PyTorch Recipes

A Problem-Solution Approach to Build,
Train and Deploy Neural Network Models

Second Edition

Pradeepta Mishra

Apress:




PyTorch Recipes

A Problem-Solution Approach
to Build, Train and Deploy Neural
Network Models

Second Edition

Pradeepta Mishra

Apress’



PyTorch Recipes: A Problem-Solution Approach to Build, Train and Deploy Neural
Network Models

Pradeepta Mishra
Bangalore, Karnataka, India

ISBN-13 (pbk): 978-1-4842-8924-2 ISBN-13 (electronic): 978-1-4842-8925-9
https://doi.org/10.1007/978-1-4842-8925-9

Copyright © 2023 by Pradeepta Mishra

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: James Markham

Coordinating Editor: Mark Powers

Copy Editor: Mary Behr

Cover designed by eStudioCalamar
Cover image by Marek Piwinicki on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub (https://github.com/Apress). For more detailed information, please visit
www.apress.com/source-code.

Printed on acid-free paper


https://doi.org/10.1007/978-1-4842-8925-9

Twould like to dedicate this book to my dear parents,
my lovely wife, Prajna, and my daughters, Priyanshi (Aarya)
and Adyanshi (Aadya). This work would not have been possible
without their inspiration, support, and encouragement.



Table of Contents

About the AUROF ........cccceemmismsinsnssssss s nnnnnn s Xvii
About the Technical REVIEWET ........uccssssmsmsssnsssssnsssssnsssssnsssssnsssssnsssssnsssssnsssssnnsnnsns Xix
Acknowledgments.......ccccveruissssnmennmmmmmmsssssssssssssneesssssssssssssnsnsesssssssssnnnnnnssesssssssnnnnnns XXi
INtroduction........cccciiimmnnmmmnns s ———————————— Xxiii
Chapter 1: Introduction to PyTorch, Tensors, and Tensor Operations.......cccccsseessssnns 1
What IS PYTOICR?......ececece ettt sa e 5
oV 0T (o (N Ty 1 10 5
ReCipe 1-1. USING TENSOIS .....ceceerereriee e reressee s e s e s e s s sessae s s se s s saesae s s e ssesaesae s e e saesnessnnnes 7
(0] 1T 7

£ 10 ] 7

Ly 03 L0 8

{0 0 e 11 0 o TSRS 28
Chapter 2: Probability Distributions Using PYTOrch..........ccceumssssnnnnnssssnsnsssssssnnnnsns 29
Recipe 2-1. SAMPIING TENSOIS .....ccccciivriiirerere st r s e s r e e e 29
(0] ] T T 29
S0 11 0] T 30

HOW [EWOTKS ... s s s sns s s nns e 30
Recipe 2-2. Variable TENSOIS.. ... s s s s 33
(0] ] T OSSPSR 33

£ o] 111 170 SRS 34

HOW [EWOTKS ..o nns s 34
Recipe 2-3. BaSiC STAtiSTICS .....ucerrererrrererreerese s 36
PrODIBIM ... e e 36

£ Lo 111 110 OSSOSO 36

Ly (0 Lo 4 OSSR 36



TABLE OF CONTENTS

Recipe 2-4. Gradient CompuLation..........cccerrererririeniener s s se e ssesessesaesnes 40
PrODIBIM ... s 40
£S04 40
HOW [EWOTKS ... s 40

Recipe 2-5. TenSOr OPErations.........cccuvcniererinnnsisese s sss s s s s e s sre e ssesnes 42
10 T 42
£ 10 0TSSR 42
HOW [EWOTKS ... e 42

Recipe 2-6. TeNnSOr OPErations.........cccuirrnernsinsinesie s s ss s s sss e s sre e saes 43
(0] ] T 43
S0 11 0] 44
HOW [EWOTKS ... e 44

Recipe 2-7. DiStribULIONS ......coviriircnerin e e e s s 45
(0] ] T SR 45
830} 10 TSP 46
HOW [EWOTKS ... e se s s s sss e e sesss e s e nsnns 46

CONCIUSION ...vverieerresee s s e e R e a e e n e e Re e b e nr e e nnnne e 48

Chapter 3: CNN and RNN Using PYTOrCh .......c.cccccnmmmsssmnnmmssssnsnssssssssnssssssssnssssssnnnsnnss 49

Recipe 3-1. Setting Up @ LOSS FUNCHION..........coviirveriererersere e s sss e e ssesesesseenes 49
PrODIBM ... ——————————— 49
SOIULION <.t e 49
HOW [EWOTKS ... s 50

Recipe 3-2. Estimating the Derivative of the Loss Function ..........ccccocvvrinvninvncnsnsenseniennens 52
PrODIBIM ... s 52
£S04 52
HOW [EWOTKS ... s 53

Recipe 3-3. Fine-Tuning @ MOdel ... s 59
10 ] T 59
£S04 OSSR 59
HOW [EWOTKS ... e 59



TABLE OF CONTENTS

Recipe 3-4. Selecting an Optimization FUNCLION .........ccccvcvierienniniere s enes 60
PrODIBIM ... s 60
£ 10 0] 60
HOW [EWOTKS ...t s s 61
Recipe 3-5. Further Optimizing the FUNCTION.........cccovicninin e 65
o 10] ] T 65
£S04 OSSR 65
HOW [EWOTKS ...t e 65
Recipe 3-6. Implementing a Convolutional Neural Network (CNN).........ccccoeerrennncnerenerenscnens 69
(0] ] T 69
S0 11 70 69
HOW [EWOTKS ...t s 69
Recipe 3-7. Reloading @ MOGEL..........cccovererenmrnesrsesessse s sessssesensssenns 77
(0] ] T SRS 77
830 0] SR 77
HOW [EWOTKS ... resesesese s e sn e s s se s s s sss e s sesss e s e nsnns 77
Recipe 3-8. Implementing a Recurrent Neural Network ..........cocccvvvennennesennsesnesesesessssesene 81
PrODIBIM ... e e 81
R 0] 110 SOOI 81
HOW HEWOIKS ...t s s s 81
Recipe 3-9. Implementing a RNN for Regression Problems ..........cccevevrvnienennsensenessesessenennes 87
PrODIBM ... —————————— 87
SOIUTION .o 87
HOW [EWOTKS ...t 87
Recipe 3-10. Using PyTorch’s Built-In FUNCLIONS ........cccovcvvrinnenrcersin s 89
PrODIBIM ... s 89
£ 10 0] 89
HOW [EWOTKS ...t s s 89
Recipe 3-11. Working with AUTOENCOUEIS.........ccvvrerirrnsrere s 93
o 10] ] T 93
£S04 OSSR 94
HOW [EWOTKS ... s 94



TABLE OF CONTENTS

Recipe 3-12. Fine-Tuning Results Using AUTOENCOMEN .........cccceverieriersenneniensensen e sessessee e sessens 98
PrODIBIM ... s 98
£S04 98
HOW [EWOTKS ... s 99

Recipe 3-13. Restricting Model Overfitting.........c.cccveinrniniennsn s 102
g 10 ] T 102
£S04 OSSP 102
HOW [EWOTKS ... e 102

Recipe 3-14. Visualizing the Model OVerfit...........ccovorrerrenerercrrcse e 105
18] ] T T 105
£ 0] 11 0] 105
0L LT g 105

Recipe 3-15. Initializing Weights in the Dropout Rate............ccovernrnnisserisssnsesesseses e 109
(0] ] T TS 109
B30 0 P 109
HOW [EWOTKS ... se s s se e s sesss e sss e s s sessssssss s nsssenenns 109

Recipe 3-16. Adding Math Operations ...........ccccuuernnrnennnesnnse s 110
PrODIBIM ... e 110
SOIULION .t 110
HOW HEWOIKS ... e s s e s 110

Recipe 3-17. Embedding Layers in RNN ..........ccccvvriernninnnienie s senesesessessessessssessessessessssessesaens 113
PrODIBM ... —————————— 113
SOIULION .ttt 113
HOW [EWOTKS ...t s s s 113

0] T 111 (0] o P 115

Chapter 4: Introduction to Neural Networks Using PyTorch ..........ccccusseennrssssnnnnss 117

Recipe 4-1. Working with Activation FUNCLIONS.........ccccovcininnsninsc e 117
10 ] T T 117
£ 10 10O 117
HOW [EWOTKS ... e 118
LT3 T= Ll 1T T (o] 118

viil



TABLE OF CONTENTS

Bilin@ar FUNCLION .......ccoeriiiccrce s 119
10 [0 51 10 o R 120
Hyperbolic Tangent FUNCHION .......ccoovivrie i 121
Log Sigmoid Transfer FUNCLION .........ccvcevevrrerienene s s ssssese s saesssessessessssessesnees 122
RELU FUNCLION ...ttt s s 123
LEAKY RELU.....c.ciiirisiesresssis s e e e se s st 124
Recipe 4-2. Visualizing the Shape of Activation FUnctions..........cccccovvevrrvrncnrsesncccvsccnen 125
g 10 ] T T 125

£ 10 10§ 125
HOW [EWOTKS ... e 125
Recipe 4-3. Basic Neural Network Model ..........ccoccverinninnennsnenesssnssesese s sessessens 128
18] ] T S 128
30 11 0] 128
HOW [EWOTKS ... e 128
Recipe 4-4. Tensor Differentiation ... 132
g (0] ] T PO 132

830 0] T 132
HOW [EWOTKS ..ot se s e s se e s sesss e s e s s sesssssnssssnssssnsnnis 132

[0 1 e [T OSSOSO 133
Chapter 5: Supervised Learning Using PYTOrch..........ccciussmmmnmssssssnnsssssssnsssssssnnnss 135
Introduction to Linear REGreSSiON.........ccccvvererrererrerieresessese s sessessessessssessessessesessessessesssssssesaens 137
Recipe 5-1. Data Preparation for a Supervised MOdEl.........c.ocvvrrrerernnensensenesessessesessssensenens 140
PrODIBIM ...t s 140

£ 10 0] 140
HOW [EWOTKS ...t e s 140
Recipe 5-2. Forward and Backward PropagationNeural network...........c.cccvrvvnnninennseniennens 142
g 10 ] T T 142

£ 10 10§ 142
HOW [EWOTKS ... e 142

ix



TABLE OF CONTENTS

Recipe 5-3. Optimization and Gradient Computation...........cccevvvrverievnvnrnnenne e 145
PrODIBIM ... s 145
£S04 145
HOW [EWOTKS ...t s 145

Recipe 5-4. Viewing PrediCtions ... sesse s s e s sessesnens 147
g 10 ] T 147
£S04 OSSP 147
HOW [EWOTKS ... e 147

Recipe 5-5. Supervised Model Logistic REGresSion...........ccocoveeererrerereneresesesseseseseseesesesenns 151
18] ] T T 151
£ 0] 11 0] 151
0L LT g 151

{0 e 11 o SR 155

Chapter 6: Fine-Tuning Deep Learning Models Using PyTorch .........ccocccemnrissnnnnnns 157

Recipe 6-1. Building Sequential Neural NEtWOrKS..........cccverernnernsesenesesssesssesssseses e sessesenns 158
PrODIBIM ... e 158
0] 111 170 OSSOSO 158
HOW HEWOIKS ...t e s s e s s 159

Recipe 6-2. Deciding the BatCh Size........ccccoevvvriniernsnrne s sassesesaens 160
PrODIBM ... —————————— 160
SOIULION <.t 160
HOW [EWOTKS ... s s s s s 161

Recipe 6-3. Deciding the Learning Rate ...........ccccvvrinnrininsen e ses s ses e ssessenns 163
PrODIBIM ...t s 163
£ 10 0] 163
HOW [EWOTKS ... s s s 164

Recipe 6-4. Performing Parallel Training .........c.cccvirennnnnniennsnesesssesses s ssessessssesesnens 167
10 ] T T 167
£ 10 10O 167
HOW [EWOTKS ... e 168

{0 0 e 11 0o T 170



TABLE OF CONTENTS

Chapter 7: Natural Language Processing Using PyTorch.........ccocccumensssnnnssssssnnnnss 171
Recipe 7-1. Word EMDedding........c.ccooevvinininnninine s sessesesssssssessesssssssessessssssssssesnens 173
10 ] T T 173
£ 10 10§ 174
HOW [EWOTKS ... e 174
Recipe 7-2. CBOW Model in PYTOICN..........coreeereerrscreree e se s 178
(0] ] T T 178
£ 0] 11 0] T 178
HOW [EWOTKS ... e 179
ReCipe 7-3. LSTM MOUEL........ccoorieririniniirene s se s se e s sse s s st ss e snens 181
(0] ] T TS 181
£ 0] 11 0] TSR 181
HOW [EWOTKS ... se e s se e s ses e s ses s nss s nss s nensis 181
11T 111 1T o OSSOSO 185
Chapter 8: Distributed PyTorch Modelling, Model Optimization,
and Deployment ........ccccceemmmininmnnnssssssnnmmmmssssssssn s ———————— 187
Recipe 8-1. Distributed Torch ArchiteCture ...........ccocvevrvninie s 187
10 ] T P 187
£ 10 10§ 188
HOW [EWOTKS ... 188
Recipe 8-2. Components of Torch Distributed...........ccoovvrininnininrsr s 189
o8] ] T S 189
£ 0] 11 0] T 190
HOW [EWOTKS ... e 190
Recipe 8-3. Setting Up Distributed PYTOICH .........cccvverienreserssesesesese s 190
(0] ] T TS 190
£ 0] 11 0] TSR 191
HOW [EWOTKS ... se e s se e s ses e s ses s nss s nss s nensis 191
Recipe 8-4. Loading Data to Distributed PYTOrCh .........cocovvvernsernsesnesensse e 192
PrODIBIM ... e 192
SOIULION .t 193

xi



TABLE OF CONTENTS

HOW [EWOTKS ... e s 193
Recipe 8-5. Quantization of Models in PYTOrCh.........ccccovviininnsnicncrcsnsese s 195
10 ] T T 195
£S04 OSSP 195
HOW [EWOTKS ... e 195
Recipe 8-6. Quantization Observer Application...........ccccvvvrriennsninessnss s 197
18] ] T 197

£ 0] 11 0] T 198
0L LT g 198
Recipe 8-7. Quantization Application Using the MNIST Dataset ...........ccccocuirinnnininiennsniennens 199
(0] ] T TS 199

B30 0 P 199
HOW [EWOTKS ... se s se s s se e s sessssesss e s ssssssssssssnssssnenss 199
11T 111 1T o OSSOSO 212

Chapter 9: Data Augmentation, Feature Engineering, and Extractions for

Image and AUdIO....cuuiieemeemmmrrrrssssssssssnnssmeesssssssssssnnnseesssssssssnnnnnnnsssssssssnnnnnnnnensssssnnn 213
Recipe 9-1. Spectogram for AUdIO PrOCESSING ......cceeeverererenerinnerinesere s sesessesessesessesesessesenns 214
g 10 ] T T 214
£S04 OO 214
HOW [EWOTKS ... e 214
Recipe 9-2. Installation of Torchaudio.........c..coovcvvrirninnnn s 216
18] ] T 216

£ 0] 11 0] T 216
0L L4 216
Recipe 9-3. Loading Audio Files int0 PYTOICh........cccocvvenrenernse s e 217
(0] ] T S 217

B30 0] T 218
HOW [EWOTKS ..o ss s s sn s s sessssesss s sssssssnssnsnsssenenss 218
Recipe 9-4. Installation of Librosa for AUdI0.........ccoveernrerinenennse s s 219
PrODIBIM ... e 219
SOIULION <.t p e 219

xii



TABLE OF CONTENTS

HOW [EWOTKS ...t s s s 219
Recipe 9-5. Spectogram Transformation ...........cccccevvvriennesnnscnnre s 221
g 10 ] T T 221

£ 10 10O 221
HOW [EWOTKS ... e 221
Recipe 9-6. Griffin-Lim Transformation............ccccuviiriinnnn e sesesaens 222
10 ] T 222

£ 0] 11 0] T 223
HOW [EWOTKS ... e 223
Recipe 9-7. Mel Scale Transformation Using a Filter Bank..........c.c.ccocvevvrnnrnsennnnenesesenensenens 224
g0 ] T TS 224

RS0 0] P 224
HOW [EWOTKS ..ot se s e s se e s sesss e s e s s sesssssnssssnssssnsnnis 225
Recipe 9-8. Librosa Mel Scale Conversion vs. the Torchaudio Version.........cccccvevinevniniennens 226
PrODIBIM ... e 226
SOIULION .t e e 227
HOW HEWOIKS ...t s 227
Recipe 9-9. MFCC and LFCC Using Librosa and Torchaudio ..........cccccvevvrverierenensensesenensensenens 229
PrODIBM ... ——————— 229
SOIULION <.t 229
HOW [EWOTKS ...t s s s 229
Recipe 9-10. Data Augmentation for IMages.......c.cccvvrinininn e 233
PrODIBIM ...t s 233

£ 10 0] 233
HOW [EWOTKS ...t e s 234

0] T 1T (0] o TP 236
Chapter 10: PyTorch Model Interpretability and Interface to Sklearn.................. 237
Recipe 10-1. Installation of Captum.........cccoeviirininninr s 238
18] ] T T 238

£ 0] 11 0] T 238

xiii



TABLE OF CONTENTS

HOW [EWOTKS ...t s 238
Recipe 10-2. Primary Attribution Feature Importance of a Deep Learning Model..................... 239
g 10 ] T T 239
£ 10 10O 239
HOW [EWOTKS ... s 240
Recipe 10-3. Neuron Importance of a Deep Learning Model..........cccocvvnvrinnnnnnncniennnensenens 244
g0 ] T 244
£ o] 11 0] 244
HOW [EWOTKS ... e 245
Recipe 10-4. Installation of SKOICh.........ccccririininn s 246
(0] ] T TS 246
B30 0] P 246
HOW [EWOTKS ... ss s s se e s sessssesss e s e sssssssnssssnssssnenns 246
Recipe 10-5. Skorch Components for a Neuralnet Classifier.........ccccvvvnvninnnnnninennsnsenens 247
PrODIBIM ... e 247
B30 0] OSSPSR 247
HOW IEWOIKS ... s s s 247
Recipe 10-6. Skorch Neuralnet REGreSSOr........ccvvererererrerieresessesesessssessessessesessessessessssessesaens 251
PrODIBM ... ——————— 251
SOIUTION <.t e 251
HOW [EWOTKS ...t s s s 251
Recipe 10-7. Skorch Model Save and Load ..........ccccevererrerierenessensesessssessessessessssessessessssessessens 253
PrODIBIM ...t s 253
£S04 253
HOW [EWOTKS ...t s 253
Recipe 10-8. Skorch Model Pipeline Creation............ccoveeeerenrnccrnieneniesessseres s sesessesenns 254
g 10 ] T T 254
£ 10 10O 254
HOW [EWOTKS ... s 254
Recipe 10-9. Skorch Model EpOCh SCONG........ccucveriinnninesinsinses s sessessens 256
g0 ] T 256
£ 0] 11 0] 256

Xiv



TABLE OF CONTENTS

HOW [EWOTKS ...t s 256
Recipe 10-10. Grid Search for Best Hyper Parameter ...........cccccvvvevriesrnvcnnccnnneseseceresenenns 258

g 10 ] T T 258

£ 10 10O 258

HOW [EWOTKS ... e 258

{0 0 e 11 0o 260
INO@X . ueeeiiimnsssnnnsssnnssssnnssssanssssanssssnnssssnnnasssnnsasnnnanssnnansannnnssnnanssnnsnssnnnnssnnnsssnnnnssnnss 261



About the Author

Pradeepta Mishra is an Al leader, an experienced data
scientist, and an artificial intelligence architect. He currently
heads NLP, ML, and Al initiatives for five products at
FOSFOR by LT1, a leading-edge innovator in Al and machine
learning based out of Bangalore, India. He has expertise

in designing artificial intelligence systems for performing
tasks such as understanding natural language and
recommendations based on natural language processing.

He has filed 12 patents as an inventor and has authored and
co-authored five books: R Data Mining Blueprints (Packt Publishing, 2016), R: Mining
Spatial, Text, Web, and Social Media Data (Packt Publishing, 2017), PyTorch Recipes First
Edition (Apress, 2019), and Practical Explainable AI Using Python (Apress, 2022). There
are two courses available on Udemy based on these books.

Pradeepta presented a keynote talk on the application of bidirectional LSTM for
time series forecasting at the 2018 Global Data Science Conference. He delivered a TEDx
Talk titled “Can Machines Think?” on the power of artificial intelligence in transforming
industries and changing job roles across industries. He has also delivered more than
150 tech talks on data science, machine learning, and artificial intelligence at various
meetups, technical institutions, universities, and community forums. He is on LinkedIn
atwww.linkedin.com/in/pradeepta/ and Twitter at @pradmishrai.

Xvii


http://www.linkedin.com/in/pradeepta/

About the Technical Reviewer

Chris Thomas is a UK-based consultant specializing in
artificial intelligence and machine learning research and
development. As a professional member of the Institute of
Analysts and Programmers, Chris’s knowledge is based on
a career as a technical professional with over 20 years of
experience in the public, semiconductor, finance, utilities,
and marketing sectors.




Acknowledgments

I would like to thank my wife, Prajna, for her continuous inspiration and support, and for
sacrificing her weekends just to sit alongside me to help me complete this book; and my
daughters, Aarya and Aadya, for being patient all through my writing time.

A big thank you to Celestin Suresh John and Mark Powers for fast-tracking the whole
process and helping me and guiding me in the right direction.

xxi



Introduction

The development of artificial intelligent products and solutions has recently become a
norm, so the demand for graph theory-based computational frameworks is on the rise.
Making the deep learning models work in real-life applications is possible when the
modeling framework is dynamic, flexible, and adaptable to other frameworks.

PyTorch is a recent entrant to the league of graph computation tools/programming
languages. Addressing the limitations of previous frameworks, PyTorch promises a
better user experience in the deployment of deep learning models and the creation of
advanced models using a combination of convolutional neural networks, recurrent
neural networks, LSTMs, and deep neural networks.

PyTorch was created by Facebook’s Artificial Intelligence Research division, which
seeks to make the model development process simple, straightforward, and dynamic
so that developers do not have to worry about declaring objects before compiling and
executing the model. It is based on the Torch framework and is an extension of Python.

This book is intended for data scientists, natural language processing engineers,
artificial intelligence solution developers, existing practitioners working on graph
computation frameworks, and researchers of graph theory. This book will get you
started with understanding tensor basics and computation. You'll learn how to
perform arithmetic-based operations, matrix algebra, and statistical distribution-based
operations using the PyTorch framework.

Chapters 3 and 4 provide detailed descriptions of neural network basics. Advanced
neural networks such as convolutional neural networks, recurrent neural networks,
and LSTMs are explored. You will be able to implement these models using PyTorch
functions.

Chapters 5 and 6 discuss fine-tuning the models, hyper parameter tuning, and the
refinement of existing PyTorch models in production. You will learn how to choose the
hyper parameters to fine-tune the model.

xxiii



INTRODUCTION

In Chapter 7, natural language processing is explained. The deep learning models
and their applications in natural language processing and artificial intelligence is one
of the most demanding skill sets in the industry. You will be able to benchmark the
execution and performance of a PyTorch implementation in deep learning models
to execute and process natural language. You will compare PyTorch with other graph
computation-based deep learning programming tools.

Source Code

Go to github.com/apress/pytorch-recipes-2e for all source code and other
supplementary material referenced by the author.
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CHAPTER 1

Introduction to PyTorch,
Tensors, and Tensor
Operations

PyTorch has continued to evolve as a larger framework for writing dynamic models.
Because of this, it is very popular among data scientists and data engineers for deploying
large-scale deep learning frameworks. This book provides a structure for experts in
terms of handling activities while working on practical data science problems. As evident
from applications that we use in our day-to-day lives, there are layers of intelligence
embedded within a product’s features. These features are enabled to provide a better
experience and better services to users.

The world is moving toward artificial intelligence. The real potential of artificial
intelligence is achieved through developing trainable systems. Machine learning is
suitable for low-dimensional data and for small volumes of data. Deep learning is
suitable when the data dimension is huge and the training data is also high in volume.

PyTorch is the most optimized high-performance tensor library for computation of
deep learning tasks on GPUs (graphics processing units) and CPUs (central processing
units). The main purpose of PyTorch is to enhance the performance of algorithms in
large-scale computing environments. PyTorch is a library based on Python and the
Torch tool provided by Facebook’s Artificial Intelligence Research group, which performs
scientific computing.

NumPy-based operations on a GPU are not efficient enough to process heavy
computations. Static deep learning libraries are a bottleneck for bringing flexibility to
computations and speed. From a practitioner’s point of view, PyTorch tensors are very
similar to the N-dimensional arrays of a NumPy library based on Python. The PyTorch
library provides bridge options for moving a NumPy array to a tensor array, and vice
versa, in order to make the library flexible across different computing environments.

© Pradeepta Mishra 2023
P. Mishra, PyTorch Recipes, https://doi.org/10.1007/978-1-4842-8925-9_1
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CHAPTER 1 INTRODUCTION TO PYTORCH, TENSORS, AND TENSOR OPERATIONS

The use cases where it is most frequently used include tabular data analysis, natural
language processing, image processing, computer vision, social media data analysis, and
sensor data processing. Although PyTorch provides a large collection of libraries and
modules for computation, three modules are very prominent.

o Autograd: This module provides functionality for automatic
differentiation of tensors. A recorder class in the program remembers
the operations and retrieves those operations with a trigger called
backward to compute the gradients. This is immensely helpful in the
implementation of neural network models.

o Optim: This module provides optimization techniques that can be
used to minimize the error function for a specific model. Currently,
PyTorch supports various advanced optimization methods, which
includes Adam, stochastic gradient descent (SGD), and more.

e NN: NN stands for neural network model. Manually defining the
functions, layers, and further computations using complete tensor
operations is very difficult to remember and execute. We need
functions that automate the layers, activation functions, loss
functions, and optimization functions, and provides a layer defined
by the user so that manual intervention can be reduced. The NN
module has a set of built-in functions that automates the manual
process of running a tensor operation.

Industries in which artificial intelligence is applied include banking, financial
services, insurance, health care, manufacturing, retail, clinical trials, and drug testing.
Artificial intelligence involves classifying objects, recognizing the objects to detect fraud,
and so forth. Every learning system requires three things: input data, processing, and
an output layer. Figure 1-1 explains the relationship between these three topics. If the
performance of any learning system improves over time by learning from new examples
or data, it is called a machine learning system. When a machine learning system becomes
too difficult to reflect reality, it often requires a deep learning system.

In a deep learning system, more than one hidden layer of a learning algorithm is
deployed. In machine learning, we think of supervised, unsupervised, semisupervised,
and reinforcement learning systems. A supervised machine-learning algorithm is one
where the data is labeled with classes or tagged with outcomes. We show the machine
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the input data with corresponding tags or labels. The machine identifies the relationship
with a function. Please note that this function connects the input to the labels or tags.

In unsupervised learning, we show the machine only the input data and ask the machine
to group the inputs based on association, similarities or dissimilarities, and so forth.

In semisupervised learning, we show the machine input features and labeled data or
tags and we ask the machine to predict the untagged outcomes or labels.

In reinforcement learning, we introduce a reward and penalty mechanism, where
each and every policy goes through a round of iteration and usually a correct action is
rewarded and an incorrect action is penalized to maintain the status of the policy.

In all of these examples of machine learning algorithms, we assume that the dataset
is small, because getting massive amounts of tagged data is a challenge, and it takes a
lot of time for machine learning algorithms to process large-scale matrix computations.
Since machine learning algorithms are not scalable for massive datasets, we need deep
learning algorithms.

Figure 1-1 shows the relationships among artificial intelligence, machine learning,
and deep learning. Natural language is an important part of artificial intelligence. We
need to develop systems that understand natural language and provide responses to
the agent. Let’s take an example of machine translation where a sentence in language
1 (French) can be converted to language 2 (English) and vice versa. To develop such a
system, we need a large collection of English-French bilingual sentences. The corpus
requirement is very large, as all language nuances need to be covered by the model.

Deep
Learning

Machine
Learning

Artificial
Intelligence

Figure 1-1. Relationships among ML, DL, and Al

After preprocessing and feature creation, you can observe hundreds of thousands
of features that need to be computed to produce output. To train a machine learning
supervised model would take months to run and to produce output. To achieve
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scalability in this task, we need deep learning algorithms, such as a recurrent neural
network. This is how the artificial intelligence is connected to deep learning and
machine learning.

There are various challenges in deploying deep learning models that require large
volumes of labeled data, faster computing machines, and intelligent algorithms. The
success of any deep learning system requires well-labeled data and better computing
machines because the smart algorithms are already available.

The following are various use cases where a deep learning implementation is very
effective:

e Speechrecognition

e Video analysis

¢ Anomaly detection from videos
o Natural language processing

e Machine translation

e Speech-to-text conversion

The development of the NVIDIA GPU for processing large-scale data is another
path-breaking innovation. The programming language that is required to run in a GPU
environment requires a different programming framework. Two major frameworks are
very popular for implementing graphical computing: TensorFlow and PyTorch. In this
book, I discuss PyTorch as a framework to implement data science algorithms and make
inferences.

The major frameworks for graph computations include PyTorch, TensorFlow, and
MXNet. PyTorch and TensorFlow compete with each other in neurocomputations.
TensorFlow and PyTorch are similar in terms of performance; however, the real
differences are known only when we benchmark a particular task. Concept-wise there
are certain differences.

o In TensorFlow, we must define the tensors, initialize the session, and
keep placeholders for the tensor objects; however, we do not have to
do these operations in PyTorch.

o In TensorFlow, let’s consider sentiment analysis as an example.
Input sentences are tagged with positive or negative tags. If the input
sentence’s length is not equal, then we set the maximum sentence
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length and add zero to make the length of other sentences equal,
so that the recurrent neural network can function; however, this is
a built-in functionality in PyTorch, so we do not have to define the
length of the sentences.

o In PyTorch, the debugging is easy and simple, but it is a difficult task
in TensorFlow.

e Interms of data visualization, model deployment is definitely better
in TensorFlow; however, PyTorch is evolving, and we expect to
eventually see the same functionality in it in the future.

TensorFlow has definitely undergone many changes to reach a stable state. PyTorch
has really come a long way and provides a stable deep learning framework. PyTorch
becomes a standard for all large scale transformer based models, available on a hugging
face platform.

What Is PyTorch?

PyTorch is a machine learning and deep learning tool developed by Facebook’s
Artificial Intelligence Research division to process large-scale image analysis, including
object detection, segmentation, and classification. It is not limited to these tasks,
however. It can be used with other frameworks to implement complex algorithms. It

is written using Python and the C++ language. To process large-scale computations

in a GPU environment, the programming languages should be modified accordingly.
PyTorch provides a great framework to write functions that automatically run in a GPU
environment.

PyTorch Installation

Installing PyTorch is quite simple. In Windows, Linux, or macOS, it is very simple to
install if you are familiar with the Anaconda and Conda environments for managing
packages. The following steps describe how to install PyTorch in Windows/macOS/
Linux environments.

1. Open the Anaconda navigator and go to the environment page, as
displayed in Figure 1-2.
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Figure 1-2. Anaconda Navigator for Installing PyTorch

2. Open the terminal and type the following:
conda install -c peterjci23 pytorch

3. Launch Jupyter and open the IPython Notebook.

4. Type the following command to check whether the PyTorch is
installed or not:

from _ future _ import print function
import torch

5. Check the version of PyTorch.

torch.version. version
1.12.1+cul13

This installation process was done using a Microsoft Windows machine. The process
may vary by operating system, so please use the following URLs for any issue regarding
installation and errors.

There are two ways to install it: the Conda (Anaconda) library management or
the Pip3 package management framework. Also, installations for a local system (such
as macOS, Windows, or Linux) and a cloud machine (such as Microsoft Azure, AWS,
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and GCP) are different. To set up according to your platform, please follow the official
PyTorch installation documents at https://PyTorch.org/get-started/cloud-
partners/.

PyTorch has various components.

Torch has functionalities similar to NumPy with GPU support.

Autograd’s torch.autograd provides classes, methods, and functions
for implementing automatic differentiation of arbitrary scalar valued
functions. It requires minimal changes to the existing code. You only
need to declare class: 'Tensor's, for which gradients should be
computed with the requires_grad=True keyword.

NN is a neural network library in PyTorch.

Optim provides optimization algorithms that are used for the

minimization and maximization of functions.

Multiprocessing is a useful library for memory sharing between
multiple tensors.

Utils has utility functions to load data; it also has other functions.

Now you are ready to proceed with the chapter.

Recipe 1-1. Using Tensors
Problem

The data structure used in PyTorch is graph based and tensor based, so it is important

to understand basic operations and defining tensors, such as indexing, reshaping, and

changing data types.

Solution

The solution to this problem is practicing on the tensors and its operations, which

includes many examples that use various operations. Although it is assumed that you

are familiar with PyTorch and Python basics, a refresher on PyTorch is essential to create

interest among new users.


https://pytorch.org/get-started/cloud-partners/
https://pytorch.org/get-started/cloud-partners/
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How It Works

Let’s have a look at the following examples of tensors and tensor operation basics,
including mathematical operations.

The x object is a list. You can check whether an object in Python is a tensor object
by using the following syntax. Typically, the is_tensor function checks and is_storage
function checks whether the object is stored as tensor object.

x = [12,23,34,45,56,67,78]

# Scalar

scalar = torch.tensor(10)
scalar

tensor(10)

scalar.ndim

0

scalar.item()

10

#vector

vector = torch.tensor([5,5])
vector

tensor([5, 5])

vector.ndim
1

vector.shape
torch.Size([2])

# Matrix

matrix = torch.tensor([[4, 5],
[10, 110]])

matrix

tensor([[ 4, 5], [ 10, 110]])
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matrix.ndim
2

matrix.shape
torch.Size([2, 2])

# Tensor is multidimensional

tensor = torch.tensor([[[4,64, 5,4],
[10,20,30, 110],
[45,34,67,40],
[56,67,89,90]]1])

tensor

tensor([[[ 4, 64, 5, 4], [ 10, 20, 30, 110], [ 45, 34, 67, 401, [ 56, 67,
89, 90]]1)

tensor.ndim
3

tensor.shape
torch.Size([1, 4, 4])

tensor.dtype
torch.int64

tensor.device
device(type="cpu')

torch.is_tensor(x)
False

torch.is_storage(x)
False

Now, let’s create an object that contains random numbers from Torch, similar to
NumPy library. You can check the tensor and storage type.

y = torch.randn(3,2,3,4,5)

torch.is_tensor(y)
True
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torch.is_storage(y)
False

torch.numel(y) # the total number of elements in the input Tensor
120

The y object is a tensor; however, it is not stored. To check the total number of
elements in the input tensor object, the numerical element function can be used. The
following script is another example of creating zero values in a 2D tensor and counting

the numerical elements in it:
torch.zeros(4,4)

tensor([[0., ©0., 0., O0.], [0., O., O., O.], [0., O., O., O.], [O., O.,

0., 0.11)

torch.numel(torch.zeros(4,4))

torch.eye(3)
tensor([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]])

torch.eye(5)
tensor([[1., 0., 0., 0., O0.], [0., 1., O.
[0., 0., O., 1., 0.], [0., O., O., O., 1.

, 0., 0.], [0., 0., 1., 0., 0.],
1

Like NumPy operations, the eye function creates a diagonal matrix, of which the
diagonal elements have ones and off diagonal elements have zeros. The eye function

can be manipulated by providing the shape option. The following example shows how to
provide the shape parameter:

torch.eye(3,4)
tensor([[1., 0., 0., O0.], [0., 1., 0., O.], [0., O., 1., 0.]])

torch.eye(5,4)
tensor([[1., 0., 0., 0.], [0., 1., O., O.], [0., O., 1., O.], [O0., O., O.,
1.], [0., 0., 0., 0.]])

type(x)
list

10



CHAPTER 1  INTRODUCTION TO PYTORCH, TENSORS, AND TENSOR OPERATIONS

Linear space and points between the linear space can be created using tensor
operations. Let’s use an example of creating 25 points in a linear space starting from
value 2 and ending with 10. Torch can read from a NumPy array format.

import numpy as np

x1 = np.array(x)

x1

array([12, 23, 34, 45, 56, 67, 78])

torch.from numpy(x1)
tensor([12, 23, 34, 45, 56, 67, 78])

torch.linspace(2, 10, steps=25) #linear spacing

tensor([ 2.0000, 2.3333, 2.6667, 3.0000, 3.3333, 3.6667, 4.0000, 4.3333,
4.6667, 5.0000, 5.3333, 5.6667, 6.0000, 6.3333, 6.6667, 7.0000, 7.3333,
7.6667, 8.0000, 8.3333, 8.6667, 9.0000, 9.3333, 9.6667, 10.0000])

torch.linspace(-10, 10, steps=15)

tensor([-1.0000e+01, -8.5714e+00, -7.1429e+00, -5.7143e+00, -4.2857e+00,
-2.8571e+00, -1.4286e+00, -2.3842e-07, 1.4286e+00, 2.8571e+00, 4.2857e+00,
5.7143e+00, 7.1429e+00, 8.5714e+00, 1.0000e+01])

Like linear spacing, logarithmic spacing can be created.

torch.logspace(start=-10, end=10, steps=15) #logarithmic spacing
tensor([1.0000e-10, 2.6827e-09, 7.1969e-08, 1.9307e-06, 5.1795e-05,
1.3895e-03, 3.7276e-02, 1.0000e+00, 2.6827e+01, 7.1969e+02, 1.9307e+04,
5.1795e+05, 1.3895e+07, 3.7276e+08, 1.0000e+10])

torch.ones(4)
tensor([1., 1., 1., 1.])

torch.ones(4,5)
tensor([[1., 1., 1.
[1., 1., 1., 1., 1.

1., 1.], [1., 1., 1., 1., 1.], [1., 1., 1., 1., 1.],

11

Random number generation is a common process in data science to generate
or gather sample data points in a space to simulate structure in the data. Random
numbers can be generated from a statistical distribution, any two values, or a predefined

11
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distribution. Like NumPy functions, the random number can be generated using the
following example. Uniform distribution is defined as a distribution where each outcome
has equal probability of happening; hence, the event probabilities are constant.

# random numbers from a uniform distribution between the values

# 0 and 1

torch.rand(10)

tensor([0.1408, 0.4445, 0.4251, 0.2663, 0.3743, 0.4784, 0.3760, 0.1876,
0.2151, 0.6876])

The following script shows how random numbers from two values, 0 and 1, are
selected. The result tensor can be reshaped to create a (4,5) matrix. The random
numbers from a normal distribution with arithmetic mean 0 and standard deviation 1
can also be created, as follows.

To select random values from a range of values using random permutation requires
defining the range first. This range can be created by using the arrange function. When
using the arrange function, you must define the step size, which places all the values in
an equal distance space. By default, the step size is 1.

torch.rand(4, 5)

# random values between 0 and 1 and fillied with a matrix of

# size rows 4 and columns 5

tensor([[0.2733, 0.0302, 0.8835, 0.9537, 0.9662], [0.6296, 0.3106, 0.4029,
0.8133, 0.1697], [0.8578, 0.6517, 0.0440, 0.6197, 0.9889], [0.8614, 0.6288,
0.2158, 0.4593, 0.2444]])

#random numbers from a normal distribution,
#with mean =0 and standard deviation =1
torch.randn(10)

tensor([ 1.0115, -0.7502, 1.1994, 0.8736, 0.5633, -0.7702, 0.1826, -1.9931,
0.5159, 0.1521])

torch.randn(4, 5)

tensor([[ 0.3744, 2.1839, -1.8229, 1.0682, 1.5394], [ 0.9689, -1.3085,
-0.3300, 0.3960, -0.6079], [ 2.3485, 1.2880, 0.6754, -2.0426, -0.3121],
[-0.4897, -1.5335, 0.0467, -0.6213, 1.7185]])

12
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#iselecting values from a range, this is called random permutation
torch.randperm(10)

tensor([1, 6, 3, 2, 0, 8, 4, 5, 7, 9])

#usage of range function
torch.arange(10, 40,2) #step size 2

tensor([10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38])

torch.arange(10,40) #step size 1
tensor([10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39])

To find the minimum and maximum values in a 1D tensor, argmin and argmax can
be used. The dimension needs to be mentioned if the input is a matrix in order to search
minimum values along rows or columns.

d = torch.randn(4, 5)

d

tensor([[ 1.0085, -0.8545, -0.6958, 1.6716, -0.0118], [ 0.2134, 1.1154,
-0.6426, -1.3651, -1.5724], [ 0.2452, 0.8356, 2.0297, -0.2397, 0.8560],
[ 0.9786, -0.8538, -0.6449, 0.3903, 1.5966]])

torch.argmin(d,dim=1)
tensor([1, 4, 3, 1])

torch.argmax(d,dim=1)
tensor([3, 1, 2, 4])

Ifit is either a row or column, it is a single dimension and is called a 1D tensor or
vector. If the input is a matrix, in which rows and columns are present, it is called a 2D
tensor. If it is more than two-dimensional, it is called a multidimensional tensor.

# create a 2dtensor filled with values as 0

torch.zeros(4,5)

tensor([[0., 0., 0., 0., 0.], [0., O., O., O., O0.], [0., O., O., O., O.],
[0., 0., 0., 0., 0.]])

13
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# create a 1d tensor filled with values as 0
torch.zeros(10)
tensor([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])

Now, let’s create a sample 2D tensor and perform indexing and concatenation by
using the concat operation on the tensors.

#indexing and performing operation on the tensors

x = torch.randn(4,5)

X

tensor([[-1.5343, -1.3533, -0.8621, -1.1674, -0.1114], [ 0.2790, 0.0463,
1.5364, -0.1287, 0.6379], [-0.4542, 0.5196, 0.2335, -0.5135, -0.6602],
[-0.6930, 0.0541, -0.8463, -0.4498, -0.0280]])

#concatenate two tensors

torch.cat((x,x))

tensor([[-1.5343, -1.3533, -0.8621, -1.1674, -0.1114], [ 0.2790, 0.0463,
1.5364, -0.1287, 0.6379], [-0.4542, 0.5196, 0.2335, -0.5135, -0.6602],
[-0.6930, 0.0541, -0.8463, -0.4498, -0.0280], [-1.5343, -1.3533, -0.8621,
-1.1674, -0.1114], [ 0.2790, 0.0463, 1.5364, -0.1287, 0.6379], [-0.4542,
0.5196, 0.2335, -0.5135, -0.6602], [-0.6930, 0.0541, -0.8463, -0.4498,
-0.0280]])

The sample x tensor can be used in 3D as well. Again, there are two different options
to create three-dimensional tensors; the third dimension can be extended over rows or
columns.

#concatenate n times based on array size

torch.cat((x,x,x))

tensor([[-1.5343, -1.3533, -0.8621, -1.1674, -0.1114], [ 0.2790, 0.0463,
1.5364, -0.1287, 0.6379], [-0.4542, 0.5196, 0.2335, -0.5135, -0.6602],
[-0.6930, 0.0541, -0.8463, -0.4498, -0.0280], [-1.5343, -1.3533, -0.8621,
-1.1674, -0.1114], [ 0.2790, 0.0463, 1.5364, -0.1287, 0.6379], [-0.4542,
0.5196, 0.2335, -0.5135, -0.6602], [-0.6930, 0.0541, -0.8463, -0.4498,
-0.0280], [-1.5343, -1.3533, -0.8621, -1.1674, -0.1114], [ 0.2790, 0.0463,
1.5364, -0.1287, 0.6379], [-0.4542, 0.5196, 0.2335, -0.5135, -0.6602],
[-0.6930, 0.0541, -0.8463, -0.4498, -0.0280]])

14
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#concatenate n times based on array size, over column

torch.cat((x,x,x),1)

tensor([[-1.5343, -1.3533, -0.8621, -1.1674, -0.1114, -1.5343, -1.3533,
-0.8621, -1.1674, -0.1114, -1.5343, -1.3533, -0.8621, -1.1674, -0.1114], |
0.2790, 0.0463, 1.5364, -0.1287, 0.6379, 0.2790, 0.0463, 1.5364, -0.1287,
0.6379, 0.2790, 0.0463, 1.5364, -0.1287, 0.6379], [-0.4542, 0.5196, 0.2335,
-0.5135, -0.6602, -0.4542, 0.5196, 0.2335, -0.5135, -0.6602, -0.4542,
0.5196, 0.2335, -0.5135, -0.6602], [-0.6930, 0.0541, -0.8463, -0.4498,
-0.0280, -0.6930, 0.0541, -0.8463, -0.4498, -0.0280, -0.6930, 0.0541,
-0.8463, -0.4498, -0.0280]])

#concatenate n times based on array size, over rows

torch.cat((x,x),0)

tensor([[-1.5343, -1.3533, -0.8621, -1.1674, -0.1114], [ 0.2790, 0.0463,
1.5364, -0.1287, 0.6379], [-0.4542, 0.5196, 0.2335, -0.5135, -0.6602],
[-0.6930, 0.0541, -0.8463, -0.4498, -0.0280], [-1.5343, -1.3533, -0.8621,
-1.1674, -0.1114], [ 0.2790, 0.0463, 1.5364, -0.1287, 0.6379], [-0.4542,
0.5196, 0.2335, -0.5135, -0.6602], [-0.6930, 0.0541, -0.8463, -0.4498,
-0.0280]])

#how to split a tensor among small chunks
torch.arange(11).chunk(6)

(tensor([o, 1]),

tensor([2, 3]),

tensor([4, 5]),

tensor([6, 7]),

tensor([8, 9]),

tensor([10]))

torch.arange(12).chunk(6)
(tensor([o, 1]),
tensor([2, 3]),
tensor([4, 5]),
tensor([6, 7]),
tensor([8, 9]),
tensor([10, 11]))

torch.arange(13).chunk(6)

15
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(tensor([o0, 1, 2]),
tensor([3, 4, 5]),
tensor([6, 7, 8]),
tensor([ 9, 10, 11]),
tensor([12]))

A tensor can be split between multiple chunks. Those small chunks can be created
along dim rows and dim columns. The following example shows a sample tensor of size

(4,4). The chunk is created using the third argument in the function, as 0 or 1.

= torch.randn(4, 4)
print(a)

torch.chunk(a,2)
tensor([[-0.5899, -1.3432, -1.0576, -0.1696],
[ 0.2623, -0.1585, 1.0178, -0.2216],
[-1.1716, -1.2771, 0.8073, -0.7717],
[ 0.1768, 0.6423, -0.3200, -0.0480]])
(tensor([[-0.5899, -1.3432, -1.0576, -0.1696],
[ 0.2623, -0.1585, 1.0178, -0.2216]]),
tensor([[-1.1716, -1.2771, 0.8073, -0.7717]
[ 0.1768, 0.6423, -0.3200, -0.0480]

D)

torch.chunk(a,2,0)

(tensor([[-0.5899, -1.3432, -1.0576, -0.1696], [ 0.2623, -0.1585, 1.0178,
-0.2216]]), tensor([[-1.1716, -1.2771, 0.8073, -0.7717], [ 0.1768, 0.6423,
-0.3200, -0.0480]]))

torch.chunk(a,2,1)

(tensor([[-0.5899, -1.3432], [ 0.2623, -0.1585], [-1.1716, -1.2771], [
0.1768, 0.6423]]), tensor([[-1.0576, -0.1696], [ 1.0178, -0.2216], |
0.8073, -0.7717], [-0.3200, -0.0480]]))

torch.Tensor([[11,12],[23,24]])
tensor([[11., 12.], [23 , 24.11)

The gather function collects elements from a tensor and places them in another
tensor using an index argument. The index position is determined by the LongTensor
function in PyTorch.

16
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torch.gather(torch.Tensor([[11,12],[23,24]]), 1,
torch.LongTensor([[0,0],[1,0]]))
tensor([[11., 11.], [24., 23.]])

torch.LongTensor([[0,0],[1,0]])
#the 1D tensor containing the indices to index
tensor([[0, 0], [1, 0]])

The LongTensor function or the index select function can be used to fetch relevant
values from a tensor. The following sample code shows two options: selection along rows
and selection along columns. If the second argument is 0, it is for rows. If it is 1, then it is
along the columns

a = torch.randn(4, 4)

print(a)

tensor([[-0.9183, -2.3470, 1.5208, -0.1585],
[-0.6741, -0.6297, 0.2581, -1.1954],
[ 1.0443, -1.3408, 0.7863, -0.6056]
[-0.6946, -0.5963, 0.1936, -2.0625]

—_

)

indices = torch.LongTensor([0, 2])

torch.index select(a, 0, indices)

tensor([[-0.9183, -2.3470, 1.5208, -0.1585], [ 1.0443, -1.3408, 0.7863,
-0.6056]])

torch.index select(a, 1, indices)
tensor([[-0.9183, 1.5208], [-0.6741, 0.2581], [ 1.0443, 0.7863], [-0.6946,
0.1936]])

It is a common practice to check non-missing values in a tensor. The objective is to
identify non-zero elements in a large tensor.

#identify null input tensors using nonzero function
torch.nonzero(torch.tensor([10,00,23,0,0.0]))
tensor([[0], [2]]) torch.nonzero(torch.Tensor([10,00,23,0,0.0]))

tensor([[o], [2]])
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Restructuring the input tensors into smaller tensors not only fastens the calculation
process, but also helps in distributed computing. The split function splits a long tensor
into smaller tensors.

# splitting the tensor into small chunks
torch.split(torch.tensor([12,21,34,32,45,54,56,65]),2)
(tensor([12, 21]), tensor([34, 32]), tensor([45, 54]), tensor([56, 65]))

# splitting the tensor into small chunks
torch.split(torch.tensor([12,21,34,32,45,54,56,65]),3)
(tensor([12, 21, 34]), tensor([32, 45, 54]), tensor([56, 65]))

torch.zeros(3,2,4)
tensor([[[0., 0., O., O0.], [0., O., O., O0.]], [[0., O., O., O.], [O0., O.,
o., o.]1, [[0., O., O., O.], [0., O., 0., 0.]]])

torch.zeros(3,2,4).size()
torch.Size([3, 2, 4])

Now let’s have a look at examples of how the input tensor can be resized given the
computational difficulty. The transpose function is primarily used to reshape tensors.
There are two ways of writing the transpose function: .t and .transpose.

#how to reshape the tensors along a new dimension

X

tensor([[-1.5343, -1.3533, -0.8621, -1.1674, -0.1114], [ 0.2790, 0.0463,
1.5364, -0.1287, 0.6379], [-0.4542, 0.5196, 0.2335, -0.5135, -0.6602],
[-0.6930, 0.0541, -0.8463, -0.4498, -0.0280]])

x.t() #transpose is one option to change the shape of the tensor
tensor([[-1.5343, 0.2790, -0.4542, -0.6930], [-1.3533, 0.0463, 0.5196,
0.0541], [-0.8621, 1.5364, 0.2335, -0.8463], [-1.1674, -0.1287, -0.5135,
-0.4498], [-0.1114, 0.6379, -0.6602, -0.0280]])

# transpose partially based on rows and columns

x.transpose(1,0)

tensor([[-1.5343, 0.2790, -0.4542, -0.6930], [-1.3533, 0.0463, 0.5196,
0.0541], [-0.8621, 1.5364, 0.2335, -0.8463], [-1.1674, -0.1287, -0.5135,
-0.4498], [-0.1114, 0.6379, -0.6602, -0.0280]])
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# how to remove a dimension from a tensor

X

tensor([[-1.5343, -1.3533, -0.8621, -1.1674, -0.1114], [ 0.2790, 0.0463,
1.5364, -0.1287, 0.6379], [-0.4542, 0.5196, 0.2335, -0.5135, -0.6602],
[-0.6930, 0.0541, -0.8463, -0.4498, -0.0280]])

The unbind function removes a dimension from a tensor. To remove the dimension
row, the 0 value needs to be passed. To remove a column, the 1 value needs to be passed.

torch.unbind(x,1) #dim=1 removing a column

(tensor([-1.5343, 0.2790, -0.4542, -0.6930]), tensor([-1.3533,

0.0463, 0.5196, 0.0541]), tensor([-0.8621, 1.5364, 0.2335, -0.8463]),
tensor([-1.1674, -0.1287, -0.5135, -0.4498]), tensor([-0.1114, 0.6379,
-0.6602, -0.0280]))

torch.unbind(x) #dim=0 removing a row

(tensor([-1.5343, -1.3533, -0.8621, -1.1674, -0.1114]), tensor([ 0.2790,
0.0463, 1.5364, -0.1287, 0.6379]), tensor([-0.4542, 0.5196, 0.2335,
-0.5135, -0.6602]), tensor([-0.6930, 0.0541, -0.8463, -0.4498, -0.0280]))

X

tensor([[-1.5343, -1.3533, -0.8621, -1.1674, -0.1114], [ 0.2790, 0.0463,
1.5364, -0.1287, 0.6379], [-0.4542, 0.5196, 0.2335, -0.5135, -0.6602],
[-0.6930, 0.0541, -0.8463, -0.4498, -0.0280]])

#thow to compute the basic mathematrical functions
torch.abs(torch.FloatTensor([-10, -23, 3.000]))
tensor([10., 23., 3.])

Mathematical functions are the backbone of implementing any algorithm in
PyTorch, so let’s go through functions that help perform arithmetic-based operations. A
scalar is a single value, and a tensor 1D is a row, like NumPy. The scalar multiplication
and addition with a 1D tensor are done using the add and mul functions. The following
script shows scalar addition and multiplication with a tensor:

#adding value to the existing tensor, scalar addition
torch.add(x,20)
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tensor([[18.4657, 18.6467, 19.1379, 18.8326, 19.8886], [20.2790, 20.0463,
21.5364, 19.8713, 20.6379], [19.5458, 20.5196, 20.2335, 19.4865, 19.3398],
[19.3070, 20.0541, 19.1537, 19.5502, 19.9720]])

X

tensor([[-1.5343, -1.3533, -0.8621, -1.1674, -0.1114], [ 0.2790, 0.0463,
1.5364, -0.1287, 0.6379], [-0.4542, 0.5196, 0.2335, -0.5135, -0.6602],
[-0.6930, 0.0541, -0.8463, -0.4498, -0.0280]])

# scalar multiplication

torch.mul(x,2)

tensor([[-3.0686, -2.7065, -1.7242, -2.3349, -0.2227], [ 0.5581, 0.0926,
3.0727, -0.2575, 1.2757], [-0.9084, 1.0392, 0.4670, -1.0270, -1.3203],
[-1.3859, 0.1082, -1.6926, -0.8995, -0.0560]])

X

tensor([[-1.5343, -1.3533, -0.8621, -1.1674, -0.1114], [ 0.2790, 0.0463,
1.5364, -0.1287, 0.6379], [-0.4542, 0.5196, 0.2335, -0.5135, -0.6602],
[-0.6930, 0.0541, -0.8463, -0.4498, -0.0280]])

Combined mathematical operations, such as expressing linear equations as tensor
operations, can be done using the following sample script. Here you express the
outcome Y object as a linear combination of beta values times the independent x object,
plus the constant term.

# how do we represent the equation in the form of a tensor
#y = intercept + (beta * x)

intercept = torch.randn(1)

intercept

tensor([-1.1444])

x = torch.randn(2, 2)
X
tensor([[ 1.3517, -0.3991], [-0.4170, -0.1862]])

beta = 0.7456
beta
0.7456
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Output = Constant + (beta * Independent)

torch.mul(x,beta)
tensor([[ 1.0078, -0.2976], [-0.3109, -0.1388]])

torch.add(x,beta,intercept)
tensor([[ 0.4984, -1.2524], [-1.2703, -1.0395]])

torch.mul(intercept,x)
tensor([[-1.5469, 0.4568], [ 0.4773, 0.2131]])

torch.mul(x,beta)
tensor([[ 1.0078, -0.2976], [-0.3109, -0.1388]])

## y = intercept + (beta * x)
torch.add(torch.mul(intercept,x),torch.mul(x,beta)) # tensor y
tensor([[-0.5391, 0.1592], [ 0.1663, 0.0743]])

Like Numpy operations, the element-wise matrix multiplication also can be done
using tensors. There are two different ways of doing matrix multiplication: element-wise
and combined together.

tensor
tensor([[[ 4, 64, 5, 4], [ 10, 20, 30, 110], [ 45, 34, 67, 40], [ 56, 67,
89, 90]11)

# Element-wise matrix mutlication

tensor * tensor

tensor([[[ 16, 4096, 25, 16], [ 100, 400, 900, 12100], [ 2025, 1156, 4489,
1600], [ 3136, 4489, 7921, 8100]]])

torch.matmul(tensor, tensor)
tensor([[[ 1105, 1974, 2631, 7616], [ 7750, 9430, 12450, 13340], [ 5775,
8518, 9294, 10200], [ 9939, 13980, 16263, 19254]]1])

tensor @ tensor
tensor([[[ 1105, 1974, 2631, 7616], [ 7750, 9430, 12450, 13340], [ 5775,
8518, 9294, 10200], [ 9939, 13980, 16263, 19254]]])

Like NumPy operations, the tensor values must be rounded up by using either the
ceiling or the flooring function, which is done using the following syntax:
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# how to round up tensor values

torch.manual seed(1234)

torch.randn(5,5)

tensor([[-0.1117, -0.4966, 0.1631, -0.8817, 0.0539], [ 0.6684, -0.0597,
-0.4675, -0.2153, -0.7141], [-1.0831, -0.5547, 0.9717, -0.5150, 1.4255],
[ 0.7987, -1.4949, 1.4778, -0.1696, -0.9919], [-1.4569, 0.2563, -0.4030,
0.4195, 0.9380]])

torch.manual seed(1234)

torch.ceil(torch.randn(5,5))

tensor([[-0., -0., 1., -0., 2.], [ 1., -0., -0., -0., -0.], [-1., -O., 1.,
-0., 2.1, [ 1., -1., 2., -0., -0.], [-1., 1., -0., 1., 1.]])

torch.manual seed(1234)

torch.floor(torch.randn(5,5))

tensor([[-1., -1., O., -1., o.], [ Oo., -1., -1., -1., -1.], [-2., -1., O.,
-1., 1.1, [ 0., -2., 1., -1., -1.], [-2., O., -1., 0., 0.]])

Limiting the values of any tensor within a certain range can be done using the
minimum and maximum argument and using the clamp function. The same function
can apply minimum and maximum in parallel or any one of them to any tensor, be it 1D
or 2D; 1D is the far simpler version. The following example shows the implementation in
a 2D scenario:

# truncate the values in a range say 0,1

torch.manual seed(1234)

torch.clamp(torch.floor(torch.randn(5,5)), min=-0.3, max=0.4)
tensor([[-0.3000, -0.3000, 0.0000, -0.3000, 0.0000], [ 0.0000, -0.3000,
-0.3000, -0.3000, -0.3000], [-0.3000, -0.3000, 0.0000, -0.3000, 0.4000],
[ 0.0000, -0.3000, 0.4000, -0.3000, -0.3000], [-0.3000, 0.0000, -0.3000,
0.0000, 0.0000]])

#itruncate with only lower limit

torch.manual seed(1234)

torch.clamp(torch.floor(torch.randn(5,5)), min=-0.3)

tensor([[-0.3000, -0.3000, 0.0000, -0.3000, 0.0000], [ 0.0000, -0.3000,
-0.3000, -0.3000, -0.3000], [-0.3000, -0.3000, 0.0000, -0.3000, 1.0000],

22



CHAPTER 1  INTRODUCTION TO PYTORCH, TENSORS, AND TENSOR OPERATIONS

[ 0.0000, -0.3000, 1.0000, -0.3000, -0.3000], [-0.3000, 0.0000, -0.3000,
0.0000, 0.0000]])

#itruncate with only upper limit

torch.manual seed(1234)

torch.clamp(torch.floor(torch.randn(5,5)), max=0.3)

tensor([[-1.0000, -1.0000, 0.0000, -1.0000, 0.0000], [ 0.0000, -1.0000,
-1.0000, -1.0000, -1.0000], [-2.0000, -1.0000, 0.0000, -1.0000, 0.3000],
[ 0.0000, -2.0000, 0.3000, -1.0000, -1.0000], [-2.0000, 0.0000, -1.0000,
0.0000, 0.0000]])

How do you get the exponential of a tensor? How do you get the fractional portion of
the tensor if it has decimal places and is defined as a floating data type?

#scalar division
torch.div(x,0.10)
tensor([[13.5168, -3.9914], [-4.1705, -1.8621]])

#icompute the exponential of a tensor
torch.exp(x)
tensor([[3.8639, 0.6709], [0.6590, 0.8301]])

np.exp(x)
tensor([[3.8639, 0.6709], [0.6590, 0.8301]])

#how to get the fractional portion of each tensor
torch.add(x,10)
tensor([[11.3517, 9.6009], [ 9.5830, 9.8138]])

torch.frac(torch.add(x,10))
tensor([[0.3517, 0.6009], [0.5830, 0.8138]])

The following syntax explains the logarithmic values in a tensor. The values with a
negative sign are converted to nan. The power function computes the exponential of any
value in a tensor.

# compute the log of the values in a tensor
X
tensor([[ 1.3517, -0.3991], [-0.4170, -0.1862]])
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torch.log(x) #log of negatives are nan
tensor([[0.3013, nan], [ nan, nan]])

# to rectify the negative values do a power tranforamtion
torch.pow(x,2)
tensor([[1.8270, 0.1593], [0.1739, 0.0347]])

# rounding up similar to numpy
X
tensor([[ 1.3517, -0.3991], [-0.4170, -0.1862]])

np.round(x)
tensor([[1., -0.], [-0., -0.]])

torch.round(x)
tensor([[1., -0.], [-0., -0.]])

To compute the transformation functions (i.e., sigmoid, hyperbolic tangent, and
radial basis function, which are the most commonly used transfer functions in deep
learning), you must construct the tensors. The following sample script shows how to
create a sigmoid function and apply it on a tensor:

# how to compute the sigmoid of the input tensor
X
tensor([[ 1.3517, -0.3991], [-0.4170, -0.1862]])

torch.sigmoid(x)
tensor([[0.7944, 0.4015], [0.3972, 0.4536]])

# finding the square root of the values
X
tensor([[ 1.3517, -0.3991], [-0.4170, -0.1862]])

torch.sqrt(x)
tensor([[1.1626, nan], [ nan, nan]])

# Create a tensor
x = torch.arange(10, 10000, 150)
X
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310, 460, 610, 760, 910, 1060, 1210, 1360, 1510, 1660,
2260, 2410, 2560, 2710, 2860, 3010, 3160, 3310, 3460,

4060, 4210, 4360, 4510, 4660, 4810, 4960, 5110, 5260,

5860, 6010, 6160, 6310, 6460, 6610, 6760, 6910, 7060,

7660, 7810, 7960, 8110, 8260, 8410, 8560, 8710, 8860,

9460, 9610, 9760, 9910])

print(f"Minimum: {x.min()}")

print(f"Maximum: {x.max()}")

# print(f"Mean: {x.mean()}") # this will error

print(f"Mean: {x.type(torch.float32).mean()}") # won't work without float

datatype

print(f"Sum: {x.sum()}")

Minimum:

Maximum: 9910
Mean: 4960.0

10

Sum: 332320

torch.argmax(x),torch.argmin(x)
(tensor(66), tensor(0))

torch.max(x),torch.min(x)
(tensor(9910), tensor(10))

# how to change data type
y = torch.tensor([[39,339.63],

[36,667.
[33,978.
[31,897.
[29,178.
[26,442.
[24,314.
[21,547.
[18,764.
[16,588.
[13,773.

20],
07],
13])
19],
25],
22])
88],
25],
23])

61]],dtype=torch.float32)
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# Create a float16 tensor

tensor float16 = y.type(torch.float16)

tensor floati16

tensor([[ 39.0000, 339.7500], [ 36.0000, 667.0000], [ 33.0000, 978.0000],
[ 31.0000, 897.0000], [ 29.0000, 178.2500], [ 26.0000, 442.2500], [
24.0000, 314.2500], [ 21.0000, 548.0000], [ 18.0000, 764.0000], [ 16.0000,
588.0000], [ 13.0000, 773.5000]], dtype=torch.float16)

# Create a int8 tensor

tensor_int8 = y.type(torch.int8)

tensor_int8

tensor([[ 39, 83]) [ 36: '101]) [ 33, '46]) [ 31, '127]’ [ 29, '78]’
[ 26, -70], [ 24, 58], [ 21, 35], [ 18, -4], [ 16, 76], [ 13, 5]],
dtype=torch.int8)

# Change view (keeps same data as original but changes view)

y.view(2,11)

tensor([[ 39.0000, 339.6300, 36.0000, 667.2000, 33.0000, 978.0700,

31.0000, 897.1300, 29.0000, 178.1900, 26.0000], [442.2500, 24.0000,
314.2200, 21.0000, 547.8800, 18.0000, 764.2500, 16.0000, 588.2300, 13.0000,
773.6100]])

# stacking and unstacking of tensors

A = torch.arange(10,50,5)

B = torch.arange(20,60,5)

torch.stack([A,B],dim=0)

tensor([[10, 15, 20, 25, 30, 35, 40, 45], [20, 25, 30, 35, 40, 45,
50, 55]1)

torch.stack([A,B],dim=1)
tensor([[10, 20], [15, 25], [20, 30], [25, 35], [30, 40], [35, 45], [40,
501, [45, 55]1)

torch.stack([A,B])
tensor([[10, 15, 20, 25, 30, 35, 40, 45], [20, 25, 30, 35, 40, 45,
50, 55]])

# indexing of tensors
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y = torch.stack([A,B,A,B,A,B,A,B])

y

tensor([[10, 15, 20, 25, 30, 35, 40, 45], [20, 25, 30, 35, 40, 45, 50, 55],
[10, 15, 20, 25, 30, 35, 40, 45], [20, 25, 30, 35, 40, 45, 50, 55], [10,
15, 20, 25, 30, 35, 40, 45], [20, 25, 30, 35, 40, 45, 50, 55], [10, 15, 20,
25, 30, 35, 40, 45], [20, 25, 30, 35, 40, 45, 50, 55]])

# Get all values of oth dimension and the 1st index of 1st dimension
y[:, 1]
tensor([15, 25, 15, 25, 15, 25, 15, 25])

D = torch.tensor([[[12,13,14],
[15,16,17],
[18,19,20]]])
# Get all values of oth & 1st dimensions but only index 1 of 2nd dimension
D[:, :, 1]
tensor([[13, 16, 19]])

# Get all values of the 0 dimension but only the 1 index value of the 1st
and 2nd dimension

D[:, 1, 1]

tensor([16])

# Get index 0 of oth and 1st dimension and all values of 2nd dimension
D[0, 0, :] # same as D[0][0]
tensor([12, 13, 14])

D[o][o]

tensor([12, 13, 14])

# Check for GPU

import torch
torch.cuda.is available()
False

# Set device type

device = "cuda" if torch.cuda.is available() else "cpu"
device

cpu
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Following the CUDA semantics, PyTorch can be configured for a GPU, which is given
at this link: https://pytorch.org/docs/stable/notes/cuda.html.

# Count number of devices
torch.cuda.device count()

0
# x = torch.randn(2, 2, device="cpu') #on cpu
# x = torch.randn(2, 2, device="gpu') #on gpu
# x = torch.randn(2, 2, device=device)

The syntax of generating random numbers are device agnostic, so it works on
both CPU and GPU environments.

# flatten tensor like numpy
D.flatten()
tensor([12, 13, 14, 15, 16, 17, 18, 19, 20])

# Concatenate along rows

cat_rows = torch.cat((A, B), dim=0)

cat_rows

tensor([10, 15, 20, 25, 30, 35, 40, 45, 20, 25, 30, 35, 40, 45, 50, 55])

cat_cols = torch.cat((A.reshape(2,4), B.reshape(2,4)), dim=1)
cat_cols

tensor([[10, 15, 20, 25, 20, 25, 30, 35], [30, 35, 40, 45, 40, 45,
50, 55]1)

Conclusion

This chapter is a refresher for people who have prior experience in PyTorch and Python.
It is a basic building block for people who are new to the PyTorch framework. Before
starting the advanced topics, it is important to be familiar with the terminology and basic
syntaxes. The next chapter is on using PyTorch to implement probabilistic models, which
includes the creation of random variables, the application of statistical distributions, and
making statistical inferences.
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CHAPTER 2

Probability Distributions
Using PyTorch

Probability and random variables are an integral part of computation in a graph-
computing platform like PyTorch. You must have an understanding of probability and
associated concepts. This chapter covers probability distributions and implementation
using PyTorch and interpreting results from tests.

In probability and statistics, a random variable is also known as a stochastic
variable, whose outcome is dependent on a purely stochastic phenomenon or random
phenomenon. There are different types of probability distributions, including normal
distribution, binomial distribution, multinomial distribution, and Bernoulli distribution.
Each statistical distribution has its own properties.

The torch.distributions module contains probability distributions and sampling
functions. Each distribution type has its own importance in a computational graph. The
distributions module contains binomial, Bernoulli, beta, categorical, exponential,
normal, and Poisson distributions.

Recipe 2-1. Sampling Tensors
Problem

Weight initialization is an important task in training a neural network and any kind of
deep learning model, such as a convolutional neural network (CNN), a deep neural
network (DNN), and a recurrent neural network (RNN). The question is always how to
initialize the weights.
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Solution

Weight initialization can be done using various methods, including random weight
initialization. Weight initialization can be done based on a distribution including
uniform distribution, Bernoulli distribution, multinomial distribution, and normal
distribution. How to do it using PyTorch is explained next.

How It Works

To execute a neural network, a set of initial weights needs to be passed to the
backpropagation layer to compute the loss function (and hence, the accuracy can
be calculated). The selection of a method depends on the data type, the task, and
the optimization required for the model. Here you are going to look at all types of
approaches to initialize weights.

If the use case requires reproducing the same set of results to maintain consistency,
then a manual seed needs to be set.

import torch
print(torch.cuda.is available())
False

# CUDA is an API developed by NVIDIA to interface GPU
x = torch.randn(10)

print(x.device)

cpu

# how to perform random sampling of the tensors
torch.manual seed(1234)

torch.manual seed(1234)

torch.randn(4,4)

tensor([[-0.1117, -0.4966, 0.1631, -0.8817], [ 0.0539, 0.6684, -0.0597,
-0.4675], [-0.2153, 0.8840, -0.7584, -0.3689], [-0.3424, -1.4020, 0.3206,
-1.0219]1)

The seed value can be customized. The random number is generated purely by
chance. Random numbers can also be generated from a statistical distribution. The
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probability density function of the continuous uniform distribution is defined by the
following formula:

1

f(x)z b—a
0 for x(a or x>b

for a<x<b,

The function of x has two points, a and b, in which a is the starting point and b is the
end. In a continuous uniform distribution, each number has an equal chance of being
selected. In the following example, the start is 0 and the end is 1; between those two
digits, all 16 elements are selected randomly:

f#figenerate random numbers from a statistical distribution

torch.Tensor(4, 4).uniform (0, 1) #random number from uniform distribution
tensor([[0.2837, 0.6567, 0.2388, 0.7313], [0.6012, 0.3043, 0.2548, 0.6294],
[0.9665, 0.7399, 0.4517, 0.4757], [0.7842, 0.1525, 0.6662, 0.3343]])

In statistics, the Bernoulli distribution is considered as the discrete probability
distribution, which has two possible outcomes. If the event happens, then the value is 1,
and if the event does not happen, then the value is 0.

For discrete probability distribution, you calculate probability mass function instead
of probability density function. The probability mass function looks like this:

q:(l—p) fork=0
p fork =1

From the Bernoulli distribution, you create sample tensors by considering the
uniform distribution of size 4 and 4 in a matrix format, as follows:

#inow apply the distribution assuming the input values from the
#itensor are probabilities

torch.bernoulli(torch.Tensor(4, 4).uniform (0, 1))

tensor([[0., 0., 0., O0.], [2., O., 1., O0.], [1., O., 1., 1.], [0., O.,

0., 0.1])

The generation of sample random values from a multinomial distribution is defined
by the following script. In a multinomial distribution, you can choose with a replacement
or without a replacement. By default, the multinomial function picks up without a
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replacement and returns the result as an index position for the tensors. If you need to
run it with a replacement, then you need to specify that while sampling.

#thow to perform sampling from a multinomial distribution
torch.Tensor([10, 10, 13, 10,34,45,65,67,87,89,87,34])
tensor([10., 10., 13., 10., 34., 45., 65., 67., 87., 89., 87., 34.])

torch.multinomial(torch.tensor([10., 10., 13., 10.,
34., 45., 65., 67.,
87., 89., 87., 34.]),
3)
tensor([4, 5, 7])

Sampling from multinomial distribution with a replacement returns the tensors’
index values.

torch.multinomial(torch.tensor([10., 10., 13., 10.,
34., 45., 65., 67.,
87., 89., 87., 34.1),
5, replacement=True)
tensor([10, 5, 9, 10, 5])

The weight initialization from the normal distribution is a method that is used in
fitting a neural network or deep neural network and CNN and RNN. Let’s have a look at
the process of creating a set of random weights generated from a normal distribution.

#igenerate random numbers from the normal distribution
torch.normal(mean=torch.arange(1., 11.),

std=torch.arange(1, 0, -0.1))
tensor([1.5236, 2.2441, 2.7375, 3.9521, 5.4380, 5.5158, 8.2489, 8.1645,
9.0575, 9.8627])

torch.normal (mean=0.5,
std=torch.arange(1., 6.))
tensor([ 1.1144, 0.0361, 1.2766, -1.3999, -0.1648])

torch.normal(mean=0.5,
std=torch.arange(0.2,0.6))
tensor([-0.0844])
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#computing the descriptive statistics: mean
torch.mean(torch.tensor([10., 10., 13., 10., 34.,

45., 65., 67., 87., 89., 87., 34.]))
tensor(45.9167)

# mean across rows and across columns

d = torch.randn(4, 5)

d

tensor([[-1.6406, 0.9295, 1.2907, 0.2612, 0.9711], [ 0.3551, 0.8562,
-0.3635, -0.1552, -1.2282], [ 1.2445, 1.1750, -0.2217, -2.0901, -1.2658],
[-1.8761, -0.6066, 0.7470, 0.4811, 0.6234]])

torch.mean(d,dim=0)
tensor([-0.4793, 0.5885, 0.3631, -0.3757, -0.2249])

torch.mean(d,dim=1)
tensor([ 0.3624, -0.1071, -0.2316, -0.1262])

#compute median

torch.median(d,dim=0)

torch.return_types.median( values=tensor([-1.6406, 0.8562, -0.2217,
-0.1552, -1.2282]), indices=tensor([o0, 1, 2, 1, 1]))

torch.median(d,dim=1)
torch.return_types.median( values=tensor([ 0.9295, -0.1552, -0.2217,
0.4811]), indices=tensor([1, 3, 2, 3]))

Recipe 2-2. Variable Tensors
Problem

What is a variable in PyTorch and how is it defined? What is a random variable in
PyTorch?
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Solution

In PyTorch, algorithms are represented as a computational graph. A variable is
considered as a representation around the tensor object, corresponding gradients,
and a reference to the function from where it was created. For simplicity, gradients are
considered as the slope of the function. The slope of the function can be computed

by the derivative of the function with respect to the parameters that are present in the
function. For example, in linear regression (Y = W*X + alpha), representation of the
variable looks like the one shown in Figure 2-1.

Basically, a PyTorch variable is a node in a computational graph that stores data
and gradients. When training a neural network model, after each iteration, you must
compute the gradient of the loss function with respect to the parameters of the model,
such as weights and biases. After that, you usually update the weights using the gradient
descent algorithm. Figure 2-1 explains how the linear regression equation is deployed
under the hood using a neural network model in the PyTorch framework.

In a computational graph structure, the sequencing and ordering of tasks is very
important. The one-dimensional tensors are X, Y, W, and alpha in Figure 2-1. The direction
of the arrows changes when you implement backpropagation to update the weights to match
with Y, so that the error or loss function between Y and predicted Y can be minimized.

R

Figure 2-1. A sample computational graph of a PyTorch implementation

How It Works

An example of how a variable is used to create a computational graph is displayed in the
following script. There are three variable objects around tensors— x1, x2, and x3—with
random points generated from a = 12 and b = 23. The graph computation involves only
multiplication and addition, and the final result with the gradient is shown.
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The partial derivative of the loss function with respect to the weights and biases in a
neural network model is achieved in PyTorch using the Autograd module. Variables are
specifically designed to hold the changed values while running a backpropagation in a
neural network model when the parameters of the model change. The variable type is
just a wrapper around the tensor. It has three properties: data, grad, and function.

from torch.autograd import Variable
Variable(torch.ones(2,2),requires grad=True)
tensor([[1., 1.], [1., 1.]], requires grad=True)

a, b = 12,23
x1 = Variable(torch.randn(a,b),
requires grad=True)
Variable(torch.randn(a,b),
requires_grad=True)
x3 =Variable(torch.randn(a,b),
requires _grad=True)

X2

= x1 * x2
a+ x3
torch.sum(d)

aQ N
1 |

D
1l

e.backward()

print(e)
tensor(3278.1235, grad fn=<SumBackwardo>)

x1.data

tensor([[-4.9545e-02, 6.2245e-01, 1.6573e-01, 3.1583e-01, 2.4915e-01,
-4.9784e-01, 2.9079e+00, 1.6201e+00, -6.4459e-01, -1.9885e-02, 1.6222e+00,
1.4239e+00, 9.0691e-01, 7.6310e-02, 1.1225e+00, -1.2433e+00, -6.7258e-01,
8.8433e-01, -6.6589e-01, -7.3347e-01, -2.7599e-01, 5.5485e-01,
-1.9303e+00] 5 crrrrrrres

x2.data

tensor([[-7.5597e-01, -1.1689e+00, -9.3890e-01, 8.8566e-01, 1.3764e+00,
-7.8276e-01, 2.2200e-01, 7.3758e-02, -6.9147e-01, -5.1308e-01, 1.1427e+00,
-1.0126e+00, 1.1602e-01, -1.0350e+00, 1.0803e+00, -7.9977e-01,
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-9.1219e-02, 5.0242e-01, -4.5173e-01, -4.8067e-01, 5.9066e-01, 1.6343e-01,
-3.1368€-02] , v

x3.data

tensor([[ 0.2499, 0.2458, 0.1029, -0.6494, -0.3258, 0.8149, 0.4049, 0.2481,
0.4841, 0.3293, -1.2471, 0.2117, 1.4315, 0.0502, -0.3668, 0.8378, -0.7901,
0.0267, -0.3120, 2.4534, 0.7926, 0.2382, -0.5245].....

Recipe 2-3. Basic Statistics
Problem

How can you compute basic statistics, such as mean, median, mode, and so forth, from a
Torch tensor?

Solution

Computation of basic statistics using PyTorch enables you to apply probability
distributions and statistical tests to make inferences from data. Although the Torch
functionality is like that of Numpy, Torch functions have GPU acceleration. Let’s have a
look at the functions to create basic statistics.

How It Works

The mean computation is simple to write for a 1D tensor; however, for a 2D tensor, an
extra argument needs to be passed as a mean, median, or mode computation, across
which the dimension needs to be specified.

#computing the descriptive statistics: mean
torch.mean(torch.tensor([10., 10., 13., 10., 34.,

45., 65., 67., 87., 89., 87., 34.]))
tensor(45.9167)

# mean across rows and across columns
d = torch.randn(4, 5)
d
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tensor([[-1.6406, 0.9295, 1.2907, 0.2612, 0.9711], [ 0.3551, 0.8562,
-0.3635, -0.1552, -1.2282], [ 1.2445, 1.1750, -0.2217, -2.0901, -1.2658],
[-1.8761, -0.6066, 0.7470, 0.4811, 0.6234]])

torch.mean(d,dim=0)
tensor([-0.4793, 0.5885, 0.3631, -0.3757, -0.2249])

torch.mean(d,dim=1)
tensor([ 0.3624, -0.1071, -0.2316, -0.1262])

Median, mode, and standard deviation computation can be written in the same way.

#compute median

torch.median(d,dim=0)

torch.return_types.median( values=tensor([-1.6406, 0.8562, -0.2217,
-0.1552, -1.2282]), indices=tensor([o0, 1, 2, 1, 1]))

torch.median(d,dim=1)
torch.return_types.median( values=tensor([ 0.9295, -0.1552, -0.2217,
0.4811]), indices=tensor([1, 3, 2, 3]))

# compute the mode

torch.mode(d)

torch.return_types.mode( values=tensor([-1.6406, -1.2282, -2.0901,
-1.8761]), indices=tensor([0, 4, 3, 0]))

torch.mode(d,dim=0)
torch.return_types.mode( values=tensor([-1.8761, -0.6066, -0.3635, -2.0901,
-1.2658]), indices=tensor([3, 3, 1, 2, 2]))

torch.mode(d,dim=1)
torch.return_types.mode( values=tensor([-1.6406, -1.2282, -2.0901,
-1.8761]), indices=tensor([0, 4, 3, 0]))

Standard deviation shows the deviation from the measures of central tendency,
which indicates the consistency of the data/variable. It shows whether there is enough
fluctuation in data or not.

#compute the standard deviation
torch.std(d)
tensor(1.0944)
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torch.std(d,dim=0)
tensor([1.5240, 0.8083, 0.7911, 1.1730, 1.1889])

torch.std(d,dim=1)
tensor([1.1807, 0.7852, 1.4732, 1.1165])

#compute variance
torch.var(d)
tensor(1.1978)

torch.var(d,dim=0)
tensor([2.3224, 0.6534, 0.6259, 1.3758, 1.4134])

torch.var(d,dim=1)
tensor([1.3940, 0.6166, 2.1703, 1.2466])

# compute min and max
torch.min(d)
tensor(-2.0901)

torch.min(d,dim=0)
torch.return_types.min( values=tensor([-1.8761, -0.6066, -0.3635, -2.0901,
-1.2658]), indices=tensor([3, 3, 1, 2, 2]))

torch.min(d,dim=1)
torch.return_types.min( values=tensor([-1.6406, -1.2282, -2.0901,
-1.8761]), indices=tensor([0, 4, 3, 0]))

# sorting a tensor

torch.sort(d)

torch.return_types.sort( values=tensor([[-1.6406, 0.2612, 0.9295, 0.9711,
1.2907], [-1.2282, -0.3635, -0.1552, 0.3551, 0.8562], [-2.0901, -1.2658,
-0.2217, 1.1750, 1.2445], [-1.8761, -0.6066, 0.4811, 0.6234, 0.7470]]),
indices=tensor([[0, 3, 1, 4, 2], [4, 2, 3, o, 1], [3, 4, 2, 1, o], [0, 1,

3, 4, 21]))

torch.sort(d,dim=0)

torch.return_types.sort( values=tensor([[-1.8761, -0.6066, -0.3635,
-2.0901, -1.2658], [-1.6406, 0.8562, -0.2217, -0.1552, -1.2282], [ 0.3551,
0.9295, 0.7470, 0.2612, 0.6234], [ 1.2445, 1.1750, 1.2907, 0.4811,
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0.9711]]), indices=tensor([[3, 3, 1, 2, 2], [0, 1, 2, 1, 1], [1, O, 3, O,
31, [2, 2, 0, 3, 0]]))

torch.sort(d,dim=0,descending=True)

torch.return_types.sort( values=tensor([[ 1.2445, 1.1750, 1.2907,

0.4811, 0.9711], [ 0.3551, 0.9295, 0.7470, 0.2612, 0.6234], [-1.6406,
0.8562, -0.2217, -0.1552, -1.2282], [-1.8761, -0.6066, -0.3635, -2.0901,
-1.2658]]), indices=tensor([[2, 2, 0, 3, o], [1, o, 3, O, 3], [0, 1, 2, 1,
1], 3, 3, 1, 2, 2]]))

torch.sort(d,dim=1,descending=True)

torch.return_types.sort( values=tensor([[ 1.2907, 0.9711, 0.9295, 0.2612,
-1.6406], [ 0.8562, 0.3551, -0.1552, -0.3635, -1.2282], [ 1.2445, 1.1750,
-0.2217, -1.2658, -2.0901], [ 0.7470, 0.6234, 0.4811, -0.6066, -1.8761]]),
indices=tensor([[2, 4, 1, 3, o], [1, O, 3, 2, 4], [0, 1, 2, 4, 3], [2, 4,

3, 1, 0]]))

from torch.autograd import Variable
Variable(torch.ones(2,2),requires grad=True)
tensor([[1., 1.], [1., 1.]], requires grad=True)

a, b = 12,23

x1 = Variable(torch.randn(a,b),
requires_grad=True)

Variable(torch.randn(a,b),
requires grad=True)

X2

x3 =Variable(torch.randn(a,b),
requires_grad=True)

= x1 * x2
a + x3
torch.sum(d)

Q. N
1l |

D
1]

e.backward()
print(e)

tensor(3278.1235, grad_fn=<SumBackwardo>)
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Recipe 2-4. Gradient Computation
Problem

How do you compute basic gradients from the sample tensors using PyTorch?

Solution

Consider a sample datase0074, where two variables (x and y) are present. With the initial
weight given, can you computationally get the gradients after each iteration? Let’s take a
look at the example.

How It Works

x_dataandy_data both are lists. Computing the gradient of the two data lists requires
computation of a loss function, a forward pass, and training in a loop.

The forward function computes the matrix multiplication of the weight tensor with
the input tensor.

from torch import FloatTensor
from torch.autograd import Variable

a = Variable(FloatTensor([5]))

weights = [Variable(FloatTensor([i]), requires grad=True) for i in (12, 53,
91, 73)]

wl, w2, w3, w4 = weights

b=wl*a
c=w2*a
d=w3 *b+wj *c

Loss = (10 - d)
Loss.backward()

for index, weight in enumerate(weights, start=1):

gradient, * = weight.grad.data

print(f"Gradient of w{index} w.r.t to Loss: {gradient}")
Gradient of wi w.r.t to Loss: -455.0
Gradient of w2 w.r.t to Loss: -365.0
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Gradient of w3 w.r.t to Loss: -60.0
Gradient of w4 w.r.t to Loss: -265.0

# Using forward pass
def forward(x):
return x * w

import torch
from torch.autograd import Variable

[11.0, 22.0, 33.0]
[21.0, 14.0, 64.0]

x_data
y_data

w = Variable(torch.Tensor([1.0]), requires grad=True) # Any random value

# Before training
print("predict (before training)", 4, forward(4).data[o0])

# define the Loss function
def loss(x, y):
y pred = forward(x)

return (y pred - y) * (y_pred - y)

# Run the Training loop
for epoch in range(10):
for x val, y val in zip(x data, y data):
1 = Toss(x_val, y val)
1.backward()
print("\tgrad: ", x val, y val, w.grad.data[0])
w.data = w.data - 0.01 * w.grad.data

# Manually set the gradients to zero after updating weights
w.grad.data.zero ()

print("progress:", epoch, l.data[0])
grad: 11.0 21.0 tensor(-220.)

grad: 22.0 14.0 tensor(2481.6001)

grad: 33.0 64.0 tensor(-51303.6484)
progress: O tensor(604238.8125)
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# After training
print("predict (after training)", 4, forward(4).data[o0])
predict (after training) 4 tensor(-9.2687e+24)

The following program shows how to compute the gradients from a loss function
using the variable method on the tensor:

a = Variable(FloatTensor([5]))

weights = [Variable(FloatTensor([i]), requires grad=True) for i in (12, 53,
91, 73)]

wl, w2, w3, w4 = weights

b=wl*a

c=w2*a

d=w3*b+w *c

Loss = (10 - d)

Loss.backward()

Recipe 2-5. Tensor Operations
Problem

How do you compute or perform operations based on variables such as matrix
multiplication?

Solution

Tensors are wrapped within the variable, which has three properties: grad, volatile,
and gradient.

How It Works

Let’s create a variable and extract the properties of the variable. This is required because
weight update process requires gradient computation. By using the mm module, you can
perform matrix multiplication.

Variable(torch.Tensor(4, 4).uniform (-4, 5))
Variable(torch.Tensor(4, 4).uniform (-3, 2))

<
]

42



CHAPTER 2  PROBABILITY DISTRIBUTIONS USING PYTORCH

# matrix multiplication
z = torch.mm(x, y)
print(z.size())
torch.Size([4, 4])

The following program shows the properties of the variable, which is a wrapper
around the tensor:

z = Variable(torch.Tensor(4, 4).uniform (-5, 5))

print(z)

tensor([[-0.3071, -3.6691, -2.8417, -1.1818],
[-1.4654, -0.4344, -2.0130, -2.3842],
[ 1.3962, 1.4962, -2.0996, 1.8881],
[-1.9797, 0.2337, -1.0308, 0.1266]])

print('Requires Gradient : %s ' % (z.requires grad))

print('Volatile : %s ' % (z.volatile))

print('Gradient : %s ' % (z.grad))

print(z.data)

Requires Gradient : False

Volatile : False

Gradient : None

tensor([[-0.3071, -3.6691, -2.8417, -1.1818
[-1.4654, -0.4344, -2.0130, -2.3842
[ 1.3962, 1.4962, -2.0996, 1.8881
[-1.9797, 0.2337, -1.0308, 0.1266

)

—_ e T
—_

)

Recipe 2-6. Tensor Operations
Problem

How do you compute or perform operations based on variables such as matrix-vector
computation and matrix-matrix and vector-vector calculation?
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Solution

One of the necessary conditions for the success of matrix-based operations is that the
length of the tensor needs to match or be compatible for the execution of algebraic
expressions.

How It Works

The tensor definition of a scalar is just one number. A 1D tensor is a vector, and a 2D
tensor is a matrix. When it extends to an n dimensional level, it can be generalized to
only tensors. When performing algebraic computations in PyTorch, the dimension of a
matrix and a vector or scalar should be compatible.

#tensor operations

matl = torch.FloatTensor(4,4).uniform (0,1)

matil

tensor([[0.9002, 0.9188, 0.1386, 0.3701], [0.1947, 0.2268, 0.9587, 0.2615],
[0.7256, 0.7673, 0.5667, 0.1863], [0.4642, 0.4016, 0.9981, 0.8452]])

mat2 = torch.FloatTensor(4,4).uniform (0,1)

mat2

tensor([[0.4962, 0.4947, 0.8344, 0.6721], [0.1182, 0.5997, 0.8990, 0.8252],
[0.1466, 0.1093, 0.8135, 0.9047], [0.2486, 0.1873, 0.6159, 0.2471]])

vecl = torch.FloatTensor(4).uniform (0,1)
vecl
tensor([0.7582, 0.6879, 0.8949, 0.3995])

# scalar addition

matl + 10.5

tensor([[11.4002, 11.4188, 10.6386, 10.8701], [10.6947, 10.7268, 11.4587,
10.7615], [11.2256, 11.2673, 11.0667, 10.6863], [10.9642, 10.9016, 11.4981,
11.3452]])

# scalar subtraction
mat2 - 0.20
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tensor([[ 0.2962, 0.2947, 0.6344, 0.4721], [-0.0818, 0.3997, 0.6990,
0.6252], [-0.0534, -0.0907, 0.6135, 0.7047], [ 0.0486, -0.0127, 0.4159,
0.0471]])

# vector and matrix addition

matl + veci

tensor([[1.6584, 1.6067, 1.0335, 0.7695], [0.9530, 0.9147, 1.8537, 0.6610],
[1.4839, 1.4553, 1.4616, 0.5858], [1.2224, 1.0895, 1.8931, 1.2446]])

mat2 + vecl
tensor([[1.2544, 1.1826, 1.7293, 1.0716], [0.8764, 1.2876, 1.7939, 1.2247],
[0.9049, 0.7972, 1.7084, 1.3042], [1.0068, 0.8752, 1.5108, 0.6466]])

If the mat1 and the mat2 dimensions are different, they are not compatible for matrix
addition or multiplication. If the dimension remains the same, you can multiply them.
In the following script, the matrix addition throws an error when you multiply similar
dimensions—mat1 with mat1. You get relevant results.

# matrix-matrix addition

matl + mat2

tensor([[1.3963, 1.4135, 0.9730, 1.0422], [0.3129, 0.8265, 1.8577, 1.0867],
[0.8722, 0.8766, 1.3802, 1.0910], [0.7127, 0.5888, 1.6141, 1.0923]])

matl * mati1
tensor([[0.8103, 0.8442, 0.0192, 0.1370], [0.0379, 0.0514, 0.9192, 0.0684],
[0.5265, 0.5888, 0.3211, 0.0347], [0.2155, 0.1613, 0.9963, 0.7143]])

Recipe 2-7. Distributions
Problem

Knowledge of statistical distributions is essential for weight normalization, weight
initialization, and computation of gradients in neural network-based operations using
PyTorch. How do you know which distributions to use and when to use them?
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Solution

Each statistical distribution follows a preestablished mathematical formula. You are
going to use the most commonly used statistical distributions and their arguments in
scenarios of problems.

How It Works

Bernoulli distribution is a special case of binomial distribution in which the number of
trials can be more than one, but in a Bernoulli distribution, the number remains one.

It is a discrete probability distribution of a random variable, which takes a value of 1
when there is probability that an event is a success and takes a value of 0 when there is
probability that an event is a failure. A perfect example of this is tossing a coin, where 1 is
heads and 0 is tails. Let’s look at the program.

# about Bernoulli distribution

from torch.distributions.bernoulli import Bernoulli

dist = Bernoulli(torch.tensor([0.3,0.6,0.9]))

dist.sample() #sample is binary, it takes 1 with p and 0 with 1-p
tensor([0., 1., 0.])

#Creates a Bernoulli distribution parameterized by probs
#Samples are binary (0 or 1). They take the value 1 with probability p
#and 0 with probability 1 - p.

The beta distribution is a family of continuous random variables defined in the range
of 0 and 1. This distribution is typically used for Bayesian inference analysis.

from torch.distributions.beta import Beta
dist = Beta(torch.tensor([0.5]), torch.tensor([0.5]))
dist
dist.sample()
The binomial distribution is applicable when the outcome is twofold and the
experiment is repetitive. It belongs to the family of discrete probability distribution,

where the probability of success is defined as 1 and the probability of failure is 0. The
binomial distribution is used to model the number of successful events over many trials.
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from torch.distributions.binomial import Binomial
dist = Binomial(100, torch.tensor([0 , .2, .8, 1]))
dist.sample()

tensor([ 0., 21., 83., 100.])

# 100- count of trials
# 0, 0.2, 0.8 and 1 are event probabilities

In probability and statistics, a categorical distribution can be defined as a
generalized Bernoulli distribution, which is a discrete probability distribution that
explains the possible results of any random variable that may take on one of the possible
categories, with the probability of each category exclusively specified in the tensor.

from torch.distributions.categorical import Categorical

dist = Categorical(torch.tensor([ 0.20, 0.20, 0.20, 0.20, 0.20 ]))
dist

Categorical(probs: torch.Size([5]))

dist.sample()

tensor(2)

these are 0.20, 0.20, 0.20, 0.20,0.20 event probabilities.

A Laplacian distribution is a continuous probability distribution function that is
otherwise known as a double exponential distribution. A Laplacian distribution is used in
speech recognition systems to understand prior probabilities. It is also useful in Bayesian
regression for deciding prior probabilities.

Laplace distribution parameterized by loc and 'scale'. Loc parameter is
mean or location parameter and scale is standard deviation parameter.

from torch.distributions.laplace import Laplace

dist = Laplace(torch.tensor([10.0]), torch.tensor([0.990]))
dist

Laplace(loc: tensor([10.]), scale: tensor([0.9900]))

dist.sample()
tensor([9.6554])
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A normal distribution is very useful because of the property of the central limit
theorem. It is defined by mean and standard deviations. If you know the mean and
standard deviation of the distribution, you can estimate the event probabilities. See
Figure 2-2.

-3c -2

Figure 2-2. Normal probability distribution

#Normal (Gaussian) distribution parameterized by loc and 'scale'.
from torch.distributions.normal import Normal

dist = Normal(torch.tensor([100.0]), torch.tensor([10.0]))

dist

Normal(loc: tensor([100.]), scale: tensor([10.]))

dist.sample()

tensor([84.3435])

Conclusion

This chapter discussed sampling distribution and generating random numbers from
distributions. Neural networks are the primary focus in tensor-based operations. Any
sort of machine learning or deep learning model implementation requires gradient
computation, updating weight, computing bias, and continuously updating the bias.

This chapter also discussed the statistical distributions supported by PyTorch and
the situations where each type of distribution can be applied.

The next chapter discusses deep learning models in detail. These deep learning
models include convolutional neural networks, recurrent neural networks, deep neural
networks, and autoencoder models.
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CNN and RNN
Using PyTorch

This chapter covers convolutional neural networks (CNN) and recurrent neural network
and their implementation using PyTorch. Convolutional neural network is being used

in image classification, object detection, object classification related tasks. The large
scale image classification models requires PyTorch framework as it is considered to be
faster than other frameworks, similarly the recurrent neural networks are used in natural
language processing tasks such as text classification, sentiment classification, topic
classification, audio classification etc. This chapter shows a few recipes on setting up
CNN and RNN models, selecting the optimization function, saving a model, loading a
model already trained and using the model for inference generation etc.

Recipe 3-1. Setting Up a Loss Function
Problem

How do you set up a loss function and optimize it? Choosing the right loss function
increases the chances of model convergence.

Solution

In this recipe, you use another tensor as the update variable and introduce the tensors to
the sample model and compute the error or loss. Then you compute the rate of change
in the loss function to measure the choice of loss function in model convergence.
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How It Works

In the following example, t_c and t_u are two tensors. This can be constructed from any
NumPy array.

import torch
torch. version
'1.12.1+cu113’
torch.tensor

t ¢ = torch.tensor([0.5, 14.0, 15.0, 28.0, 11.0, 8.0, 3.0, -4.0, 6.0,
13.0, 21.0])

t u = torch.tensor([35.7, 55.9, 58.2, 81.9, 56.3, 48.9, 33.9, 21.8, 48.4,
60.4, 68.4])

The sample model is just a linear equation to make the calculation happen. and the
loss function defined if the mean square error (MSE) is shown next. Going forward in
this chapter, you will increase the complexity of the model. For now, this is just a simple
linear equation computation.

#theight of people
t ¢ = torch.tensor([58.0, 59.0, 60.0, 61.0, 62.0, 63.0, 64.0, 65.0, 66.0,
67.0, 68.0, 69.0, 70.0, 71.0, 72.0])

#weight of people
t u = torch.tensor([115.0, 117.0, 120.0, 123.0, 126.0, 129.0, 132.0, 135.0,
139.0, 142.0, 146.0, 150.0, 154.0, 159.0,164.0])

Let’s now define the model. The w parameter is the weight tensor, which is multiplied
with the t_u tensor. The result is added with a constant tensor, b, and the loss function
chosen is a custom-built one; it is also available in PyTorch. In the following example,
t_uisthe tensor used, t_p is the tensor predicted, and t_c is the precomputed tensor,
with which the predicted tensor needs to be compared to calculate the loss function.

def model(t u, w, b):
return w * t u + b

def loss fn(t p, t c):
squared diffs = (t p - t c)**2
return squared diffs.mean()
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The formulaw * t u + bisthelinear equation representation of a tensor-based
computation.

torch.ones(1)
torch.zeros(1)

W
b

t p = model(t u, w, b)

tp

tensor([115., 117., 120., 123., 126., 129., 132., 135., 139., 142., 146.,
150., 154., 159., 164.])

loss = loss fn(t p, t c)
loss
tensor(5259.7334)

The initial loss value is 5259.7334, which is too high because of the initial round of
weights chosen. The error in the first round of iteration is backpropagated to reduce
the errors in the second round, for which the initial set of weights needs to be updated.
Therefore, the rate of change in the loss function is essential in updating the weights in
the estimation process.

delta = 0.1

loss_rate of change w = (loss_fn(model(t u,
w + delta, b),
t ¢) - loss fn(model(t u, w - delta, b),
t c)) / (2.0 * delta)

learning_rate = 1e-2

W = w - learning rate * loss rate of change w

(loss_fn(model(t u, w, b + delta), t c) -
loss fn(model(t u, w, b - delta), t c)) /
(2.0 * delta)

loss_rate_of change b

b = b - learning rate * loss rate of change b
b
tensor([544.])
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There are two parameters to update the rate of loss function: the learning rate at the
current iteration and the learning rate at the previous iteration. If the delta between the
two iterations exceeds a certain threshold, then the weight tensor needs to be updated
or model convergence could happen. The preceding script shows the delta and learning
rate values. Currently, they are static values that the user has the option to change.

This is how a simple mean square loss function works in a two-dimensional tensor
example, with a tensor size of 10, 5.

Let’s look at the following example. The MSELoss function is within the neural
network module of PyTorch.

from torch import nn
loss = nn.MSELoss()
input = torch.randn(10, 5, requires grad=True)

target = torch.randn(10, 5)
output = loss(input, target)
output.backward()

When you look at the gradient calculation that is used for backpropagation, it is
shown as MSELoss.

output.grad fn
<MselLossBackwardo at 0x7f424abdofs50>

Recipe 3-2. Estimating the Derivative
of the Loss Function

Problem

How do you estimate the derivative of a loss function?

Solution

Using the following example, you change the loss function to two times the differences
between the input and the output tensors, instead of the MSELoss function. The following
grad_fn, which is defined as a custom function, shows how the final output retrieves the
derivative of the loss function.
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How It Works

Let’s look at the following example. In the previous recipe, the last line of the script
shows the grad_fn as an object embedded in the output object tensor. This recipe
explains how it is computed. grad_fn is a derivative of the loss function with respect to
the parameters of the model. This is exactly what you do in the following grad _fn:

input

tensor([[-1.0665, -0.8880, -1.1156, -0.1595, 0.2342], [ 3.1369, -0.6062,
1.0556, 1.9240, 1.0309], [ 1.8270, -0.8902, 1.8918, 1.0523, 1.8231],

[ 0.0969, 0.0462, -1.6298, -1.6399, 0.0167], [ 0.6968, -0.1793, 0.5698,
0.8613, -1.8561], [ 0.7462, -0.1504, 0.0779, 2.0298, 1.2302], [-2.1399,
-2.0118, -0.5827, 0.1486, 2.2127], [-0.2679, -0.5797, 0.5805, -0.4121,
0.5089], [ 1.3931, -0.8098, -0.3136, 0.6375, 0.6038], [ 1.8502, 0.0844,
0.7034, -0.1410, 2.5020]], requires grad=True)

target

tensor([[ 2.1635, 2.8280, -1.2495, 0.3782, 0.7208], [ 0.4892, 0.4965,
-0.1423, 0.4918, -1.0321], [-1.4843, 0.4281, 0.6281, -1.4526, -1.8356],

[ 0.7769, 2.5248, -0.4420, 0.4313, -1.0156], [-1.4197, -1.0438, 1.0570,
0.3100, 0.6264], [-1.3284, -0.9601, 0.0358, 0.5170, 1.5762], [ 0.2165,
-1.0205, 0.2125, 0.4595, 0.9997], [ 0.4572, -0.3321, 0.3248, -0.4419,
-0.0550], [-1.6006, 0.4164, -0.5147, -1.0651, -1.8708], [-1.9251, 0.9669,
-0.9007, -0.4605, -0.1377]])

def dloss fn(t p, t c):
dsq diffs =2 * (t p - t c)
return dsq_diffs

def model(t u, w, b):
return w * tu + b

def dmodel dw(t u, w, b):
return t u

def dmodel db(t u, w, b):
return 1.0

53



CHAPTER 3  CNN AND RNN USING PYTORCH

def grad fn(t u, t c, t p, w, b):
dloss dw = dloss fn(t p, t c) * dmodel dw(t u, w, b)
dloss db = dloss fn(t _p, t c) * dmodel db(t u, w, b)
return torch.stack([dloss dw.mean(), dloss db.mean()])

The parameters are the input, bias settings, learning rate, and the number of epochs
for the model training. The estimation of these parameters provides values to the
equation.

params = torch.tensor([1.0, 0.0])
nepochs = 10
learning_rate = 0.005

for epoch in range(nepochs):
# forward pass
w, b = params
t p = model(t u, w, b)

loss = loss fn(t p, t c)
print('Epoch %d, Loss %f' % (epoch, float(loss)))

# backward pass
grad = grad fn(t u, t c, t p, w, b)

print('Params:', params)
print('Grad:', grad)

params = params - learning rate * grad

params
Epoch 0, Loss 5259.733398

Params: tensor([1., 0.])

Grad: tensor([19936.2676, 143.4667])

Epoch 1, Loss 186035504.000000

Params: tensor([-98.6813, -0.7173])

Grad: tensor([-3752242.2500, -27117.4902])

Epoch 2, Loss 6590070521856.000000

Params: tensor([18662.5293, 134.8701])

Grad: tensor([7.0622e+08, 5.1037€+06] ). .
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This is what the initial result looks like. Epoch is an iteration that produces a loss
value from the loss function defined earlier. The parameters vector is about coefficients
and constants that need to be changed to minimize the loss function. The grad function
computes the feedback value to the next epoch. This is just an example. The number of
epochs chosen is an iterative task depending on the input data, output data, and choice
ofloss and optimization functions.

If you reduce the learning rate, you are able to pass relevant values to the gradient,
the parameter updates in a better way, and model convergence is achieved within few
iterations.

params = torch.tensor([1.0, 0.0])
nepochs = 10
learning rate = 0.1

for epoch in range(nepochs):
# forward pass
w, b = params
t p = model(t u, w, b)

loss = loss fn(t p, t c)
print('Epoch %d, Loss %f' % (epoch, float(loss)))

# backward pass
grad = grad fn(t u, t c, t p, w, b)

print('Params:', params)
print('Grad:', grad)

params = params - learning rate * grad
params

Epoch 0, Loss 5259.733398

Params: tensor([1., 0.])

Grad: tensor([19936.2676, 143.4667])

Epoch 1, Loss 75167318016.000000

Params: tensor([-1992.6268, -14.3467])

Grad: tensor([-75423624.0000, -545075.6875])
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Epoch 2, Loss 1075861270101491712.000000
Params: tensor([7540370.0000,  54493.2227])
Grad: tensor([2.8535e+11, 2.0621€+09] ) mermmrmsmssns s .

If you reduce the learning rate a bit, the process of weight updating will be a little
slower, which means that the epoch number needs to be increased in order to find a
stable state for the model.

tun=0.1%tu
params = torch.tensor([1.0, 0.0])

nepochs = 10
learning_rate = 0.05

for epoch in range(nepochs):
# forward pass
w, b = params
t p = model(t _un, w, b)

loss = loss fn(t p, t c)
print('Epoch %d, Loss %f' % (epoch, float(loss)))

# backward pass
grad = grad fn(t_un, t c, t p, w, b)

print('Params:', params)
print('Grad:', grad)

params = params - learning rate * grad

params
The following are the results:

Epoch 0, Loss 2642.455322

Params: tensor([1., 0.])

Grad: tensor([-1412.0094, -102.6533])
Epoch 1, Loss 855426.562500

Params: tensor([71.6005, 5.1327])
Grad: tensor([25443.8555, 1838.2997])
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Epoch 2, Loss 277741792.000000
Params: tensor([-1200.5923, -86.7823])
Grad: tensor([-458472.5938, -33135.7656]).crs .

If you increase the number of epochs, then what happens to the loss function and
parameter tensor can be viewed in the following script, in which you print the loss value
to find the minimum loss corresponding to the epoch. Then you can extract the best
parameters from the model.

params = torch.tensor([1.0, 0.0])
nepochs = 50
learning_rate = 1e-2

for epoch in range(nepochs):
# forward pass
w, b = params
t p = model(t _un, w, b)

loss = loss fn(t p, t c)
print('Epoch %d, Loss %f' % (epoch, float(loss)))

# backward pass
grad = grad fn(t_un, t c, t p, w, b)

params = params - learning rate * grad
params
The following are the results:

Epoch 0, Loss 2642.455322

Epoch 1, Loss 20719.347656

Epoch 2, Loss 162827.593750
Epoch 3, Loss 1279985.125000
Epoch 4, Loss 10062318.000000
Epoch 5, Loss 79103048.000000
Epoch 6, Loss 621853952.000000
Epoch 7, Loss 4888591872.000000
Epoch 8, Loss 38430781440.000000
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The following is the final loss value at the final epoch level. This is called an
exploding gradient problem and it happens due to bad initialization or an incorrect
learning rate or both. To address this, either you need to initialize with clipping or apply
clipping on the gradients calculation.

Epoch 37, Loss 3581332566111237599971995859017531392.000000
Epoch 38, Loss inf

Epoch 39, Loss inf

Epoch 40, Loss inf

Epoch 41, Loss inf

Epoch 42, Loss inf

Epoch 43, Loss inf

Epoch 44, Loss inf

Epoch 45, Loss inf

Epoch 46, Loss inf

Epoch 47, Loss inf

Epoch 48, Loss inf

Epoch 49, Loss inf
tensor([-9.0577e+22, -6.5463e+21])

To fine-tune this model in estimating parameters, you can redefine the model and
the loss function and apply it to the same example.

def model(t u, w, b):
returnw * tu + b

def loss fn(t p, t c):
sq diffs = (t p - t c)**2
return sq_diffs.mean()

Set up the parameters. After completing the training process, you should reset the
grad function to None.

params = torch.tensor([1.0, 0.0], requires grad=True)

loss = loss _fn(model(t u, *params), t c)
params.grad is None
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Recipe 3-3. Fine-Tuning a Model
Problem

How do you find the gradients of the loss function by applying an optimization function
to optimize the loss function?

Solution

You'll use the backward() function.

How It Works

Let’s look at the following example. The backward() function calculates the gradients of
a function with respect to its parameters. In this section, you retrain the model with new
set of hyperparameters.

loss.backward()
params.grad
tensor([19936.2676, 143.4667])

Reset the parameter grid. If you do not reset the parameters in an existing session,
the error values accumulated from any other session become mixed, so it is important to
reset the parameter grid.

if params.grad is not None:
params.grad.zero ()

def model(t u, w, b):
returnw * tu + b

def loss fn(t p, t c):
sq diffs = (t p - t c)**2
return sq_diffs.mean()

After redefining the model and the loss function, let’s retrain the model.

params = torch.tensor([1.0, 0.0], requires grad=True)
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nepochs = 5000

learning_rate = 1e-2

for epoch in range(nepochs):
# forward pass
t p = model(t_un, *params)
loss = loss fn(t p, t c)

print('Epoch %d, Loss %f' % (epoch, float(loss)))

# backward pass
if params.grad is not None:
params.grad.zero ()

loss.backward()

#params.grad.clamp_(-1.0, 1.0)
#print(params, params.grad)

params = (params - learning rate * params.grad).detach().
requires grad ()

params

Recipe 3-4. Selecting an Optimization Function
Problem

How do you optimize the gradients with the function in Recipe 3-3?

Solution

There are certain functions that are embedded in PyTorch, and there are certain
optimization functions that the user has to create.
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How It Works

Let’s look at the following example:
import torch.optim as optim

dir(optim)

['ASGD', 'Adadelta', 'Adagrad', 'Adam', 'AdamW', 'Adamax', 'LBFGS',
‘NAdam', 'Optimizer', 'RAdam', 'RMSprop', 'Rprop', 'SGD', 'SparseAdam',
' builtins ', ' cached ', ' doc__

__name__ ', ' package ', ' path_ ', ' spec_ ', ' functional',
_multi tensor', 'lr scheduler', 'swa utils']

, __file ', ' loader_ ‘',

Each optimization method is unique in solving a problem. I will describe this later.

The Adam optimizer is a first-order, gradient-based optimization of stochastic
objective functions. It is based on adaptive estimation of lower-order moments. This is
computationally efficient enough for deployment on large datasets. To use torch.optim,
you must construct an optimizer object in your code that will hold the current state
of the parameters and will update the parameters based on the computed gradients,
moments, and learning rate. To construct an optimizer, you must give it an iterable
containing the parameters and ensure that all the parameters are variables to optimize.
Then, you can specify optimizer-specific options, such as the learning rate, weight decay,
moments, and so forth.

SGD is another optimizer that is fast enough to work on large datasets. This method
does not require manual fine-tuning of the learning rate; the algorithm takes care of it
internally.

params = torch.tensor([1.0, 0.0], requires grad=True)
learning rate = 1e-5

optimizer = optim.SGD([params], lr=learning rate)
t p = model(t u, *params)

loss = loss fn(t p, t c)
loss.backward()

optimizer.step()
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params
tensor([ 0.8006, -0.0014], requires grad=True)

params = torch.tensor([1.0, 0.0], requires grad=True)
learning rate = 1e-2

optimizer = optim.SGD([params], lr=learning rate)

t p = model(t_un, *params)

loss = loss fn(t p, t c)

optimizer.zero grad()

loss.backward()

optimizer.step()

params
tensor([15.1201, 1.0265], requires grad=True)

Now let’s call the model and loss function again and apply them along with the
optimization function.

def model(t u, w, b):
return w * tu + b

def loss fn(t p, t c):
sq diffs = (t p - t c)**2
return sq_diffs.mean()

params = torch.tensor([1.0, 0.0], requires grad=True)

nepochs = 5000
learning rate = 1e-2

optimizer = optim.SGD([params], lr=learning rate)
for epoch in range(nepochs):

# forward pass
t p = model(t_un, *params)
loss = loss fn(t p, t c)
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print('Epoch %d, Loss %f' % (epoch, float(loss)))

# backward pass
optimizer.zero_grad()
loss.backward()
optimizer.step()

t p = model(t_un, *params)

params

CNN AND RNN USING PYTORCH

Let’s look at the gradient in a loss function. Using the optimization library, you can

try to find the best value of the loss function.

The example has two custom functions and a loss function. You have taken two

small tensor values. The new thing is that you have used the optimizer to find the

minimum value.

In the following example, you use Adam as the optimizer:

def model(t u, w, b):
return w * t u + b

def loss fn(t p, t c):
sq diffs = (t p - t c)**2
return sq_diffs.mean()

params = torch.tensor([1.0, 0.0], requires grad=True)

nepochs = 5000
learning rate = 1e-1

optimizer = optim.Adam([params], lr=learning rate)

for epoch in range(nepochs):
# forward pass
t p = model(t _u, *params)
loss = loss fn(t p, t c)

print('Epoch %d, Loss %f' % (epoch, float(loss)))
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# backward pass
optimizer.zero_grad()
loss.backward()
optimizer.step()

t p = model(t u, *params)
params

Epoch 0, Loss 5259.733398
Epoch 1, Loss 3443.706543
Epoch 2, Loss 2025.263306
Epoch 3, Loss 1002.202881
Epoch 4, Loss 357.638672
Epoch 5, Loss 53.362339
Epoch 6, Loss 24.627544
Epoch 7, Loss 181.475266
Epoch 8, Loss 421.412598
Epoch 9, Loss 651.219666
Epoch 10, Loss 806.726135

In the preceding code, you computed the optimized parameters and computed the
predicted tensors using the actual and predicted tensors. You can display a graph that
has aline shown as a regression line.

Epoch 4993, Loss 0.167906
Epoch 4994, Loss 0.167906
Epoch 4995, Loss 0.167905
Epoch 4996, Loss 0.167904
Epoch 4997, Loss 0.167903
Epoch 4998, Loss 0.167903
Epoch 4999, Loss 0.167903

tensor([ 0.2879, 25.6386], requires grad=True)

Let’s visualize the sample data in graphical form using the actual and predicted
tensors. See Figure 3-1.

from matplotlib import pyplot as plt
#matplotlib inline
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plt.plot(0.1 * t u.numpy(), t_p.detach().numpy())
plt.plot(0.1 * t u.numpy(), t c.numpy(), 'o")

Figure 3-1. Actual vs. Predicted Tensor

Recipe 3-5. Further Optimizing the Function
Problem

How do you optimize the training set and test it with a validation set using random
samples?

Solution

Here’s the process of further optimization.

How It Works

Let’s look at the following example. Here you set the number of samples and then you
take 20% of the data as validation samples using shuffled indices. You take random
samples of all the records. The objective of the train and validation set is to build a model
in a training set, make the prediction on the validation set, and check the accuracy of

the model.

n_samples = t u.shape[0]
n val = int(0.2 * n_samples)

shuffled indices = torch.randperm(n_samples)
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train_indices = shuffled indices[:-n_val]
val indices = shuffled indices[-n_val:]

train_indices, val indices
(tensor([14, 13, 7, 6, 11, 0, 10, 3, 4, 5, 12, 1]), tensor([8, 2, 9]))

t u train = t u[train_indices]

t ¢ train = t c[train_indices]

t u val = t u[val indices]

t c val = t c[val indices]

def model(t u, w, b):
return w * t u + b

def loss fn(t p, t c):
sq diffs = (t p - t c)**2
return sq_diffs.mean()

params = torch.tensor([1.0, 0.0], requires grad=True)

nepochs = 5000
learning_rate = 1e-2

optimizer = optim.SGD([params], lr=learning rate)

t_un_train = 0.1 * t_u_train
t un_val = 0.1 * t u val

Now let’s run the train and validation process. You first take the training input data
and multiply it by the parameter’s next line. You make a prediction and compute the loss
function. Using the same model in the third line, you make predictions and then you
evaluate the loss function for the validation dataset. In the backpropagation process, you
calculate the gradient of the loss function for the training set, and using the optimizer,
you update the parameters.

for epoch in range(nepochs):

# forward pass
t p train = model(t_un_train, *params)
loss train = loss fn(t p train, t c_train)
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print('Epoch %d, Training loss %f, Validation loss %f' % (epoch,
float(loss train),

# backward pass
optimizer.zero grad()

loss_train.backward()

optimizer.step()

tp-=
params

Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch

model(t_un, *params)

0, Training
1, Training
2, Training
3, Training
4, Training
5, Training
6, Training
7, Training
8, Training

47423901696.000000

loss
loss
loss
loss
loss
loss
loss
loss
loss

The following are the last 10 epochs and their results:

Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch

4989,
4990,
4991,
4992,
4993,
4994,
4995,
4996J
4997,

Training
Training
Training
Training
Training
Training
Training
Training
Training

loss
loss
loss
loss
loss
loss
loss
loss
loss

nan,
nan,
nan,
nan,
nan,
nan,
nan,
nan,
nan,

Validation
Validation
Validation
Validation
Validation
Validation
Validation
Validation
Validation

loss
loss
loss
loss
loss
loss
loss
loss
loss

nan
nan
nan
nan
nan
nan
nan
nan
nan

float
(loss val)))

2652.548340, Validation loss 2602.083252
21507.599609, Validation loss 19826.755859
174840.953125, Validation loss 164931.500000
1421780.000000, Validation loss 1330612.750000
11562152.000000, Validation loss 10851068.000000
94025800.000000, Validation loss 88156856.000000
764637760.000000, Validation loss 717156288.000000
6218196992.000000, Validation loss 5831366144.000000
50567704576.000000, Validation loss
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tensor([nan, nan], requires grad=True)

In the previous step, the gradient was set to true. In the following set, you disable

gradient calculation by using the torch.no_grad() function. The rest of the syntax

remains the same. Disabling the gradient calculation is useful for drawing inferences

when you are sure that you will not call Tensor.backward(). This reduces memory

consumption for computations that would otherwise need requires_grad=True.

for epoch in range(nepochs):

# forward pass

t p train = model(t_un_train, *params)
loss train = loss fn(t p train, t c_train)

with torch.no grad():

t p val = model(t_un_val, *params)
loss val = loss fn(t p val, t c val)

print('Epoch %d, Training loss %f, Validation loss %f' % (epoch,
float(loss train),

# backward pass
optimizer.zero grad()

loss_train.backward()

optimizer.step()

params
Epoch 0,
Epoch 1,
Epoch 2,
Epoch 3,
Epoch 4,
Epoch 5,
Epoch 6,
Epoch 7,
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Training
Training
Training
Training
Training
Training
Training
Training

loss
loss
loss
loss
loss
loss
loss
loss

nan,
nan,
nan,
nan,
nan,
nan,
nan,
nan,

Validation
Validation
Validation
Validation
Validation
Validation
Validation
Validation

loss
loss
loss
loss
loss
loss
loss
loss

nan
nan
nan
nan
nan
nan
nan
nan

float
(loss val)))
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Epoch 8, Training loss nan, Validation loss nan
Epoch 9, Training loss nan, Validation loss nan
Epoch 10, Training loss nan, Validation loss nan.. .

The last rounds of epochs are displayed in other lines of code, as follows:
The final parameters are 5.44 and -18.012.

Recipe 3-6. Implementing a Convolutional Neural
Network (CNN)

Problem

How do you implement a convolutional neural network using PyTorch?

Solution

There are various built-in datasets available on torchvision. You are considering the
MNIST dataset and trying to build a CNN model.

How It Works

Let’s look at the following example. As a first step, you set up the hyperparameters. The
second step is to set up the architecture. The last step is to train the model and make
predictions.

import torch

import torch.nn as nn

from torch.autograd import Variable
import torch.utils.data as Data

import torchvision

import matplotlib.pyplot as plt
%matplotlib inline

torch.manual seed(1) # reproducible
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In the preceding code, you import the necessary libraries for deploying the
convolutional neural network model using the digits dataset (Figure 3-2). The MNIST
digits dataset is the most popular dataset in deep learning for computer vision and

image processing.

# Hyper Parameters
EPOCH = 1
# train the input data n times, to save time, we just train 1 epoch
BATCH_SIZE = 50
# 50 samples at a time to pass through the epoch
LR = 0.001
# learning rate
DOWNLOAD MNIST = True
# set to False if you have downloaded
# Mnist digits dataset
train_data = torchvision.datasets.MNIST(
root="'./mnist/",
train=True,
# this is training data
transform=torchvision.transforms.ToTensor(),
# torch.FloatTensor of shape (Color x Height x Width) and
#normalize in the range [0.0, 1.0]
download=DOWNLOAD MNIST,
# download it if you don't have it

)

# plot one example

print(train data.train data.size()) # (60000, 28, 28)
print(train data.train labels.size()) # (60000)

plt.imshow(train data.train data[0].numpy(), cmap='gray")
plt.title('%i" % train data.train labels[0])

plt.show()

torch.Size([60000, 28, 28])

torch.Size([60000])
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Figure 3-2.

Let’s load the dataset using the loader functionality

# Data Loader for easy mini-batch return in training, the image batch
shape will be

#(50, 1, 28, 28)

train_loader = Data.Dataloader(dataset=train data, batch size=BATCH SIZE,
shuffle=True)

# convert test data into Variable, pick 2000 samples to speed up testing
test data = torchvision.datasets.MNIST(root="./mnist/', train=False)
test x = Variable(torch.unsqueeze(test data.test data, dim=1)).type(torch.
FloatTensor)[:2000]/255.

# shape from (2000, 28, 28) to (2000, 1, 28, 28), value in range(0,1)
test y = test data.test labels[:2000]

In convolutional neural network architecture, the input image is converted to
a feature set as set by color times height and width of the image. Because of the
dimensionality of the dataset, you cannot model it to predict the output. The output
layer in the preceding graph has classes such as car, truck, van, and bicycle. The input
bicycle image has features that the CNN model should make use of and predict correctly.
The convolution layer is usually accompanied by the pooling layer, which can be max
pooling and average pooling. The different layers of pooling and convolution continue
until the dimensionality is reduced to a level where you can use fully connected simple
neural networks to predict the correct classes. See Figure 3-3.

class CNN(nn.Module):
def init (self):
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super (CNN, self). init ()

self.convl = nn.Sequential( # input shape (1, 28, 28)
nn.Conv2d(
in_channels=1, # input height
out_channels=16, # n_filters
kernel size=5, # filter size
stride=1, # filter movement/step
padding=2,

# if want same width and length of this image after con2d,
#padding=(kernel size-1)/2 if stride=1
)» # output shape (16, 28, 28)
nn.ReLU(), # activation
nn.MaxPool2d(kernel size=2),
# choose max value in 2x2 area, output shape (16, 14, 14)

)

self.conv2 = nn.Sequential( # input shape (1, 28, 28)
nn.Conv2d(16, 32, 5, 1, 2), # output shape (32, 14, 14)
nn.ReLU(), # activation
nn.MaxPool2d(2), # output shape (32, 7, 7)

)

self.out = nn.Linear(32 * 7 * 7, 10)
# fully connected layer, output 10 classes

def forward(self, x):
x = self.convi(x)
self.conv2(x)
X = x.view(x.size(0), -1)
# flatten the output of conv2 to (batch size, 32 * 7 * 7)
output = self.out(x)
return output, x # return x for visualization

X

cnn = CNN()
print(cnn) # net architecture

CNN(
(convl): Sequential(
(0): Conv2d(1, 16, kernel size=(5, 5), stride=(1, 1), padding=(2, 2))
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(1): ReLU()
(2): MaxPool2d(kernel size=2, stride=2, padding=0, dilation=1,
ceil mode=False)
)
(conv2): Sequential(
(0): Conv2d(16, 32, kernel size=(5, 5), stride=(1, 1), padding=(2, 2))
(1): ReLU()
(2): MaxPool2d(kernel size=2, stride=2, padding=0, dilation=1,
ceil mode=False)
)
(out): Linear(in features=1568, out features=10, bias=True)

)

optimizer = torch.optim.Adam(cnn.parameters(), lr=LR) # optimize all cnn
parameters
loss func = nn.CrossEntropylLoss() # the target label

is not one-hotted

import sklearn

import warnings

warnings.filterwarnings("ignore", category=FutureWarning)
import warnings

warnings.filterwarnings("ignore")

from matplotlib import cm
try: from sklearn.manifold import TSNE; HAS SK = True
except: HAS SK = False; print('Please install sklearn for layer
visualization, if not there'")
def plot with labels(lowDWeights, labels):
plt.cla()
X, Y = lowDWeights[:, 0], lowDWeights[:, 1]
for x, y, s in zip(X, Y, labels):
c = cm.rainbow(int(255 * s / 9)); plt.text(x, y, s,
backgroundcolor=c, fontsize=9)
plt.xlim(X.min(), X.max()); plt.ylim(Y.min(), Y.max()); plt.
title('Visualize last layer');
plt.show();
#plt.pause(0.01)
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# training and testing
for epoch in range(EPOCH):
for step, (x, y) in enumerate(train_ loader):
# gives batch data, normalize x when iterate train_loader
b x = Variable(x) # batch x
b y = Variable(y) # batchy

output = cnn(b_x)[0] # cnn output

loss = loss func(output, b y) # cross entropy loss

optimizer.zero grad() # clear gradients for this
training step

loss.backward() # backpropagation, compute
gradients

optimizer.step() # apply gradients

if step % 100 == 0:

plt.ioff()

test output, last layer = cnn(test x)
pred y = torch.max(test output, 1)[1].data.squeeze()
accuracy = (pred y == test y).sum().item() / float(test y.
size(0))
print('Epoch: ', epoch, '| train loss: %.4f' % loss.data,
"| test accuracy: %.2f"' % accuracy)
if HAS_SK:
# Visualization of trained flatten layer (T-SNE)
tsne = TSNE(perplexity=30, n_components=2, init='pca',
n_iter=5000)
plot _only = 500
low_dim embs = tsne.fit transform(last layer.data.numpy()
[:plot only, :])
labels = test_y.numpy()[:plot_only]
plot with labels(low dim embs, labels)

In the preceding graph, if you look at the number 4, it is scattered throughout the

graph. Ideally, all of the 4s are closer to each other. This is because the test accuracy was

very low.
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Figure 3-3.
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30 -0  -10

Figure 3-3. (continued)

In this iteration, the training loss is reduced from 0.4369 to 0.1482 and the test
accuracy improves from 16% to 94%. The digits with the same color are placed closely on
the graph.

In the next epoch, the test accuracy on the MNIST digits dataset the accuracy
increases to 95%.

In the final step/epoch, the digits with similar numbers are placed together. After
training a model successfully, the next step is to make use of the model to predict. The
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following code explains the predictions process. The output object is numbered as 0, 1,
2, and so forth. The following shows the real and predicted numbers.

# print 10 predictions from test data

test output, = cnn(test x[:10])

pred y = torch.max(test output, 1)[1].data.numpy().squeeze()
print(pred y, 'prediction number")

print(test y[:10].numpy(), 'real number')

Recipe 3-7. Reloading a Model
Problem

How do you store and reload a model that has already been trained? Given the nature of
deep learning models, which typically require a larger training time, the computational
process creates a huge cost to the company. Can you retrain the model with new inputs
and store the model?

Solution

In the production environment, you typically cannot train and predict at the same time
because the training process takes a very long time. The prediction services cannot

be applied until the training process using the epoch is completed. Disassociating the
training process from the prediction process is required; therefore, you need to store the
application’s trained model and continue until the next phase of training is done.

How It Works

Let’s look at the following example, where you create the save function, which uses the
Torch neural network module to create the model and the restore _net() function to get
back the neural network model that was trained earlier.

import torch

from torch.autograd import Variable
import matplotlib.pyplot as plt
%matplotlib inline

77



CHAPTER 3 CNN AND RNN USING PYTORCH
torch.manual seed(1) # reproducible

#sample data
x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1) # x data (tensor),
shape=(100, 1)
y = x.pow(2) + 0.2*torch.rand(x.size()) # noisy y data (tensor),
shape=(100, 1)
X, y = Variable(x, requires grad=False), Variable(y, requires grad=False)

The preceding script contains a dependent Y variable and an independent X variable
as sample data points to create a neural network model. The following save function
stores the model. The net1 object is the trained neural network model, which can be
stored using two different protocols: (1) save the entire neural network model with all
the weights and biases, and (2) save the model using only the weights. If the trained
model object is very heavy in terms of size, you should save only the parameters that are
weights; if the trained object size is low, then the entire model can be stored.

def save():
# save net1
netl = torch.nn.Sequential(
torch.nn.Linear(1, 10),
torch.nn.ReLU(),
torch.nn.Linear(10, 1)
)
optimizer = torch.optim.SGD(net1.parameters(), 1lr=0.5)
loss _func = torch.nn.MSELoss()

for t in range(100):
prediction = net1(x)
loss = loss_func(prediction, y)
optimizer.zero grad()
loss.backward()
optimizer.step()

# plot result
plt.figure(1, figsize=(10, 3))
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plt.subplot(131)

plt.title('Net1")

plt.scatter(x.data.numpy(), y.data.numpy())
plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)

# 2 ways to save the net

torch.save(net1, 'net.pkl') # save entire net

torch.save(netl.state dict(), 'net params.pkl') # save only the
parameters

The prebuilt neural network model can be reloaded to the existing PyTorch session
by using the load function. To test the net1 object and make predictions, you load the
net1 object and store the model as net2. By using the net2 object, you can predict the
outcome variable. The following script generates the graph as a dependent and an
independent variable. prediction.data.numpy() in the last line of the code shows the
predicted result.

def restore net():
# restore entire netl to net2
net2 = torch.load('net.pkl")
prediction = net2(x)

# plot result

plt.subplot(132)

plt.title('Net2")

plt.scatter(x.data.numpy(), y.data.numpy())
plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)

Loading the pickle file format of the entire neural network is a relatively slow
process; however, if you are only making predictions for a new dataset, you can only load
the parameters of the model in a pickle format rather than the whole network.

def restore params():
# restore only the parameters in neti to net3
net3 = torch.nn.Sequential(
torch.nn.Linear(1, 10),
torch.nn.ReLU(),
torch.nn.Linear(10, 1)
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# copy netl's parameters into net3
net3.load state dict(torch.load('net params.pkl'))
prediction = net3(x)

# plot result
plt.subplot(133)
plt.title('Net3")
plt.scatter(x.data.numpy(), y.data.numpy())
plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)
plt.show()

# save net1

save()

# restore entire net (may slow)

restore net()

# restore only the net parameters

restore params()

Reuse the model. The restore function makes sure that the trained parameters
can be reused by the model. To restore the model, you can use the load state dict()
function to load the parameters of the model. The three models in Figure 3-4 are
identical because net2 and net3 are copies of net1.

Netl Net2 Net3
12 ry 12 ®
10{Q 10 é
038 1 058 1 4

% % ¢
061 061 ¢ °
04 1 04 1
02 o # 02 ° #
00 1 00 {

-10 -05 00 05 10 -10 -05 00 05 10 -10 -05 00 05 10
Figure 3-4.
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Recipe 3-8. Implementing a Recurrent
Neural Network

Problem

How do you set up a recurrent neural network (RNN) using the MNIST dataset?

Solution

A recurrent neural network is considered a memory network. You will use the epoch as
1 and a batch size of 64 samples at a time to establish the connection between the input
and the output. Using the RNN model, you can predict the digits present in the images.
See Figure 3-5.

Figure 3-5.

How It Works

Let’s look at the following example. The recurrent neural network takes a sequence of
vectors in the input layer and produces a sequence of vectors in the output layer. The
information sequence is processed through the internal state transfer in the recurrent
layer. Sometimes the output values have a long dependency on past historical values.
This is another variant of the RNN model: the long short-term memory (LSTM) model. It
is applicable for any sort of domain where the information is consumed in a sequential
manner, such as in a time series where the current stock price is decided by the historical
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stock price, where the dependency can be short or long. Similarly, the context prediction
using the long and short range of textual input vectors. There are other industry use
cases, such as noise classification, where noise is also a sequence of information.

The following code explains the execution of the RNN model using the PyTorch
module. There are three sets of weights: U, V, and W. The set of weights vector,
represented by W, is for passing information among the memory cells in the network that
display communication among the hidden state. RNN uses an embedding layer using
the Word2vec representation. The embedding matrix is the size of the number of words
by the number of neurons in the hidden layer. If you have 20,000 words and 1,000 hidden
units, for example, the matrix has a 20,000x1000 size of the embedding layer. The new
representations are passed to the LSTM cells, which go to a sigmoid output layer.

import torch

from torch import nn

from torch.autograd import Variable

import torchvision.datasets as dsets

import torchvision.transforms as transforms
import matplotlib.pyplot as plt

%matplotlib inline

torch.manual seed(1) # reproducible

# Hyper Parameters

EPOCH = 1 # train the training data n times, to save time, we
just train 1 epoch

BATCH _SIZE = 64

TIME_STEP = 28 # rnn time step / image height
INPUT_SIZE = 28 # rnn input size / image width
LR = 0.01 # learning rate

DOWNLOAD_MNIST = True # set to True if haven't download the data

The RNN models have hyperparameters, such as the number of iterations (EPOCH);
the batch size dependent on the memory available in a single machine; a time step to
remember the sequence of information; input size, which shows the vector size; and
learning rate. The selection of these values is indicative; you cannot depend on them for
other use cases. The value selection for hyperparameter tuning is an iterative process;
either you can choose multiple parameters and decide which one is working or do
parallel training of the model and decide which one is working fine.
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# Mnist digital dataset
train data = dsets.MNIST(
root="'./mnist/",

train=True, # this is training data
transform=transforms.ToTensor(), # Converts a PIL.Image or numpy.
ndarray to

# torch.FloatTensor of shape
(C x H x W) and normalize in
the range [0.0, 1.0]

download=DOWNLOAD_MNIST, # download it if you don't have it
)
# plot one example
print(train data.train data.size()) # (60000, 28, 28)

print(train data.train labels.size()) # (60000)
plt.imshow(train_data.train_data[0].numpy(), cmap='gray")
plt.title('%i" % train data.train labels[0])

plt.show()

torch.Size([60000, 28, 28])

torch.Size([60000])

Using the dsets.MINIST() function, you can load the dataset to the current session.
If you need to store the dataset, then download it locally.

The preceding script shows what the sample image dataset looks like. To train the
deep learning model, you need to convert the whole training dataset into mini batches,
which help you with averaging the final accuracy of the model. By using the data loader
function, you can load the training data and prepare the mini batches. The purpose
of the shuffle selection in mini batches is to ensure that the model captures all the
variations in the actual dataset.

# Data Loader for easy mini-batch return in training

train_loader = torch.utils.data.Dataloader(dataset=train data,
batch_size=BATCH_SIZE,
shuffle=True)

# convert test data into Variable, pick 2000 samples to speed up testing
test data = dsets.MNIST(root='./mnist/', train=False, transform=transforms.
ToTensor())
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test x = Variable(test data.test data, volatile=True).type(torch.

FloatTensor)[:2000]/255.

# shape (2000, 28, 28) value in range(0,1)

test y = test data.test labels.numpy().squeeze()[:2000] # covert to
numpy array

The preceding script prepares the training dataset. The test data is captured with
the flag train=False. It is transformed to a tensor using the test data random sample of
2,000 each at a time is picked up for testing the model. The test features set is converted
to a variable format and the test label vector is represented in a NumPy array format.

class RNN(nn.Module):
def init (self):
super(RNN, self). init ()

self.rnn = nn.LSTM( # if use nn.RNN(), it hardly learns
input_size=INPUT_ SIZE,
hidden size=64, # rnn hidden unit
num_layers=1, # number of rnn layer
batch_first=True, # input & output will has batch size as

1s dimension. e.g. (batch, time step,
input_size)

)

self.out = nn.Linear(64, 10)

def forward(self, x):
# x shape (batch, time step, input size)
# r _out shape (batch, time step, output size)
# h_n shape (n_layers, batch, hidden_ size)
# h_c shape (n_layers, batch, hidden_size)
r out, (h_n, h c) = self.rnn(x, None) # None represents zero
initial hidden state

# choose r out at the last time step
out = self.out(r out[:, -1, :])
return out

In the preceding RNN class, you are training an LSTM network, which is proven
effective for holding memory for a long time, and thus helps in learning. If you use the
nn.RNN() model, it hardly learns the parameters, because the vanilla implementation
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of RNN cannot hold or remember the information for a long period of time. In the LSTM
network, the image width is considered the input size, the hidden size is decided as
the number of neurons in the hidden layer, and num_layers shows the number of RNN
layers in the network.

The RNN module, within the LSTM module, produces the output as a vector size
of 64x10 because the output layer has digits to be classified as 0 to 9. The last forward
function shows how to proceed with forward propagation in an RNN network.

The following script shows how the LSTM model is processed under the RNN class.
In the LSTM function, you pass the input length as 28 and the number of neurons in the
hidden layer as 64, and from the hidden 64 neurons to the output 10 neurons.

rnn = RNN()
print(rnn)
RNN(

(xnn): LSTM(28, 64, batch first=True)
(out): Linear(in features=64, out features=10, bias=True)

)

optimizer = torch.optim.Adam(rnn.parameters(), lr=LR) # optimize all RNN
parameters

loss_func = nn.CrossEntropyLoss() # the target label

is not one-hotted

To optimize all RNN parameters, you use the Adam optimizer. Inside the function,
you use the learning rate as well. The loss function used in this example is the cross-
entropy loss function. You need to provide multiple epochs to get the best parameters.

In the following script, you print the training loss and the test accuracy. After one
epoch, the test accuracy increases to 95% and the training loss reduces to 0.24.

# training and testing
for epoch in range(EPOCH):
for step, (x, y) in enumerate(train loader): # gives batch data
b x = Variable(x.view(-1, 28, 28)) # reshape x to
(batch, time_
step, input size)
b y = Variable(y) # batch y

output = rnn(b x) # rnn output
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loss = loss_func(output, b_y) # cross
entropy loss
optimizer.zero grad() # clear gradients
for this
training step
loss.backward() # backpropagation,

compute gradients
optimizer.step() # apply gradients

if step % 50 == O:
test output = rnn(test x) # (samples, time_
step, input size)
pred y = torch.max(test output, 1)[1].data.numpy().squeeze()
accuracy = sum(pred_ y == test y) / float(test y.size)
print('Epoch: ', epoch, '| train loss: %.4f' % loss.data,
"| test accuracy: %.2f' % accuracy)

Epoch: 0 | train loss: 2.3088 | test accuracy: 0.09
Epoch: 0 | train loss: 1.3125 | test accuracy: 0.59
Epoch: 0 | train loss: 0.8936 | test accuracy: 0.71
Epoch: 0 | train loss: 0.4285 | test accuracy: 0.83
Epoch: 0 | train loss: 0.2509 | test accuracy: 0.87
Epoch: 0 | train loss: 0.3429 | test accuracy: 0.90
Epoch: 0 | train loss: 0.3704 | test accuracy: 0.86
Epoch: 0 | train loss: 0.4593 | test accuracy: 0.91
Epoch: 0 | train loss: 0.0794 | test accuracy: 0.94
Epoch: 0 | train loss: 0.0768 | test accuracy: 0.93
Epoch: 0 | train loss: 0.1809 | test accuracy: 0.94
Epoch: 0 | train loss: 0.2297 | test accuracy: 0.94
Epoch: 0 | train loss: 0.2210 | test accuracy: 0.95
Epoch: 0 | train loss: 0.2509 | test accuracy: 0.94
Epoch: 0 | train loss: 0.0828 | test accuracy: 0.94
Epoch: 0 | train loss: 0.2879 | test accuracy: 0.95
Epoch: 0 | train loss: 0.0908 | test accuracy: 0.94
Epoch: 0 | train loss: 0.1554 | test accuracy: 0.94
Epoch: 0 | train loss: 0.1557 | test accuracy: 0.96
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Once the model is trained, the next step is to make predictions using the RNN model.
Then you compare the actual vs. real output to assess how the model is performing.

# print 10 predictions from test data

test output = rnn(test x[:10].view(-1, 28, 28))

pred y = torch.max(test output, 1)[1].data.numpy().squeeze()
print(pred y, 'prediction number")

print(test y[:10], 'real number")

[721041495 9] prediction number
[721041495 9] real number

Recipe 3-9. Implementing a RNN
for Regression Problems

Problem

How do you set up a recurrent neural network for regression-based problems?

Solution

The regression model requires a target function and a feature set, and then a function
to establish the relationship between the input and the output. In this example, you are
going to use the recurrent neural network for a regression task. Regression problems
seem to be very simple; they do work best but are limited to data that shows clear linear
relationships. They are quite complex when predicting nonlinear relationships between
the input and the output.

How It Works

Let’s look at the following example that shows a nonlinear cyclical pattern between input
and output data. In the previous recipe, you looked at an example of a RNN in general
for classification-related problems, where it predicted the class of the input image.

In regression, however, the architecture of a RNN changes because the objective is to
predict the real valued output. The output layer would have one neuron in regression-
related problems.
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import torch

from torch import nn

from torch.autograd import Variable
import numpy as np

import matplotlib.pyplot as plt
Zmatplotlib inline

torch.manual seed(1) # reproducible

# Hyper Parameters

TIME_STEP = 10 # rnn time step
INPUT SIZE = 1 # rnn input size
LR = 0.02 # learning rate

The RNN time step implies that the last 10 values predict the current value, and the
rolling happens after that.

The following script shows some sample series in which the target cos function is
approximated by the sin function. See Figure 3-6.

# show data

steps = np.linspace(0, np.pi*2, 100, dtype=np.float32)

x_np = np.sin(steps) # float32 for converting torch FloatTensor
y np = np.cos(steps)

plt.plot(steps, y np, 'r-', label="target (cos)")

plt.plot(steps, x _np, 'b-', label="input (sin)")
plt.legend(loc="best")

plt.show()
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Figure 3-6.

Recipe 3-10. Using PyTorch’s Built-In Functions
Problem

How do you set up an RNN module and call the RNN function using PyTorch?

Solution

By using the built-in function available in the neural network module, you can
implement an RNN model.

How It Works

Let’s look at the following example. The neural network module in the PyTorch library
contains the RNN function. In the following script, you use the input matrix size, the
number of neurons in the hidden layer, and the number of hidden layers in the network.

class RNN(nn.Module):
def init (self):
super(RNN, self). init ()
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self.rnn = nn.RNN(
input_size=INPUT SIZE,
hidden_size=32, # rnn hidden unit
num_layers=1, # number of rnn layer
batch first=True, # input & output will has batch size as 1s
dimension. e.g.
# (batch, time step, input size)
)

self.out = nn.Linear(32, 1)

def forward(self, x, h state):
# x (batch, time step, input size)
# h_state (n_layers, batch, hidden size)
# r out (batch, time step, hidden size)
r out, h state = self.rnn(x, h_state)

outs = [] # save all predictions
for time step in range(r out.size(1)): # calculate output for
each time step
outs.append(self.out(r out[:, time step, :]))
return torch.stack(outs, dim=1), h state

After creating the RNN class function, you need to provide the optimization function,
which is Adam, and this time, the loss function is the mean square loss function. Since
the objective is to make predictions of a continuous variable, you use the MSELoss
function in the optimization layer.

rnn = RNN()
print(rnn)
RNN(

(xnn): RNN(1, 32, batch first=True)
(out): Linear(in_features=32, out features=1, bias=True)

)

optimizer

torch.optim.Adam(xnn.parameters(), lr=LR) # optimize all cnn
parameters
loss_func

nn.MSELoss ()
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h_state = None # for initial hidden state

plt.figure(1, figsize=(12, 5))
plt.ion() # continuously plot

for step in range(60):
start, end = step * np.pi, (step+1)*np.pi # time range
# use sin predicts cos
steps = np.linspace(start, end, TIME STEP, dtype=np.float32)
X_np = np.sin(steps) # float32 for converting torch FloatTensor
y np = np.cos(steps)

x = Variable(torch.from numpy(x_np[np.newaxis, :, np.newaxis]))
# shape (batch, time step, input size)
y = Variable(torch.from numpy(y np[np.newaxis, :, np.newaxis]))

prediction, h state = rnn(x, h_state) # rnn output

# 11 next step is important !!

h state = Variable(h state.data)

# repack the hidden state, break the connection from last iteration

loss = loss_func(prediction, y)
optimizer.zero grad()

# cross entropy loss
# clear gradients for this
training step

loss.backward() # backpropagation, compute
gradients

optimizer.step() # apply gradients

# plotting

plt.plot(steps, y np.flatten(), 'r-")
plt.plot(steps, prediction.data.numpy().flatten(), 'b-")
plt.draw(); plt.pause(0.05)

Now you iterate over 60 steps to predict the cos function generated from the sample
space and have it predicted by a sin function. The iterations take the learning rate
defined as before and backpropagate the error to reduce the MSE and improve the
prediction. See Figure 3-7.
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Figure 3-7.
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Figure 3-7. (continued)

Recipe 3-11. Working with Autoencoders
Problem

How do you perform clustering using the autoencoders function?

93



CHAPTER 3  CNN AND RNN USING PYTORCH

Solution

Unsupervised learning is a branch of machine learning that does not have a target
column or the output is not defined. You only need to understand the unique patterns
existing in the data. Let’s look at the autoencoder architecture in Figure 3-8. The input
feature space is transformed into a lower dimensional tensor representation using a
hidden layer and mapped back to the same input space. The layer that is precisely in the
middle holds the autoencoder’s values.

Autoencoder

L 4
A

Input Input

Figure 3-8. Autoencoder architecture

How It Works

Let’s look at the following example. The torchvision library contains popular datasets,
model architectures, and frameworks. Autoencoder is a process of identifying latent
features from the dataset; it is used for classification, prediction, and clustering. If you
put the input data in the input layer and the same dataset in the output layer, and then
you add multiple layers of hidden layers with many neurons, and then you pass through
a series of epochs, you get a set of latent features in the innermost hidden layer. The
weights or parameters in the central hidden layer are known as the autoencoder layer.

import torch

import torch.nn as nn

from torch.autograd import Variable
import torch.utils.data as Data

import torchvision

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm

import numpy as np

Zmatplotlib inline
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torch.manual seed(1) # reproducible

# Hyper Parameters

EPOCH = 10

BATCH SIZE = 64

LR = 0.005 # learning rate
DOWNLOAD_MNIST = False

N _TEST IMG = 5

You again use the MNIST dataset to experiment with autoencoder functionality. This
time you are taking 10 epochs, a batch size 64 to be passed to the network, a learning rate
of 0.005, and 5 images for testing.

# Mnist digits dataset

train_data = torchvision.datasets.MNIST(
root="'./mnist/",
train=True,
# this is training data
transform=torchvision.transforms.ToTensor(),
# Converts a PIL.Image or numpy.ndarray to

# torch.FloatTensor of shape (C x H x W) and normalize in the range
[0.0, 1.0]

download=DOWNLOAD MNIST,

# download it if you don't have it

Figure 3-9 shows the dataset uploaded from the torchvision library and displayed as
an image.

# plot one example

print(train data.train data.size()) # (60000, 28, 28)
print(train data.train labels.size()) # (60000)
plt.imshow(train data.train data[2].numpy(), cmap='gray")
plt.title('%i" % train data.train labels[2])

plt.show()
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torch.Size([60000, 28, 28])
torch.Size([60000])

Figure 3-9.

# Data Loader for easy mini-batch return in training, the image batch shape
will be (50, 1, 28, 28)

train loader = Data.Dataloader(dataset=train data, batch_size=BATCH SIZE,
shuffle=True)

class AutoEncoder(nn.Module):
def init (self):
super (AutoEncoder, self). init ()

self.encoder = nn.Sequential(
nn.Linear(28*28, 128),

nn.Tanh(),
nn.Linear(128, 64),
nn.Tanh(),
nn.Linear(64, 12),
nn.Tanh(),

nn.Linear(12, 3), # compress to 3 features which can be
visualized in plt
)
self.decoder = nn.Sequential(
nn.Linear(3, 12),
nn.Tanh(),
nn.Linear(12, 64),
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nn.Tanh(),

nn.Linear(64, 128),

nn.Tanh(),

nn.Linear(128, 28%*28),

nn.Sigmoid(), # compress to a range (0, 1)

)

def forward(self, x):
encoded = self.encoder(x)
decoded = self.decoder(encoded)
return encoded, decoded

Let’s discuss the autoencoder architecture. The input has 784 features. It has a height
of 28 and a width of 28. You pass the 784 neurons from the input layer to the first hidden
layer, which has 128 neurons in it. Then you apply the hyperbolic tangent function to
pass the information to the next hidden layer. The second hidden layer contains 128
input neurons and transforms it into 64 neurons. In the third hidden layer, you apply
the hyperbolic tangent function to pass the information to the next hidden layer. The
innermost layer contains three neurons, which are considered as three features, which
is the end of the encoder layer. Then the decoder function expands the layer back to the
784 features in the output layer.

autoencoder = AutoEncoder()
print(autoencoder)

optimizer = torch.optim.Adam(autoencoder.parameters(), lr=LR)
loss _func = nn.MSELoss()

# original data (first row) for viewing
view data = Variable(train data.train data[:N _TEST IMG].view(-1, 28*28).
type(torch.FloatTensor)/255.)

AutoEncoder(
(encoder): Sequential(
(0): Linear(in _features=784, out features=128, bias=True)
(1): Tanh()
(2): Linear(in features=128, out features=64, bias=True)
(3): Tanh()
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(4): Linear(in features=64, out features=12, bias=True)
(5): Tanh()
(6): Linear(in_features=12, out features=3, bias=True)

)

(decoder): Sequential(
(0): Linear(in_features=3, out features=12, bias=True)
(1): Tanh()
(2): Linear(in_features=12, out features=64, bias=True)

(3): Tanh()
(4): Linear(in features=64, out features=128, bias=True)

(5): Tanh()
(6): Linear(in features=128, out features=784, bias=True)
(7): Sigmoid()

Once you set the architecture, then the normal process of making the loss function
minimize corresponding to a learning rate and optimization function happens. The
entire architecture passes through a series of epochs in order to reach the target output.

Recipe 3-12. Fine-Tuning Results
Using Autoencoder

Problem

How do you set up iterations to fine-tune the results?

Solution

Conceptually, an autoencoder works the same as the clustering model. In unsupervised
learning, the machine learns patterns from data and generalizes it to the new dataset.
The learning happens by taking a set of input features. Autoencoder functions are also
used for feature engineering.
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How It Works

Let’s look at the following example. The same MNIST dataset is used as an example, and

the objective is to understand the role of the epoch in achieving a better autoencoder
layer. You increase the epoch size to reduce errors to a minimum; however, in practice,
increasing the epoch has many challenges, including memory constraints. See

Figure 3-10.

for epoch in range(EPOCH):
for step, (x, y) in enumerate(train loader):

b x = Variable(x.view(-1, 28*28)) # batch x, shape (batch, 28*28)
b y = Variable(x.view(-1, 28%28)) # batch y, shape (batch, 28%*28)

b label = Variable(y) # batch label

encoded, decoded = autoencoder(b x)

loss = loss func(decoded, b y) # mean square error
optimizer.zero grad() # clear gradients for this
training step
loss.backward() # backpropagation, compute
gradients
optimizer.step() # apply gradients

if step % 500 == 0 and epoch in [0, 5, EPOCH-1]:
print('Epoch: ', epoch, '| train loss: %.4f' % loss.data)

# plotting decoded image (second row)
_, decoded data = autoencoder(view data)

# initialize figure
f, a = plt.subplots(2, N_TEST IMG, figsize=(5, 2))

for i in range(N_TEST_IMG):
a[0][i].imshow(np.reshape(view data.data.numpy()[i],
(28, 28)), cmap="'gray');
a[o][i].set xticks(()); a[o][i].set yticks(())

for i in range(N_TEST_IMG):
a[1][i].clear()
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a[1][1].imshow(np.reshape(decoded data.data.numpy()[i],
(28, 28)), cmap="gray')
a[1][i].set xticks(()); a[1][i].set yticks(())
plt.show(); #plt.pause(0.05)

Epoch: 0 | train loss: 0.0678

slol-l/1q
HEHOHD

Epoch: 5 | train loss: 0.0375

SlolHl/14
HECIALA

Figure 3-10.
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Figure 3-10. (continued)

By using the encoder function, you can represent the input features into a set of
latent features. By using the decoder function, however, you can reconstruct the image.
Then you can match how image reconstruction is done by using the autoencoder
functions. From the preceding set of graphs, it is clear that as you increase the epoch, the
image recognition becomes apparent.

torch.manual seed(1) # reproducible
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Recipe 3-13. Restricting Model Overfitting
Problem

When you fit many neurons and layers to predict the target class or output variable, the
function usually overfits the training dataset. Because of model overfitting, you cannot
make a good prediction on the test set. The test accuracy is not the same as training
accuracy. There will be deviations in training and test accuracy.

Solution

To restrict model overfitting, you consciously introduce dropout rate, which means
randomly delete (let’s say) 10% or 20% of the weights in the network and check the
model accuracy at the same time. If you are able to match the same model accuracy after
deleting the 10% or 20% of the weights, then your model is good.

How It Works

Let’s look at the following example. Model overfitting occurs when the trained model
does not generalize to other test case scenarios. It is identified when the training
accuracy deviates significantly from the test accuracy. To avoid model overfitting, you
can introduce the dropout rate in the model. See Figure 3-11.

import torch

from torch.autograd import Variable
import matplotlib.pyplot as plt
Zmatplotlib inline

torch.manual seed(1) # reproducible
N_SAMPLES = 20
N_HIDDEN = 300

# training data

x = torch.unsqueeze(torch.linspace(-1, 1, N_SAMPLES), 1)

y = X + 0.3*torch.normal(torch.zeros(N_SAMPLES, 1), torch.ones
(N_SAMPLES, 1))

X, y = Variable(x), Variable(y)
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# test data

test x = torch.unsqueeze(torch.linspace(-1, 1, N _SAMPLES), 1)

test y = test x + 0.3*torch.normal(torch.zeros(N_SAMPLES, 1), torch.ones
(N_SAMPLES, 1))

test x, test y = Variable(test x), Variable(test y )

# show data

plt.scatter(x.data.numpy(), y.data.numpy(), c="magenta', s=50, alpha=0.5,
label="train")

plt.scatter(test x.data.numpy(), test y.data.numpy(), c='cyan', s=50,
alpha=0.5, label="test")

plt.legend(loc="upper left"')

plt.ylim((-2.5, 2.5))

plt.show()

|l ® train

2 test

1 e ©

@ N ] ®
0 [ °o " 09
® 9
]
-1 e %,
o

_2.

-1.00 -0.75 -0.50 -0.25 000 025 050 075 100

Figure 3-11.

The dropout rate introduction to the hidden layer ensures that weights less than
the threshold defined are removed from the architecture. A typical threshold for an
application’s dropout rate is 20% to 50%. A 20% dropout rate implies a smaller degree
of penalization; however, the 50% threshold implies heavy penalization of the model
weights.

In the following script, you apply a 50% dropout rate to drop the weights from the
model. You apply the dropout rate twice.
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net_overfitting = torch.nn.Sequential(
torch.nn.Linear(1, N _HIDDEN),
torch.nn.ReLU(),
torch.nn.Linear(N_HIDDEN, N_HIDDEN),
torch.nn.RelLU(),
torch.nn.Linear(N_HIDDEN, 1),

)

net_dropped = torch.nn.Sequential(
torch.nn.Linear(1, N_HIDDEN),
torch.nn.Dropout(0.5), # drop 50% of the neuron
torch.nn.RelLU(),
torch.nn.Linear(N_HIDDEN, N_HIDDEN),
torch.nn.Dropout(0.5), # drop 50% of the neuron
torch.nn.RelLU(),
torch.nn.Linear(N_HIDDEN, 1),

)

print(net overfitting) # net architecture

print(net_dropped)

Sequential(
(0): Linear(in_features=1, out features=300, bias=True)
(1): ReLU()

(2): Linear(in_features=300, out features=300, bias=True)
(3): ReLU()
(4): Linear(in_features=300, out features=1, bias=True)

)
Sequential(
(0): Linear(in features=1, out features=300, bias=True)
(1): Dropout(p=0.5, inplace=False)
(2): ReLU()
(3): Linear(in_features=300, out features=300, bias=True)
(4): Dropout(p=0.5, inplace=False)
(5): ReLU()
(6): Linear(in_features=300, out features=1, bias=True)
)
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optimizer ofit = torch.optim.Adam(net overfitting.parameters(), lr=0.01)
optimizer drop = torch.optim.Adam(net dropped.parameters(), lr=0.01)

loss _func = torch.nn.MSELoss()

The selection of the right dropout rate requires a fair idea about the business
and domain.

Recipe 3-14. Visualizing the Model Overfit
Problem

Evaluate deep learning model overfitting.

Solution

Change the model hyperparameters and iteratively see if the model is overfitting
data or not.

How It Works

The previous recipe covered two types of neural networks: overfitting and dropout rate.
When the model parameters estimated from the data come closer to the actual data

for the training dataset, and the same models differs from the test set, it is a clear sign

of model overfit. To restrict model overfit, you can introduce the dropout rate, which
deletes a certain percentage of connections (as in weights from the network) to allow the
trained model to come to the real data.

In the following script, the iterations are taken 500 times. The predicted values are
generated from the base model, which shows overfitting, and from the dropout model,
which shows the deletion of some weights. In the same fashion, you create the two loss
functions, backpropagation, and implementation of the optimizer. See Figure 3-12.

for t in range(500):
pred ofit = net overfitting(x)
pred drop = net_dropped(x)
loss ofit = loss func(pred ofit, y)
loss drop = loss func(pred drop, y)
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optimizer ofit.zero grad()
optimizer drop.zero grad()
loss_ofit.backward()
loss_drop.backward()
optimizer ofit.step()
optimizer drop.step()

if t % 100 == 0:
# change to eval mode in order to fix drop out effect
net_overfitting.eval()
net_dropped.eval() # parameters for dropout differ from train mode

# plotting
plt.cla()
test _pred ofit = net overfitting(test x)
test _pred drop = net dropped(test x)
plt.scatter(x.data.numpy(), y.data.numpy(), c="magenta', s=50,
alpha=0.3, label="train")
plt.scatter(test x.data.numpy(), test y.data.numpy(),
c='cyan', s=50,
alpha=0.3, label="test")
plt.plot(test x.data.numpy(), test pred ofit.data.numpy(), 'r-',
lw=3, label="overfitting")
plt.plot(test x.data.numpy(), test pred drop.data.numpy(), 'b--',
1w=3, label='"dropout(50%)")
plt.text(0, -1.2, 'overfitting loss=%.4f' % loss_func(test pred_
ofit, test y).data,
fontdict={"size': 20, 'color': ‘'red'})
plt.text(0, -1.5, 'dropout loss=%.4f"' % loss_func(test_pred drop,
test y).data,
fontdict={"size': 20, 'color': 'blue'})
plt.legend(loc="upper left'); plt.ylim((-2.5, 2.5));plt.pause(0.1)

# change back to train mode
net_overfitting.train()
net_dropped.train()
plt.show()
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Figure 3-12.

025 050 075 100

The initial round of plotting includes the overfitting loss and dropout loss and how
it is different from the actual training and test data points from the preceding graph. See

Figure 3-13.
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Figure 3-13.

After many iterations, the preceding graph was generated by using the two functions
with the actual model and with the dropout rate. The takeaway from this graph is that
actual training data may get closer to the overfit model; however, the dropout model fits
the data really well.
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Recipe 3-15. Initializing Weights in the
Dropout Rate

Problem

How do you delete the weights in a network? Should you delete randomly or by using a
distribution?

Solution

You should delete the weights in the dropout layer based on probability distribution,
rather than randomly.

How It Works

In the previous recipe, three layers of a dropout rate were introduced: one after the first
hidden layer and two after the second hidden layer. The probability percentage was
0.50, which meant randomly delete 50% of the weights. Sometimes, random selection of
weights from the network deletes relevant weights, so an alternative idea is to delete the
weights in the network generated from statistical distribution.

The following script shows how to generate the weights from a uniform distribution
and then you can use the set of weights in the network architecture.

import numpy as np
import torch

#From a uniform distribution

torch.Tensor (5, 3)

tensor([[2.6019e-33, 0.0000e+00, 3.7835e-44], [0.0000e+00, nan,
0.0000e+00], [1.3733e-14, 6.4069e+02, 4.3066e+21], [1.1824e+22, 4.3066e+21,
6.3828e+28], [3.8016e-39, 0.0000e+00, 1.5501e-37]])

f#figetting the shape of the tensor

torch.Tensor(5, 3).uniform (-1, 1)

tensor([[ 0.8790, 0.7375, 0.1182], [ 0.3652, 0.1322, 0.8587], [ 0.3682,
-0.2907, 0.0051], [ 0.0886, -0.7588, -0.5371], [ 0.0085, 0.0812, -0.6360]])
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#getting the shape of the tensor

x = torch.Tensor(5, 3).uniform (-1, 1)
print(x.size())

torch.Size([5, 3])

#Creation from lists & numpy

z = torch.LongTensor([[1, 3], [2, 9]])
print(z.type())

# Cast to numpy ndarray
print(z.numpy().dtype)
torch.LongTensor

int64

# Data type inferred from numpy

print(torch.from numpy(np.random.rand(5, 3)).type())

print(torch.from numpy(np.random.rand(5, 3).astype(np.float32)).type())
torch.DoubleTensor

torch.FloatTensor

Recipe 3-16. Adding Math Operations
Problem

How do you set up the broadcasting function and optimize the convolution function?

Solution

The script snippet shows how to introduce batch normalization when setting up a
convolutional neural network model and then further setting up a pooling layer.

How It Works

To introduce batch normalization in the convolutional layer of the neural network
model, you need to perform tensor-based mathematical operations that are functionally
different from other methods of computation.
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#Simple mathematical operations

y = x * torch.randn(5, 3)

print(y)

tensor([[ 0.1587, 0.4137, -0.4801],
[-0.2706, 0.0411, -0.8954],
[ 0.3616, -0.0245, -0.3401],
[-0.6478, -0.1207, -0.1698],
[ 0.2107, -0.2128, 0.1017]])

y = x / torch.sqrt(torch.randn(5, 3) ** 2)
print(y)
tensor([[ 2.1697, -1.1561, -7.4875],
[-0.5094, 0.4193, -4.4016],
[ 0.4308, 0.0421, 0.6234],
[ 2.3634, 2.1020, -0.2185],
[ 4.8023, 0.4352, 0.4892]])

#Broadcasting

print (x.size())

y = x + torch.randn(5, 1)

print(y)

torch.Size([5, 3])

tensor([[ 1.0416, -0.1192, -0.1256],
[ 0.0484, 1.5687, 0.0468],
[ 0.1000, -0.4971, 0.3657],
[ 0.3893, 0.5367, -0.2656],
[ 2.1538, 1.9121, 2.0349]])

#Reshape

y = torch.randn(5, 10, 15)

print(y.size())

print(y.view(-1, 15).size()) # Same as doing y.view(50, 15)
print(y.view(-1, 15).unsqueeze(1).size()) # Adds a dimension at index 1.
print(y.view(-1, 15).unsqueeze(1).squeeze().size())

print()

print(y.transpose(0, 1).size())

print(y.transpose(1, 2).size())
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print(y.transpose(0, 1).transpose(1, 2).size())
print(y.permute(1, 2, 0).size())

torch.Size([5, 10, 15])

torch.Size([50, 15])

torch.Size([50, 1, 15])

torch.Size([50, 15])

torch.Size([10, 5, 15])
torch.Size([5, 15, 10])
torch.Size([10, 15, 5])
torch.Size([10, 15, 5])

#Repeat

print(y.view(-1, 15).unsqueeze(1).expand(50, 100, 15).size())
print(y.view(-1, 15).unsqueeze(1).expand as(torch.randn(50, 100,
15)).size())

torch.Size([50, 100, 15])

torch.Size([50, 100, 15])

#Concatenate tensors

# 2 is the dimension over which the tensors are concatenated
print(torch.cat([y, y], 2).size())

# stack concatenates the sequence of tensors along a new dimension.
print(torch.stack([y, y], 0).size())

torch.Size([5, 10, 30])
torch.Size([2, 5, 10, 15])

#Advanced Indexing
y = torch.randn(2, 3, 4)

print(y[[1, 0, 1, 1]].size())

# PyTorch doesn't support negative strides yet so ::-1 does not work.
rev_idx = torch.arange(1, -1, -1).long()
print(y[rev_idx].size())

torch.Size([4, 3, 4])
torch.Size([2, 3, 4])
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The following script shows how the batch normalization using a 2D layer is resolved
before entering into the 2D max pooling layer:

#Convolution, BatchNorm & Pooling Layers
x = Variable(torch.randn(10, 3, 28, 28))

conv = nn.Conv2d(in _channels=3, out channels=32, kernel size=(3, 3),
stride=1,
padding=1, bias=True)
bn = nn.BatchNorm2d(num_features=32)
pool = nn.MaxPool2d(kernel size=(2, 2), stride=2)

output_conv = bn(conv(x))
outpout_pool = pool(conv(x))

print('Conv output size : ', output conv.size())
print('Pool output size : ', outpout pool.size())
Conv output size : torch.Size([10, 32, 28, 28])
Pool output size : torch.Size([10, 32, 14, 14])

Recipe 3-17. Embedding Layers in RNN
Problem

The recurrent neural network is used mostly for text processing. An embedded feature
offers more accuracy on a standard RNN model than raw features. How do you create
embedded features in an RNN?

Solution

The first step is to create an embedding layer, which is a fixed dictionary and fixed-size
lookup table, and then introduce the dropout rate after than create gated recurrent unit.

How It Works

When textual data comes in as a sequence, the information is processed in a sequential
way; for example, when we describe something, we use a set of words in sequence to
convey the meaning. If we use the individual words as vectors to represent the data,
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the resulting dataset would be very sparse. But if we use a phrase-based approach or a
combination of words to represent as feature vector, then the vectors become a dense
layer. Dense vector layers are called word embeddings, as the embedding layer conveys a
context or meaning as the result. It is definitely better than the bag-of-words approach.

#Recurrent, Embedding & Dropout Layers
inputs = [[1, 2, 3], [1, o, 4], [1, 2, 4], [1, 4, o], [1, 3, 3]]
x = Variable(torch.LongTensor(inputs))

embedding = nn.Embedding(num_embeddings=5, embedding dim=20, padding idx=1)

drop = nn.Dropout(p=0.5)

gru = nn.GRU(input_size=20, hidden size=50, num_layers=2, batch first=True,
bidirectional=True, dropout=0.3)

emb = drop(embedding(x))
gru_h, gru h t = gru(emb)

print('Embedding size : ', emb.size())

print('GRU hidden states size : ', gru h.size())
print('GRU last hidden state size : ', gru h t.size())
Embedding size : torch.Size([5, 3, 20])

GRU hidden states size : torch.Size([5, 3, 100])

GRU last hidden state size : torch.Size([4, 5, 50])

#The functional API provides users a way to use these classes in a

functional way.

import torch.nn.functional as F

x = Variable(torch.randn(10, 3, 28, 28))

filters = Variable(torch.randn(32, 3, 3, 3))

conv_out = F.relu(F.dropout(F.conv2d(input=x, weight=filters, padding=1),
p=0.5, training=True))

print('Conv output size : ', conv_out.size())
Conv output size : torch.Size([10, 32, 28, 28])
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Conclusion

This chapter covered using the PyTorch API, creating a simple neural network mode, and
optimizing the parameters by changing the hyperparameters (i.e., learning rate, epochs,
gradients drop). You looked at recipes on how to create a convolutional neural network
and a recurrent neural network, and you introduced the dropout rate in these networks
to control model overfitting.

You used small tensors to follow what exactly goes on behind the scenes with
calculations and so forth. You only need to define the problem statement, create
features, and apply the recipe to get results. In the next chapter, you will implement
many more examples with PyTorch.
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Introduction to Neural
Networks Using PyTorch

Deep neural network-based models are gradually becoming the backbone for artificial
intelligence and machine learning implementations. The future of data mining will
be governed by the usage of artificial neural network-based advanced modeling
techniques. One obvious question is why neural networks are only now gaining so much
importance, because they were invented in 1950s.

Borrowed from the computer science domain, neural networks can be defined
as parallel information processing systems where all input relates to each other, like
neurons in the human brain, to transmit information so that activities like facial
recognition and image recognition can be performed. In this chapter, you will learn
about the application of neural network-based methods on various data mining tasks,
such as classification, regression, forecasting, and feature reduction. An artificial neural
network (ANN) functions similarly to the way the human brain functions, in which
billions of neurons link to each other for information processing and insight generation.

Recipe 4-1. Working with Activation Functions
Problem

What are activation functions and how do they work in real projects? How do you
implement an activation function using PyTorch?

Solution

An activation function is a mathematical formula that transforms a vector available in
a binary, float, or integer format to another format based on the type of mathematical
transformation function. The neurons are present in different layers—input, hidden, and
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output, which are interconnected through a mathematical function called an activation
function. There are different variants of activation functions, which are explained next.
Understanding the activation function helps in accurately implementing a neural
network model.

How It Works

All activation functions that are part of a neural network model can be broadly classified
as linear functions and nonlinear functions. The PyTorch torch.nn module creates

any type of a neural network model. Let’s look at some examples of the deployment of
activation functions using PyTorch and the torch.nn module.

The core differences between PyTorch and TensorFlow are the way a computational
graph is defined, the way the two frameworks perform calculations, and the amount of
flexibility you have in changing the script and introducing other Python-based libraries
in it. In TensorFlow, you must define the variables and placeholders before you initialize
the model. You must also keep track of objects you need later, and for that you need a
placeholder. In TensorFlow, you need to define the model first and then compile and
run it; however, in PyTorch, you can define the model as you go—you don’t have to keep
placeholders in the code. That’s why the PyTorch framework is dynamic.

Linear Function

A linear function is a simple function typically used to transfer information from the
demapping layer to the output layer. You use a linear function in places where variations
in data are lower. In a deep learning model, practitioners typically use a linear function
in the last hidden layer to the output layer. In a linear function, the output is always
confined to a specific range; because of that, it is used in the last hidden layer in a deep
learning model, or in linear regression-based tasks, or in a deep learning model where
the task is to predict the outcome from the input dataset. Here is the formula:

y=a+px
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Bilinear Function

A bilinear function is a simple function typically used to transfer information. It applies a

bilinear transformation to incoming data.

y=x,*%A%*x,+b

from _ future_ import print_function
import torch

import numpy as np

import torch.optim

import torch.nn as nn

import torch.optim as optim

import torch.nn.init as init

import torch.nn.functional as F

from torch.autograd import Variable

import warnings
warnings.filterwarnings("ignore", category=FutureWarning)

#torch.nn: - Neural networks can be constructed using the torch.nn package.

Variable(torch.randn(100, 10))
Variable(torch.randn(100, 30))

X
y

linear = nn.Linear(in features=10, out features=5, bias=True)
output_linear = linear(x)
print('Output size : ', output linear.size())

bilinear = nn.Bilinear(ini_features=10, in2 features=30, out features=5,
bias=True)

output_bilinear = bilinear(x, y)

print('Output size : ', output bilinear.size())

Output size : torch.Size([100, 5])

Output size : torch.Size([100, 5])
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Sigmoid Function

A sigmoid function is frequently used by professionals in data mining and analytics
because it is easier to explain and implement. It is a nonlinear function. When you pass
weights from the input layer to the hidden layer in a neural network, you want your
model to capture all sorts of nonlinearity present in the data; hence, using the sigmoid
function in the hidden layers of a neural network is recommended. The nonlinear
functions help with generalizing the dataset. It is easier to compute the gradient of a
function using a nonlinear function.

The sigmoid function is a specific nonlinear activation function. The sigmoid
function output is always confined within 0 and 1; therefore, it is mostly used in
performing classification-based tasks. One of the limitations of the sigmoid function
is that it may get stuck in local minima. An advantage is that it provides probability of
belonging to the class. Here is its equation:

1
f(x)_1+e*x
x = Variable(torch.randn(100, 10))
y = Variable(torch.randn(100, 30))

sig = nn.Sigmoid()

output_sig = sig(x)
output_sigy = sig(y)
print('Output size :
print('Output size :

, output _sig.size())
, output_sigy.size())

Output size : torch.Size([100, 10])
Output size : torch.Size([100, 30])

print(x[0])

print(output sig[o])

tensor([-1.5454, 0.3599, 2.2720, 0.7115, 0.5296, 0.6176, 1.8854, 0.4854,
-0.3893, 0.8369])

tensor([0.1758, 0.5890, 0.9065, 0.6707, 0.6294, 0.6497, 0.8682, 0.6190,

0.4039, 0.6978])
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Hyperbolic Tangent Function

A hyperbolic tangent function is another variant of a transformation function. It is used
to transform information from the mapping layer to the hidden layer. It is typically used
between the hidden layers of a neural network model. The range of the tanh function is
between -1 and +1.

tanh(x)ze —¢

X

e +e

Variable(torch.randn(100, 10))
Variable(torch.randn(100, 30))

X
y

func = nn.Tanh()

output_x = func(x)

output_y = func(y)

print('Output size : ', output x.size())
print('Output size : ', output y.size())

Output size : torch.Size([100, 10])
Output size : torch.Size([100, 30])

print(x[o0])
print(output x[0])
print(y[o])
print(output y[0])

tensor([ 1.6056, 0.1092, 0.2044, 1.0537, -0.8658, -0.9111, -1.1586, -1.7745,
-0.8922, -2.3219])

tensor([ 0.9225, 0.1087, 0.2016, 0.7832, -0.6992, -0.7217, -0.8206, -0.9441,
-0.7125, -0.9809])

tensor([ 0.2153, 1.3900, 0.4259, -0.3347, -1.2087, -0.1930, 0.1645, -1.5867,
-0.1752, 0.3863, 0.6141, 1.6769, -0.8080, 0.3790, -0.7446, 0.1795,
-1.5132, 0.8282, 1.6872, 0.7207, -0.6874, 0.0136, 0.3600, 1.9525,
-0.1363, -0.2002, 0.4026, -0.1413, 2.2343, 1.0469])

tensor([ 0.2121, 0.8832, 0.4019, -0.3228, -0.8363, -0.1907, 0.1631, -0.9196,
-0.1735, 0.3682, 0.5470, 0.9325, -0.6685, 0.3619, -0.6319, 0.1776,
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-0.9075, 0.6795, 0.9338, 0.6173, -0.5963, 0.0136, 0.3452,
0.9605,
-0.1355, -0.1976, 0.3821, -0.1404, 0.9773, 0.7806])

Log Sigmoid Transfer Function

The following formula explains the log sigmoid transfer function, which is used in
mapping the input layer to the hidden layer. If the data is not binary, and it is a float type
with a lot of outliers (as in large numeric values present in the input feature), you should
use the log sigmoid transfer function.

f<x):10g(1+i*”j

Variable(torch.randn(100, 10))
Variable(torch.randn(100, 30))

X
y

func = nn.LogSigmoid()

output x = func(x)

output_y = func(y)

print('Output size : ', output x.size())
print('Output size : ', output y.size())

Output size : torch.Size([100, 10])
Output size : torch.Size([100, 30])

print(x[o0])
print(output x[0])
print(y[o])
print(output y[0])

tensor([-0.9983, -0.2337, 0.7794, 1.0399, -1.4705, -1.4177, -0.2531,
-1.0391,
-1.1570, -0.5105])

tensor([-1.3120, -0.8168, -0.3775, -0.3027, -1.6773, -1.6346, -0.8277, -1.3420,
-1.4304, -0.9806])

tensor([-0.3758, -1.1889, 0.7846, 0.8277, 0.1351, 0.2677, -0.2810, -1.1610,
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-0.6973, -0.1106, 0.6361, 1.4497, -0.6007, -0.1102, 0.8876, -0.1440,
-0.2914, -0.0144, 1.4152, 2.1429, 0.8828, 0.9561, -0.1876, 1.1487,
0.6150, -0.1044, 1.3075, -0.1601, -0.4018, -1.2599])

tensor([-0.8986, -1.4547, -0.3759, -0.3626, -0.6279, -0.5683, -0.8435, -1.4335,
-1.1014, -0.7500, -0.4249, -0.2108, -1.0379, -0.7498, -0.3448, -0.7677,
-0.8494, -0.7004, -0.2174, -0.1109, -0.3462, -0.3253, -0.7913, -0.2754,
-0.4322, -0.7467, -0.2394, -0.7764, -0.9141, -1.5096])

ReLU Function

The rectified linear unit (ReLU) is another activation function. It is used in transferring
information from the input layer to the output layer. ReLU is mostly used in a
convolutional neural network model. The range in which this activation function
operates is from 0 to infinity. It is mostly used between different hidden layers in a neural
network model.

X
y

func = nn.ReLU()
output_x = func(x)
output_y = func(y)
print('Output size :
print('Output size :

Variable(torch.randn(100, 10))
Variable(torch.randn(100, 30))

, output x.size())
, output y.size())

Output size : torch.Size([100, 10])
Output size : torch.Size([100, 30])

print(x[0])
print(output x[0])
print(y[o0])
print(output_y[o0])

tensor([-0.6479, -0.8856, 0.5144, -0.5064, 0.3280, -1.8378, 0.5670,

0.9095, -2.6267, -1.0119])

tensor([0.0000, 0.0000, 0.5144, 0.0000, 0.3280, 0.0000, 0.5670, 0.9095,
0.0000, 0.0000])
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tensor([-1.4458, 0.8328, 0.6534, 2.0404, 0.9053, -0.2829,
-0.5712, 0.0323,
0.9757, -1.5787, 1.9665, 1.0276, -1.0536, 0.0588, 0.5085, 0.1956,
-0.4490, -0.8927, 0.0128, -0.5971, -0.0677, 0.0101, 0.9477, 1.1218,
-1.0648, -0.8439, 0.3422, 0.6930, -0.4311, -1.2920])

tensor([0.0000, 0.8328, 0.6534, 2.0404, 0.9053, 0.0000, 0.0000, 0.0323, 0.9757,
0.0000, 1.9665, 1.0276, 0.0000, 0.0588, 0.5085, 0.1956, 0.0000, 0.0000,
0.0128, 0.0000, 0.0000, 0.0101, 0.9477, 1.1218, 0.0000, 0.0000, 0.3422,
0.6930, 0.0000, 0.0000])

The different types of transfer functions are interchangeable in a neural network
architecture. They can be used in different stages, such as the input to the hidden layer
or the hidden layer to the output layer, to improve the model’s accuracy.

Leaky RelLU

In a standard neural network model, a dying gradient problem is common. To avoid this
issue, leaky ReLU is applied. Leaky ReLU allows a small and non-zero gradient when the
unit is not active

X
y

func = nn.LeakyReLU()

output x = func(x)

func(y)

print('Output size : ', output x.size())
print('Output size : ', output y.size())

Variable(torch.randn(100, 10))
Variable(torch.randn(100, 30))

output_y

Output size : torch.Size([100, 10])
Output size : torch.Size([100, 30])

print(x[0])
print(output x[0])

print(y[o])
print(output y[0])
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tensor([ 0.3611, -0.3622, 0.5740, -0.3404, -0.1284, 1.4639, 1.3272,
0.0636, -1.1366, 1.1084])
tensor([ 3.6107e-01, -3.6216e-03, 5.7399e-01, -3.4043e-03, -1.2843e-03,
1.4639e+00, 1.3272e+00, 6.3646e-02, -1.1366e-02, 1.1084e+00])
tensor([-0.4000, -0.2603, 0.5494, -1.1904, 1.0810, 0.0770, 0.5700, -1.0860,
0.6954, -0.3596, -0.7211, -0.5289, 1.8362, -1.4268, -1.1033, 0.0696,
0.5678, 0.5952, 0.2172, 0.5269, 1.4032, -0.3520, -0.7009, 0.0710,
-0.2730, -1.4919, -1.3549, 0.1566, -1.0187, 0.0810])
tensor([-0.0040, -0.0026, 0.5494, -0.0119, 1.0810, 0.0770, 0.5700, -0.0109,
0.6954, -0.0036, -0.0072, -0.0053, 1.8362, -0.0143, -0.0110, 0.0696,
0.5678, 0.5952, 0.2172, 0.5269, 1.4032, -0.0035, -0.0070, 0.0710,
-0.0027, -0.0149, -0.0135, 0.1566, -0.0102, 0.0810])

Recipe 4-2. Visualizing the Shape
of Activation Functions

Problem

How do you visualize the activation functions? The visualization of activation functions
is important in correctly building a neural network model.

Solution

The activation functions translate the data from one layer into another layer. The
transformed data can be plotted against the actual tensor to visualize the function. You
have taken a sample tensor, converted it to a PyTorch variable, applied the function,
and stored it as another tensor. You can represent the actual tensor and the transformed
tensor using matplotlib.

How It Works

The right choice of activation function will not only provide better accuracy but also
helps with extracting meaningful information.
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Import torch.nn.functional as F
from torch.autograd import Variable
import matplotlib.pyplot as plt
#matplotlib inline

X

torch.linspace(-10, 10, 1500)
Variable(x)
x_1 = x.data.numpy() # tranforming into numpy

X

y relu = F.relu(x).data.numpy()

y _sigmoid = torch.sigmoid(x).data.numpy()
y_tanh = torch.tanh(x).data.numpy()
y_softplus = F.softplus(x).data.numpy()

In this script, you have an array in the linear space between -10 and +10 plus 1,500
sample points. You convert the vector to a Torch variable and then make a copy as a
NumPy variable for plotting the graph. Then, you calculate the activation functions.
Figures 4-1 and 4-4 show the activation functions.

P1t.figure(figsize=(7, 4))

plt.plot(x 1, y relu, c="blue', label="RelLU")
plt.ylim((-1, 11))

plt.legend(loc="best")

10 { — RelU

—1(I}.0 -1.5 -5.0 -2.5 0.0 25 5.0 15 10.0

Figure 4-1. Activation function ReLU
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plt.figure(figsize=(7, 4))

plt.plot(x 1, y sigmoid, c="blue', label='sigmoid")
plt.ylim((-0.2, 1.2))

plt.legend(loc="best")

12

—— sigmoid
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Figure 4-2. Activation function sigmoid

plt.figure(figsize=(7, 4))

plt.plot(x 1, y tanh, c="blue', label="tanh")
plt.ylim((-1.2, 1.2))

plt.legend(loc="best")

0.5 1

0.0 1
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Figure 4-3. Activation function tanh
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plt.figure(figsize=(7, 4))

plt.plot(x 1, y softplus, c='blue', label="softplus')
plt.ylim((-0.2, 11))

plt.legend(loc="best")
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Figure 4-4. Activation function softplus

Recipe 4-3. Basic Neural Network Model
Problem

How do you build a basic neural network model using PyTorch?

Solution

A basic neural network model in PyTorch requires six steps: preparing training data,
creating a basic neural network model, initializing weights, calculating the loss function,
selecting the learning rate, and optimizing the loss function with respect to the model’s
parameters.

How It Works

Let’s follow a step-by-step approach to create a basic neural network model.
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Def prep data():
train X = np.asarray([13.3,14.4,15.5,16.71,16.93,14.168,19.779,16.182,
17.59,12.167,17.042,10.791,15.313,17.997,15.654,
19.27,13.1])
train Y = np.asarray([11.7,12.76,12.09,13.19,11.694,11.573,13.366,
12.596, 12.53,11.221,12.827,13.465,11.65,12.904,12.42,12.94,11.3])
dtype = torch.FloatTensor
X = Variable(torch.from numpy(train X).type(dtype),
requires grad=False).view(17,1)
y = Variable(torch.from numpy(train_Y).type(dtype),requires grad=False)
return X,y

To show a sample neural network model, you prepare the dataset and change the
data type to a float tensor. When you work on a project, data preparation for building it is
a separate activity. Data preparation should be done in the proper way. In the preceding
step, train x and train y are two NumPy vectors. Next, you change the data type to a float
tensor because it is necessary for matrix multiplication. The next step is to convert it to
variable because a variable has three properties that help you fine-tune the object. In the
dataset, you have 17 data points on one dimension.

# get dynamic parameters

def set weights():
w = Variable(torch.randn(1),requires grad = True)
b = Variable(torch.randn(1),requires grad=True)
return w,b

#deploy neural network model

def build network(x):
y _pred = torch.matmul(x,w)+b
return y pred

#implement in PyTorch

import torch.nn as nn

f = nn.Linear(17,1) # Much simpler.

F

Linear(in_features=17, out_features=1, bias=True)
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The set_weight() function initializes the random weights that the neural network
model will use in forward propagation. You need two tensors, weights, and biases. The
build network() function simply multiplies the weights with input, adds the bias to it,
and generates the predicted values. This is a custom function that you built. If you need
to implement the same thing in PyTorch, it is much simpler to use nn.Linear () when
you need to use it for linear regression.

#calculate the loss function
def loss calc(y,y pred):
loss = (y_pred-y).pow(2).sum()
for param in [w,b]:
if not param.grad is None: param.grad.data.zero ()
loss.backward()
return loss.data

# optimizing results
def optimize(learning rate):
w.data -= learning rate * w.grad.data
b.data -= learning rate * b.grad.data
learning_rate = 1e-4

X,y
w,b

prep_data() # x - training data,y - target variables
set weights() # w,b - parameters

for i in range(5000):
y pred = build network(x) # function which computes wx + b
loss = loss calc(y,y pred) # error calculation
if i % 1000 == 0:
print(loss)
optimize(learning rate) # minimize the loss w.r.t. w, b

tensor(5954.0488)
tensor(44.9320)
tensor(39.5382)
tensor(34.9094)
tensor(30.9371)
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Once you define a network structure, then you need to compare the results with the
output to assess the prediction step. The metric that tracks the accuracy of the system is
the loss function, which you want to be minimal. The loss function may have a different
shape. How do you know exactly where the loss is at a minimum, which corresponds
to which iteration is providing the best results? To know this, you need to apply the
optimization function on the loss function; it finds the minimum loss value. Then you
can extract the parameters corresponding to that iteration. See Figure 4-5.

import matplotlib.pyplot as plt
%matplotlib inline

x_numpy = x.data.numpy()
y_numpy = y.data.numpy()

y _pred = y pred.data.numpy()
plt.plot(x_numpy,y numpy,'o")
plt.plot(x_numpy,y pred,'-")

14 1

13 -

12 -

11 A

10 -

Figure 4-5. Actual vs. Predicted Tensor
Standard deviation shows the deviation from the measures of central tendency,

which indicates the consistency of the data/variable. It shows whether there is enough
fluctuation in data or not.
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Recipe 4-4. Tensor Differentiation
Problem

What is tensor differentiation and how is it relevant in computational graph execution
using the PyTorch framework?

Solution

The computational graph network is represented by nodes and connected through
functions. There are two different kinds of nodes: dependent and independent.
Dependent nodes wait for results from other nodes to process the input. Independent
nodes are connected and are either constants or the results. Tensor differentiation is an
efficient method to perform computation in a computational graph environment.

How It Works

In a computational graph, tensor differentiation is very effective because the tensors can
be computed as parallel nodes, multiprocess nodes, or multithreading nodes. The major
deep learning and neural computation frameworks include this tensor differentiation.

Autograd is the function that helps perform tensor differentiation, which means
calculating the gradients or slope of the error function and then backpropagating errors
through the neural network to fine-tune the weights and biases. Through the learning
rate and iteration, it tries to reduce the error value or loss function.

To apply tensor differentiation, the nn.backward() method needs to be applied.
Let’s take an example and see how the error gradients are backpropagated. To update
the curve of the loss function, or to find where the shape of the loss function is minimum
and in which direction it is moving, a derivative calculation is required. Tensor
differentiation is a way to compute the slope of the function in a computational graph.

x = Variable(torch.ones(4, 4) * 12.5, requires_grad=True)

X

tensor([[12.5000, 12.5000, 12.5000, 12.5000], [12.5000, 12.5000, 12.5000,
12.5000], [12.5000, 12.5000, 12.5000, 12.5000], [12.5000, 12.5000, 12.5000,
12.5000]], requires_grad=True)
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fn=2*(x*x)+5*x+6

#2x"2 + 5x + 6

fn.backward(torch.ones(4,4))

print(x.grad)

tensor([[55., 55., 55., 55.],
[55., 55., 55., 55.],
[55., 55., 55., 55.1,
[55., 55., 55., 55.1])

In this script, the x is a sample tensor for which automatic gradient calculation
needs to happen. The fn is a linear function that is created using the x variable. Using
the backward function, you can perform a backpropagation calculation. The .grad()
function holds the final output from the tensor differentiation.

Conclusion

This chapter discussed various activation functions and the use of the activation
functions in various situations. The method or system to select the best activation
function is accuracy driven; the activation function that gives the best results should
always be used dynamically in the model. You also created a basic neural network model
using small sample tensors, updated the weights using optimization, and generated
predictions. In the next chapter, you will see more examples.
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Supervised Learning
Using PyTorch

Supervised machine learning is the most sophisticated branch of machine learning. It
isin use in almost all fields, including artificial intelligence, cognitive computing, and
language processing. Machine learning literature broadly talks about three types of
learning: supervised, unsupervised, and reinforcement learning. In supervised learning,
the machine learns to recognize the output; hence, it is task driven and the task can be
classification or regression. In unsupervised learning, the machine learns patterns from
data; thus, it generalizes new datasets and learning occurs by evaluating a set of input
features. In reinforcement learning, the learning happens in response to a system that
reacts to situations.

This chapter covers regression techniques in detail with a machine learning
approach and interprets the output from regression methods in the context of a business
scenario. The algorithmic classification is shown in Figure 5-1.
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Figure 5-1. Algorithmic classification

Each object or row represents one event, and each event is categorized into groups.
Identifying which level a record belongs to is called classification, in which the target
variable has specific labels or tags attached to the events. For example, in a bank
database, each customer is tagged as either a loyal customer or not a loyal customer. In a
medical records database, each patient’s disease is tagged. In the telecom industry, each
subscriber is tagged as a churn or non-churn customer. These are examples in which a
supervised algorithm performs classification. The word classification comes from the
classes available in the target column.

In regression learning, the objective is to predict the value of a continuous variable.
For example, given the features of a property such as the number of bedrooms,
square feet, nearby areas, the township, and so forth, the asking price for the house is
determined. In such scenarios, regression models can be used. Similar examples include
predicting stock prices or the sales, revenue, and profit of a business.
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In an unsupervised learning algorithm, there is no outcome variable and tagging
or labeling is not available. You are interested in knowing the natural grouping of the
observations, or records, or rows in a dataset. This natural grouping should be in such
a way that within groups similarity should be at a maximum and between groups
similarity should be at a minimum.

In real-world scenarios, there are cases where regression does not help predict the
target variable. In supervised regression techniques, the input data is also known as
training data. For each record, there is a label that has a continuous numerical value.
The model is prepared through a training process that predicts the right output, and
the process continues until the desired level of accuracy is achieved. You may need
advanced regression methods to understand the pattern existing in the dataset.

Introduction to Linear Regression

Linear regression analysis is known as the most reliable, easiest to apply, and most
widely used among all statistical techniques. This assumes linear, additive relationships
between dependent and independent variables. The objective of linear regression

is to predict the dependent or target variable through independent variables. The
specification of the linear regression model is as follows:

Y=o+ pX

This formula has a property in which the prediction for Y is a straight-line function
of each of the X variables, keeping all others fixed, and the contributions of different X
variables for the predictions are additive. The slopes of their individual straight-line
relationships with Y are the coefficients of the variables. The coefficients and intercept
are estimated by least squares (i.e., setting them equal to the unique values that
minimize the sum of squared errors within the sample of data to which the model is
fitted).

The model’s prediction errors are typically assumed to be independently and
identically normally distributed. When the beta coefficient becomes zero, the input
variable X has no impact on the dependent variable. The ordinary least square (OLS)
method attempts to minimize the sum of the squared residuals. The residuals are
defined as the difference between the points on the regression line to the actual data
points in the scatterplot. This process seeks to estimate the beta coefficients in a multiple

linear regression model.
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Let’s take a sample dataset of 15 people. You capture the height and weight for each
of them. By taking only their heights, can you predict the weight of a person using a
linear regression technique? The answer is yes.

Person i 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Height 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
Weight 115 117 120 123 126 129 132 135 139 142 146 150 154 159 164

To represent this graphically, you measure height on the x axis and you measure
weight on the y axis. The linear regression equation is on the graph where the intercept
is 87.517 and the coefficient is 3.45. The data points are represented by dots and the
connecting line shows linear relationship (see Figure 5-2).

Weight
170
y=3.45x-87.517
160 R?=0.991 -
150 Z
£ 140 7
5 4
; 130 — Weight
120 2 Linear (Weight)
110
100 T I L) T 1
50 55 60 65 70 75
Height

Figure 5-2. Height and weight relationships

Why do we assume that a linear relationship exists between the dependent variable
and a set of independent variables, when most real-life scenarios reflect any other
type of relationship than a linear relationship? The reasons why we stick to linear
relationships are described next.

A linear relationship is easy to understand and interpret. There are ways to transform

an existing deviation from linearity and make it linear. It is easy to generate predictions.
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The field of predictive modeling is mainly concerned with minimizing errors in a
predictive model or making the most accurate predictions possible. Linear regression
was developed in the field of statistics. It is studied as a model for understanding the
relationship between the input and the output of numerical variables, but it has been
borrowed by machine learning. It is both a statistical algorithm and a machine learning
algorithm. The linear regression model depends on the following set of assumptions:

e The linear relationship between dependent and independent
variables.

e There should not be any multicollinearity among the predictors. If
you have more than two predictors in the input feature space, the
input features should not be correlated.

¢ There should not be any autocorrelation.

o There should not be any heteroscedasticity. The variance of the error
term should be constant, along the predictors on another axis, which
means the error variance should be constant.

e The error term should be normally distributed. The error term is
basically defined as the difference between an actual and a predicted
variable.

Within linear regression, there are different variants, but in machine learning we
consider them as one method. For example, if we are using one explanatory variable
to predict the dependent variable, it is called a simple linear regression model. If we are
using more than one explanatory variable, then the model is called a multiple linear
regression model. The ordinary least square is a statistical technique to predict the linear
regression model; hence, sometimes the linear regression model is also known as an
ordinary least square model.

Linear regression is very sensitive to missing values and outliers because the
statistical method of computing a linear regression depends on the mean, standard
deviation, and covariance between the variables. The mean is sensitive to outlier values;
therefore, it is expected that we need to clear out the outliers before proceeding toward
forming the linear regression model.
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In machine learning literature, the method for getting optimum beta coefficients
that minimize the error in a regression model is achieved by a method called a gradient
descent algorithm. How does the gradient descent algorithm work? It starts with an initial
value, preferably from zero, and updates the scaling factor by a learning rate regularly
and iteratively to minimize the error term.

Understanding linear regression based on a machine learning approach requires
special data preparation that avoids assumptions by keeping the original data intact.
Data transformation is required to make your model more robust.

Recipe 5-1. Data Preparation for a Supervised Model
Problem

How do you perform data preparation for creating a supervised learning model using
PyTorch?

Solution

Let’s take an open source dataset named mtcars.csv, which is a regression dataset, to
test how to create an input and output tensor.

How It Works

First, the necessary library needs to be imported.

import torch

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
from torch.autograd import Variable
import torch.nn.functional as F
Zmatplotlib inline

torch. version

1.12.1+cul13
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df = pd.read _csv("https://raw.githubusercontent.com/pradmishrai/
PublicDatasets/main/mtcars.csv")
del df['Unnamed: 0']

df.head()

Model MPG Cyl Disp HP Drat Wt Qsec Vs Am Gear Carb
0 Mazda RX4 21.0 6 160.0 110 3.90 2620 16.46 0 1 4 4
1 Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
2 Datsun 710 228 4 108.0 93 3.85 2320 1861 1 1 4 1
3 Hornet 4 Drive 214 6 258.0 110 3.08 3215 1944 1 0 3 1
4 Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 1702 0 O 3 2

The predictor for the supervised algorithm is gsec, which is used to predict the
mileage per gallon provided by the car. What is important here is the data type. First,
you import the data, which is in NumPy format, into a PyTorch tensor format. The
default tensor format is a float. Using the tensor float format would cause errors when
performing the optimization function, so it is important to change the tensor data type.
You can reformat the tensor type by using the unsqueeze function and specifying that
the dimension is equal to 1.

torch.manual seed(1234) # reproducible
x = torch.unsqueeze(torch.from numpy(np.array(df.qsec)),dim=1)
y = torch.unsqueeze(torch.from numpy(np.array(df.mpg)),dim=1)

x[0:10]
tensor([[16.4600], [17.0200], [18.6100], [19.4400], [17.0200], [20.2200],
[15.8400], [20.0000], [22.9000], [18.3000]], dtype=torch.float64)

y[0:10]
tensor([[21.0000], [21.0000], [22.8000], [21.4000], [18.7000], [18.1000],
[14.3000], [24.4000], [22.8000], [19.2000]], dtype=torch.float64)

To reproduce the same result, a manual seed needs to be set, so torch.manual
seed(1234) is used. Although you see that the data type is a tensor, if you check the
type function, it will show as double because a tensor type double is required for the

optimization function.
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Recipe 5-2. Forward and Backward
PropagationNeural network

Problem

How do you build a neural network torch class function so that you can build a forward

propagation method?

Solution

Design the neural network class function, including the hidden layer from the input
layer and from the hidden layer to the output layer. In the neural network architecture,
the number of neurons in the hidden layer also needs to be specified.

How It Works

In the class Net() function, you first initialize the feature, hidden, and output layers.
Then you introduce the back-propagation function using the rectified linear unit as the
activation function in the hidden layer.

class Net(torch.nn.Module):
def _init_ (self, n_feature, n_hidden, n_output):
super(Net, self). init ()
#hidden layer 1 of the neural network
self.hidden = torch.nn.Linear(n_feature, n_hidden)
#output layer
self.predict = torch.nn.Linear(n_hidden, n_output)

def forward(self, x):
x = F.relu(self.hidden(x)) # activation function for hidden layer
x = self.predict(x) # linear output
return x

Figure 5-3 shows the ReLU activation function. It is popularly used across different
neural network models; however, the choice of activation function should be based on
accuracy. If the accuracy is improved when using with a different activation function, for
instance a sigmoid function, you should consider using that.
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Figure 5-3. RelU activation function

Now the network architecture is mentioned in the supervised learning model. The
n_feature shows the number of neurons in the input layer. Since you have one input
variable, gqsec, you will use 1. The number of neurons in the hidden layer can be decided
based on the input and the degree of accuracy required in the learning model. You use
the n_hidden equal to 20, which means 20 neurons in the hidden layer 1, and the output
neuron is 1.

net = Net(n _feature=1, n_hidden=20, n_output=1)

net.double()

print(net) # Neural network architecture

Net (
(hidden): Linear(in_features=1, out features=20, bias=True)
(predict): Linear(in_ features=20, out features=1, bias=True)

)

optimizer = torch.optim.SGD(net.parameters(), lr=0.2)
loss_func = torch.nn.MSELoss()
# this is for regression mean squared loss

The role of the optimization function is to minimize the loss function defined with
respect to the parameters and the learning rate. The learning rate chosen here is 0.2.
You also pass the neural network parameters into the optimizer. There are various
optimization functions:
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e SGD: Implements stochastic gradient descent (optionally with
momentum). The parameters could be momentum, learning rate,
and weight decay.

e Adadelta: Adaptive learning rate. Has five different arguments:
parameters of the network, a coefficient used for computing a
running average of the squared gradients, the addition of a term for
achieving numerical stability of the model, the learning rate, and a
weight decay parameter to apply regularization.

o Adagrad: Adaptive subgradient methods for online learning
and stochastic optimization. Has arguments such as iterable of
parameter to optimize the learning rate and learning rate decay with
weight decay.

e Adam: A method for stochastic optimization. This function has six
different arguments, an iterable of parameters to optimize, learning
rate, betas (known as coefficients used for computing running
averages of the gradient and its square), a parameter to improve
numerical stability, and so forth.

o ASGD: Acceleration of stochastic approximation by averaging. It has
five different arguments, iterable of parameters to optimize, learning
rate, decay term, weight decay, and so forth.

o RMSprop algorithm: Uses a magnitude of gradients that are
calculated to normalize the gradients.

e SparseAdam: Implements a lazy version of the Adam algorithm
suitable for sparse tensors. In this variant, only moments that show
up in the gradient are updated, and only those portions of the
gradient are applied to the parameters.

Apart from the optimization function, a loss function needs to be selected before
running the supervised learning model. Again, there are various loss functions; let’s look
at the error functions.

e MSELoss: Creates a criterion that measures the mean squared error
between elements in the input variable and target variable. For
regression-related problems, this is the best loss function.
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optimizer

SGD ( Parameter Group O dampening: O foreach: None lr: 0.2 maximize: False
momentum: O nesterov: False weight decay: 0 )

loss_func

MSELoss ()

#Turn the interactive mode on

plt.ion()

After running the supervised learning model, which is a regression model, you
need to print the actual vs. predicted values and represent them in a graphical format;
therefore, you need to turn on the interactive feature of the model.

Recipe 5-3. Optimization and Gradient Computation
Problem

How do you build a basic supervised neural network training model using PyTorch with
different iterations?

Solution

The basic neural network model in PyTorch requires six different steps: preparing
training data, initializing weights, creating a basic network model, calculating loss
function, selecting the learning rate, and optimizing the loss function with respect to the
parameters of the model.

How It Works

Let’s follow a step-by-step approach to create a basic neural network model.

for t in range(100):

prediction = net(x) # input x and predict based on x

loss = loss func(prediction, y) # must be (1. nn output, 2. target)
optimizer.zero grad() # clear gradients for next train
loss.backward() # backpropagation, compute gradients
optimizer.step() # apply gradients
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if t % 50 == O:
# plot and show learning process
plt.cla()
plt.scatter(x.data.numpy(), y.data.numpy())
plt.plot(x.data.numpy(), prediction.data.numpy(), 'g-', 1lw=3)
plt.text(0.5, 0, 'Loss=%.4f"' % loss.data.numpy())
plt.show()

plt.ioff()

The final prediction result from the model with the first iteration and the last
iteration is now represented in Figure 5-4. In the initial step, the loss function is 276.91.
After optimization, the loss function is 35.1890. The fitted regression line and the way it is
fitted to the dataset are represented.
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Figure 5-4. Loss function results
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Recipe 5-4. Viewing Predictions
Problem

How do you extract the best results from the PyTorch-based supervised learning model?

Solution

The computational graph network is represented by nodes and connected through
functions. Various techniques can be applied to minimize the error function and get
the best predictive model. You can increase the iteration numbers, estimate the loss
function, optimize the function, print actual and predicted values, and show it all in
a graph.

How It Works

To apply tensor differentiation, the nn.backward() method needs to be applied. Let’s
take an example to see how the error gradients are backpropagated. The grad() function
holds the final output from the tensor differentiation. See Figure 5-5.

optimizer = torch.optim.SGD(net.parameters(), lr=0.001)
loss_func = torch.nn.MSELoss() # this is for regression mean squared loss

for t in range(1000):
prediction = net(x) # input x and predict based on x
loss = loss func(prediction, y) # must be (1. nn output, 2. target)
optimizer.zero grad() # clear gradients for next train
loss.backward() # backpropagation, compute gradients
optimizer.step() # apply gradients

if t % 100 == 0:
# plot and show learning process
plt.cla()
plt.scatter(x.data.numpy(), y.data.numpy())
plt.plot(x.data.numpy(), prediction.data.numpy(), 'g-', 1lw=3)
plt.text(0.5, 0, 'Loss=%.4f"' % loss.data.numpy())
plt.show()
plt.ioff() #Turn the interactive mode off
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Loss=35.1890

Loss=35.1890

SUPERVISED LEARNING USING PYTORCH

Figure 5-5. Loss plots
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The tuning parameters that can increase the accuracy of the supervised learning

model, which is a regression use case, can be achieved with the following methods:

Number of iterations

Type of loss function

Selection of optimization method
Selection of loss function
Learning rate

Decay in the learning rate

Momentum require for optimization

The real dataset looks like the following:

df.head()
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Model MPG Cyl Disp HP Drat Wt Qsec Vs Am Gear Carb

0 Mazda RX4 210 6 160.0 110 390 2.620 1646 0 1 4 4
1 Mazda RX4 Wag 210 6 160.0 110 3.90 2.875 17.02 0 1 4 4
2 Datsun 710 228 4 108.0 93 385 2320 1861 1 1 4 1
3 Hornet 4 Drive 214 6 2580 110 3.08 3215 1944 1 0 3 1
4 Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 1702 0 O 3 2

The following script explains reading the mpg and qsec columns from the mtcars.csv

dataset. It converts those two variables to tensors using the unsqueeze function and then

uses it inside the neural network model for prediction.

x = torch.unsqueeze(torch.from numpy(np.array(df.mpg)),dim=1)
y = torch.unsqueeze(torch.from numpy(np.array(df.qgsec)),dim=1)
optimizer = torch.optim.SGD(net.parameters(), lr=0.2)

loss_func = torch.nn.MSELoss() # this is for regression mean squared loss

plt.

for

plt.

ion() #Turn the interactive mode on

t in range(1000):

prediction = net(x) # input x and predict based on x

loss = loss func(prediction, y) # must be (1. nn output, 2. target)
optimizer.zero grad() # clear gradients for next train

loss.backward() # backpropagation, compute gradients
optimizer.step() # apply gradients
if t % 200 == 0:

# plot and show learning process

plt.cla()

plt.scatter(x.data.numpy(), y.data.numpy())
plt.plot(x.data.numpy(), prediction.data.numpy(), 'g-', 1lw=3)
plt.text(0.5, 0, 'Loss=%.4f"' % loss.data.numpy())
plt.show()

ioff() #Turn the interactive mode off
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After 1000 iterations, the model converges. See Figure 5-6.

L ]
2
20 ¢ . . ®
. °
o .
LN °
1B{ s 2 *
B
o ®
. ®» o o
° o
16 .
° L]
.y
10 15 2 P 2 s

Loss=3.0934

Figure 5-6. After 1000 iterations, the model converges

The neural networks in the torch library are typically used with the nn module. Let’s
take a look at that.

Neural networks can be constructed using the torch.nn package, which provides
almost all neural network related functionalities, including the following:

o Linear layers: nn.Linear, nn.Bilinear

o Convolution layers: nn.Convid, nn.Conv2d, nn.Conv3d,
nn.ConvTranspose2d

o Nonlinearities: nn.Sigmoid, nn.Tanh, nn.RelU, nn.LeakyRelLU
o Pooling layers: nn.MaxPoolid, nn.AveragePool2d

¢ Recurrent networks: nn.LSTM, nn.GRU

e Normalization: nn.BatchNorm2d

e Dropout: nn.Dropout, nn.Dropout2d

o Embedding: nn.Embedding

o Loss functions: nn.MSELoss, nn.CrossEntropylLoss, nn.NLLLoss

The standard classification algorithm is another version of a supervised learning
algorithm, in which the target column is a class variable and the features could be

numeric and categorical.
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Recipe 5-5. Supervised Model Logistic Regression
Problem

How do you deploy a logistic regression model using PyTorch?

Solution

The computational graph network is represented by nodes and connected through
functions. Various techniques can be applied to minimize the error function and get
the best predictive model. You can increase the iteration numbers, estimate the loss
function, optimize the function, print actual and predicted values, and show it all in
a graph.

How It Works

To apply tensor differentiation, the nn.backward() method needs to be applied. Let’s
look at an example.

import torch

from torch.autograd import Variable
import torch.nn as nn

import torch.nn.functional as F
import matplotlib.pyplot as plt
import torch.optim as optim

torch.manual seed(1)
The following shows data preparation for a logistic regression model:

# data preparation for logistic regression
n_data = torch.ones(100,2)

x0 = torch.normal(2*n_data,1)
yo = torch.zeros(100)
x1 = torch.normal(-2*n_data,1)
yl = torch.ones(100)
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torch.cat((x0,x1),0).type(torch.FloatTensor)
torch.cat((yo,y1), ).type(torch.LongTensor)

X
y

# Variable conversion
X, y = Variable(x), Variable(y)
# sample data prep for logistic regression model

Let’s look at the sample dataset for classification. See Figure 5-7.

plt.scatter(x.data.numpy()[:,0], x.data.numpy()[:,1],c=y.data.
numpy () ,s=100)
plt.show()

T T T

-4 -2 0 2 4

Figure 5-7. Sample data for logistic regression

Set up the neural network module for the logistic regression model.

class Net(torch.nn.Module):
def init (self, n_feature, n_hidden, n output):
super(Net, self). init ()
# hidden layer
self.hidden = torch.nn.Linear(n_feature, n_hidden)
#output layer
self.out = torch.nn.Linear(n_hidden, n_output)
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def forward(self, x):
#activation function for the hidden layer
x = F.sigmoid(self.hidden(x))
x = self.out(x) # linear output
return x

Check the neural network configuration.

net = Net(n feature=2,n_hidden=10,n output=2)

print(net)

Net (
(hidden): Linear(in_features=2, out features=10, bias=True)
(out): Linear(in_features=10, out features=2, bias=True)

)

# loss and optimizer

# softmax is internally computed

# set parameters to be updated

Run iterations and find the best solution for the sample graph.

#net(x)
optimizer = torch.optim.SGD(net.parameters(),lr=0.02)
loss func = torch.nn.CrossEntropyloss()

plt.ion() # interactive graph on

for t in range(100):
out = net(x) # input x and predict based on x
loss = loss func(out, y) # must be (1. nn output, 2. target)
optimizer.zero grad() # clear gradients for next train
loss.backward() # backpropagation, compute gradients
optimizer.step() # apply gradients

if t % 10 == 0 or t in [3,6]:
# plot and show learning process
plt.cla()
_,prediction = torch.max(F.softmax(out,dim=1),1)
pred y = prediction.data.numpy().squeeze()
target_y = y.data.numpy()
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plt.scatter(x.data.numpy()[:,0],
x.data.numpy()[:,1],
¢ = pred_y,s=100,1w=0)
accuracy = sum(pred y == target y)/200.0

plt.text(1.5, -4, 'Accuracy=%.2f' % accuracy)
plt.show()
plt.ioff() #Turn the interactive mode off

-2 1

Accuracy=1.00

-4 -2 0 2 a

Figure 5-8. Scatterplot of actual vs. predicted

The first iteration provides almost 99% accuracy, and subsequently the model
provides 100% accuracy on the training data. See Figures 5-8 and 5-9.
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-2

-4 Accuracy=100
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Figure 5-9. Scatterplots for accuracy

Final accuracy shows 100, which is a clear case of overfitting, but you can control this

by introducing the dropout rate, which was covered in the previous chapter.

Conclusion

This chapter discussed two major types of supervised learning algorithms—Ilinear
regression and logistic regression—and their implementation using sample datasets
and the PyTorch program. Both algorithms are linear models, one for predicting real
valued output and the other for separating one class from another class. Although
you considered a two-class classification in the logistic regression example, it can be
extended to a multiclass classification model.
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CHAPTER 6

Fine-Tuning Deep Learning
Models Using PyTorch

Deep learning models have very deep roots in the way biological neurons are
connected and the way they transmit information from one node to another node in a
network model.

Deep learning has a very specific usage, particularly when single function-based
machine learning techniques fail to approximate real-life challenges. For example,
when a data dimension is very large (in the thousands), standard machine learning
algorithms usually fail to predict or classify the outcome variable. They are also not very
efficient computationally. They consume a lot of resources, and model convergence
never happens. Most prominent examples are object detection, image classification, and
image segmentation.

The most commonly used deep learning algorithms can be classified into
three groups.

o Convolutional neural network: Mostly suitable for highly sparse
datasets, image classification, image recognition, object detection,
and so forth.

¢ Recurrent neural network: Applicable to processing sequential
information, if there is any internal sequential structure in the way
data is generated. This includes music, natural language, audio, and
video, where the information is consumed in a sequence.

¢ Deep neural network: Typically applicable when a single layer of
a machine learning algorithm cannot classify or predict correctly.
There are three variants.
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o Deep network, where the number of neurons present in each
hidden layer is usually more than the previous layer

e Wide network, where the number of hidden layers are more than
a usual neural network model

¢ Both deep and wide network, where the number of neurons and
the number of layers in the network are very high

This chapter discusses how to fine-tune deep learning models using
hyperparameters. There is a difference between parameters and hyperparameters.
Usually in deep learning models, we are not interested in estimating the parameters
because they are the weights and they keep changing based on the initial values,
learning rate, and number of iterations. What is important is deciding on the
hyperparameters to fine-tune the models, as discussed in Chapter 3, so that optimum
results can be derived.

Recipe 6-1. Building Sequential Neural Networks
Problem

Is there any way to build sequential neural network models, as you do in Keras in
PyTorch, instead of declaring the neural network models?

Solution

If you declare the entire neural network model, line by line, with the number of neurons,
number of hidden layers and iterations, choice of loss functions, optimization functions,
selection of weight distribution, and so forth, it will be extremely cumbersome to

scale the model. And it is not foolproof—errors could crop up in the model. To avoid
issues in declaring the entire model line by line, you can use a high-level function that
assumes certain default parameters in the back end and returns the result to the user
with minimum hyperparameters. Yes, it is possible to not have to declare the neural
network model.
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How It Works

Let’s look at how to create such models. In the Torch library, the neural network module
contains a functional API (application programming interface) that contains various
activation functions, as discussed in earlier chapters.

import torch
import torch.nn.functional as F

In the following lines of script, you create a simple neural network model with a
linear function as the activation function for input to the hidden layer and the hidden
layer to the output layer.

The following function requires declaring class Net, features, hidden neurons, and
activation functions, which can be easily replaced by the sequential module:

# replace following class code with an easy sequential network
class Net(torch.nn.Module):
def init (self, n_feature, n_hidden, n output):
super(Net, self). init ()
#hidden layer
self.hidden = torch.nn.Linear(n feature, n_hidden)
#output layer
self.predict = torch.nn.Linear(n_hidden, n_output)

def forward(self, x):
x = F.relu(self.hidden(x))# activation function for hidden layer
x = self.predict(x) # linear output
return x

Instead of using this script, you can change the class function and replace it with
the sequential function. The Keras functions replace the TensorFlow functions, which
means that many lines of TensorFlow code can be replaced by a few lines of Keras script.
The same thing is possible in PyTorch without requiring any external modules. As an
example, in the following, net2 explains the sequential model and net1 explains the
preceding script. From a readability perspective, net2 is much better than net1.

neti1 = Net(1, 100, 1)
# easy and fast way to build your network
net2 = torch.nn.Sequential(
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torch.nn.Linear(1, 100),
torch.nn.RelLU(),
torch.nn.Linear(100, 1)

)
Ifyou print both the net1 and net2 model architectures, it does the same thing.
print(net1) # netl architecture
print(net2) # net2 architecture
Net (

(hidden): Linear(in_features=1, out features=100, bias=True)
(predict): Linear(in features=100, out features=1, bias=True)

)

Sequential(
(0): Linear(in features=1, out features=100, bias=True)
(1): RelLU()

(2): Linear(in_features=100, out features=1, bias=True)

)

Recipe 6-2. Deciding the Batch Size
Problem

How do you perform batch data training for a deep learning model using PyTorch?

Solution

Training a deep learning model requires a large amount of labeled data. Typically, it is
the process of finding a set of weights and biases in such a way that the loss function
becomes minimal with respect to matching the target label. If the training process
approximates well to the function, the prediction or classification becomes robust.
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How It Works

There are two methods for training a deep learning network: batch training and
online training. The choice of training algorithm dictates the method of learning. If
the algorithm is backpropagation, then online learning is better. For a deep and wide
network model with various layers of backpropagation and forward propagation, then
batch training is better.

import torch
import torch.utils.data as Data

torch.manual seed(1234) # reproducible

In the training process, the batch size is 5; you can change the batch size to 8 and see
the results. In the online training process, the weights and biases are updated for every
training example based on the variations between predicted result and actual result.
However, in the batch training process, the differences between actual and predicted
values get accumulated and computed as a single number over the batch size and
reported at the final layer.

BATCH_SIZE = 5

X
y

torch.linspace(1, 10, 10) # this is x data (torch tensor)
torch.linspace(10, 1, 10) # this is y data (torch tensor)

torch dataset = Data.TensorDataset(x, y)
loader = Data.Dataloader(

dataset=torch _dataset, # torch TensorDataset format
batch_size=BATCH_SIZE, # mini batch size

shuffle=True, # random shuffle for training
num workers=2, # subprocesses for loading data

After training the dataset for five iterations, you can print the batch and step. If you
compare online training and batch training, batch training has many more advantages
than online training. When the requirement is to train a huge dataset, there are memory
constraints. When you cannot process a huge dataset in a CPU environment, batch
training comes to the rescue. In a CPU environment, you can process large amounts of
data with a smaller batch size.
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for epoch in range(5): # train entire dataset 5 times
for step, (batch x, batch_y) in enumerate(loader):

# for each training step
# train your data...
print('Epoch: ', epoch,
batch x.numpy(),

Epoch: 0 | Step: 0 | batch x:

[8. 9. 7. 4. 3.]
Epoch: 0 | Step: 1 | batch x:

[ 1. 5. 6. 2. 10.]

Epoch: 1 | Step: 0 | batch x:
[ 7. 10. 1. 5. 8.]

Epoch: 1 | Step: 1 | batch x:
[4. 6. 3. 2. 9.]

Epoch: 2 | Step: 0 | batch x:
[ 5. 10. 9. 6. 2.]

Epoch: 2 | Step: 1 | batch x:
[4. 7. 1. 8. 3.]

Epoch: 3 | Step: 0 | batch x:

[ 9. 8. 10. 1. 4.]

Epoch: 3 | Step: 1 | batch x:
[2. 5. 3. 7. 6.]

Epoch: 4 | Step: 0 | batch x:
[4. 7. 3. 9. 2.]

Epoch: 4 | Step: 1 | batch x:
[10. 1. 6. 8. 5.]

"| Step: ', step, '| batch x: ',

"| batch y: ', batch_y.numpy())

[3. 2. 4. 7. 8.] | batch y:
[10. 6. 5. 9. 1.] | batch y:
[ 4. 1. 10. 6. 3.] | batchy:
[7. 5. 8. 9. 2.] | batch y:
[6. 1. 2. 5. 9.] | batch y:
[ 7. 4. 10. 3. 8.] | batchy:
[ 2. 3. 1. 10. 7.] | batchy:
[9. 6. 8. 4. 5.] | batch y:
[7. 4. 8. 2. 9.] | batch y:

[ 1. 10. 5. 3. 6.] | batchy:

Make the batch size as 8 and retrain the model.

BATCH SIZE = 8

loader = Data.Dataloader(
dataset=torch_dataset,
batch size=BATCH SIZE,
shuffle=True,
num_workers=2,
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for epoch in range(5): # train entire dataset 5 times
#for each training step
for step, (batch x, batch_y) in enumerate(loader):
# train your data...

print('Epoch: ', epoch, '| Step: ', step, '| batch x: ',
batch x.numpy(), '| batch y: ", batch_y.numpy())

Epoch: 0 | Step: 0 | batch x: [7. 2. 5. 8. 1. 4. 6. 3.] | batch y:

[ 4. 9. 6. 3.10. 7. 5. 8.]

Epoch: 0 | Step: 1 | batch [10. 9.] | batch y: [1. 2.]

Epoch: 1 | Step: o0 | batch [ 5. 1. 7. 8. 10. 9. 6. 3.] | batch
y: [ 6.10. 4. 3. 1. 2. 5. 8.]

xX X

Epoch: 1 | Step: 1 | batch x: [2. 4.] | batch y: [9. 7.]

Epoch: 2 | Step: 0 | batch x: [ 6. 2. 3. 1. 8. 7. 5. 10.] | batch
y: [ 5. 9. 8.10. 3. 4. 6. 1.]

Epoch: 2 | Step: 1 | batch x: [9. 4.] | batch y: [2. 7.]

Epoch: 3 | Step: 0 | batch x: [ 4. 3. 5. 7. 2.10. 6. 1.] | batch
y: [7. 8 6. 4. 9. 1. 5. 10.]

Epoch: 3 | Step: 1 | batch x: [8. 9.] | batch y: [3. 2.]

Epoch: 4 | Step: o0 | batch x: [ 5. 7. 8. 10. 3. 2. 4. 9.] | batch

y: [6.4.3.1.8.9.7.2.]
Epoch: 4 | Step: 1 | batch x: [6. 1.] | batch y: [ 5. 10.]

Recipe 6-3. Deciding the Learning Rate
Problem

How do you identify the best solution based on the learning rate and number of epochs?

Solution

You take a sample tensor and apply various alternative models and print model
parameters. The learning rate and epoch number are associated with model accuracy.
To reach the global minimum state of the loss function, it is important to keep the
learning rate to a minimum and the epoch number to a maximum so that the iteration
can take the loss function to the minimum state.
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How It Works

First, the necessary library needs to be imported. To find the minimum loss function,
gradient descent is typically used as the optimization algorithm, which is an iterative
process. The objective is to find the rate of decline of the loss function with respect to the
trainable parameters.

import torch

import torch.utils.data as Data
import torch.nn.functional as F
from torch.autograd import Variable
import matplotlib.pyplot as plt
%matplotlib inline

torch.manual seed(12345) # reproducible
LR = 0.01

BATCH_SIZE = 32
EPOCH = 12

The sample dataset taken for the experiment includes the following. See Figure 6-1.

sample dataset
torch.unsqueeze(torch.linspace(-1, 1, 1000), dim=1)
x.pow(2) + 0.3*torch.normal(torch.zeros(*x.size()))

T < X =
1]

plot dataset
plt.scatter(x.numpy(), y.numpy())
plt.show()
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Figure 6-1. Plotted dataset

The sample dataset and the first five records look like the following:

x[0:10]
tensor([[-1.0000], [-0.9980], [-0.9960], [-0.9940], [-0.9920], [-0.9900],
[-0.9880], [-0.9860], [-0.9840], [-0.9820]])

y[0:10]
tensor([[0.5561], [1.1422], [0.0882], [1.1212], [1.0920], [0.9764],
[1.0417], [0.5877], [1.6916], [1.5640]])

Using the PyTorch utility function, let’s load the tensor dataset, introduce the batch
size, and test it.

torch _dataset = Data.TensorDataset(x, y)
loader = Data.Dataloader(
dataset=torch_dataset,
batch size=BATCH SIZE,
shuffle=True, num _workers=2,)
torch_dataset
loader

Declare the neural network module.

class Net(torch.nn.Module):
def init (self):
super(Net, self). init ()
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self.hidden = torch.nn.Linear(1, 20) # hidden layer
self.predict = torch.nn.Linear(20, 1) # output layer

def forward(self, x):
x = F.relu(self.hidden(x))
# activation function for hidden layer
x = self.predict(x) # linear output
return x

net SGD
net_Momentum
net RMSprop Net()

net Adam Net()

nets = [net SCGD, net Momentum, net RMSprop, net Adam]

Net()
Net ()

net_Adam
Net( (hidden): Linear(in features=1, out features=20, bias=True) (predict):
Linear(in_features=20, out features=1, bias=True) )

net_Momentum
Net( (hidden): Linear(in features=1, out features=20, bias=True) (predict):
Linear(in_features=20, out features=1, bias=True) )

Now, let’s look at the network architecture.

net RMSprop
Net( (hidden): Linear(in features=1, out features=20, bias=True) (predict):
Linear(in_features=20, out features=1, bias=True) )

net SGD
Net( (hidden): Linear(in features=1, out features=20, bias=True) (predict):
Linear(in_features=20, out features=1, bias=True) )

While performing the optimization, you can include many options; select the best
among the best.

opt SGD
opt_Momentum

torch.optim.SGD(net SGD.parameters(), lr=LR)
torch.optim.SGD(net Momentum.parameters(),
1r=LR, momentum=0.8)

opt RMSprop torch.optim.RMSprop(net RMSprop.parameters(),

1r=LR, alpha=0.9)
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opt_Adam = torch.optim.Adam(net_Adam.parameters(),
1r=LR, betas=(0.9, 0.99))
optimizers = [opt SGD, opt Momentum, opt RMSprop, opt Adam]

opt_Adam
Adam ( Parameter Group O amsgrad: False betas: (0.9, 0.99) capturable:
False eps: 1e-08 foreach: None lr: 0.01 maximize: False weight decay: 0 )

opt_Momentum
SGD ( Parameter Group O dampening: O foreach: None 1lr: 0.01 maximize: False
momentum: 0.8 nesterov: False weight decay: 0 )

opt_RMSprop
RMSprop ( Parameter Group O alpha: 0.9 centered: False eps: 1e-08 foreach:
None 1lr: 0.01 momentum: O weight decay: 0 )

opt_SGD
SGD ( Parameter Group O dampening: 0 foreach: None lr: 0.01 maximize: False
momentum: O nesterov: False weight decay: 0 )

loss _func = torch.nn.MSELoss()

losses his = [[], [], [], []1] # record loss
loss_func

MSELoss ()

Recipe 6-4. Performing Parallel Training
Problem

How do you perform parallel data training that includes a lot of models using PyTorch?

Solution

Optimizers are really functions that augment the tensor. The process of finding a best
model requires parallel training of many models. The choice of learning rate, batch size,
and optimization algorithms make models unique and different from other models. The
process of selecting the best model requires hyperparameter optimization.
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How It Works

First, the right library needs to be imported. The three hyperparameters (learning rate,
batch size, and optimization algorithm) make it possible to train multiple models in parallel,
and the best model is decided by the accuracy of the test dataset. The following script

uses the stochastic gradient descent algorithm, momentum, RMS prop, and Adam as the
optimization method:

# training
for epoch in range(EPOCH):

print('Epoch: ', epoch)

for step, (batch x, batch y) in enumerate(loader):
# for each training step

b x = Variable(batch x)

b y = Variable(batch_y)

for net, opt, 1 his in zip(nets, optimizers, losses his):
output = net(b x) # get output for every net
loss = loss func(output, b_y) # compute loss for every net
opt.zero grad() # clear gradients for next train
loss.backward() # backpropagation, compute gradients
opt.step() # apply gradients
1 his.append(loss.data) # loss recoder

labels = ['SGD', 'Momentum', 'RMSprop', 'Adam']

for i, 1 his in enumerate(losses his):
plt.plot(1l _his, label=labels[i])

plt.legend(loc="best")

plt.xlabel('Steps")

plt.ylabel('Loss")

plt.ylim((0, 0.2))

plt.show()
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Let’s look at the chart and epochs.

Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch: 11

O 0o ~N O U1 » W N B O

=
o

Out of four optimizers showing loss performance over the steps, the RMSProp
optimization method resulted in highest accuracy or minimal loss value. See Figure 6-2.
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Figure 6-2. Options
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Conclusion

In this chapter, you looked at various ways to make the deep learning model learn
from the training dataset. The training process can be made effective by using
hyperparameters. The selection of the right hyperparameter is the key. The deep
learning models (convolutional neural network, recurrent neural network, and deep
neural network) are different in terms of architecture, but the training process and the
hyperparameters remain the same. The choice of hyperparameters and the selection
process is much easier in PyTorch than any other framework.
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Natural Language
Processing Using PyTorch

Natural language processing is the study and evaluation of human language by
computers performing various tasks. Natural language study is also known as
computational linguistics. There are two different components of natural language
processing: natural language understanding and natural language generation.
Natural language understanding involves analysis and knowledge of the input
language and responding to it. Natural language generation is the process of creating
language from input text. Language can be used in various ways. One word may have
different meanings, so removing ambiguity is an important part of natural language
understanding.

The ambiguity level can be of three types.

o Lexical ambiguity is based on parts of speech; deciding whether a
word is a noun, verb, adverb, and so forth.

o Syntactic ambiguity is where one sentence can have multiple
interpretations; the subject and predicate are neutral.

e Referential ambiguity is related to an event or scenario expressed
in words.

Text analysis is a precursor to natural language processing and understanding.
Text analysis means corpus creation (creating a collected set of documents) and then
removing white spaces, punctuation, stop words, and junk values such as symbols,
emojis, and so forth, which have no textual meaning. After clean-up, the net task is to
represent the text in vector form. This is done using the standard Word2vec model, or it
can be represented in term frequency and inverse document frequency format (tf-idf).
In today’s world, we see a lot of applications that use natural language processing; the

following are some examples:
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Spell checking applications—online and on smartphones. The user
types a particular word, and the system checks the meaning of the
word and suggests whether the spelling needs to be corrected.

Keyword search has been an integral part of our lives over the last
decade. Whenever we go to a restaurant, buy something, or visit
some place, we do an online search. If the keyword typed is wrong,
no match is retrieved; however, the search engine systems are so
intelligent that they predict the user’s intent and suggest pages that
user actually wants to search.

Predictive text is used in various chat applications. The user types a
word, and based on the user’s writing pattern, a choice of next words
appears. The user is prompted to select any word from the list to

frame his sentence.

Question-and-answering systems like Google Home and Amazon
Alexa allow users to interact with the system in natural language. The
system processes that information, does an intelligent search, and
retrieves the best results for the user.

Alternate data extraction is when actual data is not available to the
user, but the user can use the Internet to fetch data that is publicly
available and search for relevant information. For example, if I want
to buy a laptop, I want to compare the price of the laptop on various
online portals. I have one system scrape the price information from
various websites and provide a summary of the prices to me. This
process is called alternate data collection and it uses web scraping,
text processing, and natural language processing.

Sentiment analysis is a process of analyzing the mood of the

customer, user, or agent from the text that they express. It can be used
for customer reviews, movie reviews, and so forth. The text presented
needs to be analyzed and tagged as a positive sentiment or a negative
sentiment. Similar applications can be built using sentiment analysis.

Topic modeling is the process of finding distinct topics presented in
the corpus. For example, we take text from science, math, English,
and biology, and jumble all the text, then ask the machine to classify
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the text and tell us how many topics exist in the corpus, and the
machine correctly separates the words present in English from
biology, biology from science, and so on so forth. This is called a
perfect topic modeling system.

o Text summarization is the process of summarizing the text from the
corpus in a shorter format. If we have a two-page document that is
1,000 words, and we need to summarize it in a 200-word paragraph,
we can achieve that by using text summarization algorithms.

o Language translation is translating one language to another, such as
English to French or French to German. Language translation helps
the user understand another language and make the communication
process effective.

The study of human language is discrete and very complex. The same sentence may
have many meanings, but it is specifically constructed for an intended audience. To
understand the complexity of natural language, we not only need tools and programs but
also systems and methods. The following five-step approach is used in natural language
processing to understand the text from the user.

o Lexical analysis identifies the structure of the word.
o Syntactic analysis is the study of English grammar and syntax.
e Semantic analysis is the meaning of a word in a context.

e PoS (parts of speech) analysis is the understanding and parsing parts
of speech.

o Pragmatic analysis is understanding the real meaning of a word in
context.

In this chapter, you will use PyTorch to implement the steps that are most commonly
used in natural language processing tasks.

Recipe 7-1. Word Embedding
Problem

How do you create a word-embedding model using PyTorch?
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Solution

Word embedding is the process of representing words, phrases, and tokens in a meaningful
way in a vector structure. The input text is mapped to vectors of real numbers so feature
vectors can be used for further computation by machine learning or deep learning models.

How It Works

Words and phrases are represented in real vector format. Words or phrases that have
similar meanings in a paragraph or document have similar vector representation. This
makes the computation process effective in finding similar words. There are various
algorithms for creating embedded vectors from text. Word2vec and GloVe are known
frameworks to execute word embeddings. Let’s look at the following example:

import torch

import torch.nn as nn

import torch.nn.functional as F
import torch.optim as optim

torch.manual seed(1234)

word to ix = {"data": 0, "science": 1}
word to ix
{'data': 0, 'science': 1}

embeds = nn.Embedding(2, 5) # 2 words in vocab, 5 dimensional embeddings
embeds
Embedding(2, 5)

lookup_tensor = torch.tensor([word to ix["data"]], dtype=torch.long)
lookup tensor
tensor([0])

The following sets up an embedding layer:

hello embed = embeds(lookup tensor)

print(hello embed)

tensor([[ 0.0461, 0.4024, -1.0115, 0.2167, -0.6123]],
grad_fn=<EmbeddingBackwardo>)
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CONTEXT_SIZE = 2
EMBEDDING DIM = 10

Let’s look at the sample text. The following text has two paragraphs, and each
paragraph has several sentences. If you apply word embedding on these two paragraphs,
you will get real vectors as features from the text. These features can be used for further
computation.

test sentence = The popularity of the term "data science" has exploded
in business environments and academia, as indicated by a jump in job
openings.[32] However, many critical academics and journalists see no
distinction between data science and statistics. Writing in Forbes, Gil
Press argues that data science is a buzzword without a clear definition
and has simply replaced "business analytics" in contexts such as graduate
degree programs.[7] In the question-and-answer section of his keynote
address at the Joint Statistical Meetings of American Statistical
Association, noted applied statistician Nate Silver said, "I think data-
scientist is a sexed up term for a statistician....Statistics is a branch
of science. Data scientist is slightly redundant in some way and people
shouldn't berate the term statistician."[9] Similarly, in business sector,
multiple researchers and analysts state that data scientists alone are
far from being sufficient in granting companies a real competitive
advantage[33] and consider data scientists as only one of the four
greater job families companies require to leverage big data effectively,
namely: data analysts, data scientists, big data developers and big data
engineers.[34]

On the other hand, responses to criticism are as numerous. In a 2014 Wall
Street Journal article, Irving Wladawsky-Berger compares the data science
enthusiasm with the dawn of computer science. He argues data science, like
any other interdisciplinary field, employs methodologies and practices from
across the academia and industry, but then it will morph them into a new
discipline. He brings to attention the sharp criticisms computer science,
now a well respected academic discipline, had to once face.[35] Likewise,
NYU Stern's Vasant Dhar, as do many other academic proponents of data
science,[35] argues
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more specifically in December 2013 that data science is different from the
existing practice of data analysis across all disciplines, which focuses
only on explaining data sets. Data science seeks actionable and consistent
pattern for predictive uses.[1] This practical engineering goal takes data
science beyond traditional analytics. Now the data in those disciplines and
applied fields that lacked solid theories, like health science and social
science, could be sought and utilized to generate powerful predictive
models.[1]""".split()
# we should tokenize the input, but we will ignore that for now
# build a list of tuples. Each tuple is ([ word i-2, word i-1 ],
target word)
trigrams = [([test sentence[i], test sentence[i + 1]], test_
sentence[i + 2])

for i in range(len(test sentence) - 2)]
# print the first 3, just so you can see what they look like
print(trigrams[:3])

vocab = set(test sentence)
word to ix = {word: i for i, word in enumerate(vocab)}

[(['The', 'popularity'], 'of'), (['popularity', 'of'], 'the'),
(['of', "the'], '"term')]

Tokenization is the process of splitting sentences into small chunks of tokens, known
as n-grams. They are called a unigram if it is a single word, a bigram if it is two words, a
trigram if it is three words, and so on.

The PyTorch n-gram language modeler can extract relevant key words.

class NGramLanguageModeler(nn.Module):

def _init_(self, vocab_size, embedding dim, context size):
super (NGramLanguageModeler, self). init ()
self.embeddings = nn.Embedding(vocab_size, embedding dim)
self.linearl = nn.Linear(context size * embedding dim, 128)

self.linear2 = nn.Linear(128, vocab_size)

def forward(self, inputs):
embeds = self.embeddings(inputs).view((1, -1))
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F.relu(self.lineari(embeds))
self.linear2(out)
log probs = F.log softmax(out, dim=1)

out

out

return log probs

losses = []

loss function = nn.NLLLoss()

model = NGramLanguageModeler(len(vocab), EMBEDDING DIM, CONTEXT SIZE)
optimizer = optim.SGD(model.parameters(), lr=0.001)

The n-gram extractor has three arguments: the length of the vocabulary to extract, a
dimension of the embedding vector, and context size. Let’s look at the loss function and
the model specification.

model

NGramLanguageModeler( (embeddings): Embedding(228, 10) (linear1):
Linear(in_features=20, out features=128, bias=True) (linear2): Linear(in_
features=128, out features=228, bias=True) )

Apply the Adam optimizer.

optimizer
SGD ( Parameter Group O dampening: 0 foreach: None lr: 0.001 maximize:
False momentum: O nesterov: False weight decay: 0 )

Context extraction from sentences is also important. Let’s look at the following

function:

for epoch in range(10):
total loss = 0
for context, target in trigrams:

# Step 1. Prepare the inputs to be passed to the model (i.e, turn
the words

# into integer indices and wrap them in tensors)

context_idxs = torch.tensor([word to ix[w] for w in context],

dtype=torch.long)

# Step 2. Recall that torch *accumulates* gradients. Before
passing in a
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# new instance, you need to zero out the gradients from the old
# instance
model.zero grad()

# Step 3. Run the forward pass, getting log probabilities over next
# words
log probs = model(context idxs)

# Step 4. Compute your loss function. (Again, Torch wants
the target
# word wrapped in a tensor)
loss = loss_function(log probs, torch.tensor([word to ix[target]],
dtype=torch.long))

# Step 5. Do the backward pass and update the gradient
loss.backward()
optimizer.step()

# Get the Python number from a 1-element Tensor by calling
tensor.item()
total loss += loss.item()
losses.append(total loss)
print(losses) # The loss decreased every iteration over the training data!

Recipe 7-2. CBOW Model in PyTorch
Problem

How do you create a CBOW model using PyTorch?

Solution

There are two different methods to represent words and phrases in vectors: continuous
bag of words (CBOW) and skip gram. The bag-of-words approach learns embedding
vectors by predicting the word or phrase in context. Context means the words before
and after the current word. If we take a context of size 4, the four words to the left of the
current word and four words to the right of it are considered for context. The model tries
to find those eight words in another sentence to predict the current word.
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How It Works

Let’s look at the following example:

CONTEXT _SIZE = 2 # 2 words to the left, 2 to the right raw text = """For
the future of data science, Donoho projects an ever-growing environment for
open science where data sets used for academic publications are accessible
to all researchers.[36] US National Institute of Health has already
announced plans to enhance reproducibility and transparency of research
data.[39] Other big journals are likewise following suit.[40][41] This way,
the future of data science not only exceeds the boundary of statistical
theories in scale and methodology, but data science will revolutionize
current academia and research paradigms.[36] As Donoho concludes, "the
scope and impact of data science will continue to expand enormously in
coming decades as scientific data and data about science itself become
ubiquitously available."[36]""".split()

# By deriving a set from "raw_text™, we deduplicate the array
vocab = set(raw_text)
vocab_size = len(vocab)

word_to_ix
data = []
for i in range(2, len(raw_text) - 2):

context = [raw_text[i - 2], raw text[i - 1],

raw_text[i + 1], raw text[i + 2]]

target = raw_text[i]

data.append((context, target))
print(data[:5])

{word: i for i, word in enumerate(vocab)}

class CBOW(nn.Module):
def _init (self):
pass

def forward(self, inputs):
pass
# create your model and train. here are some functions to help you make
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# the data ready for use by your module

def make context vector(context, word to ix):
idxs = [word to ix[w] for w in context]
return torch.tensor(idxs, dtype=torch.long)

make context vector(data[o][0], word to ix) # example
tensor([26, 54, 63, 18])

Graphically, the bag-of-words model looks like Figure 7-1. It has three layers: input,
which are the embedding vectors that take the words and phrases into account; the
output vector, which is the relevant word predicted by the model; and the projection
layer, which is a computational layer provided by the neural network model.

INPUT PROJECTION OUTPUT
w(t-2)
w(t-1)
SUM
= w(t)
w(t+1)
w(t+2)

Figure 7-1. CBOW model representation

lin = nn.Linear(5, 3) # maps from R"5 to R"3, parameters A, b
# data is 2x5. A maps from 5 to 3... can we map "data" under A?
data = torch.randn(2, 5)

print(lin(data)) # yes
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data = torch.randn(2, 2)
print(data)
print(F.relu(data))

# Softmax is also in torch.nn.functional

data = torch.randn(5)

print(data)

print(F.softmax(data, dim=0))

print(F.softmax(data, dim=0).sum()) # Sums to 1 because it is a
distribution!

print(F.log_softmax(data, dim=0)) # theres also log softmax

Recipe 7-3. LSTM Model
Problem

How do you create a LSTM model using PyTorch?

Solution

The long short-term memory (LSTM) model, also known as the specific form of recurrent
neural network model, is commonly used in the natural language processing field. Text
and sentences come in sequences to make a meaningful sentence, so you need a model
that remembers the long and short sequences of text to predict a word or text.

How It Works

Let’s look at the following example:

1stm = nn.LSTM(3, 3) # Input dim is 3, output dim is 3
inputs = [torch.randn(1, 3) for _ in range(5)] # make a sequence of
length 5

# initialize the hidden state.
hidden = (torch.randn(1, 1, 3),

torch.randn(1, 1, 3))
for i in inputs:
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# Step through the sequence one element at a time.
# after each step, hidden contains the hidden state.
out, hidden = lstm(i.view(1, 1, -1), hidden)
inputs = torch.cat(inputs).view(len(inputs), 1, -1)
hidden = (torch.randn(1, 1, 3), torch.randn(1, 1, 3)) # clean out
hidden state

out, hidden = lstm(inputs, hidden)
print(out)
print(hidden)

tensor([[[-0.1500, 0.0547, 0.3930]],
[[-0.1313, -0.0478, 0.0857]],
[[-0.1131, 0.0047, -0.1003]],
[[ 0.0176, -0.2464, -0.1589]],

[[-0.0523, 0.1781, -0.1713]]], grad fn=<StackBackwardo>)
(tensor([[[-0.0523, 0.1781, -0.1713]]], grad fn=<StackBackwardo>),
tensor([[[-0.1997, 0.5137, -0.6064]]], grad fn=<StackBackwardo>))

Prepare a sequence of words as training data to form the LSTM network.

def prepare_sequence(seq, to_ix):
idxs = [to_ix[w] for w in seq]
return torch.tensor(idxs, dtype=torch.long)

training data = [
("Probability and random variable are integral part of computation
".split(),
["DET", "NN", "V", "DET", "NN"]),
("Understanding of the probability and associated concepts are
essential”.split(),
["NN", "V", "DET", "NN"])
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training_data

[(['Probability', 'and', 'random', 'variable', 'are', 'integral', 'part’,

‘of', 'computation'], ['DET", 'NN', 'V', 'DET',

‘of', 'the', 'probability', 'and', 'associated',

'essential'], ['NN', 'V', 'DET', 'NN'])]

word to ix = {}
for sent, tags in training data:
for word in sent:
if word not in word to ix:
word to ix[word] = len(word to ix)
print(word to_ ix)
tag to _ix = {"DET": 0, "NN": 1, "V": 2}

EMBEDDING DIM = 6
HIDDEN DIM = 6
class LSTMTagger(nn.Module):

'NN']), (['Understanding’,

"concepts', 'are',

def _init (self, embedding dim, hidden dim, vocab_size, tagset size):

super(LSTMTagger, self). init ()
self.hidden_dim = hidden_dim

self.word_embeddings = nn.Embedding(vocab_size, embedding dim)

# The LSTM takes word embeddings as inputs, and
#outputs hidden states with dimensionality hidden_dim.
self.lstm = nn.LSTM(embedding dim, hidden_dim)

# The linear layer that maps from hidden state space to tag space
self.hidden2tag = nn.Linear(hidden_dim, tagset size)

self.hidden = self.init hidden()

def init hidden(self):

# Before we've done anything, we dont have any hidden state.
# Refer to the Pytorch documentation to see exactly

# why they have this dimensionality.

# The axes semantics are (num_layers, minibatch_size, hidden_dim)
return (torch.zeros(1, 1, self.hidden dim),
torch.zeros(1, 1, self.hidden_dim))
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def forward(self, sentence):
embeds = self.word embeddings(sentence)
1stm out, self.hidden = self.lstm(
embeds.view(len(sentence), 1, -1), self.hidden)
tag_space = self.hidden2tag(lstm out.view(len(sentence), -1))
tag scores = F.log softmax(tag space, dim=1)
return tag_scores

model = LSTMTagger (EMBEDDING DIM, HIDDEN DIM, len(word to ix),

len(tag to_ix))

loss _function = nn.NLLLoss()

optimizer = optim.SGD(model.parameters(), lr=0.1)

model

loss_function

optimizer

SGD ( Parameter Group O dampening: O foreach: None lr: 0.1 maximize: False
momentum: O nesterov: False weight decay: 0 )

with torch.no _grad():
inputs = prepare sequence(training data[0][0], word to ix)
tag_scores = model(inputs)
print(tag_scores)

.0414, -1.1928, -1.0680],
.0747, -1.2163, -1.0154],
.0706, -1.2298, -1.0083],
.0661, -1.2428, -1.0022],
.0013, -1.2948, -1.0254],
.0539, -1.2640, -0.9973],
.0718, -1.2705, -0.9757],
.9919, -1.2527, -1.0689],
.9726, -1.2880, -1.0611]])

tensor (][

Lo T e T e T e T e T e T e T e B e |
1 1 1 1 1 1 1
O O R R R R R R R,
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Summary

This chapter provided recipes on how to apply continuous bag of words, word
embedding, and create a long- and short-term memory network. The PyTorch functions
corresponding to each recipe can be used for building natural language pipelines

for developing solutions such as text classification, automatic text summarization,
sentiment analysis, and many other NLP-related processing. The next chapter will

cover distributed PyTorch for large scale processing and parallel processing of PyTorch
functions and routines. You will learn deep learning model quantization methods for
reducing the model size and improving the performance of the model in a deployment
use case.
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Distributed PyTorch
Modelling, Model
Optimization,

and Deployment

In this chapter, you will use PyTorch to implement the steps that are most commonly
used in installation, training, and setting up distributed PyTorch for model training. The
architecture followed for distributed data parallel training and distributed model parallel
training can be explained using the following figures. The model optimization process
reduces the model parameter’s size so that the model object becomes lighter. The bigger
the model object, the slower the inference generation. If you reduce the number of layers
in the deep learning model, the parameters that are getting trained also lessen, but this
may impact the model accuracy. Hence, one technique used to reduce the model size

is called quantization. There are different types of model quantization that need to be
applied in order to put the model into production. Otherwise, bigger model objects are
not compatible for deployment.

Recipe 8-1. Distributed Torch Architecture
Problem

What are distributed torch architectures and how are they designed?
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Solution

The training load of deep learning models can be spread across multiple GPUs and CPUs
as well. There are two ways the spread can happen. One is by distributing the training
data and spreading it over multiple processors. Another is by distributing the gradients
across multiple processors.

How It Works

In Figure 8-1, the training data samples are distributed by creating smaller batches of
data as in mini batch 1 and mini batch 2. A subsample of data is fed to the machines

in the cluster, where a number of processors are clubbed together to form a cluster so
that the model training can be done in a distributed manner. The deep learning model
present in machine 1 has four hidden layers. After mini batch 1’s data goes through the
four layers, the loss function is estimated. The same process is followed when you feed
mini batch 2 to machine 2, having the same exact deep learning model architecture as
present in machine 1. Again, the loss estimation happens. Depending upon the loss
value, the gradient update goes to the layers in both machines and the updated gradients
follow the back propagation method to optimize the model.

Training
Data Mini Batch 2

- ==
T L

) Machine
Machine 1

Layer 3 Layer 3

Layer 4

Dl004E
~/

K Layer 4 _/ \

Gradient
Update

4>‘ Loss Estimation }q—

Figure 8-1. Distributed data parallel training
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In Figure 8-2, the training data is split into mini batches. The mini batch data goes
through four hidden layers in machine 1 and then it goes through another set of four
hidden layers in machine 2 and then loss estimation happens and the gradient update

goes to both machines in parallel. In this process, the gradients are processed in a faster
way than the Figure 8-1 method.

Mini Batch of Training
Training data Data

Machine 1

Gradient
Update

Machine

Loss Estimation

Figure 8-2. Distributed model parallel training

Recipe 8-2. Components of Torch Distributed
Problem

What are the components of torch distributed?
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Solution

The training load of deep learning models can be spread across multiple GPUs and
CPUs. There are two ways the spread can happen. One is by distributing the training data
and spreading it over multiple processors. Two is by distributing the gradients across
multiple processors.

How It Works

There are three main components of a distributed torch framework.

1. Distributed data parallel training: This is also known as
DDP. In this process, the model architecture is replicated over
every process. Every model replica is fed with a different set of
input data. In this process, a synchronous method of gradients
communication is important and key. This is gracefully managed
by the DDP framework

2. RPC-based distributed training: Remote procedure call-based
distributed training is useful for workloads that cannot be fitted
to a DDP framework. An example is parallel distributed pipeline
processing.

3. Collective communication: There is a library called c10d that

provides collective communication and P2P communication.

There are three kinds of backends that can be used: GLOO, NCCL, and MPI. For
distributed GPU training, the NCCL backend should be used; for distributed CPU
training, the GLOO backend should be used; and if the PyTorch is built from the source,
the MPI backend should be used.

Recipe 8-3. Setting Up Distributed PyTorch
Problem

How do you set distributed parallel processing up in PyTorch?

190



CHAPTER 8  DISTRIBUTED PYTORCH MODELLING, MODEL OPTIMIZATION, AND DEPLOYMENT

Solution

There are two ways in which you can set up distributed PyTorch: using the GPU on the
cloud and using the CPU on a local, single machine. The data parallel training requires a
set of processes that need to be followed for optimum utilization of the framework.

How It Works

Let’s look at the following example. The import functions add the libraries necessary for
installing DDP. The environment setup is done locally on port 55555. The distributed
process group requires a backend, which is GLOO in this example. It requires a rank,
which should be provided by the user, and the number of worker size, which is world
size, which also needs to be provided by the user.

import os

import sys

import tempfile

import torch

import torch.distributed as dist
import torch.nn as nn

import torch.optim as optim

import torch.multiprocessing as mp

from torch.nn.parallel import DistributedDataParallel as DDP
def setup(rank, world size):

os.environ[ 'MASTER ADDR']
os.environ[ 'MASTER PORT']

'localhost'
5555

# initialize the process group
dist.init process group(“gloo", rank=rank, world size=world size)

def cleanup():
dist.destroy process group()

class NNET Model(nn.Module):
def init (self):
super (NNET_Model, self). init ()
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self.netl = nn.Linear(10, 10)
self.relu = nn.RelLU()
self.net2 = nn.Linear(10, 5)

def forward(self, x):
return self.net2(self.relu(self.net1(x)))

def nnet basic(rank, world size):
print(f"Running basic DDP example on rank {rank}.")
setup(rank, world size)

# create model and move it to CPU with id rank
model = NNET Model().to(rank)
ddp model = DDP(model, device ids=[rank])

loss_fn = nn.MSELoss()
optimizer = optim.SGD(ddp_model.parameters(), lr=0.001)

optimizer.zero grad()

outputs = ddp model(torch.randn(20, 10))
labels = torch.randn(20, 5).to(rank)
loss_fn(outputs, labels).backward()
optimizer.step()

cleanup()

The basic neural network model has a linear layer that uses DDP in a CPU

environment.
nnet_basic(rank=1,world size=4)

This program will take some time because it is running in a CPU environment and
world size=4 means with four workers or processors participating in the training job
and rank as 1.

Recipe 8-4. Loading Data to Distributed PyTorch
Problem

How do you load datasets into distributed PyTorch?
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Solution

The following code shows how to download a MNIST dataset. Using a distributed data
sampler, you can prepare the data and train a model.

How It Works

Let’s look at the following example:

import torch.distributed as dist

def setup(rank, world size):
os.environ[ 'MASTER ADDR'] = 'localhost’
os.environ[ '"MASTER PORT'] = '12355'
dist.init process group(“"nccl”, rank=rank, world size=world size)

import torchvision.datasets as datasets
mnist trainset = datasets.MNIST(root='./data', train=True, download=True,
transform=None)

Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz
Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz to
./data/MNIST/raw/train-images-idx3-ubyte.gz

100%

9912422/9912422 [00:00<00:00, 120503370.11it/s]

Extracting ./data/MNIST/raw/train-images-idx3-ubyte.gz to ./data/MNIST/raw

Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz
Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz to
./data/MNIST/raw/train-labels-idx1-ubyte.gz

100%

28881/28881 [00:00<00:00, 798789.93it/s]

Extracting ./data/MNIST/raw/train-labels-idx1-ubyte.gz to ./data/MNIST/raw

Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz
Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz to
./data/MNIST/raw/t10k-images-idx3-ubyte.gz

100%

1648877/1648877 [00:00<00:00, 47304965.85it/s]
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Extracting ./data/MNIST/raw/t10k-images-idx3-ubyte.gz to ./data/MNIST/raw

Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz
Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz to
./data/MNIST/raw/t10k-1abels-idx1-ubyte.gz

100%

4542/4542 [00:00<00:00, 183349.17it/s]

Extracting ./data/MNIST/raw/t10k-labels-idx1-ubyte.gz to ./data/MNIST/raw

from torch.utils.data.distributed import DistributedSampler
def prepare(rank, world size, batch size=32, pin memory=False,
num_workers=0):
dataset = mnist_trainset
sampler = DistributedSampler(dataset, num replicas=world size,
rank=rank, shuffle=False, drop last=False)

dataloader = Dataloader(dataset, batch size=batch size, pin memory=
pin_memory, num workers=num workers, drop_last=False, shuffle=False,
sampler=sampler)

return dataloader

from torch.nn.parallel import DistributedDataParallel as DDP
def main(rank, world size):

# setup the process groups

setup(rank, world size)

# prepare the dataloader

dataloader = prepare(rank, world size)

# instantiate the model(Your Model) and move it to the right device
model = Model().to(rank)

# wrap the model with DDP

# device ids tell DDP where is your model

# output_device tells DDP where to output, in our case, it is rank

# find_unused parameters=True instructs DDP to find unused output of
the forward() function of any module in the model

model = DDP(model, device ids=[rank], output device=rank, find unused

parameters=True)
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if torch.cuda.is available():
DEVICE = torch.device('cuda")
device ids = list(range(torch.cuda.device count()))
gpus = len(device_ids)
print('GPU detected")
else:
DEVICE = torch.device("cpu")
print('No GPU. switching to CPU")

Recipe 8-5. Quantization of Models in PyTorch
Problem

How do you optimize the deep learning models in PyTorch?

Solution

In order to optimize the deep learning models for efficient deployment on servers and
edge devices, PyTorch provides a framework called model quantization. Quantization
uses the 8-bit integer format to reduce the weights, which are typically in the form of
32-bit or 64-bit floating points. After applying the quantization, the inference generation
from the PyTorch model becomes faster. Quantization can be defined as the technique
that is deployed to do computations and memory access with lower precision data.

How It Works

Let’s look at the following example. There are three different types of quantization
methods available in PyTorch.

o Dynamic quantization: There are two set of numerical information
that need to be converted into int8: the weights and biases in
each hidden layer of a neural network model and the activation
functions just before doing computations. Dynamic computation
applies quantization at the weights and bias layer as well as on the
activations before they get into the computation layer. This is why it is
called dynamic; it is applied while model training is going on.
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import torch.quantization

quantized model = torch.quantization.quantize dynamic(model,

{torch.nn.Linear},
dtype=torch.qint8)

print(quantized model)
ToyModel(
(net1): DynamicQuantizedlLinear(in_features=10, out features=10,
dtype=torch.qint8, gscheme=torch.per tensor affine)
(relu): ReLU()
(net2): DynamicQuantizedlLinear(in_features=10, out features=5,
dtype=torch.qint8, gscheme=torch.per tensor affine)
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Static quantization: This technique is applied after the model

object is generated, post training the deep learning model.

Static quantization has three major components through which

quantization is applied to the model.

Observers: When the training data is fed into the model, at
each activation point the quantization process keeps a check on
the resulting distributions of the different activation functions.
They are called observers because they observe the change

in distribution or statistics around the distribution when
quantization is applied.

Fusion: The operator fusion is the second feature that combines
multiple operations into a single operation and thus reduces the
volume of computation.

Pre-channel quantization: This feature helps in quantizing the
output channels and speeds up the computation.

# insert observers

torch.quantization.prepare(model, inplace=True)

# Calibrate the model and collect statistics

ToyModel( (net1): Linear(in_features=10, out features=10,
bias=True) (relu): ReLU() (net2): Linear(in_ features=10,
out features=5, bias=True) )
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# convert to quantized version
torch.quantization.convert(model, inplace=True)

ToyModel( (net1): Linear(in_features=10, out features=10,
bias=True) (relu): ReLU() (net2): Linear(in features=10,
out features=5, bias=True) )

e Quantization-aware training (QAT): This method yields higher
accuracy because it rounds off the float values to int8 during the
forward pass, backward pass, and activation application function;
thereby it actually uses the floating point numbers but due to
rounding it looks like int8. This results in higher accuracy.

# prepare QAT
torch.quantization.prepare _qat(model, inplace=True)

ToyModel( (net1): Linear(in_features=10, out features=10,
bias=True) (relu): ReLU() (net2): Linear(in features=10,
out features=5, bias=True) )

# convert to quantized version, removing dropout, to check

for accuracy on each

epochquantized model=torch.quantization.convert(model.eval(),
inplace=False)

epochquantized model

ToyModel( (net1): Linear(in features=10, out features=10,

bias=True) (relu): ReLU() (net2): Linear(in features=10,

out_features=5, bias=True) )

Recipe 8-6. Quantization Observer Application
Problem

How do you apply different quantization observers in PyTorch?
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Solution

There are different types of observers that look at the distributions of activations before
computation at each layer. You must understand the behavior of each type of observer
and how it works.

How It Works

Let’s look at the following example. There are three different types of quantization
observer methods available in PyTorch.

e MinMaxObserver
e MovingAverageMinMaxObserver

e HistogramObserver

from torch.quantization.observer import MinMaxObserver,

MovingAverageMinMaxObserver, HistogramObserver

¢, L=5,5

normal = torch.distributions.normal.Normal(0,1)

inputs = [normal.sample((C, L)), normal.sample((C, L))]

print(inputs)

[tensor([[ 0.8052, -0.1585, -1.5735, 0.0400, -0.1424],
[-1.4450, 1.2916, -0.4354, -1.8434, 0.4686],
[-1.6375, 0.0545, 0.5203, 0.0024, 0.7699],
[-1.2877, -2.1810, 0.4022, 1.3470, 0.9177],
[-0.5629, -0.5823, -1.0329, -1.3076, 0.9457]]),
tensor([[ 0.3280, -1.9777, 0.2115, 0.8891, 1.2109],
[-0.0630, -0.4131, -0.3992, -0.4765, -0.7934],

[ 0.7557, -0.7131, -1.6143, -0.9568, 0.4245],
[ 0.0509, 0.1589, 0.9872, 1.1071, -0.0961]
[-0.7442, 1.6635, -0.2982, -0.4168, 0.2499]

observers = [MinMaxObserver(), MovingAverageMinMaxObserver(),
HistogramObserver() ]
for obs in observers:

for x in inputs: obs(x)
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print(obs. class . name_, obs.calculate gparams())
MinMaxObserver (tensor([0.0151]), tensor([145], dtype=torch.int32))
MovingAverageMinMaxObserver (tensor([0.0138]), tensor([157],
dtype=torch.int32))
HistogramObserver (tensor([0.0150]), tensor([143], dtype=torch.int32))

from torch.quantization.observer import
MovingAveragePerChannelMinMaxObserver

obs = MovingAveragePerChannelMinMaxObserver(ch_axis=0)
# calculate gparams for all "C channels separately
for x in inputs: obs(x)

print(obs.calculate gparams())

(tensor([0.0094, 0.0122, 0.0094, 0.0137, 0.0088]), tensor([169, 150, 173,
157, 147], dtype=torch.int32))

Recipe 8-7. Quantization Application Using
the MNIST Dataset

Problem

How do you apply different quantization techniques on a CNN model using the MNIST
dataset in PyTorch?

Solution

As a first step, the dataset need to be loaded to the session. The necessary script for
model training need be applied and then the quantization techniques need to be
applied.

How It Works

Let’s look at the following example:

import torch
import torchvision
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import torchvision.transforms as transforms

import torch.nn as nn

import torch.nn.functional as F

import torch.optim as optim

import os

from torch.utils.data import Dataloader

import torch.quantization

from torch.quantization import QuantStub, DeQuantStub

transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))])

trainset = torchvision.datasets.MNIST(root="./data', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.Dataloader(trainset, batch size=64,
shuffle=True, num workers=16,
pin_memory=True)

testset = torchvision.datasets.MNIST(root="./data', train=False,
download=True, transform=transform)
testloader = torch.utils.data.Dataloader(testset, batch size=64,
shuffle=False, num workers=16,
pin_memory=True)

The following class function computes and stores the average and current value of
the weights:

class AverageMeter(object):
"""Computes and stores the average and current value
def init (self, name, fmt=":f'):
self.name = name
self.fmt = fmt
self.reset()

def reset(self):
self.val = 0
self.avg = 0
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self.sum = 0
self.count = 0

def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count

def str (self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})’
return fmtstr.format(**self. dict )

Since you are using the CNN model using the MNIST dataset, you can compute the
accuracy using the following function:

def accuracy(output, target):
""" Computes the top 1 accuracy
with torch.no _grad():
batch size = target.size(0)

_, pred = output.topk(1, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand as(pred))

res = []
correct one = correct[:1].view(-1).float().sum(0, keepdim=True)
return correct one.mul (100.0 / batch size).item()

To print the size of the model object in MB format, you can use the following script:

def print size of model(model):
""" Prints the real size of the model """
torch.save(model.state dict(), "temp.p")
print('Size (MB):', os.path.getsize("temp.p")/1e6)
os.remove( 'temp.p')

taking the quantized model and real model as two objects together.

def load model(quantized model, model):
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Loads in the weights into an object meant for quantization
state_dict = model.state dict()

model = model.to('cpu')

quantized model.load state dict(state dict)

def fuse modules(model):

Fuse together convolutions/linear layers and RelU
torch.quantization.fuse modules(model, [['convi', 'relui'],
['conv2', 'relu2'],
['fc1', 'relu3'],
["fc2', 'relusa']],
inplace=True)

Now you can train the neural network model with convolution layers and three fully
connected network layers.

class Net(nn.Module):
def _init_ (self, q = False):
# By turning on Q we can turn on/off the quantization
super(Net, self). init ()
self.convi = nn.Conv2d(1, 6, 5, bias=False)
self.relul = nn.ReLU()
self.pooll = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5, bias=False)
self.relu2 = nn.ReLU()
self.pool2 = nn.MaxPool2d(2, 2)
self.fc1 = nn.Linear(256, 120, bias=False)
self.relu3 = nn.ReLU()
self.fc2 = nn.Linear(120, 84, bias=False)
self.relu4 = nn.ReLU()
self.fc3 = nn.Linear(84, 10, bias=False)
self.q = q
if g:
self.quant = QuantStub()
self.dequant = DeQuantStub()
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def forward(self, x: torch.Tensor) -> torch.Tensor:
if self.q:
= self.quant(x)

x

= self.convi(x)

= self.relu1l(x)

= self.pool1(x)

= self.conv2(x)

= self.relu2(x)

= self.pool2(x)

Be careful to use reshape here instead of view
= x.reshape(x.shape[0], -1)
= self.fc1(x)

= self.relu3(x)

= self.fc2(x)

= self.relus(x)

= self.fc3(x)

if self.q:

x = self.dequant(x)

X X X X X X #=H X X X X X X

return x
The trained model object size is 0.178587MB.

net = Net(gq=False)
print _size of model(net)
Size (MB): 0.178587

The average meter that you defined above computes the loss and accuracy in
runtime. You run 100 epochs because the model is not running in an GPU environment.

def train(model: nn.Module, dataloader: Dataloader, cuda=False, g=False):
criterion = nn.CrossEntropyloss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
model.train()
for epoch in range(20): # loop over the dataset multiple times

running loss = AverageMeter('loss')
acc = AverageMeter('train acc')
for i, data in enumerate(dataloader, 0):
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# get the inputs; data is a list of [inputs, labels]
inputs, labels = data

if cuda:
inputs = inputs.cuda()
labels = labels.cuda()

# zero the parameter gradients
optimizer.zero grad()

if epoch>=3 and q:
model.apply(torch.quantization.disable observer)

# forward + backward + optimize
outputs = model(inputs)

loss = criterion(outputs, labels)
loss.backward()

optimizer.step()

# print statistics
running loss.update(loss.item(), outputs.shape[0])
acc.update(accuracy(outputs, labels), outputs.shape[0])
if 1 % 100 == 0: # print every 100 mini-batches
print('[%d, %5d] " %
(epoch + 1, i + 1), running loss, acc)
print('Finished Training")

The final epoch has run and finished training. As a next step, use the test script.

def test(model: nn.Module, dataloader: Dataloader, cuda=False) -> float:
correct = 0
total = 0
model.eval()
with torch.no grad():
for data in dataloader:
inputs, labels = data

if cuda:
inputs = inputs.cuda()
labels = labels.cuda()
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outputs = model(inputs)

_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)

correct += (predicted == labels).sum().item()

return 100 * correct / total
train(net, trainloader)

[15, 301] loss 0.044805 (0.041544) train_acc 98.437500 (98.681478)
[15, 401] loss 0.089017 (0.040428) train acc 98.437500 (98.753117)
[15, 501] loss 0.001939 (0.041203) train_acc 100.000000 (98.727545)
[15, 601] loss 0.031541 (0.042560) train acc 98.437500 (98.679285)
[15, 701] 1loss 0.047192 (0.042918) train acc 96.875000 (98.684914)
[15, 801] loss 0.011530 (0.043959) train_acc 100.000000 (98.642322)
[15, 901] loss 0.030178 (0.044269) train acc 98.437500 (98.638665)
[16, 1] loss 0.006916 (0.006916) train acc 100.000000 (100.000000)

score = test(net, testloader, cuda=False)

print('Accuracy of the network on the test images: {}% - FP32'.
format(score))

Accuracy of the network on the test images: 98.65% - FP32

The accuracy of the CNN model is 98.65% in floating point weight type. Now, apply
the quantization.

gnet = Net(g=True)

load model(gnet, net)

fuse_modules(gnet)

print_size of model(gnet)

score = test(gnet, testloader, cuda=False)

print('Accuracy of the fused network on the test images: {}% - FP32'.
format(score))

Size (MB): 0.178843

Accuracy of the fused network on the test images: 98.65% - FP32

After applying fuse, the model object remains 0.178843MB and the accuracy

remains as it is.

gnet.qconfig = torch.quantization.default qgconfig
print(gnet.qconfig)
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torch.quantization.prepare(qgnet, inplace=True)
print('Post Training Quantization Prepare: Inserting Observers')
print('\n Convi: After observer insertion \n\n', gnet.convi)

test(gnet, trainloader, cuda=False)

print('Post Training Quantization: Calibration done')
torch.quantization.convert(gnet, inplace=True)

print('Post Training Quantization: Convert done")

print('\n Convi: After fusion and quantization \n\n', gnet.convil)
print("Size of model after quantization")

print_size of model(gnet)
QConfig(activation=functools.partial(<class 'torch.ao.quantization.
observer.MinMaxObserver'>, quant min=0, quant max=127){}, weight=functools.
partial(<class 'torch.ao.quantization.observer.MinMaxObserver's,
dtype=torch.qint8, gscheme=torch.per tensor symmetric){})

Post Training Quantization Prepare: Inserting Observers

Convl: After observer insertion

ConvRelLU2d(
(0): Conv2d(1, 6, kernel size=(5, 5), stride=(1, 1), bias=False)
(1): ReLU()
(activation post process): MinMaxObserver(min val=inf, max val=-inf)
)
Post Training Quantization: Calibration done
Post Training Quantization: Convert done

Convi: After fusion and quantization

QuantizedConvRelLU2d(1, 6, kernel size=(5, 5), stride=(1, 1),
scale=0.06902680546045303, zero point=0, bias=False)

Size of model after quantization

Size (MB): 0.049714

score = test(gnet, testloader, cuda=False)
print('Accuracy of the fused and quantized network on the test images:
{}% - INT8'.format(score))
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Accuracy of the fused and quantized network on the test images:
98.58% - INT8

The model size is reduced significantly after applying the quantization: the
model size becomes 0.05MB without reducing the accuracy of the model. Sometimes
quantization can reduce the accuracy. Now let’s change the default observers and apply
custom observers.

from torch.quantization.observer import MovingAverageMinMaxObserver

gnet = Net(gq=True)
load model(gnet, net)
fuse_modules(gnet)

gnet.qconfig = torch.quantization.QConfig(
activation=MovingAverageMinMaxObserver.with_
args(reduce _range=True),
weight=MovingAverageMinMaxObserver.with_args
(dtype=torch.qint8, gscheme=torch.per tensor symmetric))

print(gnet.qconfig)

torch.quantization.prepare(qgnet, inplace=True)

print('Post Training Quantization Prepare: Inserting Observers')

print('\n Convi: After observer insertion \n\n', gnet.convi)

test(gnet, trainloader, cuda=False)

print('Post Training Quantization: Calibration done')
torch.quantization.convert(gnet, inplace=True)

print('Post Training Quantization: Convert done")

print('\n Convi: After fusion and quantization \n\n', gnet.convil)
print("Size of model after quantization")

print_size of model(gnet)

score = test(gnet, testloader, cuda=False)

print('Accuracy of the fused and quantized network on the test images:
{}% - INT8'.format(score))

QConfig(activation=functools.partial(<class 'torch.ao.quantization.
observer.MovingAverageMinMaxObserver'>, reduce range=True){},
weight=functools.partial(<class 'torch.ao.quantization.observer.
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MovingAverageMinMaxObserver'>, dtype=torch.qint8, gscheme=torch.per tensor_
symmetric){})
Post Training Quantization Prepare: Inserting Observers

Convl: After observer insertion

ConvRelLU2d(
(0): Conv2d(1, 6, kernel size=(5, 5), stride=(1, 1), bias=False)
(1): ReLU()
(activation_post process): MovingAverageMinMaxObserver(min_val=inf,
max_val=-inf)
)
/usr/local/lib/python3.7/dist-packages/torch/ao/quantization/observer.
py:178: UserWarning: Please use quant _min and quant_max to specify the
range for observers. reduce_range will be deprecated in
a future release of PyTorch.
reduce_range will be deprecated in a future release of PyTorch."
Post Training Quantization: Calibration done
Post Training Quantization: Convert done

Convi: After fusion and quantization

QuantizedConvRelU2d(1, 6, kernel size=(5, 5), stride=(1, 1),
scale=0.06884118169546127, zero point=0, bias=False)

Size of model after quantization

Size (MB): 0.049714

Accuracy of the fused and quantized network on the test images:
98.6% - INT8

Now apply QAT (quantization-aware training). With it, all weights and activations
are falsely quantized as floats by rounding the numbers. The additional change in the
quantization config is required in order to improve the accuracy

gnet = Net(gq=True)
load model(gnet, net)
fuse_modules(gnet)
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gnet.qconfig = torch.quantization.get default qconfig('fbgemm")
print(gnet.qconfig)

torch.quantization.prepare(qgnet, inplace=True)

test(gnet, trainloader, cuda=False)

torch.quantization.convert(gnet, inplace=True)

print("Size of model after quantization")

print_size of model(gnet)

QConfig(activation=functools.partial(<class 'torch.ao.quantization.
observer.HistogramObserver'>, reduce_range=True){}, weight=functools.
partial(<class 'torch.ao.quantization.observer.PerChannelMinMaxObserver'>,
dtype=torch.qint8, gscheme=torch.per channel symmetric){})

Size of model after quantization

Size (MB): 0.055572

Now, after quantization, the model size is reduced without impacting the accuracy of
the model.

score = test(gnet, testloader, cuda=False)

print('Accuracy of the fused and quantized network on the test images:
{}% - INT8'.format(score))

Accuracy of the fused and quantized network on the test images:

98.58% - INT8

After applying the fusion and quantization both to the convolution layer 1:

gnet = Net(gq=True)

fuse_modules(gnet)

gnet.qconfig = torch.quantization.get default gat qconfig('fbgemm')
torch.quantization.prepare gat(qgnet, inplace=True)

print('\n Convi: After fusion and quantization \n\n', gnet.convil)
gnet=qgnet

Convi: After fusion and quantization

ConvReLU2d(
1, 6, kernel size=(5, 5), stride=(1, 1), bias=False
(weight fake quant): FusedMovingAvgObsFakeQuantize(
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fake quant_enabled=tensor([1]), observer enabled=tensor([1]),
scale=tensor([1.]), zero point=tensor([0], dtype=torch.int32),
dtype=torch.qint8, quant min=-128, quant_max=127, qscheme=torch.
per_channel symmetric, reduce range=False
(activation_post process): MovingAveragePerChannelMinMaxObserver (min_
val=tensor([]), max_val=tensor([]))
)
(activation_post process): FusedMovingAvgObsFakeQuantize(
fake _quant_enabled=tensor([1]), observer enabled=tensor([1]),
scale=tensor([1.]), zero point=tensor([0], dtype=torch.int32),
dtype=torch.quint8, quant _min=0, quant max=127, gscheme=torch.
per tensor affine, reduce range=True
(activation post process): MovingAverageMinMaxObserver(min val=inf,
max_val=-inf)
)
)

train(qnet, trainloader, cuda=False)

[15, 301] loss 0.024571 (0.050655) train acc 100.000000 (98.421927)
[15, 401] loss 0.083018 (0.052274) train acc 96.875000 (98.394638)
[15, 501] loss 0.137679 (0.053624) train_acc 96.875000 (98.334581)
[15, 601] loss 0.067262 (0.053238) train acc 98.437500 (98.328307)
[15, 701] loss 0.025749 (0.053818) train acc 100.000000 (98.334968)
[15, 801] loss 0.100811 (0.054027) train_acc 96.875000 (98.341916)
[15, 901] loss 0.040471 (0.053821) train acc 98.437500 (98.336917)
[16, 1] loss 0.024462 (0.024462) train acc 100.000000 (100.000000)
[16, 101] loss 0.047599 (0.050869) train acc 96.875000 (98.452970)

gnet = gnet.cpu()
torch.quantization.convert(gnet, inplace=True)
print("Size of model after quantization")
print size of model(qgnet)

score = test(gnet, testloader, cuda=False)
print('Accuracy of the fused and quantized network (trained quantized) on
the test images: {}% - INT8'.format(score))
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Size of model after quantization

Size (MB): 0.055572

Accuracy of the fused and quantized network (trained quantized) on the test
images: 98.69% - INT8

The size of the model is reduced to 0.55MB after quantization and fused application.

gnet = Net(gq=True)

fuse_modules(gnet)

gnet.qconfig = torch.quantization.get default gat qconfig('fbgemm")
torch.quantization.prepare gat(gnet, inplace=True)

gnet = gnet

train(gnet, trainloader, cuda=False, g=True)

gnet = gnet.cpu()

torch.quantization.convert(gnet, inplace=True)

print("Size of model after quantization")

print_size of model(gnet)

score = test(gnet, testloader, cuda=False)

print('Accuracy of the fused and quantized network (trained quantized) on
the test images: {}% - INT8'.format(score))

[15, 601] loss 0.070189 (0.060619) train acc 98.437500 (98.128120)

[15, 701] loss 0.275282 (0.060933) train_acc 93.750000 (98.123217)
[15, 801] loss 0.029783 (0.060075) train acc 100.000000 (98.172207)
[15, 901] loss 0.028618 (0.059222) train acc 98.437500 (98.186043)
[16, 1] loss 0.046160 (0.046160) train acc 98.437500 (98.437500)
[16, 101] loss 0.110157 (0.069398) train acc 96.875000 (98.004332)
[16, 201] 1loss 0.157249 (0.063327) train acc 95.312500 (98.173197)
[16, 301] loss 0.013502 (0.059892) train acc 100.000000 (98.183140)

Finished Training

Size of model after quantization

Size (MB): 0.055572

Accuracy of the fused and quantized network (trained quantized) on the test
images: 98.53% - INTS8
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It is safe to conclude that after quantization the model size is significantly reduced
without reducing the accuracy of the model in this particular example. This is not
always going to be true. There must be a step-by-step process to apply quantization
and observe the delta change in the accuracy parameter. The reason why you want
to apply quantization is to hasten the inference generation time. If the accuracy gets
compromised, there is no point in applying quantization. Hence quantization-aware
training usually provides accuracy closer to the floating point accuracy.

Summary

In this chapter, you explored recipes for applying distributed PyTorch in a GPU
environment and processing the model training in a parallel way. Also, you saw recipes
that provide ways to quantize large deep learning model objects into a smaller size,
keeping accuracy in mind. Quantization is necessary to hasten the inference generation
time for deep learning models. We discussed various methods of quantization in this
chapter. The next chapter will cover data augmentation methods for image and audio
data and feature engineering and extraction of relevant features using PyTorch.
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CHAPTER 9

Data Augmentation,
Feature Engineering,

and Extractions for Image
and Audio

In an audio classification model, you want the deep learning algorithm to learn sounds
and predict a category. Similarly, in image classification, you want the deep learning
model to remember the images, learn the patterns from the images, and classify new
images into various categories that the learning algorithm has been trained on. In sound
classification, you typically start by taking the audio files as inputs and convert them into
something called a spectogram. A spectrogram produces a high-dimensional space of
data that can be further reduced by applying the convolutional neural network model.
As you know, the final layer of a CNN is a neural network, which is also called a fully
connected layer and is typically used as a classifier.

In this chapter, you will use PyTorch to implement the steps that are most commonly
used in audio processing and image processing tasks.
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Recipe 9-1. Spectogram for Audio Processing
Problem

How do you augment the audio data for training using a spectogram?

Solution

The raw audio files can be in mp4, mp3, or wav format, but you cannot use them directly
for model training. The model training process requires the data to be in a structured
and tabular format. So, the problem here is how do you transform the audio files into a
tabular format?

How It Works

The audio data transformation for application of a deep learning model can be
separated into several steps. First, the audio files need to be loaded from a wav file into
memory (depending upon the environment, CPU, or GPU). Second, the wav file needs
to be converted into stereo. Time-shifting audio augmentation happens and then the
audio files get converted into a spectrogram. Generally, audio files are of two channels
because of stereo but sometimes the audio clips are from one channel only. Hence a
normalization process is also required here before training so that the input data can be
standardized.

The torchaudio module has two sub-components to process audio data:

e Torchaudio.functional
o Torchaudio.transforms
import torch
import torchaudio

import torchaudio.functional as F
import torchaudio.transforms as T

print(torch. version_ )
print(torchaudio. version )

from IPython.display import Audio
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import librosa
import matplotlib.pyplot as plt
from torchaudio.utils import download asset

torch.random.manual seed(0)
SAMPLE_SPEECH = download asset("YOURSAMPLE AUDIO DATA.wav")

The following function converts the audio file to a display of a wave form:

def plot waveform(waveform, sr, title="Waveform"):

waveform = waveform.numpy()

num_channels, num_frames = waveform.shape
time_axis = torch.arange(0, num frames) / sr

figure, axes = plt.subplots(num_channels, 1)
axes.plot(time axis, waveform[0], linewidth=1)
axes.grid(True)

figure.suptitle(title)

plt.show(block=False)

This function converts the input data into a spectrogram:

def plot_spectrogram(specgram, title=None, ylabel="freq bin"):

fig, axs = plt.subplots(1, 1)

axs.set _title(title or "Spectrogram (db)")
axs.set_ylabel(ylabel)

axs.set xlabel("frame")

im = axs.imshow(librosa.power to db(specgram), origin="lower",

aspect="auto")
fig.colorbar(im, ax=axs)
plt.show(block=False)

The torchaudio functional module is called stateless because it can be implemented

as a standalone function.
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Recipe 9-2. Installation of Torchaudio
Problem

How do you install torchaudio using PyTorch?

Solution

The torchaudio module works with a particular version as a date. It has issues with
default versions, so please use a specific version while using PIP for installation.
After installation, restart your Google Colab runtime environment or Python Jupyter

environment.

How It Works

The audio-related functions from PyTorch work when you install and import the
torchaudio module.

pip install torchaudio==0.4.0
Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/
colab-wheels/public/simple/
Collecting torchaudio==0.4.0
Downloading torchaudio-0.4.0-cp37-cp37m-manylinuxi x86 64.whl (3.1 MB)
| O I
3.1 MB 8.6 MB/s
Collecting torch==1.4.0
Downloading torch-1.4.0-cp37-cp37m-manylinuxl x86_64.whl (753.4 MB)
1 A O OO
753.4 MB 6.4 kB/s
Installing collected packages: torch, torchaudio
Attempting uninstall: torch
Found existing installation: torch 1.7.0+cpu
Uninstalling torch-1.7.0+cpu:
Successfully uninstalled torch-1.7.0+cpu
Attempting uninstall: torchaudio
Found existing installation: torchaudio 0.7.0
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Uninstalling torchaudio-0.7.0:
Successfully uninstalled torchaudio-0.7.0
ERROR: pip's dependency resolver does not currently take into account
all the packages that are installed. This behaviour is the source of the
following dependency conflicts.
torchvision 0.8.1+cpu requires torch==1.7.0, but you have torch 1.4.0 which
is incompatible.
torchtext 0.13.1 requires torch==1.12.1, but you have torch 1.4.0 which is
incompatible.
fastai 2.7.9 requires torch<1.14,>=1.7, but you have torch 1.4.0 which is
incompatible.
fastai 2.7.9 requires torchvision>=0.8.2, but you have torchvision
0.8.1+cpu which is incompatible.
Successfully installed torch-1.4.0 torchaudio-0.4.0
WARNING: The following packages were previously imported in this runtime:
[torch]
You must restart the runtime in order to use newly installed versions.
Please note the last line as restart is mandatory. If that does not happen,
you may get an error.

import torchaudio
import torchaudio.functional as F
import torchaudio.transforms as T

print(torch. version )
print(torchaudio. version )

Recipe 9-3. Loading Audio Files into PyTorch
Problem

How do you load data to torchaudio using PyTorch?
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Solution

The torchaudio module has built-in datasets that can be used to train deep learning
models. However, the real challenge is to load any other file as raw and load it into
torchaudio and apply transformations.

How It Works

The following script explains how to load data from a built-in library and from a local
directory. See Figure 9-1.

yesno_data = torchaudio.datasets.YESNO('.", download=True)
data_loader = torch.utils.data.Dataloader(yesno data,
batch size=1,
shuffle=True,
num_workers=2)
data_loader

0.6 1

0.4 4

0.2 1

0.0 1

-0.2 1

-0.4 1

0 50000 100000 150000 200000 250000

Figure 9-1. Waveform sample data

In order to read from an external URL, given audio data, do the following:

audio_url = "https://pytorch.org/tutorials/ static/img/steam-train-whistle-
daniel_ simon-converted-from-mp3.wav"
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request _url = requests.get(audio url)

with open('steam-train-whistle-daniel simon-converted-from-mp3.wav', 'wb")
as file:

file.write(request url.content)
audio_file = "steam-train-whistle-daniel_simon-converted-from-mp3.wav"

data_waveform, rate of sample = torchaudio.load(audio file)
print("This is the shape of the waveform: {}".format(data waveform.size()))

print("This is the output for Sample rate of the waveform: {}".format(rate_
of sample))

This is the shape of the waveform: torch.Size([2, 276858])

This is the output for Sample rate of the waveform: 44100

plt.figure()

plt.plot(data_waveform.t().numpy())

Recipe 9-4. Installation of Librosa for Audio
Problem

How do you install librosa for sound data transformation using PyTorch?

Solution

Feature extraction from audio and sound files and performing transformations requires
a set of functions that is provided by librosa. It is a Python package.

How It Works

First, start with a new notebook or Colab notebook.

I'pip install librosa
Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/
colab-wheels/public/simple/
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Requirement already satisfied: librosa in /usr/local/lib/python3.7/dist-
packages (0.8.1)

Requirement already satisfied: decorator>=3.0.0 in /usr/local/lib/
python3.7/dist-packages (from librosa) (4.4.2)

Requirement already satisfied: scipy>=1.0.0 in /usr/local/lib/python3.7/
dist-packages (from librosa) (1.7.3)

Requirement already satisfied: numba>=0.43.0 in /usr/local/lib/python3.7/
dist-packages (from librosa) (0.56.0)

Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.7/
dist-packages (from librosa) (21.3)

Requirement already satisfied: audioread>=2.0.0 in /usr/local/lib/
python3.7/dist-packages (from librosa) (3.0.0)

Requirement already satisfied: resampy>=0.2.2 in /usr/local/lib/python3.7/
dist-packages (from librosa) (0.4.0)

Requirement already satisfied: soundfile>=0.10.2 in /usr/local/lib/
python3.7/dist-packages (from librosa) (0.10.3.post1)

Re

from IPython.display import Audio

import librosa

import matplotlib.pyplot as plt

from torchaudio.utils import download asset

torch.random.manual seed(0)
Just for visualization you can use the following. See Figure 9-2.
SPEECH _WAVEFORM, SAMPLE RATE = torchaudio.load(SAMPLE SPEECH)

plot_waveform(SPEECH_WAVEFORM, SAMPLE RATE, title="Original waveform")
Audio(SPEECH_WAVEFORM.numpy(), rate=SAMPLE_RATE)
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Original waveform

0 1 2 3 4 5 6

Figure 9-2. Original waveform

Recipe 9-5. Spectogram Transformation
Problem

How do you create spectrograms from sound files?

Solution

Spectrograms can be defined as a visual representation of the spectrum of frequencies of
a signal with time varying fluctuations. They are also called voicegrams.

How It Works

The audio data transformation for the application of a deep learning model can be
separated into several processes, including a spectrogram. See Figure 9-3.

import torchaudio.transforms as T

n_fft = 1024
win_length = None
hop_length = 512
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# Define transform

spectrogram = T.Spectrogram(
n_fft=n_fft,
win_length=win_length,
hop_length=hop length,
center=True,
pad_mode="reflect",
power=2.0,

)

# Perform transform

spec = spectrogram(SPEECH_WAVEFORM)

plot spectrogram(spec[0], title="torchaudio")

torchaudio

Figure 9-3. Torch audio frame

Recipe 9-6. Griffin-Lim Transformation
Problem

How do you apply a Griffin-Lim transformation?
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Solution

The Griffin-Lim algorithm (GLA) helps in making the spectrogram consistent by
iterating two projections where a spectrogram is expected to be in its inter-bin. A
consistent spectrogram that maintains its amplitude is a need for signals, so GLA
transformation is necessary for data augmentation when you want to recover the
waveform from a spectogram.

How It Works

The GLA can be applied by using the following script. See Figure 9-4.
import torchaudio.transforms as T

torch.random.manual seed(0)

n_fft = 1024
win_length = None
hop_length = 512

spec = T.Spectrogram(
n_fft=n_fft,
win length=win length,
hop_length=hop_length,
) (SPEECH_WAVEFORM)
griffin lim = T.GriffinLim(
n_fft=n_fft,
win_length=win_length,
hop_length=hop length,
)
reconstructed waveform = griffin_lim(spec)
plot waveform(reconstructed waveform, SAMPLE RATE, title="Reconstructed")
Audio(reconstructed waveform, rate=SAMPLE RATE)
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Reconstructed

0 1 2 3 <

v
o

Figure 9-4. Reconstructed waveform

Recipe 9-7. Mel Scale Transformation Using
a Filter Bank

Problem

How do you apply filter bank for converting the frequency bins to mel scale bins?

Solution

In order to transform frequency bins to mel scale bins, the torchaudio functional
module provides a filter bank. This does not require input audio features. A filter bank
can be defined as method of discretizing a continuous frequency response into various
bins. The type of filterbank depends upon the use case. There are various filters and a
mel filter bank is one.
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How It Works

You can leverage the mel scale transformation from torchaudio. See Figure 9-5.

import torchaudio.transforms as T
n_fft = 255
n_mels = 61
sample rate

5000

mel filters = T.melscale fbanks(
int(n_fft /7 2 + 1),
n_mels=n_mels,
f min=0.0,
f_max=sample rate / 2.0,

sample rate=sample rate,
norm="slaney",

)

plot fbank(mel filters, "Mel Filter Bank - torchaudio")

Mel Filter Bank - torchaudio

20

frequency bin

100

120

0 10 20 30 40 50 €0
mel bin

Figure 9-5. Mel Filter Bank from torch audio

The same thing can be achieved using the 1ibrosa library, which does a similar
application of filters as those present in torchaudio. See Figure 9-6.
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#Librosa mel filter
mel filters librosa = librosa.filters.mel(
sr=sample_rate,
n_fft=n_fft,
n_mels=n_mels,
fmin=0.0,
fmax=sample rate / 2.0,
norm="slaney",
htk=True,
). T
plot fbank(mel filters librosa, "Mel Filter Bank - librosa")

mse = torch.square(mel filters - mel filters librosa).mean().item()
, mse)

print("Mean Square Difference:

Mel Filter Bank - librosa
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Figure 9-6. Mel Filter Bank, librosa

Recipe 9-8. Librosa Mel Scale Conversion vs.
the Torchaudio Version

Problem

How do you compare the 1ibrosa mel scale conversion to torchaudio using PyTorch?
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Solution

The torchaudio module contains transforms that can be developed after generating a
spectrum. The mel spectrogram requires the sample rate, window length, hop length
padding, and power. Given such parameters from a voice sample as a waveform, a
spectrogram can be generated. See Figure 9-7.

MelSpectrogram - torchaudio
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Figure 9-7. Mel Spectrogram

How It Works

The audio data transformation can be done using 1ibrosa as well as the torchaudio

library.

import torchaudio.transforms as T
n_fft = 1024

win_length
hop_length
n_mels = 128

None
512

mel spectrogram = T.MelSpectrogram(
sample rate=sample rate,
n_fft=n_fft,
win_length=win_length,
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hop_length=hop length,
center=True,
pad_mode="reflect",
power=2.0,
norm="slaney",
onesided=True,
n_mels=n_mels,

mel scale="htk",

)

melspec = mel spectrogram(SPEECH_WAVEFORM)
plot_spectrogram(melspec[0], title="MelSpectrogram - torchaudio”,
ylabel="mel freq")

Now you can generate the mel scale spectrogram with 1ibrosa also. See Figure 9-8.

melspec_librosa = librosa.feature.melspectrogram(
y=SPEECH_WAVEFORM. numpy()[0],
sr=sample rate,
n_fft=n_fft,
hop_length=hop length,
win_length=win_length,
center=True,
pad_mode="reflect",
power=2.0,
n_mels=n_mels,
norm="slaney",
htk=True,
)
plot spectrogram(melspec_librosa, title="MelSpectrogram - librosa",
ylabel="mel freq")

mse = torch.square(melspec - melspec librosa).mean().item()

print("Mean Square Difference: ", mse)
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MelSpectrogram - librosa
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Figure 9-8.

Recipe 9-9. MFCC and LFCC Using Librosa
and Torchaudio

Problem

How do we apply Mel Frequency Cepstral Coefficients (MFCC), Linear Frequency
Cepstral Coefficients (LFCC) to augment the voice data?

Solution

Torchaudio module contains various data augmentation routines, these methods depends
on the kind of algorithm we are going to choose and apply on the voice data. for example if
someone wants to apply linear models like Gaussian Mixture Models then first they have to
get MFCC from applying Discrete Cosine Transformation (DCT) on the mel-spectogram.

How It Works

MEFCC is a compressed representation suitable for linear models with limited data, but
if the data size is more and classification use case is there then convolutional neural
network works and for that mel-spectogram is better.
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import torchaudio.transforms as T
n_fft = 2048

win_length = None

hop_length = 512

n_mels = 256

n_mfcc = 256

mfcc_transform = T.MFCC(
sample rate=sample rate,
n_mfcc=n_mfcc,
melkwargs={
"n_fft": n_fft,
"n_mels": n _mels,
"hop_length": hop_length,
"mel scale": "htk",
b
)

mfcc = mfcc_transform(SPEECH _WAVEFORM)
plot_spectrogram(mfcc[0])

Spectrogram (db)
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Using Librosa similar spectrogram can be achieved.

melspec = librosa.feature.melspectrogram(
y=SPEECH_WAVEFORM. numpy ()[0],
sr=sample rate,
n_fft=n_fft,
win_length=win_length,
hop_length=hop length,
n_mels=n_mels,
htk=True,
norm=None,

)

mfcc_librosa = librosa.feature.mfcc(
S=1ibrosa.core.spectrum.power_to db(melspec),
n_mfcc=n_mfcc,
dct_type=2,
norm="ortho",

)

plot_spectrogram(mfcc_librosa)

mse = torch.square(mfcc - mfcc_librosa).mean().item()
, Mmse)

print("Mean Square Difference:

Spectrogram (db)
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The following code snippet explains the LFCC implementation as a transformation
technique.

import torchaudio.transforms as T
n_fft = 2048

win_length = None

hop_length = 512

n_lfcc = 256

1fcc_transform = T.LFCC(
sample rate=sample rate,
n_lfcc=n_lfcc,
speckwargs={
"n_fft": n_fft,
"win_length": win_length,
"hop_length": hop_length,
})
)

1fcc = lfcc_transform(SPEECH _WAVEFORM)
plot_spectrogram(lfcc[0])

Spectrogram (db)
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The same expression can be achieved by using librosa as well.
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Recipe 9-10. Data Augmentation for Images
Problem

How do you augment image data by applying transforms using PyTorch?

Solution

You are going to use the CIFAR10 dataset to see how to apply the transforms and
compose function for data augmentation for images. See Figures 9-9 through 9-11.

Figure 9-9.

Figure 9-10.
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Figure 9-11.

How It Works

The following code snippet shows the application of filters:

import os

import sys

import random

import tempfile

import torch

import torch.distributed as dist

import torch.nn as nn

import torch.optim as optim

import torch.multiprocessing as mp

import torchvision

import torchvision.datasets as datasets

import torchvision.transforms as transforms

# Import dataset and dataloaders related packages
from torchvision import datasets

from torchvision.transforms import ToTensor

from torch.utils.data import Dataloader

from torchvision.transforms import Compose, Grayscale

# Download and load the images from the CIFAR10 dataset
cifario data = datasets.CIFAR10(
root="data", # path where the images will be stored
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download=True, # all images should be downloaded
transform=ToTensor() # transform the images to tensors

)

# Print the number of samples in the loaded dataset
print(f"Number of samples: {len(cifari0 data)}")
print(f"Class names: {cifar10 data.classes}")

Files already downloaded and verified

Number of samples: 50000

Class names: ['airplane', 'automobile', 'bird',

cat', 'deer', 'dog',

"frog', 'horse', 'ship', 'truck']

# Choose a random sample

random.seed(2021)

image, label = cifar10 data[random.randint(0, len(cifar10 data))]
print(f"Label: {cifar10 data.classes[label]}")

print(f"Image size: {image.shape}")

Label: horse

Image size: torch.Size([3, 32, 32])

import matplotlib.pyplot as plt

plt.imshow(image.permute(1, 2, 0))
plt.show()
data = datasets.CIFAR10(root="data", download=True,

transform=Compose([ToTensor(), Grayscale()]))
# Display a random grayscale image

image, label = data[random.randint(0, len(data))]
plt.imshow(image.squeeze(), cmap="gray")
plt.show()

# Load the training samples

training data = datasets.CIFAR10(

root="data",
train=True,
download=True,
transform=ToTensor()

)
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# Load the test samples
test data = datasets.CIFAR10(
root="data",
train=False,
download=True,
transform=ToTensor()
)
# Create dataloaders with
train_dataloader = Dataloader(training data, batch size=64, shuffle=True)
test dataloader = Dataloader(test data, batch size=64, shuffle=True)

# Load the next batch
batch_images, batch_labels = next(iter(train_dataloader))
print('Batch size:', batch images.shape)

# Display the first image from the batch
plt.imshow(batch_images[0].permute(1, 2, 0))
plt.show()

transform = transforms.Compose(

[transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))])

Following the above normalizing as a data sugmentation technique, random resized
crop and random horizontal flip can be applied on the raw images. These additional data
augmentation scripts are available on the official documentation page of PyTorch.

Conclusion

In this chapter, you explored data augmentation techniques for audio and images, audio
transformation such as waveform transformation, image filtering, and augmentation. In
the next chapter, you are going to learn about the libraries scorch and Captum. Scorch
provides a routine to apply Scikit-learn functions and APIs such as pipeline, grid search,
and cross validation on top of PyTorch models. Captum provides an option to run model
interpretability on top of deep learning models developed using the PyTorch framework.
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Model interpretability is an area that needs special attention because it is connected
with model adoption in particular and Al adoption in general. Users will adopt a model
and framework if they can explain the decisions or predictions generated by the deep
learning model. In this chapter, you will explore a new framework called Captum, which
consists of a set of algorithms that can explain or help us interpret the predictions, model
results, and layers of a neural network model. In this chapter, you are also going to use
another framework called skorch, which is a library compatible for Scikit-learn users.
Machine learning users prefer the sklearn library to train models, perform grid searches,
and identify the best hyper parameters of the models—the same kind of seamless
experience the users can experience when developing deep neural network models
using PyTorch.

Different kinds of interpretability methods are embedded in the Captum library to
helps explain deep learning models developed using the PyTorch framework. A neural
network interpretation can be done knowing the feature importance, dominance layer
identification, and dominant neuron identification. Captum provides three attribution
algorithms that help in achieving this information.

e Primary attribution: Helps interpret feature importance

o Layer attribution: Helps identify the contribution of each neuron in

a given layer to the output of the model

e Neuron attribution: Helps identify each input feature on the
activation of a neuron
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In this chapter, you'll use scorch and Captum to implement the steps that are most
commonly used in model interpretability and sklearn compatibility.

Recipe 10-1. Installation of Captum
Problem

How do you install Captum?

Solution

There are two ways to install Captum: either using the sudo command or using the pip
command.

How It Works

The following syntax explains how to install the library:
conda install captum -c pytorch

OR
pip install captum

Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/
colab-wheels/public/simple/
Collecting captum
Downloading captum-0.5.0-py3-none-any.whl (1.4 MB)

| I Y | <-4 MB 29.2 MB/s
Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-
packages (from captum) (1.21.6)
Requirement already satisfied: matplotlib in /usr/local/lib/python3.7/dist-
packages (from captum) (3.2.2)
Requirement already satisfied: torch>=1.6 in /usr/local/lib/python3.7/dist-
packages (from captum) (1.12.1+cul13)
Requirement already satisfied: typing-extensions in /usr/local/lib/
python3.7/dist-packages (from torch>=1.6->captum) (4.1.1)
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Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/
python3.7/dist-packages (from matplotlib->captum) (2.8.2)

Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,1=2.1.6,>=2.0.1 in
/usr/local/lib/python3.7/dist-packages (from matplotlib->captum) (3.0.9)
Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.7/
dist-packages (from matplotlib->captum) (0.11.0)

Requirement already satisfied: kiwisolver»>=1.0.1 in /usr/local/lib/
python3.7/dist-packages (from matplotlib->captum) (1.4.4)

Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.7/dist-
packages (from python-dateutil>=2.1->matplotlib->captum) (1.15.0)
Installing collected packages: captum

Successfully installed captum-0.5.0

A safe and easy way to install is via Anaconda. There is a Python version dependency
and a PyTorch version dependency. The Python version need to be equal to or over 3.6
and the PyTorch version need to be equal to or over 1.2.

Recipe 10-2. Primary Attribution Feature
Importance of a Deep Learning Model

Problem

How do you implement primary attribution using Captum?

Solution

The primary attribution layer provides integrated gradients (IG), gradient shapely
additive explanations (SHAP,) saliency, and more to interpret the model better. You are
going to use the popular titanic.csv dataset to develop a classification model using
PyTorch and later on apply primary attribution using IG and other layers. The titanic
dataset contains features and representations on who did and did not survive the
disaster. Using the output column survived you will develop a classification model.
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How It Works

The following syntax explains how to achieve the attribution layer. IG represents the
integral of the gradients with respect to the inputs along the path from the input.

# Initial imports
import numpy as np

import torch

from captum.attr import IntegratedGradients
from captum.attr import LayerConductance
from captum.attr import NeuronConductance

import matplotlib
import matplotlib.pyplot as plt
%Zmatplotlib inline

from scipy import stats

import pandas as pd

dataset_path = "https://raw.githubusercontent.com/pradmishrai/
PublicDatasets/main/titanic.csv"

titanic _data = pd.read csv(dataset path)
del titanic_data[ 'Unnamed: 0']
del titanic_data[ 'PassengerId']
titanic _data = pd.concat([titanic_data,
pd.get dummies(titanic_data['Sex']),
pd.get dummies(titanic_data['Embarked'],prefix=
"embark"),
pd.get dummies(titanic_data['Pclass'],prefix="cla
ss")], axis=1)
titanic_data["Age"] = titanic data["Age"].fillna(titanic_data["Age"].mean())
titanic_data["Fare"] = titanic data["Fare"].fillna(titanic_data["Fare"].mean())
titanic data = titanic_data.drop(['Name','Ticket','Cabin','Sex", 'Embarked",
"Pclass'], axis=1)

# Set random seed for reproducibility.
np.random.seed(707)
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# Convert features and labels to numpy arrays.

labels = titanic_data["Survived"].to numpy()

titanic _data = titanic_data.drop(['Survived'], axis=1)
feature_names = list(titanic_data.columns)

data = titanic_data.to _numpy()

# Separate training and test sets using

train_indices = np.random.choice(len(labels), int(0.7*len(labels)),
replace=False)

test_indices = list(set(range(len(labels))) - set(train_indices))
train_features = data[train_indices]

train_labels = labels[train_indices]

test features = data[test indices]

test labels = labels[test indices]

train_features.shape

(623, 12)

There are 623 records that can be used to train the model and 12 features that can
be used for model training. The neural network module from torch is used to create 12
hidden neurons in first hidden layer and another 12 neurons in second hidden layer
and finally the target variable has two labels as outcome. Two linear hidden layers with a
sigmoid activation function are applied. In the final layer, the softmax activation function
is applied in order to get the class probabilities.

import torch

import torch.nn as nn

torch.manual seed(1) # Set seed for reproducibility.

class TitanicSimpleNNModel(nn.Module):

def init (self):

super(). init_ ()
self.linearl = nn.Linear(12, 12)
self.sigmoid1l = nn.Sigmoid()
self.linear2 = nn.Linear(12, 8)
self.sigmoid2 = nn.Sigmoid()
self.linear3 = nn.Linear(8, 2)
self.softmax = nn.Softmax(dim=1)
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def forward(self, x):
lin1 out = self.lineari(x)
sigmoid outl = self.sigmoid1(1lini out)
sigmoid out2 = self.sigmoid2(self.linear2(sigmoid out1))
return self.softmax(self.linear3(sigmoid out2))

net = TitanicSimpleNNModel()
criterion = nn.CrossEntropyloss()
num_epochs = 200

optimizer = torch.optim.Adam(net.parameters(), 1lr=0.1)
input_tensor = torch.from numpy(train features).type(torch.FloatTensor)

label tensor = torch.from numpy(train labels)

The loss function used in the model is cross entropy loss. You can choose different
types of loss functions based on input data and accuracy. Since the Adam optimizer is
considered to be relevant in most use cases, it is applied.

for epoch in range(num_epochs):
output = net(input_tensor)
loss = criterion(output, label tensor)
optimizer.zero grad()
loss.backward()
optimizer.step()
if epoch % 20 == 0:
print ('Epoch {}/{} => Loss: {:.2f}'.format(epoch+1, num_epochs,
loss.item()))
torch.save(net.state dict(), '/model.pt")

Epoch 1/200 => Loss: 0.70
Epoch 21/200 => Loss: 0.55
Epoch 41/200 => Loss: 0.50
Epoch 61/200 => Loss: 0.49
Epoch 81/200 => Loss: 0.48
Epoch 101/200 => Loss: 0.49
Epoch 121/200 => Loss: 0.47
Epoch 141/200 => Loss: 0.47
Epoch 161/200 => Loss: 0.47
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Epoch 181/200 => Loss: 0.47

The number of iterations, 200, tries to reduce the cross entropy loss. The torch.save
function is used to store the trained model in the default directory. You can change the
path in /model path.

out_probs = net(input_tensor).detach().numpy()

out_classes = np.argmax(out probs, axis=1)

print("Train Accuracy:", sum(out classes == train labels) / len(train labels))
Train Accuracy: 0.8523274478330658

The input tensor is detached from the neural network model and converted to a
numpy array in order to store the class probabilities. The training accuracy is 85%.

test_input _tensor = torch.from numpy(test features).type(torch.FloatTensor)
out_probs = net(test input tensor).detach().numpy()

out _classes = np.argmax(out probs, axis=1)

print("Test Accuracy:", sum(out _classes == test labels) / len(test labels))

Test Accuracy: 0.832089552238806

The integrated gradient is extracted from the neural network model. IG can be
extracted using the attribute function. You must make the return convergence delta
True and applying it requires gradients on the test dataset.

ig = IntegratedGradients(net)

test _input tensor.requires grad ()

attr, delta = ig.attribute(test input tensor,target=1, return convergence_
delta=True)

attr = attr.detach().numpy()

np.round(attr,2)

array([[-0.7 , 0.09, -O. , ..., O. , O. , -0.33], [-2.78, -0. , -0. , ...,
0., 0., -1.82], [-0.65, 0. , -O. , ..., O. , O. , -0.31], ..., [-0.47
-0. , -0. , ..., 0.71, 0. , -0. ], [-0.2, -0. , -0. , ..., O. , O. , -0.1
], [-0.7, 0., -0., ..., 0., 0., -0.28]])

The attr contains the feature importance of the input features from the model.

importances = np.mean(attr, axis=0)
for i in range(len(feature names)):
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print(feature names[i], ": ", '%.3f'%(importances[i]))
Age : -0.574
SibSp : -0.010
Parch : -0.026

Fare : 0.278
female : 0.101
male : -0.460
embark C : 0.042
embark Q0 : 0.005
embark S : -0.021
class 1 : 0.067
class 2 : 0.090
class 3 : -0.144

The importance of the input features having negative and positive numbers is the
following: a negative number shows having a negative impact on the class probability
and a positive one adds to the probability score. The feature importance shows how
relevant a feature is in performing classification.

Recipe 10-3. Neuron Importance of a Deep
Learning Model

Problem

How do you calculate the importance of neurons in a deep learning model?

Solution

The layer of conductance combines the neuron activation by taking the partial derivative
of the neuron with respect to input and output. The conductance layer builds on the
integrated gradients by looking at the flow of IG attribution.
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How It Works

This code shows how to compute the neuron importance of a deep learning model:
cond = LayerConductance(net, net.sigmoid1)

net.sigmoid1 is the first hidden layer. net is the deep learning model object. Layer
conductance is the function, and conductance values are stored in the object cond.

cond vals = cond.attribute(test input tensor,target=1)

cond vals = cond vals.detach().numpy()

Average Neuron Importances = np.mean(cond vals, axis=0)

Average Neuron_Importances

array([ 0.03051018, -0.23244175, 0.04743345, 0.02102091, -0.08071412,
-0.09040915, -0.13398956, -0.04666219, 0.03577907, -0.07206058,

-0.15658873, 0.03491106], dtype=float32)

There are 12 neurons in the hidden layer, which is why you have 12 elements in
neuron importance, and since there are many layers, it is derived as an average of
conductance values.

neuron_cond = NeuronConductance(net, net.sigmoid1)

In a similar manner, the neuron conductance provides the conductance values from
hidden layer.

neuron_cond vals 10 = neuron cond.attribute(test input tensor, neuron
selector=10, target=1)

neuron_cond vals 0 = neuron cond.attribute(test input tensor, neuron_
selector=0, target=1)

# Average Feature Importances for Neuron 0

nn0 = neuron_cond vals 0.mean(dim=0).detach().numpy()

np.round(nno,3)

array([ 0.008, 0. , 0. , 0.028, 0. , -0.004, -0. , 0. , -0.001, -0. , O. ,
-0. ], dtype=float32)
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Recipe 10-4. Installation of Skorch
Problem

How do you install skorch?

Solution

There are two ways to install skorch: either using the sudo command or using the pip
command.

How It Works

The following syntax explains how to install the library:

pip install -U skorch
OR

conda install -U skorch

Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/
colab-wheels/public/simple/
Collecting skorch
Downloading skorch-0.11.0-py3-none-any.whl (155 kB)

| N | 155 kB 27.9 MB/s
Requirement already satisfied: numpy>=1.13.3 in /usr/local/lib/python3.7/
dist-packages (from skorch) (1.21.6)
Requirement already satisfied: scikit-learn>=0.19.1 in /usr/local/lib/
python3.7/dist-packages (from skorch) (1.0.2)
Requirement already satisfied: tqdm>=4.14.0 in /usr/local/lib/python3.7/
dist-packages (from skorch) (4.64.0)
Requirement already satisfied: scipy>=1.1.0 in /usr/local/lib/python3.7/
dist-packages (from skorch) (1.7.3)
Requirement already satisfied: tabulate»>=0.7.7 in /usr/local/lib/python3.7/
dist-packages (from skorch) (0.8.10)
Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.7/
dist-packages (from scikit-learn>=0.19.1->skorch) (1.1.0)
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Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/
python3.7/dist-packages (from scikit-learn>=0.19.1->skorch) (3.1.0)
Installing collected packages: skorch

Successfully installed skorch-0.11.0

Recipe 10-5. Skorch Components
for a Neuralnet Classifier

Problem

How do you train a scorch-based neuralnet classifier?

Solution

Scorch is a Scikit-learn—compatible library that wraps PyTorch to provide functionalities
for training neural networks. The advantage of this library is to reduce the boilerplate
code. Skorch can be used for classification and regression. Skorch.neuralnet classifier
and scorch.neuralnet regressor are major modules. The good part of the skorch module
is that the model training process is fast and it displays the results in a nice way.

How It Works

The components of Scikit-learn such as fitting, preprocessing, predicting, cross
validation, metrics, grid searches, and the pipeline are very popular and you will want to
use and apply them on top of a neural network model that is trained using the PyTorch
library because PyTorch has become a standard tool for training all sorts of deep
learning models.

import torch

from torch import nn

import numpy as np

import torch.nn.functional as F

from sklearn.datasets import make classification

make classification(2000, 10, random state=0)
X.astype(np.float32), y.astype(np.int64)

Xy
X,y

)
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The above code contains standard sample data for classification.

class ClassifierModule(nn.Module):
def _init (
self,
num_units=30,
nonlin=F.relu,
dropout=0.5,

super(ClassifierModule, self). init ()
self.num units = num_units

self.nonlin = nonlin

self.dropout = dropout

self.dense0 = nn.Linear(10, num units)
self.nonlin = nonlin

self.dropout = nn.Dropout(dropout)
self.densel = nn.Linear(num units, 10)
self.output = nn.Linear(10, 2)

def forward(self, X, **kwargs):

X = self.nonlin(self.dense0(X))

X = self.dropout(X)

X = F.relu(self.dense1(X))

X = F.softmax(self.output(X), dim=-1)
return X

from skorch import NeuralNetClassifier
net = NeuralNetClassifier(
ClassifierModule,
max_epochs=20,
1r=0.1,
# device='cuda', # uncomment this to train with CUDA
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uncommented.

net.get params()
net.fit(X, y)
epoch

)
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train_loss

0.
<class 'skorch.classifier.NeuralNetClassifier'>[initialized](

O O O O O O OO OO0 ©Oo oo oo o o o

0991

valid acc

0.

module =ClassifierModule(

)

(dense0): Linear(in_features=10, out features=30, bias=True)
(dropout): Dropout(p=0.5, inplace=False)

(densel): Linear(in features=30, out features=10, bias=True)
(output): Linear(in_features=10, out features=2, bias=True)

O O O O O O 0O 0O O 0O OO0 oo oo o o o

9900

valid loss

0.

O O O O O O OO OO0 OO0 oo oo o o o

0366

0.

O O O O O O OO OO0 o oo oo o o o

dur

0213
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list(net.get params())

['module', 'criterion', 'optimizer', 'lr', 'max_epochs', 'batch_

size', 'iterator train', 'iterator valid', 'dataset', 'train_ split’,
'callbacks', 'predict nonlinearity', 'warm start', 'verbose', 'device',

' kwargs', 'classes', 'callbacks__epoch timer', 'callbacks train loss',
‘callbacks__train_loss_name', 'callbacks__ train_loss_ lower is better’,
‘callbacks_ train loss_on train', 'callbacks valid loss', 'callbacks
valid loss name', 'callbacks valid loss lower is better', 'callbacks
valid loss_on train', 'callbacks valid acc', 'callbacks valid acc__
scoring', 'callbacks valid acc_ 1

lower is better', 'callbacks valid acc_ on train', 'callbacks valid
acc__name', ‘'callbacks valid acc_ target extractor', 'callbacks valid
acc__use_caching', 'callbacks print log', 'callbacks print log keys
ignored', 'callbacks_print log sink', 'callbacks_ print log tablefmt',
‘callbacks_ print log floatfmt', 'callbacks print log stralign']

Once the model is trained, you can use the predict function from Scikit-learn to
generate the predictions and probability function to get the class probabilities.

y _pred = net.predict(X[:5])
y_pred
array([1, 0, 0, 1, 1])

y_proba = net.predict proba(X[:5])

y_proba

array([[7.7738642e-04, 9.9922264e-01], [9.9628782e-01, 3.7122301e-03],
[9.9648917e-01, 3.5108225e-03], [3.2411060e-01, 6.7588937e-01],
[4.5940662e-03, 9.9540591e-01]], dtype=float32)
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Recipe 10-6. Skorch Neuralnet Regressor
Problem

How do you train a regression model using skorch?

Solution

Regression model training follows the standard practice of using a neural network
model. Here you are going to use one to make the regressor function generate some
synthetic data and use the skorch functions to train the model.

How It Works

The following syntax explains how to execute this:

from sklearn.datasets import make regression

X regr, y regr = make regression(1000, 20, n_informative=10,
random_state=0)

X _regr = X regr.astype(np.float32)

y regr = y regr.astype(np.float32) / 100

y regr = y regr.reshape(-1, 1)

X_regr.shape, y regr.shape, y regr.min(), y regr.max()
((1000, 20), (1000, 1), -6.4901485, 6.154505)

class RegressorModule(nn.Module):
def _init (
self,
num_units=10,
nonlin=F.relu,

super (RegressorModule, self). init ()
self.num units = num_units
self.nonlin = nonlin

nn.Linear(20, num units)
nonlin

self.dense0

self.nonlin
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nn.Linear(num_units, 10)
nn.Linear(10, 1)

self.densel
self.output

def forward(self, X, **kwargs):

X = self.nonlin(self.dense0(X))
X = F.relu(self.dense1(X))

X = self.output(X)

return X

from skorch import NeuralNetRegressor
net_regr = NeuralNetRegressor(

RegressorModule,
max_epochs=20,
1r=0.1,
# device="'cuda', # uncomment this to train with CUDA
)
net_regr.fit(X regr, y regr)
epoch train_loss valid loss dur
1 4.3247 3.0078 0.0170
2 1.7262 0.6808 0.0123
3 0.6510 0.2147 0.0115
4 0.1811 0.2132 0.0118
5 0.1906 0.1127 0.0108
6 0.1143 0.3361 0.0204
7 0.3835 0.0899 0.0113
8 0.0845 0.1574 0.0117
9 0.1099 0.0486 0.0130
10 0.0485 0.0974 0.0128
11 0.0907 0.0447 0.0108
12 0.0481 0.0947 0.0129
13 0.0881 0.0322 0.0128
14 0.0323 0.0599 0.0117
15 0.0461 0.0180 0.0115
16 0.0161 0.0328 0.0123
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17 0.0231 0.0125 0.0123
18 0.0098 0.0208 0.0123
19 0.0143 0.0102 0.0112
20 0.0074 0.0153 0.0121

<class 'skorch.regressor.NeuralNetRegressor'>[initialized](
module_=RegressorModule(
(dense0): Linear(in features=20, out features=10, bias=True)
(densel): Linear(in features=10, out features=10, bias=True)
(output): Linear(in features=10, out features=1, bias=True)
)
)

y_pred = net_regr.predict(X regr[:5])

y_pred

array([[ 0.7368696 ], [-1.2884711 ], [-0.51758516], [-0.11890286],
[-0.61254007]], dtype=float32)

Recipe 10-7. Skorch Model Save and Load
Problem

How do you save and load a model object generated by skorch?

Solution

Using the pickle library for storing the model objects as serialized objects and loading
these objects into another environment is done by using the Scikit-learn library. Here
you are going to use the skorch library to save and load the model.

How It Works

The following syntax explains how to execute this:

import pickle
file _name = '/tmp/mymodel.pkl’
with open(file name, 'wb') as f:
pickle.dump(net, f)
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with open(file name, 'rb') as f:
new net = pickle.load(f)

net.save params(f params=file name) # a file handler also works
If you store the model object as saved parameters of the model, then you need to
initialize the model again and assign that to a new object.

# first initialize the model

new_net = NeuralNetClassifier(
ClassifierModule,
max_epochs=20,
1r=0.1,

).initialize()

new_net.load params(file name)

Recipe 10-8. Skorch Model Pipeline Creation
Problem

How do you create a pipeline for neural network models using skorch?

Solution

A pipeline object is a structure where a series of operations can be scheduled in a
process so that the model training and execution happens in a sequential manner.

How It Works

The following script shows how this can be done using scorch:

from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
pipe = Pipeline(]

('scale', StandardScaler()),
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('net', net),

D)

pipe.fit(X, y)

Re-initializing module.

CHAPTER 10

Re-initializing criterion.

Re-initializing optimizer.

epoch

O 0N O U1 B W N -

R PR PR P R R R R
O 00N O U1 A W N R O

20

train_

O O O O O O OO OO O o oo oo o o o o

loss

.0876
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valid acc

0

O O O O O O O 0O OO0 o oo oo o o o

.9925

valid_

0

O O O O O O O O O O OO0 oo o o o o o

loss

.0358

Pipeline(steps=[('scale', StandardScaler()), ('net’

classifier.NeuralNetClassifier'>[initialized]( module =ClassifierModule

O O O O O O O O OO O o oo oo o o o o

.0213
, <class 'skorch.

( (dense0): Linear(in features=10, out features=30, bias=True) (dropout):

Dropout(p=0.5, inplace=False) (densel): Linear(in_ features=30, out_

features=10, bias=True) (output): Linear(in_features=10, out features=2,

bias=True) ), ))])
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y_proba = pipe.predict proba(X[:5])

y_proba

array([[0.00224374, 0.9977563 ], [0.9986193 , 0.00138069], [0.99899906,
0.00100095], [0.30393705, 0.6960629 ], [0.00816792, 0.9918321 ]],
dtype=float32)

Recipe 10-9. Skorch Model Epoch Scoring
Problem

How do you use callbacks in neural network models using skorch?

Solution

While training deep learning models, you can leverage the callback function to do epoch
scoring. This requires a scoring function that need to be defined. After completion of
each epoch, the function needs to be called in and, if the desired level of accuracy is
achieved, then it should be highlighted.

How It Works

The following code shows how:

from skorch.callbacks import EpochScoring
auc = EpochScoring(scoring="roc_auc', lower is better=False)
net = NeuralNetClassifier(

ClassifierModule,

max_epochs=20,

1r=0.1,

callbacks=[auc],

)
net.fit(X, y)

256



epoch

W 0N O U1 B W N -

R PR PR P R R R R
O 00N O U1 A W N R O

20
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train_loss

0.
<class 'skorch.classifier.NeuralNetClassifier'>[initialized]

O O O O O OO OO O o oo oo o o o o

0981

valid acc

0.

O O O O O O OO OO0 OO0 oo oo o o o

9875

valid loss

0.

O O O O O O O 0O OO0 OO0 oo oo o o o

0362

O O O O O O O O OO OO0 O o o o oo o o

dur

( module =ClassifierModule( (dense0): Linear(in_features=10, out

features=30, bias=True) (dropout): Dropout(p=0.5, inplace=False) (densel):
Linear(in_features=30, out features=10, bias=True) (output): Linear
(in_features=10, out features=2, bias=True) ), )

print(', '.join(net.prefixes ))

iterator train, iterator valid, callbacks, dataset, module, criterion,

optimizer
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Recipe 10-10. Grid Search for Best Hyper Parameter
Problem

How do you use a grid search for hyper parameter training using skorch?

Solution

The hyper parameter values in a deep learning model may produce multiple models.
You need to apply a logic to find out which combinations of hyper parameters produce
the best model; hence they can be called the best hyper parameters. The optimal hyper
parameter is likely to vary based on the maximum epochs specified.

How It Works

The following script shows how to do so:

from sklearn.model selection import GridSearchCV
net = NeuralNetClassifier(

ClassifierModule,

max_epochs=20,

1r=0.1,

optimizer momentum=0.9,

verbose=0,

train_split=False,

)

params = {
'1r': [0.05, 0.1],
'module__num units': [10, 20],
'module_dropout': [0, 0.5],
'optimizer nesterov': [False, True],

}

gs = GridSearchCV(net, params, refit=False, cv=3, scoring="accuracy',
verbose=2)
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gs.fit(X, y)

Fitting 3 folds for each of 16 candidates, totalling 48 fits
[CV] END 1r=0.05, module dropout=0, module num units=10,
optimizer nesterov=False; total time= 0.4s

[CV] END 1r=0.05, module dropout=0, module num units=10,
optimizer nesterov=False; total time= 0.3s

[CV] END 1r=0.05, module dropout=0, module num units=10,
optimizer nesterov=False; total time= 0.3s

[CV] END 1r=0.05, module dropout=0, module num units=10,
optimizer nesterov=True; total time= 0.3s

[CV] END 1r=0.05, module dropout=0, module num units=10,
optimizer nesterov=True; total time= 0.3s

[CV] END 1r=0.05, module dropout=0, module num units=10,
optimizer nesterov=True; total time= 0.3s

[CV] END 1r=0.05, module dropout=0, module num units=20,
optimizer nesterov=False; total time= 0.3s

[CV] END 1r=0.05, module dropout=0, module num units=20,
optimizer nesterov=False; total time= 0.3s

[CV] END 1r=0.05, module dropout=0, module num units=20,
optimizer nesterov=False; total time= 0.3s

[CV] END 1r=0.05, module dropout=0, module num units=20,
optimizer nesterov=True; total time= 0.3s

[CV] END 1r=0.05, module dropout=0, module num units=20,
optimizer nesterov=True; total time= 0.3s

[CV] END 1r=0.05, module dropout=0, module num units=20,
optimizer nesterov=True; total time= 0.3s

[CV] END 1r=0.05, module dropout=0.5, module num units=10,
optimizer nesterov=False; total time= 0.3s

[CV] END 1r=0.05, module dropout=0.5, module num units=10,

print(gs.best score , gs.best params )

.988499744121933 {'1lr': 0.1, 'module dropout': 0.5, 'module num units':

20, 'optimizer nesterov': False}
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Conclusion

This chapter provided options to include Scikit-learn—compatible functions and build
a wrapper that can be added on top of PyTorch-based models and can act as a standard
Scikit-learn—based model. This chapter also included recipes on model interpretability,
which is very important for any deep learning model used for supervised learning-
related tasks such as regression and classification.
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primary attribution, 239-244
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language processing
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librosa installation, 219-221 D! E
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Fine-tune deep learning models
batch data training, 160-163
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number, 163-167
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neural network module, 165
online training process, 161
optimization method, 168, 169
parallel data training, 167-169
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Graphics processing units (GPUs), 1, 28
Griffin-Lim algorithm (GLA), 223-225
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interpretability
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(LFCC), 229-232

Linear regression analysis, 137-140
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81,181-184

Machine learning approach, 135
Machine learning system, 2
Mel Frequency Cepstral Coefficients
(MFCC), 229-232
Mel scale transformation, 225-227
MNIST dataset
class function, 200
CNN model, 201, 205
convolution layer, 209
convolution layers, 202
fused application, 211
GPU environment, 203
model training, 199-212



QAT (quantization-aware training), 208
quantization techniques, 199, 207
working process, 199, 200

Model interpretability
attribution algorithms, 237
Captum library, 237-239
definition, 237
integrated gradient, 243
loss function, 242
neurons, 244, 245
primary attribution layer, 239-244
skorch (see Skorch application)

N

Natural language processing
alternate data collection, 172
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computational linguistics, 171
data extraction, 172
keyword search, 172
language translation, 173
LSTM model, 181-184
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language, 176
question-and-answering systems, 172
sentiment analysis, 172
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text analysis, 171
text summarization, 173
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word-embedding model, 173-178

Neural network-based methods
activation functions, 117-128
backpropagation calculation, 133
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computational graph execution, 132
data mining tasks, 117
data preparation, 129
dependent/independent nodes, 132
loss function, 130, 131
set_weight() function, 130
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step-by-step approach, 128
steps, 128
tensor differentiation, 132, 133
Neural network (NN) model, 2
convolutional neural network, 77
model interpretability, 243
Skorch application, 256, 257
Neural network module
fine-tune deep learning models, 165
probability distribution, 52
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O

Ordinary least square (OLS) method, 137

P

Probability distribution

loss function
backward() function, 59
derivative, 52-58
fine-tuning model, 59, 60
gradients calculation, 58
linear equation representation, 51
mean square error (MSE), 50
MSELoss function, 52
set up process, 49-52

optimization functions
actual and predicted tensors, 64
Adam optimizer, 61
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Bernoulli distribution, 46

beta distribution, 46
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