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CHAPTER

1Microscopy Cancer Cell
Imaging in B-lineage Acute
Lymphoblastic Leukemia

Anubha Gupta1, Shiv Gehlot1 and Ritu Gupta2
1Department of ECE, indraprastha Institute of Information Technology-Delhi (IIIT-D), IIIT

Delhi, Delhi, India
2All India Institute of Medical Sciences (AIIMS), New Delhi, India

1.1 Introduction
Acute lymphoblastic leukemia (ALL) is a type of white blood cancer, in which

the B- and T-lymphocytes are affected. This cancer constitutes approximately

20% of pediatric malignancies [1]. At diagnosis, patients with acute leukemia

may have a total of roughly 1012 malignant cells. The disease is considered to be

in complete remission (patient is not showing any symptom of the disease) when

fewer than 5% of the cells in bone marrow samples are morphologically identifi-

able blasts. However, these patients may still have as many as 1010 malignant

cells. From that point until an overt clinical relapse, the level of leukemic cells in

the body is mostly unknown, resulting in clinical management strategies that do

not discriminate among patients by their residual disease levels. Thus, patients

with 1010 leukemic cells are treated on the same regimen as those with much

lower levels or, perhaps, with no leukemia.

Morphologically, the healthy progenitor cells and cancer blood cells present at

low numbers appear similar under the microscope to the naked eye. Hence, if a

patient’s bone marrow is tested via microscopic examination, leukemia would be

diagnosed in the progressed state when the number of white blood cells is

observed to be exceptionally high in numbers. Thus, the disease is diagnosed not

because the pathologist can identify the cancer cell but because of the medical

knowledge that such a high number of a particular blood cell cannot be spotted in

the microscopic slide of a healthy subject. This implies that, whether accidentally

or otherwise, leukemia would be detected only in the advanced stages during rou-

tine testing. However, it is essential to make early disease diagnosis for better

cure and improve the overall survival of the subjects suffering from cancer.

Similarly, for patients in clinical remission during cancer therapy, the number

of cancer cells is generally below the conventional methods’ detection limit. If

left undetected and therefore untreated, this leads to a frank relapse of the disease.

The advanced medical tests using flow cytometry are not utilized under routine

State of the Art in Neural Networks and Their Applications. DOI: https://doi.org/10.1016/B978-0-12-819872-8.00008-2
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check-ups. They would be attempted only when the subject is undergoing cancer

treatment, which may lead to a delay in the diagnosis. Moreover, they are costly

and are not available widely in pathology laboratories or hospitals, particularly in

rural areas. The costs involved in terms of infrastructure, reagents, highly skilled

human resources, and time required preclude their widespread use in routine

pathology testing.

1.2 Building a computer-assisted solution
Because the microscopic examination is readily available and cost-effective, con-

ferring the ability to distinguish cancer cells from healthy cells to microscopic

image processing evaluation will provide several benefits. First, the test can be

included as part of routine clinical tests whenever a blood sample is collected.

The test will become readily available to doctors wherever computer and micro-

scope facilities exist. Second, the proposed method will eliminate the need for

sophisticated high-end costly machines (e.g., flow cytometer), the requirement of

expensive reagents and chemicals, and trained human resources to run those tests.

In particular, such a device can serve as a boon for a rural society where hospitals

and pathology labs generally run with a shortage of resources, including a skilled

workforce. Thus, it is worthwhile to build computer-assisted diagnostic tools for

blood disorders such as leukemia. To arrive at a conclusive decision on disease

diagnosis and degree of progression, it is crucial to identify malignant cells and

count the number of malignant vs healthy cells. Computer-assisted tools can be

beneficial in automating the entire process of cell identification and counting.

This will also be useful for objective evaluation of residual disease in leukemia

wherein a large number of cells need to be analyzed in an objective manner for

reliable diagnostic results. We started with the aim to build an image processing-

based robust classification tool that minimizes the probability of miss and false

alarm of disease detection.

The complete workflow of such a tool consists of the following steps:

1. Capture of images and preparation of the dataset,

2. Normalization of color stain to correct for abnormalities during the staining

process,

3. Segmentation of cells of interest, and

4. Identification of cells as cancer or healthy cells.

Each of these four stages has its challenges that need to be addressed to build

a final deliverable tool that can be deployed at a hospital to diagnose and monitor

leukemia. In this chapter, we discuss the attempt to build an automated tool for

B-acute lymphoblastic leukemia cancer and the generic steps and challenges

encountered in the development of such tool.
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1.3 Data preparation

1.3.1 Preparation of slide for microscopic imaging

Slide preparation is a sophisticated process that involves multiple stages. The fol-

lowing six steps are used for the slide preparation for any tissue:

1. Fixation: Tissue fixation aims to preserve the sample in its natural state

through the prevention of autolysis and putrefaction. Fixation is vital to avoid

the introduction of artifacts in the samples that may affect the further analysis.

Typically, chemical fixatives work by stabilizing the nucleic acids and

proteins of the tissue. Some examples of the fixatives are formalin, potassium

dichromate, and picric acid for solid tissues and alcohol based fixatives for

blood and/or bone marrow smears.

2. Processing: Tissue processing is used to replace water with a solidifying

medium. This dehydration (water removal) is necessary to provide rigidity to

the sample, enabling the thin section’s slicing. At the same time, solidification

must not be too severe to damage the tissue. Ethanol, acetone, methanol are

some commonly used dehydrating agents.

3. Embedding: Embedding is done to provide external support for the

sectioning. In this process, the sample (tissue) is transferred to a mold

containing a medium like wax or gelatine, which upon solidification, provides

blocks used in sectioning.

4. Sectioning: In sectioning, thin slices are obtained from an embedded sample

using an instrument called a microtome. The thickness of the slices depends

on the microscopy to be used for analysis. In light microscopy, 10 μm slices

are obtained using a microtone mounted with a steel knife, whereas, for

transmission electron microscopy, 50 nm slices are cut with an ultra-

microtome having a diamond knife.

5. Staining: Staining is used to highlight the different features of the tissues, which

otherwise show unnoticeable variations. Some examples of the histology stains are

Haematoxylin and Eosin (H&E), Giemsa Stain, Bielschowsky Stain, Mallory

Trichrome, etc. H&E is the frequently used dye and contains H&E staining

chemicals. Hematoxylin stains the acidic structure purple. Similarly, eosin is used

to stain the base structure pink. For blood and bone marrow smears, the staining is

done using Romanowski stains such as Wright’s stain, Giemsa stain, etc.

6. Mounting: To preserve and prepare the stained section for light microscopy, it is

mounted on a clear glass slide and covered with a thin glass coverslip. A resin-

based mounting medium is used to adhere to the coverslip to the slide. Finally, the

section area in the case of histology and smear area for blood and bone marrow

smears on the slide is covered with a coverslip using the mounting media.

Once the slide is prepared, its images are captured using a digital pathology

scanner or a camera mounted on the microscope.
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1.3.2 Capture of microscopic images from healthy and cancer
subjects for B-acute lymphoblastic leukemia cancer

In this section, we discuss one of the recently released ALL dataset. A dataset of

118 subjects, 49 healthy and 69 patients diagnosed with B-lineage ALL (B-ALL),

was prepared at Laboratory Oncology, All India Institute of Medical Sciences

(AIIMS), New Delhi, India. A waiver for written informed consent is obtained

from the Ethics Committee of AIIMS, New Delhi, on this dataset for research pur-

poses. All the subject identifying information was removed entirely from the image

dataset by the doctors at AIIMS before sharing it with the other researchers.

Microscopic images were captured from bone marrow aspirate slides of sub-

jects. Slides were stained using Jenner-Giemsa stain for better visibility of B-type

immature white blood cells, also called lymphoblasts, under the microscope.

Images were captured in raw BMP format with a size of 2560x1920 pixels using

the Nikon Eclipse-200 microscope equipped with a digital camera at 100x magni-

fication. The subjects were randomly sampled. The normal data (healthy cell

images) was collected from subjects who did not suffer from cancer and hence,

the ground truth labels are 100% correct for this class. The malignant cell images

were collected from the patients who were initially diagnosed with cancer and

had a sizeable leukemic cell growth in their blood. The medical expert’s domain

knowledge is used to prepare the dataset because morphologically, the healthy

cells and the malignant blasts appear the same under the microscope, as shown in

Fig. 1.1A and B. Also, all the cells from the cancer patients’ data would not be

the cancer cells. Thus, there can be a label noise of low value in the cancer class.

However, the label noise would be below 1%, as confirmed by the oncologist

expert. Data were annotated, that is, the cells of interest were marked by three

expert oncologists to identify B-type white blood blasts in the microscopic

images.

FIGURE 1.1

(A) Lymphoblasts (cancer cells) (B) Hematogones (healthy cells).
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Different illumination settings were used to capture images from subject

slides. The workflow involved in capturing and saving the images also varied to

some extent. As this data was collected over three years and different members

from the team contributed to the data collection, there is sufficient variability in

the data that emulates real-life scenarios of data capture. In other words, the data

collection procedure mimics the real-world data collection setting where the data

comes from different sources and often multiple staff members are involved dur-

ing the data collection. Overall, the expert oncologist has made sure that there is

enough variability in the data by following the predesigned protocols. These

involve:

(1) Capturing images from different fields of view instead of focusing on one

area of view of the slide.

(2) Multiple slides per patient were made that provided more depth about the

variability within the subject.

1.4 Normalization of color stain to correct for
abnormalities during the staining process

Before imaging, microscopic slides are prepared manually using the staining che-

micals and are, thus, prone to irregularities. As cell segmentation and classifica-

tion may utilize color information, the performance of such tools is susceptible to

color variations. This presents the need for color (stain) normalization of stained

microscopic images for building any computer-assisted automated diagnostic tool.

While preparing histopathology slides, the captured microscopic images exhibit

color variations from batch to batch owing to the following reasons [2]:

(1) Illumination condition: The first cause of color variation in microscopic

images is illumination condition and camera type. This type of color

variation is characterized by the product of camera response and spectral

power distribution (SPD) of imaging light and requires correction. This is to

note that in microscopic images, uneven illumination or vignetting, is not the

case because a slide is tiny and is well-illuminated.

(2) Stain chemical: Stain chemicals vary in composition by brands, by batches,

and get affected over time due to chemical reactions. This variability in stain

chemicals causes variations in the colors of stained tissues from image to

image. This effect is captured in the stain’s absorbance spectrum across

different wavelengths or sensor channels.

(3) Stain quantity: The time duration for which stain is left on the microscopic

slide also causes color variations. If stain is left for a longer time, the

quantity of stain absorbed is more and hence, is reflected as the depth of

stain quantity at any pixel position.
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Problems (1) and (3) listed earlier are related to the staining process, while (2)

is related to the staining chemical. Owing to these staining problems, images col-

lected from the slides of different subjects exhibit variations from batch to batch,

as shown in Fig. 1.2. Thus, for building a robust tool, it is important to take care

of the staining related errors.

Some of the widely used stain normalization methods are histogram equaliza-

tion and color transfer methods. However, these are blind to histological informa-

tion and lead to alteration of the same because they

1. ignore local color differences,

2. lead to smearing of histological components for overlapping PDFs of regions

of interest (ROIs) in color spaces, and

3. may alter nucleus or cytoplasm boundaries and/or their textures.

Color deconvolution methods are the most promising methods that present a

mathematical framework for stain color correction via singular value decomposi-

tion (SVD) and non-negative matrix factorization (NMF). However, existing SVD

and NMF based methods replace the stain color basis of query image with that of

the reference image instead of implementing basis transformation. These methods

also visualize illumination and color variation as independent problems and do

not entirely exploit the geometry of the underlying basis. Most of the existing

techniques alter the reference image itself if treated as a query. Here, we discuss

a recently proposed new method, namely GCTI-SN [2], that is a complete pipe-

line to address all the three causes of stain variations consisting of three stages

[3]. The imaging process of the microscopic images is understood as below.

While imaging, a specimen slide is exposed to incident light. Assuming a 3-

sensor RGB [red (R), green (G), and blue (B) color sensors] camera, the intensity

at a pixel p in the ith color sensor channel is given by [4]:

I p;λið Þ5
ðλi1δ

λi2δ
fi λð ÞE λð Þe2mi λð Þd pð Þdλ (1.1)

FIGURE 1.2

Color variations in microscopic images owing to staining process.
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where i5 1, 2, 3 correspond to R, G, and B channels, fi λð Þ. 0 for

λE λi 2 δ;λi 1 δð Þ represents the ith sensor’s response of camera within 6 δ of it’s

color wavelength, E λð Þ denotes SPD of imaging light, mi λð Þ denotes the charac-

teristic absorbance of the stain in the ith sensor channel, and d pð Þ denotes the

stain depth or the quantity of stain bound at pixel position p. The stain chemical

binds to the tissue of interest and absorbs colors of visible light spectrum accord-

ing to its texture. The above equation can be simplified and the intensity at pixel

p in the optical density (OD) space is defined as:

ODi pð Þ52 log
I p;λið Þ
Ib λið Þ 5mi λið Þd pð Þ; (1.2)

where Ib λið Þ is a scalar quantity that denotes the background (BG) intensity in

image or the intensity of unstained pixels, that is, with d pð Þ5 0. This equation is

similar to the Beer-Lambert law and relates image intensity to stain’s absorbance

spectrum mi λð Þ and the quantity of stain d(p) present at that pixel. As both I p;λið Þ
and Ib λið Þ are known for a microscopic image in each of the ith sensor channel,

OD values for the image can be computed in all the three channels. Thus, at each

pixel, we obtain a 3 3 1 vector of OD values. Stacking all pixels’ OD values

in a matrix, we obtain a 3 3 MN matrix IOD representing the OD values of an

M 3 N size RGB image.

The stain correction method requires the fixing of one image as the refer-

ence image. The input query images are stain normalized for the three errors

listed earlier with reference to the reference image. The first stage carries out

robust illumination correction. In the ideal scenario, unstained BG pixels in

the image would be characterized by RGB value [1 1 1]. However, due to illu-

mination variation, BG pixels have intensities different from [1 1 1]. Thus, (2)

requires conversion from RGB to OD space, where BG pixel’s intensity value

is transformed to origin in the OD space. If illumination variation is not cor-

rected appropriately, it leads to translation between the origins of the

Cartesian frames of reference and query images in the OD space. This step

requires a robust identification of the unstained BG in the query image and,

thereafter, computation of (2) for every pixel.

In the second stage of color basis correction, GCTI-SN employed SVD of OD

matrix into stain basis vector and stain quantity matrices as below:

IOD 5ΨA (1.3)

where IOD is a 3 3 MN OD matrix, is a 3 3 3 stain basis matrix represent-

ing the characteristic absorbance of stains for each of the three channels, and

A is a 3 3 MN matrix with each column storing the quantity of each of the

staining chemical with both and A as unknowns. The GCTI-SN workflow

consists of the following steps:

1. Finding stain basis vectors using SVD

2. Aligning the color basis frame of the query image to that of the reference image
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3. Finding robust stain color vectors using the wedge finding method [5] for both

query and reference images

4. Providing appropriate rotation to every pixel in the OD space that aligns the

wedges of both query and reference images.

Finally, stain quantity correction is achieved via histogram normalization. The

quantitative and qualitative results demonstrate the comparatively better perfor-

mance of the GCTI-SN method vis-a-vis existing methods.

1.4.1 Quantitative results

We identified the ROI, that is, the nucleus of lymphoblasts in B-ALL images and

compared the performance quantitatively in terms of mean square distance

(MSD) of the stain color between the reference and the normalized query images

over the ROI. This is realized by defining masks over ROIs shown as white cir-

cles in Fig. 1.3. On an average, each image mask covers at least three nuclei in

that image. Fig. 1.4 shows the box plot, and Fig. 1.5 shows the qualitative results

of the different methods.

1.5 Segmentation of cells of interest (in B-lineage ALL
cancer)

Once the images are stain normalized, cells are required to be segmented out of

the images. Cell segmentation methods can be broadly divided into the following

FIGURE 1.3

B-ALL Image with mask over nucleus to compute quantitative results in Mean Square

Distance from the color of nucleus of the reference image.
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categories: intensity thresholding based, contour-based, region-based, and

clustering-based methods. Intensity thresholding based segmentation is one of the

simplest and fastest methods of image segmentation. However, it does not provide

good segmentation results. Active contour model [8], popularly known as the

snake model, works on deformable curves that change their shape according to

the boundaries of the targeted object in the image. In this method, a set of internal

and external forces define how snakes conform to an object boundary. These

methods require an initial region of interest (ROI) as an input. As this ROI may

vary from cell to cell, it cannot be fully automated. Region-based segmentation

approaches generally look for connected components based on properties such as

texture and brightness. Similar regions are combined, and the same procedure is

repeated until the entire image is split into regions that belong to the same cate-

gory. These approaches include seed-based region growing and merging methods

[9]. Image clustering corresponds to segmentation via a grouping of similar pixels

(based on some metric, say Euclidean distance on intensity) into a single cluster

and correspondingly dividing it into multiple clusters. k-means clustering and

watershed are some of the most often used algorithms in segmentation [10,11].

Machine learning techniques have also been employed for cell segmentation,
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Box Plot on MSD for B-All images on Jenner-Giemsa Stain (tested on 30 images) Methods
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Color Deconvolution Method [5], NMF-based Color Deconvolution Method [4], and
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Taken from A Gupta et al., GCTI-SN: geometry-inspired chemical and tissue invariant stain normalization of

microscopic medical images, Med. Image Anal. 65 (2020) 101788.
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wherein the hybrid watershed and support vector machine (SVM) classifier-based

approaches have been used for cell nucleus segmentation from pap-smear images

[12]. However, machine learning methods work on hand-crafted features, which

can limit their performance.

B-ALL images require segmentation of the nucleus of B-lineage lymphoblasts.

However, these cell nuclei appear isolated as well as in clusters. For classifica-

tion, these cells need to be segregated out of the images and broken from clusters

to individual cells. We implemented cell segmentation using three different meth-

ods in B-ALL stain normalized images:

1. Method-1: via fully-automated cell segmentation pipeline shown in Fig. 1.6

2. Method-2 via deep belief network (DBN) [13]

FIGURE 1.5

Stain Normalization-Qualitative Results of histogram equalization method, color transfer

method, SVD and NMF based color deconvolution methods, and the GCTI-SN method [2]

on three images of B-ALL stained with Jenner-Giemsa Stain.

10 CHAPTER 1 Microscopy Cancer Cell Imaging



3. Method-3: via a newly proposed method based on convolutional neural

network (CNN).

1.5.1 Method-1 of cell segmentation using traditional image
processing techniques

In method-1, we used supervised Gaussian mixture modeling (GMM) based clus-

tering to locate possible ROIs, that is, the cell nuclei, in the original image. We

cropped these ROIs from the original image for segmentation later. This step is

very fast because it uses the apriori trained GMM model. Further, we used

k-means in the Lab color space along with the morphological operations to extract

a single or cluster of nuclei from the cropped ROIs extracted from the GMM clus-

tering step. As k-means on the original image would have consumed significant

time, GMM clustering added with k-means clustering provides robust and compu-

tationally fast segmentation methods. GMM stage helps with reducing the number

of false positives that could otherwise get detected as nuclei with applying only

FIGURE 1.6

Fully automated cell segmentation pipeline.
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k-means stage. Next, we employed the combination of distance transform, circular

Hough transform, and watershed algorithm to segment the overlapping nuclei.

1.5.2 Method-2 of cell segmentation using deep belief network

Deep learning methods provide another alternative to all these existing methods

and are increasingly used in image segmentation. In method-2, we attempted a

4-layer deep belief NN [13]. A DBN consists of stacked layers of restricted

Boltzmann machine. Again, the cell nuclei were identified in the Lab color space

using K-means clustering. However, the cluster of nuclei was segmented innova-

tively by marking the joining ridge of two cell nuclei as one class label, fore-

ground (cell nuclei) as the second class label and BG as the third class label.

Next, the 4-layer DBN was trained, and the joining ridge pixels were identified.

The pixels of these ridges were dropped to separate cell nuclei from clusters,

leading to cell segmentation. This method worked better than the existing techni-

ques that lead to the over-segmentation of some cells or fail to segment cells

from the clusters [13].

1.5.3 Method-3 of cell segmentation using novel convolutional
neural network architecture

Here, we propose a new method that utilizes a deeper CNN architecture for cell

segmentation. Before presenting the explanation of this method, we provide a

brief review of CNN architectures and of medical imaging segmentation methods

using CNNs.

1.5.3.1 Brief review of convolutional neural network architectures
With deeper CNN architectures, segmentation is implemented via classification at

the pixel level. However, the task is more complicated compared to image classi-

fication because the label of each pixel of the image is required to be predicted.

The broader idea of deep learning architectures is that the NN can acquire the

necessary features to carry out classification by the composition of functions

implemented via different layers of the network. CNN architecture is particularly

prevalent due to the requirement of a smaller number of parameters relative to a

fully connected network. A CNN architecture consists of multiple convolutional

layers. Each of them implements the convolution of the input image map with a

small kernel (3x3, 5x5, or so on) followed by activation functions that incorporate

non-linearity between different layers. Besides, there may or may not be pool

layers between different CNN layers. These pool layers can upsample or down-

sample the feature maps (output of any layer) depending upon the implementa-

tion. The last layers of a CNN network consist of fully connected layers followed

by a softmax layer for classification similar to the traditional NN.

12 CHAPTER 1 Microscopy Cancer Cell Imaging



The training of CNNs involves the minimization of a targeted loss function

that helps in extracting task-specific features. For classification at the image level,

the input image is transformed into a feature vector after passing through a series

of convolutional and pooling layers. This feature vector is then used to decide the

label of the input image. However, segmentation is required to produce the output

image of the same size as the input image, but with an output image containing

each pixel label according to the object to which the pixel belongs. For example,

say in an image, we would like to do segmentation of foreground and BG. This

can be achieved via the identification and labeling of a foreground pixel with

“one” and labeling a BG pixel with “zero.”

1.5.3.2 Semantic versus instance segmentation in medical imaging
In the context of medical imaging, another essential classification of the type of

segmentation is semantic segmentation vs instance segmentation. Instance seg-

mentation is generally more complex than semantic segmentation. In semantic

segmentation, the aim is to map each pixel to the object it belongs to, whereas

instance segmentation further requires identifying each instance of the object. For

example, in cytology images (say microscopic images of blood cells), we might

be interested in counting the number of cancer cells as a ratio of total cells.

Hence, it is crucial to carry out cluster cell segmentation to identify each cell

instance. Fig. 1.7 shows the difference between these two types of segmentations.

Moreover, we might build the cell classification tool that works on a cell

image instead of cell clusters. For instance, instance segmentation is essential

because semantic segmentation will treat a cluster as a single object, whereas

instance segmentation will try to extract the individual cells from the clusters.

The first attempt for semantic segmentation using CNNs was made through a

fully convolutional network (FCN) [14]. FCN consists of encoder�decoder type

architecture, in which encoder is used for hierarchical downsampling of the image

and decoder is used for upsampling the obtained feature maps, resulting in

the segmented output mask of the same size as the input image. However, the

decoder struggles to generate a smoother segmentation mask with the feature

FIGURE 1.7

(A) Original image (B) semantic segmentation (each cluster of cells get one color label)

(C) instance segmentation (each cell gets individual color label).
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maps obtained through repeated downsampling (by a factor of 32). To overcome

this, skip connections from the previous layers were added that generate smoother

segmentation masks (Fig. 1.8).

U-Net architecture [15] shown in Fig. 1.8 was designed for biomedical image

segmentation and is one of the most popular architectures [16�20]. Owing to its

good performance, U-Net became very popular in a short time. Its backbone

architecture is being used actively by the research community. It employs

encoder�decoder type architecture but with certain significant modifications. The

decoder of the U-Net is deeper and is symmetrical to the encoder. The decoder

upsamples the feature maps in the hierarchical fashion similar to downsampling

in the encoder. The encoder downsamples the image in steps, where the number

of feature maps is doubled and the size of the feature maps is halved with each

step. A similar set up is used in the decoder, wherein the number of feature maps

is halved and the size of the feature maps is doubled with each step. Finally, in

the last layer of the decoder module, 1 3 1 conv filters are used to output the

number of channels equal to the number of classes.

This arrangement gives this architecture a “U” shape and hence, it has the

name of U-Net. Another important characteristic of U-Net is the concatenation of

features from the encoder module to the decoder module. Each step of the

decoder obtains concatenation of two sets of features- one set obtained for this

step from the decoder and the other set from the corresponding step of the

encoder. To match the spatial size of the concatenating feature maps, feature

maps of the encoder are cropped to the same size as that of the decoder.

However, this cropping step can be eliminated by using padding during the opera-

tion of convolution. The U-Net’s overall arrangement helps to capture complex

structures in the data and generate smoother segmentation masks.

FIGURE 1.8

U-Net architecture [15].

Adapted from O. Ronneberger, P. Fischer, T. Brox, U-Net: convolutional networks for biomedical image

segmentation, in: N. Navab, J. Hornegger, W. Wells, A. Frangi (Eds.), Medical Image Computing and Computer-

Assisted Intervention—MICCAI 2015, Lecture Notes in Computer Science, vol 9351, Springer, Cham.
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The pixel-wise binary cross-entropy (BCE) loss function is used to train the

U-Net. However, to achieve instance segmentation, the weighted loss function is

used and boundary pixels are penalized more than results in segregated clusters.

Generally, U-Net faces challenges in separating overlapped cells. Several

approaches have been used to address this issue. For example, in [21], this prob-

lem is addressed by additionally predicting the contour of the ROI, while in [22]

overlapping cell segmentation is formulated as a three-class classification: BG,

foreground, and contour.

1.5.3.3 Method-3: novel proposed EDNiS-Net convolutional neural
network for automated nuclei instance segmentation

On similar lines, we propose an encoder�decoder-based CNN for Nuclei-instance

Segmentation (EDNiS-Net). The base module of the EDNiS-Net consists of three

stacks of convolutional filters separated by non-linear functions that help with

learning better discriminative functions, followed by a concatenation layer that

promotes feature-reusability and provides a suitable weighting of essential fea-

tures. Skip connections are introduced between the encoder and decoder modules

to preserve the context information (Fig. 1.9). Also, to further enhance the

instance segmentation, three output masks are predicted for each input image.

These masks are foreground, BG, and edges.

An additional advantage of predicting the edge maps is that the scaled version

of the edge maps can be subtracted from the foreground mask to separate the cells

further. The architecture also utilizes batch normalization and dropout to check

the stain variability and overfitting, respectively. The network is designed by uti-

lizing several basic building blocks, named as base modules, to realize an enco-

der�decoder architecture, namely EDNiS-Net, as shown in Fig. 1.9.

FIGURE 1.9

EDNiS-Net: Encoder-decoder-based convolutional neural network (CNN) for Nuclei-

instance Segmentation.
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1.5.3.3.1 Base module

The base module is designed to learn better discriminative functions and to have

an efficient flow of features. The base module consists of three layers of

k3 33 3 convolutional filters, where k is the number of filters. Each convolu-

tional layer is followed by dropout and batch normalization layers. Batch normali-

zation helps mitigate the effect of color variation of input images commonly

observed in stained microscopic images. It also speeds up the training of the net-

work. Dropout counters overfitting when the training data is less than the require-

ment as per the network’s capacity, leading to satisfactory generalization even

with less training data. Finally, the output of all three layers is concatenated and

passed to the next layer. Concatenated features from all the layers allow reusabil-

ity of features from the previous layers, wherein the network decides the impor-

tance of features for different labels. This strategy also provides shorter

connections in the network that checks the vanishing gradient problem in deep

architectures.

1.5.3.3.2 Encoder module

Encoder module consists of five base modules and four downsampling (maxpool)

layers. The number of filters in the first base module is 64 and increases by a fac-

tor of two in the following base modules. Each base module, except the last, in

the encoder, is followed by downsampling by two. Hence, the size of feature

maps reduces progressively, while the number of filters increases. This arrange-

ment helps to capture the intricate structure of the data.

1.5.3.3.3 Decoder module

The decoder module consists of base modules, upsampling modules, and an out-

put layer. Upsampling module upsamples the incoming feature maps by a factor

of two and concatenates the resultant features with the features of the same size

from the encoder module. This direct flow of information from encoder to

decoder helps in preserving the context information. A base module follows each

upsampling module and thus, the size of feature maps increases progressively.

After the final base module, the size of feature map is the same as the input

image. Finally, the output layer has c 3 1 3 1 filters, where c is the number of

output channels set to three as we predict foreground (nuclei mask), BG, and

edges.

1.5.3.3.4 Proposed loss function

For an input image I with foreground M, background B, and edges E, we predict

Î with M̂ B̂, and Ê. Besides using the BCE loss and dice loss, we also introduce

a distance learning term. Given M, M̂ and B̂, we define:

d
M; M̂

5M2M̂
2

F and d
M; B̂

5M2B̂
2

F .
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We minimize d
M; M̂

and maximize d
M; B̂

for better prediction of the segmen-

tation mask and hence, define distance loss as:

Ldist5exp ðd
M; M̂

Þ1 exp ð2d
M; B̂

Þ

We incorporated this term in the final loss function that is the weighted sum

of BCE, dice loss, and distance loss as:

ℒ5w1ℒBCE 1w2ℒdist 1w3ℒdice;

where BCE indicates binary cross entropy between input image I and the pre-

dicted image Î, and

ℒdice 5 12 23
jI- Î j1A
jIj1 j Î j1A

;

where ε is added to ensure non-zero denominator. Besides helping pixel classifi-

cation, this loss also promotes distance learning that leads to better separation

between the foreground and the BG.

1.5.3.3.5 Results and discussion

We report and compare results on two metrics: dice similarity coefficient (DSC

or F1-score) and Intersection over Union (IoU or Jaccard index between the seg-

mented and the ground truth masks) computed at the pixel level. We compare the

quantitative and qualitative performance of the EDNiS-Net with U-Net trained

using weighted combinations of BCE loss and dice loss, and U-Net trained with

the proposed loss (U-Net1 ). Table 1.1 shows the performance comparison in

terms of DSC and IoU on our inhouse dataset of cell imaging on Multiple

Myeloma, another type of blood cancer. For both the metrics, EDNiS-Net is lead-

ing the other two methods. U-Net1 has better performance than U-Net, which

proves the usefulness of the proposed loss function. This loss function promotes

the BG-foreground separation leading to 0.6% and 1% performance gain in terms

of DSC and IoU as compared to U-Net. Visualization of the segmented masks

generated by U-Net1 and EDNiS-Net is shown in Fig. 1.10, where each instance

of nucleus mask is assigned a different color, while the overlapping nuclei have

the same color. EDNiS-Net is observed to separate majorly overlapped nuclei as

well. It also has better precision and generates a smoother segmentation mask.

Table 1.1 Comparison of EDNiS-Net with U-Net and U-Net1 on MM19
dataset.

Model DSC IoU

U-Net 0.933 0.885
U-Net1 0.939 0.895
EDNiS-Net 0.947 0.905
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1.5.3.4 Region-proposal based convolutional neural network
architectures

Another approach for nuclei/cell segmentation is based on object detection meth-

ods using region-proposal CNN architectures [24,25]. These methods predict axis-

aligned bounding boxes representing the shapes of the objects of interest. Pixels

inside bounding boxes are next classified to obtain refined instance segmentation.

For example, Fig. 1.11 shows cell segmentation using a region proposal-based

CNN network. In this architecture, the upper network produces the bounding

boxes and the lower network uses these bounding boxes to generate the segmenta-

tion mask.

Although such networks have good performance in segregating a cluster, they

perform relatively poor with reference to the accuracy of the segmented masks.

Some authors have combined U-Net with detection networks for better cell seg-

mentation performance [26,27]. Another related approach based on object detec-

tion is StarDist [28] that uses star-convex polygon instead of bounding boxes for

representing the shape. For each pixel, distance to the boundary along predefined

FIGURE 1.10

Predicted segmentation masks with different methods on sample images (A,D) of MM19

dataset. Each color denotes a different nucleus mask. In comparison to U-Net1 (B,E),

EDNiS-Net (C,F) is able to separate the overlapped nuclei efficiently.

FIGURE 1.11

Cell segmentation with region-proposal based network [23].

Adapted from S.U. Akram et al., Cell segmentation proposal network for microscopy image analysis, in:

Carneiro G. et al. (Eds.), Deep Learning and Data Labeling for Medical Applications, DLMIA 2016, LABELS

2016, Lecture Notes in Computer Science, vol 10008. Springer, Cham.
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radial directions is regressed along with the prediction of the pixel probability

belonging to the object. Finally, a non-maximum suppression is performed

to have the final segmentation mask. This approach seemed to work better than

U-Net and Mask R-CNN [28].

1.6 Classification of cancer and healthy cells
Finally, the goal is to carry out the classification of cells for disease diagnosis

and monitoring. Before the popularity of deep learning, SVM, NN, random forest,

and naive Bayes trained with hand-crafted features were used as the popular

machine learning methods to implement cell classification ALL cancer. For

example, [29�39] used traditional machine learning methods of SVM, NN,

Fuzzy C-means classifier, and K-nearest neighbor classifiers on the ALL-IDB

dataset (https://omictools.com/all-idb-tool) and other datasets. The above classi-

fiers used hand-crafted features, mainly consisting of color, shape, and texture

features. As these features may not be the true descriptors of class discriminative

characteristics, it may lead to non-optimal performance. Hence, an ideal solution

would be to learn such discriminative features from the data itself. This solution

is provided by the CNNs that consist of multiple two-dimensional filters arranged

in a feed-forward manner.

A deeper architecture implements the composition of functions, allowing the

network to learn a complex low-level and high-level features from the data.

However, CNNs require a large training dataset that is generally not available,

particularly, in the medical domain. This issue is resolved using transfer learning,

wherein a pretrained CNN is fine-tuned with the given data. It is still a better

approach to train a network from scratch, provided there is a required size dataset.

A generic classification pipeline is shown in Fig. 1.12. The pipeline involves the

extraction of the ROI (for example, a cell) using a segmentation algorithm (dis-

cussed in the previous section), which is subsequently identified as normal or can-

cer cell for diagnostic purposes. One of the significant limitations of the above

FIGURE 1.12

A generic classification pipeline.
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works was the limited size of a dataset of fewer than 400 images. This can lead

to overfitting on limited data that can potentially fail on prospective subjects’

data. We addressed this issue by building a large-sized dataset for B-ALL cancer,

as explained in the next section.

1.6.1 C-NMC 2019 challenge dataset

We prepared a dataset of 118 subjects, 49 healthy and 69 cancer subjects. We

used our in-house developed method of stain normalization explained in

Section 1.4 followed by Method-1 of cell segmentation explained in Section 1.5

on microscopic images. The data was appropriately curated. This dataset is pub-

licly available at The Cancer Imaging Archive (TCIA) [41] and has been dis-

played according to the TCIA standard protocols [42]. We also conducted the

medical imaging challenge, namely, Classification of Normal versus Malignant

Cells in B-ALL White Blood Cancer Microscopic Images (C-NMC) 2019 [43], in

the IEEE International Symposium on Biomedical Imaging (ISBI), 2019 confer-

ence held in Venice, Italy in April 2019.

Data is prepared at the subject-level and is split into the training set and test-

ing set. The training set consists of 8491 cancer cell images collected from 60

cancer subjects and 4037 normal cell images collected from 41 healthy subjects,

with a total of 1,2528 images [41]. Test data contains a total of 2586 cell images,

collected from 9 cancer subjects and 8 healthy subjects [41]. None of the cell

images of these subjects are used for training the classifier and hence, results of

the test data are unbiased. As original cell images are of different sizes, all images

are zero-padded such that the centroid of every cell is at the center. After zero-

padding, all cell images are made to the size of 350 3 350 pixels. Overall, the

dataset consists of three challenges:

(1) The dataset has a class imbalance, that is, the number of cancer cell images

is almost double the number of normal (healthy) cell images.

(2) The dataset has label noise in cancer class. As explained above, the dataset is

prepared with the ground truth obtained from the medical expert’s domain

knowledge.

(3) It is required to capture subject variability that is crucial because the

proposed tool should work robustly on the prospective subjects’ data. This is

also the reason that the data is prepared and made available at the subject

level.

1.6.2 Classification on C-NMC 2019 dataset

The very first work carried out by us on the B-ALL dataset was in [44]. In this

work, we presented the stain deconvolutional layer-based CNN model to classify

healthy and cancer cells by projecting the image data to OD space via stain

deconvolution. However, a significant limitation of the approach was that the
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train-test split was not done at the subject-level. Hence, the same subject’s images

could be present in both the training and the test data. This can cause the classi-

fier to fail on the prospective (new unseen) subjects’ data.

Learning from this, we again segmented and prepared the dataset at the sub-

ject level, which was subsequently deposited at TCIA and was named as C-NMC

2019 dataset. The dataset is prepared at the subject level so that all images of a

given subject are present in either train, validation, or test set. In the 2019 chal-

lenge, several teams participated and have published their works on this dataset.

The section below briefly discusses the top-performing methods of the challenge.

A neighborhood-correction algorithm in combination with fine-tuned ResNets

was used in [45]. In this work, ResNets were used to generate the feature maps,

which were then utilized for constructing the Fisher vectors. Finally, these Fisher

vectors were exploited by a neighbors’ majority-based label correction approach.

This algorithm was used with an ensemble of ResNet50, ResNet101, and

ResNet150, achieving a weighted-F1 score of 91.04%, leading to the first position

in the challenge.

Authors in [46] also exploited a pretrained ResNeXt50, which was fine-tuned

using a different learning rate for different layers. They utilized different augmen-

tations during testing, resulting in the final weighted-F1 score of 88.9%. An

ensembling of DenseNet121, SENet154, ResNet101, DeepTEN, VGG16, and

InceptionV4 combined with pseudo-labeling approach was used in the DeepMen

architecture in [47]. In DeepMen, a pretrained network is iteratively used to pre-

dict the labels of test data, which are then used to re-train the model, assuming

them to be the ground truth. This approach achieved a final weighted-F1 score of

88.5%. Authors in [48] exploited PNASNet along with the fusion and voting

approach, which resulted in a weighted-F1 score of 87.9%. Authors in [49] had

split the majority class samples into two smaller subsets and combined them with

the minority class samples to form two different training sets. These two sets

were used to fine-tune two separate pretrained Inception ResNets. The resulting

models were then jointly fine-tuned on the complete training set to make the final

predictions. This method was able to achieve a weighted-F1 score of 87.6%.

Other researchers used other similar methodologies based on Inception [50�53].

1.6.3 SDCT-AuxNetθ CNN architecture for C-NMC 2019 dataset

Recently, we have introduced another architecture, namely, SDCT-AuxNetθ [40].

This architecture has achieved, so far, the best performance compared to all the

methods discussed earler on the C-NMC dataset. The SDCT-AuxNetθ utilizes SD-

Net shown in Fig. 1.13 as the backbone architecture [54]. The SD-Net uses SD-

layer [44] appended at the front of a compact CNN architecture. The SD-layer

operates in the OD space (OD-space) and helps calculate stain-absorbed quantities

based on the cell category. As the absorbed quantities comprise the texture of the

tissue or of the cells of interest, these are better representatives of texture class

features as compared to RGB pixel intensities. Thus, SD-layer helps in improving
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classification performance. A detailed explanation of the SD-layer is provided in

[44]. In [54], we modified this architecture, where the DCT-layer follows SD-

layer. DCT-layer is inspired by the concept of flow cytometry, which is the con-

ventional approach for cancer diagnosis. It is based on the spectroscopy or

frequency domain analysis of the sample. DCT-layer, in combination with SD-

layer, helps to boost the class discriminative features. DCT-layer projects the

input image in the DCT domain and induces class-dependent sparsity.

Interestingly, DCT-layer induces more sparsity in the healthy cells than the

cancer cells as observed in [40]. This difference in the sparsity helps enhance the

performance of classification. Here, an input image is sequentially projected onto

the OD-space that helps in calculating class-dependent stain quantities and then to

the DCT-domain that induces class-dependent sparsity. As a next modification,

SDCT-AuxNetθ is proposed that consists of an auxiliary classifier that is trained

and tested with a novel strategy. SDCT-AuxNetθ has two classifiers: (1) SDCT-Net

and (2) an auxiliary classifier. Also, this architecture uses two different transforma-

tions. While SDCT-Net uses bilinear pooling, auxiliary classifier uses spectral aver-

aging (depth-wise averaging) of the feature maps to classify cell types.

Training of the SDCT-AuxNetθ: The training of the SDCT-AuxNetθ is carried

out in two steps. First, the SDCT-Net is trained in an end-to-end fashion. Once,

the SDCT-Net is trained, the prediction on all the training data is made, and the

correctly predicted samples are used to train the auxiliary classifier. The correctly

predicted samples are passed through the feature extracting portion of the SDCT-

Net, they are passed to the spectral averaging layer and then used to train the aux-

iliary classifier, as shown in Fig. 1.14.

Testing of the SDCT-AuxNetθ: Similar to training, the testing of SDCT-

AuxNetθ is also a two-step process, as shown in Fig. 1.15. Both the classifiers

(SDCT-Net and auxiliary classifier) are used in a coupled fashion, and the cou-

pling ratio is decided by a user-defined variable called confidence probability.

First, for a given test sample, the prediction is made using the SDCT-Net and its

confidence (probability) is observed. If the prediction probability is higher than

FIGURE 1.13

Architecture of SD-Net for cell classification for B-ALL cancer diagnosis [40].

Taken from S. Gehlot, A. Gupta and R. Gupta, SDCT-AuxNetθ: DCT augmented stain deconvolutional CNN

with auxiliary classifier for cancer diagnosis, Medical Image Anal. 61 (2020) 101661.
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FIGURE 1.14

Training of SDCT-AuxNetθ.

Taken from S. Gehlot, A. Gupta and R. Gupta, SDCT-AuxNetθ: DCT augmented stain deconvolutional CNN

with auxiliary classifier for cancer diagnosis, Medical Image Anal. 61 (2020) 101661.

FIGURE 1.15

Testing of the SDCT-AuxNetθ.

Taken from S. Gehlot, A. Gupta and R. Gupta, SDCT-AuxNetθ: DCT augmented stain deconvolutional CNN

with auxiliary classifier for cancer diagnosis, Medical Image Anal. 61 (2020) 101661.
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the confidence probability, the prediction is considered to be final. However, if it

is less than the confidence probability, the test sample is first passed to the feature

extraction portion of the SDCT-Net and then to the spectral averaging. Finally, it

is predicted using the auxiliary classifier. This prediction by the auxiliary classi-

fier is considered to be the final decision. Thus, the confidence probability is

deciding the contribution of both the classifiers. Also, SDCT-AuxNetθ is a generic

architecture, with SDCT-Net being a subset of it with θ5 0, while only the auxil-

iary classifier is active for θ5 1 in the SDCT-AuxNetθ architecture. This architec-

ture can achieve a weighted-F1 score of 94.8% that is highest on the C-NMC

2019 dataset.

1.7 Conclusions

In this chapter, we have addressed the problem of building an automated diagnos-

tic tool for B-ALL cancer, a commonly occurring pediatric white blood cancer.

We have explained the challenges associated with building the automated pipe-

line, the steps involved, and the efforts carried out in different stages as well as

the current literature. In particular, we have explained the process of normaliza-

tion, segmentation, and classification of cancer cells with respect to healthy cells

with B-ALL as a prototype disease. We have described our efforts on the C-NMC

2019 B-ALL dataset, which is the largest curated dataset of cell images of B-

ALL cancer. Deep learning architectures, results, and discussion on this dataset

are provided in detail in this chapter.
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2.1 Introduction
In the past decade, an increasing body of literature evolved surrounding the devel-

opment of computational algorithms for computer-aided diagnosis of various dis-

eases. The rapid development of advanced computational algorithms from the

domain of machine learning, and particularly the reported performance of algo-

rithms based on deep learning (DL), shows promise for application in the clinical

environment to (1) assist clinicians with tedious daily tasks and allow them to

focus more on complex or urgent patient management, (2) offer second reads or

opinions on tasks that require specialized training, as well as (3) assist in the

training and education of new clinical experts. However, the complexity of devel-

oping algorithms for these applications, as well as the somewhat limited valida-

tion of large and diverse datasets spanning diverse patient populations, has a

direct effect in their reproducibility, which is reflected in the lack of adoption by

clinical researchers and eventually, the clinical translation. This chapter offers an

overview of the state-of-the-art computational techniques, with a particular focus

on their application in the field of brain and breast cancer. We specifically focus

on major applications that DL algorithms have shown promise in addressing clini-

cal issues, as well as challenges and potential methods to improve the reproduc-

ibility of such algorithms in biomedical image analysis of brain and breast cancer

patients. The included references should not be considered as an exhaustive

�These authors changed employment before the publication of this book chapter, but made contri-

butions to it solely while employed by the University of Pennsylvania.
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literature review, but as studies serving as examples for the points made in this

chapter.

2.2 Building upon current clinical standards

2.2.1 Clinical standards

Successful treatment of cancer is challenged by the heterogeneous molecular, phe-

notypic, and radio-phenotypic nature of malignancies [1�6]. Especially, as most

current diagnoses are based on direct tissue sampling, which often is only of one

portion of a tumor, such samples can not capture the spectrum of cancer heteroge-

neity. Furthermore, the current clinical criteria for assessing treatment response,

known as the Response Evaluation Criteria In Solid Tumors and the Response

Assessment in Neuro-Oncology (also known as the Macdonald criteria), consider

two-dimensional measurements of the major axes of a tumor on a subjectively

chosen slice, representative of the tumor’s largest extent [7�9]. Although these

criteria are widely used, they have limited reproducibility due to their intrinsic

subjectivity [10]. Furthermore, the nature of the 2D measurement involved in

these criteria would render them appropriate for tumors that grow in a consistent

manner across the tumor boundaries, which contradicts the well-known nature of

arbitrarily shaped tumors. Acknowledging the limitations of these criteria, and

with the intention of improving tumor assessment, the diagnostic Imaging

Reporting And Data Systems (IRADS) for (1) breast (i.e., BI-RADS) [11], (2)

prostate (i.e., PI-RADS) [12], and (3) lung (i.e., LUNG-RADS) [13], have

included imaging characteristics describing the apparent texture (also known as

radiomic features) [14]. Such features have shown their promise on offering a

macroscopic characterization of biological processes in the tumor microenviron-

ment associated with clinical outcome and the underlying tumor molecular char-

acteristics [15�22].

2.2.2 Tissue segmentation

To accurately assess a region of interest (ROI), for example, the tumor, the task

of segmentation is essential, irrespective of whether it refers to the involuntary

partitioning of an image that an expert radiologist conceptually performs to assess

a clinical image and create a report for a patient, or to the actual delineation of

the various structures appearing in a scan. The tedious and time-consuming man-

ual processing steps involved in such a process, as well as the human rater vari-

ability that potentially impede not only the further analyses, but also their

repeatability and reproducibility, assisted in making apparent the importance of

automated approaches for the segmentation task, leading to various computer-

aided segmentation methods. The majority of such methods reported in the litera-

ture are based on population-derived knowledge and its application to new data,
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to discriminate ROIs within an image [23,24]. These are characterized as “dis-

criminative methods” and examples beyond DL-based ones include support vector

machines (SVMs), boosting, and random forests. The main limitation of these

methods is that they are dependent on large, diverse, and well-annotated datasets,

as well as in the way they handle ROIs that have not been previously seen/

included in the population data used for their training.

Although neural networks were introduced in the 1940s [25], these have been

recently re-introduced with a stacking of multiple layers to process input data,

hence providing the depth that attributes their naming “deep learning”.

Convolutional neural networks (CNNs) typically include the convolution of the

input data with several local kernels followed by a non-linear transformation on

each layer, the output of which is sent (optionally down-sampled) on the follow-

ing stacked layer. This processing increases the effectiveness of the analysis of

the assessed input data, while produces inferences invariant to translation as they

increase the field of view of each “neuron”. Minimization of a cost function (e.g.,

Kullback�Leibler divergence [26]) is included during their training and describes

the difference between the ground truth labels provided during training and the

final predicted labels.

The tumor segmentation problem is typically dealt as a voxel-wise classifica-

tion problem, which results in spatial inconsistencies in the segmentation result,

potentially due to high frequency intensity fluctuations in areas of increased imag-

ing noise. Various strategies have been proposed to improve robustness to imag-

ing noise including cascaded architectures [27], multi-scale image patches

[23,27], and building CNNs with fully connected layers comprising convolutions

with 12 or 13 kernels [28]. Integration of CNNs with Markov (MRF) or

Conditional Random Fields (CRF), have also shown significant promise, imple-

mented as a post-processing step, or as a formulation of neural networks, or even

as recurrent neural networks (RNNs) such that both CNNs and CRF-RNNs can be

trained with back-propagation algorithms end to end [23,29�31].

2.3 Deep learning applications in brain cancer
The increased use of magnetic resonance imaging (MRI) for brain tumor diagno-

sis has led to recent studies exploring the associations between MRI-based indices

and clinical brain tumor diagnostic markers. Applications of DL in this field have

been widely explored, examining the efficacy of MRI in developing diagnostic,

prognostic, and predictive biomarkers [32].

2.3.1 Tumor grading

Brain tumors show heterogeneous characteristics, making it very hard to distin-

guish between different tumor types, such as primary gliomas and metastatic
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tumors. From the clinical perspective, it is very important to provide a distinction

between different tumor types for the treating physician to come up with an opti-

mal treatment plan. Several computer-aided analytic tools have been proposed in

the past with an aim to provide a more objective decision than human, and to pos-

sibly serve as a consistent and reproducible brain tumor diagnostic procedure. Ge

et al. proposed a novel multi-stream deep CNN architecture for classifying glio-

mas into low-grade gliomas (LGGs) and high-grade gliomas (HGGs) [33]. Using

sensor fusion method on T1, T2 and FLAIR images to enhance the performance

through feature aggregation, the authors reported classification accuracy of

90.87% on their test data. Khawaldeh et al. [34] proposed a system for non-

invasive detection of healthy brain scans, LGG, and HGG scans, using a modified

version of AlexNet CNN. While training their model on whole-brain MRI of 130

subjects belonging to the three classes, they reported classification performance

of 91.16%. Sajjad et al. [35] proposed an extensive data augmentation method

fused with CNN for multi-grade classification of brain tumors (grade-I to grade-

IV) using segmented brain tumor MRI. They used a pretrained VGG-19 CNN

architecture for classification using transfer learning on a dataset of 121 subjects

and achieved accuracies of 87.38% and 90.67% for data before and after augmen-

tation, respectively.

Another set of DL-based methods dealt with the categorization of tumors into

different tumor types. Fatih et al. combined CNN with neutrosophic set—expert

maximum fuzzy-sure entropy (NS-CNN) for classification of brain tumors into

benign and malignant categories [36]. They used the neutrosophic set—expert

maximum fuzzy-sure method for tumor segmentation. These images were then

fed to CNN to extract features, which were subsequently used within SVM classi-

fication framework. While carrying out the experimental evaluation of their

method via five-fold cross-validation on 160 tumors (80 benign and 80 malig-

nant), they achieved classification success rate of 95.62%. To distinguish between

different brain tumor types, including glioma, meningioma, and pituitary tumors,

Alqudah et al. used CNN under three different configurations: (1) on cropped

lesions, (2) on uncropped lesions (i.e., the whole image), and (3) on the seg-

mented lesions. Prospective evaluation of the trained model on a test set resulted

in an accuracy of 98.93% for the cropped lesions, 99.00% for uncropped lesions,

and 97.62% for the segmented lesions [37].

2.3.2 Survival analysis

Gliomas, in general, tend to show grim prognosis; therefore, prediction of overall

survival at the initial presentation of the disease provides valuable information for

surgical and treatment planning [38,39]. Prediction of overall survival of gliomas

using DL approaches have gained considerable attention in the recent past [40].

In one of the earlier attempts to predict survival using brain MRI, Lao et al. used

transfer learning method to calculate DL radiomic features and eventually predict

overall survival in glioblastoma [41]. The authors extracted 1403 engineered
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features and 98304 deep features from preoperative MRI data of 112 patients.

Following the feature selection step, the authors constructed an imaging signature

by using the least absolute shrinkage and selection operator Cox regression

model. The proposed DL-based radiomic signature achieved a c-index of 0.710

(95%CI: 0.588�0.932) and hazard-ratio of 5.128 (P , .001, 95%CI:

2.029�12.960) in segregation of patients into prognostically different groups. In

addition to MRI-based DL approaches, authors have also explored the effective-

ness of machine learning in integrating genomic and clinical variables for assess-

ment of survival in gliomas [42,43].

Among the recent studies, Nie et al. [44] proposed a two-layered learning

approach to predict overall survival of HGGs. At the first layer, the authors

applied DL on multimodal preoperative MRIs, including T1-post-contrast,

resting-state functional MRI (rs-fMRI), and diffusion tensor imaging (DTI), to

derive multiple metric maps. These maps included diffusivity maps, extracted

from DTI, and fluctuation amplitude maps and functional connectivity maps,

extracted from rs-fMRI. The authors applied a multi-channel architecture of 3D

CNNs on the metric maps to extract high-level predictive features from each indi-

vidual patch. At the second layer, these features along with the tumor-related fea-

tures (tumor size and histopathological subtype) and demographics (age) were fed

into an SVM to classify 56 HGGs into long and short survivors, reporting an

accuracy of 90.66%. Han et al. [45] in a recent study, used 55 HGGs from their

own institution and 128 HGGs from The Cancer Imaging Archive (TCIA). For

each image, they calculated 348 engineered features and 8192 DL features,

derived by using a pretrained CNN. Feature selection and Elastic Net-Cox model-

ing methods were applied to stratify patients into prognostically different groups.

The survival analysis segregated the data into different prognostic groups with a

log-rank test P, .001 and P5 .014 in local and TCIA patients.

2.3.3 Radiogenomics

Radiogenomics is generally performed to understand how a particular genomic

alteration impacts the imaging traits of the tumors [46]. Recently, there has been

growing evidence that computational analysis can help in developing MRI-based

surrogate indices of tumor molecular characteristics, without the need to perform

expensive, advanced genetic testing. Three genetic markers, isocitrate dehydroge-

nase (IDH) mutation, 1p/19q co-deletion, and oxygen 6-methylguanine-DNA

methyltransferase (MGMT) promoter methylation status are of significant interest

in gliomas.

2.3.3.1 1p/19q
Recent studies on glioma based on TCIA datasets have uncovered the strong asso-

ciation of 1p/19q co-deletion with the patient outcomes, and several authors have

developed non-invasive machine-learning-based methods to predict 1p/19q status

[33,47]. Akkus et al. included preoperative T1-Gd and T2 images of a total of
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159 LGGs (57 non-deleted and 102 co-deleted) for detection of 1p/19q status

[47]. They assessed multiple configurations of a multi-scale CNN architecture,

and found the best configuration to provide an accuracy of 87.7%, sensitivity of

93.3%, and specificity of 82.22%. Ge et al. proposed a novel multi-stream deep

CNN architecture for detection of 1p/19q co-deletion status [33]. The authors

employed sensor fusion method on T1, T2 and FLAIR images to enhance perfor-

mance through feature aggregation, and used 2D brain slices coupled with 2D

image augmentation to mitigate overfitting. Experiments using the proposed

method showed 89.39% accuracy in classifying glioma patients with and without

1p/19q co-deletion.

2.3.3.2 Isocitrate dehydrogenase
IDH mutation is fundamentally important and serves as a prognostic indicator for

gliomas. Non-invasive assessment of IDH mutation by computational imaging

signatures could significantly influence therapeutic decision-making. Several

MRI-based predictors of IDH have been developed using DL approaches in the

recent past. Li et al. proposed a DL-based model, wherein they used a modified

CNN architecture having six convolutional layers and a fully connected layer to

segment tumors [48]. As an alternative to extracting radiomic features from seg-

mented images, the features were derived by normalizing the output of final con-

volutional layer. Features discriminative of IDH status were calculated using

paired t-test and F-score. The authors reported an AUC of 0.92 compared to 0.86

obtained using traditional machine learning for predicting IDH1 on a dataset of

151 LGGs. Recently, Liang et al. have proposed a novel multimodal 3D

DenseNet model to predict IDH status using MRI data [49]. The evaluation of the

method yielded an accuracy of 84.6% and an AUC of 85.7% on validation data

from the International Brain Tumor Segmentation (BraTS) 2017 challenge

[40,50�53]. Similarly, Chang et al. employed a residual CNN to predict the IDH

mutation status on multi-center data of 406 subjects, including grade II-IV [54].

Their method achieved classification accuracies of 82.8%, 83.0%, and 85.7% on

training, validation, and testing cohorts, respectively.

2.3.3.3 6-methylguanine-DNA methyltransferase
MGMT status has been increasingly used as a prognostic and predictive bio-

marker for gliomas [55]. MGMT constrains the repair process of temozolomide-

induced therapeutic DNA damage in glioma patients, and thereby strongly corre-

lates with the overall survival. Moreover, there is clinical evidence suggesting

that MGMT has strong association with better treatment response to temozolo-

mide [55], thereby making it very important to distinguish between MGMT meth-

ylated and unmethylated tumors prior to treatment. Levner et al. was one of the

pioneering groups to develop DL-based radiogenomic approaches [56]. They pro-

posed a method to predict MGMT status in de novo glioblastoma patients by

extracting features from brain MRIs using S-transform based space-frequency tex-

ture analysis and utilizing the features within a neural network framework to
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predict the methylation status of a glioblastoma. The author’s group reported a

classification success rate of 87.7% on 59 patients. Han et al. used bi-directional

convolutional RNN to leverage the spatial aspects of 3D MRIs to predict MGMT

status of gliomas [57]. The authors reported accuracies of 67% and 62% on vali-

dation and test data of glioblastoma patients acquired from TCIA. Korfiatis et al.

evaluated the performance of three different residual CNN architectures

(ResNet50, ResNet34 and ResNet18) to predict MGMT status on MRIs of 155

subjects [58]. Among the three chosen architectures, the ResNet50 outperformed

the others, achieving an accuracy of 94.90%. The corresponding accuracies were

80.72%, and 76.75% on ResNet34 and ResNet18, respectively. Recently, Chang

et al. have proved the effectiveness of CNN in detecting IDH1 mutation, MGMT

methylation, and 1p/19q co-deletion status on a dataset of 256 subjects acquired

from TCIA [59]. They achieved classification accuracies of 94%, 92%, and 83%

for IDH1 mutation, 1p/19q co-deletion, and MGMT methylation status.

2.3.4 Pseudoprogression

The independent and added value of DL in developing predictive biomarkers for

brain tumors are explored using surrogate measures for pseudoprogression (PSP)

and distinguishing from true progression (TRP). The term PSP is defined as the

intensity enhancement that brain tumor patients show in certain regions (in the

vicinity of the resected tumor) in the months following the completion of chemor-

adiotherapy, and it initially progresses but usually stabilizes and may regress on

follow-up MRI sequences. This mimics TRP but has different characteristics

when compared with each other. It is caused by therapy-associated but not tumor

growth�associated pathologic changes. It is becoming increasingly important to

accurately distinguish PSP and TRP because therapeutic strategies need to be

adapted by the treating physicians for each of these entities; for example, addi-

tional surgical resection may be pursued for TRP but not for PSP. An incorrect

diagnosis of progression (i.e. PSP) may lead to unnecessary surgical resection or

erroneous termination of a successful therapy. An increasing attention has been

recently paid to this field of research. Jang et al. proposed a hybrid approach cou-

pling a CNN algorithm to a conventional machine learning, long short-term mem-

ory (CNN-LSTM) approach, to distinguish between PSP and TRP in glioblastoma

[60]. The evaluation of their method on multiinstitutional data of 78 patients

yielded an AUC of 0.83. Building upon these successful past efforts of discrimi-

nating PSP from TRP, Akbari et al. [61] utilized MRI sequences of 63 glioblas-

toma patients comprising diffusion-weighted imaging, DSC-MRI and

conventional imaging sequences (T1, T2, T2-FLAIR, T1-Gd) to distinguish

between PSP and TRP. The authors adapted a CNN model pretrained on

ImageNet LSVRC-2010 dataset for quantifying the imaging profile of lesion of

interest on the follow-up MRI scans. The DL features were integrated with an

SVM classifier; the corresponding accuracy in train-test setting was 87.50% for

predicting PSP (AUC5 0.81) and 78.26% for TRP (AUC5 0.87).
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2.4 Deep learning applications in breast cancer
Breast cancer is the most common cancer in women worldwide, with an estimated

(approximately) 270,000 new cancer cases diagnosed in the United States (U.S.)

in 2019 [62]. Breast cancer is also the primary cause of cancer-related deaths in

women in developing countries where many cases present at advanced stages, and

is the second most common cause of death in women in developed countries

where screening is more common. Most developed health care systems have

implemented population breast cancer screening programs based on evidence

from randomized trials and real-world screening that it reduces breast cancer mor-

tality. Breast cancer screening involves visual assessment of digital mammograms

or digital breast tomosynthesis (DBT) images by readers to identify suspicious

abnormalities that warrant further investigation or, recall from screening, to rule

in or rule out breast cancer. As visual mammographic image interpretation is sub-

jective, there may be both a high and variable false-positive and false-negative

rates. In addition, as mammographic imaging is anatomic rather than a physio-

logic imaging modality using contrast (i.e., MRI), malignant lesions may be hid-

den or “masked” by normal breast tissue that is similar in optical density to some

breast cancers.

Much of the effort to improve breast cancer screening outcomes has focused

on intensifying screening, for example, double-reading instead of single-reading

and more frequent or supplemental screening (with breast ultrasound or MRI),

which entail increased resources and often comes at a cost of higher false-positive

rates. Furthermore, personalized breast cancer screening regimens tailored to an

individual’s breast cancer risk are increasingly being advocated. For example, it

has been widely established that increased breast density not only masks the

detection of some breast cancers but also is an independent risk factor for devel-

oping breast cancer [63], and the reporting of mammographic density is mandated

in more than 70% of the U.S. to identify the women who may benefit from sup-

plemental screening [64]. This complex landscape of breast cancer screening

offers several opportunities for improvements via DL, with research currently

focusing primarily on three aspects: (1) increasing accuracy in breast density eval-

uation [65�69] and breast cancer risk assessment [70�72], (2) improving perfor-

mance in breast cancer diagnosis [73�76], and (3) enhancing efficacy in breast

cancer clinical practice [77�79].

2.4.1 Increasing accuracy in breast cancer risk assessment

Gastounioti et al. [71,80] were among the first studies to explore the potential of

CNNs in breast cancer risk assessment in analyzing mammographic images. The

authors proposed a hybrid computational approach that employs CNNs to opti-

mally fuse parenchymal complexity measurements generated by conventional tex-

ture analysis into discriminative meta-features relevant for breast cancer risk

36 CHAPTER 2 Computational imaging applications in brain



prediction. This study showed that CNNs can capture sparse, subtle, yet relevant

interactions between localized patterns present in texture feature maps derived

from mammographic images, thereby improving the breast cancer risk prediction

performance of conventional parenchymal texture analysis (AUC5 0.90 vs

AUC5 0.79, P ,.05).

In more recent studies [70,72], CNNs have been used to train DL models fed

directly with raw digital mammograms toward predicting the risk of future breast

cancer development. Dembrower et al. [72] found that the DL risk score could

more accurately help predict which women were at risk for future breast cancer

compared with age-adjusted dense area (odds ratio: 1.6 and 1.3, respectively). In

addition, the false-negative rate was lower for the deep neural network than for

the age-adjusted dense area (31% vs 36%; P5 .006), and the difference was most

pronounced for women later diagnosed with more aggressive cancers. Yala et al.

[70] showed that DL can also improve 5-year risk prediction when compared to

an established breast cancer risk model that includes subjective breast density cat-

egories (Tyrer-Cuzick model, version 8 [TC]). When the DL model was used,

31% of women were identified as having high risk, compared with 18% when the

TC model was used. Interestingly, the image-only DL model also outperformed

TC and it provided accurate risk assessment when traditional risk factor informa-

tion was unavailable, which can be particularly beneficial to patients who do not

know their family history of breast or ovarian cancer.

2.4.2 Reproducible breast density assessment for improved breast
cancer risk prediction

The most commonly used method to assess breast density in the clinical setting is

the visual grading of breast density by the interpreting radiologist into one of four

categories outlined by the American College of Radiology BI-RADS [81].

However, there is a well-established and large degree of inter- and intra-reader

variability in the assignment of breast density, particularly among less-

experienced readers [82]. In one of the earliest studies, Kallenberg et al. [68]

introduced a fully-automated method based on learning a feature hierarchy from

unlabeled data followed by a classifier to estimate percent density (PD). The

results of this study showed a very strong positive correlation between DL-based

PD scores and manual PD scores (r5 0.85), while in a case-control evaluation

setting, the DL-based PD scores yielded an AUC of 0.59, which is competitive to

reported AUCs in the literature on similar populations. In another study [69], the

authors used a dataset of over 200,000 screening mammography exams, each con-

taining at least four images corresponding to the standard four views used in

screening mammography, to train a DL model for the task of BI-RADS breast

density classification. The level of agreement between the trained DL classifier

and the BI-RADS density classes in the data was found to be similar to that

between the human experts and the BI-RADS density classes in the data, as well
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as among the human experts themselves. Mohamed et al. [67] applied transfer

learning to develop a DL approach based on the AlexNet architecture to classify

digital mammography images into BI-RADS density classes. When applied to an

unseen set of 1850 images, the proposed approach achieved an AUC of 0.94.

More recently, Lehman et al. [65] have presented another DL model based on

the ResNet architecture for the same classification task. In an unseen test set of

8677 mammograms, the DL model showed good agreement in BI-RADS density

classification (k5 0.67) with radiologists and with radiologists in consensus in a

reader study set (k5 0.78). Lately, the same DL model was also implemented at a

dedicated breast imaging practice, where it showed had a high clinical acceptance

rate among both academic (94.9%) and community (90.7%) radiologists and

reduced the proportion of mammograms assessed as dense from 47% to 41% (P

, .001) [66].

2.4.3 Improving performance in breast cancer diagnosis

The Digital Mammography DREAM challenge [73], held between 2016 and

2017, encouraged the development of DL models to classify screening mammo-

grams according to whether cancer was present or not. A large set of digital mam-

mography images of over 640,000 images from approximately 80,000 women

was used by several teams to train DL models, resulting in the development of

many novel approaches to improve cancer detection. The most successful teams

achieved a sensitivity of up to 87% compared to the radiologist sensitivity of

88% on the same dataset.

DL has also been used to compare breast cancer detection performance of

radiologists reading mammographic examinations unaided versus supported by an

artificial intelligence (AI) system [75]. Using screening digital mammographic

examinations from 240 women and readings from 14 radiologists, the authors

showed that radiologists improved their cancer detection at mammography when

using an AI system for support (unaided, AUC5 0.87; supported by AI,

AUC5 0.89; P5 .002), without requiring additional reading time (unaided,

146 seconds; supported by AI, 149 seconds; P5 .15). In another study, a commer-

cial DL model for identifying breast cancer in screening mammograms was evalu-

ated using two large datasets from the UK and the US [74]. The authors showed

an absolute reduction of 5.7% and 1.2% in false positives, and 9.4% and 2.7% in

false negatives (U.S. and UK, respectively). In an independent study of six radiol-

ogists, the same DL model also outperformed all the human readers (AUC was

greater than the AUC for the average radiologist by an absolute margin of

11.5%). Moreover, in a simulation in which the DL model participated in the

double-reading process that is used in the UK, the authors reported non-inferior

performance as well as reduction of the workload of the second reader by 88%.

Most recently, a retrospective multi-reader study has shown that a DL algorithm

for detecting breast cancer can be used as an effective diagnostic support tool for

radiologists in mammography interpretation [76]. Specifically, a DL model based
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on the ResNet architecture showed an AUC of 0.94�0.97 in multiple validation

datasets collected from five institutions in South Korea, the US, and the UK. It

also showed significantly better performance than 14 radiologists in 320 indepen-

dent mammograms, resulting in a significant improvement in radiologists’ DL-

aided diagnostic performance.

2.4.4 Enhancing efficacy in breast cancer clinical practice

DL has also been found to be able to reduce the workload of cases to be read by

a radiologist by excluding exams with a very low likelihood of cancer. Using a

total of 2652 digital mammography exams and interpretations by 101 radiologists,

Rodriguez-Ruiz et al. [78] showed that there is potential to use DL to reduce the

mammogram reading workload by 17%, while only excluding 1% of true-positive

exams. Moreover, the exclusion of exams with the lowest likelihood of cancer in

screening might not change radiologists’ breast cancer detection performance.

Another DL model evaluated in screening exams from over 7000 women was

capable of significantly decreasing the number of mammograms that a radiologist

needed to read by 34% in a theoretical diagnostic setting (15% cancer prevalence)

and by nearly 91% for a setting with low prevalence, as would be expected in a

screening facility [77]. Finally, the recently published reader study by Conant

et al. [79] is the first to evaluate the potential of DL to enhance efficiency in

DBT reading. By comparing the performance of 24 radiologists (13 of whom

were breast subspecialists) reading 260 DBT examinations both with and without

AI, this study showed that the concurrent use of an accurate DBT AI system can

improve cancer detection accuracy while reducing the reading time by 57% (read-

ing time 64.1 seconds without versus 30.4 seconds with AI).

2.5 Conclusion

In conclusion, we note that advanced computational algorithms, particularly those

based on DL, hold a great promise for applications in brain and breast cancer, as

demonstrated by the example studies cited in this chapter. Considering the current

several reported successes and promise shown in the literature within breast and

brain cancer applications, there is an associated mounting interest by both the

research and the medical community in terms of both developing and potentially

translating these algorithms in a clinical environment. However, the algorithmic

complexity, as well as the somewhat limited size and diversity of datasets used

for algorithmic validation, is hindering the clinical adoption. To facilitate this

clinical translation, there is a clear need for large multiinstitutional datasets span-

ning diverse patient populations, with corresponding annotations while following

consistent protocols for quality assurance. These efforts can thereby lead to

benchmarking datasets used for comparative studies deciding on the relative
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performance and ranking of algorithms, such as the BraTS dataset [40,50�53].

Currently, the paradigm for collecting knowledge from such datasets is based on colla-

borations pooling together multiinstitutional datasets. However, driven by the com-

monly accepted fact that this paradigm faces various legal, privacy, and data ownership

concerns, multiple initiatives of alternatives paradigms based on distributed learning

have recently been introduced and appreciated on example cases, showing algorithmic

performance similar to the one when pooled datasets are used [83�85]. We look for-

ward to this current research field and its potential impact on the next generation of

computational algorithms for medical applications toward ultimately leading to a new

era of computational precision diagnostics.
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[36] F. Özyurt, E. Sert, E. Avci, E. Dogantekin, Brain tumor detection based on convolu-

tional neural network with neutrosophic expert maximum fuzzy sure entropy,

Measurement 147 (2019) 106830.

[37] A.M. Alqudah, H. Alquraan, I.A. Qasmieh, A. Alqudah, W. Al-Sharu, Brain tumor

classification using deep learning technique—a comparison between cropped,

uncropped, and segmented lesion images with different sizes, Int. J. Adv. Trends

Comp. Sci. Eng. 86 (2019) 3684�3691. Crossref Web. 2019:3684�91.

[38] L. Macyszyn, H. Akbari, J.M. Pisapia, X. Da, M. Attiah, V. Pigrish, et al., Imaging

patterns predict patient survival and molecular subtype in glioblastoma via machine

learning techniques, Neuro-oncology 18 (3) (2015) 417�425.

[39] S. Bakas, G. Shukla, H. Akbari, G. Erus, A. Sotiras, S. Rathore, et al. (Eds.),

Integrative radiomic analysis for pre-surgical prognostic stratification of glioblastoma

patients: from advanced to basic MRI protocols, in: Medical Imaging 2020: Image-

Guided Procedures, Robotic Interventions, and Modeling: International Society for

Optics and Photonics, 2020.

[40] S. Bakas, M. Reyes, A. Jakab, S. Bauer, M. Rempfler, A. Crimi, et al. Identifying

the best machine learning algorithms for brain tumor segmentation, progression

assessment, and overall survival prediction in the BRATS challenge. arXiv preprint

arXiv:181102629. 2018.

[41] J. Lao, Y. Chen, Z.C. Li, Q. Li, J. Zhang, J. Liu, et al., A deep learning-based radio-

mics model for prediction of survival in glioblastoma multiforme, Sci. Rep. 7 (1)

(2017) 10353. PubMed PMID: 28871110. Pubmed Central PMCID: PMC5583361.

Epub 2017/09/06. eng.

[42] J. Hao, Y. Kim, T. Mallavarapu, J.H. Oh, M. Kang, Interpretable deep neural net-

work for cancer survival analysis by integrating genomic and clinical data, BMC

Med. Genomics 12 (10) (2019) 189.

42 CHAPTER 2 Computational imaging applications in brain

http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref28
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref28
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref28
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref29
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref29
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref29
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref30
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref30
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref30
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref30
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref31
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref31
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref31
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref32
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref32
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref32
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref32
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref32
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref32
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref33
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref33
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref33
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref33
http://www.ncbi.nlm.nih.gov/pubmed/28871110
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref35
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref35
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref35


[43] G. Shukla, S. Bakas, S. Rathore, H. Akbari, A. Sotiras, C. Davatzikos, Radiomic fea-

tures from multi-institutional glioblastoma MRI offer additive prognostic value to

clinical and genomic markers: focus on TCGA-GBM collection, Int. J. Radiat.

Oncol. Biol. Phys. 99 (2) (2017) E107�E108.

[44] D. Nie, J. Lu, H. Zhang, E. Adeli, J. Wang, Z. Yu, et al., Multi-channel 3D deep fea-

ture learning for survival time prediction of brain tumor patients using multi-modal

neuroimages, Sci. Rep. 9 (1) (2019) 1103.

[45] W. Han, L. Qin, C. Bay, X. Chen, K.-H. Yu, N. Miskin, et al., Deep transfer learning

and radiomics feature prediction of survival of patients with high-grade gliomas, Am.

J. Neuroradiol. (2019).

[46] A. Fathi Kazerooni, S. Bakas, H. Saligheh Rad, C. Davatzikos, Imaging signatures of

glioblastoma molecular characteristics: a radiogenomics review, J. Magn. Reson.

Imaging (2019).

[47] Z. Akkus, I. Ali, J. Sedlar, J.P. Agrawal, I.F. Parney, C. Giannini, et al., Predicting

Deletion of Chromosomal Arms 1p/19q in Low-Grade Gliomas from MR Images

Using Machine Intelligence, J. Digital Imaging 30 (4) (2017) 469�476. PubMed

PMID: 28600641. Pubmed Central PMCID: PMC5537096. Epub 2017/06/11. eng.

[48] Z. Li, Y. Wang, J. Yu, Y. Guo, W. Cao, Deep Learning based Radiomics (DLR) and its

usage in noninvasive IDH1 prediction for low grade glioma, Sci. Rep. 7 (1) (2017) 5467.

PubMed PMID: 28710497. Pubmed Central PMCID: PMC5511238. Epub 2017/07/16.

eng.

[49] S. Liang, R. Zhang, D. Liang, T. Song, T. Ai, C. Xia, et al., Multimodal 3D

DenseNet for IDH genotype prediction in gliomas, Genes 9 (8) (2018). PubMed

PMID: 30061525. Pubmed Central PMCID: PMC6115744. Epub 2018/08/01. eng.

[50] B.H. Menze, A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani, J. Kirby, et al.,

The multimodal brain tumor image segmentation benchmark (BRATS), IEEE Trans.

Med. Imaging 34 (10) (2014) 1993�2024.

[51] S. Bakas, H. Akbari, A. Sotiras, M. Bilello, M. Rozycki, J. Kirby, et al.,

Segmentation labels and radiomic features for the pre-operative scans of the TCGA-

LGG collection, Cancer Imaging Archive (2017) 286.

[52] S. Bakas, H. Akbari, A. Sotiras, M. Bilello, M. Rozycki, J. Kirby, et al.,

Segmentation labels and radiomic features for the pre-operative scans of the TCGA-

GBM collection, Cancer Imaging Archive (2017).

[53] S. Bakas, H. Akbari, A. Sotiras, M. Bilello, M. Rozycki, J.S. Kirby, et al.,

Advancing the cancer genome atlas glioma MRI collections with expert segmentation

labels and radiomic features, Sci. Data 4 (2017) 170117.

[54] K. Chang, H.X. Bai, H. Zhou, C. Su, W.L. Bi, E. Agbodza, et al., Residual convolu-

tional neural network for the determination of idh status in low- and high-grade glio-

mas from MR imaging, Clin. Cancer Res. 24 (5) (2018) 1073�1081. PubMed PMID:

29167275. Pubmed Central PMCID: PMC6051535. Epub 2017/11/24. eng.

[55] M.E. Hegi, A.C. Diserens, T. Gorlia, M.F. Hamou, N. de Tribolet, M. Weller, et al.,

MGMT gene silencing and benefit from temozolomide in glioblastoma, N. Engl. J.

Med. 352 (10) (2005) 997�1003. PubMed PMID: 15758010. Epub 2005/03/11. eng.

[56] I. Levner, S. Drabycz, G. Roldan, P. De Robles, J.G. Cairncross, R. Mitchell, Predicting

MGMT methylation status of glioblastomas from MRI texture, in:. Medical Image

Computing and Computer-Assisted Intervention: MICCAI International Conference on

43References

http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref36
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref36
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref36
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref36
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref36
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref37
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref37
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref37
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref38
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref38
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref38
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref39
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref39
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref39
http://www.ncbi.nlm.nih.gov/pubmed/28600641
http://www.ncbi.nlm.nih.gov/pubmed/28710497
http://www.ncbi.nlm.nih.gov/pubmed/30061525
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref43
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref43
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref43
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref43
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref44
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref44
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref44
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref45
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref45
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref45
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref46
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref46
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref46
http://www.ncbi.nlm.nih.gov/pubmed/29167275
http://www.ncbi.nlm.nih.gov/pubmed/15758010


Medical Image Computing and Computer-Assisted Intervention, 2009;12(Pt 2):522�530.

PubMed PMID: 20426152. Epub 2009/01/01. eng.

[57] L. Han, M.R. Kamdar, MRI to MGMT: predicting methylation status in glioblastoma

patients using convolutional recurrent neural networks, in: Pacific Symposium on

Biocomputing Pacific Symposium on Biocomputing, 2018;23:331�342. PubMed

PMID: 29218894. Pubmed Central PMCID: PMC5728677. Epub 2017/12/09. eng.

[58] P. Korfiatis, T.L. Kline, D.H. Lachance, I.F. Parney, J.C. Buckner, B.J. Erickson,

Residual deep convolutional neural network predicts MGMT methylation status, J.

Digital Imaging 30 (5) (2017) 622�628. PubMed PMID: 28785873. Pubmed Central

PMCID: PMC5603430. Epub 2017/08/09. eng.

[59] P. Chang, J. Grinband, B.D. Weinberg, M. Bardis, M. Khy, G. Cadena, et al., Deep-

learning convolutional neural networks accurately classify genetic mutations in glio-

mas, AJNR Am. J. Neuroradiol. 39 (7) (2018) 1201�1207. PubMed PMID:

29748206. Pubmed Central PMCID: PMC6880932. Epub 2018/05/12. eng.

[60] B.S. Jang, S.H. Jeon, I.H. Kim, I.A. Kim, Prediction of pseudoprogression versus

progression using machine learning algorithm in glioblastoma, Sci. Rep. 8 (1) (2018)

12516. PubMed PMID: 30131513. Pubmed Central PMCID: PMC6104063. Epub

2018/08/23. eng.

[61] H. Akbari, S. Rathore, S. Bakas, M.P. Nasrallah, G. Shukla, E. Mamourian, et al.,

Histopathology-validated machine learning radiographic biomarker for noninvasive dis-

crimination between true progression and pseudo-progression in glioblastoma, Cancer

(2020).

[62] Cancer facts and figures 2019. Atlanta, GA: American Cancer Society, 2019.

,https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/can-

cer-facts-figures-2019.html. (accessed 3.01.20).

[63] V.A. McCormack, I. dos Santos Silva, Breast density and parenchymal patterns as

markers of breast cancer risk: a meta-analysis, Cancer Epidemiol. Biomarkers Prev.

15 (6) (2006) 1159�1169. PubMed PMID: 16775176.

[64] Are You Dense Advocacy. D.E.N.S.E. State Efforts. ,http://areyoudenseadvocacy.

org/. (accessed 8.01.20).

[65] C.D. Lehman, A. Yala, T. Schuster, B. Dontchos, M. Bahl, K. Swanson, et al.,

Mammographic breast density assessment using deep learning: clinical implementa-

tion, Radiology 290 (1) (2018) 52�58.

[66] B.N. Dontchos, A. Yala, R. Barzilay, J. Xiang, C.D. Lehman, External validation of

a deep learning model for predicting mammographic breast density in routine clinical

practice, Acad. Radiol. (2020).

[67] A.A. Mohamed, W.A. Berg, H. Peng, Y. Luo, R.C. Jankowitz, S. Wu, A deep learn-

ing method for classifying mammographic breast density categories, Med. Phys. 45

(1) (2018) 314�321.

[68] M. Kallenberg, K. Petersen, M. Nielsen, A. Ng, P. Diao, C. Igel, et al., Unsupervised

deep learning applied to breast density segmentation and mammographic risk scor-

ing, IEEE Trans. Med. Imaging 35 (5) (2016) 1322�1331.

[69] N. Wu, K.J. Geras, Y. Shen, J. Su, S.G. Kim, E. Kim, et al., editors. Breast density

classification with deep convolutional neural networks, in: 2018 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2018.

44 CHAPTER 2 Computational imaging applications in brain

http://www.ncbi.nlm.nih.gov/pubmed/20426152
http://www.ncbi.nlm.nih.gov/pubmed/29218894
http://www.ncbi.nlm.nih.gov/pubmed/28785873
http://www.ncbi.nlm.nih.gov/pubmed/29748206
http://www.ncbi.nlm.nih.gov/pubmed/30131513
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref52
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref52
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref52
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref52
https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2019.html
https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2019.html
http://www.ncbi.nlm.nih.gov/pubmed/16775176
http://areyoudenseadvocacy.org/
http://areyoudenseadvocacy.org/
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref54
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref54
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref54
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref54
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref55
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref55
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref55
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref56
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref56
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref56
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref56
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref57
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref57
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref57
http://refhub.elsevier.com/B978-0-12-819872-8.00009-4/sbref57


[70] A. Yala, C. Lehman, T. Schuster, T. Portnoi, R. Barzilay, A deep learning

mammography-based model for improved breast cancer risk prediction, Radiology.

(2019) 182716.

[71] A. Gastounioti, A. Oustimov, M.-K. Hsieh, L. Pantalone, E.F. Conant, D. Kontos,

Using convolutional neural networks for enhanced capture of breast parenchymal

complexity patterns associated with breast cancer risk, Acad. Radiol. (2018).

[72] K. Dembrower, Y. Liu, H. Azizpour, M. Eklund, K. Smith, P. Lindholm, et al.,

Comparison of a deep learning risk score and standard mammographic density score

for breast cancer risk prediction, Radiology. (2019) 190872.

[73] The digital mammography DREAM challenge. ,https://www.synapse.org/#!

Synapse:syn4224222/wiki/401743. (accessed 8.01.20).

[74] S.M. McKinney, M. Sieniek, V. Godbole, J. Godwin, N. Antropova, H. Ashrafian,

et al., International evaluation of an AI system for breast cancer screening, Nature.

577 (7788) (2020) 89�94.

[75] A. Rodrı́guez-Ruiz, E. Krupinski, J.-J. Mordang, K. Schilling, S.H. Heywang-Köbrunner, I.
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In this chapter, we summarize the state of the art of the computerized analysis of

dermoscopy images with the use of deep neural networks and advanced machine

learning algorithms. This chapter begins by discussing the medical and technical

backgrounds of the research problem and then presents details of state-of-the-art

solutions using deep neural networks to solve problems including image enhance-

ment, segmentation, pattern recognition, and classification.

In this chapter, we not only showcase recent advances in computer vision and

deep learning in dermoscopy image analysis but also explore future directions for

this exciting subfield of medical image analysis.

3.1 Introduction and motivation for the early diagnosis
of melanoma

Malignant melanoma is one of the most deadly forms of skin cancer and further-

more the most advancing cancer among many white-skinned populations.

Incidence and mortality rates caused by cutaneous melanoma, which is the most

aggressive kind of skin cancer, have significantly increased during the past few

decades among Caucasian populations worldwide [1]. National health services

report that melanoma is currently responsible for nearly 70% of all skin cancer-

related deaths in the United States and in Australia [2,3].
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Two of the most crucial factors suspected to cause melanoma are short but

intense sun exposure and unhealthy living habits including smoking and high

alcohol consumption. Owing to a constant depletion of ozone layer in stratosphere

(resulting in higher exposure to UV radiation), unhealthy nutrition habits as well

as poor diet, skin melanoma is likely to become one of the most common malig-

nant neoplasms, with incidence rate even 2�10 times higher than nowadays in

the future [1,4].

Moreover, no effective treatment of melanoma in advanced stages has been

developed so far. However, early and small melanomas (in the in situ stage) are

curable in about 99%. Only a simple excision is needed to close treatment phase

(as discussed in Section 3.3) [4]. Therefore, the early diagnosis of melanoma and

distinguishing melanoma from other types of skin melanocytic lesions have

become extremely important issue (Fig. 3.1).

Based on these data, both education, prevention, early diagnosis, and sophisti-

cated treatment of melanoma are the main goals of modern dermatology. There is

a high demand for developing computer-aided diagnostic systems (CADs) facili-

tating the early detection of melanoma, which would lower its misdiagnosis rate.

It has been observed that the accuracy of expert dermatologists in diagnosing mel-

anoma is estimated to be 75%�84% which is partly caused by the subjectivity of

the diagnostic judgments [5].

FIGURE 3.1

Four stages of melanocytic skin lesion. Stage 0 which is called melanoma in situ: only in

epidermis which is the outer layer of the skin contains melanoma cells, In Stages I and II

melanoma cells can be found in the layer directly under the epidermis with no sign that it

has spread to lymph nodes or other parts of the body while stages III and IV indicate that

the cells have spread to other organs.
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Furthermore, the analysis of dermoscopy images is an extremely difficult task

due to the low contrast between the healthy background and skin lesion, varie-

gated coloring inside of the region, irregular borders, and numerous artifacts

(Fig. 3.2). There is, therefore, a need to develop automatic image analysis meth-

ods based on computer vision and artificial intelligence to enhance the diagnosis

of skin melanocytic lesions, which will provide accurate, reliable, and reproduc-

ible results. During the last few years, a rapid development in the fields of digital

dermatology and artificial intelligence has been observed worldwide. Methods of

computer vision and machine learning allow not only for automation of different

tasks in various fields, but also for obtaining unbiased and repeatable results. In

this chapter we present the most important and groundbreaking works in areas

including skin lesion segmentation, melanocytic lesion classification, local pattern

segmentation, as well as hardware implementations, that have been published dur-

ing the last few years.

To present the aforementioned research topics, we have organized the chapter

as follows. Section 3.1 Introduction and motivation to early diagnosis of mela-

noma presents the skin cancer awareness, the problem of melanoma misdiagnosis

and motivation of the undertaken research. Section 3.2 Artificial intelligence and

computer vision in melanoma diagnosis introduces into the most important der-

moscopy image analysis stages, discusses the deep learning methods and their

subdivisions. Section 3.3 Medical diagnostic procedures for screening of skin dis-

eases presents the commonly used medical devices and diagnostic procedures.

Section 3.4 State-of-the-Art Survey on skin mole segmentation methods includes

a detailed review of different representative studies in deep learning for skin

lesion segmentation. Section 3.5 Improved local and global patterns detection

algorithms by deep learning algorithms presents a new approach to local pattern

recognition based on convolutional U-Net architecture. Section 3.6 Early classifi-

cation of skin melanomas in dermoscopy presents a systematic review on the clas-

sification of melanocytic lesions based on common machine learning methods as

well as deep learning solutions. Section 3.7 How to speed up the classification

process with FPGA? explains the importance of hardware implementation of the

aforementioned algorithms, while section 3.8 Challenges and future directions

concludes the review.

FIGURE 3.2

Examples of dermoscopic skin mole images in different stages of advancement.
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3.2 Artificial intelligence and computer vision in
melanoma diagnosis

Artificial intelligence has been explored since 1960s; however, in the past few

years, it has acquired immense popularity. If this is the new era of the Industrial

Revolution, AI is surely going to be one of its driving forces not to take us far in

the world but also overtake us in many applications and well-known solutions.

Artificial intelligence is a family of more or less sophisticated methods including

machine learning, deep learning, general artificial intelligence, artificial narrow

intelligence, among others [6]. Artificial intelligence-related concepts and terms

increasingly take center stage in a variety of settings, achieving remarkable results

in image, and signal processing tasks as well as computer-vision challenges, espe-

cially regarding medical aspects. Deep learning models which are advances neural

networks in general are currently one of the most popular architectures used for

unsolved tasks in areas like image segmentation and classification, as well as sig-

nal analysis and data reconstruction. Fig. 3.3 presents a brief taxonomy of deep

learning models where most of the methods have been used to improve the der-

moscopy image analysis process.

The most commonly used deep learning models, which are used in dermo-

scopy images analysis, contain basic and modified architectures like convolutional

neural networks (CNN), recurrent neural networks (RNN), and autoencoders. A

CNN consists of one or more convolutional layers followed by a pooling layer,

which is responsible for reducing the spatial size of the convolved feature. The

network is closed by one or more fully connected layers as in a standard multi-

layer neural network. The architecture of a CNN is designed to take advantage of

the 2D or even 3D structures of an input image. The effectiveness of CNNs has

FIGURE 3.3

A brief taxonomy of deep learning models.
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been proven in many tasks of computer vision due to their powerful feature repre-

sentation, especially for segmentation and classification tasks. For visual datasets,

like dermoscopy images, the first CNN layers might describe edges and dark local

structures in the image, while high layers in the network refer to object parts and

even the category of the object viewed (global features). As there are various

CNN architectures a very promising approach is the concept of transfer learning

which enables to use pretrained models (with already calculated weights) to

extract feature representations for our new images. A RNN is a class of artificial

neural networks which add an interesting twist to basic neural networks. The con-

nections between nodes form a directed graph along a temporal sequence which

allows it to exhibit temporal dynamic behavior. Mixed models CNN-RNN are

successfully used for image classification tasks. Another group of deep neural net-

works are autoencoders that are composed of two, symmetrical deep-belief net-

works that typically have few layers representing the encoding part of the net,

and the second set of layers that are responsible for the decoding half. Deep auto-

encoders are useful in image segmentation, information retrieval, modeling and

data compression. A systematic review on the use of deep neural networks,

including convolutional autoencoders, can be found in [7] and [8].

One of many areas of application for advanced methods of computer vision and

artificial intelligence is a rapidly growing field of dermatology including dermo-

scopy image analysis and digital pathology. The development of computer-aided

diagnosis (CAD) systems for automated diagnosis of melanoma is of high impor-

tance. The CAD systems for dermoscopy consists of following stages: (a) image

preprocessing for image enhancement, black frame removal, smoothing of air bub-

bles, black hair detection and in-painting, (b) skin lesion segmentation responsible

for correct detection of region of interest, (c) feature extraction containing shape

analysis, color variegation, local and global patterns analysis, and (d) classification

of skin lesion into two classes containing benign and malignant cases, or a step fur-

ther into specific melanocytic lesion types. Methods which are most often used for

the performance of each of the steps have been stated in Fig. 3.4.

FIGURE 3.4

Illustration of CAD system for melanocytic lesion classification. Combination of individual

stages with computer vision and artificial intelligence methods.
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Table 3.1 summarizes the comparison of three main approaches: computer

vision, conventional machine learning methods, and deep learning models in

terms of strengths and weaknesses for dermoscopy image analysis. We have

used characteristics including data preparation, data preprocessing, segmenta-

tion, feature representation method, generalization and classification [9].

Nowadays, the ISIC Archive and the PH2 dataset are the most employed

skin lesion sources to benchmark deep-learning based tools. In Table 3.2

we have outlined the publicly available skin lesion datasets and provided addi-

tional information regarding the total amount of images and a short medical

description.

Table 3.1 Comparison of computer vision, machine learning and deep
learning methods for dermoscopy image analysis.

Characteristics Computer vision Machine learning Deep learning

Data preparation
and
preprocessing

Computer vision is
responsible for data
preparation and
preprocessing.
Based on well-
known methods
noise and artifacts
can be removed.

Machine learning
requires data to be
prepared and
preprocessed to
improve the
calculation of feature
vectors.

Data preprocessing
and normalization is
not compulsory in
deep learning to
obtain good results.

Feature
representation
method

Helps to compute
feature vectors for
the classification
process.

Uses manually
engineered feature
vectors that are
applications
dependent.

Has the ability to
determine features
from input image and
learn the most
efficient patterns and
relationships to
boost recognition
accuracy.

Generalization
and
classification

Enables data
labeling and perform
feature calculation.

Based on arbitrary
feature selection only
for labeled data.
Feutre selection is
followed by
dimensionality
reduction which
makes it hardly
generalizable.

Helps to
automatically capture
spatial, temporal
dependencies and
scale invariant
features from
unlabeled raw sensor
data.

Training time Computational time
depends on the
algorithm
advancement and
data complexity.

Requires lesser
training data, gives
mostly lower
accuracy, takes less
time to train on CPU.

Requires large
amount of data to
avoid overfitting,
provides high
accuracy, longer
training time and
requires GPU.
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3.3 Medical diagnostic procedures for screening of skin
diseases

Based on the information provided earlier, accurate and early screening is a key

to an early diagnosis of a disease. In this era of modern medical advancement,

there is a development of sophisticated medical diagnosis modalities and techni-

ques for early and timely screening of skin diseases. The medical imaging diag-

nostic modalities serve as necessary screening tools for dermatologists to quantify

the grade of abnormality based on the characteristics of skin lesions (including

among others asymetry, color variagation, local structures analysis) and plan the

course of treatment. Medical diagnostic images related to screening of skin dis-

eases can be broadly divided into two categories: dermoscopic (i.e., microscopic

images) and non-dermoscopic (i.e., clinical images) [11,12]. A concise overview

of various screening procedures commonly used for the early diagnosis of skin

melanoma has been shortly discussed. Dermoscopy, also known as epilumino-

scopy, is a non-invasive procedure that refers to the examination of skin lesions

using skin surface microscopy [13]. It allows in-vivo evaluation of the micro-

scopic structure and colors of the epidermis and the papillary dermis, which is not

perceptible by the naked eye [4,14].

The procedure requires a dermatoscope with a high-quality magnifying lens

with a light source that allows dermatologists to examine the lesion patters

minutely on the skin. The device allows capturing videos or images via

suitable attachments like smartphones or cameras (Fig. 3.6).

Next one, high-frequency ultrasound, is a reliable and straightforward non-

invasive procedure to examine skin lesions in the dermis, epidermis, and extended to

the subcutaneous layer. In this procedure, the transducer probe emits high-frequency

Table 3.2 Research datasets for skin image analysis [10].

Dataset
Total
images

Total
melanomas Description

ISIC Archive
2018/2019

13,786 1019 Biopsy confirmation has been performed for
more than 50% of cases, while the ground-
truth for other samples was follow-up, expert
consensus, or confirmation by in-vivo confocal
microscopy

PH2 200 40 Most of the melanomas have been confirmed
by biopsy

SD-198 6584 198 disease
state

Consumer grade photographs of skin

Derm7pt 2,000 � Dermoscopic and clinical images of skin lesions
have been classified based on the 7-point
checklist criteria
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sound waves, ranging between 7.5and 100 MHz, for visualization of different layers

of the skin at different depths [15]. The higher the frequency, the higher the image

resolution and lower penetration depth. This procedure plays a vital role in the

assessment of size, shape, depth, consistency, and vascularity of skin melanoma and

basal cell carcinomas.

Skin biopsy is an invasive procedure where a small piece of skin is removed

from the abnormal region for examination under the microscope. Histopathological

examination, which is mostly performed for biopsy skin material, is considered as a

“gold standard” for the diagnosis of skin-related diseases [16]. Depending on the

tool used for the removal of the abnormal skin region and depth of spread of abnor-

mality inside the skin surface, biopsies may be of four different kinds, namely:

shave, saucerization, punch and excisional biopsy (see Fig. 3.5) [17,18].

Skin biopsy is generally performed to diagnose skin cancer, skin infections, or

skin disorders like psoriasis [20]. Fig. 3.6 shows a skin tumor sample with visible

blood vessels and its corresponding biopsy pathological slide, which is diagnosed

as basal cell carcinoma.

FIGURE 3.5

Skin biopsies: (A) shave biopsy, (B) saucerization biopsy, (C) punch biopsy, and

(D) excisional biopsy [19].

FIGURE 3.6

Skin tumor: (A) clinical view and (B) its corresponding biopsy slide [21].
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In Table 3.3 we have given a comparative analysis of different medical imag-

ing diagnostic techniques discussed earlier in terms of diagnostic efficacy, arti-

facts, risk factors, and cost of screening.

As can be observed in Table 3.3, each of the diagnostic imaging techniques

has its pros and cons, but despite the development of a plethora of modern,

sophisticated diagnostic modalities, dermatologists still prefer biopsy for early

diagnosis of suspicious skin lesions. However, biopsy alone cannot be a reliable

diagnostic procedure; hence, there is a need for subsequent other diagnosis proce-

dures to reconfirm the spread of the disease. It may be noted that the earlier the

disease is diagnosed, the more comfortable and effective is the treatment.

3.4 State-of-the-art survey on skin mole segmentation
methods

Skin lesion segmentation is challenging but it is an important process in dermo-

scopic image processing due to several reasons: (1) Low contrast between the

skin lesion (mole) and the healthy skin, variegated coloring and texture inside the

lesion, irregular borders, and different artefacts.

Automatic segmentation of skin lesion is not a trivial task, this is due to most

of the lesions has non-uniform coloring, and the surrounding skin is covered with

Table 3.3 Comparative analysis of different diagnostic imaging modalities.

Imaging
techniques

Diagnostic
efficacy Artifacts

Risk factors/
limitations

Cost of
screening

Skin biopsy Depends on the
optimal choice of
biopsy site and
technique.

Hemorrhage,
crush and
split artifacts,
fragmentation
artifacts.

Bruising,
bleeding, or
soreness at the
biopsy site.

Moderate (The
exact cost
depends on
location and
depth of skin
lesions.)

Dermoscopy More accurate
than visual
inspection of a
skin lesion if
clinicians are
aware of
dermoscopic
features.

Ruler
markings,
dark corner,
ink markers,
air bubbles
and hairs.

Non-invasive
procedure so no
risk factors.

Meager

High-
frequency
USG

Gives a high
resolution image
of skin structure
and much more
efficient than
dermoscopy.

Hair follicle,
bubbles in the
gel, improper
probe
placement.

Cannot provide
tissue diagnosis,
and compression
of the probe
results in false
thinning.

Low
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the remaining parts after the preprocessing step, which make the process even

harder to carry out (Fig. 3.7). Furthermore, it has to be accurate and efficient,

because the subsequent steps including border irregularity analysis, asymmetry

analysis, feature extraction, and classification crucially depend on it. Therefore,

the segmentation algorithms are one of the most widely explored in the dermo-

scopy image analysis. Owing to the difficulties described earlier, skin lesion chal-

lenges based on the ISIC database are organized yearly [22]. These challenges

evaluate the performance of submitted classifiers using Jaccard Similarity Index

(JSI), which is widely known as Intersect over Union (IoU) in computer vision

research. JSI is defined as the overlap of the automatic segmentation to the manu-

ally delineated ground truth binary mask:

JSI A;Mð Þ5 A-Mj j
jA,Mj

where JSI A;Mð Þ5 1 represents the best result, a 100% overlap with the manual

delineation.

The performance of winning algorithms in ISIC segmentation competitions

are summarized in Table 3.4.

Before the era of deep learning, image processing methods and conventional

machine learning were widely used in research. There are some previous works

presented in depth review on lesion segmentation on dermoscopic images [23,24].

Korotkov et al. [24] and Pathan et al. [25] reported that the majority of algorithms

were designed based on hand-crafted features in detection, classification and seg-

mentation of skin lesions. These reviews focused on thresholding methods (histo-

gram based or gray-scale), active contour (based on energy functions to find the

FIGURE 3.7

Examples of segmentation results and illustration of the non-uniform coloring and the

surrounding of the skin lesions.

Table 3.4 The ISIC segmentation challenges and its top score.

Challenge dataset Total number of images Evaluation metric Top score

ISIC 2016 1279 JSI 0.843
ISIC 2017 2750 JSI 0.765
ISIC 2018 3694 Thresholded JSI 0.802
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optimum border), region growing (recursively merging pixels of regions), and

some methods were combined with color and texture classification to identify the

skin lesions. Korotkov et al. [24] found the main barrier is the lack of dataset

availability that makes it harder to assess the algorithms without bias. They con-

cluded that there is a large discrepancy in previous works and the CAD systems

were not ready for real-world applications.

There are limited work based on hand-crafted features after 2016. We found two

non-deep learning approaches proposed by Ashour et al. [26,27]. Their approaches

are based on a histogram-based clustering estimation algorithm to determine the

required number of clusters using the neutrosophic c-means clustering method.

They perform segmentation on ISIC 2016 dataset and neutrosophic k-means using

genetic algorithm is used for skin lesion detection in dermoscopy images. To bridge

the gap of the existing literature reviews, we are focusing on deep learning methods,

which are the state of the art for segmentation algorithms. We refer the readers to

previous review papers [24,25] for conventional methods.

The popularity of deep learning algorithms in skin lesions segmentation was

driven by the International Skin Imaging Collaboration (ISIC). ISIC provides

digital skin lesion image datasets with worldwide experts/dermatologists annota-

tions and delineation of the skin lesion. This is the main driving force to encour-

age development of automated algorithms, particularly data-driven approaches,

for the diagnosis of malignant skin lesions and other conditions. Additionally,

ISIC organizes yearly skin lesion (classification or segmentation) challenges to

encourage the use of datasets for to improve the performance of the CAD solu-

tions and raise the awareness of skin cancer [22]. These datasets are now the

benchmark datasets for computerized methods and many have used it to train

the clinical aspects of skin.

ISIC 2016 Skin Lesion Analysis Toward Melanoma Detection Challenge dataset

[28] (henceforth, ISIC 2016 dataset) consist of 1279 images, enabling the use of

CNN in segmentation. Yuan et al. [29], the top score for ISIC 2016 segmentation

challenge, leveraged 19-layer DCNN for an end-to-end fully automatic method for

skin lesions segmentation. To improve the performance, they proposed to use a loss

function based on Jaccard Distance. They experimented by using different parame-

ter settings: input size, augmented strategies, loss function and optimization meth-

ods. Fivefold cross validation was used to fine-tuned the hyperparameters. In

addition to ISBI 2016, they also evaluated their results on PH2 dataset. Overall,

their proposed method outperformed the state-of-the-art methods. However, the

method did not work well in images with low contrast.

On the similar ISIC 2016 segmentation challenge, Yu et al. [30] ranked second

amongst 28 teams. Unlike Yuan et al. [29], they proposed very deep residual net-

works that consist of 50 layers for two-stage segmentation, followed by classifica-

tion. According to their design principles, deeper networks produce more

discriminative and richer features for recognition task. Although the result seems

promising, it is very costly and inefficient due to two-stage framework and computa-

tional expensive deep networks.
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In 2017, semantic segmentation based on a multi-stage fully convolutional net-

works (FCNs) for skin lesions segmentation was proposed by Bi et al. [31]. The

multi-stage consists of: early stage of localized coarse appearance learning and

later stage of detailed boundaries characteristics learning. Additionally, they

enhanced the performance of the segmentation by deploying a parallel integration

approach, which enabled the fusion of result. Similar to Yuan et al. [29], they

also evaluated their algorithm on PH2 dataset [32] and ISIC 2016 dataset. They

achieved 90.66% on PH2 but marginal improvement when compared to Team

ExB in ISIC 2016 competition with 91.18%.

Other two-stage segmentation methods were proposed by Vesal et al. [33] and

Goyal et al. [34]. For the first stage, they used Faster-RCNN. Then Vesal et al.

[33] proposed a modified version of U-Net for skin lesion segmentation. Goyal

et al. [34] implemented deep extreme method as second stage for segmentation.

The first attempt to perform multi-class segmentation was proposed by

Goyal et al. [35]. They implemented semantic segmentation algorithm based on

fully convolutional methods for multi-class segmentation and evaluated on ISBI

challenge dataset 2017 [22] (henceforth, ISIC 2017 dataset). The multi-class

segmentation distinguishes three classes, that is melanocytic nevus, melanoma

and seborrheic keratosis.

In pixel-wise dermoscopic skin lesions segmentation approach, Al-masni et al.

[36] proposed a fully resolution convolutional network (FrCN) to learn full reso-

lution features of each image pixels for skin segmentation. When evaluated on

ISIC 2017 testing set, they achieved JSI of 77.11%. On the other hand, Soudani

et al. [37] proposed the use of two deep learning classification models to recom-

mend the most suitable lesions segmentation technique.

Recently, Goyal et al. [34] designed fully automated ensemble deep learning

frameworks, which combine one of the best semantic segmentation method,

that is DeeplabV31 and one of the best instance segmentation algorithm, that

is Mask R-CNN. The authors claimed Ensemble-L and Ensemble-A performed

best in Sensitivity and Ensemble-S in specificity on ISIC 2017 dataset and PH2

testing dataset.

To compare the performance of segmentation, we compared the results on

two publicly available skin lesion datasets, which are ISIC 2017 dataset [22]

and PH2 dataset [32]. We are not able to demonstrate the results on ISIC

Challenge 2018 [22] as they did not share the ground truth delineation of the

images in testing set. ISIC 2017 segmentation dataset consists of 2750 images,

with the split of 2000 images in training set, 150 in the validation set and 600 in

the testing set. Fig. 3.8 is an example of ground truth delineation, where the

boundary was loosely drawn by an expert. PH2 dataset has 200 images in which

160 images are nevus (atypical nevus and common nevus), and 40 images are of

melanoma [32]. In this dataset, the ground truths delineation are precise repre-

sent the true boundaries of the skin lesion (high specificity), as shown in the

Fig. 3.9. PH2 is used to test the robustness of the model trained by using the

ISIC 2017 training set.
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3.4.1 Comparison of the state of the art

Table 3.5 compares the performance of the state-of-the-art deep learning methods

on ISIC 2017 testing dataset using the performance metrics used in the segmenta-

tion challenge, as presented in [36]. Overall, Yu et al. [30] achieved the best

results, followed by Goyal et al. [34]. Other methods that achieved good results

were SegNet [38] and classic U-Net [39].

Table 3.6 compares the performance of the state-of-the-art deep learning

methods on PH2 dataset. The results are based on the training model built based

on ISIC 2017 training set and test on the PH2 dataset. It is noted that Goyal et al.

[34] achieved the overall best results.

FIGURE 3.8

Example of ground truth delineation by experts. The binary mask illustrates an example of

loosely drawn boundary in the dataset.

FIGURE 3.9

Example of ground truth delineation by experts. The binary mask illustrates an example of

precisely drawn boundary in the dataset.
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3.4.2 Summary

The fully automated and end-to-end skin lesions segmentation can provide infer-

ence to aid in the decision of lesion diagnosis. Future challenge including design-

ing robust algorithm that can work across different skin type and artefacts,

including hair, hair follicles and coloring of surrounding skin. Other solution may

incorporate different data augmentation techniques [40], which demonstrated

promising results in enhancing the deep learning algorithms.

3.5 Improved local and global patterns detection
algorithms by deep learning algorithms

Dermoscopic features which are also called dermoscopic criteria are important

statistical denominators while assessing the skin mole. Dermoscopic criteria con-

sist of global patterns which can be observed in whole skin lesion while local fea-

tures may appear only in parts of the mole. Corresponding global and local

patterns are observed in particular skin lesion types. One of the most important

local criteria is the atypical vascular pattern which has the second highest odds

ratio of 7.42 and is among the three most important features that indicate the

Table 3.5 Comparisons of the state-of-the-art deep learning approaches on
ISIC 2017 testing set.

Method Accuracy Dice Jaccard index Sensitivity Specificity

Yuan et al. 0.934 0.849 0.765 0.825 0.975
SegNet 0.918 0.821 0.696 0.801 0.954
U-Net 0.901 0.763 0.616 0.672 0.972
Yu et al. 0.949 0.897 0.829 0.911 0.957
FrCN 0.940 0.870 0.771 0.854 0.967
Goyal et al. 0.941 0.871 0.793 0.899 0.950

Table 3.6 Comparisons of the state-of-the-art deep learning approaches on
PH2 dataset.

Method Accuracy Dice JSI Sensitivity Specificity

FCN-16s 0.917 0.881 0.802 0.939 0.884
DeeplabV31 0.923 0.890 0.814 0.943 0.896
Mask R-CNN 0.937 0.904 0.830 0.969 0.897
Goyal et al. 0.938 0.907 0.839 0.932 0.929
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malignancy of the diagnosed skin mole. Atypical vascular pattern helps to differ-

entiate between benign lesions and melanomas. Atypical vascular pattern has

been introduced in 1994 by Fineberg and Rosen and described as linear-irregular

or dotted vessels associated with other local structures (Fig. 3.10).

This pattern can be located in parallel or vertically to the skin’s surface which

will change in appearance as lines or dots and nodes, respectively. Researchers

observe a relationship between the vascular pattern and observed tumor size and

degree of malignancy. During the last few years only several research groups

have proposed a solution for the detection of vascular structures in dermoscopic

color images. As the vascular pattern detection and analysis tasks are among the

most challenging in dermoscopy image processing Authors take advantage of

DNN architectures including autoencoders and U-Nets. In work [41] Kharazmi

et al. implemented a stack of sparse autoencoders for detection of cutaneous ves-

sels based on feature calculation and selection from the raw data. The proposed

framework achieved 95.4% detection accuracy for diverse vessel patterns. Betta

et al. in work [42] described an approach for the identification of atypical vessels.

Due to the difficulty in obtaining a relevant and reliable number of epilumines-

cence microscopy (ELM) images with vascular pattern, the training set has been

augmented. Pixel classification has been performed in the HSL color space which

determines Hue, Saturation, and Luminance. Components of the HSL color space

have been calculated and a frequency histogram has been used for classification.

As this approach is highly generalizable the Authors confirmed low specificity by

misclassifying the area [23,43]. In 2014, Fabbrocini et al. described an algorithm

based on texture analysis for vascular pattern detection [44]. The system perfor-

mance has been tested on 200 dermoscopic images and scored 80% sensitivity,

and 78% specificity, respectively. Texture descriptors including entropy, correla-

tion, and inverse difference moment have been calculated based on the gray level

co-occurrence matrix. The latest research in this area has been presented in [45]

by Kharazmi et al. who has used independent component analysis to decompose

the image into melanin and hemoglobin to differentiate between red areas and

background. Using k-means clustering the area is divided into groups where the

hemoglobin component can be easily separated from the surrounding and a vessel

mask is generated as a result of global thresholding. The Authors achieved

FIGURE 3.10

Vascular pattern observed in melanocytic lesions as red dots and lines.
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sensitivity and specificity of 90% and 86%, respectively for a dataset containing

500,000 manually segmented pixels provided by an expert. In research work [46]

we have proposed a U-Net based solution where the proposed implementation has

been divided into four main stages including preprocessing (image enhancement),

patch extraction, training, and validation as illustrated in Fig. 3.11. The algorithm

achieved an average DSC of 0.84, sensitivity 0.85, and specificity 0.81.

Another group of highly significant diagnostic parameters in determining malig-

nancy of the skin lesion include the general appearance of global patterns of the lesion.

The most commonly analyzed global patterns of skin lesions include (Fig. 3.12):

• Pigment network (reticular) pattern: appears mostly as thin brown lines over a

light brown background. Most commonly observed global pattern in

melanocytic lesions which mostly covers the entire skin lesion.

FIGURE 3.11

The system workflow of a CNN architecture described in [46] consists of (A) Image

preprocessing stage which consists of black frame removal, hair inpainting, and further

image normalization, (B) Patch extraction adapted to the network architecture based on a

sliding window as well as data augmentation, (C) U-Net architecture implementation,

hyperparameter specification, training and validation.
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• Globular pattern: occurs as round to oval structures variously sized and

distributed throughout the skin lesion. Mostly light and dark brown as well as

of gray-black coloration.

• Cobblestone pattern: very similar to the globular pattern but composed of

lager and closely aggregated globules resembling a cobblestone.

• Homogeneous pattern: area without local features as well as other

patterns mostly of brown, gray-blue, gray-black, or reddish-black

pigmentation.

• Parallel pattern: it is found on the palms and soles due to the particular

anatomy of these areas.

As the skin global pattern analysis is very challenging, there are only few

works that address this problem and propose to classify the global pattern into

five classes described earlier based on texture analysis. In Serrano et al. [47] used

Markov random field (MRF) which is a graphical representation of a joint proba-

bility distribution. First, each image plane in L�a�b� color space is modeled as a

MRF following a finite symmetric conditional model. Coupling of color compo-

nents is taken into account by supposing that features of the MRF in the three

color planes follow a multivariate normal distribution. The best classification rate

is 86% on average over 100 tiles (sized 40 40).

In Sadeghi [48] uses the joint distribution of color in the L�a�b� color space to

analyze the image texture. Comprehensive set of the state-of-the-art filter banks

to model the texture by the joint probability distribution of filter responses. This

distribution is represented by the frequency histogram of filter response cluster

centers called textons. The implementation has been tested on 375 images and

scored 86.8% accuracy.

FIGURE 3.12

Global pattern observed in melanocytic skin moles: (A) pigment network, (B) parallel

pattern, (C) homogeneous pattern, (D) globular pattern, and (E) cobblestone pattern.
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3.6 Early classification of skin melanomas in dermoscopy
As the impact of machine learning in dermatology will increase in the following

years, in this section we outline main approaches to skin lesions classification,

quote most important latest methods, discuss general limitations regarding

machine learning methods, and conclude this section with our perspectives about

this field for the future (including applications of deep learning classifiers in

teledermatology).

Before 2016, most studies (described in Section 3.6.2) followed the classical

workflow of machine learning (preprocessing, segmentation, feature extraction,

and classification) and focused on detecting a number of features describing crite-

ria of (clinical) diagnostic algorithms (mentioned in Section 3.6.1) using hand-

crafted features, extracted by means of traditional computer vision methods, to

feed a single machine learning classifier. However, since 2016 [49], with recent

advancements in the field of deep learning and the availability of large datasets of

dermoscopic images required by deep learning models for reasonable training, the

current trend is rather to directly classify the disease from the image using deep

neural networks (as discussed in Section 3.6.3). In particular, CNNs have become

the classifiers of choice due to their high accuracy. CNNs relieve the machine

learning expert of the burden of manual “feature engineering” by automatically

discovering high-level abstractions from low-level data [50].

Most of the research done so far in the area of automatic skin lesion diagnostics

has concentrated on creating new methods for automatic differentiation between

malignant melanoma and other skin lesions, that is, on the “benign vs malignant”

classification, were restricted to lesions that were obviously melanocytic [51�53].

However, as recently larger datasets became available, studies which extend this

dichotomic classification to a trichotomic one (e.g., “melanomas vs seborrheic kera-

tosis vs nevi” [54]) or even capable of differentiating into one of 10 or more indi-

vidual clinical entities [55,56] started appearing in the literature.

3.6.1 Diagnostic algorithms

The first step in the diagnosis of a melanocytic lesion is a visual examination of

the suspicious skin area, typically using a dermatoscope, by a dermatologist, who

qualitatively and/or quantitatively assesses numerous individual ELM criteria to

make the diagnosis. This so-called “pattern analysis” involves the assessment of

two types of lesion’s dermoscopic patterns: both global (e.g., homogeneous, glob-

ular, starburst, etc.) and local (e.g., irregular steaks, pigment network, blue-

whitish veil, etc.). To simplify diagnoses, following three rule-based diagnostic

algorithms (based on the same criteria as pattern analysis) have been proposed.

They become widely accepted by clinicians, and are nowadays used by dermatol-

ogists in common medical practice [57].

• ABCD rule refers to the four criteria found to be significant cofactors for

diagnosing melanoma: Asymmetry (with respect to the latter three criteria),
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Borders (i.e., sharp and abrupt changes), Colors (i.e., the presence of each of

6 “dermoscopic” colors), and Different structural components (e.g., pigment

network, dots, globules, etc.). The likelihood of melanoma depends on adding

up the scores for different features present in the lesion, each having its own

score and factor.

• Seven-Point Checklist Method (7PCL) is based on the evaluation of two types

of criteria, major and minor ones, each having a distinct score value. In total

there are 7 criteria: three major (blue-whitish veil, atypical pigment network,

and atypical vascular pattern), and four minor (irregular globules/dots,

irregular blotches, irregular streaks, and regression structures). If the summed

up score value of criteria present in the lesion exceeds a given threshold, the

lesion is classified as melanoma.

• Menzies Method is a simplified algorithm based on the evaluation of both

“positive” and “negative” indicators of melanoma. For a melanoma to be

diagnosed, none of the two “negatives” (i.e., lesion’s symmetry and single

color presence) should be found and at least 1 of 9 “positives” (e.g., blue-

whitish veil) must be present.

Among the aforementioned methods, only pattern analysis is suitable for

both melanocytic and non-melanocytic lesions. Fig. 3.13 shows the summary

of all the methods described in this section. Additional information based

on clinical covariates (e.g., age, gender, and lesion location), is also taken into

account [58].

3.6.2 Approaches to detect the diagnostic criteria

Detailed information on the CAD systems for skin lesion diagnosis using this

approach (i.e., focusing on at least partially emulating one of the diagnostic algo-

rithms described in Section 3.6.1 using handcrafted features or on combining mul-

tiple pre-detected criteria in a single machine learning classifier model) can be

found in review papers [23�25,53,59�62].

They typically use supervised machine learning techniques, such as decision

trees and SVMs, and their sensitivity ranges between 80%�100% and specificity

between 50%�95%. The drawbacks of this “traditional” approach are that it

requires a vast application-specific expertise, particularly for feature extraction

(a process which additionally is very time-consuming), and that errors and the

loss of information in the first processing steps (e.g., poor segmentation) strongly

affects feature extraction and, consequently, the classification quality as well.

Feature descriptors commonly used in the computerized analysis of dermoscopic

images and related to ABCD criteria include [63]: (a) asymmetry: symmetry dis-

tance [64] and lesion’s centroid [65]; (b) border irregularity: Fourier feature [66],

fractal geometry [67], area and perimeter [65,68,69], and irregularity index [70,71];

(c) color variegation: RGB statistical descriptors [65,72]; and (d) different structural

components: pattern analysis [65,73,74], wavelet-based descriptors [75], texture

descriptors [76], intensity distribution descriptors [77], and Haralick descriptors
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[78]. Some other methods focus on the detection of individual features such as

streaks [79] and blue whitish-veil [80,81] or try to detect all features at once

[44,82]. However, typically each pipeline (designed specifically for a particular fea-

ture) significantly increases complexity of the system and requires careful tuning of

hyperparameters. For instance, irregular streaks detection involves obtaining precise

lesion border detection to compute an “irregularity” index, describing how the

lesion border differs from a straight line when the lesion is divided into segments.

3.6.3 Approaches to directly classify skin conditions

Within four recent years deep learning models, particularly CNNs, became a trend

to deal with the task of directly classifying skin conditions due to their remarkable

performance in this field—some presented models are competitive to or even

FIGURE 3.13

Summary of skin cancer classification methods used commonly by clinicians.
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outperform the dermatologists [83,84]. Asthe speed of development in the area of

deep learning for dermatology is tremendous, in this section we present only the

most typical approaches and some of the most relevant studies (Fig. 3.14).

Further discussion on the topic can be found in dedicated review articles [85,86].

3.6.3.1 Classifiers utilizing the convolutional neural networks as a
feature extractor

A CNN can be used for classification by substituting the fully connected layers of

a CNN (typically of the AlexNet [49,55,87], but other models—such as

ResNets—were also used [30,49]), pretrained on a large dataset (such as

ImageNet) with such classifier as for instance k-nearest-neighbor classifier (using

cosine distance metrics) [87], support vector machine (SVM) [49], or a convolu-

tional layer [55]. An interesting solution was proposed by Codella et al. [49], who

showed that the use of deep features results in a better performance compared to

classifiers that only used low-level handcrafted features (apart from the modified

AlexNet outputs they also used low-level handcrafted features as well as features

from sparse coding, a deep residual network, and a convolutional U-network).

Similar results were obtained in [55] and [88].

3.6.3.2 Classifiers using end-to-end learning convolutional neural
networks model training with transfer learning

Aspublicly available datasets of dermoscopic images are limited, a common strat-

egy for skin lesion classification—known as transfer learning—is to use a CNN

pretrained using large ImageNet [89] dataset (despite its non-medical image

domain, the learned features have sufficiently high quality for lesion classification

[90]) and adapt some of its weighting parameters to the actual classification

FIGURE 3.14

An overview of convolutional neural networks (CNNs) methods used for skin lesions

classification and their corresponding categorization.
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problem. Four notable works representing this trend, all using very similar

approaches, are briefly described in the following sections.

Esteva et al. [91] presented a landmark publication, as it was the first study in

the field of dermatology involving a CNN model trained with huge and diverse

dataset, consisting of nearly 130,000 images (of which nearly 3400 were dermo-

scopic images representing over 2000 different skin lesions). The authors consid-

ered two binary classification problems: “keratinocyte carcinomas vs. benign

seborrheic keratosis” and “malignant melanomas vs. benign nevi” (the latter was

performed for both clinical and dermoscopic images). The model of choice was a

GoogLeNet Inception v3, pretrained with ImageNet database and then fine-tuned

to classify skin lesions using transfer learning. The novelty of this study was also

the use of a tree-structured disease taxonomy which “leaves” are formed by the

individual diseases and inner nodes group diseases that are visually and clinically

similar. The CNN outputs a probability distribution with over 757 training classes

(the probabilities of a coarser lesion class, i.e., an inner node at a higher level in

the tree, are determined by summing up the probabilities of its child nodes).

Authors demonstrated that a CNN trained for finer classes has a better perfor-

mance than the one trained for the distinct classes that are of interest for the prob-

lem. The trained CNN achieved an AUC ROC of 0.96 for both melanomas and

carcinomas, and of 0.94 for melanomas classified exclusively with dermoscopic

images, which is a dermatologist-level diagnostic.

Haenssle et al. [83] adapted GoogLeNet Inception v3 model for the “melanoma

vs. nevi” classification with transfer learning, but fine-tuned weights in all layers.

The model achieved AUC ROC of 0.86. The publication included the largest number

of dermatologists to date (55 58) and was the first to evidently prove that additional

clinical information improves both sensitivity and specificity of dermatologists.

The study by Han et al. [56] is particularly noteworthy for its scientific trans-

parency as they have made their computer algorithm publicly available. The

authors developed a fine-tuned ResNet model capable of classifying clinical

images of lesions into one of 12 different classes representing individual diseases,

which scored ROC AUCs of 0.96 for melanoma.

Sun et al. [92] experimented with CaffeNet and VGGNet models for the task

of classifying lesions into one of 198 finely defined classes. The best average

accuracy of 50.3% over all classes was achieved by a pretrained VGGNet opti-

mized using transfer learning. A modified VGGNet was also used by Lopez et al.

[93] for the “melanoma vs. benign” problem. The authors compared the accuracy

of the same CNN architecture but trained in different modes: from scratch, pre-

trained with transfer learning and frozen layers, and pretrained with transfer learn-

ing and then fine-tuned; the last one achieved the highest accuracy of 81.3%.

3.6.3.3 Convolutional neural networks model training from scratch
Some approaches involve training the model “from scratch” [54,94] (these two

methods used ResNet and a custom two-layer CNN, respectively). However,

Menegola et al. [90] showed that fine-tuning a neural network pretrained only
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over ImageNet, performed better than training a neural network from scratch (for

fine-tuning they used the Argenziano et al. [4] dataset).

3.6.3.4 Ensembles of convolutional neural networks models
Another trend in the field of deep learning for dermoscopy is to use an ensemble

of deep models instead of a single method (e.g., [95,96]) which helps increase

effectiveness and reliability of predictions, particularly for ISIC dataset [97]. The

works using this approach and listed in the following are particularly noteworthy.

Marchetti et al. [98] implemented five methods to feed a single classifier with

all automated predictions from the 25 teams participating in the ISBI 2016

Challenge. The greedy fusion achieved highest performance among ensemble

methods with a sensitivity of 58% and a specificity of 88%.

Bi et al. [54], who considered the classification of lesions into one of the

three classes (as either melanoma, seborrheic keratosis, or nevus), did not train

multiple CNNs for the same classification problem, but rather trained three

ResNets for different problems (by fine-tuning a pretrained CNN): one for the

original three-class problem and two binary 1-vs-all classifiers. The classifier

scored an ROC AUC of 0.854 for melanomas and an average ROC AUC over

all classes of 0.915.

Kawahara et al. [99] presented a unique architecture of a CNN ensemble: their

CNN is composed of a number of modules each considering the same image but

at a different resolution, and in an end layer their outputs are combined into a sin-

gle layer (the weighting parameters are fully optimized by end-to-end learning).

The model achieved mean accuracy of 79.5%.

3.7 Conclusions

One issue with the comparison of skin lesion classification methods is that the

considered problem formulations of the individual works differ, sometimes only

slightly. This occurs not only for the considered training classes and the used

data, but also for the presented statistical quantities.

The size of the training dataset varied greatly among the presented methods,

from less than 300 dermoscopic images [98] to nearly 130,000 clinical images

[91] (in some cases data augmentation was used to increase the number of train-

ing samples [87]). Typically, the dataset of choice (at least for model fine-tuning)

was ISIC Archive [28], used in [30,83,84,95].

Moreover, in addition to publicly accessible data archives some works use

nonpublic archives of skin clinics for training and/or testing [83,91], or do not

thoroughly present the applied training/testing procedure (e.g., do not disclose the

exact size of the test set [83]), making results difficult or even impossible to

reproduce and compare. Some results should be viewed critically as the test data-

set was very limited [94], the algorithm was not tested with an independent test
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dataset (only cross-validated on the training data) [87], or the test set diagnoses

were not biopsy-proven [83].

The drawback of some methods is that they are semi-automatic (e.g., the

region of interest for each skin lesion must be manually annotated [87]).

The vast majority of the DNN-based models use only images to output their

diagnostics. However, dermatologists typically consider also clinical covariates

(e.g., patient’s age, sex, ethnicity, and anatomic location) as they are often corre-

lated with certain skin conditions [58]. Approaches incorporating these informa-

tion into the model achieved a diagnostic improvement of 4%�7% [83,100,101].

Finally, it is worth noting the recent work by Faes et al. [102], in which

authors, healthcare professionals lacking any expertise with the DNN develop-

ment, used the Google Cloud AutoML on the ISIC archive and reported a result

comparable to other elementary classification tasks in this section.

3.8 How to speed up the classification process with
field-programmable gate arrays?

In the light of the rapidly rising incidence rate early diagnosis of melanoma has

become an important issue. There is a need to develop a computer-aided system

to make the early detection of melanoma easier for non-experts and the general

public. Without a doubt, in any CAD device the most important parameter is reli-

ability and accuracy but it should also meet embedded system constraints such as

real-time work, low resource utilization, power consumption, and cost [103].

One of the approaches is parallel computing. The main idea is to carry out

some calculations or processes executions simultaneously. Large problems can

often be divided into smaller ones, which can then be solved independently, at

the same time. This can be done, for example, using GPGPUs (General-purpose

computing on graphics processing units) or FPGAs (Field-Programmable Gate

Arrays)—the latter being more portable and easily reconfigurable. An FPGA is a

device composed of a set of programmable logic gates. In contrary to most inte-

grated circuits, which are dedicated to one task, FPGA’s hardware resources can

be reconfigured to provide the desired functionality. Systems behavior is specified

using Hardware Description Language (HDL) such as Verilog or VHDL. Modern

FPGAs are fused together with processors or memory blocks on a complete

system-on-chip boards. Furthermore, companies are offering tools for HDL code

generation from high-level languages like C or C11 making development of

hardware implementation easier for beginners. FPGAs have recently found many

applications in image processing tasks.

Melanoma image analysis systems mostly consist of two parts mainly image

processing with area segmentation and feature extraction followed by classifica-

tion. Both of them can be easily parallelized as basic features are often calculated

for each pixels based mostly on a small neighborhood.
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Dermoscopic images are complex and inhomogeneous. Moreover, in almost

every image appear extraneous artifacts—skin lines, air bubbles, and hairs. The

preprocessing step is, therefore, essential to improve the quality, as it reduces the

artifacts and noise. The preprocessing step consists of the following: black frame

removal, smoothing the air bubbles, and hair in-painting. This stages are not com-

putationally demanding and can easily be implemented in hardware, using FPGA

(Fig. 3.15). One of such ideas, applied to melanoma images, has been presented

in [104]. Authors have implemented image enhancement including contrast and

brightness change, conversion to gray level, invert transform and thresholding.

Xilinx ISE Design Suite has been used to develop the system as it is dedicated to

programming of FPGA reconfigurable circuits. It helps with the design, verifica-

tion, and synthesis of programs written in HDLs (Verilog, VHDL).

However, we can easly implement the preprocessing and feature extraction

stages on reconfigurable circuits, making them less time consuming, the most

compute-intensive part remains classification. Sophisticated and complex classi-

fiers need to be compared in terms of computational efficiency and the possibility

of parallelization. The most extensive analysis in this area has been conducted by

a research group from Auckland University of Technology in New Zealand,

which is understandable, as Australia and New Zealand are countries with the

highest melanoma incidence rate cases. In 2015 Afifi et al. examined five differ-

ent machine learning classifiers specifically for malignant melanoma [105]. The

SVM achieved the highest accuracy level among five different classifiers that

have been tested, the others being Naive Bayes, Multi-Layer Perceptron, Nearest

Neighbors and Random Forest. The authors accelerate the SVM classifier by

implementing its time consuming computation part on FPGA as a coprocessor.

They used Xilinx Zynq device and the High-Level Synthesis (HLS) design meth-

odology [105]. One year later, in 2016, the same research group described a fully

hardware SVM implementation, on the recent hybrid Zynq SoC, using the latest

UltraFast HLS design methodology, and achieving better results than before

[106]. In further research they examined different modifications to SVM algo-

rithm, such as cascade or dynamic classifier [107,108]. With each modification,

FIGURE 3.15

Prototype of a system architecture for early melanoma diagnosis.
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they got increased computing speed, due to design optimization and cutting-edge

technology. Their latest solution, presented in [103] retained 97% accuracy of

software SVM-based application while achieving 36x acceleration factor.

In recent years, we have observed an increasing importance of real-time applica-

tions in different areas such as digital signal processing, wireless sensor networks,

and healthcare. An idea of embedded real-time CAD system for medical purpose

needs to be exploited. A low-cost handheld device for melanoma detection would

be useful in the primary care. Leading companies, like Xilinx and Intel,

manufacturing FPGA boards and software, have recently concentrated significantly

on deep neural networks. They develop system-on-chip devices with dedicated AI-

cores (e.g., Xilinx Versal), which main function is an acceleration of artificial intel-

ligence algorithms. Although, to the best of our knowledge, there are currently no

publications regarding the use of deep neural networks in melanoma, implemented

on FPGA boards, such solutions begin to appear in other fields [109]. Based on the

current trends in research and directions followed by private companies, we can

expect that the next few years will bring novel ideas combining deep learning solu-

tions with FPGA possibilities. We hope that this will ultimately lead to a further

progress in melanoma classification and treatment.

3.9 Challenges and future directions
Currently, there are two main problems related to the application of deep learning

in medicine, and particularly in dermatology—insufficient data publicly available,

and the way most models output their predictions.

It is a challenging task to automatically detect skin cancer as skin lesions in

the dermatology field exhibit huge variability. According to the recent advances

reported for this task, the most successful machine learning technique addressing

that problem is deep learning. However, large amount of data are necessary to

apply deep learning. As it is a challenging task to collect medical data, particu-

larly from skin cancer, even the rich ISIC archive is often not enough to fully

exploit the potential of this methodology [30,56]. Not only is the total number of

images too low, but also some classes of samples are underrepresented—some

datasets (e.g., the one used by Liu et al. [101] or ISIC Archive [28]) contain

mostly samples of skin lesions from light-skinned people, which contribute to the

bias and prevents trained models to be successful in detecting skin cancer for

dark-skinned people as well [110]. A CNN may learn to deal with the skin color

only if it observes enough pictures of each type of skin during the training.

Approaches dealing with these problems include data augmentation, transfer

learning, weighted loss, and up/down-sampling [110,111]. Finally, datasets should

include not only images but also clinical information (metadata) accompanying

them, as they provide valuable information for classifiers [83,100,101] (especially

when the model is trained on a sparse dataset). It is important to develop CAD

systems integrating data from three main types of skin evaluations—clinical,
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dermoscopic and histopathological—should large datasets of the respective types

of images be publicly available.

The second problem is that most state-of-the-art predictive models yield the

diagnosis only as the label that produced the highest probability, in certain cases

also accompanied by a threshold or a ranking for dubious lesions [56,101].

Nevertheless, such results are not explainable by clinicians who, in fact, need to

know also diagnostic clues which led to a particular classifier outcome (i.e., they

would like to know the reasons for the selection of such a disease by the model)

[112]. It should be the ultimate goal of each CAD system employed for skin diag-

nosis, even though being a challenging task. It has already been an issue at the

early days of automatic dermoscopy image classification, as classifiers used

mostly low-level features adopted mainly from the computer vision literature [52]

which typically lacked particular clinical meaning (it was particularly visible in

case of texture features). Asthen the “traditional” feature extraction literature

moved toward high-level, clinically oriented features [113]. However, modern

algorithms, such as deep neural networks, became increasingly complex. Asthe

European Union’s recent General Data Protection Regulation [114] aims at enfor-

cing interpretability of models at the legal level, we expect that the deep learning

literature will soon eventually become more understandable and transparent—the

first such solutions were already proposed [115].

3.10 Teledermatology
Telemedicine (also called e-health) is a rapidly developing field of medicine, pro-

viding access to medical knowledge regardless location and time [116]. The

Ericsson mobile report [117] estimates the number of smartphones around the

world at roughly 7.9 billion, and according to the American Food and Drug

Administration roughly 500 millions smartphone users around the world use

e-health mobile applications. Hence, embedding CAD systems in smartphones

seems liek a low-cost method of tackling the problem of early melanoma detec-

tion. The use of such mobile technologies for skin diagnosis (teledermatology)

could help patients avoid dermatology clinic visits and decrease the amount of

biopsies, while for inexperienced physicians they could provide a valuable train-

ing tool.

In 2017 Apple’s App Store alone offered more than 45 mobile applications

related to mole diagnosis. The majority of them provided only information on

melanoma, roughly half enable the user to perform self-examination (to take

photos of their lesions and monitor alterations over time using basic visual com-

parison), while merely four applications performed automatic melanoma risk

assessment or lesion classification based on image analysis [118].

The availability of machine learning models capable of accurately classifying

images taken in “laboratory” conditions is only the first step toward making

these solutions accessible by general users. However, the process of developing
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such a technology is more complicated than just deploying such a model in a

smartphone—some important technical and ethical aspects must be addressed.

The two technical issues are hardware-related. Some specific dermoscopic fea-

tures of a lesion are distinctly visible only at sufficient magnification or in appro-

priate illumination conditions. Although the majority of high-quality modern

smartphone cameras are equipped with a high-resolution sensor which pixel of

sufficiently small size, which allows the user to capture photos of high-quality,

they typically lack a source of white light which would uniformly illuminate an

examined lesion and a quality optical zoom [118]. These deficiencies of bare

smartphones could be overcome by using either a conventional dermatoscope

with a mobile phone case or a smartphone dermatoscope (the latter currently hav-

ing similar features as the former ones). Moreover, assuch mobile applications

will certainly be often used in remote places such as rural areas, where no internet

connection is available, they would require the application to operate offline.

Solutions using complex ensembles of deep learning models might be difficult to

deploy on smartphones due to lack of sufficient amount of operational memory

and processing power to produce the results within the reasonable time period.

However, at least some of these difficulties had been overcome and the first

DNN-based mobile solutions were already deployed [119].

The main ethical issues are user’s data privacy protection (i.e., how the appli-

cation secures and handles user data), which is often not respected by researchers/

developers [120], and the fact that using untested and uncertified (by a board of

experts) hypothetical CAD systems giving false negative results may delay user’s

treatment and consequently even lead them to death. Only the authors of

SkinVision and Lūbax made public the results of clinical evaluation of their algo-

rithms [121,122], the methods achieved the accuracy 81% and 91%, sensitivity

73% and 90%, and specificity 83% and 91%, respectively. and out of 4 applica-

tions for automatic diagnosis, only two were certified by authorities [118].

A systematic review on the topic of teledermatology (in the context of diag-

nosing skin lesions) can be found in [85,118].
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4.1 Introduction
Prostate cancer has the second mortality rate after lung cancer among men in the

US. About 14% of American men are subjected to prostate cancer during his life-

time. The chance of diagnosis of prostate cancer increases for older men. In 2020,

the number of men who were expected to be diagnosed with prostate cancer in

the US was about 191,930. The expected number of deaths in this year was about

33,330 [1]. The average age of the cases diagnosed with prostate cancer is 66

years. The 5-year survival rate is about 100% for local prostate cancer. This rate

drops to 31% when the caner spread to other organs of the body [2]. These num-

bers indicate the importance of early diagnosis of prostate cancer.

Currently, there are two initial techniques for diagnosing prostate cancer. The

first one is digital rectal exam (DRE). In this exam, a physician checks the pros-

tate gland with his gloved fingers through the rectum to find out any tumors.

Although, this exam has a low cost and can be performed easily, DRE can detect

only large tumors, and the adequacy of the physician who performs the exam is a

key factor of its accuracy [3]. The second technique for diagnosing prostate can-

cer is prostate specific antigen (PSA) screening. This technique is a blood test

that measures the concentricity of PSA in the blood. Both healthy and cancerous

prostates generate PSA in the blood. However, the generated amount of PSA

increases in case of cancerous prostates and therefore can be used as indicator for

prostate cancer. However, PSA screening has high false positive rates because the

increased amounts of PSA in the blood may be caused by different reasons such
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as, prostatitis and hyperplasia [4]. Although, PSA screening is an initial technique

for diagnosing prostate cancer, its introduction led to reducing the mortality rate

of prostate cancer by 20% [5]. The current objective of the diagnostic techniques

of prostate cancer is to increase their accuracies of clinically signification tumors

while decreasing the over-diagnosis of indolent tumors [6]. The accuracy of the

two previously mentioned techniques of diagnosing prostate cancer is not high.

Therefore, these techniques are employed to determine who should undergo

biopsy. Biopsy, typically guided by ultrasound and recently by magnetic reso-

nance imaging (MRI), is the definitive technique for diagnosing prostate cancer.

However, biopsy has its own shortcomings. It is an invasive operation with high

cost. Moreover, biopsy can miss more than 30% of malignant prostate tumors [7].

Recently, different MRI modalities have resulted in accurate diagnosis of pros-

tate cancer without the drawbacks of invasive techniques [8,9]. The most common

MRI modalities used by the current computer-aided diagnosis (CAD) systems for

prostate cancer diagnosis are the following: T2-weighted, diffusion-weighted,

dynamic contrast-enhanced (DCE) MRI, and magnetic resonance spectroscopy

[10]. Diffusion-weighted imaging (DWI) is a functional MRI modality that mea-

sures the random motion of water molecules within the tissues to generate con-

trast in Mr images. An apparent diffusion coefficient (ADC) image eliminates the

T2-weighting inherent to traditional DWI to show diffusion more specifically

than traditional DWI. In the literature, a number of CAD systems have used DWI

alone or in accompanied with other modalities to diagnose prostate cancer [11].

For example, Firjani et al. [12] proposed a K-nearest neighbor-based system for

diagnosing prostate cancer from DWI. They used three intensity features from the

prostate region to discriminate between benign and malignant lesions. Litjens

et al. [13] proposed a support vector machine (SVM)-based multimodal system

that employed T2-weighted MRI, DWI, and DCE-MRI. The used features of their

system were appearance, anatomy, and pharmacokinetic parameters. Vos et al.

[14] proposed a linear discriminant analysis-based multimodal system using the

same modalities of the system by Litjens et al. [13]. The used features of their

system were textural features in addition to a collection of ADC maps. Trigui

et al. [15] proposed a multimodal system using the four common MRI modalities

listed earlier. They evaluated the accuracy of two classification models which are

SVM and random forest. Shoshana et al. [16] proposed a 3 Tesla (T) multimodal

system to diagnose prostate cancer in both the transition and peripheral zones

using radiomic features. The used radiomic features included co-occurrence,

wavelet and kinetic features. A feature selection technique was employed to iden-

tify a small set of features with the highest accuracy. The best area under the

curve achieved by their system was 0.71. Khalvati et al. [6] proposed a multi-

modal system that computed textural features from four MRI modalities. The best

features with the best performance at each individual modality were chosen to

form a final group of optimized features to be used for classification. The highest

accuracy achieved was 88%. Yohannes et al. [17] compared the performance of

convolutional neural networks (CNNs) that can learn the features automatically
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with the performance of traditional techniques that use handcrafted features. They

found that the use of CNNs improved the accuracy by 9%. They achieved a

detection rate of 89% in case of CNN in comparison to 80% detection rate in

case of traditional techniques. CNNs were used by Kwak et al. [18] to detect the

aggressiveness of prostate cancer from histological images.

The main drawback of the most proposed DWI-based systems for diagnosing

prostate cancer is that the classification is performed at a single b2 value. The

used b-value is not consistent between the different systems. However, the pro-

posed system has two advantages. First, the accuracy of prostate cancer diagnosis

is tested at multiple b-values as the used datasets were acquired at seven

b2 values. Second, the used datasets were acquired at two different magnetic

field strengths which are 1.5 and 3 T. therefore, the reported accuracy is not

biased to the magnetic field strength of the used scanner. The rest of this chapter

is organized as follows: Section 4.2 explains in details the proposed method.

Section 4.3 explains the conducted experiments and their results. Section 4.4 sum-

marizes the proposed system and list the various conclusions.

4.2 Methods
In this chapter, an automated system diagnosing prostate cancer using CNN is pro-

posed. The DWI datasets used for developing that system were collected from 45

subjects (20 benign 25 malignant) at seven b-values (100, 200, . . ., 700 s/mm2).

Each subject contains on average 25 cross-sectional DW images at each b-value.

Fig. 4.1 shows the three main steps of the proposed system. The first step is pros-

tate segmentation. The purpose of this step is to separate the prostate region from

the background to reduce the complexities and expedite the following steps by

FIGURE 4.1

Three main steps of the proposed system.

854.2 Methods



applying these steps on the region of interest. Prostate segmentation was performed

using a level-set model that employed three features for enhanced accuracy. The

employed features were intensity, shape prior, and spatial features. These three fea-

tures were fused using a nonnegative matrix factorization (NMF) approach. More

details about the segmentation model can be found in our previous work [19].

Fig. 4.2 shows the segmentation results of two subjects. The second step after

prostate segmentation is to extract features from the segmented prostate regions

that can discriminate between malignant and benign subjects. In the proposed sys-

tem, ADC maps computed using the difference between two DW images are used

as discriminating features. The third step of the proposed system is to feed the

computed features of the second step to a classification model to identify the

input subject as either malignant or benign. The used classification model is based

on CNN that is trained using the ADC maps computed in the second step. The

details of the processes of computing the ADC maps and training the CNN-based

model are mentioned in the following subsections.

4.2.1 Feature Extraction

DWI is considered as one of the recent MRI modalities employed in the diagnosis

of prostate cancer. The basic idea of DWI to generate contrast DW images is to

FIGURE 4.2

Segmentation results of two subjects. The green and red contours represent the ground

truth and the model segmentations, respectively.
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measure the freedom with which water molecules disseminate within tissues. The

nature of this dissemination provides information about the cellularity of the tis-

sues and the space inside and between the different cells of these tissues. This

information can be used to recognize the presence and aggressiveness of cancer.

DWI has some advantages over DCE-MRI. For example, the time required to

generate DW images is short because DWI does not employ any sort of contrast

materials. Although, these contrast materials result in high quality images, they

cause harmful complications for patients, especially those who have kidney pro-

blems. DWI concentrates on the spread of water between cells to evaluate

whether a certain region has abnormal restricted spread. This restricted spread of

water is typically triggered by the decrease in the volume of space between cells.

DWI uses the distinctions in the motion of water molecules within tissues to gen-

erate images. This motion has a random nature that is positively correlated with

the signal loss of DWI. The signal loss is defined by [20]:

SdBe2b3ADC (4.1)

where b is a variable related to the magnitude and timing of gradient pulses. DWI

scanners use gradient pulses instead of steady state gradients as gradient pulses

have better sensitivity to the spread of fluids [21].

The signal loss defined in Eq. (4.1) determines the relationship between the

intensities of the pixels of a diffusion image acquired at some b-value and the

intensities of the pixels of a diffusion image acquired with the absence of diffu-

sion (b5 0 s/mm2). The following equation define these intensities:

Sd 5 S0 3 e2b3ADC (4.2)

As the quality of DWI is typically not high [22], the quantitative maps com-

puted from DWI, known as ADC maps, are used to diagnose prostate cancer.

ADC maps can be used for this purpose because cancerous tissues have restricted

diffusions and therefore lower ADC values in comparison to higher ADC values

of healthy tissues. The ADC map at a certain b-value is computed by measuring

the distinction between a diffusion image acquired at that b-value and the coun-

terpart image acquired at b0 (b5 0 s/mm2) using the following equation:

ADC5 2
ln Sb 2 ln S0

b
(4.3)

In Eq. (4.3), the natural logarithm is applied to the results of dividing the pix-

els’ intensities of the b image by the pixels’ intensities of b0 image to eliminate

the T2-effect. Fig. 4.3 shows an example of two subjects (one benign and one

malignant) where it represents the ADC color maps at the seven b-values for each

subject. After the ADC maps are calculated, they are used to train a CNN-based

classification model. Recent study shows that incorporating handcrafted features

can enhance the performance of CNN [22]. To take the advantage of idea in our

system, we decided to use ADC maps as inputs to CNN classifier instead of the

DWI. This process is detailed in the following subsection and in Section 4.3.
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4.2.2 CNN-based classification

Deep learning improves the accuracy of classification over conventional neural

networks using a higher number of network layers. Augmenting the number of

layers in a network enables it to learn high levels of abstractions as the first layers

learn primitive features while the following deep layers use these primitive fea-

tures to learn abstract high level features [23]. Deep learning has resulted in many

successes in multiple domains. For example, deep learning has been used as the

domain of analyzing medical imaging to diagnose different kinds of diseases [23].

In the proposed system, one of the most dominant deep learning techniques

(CNN) is used for early diagnosis of prostate cancer. When conventional classi-

fiers are used, the good design of the handcrafted features that they employ is a

key factor in their accuracies. The effect of handcrafted features vanishes in the

case of CNNs as CNNs can learn the discriminating features automatically.

CNNs differ from conventional neural networks in three main aspects. The

first difference is in the type of inputs. CNNs take as input images or volume of

images, whereas conventional neural networks accept only vectors. The transfor-

mation of images to vectors to be suitable for conventional neural networks led to

the loss of useful information, which in turn affects negatively their accuracies.

The second difference is in weight sharing. The number of parameters of a CNN

is much lower than the number of parameters of a similar conventional neural net-

work as conventional networks do not support weight sharing. The third differ-

ence is in the types of supported layers. For example, CNNs support pooling

layers which are not found in conventional neural networks. CNN is formed by

concatenating the following types of layers.

Convolutional layers, pooling layers, and fully-connected layers are three

main types of layers that form CNNs. Convolutional layers apply a set of filters

on their inputs. Each filter results in a feature map. These feature maps are

concatenated to produce the output volumes. A non-linearity function, such as

The extracted ADC maps for two different Subjects
ADC Color maps ADC Color maps

b=100 b=200 b=300

b=400 b=500 b=600

b=700

b=100 b=200 b=300

b=400 b=500 b=600

b=700

FIGURE 4.3

An example of the calculation of ADC maps for two subjects.

88 CHAPTER 4 Computer-aided diagnostic system



rectifying linear unit (ReLU), is applied pixelwise on these feature maps. ReLU is

defined using this equation:

f xð Þ5max 0; xð Þ (4.4)

The advantage of ReLU activation is that its convergence time is shorter than

other famous activations like sigmoid. Pooling layers have the ability to decrease

the width and height of feature maps. They achieve this decrease by representing

a group of values in a certain window by a single value. This single value is typi-

cally either the average or the maximum value of these values. Therefore, the

common types of pooling are either average pooling or maxpooling. Fully-

connected layers are the type of layers that form conventional neural networks.

Each neuron of a fully-connected layer has direct connection to all neurons of the

next layer.

The CNN of the proposed system has a total of six convolutional layers. The

first convolutional layer has 64 filter of size 73 7. The second convolutional

layer has 64 filters of size 33 3. Each of the remaining four convolutional layers

has 128 filters of size 33 3. Three layers which are batch normalization, ReLU,

and pooling layers follow each convolutional layer. All the used pooling layers

are maxpooling except for the final pooling layer before the fully-connected layer.

This final pooling layer is an average pooling layer. The advantages of using

batch normalization layers is that they enable CNNs to employ high learning rates

which lead to reducing the training time of the network [24]. The output classifi-

cation probability is obtained by a softmax layer concatenated to the fully-

connected layer.

4.3 Experimental results
Experiments were performed using DWI datasets acquired from 45 subjects at

two different magnetic field strengths, which are 1.5 and 3 T. Two main experi-

ments were performed to evaluate the accuracy of CNN and to compare its accu-

racy to the accuracy of SVM. SVM introduced the concept of hyperplanes with

the maximum margins between the two output classes. To ensure that the solution

found by SVM is unique, SVM use convex loss function [25]. The rationale

behind comparing the proposed CNN to SVM is that SVMs have good perfor-

mance for input data of high dimension which is the case of the input data to the

proposed system.

In the first experiment, the 45 ADC maps computed in the second step of our

system at the first b-value (b-value5 100 s/mm2) is used to train the CNN in a

“leave one subject out” (LOSO) scenario. A similar experiment is performed for

each of the remaining b2 values (200, 300, . . ., 600 s/mm2). Table 4.1 lists the

different performance measures at each b-value. The results in that table reflects

the high performance of CNN.
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Table 4.1 Performance measures of CNN.

b-Value (s/mm2) Accuracy (%) Sensitivity (%) Specificity (%)

100 95.6 100.0 90.0
200 91.1 100.0 80.0
300 97.8 100.0 95.0
400 91.1 100.0 80.0
500 97.8 100.0 95.0
600 91.1 100.0 80.0
700 91.1 100.0 80.0

Table 4.2 Performance measures of SVM.

b-Value (s/mm2) Accuracy (%) Sensitivity Specificity

100 71.1 72.0 70.0
200 60.0 68.0 50.0
300 57.8 68.0 45.0
400 62.2 68.0 55.0
500 53.3 56.0 50.0
600 55.6 56.0 55.0
700 60.0 68.0 50.0
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FIGURE 4.4

ROC curve for CNN and SVM at b-value5 100 s/mm2.

90 CHAPTER 4 Computer-aided diagnostic system



In the second experiment, the 45 computed ADC maps at the seven b-values

is used to train SVM in an LOSO scenario. Table 4.2 lists the different perfor-

mance measures of SVM at each b-value.

A quick analysis of the results in Tables 4.1 and 4.2 indicates that the accu-

racy of the CNN is high at the different b-values even if the DWI datasets are

acquired at two magnetic field strengths (1.5 and 3 T). This means CNN can

effectively classify data acquired with different acquisition systems. However, the

use of datasets acquired by different scanners has negative effect on the accuracy

of SVM.

Fig. 4.4 shows the receiver operating characteristic (ROC) curve for both the

CNN and SVM at a single b-value (b-value5 100 s/mm2).

4.4 Conclusion

In this chapter, an automated system for diagnosing prostate cancer from DWI

using CNN is proposed. The developed system consists of three main steps. First,

prostate segmentation using a level-set model to delineate the region of interest

(prostate). The evolution of the level set is guided by a set of information fused

using NMF. Second, the ADC maps of the prostate region are computed at each

b-value and used as inputs to the classifier of the final step. Finally, a CNN

trained using these ADC maps to distinguish malignant subjects from benign

ones. Although the used DWI datasets in the proposed system were acquired at

two magnetic field strengths, the accuracy of CNN is high and is not affected

negatively by this change in magnetic field strength.

In addition to the prostate cancer [26�28], this work could also be applied to

various other applications in medical imaging, such as the kidney [29�56], the

heart [57�73], the lung [74�121], the brain [122�143], the vascular system

[144�153], the retina [154�158], the bladder [159] and injury prediction [160] as

well as several non-medical applications [161�166].
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CHAPTER

5Adaptive graph
convolutional neural
network and its biomedical
applications

Junzhou Huang and Ruoyu Li
The University of Texas at Arlington, Arlington, TX, United States

5.1 Introduction
Although the Convolutional neural networks (CNNs) have been proven to be

supremely successful on a wide range of machine learning problems [1], the classi-

cal CNNs come with a requirement of regularly shaped tensor as input [2]. For

instance, images [1] and videos [3] are respectively modeled as 2-D and 3-D ten-

sors when being fed to a traditional convolutional neural network. As opposite to

this stereotype, in many real-world applications, it is more likely to encounter the

data deployed on an irregular grid for instead and more generally in a non-

Euclidean domain. Despite being treated as regularly shaped tensors, those data

are intuitively more appropriate to be seen as graph-structured, which make it con-

venient to handle the varying neighborhood vertex connectivity as well as the

non-Euclidean metrics. Under these circumstances, the stationarity and the compo-

sitionality, which empower convolutional operator to work on multi-dimensional

grid, does no longer exist on graph-structured data. Consequently, it is necessary to

reformulate convolutional operator to make it compatible with graphs.

However, extending convolutional operator from regularly shaped grids to

irregular graphs is not trivial. For the simplicity of constructing convolutional ker-

nel, most early-stage neural networks on graph assumed that input data are still

low-dimensional. Because, in their setup, the convolver handled a subset of nodes

grouped by node degree respectively [4,5]. And their convolutional kernel is

over-localized and infeasible to learn hierarchical representations from complex

graphs with unpredictable and flexible node connectivity, for example chemical

molecules and social networks [6]. In some applications, for example classifica-

tion of point cloud [7], the topological structure of graph is more informative than

the node features or the edge features alone. Unfortunately, the existing graph

convolution networks [8] cannot thoroughly exploit the geometric property of

graph due to the difficulties of implementing a parameterized spatial kernel com-

patible with different scenario of node neighborhood. Similar difficulty is also
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interfering the extension of graph convolutional networks to new applications, for

example human activity recognition [9] and co-citation networks [10]. Besides,

given the flexibility of topology structure of graph and the OðN2Þ scale of para-

meters to define node-pair connectivity, learning a topology-preserving spatial

convolutional kernel for every unique graph data sample is impractical in real-

world scenarios.

Inherited from classical CNNs, a shared convolutional kernel among training

samples is one of the common assumptions. Consequently, to guarantee a unified

dimensionality of input/output for all samples at consecutive layers, the input

graph data have to be pruned, which is also a constraint of utilizing traditional

networks on graph directly. However, this kind of preprocessing on graph-

structured data could destroy the completeness of graph-oriented information. For

instance, the coarsening of molecule is hard to be justified chemically, and it is

likely that the coarsened graph has lost the key sub-structures that differentiate

the molecule from others. In Fig. 5.1, removal of any carbon atom from the graph

breaks the Benzene ring. It would be much better if the graph CNNs could accept

and preserve the original graph structures of data. Beyond the spatial graph con-

volution applied to quasi-grid graphs, another kind of graph convolutional neural

networks, who were derived from the graph Fourier transform [11], are promising

to offer an elastic kernel for sophisticated graph-structured data. The article intro-

duces spectral network in session 2 and 3.

Finally, in this article, the graph-structured data used in experiments either

have an intrinsic graph structure (e.g. chemical molecules) or have one recon-

structed through clustering of vertices (e.g. point-cloud). In existing graph net-

works [4,5,9], the initial graph structures are enforced to be stable during the

training process. While, on the other hand, it is doubtful that the graph topology

derived in unsupervised fashion happens to be optimal for each particular learning

task. Although there were pioneering works who included supervised graph recon-

structions with fully connected networks [5], the computational complexity of

net weights constrains the initialization of graph only feasible to small graph.

Furthermore, the graph topology that fits in one pre-trained network may not

work well with another kind of graph neural network [12].

In this article, we introduce a novel spectral graph convolution neural network,

compatible with graph data of diverse topological structures, for example the

FIGURE 5.1

Example of molecular graph: nicotine (C10H14N2, SMILES: CN1CCC[C@H]1c2cccnc2)

and its intrinsic graph (omit hydrogen atoms).

106 CHAPTER 5 Adaptive graph convolutional neural network



organic molecules that consist of a different number of atoms. To deal with the

fixed graph that may be stale, we choose to grant the network the capability of

learning the supplement to graph topological structure. Therefore, different from

a parametric kernel formed by a fixed Laplacian L [4�6], we parametrize the

graph Laplacian itself. While, given the goal of preserving topology on each indi-

vidual graph, we cannot learn the L as trainable parameters directly, let alone the

unacceptable computational cost. For instead, we parameterize the distance metric

between pairs of node feature vectors as an indirect learning of the self-organized

structure of each graph sample. A reasonable assumption is that the distance met-

ric parameters are shared by all samples that belong to the same type, for example

molecular graphs. Consequently, each individual sample is able to train the net-

work on a unique and adaptive graph Laplacian that preserves its uniqueness and

infers any undiscovered task-related substructures. A customized L will lead to a

customized kernel that combines neighbors’ features. It is interesting to question

what exact graph that optimally empower a particular task. For instance, the

chemical bonds, found via chemical experiments, naturally build a graph for any

compound. However, it is never guaranteed that the convolver that works on

intrinsic graph has extracted every meaningful feature. We introduced a so-called

residual graph to unveil the substructures that the intrinsic graph does not present.

Furthermore, to guarantee residual graphs to be the optimal supplement to the

intrinsic graphs for the task, we learn the residual graph along with the rest of

network.

To implement the learning of adaptive residual graphs, we are faced with two

major problems: (1) how to efficiently construct residual graph during training;

(2) how to preserve unique graph topology in the batch-wise training. A direct

learning of L is of exponential complexity and with O N2
� �

parameters for a

RN3 d graph sample. Allowing the topological structures preserved in M training

samples means complexity of OðMN2Þ, which is unscalable for large graphs.

While, an indirect learning of graph structure based on the Mahalanobis distance

metric [13] and transformation in feature manifold is able to reduce the complex-

ity scale to Oðd2Þ or even O dð Þ, assuming the metric parameters are shared by all

graphs. More importantly, after this, the learning complexity becomes indepen-

dent of graph size N. When execute the convolutional operator, both intrinsic

graph and learned residual graph will be used in the kernel: L̂5 L1 L0. Owing to

that, the proposed layer is a spectral graph convolution (SGC) layer [5] but on the

learned Laplacian, we name the new graph convolutional layer as SGC-LL. In

terms of forward-pass of topological knowledge, the self-constructed residual

graph Laplacian L0 will be pass to next graph convolution layer as one of training

inputs.

In classical CNNs, back-propagation generally updates kernel weights to

adjust the relationship between neighboring nodes at each feature dimension indi-

vidually. Then it sums up signals from all filters to construct hidden-layer activa-

tions [1]. To grant the graph convolutional network a similar capability, we

applied a re-parameterization on the output feature using a linear transform
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weight and bias. Finally, the O d2
� �

training parameters in the proposed graph

convolution layer consist of two segments: the Mahalanobis distance metric para-

meters and the feature transform weight and bias. To facilitate the diverse input

graph of varying number of nodes, we need to pad zeros to both feature and adja-

cency tensor. Therefore, we also modify existing graph pooling and gather layer

to recover the original data from padded tensors before layer execution. Because

the introduced graph network is capable of being adapted with respect to graph

topology, and more importantly the graph being used is also adaptive toward

learning task, we name the network as Adaptive Graph Convolutional Network

(AGCN) [14] to highlight these valuable features.

AGCN, first introduced by us in [14], in which we verified the effectiveness

of the new spectral convolution layer on multiple graph-structured datasets rang-

ing from chemical molecules and 3D point cloud generated by LIDAR [15].

AGCN had demonstrated overwhelmingly better accuracy on both graph classifi-

cation and graph attributes regression. Furthermore, we also explored the applica-

tion of AGCN to more sophisticated applications, such as survival analysis [16].

During this exploration, we extended the theoretical work of AGCN via combin-

ing with graph attention network (GAT) [17]. The introduced DeepGraphSurv

[18] delivered state-of-the-art accuracy on survival prediction on three benchmark

tumor whole-slide image (WSI) datasets. Moreover, the end-to-end graph repre-

sentation learning network is also promising for other large-scale image analysis

tasks. The works were initially introduced in conference papers [14,18]. Some

technical advantages of the AGCN architecture are summarized in the following:

1. Construct and learn unique graph Laplacian for each individual training graph

sample. Preserve the completeness of original information, especially in terms

of spatial topology.

2. Low computational expense in scale of Oðd2Þ, independent of vertex number

N, making the network more attractive in training tasks on large-scale graphs.

3. Explainable model. Graph neural networks have an intrinsic advantage on

interpretability. Discovering the hidden substructures on graph and the

representations learned upon those substructures cross-validate the

effectiveness of learned residual graphs from AGCN.

4. Residual graph is compatible with both spatial and spectral graph

convolutional network. We chose SGC [5] as baseline and build SGC-LL on

top, while the idea of residual graph and the learning of graph Laplacian via

distance learning is trivial to be extended to other graph neural networks, for

example GAT [17] and Differentiable Graph Module [19].

The rest of the article is organized as follows: (1) in Session 2, we introduce the ori-

gin and the evolutional roadmap of graph convolutional network (GCN) and its success

on molecular graph data and the recent massive applications to computer vision, drug

discovery and natural language processing; (2) Session 3 provides audience an over-

view of mathematical formulations and analysis of introduced SGC-LL layer and what

components AGCN comprises besides SGC-LL layers; (3) Experimental setup, results,
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and discussions are presented in Session 4 with comparison with state-of-the-arts in

GCN family; (4) Conclusion, future works, and acknowledgment are provided in

Session 5 (Fig. 5.2).

5.2 Related work

5.2.1 Evolution of graph convolutional neural networks

As graph is a more common and generic topology of data in real-world scenarios,

there is an increasing interest of generalizing CNNs to graph data since the signif-

icant success on computer vision starting in 2011. The majority of advances in

this direction could be categorized as spatial GCN and spectral GCN according

to the domain in which the convolution executed.

5.2.1.1 Spatial graph convolutional neural networks
The first trial of formulating an analogy of CNN on graph was accomplished by

[4]. Particularly, the authors proposed a sparse kernel that aggregated the vertex

features element-wisely from its neighbors. The finite-size kernel is nonparamet-

ric though, and the graph was self-constructed and constricted by data. [20]

extended spatial kernel [4] to molecular graph and used dedicated weight matrices

for the cluster of nodes of same degree. The drawback of [20] is that the node

degree scenario should predefined and fixed, otherwise the network cannot be

designed and initialized. And the spatial kernel [4,20] is also over-localized since

the adjacency matrix form an undirected graph is merely able to represent the 1-hop

connections, therefore, the kernel cannot assign weights to those peripheral nodes not

directly linked to the central node. To relieve the constrain, the diffusion-

convolutional network (DCNN) [22] builds K transform matrices to handle at most

K-hops diffusion of node features on graph, allowing output x
0
AR N3K3 df g. To tackle

the over-localized kernel, DGCN [23] executed two parallel convolution networks on

FIGURE 5.2

Red spot is the central node of convolution, the orange nodes represent receptive field.

(1) classical CNN; (2) NeuralFP (spatial convolution) [20]; (3) ChevNet (spectral

convolution) [21]; (4) AGCN based on learned residual graph (dash lines).
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two views of graph data balancing local and global consistency toward a semi-

supervised problem.

Previous networks [20,22,23] more or less handled the challenge of diverse

node degree, while none of them formulated a CNN-alike convolution on graph,

and their convolutional layers were without loss of generality able to be approxi-

mated as the assembly of a series of fully connected layers. PTCHY-SAN [23]

ignored the graph scale and only selected a fixed number of nodes with a fixed

receptive filed, following one of graph labeling procedures. The receptive field

were picked from its direct neighborhood. And lastly the normalized neighbor-

hood from the receptive field serve the final aggregation operation. [24] proposed

LGCL, transforming graph data back to grid-like structure, selects a fixed number

of neighbor nodes for each feature dimension, and then then applies a 1D-CNN

on top. [25] further discussed the theoretical generalization of CNN from grid to

manifold and finally graphs. GraphSAGE [26] argued that above transductive

algorithms required the presence of nodes in training and cannot deal with graphs

consisting of unseen nodes. However, [23,24] did not utilize the entire set of

nodes, while, for some scenarios such as drug attribute prediction [27], a selective

aggregation of nodes means a damage to local substructures, which have to stay

intact to learn meaningful hidden representations.

5.2.1.2 Spectral graph convolutional neural networks
Another category of graph convolutional operator is defined and executed in

Fourier domain. [4] first proposed to compute the graph convolution based on the

convolution theorem and the eigen-decomposition of graph Laplacian matrix

L5UΛUT . Then, the convolution is written as:

g θf g 3 x5Ug θf g Λð ÞUTx (5.1)

where U is the eigenvectors of the normalized graph Laplacian:

L5 I2D21
2AD21

2. D is the degree matrix and A is the adjacency matrix. While,

this trivial solution comes with massive computational cost from the eigen-

decomposition. More importantly, the spectrum filtering may result in non-locality

on spatial domain after applying inverse graph Fourier transform U. [5] attempted

to tackle the spatial non-locality after filtering by the nonparametric spectral kernel

[4] by parametrizing g θf g Λð Þ in terms of diag Wð Þ, whose parameters are WARN :
Furthermore, another non-linear approximation of kernel g θf g Λð Þ was proposed as:

g θf g Λð Þ5
XK21

k50
θkΛk (5.2)

The kernel Eq. (5.2) mitigated the spatial non-locality by smoothing the spec-

trum filtering, while the computational cost is still high. [28] introduced a trun-

cated Chebyshev expansion of kernel that comprises K items as Tk Λð Þ. A

recurring evaluation of Tk Λð Þ with T0 xð Þ5 1;T1 xð Þ5 x is formulated as:

2xTk21 xð Þ2 Tk22 xð Þ. When convolving with feature x, the O N2
� �

complex multi-

plication with dense Fourier basis U is replaced with the multiplication with the
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sparse L̂, and it also saves the eigen-decomposition of L̂. Consequently, the over-

all complexity is reduced to O K ξ
�� ��� �

{O N2
� �

. ξ
�� �� is the count of non-zeros in L̂

and the number of graph edge. Both [28] and [29] relied on the approximation of

spectral convolutional operator finalized as:

g θf g Λð Þ3 xC
XK21

k50
θkTk L̂

� �
x (5.3)

L̂ is the re-normalized graph Laplacian defined as: L̂5
2

λ maxf g
L2 IN , where

λ maxf g is the maximum eigenvalue of L. While [29] further simplified the eval-

uation of Eq. (5.3) by setting K5 1 and λ maxf gC2 to alleviate the overfitting to

local structures. Because local neighborhood might deliver a biased represen-

tation of graphs especially when the node degree distribution is skewed.

Authors argued that a stack of multiple linearly approximated convolutions,

that is K5 1, is also able to recover a similar multi-hop knowledge aggrega-

tion as K .1. Given K5 1 and λ maxf g 5 2, and the recurring evaluation equa-

tions, the Eq. (5.3) was further simplified in [29] as:

g θf g 3 xCθo 2 θ1D21
2AD21

2x (5.4)

with layer-wide shared parameters fθ0; θ1g. An additional assumption θ5 θ0 52 θ1
brought us the linear approximation of single-layer spectral convolution as:

g θf g 3 xCθ IN 1D21
2AD21

2

� �
x (5.5)

However, as expected, a repeated application of Eq. (5.5) leads to gradient

exploding/vanishing. So, within such layer, a re-normalization of adjacency A is

executed by Â5A1 IN to control the eigenvalues of L̂ fall into range [0,2]. The

baseline of spectral GCN in the article is [28] with the K-rank Chebyshev polyno-

mials as an approximation of kernel. The introduced AGCN is also founded on

the formulations given in [28] and inspired by [29].

5.2.2 Neural network on molecular graph

Biological and chemical research are two fields in which GCN made significant prog-

ress in recent years. Given the nature of organic compounds as molecular graph, it is

straightforward to formulate chemical compounds as graphs and to perform graph neu-

ral network (GNN) on top for representation learning and prediction tasks. Within

those, the GCNs, with localized kernels and deep network architecture, have success-

fully driven big progress on problems, for example drug property prediction [30], drug

discovery [31,32], reaction prediction [33,34]. The early success of GNN on molecular

graph was the NeuralFP proposed in [20]. While, [20] had a strong assumption on

node degree distribution, making the spatial neighborhood aggregation difficult to be

generalized to graph of skewed degree distribution. And if designing a different kernel

for different feature channel, the massive matrices multiplications are unscalable for

1115.2 Related work



large graphs. Consider the real-world scenarios, we have to balance the representational

capability and the computational cost. While, [20] groups nodes across graphs in batch

according to node degree and lets nodes of same degree share transform parameters, on

the direction against over-locality overfitting. But, it failed to perform a parametric elas-

tic kernel to aggregate K-hop receptive field as what a CNN does.

Spectral GCNs balance the trade-off between the representational power and

the computational cost by reducing the number of parameters and making the ker-

nels shared by entire nodes. In [14], we introduced GCNs to molecular graph

classification and drug property prediction tasks. Not doing any node truncation

or edge pruning, we devised a novel spectral convolutional layer deployed on full

graphs preserving original topology. Besides, we argued that the original graphs

are not optimal for particular tasks. Beyond a kernel designed with fixed struc-

ture, the SGC-LL layer [14] makes graph structure trainable along with the rest of

network. As opposite to the node ‘Selection, Assembly, Normalization’ procedure

by [24] that prunes the graph to fit a pre-defined kernel, we let the kernel be

adaptive to different graphs. More discussions on it in Session 3.

5.2.3 Attention on graph

Following the success of attention-only sequence-mapping networks, for example

Transformer [35], and a variety of attention mechanism on natural language understand-

ing tasks [36,37], the attention scheme was introduced to GNNs as Graph Attention

Network (GAT) [17], leveraging a masked self-attentional layer that allows nodes speci-

fying weights to different neighbors on graph. The mask applied to node selection is

where the graph structure introduced, GAT computes attention coefficients e i;jf g where

A i;jf g. 0. And the neighborhood Ni are node i’s first-order neighbors. Similar to [29],

GAT claimed that a stacking of first-order aggregation renders similar effects.

α i;jf g5 softmaxj ei;j
� �

5 exp e i;jf g
� �

=
X
kANi

exp e i;kf g
� �

(5.6)

Eq. (5.6) gave the expression of a normalized attention coefficient of node i

on its neighbor j. To learn the node-wise representations that best compute point-

wise attentions, GAT first applied a linear transformation W on graph’s node fea-

tures, the formulation of single attentional layer:

α i;jf g5
exp LeakyReLUðaT ½WxijjWxj�Þ

� �P
kANi

exp LeakyReLUðaT ½WxijjWxk�Þð Þ (5.7)

where || represents a concatenation operation, and the weight vector aAR2d need

be learned. As output of the layer, once attention coefficients are learned, aggre-

gated feature on node i:

x
0
i 5σ

X
jANif g

α i;jf gWxj

0
@

1
A (5.8)
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In which σ is the non-linear activation function. Also, similar to [35], GAT is

able to extend as multi-head attention by applying K independent linear node fea-

ture transformation and attention vector parametrized as ðWk; akÞ. Then layer out-

put is the concatenated feature: x0i 5 jj kf gx0i
kf g. In [18], we combined AGCN and

GAT and introduced a novel graph attention network based on adaptive graph.

With a jointly learned neighbors Ni and attention coefficient α i;jANif g, our new

network is able to outperform others in sophisticated image understanding tasks,

such as survival prediction, on benchmark datasets.

5.2.4 Neural network for survival analysis

Survival analysis [38] is a set of statistical inference models where the output is

the elapsed time until a pre-defined event occurs. The event can be anything of

interest, ranging from vehicle part failures to adverse drug reactions. Clinical

trials are aimed to assess different treatment regimens with biological death as the

primary event of interest to observe. An accurate estimate of survival probability

provides invaluable information for clinical interventions.

The Cox proportional hazards model [39] is the most popular model in sur-

vival analysis. While, the classical Cox model and its early followers overly sim-

plified the patient’s survival probability as linear mapping from covariates.

Recently, Katzman et-al have designed a fully connected network (FCN) called

DeepSurv [40] to learn a nonlinear mapping of covariates to the representations in

survival prediction. Although the neural networks [40,41] outperformed the linear

Cox survival model, their networks cannot directly work on pathological images.

Along with the success of convolutional neural networks (CNNs) on generic

images, pathological image, as well as CT [42] and MRI [43], have become ideal

data sources for training DL-based survival models. Among them, whole slide

images are one of the most valuable data formats due to their massive multi-level

pathological information on nidus and its surrounding tissues [44,45].

WSISA [46] was the first success of introducing whole slide pathological

images (WSIs) as major data source to survival prediction. Because the data size

of single whole slide pathological image is usually at gigabyte level, to have a

cost-efficient algorithm, most of existing methods on WSIs, including [45,46], are

based on a set of patches with reasonable size, like 1283 128, as inputs.

Therefore, a patch sampling on WSIs is required before running the algorithm.

However, WSISA model [46] comprises a series of CNNs, each of which was

trained with a cluster of similar patch samples collected from all training WSIs,

respectively. Therefore, the representations extracted by CNNs were over-

localized for WSIs since their receptive field is constrained to be less than a

patch’s size equivalent to a physical area of 0.063 mm2. The pathological sections

of nidus from patients contain more than the regions of interest (e.g., tumor cells),

therefore, the representations drawn from random patches may not strongly corre-

spond to the disease. Furthermore, it has been widely recognized that the topolog-

ical properties of instances on pathological images are crucial for a wide range of
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medical tasks, including cell subtype classification and cancer classification.

While, WSISA is neither able to learn any topological representations from WSIs

nor to construct feature maps upon given topological structures.

5.3 Method
In the session, we introduce the spectral convolutional network built on adaptive

residual graph, that is AGCN, and the graph attentional layer on adaptive graph

as well as the end-to-end whole-slide-image (WSI) based survival prediction that

is DeepGraphSurv.

5.3.1 Spectral graph convolution-LL layer

As elaborated in Sessions 1 and 2, the existing GCNs are tackling two major chal-

lenges: (1) how to utilize the complete set of graph nodes and edges without mak-

ing the model impossible to train; (2) how to balance the localized kernel and the

global structures that generalize the network for high-level prediction tasks. To

have a kernel that mixed both local and non-label features on graph, we insist to

borrow the kernel defined on spectrum domain as [28] together with the K-rank

Chebyshev expansion as approximation to control computational cost free of the

graph size. Through tuning K, the layer has a configurable receptive field as clas-

sical CNNs. In practice, we set K5 2 in most cases. And we found it was also

worth tuning K for best performance.

The root cause why previous GCNs cannot train entire graphs is that the diver-

sity of graph structures and the skewed node degree distribution make it so infea-

sible to directly parameterize node neighborhood in any trivial formulation, given

Oð2N2 Þ scale of possible node connectivity on graph of N nodes. To make graph

trainable, we grant data the capability of self-construction of graph structure by

training parameterized distance metric of nodes, so that the graph Laplacian itself

becomes trainable and adaptive along with data. Given the learned distance metric

weights M, we construct the residual graph, as supplement to the original graph,

using node features x for each sample. Since the new spectral graph convolutional

layer is executed on a learned graph Laplacian, we name it as SGC-LL layer with

formulation as:

g θf g Λð Þ3 xCσ
XK21

k50
θkTk F L; x;Mð Þð Þx

� �
(5.9)

In which F L; x;Mð Þ is the function to learn and update graph Laplacian for

each graph sample. L is the free, original graph Laplacian. A trade-off coefficient

λl is introduced in combination of original L and residual graph Lr in form of

L
0
5 L1λlLr. And σ is the nonlinear activation (Fig. 5.3).
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5.3.1.1 Learning residual graph Laplacian
In real applications, some graph data come with their intrinsic graph topological

structures, such as organic molecules. Molecules, when modeled as molecular

graphs, have the atoms as graph nodes and the chemical bonds as graph edges.

Importantly all the chemical bonds are justified by chemical experiment.

However, some data, on which GCNs is about to perform, do not naturally show

any graph structures, for example 3D point-cloud data. Under these circum-

stances, we will need to construct graphs before feeding to GCNs. Besides above

extreme cases, it is mostly likely that the original graphs, either from domain

knowledge or obtained via a graph initialization, failed to effectively unveil the

hidden substructures among the remote nodes on original graphs. The finite recep-

tive field and the computational cost prevent one GCN layer from aggregating

nodes graph-widely, ignoring the constraints of local neighborhood defined by

graph.

Use chemical compounds and property prediction as example, the initial graph

given by SMILES sequence of compound does not disclose anything on toxicity

directly. The useful representations of toxicity on the compound are supposed to

be composed of those atoms, while not necessarily supported by the bonds from

the original graph. If learning on original graphs, it may be difficult to learn the

optimal representations. Therefore, we introduce a so-called residual graph,

defined as a supplemental graph, patching the substructure missing on original

graph that may assists the learning. The residual graphs have the identical node

number as original graphs. To get rid of the curse of varying graph size, in SGC-

LL layer, the distance metrics are the parameters to learn.

For graph structured data, the Euclidean distance is not necessarily the optimal

metric to measure node-wise similarity. In articles of metrics learning, the algo-

rithms were divided into supervised and unsupervised learning [47]. The optimal

metric obtained in unsupervised fashion minimizes the intra-cluster distances and

FIGURE 5.3

Illustration of execution of two consecutive SGC-LL layers. Red lines represent node-wise

connections from residual graph. Convolution is running on (original1 residual) graph.
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also maximizes the inter-cluster distances. For labeled datasets, the optimal metric

is the one that minimizes the learning loss. The generalized Mahalanobis distance

between two nodes xi; xj
� �

is formulated as:

D i;jf g5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi2xj
� �T

Mðxi 2 xjÞ
q

(5.10)

where M is a symmetric positive semi-definite matrix, decomposed as

M5WdW
T
d . And the dense transform matrices WdARd3 d

�
, converting features to

the manifold where the Euclidean distance still serve, is one of the training para-

meters of SGC-LL layer. If M5 I, Eq. (5.10) reduces to the Euclidean distance.

Then, we normalize the distances in Eq. (5.10) via Gaussian kernel:

GD
i;jf g5

1

2π var Dð Þ

� 	
exp 2

D2
ði;jÞ

2 var Dð Þ

 !
(5.11)

To make computations efficient, a sparse graph is required. Therefore, thresholding

on G is to only keep the significant connections in constructed residual graph with adja-

cency matrix: Ar 5 thredðGDÞ. Therefore, ArðWdÞ is a differentiable function of dis-

tance metrics parameter Wd : In training process, the gradients back-propagated from

training loss update the distance metrics Wd, and then, in next forward-pass, the resid-

ual graphs in batch will be reconstructed using the updated Wd. By doing metric learn-

ing before building residual graph, we are supposed to obtain the optimized metric

parameters Wd
�
, applying which onto the node features is able to form the substruc-

tures that better serve the fitting of graph node embedding.

5.3.1.2 Re-parameterization on feature transform
At a classical convolution layer, given the input feature as H3W 3 d

0
and the

dimensionality of output feature as H
0
3W

0
3 d00, each dimension of output fea-

tures is the sum of the feature maps, each of which is convolved by a kernel inde-

pendently. Therefore, each layer has d
0
3 d00 kernels to learn. It means that the

resulted features are not only built upon the neighbor vertices, but also depend on

the rest of intra-vertex features from input. However, on graph convolution, it is

not theoretically explainable to construct and learn a separate topological structure

(graph) for each feature dimension. To construct the mapping of both intra- and

inter-vertex features, at SGC-LL layer, we introduce a linear feature transform

matrix and bias vector applied on the output features. Based on, the re-

parameterization on output feature is formulated as:

y5 g θf g Λð Þ3 xCσðW
XK21

k50
θkTk F L; x;Mð Þð Þx

� �
1 bÞ (5.12)

in which the linear transformation matrix WARd
0
3 d

0 0
and the bias vector

bARd
0 0
are trained together with the distance metrics Wd. In total, at each SGC-

LL layer, we have parameters up to the scale of OðdÞ, where d5max fd 0
; d

�
; d

0 0 g,
independent of graph scale and degree. At next SGC-LL layer, the spectral filters

will be built in another feature domain with different metrics.
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Algorithm 5.1: SGC-LL layer

Input: X5 {xi}, L5 {Li}; Parameters: Wd;W ;b;λl

1. for i-the sample in batch {X, L} do
2. Ai

r’Eq. (5.10), Eq. (5.11)
3. Lir 5 IN 2D

21
2f g

r Ai
rD

21
2f g

r

4. L
0
5 L1λlLir

5. Y i’Eq. (5.3): K-order Chebyshev approximation

In the Algorithm 5.1, the composition of introduced SGC-LL layer is elabo-

rated. Using iteration is for ease of narrative, and the Eqs. (5.10, 5.11) were not

explicitly expressed in batch-mode. As to the implementation, the for-loop in the

algorithm, with no loss of generality, could be replaced using the batch-wise ten-

sor multiplication operator given by PyTorch.

5.3.2 Adaptive graph convolution network architecture

The introduced new graph network is named as Adaptive Graph Convolution

Network (AGCN), because SGC-LL layers are designed to efficiently learn topo-

logical structure of residual graphs, adaptive to both training data and context of

training task. Besides SGC-LL layer, AGCN also comprises graph pooling layer

and graph gather layer [48].

Graph Pooling The graph pooling operation is conducted feature-wisely. For

node feature vector xi; at the ith vertex of graph, the pooling operator replaces the

jth feature value, xi jð Þ; with the maximum at the j-th feature among ith vertex and

its neighbors vertices, xi jð Þ5 maxEA i;Nif g xEð jÞ, if the layer is a max-pooling layer.

If the layer is for avg-pooling, xi jð Þ5 meanEA i;Nif g xEð jÞ. In AGCN, due to graph

structure is adaptive and being updated along training progress, the neighborhood

of ith vertex is as well changing w.r.t the update of graph adjacency Ar.

Graph Gather The graph gather layer sums up all the vertex features along the

feature dimension as the final representation of graph data. The output tensor at

gather layer for a batch of B graphs is of shape ðB3 d), where d is the feature

cardinality of vertex representations. It will be used as input for a graph-level

classification or regression. Without a graph gather layer, the AGCN is also able

to be trained and used for vertex-wise inference tasks. Training is executed with

given labels on vertices or in a weakly-supervised fashion by replying on graph-

level label alone. The vertex-wise predictions include graph completion and many

predictions on social networks.

Bilateral filter layer. The purpose of using a bilateral filter layer [49] in

AGCN is to proactively prevent over-fitting, consider the data scales of graph

data are not comparable to other machine learning problems, for example

ImageNet. Residual graphs definitely push the model to a better fitting to training
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tasks, while, at the risk of over-fitting. To mitigate over-fitting, we introduced a

revised bilateral filtering layer to regularize the activation from SGC-LL layer by

augmenting the spatial locality of updated graph Laplacian L0. We also introduced

batch normalization layers to avoid gradient explosion or vanishing.

Network configuration. The AGCN consists of multiple consecutive layer

combos, the core layer of which is the SGC-LL layer. A classic layer combo con-

sists of one SGC-LL layer, one batch normalization layer as well as one graph

max pooling layer. See Fig. 5.4 for illustration. Since a residual graph Laplacian

is learned at SGC-LL layer. At the graph pooling layer that follows, the updated

graph Laplacian L
0
i, of sample i, will replace Li when finding neighborhood Ni

until next SGC-LL layer. As last convolutional layer transformed features, at next

SGC-LL layer, the residual graphs have to be reconstructed from the scratch.

While, the learned L
0
will become the “original” graph Laplacian L at following

layers.

Padding. Because for data like organic compounds, local sub-structures are

decisive on chemical properties, for example toxicity. For instance, aromatic

hydrocarbon is usually strongly toxic. However, if the hydrogen (H) atom was

replaced by methyl group (-CH3), the toxicity of compound would be signifi-

cantly reduced. Therefore, graph coarsening or feature dropping/averaging will

damage the completeness of informative local substructures, resulting in wrong

predictions. Therefore, when preparing data, we pad X and graph Laplacian L ten-

sors to as large as that of the maximum node per graph in the dataset. Then,

when used at layers, we remove the zeros padded to X, L and execute the calcula-

tions, for example Algorithm 1, on graphs of original size. By doing this, we

maintain a unified batch shape required by deep learning frameworks, for exam-

ple PyTorch, without pruning any decisive local structures on graphs. While, data

padding and recovery lead to extra computational cost, which is linear to graph

size N:
To make predictions toward particular tasks, a classifier or a regressor need to

be added on top of output graph embeddings. We can either simply do logistic

FIGURE 5.4

AGCN network. Directly feed it the graph-structured data and their original graphs.
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regression or insert a fully connected layer before classifier. In experiments, we

add one linear layer between last graph layer and the softmax. Besides, adding a

linear layer make AGCN adaptable to a multi-task scenario, making the AGCN to

deliver multiple predictions for different tasks in one-shot. We will present sev-

eral experiments about using AGCN in multi-task learning.

5.3.3 Graph attention network on adaptive graph

As introduced in session 2.3, GAT [17] computes pair-wise attention coefficients

between a node and its neighborhood using node features and learned transforma-

tion ðW ; aÞ shared across data. Given that the parameter scale of attentional layer

is irrelevant to graph size and that GAT only consists of attentional layers, similar

to AGCN, GAT is also able to accept graph data of diverse structures. However,

attentional layers in GAT only aggregate features from attended neighbors, that is the

first-order neighbors. Therefore, the representational capability of GAT is weaker

than SGC-LL layers. Because at an SGC-LL layer there are up to K-hop neighbors

included in kernel, equivalent to a receptive filed of size 2K1 1ð Þ3 2K1 1ð Þ on

grid. In practice, we set K$ 2. While, GAT’s attentional layers aggregate neighbors

with an equivalent 33 3ð Þ kernel on grid.

In AGCN, if no graph gather layer added, the pooling layers and convolutional

layers should not reduce graph size passed through the network, after removing

the padded zeros, the output tensor should be of shape ðB3Ni 3 dÞ, where B is

batch size and Ni is the graph node count at ith sample and d is the feature

dimensionality. If we set the output feature dimensionality at last SGC-LL as 1,

then a stack of SGC-LL layers is also able to generate an attention mask on graph

GðV ;EÞ,αAR Vj j3 1f g. And then, different from the GAT aimed at learning graph

embedding, the node-wise attention coefficients could be used in a weighted

graph gathering:

y5 gather Gð Þ5
X
iAVf g

αixi (5.13)

where xiARd is the i-the graph node embedding from AGCN for node-wise

embedding and αi is the attention coefficient from the attention net to be applied

on every dimension of xi: The output dimensionality at the weighted gather layer

is ðB3 dÞ, namely one d-dimensional vector for each graph. The node with a

larger attention coefficient will be of more weight in the resulted final representa-

tion of graph.

As the attention coefficients αi 5Attention G V ;Eð Þð Þ, are the direct output

from the SGC-LL layer based attention net, when the final weighted embedding

per graph y used in prediction, the gradients derived from loss will be propagated

back to parameters in attention net. Consequently, the attention coefficients are

updated along with node-wise embedding toward lowering the loss. The intro-

duced joint end-to-end approach of attentional graph embedding learning is sup-

posed to deliver better representation of graphs for a particular learning task. In
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next section, we introduce one application of the attentional graph network on

adaptive graph in a critical medical mission.

5.3.4 DeepGraphSurv framework

Medical image is a more direct observation compared to other formats of patient

data toward an accurate survival time prediction. While, prior to CNNs, medical

imaging analysis is based on handcrafted features, irrelevant to survival. On posi-

tive side, it has less chance of overfitting, but its accuracy and robustness are

both unsatisfactory. CNNs are proved to be able to generate more comprehensive

and generic representations of medical images. However, due to the tremendous

data scale of whole slides pathological images (WSIs), no existing CNNs are able

to accept the WSIs without down-sampling or cropping. State-of-the-arts of CNN

based survival data models were all trained with sampled patches losing the infor-

mative global topological structures among patches, which is crucial for making

decision for the entire WSI.

Graph is widely employed to represent topological structures among entities.

However, modeling a WSI as graph is not straightforward. Cell-graph [50] is

infeasible for tasks on WSIs due to the huge number of cells included and that

many of them are possibly noisy nodes, that is isolated cells. To control the com-

plexity of overall approach, the granularity of our model is set at patch level, for

local substructure smaller than patches, we assumed that the CNN for patch fea-

ture extraction is able to represent them and include in patch embedding. To con-

struct graphs for a WSI, patches become graph nodes, and the graph edges were

to be built from the scratch. The extracted patch embeddings are, therefore, the

original node features, when constructing node-wise connections using methods

like clustering. Given a cluster, we set an edge appear on any two nodes belong

to the same cluster.

Not all sampled patches will be used. For quality assurance purpose, we may

have to dump some patches drawn from the marginal areas in which few cells are

included. The extensive cleaning preprocessing was done via a visual check by

professionals. Therefore, the cardinality of resulted patch samples per graph dif-

fers. Namely, the graphs that represent WSIs are of different number of nodes. In

our experiment, vertex features are generated by the VGG-16 network pre-trained

on ImageNet [51]. Due to the lack of patch labels, we cannot fine-tune the net-

work on WSI patches. We will introduce how the proposed graph CNN model

mitigates this deficiency in next session. The graph edges were initialized by

thresholding the Euclidean distances between all patch pairs. The distances were

calculated using the 128-dimensional node features that were first generated by a

VGG-16 pre-trained network and then compressed by principal component analy-

sis (PCA).

After graph is constructed, with minor change on output dimension, the SGC-LL

layer is able to generate an attentional mask over graph, equivalent to the impor-

tance of each graph node in final graph representations. With a similar architecture
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as AGCN proposed in [14], we created a graph attention network that comprises a

stack of SGC-LL layers, parallel to the AGCN aimed at graph embedding learning,

to learn node-wise attention coefficients. The output of the graph attentional mask is

about to be applied in the final weighted gather layer, elaborated in Eq. (5.13).

As shown in Fig. 5.5, the end-to-end approach, named as DeepGraphSurv, first

converts a WSI into a bag of patch sample represented as a 4096-dimensional

embedding, then a graph was built using the compressed embeddings of nodes on

cost-efficiency purpose, follow Eqs. (5.10) and (5.11). Different from previous

deep learning-based survival models that simply act as feature extractor [46],

DeepGraphSurv is able to directly generates predicted risks. We combine the

regression of survival risk with the graph embedding learning on WSIs. The loss

function is negative Cox log partial likelihood for censored survival data as

shown in the following [39]:

L Rð Þ5
X

iAfi;Si 5 1g
ð2Ri 1 log

X
jAfj:Tj $Tigf g

exp ðRjÞÞ (5.14)

Si and Ti are respectively the censor status and the survival time measurement

of i-th patient.

Eq. (5.14) is evaluated in batch-wise. Ri Rj are the risks given by

DeepGraphSurv for sample i; j. A well-trained network is the one that gives a

sample of longer survival time relatively less risk. During the training, the fine-

tuned patch-wise embedding and the survival-related residual graph of WSIs are

accessible at each SGC-LL layer of network, while the later layers usually pro-

vide more high-level topology-aware features about WSI. We also visualize the

FIGURE 5.5

DeepGraphSurv: an WSI based end to end survival prediction workflow.
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attention coefficients of graph node on the actual coordinates of corresponding

patch on WSI in experiment session.

5.4 Experiment

5.4.1 Drug-property prediction

5.4.1.1 Baseline model
In experiment session, we compared the introduced AGCN with the state-of-the-

art GNNs. [4], that constructs a spectral graph kernel by linear B-spline interpola-

tion, is referred as graphconv. Neural fingerprint [20], referred as NeuralFP, is

the graph neural network particularly designed for molecular graphs. It uses ker-

nel constructed in spatial domain for each node cluster grouped by the same node

degree. We refer to the spectral graph convolution equipped with a K-localized

spectral filter as GCN [28], in which a Chebyshev approximation is applied for a

fast evaluation of consecutive tensor multiplications. Using [28] as comparison is

to demonstrate the additional knowledge representations empowered by the

learned residual graphs. Graph attentional network (GAT) is also feasible for

learning embeddings on molecular graphs, due to its definition that has no prere-

quisites on graph topology. As opposite, to enable the use of [4,28] for molecular

graphs of different scales and structures, a graph pruning is inevitable, sacrificing

performance. Besides, graph isomorphism network (GIN) [52] is introduced as a

GNN that learns node embedding via MLP and the aggregated node and edge fea-

ture vectors. The graph-level representation of GIN is given by averaging the

node embeddings. Those baseline models included for the experiment of molecu-

lar graph classification are more or less feasible with diverse graph inputs of vary-

ing node count and topological structure. Because the methods, for example

NeuralFP, GIN and GAT execute the feature aggregation within the first-order

neighbors, and parameterized transforms were built and initialized either for

entire nodes or for node clusters [20]. Their over-localized, non-parametric ker-

nels excluded most topological structure of molecular graphs from modeling. And

that is the reason that AGCN outperformed the baselines on the drug classifica-

tion benchmarks.

5.4.1.2 Dataset
The datasets used in this experiment are all about drug property prediction. Given

labels obtained from the extensive lab or clinical experiment over a long list of

organic compounds, it is possible to learn some patterns from the compounds

related to certain predefined biochemical properties, such as toxicity and solubil-

ity. With the open-sourced cheminformatics software RDKit [53], it is straightfor-

ward to convert any compound to its corresponding graph representation,

molecular graph, which consists of node list, edge list, node features and edge

features. The node features extracted from molecular atoms: atomic number, atom
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degree, formal charge, chiral tag, number of Hs, hybridization, the Boolean indi-

cator on aromatic and the scaled atom mass. And the edge features include a 4-

digit one-hot vector to represent bond type, the indicator on bond aromatic, as

well as two Boolean features that determine if bond is conjugated or in-ring.

Downstream task datasets we utilized in experiment are 4 multi-task, binary

drug classification dataset from MoleculeNet [54]. They are:

1. Tox21. Toxicity clinical data with labels on 12 tasks corresponding to

different biological syndrome. Each label represents an observation toward

one property of the compound.

2. Toxcast. Another toxicology measurement of drugs collected from the same

initiative as Tox21, providing toxicology experimental results for a large

library of compounds based on in vitro high-throughput screening. It offers

617 experiments on over 8K compounds.

3. SIDER. A dataset that contains marketed drugs and adverse drug reaction

(ADR) with 27 group of organ classes [55].

4. ClinTox. Collected data on drugs approved by the FDA and the drugs that

failed clinical trials for toxicity reasons. The dataset has two binary labels:

(1) clinical trial toxicity pass or fail; (2) FDA approval or not [56].

5.4.1.3 Experimental result
The baseline models and AGCN were trained with the identical training dataset

and tested over the same dataset. To measure the classification accuracy, RoC-

AUC was chosen as the metric for comparison. Because for the datasets such as

Tox21, there are 12 individual classification tasks, the numbers presented are

averaged RoC-AUC of each task. To remove randomness, we also applied 4-fold

cross-validation and averaged the numbers. From the results listed in Table 5.1, it

is obvious that the AGCN outperformed other four baselines on 3 of 4 datasets.

While, at SIDER dataset, GAT gave the best classification accuracy. Considering

that GAT is constructed using complete original graph, therefore, there is chance

that GAT outperformed AGCN on some tasks. Given that AGCN has more

Table 5.1 Class-average ROC-AUC on test dataset.

No. graph
No. task

Tox21
7831
12

Toxcast
8575
617

ClinTox
1478
2

SIDER
1427
27

NeuralFP [20] 0.7341 0.6384 0.7469 0.5525
GraphSAGE [26] 0.7470 0.6335 0.5924 0.6040
GCN [28] 0.7481 0.6739 0.7573 0.5914
GAT [17] 0.7540 0.6460 0.5886 0.6090
GIN [52] 0.7480 0.6340 0.5804 0.5730
AGCN 0.8016 0.7033 0.7688 0.5921
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parameters to train, it is likely to have under-fitting issue on a small dataset like

SIDER [55]. Recently, researchers have also found that GNNs could benefit from

a self-supervised pre-training before fine-tuning toward classification tasks [57].

Table 5.1 also includes RoC-AUC of GAT and GIN tested over the aforemen-

tioned 4 molecular graph datasets reported in [57]. It showed that, even with

well-designed pretrain task, their performances were still worse than AGCN, who

did not experience pretrains, on 3 of 4 tasks. And because of more parameters

introduced, AGCN had more significant advantage on relatively larger datasets

which the model was able to fit better.

5.4.2 DeepGraphSurv and survival prediction

GNNs are not only feasible for learning powerful representation from molecular

graph for graph classification tasks, they have also shown promising results on

computer vision mission [58,59]. The key part of applying GNNs onto computer

vision domain is how to properly define the graph structures on multimedia data.

Using video understanding as example, if video frames defined as graph node and

graph edges represent correlations between key frames, then video classification

will be naturally modeled as graph classification problem. And the graph node

classification and attribute regression are equivalent to video segmentation and

video caption respectively. In this experiment, we introduce WSI-based survival

prediction and how a WIS is represented as graph. Then, DeepGraphSurv and the

baselines survival models will be compared on extensive datasets.

5.4.2.1 Dataset
As to experimental benchmark dataset, we utilized the whole slide pathological

images (WSIs) from a generic cancer patient dataset TCGA [60], which was orig-

inally released by The Cancer Genome Atlas project, whose research objective is

to discover correlation between genetic errors in DNA and the occurrence of 33

cancer subtypes. We trained and evaluated the baseline models and the introduced

DeepGraphSurv over the WSIs associated with two common cancer subtypes

from the TCGA dataset: glioblastoma multiforme (GBM) and lung squamous cell

carcinoma (LUSC). Besides, NLST (National Lung Screening Trials [61]) is

another medical research that employed 53,454 heavy smokers, whose age 55 to

74 with at least 30-year smoking history, as the high-risk patient group for lung

cancer survival modeling and analysis. We also committed an experiment over

the WSIs data of NLST that consists of both squamous-cell carcinoma (SCC) and

adenocarcinoma (ADC) patients and their lung tissue images to evaluate the per-

formance of our model on survival prediction for patients of mixed tumor sub-

type. The numeric facts on the datasets in the experiments are listed in Table 5.2.

Some patients have multiple WSIs collected and included in dataset, we executed

models on all data and report the average prediction per patient. Because the con-

structed graphs over patches on WSI is data-specific, not patient-specific instead.

Data quality in Table 5.2 is mostly related to image resolution. Average size of
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single WSI is to emphasize the challenges in experiments, because loading these

WSIs of that size to memory is already difficult.

5.4.2.2 Baseline model
The baseline models included in survival prediction experiments are divided into

two categories: classic methods and deep learning-based end-to-end methods.

Classic methods, such as LASSO-Cox linear model [39], BoostCI [62] and a multi-

task learning framework proposed for Survival Analysis, called MTLSA [63] are

not able to directly output survival probability or survival time, and the regression is

executed after extracting features from the raw data, no matter the data type is text

or image. Therefore, the performances of classic methods largely depend on the

quality of extracted hand-crafted features from raw data. Unfortunately, they were

entirely not designed for WSI-based survival analysis, which requires extensive cal-

culation. And no hand-crafted features are designed particularly for images at the

scale of WSI. So, for a fair comparison, we first feed those baselines with the

selected predefined features extracted on patches using CellProfiler [64], an open-

source scientific software for cell image analysis. Patches on WSI data were ran-

domly sampled, and the final features of WSI were the averaged ones over those

from corresponding patches. Furthermore, we also feed the classic baselines with

the WSI-level features generated by DeepGraphSurv using the same sampled

patches to demonstrate the gain of performance brought by the end-to-end fine-

tuned topology-aware global features from the new network.

Besides classic baselines replying on pre-calculated features, we compared

DeepGraphSurv with the cutting-edge deep learning-based survival models on

WSI. WSISA [46] is the first approach that directly works on WSI. While, train-

ing of WSISA is expensive and unscalable. It is required to train a CNN, for

example VGG-16, for each cluster of patch samples. Therefore, WSISA neglected

the wide-existing topological relationships among the patches, which are of great

value to survival analysis. As opposite, Graph CNNs are built upon the topologi-

cal structures and have recognized power of learning structured features on

graph-structured data. To demonstrate the capability of graph feature learning

over data with no intrinsic graph structure given, we add another GCN as baseline

method. We concatenate the latest spectral GCN model [28], as feature extractor,

with a Cox regression function who gave probability prediction. While, [28] exe-

cuted convolution over a pre-defined, fixed spectrum kernel, lack of adaptiveness

if the initial graph is not good.

Table 5.2 The statistics of whole slides pathological image (WSI) datasets.

Data source Cancer subtype No. patient No. WSI Quality Avg. size

TCGA LUSC 463 535 Medium 0.74 Gb
TCGA GBM 365 491 Low 0.50 Gb
NLST ADC & SCC 263 425 High 0.74 Gb
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5.4.2.3 Experimental result
As far as we know, DeepGraphSurv is the first survival model that utilizes graph-

based attention scheme. As shown in Fig. 5.6, after 40 epochs of training, the

regions that comprise the patches of high attentional coefficients have correctly

highlighted the most of Regions of Interest (RoIs) corresponding to tumor-related

cell clusters. The ground-truth of RoIs were annotated by experts. The embedding

learned on those patches of high attentional coefficient will be of higher weights

in the final representation of WSI [see Eq. (5.13)], and then if the higher coeffi-

cients predicted by attentional network geographically coincide with the RoIs

related to tumor cells, the final graph representation will be consequently more

tumor-oriented and more helpful in survival prediction.

The concordance probability (C-index) is the measurement of survival predic-

tion. It is defined as the fraction of all pairs of patients whose predicted survival

times/risks are correctly ordered as all censored patients that can be reasonably

ordered. Formulating survival order as directed graph Gt D;Ξð Þ where the edge

ξ i;jf g implies survival time Ti , Tj, then C-index of graph Gt, given the risk pre-

diction f ðxÞ, is defined as:

C D; Gt; f xð Þð Þ5 1= ξ
�� ��X

ξ i;jf g
1f xið Þ, f ðxjÞ

where 1f xið Þ, f ðxjÞ is the indicator function formulated as: 1 a, bf g 5 1 if a, b, other-

wise 0. f ðxÞ is the risk predicted by survival model for WSI x. When a patient has

more than one WSI included in dataset, we average the predicted risks for this

patient before calculating the C-index. A model who is able to more correctly

order the censored patients by the predicted survival time is supposed to have

higher C-index. The C-index result of the baseline models and the introduced

DeepGraphSurv from three experiments are reported in Table 5.3.

FIGURE 5.6

Predicted RoIs from DeepGraphSurv: Yellow colored regions in Right are the patches of

high attentional coefficient; Green lines in Left drew the ground-truth RoIs.
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Testing dataset was separated from the training set to avoid data leakage. The

classic survival models, for example LASSO-Cox [39], failed to deliver compel-

ling prediction accuracy on WSI datasets, Possible explanation may be: (1) sam-

pled patches are only part of a WSI given the computational constraint; (2) the

data quality of patches may vary case by case. Therefore, the features extracted

from randomly sampled patches bring a noisy and biased representation of WSIs.

Moreover, the hand-crafted features offered by CellProfiler are the generic

descriptors of pathological images, not particularly designed for images at the

scale of WSI. So, we believe it is the quality of hand-crafted features that limit

the performance of classic survival models. After feeding the topology-aware

graph embedding generated by DeepGraphSurv to classic baselines as input, the

C-index showed a notable lift as large as 0.04 on average on NLST and LUSC

datasets. And the outcome supported our argument that the features fine-tuned

with survival labels are better representations of WSIs for survival prediction pur-

pose. However, we also observe that, due to the lower image quality of GBM

WSI data, only using the fine-tuned patch features cannot improve prediction

accuracy. Because we see that WSISA [46], a CNN based patch feature extractor,

cannot beat MTLSA [63], which still use hand-crafted features as input. This

means that, given a low image quality, CNNs cannot always learn a better repre-

sentation of image from scratch than heuristic features, even though survival cen-

sorship labels were used as penalty in the training of CNNs.

DeepGraphSurv generates predictions by encoding patch features with their

topological structure via spectral graph convolutions. When the patch features are

not discriminative, the topological structure among the patch instances will play a

significant role in recognition of survival patterns of WSI. This explains the addi-

tional accuracy given by DeepGraphSurv compared to WSISA on GBM dataset,

Table 5.3 C-index on testing set for survival models.

Model LUSC GBM NLST

LASSO-Cox 0.5280 0.5280 0.4738
LASSO-Cox1 DeepGraphSurv feature 0.5663 0.5165 0.5663
BoostCI 0.5633 0.5543 0.5705
BoostCI1 DeepGraphSurv feature 0.5800 0.5130 0.5716
EnCox
EnCox1 DeepGraphSurv feature

0.5216
0.5740

0.5597
0.5231

0.4883
0.5742

RSF
RSF1 DeepGraphSurv feature
MTLSA
MTLSA1 DeepGraphSurv feature
WSISA
GCN1 Cox
DeepGraphSurv

0.5066
0.5492
0.5386
0.5247
0.6380
0.6280
0.6606

0.5570
0.5193
0.5787
0.5630
0.5760
0.5901
0.6215

0.5964
0.5491
0.6042
0.5573
0.6539
0.6845
0.7066
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which is of lower resolution. On other dataset of higher quality, DeepGraphSurv

is able to deliver a larger margin of gain on C-index compared to the baselines

who cannot learn anything from topological structures. The baseline GCN 1 Cox

is the model in which we use the graph representation learned from GCN [28]

with LASSO-Cox survival regression. Compared to this baseline, on all 3 datasets

DeepGraphSurv still showed a lift, that comes from a better hidden representation

disclosed on residual graphs built upon the learned distance metrics. Due to that

WSI data do not have any intrinsic graph structures, the initial graphs constructed

with the patch embeddings from a VGG-16 network are not guaranteed to be opti-

mal in terms of learning graph representations. While, DeepGraphSurv makes

graph structure trainable and adaptive in learning graph representations. Besides,

the introduced end-to-end approach is able to directly generate risk prediction, the

entire network including the survival regressor are optimized jointly.

5.5 Conclusion

In this article, we introduce a novel GCN with a new spectral graph convolution

layer (SGC-LL) that works on trainable, adaptive graph. SGC-LL learns the resid-

ual graph Laplacian via learning the optimal distance metric and the feature trans-

form that best serve model fitting. The AGCN is the first GCN that has no

prerequisites on topological structures and graph size. By combining with a node-

wise attention network trained over graph, AGCN also presented outstanding

representation learning capability on sophisticated image understanding tasks, for

example survival prediction on whole slide images (WSIs). Efficient discovering

the survival-related sub-structures over patches sampled from a whole slide image

is proved to be a promising solution to boost accuracy of survival prediction.

Extensive multi-task graph classification experiments over various molecular

graph data indicated that the AGCN outperformed the state-of-the-art graph net-

work models in terms of accuracy. For survival prediction, we first modeled WSI

as graph and introduced an end-to-end framework called DeepGraphSurv to ini-

tialize and learn a topological-aware representations for each WSI. Instead of

unsupervised graph, DeepGraphSurv creatively utilized a survival-specific graph

trained under supervision of survival labels. The effectiveness of introduced

method has been verified by improved accuracy of risk ranking on multiple can-

cer patient datasets across carcinoma subtypes.

Regarding future work, pre-training strategy is a promising technique for bio-

chemical applications in which ground-truth labels are expensive to collect.

Owing to the limit of data scale, a deep network is easy to be under-fitting, and

the data augmentation is difficult to be applied to molecular graph, which is

derived from chemical formula, and a random manipulation of original graph

may not generate any usable data. Therefore, pre-training is also supposed to help

convergence of AGCN on small training data with a skewed class distribution.
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6.1 Introduction
Magnetic resonance imaging (MRI) is one of the prevailing gold standards for

diagnostic purposes. It is not only noninvasive but also better at targeting dif-

ferent human tissues with specific contrasts that reveal the underlying anat-

omy. The main disadvantage of MRI compared to other medical imaging

modalities (e.g. computed tomography, or CT) is its long acquisition time,

which is governed by the duration of the frequency signals to be emitted by

atoms and sampled by the machine. There has been a long history of studies

on accelerating the MRI sampling process [1�4] by undersampling in the 2D

k-space during acquisition; however, only a relatively small number of studies

[5�8] are focused on interpolating between the sampled slices.

In practice, most MR volumes are taken anisotropically with a high resolution

within slices and a sparse resolution between slices. For example, Fig. 6.1 shows

a brain MR scan whose axial direction is sparsely sampled. As a result, image

quality suffers when viewing from coronal and sagittal directions.

It is desirable to have a consistent resolution across all dimensions, both for

visualization and for medical analysis tasks such as brain volume estimation.

Traditionally, slice interpolation has been done with two groups of meth-

ods: intensity-based and deformation-based methods. Linear and cubic spline

interpolation methods are classic examples of intensity-based methods that

directly perform the interpolation based on the intensity of the adjacent slices.

Deformation-based methods estimate deformation fields between adjacent

slices and then interpolate in-between pixels based on the estimated fields.

However, these methods require that adjacent MR slices contain similar ana-

tomical structures. That is, the structural change must be sufficiently small so
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that a dense pixel correspondence can be established between adjacent slices.

When the anatomical variation between slices is significant, more sophisti-

cated modeling approach is needed.

Recently, deep convolutional neural networks (DCNNs) have been outper-

forming traditional approaches on medical image analysis due to their ability

to model complex variations within data [4,9,10]. For slice interpolation,

DCNNs can be applied to learn a mapping from an anisotropic MR to isotro-

pic. However, directly addressing the task in 3D is challenging due to the high

memory consumption of 3D networks. In this work, we break down the task of

3D slice interpolation into a sequence of 2D problems to produce anatomically

consistent slice interpolations while being memory-feasible. Specifically, we

propose a novel marginal super-resolution (MSR) to super-resolve isotropic

views in the sagittal and coronal directions by a 2D CNN. The interpolation

along the axial direction can be estimated by a fusion of the isotropic saggital

and coronal views. Finally, the interpolated slices are processed to recover

more details via refinement.

Our main contributions can be summarized as follows:

1. We propose a novel MSR approach to break down the 3D slice interpolation

problem into several 2D problems, which are more feasible in terms of GPU

memory consumption and the amount of data available for training.

2. We propose a two-view fusion approach to incorporate the 3D anatomical

structure. The interpolated slices after fusion achieve high structural

consistency. The final refinement further recovers fine details.

3. We perform extensive evaluations on a large-scale MR dataset, and show that

the proposed method outperforms all the competing CNN models, including

3D CNNs, in terms of quantitative measurement, visual quality, and brain

matter segmentation.

FIGURE 6.1

The axial, coronal, and sagittal views of an anisotropic MR volume are fitted to isotropic

resolution through (Left) linear interpolation and (Right) our proposed slice interpolation

method.
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6.2 Related work

6.2.1 Traditional slice interpolation methods

Early work on interpolating volumetric medical data dates back to 1992, when

Goshtasby et al. [5] proposed to leverage the small and gradual anatomic differ-

ences between consecutive slices, and find correspondence between pixels by

searching through small neighborhoods. A slew of methods were proposed in the

subsequent years, focusing on finding more accurate deformation fields, including

shape-based methods [6], morphology-based methods [7], registration-based

methods [8], etc. Linear interpolation can be regarded as a special example, which

essentially assumes no deformation between slices.

An important assumption of these methods is that adjacent slices contain simi-

lar anatomical structures, i.e., the changes in the structures have to be sufficiently

small such that a dense correspondence can be found between two slices. This

assumption largely limits the applicability of slice interpolation methods espe-

cially when slices are sparsely sampled. Furthermore, these methods did not uti-

lize the information outside the two adjacent slices.

6.2.2 Learning-based super-resolution methods

Slice interpolation can be viewed as a special case of 3D super-resolution. Here,

we review the literatures of 2D Single Image Super-Resolution (SISR), especially

those approaches based on CNNs. Dong et al. [11] first proposed SRCNN, which

learns a mapping that optimally transforms low-resolution (LR) images to high-

resolution images. Many subsequent studies explored strategies to improve SISR

such as using deeper architectures and weight-sharing [12�14]. However, these

methods require bilinear upsampling as a preprocessing step, which drastically

increases computational complexity [15]. To address this issue, Dong et al. [15]

proposed to apply deconvolution layers for LR image to be directly upsampled to

finer resolution. Furthermore, many studies have shown that residual learning pro-

vided better performance in SISR [16�18]. Specifically, Zhang et al. [18] incor-

porated both residual learning and dense blocks [19] and introduced Residual

Dense Blocks (RDB) to allow for all layers of features to be seen directly by

other layers, achieving state-of-the-art performance.

Generative Adversarial Networks (GAN) [20] have also been incorporated in SISR

to improve the visual quality of the generated images. Ledig et al. pointed out that

training SISR networks solely by L1 or L2 loss intrinsically leads to blurry estimations,

and proposed SRGAN [17], which generated much sharper and realistic images com-

pared to other approaches, despite having lower peak signal to noise ratios.

Though available computation capacity has been increasing, 3D CNNs are still

limited by memory capacity due to a considerable increase in the size of network

parameters and input data. A common compromise is to extract small patches

from 3D volume to reduce the input size [21]; however, this also limits the
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effective receptive field of the network. In practice, 3D CNNs are also limited by

the amount of training data to ensure generalization.

6.3 Problem formulation and baseline convolutional neural
networks approaches

Let I x; y; zð ÞARN3N3N denote an isotropic MR volume. By convention, we refer

the x axis as the “sagittal” axis, the y axis as the “coronal” axis, and the z axis as

the “axial” axis. Accordingly, there are three types of slices:

1. the sagittal slice for a given x: Ix y; zð Þ5 Iðx; y; zÞ ’x;

2. the coronal slice for a given y: Iy x; zð Þ5 Iðx; y; zÞ ’y;

3. the axial slice for a given z: Iz x; yð Þ5 Iðx; y; zÞ ’z.

We also define a slab of s slices, say along the x axis, as

Ix;s 5 Ix1l y; zð Þjl5 2 s2 1ð Þ
2

; . . . ; 0; . . . ;
s2 1

2


 �
(6.1)

Iy;s and Iz;s are defined similarly. Without loss of generality, in this work we con-

sider slice interpolation along the axial axis. From Iðx; y; zÞ, the corresponding ani-

sotropic MR volume is defined as

Ikkðx; y; zÞ5 Iðx; y; kzÞ (6.2)

where k is the sparsity factor. The goal of slice interpolation is to find a transformation

T :RN3N3 N
k-RN3N3N that can optimally transform Ikkðx; y; zÞ back to Iðx; y; zÞ.

There are two possible baseline realizations of T using CNNs:

1. 2D CNN. More in line with the traditional methods, a 2D CNN takes two

adjacent slices Izkkðx; yÞ and Iz11
kk ðx; yÞ as inputs, and directly estimates the in-

between missing slices. One major drawback of this approach is that a simple

2D CNN has limited capabilities of modeling the variations in highly

anisotropic volumes.

2. 3D CNN. A 3D CNN is learned as a mapping from the sparsely sampled volume

Ikkðx; y; zÞ to a fully sampled volume Iðx; y; zÞ. This straightforward approach,

however, suffers from training memory issue and insufficient training data.

Below, we present our proposed algorithm that retains the advantages of the

baseline CNN models discussed above while mitigating their disadvantages.

6.4 The proposed algorithm
We propose to break down the 3D slice interpolation problem into a series of 2D

tasks and interpolate the contextual information from all three anatomical views
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to achieve structurally consistent reconstruction and improved memory efficiency.

The two stages are as follows:

1. MSR, where we provide high-quality estimates of the interpolated slices by

extrapolating context from sagittal and coronal axes.

2. Two-view Fusion and Refinement (TFR), where we fuse the estimations and

further refine with information from the axial axis.

6.4.1 Marginal super-resolution

Fig. 6.2 demonstrates the pipeline of MSR. Given Ikkðx; y; zÞ, we view it as a

sequence of 2D sagittal slices Ixkkðy; zÞ marginally from the sagittal axis. The same

volume can also be treated as I
y
kkðx; zÞ from the coronal axes. We make an obser-

vation that super-resolving Ixkkðy; zÞ to Ixðy; zÞ and I
y
kkðx; zÞ to Iyðx; zÞ are equivalent

to applying a sequence of 2D super-resolution along the x axis and y axis, respec-

tively. Therefore, we apply a residual dense network (RDN) [18] Mθ to upsample

Ixkkðy; zÞ and I
y
kkðx; zÞ as follows:

Ixsag y; zð Þ5Mθ Ix;skk y; zð Þ
� �

; Iycorðx; zÞ5MθðIy;skkðx; zÞÞ (6.3)

Instead of super-resolving 2D slices independently, we propose to take a slab

of s slices as input and estimate a single SR output. Using a larger s allows more

context to be modeled. The MSR process is repeated for all x and y. Finally, the

super-resolved slices can be reformatted as sagittally and coronally super-resolved

volumes, Isagðx; y; zÞ and Icorðx; y; zÞ, respectively. We apply the following L1 loss

to train the RDN:

LMSR 5 jjMθ Ix;skk
� �

2Ixgtjj1 1 jjMθ Iy;skk
� �

2Iygtjj1 (6.4)

Where Ixgt 5 Ixðy; zÞ and I
y
gt 5 Iyðx; zÞ in the isotropic MR volume.

FIGURE 6.2

Marginal super-resolution pipeline.
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From the axial perspective, Isagðx; y; zÞ and Icorðx; y; zÞ provide line-by-line esti-

mations for the missing axial slices. However, since no constraint is enforced on

the estimated axial slices, inconsistent interpolations lead to noticeable artifacts

(See Section 6.5.4). We resolve this problem in the second TFR stage of the pro-

posed pipeline.

6.4.2 Two-view fusion and refinement

The TFR stage is the counterpart of MSR which further improves the quality of

slice interpolation by learning the structural variations along the axial direction.

As shown in Fig. 6.3, we first resample the sagitally and coronally super-

resovled volumes Isagðx; y; zÞ and Icorðx; y; zÞ from the axial direction to obtain

Izsag x; yð Þ and Izcor x; yð Þ, respectively. A fusion network F φ takes the two slices as

inputs and combines information from the two views. The objective function for

training the fusion network is:

Lfuse 5 jjIzfuseðx; yÞ2Izgtjj1 (6.5)

Where Izfuse x; yð Þ5F φðIzsag; IzcorÞ is the output of the fusion network, and

Izgt 5 Izðx; yÞ in the isotropic MR volume. After training, the fusion network is

applied to all the interpolated slices fIzsagjðzmodkÞ 6¼ 0g and fIzcorjðzmodkÞ 6¼ 0g,
yielding an MR volume Ifuseðx; y; zÞ.

After fusion, the interpolated slices already have visually pleasing qualities.

Finally, to improve between-slice consistency along the axial axis, a refinement

network Rψ takes a slab of k1 1 slices Iz;k11
fuse as input and generates a consistent

output slab Iz;k11
refine . The size is selected as k1 1 to make sure the refinement net-

work has information from one or two observed slices. The pipeline is illustrated

in Fig. 6.4. The loss function is given by:

Lrefine 5 jjIz;k11
refine2Iz;k11

gt jj1 (6.6)

FIGURE 6.3

Two-view fusion pipeline.
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6.4.3 Comparison with baseline convolutional neural networks
approaches

A 2D CNN estimates missing slices solely based on adjacent MR scans. In con-

trast, the proposed MSR and TFR take into account the full context from sagital,

coronal, and axial views, thus providing strong estimates of the in-between slices.

A 3D CNN directly maps a sparsely sampled MR volume to a fully sampled MR

volume. Due to memory limitation, a volume often needs to be divided into small

patches during training, which limits the effective receptive field of 3D CNNs. In

the proposed method, interpolation in 3D space is treated as a sequence of 2D

operations, which ensures that the networks can be trained without relying on

patches, thus allowing full contextual information to be captured. Furthermore,

there are sufficient samples to train 2D CNNs, which mitigates the problem of

overfitting issue that plagues 3D CNNs.

6.5 Experiments

6.5.1 Implementation details

We implement the proposed framework using PyTorch1. The RDN [18] architec-

ture with two RDBs are used as the building unit for our networks. For Fusion,

Refinement, and baseline 2D CNN models, where the inputs and outputs have the

same image size, we replace the upsampling network in RDN with one convolu-

tional layer. The input to the MSR network has s5 3. Note that due to memory

constraint, 3D CNN only uses one RDB. We train the models with Adam optimi-

zation, with a momentum of 0.5 and a learning rate of 0.0001, until they reach

convergence.

6.5.2 Dataset

We employ 120 T1 MR brain scans from the publicly available Alzheimer’s

Disease Neuroimaging Initiative (ADNI) dataset. The MR scans are isotropically

FIGURE 6.4

Refinement pipeline.
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sampled at 1 mm3 1 mm3 1 mm, and zero-padded to 2563 2563 256 pixels,

ending up with 30720 slices in each of sagittal, coronal, and axial directions.

We further down-sample the isotropic volumes by factors of k5 4 and k5 8,

yielding Ikkðx; y; zÞ of sizes 2563 2563 64 and 2563 2563 32, respectively. The

data is split into training/validation/testing sets with 95/5/20 samples. Note that

during test time, we only select slices that contain mostly brain tissues, the num-

ber of samples for each sparsity are presented in Table 6.1.

6.5.3 Evaluation metrics

We compare different slice interpolation approaches using two types of quantitative

metrics. First, we use Peak Signal-to-Noise Ratio (PSNR) and Structured Similarity

Index (SSIM) to measure low-level image quality. Second, we evaluate the quality of the

interpolated slices through gray/white-matter segmentation. The segmentation network

has a U-Net architecture, which is one of the winning models in MRBrainS challenge

[22], and is trained on the OASIS dataset [23]. Dice Coefficient (DICE) and Hausdorff

Distance (HD) between the segmentation maps of ground truth slices and generated slices

are calculated. Due to the memory limitation of 3D CNN, we can at most super-resolve a

limited region of 1443 1443 256 pixels during evaluation. For fair comparisons, the

evaluation metrics are calculated over the same region across all methods.

6.5.4 Visual comparisons

In Fig. 6.5, we present the observed slices Izkk and Iz11
kk along with the interpolated

slices produced by different methods. Specifically we demonstrate the second of

three interpolated MR slices for 4x sparsity, and the third of seven interpolated

slices for 8x sparsity. We highlight the region where the anatomical structures

significantly change compared to the observed slices Izkk and Iz11
kk . We observe

Table 6.1 Quantitative evaluations for different slice interpolation
approaches.

Sparsity Method PSNR(dB) SSIM
DICE
GM/WM

HD (90th pct.)
GM/WM

4 LI 26.39 0.8317 0.7716/0.7296 3.607/7.965
2D CNN 31.24 0.9313 0.8813/0.8334 3.176/12.36
3D CNN 31.34 0.9292 0.8536/0.8265 2.898/7.373
Ours 32.22 0.9441 0.9021/0.8593 2.494/6.240

8 LI 23.45 0.7165 0.6611/0.6105 4.487/10.59
2D CNN 27.88 0.8444 0.7783/0.7425 4.322/12.84
3D CNN 27.38 0.8390 0.7684/0.7468 4.583/9.017
Ours 28.87 0.8808 0.8189/0.7828 3.960/8.127

For DICE and HD performance metrics, we present results on gray matter (GM)/white matter (WM)
segmentation. The best results are in bold and the second best italic.
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that although 2D CNN has comparable performance in terms of PSNR and SSIM,

it tends to produce false anatomical structures in the zoomed regions. 3D CNN

can resolve more accurate details. However, the improvement is quite limited,

which we attribute to the fact that 3D CNN requires more training MR volumes

to generalize and has smaller receptive field due to patch-based training. Our

method benefits from the large receptive field of 2D CNN and two-view fusion,

which not only produces sharper images, but also correctly estimates brain anat-

omy. The sharp and accurate estimation is crucial in clinical applications such as

diagnosing Alzheimer’s Disease by brain volume estimation.

In Fig. 6.6, we demonstrate the advantage of the proposed method in brain

matter segmentation. It is clear that although 2D and 3D CNN generates visually

plausible interpolation as presented in Fig. 6.6, the brain matters are easily mis-

classified due to incorrect anatomical structures and blurred details.

6.5.5 Ablation study

In this section, based on 4x sparsity, we evaluate the effectiveness of each pro-

posed components. The following settings are considered:

1. MSRn
sag: Slice interpolation based on only sagittal view MSR. We consider

number of input slices n5 1, 3.

FIGURE 6.5

Visual comparisons of slice interpolation approaches. For 43 sparsity, the second of

three interpolated MR slices is presented. For 83 sparsity, the third of seven interpolated

slices is presented.
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2. MSRn
cor: Slice interpolation based on only coronal view MSR. We consider

number of input slices n5 1, 3.

3. Fused: Slice interpolation with fusion network. Inputs to the network are

MSR3
sag and MSR3

cor.

4. Refined: The propsed full pipeline.

From Table 6.2, it is clear that each proposed component improves the quality

of slice interpolation. However, even without fusion and refinement, the axial

slices interpolated by MSR3
sag and MSR3

cor are already better than the baseline 2D/

3D CNNs.

Visual comparisons are shown in Fig. 6.7, where we select a challenging slice

with abundant anatomical details. From Fig. 6.7, it is clear that marginally super-

resolving axial slices from coronal and sagittal views leads to noticeable horizon-

tal (MSR3
sag) and vertical (MSR3

cor) artifacts. Furthermore, some small details are

better resolved by MSR3
sag while others are better resolved by MSR3

cor. The

fusion network combines the features from MSR3
sag and MSR3

cor, which effectively

reduces inconsistency. With the additional axial information, the fused slice is

then further improved by the refinement network.

In addition to L1 loss, we also experiment on GAN loss at refinement stage.

However, we find that GAN tends to generate fake anatomical details, which is

undesirable in medical applications.

FIGURE 6.6

Visual comparison of gray matter (Green)/white matter (Blue) segmentation over different

methods, with respective DICE scores listed under the images.
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6.6 Conclusion

In this work, we proposed a multistage 2D CNN framework called deep slice

interpolation. This framework allows us to recover missing slices with high qual-

ity, even when the distance between observed slices are sparsely sampled. We

evaluated our approach on a large ADNI dataset, demonstrating that our method

outperforms possible 2D/3D CNN baselines, both visually and quantitatively.

Furthermore, we have illustrated that the MR slices estimated by the proposed

method have superior segmentation accuracy. In the future, we plan to investigate

the potential application of the proposed framework on real screening MRI, which

often has a very low slice density.

Table 6.2 Quantitative ablation study.

Stage PSNR (dB) SSIM

Baseline 2D CNN 31.24 0.9313
Baseline 3D CNN 31.34 0.9292

MSR1
sag

30.28 0.9129

MSR1
cor

30.56 0.9178

MSR3
sag

31.43 0.9314

MSR3
cor

31.61 0.9339

Fused 32.02 0.9413
Refined 32.22 0.9441

Baseline numbers are also included for comparison. The best results are in bold and the second best
italic.

FIGURE 6.7

Visual comparison for the proposed components.
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7.1 Introduction
Patients with local breast tumors could systematically undergo to a neoadjuvant

chemotherapy (NAC) before the surgery. The increase in the number of medical

imaging examinations performed particularly for the diagnosis of breast cancer

has facilitated the development of various techniques to support breast cancer

monitoring. Among various imaging modalities, magnetic resonance imaging

(MRI) is one of the most important tools in clinical diagnosis. In recent years,

due to its excellent results, deep learning (DL) has been widely applied to the

area of medical imaging. Indeed, this technique provides many sub-modalities

including dynamic contrast-enhanced (DCE-MRI) and diffusion-weighted (DW-

MRI) [1].

Deep convolutional neural networks (CNN) [2] produce multiple computer

vision applications [3,4]. Various findings associated with healthcare and medical

diagnosis like in lung lesion detection [5], breast cancer prognostic on mammo-

grams image [6], cardiac anomalies detection [7], etc have been performed.

Intra-tumoral variations through the first chemotherapy have been regularly

utilized as a guide to prognosticate the breast cancer response to NAC [8�11].

Accordingly, many image processing systems were introduced such as texture

analysis [12] or voxel by voxel comparison [13,14]. However, lately, researchers

have used many deep DL architectures to classify the intratumor response

(responsive or nonresponsive) of breast cancer using DCE-MRI scans [15�17].

Recently, Richard Ha et al. [15] have evaluated a cohort of 3107 volumetric slices

of 141 tumors on ten convolutional CNN layers. Authors in [18] proposed a

method based on 4 principal treatments: pretreatment of mammograms scans,
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features extraction by CNN, tumor detection, and ultimately, tumor labeling using

YOLO architecture [19].

In the present research, we developed an original DL design to classify breast

cancer response to NAC based on DCE-Mr images collected before and after the

initial chemotherapy. In this study, the pathological complete response (pCR)

based on biopsy analysis was employed as a ground truth. As the size of the

tumor may remain unchanged during the first sessions of chemotherapy, it would

be complicated with the techniques currently used to detect the rate of response

of a breast tumor to chemotherapy. Nevertheless, some researchers report that in

individual chemotherapy, intra-tumoral developments could occur inside the

breast tumor [20�22]. Hence, we investigate a new deep neural network using

increased DCE-MRI images obtained previously for primary chemotherapy (base-

line) based on the biopsy ground to obtain a model for classifying breast cancer

response to neoadjuvant therapy utilizing parallelly two DCE-MRI scans. We also

explain the obtained results with a visual heatmap to facilitate the introduction of

this model in clinical routine.

7.2 Materials and developed methods

7.2.1 Study population

We used in this research a clinical cohort including 42 subjects having local

breast tumors provided by the Jules Bordet1 Institute in Brussels, Belgium. Based

on pCR, 14 patients were responding to the chemotherapy and 28 others were not

responding. All 3D DCE-Mr scans obtained pre and postchemotherapy for each

patient following the same protocol were used in this study. To reduce unneces-

sary data, from the DCE-Mr volumes, only slices including the tumor were

cropped. Consequently, using the axial plane, 763 images were obtained before

chemotherapy, and the 763 corresponding slices were obtained following the ini-

tial chemotherapy. We divided the cohort into 25% of validation data and 75% of

training data while respecting that there is no overlap between these two datasets.

As described in our previous paper [23], patients with an early morphological

response (EMR) are designed by the shrinking of their tumor’s maximum diame-

ter (Dmax) after the initial session of therapy. Early morphological nonresponders

(EMNo-Res) design patients with an augmentation of maximum diameter after

the primary session. Table 7.1 presents the clinical features of the used dataset.

7.2.2 Magnetic resonance imaging protocol

All MRI scans were realized at different time points using a Siemens 1.5 T

[24,25]. The DCE-MRI acquisition favored six T1-weighted volumes obtained in

1https://bordet.be/en/.
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the coronal view before and after injecting 0.3 mmol/kg of gadodiamide

(Omniscan) [26], with a flip angle of 25�, TR/TE of 9.0/4.39 Ms.

As previously shown in our published articles [8,9,16], the primary MRI exam

was performed within 7 days before the first chemotherapy session. The second

exam was performed between 24�72 hours after the initial chemotherapy session.

7.2.3 Image preprocessing

We applied three preprocessing treatments before starting the training and the val-

idation processes. In this study, it was required to select the tumor volume by

applying a manual crop of the tumor volumes obtained before and after the che-

motherapy with the radiologist validation. This was aimed to reduce any various

unnecessary voxels of the breast volume. To exclude any artifacts on DCE-Mr

volume, a bias-correction algorithm was performed.

The next preprocessing was to apply an affine image registration to align

tumor volumes received before and following the primary chemotherapy. By

implementing this registration, the first slice of the tumor acquired before chemo-

therapy matches its corresponding one acquired back to chemotherapy.

Subsequently, a region growing segmentation was applied to the tumors to select

only voxels matching with the tumor. This preprocessing measure will be signifi-

cant to assist the deep CNN in getting a couple of 2D slices (Fig. 7.1).

7.2.4 Convolution neural network architecture development

Fig. 7.2 presents the architecture of the deep multiinput CNN structure that we

designed, which is formed of two VGG-like [27] parts taking two cropped

Table 7.1 Clinical features of the used cohort.

Clinical features Total EMRa
EMNo-
Resb pCR

Non-
pCR

Number of patients with response
status

42 28 14 14 28

Mean age 55 58 52 55 51
Mean tumor size (in mm) 34.8 32.1 38.3 28 38.2
Patients with positive lymph node 24 20 4 6 17
Patients with negative lymph node 18 8 10 8 11
Patients with ER1 (positive estrogen
receptors)

19 11 8 1 18

Patients with triple negative 10 8 2 6 4
Patients with HER21 13 9 4 7 6

aEarly morphological response.
bEarly morphological nonresponders.
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volumes from axial DCE-Mr volumes. Each section holds 4 layers of convolution

succeeded by a rectified linear unit (ReLU) activation function and Max-Pooling

layer. To avoid any image down-sampling, the max-pooling layer was not used

for the first block. 32 kernels were fixed for each layer of convolution inside the

FIGURE 7.1

Proposed multiinput architecture to classifier pCR and no-pCR tumors.

FIGURE 7.2

Accuracy of train and test process within 80 epochs.

150 CHAPTER 7 Explainable deep learning



second and the third blocks, and 64 kernels for the third and the fourth blocks. A

Dropout operation was performed after every 2 layers of convolution, which help

to generalize the trained model and bypass eventual overfitting effects. Then, the

two branches after a fully connected layer of 512 hidden units were concatenated.

At the final layer, the sigmoid function was applied to make the classification.

Glorot and Bengio’s approach [28] were used for initializing the neural net-

work weights. This approach was widely used to solve the vanishing or exploding

gradient problems by performing a sophisticated initialization technique that

ensures that all the layers learn at the same rate.

To perform the CNN training, data augmentation was implemented to the

training cohort utilizing random linear methods of rotations, translations, horizon-

tal flips, etc. for each training epoch, the data reproduction function was applied

to create new samples. Therefore, more than 67500 unique samples were used to

train the developed DL design.

The training was made by using Stochastic Gradient Descente (SGD) [29]

inside 80 epochs. Based on fine-tuning, the used learning rate was fixed to

63 10�4.

To compile the model, we applied categorical cross-entropy as loss function and

standard accuracy metric based on the calculation of the mean accuracy rate across

all predictions. Table 7.1 summarizes the employed and checked parameters.

7.3 Results

7.3.1 Quantitative results

Fig. 7.2 shows the accuracy during the 80 epochs. The greatest obtained accuracy

is 92.72% using the test dataset. The area under the ROC curve (AUC) is 0.93. In

our prior study [13], the AUC obtained by using the Parametric Response Map

(PRM) was 0.89. Table 7.2 provides a comparison of accuracy and AUC calcu-

lated for different methods using the same dataset.

Table 7.2 Checked and used values of the training parameters.

Learning
parameters Checked values Used value

Learning rate 0.5, 0.25,0.1, 0.05,
0.0005

0.00005

Batch size 4, 10, 12, 16, 32 8
Adaptive learning rate SGD, Adam, Adagrade. SGD
Learning rate decay Yes, No Yes (1e-6)
Activation function ReLU, Elu, Sigmoid ReLU and sigmoid for the last layer
Dropout rate 0.25, 0.3, 0.5, 0.75 0.25 & 0,30 and 0.40 for the last

layer

1517.3 Results



According to the radiologist, these findings are suitable for classifying the

breast cancer response following the initial session of NAC. This could help radi-

ologists to determine if a patient could stay receiving chemotherapy or not

(Table 7.3).

7.3.2 Qualitative results

To reflect visually the most valuable features for classifying responsive and non-

responsive patients, the Grad-Cam algorithm [30] was developed to be adapted to

the proposed model. To evaluate the ability of the proposed model to classify

pCR and no-pCR, we applied the Gradient class activation maps (grad-CAM)

algorithm to no segmented tumors. As demonstrated in Fig. 7.3, for pCR patients,

most tumor areas participating in the prediction refer to the internal tumor

Table 7.3 The obtained accuracy and AUC.

Validation accuracy AUC

Proposed model with DL 92.88% 0.93
PRM method without DL � 0.89

FIGURE 7.3

Randomly selected examples with grad-cam visualization.
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volume. While, for nonresponsive patients, the neighboring zones and those posi-

tioned on the peripheral region of the tumor contribute more than the total tumor

zone. These findings substantiate the critical position of the external tumor’s

regions to classify the response.

These results were interpreted by the collaborating radiologist. Indeed, this

was explained by the fact that the most aggressive tumors try to protect them-

selves against the chemotherapy effect, by making their periphery and external

areas stronger.

7.4 Discussion
In this chapter, we presented a new multiinput DL architecture for classifying and

predicting pCR and no-pCR breast tumors.

The human could easily determine the rules for a given diagnosis and justify his

decision. In the literature related to our research, it is not always explained how the

decision was made by the DL model. To make this work more explainable and

coherent, we added a qualitative validation of the results. This validation concerns

the inspection of the degree of feature extraction by responsive and nonresponsive

tumors. Indeed, it was necessary to explain and present information to radiologists

in understandable and logical terms. Grad-CAM was employed to visually interpret

the results of the developed deep CNN. When comparing Grad-CAM for pCR and

non-pCR, we noted that CNN usually refines the internal tumor zone and highlights

its neighboring zones. While for responsive patients, the deep CNN concentrates on

all the internal tumor volume. Notwithstanding the great results shown in this chap-

ter, the latter still has some weaknesses. Mostly, the size of the original cohort is

still restricted. Indeed, the emphasis on response prediction of patients who under-

went neoadjuvant therapy and the selection of pre and posttreatment MRI scans, as

well as the ethical licenses administering the use of data limited the size of the

cohort. Furthermore, the given approach does expect a sequence of data preproces-

sing, including the manual tumor volume selection and the affine registration.

7.5 Conclusion

We proposed in this chapter a new multiinput deep CNN model to classify the

response to chemotherapy. Quantitative validations, including accuracy and AUC,

were used to evaluate its performance. Using Grad-CAM to visualize tumor

regions associated with the CNN classification is one of the most important con-

tributions in this work. Indeed, this allows greater explicability than the

approaches without a visualized decision-making part. The collected heatmaps

could be feasibly utilized by radiologists to interpret CNN guidance concerning

NAC.

1537.5 Conclusion



In the future studies, we consider using the developed design for extra cohorts,

which are still below annotation. We also plan to facilitate the tumor volume

cropping and affine registration ideally over DL-based approaches. To implement

a useful tool, we plan to integrate the developed DL model into a collective cloud

web interface [31] to be used in a simple way by the radiologists, which will

intend to produce a prospective validation process.
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CHAPTER

8Deep learning
interpretability: measuring
the relevance of clinical
concepts in convolutional
neural networks features

Mara Graziani, Vincent Andrearczyk and Henning Müller
Institute of Information Systems, University of Applied Sciences Western Switzerland (HES-SO),

Sierre, Switzerland

8.1 Introduction
A large variety of tasks is being solved by algorithmic systems implementing

classical Machine learning (ML) and Deep learning (DL) techniques. DL, in par-

ticular, has been emerged as a better-performing substitute for hand-crafted fea-

ture extraction [1], which is more traditional for ML in health applications. Not

provided with any insights about the decision-making, end-users seem to report

wobbly confidence in the DL decision process [2]. Some of the inherent risks that

even a perfectly well performing DL model may hide are the codification of

biases and the weak accountability of decision-making. The flawed system for

pneumonia risk detection analyzed by Caruana et al. in [3] is an example. Despite

its high performance, the model learned to assign a lower risk of death to cases of

pneumonia with concurring asthma because of misleading correlations in the data.

A correct diagnosis would have taken the opposite decision given the high risk of

death with this preexisting condition. The misleading correlation (i.e. presence of

asthma thus low risk of death from pneumonia) was rather a consequence of the

effective care given to these patients by healthcare specialists that were promptly

reacting to reduce the risk of death, consequently lowering the recorded risk for

these patients. The misleading feature “presence of asthma” was captured because

of model interpretability.

The perception of DL as a black-box that gives little insights about the final

output is a limiting factor for the acceptance and consequent use of DL models

by physicians [4]. The near-perfect accuracy of DL models may only be apparent

for a few very specific tasks, dropping significantly in real-world practice [5].

This shows, as argued in [6], that the evaluation of DL models only on the basis

of task performance is fundamentally incomplete. The need for interpretability in

State of the Art in Neural Networks and Their Applications. DOI: https://doi.org/10.1016/B978-0-12-819872-8.00015-X
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the development of AI for health emerges as impellent for two main reasons. On

the one hand, the interaction between physicians and AI is improved by interpret-

ability methods. On the other hand, interpretability can be used as an alternative

to the test performance to validate the model decision-making process.

Interpretability can be used, for example, for pointing humans those subtle visual

features in the image that make the diagnosis at the borderline between two

choices, causing low inter-rater disagreement. In retinopathy [7] DL and physi-

cians can interact to decipher borderline cases such as the detection of the plus

disease in the retina of preborn babies. High performance in this task can make a

considerable difference in saving babies from blindness. The performance of the

combination of humans and DL were shown to be the highest in terms of the

inter-rater agreement also for other application domains, for example cancer diag-

nosis [8]. Interpretability in the sense of explaining the rationale for AI decisions

to its final users is therefore an important prerequisite for the application of AI to

health-care, which will be further discussed in this chapter.

Most of the interpretable AI methods can be categorized according to a few

factors, namely global versus local interpretability, built-in versus posthoc meth-

ods and feature versus concept attribution, described later in this chapter (in

Section 8.2.2). The popular activation maps in [9], for example, generate explana-

tions of the decision for a single input (i.e., local), without requiring to retrain the

model parameters (i.e., posthoc), highlighting the most salient input pixels (i.e.,

feature attribution). Concept-based methods such as the Concept Activation

Vectors (CAVs) proposed by Kim et al. [10] generate explanations in terms of

arbitrary high-level concepts. This method is also posthoc and shows that clini-

cally relevant features, that we refer to as clinical concepts, can be directly used

to explain complex DL models. These explanations help the users of

interpretable AI to think more systematically about the relevance of specific fea-

tures within the AI model [11]. By including experiments on diabetic retinopathy,

Kim et al. showed the applicability of CAVs to health-care, explaining DL deci-

sions in terms of the presence or absence of a clinical feature. One limitation of

CAVs is that they express a clinical feature only in terms of either its presence or

absence, whereas continuous or categorical measures are more frequently used to

describe clinical factors, for example, the size of a lesion. Regression Concept

Vectors (RCVs) were proposed to extend CAVs to continuous and categorical

clinical features [12]. Research on the applicability of RCVs shows that these

explanations can fit the requirements of various medical tasks ranging from histo-

pathology [12�14], to radiomics [15] and retinopathy [13,16]. By directly match-

ing the semantics of the end-users, RCVs explain DL decisions in relation to

well-known prognostic factors and clinical guidelines. This approach to “subject-

centric” explanations (SCEs), as referred to in [17], shows promise for interactive

explanations, learning about the model behavior from the outside.

The main focus of this chapter is the application of concept-based interpret-

ability to measure the relevance of clinical concepts in DL decisions. Within

the chapter, we clarify the terminology around AI interpretability, presenting an
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in-depth analysis of the existing tools for health applications. The concept-

attribution approach of RCVs is discussed for obtaining SCEs that relate to clini-

cal concepts, fostering the interaction between physicians and DL models. The

detection of plus disease in Retinopathy of Prematurity (ROP) cases is presented

as the main application domain. The application to the ROP is relevant because

the detection of plus disease is at the edge between two fundamentally different

treatment planning strategies and causes large disagreement rates in the diagnoses.

In Section 8.2, we review the literature concerning AI interpretability. Sections

8.3 and 8.4 present the methods and the experimental results, respectively. In

Section 8.3.1, in particular, we introduce ROP and the task of plus disease detec-

tion. Section 8.5 presents insights and in-depth discussions on the analyses. The

conclusions in Section 8.6 summarize the key points in this chapter and present a

higher-level discussion on XAI research for computer-assisted diagnosis systems.

8.2 Related work on interpretable artificial intelligence

8.2.1 Motivations

The research field in AI interpretability has grown very quickly in the last four

years (see Fig. 8.1 on the left). In the medical imaging domain, the number of

publications per year concerning interpretable AI development also presents a

marked increase (Fig. 8.1 on the right). The rising interest in interpreting DL

models can be traced back to the evidence that the classic metrics of model per-

formance (e.g., classification accuracy, loss) are not sufficient to describe the

model’s principles of inner functioning.

As Doshi Velez and Kim argue in [6], the need for interpretability stands out

in problems that suffer from incompleteness in their formalization. Particularly in

medical imaging, model performance in terms of the specificity and sensitivity of

the predictions is evaluated for a precollected testing set for which experts have

FIGURE 8.1

Trends of the research fields in interpretable AI (on the left) and interpretable AI for

medical imaging (on the right). AI, Artificial intelligence.
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agreed regarding a ground-truth diagnosis. The generalization to unseen data may

not hold, causing significant drops in performance in real-world applications [5].

Depending on the application, the sole measurement of task performance may

lead to incomplete model evaluations on various fronts. Some models may require

fairness, for example, not encoding biases that would induce gender or racial dis-

crimination in their decisions. Other models may require the robustness to adver-

sarial attacks, for example biometrics and person identification. Model

accountability (in the sense of taking responsibility for the decisions) may be

another desideratum, for example in credit allowance or automated driving appli-

cations [18]. The motivation for interpretable AI development, therefore, directly

stems from the application requirements. Interpretability in health-care applica-

tions aims at avoiding erroneous diagnosis since automatic predictions can be

analyzed and interpreted before a final decision by an expert. In autonomous driv-

ing, interpretability mostly aims at demonstrating the causes for an accident (for

insurance liability reasons, among others) once the mistake has already happened

[18]. The EU’s General Data Protection Regulation, in effect since May 2018,

officialized the need for safety, fairness and explainability of AI deployment in

the real world. The so-called “right to obtain an explanation” provides individuals

with the right to inquire about the transparency, accountability and explainability

of how their data were handled by the automated decisions. For example, if an

automatic system was to deny a loan application, the denied person has the right

to ask for an explanation regarding the decision in the form of “meaningful infor-

mation about the logic of processing.”

8.2.2 Related terminology

Differences in the specification of the interpretability objectives (e.g. for debug-

ging, for explaining wrong decisions or as a way of proving model safety, fairness

and accountability) inevitably lead to inconsistencies in the terminology related to

interpretable AI. The words “interpretable,” “explainable,” “intelligible,” “under-

standable,” “transparent,” and “comprehensible” have often been used inter-

changeably in the literature, causing confusion and different taxonomies [19�24].

A formal definition of interpretability was given by Doshi-Velez and Kim in [6]

as that of “explaining or presenting in understandable terms to a human” the deci-

sions of a ML system. The concept of “interpreting” is therefore inherently linked

to that of “explaining” in this definition that we adopt. In the analysis of interpret-

ability from the perspective of social sciences [19], Miller agrees with assigning

the same meaning to explainable and interpretable, in the sense of “providing

explanations” to humans. Interpretability as intended in [6], however, seems to

correspond to what is meant as intelligible in the taxonomy presented in [20],

namely the large set of possible actions and developments to obtain a system that

is “clear enough to be understood” by humans. According to the scheme in [20],

being interpretable or explainable also means being intelligible, but the opposite

is not necessarily true. Intelligible AI, in practice, does not imply the generation
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of explanations. This could be obtained, for example, by adding interpretability con-

straints on the model objective function being optimized [25], or by visualizing the

network internal features [25]. The set of explainable models is thus a rather smaller

subset than that of intelligible models, although interpretable and explainable are still

being used to refer to the same purpose, which is “explaining” decisions to humans

[6,19,20]. Transparency and comprehensibility also appear as terms related to

interpretable AI [22]. The former generally refers to a set of descriptions that are

most relevant to AI developers. Transparency is defined in [22] as the description of

the structure, equations, parameter values and assumptions necessary to understand

the inner model mechanisms. Lipton further divides this definition into model simu-

latability, decomposability of the parameters and algorithmic transparency [26].

Finally, the notion of model comprehensibility is described in [22] as the ability of

the learning algorithm to generate meta-descriptions about its inner working mecha-

nism that can be interpreted in natural language. The taxonomy relative to

interpretable AI is nevertheless subject to continuous change and updates. Among

these definitions proposed in the literature, two should be retained for this chapter,

namely that of explainable AI (XAI) as a means of generating explanations for AI

decisions and that of intelligible (or interpretable) AI as a wider set of tools also

including methodologies that do not necessarily aim at generating explanations. In

the context of XAI, Miller further clarifies the elusivity about the concept of provid-

ing explanations [19]. The sole association between model output and possible causes

is not sufficient to provide a “good explanation”. These should be rather contextual-

ized with the user’s needs, promoting the interaction and answering contrastive ques-

tions, that is, “why did the model output was class P instead of another class Q?”

From these approaches to interpretability, the definitions of human-centric or Subject-

Centric Explanations (SCEs) arose as a way of identifying XAI methods that are

tailored to the user’s needs and the requirements of the application domain. SCEs

aim at fostering the interaction between end-users and ML or DL models and are

expressed in the ontology of the application domain.

8.2.3 Related work on explainable artificial intelligence

8.2.3.1 Explainable artificial intelligence for medical applications
Proving the safety and reliability of the model decision-making is an emerging

challenge in the deployment of AI to the medical domain. Several techniques for

interpretable AI development find a relevant application in the medical domain,

providing interesting insights into various tasks [27�34]. A large part of the

interpretable AI methods for medical applications generate visual explanations to

provide justifications for the model predictions. Among these, saliency maps are

the most frequently used to generate explanations in pathology [30�33], retinopa-

thy [28], and radiology [27,34�36]. Numerous interpretable AI approaches can

be categorized by the schema in Fig. 8.2 of which the elements are described in

detail.
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This section reviews the main approaches and introduces the relevant technical

terminology to categorize XAI methods. By focusing on explainability techniques,

this section does not include inherently intelligible models (e.g. linear regression),

models with built-in interpretability (e.g. a decision tree, also part of intelligible

AI) and dataset exploration methods (e.g. dimensionality reduction techniques or

the retrieval of influential instances [37]). We also exclude geometrical

approaches such as Singular Vector Canonical Correlation Analysis [38].

Some of the technical terms used to distinguish most of the current approaches

for obtaining interpretable AI were introduced by Lipton in [26]. In particular,

Lipton distinguishes local versus global explanations and built-in versus posthoc

methods. Local explanations refer to explanations that are only true for a single

input. Global explanations, on the contrary, explain the model behavior for an

entire set of inputs, for example all images of a single class in the dataset. Built-

in methods, as explained by Lipton, introduce interpretability as one of the objec-

tives of the model optimization function. These methods are included in the more

general notion of intelligible AI. An example is that of inherently interpretable mod-

els, for example linear regression, where the linear increase of a feature value corre-

sponds to a proportional increase in the model output. Posthoc methods are on the

other hand methods that generate explanations without requiring the retraining of the

model parameters with interpretability constraints. Finally, attribution methods gen-

erate explanations by identifying either the most relevant features, in feature attribu-

tion, or the most relevant concepts, in concept attribution, to the network decisions.

FIGURE 8.2

Categorization of interpretable artificial intelligence approaches.
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Referring back to Miller’s formalism of explainability [19], feature attribution

methods answer to the question “What would the model output be if the value of

this input feature was different?”. Concept attribution provides explanations in

terms of high-level concepts that can match the semantics of the end-users. In the

medical scenario, these can be directly clinically relevant concepts. Therefore, con-

cept attribution answers the questions of the type “Why did the model output class

P, and would it answer class Q if this clinical attribute was different?” The clinical

attribute may be a visual feature, for example, describing the size of a lesion. The

shift between feature and concept attribution is mainly at the interpretation level. In

some cases, for example in imaging applications, the values of individual features

(e.g. the raw input pixels) appear rather incomprehensible to humans [10]. The aim

of concept attribution, as further explained in Sections 8.2.3 and 8.3.2, is to gener-

ate explanations that can directly relate to the ontology of the receivers of the

explanation.

The next sections present a review of several XAI methods. Despite being

rather long, this review is not exhaustive of all the methods existing in the litera-

ture and does not include several interpretability approaches that do not generate

explanations (such as intelligible models, transparent and comprehensible mod-

els). The review is organized as follows. In Section 8.2.3.2, we review the most

common visualization and feature attribution methods. In Section 2.3.3 we intro-

duce the related work to concept attribution. Finally, in Section 8.2.4 we review

the evaluation of XAI methods in the literature.

8.2.3.2 Visualization methods and feature attribution
Visualization methods were proposed, at first, for interpreting the remarkable

increase in performance given by the application of deep Convolutional Neural

Networks (CNNs) to computer vision tasks. Visualizations were proposed to

either visualize the learned features or to highlight the most salient input features.

These methods evolved into the generation of explanations by feature attribution.

The network output for a single input (local method) is explained by a subset of

the input features. These input features identify, in the case of images, the most

important pixels that are then displayed as a heatmap. In this section, we further

clarify the literature related to visualization approaches and we report the formal-

ization of feature attribution as proposed in [39].

A cornerstone of early interpretability development is the deconvolution paper

by Zeiler and Fergus. Their approach is twofold. On the one hand, they visualize

the filters learned by various CNNs (an idea already formulated in [40] by the

Activation Maximization approach) through the inversion of the convolution

operations, that is where the name “deconvolution” comes from. On the other

hand, they generate saliency heatmaps by systematically occluding portions of the

input image with a gray square [41]. Their occlusion sensitivity method monitors

the output of the classifier to these input perturbations. Simonyan’s saliency maps

further develop this idea by computing the relevance of individual pixels rather

than entire input regions [42]. Each value at a location of Simonyan’s saliency
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heatmap represents the derivative of the decision function with respect to the

input pixel in that same location. Guided backpropagation upgrades this formula-

tion, using the signals from the high layers as additional guidance to avoid the

flow of negative gradients [43]. The Layerwise Relevance Propagation (LRP) in

[44] further expands the idea of saliency in [42]. LRP decomposes the contribu-

tion of each pixel (also obtained by a derivative operation) at each layer in the

CNN computation. The propagation of this relevance through the layers is then

evaluated to obtain the LRP values that are visualized as a heatmap. An entirely

different approach that also generates visual explanations, often called activation

maps, is that of Class Activation Mapping (CAM) [9]. Individual CNN feature

maps are used to obtain a heatmap of the network’s attention before being spa-

tially averaged and linearly combined to produce the network prediction. One

limitation of CAM is that it can only be applied to CNNs with a global average

pooling layer, rarely used in recent state-of-the-art architectures. Grad-CAM is

proposed in [45] as a generalization of CAM that directly takes into account the

cascade of gradients at each CNN layer. In this way, the activation maps can be

obtained from a wider variety of CNN architectures, including those used for

image captioning and query answering. When applied to classification tasks,

CAM and Grad-CAM are equivalent up to a normalization constant that is pro-

portional to the number of pixels in the feature maps [45]. The Grad-CAM frame-

work does not generalize to multiple occurrences of same-class instances in the

input image considering the gradients with respect to entire feature maps. This

limitation is partially addressed by Grad-CAM11, which considers the gradients

directly at the pixel level [46]. The prediction difference analysis method in [47],

based on the framework in [48], proposes a probabilistic approach to generating

heatmaps. The basic idea is that of estimating the relevance of a feature by mea-

suring the change in the prediction when that specific feature is unknown. This

change is obtained by evaluating the difference between the probability of the

prediction when conditioning on the complete feature set and when conditioning

on the feature set where that specific feature is removed [47]. The framework

Local-Interpretable Model Agnostic Explanations (LIME) proposed by Ribeiro in

[49], is a local posthoc XAI method that uses linear surrogate models to generate

explanations for a single input image. To clarify eventual confusions, the adjec-

tive “Local” in LIME refers to the approximation of the DL decision function in

the locality of an input sample. For instance, the linear surrogate model approxi-

mates the decisions of the DL model in a neighborhood of the input sample.

Using LIME to explain CNNs is similar to using a sparse linear model to approxi-

mate the complex decision function of the CNN. The first step of the application

of LIME to images consists of clustering pixels into superpixels (that are used as

features) using color, texture and other types of local similarities. Randomly

hiding some of the superpixels generates perturbations (called samples) of the

original images which can be used to compute the relevance of each superpixel

to the decision-making. Some common algorithms to extract superpixels are

Simple Linear Iterative Clustering [50] and Felzenszwalb’s graph-based image
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segmentation [51]. DeepLIFT is proposed in [52] to generate attribution scores on

the basis of the difference between the neuron activations and a “reference activa-

tion” that is computed, for example, by using a blurred version of the original

input image. Finally, SHapley Additive exPlanations [53] are proposed as a

framework that unifies some of the method formulations for explaining predic-

tions, including LRP, LIME and DeepLIFT.

All of the methods presented in this section generate posthoc local explana-

tions that attribute the CNN decisions to a set of input features. This approach is

summarized by the formal definition by Sundararajan et al. of the framework of

attribution to features [39], reported in the following.

Given an input image X5 x1; . . .; xnð ÞAIRn and a CNN with a decision func-

tion f mapping the input image to a class probability, the attribution vector is

defined as:

Af X;X
0ð Þ5 a1; . . .; anð ÞAIRn

where each ai explains the contribution of each pixel xi to f Xð Þ; i5 1; . . .; n

8.2.3.3 Concept attribution
Concept attribution aims at addressing a key difficulty in the generation of pixel-

based explanations for CNNs, namely that humans understand high-level concepts

more easily than the raw input pixel values or the internal CNN activation values

[10]. This section reviews the related work on interpreting CNNs by using

human-friendly concepts and presents the framework of attribution to concepts, as

opposed to that of attribution to features.

The reference paper for generating explanations in terms of high-level con-

cepts is testing with CAVs [10]. The interpretation of a ML or DL model, in the

sense of generating posthoc explanations, is seen as a translation problem. The

state of the model is defined by Kim et al. as a vector space Em (e.g. the space of

the CNN activations) [10]. The basis vectors in this space correspond to the input

features and neural activations. Another vector space Eh is used to describe the

space of high-level concepts and interactions understandable to humans, with

bases vectors corresponding to the high-level concepts. Generating explanations

means finding a function g:Em-Eh. The method in [10] proposes a way of

obtaining the translation g. Given a concept of interest, they collect a set of exam-

ple images representative of the concept. The CAV is then learned in the space of

the activations of a CNN layer as a linear classification task that separates the set

of examples with the concept from a set of random images (not containing the

concept). The CAV for that concept, for instance, is the unit vector representing

the linear classifier. In other words, the CAV models the presence or absence of a

human-friendly concept and it is computed as the unit weight vector representing

the linear classifier that separates images with the concept from those without the

concept in the space of activations of a CNN layer. The performance of the linear

classifier is indicative of how well the concept is learned in the network represen-

tation. The use of linear classifiers, that are inherently intelligible, is also addressed
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as linear probing in [54]. The work on CAVs presents numerous extensions in the

literature. The automatic extraction of visual concepts is proposed in [55] to obtain

insights on the concepts learned automatically by CNNs despite not having explicit

knowledge of all of them. Causal Concept Effect aims at establishing the causal

effect of the presence of a concept in the input image [56]. The latest concept bot-

tleneck models propose the training of DL models on images with annotations for

both the ground-truth labels and the presence of concepts [57].

The RCVs in [12,13] extend CAVs to model not only the presence or absence

of a concept, but also continuous-valued measures. These measures do not need

necessarily additional annotations, as they can be directly computed on the

images. The development of RCVs is particularly relevant to the medical domain

since clinical concepts are expressed as observed measurements that do not fit in

the binary formulation of CAVs, for example radiomic features [15], nuclei pleo-

morphism [12,13], vessel features of the retina [13,16].

Finally, concept attribution is defined in [13] for a set of Q concepts cif gQi51 as

in the following:

A vector Vci, being either the CAV or the RCV, represents a concept ci in the

activation space of a CNN layer l. The concept attribution vector

Af Φl Xð Þ; Vcif gQi51

� �
5 a1; . . .; aQ
� �

represents with each ai the relevance of the

concept ci to the CNN decision function f Xð Þ for an input X.

Explanations obtained with concept attribution are defined locally around the

input image X. Being independent of the pixel locations the attribution values ai
can be agglomerated in multiple ways to obtain global explanations (valid for an

entire class or an entire set of inputs). Some methods such as the TCAV and the

Br scores are proposed within the works on CAVs and RCVs themselves. For this

reason, the box of attribution to concepts in Fig. 8.2 leads to both local and global

explanations.

8.2.4 Evaluation of explainable artificial intelligence methods

In the previous sections, we presented XAI methods that generate explanations in

terms of visualizations or high-level concepts. Both approaches provide immedi-

ate feedback on the network internal state and can give insights on the criteria for

decision-making. We discuss in this section the need for quantitative evaluation

methods for XAI, motivated by the risk of confirmation bias if only a qualitative

assessment is performed to evaluate XAI plausibility [58]. We then present a

review of the studies proposing quantitative evaluations, arguing that some of the

evaluation approaches do not generalize to all medical tasks. These considerations

are relevant for both evaluating the existing XAI methods and developing new

ones that can better suit the clinical needs.

XAI methods should highlight the relevant information behind the model’s

decision-making, while showing properties of robustness, implementation invari-

ance, consistency, appropriateness and reliability [39]. Without these properties

XAI methods would lose the user’s trust as a meaningful way of assessing DL
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decisions. Testing the reliability and trustworthiness of visual explanations only

by visual inspection, however, is subject to the risk of confirmation bias.

Confirmation bias is defined in cognitive psychology as the human tendency to

attribute greater confidence to a hypothesis, even if false, when explanations are

generated for it [lomb]. From a technical perspective, the quantitative evaluation

of XAI methods is complicated because of the lack of ground-truth. We do not

know, in fact, what input features are important to a model. Remarkable work in

the literature focuses on developing evaluation methods, particularly on evaluat-

ing the consistency of saliency maps. By the term consistency, we refer to a series

of desired invariances and dependencies that XAI outcomes should present. This

includes, for example, implementation and input invariance and the dependency

on the model parameters. Implementation and input invariance are addressed by

the works in [39,59]. The same explanations, according to Sundararajan [39],

should be generated for functionally equivalent networks, namely models with

different architectures but reporting the same outputs for the same inputs. XAI

outcomes should be invariant to constant shifts in the input data, although some

of them show sensitivity are easily fooled by simple changes in the background

color [59]. The dependency on the model parameters is evaluated in [60] by a

series of randomization tests. The similarity of the explanations is compared

when the learned model parameters are reinitialized to random values layer by

layer in a cascading way, and completely, namely by resetting all the parameters

to random values. The outcomes of the randomization tests show that XAI meth-

ods are inconsistent and perhaps assign the wrong attribution values to the wrong

features [bim]. These results further stress the need for a solid evaluation of XAI

outcomes that goes beyond simple visual inspection.

Concerning XAI development for medical applications, the deployment to the

clinical setting further expands the desiderata for these methods. In the first place,

explanations should be targeted at helping physicians with decision-making, with-

out requiring extra expertise in the theoretical aspects of AI systems [59]. This

goes in favor of the human-centric or SCE approaches that consider the user’s

need in the development of interpretable AI. In addition to this, Tokenaboni

expands the list of desirable properties for XAI methods for clinical application.

The explanations should be evaluated according to a series of factors. The first of

these factors is the appropriateness of the explanation to the clinical domain.

Clinically irrelevant, inconsistent and unnecessary explanations do not support

physicians and should be given a lower priority. Explanations that cannot be

translated into action (may this mean asking for additional analyses, for the con-

firmation or the modification of preexistent choices) should also be avoided, as

they do not help with the clinical workflow. Finally, Tokenaboni adds the invari-

ance to shifts in the XAI implementation parameters as a further evaluation of the

consistency. Within the medical context, a few works assess the trustworthiness

and reliability of XAI visualizations [33,60]. By using lesion contours annotations

Arun et al. assess four points of saliency methods, namely their utility for locali-

zation tasks, their sensitivity to the randomization of the parameter weights, their
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repeatability and reproducibility [60]. The instability of XAI visualization meth-

ods applied to emerges from this study on chest X-rays. It is important to point

out that evaluating XAI methods on the basis of their localization performance as

in [60], however, may not generalize to all clinical tasks. The work in [33], for

example, discusses how this approach would easily fail in the context of histopa-

thology images. This is mainly due to the fact that in these images there is not a

clear central subject on the foreground but rather a structural disposition of many

instances (e.g. connective, adipose, or epithelium cells) at several scales. It could

be sufficient for the CNN to focus on one or a few instances, thus causing low

evaluations of the localization capability of the CNN.

The existing studies on the evaluation of XAI methods show, finally, that the

rigorous evaluation of these studies still necessitates sustained research that keeps

into account the application domain [59].

8.3 Methods

8.3.1 Retinopathy of prematurity

8.3.1.1 Relevant background
We present in this section the applicative domain of the works presented in this chapter,

namely the classification of plus disease in ROP. ROP affects premature babies born

before 31 weeks of gestation and weighing less than 1.3 kg. This disease of the eye

causes the abnormal growth of the blood vessels in the retina to more than 14,000 pre-

mature infants per year only in the U.S. If prompt action is not taken, the aggressivity

of ROP may remain stable or advance further. Medical treatment is required by around

10% of the babies to avoid the degeneration of ROP. To analyze ROP an indirect oph-

thalmoscope is used to visually inspect the retina. With the digitalization of medical

images, special cameras are used to take high-resolution pictures of the retina. These

pictures are analyzed by multiple experts and can be used to track disease evolution

over time, as shown in Fig. 8.3. The ROP diagnosis consists of identifying the affected

zones of the retina, staging the disease on a scale from 0 to 5 (in Fig. 8.4). The risk if

FIGURE 8.3

ROP progression from grade 0 to 2 in the right eye of the same patient. No presence of

plus is noticeable.
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ROP advances is that of blindness due to the total detachment of the retina (as in the

picture on the right in Fig. 8.4).

The plus disease is a condition that may cooccur to ROP, illustrated in

Fig. 8.4. In retinas affected by plus, the blood vessels appear enlarged and twisted

and preannounce the worsening of the disease. The prompt detection of this con-

dition is necessary for preventing the exacerbation of ROP and retinal detach-

ment. Preplus indicates an intermediate stage where the severity of the eventual

vascular abnormalities is not yet sufficient to define the presence of plus, but it is

remarkable enough to plan earlier intervention. The presence of preplus or plus is

assessed on the basis of the coexistence of clinical factors such as increased

venous dilation and arterial tortuosity. The distinction between the two diseases is

very subtle, and it is often a reason for strong disagreement among experts

(Fig. 8.5).

8.3.1.2 Dataset for the experiments
The dataset for the experiments consists of 4800 de-identified posterior retinal

images from a private dataset. The images were obtained by a commercially

available camera, namely RetCam by Natus Medical Incorporated (in Pleasanton,

CA). A total of 3024 images was used for training the network, consisting of

1084 images without plus, 1074 images with signs of Preplus and 1080 images

containing plus. The testing set comprises 100 images, including 54 normal, 31

preplus disease, and 15 plus disease images. The assignment of the images to

FIGURE 8.4

Example of ROP grades from 0 to 5 in multiple patients. plus is not noticeable in any of

the images, except from the presence of preplus in the image for grade 4.

FIGURE 8.5

ROP progression on the same patient eye from the absence of plus disease, to preplus

and presence of plus. The ROP grade is 2 in the first 2 pictures on the left and shifts to 3

in the picture on the right. ROP, Retinopathy of prematurity.
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each category is obtained by the majority voting from three expert assessments.

The high class imbalance between plus and normal cases is a consequence of the

low prevalence of the ROP disease (only 3%).

8.3.1.3 Task and classification model
The task is the automatic ternary classification of images into normal, preplus and

plus classes.

We reproduce the preprocessing pipeline from Brown et al. [61]. The retinal

vasculature is segmented by a U-Net [62]. The network assigns, for instance, a

probability to each pixel for being part of a vessel. This segmentation step bypasses

the domain shifts due to variations in terms of pigmentation, illumination, and non-

vascular pathology. A resizing operation is performed to uniformize the image size

to 224 3 224 pixels, the input size of the CNN used for the classification. An

Inception-V1 network [63], pretrained on ImageNet, is then finetuned on the ROP

dataset to classify the images as normal, preplus or plus. We train the CNN with

stochastic gradient descent and a categorical cross-entropy loss for 100 epochs. The

learning rate is maintained constant to 1e2 4. Data augmentation is applied with

right-angle rotations and horizontal and vertical flipping. The hyperparameters are

tuned by five-fold cross-validation as in Brown et al. [61].

8.3.2 Concept attribution with regression concept vectors

8.3.2.1 Identification of the concepts
The starting point of attribution to concepts is the identification of clinical

concepts that should be used for generating explanations. In this section we

will describe the workflow for the selection of clinical concepts represented in

Fig. 8.6, starting from the collection of information to the final definition of a

list of concepts and how to measure them. In the framework defined in [13],

we identify mainly two sources of information that can drive the selection of

clinical concepts, namely the prior knowledge on the domain and the consulta-

tion with domain experts. Fig. 8.6 shows these two as the starting point of the

workflow for the selection of clinical concepts. Although for the experiments

in this chapter we directly interacted with ophthalmologists to define the clini-

cal concepts, we clarify in this section both approaches for completeness. We

present the approaches from a high-level perspective so that they could be

used also in other applications. The details on the interaction process and the

type of questions that led to the identification of the concepts are reported in

Section 8.4.2.1.

We describe in the following some of the sources of prior knowledge (repre-

sented as the starting point of the workflow in the box of the top left of Fig. 8.6)

that can lead to the identification of clinical concepts. Prior knowledge can be

represented in multiple ways, for example, collections of existing guidelines, as

reports of previous studies or as annotated data. We discuss each of these in
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detail. Existing guidelines that are followed for human decision-making constitute

an important resource, being based on several years of studies and joint efforts

toward identifying decisive factors. Some examples of these are the well-

established Nottingham grading (NGH) for breast cancer or the Gleason score in

prostate cancer grading. The guidelines specify a list of factors that should be

assessed by the pathologists to determine the tumor grade. For example, abnor-

malities in the appearance of nuclei and cells is one of the criteria in the NGH. In

addition to the guidelines, the combination of handcrafted visual features and ML

has been studied for several years before transitioning to DL. The handcrafted

feature extraction driven by expert knowledge in the domain drives, in some

cases, the extraction of powerful features with prognostic relevance [64�66].

Written reports, besides, justify the decision-making by describing the image con-

tent and the main causes that led to the diagnosis. Information to identify clinical

concepts can be collected from all of these sources, namely the grading guide-

lines, handcrafted features and written reports. The selection of the clinical con-

cepts performed in this way is particularly useful to verify that domain-

knowledge is reflected in the layer activations of the network.

As the box on the bottom left of Fig. 8.6 suggests, the end users of the DL

algorithm, in our case the physicians (ophthalmologists), can contribute to the

selection of clinical concepts. As [13] suggests, this is rather an interactive pro-

cess where the list of concepts is refined over multiple iterations until the expla-

nations satisfy the users’ inquiries on the model’s decision-making. The direct

interaction is useful to understand the expectations of the physicians on the

DL decision-making. Physicians may be interested in validating that the model

FIGURE 8.6

Workflow for the selection of clinical concepts.

Reproduced from M. Graziani et al., Concept attribution: explaining CNN decisions to physicians, Comput.

Biol. Med. 123 (2020) 103865.
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decisions are in line with the guidelines of clinical practice as supposed in [12].

A question of interest, in this case, could be “Is the nuclei shape relevant to the

automatic classification as tumor?” Confounding factors can be specified to

make sure that irrelevant features are not used to make the classification, for

example, by stating “changes in color appearance do not influence the

classification.”

The next step in the workflow is to understand whether the factors identified

by prior knowledge and end-users can translate to questions about the model

decision-making. The question “is nuclei size relevant to the classification?” for

example could be posed to translate the attention to the nuclei size and shape in

the NGH into a relevant question about the automated decision-making. In this

case, “nuclei size” is identifiable as a concept for the analysis. For an additional

example, let us suppose that from the interaction with experts it emerged that

they suspect that the watermarks at the bottom of the images may influence the

model’s attention. The sentence “the influence of the presence of watermarks is

to investigate” therefore translate into a relevant question that should be

answered by concept attribution: “is the presence of watermarks a relevant fac-

tor to the decision?” The concept “presence of watermarks” is therefore added

to the list of potential concepts. Note that this is a confounding factor with no

clinical relevance and the outcome of the concept attribution analysis should

show that this is not a relevant concept. If otherwise, this may highlight a bias

in the decision-making requiring further analyses of the model and, if needed,

the retraining of the parameters.

It is important to notice at this point that the concepts do not necessarily need

to be specified in terms of the input features or the training data. Additional con-

cepts can be defined using new data with annotations or from the metadata. Some

concepts can be specific to the type of data being analyzed, as undefined for

some data types. RGB color measures, for instance, are undefined for single-

channel image modalities, for example computed tomography scans. Besides, to

generate the explanations the list of concepts does not need to be perfect, and it

will not likely be exhaustive of all possible concepts.

8.3.2.2 Computing the regression concept vector
In this section, we formalize the computation of RCVs as described in [13].

The output of the CNN internal layer is used to find the RCV for that layer.

This procedure is posthoc and does not require the training of the parameters. The

space of the activations of layer l;Φl Xð Þ l, is considered. We extract Φl Xð Þ for

XAX where X is the training dataset, a subset of it, or an additional dataset

describing the concepts. For each image XAX we have access to, or we can com-

pute, a value of the clinical concept for which we are seeking the RCV. We repre-

sent this operation of accessing or evaluating the value of the clinical concept by

c Xð Þ. Given one image representing tumor cells in a tissue slide, the average num-

ber of pixels in the segmentation of the nuclei regions can represent a value for
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the concept “nuclei size”. We seek the linear regression that can model the value

of the concept c Xð Þ for each XAX as in the following:

c Xð Þ5VcUΦl Xð Þ1 error

The RCV for the concept c is Vc. The RCV components can be found by

applying linear least squares (LLS) estimation to Xconcepts. Fig. 8.7 illustrates the

approach for a 2-dimensional space.

If l is a dense layer of width p, Vc is a p-dimensional vector in the space of

its activations. If l is a convolutional layer the output of Φl Xð Þ has spatial and
channel dimensions (height, width, channels) represented as w3 h3 p. The

simplest way of solving LLS in this space is to flatten Φl Xð Þ to a one-

dimensional array of whp elements as in [12,54]. This operation is widely dis-

cussed in [13], where better approaches are also proposed. Unrolling the con-

volutional maps may cause the explosion of the dimensionality of whp. The

flattening operation, besides, breaks the natural 2D structure of the representa-

tion of convolutional feature maps, assigning neighboring features to indepen-

dent dimensions. A spatial aggregation, i.e. global pooling, along the (height,

width) of each feature map is a solution to this shortcoming, generating a

representation of Φl Xð Þ as a one-dimensional array of p elements. This solu-

tion, only briefly mentioned in [54] and tested in [13] improves the quality of

the regression fit. A further solution proposed in [13] is adding a regulariza-

tion term to the optimization:

Vridge
c 5 arg minVc

jjc Xð Þ2VcΦl Xð Þjj22 1λjjVcjj22
� �

As opposed to CAVs, RCVs allow expressing the influence of the concept in

terms of increasing values rather than its sole presence. For this reason, they are

more suited to medical applications, which often consider continuous measures.

FIGURE 8.7

In this two-dimensional example, the RCV is the direction represented by the regression

plane. In higher dimensions, unwanted pixel dependencies are removed by an

aggregating operation of the internal layer representation.
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The RCV represents the direction of the strongest increase of the concept mea-

sures for the concept c and it is normalized to obtain a unit vector Vc.

8.3.2.3 Generating local explanations by conceptual sensitivity
In this section, we summarize how local explanations can be generated for a sin-

gle input by a derivative operation [13].

The conceptual sensitivity proposed in [10] constitutes the way of generating

explanations for a single input image x in terms of a concept c, and it represents the

impact of changes in the concept value c xð Þ to the network output. It is defined for

CAVs, hence for binary concepts, in [10]. The same formula can be applied to RCVs

for categorical and continuous concepts. In the following paragraphs, we report the

definition of conceptual sensitivity for binary and multitask classification.

For a binary classification task, the conceptual sensitivity S1c Xð ÞAIR is defined

as the directional derivative of the network output f Xð Þ over the CAV or the RCV

direction Vc, computed as a scalar product:

S1c Xð Þ5VcU
@f Xð Þ
@Φl Xð Þ

S1c Xð Þ represents the network responsiveness to changes in the input along the

direction of the increasing values of the concept measures. The sign of S1c Xð Þ
represents the direction of change, while its magnitude represents the rate of

change. When moving along the RCV direction, the output f Xð Þ may either

increase (positive conceptual sensitivity), decrease (negative conceptual sensitiv-

ity) or remain unchanged (conceptual sensitivity equals zero). In a binary classifi-

cation network with a single neuron in the decision layer, the decision function is

a logistic regression over the activations of the penultimate layer. A positive value

of the sensitivity to a concept can be interpreted as an increase of p y5 1 Xj Þð
when the representation Φl Xð Þ is moved toward the direction of the increasing

values of the concept. Negative conceptual sensitivity can be interpreted as an

increase in p y5 0 Xj Þð when the same shift in the representation is applied.

Conceptual sensitivities scores are informative about the concept influence on the

decision for the single input image.

The derivation of the scores for multiclass classification tasks is straightforward.

Given the class label k, we consider the corresponding kth neuron in layer L. The

neuron activation before softmax, ΦL;k Xð Þ, is a vector of real numbers representing

the raw prediction values. These values are then squashed by the softmax into a prob-

ability distribution, namely the probability of the label k to be assigned to the input

data point X. The conceptual sensitivity score for class k is computed as:

Sl;kc Xð Þ5VcU
@ΦL;k Xð Þ
@Φl Xð Þ

The sensitivity scores can be computed for each class k, thus obtaining a vec-

tor of K elements. Large absolute values of the conceptual sensitivity for a single
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class correspond to a strong impact in the decision function when the activations

are shifted along the direction of the RCV. The derivative of the decision function

can be obtained by stopping gradient backpropagation at the lth layer of the

network.

8.3.2.4 Agglomerating scores for global explanations
In this section, we report two ways in the literature of agglomerating the con-

cept sensitivity scores to obtain global explanations of model behavior for an

entire set of input data, for example for a full class. These two ways are, for

instance, the TCAV score proposed in [10] and the Br score in [13]. These

ways of agglomerating score take into consideration different aspects and can

be seen as complementary. Alternative scores can explore additional charac-

teristics of the conceptual sensitivity, for example the ratio between positive

and negative sensitivities or the largest variation. The UBS score in [15] pro-

poses a layer-agnostic score that allows the comparison of the concept sensi-

tivities across all layers in a CNN. Note that one score is computed for each

concept analyzed. If we were to consider three concepts in our analysis, for

example, three TCAV scores would be computed, namely one agglomerating

all the conceptual sensitivity values obtained for the first concept, one

agglomerating all of those for the second and finally one agglomerating the

values for the third.

The TCAV score is defined in [10] as the fraction of k-class inputs for which

the activation vector of layer l is positively influenced by the concept c

TCAV 5

�� XAXk:S
l;k
c Xð Þ. 0

� 
��
Xkjj

where XkCXtask is the set of inputs with label k. The TCAV score is bounded

between zero and one. If no images are influencing the decision with a positive

gradient, TCAV is zero. In the original paper, TCAV is only defined for CAVs

[10], but its application is the same for RCVs.

Bidirectional relevance Brð Þ scores are proposed for medical tasks with two

class labels symbolizing either the presence or the absence of a condition, for

example tumor in [13]:

Br5R2 3
μ
σ̂

� 	

The coefficient of determination R2 # 1 measures if the concept vector is rep-

resentative of the concept. The coefficient of variation σ̂=μ̂ is the standard devia-

tion of the conceptual sensitivities over their average. This score is large when

the RCV models correctly the concept values, i.e. R2 is 1, and when the concep-

tual sensitivity values are consistent for all input samples, lying closely around

their sample mean. Br explodes to infinite if σ̂5 0. A normalization per layer is

applied to scores for multiple concepts such that the highest magnitude is equal to 1.

This scaling permits the comparison of the scores among concepts.
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8.4 Experiments and results

8.4.1 Network performance on the retinopathy of prematurity task

We report in this section the results of the DL classification experiment on the

ROP dataset.

The first step before classification is the vessel segmentation by a U-Net

model, for which we report the output of some segmentations, compared to the

raw images in Fig. 8.8.

The mean area under the ROC curve was computed on the validation sets,

across five cross-validation splits. We obtain 0.94 (standard deviation 0.01) for

the diagnosis of normal (i.e. binary classification normal versus preplus/plus) and

0.98 (0.01) for the diagnosis of plus disease (i.e. binary classification plus versus

normal/preplus). The classification on the test set of the best model (based on

cross-validation) achieves 91% accuracy on the 100 test images, sensitivity of

93% and specificity of 94%. The model loss and accuracy over training of one

split of the cross-validation are reported in Fig. 8.9.

FIGURE 8.8

Raw input images and outputs of the vessel segmentation from the U-Net model.
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8.4.2 Results of concept attribution

8.4.2.1 Identification of the concepts
In the following sections, we describe the explainability results obtained on the

ROP classification task using the methods described in Section 8.3.2. In this sec-

tion, in particular, we report in detail the process that led to the identification of

the clinical concepts used for the research described in [16]. As mentioned in

Section 8.3.2.1, the definition of the concepts was mostly driven by the interac-

tion with the physicians (opthamologists).

This interaction focused on clarifying the visual factors that are taken into consider-

ation to diagnose plus disease in ROP. This was made by asking them to sort the images

in terms of the degree of aggressiveness of ROP and in particular of the plus disease. In

Fig. 8.10, we show some images for the three classes, namely normal, preplus and plus.

Insights about these images were discussed with the physicians. To explain the visual dif-

ferences in the images, they sketched out one of the patterns showing the exacerbation of

the disease in Fig. 8.11, namely the tortuosity of the retinal vessels.

Vessel tortuosity is also present in the literature of ROP as an important pat-

tern for the detection of plus. Mathematical models, for example, describe the

vessel appearance in terms of the Cumulative Tortuosity Index (CTI) [67,68]. The

aim of the feature modeling in the literature is to describe the appearance of

the vessels in the whole retinal sample by computing standard statistics of the

mathematical model representing the pervessel features. These features can then

be used with standard ML algorithms for automatic ROP diagnosis. The features

are divided into three groups according to their computation: point-based,

segment-based or tree-based. An example of a point-based feature is the average

point diameter. It describes the width of the vessels, in the direction normal to the

blood flow, at each location in the image. Segment-based features are computed

FIGURE 8.9

Model loss (on the left) and accuracy (on the right) at each training epoch on the training

and validation sets.

Image credits: James M. Brown.
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on segments of the vessel trace. For example, average segment diameter is

obtained by dividing the number of pixels in the vessel by the vessel curve length.

Finally, the distance to the center of the optic disk is an example of a tree-based

feature. This feature represents, for each vessel segment, the distance between the

ending point of the vessel and the disk center. More details and exhaustive com-

parison of the feature types can be found in [42].

Following this interaction with the physicians, we considered the handcrafted

feature design used for ML approaches in ROP applications [67,68]. We com-

puted 11 feature types following the well-established and validated approach in

[68]. The pool of the extracted features was separated into two clusters to

FIGURE 8.10

Image examples for each class, namely normal, preplus and plus.

FIGURE 8.11

Sketch from the interaction with ophthalmologists during the identification of clinical

concepts for the explainability analysis.
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differentiate the signal originating from normal and abnormal vessels. The normal

and abnormal clusters were then fit into a Gaussian Mixture Model (GMM) and

the means, variances and the mixing component were used as GMM statistics.

For each of the 11 types of features, we extracted eight standard statistics (mini-

mum, second minimum, maximum, second maximum, mean, median and second

and third moments) and the five GMM statistics, obtaining a total of

113 81 5ð Þ5 143 handcrafted features. These features were extracted from the

automated vessel segmentations obtained by the U-Net model described in 4.1.

We trained 100 random forest classifiers on random train-test splits with replace-

ment to rank the features in terms of importance according to their Gini coeffi-

cient. The median of the cumulative tortuosity index appeared in the top 5 for all

100 models, confirming the selection of tortuosity as a relevant concept. The

Kernel Density Estimation of the top 10 features is shown in Fig. 8.12. We sorted

the image samples in the training set by increasing values of the 10 retained fea-

ture types and we sampled some of the images to create the visualizations in

Figs. 8.13�8.15. We presented these images to the physicians to collect feedback

on which extracted features aligned the most with clinically relevant aspects

according to them.

From the inspection of the sortings in Figs. 8.13�8.15, the features of curva-

ture “curvature mean” and “curvature median” appeared informative about the

class differences, while the utility of the “Average point diameter mean” was not

clear to the experts. By this interaction with the physicians, we refined the list of

concepts to six measures covering a wide set of clinically interpretable features,

including the notion of tortuosity discussed in Fig. 8.11. Features with a fre-

quency of appearance lower than 10% in the ranking were discarded. The retained

measures are described in Table 8.1.

Fig. 8.16 shows examples of the vessel segmentations retrieved from the training

data according to their minimum and maximum values of the mean and median

FIGURE 8.12

Kernel Density Estimation of the handcrafted feature values for the three classes (normal,

plus and pre-plus).
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statistics computed for the features in Table 8.1. The RCVs in the next section will

find a direction in the activation space of the CNN layers that represents the change

from the minimum to the maximum values of these features.

The analysis in this section led to the central research question in [16], namely

whether the concept-based explanations of concept attributions can be used to

establish a link between the handcrafted features and the deep features.

FIGURE 8.13

Images in the training dataset sorted for increasing values of the feature “mean curvature”

as defined in [68].

FIGURE 8.14

Images in the training dataset sorted for increasing values of the feature “median

curvature” as defined in [68].
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FIGURE 8.15

Images in the training dataset sorted for increasing values of the feature “Average point

diameter mean” as defined in [68].

Table 8.1 Handcrafted feature description and clinical interpretation. k sð Þ
describes the rate of changing velocity between points with respect to the
rate of changing the curve length between points. Lc and Lx denote
respectively curve and chord length. Wn denotes the width of the vessel in
the normal direction.

Feature
Name
abbreviation Description

Clinical
interpretation

curvature CURV k sð Þ Rate of direction
change

Avg Segment
Diameter

ASD #pixels=Lc xð Þ Global dilation

Avg Point Diameter APD Wn xð Þ Absolute dilation
Cumulative Tortuosity
Index

CTI cti xð Þ5 Lc xð Þ=Lx xð Þ Curving, curling,
twisting rate

FIGURE 8.16

Examples of the vessel segmentations according to their values of the handcrafted

features. The top row shows the masks retrieved from the training data having the lowest

value of the feature. The bottom row shows the masks with the largest value of the

feature. The mn- and md- prefixes stand respectively for mean and median.



8.4.2.2 Computation of the regression concept vectors
Since the preplus disease represents a natural progression from normal to plus dis-

ease, we compute the RCVs on the set of training images for normal and plus.

This was not done in [16], where the RCVs were computed separately on the two

input classes. The R2 for multiple layers of the network are reported in Table 8.2,

evaluating the presence of the concepts at multiple layers in the CNN, as

explained in Section 8.3.2.2. Two pooling strategies for aggregating the feature

maps before computing the RCVs are compared, for which we illustrate the

Table 8.2 Coefficient of determination R2 for the ROP concepts. The pooling
strategy is indicated on the top left of each block. The labels of the other
columns refer to the layers of Inception-V1. Higher values of R2 reflect the
stronger presence of the concept. Results partially replicated from our study
in [13].

max pool conv1 Mixed3b Mixed4b Mixed4c Mixed5c

medianCTI
R2

0.59 0.66 0.64 0.63 0.67

meanCTI
R2

0.49 0.56 0.50 0.47 0.56

medianCURV
R2

0.65 0.72 0.69 0.67 0.71

meanCURV
R2

0.65 0.70 0.61 0.57 0.72

medianASD
R2

0.55 0.66 0.58 0.56 0.64

medianAPD
R2

0.69 0.76 0.69 0.66 0.76

avg pool conv1 Mixed3b Mixed4b Mixed4c Mixed5c

medianCTI
R2

0.68 0.75 0.70 0.72 0.72

meanCTI
R2

0.56 0.63 0.54 0.55 0.56

medianCURV
R2

0.62 0.73 0.75 0.76 0.71

meanCURV
R2

0.65 0.74 0.68 0.69 0.71

medianASD
R2

0.69 0.74 0.67 0.67 0.64

meanAPD
R2

0.72 0.80 0.76 0.77 0.76
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differences in Fig. 8.17. The results for the regularized regression are compared

against multiple values of the regularization penalty in Fig. 8.18.

8.4.2.3 Evaluation of the conceptual sensitivities
In this section, we present two examples of the conceptual sensitivities as local

explanations, as introduced in Section 8.3.2.3.

FIGURE 8.17

Comparison of the regression of concepts of curvature (mdCURV and mnCURV), dilation

(mdASD, mnAPD) and tortuosity (mdCTI and mnCTI) in ROP images of class normal and

plus. Note that the “md” and “mn” prefixes stand respectively for median and mean.

Results replicated from our study in M. Graziani et al., Concept attribution: explaining CNN decisions to

physicians, Comput. Biol. Med. 123 (2020) 103865.

FIGURE 8.18

Impact of the parameter λ (strength of the regularization) on the ridge regression with (on

the left) and without (on the right) global average pooling for the ROP concepts. The

pooling operation reduces the need for regularization and leads to higher values of R2. A

subset of ROP concepts is shown, representing dilation (mdASD and mnAPD) and

tortuosity (mnCTI).

Results replicated from our study in M. Graziani et al., Concept attribution: explaining CNN decisions to

physicians, Comput. Biol. Med. 123 (2020) 103865.
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In Fig. 8.19, we show the sensitivities for a misclassified image. The original

values of the handcrafted features (which were used as concept measures) are

reported on the left of the image. The network probability of each class is shown

on top of the segmentation as pn, ppre and pplus. The analysis highlights the fact

that higher values of curvature and tortuosity would increase the prediction proba-

bility of the plus class. Similarly, Fig. 8.20 presents the conceptual sensitivities

for a correctly classified image.

8.4.2.4 Global explanations with Br
The global explanations, as explained in Section 8.3.2.4, are summarized for

inputs of the normal and plus classes in Fig. 8.21.

From the global explanations, curvature median appears as the most relevant

concept to detect plus images with Br5 1:0. Avg point diameter mean is, on the

other side, the most important concept for the detection of normal cases with

Br52 0:99. The negative score shows that an increase of the value for this

clinical concept would correspond to a decrease in the network output, hence a

shift toward the prediction of the normal class. Avg point diameter mean and

CTI median appear as equally important with Br5 0:56 for the detection of

plus.

FIGURE 8.19

Conceptual sensitivities for a misclassification of a plus image as a preplus. The original

values of six concept measures are displayed on top of the raw input image on the left.

The network probabilities for the three classes, normal, preplus and plus are reported as

pn, ppre and pplus .

Image reproduced from our work in M. Graziani, et al. Improved interpretability for computer-aided severity

assessment of retinopathy of prematurity, in: Medical Imaging 2019: Computer-Aided Diagnosis. Vol. 10950.

International Society for Optics and Photonics, 2019.
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FIGURE 8.20

Conceptual sensitivities for a correct classification of an image of the normal class. The

original values of six concept measures are displayed on top of the raw input image on the

left. The network probabilities for the three classes, normal, preplus and plus are reported

as pn, ppre and pplus .

Image reproduced from our work in M. Graziani, et al. Improved interpretability for computer-aided severity

assessment of retinopathy of prematurity, in: Medical Imaging 2019: Computer-Aided Diagnosis. Vol. 10950.

International Society for Optics and Photonics, 2019.
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FIGURE 8.21

Global Br scores on the testing set for normal and plus images. Positive scores represent

a shift toward the prediction of the normal class (left) or plus class (right) when the

concept measure increases. Negative scores represent a shift toward these same classes

when the concept measure decreases.

Figure reproduced from our work in M Graziani, et al. Improved interpretability for computer-aided severity

assessment of retinopathy of prematurity, in: Medical Imaging 2019: Computer-Aided Diagnosis. Vol. 10950.

International Society for Optics and Photonics, 2019.
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8.5 Discussion of the results
The presence of plus disease has a relevant impact on the treatment planning for

ROP. Its diagnosis is, however, highly subjective, being mostly based on the iden-

tification of vessel dilation and tortuosity. The performance for the diagnosis of

plus disease of the fully automated system in Section 8.4.1 compares, if not

exceeds, that of ROP experts [69]. This result aims at showing that the use of DL

models can introduce objectivity in the assessment of ROP severity, supporting

physicians with difficult decisions such as establishing the presence of plus dis-

ease. This result shows a high potential of improving the clinical outcomes from

the integration of DL and experts, similar to the results in other medical applica-

tions [7,8].

Interpreting the model predictions is a necessary step to validate the model’s

decision-making. The proposed approach to ROP classification is particular since

the images classified by the Inception-V1 are not continuous multichannel inputs,

like natural images, they are binary masks of vessel segmentations. Feature attri-

bution methods to obtain visualizations may therefore not provide sufficient

insights on the decision-making. Since the inputs are binary masks, this applica-

tion is also challenging for concept attribution. Despite their versatility in many

other applications [12�14,70], basic visual features such as image intensity and

texture cannot be extracted from the binary masks of the vessels. The concept

selection had to be defined on purpose for this task. The interaction with the

ophthalmologists was essential to the formulation of the clinical concepts. The

tortuosity measures of CTI emerge as relevant from the exchange with the physi-

cians in Fig. 8.11. This result is also in agreement with the analysis of the Gini

coefficients, with CTI appearing in the top five for all the training repetitions of

the random forests model classification. The vessel curvature is another interest-

ing feature, according to the Gini coefficients. The visual differences between

images with increasing values of vessel curvature features (i.e. curvature mean

and median) suggest the relation between increased curvature and the presence of

plus. The selection of clinical concepts has both upsides and downsides. On the

upside, arbitrary concepts can be used to formulate explanations that directly

address specific answers about the application. They do not need large annotated

datasets, since the concepts can be computed automatically on the images, for

example the handcrafted vessel features. The downside of the arbitrary choice is

that the selection of the concepts itself is a delicate process, as seen in

Section 8.4.2.1. The selection needs multiple iterations and it requires the partici-

pation of experts, to find the clinically relevant visual patterns, and developers, to

implement the modeling of such patterns.

The computation of the RCVs (in Section 8.4.2.2) is straightforward after

selecting clinical concepts. The results compare the RCVs obtained by applying

the improvements proposed in [13] to obtain more stable vectors, including appro-

priate feature map pooling and regression regularization. The average pooling of
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the features leads to the most stable vectors, with the regularization only leading to

small improvements. It is important to note that we compute R2 and relevance

scores on unseen test data, and not on the training data as generally done in statis-

tics. The rationale behind this is to check whether the correlation learned in the

input features can generalize and is robust enough to be predictive of unseen data.

This is informative on the robustness and the reliability of the explanations. The

risk of CAVs of capturing spurious correlation is therefore reduced in this applica-

tion of RCVs by this evaluation on test data. Yet, more research is still needed to

clarify the causal link between the presence of the concept and the decision [56].

The insights given by the local (in Section 8.4.2.3) and global explanations (in

Section 8.4.2.4) represent a first attempt in bridging the gap between handcrafted

visual features used for plus disease detection in classic ML approaches and the

data-driven learning of features that is automated in CNNs. The scores reflect the

clinical expectation that emerged from the interaction with the physicians, report-

ing high relevance for curvature and tortuosity in the diagnosis of plus disease.

The relevance of average diameter mean as a discriminant factor for normal

images is yet to be investigated. The visualizations in Figs. 8.19 and 8.20 propose

a possible way of integrating the local explanations as a tool to assist the diagno-

sis, showing the conceptual sensitivities, the original and segmented images and

the raw values of the hand-crafted features.

8.6 Conclusions

This chapter has covered important topics in the quest for interpretable AI in the

medical domain, presenting an explainability approach with an application on

ROP. The often unclear terminology has led to confusion and multiple taxo-

nomies for interpretability [19�24]. By reviewing these works, we identified in

section 2.2.2 the terms for which most of the taxonomies agree in the definition.

Importantly, we clarified the use of interpretablity, explainability, and intelligibil-

ity. Interpretability and explainability can be used interchangeably for referring to

the generation of explanations for the model decisions. Intelligibility refers to a

wider group of methods that includes inherently interpretable models [3] and the

introduction of interpretability as an additional model objective [25].

We presented the framework of concept attribution as opposed to the visuali-

zation techniques that are wide-spreading in the medical community. As discussed

in Section 2.4, visualization methods may lead to unstable explanations that do

not inspire reliability [33,60]. Concept attribution comes as an alternative

approach to visualizations that can provide further insights on the network

decision-making, both at the global and the local level. Being post hoc, it does

not need the retraining of the parameters, and it can thus be applied to any net-

work. If a more performant and accurate model needs to be developed for ROP,

concept attribution could be applied to the updated model.
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The use of clinical concepts to explain the decisions may foster the compari-

son between the explanations of the models used in multiple institutions. This is

in line with future developments of AI for healthcare, with federated learning

approaches also promoting the exchange of information [71]. Clinical concepts,

moreover, generate explanations that are at a higher level of abstraction than heat-

maps. This makes the comparison of network behavior independent from the

input images used to generate the explanations. By selecting concepts that match

preexisting guidelines, explanations can help the physicians for verifying if the

same set of values of principles is followed by the model decision-making. New

hypotheses on the learned clinical concepts can be tested, also to verify that the

network does not contain biases. For example, CAVs and RCVs could be used to

inspect if the watermarks and text annotations, often present in medical images,

affect the classifications.

From a more global perspective, explaining the automated decision-making of

AI is a task at the frontier of two research worlds: the clinical and the develop-

mental. Explanations should be generated with a human-centric approach, consid-

ering the requirements of the receivers of the explanations. For this reason,

domain experts and DL developers should join forces to develop methods that

can make the automated choices less intimidating and more understandable for

physicians, while at the same time more stable and reliable from the development

perspective.
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9.1 Introduction
Respiratory diseases represent an immense worldwide health burden. According to

the World Health Organization (WHO), the “big five” respiratory diseases, which

include asthma, chronic obstructive pulmonary disease (COPD), acute lower respira-

tory tract infections, lung cancer and tuberculosis, cause severe illness and mortality

of more than 7 million people each year worldwide [1]. Currently, COVID-19 has

caused globally more than 158 million infections and 3,296,000 deaths [2]. On

March 11, 2020, the WHO officially announced that COVID-19 has reached global

pandemic status. Furthermore, according to [3], the “big five” lung diseases, except

lung cancer, have increased during COVID-19 epidemics. These respiratory diseases

are characterized by highly similar symptoms, that is the adventitious breathing,

which could be a confounding factor during diagnosis [4]. Owing to their severe con-

sequences, particularly in the case of COVID-19, an early and accurate diagnosis of

these types of diseases has become crucial.

Most diseases related to an obstructed or restricted respiratory system can be

characterized from the sounds generated while breathing [5]. If there are physio-

logical changes in the lungs due to a disease, it can cause changes in the lung

sound pattern [6]. Therefore, lung sounds can be considered as relevant indicators

of respiratory health [7,8]. The lung sounds are classified as normal and adventi-

tious. Normal respiratory sounds are heard when no respiratory disorders exist.

Adventitious lung sounds (ALSs) are superimposed with the normal respiratory

sounds [9]. Depending on the duration, ALSs can be categorized into two main

types: continuous and discontinuous. Continuous adventitious sounds (CASs) are

usually longer than 250 ms of duration. There are different kinds of CASs corre-

sponding to different frequency ranges such as wheezes with a pitch higher than

400 Hz, rhonchi with a maximal pitch at 200 Hz, stridor with a pitch higher

than 500 Hz and squawk’s pitch around 200�300 Hz. In contrast, discontinuous

adventitious sounds (DASs) have a duration shorter than 25 ms. They can be

classified as fine or coarse depending on their duration and frequency. Fine

crackles have a short duration of 5 ms and high frequency with a pitch around
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650 Hz, whereas coarse crackles have a longer duration that is 15 ms and a lower

frequency of around 350 Hz. Beside that, pleural rub is around 15 ms duration

and its pitch is often lower than 350 Hz [5].

Auscultation is a traditionally important method to diagnose pulmonary dis-

eases and abnormalities using a stethoscope. This process mainly relies on the

physician [10]. In the last decades, computational methods that is computational

lung sound analysis (CLSA) have been developed for automated detection and

classification of ALSs. In particular, digital recording, signal processing techni-

ques, and machine learning algorithms are used to analyze the signals. They

potentially overcome the conventional method’s limitations such as subjectiveness

and offer advantages for medical diagnosis [5,11]. Furthermore, they are carefully

evaluated in real-life scenarios and can be used as portable easy-to-use devices

without the necessity of expert interaction.

Over the years, the popularity of deep learning [12] has introduced some

noticeable changes to the classical pattern recognition framework in general and

for CLSA systems in particular. The processing steps of conventional machine

learning methods involve preprocessing/transformation of the lung sound signal,

feature extraction, and classification [13]. Most research following this paradigm

has focused on enhancing the robustness of each of these steps. Feature extraction

is used to extract informative feature vectors to represent patterns in specific

ways relevant to the task. This is described in the literature as handcrafted or

handmade features. Its main objective is to create features that place patterns

belonging to the same class close to each other in the feature space, while simul-

taneously maximizing their distance to the other classes. However, with deep

learning, the handcrafted features are replaced by 2D representations, for exam-

ple, time�frequency representations such as spectrograms or mel frequency ceps-

tral coefficients (MFCCs) of the audio signals.

In CLSA, there are two popular classification tasks, namely (1) ALS classifi-

cation and (2) respiratory disease classification (RDC). ALS classification

(ALSC) is a task recognizing either abnormal events (i.e., either crackles or

wheezes or others) or normal and abnormal sounds that is respiratory cycles or

recordings including ALS events [14�29]. While for RDC, several categories

have been considered for example, binary classification (health and pathological)

[10,30,31], ternary chronic classification (healthy, chronic and nonchronic dis-

eases) [27,31�36] or multiple-class classification of distinct pathologies [37�44].

The systems have been evaluated on several nonpublic datasets such as the

Tromsø 7 study [45] or the multichannel lung sound data [46] and public datasets

such as R.A.L.E. [47], the ICBHI 2017 dataset [8], the Abdullah University

Hospital 2020 dataset [48] or the largest open-access lung sound database, namely

the HF_Lung_V1 [49].

In this chapter, we summarize and categorize systematically algorithms for

LSC based on processing steps illustrated in Fig. 9.1. Data processing techniques

for audio signal preprocessing, feature extraction, and data augmentation are

detailed in Sections 9.2. Section 9.3 discusses neural network architectures and
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other learning paradigms. Furthermore, lung sound datasets used in the lung

sound classification tasks are introduced in Section 9.4. Section 9.5 discusses

recent advances and open challenges of LSC and concludes the chapter.

As a complementary read to this chapter, Pramono et al. [5] published a sys-

tematic review of automatic adventitious respiratory sound analysis between 1938

and 2016 using handcrafted features for conventional machine learning such as

k-nearest neighbor classifiers, support vector machines, logistic regression, proba-

bilistic classification, etc. In addition, Nguyen et al. [36] also categorized algo-

rithms based on conventional machine learning and deep learning approaches for

both ALSC and RDC using the ICBHI 2017 dataset. Methods for evaluating LSC

algorithms are not further addressed in this chapter.

9.2 Data processing
Lung sound signals are usually represented as discrete-time samples. The record-

ing properties of the lung sound strongly depend on the recording devices. In

addition to single signal (channel) preprocessing techniques, a multichannel lung

sound processing has been proposed, where the multiple signals are recorded

simultaneously by the recording device [28]. In this section, we overview (1) pre-

processing techniques of audio signals and (2) the most relevant features used in

LSC systems.

9.2.1 Audio signal preprocessing

As the audio signals of respiratory sounds are often recorded using different

equipment under verified conditions, they needed to be preprocessed to have the

same fundamental characteristics. There are relevant preprocessing techniques

such as (1) signal splitting, (2) noise filtering, (3) resampling, (4) amplitude

FIGURE 9.1

Processing steps of a typical lung sound classification system.
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scaling between -1 and 1 and (5) segment splitting and (6) padding as shown in

Fig. 9.2.

9.2.1.1 Signal splitting
There are three popular analysis levels of lung sounds in LSC systems, namely

event-wise, respiratory cycle-wise, and recording-wise. These levels correspond

to the tasks of adventitious event detection [14�19], ALS classification [20�29],

and RDC [10,27,30�43], respectively. Lung sound datasets, which are used for

evaluation of the LSC systems, provide annotations for recordings at different

analysis levels. They can be used to split lung sound recordings into adventitious

events or respiratory cycles and their corresponding labels.

9.2.1.2 Noise filtering
Filtering is applied to remove all nonrelevant information such as heart sounds,

background noise, and characteristics of the recording device. Commonly, band-

pass filters are used in both conventional LSC systems [19,38,39] and deep

learning-based LSC systems [30,37,42].

9.2.1.3 Resampling
Lung sound signals have been recorded with a wide range of sampling frequen-

cies [8]. As adventitious lung signals are typically presented within a frequency

range of up to 2 kHz, the sampling rate is at 4 kHz or more. For further proces-

sing, the same sampling frequency for the data is advocated.

9.2.1.4 Amplitude scaling
In conventional LSC systems, amplitude scaling is usually performed on each

signal so that all samples have values between -1 and 1. This compensates for the

intensity difference of data collected from different sources while preserving the

important statistical parameters of the respiratory sounds.

FIGURE 9.2

Various preprocessing steps for different signal analysis levels.
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9.2.1.5 Segment splitting
In deep leaning-based systems of adventitious LSC [29,36,50�53] and RDC [51],

audio signals are split with/without overlap into segments with a fixed length.

9.2.1.6 Padding
Padding of audio signals is mostly used for deep learning-based LSC systems

using convolutional neural networks (CNNs) [29,50�53]. They often require the

same portion of data extracted from the preprocessed audio signals. Usually,

there is a wide variation in length of the respiratory cycles and recordings. Hence,

audio signals are often split with/without overlap into segments of a fixed length

and it is necessary to complete partial segments. There are various padding meth-

ods available such as zero padding [52�54], sample padding [29,35,51] or smart

padding [50]. According to [29,50,51], the LSC systems using sample padding

and smart padding outperform that using zero padding with the same system

settings. In addition, smart padding is also considered to augment data [50] which

is discussed in detail in Section 9.2.3.

It is noticeable that some deep learning-based LSC systems, which take advan-

tage of high-level feature extraction and normalization of the deep neural network

architectures, ignore noise filtering and amplitude scaling [32�36]. Furthermore,

there are several systems performing splitting and padding or resizing of 2D

signal representations [32�35,55], instead of processing the 1D audio signals.

9.2.2 Feature extraction

Feature extraction is an important step for practical algorithms in pattern recognition

and classification. It enhances the information for classification. For LSC systems,

there are two popular types of feature extraction (1) features for conventional classi-

fiers and (2) time-frequency representations for deep learning. Common features of

each category are summarized in Tables 9.1 and 9.2.

9.2.2.1 Features for conventional classifiers
According to a systematic review [5], automatic ALS detection and classification

systems between 1938 and 2016 were mostly introduced within the classical pattern

recognition framework and relied on the hand-crafted features. The hand-crafted

features encode the information after removing nonrelevant information in the pre-

processing step. A compact set of features (feature vectors) are presented as input

to the classifier. The hand-crafted feature set usually consists of features in the time

domain, in the frequency domain that is cepstral features, spectral features

(i.e., spectral centroid, brightness, entropy, kurtosis, skewness, roll-off, flux);

melodic features (i.e., pitch, chromagrams); MFCCs, linear prediction coefficients

(LPCs), linear prediction cepstral coefficients (LPCCs) or features of discrete or

continuous wavelet transform (DWT/CWT). They have been used and further
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Table 9.1 Summary of classical features. Several columns within the column “features” indicate a sequential
decomposition.

Type
Features

References
Before 2019 From 2019

Spectral Spectral centroid, spectral spread, spectral skewness, spectral kurtosis,
spectral entropy, spectral flatness, spectral roughness, spectral
irregularity, spectral flux, spectral flux inc, spectral halfwave, spectral
median, spectral brightness, spectral roll-off, power spectrum,
deformation, spectrum mean, median frequency

[5,15,30] [14,19,44,56,57]

Power spectral density [5,58]

Mel spectrogram Features on Local binary
pattern (LBP)

[20,25]

Melodic Pitch, pitch smoothing, inharmonicity, inharmonicity smoothing, voicing,
voicing smoothing

[5,30] [14,19]

MFCCs MFCCs
Delta-MFCCs

[5,10,22,25,26,31,58] [14,19]

Linear prediction coefficients
(LPCs)

LPCs [5] [59]

LPCCs LPCC-based features [5] [23]

Empirical mode
decomposition
(EMD) variants

Intrinsic mode
functions
(IMFs)

Gray level
difference
Matrix (GLDM)

Gradient second moment,
gradient contrast, mean
gradient, inverse different
moment, gradient entropy

[60]

IMFs Spectral features, their statistics, MFCCs [5] [40,61,62]

IMFs Gammatone cepstral coefficients (GTCCs) [62]

IMFs 2D, 3D phase
space
representations

Ellipse area, interquartile
range

[63]

Hilbert�Huang Transform IMFs Statistical features [21] [64]



Time domain Zero-crossing rate
Variance, range, sum of moving averaging
Amplitude and statistical features
Shannon entropy, energy entropy

[5,15,31,44] [14,61]

Wavelet transform (WT) Wavelet coefficients, entropy [5,31,58,65] [14,66�68]
Spectral features, their statistics, MFCCs [61,67]



explored in many recent LSC studies. Table 9.1 summarizes common hand-crafted

features including references to literature.

Feature selection and/or transformation algorithms such as the principal com-

ponent analysis [58,61], linear Wilcoxon Rank Sum statistical test [14,31], mini-

mum redundancy maximum relevance algorithm [19], random forests [24], and

auto-encoders [61] are used to determine the significance of the extracted features

and to remove redundant features. This helps to enhance the performance in terms

of accuracy and computational cost of the classifiers.

It is noticeable that in conventional LSC, the hand-crafted features are

extracted for short time frames obtained by windowing the audio signals. To

exploit temporal information of consecutive frames of an ALS event, statistical

moments (i.e. mean, standard deviation, coefficient of variation, skewness,

kurtosis) are further calculated from the distributions of the short-term features

[24]. The long-term features are usually necessary for a respiratory-wise and

recording-wise classification system. The short time analysis is also the basis for

recurrent networks (RNNs) in deep learning-based LSC systems.

Table 9.2 Summary of time-frequency featues. Several columns within the
column “features” indicate a sequential decomposition of the methods.

Type Features References

STFT Spectrogram [10,16,19,28,38,39,41,49,69�72]

Spectrogram Color image [73�76]

Gray image [38]

Mel spectrogram [19,29,32,33,37,51,53]
Mel spectrogram image [36,77]
Gammatonegram [32�35]
Gammatonegram image [55]
MFCCs [16,26,27,32,42,49,52,53,56,78�80]
STFT coefficients [52]
STFT-based chromagram [53]

Wavelet
transform

Scalogram/scalogram image [35,69,81,82]

Constant-Q
transform
(CQT)

CQT-based chromagram [32,33,53]
Chroma Energy Normalized
(CENS) chromagram

[53]

CQT cepstral coefficient [83]
S-transform Spectrogram [18]
EMD Scalogram of CWT [43]
Frequency
domain

Energy summation (EM)
Pitch, median frequency and
bandwith

[49]
[17]
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9.2.2.2 Time-frequency representations for deep learning
Similar to image and audio signal processing applications, deep learning techni-

ques have their own added characteristics suited for health informatics [84] in

general and for lung sound classifications in particular. Deep neural network

(DNN) architectures such as CNN and RNN variations implicitly learn a represen-

tation which can be considered as automatic feature extraction. In particular,

CNNs and various combinations of CNNs are equipped with feature learning

layers such as convolutional layers (see Section 9.3.1.2). These layers often play

the role of a high-level feature extractor of 2D feature maps (i.e. visual represen-

tation of time—frequency maps).

There are different 2D representations such as the spectrogram of short-time

Fourier transform (STFT), constant-Q transform (CQT) and Stockwell transform

(S-transform) (known for local spectral phase properties) or scalogram of the wavelet

transform. The time-frequency representations are able not only to capture both fine-

grained temporal and spectral information but also present a much wider time context

of the recordings. Mel and gammatone filter banks, which were designed to mimic

the human auditory system, are often used for filtering to obtain a mel spectrogram,

gammatonegram or MFCCs. Furthermore, filter banks dramatically reduce the number

of features of each time frame. In addition to these transformations, empirical mode

decomposition (EMD) has been used to decompose audio signals into intrinsic mode

functions (IMFs), which are further processed to obtain visual representations.

Often combinations of visual features are exploited in LSC. They can be

concatenated to construct a 2D matrix [49,52], but they can also be considered as

individual visual representation inputs for multiinput DNNs [51,69] or ensembles

of single-input DNNs [32,34,35].

We summarize different time�frequency features of recent LSC system in

Table 9.2.

9.2.3 Data augmentation

Lung sound datasets are relatively limited in either the number of patients or

recordings. Furthermore, an imbalance between categories is common. These

dataset challenges cause an under/over-estimation in performance and a limited

generalization ability of the LSC system. To prevent this situation, data augmen-

tation is a popular and efficient solution in state-of-the-art LSC systems to

approach the category imbalance and increase the diversity of the training data

set. The simplest approaches randomly select a sample and modify it by for

example, adding noise. There are two main directions of data augmentation tech-

niques: (1) time domain and (2) time�frequency domain data augmentation.

9.2.3.1 Time domain
The approach generates new training data samples (instances) in time domain. In

particular, different signal transformations are performed on audio signals such as
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time stretching, pitch or random shifting, variations of volume or speed, etc. In

addition, smart padding or a concatenation-based augmentation technique [50] for

audio signals has been used.

9.2.3.2 Time�frequency domain
Data augmentation techniques are performed for time�frequency representations.

A popular technique used from the field of speech recognition is vocal tract

length perturbation. Furthermore, most of the augmentation techniques for images

in the field of computer vision are used such as mixup augmentation [85], hori-

zontal/vertical flipping, random cropping or color transformations. In addition,

generative adversarial network variants [78,81], which synthesizes novel data

instances from spectrograms, have been introduced.

A combination of several augmentation techniques has often been used in

recent studies. The most popular data augmentation techniques are summarized in

Table 9.3.

Table 9.3 Summary of data augmentation techniques.

Input type Techniques References

Audio signals Pitch shift
Random shifting
Volume adjusting
Noise addition
Speed variation
Time stretching
Cropping/masking

[38,50,55,71,77,78]
[36,42,50,51,53,77]
[36,50,53,71]
[36,42,50,51,55,71,77]
[50,51,53,55,71,77]
[29,36,38,42,71,78]
[25,53,55,71]

Background noise [78]
Dynamic range compression [38,78]
Smart padding [50]

Time�frequency
representation

Vocal tract length perturbation [25,29,36,51]
Mixup augmentation [32,33,59,71]
Horizontal/vertical flipping [36]
Random cropping [25]
SpecAugment techniques [78]
Color mapping for RGB
spectrogram image

[43]

Generative adversarial network
variants

[41,78,81]
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9.3 Data modeling
This section summarizes common machine learning approaches and learning

paradigms used for LSC systems.

9.3.1 Machine learning

There are two main directions: (1) conventional classifiers for hand-crafted

features and (2) deep neural networks.

9.3.1.1 Conventional classifiers
The conventional classifiers are usually used in combination with classical

features in LSC systems. They are summarized in Table 9.4.

9.3.1.2 Deep learning architectures
Deep learning architectures often use 2D feature representation. They perform

both high-level feature extraction and classification. For LSC several different

architectures are used.

9.3.1.2.1 Convolutional neural networks

Similar to acoustic scene classification and acoustic event detection [86], classifi-

cation tasks for lung sounds and respiratory diseases are mostly approached by

2D CNN-based network architectures. Fig. 9.3 shows a typical LSC system using

a CNN architecture. The CNN is able to collect information for longer lung sound

Table 9.4 Summary of conventional classifiers.

Classifier References

Random forest [5,24,26,40,61]
SVMs [5,10,15,19,20,23�26,44,57,59,61,66�68,83]
Multilayer perceptrons [5,20,21,23,24,60,61,67]
k-NNs [5,15,20,25,44,58,59,61,62,67]
GMMs [5,22,25]
HMMs [5,22]
Decision trees and variations [15,19,23,26,30,44,58,59]
Bayes rule-based classifiers [23,58]
Logistic regression [5,26,59]
Linear discriminant analysis [5,17,19,44,59,74]
Ensemble classifiers [63]
Self organized map [5,61]
K-mean clustering [61]
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excerpts such as respiratory cycles containing several ALS events. CNNs are used

in two common ways as follows.

1. Standard CNN architectures: CNNs with various architectures originally

proposed for ImageNet applications are exploited such as VGGs, ResNets,

AlexNets, InceptionNets, GoogLeNets or Mobilenets. They are often utilized

in transfer learning-based LSC systems.

2. Custom CNN architectures: Several self-defined 2D CNNs are proposed for

LSC. Furthermore, parallel architectures such as multiinput CNNs [19,51] and

parallel-pooling CNN architectures [58] have been introduced to make

efficiently use of more information from various feature representations.

Beside 2D CNNs, 1D CNNs are used in a few studies [65,87].

9.3.1.2.2 Recurrent networks

Some LSC systems have used RNN variations such as gated recurrent units

(GRUs), long short-term memories (LSTMs) or their bidirectional extensions

BiGRUs and BiLSTMs. RNNs can account for tasks related to detection of ALS

events and classification of ALSs and respiratory diseases.

9.3.1.2.3 Hybrid systems

Hybrid CNN models have been proposed, which combine CNN models with

either RNN variants or special mechanisms such as mixture of expert (MoE)

layers. In addition, hybrid LSC systems have been developed as combination of

conventional LSC and deep learning. For instance, classical features are fed into

deep multilayer perceptrons [24,25]. Furthermore, conventional classifiers are

used for learned representations from CNN architectures [25,73].

Common deep learning architectures are summarized in Table 9.5.

In addition, some deep learning-based LSC systems are focusing on low

computational costs by using or proposing small model architectures such as

FIGURE 9.3

A typical convolutional neural networks architecture for lung sound classification.
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lightweight CNNs, MobileNets, depth-wise convolutional layers in custom CNN

models [52] or weight quantization [77].

9.3.2 Learning paradigm

9.3.2.1 Transfer learning
Transfer learning is an efficient solution for performance improvement in state-

of-the-art LSC systems, as these systems can save training time and utilize effec-

tively knowledge from source domains. In particular, it allows the improvement

of models through transferring knowledge from all or parts of a CNN model,

which is pretrained on a source domain dataset. Generally, there are two popular

approaches of transfer learning. (1) The knowledge from the representation part

Table 9.5 Summary of deep learning architectures.

Type References

CNNs Standard CNN architectures
VGGs [29,37,52,65,72,76,77]
AlexNets [52,53,55,72,76,81]
ResNets [36,55,70,75,81]
InceptionNets [35,55,75]
MobileNets [72,75,77]
GoogLeNets [55,81]

Custom CNN architectures

1D CNNs [65,87]
CNNs [10,25,29,33,34,38,41,43,50,53,56,71,73,76,80,82]
Multi-Input (MI)—
CNNs

[19,39,51]

RNNs Noise Mask—RNN
variations

[26,78,79]

RNNs
GRUs/BiGRUs
LSTMs/BiLSTMs

[18,26,27,78]
[16,27,42,48,52]
[27,48,52]

Hybrid
systems

CNN—RNNs
CNN—LSTMs/
CNN—Bi LSTMs
CNN—GRUs/CNN—
Bi GRUs
CNN—MoE
Autoencoder

[32]
[9,48,51,70,87]
[28,37,48]
[32,33]
[34,79]

Deep multilayer
perceptrons
CNN—SVMs

[24,25]
[25,73]
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of the pretrained model is not modified during post-training. This means that the

weights are frozen and transfer learning works as feature extractor [51,73]. (2)

All or parts of the pretrained model are fine-tuned on the target domain of lung

sound data [36,50,73,74].

State-of-the-art LSC studies using transfer learning are summarized in

Table 9.6. ResNets are a common architecture, and often ImageNet is used as

source domain for model pretraining.

In addition to common transfer learning, cotuning and stochastic normalization

have been recently exploited in [36]. This approach makes use of all parts of the

pretrained model that is the representation part and output layers, and uses a

cotuning paradigm [88] during training.

Beside transfer learning, knowledge distillation has also been used.

Particularly, a student—teacher scheme is applied for RDC [33]. A teacher with

specific CNN architecture is trained as usual. Afterwards, the teacher’s embed-

ding is distilled to the student to assist in the student’s learning process.

9.3.2.2 Postprocessing
Many LSC systems process data at basic units of either frames or segments in all

analysis modes illustrated in Fig. 9.4. Thus, it is necessary to perform a postpro-

cessing step to fuse results of each frame/segment for the event, respiratory cycle

or full recording. Popular methods for LSC systems are majority voting [16,35]

or averaging of prediction results [32].

Some state-of-the-art LSC systems use multiple models as ensembles. The

prediction outputs of each classifier can be combined to enhance accuracy

[29,32�35,44,58,74]. A snapshot ensemble [29] builds an ensemble of multiple

models at moderate additional training cost. It is an effective solution to deal with

training multiple models. However, ensembles are often infeasible in practical

applications due to their high computational requirements.

Table 9.6 Summary of transfer learning for lung sound classification with
both the feature extraction and fine-tuning approach.

CNN architectures Source domain References

ResNets ImageNet [36,50,75,76]
ICBHI 2017 [36]

VGGs ImageNets [65,76]
Audio Set [37]

Inception-V3 ImageNets [75]
MobileNet-V2 ImageNets [75,77]
CNNs ICBHI 2017 [51]
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9.4 Recent public lung sound datasets
Thirteen publicly available lung sound datasets were listed in [8]. There are three

prominent datasets of lung sounds, which have been mainly used in recent

research. They are described in the following section.

9.4.1 ICBHI 2017 dataset

The ICBHI Scientific Challenge dataset (ICBHI 2017) [8] is freely available for

research. The dataset consists of 920 annotated audio samples from 126 subjects

corresponding to patient pathological conditions that is healthy and seven distinct

disease categories (Pneumonia, Bronchiectasis, COPD, upper respiratory tract

infection, lower respiratory tract infection, Bronchiolitis, Asthma). The audio

samples were recorded using different stethoscopes that is AKGC417L, Meditron,

Litt3200 and LittC2SE. The recording duration ranges from 10 to 90 seconds and

the sampling rate ranges from 4000 to 44100 Hz. Each recording is composed of

a certain number of breathing cycles with corresponding annotations of the begin-

ning and the end, and the presence/absence of crackles and/or wheezes. The anno-

tations of the database support to split audio recordings into respiratory cycles.

The cycle duration ranges from 0.2 to 16 seconds and the average cycle duration

is 2.7 seconds. The database includes 6898 different respiratory cycles with 3642

normal cycles, 1864 crackles, 886 wheezes, and 506 cycles containing of both

crackles and wheezes.

FIGURE 9.4

Block diagram of data processing for different lung sound classification tasks and

corresponding data analysis modes.
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9.4.2 The Abdullah University Hospital 2020 dataset

The dataset introduced by the King Abdullah University Hospital in 2020

contains lung sounds acquired by an electronic stethoscope placed on various

regions of the chest wall [48]. The recording was performed using the

3MLittmann Electronic Stethoscope model 3200. The dataset includes respiratory

sounds from 120 subjects (35 healthy and 77 patients). It contains one recording

per subject. The duration of each recording ranges from 5 to 30 seconds, which is

sufficient to cover at least one respiratory cycle. Each recording was replicated

three times corresponding to various frequency filters that emphasize certain body

sounds. The dataset consisted of a total of 308 lung sound recordings, each is of

5 seconds duration. The dataset can be used to detect seven pulmonary diseases

from lung sounds that is asthma, heart failure, pneumonia, bronchistis, pleural

effusion, lung fibrosis and COPD as well as normal breathing sounds.

Furthermore, it can be used to identify the correct type of lung sound such as nor-

mal, crepitations, wheezes, crackles, bronchial, wheezes and crackles or bronchial

and crackles.

9.4.3 HF_Lung_V1 dataset

HF_Lung_V1 is an open access lung sound database used for developing auto-

mated inhalation, exhalation and adventitious sound detection algorithms working

at event or recording level. It is the largest lung sound dataset introduced in 2021.

The dataset comprises 9765 audio files of lung sounds (duration of 15 seconds

each), 34,095 inhalation labels, 18,349 exhalation labels, 13,883 CAS labels

(8457 wheeze labels, 686 stridor labels, and 4740 rhonchi labels), and 15,606

DAS labels (all crackles). The dataset includes the start and end time of all the

events such as inhalation, exhalation, wheeze (, stridor, rhonchus, and DAS events

in the recordings). It has to be noted that the labels in a single label file is made

only by one annotator. The anotators were trained to have good agreement, but

the labeling is still not perfect [49].

9.5 Conclusion

There are recent advances in deep learning, which help to improve performance

in state-of-the-art LSC as follows. (1) Robust deep neural network architectures

are commonly exploited to automatically extract high-level features. (2) Transfer

learning is a promising technique in accounting for limitations of data quantity in

lung sound datasets through exploiting knowledge from datasets in the same or

different fields. (3) Data augmentation techniques are increasingly applied in LSC

to increase diversity and number of data as well as balancing the classes of the

lung sound dataset. It helps in dealing with overfitting of DNN architectures.
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This chapter presents a comprehensive review on recent studies for computa-

tional LSC. There are two important classification tasks: the classification of

adventitious lung sounds and respiratory diseases. We summarized and catego-

rized as a structural review the topics from data processing such as audio signal

processing, feature extraction, and data augmentation to data modeling such as

neural network architectures and learning paradigms. Besides the recent advances,

one main challenge arises when LSC models are deployed in real-world diagnosis

systems. The clinical setting introduces many challenges such as noise, bad signal

quality, and artifacts. Deep neural networks combined with transfer learning and

data augmentation have been promising avenues for these challenges.
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10.1 Introduction
Heart failure (HF) is a heterogeneous clinical syndrome caused by structural or func-

tional abnormalities leading to a reduction in cardiac output that is inadequate to

meet the needs of peripheral tissues. Currently, there are an estimated 64.3 million

HF patients worldwide, with a disease prevalence of 1%�2% in the general adult

population of developed countries [1]. HF classification is most often based on the

left ventricular ejection fraction (LVEF), traditionally divided into HF with reduced

ejection fraction (HFrEF) and HF with preserved ejection fraction (HFpEF) [2]. Over

the recent years, the concept of HF with mid-range ejection fraction (HFmrEF) has

also been introduced [3], an intermediate category with its own phenotype [4].

Furthermore, HF can be stratified into acute and chronic based on disease onset.

Chronic HF has a progressively deteriorating clinical course, with episodes of acute

decompensation that results in acute respiratory distress that commonly requires hos-

pitalization. As a result, the repeated admission and the irreversible progression lead

to a heavy burden on the healthcare system and a leading global cause of death.

Early diagnosis is of critical importance in managing chronic HF to prolong

patient survival and improve disease prognosis. While history and physical exami-

nation are essential to identify fluid overload and respiratory distress, these signs

and symptoms are largely non-specific. Thus, investigations are important to con-

firm the diagnosis, evaluate the severity and determine the underlying cause.

Typical investigations include electrocardiogram (ECG), chest X-ray, biomarkers

such as pro-brain natriuretic peptide (pro-BNP), and echocardiogram.

� Joint first authors.
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Over the recent years, the introduction of artificial intelligence into medicine

has been revolutionizing the diagnosis and management of diseases. Artificial

intelligence uses “big data,” a high volume and high variety set of data, to derive

previously inaccessible insights through novel processing methods [5]. In the case

of HF, the use of artificial intelligence in the analysis of investigation results can

yield further prognostic implications [6]. Neural network analysis, a form of

machine learning, is particularly useful in cardiovascular medicine by capturing

electrophysiological and hemodynamic findings in different investigations, hence

enabling the identification of novel phenotypes and the development of triage

algorithms [7]. However, drawbacks such as difficulty to interpret given its “black

box” nature and its lack of standardization should be noted. In HF, artificial neu-

ral network analysis is instrumental given its multifactorial disease nature in dis-

ease development and progression. In this chapter, the use of artificial

intelligence and neural network in the diagnosis, management and prevention of

HF is discussed in detail.

10.2 Diagnosis

10.2.1 Automatic diagnosis, classification, and phenotyping of
heart failure

For the characterization of HF, machine learning-driven methodologies can be

broadly divided into diagnosis, identification, and classification/phenotyping.

First, diagnosis involves distinguishing patients with HF from those without HF.

A neural network and fuzzy logic-based technique successfully distinguished both

groups based on data from laboratory investigation results, patient history, physi-

cal examination, electrocardiography, vectorcardiography, echocardiography, and

therapies [8,9]. Neural network analysis allows for patient classification based on

these parameters both alone and in combination. For example, a recent study

demonstrated that the deep learning approach combining a support vector

machine (SVM)/k-nearest neighbor (k-NN) algorithm with long short time mem-

ory enables the differentiation between normal sinus rhythm, arrhythmic and

congestive HF ECG signals with an accuracy up to 96.8% [10]. Similarly, a study

analyzing over 100,000 frontal chest X rays from over 46,000 patients was able

to achieve an area-under-the-receiver-operator-characteristic-curve (AUC) of 0.82

in the diagnosis of HF simply based on the radiological findings. Besides improv-

ing the interpretability of the model, the researchers developed Generative Visual

Rationales, a visual output that illustrates the classifying features, to allow for the

differentiation between correctly trained, overfitted and under fitted models [11].

Another study based on Bayesian classifier and linear discriminant analysis

using heart rate variability (HRV) measures distinguished these patients with a

sensitivity and specificity of 81.8% and 98.1% [12]. Similarly using HRV data,

other techniques based on non-equilibrium decision-tree�based SVM [13] and
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sparse auto-encoder-based deep learning algorithm [14] were utilized, achieving

accuracies of 89.8% and 72.4%, respectively. Using regularized logistic regres-

sion, neural network models, k-NN, SVM, multiple perceptrons (MLP), AUCs

between 0.73 and 0.78 were achieved [15]. Numerous other studies have also

used HRV-based datasets for diagnosis [16�21]. More recent work has explored

the use of left ventricular long-axis myocardial velocity patterns to distinguish

HFpEF from healthy controls in their initial analyses using unsupervised machine

learning, which was independently evaluated using hypertensives and breathless

subjects [22]. Also based on myocardial velocity traces, the same group of

authors used multiple kernel learning to differentiate cardiac and non-cardiac

causes of breathlessness [23]. Based on spatiotemporal variation in left ventricular

deformation, another study used principal-component analysis and distance-

weighted k-NN to identify subjects with HFpEF with 81% accuracy. More recent

work has used additional data modalities such as urinary proteomics to further

improve discrimination [24,25]. A study investigating the level of agreement con-

cerning the HF diagnosis to identify HFrEF, HFmrEF and HFpEF, between HF

specialists and AI-Clinical Decision Support System (AI-CDSS). This was pro-

spectively tested for its diagnostic performance of AI-CDSS in consecutive

patients presenting with dyspnea to the outpatient clinic [26].

Second, additional efforts have been focused on using machine learning tech-

niques in the identification of HF patients from a pool of hospitalized patients or

identification of patients with similar characteristics. For example, automated

identification of patients was made possible from terms such as “chf, hf, nyha,

failure, congestive, and lasix” from electronic health records [27]. Algorithms

based on machine-learning approach using unstructured notes, algorithm 5: a

machine-learning approach using structured and unstructured data significantly

outperformed a logistic regression-based model [27]. The same group subse-

quently proposed automated identification of HF hospitalization was achieved

based on demographics, laboratory results, vital signs, problem-list diagnoses, and

HF-related medications, using similar machine learning techniques [28]. Based on

the entire vocabulary of covariates in all medical notes (random non-HF notes vs

random HF notes), natural language processing was compared to predictive

modeling [29]. The natural language processing achieved better sensitivity (100%

vs 56%) but a lower positive predictive value (38% vs 82%), with comparable

specificity (98% vs 96%).

The application of neural network analysis further improves the model predic-

tive performance through accounting for temporal relations between events. A

classical example of such a model is the REverse Time AttentIoN model

(RETAIN), a recurrent neural network (RNN) model that can predict the onset of

a specific disease based on medical and clinical events over a series of medical

visits. The transferability of the RETAIN model to the prediction of HF has been

tested on a large cohort of over 400 hospitals, where an AUC of 82% has been

achieved [30]. Another observational study based on electronic health records has

applied a RNN model to identify incident HF cases from more than 30,000
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patients. The AUC for the RNN model is significantly higher than the best per-

forming baseline machine-learning model (0.883 vs 0.834) under an 18-month

observation window [31].

Third, for classification, advances in machine learning techniques extend from

simplistic categorization based on LVEF alone for the utilization of several data

modalities that include demographics, clinical examination, laboratory exams,

medical history, electrocardiographic data, echocardiographic data, and HRV

[32�35]. The incorporation of neural networks encourages the inclusion of imag-

ing findings in the classification of HF. For example, a study achieved an overall

accuracy of 84% in the differentiation of HF and non-HF patients, with around

80% accuracy in the classification of HF New York Heart Association severity

through the use of a neural network classifier on creatine kinase metabolic para-

meters from 31 phosphorus cardiovascular magnetic resonance spectrometry [36].

Another study was able to differentiate between types of cardiomyopathy among

HF patients based on an artificial neural network-based model on speckle-

tracking echocardiography, achieving a sensitivity of 89% and specificity of 76%

[37].

10.2.2 Detection of heart failure-associated arrhythmia

Besides the diagnosis of HF, the early detection of HF-associated arrhythmia is

critical for reducing acute decompensations. Electrophysiological alterations are

common under the cardiac structural remodeling and functional deterioration in

HF. By applying artificial analysis to ECG, the diagnostic and prognostic accu-

racy can be raised by reducing human error and the identification of subtle

electrophysiological abnormalities.

Atrial fibrillation (AF) is the most common arrhythmia found in HF patients.

The paroxysmal onset of arrhythmias, for example, AF with a fast ventricular

rate, can precipitate the acute decompensation of chronic HF. Multimodality

machine learning models integrating clinical and echocardiographic parameters

could predict new-onset AF [38]. For example, a study incorporating a convolu-

tional neural network into an ECG-based prediction model can identify patients

with AF, despite being under sinus rhythm, up to a sensitivity of 82.3% and speci-

ficity of 83.3% using 649,931 ECGs from over 180,000 patients [39]. Integrating

artificial neural networks into automatic ECG analysis may allow for an accessi-

ble, inexpensive and accurate point-of-care early detection of AF and HF before

the classical ECG manifestations, hence allowing for early intervention before the

occurrence of fast AF or associated thromboembolic events.

Recognizing the importance of early detection, commercial artificial

intelligence-driven wearables/handheld devices have been developed to alert the

patient and allow cheap and accessible continuous ECG monitoring in an outpa-

tient setting [40,41]. Although a standard 12-lead ECG should evaluate conduc-

tion and repolarization parameters, improvement in ECG detection driven by

artificial intelligence has raised the quality of these commercial tracings, which
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has shown to be non-inferior to standard ECG for the screening of sinus rhythm

and AF [42�44]. The use of multi-objective optimization neural networks for

compressing ECG data can reduce background noise and avoid storage of redun-

dant data, allowing ease of commercial application [45]. By identifying the

increased frequency of AF episodes, or the presence of fast AF, early intervention

can take place to prevent further cardiac deterioration. In addition to AF, prelimi-

nary studies have reported that HF itself can also be identified through single-lead

ECGs with AUC of 0.874 and 0.929 in internal and external validation, respec-

tively, through developing a convolutional neural network model using over

39,000 ECGs from approximately 17,000 patients [46]. The availability of contin-

uous ECG monitoring also upholds great research potential for studying the inter-

relationship between AF and HF, since existing studies usually focus on paroxys-

mal AF or AF under an inpatient setting.

10.3 Management

10.3.1 Prognostic prediction

Given the chronic deteriorating disease course of HF, the prediction of mortality

is of critical importance in decision-making. Although many predictors and risk

scores have been identified, most only achieve modest success when applied to

other populations beyond the cohort from which the models were developed

[47�49]. While the subpar predictive performance is due to multifactorial causes,

including dependence on non-universally available variables, the heterogeneity of

the HF population and epidemiological variations, the failure to account for the

multi-dimensional inter-predictor relationship is one of the most important causes

[50].

Recently, the integration of machine learning approaches, which can capture

the interactions between different variables, has significantly improved the predic-

tive performance of risk stratification models. Studies have shown that machine

learning approaches improve the predictive performance of benchmark logistic or

Cox regression models in predicting mortality in HF [51�53]. A study reported

that the addition of multiple plasma biomarkers to the Meta-Analysis Global

Group in Chronic Heart Failure Risk Score (MAGGIC) risk score, a well-

established risk score for mortality in HF based on over 39,000 patients from 30

studies, was able to raise the AUC to greater than 0.70 [54,55]. In addition,

machine learning models allow the further stratification of HF patients into differ-

ent phenotypic subgroups with distinct clinical characteristics and outcomes

[56,57]. In a study based on the Swedish Heart Failure Registry of more than

44,000 patients, a random survival forest (RSF) model with cluster analysis iden-

tified four phenotypic HF subgroups with marked one-year survival difference

(AUC5 0.83) [58]. An individualized management approach with better-tailored
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treatment regimens, enabled by machine-learning driven models, may enhance

the effectiveness of current HF therapies.

However, the HF data from electronic health records are often imbalanced

with indistinct features that affect the accuracy of machine learning models. A

recent study applied a convolutional neural network with feature rearrangement

to tackle the problem of imbalance and transform raw data into extractible fea-

tures, which achieved superior predictive performance for HF in-hospital, 30-day

and 1-year mortality compared to traditional machine learning techniques such

as RSF, MLP and SVM [59].

On the contrary, while the machine learning approach can also improve the

prediction for hospital readmissions under HF, the predictive performance

remains modest at best. A recent study using data from the Telemonitoring to

Improve Heart Failure Outcomes trial applied different machine learning models

to improve the performance of the traditional logistic regression model in the pre-

diction of 30- and 180-day all-cause and HF-specific readmissions [60]. However,

the AUC of the machine-learning model remains to be below 0.7. Another large-

scale study testing the performance of machine learning models predicting 30-day

all-cause readmission, based on the American Heart Association Get With the

Guidelines Heart Failure registry with over 200,000 patients, found the AUC of

the validation sets to range between 0.607 and 0.624 [61]. Unfortunately, the use

of neural network models brought little improvement to the prediction of HF

readmission. In an observational study based on electronic health records of more

than 270,000 patients, the best performing model, which combined a RNN with

conditional random fields, only achieved an AUC of 0.642 [62]. Although the use

of neural network analysis has limited improvement upon the prediction findings,

proposals have been made to improve the clinical interpretability of these models.

An attention-based neural network model for HF readmission employed an atten-

tion mechanism, which marks essential features with attention signal, to improve

the interpretability of the model. Although the AUC of the model is only 0.691,

the study demonstrates that the addition of patient-specific attention weights can

help to overcome the “black box” nature of artificial intelligence-driven models

[63].

The modest predictive performance may be due to the significant training

errors that are present in the models in the first place. First, hospital readmissions

are multifactorial, including social health determinants that are not commonly rec-

ognized as independent predictors [64]. Moreover, the models assume the linear

relationship between the predictors and readmission. Additionally, the temporal

variation in the predictors was not accounted for in the evaluation of their predic-

tiveness. Recent studies have demonstrated that glycemic and lipid variability are

predictive for cardiovascular complications and mortality in patients with diabetes

mellitus [65�68]. Future studies integrating the temporal dynamicity of biomar-

kers may improve the predictive performance of machine learning models.

Overall, external validation with large, diverse populations is needed for the clini-

cal application of machine learning-based models in HF.
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The application of neural network analysis is particularly critical in incorporat-

ing medical imaging findings in the prognostic evaluation of HF patients.

Artificial neural network models have been applied to echocardiographic data as

early as 1995, where it has been used to predict the one-year mortality among 57

male and 38 female patients with HF [69]. In the current day and age, neural net-

work analysis, combined with artificial intelligence-driven novel imaging inter-

pretation techniques, can help identify prognostic indicators and algorithms. A

study applied artificial neural networks into the interpretation of 123 iodine meta-

iodobenzylguanidine single-photon emission computer tomography demonstrated

that a planar global washout of .30% with a reduction in LVEF .10% has a

sensitivity of 100% and specificity of 50% in the prediction of cardiac events in

HF patients [70]. Moreover, the application of a convolutional neural network

improved the image quality of cardiac magnetic resonance imaging (cMRI) given

the undersampled radial cine images under a short reconstruction time by apply-

ing the spatio-temporal associations across different time frames [71]. As a result

of the improved imaging resolution, in addition to novel analysis techniques, the

further application of artificial neural networks on cMRI interpretation raises the

segmentational accuracy of ventricles, septum and apex to over 92%. Automated

pipelines have been developed to reduce the time-consuming and operator-

dependent process of manual myocardial border delineation, where convolutional

neural networks evaluated their predictive performances [72]. By advancing the

interpretation of imaging, greater diagnostic and prognostic values can be

extracted [73].

Furthermore, neural network analysis enhances the prognostic value of investi-

gations through the retainment and utilization of data details that are lost in con-

ventional analysis. Temporal data from the cardiopulmonary exercise test, the

gold standard for cardiorespiratory fitness quantification among HF patients, are

currently simplified into summary indices for ease of interpretation. A study com-

paring the prognostic performance of a feedforward neural network model, tradi-

tional multivariate regression models and conventional summary indices have

found the neural network model to have the best performance (AUC5 0.842), in

addition to being significantly more accurate than the commonly used cardiopul-

monary exercise test risk score (AUC5 0.759) [74]. Superior predictive perfor-

mance was reported by another cohort study of around 2000 patients on the

prediction of cardiovascular mortality in HF using cardiopulmonary exercise test-

ing, where an artificial neural network model was compared to the predictive per-

formance of conventional Cox and logistic regression (AUC: 0.72 vs 0.69 vs

0.70) [75]. Similarly, a recent study applying a video-based, beta-to-beat, end-to-

end deep learning approach for the estimation of LVEF from echocardiography

was able to classify HFrEF with an AUC of 0.97 from the training cohort and an

AUC of 0.96 from the validation cohort [76]. In this case, the loss of data detail

from echocardiography is due to human interpretation. The video-based neural

network can improve prediction accuracy by minimizing the loss of details. The

findings demonstrate that the prognostic value of investigations can be maximized
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through the application of neural network analysis by minimizing the loss of

details from the simplification of data.

10.3.2 Development of therapy

Neural network models are essential to the development of critical devices used

to manage HF. For example, cardiac delay predictions under cardiac resynchroni-

zation therapy (CRT), an atrial-synchronized biventricular pacing device that

aims to target the systolic dyssynchrony between ventricles, thus improve the car-

diac output, can be improved through the use of an analog spiking neural network

to assist adaptive CRT devices in its provision of optimal heartbeats [77].

Furthermore, left ventricular assist devices (LVAD) serve as mechanical circula-

tory support by pumping from the left ventricle to the aorta. It is a critical device

to bridge HF patients to a heart transplant, but it is prone to inducing ischemia,

ventricular suction and pulmonary congestion in patients due to its constant

pumping speed. A recent study has developed a real-time convolutional neural

network that allows for the estimation of preload based on LVAD flow, therefore

enable for a sensorless physiological control system that responses to patients’

hemodynamic changes and avoid the problems mentioned above without the need

for additional sensors to measure the LVAD flow or pressure [78].

10.3.3 Optimal patient selection for specific therapies or
recommendation of optimal therapy

Furthermore, machine learning can help to identify responders for specific thera-

pies, thus improve the specificity of HF management. A recent retrospective pop-

ulation study has derived a machine-learning-driven predictive model for one-

year all-cause mortality based on a 20-years follow-up of around 27,000 patients.

By intervening on the actionable variables identified through the model, 8% of

the 2844 patients who were predicted to die within a year were saved through pre-

scriptions of specific treatments, including beta-blockers, hydralazine, angiotensin

receptor antagonist, CRT and more [79]. Another study explored a deep neural

network model that uses multidimensional echocardiographic data to identify dis-

tinct HFpEF subgroups with poorer prognosis and responsiveness toward spirono-

lactone. Patients in the high-risk phenogroup had a higher event-free survival rate

with spironolactone therapy in addition to higher rates of HF hospitalization and

cardiovascular mortality, suggesting that this group of patients are more likely to

be responsive to spironolactone [80].

As mentioned previously, CRT is an important device used to improve the

LVEF of selected HF patients. However, a substantial number of patients selected

under the current guidelines remained treatment non-responsive [81,82]. Recent

randomized controlled trials have demonstrated that machine learning models

integrating clinical and imaging parameters can better select the optimal patients
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for CRT, ultimately reduce all-cause mortality and acute exacerbation of HF

[83,84]. The machine-learning-driven improvement in the capability to stratify

the patient suitability for CRT is attributed to capturing latent relationships

between known prognostic predictors [85]. Another study predicted all-cause mor-

tality or HF hospitalization within 12 months after CRT for patients in the

Comparison of Medical Therapy, Pacing, and Defibrillation in Heart Failure

(COMPANION) trial was able to stratify patients into quartiles based on their

risk of adverse events using an RSF model combining QRS duration and bundle

branch block morphology, with a statistically significant 8-fold survival difference

between the highest and lowest risk group. More importantly, the model’s predic-

tive performance is better than stratification based on QRS duration or bundle

branch block morphology alone [86]. However, the results from the direct appli-

cation of the neural network model to raw ECG waveforms to predictive models

were not promising, likely due to the presence of excessive noise and a lack of

structured data [87]. With better accessibility of these risk calculators, better

shared decision making between physicians and patients for CRT selection can be

achieved.

For recommendation of optimal therapy, a multidimensional patient similarity

assessment technique was described that leverages multiple types of information

from electronic health records and predicts a medication plan for each new patient

based on prior knowledge and data from similar patients [88]. This divided

patients into different groups based on hierarchical clustering algorithms. and

achieved an AUC of 0.74 for predicting HF therapy response.

10.4 Prevention
While research attention is focused on the secondary and tertiary prevention of

HF, primary prevention is in fact, the most cost-effective way to reduce the global

disease burden of HF. The key to primary prevention is the early identification of

the population at risk, thus enabling earlier intervention to reduce the occurrence

of HF ultimately.

Additionally, machine learning approach can be applied to the general public

to identify subjects with potential or undiagnosed HF. Recently, machine learning

approaches have been applied to population-based electronic health records to

identify high-risk individuals [89]. Besides conventional methods such as the RSF

model, RNNs have been applied to capture the temporal information, which

improves the predictive performance [15,90]. A study identified asymptomatic

left ventricular dysfunction by combining 12-lead ECG and echocardiogram data

in a convolutional neural network model with more than 52,000 patients to an

accuracy of 85.7%. The ability to diagnose asymptomatic left ventricular dysfunc-

tion, a prediagnostic HF disease state, demonstrates the HF-preventing potential

of neural network analysis by identifying high-risk patients and enabling early
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intervention [91]. Similarly, another study also applied a convolutional neural net-

work model of the left ventricular posterior wall positioning for the detection of

left ventricular hypertrophy, another potential prediagnostic HF cardiac change.

The relative error between the model findings and the hospital measurements is

less than 15%, which is less than the threshold of 20% for an acceptability repeat-

ability error in clinical practice [92]. However, predictions do not equate to diag-

nosis, particularly in a heterogeneous disorder like HF. Clinicians should interpret

the findings based on the clinical context and target risk factors present. From a

public health perspective, the prediction of prediagnostic HF highlights the areas

that warrant attention from the government to reduce the burden of HF.

10.5 Conclusion

In conclusion, machine learning with neural network models is critical for

advancing HF diagnosis, management, and prevention. The incorporation of neu-

ral network models improves diagnostic accuracy, optimizes triage algorithms,

and offers opportunities for high-risk identification in the heart failure population.

The benefits of neural network analysis are particularly applicable to HF given its

multifactorial nature. The latent features between clinical, ECG, echocardio-

graphic, and other investigation results are identified by neural network models,

thus allowing for the improved prediction performance against traditional

machine learning approaches. Despite the advantages of neural network modeling,

the disadvantages including difficulty in interpretation with potential limited clini-

cal transferability and applicability. Researchers have addressed these areas of

weakness through techniques such as attention-weighting and feature transforma-

tion to increase the interpretability of findings from the “black box.” In the future,

studies to improve the predictive performance for HF-related adverse events, such

as hospital readmissions, are needed to evaluate better patients’ quality of life and

the disease burden on the public health system.
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11.1 Introduction
Renal cell carcinomas (RCCs) are the most common and aggressive renal cancer

(represents around 70% of all renal cancers). The World Health Organization

states that the most commone RCCs subtypes are clear cell RCC (ccRCCs), and

non ccRCCs including papillary RCC (paRCCs) and chromophobe RCC

(chRCCs), responsible for about 70%, 15%, and 5% of all RCCs, respectively.

This RCCs taxonomy is of immense importance as each subtype has its own

prognosis [1]. On the other hand, angiomyolipomas (AMLs) and oncocytomas are

benign renal tumors that can be easily misclassified as RCCs using conventional

diagnostic techniques such as physical examination and/or visual qualifications,

particularly if these AMLs do not have sufficient fat content. Consequently, this

might lead to the unneeded surgical intervention of such benign tumors. In addi-

tion, approximately 15%�20% of RCC also turn out to be AML at surgery time

[2]. Early assessment of RCC is essential to provide the proper management plan.

Biopsy remains the gold standard; however, it is unfavorable due to its invasive-

ness, high cost, and adverse events such as bleeding and infection and it takes

around a week for reporting. To account for these limitations, we develop a two-

stage classification computer-aided diagnostic (CAD) system that has the ability

to differentiate benign from malignant renal tumors and classify its subtypes using

contrast-enhanced computed tomography (CE-CT) [3]. The aim of this study is to

review the recent diagnostic applications of AI and ML in renal tumors. More

details are discussed in the following sections.
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11.2 Basic background

11.2.1 Deep learning

Deep learning (DL) is the most important ML tool in the general imaging and

computer vision domains [4]. It utilizes neural networks with several layers

(.20) [5]. It has the following five categories in radiology: classification, object

detection, segmentation, image processing, and natural language processing

“NLP.” The use of DL for clinical applications is an issue of great interest.

Before using DL algorithms, it is important that they are assessed using various

test datasets, and also that the training datasets are evaluated to reveal imbalances

in the data distribution [6]. It is believed that DL will be involved in more and

more in the field of diagnostic imaging, especially MRI. DL algorithms could

conduct mundane tasks in the future, leaving radiologists to focus on intellectu-

ally demanding challenges [7].

11.2.2 Machine learning

Machine learning (ML) is regarded as an AI branch as it can extract significant

patterns from instances. Computers will carry out well-defined and repetitive

tasks continuously and indefatigably. Machines can be trained and even perform

tasks accurately, which were considered as too complicated for machines, sug-

gesting that the algorithms of ML are possibly helpful components of decision

support and CAD systems [5]. These CAD systems are further divided into

groups: computer- aided diagnosis (CADx) and computer-aided detection

(CADe). The CADe systems are created to assist the radiologist in “detecting and

locating the abnormal area” in images, while the CADx systems are developed to

detect and further differentiate malignant from benign tissues [8]. CADe recog-

nizes doubtful features present on the images to reduce the false-negative read-

ings. As presently utilized, the radiologist first evaluates the image after that he

activates this system and re-assess the areas which are marked by CADe prior to

making the final report [9]. Representation learning is an ML subtype where no

‘‘hand-crafted’’ features are given; instead, the computer algorithm is taught the

features needed to classify the given data. In general, the addition of data

enhances the performance. systems depending on representation learning may

provide higher quality performance than the conventional ML systems which inte-

grate ‘‘hand-crafted’’ features [10]. Thus, the chief ML techniques objective is to

form a model that can be utilized to carry out estimation, prediction, classifica-

tion, or any other function. However, the commonest task is to classify the item

of data into one of many predefined categories [11]. ML is categorized according

to the nature of the data labeling into supervised, unsupervised, and reinforcement

learning. In supervised learning, the labels of data are given to the algorithm in

the training phase. In unsupervised learning, no labels of data are provided to the

algorithm of learning [12].
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11.2.3 Radiomics

Radiomics describes a variety of techniques to obtain quantitative features from

images to enhance the accuracy of image interpretation. It transforms image data

to feature space that facilitates subsequent data analysis to enhance decision sup-

port. It facilitates the extraction of complex structure that, while present in the

image, is not apparent to the naked eye. Recent advances in artificial intelligence

have accelerated the application of radiomics clinical practice [13]. The process

starts with choosing and designing a standard imaging protocol to reduce the vari-

abilities in image parameters and enhance the study’s comparability and reproduc-

ibility [14]. Mackin and colleagues documented the same variability level in the

radiomics features values estimated on the images of (CT) derived from dissimilar

CT scanners as that of these radiomics features variability detected in the CT

images of cases suffering from nonsmall cell pulmonary cancers. In MRI, image

acquisition standardization may be a higher challenge due to the affection by sev-

eral factors involving the contrast agents, the parameters of sequence, and hard-

ware [15].

11.3 Steps of artificial intelligence-based diagnostic
systems

11.3.1 Image acquisition

The imaging scanners provide raw data volumes that need to be processed to be

utilizable in the medical fields. It is important to choose the most appropriate

reconstruction algorithm for every single case as this will directly affect image

quality and the ability to detect and analyze atypical imaging features. The recon-

structed images are reserved in a big database (public database), to facilitate gain-

ing of more data as well as providing easy access for various clinics [16,17].

11.3.2 Image segmentation

Following image acquisition, reduction down to the important parts that are

named “volumes of interest” must be done [18]. Instead of segmenting the images

manually, an automatic segmentation should be utilized. A probable solution is

semiautomatic and automatic algorithms of segmentation. Before applying on a

large scale, an algorithm has to meet the following criteria: 1st, it has to be repro-

ducible, which means when it is utilized on similar data the results will not alter.

The second factor is consistency. The algorithm should solve the problem and

carry out the task without making anything that is not significant. It is essential

that it is able to recognize the affected area in the dissimilar scans. It is also

required to be perfect. It reveals the affected area in the most accurate way
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probable. Only with perfect data, perfect outcomes can be reached. The outcomes

should be finished as rapidly as probable [17].

11.3.3 Feature extraction and qualifications

These are divided into five groups: functions of the pixel intensity distribution

(histogram), measures of the shape and size of defined image subregions, statis-

tics of the relationship between intensity values of different pixels [e.g., gray-

level co-occurrence matrix (GLCM), neighborhood gray-tone difference matrix

(NGTDM), size zone matrix (SZM), and run-length matrix (RLM)], filter

response, and fractal geometry [19]. Because of its extensive diversity, feature

reduction is typically required to eliminate redundant information. Many dissimi-

lar features require to be assessed with chosen algorithms to speed up this pro-

cess. In Addition, features that are nonreproducible and unstable should be

removed because features have decreased-fidelity will be liable to cause

unrepeatable models and false findings [20].

11.3.4 Diagnostic analysis

Prior to the definite analysis, the molecular and clinical data are required to be

incorporated. This has a large effect on the abstract from the analysis. There are

various ways to finish the analysis of data. First, the dissimilar features are put

side by side to each other to realize whether they have anything in common and

to detect what it means in the condition of occurrence simultaneously. Another

way is unsupervised or supervised analysis. The unsupervised analysis reviews

the data included and has the ability to express them in graphs. The supervised

analysis utilizes a result variable that can produce models of prediction [21].

11.4 Texture analysis
Texture analysis indicates the quantitative evaluation of the tumor heterogeneity

by analyzing the relationship and distribution of voxel gray levels in every single

image [22]. It has been effectively utilized in several fields, and it has been

applied in (CT) and (MRI) as a CADx tool. Actually, this type of quantitative

analysis is an advantage of CAD as it is unnoticeable by the human eye [23].

11.4.1 Principles

As Gillis et al. declared, “images are more than pictures, they are data.”

Radiomics is the transformation of digital images into mineable, high-

dimensional data and can be utilized to extract quantitative features on the basis

of shape intensity, texture, and volume features [24]. A heterogeneous ill-defined
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mass is more liable to be malignant than a homogeneous well-defined mass. On

the other hand, the heterogeneity of lesions is not easy to calculate and may show

inter-observer dissimilarity. Radiomic TA permits the evaluation of the pixel

intensities’ spatial interrelations and can be utilized to calculate the heterogeneity

of lesion [25].

11.4.2 Statistical techniques

Statistical techniques are most frequently utilized to explain the spatial relation-

ship of the gray-level value in the image [26]. Many are found in commercial

image processing software or are straightforward to implement in-house. This

includes first and second-order statics [27].

11.4.2.1 First-order statics
This depends only on the intensity histogram of the image, or a subregion thereof,

such as mean intensity, standard deviation (SD), percentage of pixels within a

particular range of values, entropy (irregularity), skewness (asymmetry), and kur-

tosis (tail weight). It is not independent of pixel location and does not confer any

information on the spatial interrelation between gray values [27].

11.4.2.2 Second-order statics
Examples derived from the GLCM include second-order entropy, homogeneity,

energy, correlation, and dissimilarity. They can be derived utilizing an RLM,

which analyzes texture in a particular direction. Higher-order statistics of cliques

of $ 3 pixels, like coarseness, busyness, and, contrast can be measured utilizing

NGTDM. They show the benefit of assessing pixel values in context of a pixel

neighborhood, taking the relationship with nearby pixels into account [27]

(Table 11.1).

11.4.3 Model-based methods

These represent an image as a realization of a sophisticated mathematical model

(such as fractal or stochastic). Image data are used to estimate the model para-

meters, which comprise the radiomic quantities used for subsequent image analy-

sis. A disadvantage of the model-based approach is the computational complexity

involved in the parameter estimation [28].

11.4.4 Transform methods

The texture of the image may be more readily analyzed when the data are trans-

formed to a different space, as in a frequency-based or the scale space representa-

tion. These methods often employ the Fourier, Gabor, or wavelet transform. The

wavelet transform is the most widely used because the choice of wavelet basis

allows it to be adapted to the problem in question [28].
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11.4.5 Texture parameters

The most commonly used texture parameters are from six main categories:

1. Histogram of pixel values (first-order statistics)

2. Histogram of image gradient values (first-order statistics)

3. GLRLM (second-order statistical)

4. GLCM (second-order statistical)

5. Auto-regressive model (model-based)

6. Wavelet decomposition (transform-based)

11.4.5.1 Filtration-histogram method
This method includes an initial filtration to define image features of a specified

size, followed by histogram analysis. The histograms of the pixel values in the fil-

tered and unfiltered images are quantified using standard descriptors, specifically:

mean, SD, skewness, and kurtosis [29] (Table 11.2).

11.4.5.2 Postprocessing software
It can be carried out retrospectively on images were taken in the similar contrast

enhancement phase with the same technique; generally, no prospective acquisition

is required. CT texture analysis (CTTA) can be carried out on either one-section

or volumetric datasets to evaluate the heterogeneity of the tumor [30] (Fig. 11.1).

Table 11.1 Spectrum of statistical-based first-order and higher-order texture
features.

Texture
feature

Level/
order Description Examples

Pixel intensity
histogram

First
order

A graph where the x-axis
is pixel gray level and y-
axis is frequency of
occurrence.

Mean, standard deviation,
skewness, or kurtosis of
intensity distribution; optimum
threshold; first-order entropy;
mean of positive pixels (MPP).

Run-length
matrix

Second
order

Number of consecutive
pixels (in a given direction)
with the same intensity.

Run nonuniformity (of length or
of intensity); emphasis on long
or short runs.

Gray-level
cooccurrence
matrix

Second
order

Two dimensional
histogram of pixel pairs
with a given spatial
relationship.

Contrast, correlation,
homogeneity, second-order
entropy.

Advanced
metrics

Higher
order

Encode the relationships
between any number of
pixels in any configuration.

Potentially hundreds:
autoregressive model
parameters, Haar wavelet
energy, geometric descriptors,
neighborhood gray-tone
differences.
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Table 11.2 Definitions of histogram parameters [29].

Parameter Definition

Mean The average pixel intensity within the region of interest
Standard
deviation

Width of pixel intensity distribution

Skewness Asymmetry of the histogram. Negative skew indicates tail on the left
side of the histogram is heavier than on the right side. Positive skew
indicates the reverse. Symmetric distributions have zero skew.

Kurtosis
excess

Measure of histogram tail weight. Positive kurtosis indicates greater
likelihood of extreme values compared to a Gaussian (normal)
distribution. Negative kurtosis indicates reduced likelihood of extreme
values.

FIGURE 11.1

Steps of machine learning and texture analysis of renal tumors.
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11.5 Clinical applications of artificial intelligence and
radiomics

11.5.1 Benign versus malignant renal tumors

Fat-containing AML is the only benign solid mass confidently diagnosed by

conventional imaging. The rest of the solid renal masses are assumed malignant

by radiologists and referred for surgical resection. However, this leads to unnec-

essary resection of benign lesions in 13%�16% of patients [31]. Recent

advances in AI and ML have proposed new methods of image analysis to help

to solve this issue. CTTA determines the degree of lesion heterogeneity through

analysis of signal intensity (SI) in each pixel in a predetermined region of inter-

est (ROI). CTTA was able to correctly recognize (ccRCCs), (paRCCs), oncocy-

tomas, and cysts in (91%, 100%, 89%, and 100%) of cases respectively, using a

random forest (RF) model [32]. However, a recent study showed that a combi-

nation of RF models with shape metrics had higher accuracy [33]. On the other

hand, differences in entropy are helpful in the differentiation between RCC and

fat-poor AML (fp-AML) as well as between (chRCC) and oncocytoma which is

very challengeable on conventional imaging [34]. Data derived from second-

order statistics helped to differentiate Wilms tumor from clear cell sarcoma and

rhabdoid tumor [35]. Value of statistical relational learning, specifically, RFGB

(relational functional gradient boosting) is a hopeful CDS tool for the diagnosis

of kidney masses because it learns models which are efficient and understand-

able. It facilitates the creation of diagnostic systems which are able to make

decisions supported by explanations that are well understood by radiologists and

urologists [36]. One recent study [37] reported higher accuracy in discrimination

benign from malignant renal masses by freezing numbers of layers (before the

mixed six layers) during transfer learning, and utilizing the ROI and RBR data

sets. Another study reported that the histogram analysis metric SD in the pre-

contrast images showed the best results in discrimination of chRCC from onco-

cytoma [38]. Radiomic ML and TA proved to have a promising role in

recognition of lipid poor AML and discriminating it from atypical RCC and per-

form better than expert radiologists (80% as compared to 50%�71%) [39], yet

some researchers do not recommend its application in clinical practice owing to

the presence of a small number of pRCC that are marked as benign lesions

using TA [40].

11.5.2 Renal cell carcinoma versus angiomyolipoma

Fp-AML could be distinguished from ccRCC with 80% accurateness based on

TA of quadripasic contrast-enhanced CT (CECT). It is noteworthy that assess-

ment of precontrast images alone or any individual phase of postcontrast phases

read to similar high accuracy [41,42]. Other features of fp-AML included lack

of pseudo-capsule, angular interphase (good delineation between mass and renal
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parenchyma), lesser entropy (more uniform texture as compared to RCC)

[42,43]. The CT-based radiomics nomogram presents encouraging predictive

efficiency for distinguishing AML. Wvf from homogonous-ccRCC may help in

tailoring accurate management [44]. Some authors suggested that ML-based

models utilizing data derived from precontrast images can discriminate fp-AML

from RCC (AUC5 0.9), eliminating the need of CE-CT [41,45]. On the other

hand, newly introduced point share elastography (pSWE) could benefit from the

statistical models of ML in recognition of pf-AML. One recent study found that

assessment of nonlinear support vector machine (SVM) was more accurate than

median shear wave velocity in discriminating RCC from AML utilizing com-

bined data from the lesion, cortex, and renal medulla [46]. TA and ML algo-

rithms were also applied to MRI images, as researchers found high accuracy

(AUC 0.89) of a MPP at SSF 2 on DWI b500 in differentiating fp-AML from

RCC [47].

11.5.3 Renal cell carcinoma versus oncocytoma

Oncocytoma has similar imaging and histological features with chRCC [48].

Several studies tried to distinguish oncocytoma from other types of RCC

using several parameters such as tensor Flowt Inception [49], skewness

and kurtosis [50], TA with predefined five classifiers [51], histogram

with Fourier analysis [52], while other researchers found that mean at

SSF 0 on DWI b1000 was the best parameter in MRI to discriminate oncocy-

toma [47].

11.5.4 Renal cell carcinoma versus renal cyst

The CTTA of heterogeneity of mass is effective in distinguishing renal cysts from

RCC displaying low attenuation values in CT. It could be carried out on a one

slice utilizing one measurement of ROI [53].

11.5.5 Subtyping of renal cell carcinoma

RCC has many histopathological subtypes. The most famous are clear cell,

papillary, and chRCC. The differentiation between these subtypes is of clinical

importance as it affects clinical outcomes and the rate of tumor recurrence

after therapy [53�55]. TA could substitute invasive biopsy procedures in dis-

tinguishing papillary from non-ccRCC. One study found that low (SD,

entropy, MPP) and high kurtosis are characteristics of non-ccRCC and attrib-

uted that to more heterogeneous texture present in ccRCC. On the other hand,

they highlighted the value of MPP and skewness as tissue classifiers that could

differentiate between pRCC and chRCC [55,56]. Regarding Similarly,

researchers found that certain texture parameters could be used as markers
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differentiating ccRCC from other less aggressive subtypes with high accuracy

(AUC . 0.8) [57].

11.5.6 Grading of renal cell carcinoma

A huge number of radiomics signatures (RSs) are derived from multidetector CT

images; these RSs are further processed by five predictive models designed for

differential diagnosis of low-grade versus high-grade ccRCC [58,59]. Researchers

found that data collected from triphasic CT is of greater accuracy as compared to

those extracted from single phase acquisition [60]. Entropy is increased in

ccRCC. High entropy is related to high-grade renal tumors as it represents hetero-

geneity and therefore can be used to discriminate Fuhrman I/II (low grade) from

Fuhrman III/IV (high grade). It can be regarded as a supplementary marker while

deciding the therapy aggressiveness [58,61�63]. Other useful ML architectures in

radiomics include k-nearest neighbor classifiers, multilayer perceptrons, logistic

regression, SVM, and RF [63,64]. The combined use of conventional imaging fea-

tures and Ct radiomics is helpful in the detection of coagulative necrosis which is

considered a sign of poor prognosis in ccRCC [65].

11.5.7 Staging of renal cell carcinoma

High values of TA-derived CT radiomics including histogram analysis (especially

kurtosis and skewness), entropy, Fourier analysis, and Gray-level difference

method are well correlated with high-stage ccRCC. They are also useful in preop-

erative recognition of adherent perinephric Fat related to low-stage tumors

[66,67]. Another interesting application of CT radiomics is that it could be used

to predict genetic mutations such as Bap1 [68].

11.5.8 Characterization of small renal mass

Small RCC , 4 cm could be indistinguishable from fpAML and represents a

diagnostic challenge in conventional imaging. Several researchers proposed TA

radiomics to discriminate these lesions. One group found that combined volumet-

ric histogram analysis and reduced-FOV DWI are valuable in the characterization

of small RCC and differentiate from benign lesions [69]. In agreement with con-

volutional neural networks, they concluded that the utilization of images taken in

the corticomedullary phases yielded the best results [69]. Feng and colleagues

used a SVM with recursive feature elimination to pick 11 features of TA to differ-

entiate small RCC from fpAML [70]. Other groups found that TA features

(entropy, histogram analysis, mean of the positive pixels) are helpful in the

assessment of small RCC in the same way like large RCC with added diagnostic

and prognostic potentials [71,72].
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11.6 Merits and limitations

11.6.1 Merits

Improvement in diagnosis of renal tumor depends on improvement in DL and

future research that focuses on the building more comprehensive medical

databases that are not limited to research centers only and on new advances con-

cerned with AI techniques. The use of improved algorithms could be achieved by

mobile devices or through cloud services. The presence of specialized AI-based

software which can provide image-guided, real-time, intraoperative decisions of

resection of renal masses is one of the greatest achievements in the field of uro-

imaging [3].

11.6.2 Limitations

Although texture analysis has proven useful in a wide variety of research applica-

tions, it still faces challenges to its adoption in a clinical setting. The major limi-

tation is the there is no single platform or technique to be followed, actually,

there is great variability of applications and derived parameters reaching up to

hundreds and each research center develops its own protocol. Also, there is vari-

ability regarding image acquisition and reconstruction parameters, methods used

for image segmentation, preprocessing techniques (e.g., noise reduction, contrast

enhancement), and quantity and quality of texture feature outputs (statistical,

model-based, etc.) [73�75]. Another limitation is that small lesions have fewer

count statistics that may affect the results. On the other hand, tissue heterogeneity

could be affected by parameters of the CT acquisition protocol that alter attenua-

tion or pixel relationships. However, research groups reported that the first-order

texture features are less prone to changes when using variable techniques unlike

mean attenuation [76].

11.7 Future directions
TA has been described and used in several scientific articles, but it needs to be

applied to a larger population sample before a certain protocol could be estab-

lished prior to its introduction of everyday practice. Another issue is that it

requires extra-human effort on workstations especially directed to the segmenta-

tion of a large number of images with extra fear of human errors. So, future direc-

tions should be aimed to reach automated techniques that require no human effort

and provide TA results in the same setting with conventional images [77�79].

Automated segmentation and TA will also facilitate the creation of large data-

bases, which enables more dedicated research studies, more collaboration between

different institutes which paves the way to a generation of standardized techni-

ques and analysis methods. An increasingly exciting the aspect of medical
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imaging is artificial intelligence. Till now there are fears in the radiology commu-

nity that AI and CAD are designed to replace radiologists, nevertheless, the

advances in computer science are growing every day and gaining more territories

as helpful and more solid tools in image-based decision making [77�95].

11.8 Conclusion

TA is an effective tool for distinguishing between benign and malignant renal

masses, characterization of their pathological subtypes and grades, staging of

RCC, and differentiation of small RCC. TA assesses variables not able to be

detected by the naked human eye, so it acts as the eye of AI. On the other hand,

human experience and diagnostic intuition have still a crucial role in future AI

developments to ensure the proper performance of these systems and to recognize

instances where AI might fail, leading to undesired consequences.

This work could also be applied to various other applications in medical imag-

ing, such as the prostate [96�100], the kidney [101�119], the heart [120�137],

the lung [138�187], the brain [188�210], the vascular system [211�221], the

retina [222�231], the bladder [232�236], the liver [237,238], head and neck

[239�241], and injury prediction [242] as well as several nonmedical applications

[243�249].
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12.1 Introduction
In the United States, around 52,890 new cases of thyroid cancer and around 2180

deaths were estimated in 2020 according to the American Cancer Society’s recent

figures [1]. The rate of thyroid nodules’ development is nearly 5% in women and

1% in men in terms of prevalence [2]. 7%�15% of thyroid nodule cases develop

into malignant tumors (cancer), and this percentage depends on different factors

such as age, sex, radiation exposure history, and family history [2]. We can cate-

gorize thyroid cancer into three main categories: differentiated thyroid cancer

(DTC), medullary thyroid cancer, and anaplastic thyroid cancer. DTC has a share

of 90% among thyroid cancer. DTC includes two main subcategories: papillary

thyroid carcinoma (PTC) and follicular thyroid carcinoma (FTC), where PTC

accounts for the majority of the DTC cases [2].

Different procedures are required as part of the diagnostic criteria of thyroid

cancer, and those procedures include physical examination, blood test, ultrasound

(US) imaging, magnetic resonance imaging (MRI), biopsy, and surgical operation.

As detection of relatively small nodules becomes achievable over time due to the

current advances in medical imaging, diagnosing cancer (nodule malignancy) and

early stratification of nodules are still challenging and still require examination of

biopsy-extracted thyroid tissue [2]. Surgical extraction using biopsy is still the

gold standard of clinical evaluation. However, this invasive procedure is costly

and may introduce a false negative error depending on the biopsy technique and
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the size of the nodule being aspirated [3�6]. Biopsy is usually performed either

by fine-needle aspiration or by surgical excision of the nodule.

Different approaches for thyroid cancer diagnosis use noninvasive methods, and

those approaches have been addressed by several researchers and studies to enhance

the accuracy of thyroid cancer detection and stratification [7�10]. Examination and

analysis of medical images are widely used within this domain, and the field of artifi-

cial intelligence (AI) contributes to this by enriching image analysis and detecting

new biomarkers in medical data including medical images. The type of images used

as feed to the AI algorithms can affect the accuracy and efficiency of the desired

computer-aided diagnosis (CAD) system. US imaging is widely used as a first-line

assessment of potential thyroid nodules [2], and certain markers of thyroid nodules in

US imaging can be associated with an increased risk of malignancy. Yet, the appear-

ance of those markers in US images is operator-dependent, and also many features in

US images need to be considered simultaneously during the evaluation to provide

sufficient malignancy diagnostic accuracy [2]. Those factors can introduce several

effects and limitations to the AI-based systems that are designed to use US images

for thyroid nodule stratification [7�9]. Other than US, MR imaging modalities have

also been used in the research community. For example, T1-weighted and T2-

weighted MRIs were used to perform thyroid nodule classification [10]. Certain MRI

modalities can help differentiate between different molecular components in the tis-

sue. For instance, fats appear brighter in T1-weighted MRI scans [11], while fluids

appear brighter in T2-weighted MRI scans. Studying T2-weighted MRI scans can

help in the modeling of fluid patterns in tissue structures [12]. On top of that,

diffusion-weighted MRI (DWI) can model the diffusivity of fluids in the tissue by

evaluating the different constraints that limit the fluid diffusion in different directions

[13,14]. Therefore, DWI can generally simulate the fluid patterns (statics and dynam-

ics) in the tissue, and these patterns can be presented by measuring the apparent dif-

fusion coefficient (ADC) from the raw MRI scans (this will be illustrated in more

details in this chapter).

The cell proliferation process within the tissue of malignant thyroid nodules can

have significant effect on the patterns of the extracellular matrix in the thyroid tis-

sue. Research studies suggest that statistical analysis between ADC value and T2-

weighted images can classify between malignant and benign nodules [15�17],

which indicates the role of ADC in modeling diffusivity within the tissue.

Statistical analysis can be useful in studying the overall effect of cancer on diffusiv-

ity. However, the propagation of cancer across the tissue can be associated with

other effects on the spatial patterns. The cell structure of the thyroid tissue takes

the form of colloid follicles surrounded by cuboidal epithelial cells. This structure

enables the different molecular exchange processes that occur in the thyroid gland

to achieve the desired functionality. Cancer propagation can disturb this structure in

different ways according to the subtype of cancer. For instance, PTC can be associ-

ated with distinctive change in the shape and size of nucleus, while FTC can have

further changes on the follicle structure level. Studying radiomics, and in more spe-

cific way features in DWI, can have significant contribution in understanding the
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differences between malignant and benign tissue, and also in understanding how

can we differentiate between thyroid cancer subtypes.

AI plays an important role in analyzing medical images and in detecting bio-

markers and features in DWIs. AI has different approaches to address problems

according to the application, the type of data, and the prior information that we

have on the data. Statistical machine learning methods can fit more in application

with hand-crafted features or with low number of features [18,19], while neural net-

works and deep learning technologies can fit in application where we need to per-

form automatic detection of features from the input data [20�26]. Inspired by the

biological neural network, artificial neural network (ANN) is a network of neurons

that models the relationship between the input features (which represents the inde-

pendent variables) with the output (which represents the dependent variable).

Depending on the type of data we have, the type of ANN can be chosen and the

network can be designed [27,28]. Convolutional neural network (CNN) is a subtype

of ANN where we have convolutional layers that learn the suitable filters that can

be used on the input data. A filter is a function that linearly combines adjacent

input features. Accordingly, CNN can fit the application where we have data that

have dependent features such as images, videos, and audio. As cancer propagation

can have significant effects on spatial patterns within the tissue, CNN can be used

to automatically detect voxel dependence in MRI scans.

In this chapter, we review two texture-based diagnostic models for thyroid cancer

presented in our previous work [20,29]. We demonestrate a methodology for visualiz-

ing deep-learning generated texture patterns in both 2D and 3D. The two models act

as automation approaches for CAD of thyroid nodules instead of the traditional

approach, which is based on statistical analysis (see Fig. 12.1). In the first model, we

FIGURE 12.1

Illustrative diagram of the high-level approach used in the proposed models. Instead of

using hand-crafted features that capture certain parameters from the MRI intensity or MRI

high-frequency domains, we deploy CNN-based models that can learn texture patterns in

each MRI modality. Capturing texture patterns in diffusion-weighted MRIs can help

mapping structural differences between malignant and benign tumors to predict cancer as

a way of bridging the gap between radiomics and microscopic domains.
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explore the possibility to use 2D texture patterns in DWI to diagnose thyroid cancer,

while in the second model we extend this to 3D to explore the possible enhancement

in terms of accuracy and interpretability. In Section 12.2, we review the material

used to develop the presented models, and the protocols used for collecting data. In

Section 12.3, we review our exploratory work on the collected data using basic statis-

tical analysis. In Sections 12.4 and 12.5, we review the detailed methodology and

consideration of the 2D and 3D texture models respectively. In Section 12.7, we

review the results obtained from the experiments performed to study the presented

models. In Section 12.8, we discuss the obtained results and the contribution of those

models toward bridging the gap between radiomics and microscopic domains.

Section 12.9 is the conclusion of our study as a conclusion of the chapter.

12.2 Materials and collection protocols

12.2.1 Study participants and raw data collection

Data were collected in those studies from 49 patients with pathologically proven

thyroid nodules. The age range was 25�70 years. Imaging of the thyroid gland

was performed at Mansoura University, Egypt with a 1.5 T Ingenia MR scanner

(Philips Medical Systems, Best, Netherlands) using a head/neck circular polariza-

tion surface coil. All participants were fully informed about the aims of the study

and provided their informed consent. The inclusion criteria for the study were

untreated patients with thyroid nodules whose malignancy status was unclear

from ultrasound examination. Patients underwent thyroid core biopsy or surgery

after MR imaging. Histopathologic diagnoses were provided by an experienced

cytologist or pathologist. In total, there are 17 malignant nodules in 17 patients

and 40 benign nodules in 32 patients included in our study.

DWI volumes that employ a multislice, single-shot, spin-echo, echo-planar

imaging sequence with TR5 10,000 ms, TE5 108 ms, and 125 kHz bandwidth

were collected and stored. Axial diffusion-weighted slices over the region of

interests were 5 mm thickness with an inter-slice gap of 1 mm, 25 cm or 30 cm

FOV, and 2563 256 acquisition matrix. For DWI, a diffusion gradient was

applied during the scanning process with b-values of b5 500 s/mm2,

b5 1000 s/mm2, and b5 1500 s/mm2. T2-weighted images are measured using

b-value of b5 0 s/mm2.

12.2.2 Nodule segmentation and apparent diffusion coefficient
calculations

Different stages were implemented on the collected MR scans to prepare the data-

set for the training model (see Fig. 12.2). Segmentation of thyroid nodules was

implemented manually throughout our work. An experienced radiologist pro-

cessed the segmentation of each nodule as it appeared in each T2-weighted slice
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(b5 0 s/mm2) and in each DWI slice. DWI scans were measured in the same ses-

sion and using the same resolution, number of slices, and inter-slice gap.

Accordingly, no registration was applied to align the different b-values. The pro-

duced manual segmentations were stored as binary images. Each binary image

produced from DWI slice with b5 0 s/mm2 was reused during processing phases

on the corresponding slice at all other b-values, and also was reused for the corre-

sponding slice at ADC500, ADC1000, and ADC1500. We segmented each nodule

in both T2-weighted images and ADC maps using a square-bounding box. We

fixed the dimensions of the spatial domain by resizing extracted box into unified

483 483 20 volumes by adding zero-padding channels. We then normalized the

voxel-intensity in that volume to be in 0�1 range. Each segmented nodule was

provided for the network model on a black background and padding. ADC maps

were calculated at each non-zero b-value (500, 1000, and 1500) by combining the

diffusion images at the corresponding b-value with the image at b5 0 s/mm2, and

then we substituted, at the voxel level, this into the Stejskal�Tanner equation

[30]. The generated images of this process are referred to as ADC500, ADC1000,

and ADC1500. Since DWI as an absolute value usually does not reflect direct

biological activity, the relative differences between DW-MRI at different b-values

were used instead (i.e., ADC) to model the diffusivity in the tissue. Usually, a b-

value of 0 is taken as reference, and therefore we computed three ADC values

that correspond to 3 b-values of 500, 1000, and 1500 referenced to a b-value of 0.

For 2D model, in each slice, we calculate the size of the nodules’ cross-

section that appear in it. Then, we use the images of the slice that has higher

nodules’ footprint. On the other hand, regarding the 3D model, we use the whole

volume as input for the 3D CNN used in that model (this CNN architecture will

be illustrated later in this chapter). Having two models that address the same

FIGURE 12.2

Schematic showing the pipeline used to train the proposed model. MRI data are collected

from human subject cohort for developing and validating the model. Preprocessing steps

such as segmentation and ADC maps were implemented to prepare inputs for the two-

branch CNN. The objective of the proposed system was to learn the texture patterns in

diffusion-weighted MRI images and correlate them with pathological results (as a ground

truth for the diagnosis of nodules).
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problem from different side usually helps in validating the results and providing

enhanced interpretations.

12.3 Statistical analysis
As a preliminary analysis, we investigated if the intensity variations of the pixels

can differentiate between malignant and benign groups (see Fig. 12.1). To evalu-

ate that, we deployed a statistical analysis method to determine the differences

between the two groups of patients as observed in each of the T2-weighted

images and the ADC maps. Our analysis indicated a significant heterogeneity in

intensity variation between T2-weighted and ADC maps, which supports the idea

of feeding the T2-weighted images and the ADC maps each to a separate input

layer of the CNN to enable learning independent textures in each branch and to

enhance the accuracy of the desired system. Box plot representations are illus-

trated in Fig. 12.3. A high-pass filter using a 3 3 3 Laplacian filter invariant to

45 degrees rotations is used to model local intensity variations [31]. Welch two-

sample t-test was implemented to evaluate the statistical significance and to eval-

uate the metrics presented in the results section. Voxels were classified into

benign and malignant groups (35,625 and 15,764 pixels, respectively). Our choice

of Welch two-sample t-test is supported by the high number of samples. R was

used (statistical libraries in R) to generate the results.

12.4 2D texture model
In our previous studies [15,16], we propose two models that form novel CNN-

based CAD systems that integrate T2-weighted images and ADC maps using

a multiinput CNN network for thyroid nodules detection and classification,

FIGURE 12.3

Example from the results obtained by the preliminary results that use statistical analysis

between the malignant and benign groups. Box Plots represent the intensity level in the

normal intensity MRI images (left) and the high-frequency version of the MRI images (right).
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see Figs. 12.4 and 12.5. In contrast to using different modalities of MRI with-

out including ADC maps as in [10], our model uses ADC maps as representa-

tive of cell density in the tissues [32]. Our model can enable searching for

cancer biomarkers given cancer is associated with high rates of cell prolifera-

tion in many stages. With close relation to a study that uses multiparametric

MRI radiomics as a predictive model [20,33], we use a CNN-based architec-

ture instead of using hand-crafted features. We utilize a methodology of inde-

pendent automatic feature extraction (or convolutions) of ADC and DWI

before combining them within the dense fully connected layer. This approach

boosts the feasibility to detect deep texture features from each modality

without loosing CNN automatic searching capability. The proposed system

combines multiple ADC maps, i.e. from different gradient coefficients as a

FIGURE 12.4

(A) Schematic of the proposed CNN-based diagnostic model (2D version) that presents

the design and the layers of the multiinput 2D CNN deep learning framework. (B)

Illustration for the cross-validation methodology used in our experiments.

FIGURE 12.5

(A) Schematic of the proposed CNN-based diagnostic model (3D version) that presents

the design and the layers of the multiinput 3D CNN deep-learning framework. (B)

Illustration for the cross-validation methodology used in our experiments.
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configurable parameter in the MRI scanner. As a multichannel input, the com-

bination of all modalities is used by our CNN model to achieve enhanced

learning of texture for more accurate diagnosis.

In this subsection specifically, we present the first model, which is based on

2D analysis of DWI using CNNs. The proposed architecture, shown in Fig. 12.4,

consists of two branches. The two branches are identical in terms of the number

of layers. The kernels generated by our architecture are influenced by combining

T2 images and ADC images of the training samples during the learning process

of the neural network. The convolution layers are composed of 43 4 conv (with

32 filters and 43 4 kernel size), 13 1 conv layer (with 16 filters and 13 1 kernel

size), pooling layer (23 2 pool size, maximum value pooling). Each branch has

two convolution blocks, and each branch feeds the dense fully connected layers

(2 layers). Fully connected layer use ReLU activation function [34], and the out-

put layer uses sigmoid activation function [35]. The total number of parameters in

our proposed network is 45,589 parameters.

We handle unbalanced classes by weighted mean-square error loss function dur-

ing the back-propagation in the network. Adam’s optimization method is used to

increment the parameters of the network during training phase [36]. We keep the

learning rate and other parameters constant while examining all different scenarios.

12.5 3D texture model
Similar to the previous section, we extend the model to the 3D domain to perform

accurate learning of the features. The proposed architecture, shown in Fig. 12.5,

consists of two identical branches in the structure. The convolution layers were

constructed from 33 33 3 3Dconv (with 32 filters and 33 33 3 kernel size),

13 13 1 3Dconv (with 16 filters and 13 13 1 kernel size), pooling block

(23 23 1 pool size, maximum value pooling). Each branch had two convolution

blocks before being concatenated into the fully connected layers—dense layers

(2 layers). Those layers were one hidden layer of 10 neurons with ReLU activa-

tion function [34] and one output layer of 1 neuron with sigmoid activation func-

tion [35]. Total number of 127,829 parameters is encapsulated in our model.

12.6 Texture analysis
In this step, we demonestrate the method that we deployed to extract the learnt

features out of the trained CNN model. For instance, we present case of 3D CNN.

Generally, we extract the kernels of each of the T2-weighted images and the

ADC maps after the last epoch of the training phase. As shown in Fig. 12.6A,

those kernels are projected from the 3D to 2D form by averaging the 3 depth

channels. Hierarchical agglomerative clustering is used for clustering the
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produced 2D kernels [37]. We use Silhouette score to evaluate the produced clus-

ters [38], see Fig. 12.6B.

12.7 Results

12.7.1 Statistical results

Following the results obtained by analyzing local intensity variations in each of

the T2-weighted images and the ADC maps, a significant difference in the mean

of those variations exists between benign and malignant groups. Table 12.1 shows

the figures obtained from the Welch two-sample t-test. A significant difference

between groups can be observed with P, .05. The obtained t value and the 95%

confidence interval (CI) are shown in Table 12.1. In our analysis, we normalize

the CI values with respect to the standard deviation (SD) of the benign group. We

can see from the sign of CI that the malignant group has uplifted mean observed

in T2-weighted images while the benign group has a uplifted mean in ADC maps.

It can be implied that having independent convolution filters of T2-weighted

images from those of ADC maps improve the learning capability of the CAD sys-

tem. We can note that the convolution filters are mapped to the conv kernels in

our proposed CNN architecture. The resulting box plots is illustrated in Fig. 12.3.

12.7.2 Diagnostic accuracy of 2D model

Leave-one-out cross-validation is used for the evaluation of the proposed system.

During the training stage, prediction accuracy was found to converge by 100 epochs.

FIGURE 12.6

(A) Illustrative diagram for the extraction of the kernels from the weights of each layer, and

the analysis of those kernels using nonsupervised clustering technique (hierarchical

agglomerative clustering) to analyze the patterns seen in T2-weighted MRI images and

ADC maps. (B) Silhouette score versus number of clusters in the clustering algorithm, as

evaluation metric of the clustering.
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Accordingly, we keep the network parameters fixed for the ablation study and when

compared with other techniques. We use the following metrics for system evaluation

in both 2D and 3D models: accuracy, sensitivity, specificity and dice coefficient.

12.7.2.1 Ablation study
We test the performance of the proposed model under different scenarios and

combinations using an ablation study. First, we use a single-input CNN with

structure similar to the proposed architecture in Fig. 12.4. Then, the performance

of each modality is evaluated. We also study and benchmark our proposed system

to other fusion and feature engineering methods. The first one is probability vot-

ing between the T2 and the ADC prediction that are generated from the single-

input networks. The second method uses single-input CNN while having the T2

image and ADC image as channels (depth channels) to the input. However, the

later architecture will limit the use of 13 1 conv blocks to eliminate any distor-

tions within the used images.

The results and benchmarking of our proposed method, including all alterna-

tive scenarios indicated in the ablation study (i.e. single-input CNN), are shown

in Table 12.2. The proposed method has achieved the highest performance com-

pared to other CNN alterations.

12.7.2.2 Comparison with hand-crafted-based techniques
Given that the proposed system automatically extracts visual features from MRI

imaging using convolution layers, we compared it to other ML methods that use

hand-crafted features to evaluate the operation of our system. In that assessment,

we use three types of hand-crafted features. The first one uses the statistical pro-

file of image intensity. This profile is summarized using five parameters (mean,

SD, entropy, skewness, kurtosis). Our aim here is to summarize and quantify the

overall parameters of the whole image by presenting it using those statistical para-

meters. The first impression by the physician and healthcare providers can be

modeled by this statistical profile while examining the MRI scan.

The second one uses a filter bank of nine kernels to assess intensity variations

between neighbor voxels. The filter bank is required to capture edges and

Table 12.1 Statistical analysis results using t-test on the variations of pixel-
level intensity between both malignant and benign groups.

Statistical analysis quantitative results

Modality CI Δmean t P

T2 24% to 21% 22.28 .023
ADC500 5%�9% 7.87 ,.001
ADC1000 26%�34% 14.87 ,.001
ADC1500 4%�8% 6.12 ,.001
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Table 12.2 Quantitative results comparing the different scenarios including
input data shape, ablation study scenarios and other models used for
comparison purposes.

Input
shape

Model Evaluation metrics Dice
coefficient

Accuracy Sensitivity Specificity

2D Single-input CNN
(base-images1 ADC)

0.82 0.72 0.87 0.74

2D Single-input CNN
(base-images only)

0.84 0.74 0.90 0.78

2D Single-input CNN
(ADC only)

0.82 0.70 0.90 0.76

2D Two-CNN voting
(base-images1 ADC)

0.86 0.78 0.90 0.80

2D Multiinput CNN
(proposed 2D
method)

0.88 0.82 0.91 0.82

2D Hand-crafted features
with DT classifier

0.70 0.70 0.70 0.35

2D Hand-crafted features
with NB classifier

0.77 0.70 0.80 0.65

2D Hand-crafted features
with RF classifier

0.77 0.77 0.77 0.59

2D Hand-crafted features
with SVM classifier

0.57 0.60 0.64 0.22

2D Multiinput CNN
(Proposed Method)

0.88 0.82 0.91 0.82

3D Hand-crafted features
with DT classifier

0.70 0.66 0.70 0.57

3D Hand-crafted features
with classifier

0.76 0.73 0.77 0.63

3D Hand-crafted features
with classifier

0.77 0.67 0.77 0.53

3D Hand-crafted features
with classifier

0.56 0.40 0.73 0.48

3D Proposed multiinput
CNN

0.87 0.69 0.97 0.79

3D Convolutional neural
networks AlexNet

0.61 0.53 0.66 0.49

3D Convolutional Neural
Networks

0.49 1.00 0.22 0.58

3D Multiinput CNN
(proposed 3D
method)

0.87 0.69 0.97 0.79

3D Single-input CNN
(T2-Weighted only)

0.76 0.56 0.87 0.62

(Continued )
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intensity variations in four orientations, lines (1D impulsive variation) in four

orientations, and the point patterns (1D impulsive variation). The domains used to

map those features are horizontal, vertical and diagonal orientations (two orienta-

tions). The third one uses morphological features of the nodules as a solid shape.

Nodule size, aspect ratio, convex hull and bounding-box summarization of the

tumor are used as morphological features. Also, the spherical harmonics of the

nodule is used [39] by calculating infinite set of harmonics defined on spherical

coordinate/domain. We can define the level of nonhomogeneity of the surface by

the degree of the spherical harmonics, and we can have reflection toward the abil-

ity to classify between malignant and benign cases.

After collecting and extracting features, different classifiers are deployed for

prediction: decision tree [40], Naive Bayes (NB) [41], random forest (RF) [42]

and support vector machine (SVM) [43]. Table 12.2 summarizes the results

obtained from each classifier. As clearly shown, the proposed CNN-based system

outperforms all compared classifiers.

Moreover, we conducted further evaluation of the system robustness using the

receiver operating characteristics (ROC) analysis curve. The ROC curve shows

the relation between the false positive rate and the true positive rate when we

adjust the threshold used for decision. Fig. 12.7 shows ROCs of the proposed

multiinput CNN framework with respect to the other frameworks discussed ear-

lier. The area under the curve (AUC) is higher for the proposed system with

respect to other methods and other classifier models.

12.7.3 Diagnostic accuracy of 3D model

Fig. 12.5 shows the overall proposed framework, and the results obtained by our

framework are summarized in Table 12.2. As shown, the proposed multiinput

CNN system outperforms all other classifiers and methods. Our proposed CAD

system resulted in the best performance when compared to machine learning

Table 12.2 Quantitative results comparing the different scenarios including
input data shape, ablation study scenarios and other models used for
comparison purposes. Continued

Input
shape

Model Evaluation metrics Dice
coefficient

Accuracy Sensitivity Specificity

3D Single-Input CNN
(ADC only)

0.72 0.63 0.77 0.61

3D Two-CNN voting
(base-images1 ADC)

0.83 0.63 0.93 0.71

3D Multiinput CNN
(Proposed Method)

0.87 0.69 0.97 0.79
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models that use statistical classifiers and are based on hand-crafted features. The

proposed system obtained an AUC of 0.85 in comparison to 0.59 when using lin-

ear SVM classifier, see Fig. 12.8. Additionally, it obtained an accuracy, sensitiv-

ity, and specificity of 0.87, 0.69, and 0.97, respectively, in comparison to an 0.77,

0.67 and 0.77 when using RF classifier, which specifically achieved the best accu-

racy among the pool of classifiers used with hand-crafted features. Table 12.2

shows that using automatic feature selection produced by CNN helps in achieving

better accuracy for prediction. Fig. 12.7A,B shows the training with respect to

validation accuracy and loss function trend during the model training.

We also compared our model to other state-of-the-art neural networks. What

is unique in our system is that it has relatively low number of layers compared to

the compared models. It achieved an AUC of 0.85 in comparison to 0.67 and

FIGURE 12.7

Receiver operating characteristic plots (ROCs) of the CNN models compared to other models.

AUC is the area under the curve. DT, Decision tree; RF, random forest; NB, Naive Bayes;

SVM, support vector machine. (A) Results from 2D model. (B) Results from 3D model.

FIGURE 12.8

(A) Training versus validation accuracy plots versus the number of epochs during training

phase. (B) Training versus validation loss function plots with the number of epochs during

training phase, both at one of the training folds.
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0.60 achieved using AlexNet and ResNet 18, respectively. Also, it resulted in

accuracy of 0.87, sensitivity of 0.69 and specificity of 0.97. The accuracy, sensi-

tivity and specificity using AlexNet were 0.61, 0.53, and 0.66, respectively, and

those achieved using ResNet18 are 0.49, 1.00, and 0.22, respecting order. The

achieved results show that using lower number of CNN layers can achieve better

diagnostic accuracy, and this shows the advantage of the proposed method in

comparison to other CNN-based techniques.

12.7.4 Texture pattern visualization

We have clustered the convolution kernels (filters) extracted and produced by the

CNN after training phase, see Fig. 12.6A, and the clustering process was repeated for

multiple times each with different number of expected clusters k5 2, 4, 5, . . ., 9.
Fig. 12.6B shows the accuracy of the generated clusters by the use of Silhouette score

as evaluation metric. Clusters produced from the T2-weighted kernels (green curve)

achieved better accuracy in comparison to ADC kernels (blue curve). Moreover,

k5 3 obtained the highest score in both T2-weighted and ADC images. Fig. 12.9A

and B show the visualization of the generated clusters of T2-weighted and ADC ker-

nels, respectively. The iterations (with the corresponding number of clusters, or k) are

indicated on the y-axis. The generated clusters of the corresponding iteration is

included in each raw, and the cluster index inside each run is shown on the x-axis.

Each cluster is represented by the mean of its member kernels, and then each mean

is regulated from 0 to 1. We present a gray-scale visualization of each normalized

mean (at each row-column position) using a 3 3 3 board image, as that 0�1 reflects

a white�black gradient.

FIGURE 12.9

(A) Visualization of the texture obtained from T2-weighted images using CNN model. (B)

Visualization of the texture obtained from ADC map images using CNN model. We can see

a degree of heterogeneity according to this visualization that can help in distinguishing

between malignant and benign thyroid nodules.
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12.8 Discussion
In this chapter, we reviewed texture-based models that can be used as new CAD

system to distinguish between malignant and benign thyroid nodules. Multiinput

CNN can detect texture patterns from each input independently. We learn features

from two modalities T2 and ADC maps using two-branch CNN. The first branch

of our models learns the fluids patterns in the thyroid tissue by assessing texture

patterns in T2-weighted MRI images. The second one learns the dynamics of tis-

sue fluids by learning the texture patterns in ADC maps. For validation, we apply

leave-one-out cross-validation on multimodal data collected from 49 patients that

have pathologically proven nodules. We assessed the classification accuracy

obtained from our system in comparison to other machine learning and deep

learning approaches. We also use other hand-crafted features for our comparison.

It can be seen from the experimental results that our system excels other models.

Preliminary studies were conducted to assess the possible benefits of integrat-

ing multiple MRI modalities as separate inputs of the proposed network, and that

study shows heterogeneity in the intensity variability of malignant and benign

samples. We used Welch two-sample t-test to assess the significant difference in

mean variation across all modalities between the different groups/diagnosis

(Table 12.1). We can see an opposite sign in the difference in mean between the

two groups in T2-weighted images when compared to the corresponding differ-

ence in ADC maps (Table 12.1). This can also suggest that having independent

features in each input can facilitate finding more fitted features.

We compared the results obtained by our system to other ML methods that use

hand-crafted features, to evaluate the performance of our system in comparison to

other popular models. In that comparison, we used three forms of hand-crafted fea-

tures. The first one uses the statistical profile of image intensity. Five features (mean,

SD, entropy, skewness, and kurtosis) are used to evaluate the statistical profile. This

form aims to summarize the whole image by that profile. The first impression by the

physician while examining the MRI scan can be mapped by this profile.

As a comment on the results, for instance from the 3D proposed system, the

worst performance is obtained by linear SVM, which suggests a lack of a linear

marger between classes. On the other hand, NB classifier shows the possibility of

having a good distinguishable statistical distribution of the hand-crafted features

between benign and malignant nodules. To benchmark our system, Fig. 12.7

shows ROCs of the proposed multiinput CNN system in comparison to the other

models. Fig. 12.7A shows the 2D ROC curve, while Fig. 12.7B shows 3D figures.

As per shown, the area under curve (AUC) of the proposed framework is higher

in comparison with all methods, which shows higher accuracy. Fig. 12.8A,B

shows the training with respect to validation accuracy and loss function trend dur-

ing the model training. Handc-rafted features are not successful in providing a

good diagnostic model, and this shows having multiinput CNNs with paired fea-

tures can enhance the diagnostic accuracy of the CAD system.
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To enrich that method, an ablation study has been conducted to evaluate the pro-

posed method. The study shows that the proposed combination method using multiin-

put CNN outperformed single-input frameworks. For instance in the 3D ablation

study, a single-input CNN with the same structure was built and evaluated. We

implemented four scenarios. Scenarios 1 and 2 use T2-weighted images, and ADC

maps, respectively. Scenario 3 uses a scheme of probability voting between the pre-

diction of scenarios 1 and 2. Scenario 4 uses a single input that combines T2-

weighted images and ADC maps in the input channels. Results obtained from all sce-

narios are represented in Table 12.2. Using a multiinput CNN improves the diagnos-

tic accuracy. The two-CNN voting scenario a low accuracy, sensitivity and dice

coefficient compared to the proposed method, but, as a good point, they showed high

specificity. The 3D ablation study suggests that having independent features for each

input can enhance the detection performance of the CAD system.

The main focus of that work was to investigate the ability to extract automatic

texture features associated with thyroid cancer by combining the texture in two

input CNN with two independent branches. We designed the proposed networks

to minimize the number of layers, which reflects the parameters in our model, to

study the texture patterns that are linked to the anatomical features in the tissue.

The proposed architecture supports fast computational. This can also enable fur-

ther integration and combination with different MRI scanner devices to reflect the

visual features automatically extracted from MRI images.

To assess and represent the texture patterns that might be used as a way to distin-

guish between benign and malignant tumor, we implemented an approach to extract

and cluster the learned features from the trained CNN, and those patterns can be

extracted from each MRI modality in a separate way. Fig. 12.9A and B show the

obtained feature visualization in T2-weighted images and ADC map images respec-

tively. We can see from the obtained visualization that there is heterogeneity in pat-

terns between different MRI modalities. That can support the use of our models for

thyroid nodule classification in contrast to hand-crafted features.

Despite the promising results, there are certain limitations that need to be worked

on before moving with further clinical trials. One of these limitations are the number

of samples, and this can affect the generalization of the pattern generated by the

available data. Our model can be tested and validated on other cohorts with a higher

number of subjects to assess the homogeneity of texture across different cohorts. We

can also collect more samples to comprehensively cover thyroid cancer spectrum.

12.9 Conclusion

In summary, this chapter shows that extracting texture patterns using deep learn-

ing from MRI can improve the diagnostic performance in a noninvasive way and

can help in performing accurate prediction, diagnosis, and stratification of thyroid

cancer. Studying DWI and developing a diagnostic model that is texture-centric
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can help in modeling the biological activities that can indicate medical conditions

and the aggressiveness of those conditions. Having a method for visualization and

interpretation of the learned texture patterns can support further analysis and fur-

ther assessment from the medical side. Our models can be reapplied to other

cohorts, and they can be adapted to perform classification of the types of thyroid

cancer, and perhaps possible extension to other medical conditions. Staging of

thyroid cancer can be assessed as a part of our future plan. We can also add other

modalities to the model to study the heterogeneity and the dynamics of MRI tex-

ture patterns in a more comprehensive way. We can also adapt our model to study

the texture patterns of thyroid tissues in other bio-images such as US. However,

limited capability of modeling thyroid cancer can be obsereved in US in compari-

son to MRI, but having models that integrate US and MRI can contribute to the

current development in the current field of precise and personalized medicine.

We can also expand the data collection phase to include multiple samples from

each subject at different time points. We can study the correlation between DWI

patterns and the patterns of the cell proliferation as a biological process, which

can be associated with the different stages of thyroid cancer.

Noninvasive CAD systems usually do not have suitable capabilities for inter-

pretation, and thus they can have limited usability and low reliability. By having

models that can capture accurate texture patterns in bio-images, and specifically

DWI, can help in bridging the gap between radiomics and microscopic domain by

introducing texture patterns that can be mapped to certain microscopic structures.

Microscopic structures and features can be more indicative and illustrative for

marking the biological state of the tissue. Accordingly, developing models similar

to the proposed models in this chapter can contribute to enhanced noninvasive

CAD paradigm toward precision medicine.

The reviewed work could also be applied to various other applications in medi-

cal imaging, such as the prostate [44�46], the kidney [47�74], the heart [75�92],

the lung [93�140], the brain [141�167], the vascular system [168�178], the retina

[179�183], the bladder [24�26,184,185] and injury prediction [18], as well as sev-

eral nonmedical applications [186�192].
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