 74
Accept-Charset header, 47
Accept header, 47
Access token, 19
AccuWeather APIs, 9
Activity logging, 24
Amazon APIs, 1, 10
Amazon S3, 4
Amazon Web Services, 3
Analytics services, 17
API adoption patterns

business partner
integration, 103

external digital
consumers, 103–104

internal application integration, 103
IoT, 104
mobile, 104

API analytics, 95
activity logging, 24
advanced analytics, 25
business value reports, 24
importance, 165–166
metrics, 168–169
reports, 169–170
service-level monitoring, 25
stakeholders, 166–168
user auditing, 24

API Blueprint, 75
document structure, 76–77
vs. Swagger and RAML, 77–79
tools, 77

API catalog, 25
API contract, 1, 5

definition, 2

API deployment patterns
cloud deployment

advantages, 100–101
disadvantages, 101

on-premise deployment model, 102
API Designer, 73
API developer portal

vs. API gateway, 177
in API Lifecycle, 171
API product owner, 175
API team, 174–175
app developers, 174
features, 175–177
importance, 172
publishing and sharing, 171–172
support, 172–173

federated developer
community, 174

invitations, 173
social forums, 173

API documentation, 7, 26, 156, 176
API facade pattern

callback, 90–91
composition, 87–88
HATEOS principles, 88
two-phase transaction, 89–90

API fuzzing, 156–157
API gateway, 16, 18, 88

vs. API developer portal, 177
caching, 22
interface translation

format translation, 21
protocol translation, 22
service and data mapping, 22

security
authentication, 19
authorization, 19

Index

■ INDEX

190

data privacy, 20
DoS protection, 20
identity mediation, 19
key and certificate

management, 20
threat detection, 20

service orchestration, 23
service routing

connection pooling, 23
load balancing, 23
service dispatching, 23
URL mapping, 22

testing, 157–158
traffic management

consumption quota, 21
spike arrest, 21
traffic prioritization, 21
usage throttling, 21

API governance
adoption phase, 181–182, 188
aim, 182
API proposal, 180, 183–184
build and validate phase, 180–181,

185–187
general availability

phase, 181, 187
policy-driven approach, 179
technical requirements gathering,

180, 184–185
API interface, 155
API key, 19, 26
API lifecycle management

change notification, 28
creation, 27
issue management, 28
publication, 27
version management, 27

API management patterns
API composition pattern, 87–88
API facade pattern, 86–87
caching, 93–94
logging and monitoring, 94
routing, 91–92
session management, 88–89
synchronous to asynchronous

mediation, 90–91
throttling, 92–93
two-phase conversion pattern, 90
two-phase transaction management,

89–90

API management platform
API gateway,18 (see also (API

gateway))
businesses values, 23–25
capabilities, 16
developer portals (see (Developer

portals))
lifecycle management (see (API

lifecycle management))
API message logging pattern, 94
API monetization

API package, 150
API product, 149–150
billing documents, 151
digital assets, 143
fee-based model, 146–148
free model, 146
to increase revenue

customer channels, 143–144
customer retention, 144
distribution channels, 145
upsell premium and value-added

services, 144–145
indirect model, 146
rate plan, 150
reports, 151–152
revenue-sharing model, 146, 148–149

API Notebook, 70, 74
API patterns

adoption patterns, 102–104 (see also
(API adoption patterns))

deployment patterns, 100–102 (see
also (API deployment
patterns))

management patterns (see (API
management patterns))

pragmatic RESTful API interface,
81–86

security (see (API security))
API performance testing, 158–162. See

also Load testing
baseline testing, 159
metrics, 161–162
soak testing, 160
stress testing, 159

API product owner, 175
API Provider, 5, 6, 13
API registry, 25
API security, 156

authentication, 97
authentication and authorization

API gateway (cont.)

■ INDEX

191

API keys, 113–114
mutual authentication, 115
OAuth, 115–118 (see also

(OAuth))username and
password, 114

X.509 certificate, 115
authorization, 97
considerations, 140
cross-site scripting (XSS), 96
cyber threats

bot attacks, 139–140
cross-site resource forgery,

138–139
cross-site scripting (XSS), 137–138
injection threats, 134–136
insecure direct object reference,

136
sensitive data exposure, 136–137

DDoS attacks, 112
demands, 111–112
denial-of-service (DOS) attacks, 95
eavesdropping, 96
logging and auditing, 99
man-in-the-middle attacks, 112
monitoring APIs, 98
OpenID Connect (see (OpenID

Connect))
PCI compliance requirements, 99–100
Quota policy, 98
recommendations, 141–142
schema validation policies, 97
scripting attacks, 95
SDLC process, 99
session attack, 96
Spike Arrest policy, 97–98
SSL/TLS encryption, 98
testing

API fuzzing, 156–157
authentication and

authorization, 156
malformed payload injection, 157
malicious content injection, 157

threat model, 140
API team, 174–175
API testing

API documentation, 156
API gateway, 157–158
API interface specifications, 155
API security,156 (see also (API

security, testing))
challenges, 153–154

importance of, 153
performance testing, 158–162 (see also

(Load testing))
tools, 164

must-have features, 162–163
nice-to-have features, 163–164

API value chain, 13–14
API Workbench, 72–73
app developers, 7, 13, 174
app ID, 19
app key, 19
Application programming

interface (API). See also Web
APIs

business models, 14
hotel room booking, 1

AT&T APIs, 10
Audiences, API documentation, 60
Auditing, 99
Authentication, 19, 85, 97
Authorization, 19, 97
Authorization header, 48

�       � B
Baseline testing, 159
B2B partner integration, 103
Billing, 151
BlazeMeter, 161
Blogs and forums, 26, 176
Bot attacks, 139–140

�       � C
Cache-Control general header, 49
Caching, 22, 30–31, 85, 93–94
client ID, 19
Client-server constraint, 30
Cloud computing, 4
Cloud deployment

advantages
capital and operational

expenditure reduction, 100
management over heads, 101
regulatory compliance, 101
reliability and availability, 100
scalability and agility, 101
time to market, 100

disadvantages
control over data, 101
network latency, 101

■ INDEX

192

Code-on-demand constraint, 31
Communication, 17
Content-based routing, 91–92
Content-Type header, 49
Cross-Site Resource Forgery (CSRF or

XSRF), 138–139
Cross-site scripting (XSS), 96, 136,

137–138
Custom Search APIs, 9
Cyber threats

bot attacks, 139–140
cross-site resource forgery, 138–139
injection threats

script injection attacks, 135–136
XML and JSON bombs, 134–135

insecure direct object reference, 136
sensitive data exposure, 136–137
XSS, 137–138

�       � D
Data privacy, 20
DDoS attacks, 112
DELETE verb, 40–41
Denial-of-service (DoS) attacks, 20, 95
Developer portals, 17, 25

access credentials, 26
API catalog and documentation,

25–26
API documentation, 26
community management, 26
monetization, 25

Documentation, 59
API Blueprint, 75–77
app developers or API consumers, 60
audiences, 60
bottom-up approach, 66
endpoint, 62
error codes, 64
frameworks, 80
header parameters, 63
HTTP response codes, 64
importance, 59–60
message payload, 62
method, 62
RAML, 69 (see also (RESTful API

Markup Language (RAML)))
sample HTTP calls, 65
SLAs, 66
Swagger, 61 (see also (Swagger))
title, 61

top-down approach, 66
tutorials and walk-throughs, 65
URL parameters, 62

�       � E
Eavesdropping, 96
eBay API, 3
Elastic Compute Cloud platform, 4
ETag (entity tag) response header, 49

�       � F
Facebook APIs, 1, 3, 8
Federated developer community, 174
Filtering, 51–52
Filtering criteria, 83
Flickr APIs, 3, 9
Foursquare APIs, 4
Freemium model, 147
Free model, 146–147

�       � G
GET verb, 38
Google APIs, 9
Google Maps APIs, 1, 3

�       � H
Handle requests, 109
HEAD method, 42
Host request header, 48
HTTP error response codes, 85–86
HTTP headers, 84, 108

Accept-Charset header, 47
Accept header, 47
Authorization header, 48
Cache-Control general header, 49
Content-Type header, 49
ETag (entity tag) response header, 49
Host request header, 48
Location response header, 48
naming conventions, 49–50
types, 46

HTTP status code, 84
HTTP verbs, 62, 81

RESTful web services
DELETE verb, 40–41
GET verb, 38
HEAD method, 42

■ INDEX

193

idempotent and safe methods, 42
OPTIONS verb, 41
PATCH method, 41
POST verb, 39
PUT method, 39–40
PUT vs. POST, 40

Richardson Maturity Model, 55–56
Hypermedia as the Engine of Application

State (HATEOAS), 33–34

�       � I
Idempotent HTTP method, 42
Injection threats

script injection attacks
script injections, 136
SQL statement injection, 135

XML and JSON bombs, 134–135
Insecure direct object reference, 136
Instagram APIs, 4, 9
Internal APIs, 6
Internal application integration, 103
Internet of Things (IoT), 104
Invitations, developer portal, 173

�       � J, K
JMeter, 160
JSON format representation, 46

�       � L
Layered system, 31
Load balancing, 23
Loader.io, 161
Load testing, 159

preparation, 158–160
tools, 160–161

LoadUI, 160
Location response header, 48
Logging, 99

�       � M
Malformed/unexpected message

injection attacks, 157
Man-in-the-middle attacks, 112
Message payload, 62
Mobile apps, 104
Monetization, 24, 25
Monitoring APIs

analytics, 25
management patterns, 94
security, 98

�       � N
Naming conventions, 49–50

�       � O
OAuth, 97

API gateway, 117–118
authorization server, 117
client, 116
grant types

authorization code, 119–120
client credentials, 120–121
implicit grant type, 122–123
resource owner password

credentials, 121–122
protocol, 116
resource owner, 116
resource server, 117
scope names, 118
tokens, 116, 118

On-premise deployment model, 102
OpenAPI specification, 66–67
OpenID Connect

authentication flows
authorization code flow, 126–130

(see also (OpenID connect
authorization code flow))hybrid
flow, 131–133

implicit flow, 130–131
end user, 123
identity provider integration, 133
ID tokens, 124–126
interaction between parties, 123–124
relying party (RP), 123, 126

OpenID connect authorization code flow
authorization endpoint, 127–128
token endpoint, 128–130
userinfo endpoint, 130

OPTIONS verb, 41

�       � P
Pagination, 83–84
Partner APIs, 6
PATCH method, 41
PCI compliance specifications, 99–100

■ INDEX

194

POST verb, 39
Private APIs, 6, 8

security and access control, 8
Public APIs, 6

app developers, 7
security risks, 7
success, 7

PUT method, 39–40
vs. POST, 40

�       � Q
Query parameters, 108–109
Quota policy, 98

�       � R
RAML API specification

data type, 70
methods, 71
resources and subresources, 71
resource types and traits, 72
response, 71
security scheme information, 70
security schemes, 72

Rate plan, 150
Refresh token, 19
Regulatory compliance requirement, 99
Relying party (RP), 123, 126
Representational State Transfer

(REST), 9, 17
caching, 30–31
client-server constraint, 30
code-on-demand constraint, 31
HTTP headers

Accept-Charset header, 47
Accept header, 47
Authorization header, 48
Cache-Control general

header, 49
Content-Type header, 49
ETag (entity tag) response

header, 49
Host request header, 48
Location response header, 48
naming conventions, 49–50
types, 46

HTTP status code
categories, 43
error codes, 44–45
success codes, 43

HTTP verbs
DELETE verb, 40–41
GET verb, 38
HEAD method, 42
idempotent and safe methods, 42
OPTIONS verb, 41
PATCH method, 41
POST verb, 39
PUT method, 39–40
PUT vs. POST, 40

layered system principle, 31
query-string parameters

filtering, 51–52
offset and limit, 51
pagination, 51

resource identifier design, URIs
best practices, 35
modelling resources and

subresources, 34
naming conventions, 37
resource naming conventions, 34
URI design, 35–36
URI format, 36–37

resource representation design, 45–46
Richardson Maturity Model

HTTP verbs, 55–56
hypermedia controls, 56–57
resources, 54–55
Swamp of POX, 53–54

statelessness, 30
uniform interface, 30

HATEOAS, 33–34
resource identification, 31–32
resource manipulation, 33
self-descriptive messages, 33

versioning (see (Versioning))
Resource type, 72
RESTful API Markup Language (RAML)

Abao, 74
API Designer, 73
API Notebook, 70, 74
API Workbench, 72–73
code generation tools, 69–70
JAX-RS, 74
for .NET, 74
RAML 0.8 and RAML 1.0, 75
Restlet Studio, 73
specification, 70
structure, 70–72
structure (see (RAML API

specification))

■ INDEX

195

vs. Swagger and API Blueprint, 77–79
tools, 74

RESTful web services,11. See also
Representational State Transfer
(REST)

Restlet Studio, 73
Richardson Maturity Model

HTTP verbs, 55–56
hypermedia controls, 56–57
resources, 54–55
Swamp of POX, 53–54

Roy Thomas Fielding’s dissertation, 3, 34

�       � S
Safe HTTP method, 42
SalesForce, 3
Scripting attacks, 95
Script injection attacks

script injections, 136
SQL statement injection, 135

Search APIs, 9
Sensitive data exposure, 136–137
Service-level agreement (SLA), 66
Service orchestration, 23
Service-oriented architecture (SOA), 11, 103
Session attack, 96
SMAC (social, mobile, analytics, and

cloud) technologies, 4
Soak testing, 160
SOAP (Simple Object Access Protocol)

messages, 10
Social forums, 173
Spike Arrest policy, 97–98
SSL/TLS encryption, 82, 98
Streaming APIs, 9
Stress testing, 159
Swagger, 66

bottom-up approach, 66, 68
file structure, 68
frameworks, 66
goals, 66
vs. RAML and API Blueprint, 77–79
tools, 69
top-down approach, 66, 68

Swagger Codegen, 67
Swagger Editor, 67
Swagger-UI, 67

�       � T
Traits, 72
Twitter APIs, 3, 9

�       � U
Uniform Resource Identifier

(URI), 32
components, 36
naming conventions, 37

Uniform Resource Locators
(URLs), 36, 81

versioning, 107–108
Uniform Resource Name (URN), 36
URL mapping, 22
URL parameters, 62
User auditing, 24

�       � V
Vegeta, 161
Versioning, 50, 82

demands, 106
handle requests, 109
host name, 109
HTTP header, 108
lifecycle management, 109–110
principles, 106–107
query parameters, 108–109
vs. software versioning, 105
URLs, 107–108

�       � W, X
Web APIs

definition, 5
evolution, 3–4
vs. SOA, 11–12
vs. web services, 10–11
vs. web sites, 5

Web sites, 5
Wrk, 161

�       � Y, Z
Yelp APIs, 9
YouTube API, 10

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: Introduction to APIs
	The Evolution of APIs
	APIs Are Different from Web Sites
	Defining an API and Its Characteristics
	Types of APIs
	Examples of Popular APIs
	The Difference Between a Web Service and a Web API
	How Are APIs Different from SOA?
	The API Value Chain
	Business Models for APIs

	Chapter 2: API Management
	Secure, Reliable, and Flexible Communication
	The API Gateway
	API Security
	API Traffic Management
	Interface Translation
	Caching
	Service Routing
	Service Orchestration

	API Auditing, Logging and Analytics
	API Analytics
	Activity Logging
	User Auditing
	Business Value Reports
	Advanced Analytics
	Service-level Monitoring

	Developer Enablement for APIs
	Developer Portal
	API Catalog and Documentation
	Developer Support
	Developer Onboarding
	Community Management

	API Lifecycle Management
	API Creation
	API Publication
	Version Management
	Change Notification
	Issue Management

	Chapter 3: Designing a RESTful API Interface
	REST Principles
	Uniform Interface
	Client-Server
	Stateless
	Cache
	Layered Systems
	Code on Demand

	Designing a RESTful API
	Identification of Resources
	Manipulation of Resources through Representation
	Self-Descriptive Messages
	Hypermedia as the Engine of Application State (HATEOAS)

	Resource Identifier Design Using URIs
	Resource Naming Conventions
	Modelling Resources and Subresources
	Best Practices for Identifying REST API Resources
	URI Path Design
	URI Format
	Naming Conventions for URI Paths

	HTTP Verbs for RESTful APIs
	GET
	POST
	PUT
	The Difference Between PUT and POST

	DELETE
	PATCH
	OPTIONS
	HEAD
	Idempotent and Safe Methods

	HTTP Status Code
	Resource Representation Design
	Hypermedia Controls and Metadata
	Accept (Client Request Header)
	Accept-Charset (Client Request Header)
	Authorization (Client Request Header)
	Host (Client Request Header)
	Location (Server Response Header)
	ETag (Server Response Header)
	Cache-Control (General Header)
	Content-Type (General Header)

	Header Naming Conventions
	Versioning
	Querying, Filtering, and Pagination
	Limiting via Query-String Parameters
	Filtering

	The Richardson Maturity Model
	Level 0: Swamp of POX (Plain Old XML)
	Level 1: Resources
	Level 2: HTTP Verbs
	Level 3: Hypermedia Controls

	Chapter 4: API Documentation
	The Importance of API Documentation
	Audience for API Documentation
	Model for API Documentation
	Title
	Endpoint
	Method
	URL Parameters
	Message Payload
	Header Parameters
	Response Code
	Error Codes and Responses
	Sample Calls
	Tutorials and Walk-throughs
	Service-Level Agreements

	API Documentation Standards: Swagger, RAML, and API Blueprint
	Swagger
	Generating Swagger Specifications
	The Swagger File Structure

	RAML
	Why RAML?
	RAML Structure
	RAML Tools and Projects
	Differences in RAML Specification Versions

	API Blueprint
	API Blueprint Document Structure
	API Blueprint Tools

	Comparing Swagger, RAML, and API Blueprint

	Other API Documentation Frameworks

	Chapter 5: API Patterns
	Best Practices for Building a Pragmatic RESTful API
	API Management Patterns
	API Facade Pattern
	API Composition
	Session Management
	Two-Phase Transaction Management
	Synchronous to Asynchronous Mediation
	Routing

	API Throttling
	Caching
	Logging and Monitoring
	API Analytics

	API Security Patterns
	Common Forms of Attack
	API Risk Mitigation Best Practices
	Authentication and Authorization
	Protect Against Attacks
	Encrypt Message Exchanges
	Monitor, Audit, and Log API Traffic
	Build API Security into the SDLC Process
	Use a PCI-Compliant Infrastructure

	API Deployment Patterns
	Cloud Deployment
	On-Premise Deployment

	API Adoption Patterns
	APIs for Internal Application Integration
	APIs for Business Partner Integration
	APIs for External Digital Consumers
	APIs for Mobile
	APIs for IoT

	Chapter 6: API Version Management
	API Versioning vs. Software Versioning
	The Need to Version APIs
	API Versioning Principles
	The API Version Should Not Break any Existing Clients
	Keep the Frequency of Major API Versions to a Minimum
	Make Backward-Compatible Changes and Avoid Making New API Versions
	API Versioning Should Not Be Directly Tied to Software Versioning

	Approaches to API Version Management
	Versions Using URLs
	Versions Using an HTTP Header
	Versions Using Query Parameters
	Versions Using a Host Name
	Handling Requests for Deprecated Versions

	API Version Lifecycle Management

	Chapter 7: API Security
	The Need for API Security
	API Security Threats
	API Authentication and Authorization
	API Keys
	Username and Password
	X.509 Client Certificates and Mutual Authentication
	OAuth
	OAuth Basic Concepts
	Actors in OAuth
	Tokens
	Scope
	Grant Type
	Authorization Code
	Client Credentials
	Resource Owner Password Credentials
	Implicit

	OpenID Connect
	Actors in OpenID Connect
	ID Tokens
	OpenID Authentication Flows
	Authorization Code Flow
	Implicit Flow
	Hybrid Flow

	Benefits of Integration with an Open Identity Provider

	Protecting Against Cyber Threats
	Injection Threats
	XML and JSON Bombs
	Script Injection Attacks
	SQL Statement Injection
	Script Injections

	Insecure Direct Object Reference
	Sensitive Data Exposure
	Cross-Site Scripting (XSS)
	Cross-Site Resource Forgery (CSRF or XSRF)
	Bot Attacks

	Considerations for Designing an API Security Framework
	API Security Threat Model
	API Security Recommendations

	Chapter 8: API Monetization
	Which Digital Assets Can Be Monetized?
	How to Increase Revenue Using APIs?
	Increase Customer Channels
	Increase Customer Retention
	Upsell Premium and Value-Added Services
	Increase Affiliate Channels
	Increase Distribution Channels

	API Monetization Models
	Free Model
	Fee-Based Model (a.k.a. Developer Pays Model)
	Revenue-Sharing Model

	Monetization Concepts
	API Product
	API Package
	Rate Plan
	Billing Documents
	Monetization Reports

	Chapter 9: API Testing Strategy
	The Importance of API Testing
	Challenges in API Testing
	API Testing Considerations
	API Interface Specification Testing
	API Documentation Testing
	API Security Testing
	Authentication and Authorization
	API Fuzzing
	Malformed Payload Injection
	Malicious Content Injection

	Testing API Gateway Configuration
	API Performance Testing
	Preparing for the Load Test
	Setting up for the Load Test
	API Performance Test Metrics

	Selecting The Right API Testing Tool
	Must-Have Features
	Nice-to-Have Features
	Common API Testing Tools

	Chapter 10: API Analytics
	The Importance of API Analytics
	API Analytics Stakeholders
	API Metrics and Reports
	Custom Analytics Reports

	Chapter 11: API Developer Portal
	The API Lifecycle
	Publishing and Sharing APIs
	The Importance of the API Developer Portal
	Supporting App Developers
	Invitations
	Social Forums
	Federated Developer Communities

	Types of Portal Users
	API Developer Portal Features
	The Relationship Between a Developer Portal and an API Gateway

	Chapter 12: API Governance
	The Scope of API Governance
	The Aim of API Governance
	API Governance Model

	Index

