
Ian Pointer

Programming
PyTorch for
Deep Learning
Creating and Deploying Deep Learning
Applications

Ian Pointer

Programming PyTorch for
Deep Learning

Creating and Deploying
Deep Learning Applications

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-04535-9

[LSI]

Programming PyTorch for Deep Learning
by Ian Pointer

Copyright © 2019 Ian Pointer. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Development Editor: Melissa Potter
Acquisitions Editor: Jonathan Hassell
Production Editor: Katherine Tozer
Copyeditor: Sharon Wilkey
Proofreader: Christina Edwards

Indexer: WordCo Indexing Services, Inc.
Interior Designer: David Futato
Cover Designer: Susan Thompson
Illustrator: Rebecca Demarest

September 2019: First Edition

Revision History for the First Edition
2019-09-20: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492045359 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Programming PyTorch for Deep Learn‐
ing, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the publisher’s views.
While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492045359

Table of Contents

Preface. ix

1. Getting Started with PyTorch. 1
Building a Custom Deep Learning Machine 1

GPU 2
CPU/Motherboard 2
RAM 2
Storage 2

Deep Learning in the Cloud 3
Google Colaboratory 3
Cloud Providers 5
Which Cloud Provider Should I Use? 7

Using Jupyter Notebook 7
Installing PyTorch from Scratch 8

Download CUDA 8
Anaconda 9
Finally, PyTorch! (and Jupyter Notebook) 9

Tensors 10
Tensor Operations 11
Tensor Broadcasting 13

Conclusion 14
Further Reading 14

2. Image Classification with PyTorch. 15
Our Classification Problem 15
Traditional Challenges 17

But First, Data 17
PyTorch and Data Loaders 18

iii

Building a Training Dataset 18
Building Validation and Test Datasets 20

Finally, a Neural Network! 21
Activation Functions 22
Creating a Network 22
Loss Functions 23
Optimizing 24

Training 26
Making It Work on the GPU 27

Putting It All Together 27
Making Predictions 28
Model Saving 29

Conclusion 30
Further Reading 31

3. Convolutional Neural Networks. 33
Our First Convolutional Model 33

Convolutions 34
Pooling 37
Dropout 38

History of CNN Architectures 39
AlexNet 39
Inception/GoogLeNet 40
VGG 41
ResNet 43
Other Architectures Are Available! 43

Using Pretrained Models in PyTorch 44
Examining a Model’s Structure 44
BatchNorm 47
Which Model Should You Use? 48

One-Stop Shopping for Models: PyTorch Hub 48
Conclusion 49
Further Reading 49

4. Transfer Learning and Other Tricks. 51
Transfer Learning with ResNet 51
Finding That Learning Rate 53
Differential Learning Rates 56
Data Augmentation 57

Torchvision Transforms 58
Color Spaces and Lambda Transforms 63
Custom Transform Classes 64

iv | Table of Contents

Start Small and Get Bigger! 65
Ensembles 66
Conclusion 67
Further Reading 67

5. Text Classification. 69
Recurrent Neural Networks 69
Long Short-Term Memory Networks 71

Gated Recurrent Units 73
biLSTM 73

Embeddings 74
torchtext 76

Getting Our Data: Tweets! 77
Defining Fields 78
Building a Vocabulary 80
Creating Our Model 82
Updating the Training Loop 83
Classifying Tweets 84

Data Augmentation 84
Random Insertion 85
Random Deletion 85
Random Swap 86
Back Translation 86
Augmentation and torchtext 87
Transfer Learning? 88

Conclusion 88
Further Reading 89

6. A Journey into Sound. 91
Sound 91
The ESC-50 Dataset 93

Obtaining the Dataset 93
Playing Audio in Jupyter 93

Exploring ESC-50 94
SoX and LibROSA 95
torchaudio 95
Building an ESC-50 Dataset 96

A CNN Model for ESC-50 98
This Frequency Is My Universe 99

Mel Spectrograms 100
A New Dataset 102
A Wild ResNet Appears 104

Table of Contents | v

Finding a Learning Rate 105
Audio Data Augmentation 107

torchaudio Transforms 107
SoX Effect Chains 107
SpecAugment 108

Further Experiments 113
Conclusion 113
Further Reading 114

7. Debugging PyTorch Models. 115
It’s 3 a.m. What Is Your Data Doing? 115
TensorBoard 116

Installing TensorBoard 116
Sending Data to TensorBoard 117
PyTorch Hooks 120
Plotting Mean and Standard Deviation 121
Class Activation Mapping 122

Flame Graphs 125
Installing py-spy 127
Reading Flame Graphs 128
Fixing a Slow Transformation 129

Debugging GPU Issues 132
Checking Your GPU 132
Gradient Checkpointing 134

Conclusion 136
Further Reading 136

8. PyTorch in Production. 137
Model Serving 137

Building a Flask Service 138
Setting Up the Model Parameters 140
Building the Docker Container 141
Local Versus Cloud Storage 144
Logging and Telemetry 145

Deploying on Kubernetes 147
Setting Up on Google Kubernetes Engine 147
Creating a k8s Cluster 148
Scaling Services 149
Updates and Cleaning Up 149

TorchScript 150
Tracing 150
Scripting 153

vi | Table of Contents

TorchScript Limitations 154
Working with libTorch 156

Obtaining libTorch and Hello World 156
Importing a TorchScript Model 157

Conclusion 159
Further Reading 160

9. PyTorch in the Wild. 161
Data Augmentation: Mixed and Smoothed 161

mixup 161
Label Smoothing 165

Computer, Enhance! 166
Introduction to Super-Resolution 167
An Introduction to GANs 169
The Forger and the Critic 170
Training a GAN 171
The Dangers of Mode Collapse 172
ESRGAN 173

Further Adventures in Image Detection 173
Object Detection 173
Faster R-CNN and Mask R-CNN 175

Adversarial Samples 177
Black-Box Attacks 180
Defending Against Adversarial Attacks 180

More Than Meets the Eye: The Transformer Architecture 181
Paying Attention 181
Attention Is All You Need 182
BERT 183
FastBERT 183
GPT-2 185
Generating Text with GPT-2 185
ULMFiT 187
What to Use? 189

Conclusion 190
Further Reading 190

Index. 193

Table of Contents | vii

1 See “Approximation by Superpositions of Sigmoidal Functions”, by George Cybenko (1989).

Preface

Deep Learning in the World Today
Hello and welcome! This book will introduce you to deep learning via PyTorch, an
open source library released by Facebook in 2017. Unless you’ve had your head stuck
in the ground in a very good impression of an ostrich the past few years, you can’t
have helped but notice that neural networks are everywhere these days. They’ve gone
from being the really cool bit of computer science that people learn about and then do
nothing with to being carried around with us in our phones every day to improve our
pictures or listen to our voice commands. Our email software reads our email and
produces context-sensitive replies, our speakers listen out for us, cars drive by them‐
selves, and the computer has finally bested humans at Go. We’re also seeing the tech‐
nology being used for more nefarious ends in authoritarian countries, where neural
network–backed sentinels can pick faces out of crowds and make a decision on
whether they should be apprehended.

And yet, despite the feeling that this has all happened so fast, the concepts of neural
networks and deep learning go back a long way. The proof that such a network could
function as a way of replacing any mathematical function in an approximate way,
which underpins the idea that neural networks can be trained for many different
tasks, dates back to 1989,1 and convolutional neural networks were being used to rec‐
ognize digits on check in the late ’90s. There’s been a solid foundation building up all
this time, so why does it feel like an explosion occurred in the last 10 years?

There are many reasons, but prime among them has to be the surge in graphical pro‐
cessing units (GPUs) performance and their increasing affordability. Designed origi‐
nally for gaming, GPUs need to perform countless millions of matrix operations per
second in order to render all the polygons for the driving or shooting game you’re
playing on your console or PC, operations that a standard CPU just isn’t optimized

ix

https://oreil.ly/BQ8-9

for. A 2009 paper, “Large-Scale Deep Unsupervised Learning Using Graphics Process‐
ors” by Rajat Raina et al., pointed out that training neural networks was also based on
performing lots of matrix operations, and so these add-on graphics cards could be
used to speed up training as well as make larger, deeper neural network architectures
feasible for the first time. Other important techniques such as Dropout (which we will
look at in Chapter 3) were also introduced in the last decade as ways to not just speed
up training but make training more generalized (so that the network doesn’t just learn
to recognize the training data, a problem called overfitting that we’ll encounter in the
next chapter). In the last couple of years, companies have taken this GPU-based
approach to the next level, with Google creating what it describes as tensor processing
units (TPUs), which are devices custom-built for performing deep learning as fast as
possible, and are even available to the general public as part of their Google Cloud
ecosystem.

Another way to chart deep learning’s progress over the past decade is through the
ImageNet competition. A massive database of over 14 million pictures, manually
labeled into 20,000 categories, ImageNet is a treasure trove of labeled data for
machine learning purposes. Since 2010, the yearly ImageNet Large Scale Visual Rec‐
ognition Challenge has sought to test all comers against a 1,000-category subset of the
database, and until 2012, error rates for tackling the challenge rested around 25%.
That year, however, a deep convolutional neural network won the competition with
an error of 16%, massively outperforming all other entrants. In the years that fol‐
lowed, that error rate got pushed down further and further, to the point that in 2015,
the ResNet architecture obtained a result of 3.6%, which beat the average human per‐
formance on ImageNet (5%). We had been outclassed.

But What Is Deep Learning Exactly, and
Do I Need a PhD to Understand It?
Deep learning’s definition often is more confusing than enlightening. A way of defin‐
ing it is to say that deep learning is a machine learning technique that uses multiple
and numerous layers of nonlinear transforms to progressively extract features from
raw input. Which is true, but it doesn’t really help, does it? I prefer to describe it as a
technique to solve problems by providing the inputs and desired outputs and letting
the computer find the solution, normally using a neural network.

One thing about deep learning that scares off a lot of people is the mathematics. Look
at just about any paper in the field and you’ll be subjected to almost impenetrable
amounts of notation with Greek letters all over the place, and you’ll likely run
screaming for the hills. Here’s the thing: for the most part, you don’t need to be a
math genius to use deep learning techniques. In fact, for most day-to-day basic uses
of the technology, you don’t need to know much at all, and to really understand what’s
going on (as you’ll see in Chapter 2), you only have to stretch a little to understand

x | Preface

2 Note that PyTorch borrows ideas from Chainer, but not actual code.

concepts that you probably learned in high school. So don’t be too scared about the
math. By the end of Chapter 3, you’ll be able to put together an image classifier that
rivals what the best minds in 2015 could offer with just a few lines of code.

PyTorch
As I mentioned back at the start, PyTorch is an open source offering from Facebook
that facilitates writing deep learning code in Python. It has two lineages. First, and
perhaps not entirely surprisingly given its name, it derives many features and con‐
cepts from Torch, which was a Lua-based neural network library that dates back to
2002. Its other major parent is Chainer, created in Japan in 2015. Chainer was one of
the first neural network libraries to offer an eager approach to differentiation instead
of defining static graphs, allowing for greater flexibility in the way networks are cre‐
ated, trained, and operated. The combination of the Torch legacy plus the ideas from
Chainer has made PyTorch popular over the past couple of years.2

The library also comes with modules that help with manipulating text, images, and
audio (torchtext, torchvision, and torchaudio), along with built-in variants of
popular architectures such as ResNet (with weights that can be downloaded to pro‐
vide assistance with techniques like transfer learning, which you’ll see in Chapter 4).

Aside from Facebook, PyTorch has seen quick acceptance by industry, with compa‐
nies such as Twitter, Salesforce, Uber, and NVIDIA using it in various ways for their
deep learning work. Ah, but I sense a question coming….

What About TensorFlow?
Yes, let’s address the rather large, Google-branded elephant in the corner. What does
PyTorch offer that TensorFlow doesn’t? Why should you learn PyTorch instead?

The answer is that traditional TensorFlow works in a different way than PyTorch that
has major implications for code and debugging. In TensorFlow, you use the library to
build up a graph representation of the neural network architecture and then you exe‐
cute operations on that graph, which happens within the TensorFlow library. This
method of declarative programming is somewhat at odds with Python’s more impera‐
tive paradigm, meaning that Python TensorFlow programs can look and feel some‐
what odd and difficult to understand. The other issue is that the static graph
declaration can make dynamically altering the architecture during training and infer‐
ence time a lot more complicated and stuffed with boilerplate than with PyTorch’s
approach.

Preface | xi

For these reasons, PyTorch has become popular in research-oriented communities.
The number of papers submitted to the International Conference on Learning Repre‐
sentations that mention PyTorch has jumped 200% in the past year, and the number
of papers mentioning TensorFlow has increased almost equally. PyTorch is definitely
here to stay.

However, things are changing in more recent versions of TensorFlow. A new feature
called eager execution has been recently added to the library that allows it to work
similarly to PyTorch and will be the paradigm promoted in TensorFlow 2.0. But as it’s
new resources outside of Google that help you learn this new method of working with
TensorFlow are thin on the ground, plus you’d need years of work out there to under‐
stand the other paradigm in order to get the most out of the library.

But none of this should make you think poorly of TensorFlow; it remains an
industry-proven library with support from one of the biggest companies on the
planet. PyTorch (backed, of course, by a different biggest company on the planet) is, I
would say, a more streamlined and focused approach to deep learning and differential
programming. Because it doesn’t have to continue supporting older, crustier APIs, it
is easier to teach and become productive in PyTorch than in TensorFlow.

Where does Keras fit in with this? So many good questions! Keras is a high-level deep
learning library that originally supported Theano and TensorFlow, and now also sup‐
ports certain other frames such as Apache MXNet. It provides certain features such as
training, validation, and test loops that the lower-level frameworks leave as an exer‐
cise for the developer, as well as simple methods of building up neural network archi‐
tectures. It has contributed hugely to the take-up of TensorFlow, and is now part of
TensorFlow itself (as tf.keras) as well as continuing to be a separate project.
PyTorch, in comparison, is something of a middle ground between the low level of
raw TensorFlow and Keras; we will have to write our own training and inference rou‐
tines, but creating neural networks is almost as straightforward (and I would say that
PyTorch’s approach to making and reusing architectures is much more logical to a
Python developer than some of Keras’s magic).

As you’ll see in this book, although PyTorch is common in more research-oriented
positions, with the advent of PyTorch 1.0, it’s perfectly suited to production use cases.

xii | Preface

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (including code examples and exercises) is available for down‐
load at https://oreil.ly/pytorch-github.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this

Preface | xiii

https://oreil.ly/pytorch-github

book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Programming PyTorch for Deep
Learning by Ian Pointer (O’Reilly). Copyright 2019 Ian Pointer, 978-1-492-04535-9.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For almost 40 years, O’Reilly Media has provided technology
and business training, knowledge, and insight to help compa‐
nies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, conferences, and our online learning platform. O’Reilly’s
online learning platform gives you on-demand access to live training courses, in-
depth learning paths, interactive coding environments, and a vast collection of text
and video from O’Reilly and 200+ other publishers. For more information, please
visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/prgrming-pytorch-for-dl.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

xiv | Preface

mailto:permissions@oreilly.com
http://oreilly.com
http://oreilly.com
https://oreil.ly/prgrming-pytorch-for-dl
mailto:bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
A big thank you to my editor, Melissa Potter, my family, and Tammy Edlund for all their
help in making this book possible. Thank you, also, to the technical reviewers who pro‐
vided valuable feedback throughout the writing process, including Phil Rhodes, David
Mertz, Charles Givre, Dominic Monn, Ankur Patel, and Sarah Nagy.

Preface | xv

http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

Getting Started with PyTorch

In this chapter we set up all we need for working with PyTorch. Once we’ve done that,
every chapter following will build on this initial foundation, so it’s important that we
get it right. This leads to our first fundamental question: should you build a custom
deep learning computer or just use one of the many cloud-based resources available?

Building a Custom Deep Learning Machine
There is an urge when diving into deep learning to build yourself a monster for all
your compute needs. You can spend days looking over different types of graphics
cards, learning the memory lanes possible CPU selections will offer you, the best sort
of memory to buy, and just how big an SSD drive you can purchase to make your disk
access as fast as possible. I am not claiming any immunity from this; I spent a month
a couple of years ago making a list of parts and building a new computer on my din‐
ing room table.

My advice, especially if you’re new to deep learning, is this: don’t do it. You can easily
spend several thousands of dollars on a machine that you may not use all that much.
Instead, I recommend that you work through this book by using cloud resources (in
either Amazon Web Services, Google Cloud, or Microsoft Azure) and only then start
thinking about building your own machine if you feel that you require a single
machine for 24/7 operation. You do not need to make a massive investment in hard‐
ware to run any of the code in this book.

You might not ever need to build a custom machine for yourself. There’s something
of a sweet spot, where it can be cheaper to build a custom rig if you know your calcu‐
lations are always going to be restricted to a single machine (with at most a handful of
GPUs). However, if your compute starts to require spanning multiple machines and

1

GPUs, the cloud becomes appealing again. Given the cost of putting a custom
machine together, I’d think long and hard before diving in.

If I haven’t managed to put you off from building your own, the following sections
provide suggestions for what you would need to do so.

GPU
The heart of every deep learning box, the GPU, is what is going to power the majority
of PyTorch’s calculations, and it’s likely going to be the most expensive component in
your machine. In recent years, the prices of GPUs have increased, and the supplies
have dwindled, because of their use in mining cryptocurrency like Bitcoin. Thank‐
fully, that bubble seems to be receding, and supplies of GPUs are back to being a little
more plentiful.

At the time of this writing, I recommend obtaining the NVIDIA GeForce RTX 2080
Ti. For a cheaper option, feel free to go for the 1080 Ti (though if you are weighing
the decision to get the 1080 Ti for budgetary reasons, I again suggest that you look at
cloud options instead). Although AMD-manufactured GPU cards do exist, their sup‐
port in PyTorch is currently not good enough to recommend anything other than an
NVIDIA card. But keep a lookout for their ROCm technology, which should eventu‐
ally make them a credible alternative in the GPU space.

CPU/Motherboard
You’ll probably want to spring for a Z370 series motherboard. Many people will tell
you that the CPU doesn’t matter for deep learning and that you can get by with a
lower-speed CPU as long as you have a powerful GPU. In my experience, you’ll be
surprised at how often the CPU can become a bottleneck, especially when working
with augmented data.

RAM
More RAM is good, as it means you can keep more data inside without having to hit
the much slower disk storage (especially important during your training stages). You
should be looking at a minimum of 64GB DDR4 memory for your machine.

Storage
Storage for a custom rig should be installed in two classes: first, an M2-interface
solid-state drive (SSD)—as big as you can afford—for your hot data to keep access as
fast as possible when you’re actively working on a project. For the second class of
storage, add in a 4TB Serial ATA (SATA) drive for data that you’re not actively work‐
ing on, and transfer to hot and cold storage as required.

2 | Chapter 1: Getting Started with PyTorch

I recommend that you take a look at PCPartPicker to glance at other people’s deep
learning machines (you can see all the weird and wild case ideas, too!). You’ll get a
feel for lists of machine parts and associated prices, which can fluctuate wildly, espe‐
cially for GPU cards.

Now that you’ve looked at your local, physical machine options, it’s time to head to
the clouds.

Deep Learning in the Cloud
OK, so why is the cloud option better, you might ask? Especially if you’ve looked at
the Amazon Web Services (AWS) pricing scheme and worked out that building a
deep learning machine will pay for itself within six months? Think about it: if you’re
just starting out, you are not going to be using that machine 24/7 for those six
months. You’re just not. Which means that you can shut off the cloud machine and
pay pennies for the data being stored in the meantime.

And if you’re starting out, you don’t need to go all out and use one of NVIDIA’s levia‐
than Tesla V100 cards attached to your cloud instance straightaway. You can start out
with one of the much cheaper (sometimes even free) K80-based instances and move
up to the more powerful card when you’re ready. That is a trifle less expensive than
buying a basic GPU card and upgrading to a 2080Ti on your custom box. Plus if you
want to add eight V100 cards to a single instance, you can do it with just a few clicks.
Try doing that with your own hardware.

The other issue is maintenance. If you get yourself into the good habit of re-creating
your cloud instances on a regular basis (ideally starting anew every time you come
back to work on your experiments), you’ll almost always have a machine that is up to
date. If you have your own machine, updating is up to you. This is where I confess
that I do have my own custom deep learning machine, and I ignored the Ubuntu
installation on it for so long that it fell out of supported updates, resulting in an even‐
tual day spent trying to get the system back to a place where it was receiving updates
again. Embarrassing.

Anyway, you’ve made the decision to go to the cloud. Hurrah! Next: which provider?

Google Colaboratory
But wait—before we look at providers, what if you don’t want to do any work at all?
None of that pesky building a machine or having to go through all the trouble of set‐
ting up instances in the cloud? Where’s the really lazy option? Google has the right
thing for you. Colaboratory (or Colab) is a mostly free, zero-installation-required cus‐
tom Jupyter Notebook environment. You’ll need a Google account to set up your own
notebooks. Figure 1-1 shows a screenshot of a notebook created in Colab.

Deep Learning in the Cloud | 3

https://pcpartpicker.com
https://colab.research.google.com

What makes Colab a great way to dive into deep learning is that it includes preinstal‐
led versions of TensorFlow and PyTorch, so you don’t have to do any setup beyond
typing import torch, and every user can get free access to a NVIDIA T4 GPU for up
to 12 hours of continuous runtime. For free. To put that in context, empirical research
suggests that you get about half the speed of a 1080 Ti for training, but with an extra
5GB of memory so you can store larger models. It also offers the ability to connect to
more recent GPUs and Google’s custom TPU hardware in a paid option, but you can
pretty much do every example in this book for nothing with Colab. For that reason, I
recommend using Colab alongside this book to begin with, and then you can decide
to branch out to dedicated cloud instances and/or your own personal deep learning
server if needed.

Figure 1-1. Google Colab(oratory)

Colab is the zero-effort approach, but you may want to have a little more control over
how things are installed or get Secure Shell (SSH) access to your instance on the
cloud, so let’s have a look at what the main cloud providers offer.

4 | Chapter 1: Getting Started with PyTorch

Cloud Providers
Each of the big three cloud providers (Amazon Web Services, Google Cloud Plat‐
form, and Microsoft’s Azure) offers GPU-based instances (also referred to as virtual
machines or VMs) and official images to deploy on those instances. They have all you
need to get up and running without having to install drivers and Python libraries
yourself. Let’s have a run-through of what each provider offers.

Amazon Web Services
AWS, the 800-pound gorilla of the cloud market, is more than happy to fulfill your
GPU needs and offers the P2 and P3 instance types to help you out. (The G3 instance
type tends to be used more in actual graphics-based applications like video encoding,
so we won’t cover it here.) The P2 instances use the older NVIDIA K80 cards (a maxi‐
mum of 16 can be connected to one instance), and the P3 instances use the blazing-
fast NVIDIA V100 cards (and you can strap eight of those onto one instance if you
dare).

If you’re going to use AWS, my recommendation for this book is to go with the
p2.xlarge class. This will cost you just 90 cents an hour at the time of this writing
and provides plenty of power for working through the examples. You may want to
bump up to the P3 classes when you start working on some meaty Kaggle competi‐
tions.

Creating a running deep learning box on AWS is incredibly easy:

1. Sign into the AWS console.
2. Select EC2 and click Launch Instance.
3. Search for the Deep Learning AMI (Ubuntu) option and select it.
4. Choose p2.xlarge as your instance type.
5. Launch the instance, either by creating a new key pair or reusing an existing key

pair.
6. Connect to the instance by using SSH and redirecting port 8888 on your local

machine to the instance:
ssh -L localhost:8888:localhost:8888 \
-i your .pem filename ubuntu@your instance DNS

7. Start Jupyter Notebook by entering jupyter notebook. Copy the URL that gets
generated and paste it into your browser to access Jupyter.

Remember to shut down your instance when you’re not using it! You can do this by
right-clicking the instance in the web interface and selecting the Shutdown option.
This will shut down the instance, and you won’t be charged for the instance while it’s

Deep Learning in the Cloud | 5

not running. However, you will be charged for the storage space that you have alloca‐
ted for it even if the instance is turned off, so be aware of that. To delete the instance
and storage entirely, select the Terminate option instead.

Azure
Like AWS, Azure offers a mixture of cheaper K80-based instances and more expen‐
sive Tesla V100 instances. Azure also offers instances based on the older P100 hard‐
ware as a halfway point between the other two. Again, I recommend the instance type
that uses a single K80 (NC6) for this book, which also costs 90 cents per hour, and
move onto other NC, NCv2 (P100), or NCv3 (V100) types as you need them.

Here’s how you set up the VM in Azure:

1. Log in to the Azure portal and find the Data Science Virtual Machine image in
the Azure Marketplace.

2. Click the Get It Now button.
3. Fill in the details of the VM (give it a name, choose SSD disk over HDD, an SSH

username/password, the subscription you’ll be billing the instance to, and set the
location to be the nearest to you that offers the NC instance type).

4. Click the Create option. The instance should be provisioned in about five
minutes.

5. You can use SSH with the username/password that you specified to that instance’s
public Domain Name System (DNS) name.

6. Jupyter Notebook should run when the instance is provisioned; navigate to
http://dns name of instance:8000 and use the username/password combination
that you used for SSH to log in.

Google Cloud Platform
In addition to offering K80, P100, and V100-backed instances like Amazon and
Azure, Google Cloud Platform (GCP) offers the aforementioned TPUs for those who
have tremendous data and compute requirements. You don’t need TPUs for this
book, and they are pricey, but they will work with PyTorch 1.0, so don’t think that you
have to use TensorFlow in order to take advantage of them if you have a project that
requires their use.

Getting started with Google Cloud is also pretty easy:

1. Search for Deep Learning VM on the GCP Marketplace.
2. Click Launch on Compute Engine.
3. Give the instance a name and assign it to the region closest to you.

6 | Chapter 1: Getting Started with PyTorch

4. Set the machine type to 8 vCPUs.
5. Set GPU to 1 K80.
6. Ensure that PyTorch 1.0 is selected in the Framework section.
7. Select the “Install NVIDIA GPU automatically on first startup?” checkbox.
8. Set Boot disk to SSD Persistent Disk.
9. Click the Deploy option. The VM will take about 5 minutes to fully deploy.

10. To connect to Jupyter on the instance, make sure you’re logged into the correct
project in gcloud and issue this command:

gcloud compute ssh _INSTANCE_NAME_ -- -L 8080:localhost:8080

The charges for Google Cloud should work out to about 70 cents an hour, making it
the cheapest of the three major cloud providers.

Which Cloud Provider Should I Use?
If you have nothing pulling you in any direction, I recommend Google Cloud Plat‐
form (GCP); it’s the cheapest option, and you can scale all the way up to using TPUs
if required, with a lot more flexibility than either the AWS or Azure offerings. But if
you have resources on one of the other two platforms already, you’ll be absolutely fine
running in those environments.

Once you have your cloud instance running, you’ll be able to log in to its copy of
Jupyter Notebook, so let’s take a look at that next.

Using Jupyter Notebook
If you haven’t come across it before, here’s the lowdown on Jupyter Notebook: this
browser-based environment allows you to mix live code with text, images, and visual‐
izations and has become one of the de facto tools of data scientists all over the world.
Notebooks created in Jupyter can be easily shared; indeed, you’ll find all the note‐
books in this book. You can see a screenshot of Jupyter Notebook in action in
Figure 1-2.

We won’t be using any advanced features of Jupyter in this book; all you need to know
is how to create a new notebook and that Shift-Enter runs the contents of a cell. But if
you’ve never used it before, I suggest browsing the Jupyter documentation before you
get to Chapter 2.

Using Jupyter Notebook | 7

https://oreil.ly/iBh4V
https://oreil.ly/iBh4V
https://oreil.ly/-Yhff

Figure 1-2. Jupyter Notebook

Before we get into using PyTorch, we’ll cover one last thing: how to install everything
manually.

Installing PyTorch from Scratch
Perhaps you want a little more control over your software than using one of the pre‐
ceding cloud-provided images. Or you need a particular version of PyTorch for your
code. Or, despite all my cautionary warnings, you really want that rig in your base‐
ment. Let’s look at how to install PyTorch on a Linux server in general.

You can use PyTorch with Python 2.x, but I strongly recommend
against doing so. While the Python 2.x to 3.x upgrade saga has
been running for over a decade now, more and more packages are
beginning to drop Python 2.x support. So unless you have a good
reason, make sure your system is running Python 3.

Download CUDA
Although PyTorch can be run entirely in CPU mode, in most cases, GPU-powered
PyTorch is required for practical usage, so we’re going to need GPU support. This is
fairly straightforward; assuming you have an NVIDIA card, this is provided by their
Compute Unified Device Architecture (CUDA) API. Download the appropriate
package format for your flavor of Linux and install the package.

8 | Chapter 1: Getting Started with PyTorch

https://oreil.ly/Gx_q2
https://oreil.ly/Gx_q2

For Red Hat Enterprise Linux (RHEL) 7:

sudo rpm -i cuda-repo-rhel7-10-0local-10.0.130-410.48-1.0-1.x86_64.rpm
sudo yum clean all
sudo yum install cuda

For Ubuntu 18.04:

sudo dpkg -i cuda-repo-ubuntu1804-10-0-local-10.0.130-410.48_1.0-1_amd64.deb
sudo apt-key add /var/cuda-repo-<version>/7fa2af80.pub
sudo apt-get update
sudo apt-get install cuda

Anaconda
Python has a variety of packaging systems, all of which have good and not-so-good
points. Like the developers of PyTorch, I recommend that you install Anaconda, a
packaging system dedicated to producing the best distribution of packages for data
scientists. Like CUDA, it’s fairly easy to install.

Head to Anaconda and pick out the installation file for your machine. Because it’s a
massive archive that executes via a shell script on your system, I encourage you to run
md5sum on the file you’ve downloaded and check it against the list of signatures before
you execute it with bash Anaconda3-VERSION-Linux-x86_64.sh to make sure that
the signature on your machine matches the one on the web page. This ensures that
the downloaded file hasn’t been tampered with and means it’s safe to run on your sys‐
tem. The script will present several prompts about locations it’ll be installing into;
unless there’s a good reason, just accept the defaults.

You might be wondering, “Can I do this on my MacBook?” Sadly,
most Macs come with either Intel or AMD GPUs these days and
don’t really have the support for running PyTorch in GPU-
accelerated mode. I recommend using Colab or a cloud provider
rather than attempting to use your Mac locally.

Finally, PyTorch! (and Jupyter Notebook)
Now that you have Anaconda installed, getting set up with PyTorch is simple:

conda install pytorch torchvision -c pytorch

This installs PyTorch and the torchvision library that we use in the next couple of
chapters to create deep learning architectures that work with images. Anaconda has
also installed Jupyter Notebook for us, so we can begin by starting it:

jupyter notebook

Head to http://YOUR-IP-ADDRESS:8888 in your browser, create a new notebook, and
enter the following:

Installing PyTorch from Scratch | 9

https://oreil.ly/9hAxg
https://oreil.ly/anuhu

import torch
print(torch.cuda.is_available())
print(torch.rand(2,2))

This should produce output similar to this:

True
 0.6040 0.6647
 0.9286 0.4210
[torch.FloatTensor of size 2x2]

If cuda.is_available() returns False, you need to debug your CUDA installation
so PyTorch can see your graphics card. The values of the tensor will be different on
your instance.

But what is this tensor? Tensors are at the heart of almost everything in PyTorch, so
you need to know what they are and what they can do for you.

Tensors
A tensor is both a container for numbers as well as a set of rules that define transfor‐
mations between tensors that produce new tensors. It’s probably easiest for us to
think about tensors as multidimensional arrays. Every tensor has a rank that corre‐
sponds to its dimensional space. A simple scalar (e.g., 1) can be represented as a ten‐
sor of rank 0, a vector is rank 1, an n × n matrix is rank 2, and so on. In the previous
example, we created a rank 2 tensor with random values by using torch.rand(). We
can also create them from lists:

x = torch.tensor([[0,0,1],[1,1,1],[0,0,0]])
x
>tensor([[0, 0, 1],
 [1, 1, 1],
 [0, 0, 0]])

We can change an element in a tensor by using standard Python indexing:

x[0][0] = 5
>tensor([[5, 0, 1],
 [1, 1, 1],
 [0, 0, 0]])

You can use special creation functions to generate particular types of tensors. In par‐
ticular, ones() and zeroes() will generate tensors filled with 1s and 0s, respectively:

torch.zeros(2,2)
> tensor([[0., 0.],
 [0., 0.]])

You can perform standard mathematical operations with tensors (e.g., adding two
tensors together):

10 | Chapter 1: Getting Started with PyTorch

tensor.ones(1,2) + tensor.ones(1,2)
> tensor([[2., 2.]])

And if you have a tensor of rank 0, you can pull out the value with item():

torch.rand(1).item()
> 0.34106671810150146

Tensors can live in the CPU or on the GPU and can be copied between devices by
using the to() function:

cpu_tensor = tensor.rand(2)
cpu_tensor.device
> device(type='cpu')

gpu_tensor = cpu_tensor.to("cuda")
gpu_tensor.device
> device(type='cuda', index=0)

Tensor Operations
If you look at the PyTorch documentation, you’ll see that there are a lot of functions
that you can apply to tensors—everything from finding the maximum element to
applying a Fourier transform. In this book, you don’t need to know all of those in
order to turn images, text, and audio into tensors and manipulate them to perform
our operations, but you will need some. I definitely recommend that you give the
documentation a glance, especially after finishing this book. Now we’re going to go
through all the functions that will be used in upcoming chapters.

First, we often need to find the maximum item in a tensor as well as the index that
contains the maximum value (as this often corresponds to the class that the neural
network has decided upon in its final prediction). These can be done with the max()
and argmax() functions. We can also use item() to extract a standard Python value
from a 1D tensor.

torch.rand(2,2).max()
> tensor(0.4726)
torch.rand(2,2).max().item()
> 0.8649941086769104

Sometimes, we’d like to change the type of a tensor; for example, from a LongTensor
to a FloatTensor. We can do this with to():

long_tensor = torch.tensor([[0,0,1],[1,1,1],[0,0,0]])
long_tensor.type()
> 'torch.LongTensor'
float_tensor = torch.tensor([[0,0,1],[1,1,1],[0,0,0]]).to(dtype=torch.float32)
float_tensor.type()
> 'torch.FloatTensor'

Tensors | 11

https://oreil.ly/1Ev0-

Most functions that operate on a tensor and return a tensor create a new tensor to
store the result. However, if you want to save memory, look to see if an in-place func‐
tion is defined, which should be the same name as the original function but with an
appended underscore (_).

random_tensor = torch.rand(2,2)
random_tensor.log2()
>tensor([[-1.9001, -1.5013],
 [-1.8836, -0.5320]])
random_tensor.log2_()
> tensor([[-1.9001, -1.5013],
 [-1.8836, -0.5320]])

Another common operation is reshaping a tensor. This can often occur because your
neural network layer may require a slightly different input shape than what you cur‐
rently have to feed into it. For example, the Modified National Institute of Standards
and Technology (MNIST) dataset of handwritten digits is a collection of 28 × 28
images, but the way it’s packaged is in arrays of length 784. To use the networks we
are constructing, we need to turn those back into 1 × 28 × 28 tensors (the leading 1 is
the number of channels—normally red, green, and blue—but as MNIST digits are
just grayscale, we have only one channel). We can do this with either view() or
reshape():

flat_tensor = torch.rand(784)
viewed_tensor = flat_tensor.view(1,28,28)
viewed_tensor.shape
> torch.Size([1, 28, 28])
reshaped_tensor = flat_tensor.reshape(1,28,28)
reshaped_tensor.shape
> torch.Size([1, 28, 28])

Note that the reshaped tensor’s shape has to have the same number of total elements
as the original. If you try flat_tensor.reshape(3,28,28), you’ll see an error like
this:

RuntimeError Traceback (most recent call last)
<ipython-input-26-774c70ba5c08> in <module>()
----> 1 flat_tensor.reshape(3,28,28)

RuntimeError: shape '[3, 28, 28]' is invalid for input of size 784

Now you might wonder what the difference is between view() and reshape(). The
answer is that view() operates as a view on the original tensor, so if the underlying
data is changed, the view will change too (and vice versa). However, view() can
throw errors if the required view is not contiguous; that is, it doesn’t share the same
block of memory it would occupy if a new tensor of the required shape was created
from scratch. If this happens, you have to call tensor.contiguous() before you can
use view(). However, reshape() does all that behind the scenes, so in general, I rec‐
ommend using reshape() rather than view().

12 | Chapter 1: Getting Started with PyTorch

Finally, you might need to rearrange the dimensions of a tensor. You will likely come
across this with images, which often are stored as [height, width, channel] ten‐
sors, but PyTorch prefers to deal with these in a [channel, height, width]. You can
user permute() to deal with these in a fairly straightforward manner:

hwc_tensor = torch.rand(640, 480, 3)
chw_tensor = hwc_tensor.permute(2,0,1)
chw_tensor.shape
> torch.Size([3, 640, 480])

Here, we’ve just applied permute to a [640,480,3] tensor, with the arguments being
the indexes of the tensor’s dimensions, so we want the final dimension (2, due to zero
indexing) to be at the front of our tensor, followed by the remaining two dimensions
in their original order.

Tensor Broadcasting
Borrowed from NumPy, broadcasting allows you to perform operations between a
tensor and a smaller tensor. You can broadcast across two tensors if, starting back‐
ward from their trailing dimensions:

• The two dimensions are equal.
• One of the dimensions is 1.

In our use of broadcasting, it works because 1 has a dimension of 1, and as there are
no other dimensions, the 1 can be expanded to cover the other tensor. If we tried to
add a [2,2] tensor to a [3,3] tensor, we’d get this error message:

The size of tensor a (2) must match the size of
tensor b (3) at non-singleton dimension 1

But we could add a [1,3] tensor to the [3,3] tensor without any trouble. Broadcast‐
ing is a handy little feature that increases brevity of code, and is often faster than
manually expanding the tensor yourself.

That wraps up everything concerning tensors that you need to get started! We’ll cover
a few other operations as we come across them later in the book, but this is enough
for you to dive into Chapter 2.

Tensors | 13

Conclusion
Whether it’s in the cloud or on your local machine, you should now have PyTorch
installed. I’ve introduced the fundamental building block of the library, the tensor,
and you’ve had a brief look at Jupyter Notebook. This is all you need to get started! In
the next chapter, you use everything you’ve seen so far to start building neural net‐
works and classifying images, so make you sure you’re comfortable with tensors and
Jupyter before moving on.

Further Reading
• Project Jupyter documentation
• PyTorch documentation
• AWS Deep Learning AMIs
• Azure Data Science Virtual Machines
• Google Deep Learning VM Image

14 | Chapter 1: Getting Started with PyTorch

https://jupyter.org/documentation
https://pytorch.org/docs/stable
https://oreil.ly/G9Ldx
https://oreil.ly/YjzVB
https://oreil.ly/NFpeG

CHAPTER 2

Image Classification with PyTorch

After you’ve set up PyTorch, deep learning textbooks normally throw a bunch of jar‐
gon at you before doing anything interesting. I try to keep that to a minimum and
work through an example, albeit one that can easily be expanded as you get more
comfortable working with PyTorch. We use this example throughout the book to
demonstrate how to debug a model (Chapter 7) or deploy it to production
(Chapter 8).

What we’re going to construct from now until the end of Chapter 4 is an image classi‐
fier. Neural networks are commonly used as image classifiers; the network is given a
picture and asked what is, to us, a simple question: “What is this?”

Let’s get started with building our PyTorch application.

Our Classification Problem
Here we build a simple classifier that can tell the difference between fish and cats.
We’ll be iterating over the design and how we build our model to make it more and
more accurate.

Figures 2-1 and 2-2 show a fish and a cat in all their glory. I’m not sure whether the
fish has a name, but the cat is called Helvetica.

Let’s begin with a discussion of the traditional challenges involved in classification.

15

Figure 2-1. A fish!

Figure 2-2. Helvetica in a box

16 | Chapter 2: Image Classification with PyTorch

Traditional Challenges
How would you go about writing a program that could tell a fish from a cat? Maybe
you’d write a set of rules describing that a cat has a tail, or that a fish has scales, and
apply those rules to an image to determine what you’re looking at. But that would
take time, effort, and skill. Plus, what happens if you encounter something like a
Manx cat; while it is clearly a cat, it doesn’t have a tail.

You can see how these rules are just going get more and more complicated to describe
all possible scenarios. Also, I’ll admit that I’m absolutely terrible at graphics program‐
ming, so the idea of having to manually code all these rules fills me with dread.

What we’re after is a function that, given the input of an image, returns cat or fish.
That function is hard for us to construct by exhaustively listing all the criteria. But
deep learning essentially makes the computer do all the hard work of constructing all
those rules that we just talked about—provided we create a structure, give the net‐
work lots of data, and give it a way to work out whether it is getting the right answer.
So that’s what we’re going to do. Along the way, you’ll learn some key concepts of how
to use PyTorch.

But First, Data
First, we need data. How much data? Well, that depends. The idea that for any deep
learning technique to work, you need vast quantities of data to train the neural net‐
work is not necessarily true, as you’ll see in Chapter 4. However, right now we’re
going to be training from scratch, which often does require access to a large quantity
of data. We need a lot of pictures of fish and cats.

Now, we could spend some time downloading many images from something like
Google image search, but in this instance we have a shortcut: a standard collection of
images used to train neural networks, called ImageNet. It contains more than 14 mil‐
lion images and 20,000 image categories. It’s the standard that all image classifiers
judge themselves against. So I take images from there, though feel free to download
other ones yourself if you prefer.

Along with the data, PyTorch needs a way to determine what is a cat and what is a
fish. That’s easy enough for us, but it’s somewhat harder for the computer (which is
why we are building the program in the first place!). We use a label attached to the
data, and training in this manner is called supervised learning. (When you don’t have
access to any labels, you have to use, perhaps unsurprisingly, unsupervised learning
methods for training.)

Now, if we’re using ImageNet data, its labels aren’t going to be all that useful, because
they contain too much information for us. A label of tabby cat or trout is, to the

Traditional Challenges | 17

computer, separate from cat or fish. We’ll need to relabel these. Because ImageNet is
such a vast collection of images, I have pulled together a list of image URLs and labels
for both fish and cats.

You can run the download.py script in that directory, and it will download the images
from the URLs and place them in the appropriate locations for training. The relabel‐
ing is simple; the script stores cat pictures in the directory train/cat and fish pictures
in train/fish. If you’d prefer to not use the script for downloading, just create these
directories and put the appropriate pictures in the right locations. We now have our
data, but we need to get it into a format that PyTorch can understand.

PyTorch and Data Loaders
Loading and converting data into formats that are ready for training can often end up
being one of the areas in data science that sucks up far too much of our time. PyTorch
has developed standard conventions of interacting with data that make it fairly con‐
sistent to work with, whether you’re working with images, text, or audio.

The two main conventions of interacting with data are datasets and data loaders. A
dataset is a Python class that allows us to get at the data we’re supplying to the neural
network. A data loader is what feeds data from the dataset into the network. (This can
encompass information such as, How many worker processes are feeding data into the
network? or How many images are we passing in at once?)

Let’s look at the dataset first. Every dataset, no matter whether it includes images,
audio, text, 3D landscapes, stock market information, or whatever, can interact with
PyTorch if it satisfies this abstract Python class:

class Dataset(object):
 def __getitem__(self, index):
 raise NotImplementedError

 def __len__(self):
 raise NotImplementedError

This is fairly straightforward: we have to implement a method that returns the size of
our dataset (len), and implement a method that can retrieve an item from our dataset
in a (label, tensor) pair. This is called by the data loader as it is pushing data into the
neural network for training. So we have to write a body for getitem that can take an
image and transform it into a tensor and return that and the label back so PyTorch
can operate on it. This is fine, but you can imagine that this scenario comes up a lot,
so maybe PyTorch can make things easier for us?

Building a Training Dataset
The torchvision package includes a class called ImageFolder that does pretty much
everything for us, providing our images are in a structure where each directory is a

18 | Chapter 2: Image Classification with PyTorch

https://oreil.ly/NbtEU

label (e.g., all cats are in a directory called cat). For our cats and fish example, here’s
what you need:

import torchvision
from torchvision import transforms

train_data_path = "./train/"

transforms = transforms.Compose([
 transforms.Resize(64),
 transforms.ToTensor(),
 transforms.Normalize(mean=[0.485, 0.456, 0.406],
 std=[0.229, 0.224, 0.225])
])

train_data = torchvision.datasets.ImageFolder
(root=train_data_path,transform=transforms)

A little bit more is going on here because torchvision also allows you to specify a list
of transforms that will be applied to an image before it gets fed into the neural net‐
work. The default transform is to take image data and turn it into a tensor (the trans
forms.ToTensor() method seen in the preceding code), but we’re also doing a couple
of other things that might not seem obvious.

Firstly, GPUs are built to be fast at performing calculations that are a standard size.
But we probably have an assortment of images at many resolutions. To increase our
processing performance, we scale every incoming image to the same resolution of 64
× 64 via the Resize(64) transform. We then convert the images to a tensor, and
finally, we normalize the tensor around a specific set of mean and standard deviation
points.

Normalizing is important because a lot of multiplication will be happening as the
input passes through the layers of the neural network; keeping the incoming values
between 0 and 1 prevents the values from getting too large during the training phase
(known as the exploding gradient problem). And that magic incarnation is just the
mean and standard deviation of the ImageNet dataset as a whole. You could calculate
it specifically for this fish and cat subset, but these values are decent enough. (If you
were working on a completely different dataset, you’d have to calculate that mean and
deviation, although many people just use these ImageNet constants and report
acceptable results.)

The composable transforms also allow us to easily do things like image rotation and
skewing for data augmentation, which we’ll come back to in Chapter 4.

Traditional Challenges | 19

We’re resizing the images to 64 × 64 in this example. I’ve made that
arbitrary choice in order to make the computation in our upcom‐
ing first network fast. Most existing architectures that you’ll see in
Chapter 3 use 224 × 224 or 299 × 299 for their image inputs. In
general, the larger the input size, the more data for the network to
learn from. The flip side is that you can often fit a smaller batch of
images within the GPU’s memory.

We’re not quite done with datasets yet. But why do we need more than just a training
dataset?

Building Validation and Test Datasets
Our training data is set up, but we need to repeat the same steps for our validation
data. What’s the difference here? One danger of deep learning (and all machine learn‐
ing, in fact) is the concept of overfitting: your model gets really good at recognizing
what it has been trained on, but cannot generalize to examples it hasn’t seen. So it sees
a picture of a cat, and unless all other pictures of cats resemble that picture very
closely, the model doesn’t think it’s a cat, despite it obviously being so. To prevent our
network from doing this, we download a validation set in download.py, which is a ser‐
ies of cat and fish pictures that do not occur in the training set. At the end of each
training cycle (also known as an epoch), we compare against this set to make sure our
network isn’t getting things wrong. But don’t worry—the code for this is incredibly
easy because it’s just the earlier code with a few variable names changed:

val_data_path = "./val/"
val_data = torchvision.datasets.ImageFolder(root=val_data_path,
 transform=transforms)

We just reused the transforms chain instead of having to define it once again.

In addition to a validation set, we should also create a test set. This is used to test the
model after all training has been completed:

test_data_path = "./test/"
test_data = torchvision.datasets.ImageFolder(root=test_data_path,
 transform=transforms)

Distinguishing the types of sets can be a little confusing, so I’ve compiled a table to
indicate which set is used for which part of model training; see Table 2-1.

Table 2-1. Dataset types
Training set Used in the training pass to update the model

Validation set Used to evaluate how the model is generalizing to the problem domain, rather than fitting to the training
data; not used to update the model directly

Test set A final dataset that provides a final evaluation of the model’s performance after training is complete

20 | Chapter 2: Image Classification with PyTorch

We can then build our data loaders with a few more lines of Python:

batch_size=64
train_data_loader = data.DataLoader(train_data, batch_size=batch_size)
val_data_loader = data.DataLoader(val_data, batch_size=batch_size)
test_data_loader = data.DataLoader(test_data, batch_size=batch_size)

The new thing to note from this code is batch_size. This tells us how many images
will go through the network before we train and update it. We could, in theory, set the
batch_size to the number of images in the test and training sets so the network sees
every image before it updates. In practice, we tend not to do this because smaller
batches (more commonly known as mini-batches in the literature) require less mem‐
ory than having to store all the information about every image in the dataset, and the
smaller batch size ends up making training faster as we’re updating our network
much more quickly.

By default, PyTorch’s data loaders are set to a batch_size of 1. You will almost cer‐
tainly want to change that. Although I’ve chosen 64 here, you might want to experi‐
ment to see how big of a minibatch you can use without exhausting your GPU’s
memory. You may also want to experiment with some of the additional parameters:
you can specify how datasets are sampled, whether the entire set is shuffled on each
run, and how many worker processes are used to pull data out of the dataset. This can
all be found in the PyTorch documentation.

That covers getting data into PyTorch, so let’s now introduce a simple neural network
to actually start classifying our images.

Finally, a Neural Network!
We’re going to start with the simplest deep learning network: an input layer, which
will work on the input tensors (our images); our output layer, which will be the size of
the number of our output classes (2); and a hidden layer between them. In our first
example, we’ll use fully connected layers. Figure 2-3 illustrates what that looks like
with an input layer of three nodes, a hidden layer of three nodes, and our two-node
output.

Figure 2-3. A simple neural network

Finally, a Neural Network! | 21

https://oreil.ly/XORs1

As you can see, in this fully connected example, every node in a layer affects every
node in the next layer, and each connection has a weight that determines the strength
of the signal from that node going into the next layer. (It is these weights that will be
updated when we train the network, normally from a random initialization.) As an
input passes through the network, we (or PyTorch) can simply do a matrix multipli‐
cation of the weights and biases of that layer onto the input. Before feeding it into the
next function, that result goes into an activation function, which is simply a way of
inserting nonlinearity into our system.

Activation Functions
Activation functions sound complicated, but the most common activation function
you’ll come across in the literature these days is ReLU, or rectified linear unit. Which
again sounds complicated! But all it turns out to be is a function that implements
max(0,x), so the result is 0 if the input is negative, or just the input (x) if x is positive.
Simple!

Another activation function you’ll likely come across is softmax, which is a little more
complicated mathematically. Basically it produces a set of values between 0 and 1 that
adds up to 1 (probabilities!) and weights the values so it exaggerates differences—that
is, it produces one result in a vector higher than everything else. You’ll often see it
being used at the end of a classification network to ensure that that network makes a
definite prediction about what class it thinks the input belongs to.

With all these building blocks in place, we can start to build our first neural network.

Creating a Network
Creating a network in PyTorch is a very Pythonic affair. We inherit from a class called
torch.nn.Network and fill out the __init__ and forward methods:

class SimpleNet(nn.Module):

def __init__(self):
 super(Net, self).__init__()
 self.fc1 = nn.Linear(12288, 84)
 self.fc2 = nn.Linear(84, 50)
 self.fc3 = nn.Linear(50,2)

def forward(self):
 x = x.view(-1, 12288)
 x = F.relu(self.fc1(x))
 x = F.relu(self.fc2(x))
 x = F.softmax(self.fc3(x))
 return x

simplenet = SimpleNet()

22 | Chapter 2: Image Classification with PyTorch

Again, this is not too complicated. We do any setup required in init(), in this case
calling our superclass constructor and the three fully connected layers (called Linear
in PyTorch, as opposed to Dense in Keras). The forward() method describes how
data flows through the network in both training and making predictions (inference).
First, we have to convert the 3D tensor (x and y plus three-channel color information
—red, green, blue) in an image, remember!—into a 1D tensor so that it can be fed
into the first Linear layer, and we do that using the view(). From there, you can see
that we apply the layers and the activation functions in order, finally returning the
softmax output to give us our prediction for that image.

The numbers in the hidden layers are somewhat arbitrary, with the exception of the
output of the final layer, which is 2, matching up with our two classes of cat or fish. In
general, you want the data in your layers to be compressed as it goes down the stack. If
a layer is going to, say, 50 inputs to 100 outputs, then the network might learn by sim‐
ply passing the 50 connections to 50 of the 100 outputs and consider its job done. By
reducing the size of the output with respect to the input, we force that part of the net‐
work to learn a representation of the original input with fewer resources, which hope‐
fully means that it extracts some features of the images that are important to the
problem we’re trying to solve; for example, learning to spot a fin or a tail.

We have a prediction, and we can compare that with the actual label of the original
image to see whether the prediction was correct. But we need some way of allowing
PyTorch to quantify not just whether a prediction is right or wrong, but just how
wrong or right it is. This is handled by a loss function.

Loss Functions
Loss functions are one of the key pieces of an effective deep learning solution. PyTorch
uses loss functions to determine how it will update the network to reach the desired
results.

Loss functions can be as complicated or as simple as you desire. PyTorch comes com‐
plete with a comprehensive collection of them that will cover most of the applications
you’re likely to encounter, plus of course you can write your own if you have a very
custom domain. In our case, we’re going to use a built-in loss function called CrossEn
tropyLoss, which is recommended for multiclass categorization tasks like we’re doing
here. Another loss function you’re likely to come across is MSELoss, which is a stan‐
dard mean squared loss that you might use when making a numerical prediction.

One thing to be aware of with CrossEntropyLoss is that it also incorporates soft
max() as part of its operation, so our forward() method becomes the following:

def forward(self):
 # Convert to 1D vector
 x = x.view(-1, 12288)
 x = F.relu(self.fc1(x))

Finally, a Neural Network! | 23

 x = F.relu(self.fc2(x))
 x = self.fc3(x)
 return x

Now let’s look at how a neural network’s layers are updated during the training loop.

Optimizing
Training a network involves passing data through the network, using the loss func‐
tion to determine the difference between the prediction and the actual label, and then
using that information to update the weights of the network in an attempt to make
the loss function return as small a loss as possible. To perform the updates on the
neural network, we use an optimizer.

If we just had one weight, we could plot a graph of the loss value against the value of
the weight, and it might look something like Figure 2-4.

Figure 2-4. A 2D plot of loss

If we start at a random position, marked in Figure 2-4 by the X, with our weight value
on the x-axis and the loss function on the y-axis, we need to get to the lowest point on
the curve to find our optimal solution. We can move by altering the value of the
weight, which will give us a new value for the loss function. To know how good a
move we’re making, we can check against the gradient of the curve. One common
way to visualize the optimizer is like rolling a marble, trying to find the lowest point
(or minima) in a series of valleys. This is perhaps clearer if we extend our view to two
parameters, creating a 3D graph as shown in Figure 2-5.

24 | Chapter 2: Image Classification with PyTorch

Figure 2-5. A 3D plot of loss

And in this case, at every point, we can check the gradients of all the potential moves
and choose the one that moves us most down the hill.

You need to be aware of a couple of issues, though. The first is the danger of getting
trapped in local minima, areas that look like they’re the shallowest parts of the loss
curve if we check our gradients, but actually shallower areas exist elsewhere. If we go
back to our 1D curve in Figure 2-4, we can see that if we end up in the minima on the
left by taking short hops down, we’d never have any reason to leave that position. And
if we took giant hops, we might find ourselves getting onto the path that leads to the
actual lowest point, but because we keep making jumps that are so big, we keep
bouncing all over the place.

The size of our hops is known as the learning rate, and is often the key parameter that
needs to be tweaked in order to get your network learning properly and efficiently.
You’ll see a way of determining a good learning rate in Chapter 4, but for now, you’ll
be experimenting with different values: try something like 0.001 to begin with. As just
mentioned, large learning rates will cause your network to bounce all over the place
in training, and it will not converge on a good set of weights.

As for the local minima problem, we make a slight alteration to our taking all the pos‐
sible gradients and indicate sample random gradients during a batch. Known as sto‐
chastic gradient descent (SGD), this is the traditional approach to optimizing neural
networks and other machine learning techniques. But other optimizers are available,
and indeed for deep learning, preferable. PyTorch ships with SGD and others such as
AdaGrad and RMSProp, as well as Adam, the optimizer we will be using for the
majority of the book.

One of the key improvements that Adam makes (as does RMSProp and AdaGrad) is
that it uses a learning rate per parameter, and adapts that learning rate depending on

Finally, a Neural Network! | 25

the rate of change of those parameters. It keeps an exponentially decaying list of gra‐
dients and the square of those gradients and uses those to scale the global learning
rate that Adam is working with. Adam has been empirically shown to outperform
most other optimizers in deep learning networks, but you can swap out Adam for
SGD or RMSProp or another optimizer to see if using a different technique yields
faster and better training for your particular application.

Creating an Adam-based optimizer is simple. We call optim.Adam() and pass in the
weights of the network that it will be updating (obtained via simplenet.parame
ters()) and our example learning rate of 0.001:

import torch.optim as optim
optimizer = optim.Adam(simplenet.parameters(), lr=0.001)

The optimizer is the last piece of the puzzle, so we can finally start training our
network.

Training
Here’s our complete training loop, which combines everything you’ve seen so far to
train the network. We’re going to write this as a function so parts such as the loss
function and optimizer can be passed in as parameters. It looks quite generic at this
point:

for epoch in range(epochs):
 for batch in train_loader:
 optimizer.zero_grad()
 input, target = batch
 output = model(input)
 loss = loss_fn(output, target)
 loss.backward()
 optimizer.step()

It’s fairly straightforward, but you should note a few things. We take a batch from our
training set on every iteration of the loop, which is handled by our data loader. We
then run those through our model and compute the loss from the expected output.
To compute the gradients, we call the backward() method on the model. The opti
mizer.step() method uses those gradients afterward to perform the adjustment of
the weights that we talked about in the previous section.

What is that zero_grad() call doing, though? It turns out that the calculated gradi‐
ents accumulate by default, meaning that if we didn’t zero the gradients at the end of
the batch’s iteration, the next batch would have to deal with this batch’s gradients as
well as its own, and the batch after that would have to cope with the previous two,
and so on. This isn’t helpful, as we want to look at only the gradients of the current
batch for our optimization in each iteration. We use zero_grad() to make sure they
are reset to zero after we’re done with our loop.

26 | Chapter 2: Image Classification with PyTorch

That’s the abstracted version of the training loop, but we have to address a few more
things before we can write our complete function.

Making It Work on the GPU
If you’ve run any of the code so far, you might have noticed that it’s not all that fast.
What about that shiny GPU that’s sitting attached to our instance in the cloud (or the
very expensive machine we’ve put together on our desktop)? PyTorch, by default,
does CPU-based calculations. To take advantage of the GPU, we need to move our
input tensors and the model itself to the GPU by explicitly using the to() method.
Here’s an example that copies the SimpleNet to the GPU:

if torch.cuda.is_available():
 device = torch.device("cuda")
else
 device = torch.device("cpu")

model.to(device)

Here, we copy the model to the GPU if PyTorch reports that one is available, or
otherwise keep the model on the CPU. By using this construction, we can determine
whether a GPU is available at the start of our code and use tensor|

model.to(device) throughout the rest of the program, being confident that it will go
to the correct place.

In earlier versions of PyTorch, you would use the cuda() method
to copy data to the GPU instead. If you come across that method
when looking at other people’s code, just be aware that it’s doing the
same thing as to()!

And that wraps up all the steps required for training. We’re almost done!

Putting It All Together
You’ve seen a lot of different pieces of code throughout this chapter, so let’s consoli‐
date it. We put it all together to create a generic training method that takes in a
model, as well as training and validation data, along with learning rate and batch size
options, and performs training on that model. We use this code throughout the rest
of the book:

def train(model, optimizer, loss_fn, train_loader, val_loader,
epochs=20, device="cpu"):
 for epoch in range(epochs):
 training_loss = 0.0
 valid_loss = 0.0
 model.train()

Putting It All Together | 27

 for batch in train_loader:
 optimizer.zero_grad()
 inputs, target = batch
 inputs = inputs.to(device)
 target = targets.to(device)
 output = model(inputs)
 loss = loss_fn(output, target)
 loss.backward()
 optimizer.step()
 training_loss += loss.data.item()
 training_loss /= len(train_iterator)

 model.eval()
 num_correct = 0
 num_examples = 0
 for batch in val_loader:
 inputs, targets = batch
 inputs = inputs.to(device)
 output = model(inputs)
 targets = targets.to(device)
 loss = loss_fn(output,targets)
 valid_loss += loss.data.item()
 correct = torch.eq(torch.max(F.softmax(output), dim=1)[1],
 target).view(-1)
 num_correct += torch.sum(correct).item()
 num_examples += correct.shape[0]
 valid_loss /= len(valid_iterator)

 print('Epoch: {}, Training Loss: {:.2f},
 Validation Loss: {:.2f},
 accuracy = {:.2f}'.format(epoch, training_loss,
 valid_loss, num_correct / num_examples))

That’s our training function, and we can kick off training by calling it with the
required parameters:

train(simplenet, optimizer, torch.nn.CrossEntropyLoss(),
 train_data_loader, test_data_loader,device)

The network will train for 20 epochs (you can adjust this by passing in a value for
epoch to train()), and you should get a printout of the model’s accuracy on the vali‐
dation set at the end of each epoch.

You have trained your first neural network—congratulations! You can now use it to
make predictions, so let’s look at how to do that.

Making Predictions
Way back at the start of the chapter, I said we would make a neural network that
could classify whether an image is a cat or a fish. We’ve now trained one to do just
that, but how do we use it to generate a prediction for a single image? Here’s a quick

28 | Chapter 2: Image Classification with PyTorch

bit of Python code that will load an image from the filesystem and print out whether
our network says cat or fish:

from PIL import Image

labels = ['cat','fish']

img = Image.open(FILENAME)
img = transforms(img)
img = img.unsqueeze(0)

prediction = simplenet(img)
prediction = prediction.argmax()
print(labels[prediction])

Most of this code is straightforward; we reuse the transform pipeline we made earlier
to convert the image into the correct form for our neural network. However, because
our network uses batches, it actually expects a 4D tensor, with the first dimension
denoting the different images within a batch. We don’t have a batch, but we can create
a batch of length 1 by using unsqueeze(0), which adds a new dimension at the front
of our tensor.

Getting predictions is as simple as passing our batch into the model. We then have to
find out the class with the higher probability. In this case, we could simply convert the
tensor to an array and compare the two elements, but there are often many more than
that. Helpfully, PyTorch provides the argmax() function, which returns the index of
the highest value of the tensor. We then use that to index into our labels array and
print out our prediction. As an exercise, use the preceding code as a basis to work out
predictions on the test set that we created at the start of the chapter. You don’t need to
use unsqueeze() because you get batches from the test_data_loader.

That’s about all you need to know about making predictions for now; we return to
this in Chapter 8 when we harden things for production usage.

In addition to making predictions, we probably would like to be able to reload the
model at any point in the future with our trained parameters, so let’s take a look at
how that’s done with PyTorch.

Model Saving
If you’re happy with the performance of a model or need to stop for any reason, you
can save the current state of a model in Python’s pickle format by using the
torch.save() method. Conversely, you can load a previously saved iteration of a
model by using the torch.load() method.

Saving our current parameters and model structure would therefore work like this:

torch.save(simplenet, "/tmp/simplenet")

Putting It All Together | 29

And we can reload as follows:

simplenet = torch.load("/tmp/simplenet")

This stores both the parameters and the structure of the model to a file. This might be
a problem if you change the structure of the model at a later point. For this reason, it’s
more common to save a model’s state_dict instead. This is a standard Python dict
that contains the maps of each layer’s parameters in the model. Saving the
state_dict looks like this:

torch.save(model.state_dict(), PATH)

To restore, create an instance of the model first and then use load_state_dict. For
SimpleNet:

simplenet = SimpleNet()
simplenet_state_dict = torch.load("/tmp/simplenet")
simplenet.load_state_dict(simplenet_state_dict)

The benefit here is that if you extend the model in some fashion, you can supply a
strict=False parameter to load_state_dict that assigns parameters to layers in the
model that do exist in the state_dict, but does not fail if the loaded state_dict has
layers missing or added from the model’s current structure. Because it’s just a normal
Python dict, you can change the key names to fit your model, which can be handy if
you are pulling in parameters from a completely different model altogether.

Models can be saved to a disk during a training run and reloaded at another point so
that training can continue where you left off. That is quite useful when using some‐
thing like Google Colab, which lets you have continuous access to a GPU for only
around 12 hours. By keeping track of time, you can save the model before the cutoff
and continue training in a new 12-hour session.

Conclusion
You’ve taken a whirlwind tour through the basics of neural networks and learned
how, using PyTorch, you can train them with a dataset, make predictions on other
images, and save/restore models to and from disk.

Before you read the next chapter, experiment with the SimpleNet architecture we cre‐
ated here. Adjust the number of parameters in the Linear layers, and maybe add
another layer or two. Have a look at the various activation functions available in
PyTorch and swap out ReLU for something else. See what happens to training if you
adjust the learning rate or switch out the optimizer from Adam to another option
(perhaps try vanilla SGD). Maybe alter the batch size and the initial size of the image
as it gets turned into a 1D tensor at the start of the forward pass. A lot of deep learn‐
ing work is still in the phase of artisanal construction; learning rates are tinkered with

30 | Chapter 2: Image Classification with PyTorch

by hand until a network is trained appropriately, so it’s good to get a handle on how
all the moving parts interact.

You might be a little disappointed with the accuracy of the SimpleNet architecture,
but don’t worry! Chapter 3 provides some definite improvements as we introduce the
convolutional neural network in place of the very simple network we’ve been using so
far.

Further Reading
• PyTorch documentation
• “Adam: A Method for Stochastic Optimization” by Diederik P. Kingma and

Jimmy Ba (2014)
• “An Overview of Gradient Descent Optimization Algorithms” by Sebstian Ruder

(2016)

Further Reading | 31

https://oreil.ly/x6pO7
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1609.04747

CHAPTER 3

Convolutional Neural Networks

After experimenting with the fully connected neural networks in Chapter 2, you
probably noticed a few things. If you attempted to add more layers or vastly increase
the number of parameters, you almost certainly ran out of memory on your GPU. In
addition, it took a while to train to anything resembling somewhat decent accuracy,
and even that wasn’t much to shout about, especially considering the hype surround‐
ing deep learning. What’s going on?

It’s true that a fully connected or (feed-forward) network can function as a universal
approximator, but the theory doesn’t say how long it’ll take you to train it to become
that approximation to the function you’re really after. But we can do better, especially
with images. In this chapter, you’ll learn about convolutional neural networks (CNNs)
and how they form the backbone of the most accurate image classifiers around today
(we take a look at a couple of them in some detail along the way). We build up a new
convolutional-based architecture for our fish versus cat application and show that it is
quicker to train and more accurate than what we were doing in the previous chapter.
Let’s get started!

Our First Convolutional Model
This time around, I’m going to share the final model architecture first, and then dis‐
cuss all the new pieces. And as I mentioned in Chapter 2, the training method we cre‐
ated is independent of the model, so you can go ahead and test this model out first
and then come back for the explanation!

class CNNNet(nn.Module):

 def __init__(self, num_classes=2):
 super(CNNNet, self).__init__()
 self.features = nn.Sequential(
 nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),

33

 nn.ReLU(),
 nn.MaxPool2d(kernel_size=3, stride=2),
 nn.Conv2d(64, 192, kernel_size=5, padding=2),
 nn.ReLU(),
 nn.MaxPool2d(kernel_size=3, stride=2),
 nn.Conv2d(192, 384, kernel_size=3, padding=1),
 nn.ReLU(),
 nn.Conv2d(384, 256, kernel_size=3, padding=1),
 nn.ReLU(),
 nn.Conv2d(256, 256, kernel_size=3, padding=1),
 nn.ReLU(),
 nn.MaxPool2d(kernel_size=3, stride=2),
)
 self.avgpool = nn.AdaptiveAvgPool2d((6, 6))
 self.classifier = nn.Sequential(
 nn.Dropout(),
 nn.Linear(256 * 6 * 6, 4096),
 nn.ReLU(),
 nn.Dropout(),
 nn.Linear(4096, 4096),
 nn.ReLU(),
 nn.Linear(4096, num_classes)
)

 def forward(self, x):
 x = self.features(x)
 x = self.avgpool(x)
 x = torch.flatten(x, 1)
 x = self.classifier(x)
 return x

The first thing to notice is the use of nn.Sequential(). This allows us to create a
chain of layers. When we use one of these chains in forward(), the input goes
through each element of the array of layers in succession. You can use this to break
your model into more logical arrangements. In this network, we have two chains: the
features block and the classifier. Let’s take a look at the new layers we’re intro‐
ducing, starting with Conv2d.

Convolutions
The Conv2d layer is a 2D convolution. If we have a grayscale image, it consists of an
array, x pixels wide and y pixels high, with each entry having a value that indicates
whether it’s black or white or somewhere in between (we assume an 8-bit image, so
each value can vary from 0 to 255). For this example we look at a small, square image
that’s 4 pixels high and wide:

34 | Chapter 3: Convolutional Neural Networks

10 11 9 3
2 123 4 0

45 237 23 99
20 67 22 255

Next we introduce something called a filter, or convolutional kernel. This is another
matrix, most likely smaller, which we will drag across our image. Here’s our 2 × 2
filter:

1 0
1 0

To produce our output, we take the smaller filter and pass it over the original input,
like a magnifying glass over a piece of paper. Starting from the top left, our first calcu‐
lation is as follows:

10 11
2 123

1 0
1 0

And all we do is multiply each element in the matrix by its corresponding member in
the other matrix and sum the result: (10 × 1) + (11 × 0) + (2 × 1) + (123 × 0) = 12.
Having done that, we move the filter across and begin again. But how much should
we move the filter? In this case, we move the filter across by 2, meaning that our sec‐
ond calculation is:

9 3
4 0

1 0
1 0

This gives us an output of 13. We now move our filter down and back to the left and
repeat the process, giving us this final result (or feature map):

12 13
65 45

In Figure 3-1, you can see how this works graphically, with a 3 × 3 kernel being drag‐
ged across a 4 × 4 tensor and producing a 2 × 2 output (though each segment is based
on nine elements instead of the four in our first example).

Our First Convolutional Model | 35

1 Kernel and filter tend to be used interchangeably in the literature. If you have experience in graphics process‐
ing, kernel is probably more familiar to you, but I prefer filter.

Figure 3-1. How a 3 × 3 kernel operates across a 4 × 4 input

A convolutional layer will have many of these filters, the values of which are filled in
by the training of the network, and all the filters in the layer share the same bias val‐
ues. Let’s go back to how we’re invoking the Conv2d layer and see some of the other
options that we can set:

nn.Conv2d(in_channels,out_channels, kernel_size, stride, padding)

The in_channels is the number of input channels we’ll be receiving in the layer. At
the beginning of the network, we’re taking in the RGB image as input, so the number
of input channels is three. out_channels is, unsurprisingly, the number of output
channels, which corresponds to the number of filters in our conv layer. Next is
kernel_size, which describes the height and width of our filter.1 This can be a single
scalar specifying a square (e.g., in the first conv layer, we’re setting up an 11 × 11 fil‐
ter), or you can use a tuple (such as (3,5) for a 3 × 5 filter).

The next two parameters seem harmless enough, but they can have big effects on the
downstream layers of your network, and even what that particular layer ends up look‐
ing at. stride indicates how many steps across the input we move when we adjust the
filter to a new position. In our example, we end up with a stride of 2, which has the

36 | Chapter 3: Convolutional Neural Networks

effect of making a feature map that is half the size of the input. But we could have also
moved with a stride of 1, which would give us a feature map output of 4 × 4, the same
size of the input. We can also pass in a tuple (a,b) that would allow us to move a
across and b down on each step. Now, you might be wondering, what happens when
it gets to the end? Let’s take a look. If we drag our filter along with a stride of 1, we
eventually get to this point:

3 ?
0 ?

We don’t have enough elements in our input to do a full convolution. So what hap‐
pens? This is where the padding parameter comes in. If we give a padding value of 1,
our input looks a bit like this:

0 0 0 0 0 0
0 10 11 9 3 0
0 2 123 4 0 0
0 45 237 23 99 0
0 20 67 22 255 0
0 0 0 0 0 0

Now when we get to the edge, our values covered by the filter are as follows:

3 0
0 0

If you don’t set padding, any edge cases that PyTorch encounters in the last columns
of the input are simply thrown away. It’s up to you to set padding appropriately. Just
as with stride and kernel_size, you can also pass in a tuple for height × weight
padding instead of a single number that pads the same in both directions.

That’s what the Conv2d layers are doing in our model. But what about those Max
Pool2d layers?

Pooling
In conjunction with the convolution layers, you will often see pooling layers. These
layers reduce the resolution of the network from the previous input layer, which gives
us fewer parameters in lower layers. This compression results in faster computation
for a start, and it helps prevent overfitting in the network.

Our First Convolutional Model | 37

In our model, we’re using MaxPool2d with a kernel size of 3 and a stride of 2. Let’s
have a look at how that works with an example. Here’s a 5 × 3 input:

1 2 1 4 1
5 6 1 2 5
5 0 0 9 6

Using the kernel size of 3 × 3 and a stride of 2, we get two 3 × 3 tensors from the
pooling:

1 2 1
5 6 1
5 0 0

1 4 1
1 2 5
0 9 6

In MaxPool we take the maximum value from each of these tensors, giving us an out‐
put tensor of [6,9]. Just as in the convolutional layers, there’s a padding option to Max
Pool that creates a border of zero values around the tensor in case the stride goes
outside the tensor window.

As you can imagine, you can pool with other functions aside from taking the maxi‐
mum value from a kernel. A popular alternative is to take the average of the tensor
values, which allows all of the tensor data to contribute to the pool instead of just one
value in the max case (and if you think about an image, you can imagine that you
might want to consider the nearest neighbors of a pixel). Also, PyTorch provides Adap
tiveMaxPool and AdaptiveAvgPool layers, which work independently of the incom‐
ing input tensor’s dimensions (we have an AdaptiveAvgPool in our model, for
example). I recommend using these in model architectures that you construct over
the standard MaxPool or AvgPool layers, because they allow you to create architec‐
tures that can work with different input dimensions; this is handy when working with
disparate datasets.

We have one more new component to talk about, one that is incredibly simple yet
important for training.

Dropout
One recurring issue with neural networks is their tendency to overfit to training data,
and a large amount of ongoing work is done in the deep learning world to identify

38 | Chapter 3: Convolutional Neural Networks

approaches that allow networks to learn and generalize to nontraining data without
simply learning how to just respond to the training inputs. The Dropout layer is a
devilishly simple way of doing this that has the benefit of being easy to understand
and effective: what if we just don’t train a random bunch of nodes within the network
during a training cycle? Because they won’t be updated, they won’t have the chance to
overfit to the input data, and because it’s random, each training cycle will ignore a
different selection of the input, which should help generalization even further.

By default, the Dropout layers in our example CNN network are initialized with 0.5,
meaning that 50% of the input tensor is randomly zeroed out. If you want to change
that to 20%, add the p parameter to the initialization call: Dropout(p=0.2).

Dropout should take place only during training. If it was happening
during inference time, you’d lose a chunk of your network’s reason‐
ing power, which is not what we want! Thankfully, PyTorch’s imple‐
mentation of Dropout works out which mode you’re running in
and passes all the data through the Dropout layer at inference time.

Having looked at our little CNN model and examined the layer types in depth, let’s
take a look at other models that have been made in the past ten years.

History of CNN Architectures
Although CNN models have been around for decades (LeNet-5 was used for digit
recognition on check in the late 1990s, for example), it wasn’t until GPUs became
widely available that deep CNN networks became practical. Even then, it has been
only seven years since deep learning networks started to overwhelm all other existing
approaches in image classification. In this section, we take a little journey back
through the last few years to talk about some milestones in CNN-based learning and
investigate some new techniques along the way.

AlexNet
AlexNet was, in many ways, the architecture that changed everything. It was released
in 2012 and destroyed all other entries in that year’s ImageNet competition with a
top-5 error rate of 15.3% (the second place entry had a top-5 error of 26.2%, just to
give you an idea of how much better it was than other state-of-the-art methods).
AlexNet was one of the first architectures to introduce the concepts of MaxPool and
Dropout, and even popularize the then less-well-known ReLU activation function. It
was one of the first architectures to demonstrate that many layers were possible and
efficient to train on a GPU. Although it’s not state of the art anymore, it remains an
important milestone in deep learning history.

History of CNN Architectures | 39

What does the AlexNet architecture look like? Aha, well, it’s time to let you in on a
little secret. The network we’ve been using in this chapter so far? It’s AlexNet. Sur‐
prise! That’s why we used the standard MaxPool2d instead of AdaptiveMaxPool2d, to
match the original AlexNet definition.

Inception/GoogLeNet
Let’s skip ahead to the winner of the 2014 ImageNet competition. The GoogLeNet
architecture introduced the Inception module that addressed some of the deficiencies
of AlexNet. In that network, the kernels of the convolutional layers are fixed at a cer‐
tain resolution. We might expect that an image will have details that are important at
both the macro- and microscale. It may be easier to determine whether an object is a
car with a large kernel, but to determine whether it’s an SUV or a hatchback may
require a smaller kernel. And to determine the model, we might need an even smaller
kernel to make out details such as logos and insignias.

The Inception network instead runs a series of convolutions of different sizes all on
the same input, and concatenates all of the filters together to pass on to the next layer.
Before it does any of those, though, it does a 1 × 1 convolution as a bottleneck that
compresses the input tensor, meaning that the 3 × 3 and 5 × 5 kernels operate on a
fewer number of filters than they would if the 1 × 1 convolution wasn’t present. You
can see an Inception module illustrated in Figure 3-2.

Figure 3-2. An Inception module

40 | Chapter 3: Convolutional Neural Networks

The original GoogLeNet architecture uses nine of these modules stacked on top of
each other, forming a deep network. Despite the depth, it uses fewer parameters over‐
all than AlexNet while delivering a human-like performance of an 6.67% top-5 error
rate.

VGG
The second-place entry in 2014’s ImageNet was from the University of Oxford—the
Visual Geometry Group (VGG) network. In contrast to GoogLeNet, VGG is a simpler
stack of convolutional layers. Coming in various configurations of longer stacks of
convolutional filters combined with two large hidden linear layers before the final
classification layer, it shows off the power of simple deep architectures (scoring an
8.8% top-5 error in its VGG-16 configuration). Figure 3-3 shows the layers of the
VGG-16 from end to end.

The downside of the VGG approach is that the final fully connected layers make the
network balloon to a large size, weighing in at 138 million parameters in comparison
with GoogLeNet’s 7 million. Having said that, the VGG network is still quite popular
in the deep learning world despite its huge size, as it’s easy to reason about because of
its simpler construction and the early availability of trained weights. You’ll often see it
used in style transfer applications (e.g., turning a photo into a Van Gogh painting) as
its combination of convolutional filters do appear to capture that sort of information
in a way that’s easier to observe than the more complex networks.

History of CNN Architectures | 41

Figure 3-3. VGG-16

42 | Chapter 3: Convolutional Neural Networks

ResNet
A year later, Microsoft’s ResNet architecture won the ImageNet 2015 competition
with a top-5 score of 4.49% in its ResNet-152 variant and 3.57% in an ensemble
model (essentially beyond human ability at this point). The innovation that ResNet
brought was an improvement on the Inception-style stacking bundle of layers
approach, wherein each bundle performed the usual CNN operations but also added
the incoming input to the output of the block, as shown in Figure 3-4.

The advantage of this set up is that each block passes through the original input to the
next layer, allowing the “signal” of the training data to traverse through deeper net‐
works than possible in either VGG or Inception. (This loss of weight changes in deep
networks is known as a vanishing gradient because of the gradient changes in back‐
propagation tending to zero during the training process.)

Figure 3-4. A ResNet block

Other Architectures Are Available!
Since 2015 or so, plenty of other architectures have incrementally improved the accu‐
racy on ImageNet, such as DenseNet (an extension of the ResNet idea that allows for
the construction of 1,000-layer monster architectures), but also a lot of work has gone
into creating architectures such as SqueezeNet and MobileNet, which offer reasonable
accuracy but are tiny compared to architectures such as VGG, ResNet, or Inception.

History of CNN Architectures | 43

Another big area of research is getting neural networks to start designing neural net‐
works themselves. The most successful attempt so far is, of course, from Google,
whose AutoML system generated an architecture called NASNet that has a top-5 error
rate of 3.8% on ImageNet, which is state of the art as I type this at the start of 2019
(along with another autogenerated architecture from Google called PNAS). In fact,
the organizers of the ImageNet competition have decided to call a halt to further
competitions in this space because the architectures have already gone beyond
human levels of ability.

That brings us to the state of the art as of the time this book goes to press, so let’s take
a look at how we can use these models instead of defining our own.

Using Pretrained Models in PyTorch
Obviously, having to define a model each time you want to use one would be a chore,
especially once you move away from AlexNet, so PyTorch provides many of the most
popular models by default in the torchvision library. For AlexNet, all you need to do
is this:

import torchvision.models as models
alexnet = models.alexnet(num_classes=2)

Definitions for VGG, ResNet, Inception, DenseNet, and SqueezeNet variants are also
available. That gives you the model definition, but you can also go a step further and
call models.alexnet(pretrained=True) to download a pretrained set of weights for
AlexNet, allowing you to use it immediately for classification with no extra training.
(But as you’ll see in the next chapter, you will likely want to do some additional train‐
ing to improve the accuracy on your particular dataset.)

Having said that, there is something to be said for building the models yourself at
least once to get a feel for how they fit together. It’s a good way to get some practice
building model architectures within PyTorch, and of course you can compare with
the provided models to make sure that what you come up with matches the actual
definition. But how do you find out what that structure is?

Examining a Model’s Structure
If you’re curious about how one of these models is constructed, there’s an easy way to
get PyTorch to help you out. As an example, here’s a look at the entire ResNet-18
architecture, which we get by simply calling the following:

print(model)

ResNet(
 (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3),
 bias=False)
 (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True,

44 | Chapter 3: Convolutional Neural Networks

track_running_stats=True)
 (relu): ReLU(inplace)
 (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1,
 dilation=1, ceil_mode=False)
 (layer1): Sequential(
 (0): BasicBlock(
 (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1),
 padding=(1, 1), bias=False)
 (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True,
 track_running_stats=True)
 (relu): ReLU(inplace)
 (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1),
 padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True,
 track_running_stats=True)
)
 (1): BasicBlock(
 (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1),
 padding=(1, 1), bias=False)
 (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True,
 track_running_stats=True)
 (relu): ReLU(inplace)
 (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1),
 padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True,
 track_running_stats=True)
)
)
 (layer2): Sequential(
 (0): BasicBlock(
 (conv1): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2),
 padding=(1, 1), bias=False)
 (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True,
 track_running_stats=True)
 (relu): ReLU(inplace)
 (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1),
 padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True,
 track_running_stats=True)
 (downsample): Sequential(
 (0): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2),
 bias=False)
 (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True,
 track_running_stats=True)
)
)
 (1): BasicBlock(
 (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1),
 padding=(1, 1), bias=False)
 (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True,
 track_running_stats=True)
 (relu): ReLU(inplace)

Using Pretrained Models in PyTorch | 45

 (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1),
 padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True,
 track_running_stats=True)
)
)
 (layer3): Sequential(
 (0): BasicBlock(
 (conv1): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2),
 padding=(1, 1), bias=False)
 (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,
 track_running_stats=True)
 (relu): ReLU(inplace)
 (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1),
 padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,
 track_running_stats=True)
 (downsample): Sequential(
 (0): Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2),
 bias=False)
 (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,
 track_running_stats=True)
)
)
 (1): BasicBlock(
 (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1),
 padding=(1, 1), bias=False)
 (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,
 track_running_stats=True)
 (relu): ReLU(inplace)
 (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1),
 padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,
 track_running_stats=True)
)
)
 (layer4): Sequential(
 (0): BasicBlock(
 (conv1): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2),
 padding=(1, 1), bias=False)
 (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True,
 track_running_stats=True)
 (relu): ReLU(inplace)
 (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1),
 padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True,
 track_running_stats=True)
 (downsample): Sequential(
 (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2),
 bias=False)
 (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True,
 track_running_stats=True)

46 | Chapter 3: Convolutional Neural Networks

)
)
 (1): BasicBlock(
 (conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1),
 padding=(1, 1), bias=False)
 (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True,
 track_running_stats=True)
 (relu): ReLU(inplace)
 (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1),
 padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True,
 track_running_stats=True)
)
)
 (avgpool): AdaptiveAvgPool2d(output_size=(1, 1))
 (fc): Linear(in_features=512, out_features=1000, bias=True)
)

There’s almost nothing here you haven’t already seen in this chapter, with the excep‐
tion of BatchNorm2d. Let’s have a look at what that does in one of those layers.

BatchNorm
BatchNorm, short for batch normalization, is a simple layer that has one task in life:
using two learned parameters (meaning that it will be trained along with the rest of
the network) to try to ensure that each minibatch that goes through the network has a
mean centered around zero with a variance of 1. You might ask why we need to do
this when we’ve already normalized our input by using the transform chain in Chap‐
ter 2. For smaller networks, BatchNorm is indeed less useful, but as they get larger, the
effect of any layer on another, say 20 layers down, can be vast because of repeated
multiplication, and you may end up with either vanishing or exploding gradients,
both of which are fatal to the training process. The BatchNorm layers make sure that
even if you use a model such as ResNet-152, the multiplications inside your network
don’t get out of hand.

You might be wondering: if we have BatchNorm in our network, why are we normaliz‐
ing the input at all in the training loop’s transformation chain? After all, shouldn’t
BatchNorm do the work for us? And the answer here is yes, you could do that! But it’ll
take longer for the network to learn how to get the inputs under control, as they’ll
have to discover the initial transform themselves, which will make training longer.

I recommend that you instantiate all of the architectures we’ve talked about so far and
use print(model) to see which layers they use and in what order operations happen.
After that, there’s another key question: which of these architectures should I use?

Using Pretrained Models in PyTorch | 47

Which Model Should You Use?
The unhelpful answer is, whichever one works best for you, naturally! But let’s dig in
a little. First, although I suggest that you try the NASNet and PNAS architectures at
the moment, I wouldn’t wholeheartedly recommend them, despite their impressive
results on ImageNet. They can be surprisingly memory-hungry in operation, and the
transfer learning technique, which you learn about in Chapter 4, is not quite as effec‐
tive compared to the human-built architectures including ResNet.

I suggest that you have a look around the image-based competitions on Kaggle, a
website that runs hundreds of data science competitions, and see what the winning
entries are using. More than likely you’ll end up seeing a bunch of ResNet-based
ensembles. Personally, I like and use the ResNet architectures over and above any of
the others listed here, first because they offer good accuracy, and second because it’s
easy to start out experimenting with a ResNet-34 model for fast iteration and then
move to larger ResNets (and more realistically, an ensemble of different ResNet archi‐
tectures, just as Microsoft used in their ImageNet win in 2015) once I feel I have
something promising.

Before we end the chapter, I have some breaking news concerning downloading pre‐
trained models.

One-Stop Shopping for Models: PyTorch Hub
A recent announcement in the PyTorch world provides an additional route to get
models: PyTorch Hub. This is supposed to become a central location for obtaining any
published model in the future, whether it’s for operating on images, text, audio, video,
or any other type of data. To obtain a model in this fashion, you use the torch.hub
module:

model = torch.hub.load('pytorch/vision', 'resnet50', pretrained=True)

The first parameter points to a GitHub owner and repository (with an optional tag/
branch identifier in the string as well); the second is the model requested (in this case,
resnet50); and finally, the third indicates whether to download pretrained weights.
You can also use torch.hub.list('pytorch/vision') to discover all the models
inside that repository that are available to download.

PyTorch Hub is brand new as of mid-2019, so there aren’t a huge number of models
available as I write this, but I expect it to become a popular way to distribute and
download models by the end of the year. All the models in this chapter can be loaded
through the pytorch/vision repo in PytorchHub, so feel free to use this loading pro‐
cess instead of torchvision.models.

48 | Chapter 3: Convolutional Neural Networks

https://www.kaggle.com

Conclusion
In this chapter, you’ve taken a quick walk-through of how CNN-based neural net‐
works work, including features such as Dropout, MaxPool, and BatchNorm. You’ve also
looked at the most popular architectures used in industry today. Before moving on to
the next chapter, play with the architectures we’ve been talking about and see how
they compare. (Don’t forget, you don’t need to train them! Just download the weights
and test the model.)

We’re going to close out our look at computer vision by using these pretrained mod‐
els as a starting point for a custom solution for our cats versus fish problem that uses
transfer learning.

Further Reading
• AlexNet: “ImageNet Classification with Deep Convolutional Neural Networks”

by Alex Krizhevsky et al. (2012)
• VGG: “Very Deep Convolutional Networks for Large-Scale Image Recognition”

by Karen Simonyan and Andrew Zisserman (2014)
• Inception: “Going Deeper with Convolutions” by Christian Szegedy et al. (2014)
• ResNet: “Deep Residual Learning for Image Recognition” by Kaiming He et al.

(2015)
• NASNet: “Learning Transferable Architectures for Scalable Image Recognition”

by Barret Zoph et al. (2017)

Conclusion | 49

https://oreil.ly/CsoFv
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1707.07012

CHAPTER 4

Transfer Learning and Other Tricks

Having looked over the architectures in the previous chapter, you might wonder
whether you could download an already trained model and train it even further. And
the answer is yes! It’s an incredibly powerful technique in deep learning circles called
transfer learning, whereby a network trained for one task (e.g., ImageNet) is adapted
to another (fish versus cats).

Why would you do this? It turns out that an architecture trained on ImageNet already
knows an awful lot about images, and in particular, quite a bit about whether some‐
thing is a cat or a fish (or a dog or a whale). Because you’re no longer starting from an
essentially blank neural network, with transfer learning you’re likely to spend much
less time in training, and you can get away with a vastly smaller training dataset. Tra‐
ditional deep learning approaches take huge amounts of data to generate good results.
With transfer learning, you can build human-level classifiers with a few hundred
images.

Transfer Learning with ResNet
Now, the obvious thing to do is to create a ResNet model as we did in Chapter 3 and
just slot it into our existing training loop. And you can do that! There’s nothing magi‐
cal in the ResNet model; it’s built up from the same building blocks that you’ve
already seen. However, it’s a big model, and although you will see some improvement
over a baseline ResNet with your data, you will need a lot of data to make sure that
the training signal gets to all parts of the architecture and trains them significantly
toward your new classification task. We’re trying to avoid using a lot of data in this
approach.

Here’s the thing, though: we’re not dealing with an architecture that has been initial‐
ized with random parameters, as we have done in the past. Our pretrained ResNet

51

model already has a bunch of information encoded into it for image recognition and
classification needs, so why bother attempting to retrain it? Instead, we fine-tune the
network. We alter the architecture slightly to include a new network block at the end,
replacing the standard 1,000-category linear layers that normally perform ImageNet
classification. We then freeze all the existing ResNet layers, and when we train, we
update only the parameters in our new layers, but still take the activations from our
frozen layers. This allows us to quickly train our new layers while preserving the
information that the pretrained layers already contain.

First, let’s create a pretrained ResNet-50 model:

from torchvision import models
transfer_model = models.ResNet50(pretrained=True)

Next, we need to freeze the layers. The way we do this is simple: we stop them from
accumulating gradients by using requires_grad(). We need to do this for every
parameter in the network, but helpfully, PyTorch provides a parameters() method
that makes this rather easy:

for name, param in transfer_model.named_parameters():
 param.requires_grad = False

You might not want to freeze the BatchNorm layers in a model, as
they will be trained to approximate the mean and standard devia‐
tion of the dataset that the model was originally trained on, not the
dataset that you want to fine-tune on. Some of the signal from your
data may end up being lost as BatchNorm corrects your input. You
can look at the model structure and freeze only layers that aren’t
BatchNorm like this:

for name, param in transfer_model.named_parameters():
 if("bn" not in name):
 param.requires_grad = False

Then we need to replace the final classification block with a new one that we will
train for detecting cats or fish. In this example, we replace it with a couple of Linear
layers, a ReLU, and Dropout, but you could have extra CNN layers here too. Happily,
the definition of PyTorch’s implementation of ResNet stores the final classifier block
as an instance variable, fc, so all we need to do is replace that with our new structure
(other models supplied with PyTorch use either fc or classifier, so you’ll probably
want to check the definition in the source if you’re trying this with a different model
type):

transfer_model.fc = nn.Sequential(nn.Linear(transfer_model.fc.in_features,500),
nn.ReLU(),
nn.Dropout(), nn.Linear(500,2))

52 | Chapter 4: Transfer Learning and Other Tricks

1 See “Cyclical Learning Rates for Training Neural Networks” by Leslie Smith (2015).

In the preceding code, we take advantage of the in_features variable that allows us
to grab the number of activations coming into a layer (2,048 in this case). You can
also use out_features to discover the activations coming out. These are handy func‐
tions for when you’re snapping together networks like building bricks; if the incom‐
ing features on a layer don’t match the outgoing features of the previous layer, you’ll
get an error at runtime.

Finally, we go back to our training loop and then train the model as per usual. You
should see some large jumps in accuracy even within a few epochs.

Transfer learning is a key technique for improving the accuracy of your deep learning
application, but we can employ a bunch of other tricks in order to boost the perfor‐
mance of our model. Let’s take a look at some of them.

Finding That Learning Rate
You might remember from Chapter 2 that I introduced the concept of a learning rate
for training neural networks, mentioned that it was one of the most important hyper‐
parameters you can alter, and then waved away what you should use for it, suggesting
a rather small number and for you to experiment with different values. Well…the bad
news is, that really is how a lot of people discover the optimum learning rate for their
architectures, usually with a technique called grid search, exhaustively searching their
way through a subset of learning rate values, comparing the results against a valida‐
tion dataset. This is incredibly time-consuming, and although people do it, many oth‐
ers err on the side of the practioner’s lore. For example, a learning rate value that has
empirically been observed to work with the Adam optimizer is 3e-4. This is known as
Karpathy’s constant, after Andrej Karpathy (currently director of AI at Tesla) tweeted
about it in 2016. Unfortunately, fewer people read his next tweet: “I just wanted to
make sure that people understand that this is a joke.” The funny thing is that 3e-4
tends to be a value that can often provide good results, so it’s a joke with a hint of
reality about it.

On the one hand, you have slow and cumbersome searching, and on the other,
obscure and arcane knowledge gained from working on countless architectures until
you get a feel for what a good learning rate would be—artisanal neural networks,
even. Is there a better way than these two extremes?

Thankfully, the answer is yes, although you’ll be surprised by how many people don’t
use this better method. A somewhat obscure paper by Leslie Smith, a research scien‐
tist at the US Naval Research Laboratory, contained an approach for finding an
appropriate learning rate.1 But it wasn’t until Jeremy Howard brought the technique

Finding That Learning Rate | 53

https://arxiv.org/abs/1506.01186
https://oreil.ly/WLw3q
https://oreil.ly/WLw3q

to the fore in his fast.ai course that it started to catch on in the deep learning commu‐
nity. The idea is quite simple: over the course of an epoch, start out with a small
learning rate and increase to a higher learning rate over each mini-batch, resulting in
a high rate at the end of the epoch. Calculate the loss for each rate and then, looking
at a plot, pick the learning rate that gives the greatest decline. For example, look at the
graph in Figure 4-1.

Figure 4-1. Learning rate against loss

In this case, we should look at using a learning rate of around 1e-2 (marked within
the circle), as that is roughly the point where the gradient of the descent is steepest.

Note that you’re not looking for the bottom of the curve, which
might be the more intuitive place; you’re looking for the point that
is getting to the bottom the fastest.

Here’s a simplified version of what the fast.ai library does under the covers:

import math
def find_lr(model, loss_fn, optimizer, init_value=1e-8, final_value=10.0):
 number_in_epoch = len(train_loader) - 1
 update_step = (final_value / init_value) ** (1 / number_in_epoch)
 lr = init_value
 optimizer.param_groups[0]["lr"] = lr
 best_loss = 0.0
 batch_num = 0
 losses = []
 log_lrs = []
 for data in train_loader:
 batch_num += 1
 inputs, labels = data
 inputs, labels = inputs, labels
 optimizer.zero_grad()
 outputs = model(inputs)

54 | Chapter 4: Transfer Learning and Other Tricks

 loss = loss_fn(outputs, labels)

 # Crash out if loss explodes

 if batch_num > 1 and loss > 4 * best_loss:
 return log_lrs[10:-5], losses[10:-5]

 # Record the best loss

 if loss < best_loss or batch_num == 1:
 best_loss = loss

 # Store the values

 losses.append(loss)
 log_lrs.append(math.log10(lr))

 # Do the backward pass and optimize

 loss.backward()
 optimizer.step()

 # Update the lr for the next step and store

 lr *= update_step
 optimizer.param_groups[0]["lr"] = lr
 return log_lrs[10:-5], losses[10:-5]

What’s going on here is that we iterate through the batches, training almost as usual;
we pass our inputs through the model and then we get the loss from that batch. We
record what our best_loss is so far, and compare the new loss against it. If our new
loss is more than four times the best_loss, we crash out of the function, returning
what we have so far (as the loss is probably tending to infinity). Otherwise, we keep
appending the loss and logs of the current learning rate, and update the learning rate
with the next step along the way to the maximal rate at the end of the loop. The plot
can then be shown using the matplotlib plt function:

logs,losses = find_lr()
plt.plot(logs,losses)
found_lr = 1e-2

Note that we return slices of the lr logs and losses. We do that simply because the
first bits of training and the last few (especially if the learning rate becomes very large
quite quickly) tend not to tell us much information.

The implementation in fast.ai’s library also includes weighted smoothing, so you get
smooth lines in your plot, whereas this snippet produces spiky output. Finally,
remember that because this function does actually train the model and messes with
the optimizer’s learning rate settings, you should save and reload your model before‐
hand to get back to the state it was in before you called find_lr() and also

Finding That Learning Rate | 55

reinitialize the optimizer you’ve chosen, which you can do now, passing in the learn‐
ing rate you’ve determined from looking at the graph!

That gets us a good value for our learning rate, but we can do even better with differ‐
ential learning rates.

Differential Learning Rates
In our training so far, we have applied one learning rate to the entire model. When
training a model from scratch, that probably makes sense, but when it comes to
transfer learning, we can normally get a little better accuracy if we try something dif‐
ferent: training different groups of layers at different rates. Earlier in the chapter, we
froze all the pretrained layers in our model and trained just our new classifier, but we
may want to fine-tune some of the layers of, say, the ResNet model we’re using. Per‐
haps adding some training to the layers just preceding our classifier will make our
model just a little more accurate. But as those preceding layers have already been
trained on the ImageNet dataset, maybe they need only a little bit of training as com‐
pared to our newer layers? PyTorch offers a simple way of making this happen. Let’s
modify our optimizer for the ResNet-50 model:

optimizer = optimizer.Adam([
{ 'params': transfer_model.layer4.parameters(), 'lr': found_lr /3},
{ 'params': transfer_model.layer3.parameters(), 'lr': found_lr /9},
], lr=found_lr)

That sets the learning rate for layer4 (just before our classifier) to a third of the found
learning rate and a ninth for layer3. That combination has empirically worked out
quite well in my work, but obviously feel free to experiment. There’s one more thing,
though. As you may remember from the beginning of this chapter, we froze all these
pretrained layers. It’s all very well to give them a different learning rate, but as of right
now, the model training won’t touch them at all because they don’t accumulate gradi‐
ents. Let’s change that:

unfreeze_layers = [transfer_model.layer3, transfer_model.layer4]
for layer in unfreeze_layers:
 for param in layer.parameters():
 param.requires_grad = True

Now that the parameters in these layers take gradients once more, the differential
learning rates will be applied when you fine-tine the model. Note that you can freeze
and unfreeze parts of the model at will and do further fine-tuning on every layer sep‐
arately if you’d like!

Now that we’ve looked at the learning rates, let’s investigate a different aspect of train‐
ing our models: the data that we feed into them.

56 | Chapter 4: Transfer Learning and Other Tricks

Data Augmentation
One of the dreaded phrases in data science is, Oh no, my model has overfit on the data!
As I mentioned in Chapter 2, overfitting occurs when the model decides to reflect the
data presented in the training set rather than produce a generalized solution. You’ll
often hear people talking about how a particular model memorized the dataset, mean‐
ing the model learned the answers and went on to perform poorly on production
data.

The traditional way of guarding against this is to amass large quantities of data. By
seeing more data, the model gets a more general idea of the problem it is trying to
solve. If you view the situation as a compression problem, then if you prevent the
model from simply being able to store all the answers (by overwhelming its storage
capacity with so much data), it’s forced to compress the input and therefore produce a
solution that cannot simply be storing the answers within itself. This is fine, and
works well, but say we have only a thousand images and we’re doing transfer learning.
What can we do?

One approach that we can use is data augmentation. If we have an image, we can do a
number of things to that image that should prevent overfitting and make the model
more general. Consider the images of Helvetica the cat in Figures 4-2 and 4-3.

Figure 4-2. Our original image

Data Augmentation | 57

Figure 4-3. A flipped Helvetica

Obviously to us, they’re the same image. The second one is just a mirrored copy of
the first. The tensor representation is going to be different, as the RGB values will be
in different places in the 3D image. But it’s still a cat, so the model training on this
image will hopefully learn to recognize a cat shape on the left or right side of the
frame, rather than simply associating the entire image with cat. Doing this in PyTorch
is simple. You may remember this snippet of code from Chapter 2:

transforms = transforms.Compose([
 transforms.Resize(64),
 transforms.ToTensor(),
 transforms.Normalize(mean=[0.485, 0.456, 0.406],
 std=[0.229, 0.224, 0.225])
])

This forms a transformation pipeline that all images go through as they enter the
model for training. But the torchivision.transforms library contains many other
transformation functions that can be used to augment training data. Let’s have a look
at some of the more useful ones and see what happens to Helvetica with some of the
less obvious transforms as well.

Torchvision Transforms
torchvision comes complete with a large collection of potential transforms that can
be used for data augmentation, plus two ways of constructing new transformations.
In this section, we look at the most useful ones that come supplied as well as a couple
of custom transformations that you can use in your own applications.

torchvision.transforms.ColorJitter(brightness=0, contrast=0, saturation=0, hue=0)

ColorJitter randomly changes the brightness, contrast, saturation, and hue of an
image. For brightness, contrast, and saturation, you can supply either a float or a
tuple of floats, all nonnegative in the range 0 to 1, and the randomness will either be

58 | Chapter 4: Transfer Learning and Other Tricks

between 0 and the supplied float or it will use the tuple to generate randomness
between the supplied pair of floats. For hue, a float or float tuple between –0.5 and 0.5
is required, and it will generate random hue adjustments between [-hue,hue] or [min,
max]. See Figure 4-4 for an example.

Figure 4-4. ColorJitter applied at 0.5 for all parameters

If you want to flip your image, these two transforms randomly reflect an image on
either the horizontal or vertical axis:

torchvision.transforms.RandomHorizontalFlip(p=0.5)
torchvision.transforms.RandomVerticalFlip(p=0.5)

Either supply a float from 0 to 1 for the probability of the reflection to occur or accept
the default of a 50% chance of reflection. A vertically flipped cat is shown in
Figure 4-5.

Figure 4-5. Vertical flip

RandomGrayscale is a similar type of transformation, except that it randomly turns
the image grayscale, depending on the parameter p (the default is 10%):

Data Augmentation | 59

torchvision.transforms.RandomGrayscale(p=0.1)

RandomCrop and RandomResizeCrop, as you might expect, perform random crops on
the image of size, which can either be an int for height and width, or a tuple contain‐
ing different heights and widths. Figure 4-6 shows an example of a RandomCrop in
action.

torchvision.transforms.RandomCrop(size, padding=None,
pad_if_needed=False, fill=0, padding_mode='constant')
torchvision.transforms.RandomResizedCrop(size, scale=(0.08, 1.0),
ratio=(0.75, 1.3333333333333333), interpolation=2)

Now you need to be a little careful here, because if your crops are too small, you run
the risk of cutting out important parts of the image and making the model train on
the wrong thing. For instance, if a cat is playing on a table in an image, and the crop
takes out the cat and just leaves part of the table to be classified as cat, that’s not great.
While the RandomResizeCrop will resize the crop to fill the given size, RandomCrop
may take a crop close to the edge and into the darkness beyond the image.

RandomResizeCrop is using Bilinear interpolation, but you can also
select nearest neighbor or bicubic interpolation by changing the
interpolation parameter. See the PIL filters page for further
details.

As you saw in Chapter 3, we can add padding to maintain the required size of the
image. By default, this is constant padding, which fills out the otherwise empty pix‐
els beyond the image with the value given in fill. However, I recommend that you
use the reflect padding instead, as empirically it seems to work a little better than
just throwing in empty constant space.

Figure 4-6. RandomCrop with size=100

If you’d like to randomly rotate an image, RandomRotation will vary between [-
degrees, degrees] if degrees is a single float or int, or (min,max) if it is a tuple:

torchvision.transforms.RandomRotation(degrees, resample=False,expand=False, center=None)

If expand is set to True, this function will expand the output image so that it can
include the entire rotation; by default, it’s set to crop to within the input dimensions.
You can specify a PIL resampling filter, and optionally provide an (x,y) tuple for the

60 | Chapter 4: Transfer Learning and Other Tricks

https://oreil.ly/rNOtN

center of rotation; otherwise the transform will rotate about the center of the image.
Figure 4-7 is a RandomRotation transformation with degrees set to 45.

Figure 4-7. RandomRotation with degrees = 45

Pad is a general-purpose padding transform that adds padding (extra height and
width) onto the borders of an image:

torchvision.transforms.Pad(padding, fill=0, padding_mode=constant)

A single value in padding will apply padding on that length in all directions. A two-
tuple padding will produce padding in the length of (left/right, top/bottom), and a
four-tuple will produce padding for (left, top, right, bottom). By default, padding is
set to constant mode, which copies the value of fill into the padding slots. The
other choices are edge, which pads the last values of the edge of the image into the
padding length; reflect, which reflects the values of the image (except the edge) into
the border; and symmetric, which is reflection but includes the last value of the
image at the edge. Figure 4-8 shows padding set to 25 and padding_mode set to
reflect. See how the box repeats at the edges.

Data Augmentation | 61

Figure 4-8. Pad with padding = 25 and padding_mode = reflect

RandomAffine allows you to specify random affine translations of the image (scaling,
rotations, translations, and/or shearing, or any combination). Figure 4-9 shows an
example of an affine transformation.

torchvision.transforms.RandomAffine(degrees, translate=None, scale=None,
shear=None, resample=False, fillcolor=0)

Figure 4-9. RandomAffine with degrees = 10 and shear = 50

The degrees parameter is either a single float or int or a tuple. In single form, it pro‐
duces random rotations between (–degrees, degrees). With a tuple, it will produce
random rotations between (min, max). degrees has to be explicitly set to prevent rota‐
tions from occurring—there’s no default setting. translate is a tuple of two multipli‐
ers (horizontal_multipler, vertical_multiplier). At transform time, a horizontal
shift, dx, is sampled in the range –image_width × horizontal_multiplier < dx <

62 | Chapter 4: Transfer Learning and Other Tricks

img_width × horizontal_width, and a vertical shift is sampled in the same way with
respect to the image height and the vertical multiplier.

Scaling is handled by another tuple, (min, max), and a uniform scaling factor is ran‐
domly sampled from those. Shearing can be either a single float/int or a tuple, and
randomly samples in the same manner as the degrees parameter. Finally, resample
allows you to optionally provide a PIL resampling filter, and fillcolor is an optional
int specifying a fill color for areas inside the final image that lie outside the final
transform.

As for what transforms you should use in a data augmentation pipeline, I definitely
recommend using the various random flips, color jittering, rotation, and crops to
start.

Other transformations are available in torchvision; check the documentation for
more details. But of course you may find yourself wanting to create a transformation
that is particular to your data domain that isn’t included by default, so PyTorch pro‐
vides various ways of defining custom transformations, as you’ll see next.

Color Spaces and Lambda Transforms
This may seem a little odd to even bring up, but so far all our image work has been in
the fairly standard 24-bit RGB color space, where every pixel has an 8-bit red, green,
and blue value to indicate the color of that pixel. However, other color spaces are
available!

A popular alternative is HSV, which has three 8-bit values for hue, saturation, and
value. Some people feel this system more accurately models human vision than the
traditional RGB color space. But why does this matter? A mountain in RGB is a
mountain in HSV, right?

Well, there’s some evidence from recent deep learning work in colorization that other
color spaces can produce slightly higher accuracy than RGB. A mountain may be a
mountain, but the tensor that gets formed in each space’s representation will be dif‐
ferent, and one space may capture something about your data better than another.

When combined with ensembles, you could easily create a series of models that com‐
bines the results of training on RGB, HSV, YUV, and LAB color spaces to wring out a
few more percentage points of accuracy from your prediction pipeline.

One slight problem is that PyTorch doesn’t offer a transform that can do this. But it
does provide a couple of tools that we can use to randomly change an image from
standard RGB into HSV (or another color space). First, if we look in the PIL docu‐
mentation, we see that we can use Image.convert() to translate a PIL image from
one color space to another. We could write a custom transform class to carry out this
conversion, but PyTorch adds a transforms.Lambda class so that we can easily wrap

Data Augmentation | 63

https://oreil.ly/b0Q0A

any function and make it available to the transform pipeline. Here’s our custom
function:

def _random_colour_space(x):
 output = x.convert("HSV")
 return output

This is then wrapped in a transforms.Lambda class and can be used in any standard
transformation pipeline like we’ve seen before:

colour_transform = transforms.Lambda(lambda x: _random_colour_space(x))

That’s fine if we want to convert every image into HSV, but really we don’t want that.
We’d like it to randomly change images in each batch, so it’s probable that the image
will be presented in different color spaces in different epochs. We could update our
original function to generate a random number and use that to generate a random
probability of changing the image, but instead we’re even lazier and use RandomApply:

random_colour_transform = torchvision.transforms.RandomApply([colour_transform])

By default, RandomApply fills in a parameter p with a value of 0.5, so there’s a 50/50
chance of the transform being applied. Experiment with adding more color spaces
and the probability of applying the transformation to see what effect it has on our cat
and fish problem.

Let’s look at another custom transform that is a little more complicated.

Custom Transform Classes
Sometimes a simple lambda isn’t enough; maybe we have some initialization or state
that we want to keep track of, for example. In these cases, we can create a custom
transform that operates on either PIL image data or a tensor. Such a class has to
implement two methods: __call__, which the transform pipeline will invoke during
the transformation process; and __repr__, which should return a string representa‐
tion of the transform, along with any state that may be useful for diagnostic purposes.

In the following code, we implement a transform class that adds random Gaussian
noise to a tensor. When the class is initialized, we pass in the mean and standard dis‐
tribution of the noise we require, and during the __call__ method, we sample from
this distribution and add it to the incoming tensor:

class Noise():
 """Adds gaussian noise to a tensor.

 >>> transforms.Compose([
 >>> transforms.ToTensor(),
 >>> Noise(0.1, 0.05)),
 >>>])

 """

64 | Chapter 4: Transfer Learning and Other Tricks

 def __init__(self, mean, stddev):
 self.mean = mean
 self.stddev = stddev

 def __call__(self, tensor):
 noise = torch.zeros_like(tensor).normal_(self.mean, self.stddev)
 return tensor.add_(noise)

 def __repr__(self):
 repr = f"{self.__class__.__name__ }(mean={self.mean},
 stddev={self.stddev})"
 return repr

If we add this to a pipeline, we can see the results of the __repr__ method being
called:

transforms.Compose([Noise(0.1, 0.05))])
>> Compose(
 Noise(mean=0.1,sttdev=0.05)
)

Because transforms don’t have any restrictions and just inherit from the base Python
object class, you can do anything. Want to completely replace an image at runtime
with something from Google image search? Run the image through a completely dif‐
ferent neural network and pass that result down the pipeline? Apply a series of image
transforms that turn the image into a crazed reflective shadow of its former self? All
possible, if not entirely recommended. Although it would be interesting to see
whether Photoshop’s Twirl transformation effect would make accuracy worse or bet‐
ter! Why not give it a go?

Aside from transformations, there are a few more ways of squeezing as much perfor‐
mance from a model as possible. Let’s look at more examples.

Start Small and Get Bigger!
Here’s a tip that seems odd, but obtains real results: start small and get bigger. What I
mean is if you’re training on 256 × 256 images, create a few more datasets in which
the images have been scaled to 64 × 64 and 128 × 128. Create your model with the 64
× 64 dataset, fine-tune as normal, and then train the exact same model with the 128 ×
128 dataset. Not from scratch, but using the parameters that have already been
trained. Once it looks like you’ve squeezed the most out of the 128 × 128 data, move
on to your target 256 × 256 data. You’ll probably find a percentage point or two
improvement in accuracy.

While we don’t know exactly why this works, the working theory is that by training at
the lower resolutions, the model learns about the overall structure of the image and
can refine that knowledge as the incoming images expand. But that’s just a theory.

Data Augmentation | 65

However, that doesn’t stop it from being a good little trick to have up your sleeve
when you need to squeeze every last bit of performance from a model.

If you don’t want to have multiple copies of a dataset hanging around in storage, you
can use torchvision transforms to do this on the fly using the Resize function:

resize = transforms.Compose([transforms.Resize(64),
 …_other augmentation transforms_…
 transforms.ToTensor(),
 transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])

The penalty you pay here is that you end up spending more time in training, as
PyTorch has to apply the resize every time. If you resized all the images beforehand,
you’d likely get a quicker training run, at the expense of filling up your hard drive. But
isn’t that trade-off always the way?

The concept of starting small and then getting bigger also applies to architectures.
Using a ResNet architecture like ResNet-18 or ResNet-34 to test out approaches to
transforms and get a feel for how training is working provides a much tighter feed‐
back loop than if you start out using a ResNet-101 or ResNet-152 model. Start small,
build upward, and you can potentially reuse the smaller model runs at prediction
time by adding them to an ensemble model.

Ensembles
What’s better than one model making predictions? Well, how about a bunch of them?
Ensembling is a technique that is fairly common in more traditional machine learning
methods, and it works rather well in deep learning too. The idea is to obtain a predic‐
tion from a series of models, and combine those predictions to produce a final
answer. Because different models will have different strengths in different areas,
hopefully a combination of all their predictions will produce a more accurate result
than one model alone.

There are plenty of approaches to ensembles, and we won’t go into all of them here.
Instead, here’s a simple way of getting started with ensembles, one that has eeked out
another 1% of accuracy in my experience; simply average the predictions:

Assuming you have a list of models in models, and input is your input tensor

predictions = [m[i].fit(input) for i in models]
avg_prediction = torch.stack(b).mean(0).argmax()

The stack method concatenates the array of tensors together, so if we were working
on the cat/fish problem and had four models in our ensemble, we’d end up with a 4 ×
2 tensor constructed from the four 1 × 2 tensors. And mean does what you’d expect,
taking the average, although we have to pass in a dimension of 0 to ensure that it
takes an average across the first dimension instead of simply adding up all the tensor

66 | Chapter 4: Transfer Learning and Other Tricks

elements and producing a scalar output. Finally, argmax picks out the tensor index
with the highest element, as you’ve seen before.

It’s easy to imagine more complex approaches. Perhaps weights could be added to
each individual model’s prediction, and those weights adjusted if a model gets an
answer right or wrong. What models should you use? I’ve found that a combination
of ResNets (e.g., 34, 50, 101) work quite well, and there’s nothing to stop you from
saving your model regularly and using different snapshots of the model across time in
your ensemble!

Conclusion
As we come to the end of Chapter 4, we’re leaving images behind to move on to text.
Hopefully you not only understand how convolutional neural networks work on
images, but also have a deep bag of tricks in hand, including transfer learning, learn‐
ing rate finding, data augmentation, and ensembling, which you can bring to bear on
your particular application domain.

Further Reading
If you’re interested in learning more in the image realm, check out the fast.ai course
by Jeremy Howard, Rachel Thomas, and Sylvain Gugger. This chapter’s learning rate
finder is, as I mentioned, a simplified version of the one they use, but the course goes
into further detail about many of the techniques in this chapter. The fast.ai library,
built on PyTorch, allows you to bring them to bear on your image (and text!)
domains easily.

• Torchvision documentation
• PIL/Pillow documentation
• “Cyclical Learning Rates for Training Neural Networks” by Leslie N. Smith

(2015)
• “ColorNet: Investigating the Importance of Color Spaces for Image Classifica‐

tion” by Shreyank N. Gowda and Chun Yuan (2019)

Conclusion | 67

https://fast.ai
https://oreil.ly/vNnST
https://oreil.ly/Jlisb
https://arxiv.org/abs/1506.01186
https://arxiv.org/abs/1902.00267
https://arxiv.org/abs/1902.00267

CHAPTER 5

Text Classification

We’re leaving images behind for now and turning our attention to another area where
deep learning has proven to be a significant advance on traditional techniques: natu‐
ral language processing (NLP). A good example of this is Google Translate. Originally,
the code that handled translation was a weighty 500,000 lines of code. The new,
TensorFlow-based system has approximately 500, and it performs better than the old
method.

Recent breakthroughs also have occurred in bringing transfer learning (which you
learned about in Chapter 4) to NLP problems. New architectures such as the Trans‐
former architecture have led to the creation of networks like OpenAI’s GPT-2, the
larger variant of which produces text that is almost human-like in quality (and in fact,
OpenAI has not released the weights of this model for fear of it being used mali‐
ciously).

This chapter provides a whirlwind tour of recurrent neural networks and embed‐
dings. Then we explore the torchtext library and how to use it for text processing
with an LSTM-based model.

Recurrent Neural Networks
If we look back at how we’ve been using our CNN-based architectures so far, we can
see they have always been working on one complete snapshot of time. But consider
these two sentence fragments:

The cat sat on the mat.

She got up and impatiently climbed on the chair, meowing for food.

Say you were to feed those two sentences, one after the other, into a CNN and ask,
where is the cat? You’d have a problem, because the network has no concept of

69

1 Note that it’s not impossible to do these things with CNNs; a lot of in-depth research in the last few years has
been done to apply CNN-based networks in the temporal domain. We won’t cover them here, but “Temporal
Convolutional Networks: A Unified Approach to Action Segmentation” by Colin Lea, et al. (2016) provides
further information. And seq2seq!

memory. This is incredibly important when it comes to dealing with data that has a
temporal domain (e.g., text, speech, video, and time-series data).1 Recurrent neural
networks (RNNs) answer this problem by giving neural networks a memory via hid‐
den state.

What does an RNN look like? My favorite explanation is, “Imagine a neural network
crossed with a for loop.” Figure 5-1 shows a diagram of a classical RNN structure.

Figure 5-1. An RNN

We add input at a time step of t, and we get a hidden output state of ht, and the output
also gets fed back into the RNN for the next time step. We can unroll this network to
take a deeper look at what’s going on, as shown in Figure 5-2.

70 | Chapter 5: Text Classification

https://arxiv.org/abs/1608.08242
https://arxiv.org/abs/1608.08242

Figure 5-2. An unrolled RNN

What we have here is a grouping of fully connected layers (with shared parameters), a
series of inputs, and our output. Input data is fed into the network, and the next item
in the sequence is predicted as output. In the unrolled view, we can see that the RNN
can be thought of as a pipeline of fully connected layers, with the successive input
being fed into the next layer in the sequence (with the usual nonlinearities such as
ReLU being inserted between the layers). When we have our completed predicted
sequence, we then have to backpropagate the error back through the RNN. Because
this involves stepping back through the network’s steps, this process is known as
backpropagation through time. The error is calculated on the entire sequence, then
the network is unfolded as in Figure 5-2, and the gradients are calculated for each
time step and combined to update the shared parameters of the network. You can
imagine it as doing backprop on individual networks and summing all the gradients
together.

That’s the theory behind RNNs. But this simple structure has problems that we need
to talk about and how they were overcome with newer architectures.

Long Short-Term Memory Networks
In practice, RNNs were and are particularly susceptible to the vanishing gradient
problem we talked about in Chapter 2, or the potentially worse scenario of the
exploding gradient, where your error tends off toward infinity. Neither is good, so
RNNs couldn’t be brought to bear on many of the problems they were considered
suitable for. That all changed in 1997 when Sepp Hochreiter and Jürgen Schmidhuber
introduced the Long Short-Term Memory (LSTM) variant of the RNN.

Long Short-Term Memory Networks | 71

Figure 5-3 diagrams an LSTM layer. I know, there’s a lot going on here, but it’s not too
complex. Honest.

Figure 5-3. An LSTM

OK, I admit, it is quite intimidating. The key is to think about the three gates (input,
output, and forget). In a standard RNN, we “remember” everything forever. But that’s
not how our brains work (sadly!), and the LSTM’s forget gate allows us to model the
idea that as we continue in our input chain, the beginning of the chain becomes less
important. And how much the LSTM forgets is something that is learned during
training, so if it’s in the network’s best interest to be very forgetful, the forget gate
parameters will do so.

The cell ends up being the “memory” of the network layer; and the input, output, and
forget gates will determine how data flows through the layer. The data may simply
pass through, it may “write” to the cell, and that data may (or may not!) flow through
to the next layer, modified by the output gate.

This assemblage of parts was enough to solve the vanishing gradient problem, and
also has the virtue of being Turing-complete, so theoretically, you can do any calcula‐
tion that you can do on a computer with one of these.

But things didn’t stop there, of course. Several developments have occurred in the
RNN space since LSTMs, and we’ll cover some of the major ones in the next sections.

72 | Chapter 5: Text Classification

Gated Recurrent Units
Since 1997, many variants of the base LSTM network have been created, most of
which you probably don’t need to know about unless you’re curious. However, one
variant that came along in 2014, the gated recurrent unit (GRU), is worth knowing
about, as it has become quite popular in some circles. Figure 5-4 shows the makeup
of a GRU architecture.

Figure 5-4. A GRU

The main takeaway is that the GRU has merged the forget gate with the output gate.
This means that it has fewer parameters than an LSTM and so tends to be quicker to
train and uses fewer resources at runtime. For these reasons, and also that they’re
essentially a drop-in replacement for LSTMs, they’ve become quite popular. However,
strictly speaking, they are less powerful than LSTMs because of the merging of the
forget and output gates, so in general I recommend playing with both GRUs or
LSTMs in your network and seeing which one performs better. Or just accept that the
LSTM may be a little slower in training, but may end up being the best choice in the
end. You don’t have to follow the latest fad—honest!

biLSTM
Another common variant of the LSTM is the bidirectional LSTM or biLSTM for short.
As you’ve seen so far, traditional LSTMs (and RNNs in general) can look to the past
as they are trained and make decisions. Unfortunately, sometimes you need to see the
future as well. This is particularly the case in applications like translation and hand‐

Long Short-Term Memory Networks | 73

writing recognition, where what comes after the current state can be just as important
as the previous state for determining output.

A biLSTM solves this problem in the simplest of ways: it’s essentially two stacked
LSTMs, with the input being sent in the forward direction in one LSTM and reversed
in the second. Figure 5-5 shows how a biLSTM works across its input bidirectionally
to produce the output.

Figure 5-5. A biLSTM

PyTorch makes it easy to create biLSTMs by passing in a bidirectional=True
parameter when creating an LSTM() unit, as you’ll see later in the chapter.

That completes our tour throughout the RNN-based architectures. In Chapter 9, we
return to the question of architecture when we look at the Transformer-based BERT
and GPT-2 models.

Embeddings
We’re almost at the point where we can start writing some code! But before we do,
one little detail may have occurred to you: how do we represent words in a network?
After all, we’re feeding tensors of numbers into a network and getting tensors out.
With images, it seemed a fairly obvious thing to convert them into tensors represent‐
ing the red/green/blue component values, and they’re already naturally thought of as
arrays as they come with a height and width baked in. But words? Sentences? How is
that going to work?

74 | Chapter 5: Text Classification

The simplest approach is still one that you’ll find in many approaches to NLP, and it’s
called one-hot encoding. It’s pretty simple! Let’s look at our first sentence from the
start of the chapter:

The cat sat on the mat.

If we consider that this is the entire vocabulary of our world, we have a tensor of
[the, cat, sat, on, mat]. One-hot encoding simply means that we create a vector
that is the size of the vocabulary, and for each word in it, we allocate a vector with one
parameter set to 1 and the rest to 0:

the — [1 0 0 0 0]
cat — [0 1 0 0 0]
sat — [0 0 1 0 0]
on — [0 0 0 1 0]
mat — [0 0 0 0 1]

We’ve now converted the words into vectors, and we can feed them into our network.
Additionally, we may add extra symbols into our vocabulary, such as UNK (unknown,
for words not in the vocabulary) and START/STOP to signify the beginning and ends
of sentences.

One-hot encoding has a few limitations that become clearer when we add another
word into our example vocabulary: kitty. From our encoding scheme, kitty would be
represented by [0 0 0 0 0 1] (with all the other vectors being padded with a zero).
First, you can see that if we are going to model a realistic set of words, our vectors are
going to be very long with almost no information in them. Second, and perhaps more
importantly, we know that a very strong relationship exists between the words kitty
and cat (also with dammit, but thankfully that’s been skipped from our vocab here!),
and this is impossible to represent with one-hot encoding; the two words are com‐
pletely different things.

An approach that has become more popular recently is replacing one-hot encoding
with an embedding matrix (of course, a one-hot encoding is an embedding matrix
itself, just one that doesn’t contain any information about relationships between
words). The idea is to squash the dimensionality of the vector space down to some‐
thing a little more manageable and take advantage of the space itself.

For example, if we have an embedding in a 2D space, perhaps cat could be repre‐
sented by the tensor [0.56, 0.45] and kitten by [0.56, 0.445], whereas mat could
be [0.2, -0.1]. We cluster similar words together in the vector space and can do
distance checks such as Euclidean or cosine distance functions to determine how
close words are to each other. And how do we determine where words fall in the vec‐
tor space? An embedding layer is no different from any other layer you’ve seen so far
in building neural networks; we initialize the vector space randomly, and hopefully
the training process updates the parameters so that similar words or concepts gravi‐
tate toward each other.

Embeddings | 75

2 See “Efficient Estimation of Word Representations in Vector Space” by Tomas Mikolov et al. (2013).

A famous example of embedding vectors is word2vec, which was released by Google
in 2013.2 This was a set of word embeddings trained using a shallow neural network,
and it revealed that the transformation into vector space seemed to capture some‐
thing about the concepts underpinning the words. In its commonly cited finding, if
you pulled the vectors for King, Man, and Woman and then subtracted the vector for
Man from King and added the vector for Woman, you would get a result that was the
vector representation for Queen. Since word2vec, other pretrained embeddings have
become available, such as ELMo, GloVe, and fasttext.

As for using embeddings in PyTorch, it’s really simple:

embed = nn.Embedding(vocab_size, dimension_size)

This will contain a tensor of vocab_size x dimension_size initialized randomly. I
prefer to think that it’s just a giant array or lookup table. Each word in your vocabu‐
lary indexes into an entry that is a vector of dimension_size, so if we go back to our
cat and its epic adventures on the mat, we’d have something like this:

cat_mat_embed = nn.Embedding(5, 2)
cat_tensor = Tensor([1])
cat_mat_embed.forward(cat_tensor)

> tensor([[1.7793, -0.3127]], grad_fn=<EmbeddingBackward>)

We create our embedding, a tensor that contains the position of cat in our vocabulary,
and pass it through the layer’s forward() method. That gives us our random embed‐
ding. The result also points out that we have a gradient function that we can use for
updating the parameters after we combine it with a loss function.

We’ve now gone through all the theory and can get started on building something!

torchtext
Just like torchvision, PyTorch provides an official library, torchtext, for handling
text-processing pipelines. However, torchtext is not quite as battle-tested or has as
many eyes on it as torchvision, which means it’s not quite as easy to use or as well-
documented. But it is still a powerful library that can handle a lot of the mundane
work of building up text-based datasets, so we’ll be using it for the rest of the chapter.

Installing torchtext is fairly simple. You use either standard pip:

pip install torchtext

or a specific conda channel:

conda install -c derickl torchtext

76 | Chapter 5: Text Classification

https://arxiv.org/abs/1301.3781

You’ll also want to install spaCy (an NLP library), and pandas if you don’t have them
on your system (again, either using pip or conda). We use spaCy for processing our
text in the torchtext pipeline, and pandas for exploring and cleaning up our data.

Getting Our Data: Tweets!
In this section, we build a sentiment analysis model, so let’s grab a dataset. torchtext
provides a bunch of built-in datasets via the torchtext.datasets module, but we’re
going to work on one from scratch to get a feel for building a custom dataset and
feeding it into a model we’ve created. We use the Sentiment140 dataset. This is based
on tweets from Twitter, with every tweet ranked as 0 for negative, 2 for neutral, and 4
for positive.

Download the zip archive and unzip. We use the file training.1600000.processed.noe‐
moticon.csv. Let’s look at the file using pandas:

import pandas as pd
tweetsDF = pd.read_csv("training.1600000.processed.noemoticon.csv",
 header=None)

You may at this point get an error like this:

UnicodeDecodeError: 'utf-8' codec can't decode bytes in
position 80-81: invalid continuation byte

Congratulations—you’re now a real data scientist and you get to deal with data clean‐
ing! From the error message, it appears that the default C-based CSV parser that pan‐
das uses doesn’t like some of the Unicode in the file, so we need to switch to the
Python-based parser:

tweetsDF = pd.read_csv("training.1600000.processed.noemoticon.csv",
engine="python", header=None)

Let’s take a look at the structure of the data by displaying the first five rows:

>>> tweetDF.head(5)
0 0 1467810672 ... NO_QUERY scotthamilton is upset that ...
1 0 1467810917 ... NO_QUERY mattycus @Kenichan I dived many times ...
2 0 1467811184 ... NO_QUERY ElleCTF my whole body feels itchy
3 0 1467811193 ... NO_QUERY Karoli @nationwideclass no, it's ...
4 0 1467811372 ... NO_QUERY joy_wolf @Kwesidei not the whole crew

Annoyingly, we don’t have a header field in this CSV (again, welcome to the world of
a data scientist!), but by looking at the website and using our intuition, we can see
that what we’re interested in is the last column (the tweet text) and the first column
(our labeling). However, the labels aren’t great, so let’s do a little feature engineering
to work around that. Let’s see what counts we have in our training set:

>>> tweetsDF[0].value_counts()
4 800000

torchtext | 77

http://help.sentiment140.com/for-students

0 800000
Name: 0, dtype: int64

Curiously, there are no neutral values in the training dataset. This means that we
could formulate the problem as a binary choice between 0 and 1 and work out our
predictions from there, but for now we stick to the original plan that we may possibly
have neutral tweets in the future. To encode the classes as numbers starting from 0,
we first create a column of type category from the label column:

tweetsDF["sentiment_cat"] = tweetsDF[0].astype('category')

Then we encode those classes as numerical information in another column:

tweetsDF["sentiment"] = tweetsDF["sentiment_cat"].cat.codes

We then save the modified CSV back to disk:

tweetsDF.to_csv("train-processed.csv", header=None, index=None)

I recommend that you save another CSV that has a small sample of the 1.6 million
tweets for you to test things out on too:

tweetsDF.sample(10000).to_csv("train-processed-sample.csv", header=None,
 index=None)

Now we need to tell torchtext what we think is important for the purposes of creat‐
ing a dataset.

Defining Fields
torchtext takes a straightforward approach to generating datasets: you tell it what
you want, and it’ll process the raw CSV (or JSON) for you. You do this by first defin‐
ing fields. The Field class has a considerable number of parameters that can be
assigned to it, and although you probably won’t use all of them at once, Table 5-1
provides a handy guide as to what you can do with a Field.

Table 5-1. Field parameter types

Parameter Description Default

sequential Whether the field represents sequential data (i.e., text). If set to False, no
tokenization is applied.

True

use_vocab Whether to include a Vocab object. If set to False, the field should contain
numerical data.

True

init_token A token that will be added to the start of this field to indicate the beginning of the
data.

None

eos_token End-of-sentence token appended to the end of each sequence. None

fix_length If set to an integer, all entries will be padded to this length. If None, sequence
lengths will be flexible.

None

dtype The type of the tensor batch. torch.long

78 | Chapter 5: Text Classification

Parameter Description Default

lower Convert the sequence into lowercase. False

tokenize The function that will perform sequence tokenization. If set to spacy, the spaCy
tokenizer will be used.

string.split

pad_token The token that will be used as padding. <pad>

unk_token The token that will be used to represent words that are not present in the Vocab
dict.

<unk>

pad_first Pad at the start of the sequence. False

trun
cate_first

Truncate at the beginning of the sequence (if necessary). False

As we noted, we’re interested in only the labels and the tweets text. We define these by
using the Field datatype:

from torchtext import data

LABEL = data.LabelField()
TWEET = data.Field(tokenize='spacy', lower=true)

We’re defining LABEL as a LabelField, which is a subclass of Field that sets sequen
tial to False (as it’s our numerical category class). TWEET is a standard Field object,
where we have decided to use the spaCy tokenizer and convert all the text to lower‐
case, but otherwise we’re using the defaults as listed in the previous table. If, when
running through this example, the step of building the vocabulary is taking a very
long time, try removing the tokenize parameter and rerunning. This will use the
default of simply splitting on whitespace, which will speed up the tokenization step
considerably, though the created vocabulary will not be as good as the one spaCy
creates.

Having defined those fields, we now need to produce a list that maps them onto the
list of rows that are in the CSV:

 fields = [('score',None), ('id',None),('date',None),('query',None),
 ('name',None),
 ('tweet', TWEET),('category',None),('label',LABEL)]

Armed with our declared fields, we now use TabularDataset to apply that definition
to the CSV:

twitterDataset = torchtext.data.TabularDataset(
 path="training-processed.csv",
 format="CSV",
 fields=fields,
 skip_header=False)

This may take some time, especially with the spaCy parser. Finally, we can split into
training, testing, and validation sets by using the split() method:

torchtext | 79

(train, test, valid) = twitterDataset.split(split_ratio=[0.8,0.1,0.1])

(len(train),len(test),len(valid))
> (1280000, 160000, 160000)

Here’s an example pulled from the dataset:

>vars(train.examples[7])

{'label': '6681',
 'tweet': ['woah',
 ',',
 'hell',
 'in',
 'chapel',
 'thrill',
 'is',
 'closed',
 '.',
 'no',
 'more',
 'sweaty',
 'basement',
 'dance',
 'parties',
 '?',
 '?']}

In a surprising turn of serendipity, the randomly selected tweet references the closure
of a club in Chapel Hill I frequently visited. See if you find anything as weird on your
dive through the data!

Building a Vocabulary
Traditionally, at this point we would build a one-hot encoding of each word that is
present in the dataset—a rather tedious process. Thankfully, torchtext will do this
for us, and will also allow a max_size parameter to be passed in to limit the vocabu‐
lary to the most common words. This is normally done to prevent the construction of
a huge, memory-hungry model. We don’t want our GPUs too overwhelmed, after all.
Let’s limit the vocabulary to a maximum of 20,000 words in our training set:

vocab_size = 20000
TWEET.build_vocab(train, max_size = vocab_size)

We can then interrogate the vocab class instance object to make some discoveries
about our dataset. First, we ask the traditional “How big is our vocabulary?”:

len(TWEET.vocab)
> 20002

80 | Chapter 5: Text Classification

Wait, wait, what? Yes, we specified 20,000, but by default, torchtext will add two
more special tokens, <unk> for unknown words (e.g., those that get cut off by the
20,000 max_size we specified), and <pad>, a padding token that will be used to pad all
our text to roughly the same size to help with efficient batching on the GPU (remem‐
ber that a GPU gets its speed from operating on regular batches). You can also specify
eos_token or init_token symbols when you declare a field, but they’re not included
by default.

Now let’s take a look at the most common words in the vocabulary:

>TWEET.vocab.freqs.most_common(10)
[('!', 44802),
 ('.', 40088),
 ('I', 33133),
 (' ', 29484),
 ('to', 28024),
 ('the', 24389),
 (',', 23951),
('a', 18366),
 ('i', 17189),
('and', 14252)]

Pretty much what you’d expect, as we’re not removing stop-words with our spaCy
tokenizer. (Because it’s just 140 characters, we’d be in danger of losing too much
information from our model if we did.)

We are almost finished with our datasets. We just need to create a data loader to feed
into our training loop. torchtext provides the BucketIterator method that will pro‐
duce what it calls a Batch, which is almost, but not quite, like the data loader we used
on images. (You’ll see shortly that we have to update our training loop to deal with
some of the oddities of the Batch interface.)

train_iterator, valid_iterator, test_iterator = data.BucketIterator.splits(
(train, valid, test),
batch_size = 32,
device = device)

Putting everything together, here’s the complete code for building up our datasets:

from torchtext import data

device = "cuda"
LABEL = data.LabelField()
TWEET = data.Field(tokenize='spacy', lower=true)

fields = [('score',None), ('id',None),('date',None),('query',None),
 ('name',None),
 ('tweet', TWEET),('category',None),('label',LABEL)]

twitterDataset = torchtext.data.TabularDataset(
 path="training-processed.csv",

torchtext | 81

 format="CSV",
 fields=fields,
 skip_header=False)

(train, test, valid) = twitterDataset.split(split_ratio=[0.8,0.1,0.1])

vocab_size = 20002
TWEET.build_vocab(train, max_size = vocab_size)

train_iterator, valid_iterator, test_iterator = data.BucketIterator.splits(
(train, valid, test),
batch_size = 32,
device = device)

With our data processing sorted, we can move on to defining our model.

Creating Our Model
We use the Embedding and LSTM modules in PyTorch that we talked about in the first
half of this chapter to build a simple model for classifying tweets:

import torch.nn as nn

class OurFirstLSTM(nn.Module):
 def __init__(self, hidden_size, embedding_dim, vocab_size):
 super(OurFirstLSTM, self).__init__()

 self.embedding = nn.Embedding(vocab_size, embedding_dim)
 self.encoder = nn.LSTM(input_size=embedding_dim,
 hidden_size=hidden_size, num_layers=1)
 self.predictor = nn.Linear(hidden_size, 2)

 def forward(self, seq):
 output, (hidden,_) = self.encoder(self.embedding(seq))
 preds = self.predictor(hidden.squeeze(0))
 return preds

model = OurFirstLSTM(100,300, 20002)
model.to(device)

All we do in this model is create three layers. First, the words in our tweets are
pushed into an Embedding layer, which we have established as a 300-dimensional vec‐
tor embedding. That’s then fed into a LSTM with 100 hidden features (again, we’re
compressing down from the 300-dimensional input like we did with images). Finally,
the output of the LSTM (the final hidden state after processing the incoming tweet) is
pushed through a standard fully connected layer with three outputs to correspond to
our three possible classes (negative, positive, or neutral). Next we turn to the training
loop!

82 | Chapter 5: Text Classification

Updating the Training Loop
Because of some torchtext’s quirks, we need to write a slightly modified training
loop. First, we create an optimizer (we use Adam as usual) and a loss function.
Because we were given three potential classes for each tweet, we use CrossEntropy
Loss() as our loss function. However, it turns out that only two classes are present in
the dataset; if we assumed there would be only two classes, we could in fact change
the output of the model to produce a single number between 0 and 1 and then use
binary cross-entropy (BCE) loss (and we can combine the sigmoid layer that
squashes output between 0 and 1 plus the BCE layer into a single PyTorch loss func‐
tion, BCEWithLogitsLoss()). I mention this because if you’re writing a classifier that
must always be one state or the other, it’s a better fit than the standard cross-entropy
loss that we’re about to use.

optimizer = optim.Adam(model.parameters(), lr=2e-2)
criterion = nn.CrossEntropyLoss()

def train(epochs, model, optimizer, criterion, train_iterator, valid_iterator):
 for epoch in range(1, epochs + 1):

 training_loss = 0.0
 valid_loss = 0.0
 model.train()
 for batch_idx, batch in enumerate(train_iterator):
 opt.zero_grad()
 predict = model(batch.tweet)
 loss = criterion(predict,batch.label)
 loss.backward()
 optimizer.step()
 training_loss += loss.data.item() * batch.tweet.size(0)
 training_loss /= len(train_iterator)

 model.eval()
 for batch_idx,batch in enumerate(valid_iterator):
 predict = model(batch.tweet)
 loss = criterion(predict,batch.label)
 valid_loss += loss.data.item() * x.size(0)

 valid_loss /= len(valid_iterator)
 print('Epoch: {}, Training Loss: {:.2f},
 Validation Loss: {:.2f}'.format(epoch, training_loss, valid_loss))

The main thing to be aware of in this new training loop is that we have to reference
batch.tweet and batch.label to get the particular fields we’re interested in; they
don’t fall out quite as nicely from the enumerator as they do in torchvision.

Once we’ve trained our model by using this function, we can use it to classify some
tweets to do simple sentiment analysis.

torchtext | 83

Classifying Tweets
Another hassle of torchtext is that it’s a bit of a pain to get it to predict things. What
you can do is emulate the processing pipeline that happens internally and make the
required prediction on the output of that pipeline, as shown in this small function:

def classify_tweet(tweet):
 categories = {0: "Negative", 1:"Positive"}
 processed = TWEET.process([TWEET.preprocess(tweet)])
 return categories[model(processed).argmax().item()]

We have to call preprocess(), which performs our spaCy-based tokenization. After
that, we can call process() to the tokens into a tensor based on our already-built
vocabulary. The only thing we have to be careful about is that torchtext is expecting
a batch of strings, so we have to turn it into a list of lists before handing it off to the
processing function. Then we feed it into the model. This will produce a tensor that
looks like this:

tensor([[0.7828, -0.0024]]

The tensor element with the highest value corresponds to the model’s chosen class, so
we use argmax() to get the index of that, and then item() to turn that zero-
dimension tensor into a Python integer that we index into our categories dictionary.

With our model trained, let’s look at how to do some of the other tricks and techni‐
ques that you learned for images in Chapters 2–4.

Data Augmentation
You might wonder exactly how you can augment text data. After all, you can’t really
flip it horizontally as you can an image! But you can use some techniques with text
that will provide the model with a little more information for training. First, you
could replace words in the sentence with synonyms, like so:

The cat sat on the mat

could become

The cat sat on the rug

Aside from the cat’s insistence that a rug is much softer than a mat, the meaning of
the sentence hasn’t changed. But mat and rug will be mapped to different indices in
the vocabulary, so the model will learn that the two sentences map to the same label,
and hopefully that there’s a connection between those two words, as everything else
in the sentences is the same.

In early 2019, the paper “EDA: Easy Data Augmentation Techniques for Boosting
Performance on Text Classification Tasks” suggested three other augmentation strate‐

84 | Chapter 5: Text Classification

3 See “EDA: Easy Data Augmentation Techniques for Boosting Performance on Text Classification Tasks” by
Jason W. Wei and Kai Zou (2019).

gies: random insertion, random swap, and random deletion. Let’s take a look at each
of them.3

Random Insertion
A random insertion technique looks at a sentence and then randomly inserts syno‐
nyms of existing nonstop-words into the sentence n times. Assuming you have a way
of getting a synonym of a word and a way of eliminating stop-words (common words
such as and, it, the, etc.), shown, but not implemented, in this function via get_syno
nyms() and get_stopwords(), an implementation of this would be as follows:

def random_insertion(sentence,n):
 words = remove_stopwords(sentence)
 for _ in range(n):
 new_synonym = get_synonyms(random.choice(words))
 sentence.insert(randrange(len(sentence)+1), new_synonym)
 return sentence

An example of this in practice where it replaces cat could look like this:

The cat sat on the mat
The cat mat sat on feline the mat

Random Deletion
As the name suggests, random deletion deletes words from a sentence. Given a proba‐
bility parameter p, it will go through the sentence and decide whether to delete a
word or not based on that random probability:

def random_deletion(words, p=0.5):
 if len(words) == 1:
 return words
 remaining = list(filter(lambda x: random.uniform(0,1) > p,words))
 if len(remaining) == 0:
 return [random.choice(words)]
 else
 return remaining

The implementation deals with the edge cases—if there’s only one word, the techni‐
que returns it; and if we end up deleting all the words in the sentence, the technique
samples a random word from the original set.

Data Augmentation | 85

https://arxiv.org/abs/1901.11196

Random Swap
The random swap augmentation takes a sentence and then swaps words within it n
times, with each iteration working on the previously swapped sentence. Here’s an
implementation:

def random_swap(sentence, n=5):
 length = range(len(sentence))
 for _ in range(n):
 idx1, idx2 = random.sample(length, 2)
 sentence[idx1], sentence[idx2] = sentence[idx2], sentence[idx1]
 return sentence

We sample two random numbers based on the length of the sentence, and then just
keep swapping until we hit n.

The techniques in the EDA paper average about a 3% improvement in accuracy when
used with small amounts of labeled examples (roughly 500). If you have more than
5,000 examples in your dataset, the paper suggests that this improvement may fall to
0.8% or lower, due to the model obtaining better generalization from the larger
amounts of data available over the improvements that EDA can provide.

Back Translation
Another popular approach for augmenting datasets is back translation. This involves
translating a sentence from our target language into one or more other languages and
then translating all of them back to the original language. We can use the Python
library googletrans for this purpose. Install it with pip, as it doesn’t appear to be in
conda at the time of this writing:

pip install googletrans

Then, we can translate our sentence from English to French, and then back to
English:

import googletrans
import googletrans.Translator

translator = Translator()

sentences = ['The cat sat on the mat']

translation_fr = translator.translate(sentences, dest='fr')
fr_text = [t.text for t in translations_fr]
translation_en = translator.translate(fr_text, dest='en')
en_text = [t.text for t in translation_en]
print(en_text)

>> ['The cat sat on the carpet']

86 | Chapter 5: Text Classification

That gives us an augmented sentence from English to French and back again, but let’s
go a step further and select a language at random:

import random

available_langs = list(googletrans.LANGUAGES.keys())
tr_lang = random.choice(available_langs)
print(f"Translating to {googletrans.LANGUAGES[tr_lang]}")

translations = translator.translate(sentences, dest=tr_lang)
t_text = [t.text for t in translations]
print(t_text)

translations_en_random = translator.translate(t_text, src=tr_lang, dest='en')
en_text = [t.text for t in translations_en_random]
print(en_text)

In this case, we use random.choice to grab a random language, translate to that lan‐
guage, and then translate back as before. We also pass in the language to the src
parameter just to help the language detection of Google Translate along. Try it out
and see how much it resembles the old game of Telephone.

You need to be aware of a few limits. First, you can translate only up to 15,000 charac‐
ters at a time, though that shouldn’t be too much of a problem if you’re just translat‐
ing sentences. Second, if you are going to use this on a large dataset, you want to do
your data augmentation on a cloud instance rather than your home computer,
because if Google bans your IP, you won’t be able to use Google Translate for normal
use! Make sure that you send a few batches at a time rather than the entire dataset at
once. This should also allow you to restart translation batches if there’s an error on
the Google Translate backend as well.

Augmentation and torchtext
You might have noticed that everything I’ve said so far about augmentation hasn’t
involved torchtext. Sadly, there’s a reason for that. Unlike torchvision or torchau
dio, torchtext doesn’t offer a transform pipeline, which is a little annoying. It does
offer a way of performing pre- and post-processing, but this operates only on the
token (word) level, which is perhaps enough for synonym replacement, but doesn’t
provide enough control for something like back translation. And if you do try to
hijack the pipelines for augmentation, you should probably do it in the preprocessing
pipeline instead of the post-processing one, as all you’ll see in that one is the tensor
that consists of integers, which you’ll have to map to words via the vocab rules.

For these reasons, I suggest not even bothering with spending your time trying to
twist torchtext into knots to do data augmentation. Instead, do the augmentation
outside PyTorch using techniques such as back translation to generate new data and
feed that into the model as if it were real data.

Data Augmentation | 87

That’s augmentation covered, but there’s an elephant in the room that we should
address before wrapping up the chapter.

Transfer Learning?
You might be wondering why we haven’t talked about transfer learning yet. After all,
it’s a key technique that allows us to create accurate image-based models, so why can’t
we do that here? Well, it turns out that it has been a little harder to get transfer learn‐
ing working on LSTM networks. But not impossible. We’ll return to the subject in
Chapter 9, where you’ll see how to get transfer learning working with both the
LSTM- and Transformer-based networks.

Conclusion
In this chapter, we covered a text-processing pipeline that covers encoding and
embeddings, a simple LSTM-based neural network to perform classification, along
with some data augmentation strategies for text-based data. You have plenty to
experiment with so far. I’ve chosen to make every tweet lowercase during the tokeni‐
zation phase. This is a popular approach in NLP, but it does throw away potential
information in the tweet. Think about it: “Why is this NOT WORKING?” to our eyes
is even more suggestive of a negative sentiment than “Why is this not working?” but
we’ve thrown away that difference between the two tweets before it even hits the
model. So definitely try running with case sensitivity left in the tokenized text. And
try removing stop-words from your input text to see whether that helps improve the
accuracy. Traditional NLP methods make a big point of removing them, but I’ve often
found that deep learning techniques can perform better when leaving them in the
input (which we’ve done in this chapter). This is because they provide more context
for the model to learn from, whereas sentences that have been reduced to only impor‐
tant words may be missing nuances in the text.

You may also want to alter the size of the embedding vector. Larger vectors mean that
the embedding can capture more information about the word it’s modeling at the cost
of using more memory. Try going from 100- to 1,000-dimensional embeddings and
see how that affects training time and accuracy.

Finally, you can also play with the LSTM. We’ve used a simple approach, but you can
increase num_layers to create stacked LSTMs, increase or decrease the number of
hidden features in the layer, or set bidirectional=true to create a biLSTM. Replac‐
ing the entire LSTM with a GRU layer would also be an interesting thing to try; does
it train faster? Is it more accurate? Experiment and see what you find!

In the meantime, we move on from text and into the audio realm with torchaudio.

88 | Chapter 5: Text Classification

Further Reading
• “Long Short-term Memory” by S. Hochreiter and J. Schmidhuber (1997)
• “Learning Phrase Representations Using RNN Encoder-Decoder for Statistical

Machine Translation” by Kyunghyun Cho et al. (2014)
• “Bidirectional LSTM-CRF Models for Sequence Tagging” by Zhiheng Huang et

al. (2015)
• “Attention Is All You Need” by Ashish Vaswani et al. (2017)

Further Reading | 89

https://oreil.ly/WKcxO
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1508.01991
https://arxiv.org/abs/1706.03762

CHAPTER 6

A Journey into Sound

One of the most successful applications of deep learning is something that we carry
around with us every day. Whether it’s Siri or Google Now, the engines that power
both systems and Amazon’s Alexa are neural networks. In this chapter, we’ll take a
look at PyTorch’s torchaudio library. You’ll learn how to use it to construct a pipeline
for classifying audio data with a convolutional-based model. After that, I’ll suggest a
different approach that will allow you to use some of the tricks you learned for images
and obtain good accuracy on the ESC-50 audio dataset.

But first, let’s take a look at sound itself. What is it? How is it often represented in data
form, and does that provide us with any clues as to what type of neural net we should
use to gain insight from our data?

Sound
Sound is created via the vibration of air. All the sounds we hear are combinations of
high and low pressure that we often represent in a waveform, like the one in
Figure 6-1. In this image, the wave above the origin is high pressure, and the part
below is low pressure.

91

Figure 6-1. Sine wave

Figure 6-2 shows a more complex waveform of a complete song.

Figure 6-2. Song waveform

In digital sound, we sample this waveform many times a second, traditionally 44,100
for CD-quality sound, and store the amplitude values of the wave during each sample
point. At a time t, we have a single value stored. This is slightly different from an
image, which requires two values, x and y, to store a value (for a grayscale image). If
we use convolutional filters in our neural network, we need a 1D filter rather than the
2D filters we were using for images.

Now that you know a little more about sound, let’s look at the dataset we use so you
can get a little more familiar with it.

92 | Chapter 6: A Journey into Sound

The ESC-50 Dataset
The Environmental Sound Classification (ESC) dataset is a collection of field record‐
ings, each of which is 5 seconds long and assigned to one of 50 classes (e.g., a dog
barking, snoring, a knock on a door). We use this set for the rest of the chapter to
experiment with two ways of classifying audio, as well as to explore using torchaudio
to simplify loading and manipulating audio.

Obtaining the Dataset
The ESC-50 dataset is a set of WAV files. You can download it either by cloning the
Git repository:

git clone https://github.com/karoldvl/ESC-50

Or you can download the entire repo just by using curl:

curl https://github.com/karoldvl/ESC-50/archive/master.zip

All the WAV files are stored in the audio directory with filenames like this:

1-100032-A-0.wav

We care about the final number in the filename, because that tells us what class this
sound clip has been assigned to. The other parts of the filename don’t matter to us but
mostly relate to the larger Freesound dataset from which ESC-50 has been drawn
(with one exception that I’ll come back to shortly). If you’re interested in finding out
more, the README document in the ESC-50 repo goes into further detail.

Now that we’ve downloaded the dataset, let’s look at some of the sounds it contains.

Playing Audio in Jupyter
If you want to actually hear a sound from ESC-50, then instead of loading one of the
files into a standard music player such as iTunes, you can use Jupyter’s built-in player
for audio, IPython.display.Audio:

import IPython.display as display
display.Audio('ESC-50/audio/1-100032-A-0.wav')

The function will read in our WAV files and MP3 files. You can also generate tensors,
convert them into NumPy arrays, and play those directly. Play some of the files in the
ESC-50 directory to get a feel for the sounds available. Once you’ve done that, we’ll
explore the dataset in depth a little more.

The ESC-50 Dataset | 93

https://github.com/karoldvl/ESC-50

Exploring ESC-50
When dealing with a new dataset, it’s always a good idea to get a feeling for the shape
of the data before you dive right into building models. In classification tasks, for
example, you’ll want to know whether your dataset actually contains examples from
all the possible classes, and ideally that all classes are present in equal numbers. Let’s
take a look at how ESC-50 breaks down.

If your dataset has an unbalanced amount of data, a simple solution
is to randomly duplicate the smaller class examples until you have
increased them to the number of the other classes. Although this
feels like fake accounting, it’s surprisingly effective (and cheap!) in
practice.

We know that the final set of digits in each filename describes the class it belongs to,
so what we need to do is grab a list of the files and count up the occurrences of each
class:

import glob
from collections import Counter

esc50_list = [f.split("-")[-1].replace(".wav","")
 for f in
 glob.glob("ESC-50/audio/*.wav")]
Counter(esc50_list)

First, we build up a list of our ESC-50 filenames. Because we care about only the class
number at the end of the filename, we chop off the .wav extension and split the file‐
name on the - separator. We finally take the last element in that split string. If you
inspect esc50_list, you’ll get a bunch of strings that range from 0 to 49. We could
write more code that builds a dict and counts all the occurrences for us, but I’m lazy,
so I’m using a Python convenience function, Counter, that does all that for us.

Here’s the output!

Counter({'15': 40,
 '22': 40,
 '36': 40,
 '44': 40,
 '23': 40,
 '31': 40,
 '9': 40,
 '13': 40,
 '4': 40,
 '3': 40,
 '27': 40,
 …})

94 | Chapter 6: A Journey into Sound

1 Understanding all of what SoX can do is beyond the scope of this book, and won’t be necessary for what we’re
going to be doing in the rest of this chapter.

We have one of those rare things, a perfectly balanced dataset. Let’s break out the
champagne and install a few more libraries that we’re going to need shortly.

SoX and LibROSA
Most of the audio processing that torchaudio carries out relies on two other pieces of
software: SoX and LibROSA. LibROSA is a Python library for audio analysis, includ‐
ing generating mel spectrograms (You’ll see what these are a little later in the chap‐
ter), detecting beats, and even generating music.

SoX, on the other hand, is a program that you might already be familiar with if you’ve
been using Linux for years. In fact, SoX is so old that it predates Linux itself; its first
release was in July 1991, compared to the Linux debut in September 1991. I remem‐
ber using it back in 1997 to convert WAV files into MP3s on my first ever Linux box.
But it’s still useful!1

If you’re installing torchaudio via conda, you can skip to the next section. If you’re
using pip, you’ll probably need to install SoX itself. For a Red Hat-based system, enter
the following:

yum install sox

Or on a Debian-based system, you’ll use this:

apt intall sox

Once SoX is installed, you can move on to obtaining torchaudio itself.

torchaudio
Installing torchaudio can be performed with either conda or pip:

conda install -c derickl torchaudio
pip install torchaudio

In comparison with torchvision, torchaudio is similar to torchtext in that it’s not
quite as well loved, maintained, or documented. I’d expect this to change in the near
future as PyTorch gets more popular and better text and audio handling pipelines are
created. Still, torchaudio is plenty for our needs; we just have to write some custom
dataloaders (which we didn’t have to do for audio or text processing).

Anyhow, the core of torchaudio is found within load() and save(). We’re con‐
cerned only with load() in this chapter, but you’ll need to use save() if you’re gener‐
ating new audio from your input (e.g., a text-to-speech model). load() takes a file

Exploring ESC-50 | 95

http://sox.sourceforge.net
https://github.com/librosa/librosa

specified in filepath and returns a tensor representation of the audio file and the
sample rate of that audio file as a separate variable.

We now have the means for loading one of the WAV files from the ESC-50 dataset
and turning it into a tensor. Unlike our earlier work with text and images, we need to
write a bit more code before we can get on with creating and training a model. We
need to write a custom dataset.

Building an ESC-50 Dataset
We’ve talked about datasets in Chapter 2, but torchvision and torchtext did all the
heavy lifting for us, so we didn’t have to worry too much about the details. As you
may remember, a custom dataset has to implement two class methods, __getitem__
and __len__, so that the data loader can get a batch of tensors and their labels, as well
as a total count of tensors in the dataset. We also have an __init__ method for setting
up things like file paths that’ll be used over and over again.

Here’s our first pass at the ESC-50 dataset:
class ESC50(Dataset):

 def __init__(self,path):
 # Get directory listing from path
 files = Path(path).glob('*.wav')
 # Iterate through the listing and create a list of tuples (filename, label)
 self.items = [(f,int(f.name.split("-")[-1]
 .replace(".wav",""))) for f in files]
 self.length = len(self.items)

 def __getitem__(self, index):
 filename, label = self.items[index]
 audio_tensor, sample_rate = torchaudio.load(filename)
 return audio_tensor, label

 def __len__(self):
 return self.length

The majority of the work in the class happens when a new instance of it is created.
The __init__ method takes the path parameter, finds all the WAV files inside that
path, and then produces tuples of (filename, label) by using the same string split
we used earlier in the chapter to get the label of that audio sample. When PyTorch
requests an item from the dataset, we index into the items list, use torchaudio.load
to make torchaudio load in the audio file, turn it into a tensor, and then return both
the tensor and the label.

And that’s enough for us to start with. For a sanity check, let’s create an ESC50 object
and extract the first item:

test_esc50 = ESC50(PATH_TO_ESC50)
tensor, label = list(test_esc50)[0]

tensor

96 | Chapter 6: A Journey into Sound

tensor([-0.0128, -0.0131, -0.0143, ..., 0.0000, 0.0000, 0.0000])

tensor.shape
torch.Size([220500])

label
'15'

We can construct a data loader by using standard PyTorch constructs:

example_loader = torch.utils.data.DataLoader(test_esc50, batch_size = 64,
shuffle = True)

But before we do that, we have to go back to our data. As you might remember, we
should always create training, validation, and test sets. At the moment, we have just
one directory with all the data, which is no good for our purposes. A 60/20/20 split of
data into training, validation, and test collections should suffice. Now, we could do
this by taking random samples of our entire dataset (taking care to sample without
replacement and making sure that our newly constructed datasets are still balanced),
but again the ESC-50 dataset saves us from having to do much work. The compilers
of the dataset separated the data into five equal balanced folds, indicated by the first
digit in the filename. We’ll have folds 1,2,3 be the training set, 4 the validation set,
and 5 the test set. But feel free to mix it up if you don’t want to be boring and consec‐
utive! Move each of the folds to test, train, and validation directories:

mv 1* ../train
mv 2* ../train
mv 3* ../train
mv 4* ../valid
mv 5* ../test

Now we can create the individual datasets and loaders:

from pathlib import Path

bs=64
PATH_TO_ESC50 = Path.cwd() / 'esc50'
path = 'test.md'
test

train_esc50 = ESC50(PATH_TO_ESC50 / "train")
valid_esc50 = ESC50(PATH_TO_ESC50 / "valid")
test_esc50 = ESC50(PATH_TO_ESC50 / "test")

train_loader = torch.utils.data.DataLoader(train_esc50, batch_size = bs,
 shuffle = True)
valid_loader = torch.utils.data.DataLoader(valid_esc50, batch_size = bs,
 shuffle = True)
test_loader = torch.utils.data.DataLoader(test_esc50, batch_size = bs,
 shuffle = True)

We have our data all set up, so we’re all ready to look at a classification model.

Exploring ESC-50 | 97

2 See “Very Deep Convolutional Neural Networks for Raw Waveforms” by Wei Dai et al. (2016).

A CNN Model for ESC-50
For our first attempt at classifying sounds, we build a model that borrows heavily
from a paper called “Very Deep Convolutional Networks For Raw Waveforms.”2

You’ll see that it uses a lot of our building blocks from Chapter 3, but instead of using
2D layers, we’re using 1D variants, as we have one fewer dimension in our audio
input:

class AudioNet(nn.Module):
 def __init__(self):
 super(AudioNet, self).__init__()
 self.conv1 = nn.Conv1d(1, 128, 80, 4)
 self.bn1 = nn.BatchNorm1d(128)
 self.pool1 = nn.MaxPool1d(4)
 self.conv2 = nn.Conv1d(128, 128, 3)
 self.bn2 = nn.BatchNorm1d(128)
 self.pool2 = nn.MaxPool1d(4)
 self.conv3 = nn.Conv1d(128, 256, 3)
 self.bn3 = nn.BatchNorm1d(256)
 self.pool3 = nn.MaxPool1d(4)
 self.conv4 = nn.Conv1d(256, 512, 3)
 self.bn4 = nn.BatchNorm1d(512)
 self.pool4 = nn.MaxPool1d(4)
 self.avgPool = nn.AvgPool1d(30)
 self.fc1 = nn.Linear(512, 10)

 def forward(self, x):
 x = self.conv1(x)
 x = F.relu(self.bn1(x))
 x = self.pool1(x)
 x = self.conv2(x)
 x = F.relu(self.bn2(x))
 x = self.pool2(x)
 x = self.conv3(x)
 x = F.relu(self.bn3(x))
 x = self.pool3(x)
 x = self.conv4(x)
 x = F.relu(self.bn4(x))
 x = self.pool4(x)
 x = self.avgPool(x)
 x = x.permute(0, 2, 1)
 x = self.fc1(x)
 return F.log_softmax(x, dim = 2)

We also need an optimizer and a loss function. For the optimizer, we use Adam as
before, but what loss function do you think we should use? (If you answered CrossEn
tropyLoss, give yourself a gold star!)

98 | Chapter 6: A Journey into Sound

https://arxiv.org/pdf/1610.00087.pdf

audio_net = AudioNet()
audio_net.to(device)

Having created our model, we save our weights and use the find_lr() function from
Chapter 4:

audio_net.save("audionet.pth")
import torch.optim as optim
optimizer = optim.Adam(audionet.parameters(), lr=0.001)
logs,losses = find_lr(audio_net, nn.CrossEntropyLoss(), optimizer)
plt.plot(logs,losses)

From the plot in Figure 6-3, we determine that the appropriate learning rate is
around 1e-5 (based on where the descent looks steepest). We set that to be our learn‐
ing rate and reload our model’s initial weights:

Figure 6-3. AudioNet learning rate plot

lr = 1e-5
model.load("audionet.pth")
import torch.optim as optim
optimizer = optim.Adam(audionet.parameters(), lr=lr)

We train the model for 20 epochs:

train(audio_net, optimizer, torch.nn.CrossEntropyLoss(),
train_data_loader, valid_data_loader, epochs=20)

After training, you should find that the model attains around 13%–17% accuracy on
our dataset. That’s better than the 2% we could expect if we were just picking one of
the 50 classes at random. But perhaps we can do better; let’s investigate a different
way of looking at our audio data that may yield better results.

This Frequency Is My Universe
If you look back at the GitHub page for ESC-50, you’ll see a leaderboard of network
architectures and their accuracy scores. You’ll notice that in comparison, we’re not

This Frequency Is My Universe | 99

doing great. We could extend the model we’ve created to be deeper, and that would
likely increase our accuracy a little, but for a real increase in performance, we need to
switch domains. In audio processing, you can work on the pure waveform as we’ve
been doing; but most of the time, you’ll work in the frequency domain. This different
representation transforms the raw waveform into a view that shows all of the frequen‐
cies of sound at a given point in time. This is perhaps a more information-rich repre‐
sentation to present to a neural network, as it’ll be able to work on those frequencies
directly, rather than having to work out how to map the raw waveform signal into
something the model can use.

Let’s look at how to generate frequency spectrograms with LibROSA.

Mel Spectrograms
Traditionally, getting into the frequency domain requires applying the Fourier trans‐
form on the audio signal. We’re going to go beyond that a little by generating our
spectrograms in the mel scale. The mel scale defines a scale of pitches that are equal in
distance from another, where 1000 mels = 1000 Hz. This scale is commonly used in
audio processing, especially in speech recognition and classification applications.
Producing a mel spectrogram with LibROSA requires two lines of code:

sample_data, sr = librosa.load("ESC-50/train/1-100032-A-0.wav", sr=None)
spectrogram = librosa.feature.melspectrogram(sample_data, sr=sr)

This results in a NumPy array containing the spectrogram data. If we display this
spectrogram as shown in Figure 6-4, we can see the frequencies in our sound:

librosa.display.specshow(spectrogram, sr=sr, x_axis='time', y_axis='mel')

Figure 6-4. Mel spectrogram

However, not a lot of information is present in the image. We can do better! If we
convert the spectrogram to a logarithmic scale, we can see a lot more of the audio’s
structure, due to the scale being able to represent a wider range of values. And this is
common enough in audio procressing that LibROSA includes a method for it:

100 | Chapter 6: A Journey into Sound

log_spectrogram = librosa.power_to_db(spectrogram, ref=np.max)

This computes a scaling factor of 10 * log10(spectrogram / ref). ref defaults to
1.0, but here we’re passing in np.max() so that spectrogram / ref will fall within
the range of [0,1]. Figure 6-5 shows the new spectrogram.

Figure 6-5. Log mel spectrogram

We now have a log-scaled mel spectrogram! If you call log_spectrogram.shape,
you’ll see it’s a 2D tensor, which makes sense because we’ve plotted images with the
tensor. We could create a new neural network architecture and feed this new data into
it, but I have a diabolical trick up my sleeve. We literally just generated images of the
spectrogram data. Why don’t we work on those instead?

This might seem silly at first; after all, we have the underlying spectrogram data, and
that’s more exact than the image representation (to our eyes, knowing that a data
point is 58 rather than 60 means more to us than a different shade of, say, purple).
And if we were starting from scratch, that’d definitely be the case. But! We have, just
lying around the place, already-trained networks such as ResNet and Inception that
we know are amazing at recognizing structure and other parts of images. We can con‐
struct image representations of our audio and use a pretrained network to make big
jumps in accuracy with very little training by using the super power of transfer learn‐
ing once again. This could be useful with our dataset, as we don’t have a lot of exam‐
ples (only 2,000!) to train our network.

This trick can be employed across many disparate datasets. If you can find a way of
cheaply turning your data into an image representation, it’s worth doing that and
throwing a ResNet network against it to get a baseline of what transfer learning can
do for you, so you know what you have to beat by using a different approach. Armed
with this, let’s create a new dataset that will generate these images for us on demand.

This Frequency Is My Universe | 101

A New Dataset
Now throw away the original ESC50 dataset class and build a new one, ESC50Spectro
gram. Although this will share some code with the older class, quite a lot more is
going on in the __get_item__ method in this version. We generate the spectrogram
by using LibROSA, and then we do some fancy matplotlib footwork to get the data
into a NumPy array. We apply the array to our transformation pipeline (which just
uses ToTensor) and return that and the item’s label. Here’s the code:

class ESC50Spectrogram(Dataset):

def __init__(self,path):
 files = Path(path).glob('*.wav')
 self.items = [(f,int(f.name.split("-")[-1].replace(".wav","")))
 for f in files]
 self.length = len(self.items)
 self.transforms = torchvision.transforms.Compose(
 [torchvision.transforms.ToTensor()])

def __getitem__(self, index):
 filename, label = self.items[index]
 audio_tensor, sample_rate = librosa.load(filename, sr=None)
 spectrogram = librosa.feature.melspectrogram(audio_tensor, sr=sample_rate)
 log_spectrogram = librosa.power_to_db(spectrogram, ref=np.max)
 librosa.display.specshow(log_spectrogram, sr=sample_rate,
 x_axis='time', y_axis='mel')
 plt.gcf().canvas.draw()
 audio_data = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
 audio_data = audio_data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
 return (self.transforms(audio_data), label)

def __len__(self):
 return self.length

We’re not going to spend too much time on this version of the dataset because it has a
large flaw, which I demonstrate with Python’s process_time() method:

oldESC50 = ESC50("ESC-50/train/")
start_time = time.process_time()
oldESC50.__getitem__(33)
end_time = time.process_time()
old_time = end_time - start_time

newESC50 = ESC50Spectrogram("ESC-50/train/")
start_time = time.process_time()
newESC50.__getitem__(33)
end_time = time.process_time()
new_time = end_time - start_time

old_time = 0.004786839000075815
new_time = 0.39544327499993415

102 | Chapter 6: A Journey into Sound

The new dataset is almost one hundred times slower than our original one that just
returned the raw audio! That will make training incredibly slow, and may even negate
any of the benefits we could get from using transfer learning.

We can use a couple of tricks to get around most of our troubles here. The first
approach would be to add a cache to store the generated spectrogram in memory, so
we don’t have to regenerate it every time the __getitem__ method is called. Using
Python’s functools package, we can do this easily:

import functools

class ESC50Spectrogram(Dataset):
 #skipping init code

 @functools.lru_cache(maxsize=<size of dataset>)
 def __getitem__(self, index):

Provided you have enough memory to store the entire contents of the dataset into
RAM, this may be good enough. We’ve set up a least recently used (LRU) cache that
will keep the contents in memory for as long as possible, with indices that haven’t
been accessed recently being the first for ejection from the cache when memory gets
tight. However, if you don’t have enough memory to store everything, you’ll hit slow‐
downs on every batch iteration as ejected spectrograms need to be regenerated.

My preferred approach is to precompute all the possible plots and then create a new
custom dataset class that loads these images from the disk. (You can even add the
LRU cache annotation as well for further speed-up.)

We don’t need to do anything fancy for precomputing, just a method that saves the
plots into the same directory it’s traversing:

def precompute_spectrograms(path, dpi=50):
 files = Path(path).glob('*.wav')
 for filename in files:
 audio_tensor, sample_rate = librosa.load(filename, sr=None)
 spectrogram = librosa.feature.melspectrogram(audio_tensor, sr=sr)
 log_spectrogram = librosa.power_to_db(spectrogram, ref=np.max)
 librosa.display.specshow(log_spectrogram, sr=sr, x_axis='time',
 y_axis='mel')
 plt.gcf().savefig("{}{}_{}.png".format(filename.parent,dpi,
 filename.name),dpi=dpi)

This method is simpler than our previous dataset because we can use matplotlib’s
savefig method to save a plot directly to disk rather than having to mess around
with NumPy. We also provide an additional input parameter, dpi, which allows us to
control the quality of the generated output. Run this on all the train, test, and
valid paths that we have already set up (it will likely take a couple of hours to get
through all the images).

This Frequency Is My Universe | 103

All we need now is a new dataset that reads these images. We can’t use the standard
ImageDataLoader from Chapters 2–4, as the PNG filename scheme doesn’t match the
directory structure that it uses. But no matter, we can just open an image by using the
Python Imaging Library:

from PIL import Image

 class PrecomputedESC50(Dataset):
 def __init__(self,path,dpi=50, transforms=None):
 files = Path(path).glob('{}*.wav.png'.format(dpi))
 self.items = [(f,int(f.name.split("-")[-1]
 .replace(".wav.png",""))) for f in files]
 self.length = len(self.items)
 if transforms=None:
 self.transforms =
 torchvision.transforms.Compose([torchvision.transforms.ToTensor()])
 else:
 self.transforms = transforms

 def __getitem__(self, index):
 filename, label = self.items[index]
 img = Image.open(filename)
 return (self.transforms(img), label)

 def __len__(self):
 return self.length

This code is much simpler, and hopefully that’s also reflected in the time it takes to get
an entry from the dataset:

start_time = time.process_time()
b.__getitem__(33)
end_time = time.process_time()
end_time - start_time
>> 0.0031465259999094997

Obtaining an element from this dataset takes roughly the same time as in our original
audio-based one, so we won’t be losing anything by moving to our image-based
approach, except for the one-time cost of precomputing all the images before creating
the database. We’ve also supplied a default transform pipeline that turns an image
into a tensor, but it can be swapped out for a different pipeline during initialization.
Armed with these optimizations, we can start to apply transfer learning to the
problem.

A Wild ResNet Appears
As you may remember from Chapter 4, transfer learning requires that we take a
model that has already been trained on a particular dataset (in the case of images,
likely ImageNet), and then fine-tune it on our particular data domain, the ESC-50
dataset that we’re turning into spectrogram images. You might be wondering whether
a model that is trained on normal photographs is of any use to us. It turns out that the
pretrained models do learn a lot of structure that can be applied to domains that at

104 | Chapter 6: A Journey into Sound

first glance might seem wildly different. Here’s our code from Chapter 4 that initial‐
izes a model:

from torchvision import models
spec_resnet = models.ResNet50(pretrained=True)

for param in spec_resnet.parameters():
 param.requires_grad = False

spec_resnet.fc = nn.Sequential(nn.Linear(spec_resnet.fc.in_features,500),
nn.ReLU(),
nn.Dropout(), nn.Linear(500,50))

This initializes us with a pretrained (and frozen) ResNet50 model and swaps out the
head of the model for an untrained Sequential module that ends with a Linear with
an output of 50, one for each of the classes in the ESC-50 dataset. We also need to
create a DataLoader that takes our precomputed spectrograms. When we create our
ESC-50 dataset, we’ll also want to normalize the incoming images with the standard
ImageNet standard deviation and mean, as that’s what the pretrained ResNet-50
architecture was trained with. We can do that by passing in a new pipeline:

esc50pre_train = PreparedESC50(PATH, transforms=torchvision.transforms
.Compose([torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize
(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])]))

esc50pre_valid = PreparedESC50(PATH, transforms=torchvision.transforms
.Compose([torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize
(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])]))

esc50_train_loader = (esc50pre_train, bs, shuffle=True)
esc50_valid_loader = (esc50pre_valid, bs, shuffle=True)

With our data loaders set up, we can move on to finding a learning rate and get ready
to train.

Finding a Learning Rate
We need to find a learning rate to use in our model. As in Chapter 4, we’ll save the
model’s initial parameters and use our find_lr() function to find a decent learning
rate for training. Figure 6-6 shows the plot of the losses against the learning rate.

spec_resnet.save("spec_resnet.pth")
loss_fn = nn.CrossEntropyLoss()
optimizer = optim.Adam(spec_resnet.parameters(), lr=lr)
logs,losses = find_lr(spec_resnet, loss_fn, optimizer)
plt.plot(logs, losses)

This Frequency Is My Universe | 105

Figure 6-6. A SpecResNet learning rate plot

Looking at the graph of the learning rate plotted against loss, it seems like 1e-2 is a
good place to start. As our ResNet-50 model is somewhat deeper than our previous
one, we’re also going to use differential learning rates of [1e-2,1e-4,1e-8], with the
highest learning rate applied to our classifier (as it requires the most training!) and
slower rates for the already-trained backbone. Again, we use Adam as our optimizer,
but feel free to experiment with the others available.

Before we apply those differential rates, though, we train for a few epochs that update
only the classifier, as we froze the ResNet-50 backbone when we created our network:

optimizer = optim.Adam(spec_resnet.parameters(), lr=[1e-2,1e-4,1e-8])

train(spec_resnet, optimizer, nn.CrossEntropyLoss(),
esc50_train_loader, esc50_val_loader,epochs=5,device="cuda")

We now unfreeze the backbone and apply our differential rates:

for param in spec_resnet.parameters():
 param.requires_grad = True

optimizer = optim.Adam(spec_resnet.parameters(), lr=[1e-2,1e-4,1e-8])

train(spec_resnet, optimizer, nn.CrossEntropyLoss(),
esc50_train_loader, esc50_val_loader,epochs=20,device="cuda")

> Epoch 19, accuracy = 0.80

As you can see, with a validation accuracy of around 80%, we’re already vastly outper‐
forming our original AudioNet model. The power of transfer learning strikes again!
Feel free to train for more epochs to see if your accuracy continues to improve. If we
look at the ESC-50 leaderboard, we’re closing in on human-level accuracy. And that’s
just with ResNet-50. You could try with ResNet-101 and perhaps an ensemble of dif‐
ferent architectures to push the score up even higher.

106 | Chapter 6: A Journey into Sound

And there’s data augmentation to consider. Let’s take a look at a few ways of doing
that in both domains that we’ve been working in so far.

Audio Data Augmentation
When we were looking at images in Chapter 4, we saw that we could improve the
accuracy of our classifier by making changes to our incoming pictures. By flipping
them, cropping them, or applying other transformations, we made our neural net‐
work work harder in the training phase and obtained a more generalized model at the
end of it, one that was not simply fitting to the data presented (the scourge of overfit‐
ting, don’t forget). Can we do the same here? Yes! In fact, there are two approaches
that we can use—one obvious approach that works on the original audio waveform,
and a perhaps less-obvious idea that arises from our decision to use a ResNet-based
classifier on images of mel spectrograms. Let’s take a look at audio transforms first.

torchaudio Transforms
In a similar manner to torchvision, torchaudio includes a transforms module that
perform transformations on incoming data. However, the number of transformations
offered is somewhat sparse, especially compared to the plethora that we get when
we’re working with images. If you’re interested, have a look at the documentation for
a full list, but the only one we look at here is torchaudio.transforms.PadTrim. In
the ESC-50 dataset, we are fortunate in that every audio clip is the same length. That
isn’t something that happens in the real world, but our neural networks like (and
sometimes insist on, depending on how they’re constructed) input data to be regular.
PadTrim will take an incoming audio tensor and either pad it out to the required
length, or trim it down so it doesn’t exceed that length. If we wanted to trim down a
clip to a new length, we’d use PadTrim like this:

audio_tensor, rate = torchaudio.load("test.wav")
audio_tensor.shape
trimmed_tensor = torchaudio.transforms.PadTrim(max_len=1000)(audio_orig)

However, if you’re looking for augmentation that actually changes how the audio
sounds (e.g., adding an echo, noise, or changing the tempo of the clip), then the
torchaudio.transforms module is of no use to you. Instead, we need to use SoX.

SoX Effect Chains
Why it’s not part of the transforms module, I’m really not sure, but torchau
dio.sox_effects.SoxEffectsChain allows you to create a chain of one or more SoX
effects and apply those to an input file. The interface is a bit fiddly, so let’s see it in
action in a new version of the dataset that changes the pitch of the audio file:

class ESC50WithPitchChange(Dataset):

Audio Data Augmentation | 107

https://oreil.ly/d1kp6

 def __init__(self,path):
 # Get directory listing from path
 files = Path(path).glob('*.wav')
 # Iterate through the listing and create a list of tuples (filename, label)
 self.items = [(f,f.name.split("-")[-1].replace(".wav","")) for f in files]
 self.length = len(self.items)
 self.E = torchaudio.sox_effects.SoxEffectsChain()
 self.E.append_effect_to_chain("pitch", [0.5])

 def __getitem__(self, index):
 filename, label = self.items[index]
 self.E.set_input_file(filename)
 audio_tensor, sample_rate = self.E.sox_build_flow_effects()
 return audio_tensor, label

 def __len__(self):
 return self.length

In our __init__ method, we create a new instance variable, E, a SoxEffectsChain,
that will contain all the effects that we want to apply to our audio data. We then add a
new effect by using append_effect_to_chain, which takes a string indicating the
name of the effect, and an array of parameters to send to sox. You can get a list of
available effects by calling torchaudio.sox_effects.effect_names(). If we were to
add another effect, it would take place after the pitch effect we have already set up, so
if you want to create a list of separate effects and randomly apply them, you’ll need to
create separate chains for each one.

When it comes to selecting an item to return to the data loader, things are a little dif‐
ferent. Instead of using torchaudio.load(), we refer to our effects chain and point it
to the file by using set_input_file. But note that this doesn’t load the file! Instead,
we have to use sox_build_flow_effects(), which kicks off SoX in the background,
applies the effects in the chain, and returns the tensor and sample rate information
we would have otherwise obtained from load().

The number of things that SoX can do is pretty staggering, and I won’t go into more
detail on all the possible effects you could use. I suggest having a look at the SoX doc‐
umentation in conjunction with list_effects() to see the possibilities.

These transformations allow us to alter the original audio, but we’ve spent quite a bit
of this chapter building up a processing pipeline that works on images of mel spectro‐
grams. We could do what we did to generate the initial dataset for that pipeline, by
creating altered audio samples and then creating the spectrograms from them, but at
that point we’re creating an awful lot of data that we will need to mix together at run-
time. Thankfully, we can do some transformations on the spectrograms themselves.

SpecAugment
Now, you might be thinking at this point: “Wait, these spectrograms are just images!
We can use any image transform we want on them!” And yes! Gold star for you in the
back. But we do have to be a little careful; it’s possible, for example, that a random

108 | Chapter 6: A Journey into Sound

https://oreil.ly/uLBTF
https://oreil.ly/uLBTF

3 See “SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition” by Daniel S.
Park et al. (2019).

crop may cut out enough frequencies that it potentially changes the output class. This
is much less of an issue in our ESC-50 dataset, but if you were doing something like
speech recognition, that would definitely be something you’d have to consider when
applying augmentations. Another intriguing possibility is that because we know that
all the spectrograms have the same structure (they’re always going to be a frequency
graph!), we could create image-based transforms that work specifically around that
structure.

In 2019, Google released a paper on SpecAugment,3 which reported new state-of-the-
art results on many audio datasets. The team obtained these results by using three
new data augmentation techniques that they applied directly to a mel spectrogram:
time warping, frequency masking, and time masking. We won’t look at time warping
because the benefit derived from it is small, but we’ll implement custom transforms
for masking time and frequency.

Frequency masking
Frequency masking randomly removes a frequency or set of frequencies from our
audio input. This attempts to make the model work harder; it cannot simply memo‐
rize an input and its class, because the input will have different frequencies masked
during each batch. The model will instead have to learn other features that can deter‐
mine how to map the input to a class, which hopefully should result in a more accu‐
rate model.

In our mel spectrograms, this is shown by making sure that nothing appears in the
spectrograph for that frequency at any time step. Figure 6-7 shows what this looks
like: essentially, a blank line drawn across a natural spectrogram.

Here’s the code for a custom Transform that implements frequency masking:

class FrequencyMask(object):
 """
 Example:
 >>> transforms.Compose([
 >>> transforms.ToTensor(),
 >>> FrequencyMask(max_width=10, use_mean=False),
 >>>])

 """

 def __init__(self, max_width, use_mean=True):
 self.max_width = max_width
 self.use_mean = use_mean

Audio Data Augmentation | 109

https://arxiv.org/abs/1904.08779

 def __call__(self, tensor):
 """
 Args:
 tensor (Tensor): Tensor image of
 size (C, H, W) where the frequency
 mask is to be applied.

 Returns:
 Tensor: Transformed image with Frequency Mask.
 """
 start = random.randrange(0, tensor.shape[2])
 end = start + random.randrange(1, self.max_width)
 if self.use_mean:
 tensor[:, start:end, :] = tensor.mean()
 else:
 tensor[:, start:end, :] = 0
 return tensor

 def __repr__(self):
 format_string = self.__class__.__name__ + "(max_width="
 format_string += str(self.max_width) + ")"
 format_string += 'use_mean=' + (str(self.use_mean) + ')')

 return format_string

When the transform is applied, PyTorch will call the __call__ method with the ten‐
sor representation of the image (so we need to place it in a Compose chain after the
image has been converted to a tensor, not before). We’re assuming that the tensor will
be in channels × height × width format, and we want to set the height values in a small
range, to either zero or the mean of the image (because we’re using log mel spectro‐
grams, the mean should be the same as zero, but we include both options so you can
experiment to see if one works better than the other). The range is provided by the
max_width parameter, and our resulting pixel mask will be between 1 and max_pixels
wide. We also need to pick a random starting point for the mask, which is what the
start variable is for. Finally, the complicated part of this transform—we apply our
generated mask:

tensor[:, start:end, :] = tensor.mean()

This isn’t quite so bad when we break it down. Our tensor has three dimensions, but
we want to apply this transform across all the red, green, and blue channels, so we use
the bare : to select everything in that dimension. Using start:end, we select our
height range, and then we select everything in the width channel, as we want to apply
our mask across every time step. And then on the righthand side of the expression,
we set the value; in this case, tensor.mean(). If we take a random tensor from the
ESC-50 dataset and apply the transform to it, we can see in Figure 6-7 that this class is
creating the required mask.

110 | Chapter 6: A Journey into Sound

torchvision.transforms.Compose([FrequencyMask(max_width=10, use_mean=False),
torchvision.transforms.ToPILImage()])(torch.rand(3,250,200))

Figure 6-7. Frequency mask applied to a random ESC-50 sample

Next we’ll turn our attention to time masking.

Time masking
With our frequency mask complete, we can turn to the time mask, which does the
same as the frequency mask, but in the time domain. The code here is mostly the
same:

class TimeMask(object):
 """
 Example:
 >>> transforms.Compose([
 >>> transforms.ToTensor(),
 >>> TimeMask(max_width=10, use_mean=False),
 >>>])

 """

 def __init__(self, max_width, use_mean=True):
 self.max_width = max_width
 self.use_mean = use_mean

 def __call__(self, tensor):
 """
 Args:
 tensor (Tensor): Tensor image of
 size (C, H, W) where the time mask
 is to be applied.

 Returns:
 Tensor: Transformed image with Time Mask.
 """
 start = random.randrange(0, tensor.shape[1])
 end = start + random.randrange(0, self.max_width)
 if self.use_mean:
 tensor[:, :, start:end] = tensor.mean()
 else:
 tensor[:, :, start:end] = 0
 return tensor

Audio Data Augmentation | 111

 def __repr__(self):
 format_string = self.__class__.__name__ + "(max_width="
 format_string += str(self.max_width) + ")"
 format_string += 'use_mean=' + (str(self.use_mean) + ')')
 return format_string

As you can see, this class is similar to the frequency mask. The only difference is that
our start variable now ranges at some point on the height axis, and when we’re
doing our masking, we do this:

tensor[:, :, start:end] = 0

This indicates that we select all the values of the first two dimensions of our tensor
and the start:end range in the last dimension. And again, we can apply this to a ran‐
dom tensor from ESC-50 to see that the mask is being applied correctly, as shown in
Figure 6-8.

torchvision.transforms.Compose([TimeMask(max_width=10, use_mean=False),
torchvision.transforms.ToPILImage()])(torch.rand(3,250,200))

Figure 6-8. Time mask applied to a random ESC-50 sample

To finish our augmentation, we create a new wrapper transformation that ensures
that one or both of the masks is applied to a spectrogram image:

class PrecomputedTransformESC50(Dataset):
 def __init__(self,path,dpi=50):
 files = Path(path).glob('{}*.wav.png'.format(dpi))
 self.items = [(f,f.name.split("-")[-1].replace(".wav.png",""))
 for f in files]
 self.length = len(self.items)
 self.transforms = transforms.Compose([
 transforms.ToTensor(),
 RandomApply([FrequencyMask(self.max_freqmask_width)]p=0.5),
 RandomApply([TimeMask(self.max_timemask_width)]p=0.5)
])

 def __getitem__(self, index):
 filename, label = self.items[index]
 img = Image.open(filename)
 return (self.transforms(img), label)

112 | Chapter 6: A Journey into Sound

 def __len__(self):
 return self.length

Try rerunning the training loop with this data augmentation and see if you, like Goo‐
gle, achieve better accuracy with these masks. But maybe there’s still more that we can
try with this dataset?

Further Experiments
So far, we’ve created two neural networks—one based on the raw audio waveform,
and the other based on the images of mel spectrograms—to classify sounds from the
ESC-50 dataset. Although you’ve seen that the ResNet-powered model is more accu‐
rate using the power of transfer learning, it would be an interesting experiment to
create a combination of the two networks to see whether that increases or decreases
the accuracy. A simple way of doing this would be to revisit the ensembling approach
from Chapter 4: just combine and average the predictions. Also, we skipped over the
idea of building a network based on the raw data we were getting from the spectro‐
grams. If a model is created that works on that data, does it help overall accuracy if it
is introduced to the ensemble? We can also use other versions of ResNet, or we could
create new architectures that use different pretrained models such as VGG or Incep‐
tion as a backbone. Explore some of these options and see what happens; in my
experiments, SpecAugment improves ESC-50 classification accuracy by around 2%.

Conclusion
In this chapter, we used two very different strategies for audio classification, took a
brief tour of PyTorch’s torchaudio library, and saw how to precompute transforma‐
tions on datasets when doing transformations on the fly would have a severe impact
on training time. We discussed two approaches to data augmentation. As an unexpec‐
ted bonus, we again stepped through how to train an image-based model by using
transfer learning to quickly generate a classifier with decent accuracy compared to the
others on the ESC-50 leaderboard.

This wraps up our tour through images, test, and audio, though we return to all three
in Chapter 9 when we look at some applications that use PyTorch. Next up, though,
we look at how to debug models when they’re not training quite right or fast enough.

Further Experiments | 113

Further Reading
• “Interpreting and Explaining Deep Neural Networks for Classification of Audio

Signals” by Sören Becker et al. (2018)
• “CNN Architectures for Large-Scale Audio Classification” by Shawn Hershey et

al. (2016)

114 | Chapter 6: A Journey into Sound

https://arxiv.org/abs/1807.03418
https://arxiv.org/abs/1807.03418
https://arxiv.org/abs/1609.09430v2

CHAPTER 7

Debugging PyTorch Models

We’ve created a lot of models so far in this book, but in this chapter, we have a brief
look at interpreting them and working out what’s going on underneath the covers. We
take a look at using class activation mapping with PyTorch hooks to determine the
focus of a model’s decision about how to connect PyTorch to Google’s TensorBoard
for debugging purposes. I show how to use flame graphs to identify the bottlenecks in
transforms and training pipelines, as well as provide a worked example of speeding
up a slow transformation. Finally, we look at how to trade compute for memory when
working with larger models using checkpointing. First, though, a brief word about
your data.

It’s 3 a.m. What Is Your Data Doing?
Before we delve into all the shiny things like TensorBoard or gradient checkpointing
to use massive models on a single GPU, ask yourself this: do you understand your
data? If you’re classifying inputs, do you have a balanced sample across all the avail‐
able labels? In the training, validation, and test sets?

And furthermore, are you sure your labels are right? Important image-based datasets
such as MNIST and CIFAR-10 (Canadian Institute for Advanced Research) are
known to contain some incorrect labels. You should check yours, especially if cate‐
gories are similar to one another, like dog breeds or plant varieties. Simply doing a
sanity check of your data may end up saving a lot of time if you discover that, say, one
category of labels has only tiny images, whereas all the others have large-resolution
examples.

Once you’ve made sure your data is in good condition, then yes, let’s head over to
TensorBoard to start checking out some possible issues in your model.

115

TensorBoard
TensorBoard is a web application designed for visualizing various aspects of neural
networks. It allows for easy, real-time viewing of statistics such as accuracy, losses
activation values, and really anything you want to send across the wire. Although it
was written with TensorFlow in mind, it has such an agnostic and fairly straightfor‐
ward API that working with it in PyTorch is not that different from how you’d use it
in TensorFlow. Let’s install it and see how we can use it to gain some insights about
our models.

When reading up on PyTorch, you’ll likely come across references
to an application called Visdom, which is Facebook’s alternative to
TensorBoard. Before PyTorch v1.1, the way to support visualiza‐
tions was to use Visdom with PyTorch while third-party libraries
such as tensorboardX were available to integrate with Tensor‐
Board. While Visdom continues be maintained, the inclusion of an
official TensorBoard integration in v1.1 and above suggests that the
developers of PyTorch have recognized that TensorBoard is the de
facto neural net visualizer tool.

Installing TensorBoard
Installing TensorBoard can be done with either pip or conda:

pip install tensorboard
conda install tensorboard

PyTorch requires v1.14 or above of TensorBoard.

TensorBoard can then be started on the command line:

tensorboard --logdir=runs

You can then go to http://[your-machine]:6006, where you’ll see the welcome screen
shown in Figure 7-1. We can now send data to the application.

116 | Chapter 7: Debugging PyTorch Models

https://oreil.ly/rZqv2

Figure 7-1. TensorBoard

Sending Data to TensorBoard
The module for using TensorBoard with PyTorch is located in torch.utils.tensor
board:

from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter()
writer.add_scalar('example', 3)

We use the SummaryWriter class to talk to TensorBoard using the standard location
for logging output, ./runs, and we can send a scalar by using add_scalar with a tag.
Because SummaryWriter works asynchronously, it may take a moment, but you
should see TensorBoard update as shown in Figure 7-2.

Figure 7-2. Example data point in TensorBoard

TensorBoard | 117

Not very exciting, is it? Let’s write a loop that sends updates from an initial starting
point:

import random
value = 10
writer.add_scalar('test_loop', value, 0)
for i in range(1,10000):
 value += random.random() - 0.5
 writer.add_scalar('test_loop', value, i)

By passing where we are in our loop, as shown in Figure 7-3, TensorBoard gives us a
plot of the random walk we’re doing from 10. If we run the code again, we’ll see that it
has generated a different run inside the display, and we can select on the left side of
the web page whether we want to see all our runs or just some in particular.

Figure 7-3. Plotting a random walk in TensorBoard

We can use this to replace our print statements in the training loop. We can also
send the model itself to get a representation in TensorBoard!

import torch
import torchvision
from torch.utils.tensorboard import SummaryWriter
from torchvision import datasets, transforms,models

writer = SummaryWriter()
model = models.resnet18(False)
writer.add_graph(model,torch.rand([1,3,224,224]))

118 | Chapter 7: Debugging PyTorch Models

def train(model, optimizer, loss_fn, train_data_loader, test_data_loader, epochs=20):
 model = model.train()
 iteration = 0

 for epoch in range(epochs):
 model.train()
 for batch in train_loader:
 optimizer.zero_grad()
 input, target = batch
 output = model(input)
 loss = loss_fn(output, target)
 writer.add_scalar('loss', loss, epoch)
 loss.backward()
 optimizer.step()

 model.eval()
 num_correct = 0
 num_examples = 0
 for batch in val_loader:
 input, target = batch
 output = model(input)
 correct = torch.eq(torch.max(F.softmax(output), dim=1)[1], target).view(-1)
 num_correct += torch.sum(correct).item()
 num_examples += correct.shape[0]
 print("Epoch {}, accuracy = {:.2f}".format(epoch,
 num_correct / num_examples)
 writer.add_scalar('accuracy', num_correct / num_examples, epoch)
 iterations += 1

When it comes to using add_graph(), we need to send in a tensor to trace through
the model as well as the model itself. Once that happens, though, you should see
GRAPHS appear in TensorBoard, and as shown in Figure 7-4, clicking the large ResNet
block reveals further detail of the model’s structure.

Figure 7-4. Visualizing ResNet

TensorBoard | 119

We now have the ability to send accuracy and loss information as well as model struc‐
ture to TensorBoard. By aggregating multiple runs of accuracy and loss information,
we can see whether anything is different in a particular run compared to others,
which is a useful clue when trying to work out why a training run produced poor
results. We return to TensorBoard shortly, but first let’s look at other features that
PyTorch makes available for debugging.

PyTorch Hooks
PyTorch has hooks, which are functions that can be attached to either a tensor or a
module on the forward or backward pass. When PyTorch encounters a module with
a hook during a pass, it will call the registered hooks. A hook registered on a tensor
will be called when its gradient is being calculated.

Hooks are potentially powerful ways of manipulating modules and tensors because
you can completely replace the output of what comes into the hook if you so desire.
You could change the gradient, mask off activations, replace all the biases in the mod‐
ule, and so on. In this chapter, though, we’re just going to use them as a way of
obtaining information about the network as data flows through.

Given a ResNet-18 model, we can attach a forward hook on a particular part of the
model by using register_forward_hook:

def print_hook(self, module, input, output):
 print(f"Shape of input is {input.shape}")

model = models.resnet18()
hook_ref = model.fc.register_forward_hook(print_hook)
model(torch.rand([1,3,224,224]))
hook_ref.remove()
model(torch.rand([1,3,224,224]))

If you run this code you should see text printed out showing the shape of the input to
the linear classifier layer of the model. Note that the second time you pass a random
tensor through the model, you shouldn’t see the print statement. When we add a
hook to a module or tensor, PyTorch returns a reference to that hook. We should
always save that reference (here we do it in hook_ref) and then call remove() when
we’re finished. If you don’t store the reference, then it will just hang out and take up
valuable memory (and potentially waste compute resources during a pass). Backward
hooks work in the same way, except you call register_backward_hook() instead.

Of course, if we can print() something, we can certainly send it to TensorBoard!
Let’s see how to use both hooks and TensorBoard to get important stats on our layers
during training.

120 | Chapter 7: Debugging PyTorch Models

Plotting Mean and Standard Deviation
To start, we set up a function that will send the mean and standard deviation of an
output layer to TensorBoard:

def send_stats(i, module, input, output):
 writer.add_scalar(f"{i}-mean",output.data.std())
 writer.add_scalar(f"{i}-stddev",output.data.std())

We can’t use this by itself to set up a forward hook, but using the Python function
partial(), we can create a series of forward hooks that will attach themselves to a
layer with a set i value that will make sure that the correct values are routed to the
right graphs in TensorBoard:

from functools import partial

for i,m in enumerate(model.children()):
 m.register_forward_hook(partial(send_stats, i))

Note that we’re using model.children(), which will attach only to each top-level
block of the model, so if we have an nn.Sequential() layer (which we will have in a
ResNet-based model), we’ll attach a hook to only that block and not one for each
individual module within the nn.Sequential list.

If we train our model with our usual training function, we should see the activations
start streaming into TensorBoard, as shown in Figure 7-5. You’ll have to switch to
wall-clock time within the UI as we’re no longer sending step information back to
TensorBoard with the hook (as we’re getting the module information only when the
PyTorch hook is called).

TensorBoard | 121

Figure 7-5. Mean and standard deviation of modules in TensorBoard

Now, I mentioned in Chapter 2 that, ideally, layers in a neural network should have a
mean of 0 and a standard deviation of 1 to make sure that our calculations don’t run
off to infinity or to zero. Have a look at the layers in TensorBoard. Do they look like
they’re remaining in that value range? Does the plot sometimes spike and then col‐
lapse? If so, that could be a signal that the network is having difficulty training. In
Figure 7-5, our mean is close to zero, but our standard deviation is also pretty close to
zero as well. If this is happening in many layers of your network, it may be a sign that
your activation functions (e.g., ReLU) are not quite suited to your problem domain. It
might be worth experimenting with other functions to see if they improve the model’s
performance; PyTorch’s LeakyReLU is a good alternative offering similar activations to
the standard ReLU but lets more information through, which might help in training.

That about wraps up our look at TensorBoard, but the “Further Reading” on page 136
will point you to more resources. In the meantime, let’s see how we can get a model to
explain how it came to a decision.

Class Activation Mapping
Class activation mapping (CAM) is a technique for visualizing the activations of a net‐
work after it has classified an incoming tensor. In image-based classifiers, it’s often
shown as a heatmap on top of the original image, as shown in Figure 7-6.

122 | Chapter 7: Debugging PyTorch Models

Figure 7-6. Class activation mapping with Casper

From the heatmap, we can get an intuitive idea of how the network reached the deci‐
sion of Persian Cat from the available ImageNet classes. The activations of the net‐
work are at their highest around the face and body of the cat and low elsewhere in the
image.

To generate the heatmap, we capture the activations of the final convolutional layer of
a network, just before it goes into the Linear layer, as this allows us to see what the
combined CNN layers thinks are important as we head into the final mapping from
image to classes. Thankfully, with PyTorch’s hook feature, this is fairly straightfor‐
ward. We wrap up the hook in a class, SaveActivations:

class SaveActivations():
 activations=None
 def __init__(self, m):
 self.hook = m.register_forward_hook(self.hook_fn)
 def hook_fn(self, module, input, output):
 self.features = output.data
 def remove(self):
 self.hook.remove()

We then push our image of Casper through the network (normalizing for ImageNet),
apply softmax to turn the output tensor into probabilities, and use torch.topk() as a
way of pulling out both the max probability and its index:

import torch
from torchvision import models, transforms
from torch.nn import functional as F

casper = Image.open("casper.jpg")
Imagenet mean/std

normalize = transforms.Normalize(
 mean=[0.485, 0.456, 0.406],
 std=[0.229, 0.224, 0.225]
)

TensorBoard | 123

preprocess = transforms.Compose([
 transforms.Resize((224,224)),
 transforms.ToTensor(),
 normalize
])

display_transform = transforms.Compose([
 transforms.Resize((224,224))])

casper_tensor = preprocess(casper)

model = models.resnet18(pretrained=True)
model.eval()
casper_activations = SaveActivations(model.layer_4)
prediction = model(casper_tensor.unsqueeze(0))
pred_probabilities = F.softmax(prediction).data.squeeze()
casper_activations.remove()
torch.topk(pred_probabilities,1)

I haven’t explained torch.nn.functional yet, but the best way to
think about it is that it contains the implementation of the func‐
tions provided in torch.nn. For example, if you create an instance
of torch.nn.softmax(), you get an object with a forward()
method that performs softmax. If you look in the actual source for
torch.nn.softmax(), you’ll see that all that method does is call
F.softmax(). As we don’t need softmax here to be part of a net‐
work, we’re just calling the underlying function.

If we now access casper_activations.activations, we’ll see that it has been popu‐
lated by a tensor, which contains the activations of the final convolutional layer we
need. We then do this:

fts = sf[0].features[idx]
 prob = np.exp(to_np(log_prob))
 preds = np.argmax(prob[idx])
 fts_np = to_np(fts)
 f2=np.dot(np.rollaxis(fts_np,0,3), prob[idx])
 f2-=f2.min()
 f2/=f2.max()
 f2
plt.imshow(dx)
plt.imshow(scipy.misc.imresize(f2, dx.shape), alpha=0.5, cmap='jet');

This calculates the dot product of the activations from Casper (we index into 0
because of the batching in the first dimension of the input tensor, remember). As
mentioned in Chapter 1, PyTorch stores image data in C × H × W format, so we next
need to rearrange the dimensions back to H × W × C for displaying the image. We
then remove the minimums from the tensor and scale by the maximum to ensure

124 | Chapter 7: Debugging PyTorch Models

that we’re focusing on only the highest activations in the resulting heatmap (i.e., what
speaks to Persian Cat). Finally, we use some matplot magic to display Casper and
then the tensor on top, resized and given a standard jet color map. Note that by
replacing idx with a different class, you can see the heatmap indicating which activa‐
tions (if any) are present in the image when classified. So if the model predicts car,
you can see which parts of the image were used to make that decision. The second-
highest probability for Casper is Angora Rabbit, and we can see from the CAM for
that index that it focused on his very fluffy fur!

That wraps up our look into what a model is doing when it makes a decision. Next,
we’re going to investigate what a model spends most of its time doing while it’s in a
training loop or during inference.

Flame Graphs
In contrast to TensorBoard, flame graphs weren’t created specifically for neural net‐
works. Nope, not even TensorFlow. In fact, flame graphs trace their origin back to
2011, when an engineer named Brendan Gregg, working at a company called Joyent,
came up with the technique to help debug an issue he was having with MySQL. The
idea was to take massive stacktraces and turn them into a single image, which by itself
delivers a picture of what is happening on a CPU over a period of time.

Brendan Gregg now works for Netflix and has a huge amount of
performance-related work available to read and digest.

Using an example of MySQL inserting a row into a table, we sample the stack hun‐
dreds or thousand of times a second. Each time we sample, we get a stacktrace that
shows us all the functions in the stack at that point in time. So if we are in a function
that has been called by another function, we’ll get a trace that includes both the callee
and caller functions. A sample trace looks like this:

65.00% 0.00% mysqld [kernel.kallsyms] [k] entry_SYSCALL_64_fastpath
 |
 ---entry_SYSCALL_64_fastpath
 |
 |--18.75%-- sys_io_getevents
 | read_events
 | schedule
 | __schedule
 | finish_task_switch
 |
 |--10.00%-- sys_fsync
 | do_fsync

Flame Graphs | 125

http://www.brendangregg.com

 | vfs_fsync_range
 | ext4_sync_file
 | |
 | |--8.75%-- jbd2_complete_transaction
 | | jbd2_log_wait_commit
 | | |
 | | |--6.25%-- _cond_resched
 | | | preempt_schedule_common
 | | | __schedule

There’s a lot of this information; that’s just a tiny sample of a 400KB set of stack traces.
Even with this collation (which may not be present in all stacktraces), it’s difficult to
see what’s going on here.

The flame graph version, on the other hand, is simple and clear, as you can see in
Figure 7-7. The y-axis is stack height, and the x-axis is, while not time, a representa‐
tion of how often that function is on the stack when it has been sampled. So if we had
a function at the top of the stack that was covering, say, 80% of the graph, we’d know
that the program is spending an awful lot of running time in that function and that
maybe we should look at the function to see just what is making it take so long.

Figure 7-7. MySQL flame graph

You might ask, “What does this have to do with deep learning?” Fair enough; it’s a
common trope in deep learning research that when training slows down, you just buy
another 10 GPUs or give Google a lot more money for TPU pods. But maybe your
training pipeline isn’t GPU bound after all. Perhaps you have a really slow transfor‐
mation, and when you get all those shiny new graphics cards, they don’t end up help‐
ing as much as you’d have thought. Flame graphs provide a simple, at-a-glance way of

126 | Chapter 7: Debugging PyTorch Models

identifying CPU-bound bottlenecks, and these often occur in practical deep learning
solutions. For example, remember all those image-based transforms we talked about
in Chapter 4? Most of them use the Python Imaging Library and are totally CPU
bound. With large datasets, you’ll be doing those transforms over and over again
within the training loop! So while they’re not often brought up in the context of deep
learning, flame graphs are a great tool to have in your box. If nothing else, you can
use them as evidence to your boss that you really are GPU bound and you need all
those TPU credits by next Thursday! We’ll look at getting flame graphs from your
training cycles and at fixing a slow transformation by moving it from the CPU to the
GPU.

Installing py-spy
There are many ways to generate the stacktraces that can be turned into flame graphs.
The one in the previous section was generated using the Linux tool perf, which is a
complex and powerful tool. We’ll take a somewhat easier option and use py-spy, a
Rust-based stack profiler, to directly generate flame graphs. Install it via pip:

pip install py-spy

You can find the process identifier (PID) of a running process and attach py-spy by
using a --pid argument:

py-spy --flame profile.svg --pid 12345

Or you can pass in a Python script, which is how we run it in this chapter. First, let’s
run it on a simple Python script:

import torch
import torchvision

def get_model():
 return torchvision.models.resnet18(pretrained=True)

def get_pred(model):
 return model(torch.rand([1,3,224,224]))

model = get_model()

for i in range(1,10000):
 get_pred(model)

Save this as flametest.py and let’s run py-spy on it, sampling 99 times a second and
running for 30 seconds:

py-spy -r 99 -d 30 --flame profile.svg -- python t.py

Open the profile.svg file in your browser, and let’s take a look at the resulting graph.

Flame Graphs | 127

Reading Flame Graphs
Figure 7-8 shows what the graph should look like, roughly speaking (because of sam‐
pling, it may not look exactly like this on your machine). The first thing you’ll proba‐
bly notice is that the graph is going down instead of up. py-spy writes out flame
graphs in icicle format, so the stack looks like stalactites instead of the flames of the
classic flame graph. I prefer the normal format, but py-spy doesn’t give us the option
to change it, and it doesn’t make that much difference.

Figure 7-8. Flame graph on ResNet loading and inference

At a glance, you should see that most of the execution time is spent in various for
ward() calls, which makes sense because we are making lots of predictions with the
model. What about those tiny blocks on the left? If you click them, you should find
that the SVG file zooms in as shown in Figure 7-9.

Figure 7-9. Zoomed flame graph

Here, we can see the script setting up the ResNet-18 module and also calling
load_state_dict() to load the saved weights from disk (because we called it with
pretrained=True). You can click Reset Zoom to go back to the full flame graph. Also,
a search bar on the right will highlight matching bars in purple, if you’re trying to

128 | Chapter 7: Debugging PyTorch Models

hunt down a function. Try it with resnet, and it’ll show you every function call on the
stack with resnet in its name. This can be useful for finding functions that aren’t on
the stack much or seeing how much that pattern appears in the graph overall.

Play around with the SVG for a bit and see how much CPU time things like Batch‐
Norm and pooling are taking up in this toy example. Next, we’ll look at a way to use
flame graphs to find an issue, fix it, and verify it with another flame graph.

Fixing a Slow Transformation
In real-world situations, part of your data pipeline may be causing a slowdown. This
is a particular problem if you have a slow transformation, as it will be called many
times during a training batch, causing a massive bottleneck in creating your model.
Here’s an example transformation pipeline and a data loader:

import torch
import torchvision
from torch import optim
import torch.nn as nn
from torchvision import datasets, transforms, models
import torch.utils.data
from PIL import Image
import numpy as np

device = "cuda:0"
model = models.resnet18(pretrained=True)
model.to(device)

class BadRandom(object):
 def __call__(self, img):
 img_np = np.array(img)
 random = np.random.random_sample(img_np.shape)
 out_np = img_np + random
 out = Image.fromarray(out_np.astype('uint8'), 'RGB')
 return out

 def __repr__(self):
 str = f"{self.__class__.__name__ }"
 return str

train_data_path = "catfish/train"
image_transforms =
torchvision.transforms.Compose(
 [transforms.Resize((224,224)),BadRandom(), transforms.ToTensor()])

We’re not going to run a full training loop; instead, we simulate 10 epochs of just pull‐
ing the images from the training data loader:

train_data = torchvision.datasets.ImageFolder(root=train_data_path,
transform=image_transforms)

Flame Graphs | 129

batch_size=32
train_data_loader = torch.utils.data.DataLoader(train_data,
batch_size=batch_size)

optimizer = optim.Adam(model.parameters(), lr=2e-2)
criterion = nn.CrossEntropyLoss()

def train(model, optimizer, loss_fn, train_loader, val_loader,
epochs=20, device='cuda:0'):
 model.to(device)
 for epoch in range(epochs):
 print(f"epoch {epoch}")
 model.train()
 for batch in train_loader:
 optimizer.zero_grad()
 ww, target = batch
 ww = ww.to(device)
 target= target.to(device)
 output = model(ww)
 loss = loss_fn(output, target)
 loss.backward()
 optimizer.step()

 model.eval()
 num_correct = 0
 num_examples = 0
 for batch in val_loader:
 input, target = batch
 input = input.to(device)
 target= target.to(device)
 output = model(input)
 correct = torch.eq(torch.max(output, dim=1)[1], target).view(-1)
 num_correct += torch.sum(correct).item()
 num_examples += correct.shape[0]
 print("Epoch {}, accuracy = {:.2f}"
 .format(epoch, num_correct / num_examples))

train(model,optimizer,criterion,
train_data_loader,train_data_loader,epochs=10)

Let’s run that code under py-spy as before:

py-spy -r 99 -d 120 --flame slowloader.svg -- python slowloader.py

If you open the resulting slowloader.svg, you should hopefully see something like
Figure 7-10. Although the flame graph is mostly occupied with loading the images
and converting them to tensors, we are spending 16.87% of the sampled runtime in
applying random noise. Looking at the code, our implementation of BadRandom is
applying noise at the PIL stage rather than at the tensor stage, so we’re at the mercy of
the imaging library and NumPy rather than PyTorch itself. So our first idea would
likely be to rewrite the transform so that it operates on tensors instead of the PIL

130 | Chapter 7: Debugging PyTorch Models

images. That’s likely to be faster, but not always—and the important thing when mak‐
ing performance changes is always to measure everything.

Figure 7-10. Flame graph with BadRandom

But here’s a curious thing, which has been present all the way through the book,
though I’ve not drawn attention to it until now: have you noticed that we pull batches
from the data loader and then put those batches onto the GPU? Because the trans‐
forms occur as the loader gets batches from the dataset class, those transforms are
always going to happen on the CPU. In some cases, that can lead to some crazy lateral
thinking. We are applying random noise on every image. What if we could apply ran‐
dom noise on every image at once?

Here’s the bit that might seem mind-bending at first: we’re adding random noise to an
image. We can write that as x + y, with x being our image and y our noise. We know
that both image and noise are 3D (width, height, channels), so all we’re doing here is
matrix multiplication. And in a batch, we’ll be doing this z times. We’re just iterating
over each image as we pull them out of the loader. But consider that at the end of the
loading process, the images are transformed into tensors, a batch of [z, c, h, w]. Well,
couldn’t you just add a random tensor of shape [z, c, h, w] and get the random noise
applied that way? Instead of applying the noise in sequence, it happens all at once. We
now have a matrix operation, and a very expensive GPU that just happens to be
rather good at matrix operations. Try this in Jupyter Notebook to see the difference
between CPU and GPU tensor matrix operations:

cpu_t1 = torch.rand(64,3,224,224)
cpu_t2 = torch.rand(64,3,224,224)
%timeit cpu_t1 + cpu_t2
>> 5.39 ms ± 4.29 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

gpu_t1 = torch.rand(64,3,224,224).to("cuda")
gpu_t2 = torch.rand(64,3,224,224).to("cuda")
%timeit gpu_t1 + gpu_t2
>> 297 µs ± 338 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)

That’s just under 20 times faster. Instead of performing this transformation in our
data loader, we can take it out and perform the matrix operations after we have the
entire batch at our disposal:

Flame Graphs | 131

def add_noise_gpu(tensor, device):
 random_noise = torch_rand_like(tensor).to(device)
 return tensor.add_(random_noise)

In our training loop, add this line after input.to(device):

input = add_noise_gpu(input, device)

Then remove the BadRandom transform from the transform pipeline and test again
with py-spy. The new flame graph is shown in Figure 7-11. It’s so fast that it no
longer even shows up under our sampling frequency. We’ve just sped up the code by
almost 17%! Now, not all standard transforms can be written in a GPU-friendly way,
but if it’s possible and the transform is slowing you down, then it’s definitely an
option worth considering.

Figure 7-11. Flame graph with GPU-accelerated random noise

Now that we’ve considered compute, it’s time to look at the other elephant in the
room: memory, especially memory on the GPU.

Debugging GPU Issues
In this section, we drill down deeper into the GPU itself. One thing you’ll soon dis‐
cover in training larger deep learning models is that the shiny GPU that you’ve spent
so much money on (or, more wisely, attached to a cloud-based instance) is brought to
its knees regularly, bitterly complaining about running out of memory. But that GPU
has gigabytes and gigabytes of storage! How could you possibly run out?

Models tend to soak up a lot of memory. ResNet-152, for example, has about 60 mil‐
lion activations, all of which take up precious space on your GPU. Let’s see how to
peer inside the GPU to determine what could be going on when you’re running low
on memory.

Checking Your GPU
Assuming you are using an NVIDIA GPU (check your alternate GPU supplier’s driv‐
ers website for their own utilities if you’re using something different), the CUDA
installation includes a rather useful command-line tool called nvidia-smi. When run
with no arguments, this tool can give you a snapshot of the memory being used on

132 | Chapter 7: Debugging PyTorch Models

the GPU, and even better, what is using it! Figure 7-12 shows output from running
nvidia-smi within the terminal. Within a notebook, you can call out to the utility by
using !nvidia-smi.

Figure 7-12. Output from nvidia-smi

This example is taken from my home machine running a 1080 Ti. I’m running a
bunch of notebooks, each of which is taking up a chunk of memory, but one is using
4GB! You can get the current PID of a notebook by using os.getpid(). It turns out
that the process using the most memory was actually an experimental notebook I was
using to test out the GPU transforms in the previous section! You can imagine that
with the model, batch data, and data for the forward and backward passes, things get
tight memory-wise rather quickly.

I also have a couple of processes running that are, perhaps surpris‐
ingly, doing graphics—namely, the X server and GNOME. Unless
you’ve built a local machine, you almost certainly won’t see these.

In addition, PyTorch will dedicate a chunk of memory to itself and CUDA per pro‐
cess that is around 0.5GB of memory. This means that it’s a better idea to work on
one project at a time and not leave Jupyter Notebook running all over the place as I

Debugging GPU Issues | 133

have here (you can use the Kernel menu to shut down the Python process connected
to a notebook).

Running nvidia-smi by itself will give you the current snapshot of the GPU’s usage,
but you can get continual output by using the -l flag. Here’s an example command
that will dump the timestamp, used memory, free memory, total memory, and GPU
utilization every 5 seconds:

nvidia-smi --query-gpu=timestamp,
memory.used, memory.free,memory.total,utilization.gpu --format=csv -l 5

If you really think that your GPU is using up more memory than it should be, you
can try getting Python’s garbage collector involved. If you have a ten

sor_to_be_deleted that you no longer need and want it gone from the GPU, then a
tip from the bowels of the fast.ai library is to give it a shove with del:

import gc
del tensor_to_be_deleted
gc.collect()

If you’re doing a lot of work inside Jupyter Notebook creating and re-creating models,
you may find that deleting some references and invoking the garbage collector by
using gc.collect() will claw back some memory. If you’re still having trouble with
memory, read on, because there may be an answer to your woes!

Gradient Checkpointing
Despite all the deletion and garbage collection tricks presented in the previous sec‐
tion, you might still find yourself running out of memory. The next thing to do for
most applications is to reduce the batch size of data going through a model during the
training loop. This will work, but you’re going to increase training time for each
epoch, and it’s likely that the model will not be as good as an equivalent one trained
with enough memory to handle the larger batch sizes, because you’ll be seeing more
of the dataset on every pass. However, we can trade compute against memory for
large models in PyTorch by using gradient checkpointing.

One of the problems when dealing with bigger models is that the forward and back‐
ward passes create lots of intermediate state, all of which occupy GPU memory. The
goal of gradient checkpointing is to reduce the amount of state that may be on the
GPU at any one time by segmenting the model. This approach means that you can
have between four and ten times the batch size with a nonsegmented model, with that
being offset by the training being more compute-intensive. During the forward pass,
PyTorch saves the inputs and the parameters to a segment, but doesn’t actually do the
forward pass itself. During the backward pass, these are retrieved by PyTorch, and the
forward pass is computed for that segment. The intermediate values are passed onto

134 | Chapter 7: Debugging PyTorch Models

the next segment, but those have to be performed on only a segment-by-segment
basis.

Chopping up a model into these segments is handled by torch.utils.check
point.checkpoint_sequential(). It works on nn.Sequential layers or generated
lists of layers, with the proviso that they need to be in sequence of how they occur in
the model. Here’s how it would work on the features module in AlexNet:

from torch.utils.checkpoint import checkpoint_sequential
import torch.nn as nn

class CheckpointedAlexNet(nn.Module):

 def __init__(self, num_classes=1000, chunks=2):
 super(CheckpointedAlexNet, self).__init__()
 self.features = nn.Sequential(
 nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),
 nn.ReLU(inplace=True),
 nn.MaxPool2d(kernel_size=3, stride=2),
 nn.Conv2d(64, 192, kernel_size=5, padding=2),
 nn.ReLU(inplace=True),
 nn.MaxPool2d(kernel_size=3, stride=2),
 nn.Conv2d(192, 384, kernel_size=3, padding=1),
 nn.ReLU(inplace=True),
 nn.Conv2d(384, 256, kernel_size=3, padding=1),
 nn.ReLU(inplace=True),
 nn.Conv2d(256, 256, kernel_size=3, padding=1),
 nn.ReLU(inplace=True),
 nn.MaxPool2d(kernel_size=3, stride=2),
)
 self.avgpool = nn.AdaptiveAvgPool2d((6, 6))
 self.classifier = nn.Sequential(
 nn.Dropout(),
 nn.Linear(256 * 6 * 6, 4096),
 nn.ReLU(inplace=True),
 nn.Dropout(),
 nn.Linear(4096, 4096),
 nn.ReLU(inplace=True),
 nn.Linear(4096, num_classes),
)

 def forward(self, x):
 x = checkpoint_sequential(self.features, chunks, x)
 x = self.avgpool(x)
 x = x.view(x.size(0), 256 * 6 * 6)
 x = self.classifier(x)
 return x

As you can see, not much is different here, making checkpointing an easy addition to
models when required. We’ve added a chunks parameter to the new version of the
model, with the default being to split it into two segments. All we then need to do is

Debugging GPU Issues | 135

make a call to checkpoint_sequential with the features module, the number of
segments, and our inputs. And that’s it!

One slight kink in checkpointing is that it doesn’t behave well with BatchNorm or Drop
out layers because of how they interact with the forward pass. To work around that,
you can just checkpoint parts of the model before and after those layers. In our Check
pointedAlexNet, we could perhaps break the classifier module into two parts: one
containing the Dropout layers that are uncheckpointed, and a final nn.Sequential
module containing our Linear layers that we could checkpoint in the same way we
did with features.

If you find yourself with diminishing batch sizes in order to get a model to run, con‐
sider checkpointing before you ask for a larger GPU!

Conclusion
Hopefully, you’re now equipped to go hunting in search of answers when training
your model doesn’t go as planned. From sanitizing data to running flame graph or
TensorBoard visualizations, you have a lot of tools at your disposal; you’ve also seen
ways of trading memory for compute with GPU transforms, and vice versa using
checkpointing.

Armed with a properly trained, debugged model, we’re on our way to that harshest of
realms: production.

Further Reading
• TensorBoard documentation
• TensorBoard GitHub
• Fast.ai Lesson 10: Looking Inside The Model
• Investigation into BatchNorm within a ResNet model
• Deeper dive into generating flame graphs with Brendan Gregg
• nvidia-smi documentation
• PyTorch gradient checkpointing documentation

136 | Chapter 7: Debugging PyTorch Models

https://oreil.ly/MELKl
https://oreil.ly/21bIM
https://oreil.ly/K4dz-
https://oreil.ly/EXdK3
https://oreil.ly/4Ectg
https://oreil.ly/W1g0n
https://oreil.ly/v0apy

CHAPTER 8

PyTorch in Production

Now that you’ve learned how to use PyTorch to classify images, text, and sound, the
next step is to look at how to deploy PyTorch applications in production. In this
chapter, we create applications that run inference on PyTorch models over HTTP and
gRPC. We then package those applications into Docker containers and deploy them
to a Kubernetes cluster running on Google Cloud.

In the second half, we look at TorchScript, a new technology introduced in PyTorch
1.0 that allows us to use just-in-time (JIT) tracing to produce optimized models that
can be run from C++. We also have a brief look at how to compress models with
quantization. First up, let’s look at model serving.

Model Serving
We’ve spent the last six chapters building models in PyTorch, but building a model is
only part of building a deep learning application. After all, a model may have amaz‐
ing accuracy (or other relevant metric), but if it never makes any predictions, is it
worth anything? What we want is an easy way to package our models so they can
respond to requests (either over the web or other means, as we’ll see) and can be run
in production with the minimum of effort.

Thankfully, Python allows us to get a web service up and running quickly with the
Flask framework. In this section, we build a simple service that loads our ResNet-
based cat or fish model, accepts requests that include an image URL, and returns a
JSON response that indicates whether the image contains a cat or a fish.

137

What happens if we send the model a picture of a dog? The model
will tell you that it is either a fish or a cat. It has no concept of any‐
thing but the available choices and will always pick one. Some deep
learning practitioners add an extra class, Unknown, during training
and throw in labeled examples that aren’t any of the required
classes. This works to a certain extent, but it essentially tries to
make the neural net learn everything that isn’t a cat or fish, which is
difficult for you and me to express, let alone a series of matrix cal‐
culations! Another option is to look at the probability output gen‐
erated by the final softmax. If the model is producing a prediction
that is roughly 50/50 cat/fish or spread out across your classes, then
maybe suggest Unknown.

Building a Flask Service
Let’s get a web service-enabled version of our model up and running. Flask is a popu‐
lar framework for creating web services with Python, and we’ll be using it as a base
throughout this chapter. Install the Flask library with either pip or conda:

conda install -c anaconda flask
pip install flask

Create a new directory called catfish and copy your model definition inside as
model.py:

from torchvision import models

CatfishClasses = ["cat","fish"]

CatfishModel = models.ResNet50()
CatfishModel.fc = nn.Sequential(nn.Linear(transfer_model.fc.in_features,500),
 nn.ReLU(),
 nn.Dropout(), nn.Linear(500,2))

Note that we do not specify a pretrained model here, because we will be loading our
saved weights in the Flask server startup process. Then create another Python script,
catfish_server.py, where we will start our web service:

from flask import Flask, jsonify
from . import CatfishModel
from torchvision import transforms
import torch
import os

def load_model():
 return model

app = Flask(__name__)

@app.route("/")

138 | Chapter 8: PyTorch in Production

def status():
 return jsonify({"status": "ok"})

@app.route("/predict", methods=['GET', 'POST'])
def predict():
 img_url = request.image_url
 img_tensor = open_image(BytesIO(response.content))
 prediction = model(img_tensor)
 predicted_class = CatfishClasses[torch.argmax(prediction)]
 return jsonify({"image": img_url, "prediction": predicted_class})

if __name__ == '__main__':
 app.run(host=os.environ["CATFISH_HOST"], port=os.environ["CATFISH_PORT"])

You can start up a web server on the command line by setting the CATFISH_HOST and
CATFISH_PORT environment variables:

CATFISH_HOST=127.0.0.1 CATFISH_PORT=8080 python catfish_server.py

If you point your web browser at http://127.0.0.1:8080, you should get a status:
"ok" JSON response as shown in Figure 8-1.

Figure 8-1. OK response from CATFISH

We discuss this in more detail later in this chapter, but don’t deploy
a Flask service directly to production because the built-in server is
not adequate for production usage.

To make a prediction, find an image URL and send it as a GET request with the
image_url parameter to the /predict path. You should see a JSON response showing
the URL and the predicted class, as shown in Figure 8-2.

Figure 8-2. Prediction from CATFISH

Model Serving | 139

http://127.0.0.1:8080

The magic in Flask is in the @app.route() annotations. These allow us to attach nor‐
mal Python functions that will be run when a user hits a particular endpoint. In our
predict() method, we pull out the img_url parameter from either a GET or POST
HTTP request, open that URL as a PIL image, and push it through a simple torchvi
sion transform pipeline to resize it and turn the image into a tensor.

This gives us a tensor of shape [3,224,224], but because of the way our model works,
we need to turn it into a batch of size 1—that is, [1,3,224,224]. So we use
unsqueeze() again to expand our tensor by inserting a new empty axis in front of the
existing dimensions. We can then pass it through the model as usual, which gives us
our prediction tensor. As we have done previously, we use torch.argmax() to find
the element of the tensor with the highest value and use that to index into the Cat
fishClasses array. Finally, we return a JSON response with the name of the class and
the image URL we performed the prediction on.

If you experiment with the server at this point, you might be a little disappointed with
the classification performance. Didn’t we spend a lot of time training it? Yes, we did,
but in re-creating the model, we have simply created a set of layers with the standard
PyTorch initialization! So no wonder it’s not good. Let’s flesh out load_model() to
load in our parameters.

We’re returning only the predicted class here, not the complete set
of predictions across all classes. You could certainly return the pre‐
diction tensor as well, though be aware that the complete tensor
output makes it a little easier for attackers to build up a replica of
your model through more information leakage.

Setting Up the Model Parameters
In Chapter 2, we talked about the two ways to save a model after training, either by
writing the entire model to disk with torch.save() or by saving the state_dict() of
all the weights and biases of the model (but not the structure). For our production-
based service, we need to load in an already-trained model, so what should we use?

In my opinion, you should go for the state_dict approach. Saving the entire model
is an attractive option, but you will become incredibly sensitive to any changes in the
model structure or even the directory structure of the training setup. That’s likely to
cause a problem with loading it up in a separate service that runs elsewhere. If we’re
making a migration to a slightly different layout, we’d like to not have to rework
everything.

We’d also be better off not hardcoding the filename of the saved state_dicts() so we
can decouple model updates from our service. This means we can restart the service
with a new model or revert to an earlier model with ease. We pass in the filename as a

140 | Chapter 8: PyTorch in Production

parameter—but where should it point? For the moment, assume that we can set an
environment variable called CATFISH_MODEL_LOCATION, and use that in
load_model():

def load_model():
 m = CatfishModel()
 location = os.environ["CATFISH_MODEL_LOCATION"]
 m.load_state_dict(torch.load(location))
 return m

Now, copy in one of the model weight files you saved in Chapter 4 into the directory
and set CATFISH_MODEL_LOCATION to point to that file:

export CATFISH_MODEL_LOCATION=catfishweights.pt

Restart the server, and you should see that the service is a lot more accurate!

We now have a working minimal web service (you’d probably want a little more error
handling, but I’m leaving that as an exercise for you!). But how do we get that run‐
ning on a server in, say, AWS or Google Cloud? Or just on somebody else’s laptop?
After all, we have installed a bunch of libraries to get this working. We can use
Docker to package everything up into one container that can be installed in any Linux
(or Windows, with the new Windows Subsystem for Linux!) environment in seconds.

Building the Docker Container
Docker has become one of the de facto standards for application packaging in the
past few years. Cutting-edge cluster environments such as Kubernetes have Docker at
their core for deploying applications (as you’ll see later in the chapter), and it’s even
made large inroads in enterprises as well.

If you haven’t come across Docker before, here’s a quick explanation: it’s modeled on
the idea of shipping containers. You specify a bundle of files (typically, using a Dock‐
erfile) that Docker uses to build an image, and Docker then runs that image in a con‐
tainer, which is an isolated process on your system that can see only the files you’ve
specified and the programs you’ve told it to run. You can then share the Dockerfile so
people can build their own images, but a more common approach is to push the cre‐
ated image to a registry, which is a list of Docker images that can be downloaded by
anybody with access. These registries can be public or private; the Docker corpora‐
tion runs Docker Hub, which is a public registry that contains over 100,000 Docker
images, but many companies run private registries for internal use.

What we need to do is write our own Dockerfile. This might sound a little over‐
whelming. What do we have to tell Docker to install? Our code? PyTorch? Conda?
Python? Linux itself? Thankfully, Dockerfiles can inherit from other images, so we
could, for example, inherit from the standard Ubuntu image and install Python,
PyTorch, and everything else from there. But we can do better! A selection of Conda

Model Serving | 141

https://hub.docker.com

images is available to choose from that will give us a base Linux, Python, and Ana‐
conda installation to build on. Here’s an example Dockerfile that can be used to build
a container image for our service:

FROM continuumio/miniconda3:latest

ARG model_parameter_location
ARG model_parameter_name
ARG port
ARG host

ENV CATFISH_PORT=$port
ENV CATFISH_HOST=$host
ENV CATFISH_MODEL_LOCATION=/app/$model_parameter_name

RUN conda install -y flask \
 && conda install -c pytorch torchvision \
 && conda install waitress
RUN mkdir -p /app

COPY ./model.py /app
COPY ./server.py /app
COPY $model_location/$model_weights_name /app/
COPY ./run-model-service.sh /

EXPOSE $port

ENTRYPOINT ["/run-model-service.sh"]

A few things are happening here, so let’s take a look. The first line in almost all Dock‐
erfiles will be FROM, which lists the Docker image that this file inherits from. In this
case, it’s continuumio/miniconda3:latest. The first part of this string is the image
name. Images are also versioned, so everything after the colon is a tag indicating
which version of the image we want to download. There’s also a magic tag latest,
which we use here to download the latest version of the image we’re after. You may
want to pin your service to a particular version so you aren’t surprised by possible
later changes in the base image causing issues in yours.

ARG and ENV deal with variables. ARG specifies a variable that is supplied to Docker
when we’re building the image, and then the variable can be used later in the Docker‐
file. ENV allows you to specify environment variables that will be injected into the con‐
tainer at runtime. In our container, we use ARG to specify, for example, that port is a
configurable option, and then use ENV to ensure that the configuration is available to
our script at startup.

Having done that, RUN and COPY allow us to manipulate the image we’ve inherited
from. RUN runs actual commands within the image, and any changes are saved as a
new layer of the image on top of the base layer. COPY takes something from the

142 | Chapter 8: PyTorch in Production

Docker build context (typically, any files from the directory that the build command
has issued or any subdirectories) and inserts it into a location on the image’s filesys‐
tem. Having created /app by using RUN, we then use COPY to move our code and
model parameters into the image.

EXPOSE indicates to Docker which port should be mapped to the outside world. By
default, no ports are opened, so we add one here, taken from the ARG command ear‐
lier in the file. Finally, ENTRYPOINT is the default command that is run when a con‐
tainer is created. Here we’ve specified a script, but we haven’t made it yet! Let’s do that
before we build our Docker image:

#!/bin/bash
#run-model-service.sh
cd /app
waitress-serve --call 'catfish_server:create_app'

Wait, what’s happening here? Where did waitress come from? The issue is that when
we were running our Flask-based server before it used a simple web server that is
meant only for debugging purposes. If we want to put this into production, we need a
production-grade web server. Waitress fulfills that requirement. We don’t need to go
into much detail about it, but you can check out the Waitress documentation if you
want to learn more.

With all that set up, we can finally create our image by using docker build:

docker build -t catfish-service .

We can make sure that the image is available on our system by using docker images:

>docker images
REPOSITORY TAG IMAGE ID
catfish-service latest e5de5ad808b6

Running our model prediction service can then be done using docker run:

docker run catfish-service -p 5000:5000

We also use the -p argument to map the container’s port 5000 to our computer’s port
5000. You should be able to go back to http://localhost:5000/predict just as before.

One thing you might notice when running docker images locally is that our Docker
image is over 4GB in size! That’s quite big, considering we didn’t write much code.
Let’s look at ways to make that image smaller and make our image more practical for
deployment at the same time.

Model Serving | 143

https://oreil.ly/x96Ir

Local Versus Cloud Storage
Obviously, the easiest answer to where to store our saved model parameters is on the
local filesystem, whether that’s on our computer or the filesystem within a Docker
container. But there are a couple of problems with this. First, the model is hardcoded
into the image. Also, it’s quite possible that after the image is built and put into pro‐
duction, we need to update the model. With our current Dockerfile, we have to com‐
pletely rebuild the image, even if the model’s structure hasn’t changed! Second, most
of the size of our images comes from the size of the parameter file. You may not have
noticed that they tend to be quite large! Try this out for size:

ls -l
total 641504
-rw------- 1 ian ian 178728960 Feb 4 2018 resnet101-5d3b4d8f.pth
-rw------- 1 ian ian 241530880 Feb 18 2018 resnet152-b121ed2d.pth
-rw------- 1 ian ian 46827520 Sep 10 2017 resnet18-5c106cde.pth
-rw------- 1 ian ian 87306240 Dec 23 2017 resnet34-333f7ec4.pth
-rw------- 1 ian ian 102502400 Oct 1 2017 resnet50-19c8e357.pth

If we add these models to the filesystem on every build, our Docker images will likely
be quite large, which makes pushing and pulling slower. What I suggest is local file‐
systems or Docker volume-mapped containers if you’re running on-premises, but if
you’re doing a cloud deployment, which we are leading up to, it makes sense to take
advantage of the cloud. Model parameter files can be uploaded to Azure Blob Storage,
Amazon Simple Storage Service (Amazon S3), or Google Cloud Storage and be pulled
in at startup.

We can rewrite our load_model() function to download the parameter file at startup:

from urllib.request import urlopen
from shutil import copyfileobj
from tempfile import NamedTemporaryFile

def load_model():
 m = CatfishModel()
 parameter_url = os.environ["CATFISH_MODEL_LOCATION"]
 with urlopen(url) as fsrc, NamedTemporaryFile() as fdst:
 copyfileobj(fsrc, fdst)
 m.load_state_dict(torch.load(fdst))
 return m

There are, of course, many ways of downloading files with Python; Flask even comes
with the requests module that would easily download the file. A potential issue,
though, is that many approaches download the entire file into memory before writing
it to disk. Most of the time, that makes sense, but when downloading model parame‐
ter files, they could get into the gigabyte range. So in this new version of
load_model(), we use urlopen() and copyfileobj() to carry out the copying, and

144 | Chapter 8: PyTorch in Production

NamedTemporaryFile() to give us a destination that can be deleted at the end of the
block, as by that point, we’ve already loaded the parameters in, and thus no longer
need the file! This allows us to simplify our Dockerfile:

FROM continuumio/miniconda3:latest

ARG port
ARG host

ENV CATFISH_PORT=$port
RUN conda install -y flask \
 && conda install -c pytorch torch torchvision \
 && conda install waitress
RUN mkdir -p /app

COPY ./model.py /app
COPY ./server.py /app
COPY ./run-model-service.sh /

EXPOSE $port

ENTRYPOINT ["/run-model-service.sh"]

When we run this with docker run, we pass in the environment variable:

docker run catfish-service --env CATFISH_MODEL_LOCATION=[URL]

The service now pulls the parameters from the URL, and the Docker image is proba‐
bly around 600MB–700MB smaller than the original one.

In this example, we assume that the model parameter file is located
at a publicly accessible location. If you are deploying a model ser‐
vice, you likely won’t be in that situation and will instead be pulling
from a cloud storage layer like Amazon S3, Google Cloud Storage,
or Azure Blob Storage. You’ll have to use the respective provider’s
APIs to download the file and obtain credentials to gain access to
it, both of which we don’t discuss here.

We now have a model service that’s capable of talking over HTTP with JSON. Now
we need to make sure that we can monitor it while it makes predictions.

Logging and Telemetry
One thing that we don’t have in our current service is any concept of logging. And
although the service is incredibly simple and perhaps doesn’t need copious logging
(except in the case of catching our error states), it would be useful, if not essential, for
us to keep track of what’s actually being predicted. At some point, we’re going to want
to evaluate the model; how can we do that without production data?

Model Serving | 145

Let’s assume that we have a method send_to_log() that takes a Python dict and
sends it elsewhere (perhaps, say, into an Apache Kafka cluster that backs up onto
cloud storage). We could send appropriate information through this method every
time we make a prediction:

import uuid
import logging
logging.basicConfig(level=logging.INFO)

def predict():
 img_url = request.image_url
 img_tensor = open_image(BytesIO(response.content))
 start_time = time.process_time()
 prediction = model(img_tensor)
 end_time = time.process_time()
 predicted_class = CatfishClasses[torch.argmax(prediction)]
 send_to_log(
 {"image": img_url,
 "prediction": predicted_class},
 "predict_tensor": prediction,
 "img_tensor": img_tensor,
 "predict_time": end_time-start_time,
 "uuid":uuid.uuid4()
 })
 return jsonify({"image": img_url, "prediction": predicted_class})

def send_to_log(log_line):
 logger.info(log_line)

With a few additions to calculate how long a prediction takes, on every request, this
method now sends off a message to a logger or an external resource, providing
important details such as the image URL, the predicted class, the actual prediction
tensor, and even the complete image tensor just in case the supplied URL is transient.
We also include a generated universally unique identifier (UUID), so that this predic‐
tion can always be uniquely referenced at a later time, perhaps if its predicted class
needs to be corrected. In an actual deployment, you’d include things like user_ids
and such so that downstream systems can provide a facility for users to indicate
whether the prediction was correct or incorrect, sneakily generating more training
data for further training iterations of the model.

And with that, we’re ready to deploy our container into the cloud. Let’s take a quick
look at using Kubernetes to host and scale our service.

146 | Chapter 8: PyTorch in Production

1 Cloud Native DevOps with Kubernetes by John Arundel and Justin Domingus (O’Reilly) is a great deep dive
into this framework.

Deploying on Kubernetes
It’s beyond the scope of this book to go too deeply into Kubernetes, so we’ll stick to
the basics, including how to get a service quickly up and running.1 Kubernetes (also
known as k8s) is rapidly becoming the major cluster framework in the cloud. Born
from Google’s original cluster management software, Borg, it contains all the parts
and glue to form a resilient and reliable way of running services, including things like
load balancers, resource quotas, scaling policies, traffic management, sharing secrets,
and more.

You can download and set up Kubernetes on your local machine or in your cloud
account, but the recommended way is to use a hosted service where management of
Kubernetes itself is handled by the cloud provider and you’re just left with scheduling
your services. We use the Google Kubernetes Engine (GKE) service for our deploy‐
ment, but you could also deploy on Amazon, Azure, or DigitalOcean.

Setting Up on Google Kubernetes Engine
To use GKE, you need a Google Cloud account. In addition, running services on GKE
isn’t free. On the bright side, if you’re new to Google Cloud, you’ll get $300 in free
credit, and we’re probably not going to burn more than a dollar or two.

Once you have an account, download the gcloud SDK for your system. Once that’s
installed, we can use it to install kubectl, the application that we’ll use to interact
with the Kubernetes cluster we’ll be creating:

gcloud login
gcloud components install kubectl

We then need to create a new project, which is how Google Cloud organizes compute
resources in your account:

gcloud projects create ml-k8s --set-as-default

Next, we rebuild our Docker image and tag it so it can be pushed up to the internal
registry that Google provides (we need to use gcloud to authenticate), and then we
can use docker push to send our container image up to the cloud. Note that we’re
also tagging our service with a v1 version tag, which we weren’t doing before:

docker build -t gcr.io/ml-k8s/catfish-service:v1 .
gcloud auth configure-docker
docker push gcr.io/ml-k8s/catfish-service:v1

Deploying on Kubernetes | 147

https://oreil.ly/2BaE1iq
https://cloud.google.com
https://cloud.google.com/sdk

Creating a k8s Cluster
Now we can create our Kubernetes cluster. In the following command, we’re creating
one with two n1-standard-1 nodes, Google’s cheapest and lowest-powered instances.
If you’re really saving pennies, you can create the cluster with just one node.

gcloud container clusters create ml-cluster --num-nodes=2

This may take a couple of minutes to fully initialize the new cluster. Once it’s ready,
we can use kubectl to deploy our application!

kubectl run catfish-service
--image=gcr.io/ml-k8s/catfish-service:v1
--port 5000
--env CATFISH_MODEL_LOCATION=[URL]

Note that we’re passing the location of the model parameter file as an environment
parameter here, just as we did with the docker run command on our local machine.
Use kubectl get pods to see what pods are running on the cluster. A pod is a group
of one or more containers combined with a specification on how to run and manage
those containers. For our purposes, we run our model in one container in one pod.
Here’s what you should see:

NAME READY STATUS RESTARTS AGE
gcr.io/ml-k8s/catfish-service:v1 1/1 Running 0 4m15s

Right, so now we can see that our application is running, but how do we actually talk
to it? To do that, we need to deploy a service, in this case a load balancer that maps an
external IP address to our internal cluster:

kubectl expose deployment catfish-service
--type=LoadBalancer
--port 80
--target-port 5000

You can then look at the running services by using kubectl get services to get the
external IP:

kubectl get service

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
catfish-service 10.3.251.122 203.0.113.0 80:30877/TCP 3d

You should now be able to hit http://external-ip/predict just as you could on your
local machine. Success! We can also check in on our pod’s logs without logging into it:

kubectl logs catfish-service-xxdsd
>> log response

We now have a deployment running in a Kubernetes cluster. Let’s explore some of the
power that it provides.

148 | Chapter 8: PyTorch in Production

Scaling Services
Say we decide that one pod isn’t enough to handle all the traffic coming into our pre‐
diction service. In a traditional deployment, we’d have to bring up new servers, add
them into load balancers, and work out what to do if one of the servers fails. But with
Kubernetes, we can do all this easily. Let’s make sure that three copies of the service
are running:

kubectl scale deployment hello-web --replicas=3

If you keep looking at kubectl get pods, you’ll soon see that Kubernetes is bringing
up two more pods from your Docker image and wiring them into the load balancer.
Even better, let’s see what happens if we delete one of the pods:

kubectl delete pod [PODNAME]
kubectl get pods

You’ll see that the pod we’ve specified has been deleted. But—you should also see that
a new pod is being spun up to replace it! We’ve told Kubernetes that we should be
running three copies of the image, and because we deleted one, the cluster starts up a
new pod to ensure that the replica count is what we requested. This also carries over
to updating our application, so let’s look at that too.

Updates and Cleaning Up
When it comes to pushing an update to our service code, we create a new version of
the container with a v2 tag:

docker build -t gcr.io/ml-k8s/catfish-service:v2 .
docker push gcr.io/ml-k8s/catfish-service:v2

Then we tell the cluster to use the new image for the deployment:

kubectl set image deployment/catfish-service
 catfish-service=gcr.io/ml-k8s/catfish-service:v2

Keep monitoring via kubectl get pods and you’ll see that new pods with the new
image are being rolled out, and the pods with the old image are being deleted. Kuber‐
netes automatically takes care of draining connections and removing the old pods
from the load balancer.

Finally, if you’re finished playing around with the cluster, you should clean up so you
don’t get any further surprise charges:

kubectl delete service catfish-service
gcloud container clusters delete ml-k8s

That wraps up our mini-tour of Kubernetes; you now know just enough to be danger‐
ous, but definitely check out the Kubernetes website as a starting point for further
information about the system (and trust me, there’s a lot of it!)

Deploying on Kubernetes | 149

https://kubernetes.io

We’ve covered how to deploy our Python-based code, but perhaps surprisingly,
PyTorch isn’t limited to just Python. In the next section, you’ll see how TorchScript
brings in the wider world of C++, as well as some optimizations to our normal
Python models.

TorchScript
If you can remember as far back as the introduction (I know!), you know that the
main difference between PyTorch and TensorFlow is that TensorfFlow has a graph-
based representation of a model, whereas PyTorch has an eager execution with tape-
based differentiation. The eager method allows you to do all sorts of dynamic
approaches to specifying and training models that makes PyTorch appealing for
research purposes. On the other hand, the graph-based representation may be static,
but it gains power from that stability; optimizations may be applied to the graph rep‐
resentation, safe in the knowledge that nothing is going to change. And just as Ten‐
sorFlow has moved to support eager execution in version 2.0, version 1.0 of PyTorch
introduced TorchScript, which is a way of bringing the advantages of graph-based
systems without completely giving up the flexibility of PyTorch. This is done in two
ways that can be mixed and matched: tracing and using TorchScript directly.

Tracing
PyTorch 1.0 comes with a JIT tracing engine that will turn an existing PyTorch mod‐
ule or function into a TorchScript one. It does this by passing an example tensor
through the module and returning a ScriptModule result that contains the Torch‐
Script representation of the original code.

Let’s have a look at tracing AlexNet:

model = torchvision.models.AlexNet()
traced_model = torch.jit.trace(model,
 torch.rand(1, 3, 224, 224))

Now, this will work, but you’ll get a message like this from the Python interpreter that
will make you pause:

TracerWarning: Trace had nondeterministic nodes. Nodes:
%input.15 :
Float(1, 9216) = aten::dropout(%input.14, %174, %175),
scope: AlexNet/Sequential[classifier]/Dropout[0]
%input.18 :
Float(1, 4096) = aten::dropout(%input.17, %184, %185),
scope: AlexNet/Sequential[classifier]/Dropout[3]

This may cause errors in trace checking.
To disable trace checking, pass check_trace=False to torch.jit.trace()

_check_trace([example_inputs], func, executor_options,

150 | Chapter 8: PyTorch in Production

module, check_tolerance, _force_outplace)
/home/ian/anaconda3/lib/
python3.6/site-packages/torch/jit/__init__.py:642:
TracerWarning: Output nr 1. of the traced function does not
match the corresponding output of the Python function. Detailed error:

Not within tolerance rtol=1e-05 atol=1e-05 at input[0, 22]
(0.010976361110806465 vs. -0.005604125093668699)
and 996 other locations (99.00%)
_check_trace([example_inputs], func,
executor_options, module, check_tolerance
_force_outplace)

What’s going on here? When we create AlexNet (or other models), the model is
instantiated in training mode. During training in many models such as AlexNet, we
use a Dropout layer that randomly kills activations as a tensor goes through a net‐
work. What the JIT has done is send the random tensor we’ve generated through the
model twice, compared them, and noted that the Dropout layers don’t match. This
reveals an important caveat with the tracing facility; it cannot cope with nondeter‐
minism or control flow. If your model uses these features, you’ll have to use Torch‐
Script directly for at least part of your conversion.

In AlexNet’s case, though, the fix is simple: we’ll switch the model to evaluation mode
by using model.eval(). If you run the tracing line again, you’ll find that it completes
without any complaining. We can also print() the traced model to see what it is
composed of:

print(traced_model)

TracedModule[AlexNet](
(features): TracedModule[Sequential](
 (0): TracedModule[Conv2d]()
 (1): TracedModule[ReLU]()
 (2): TracedModule[MaxPool2d]()
 (3): TracedModule[Conv2d]()
 (4): TracedModule[ReLU]()
 (5): TracedModule[MaxPool2d]()
 (6): TracedModule[Conv2d]()
 (7): TracedModule[ReLU]()
 (8): TracedModule[Conv2d]()
 (9): TracedModule[ReLU]()
 (10): TracedModule[Conv2d]()
 (11): TracedModule[ReLU]()
 (12): TracedModule[MaxPool2d]()
)
(classifier): TracedModule[Sequential](
 (0): TracedModule[Dropout]()
 (1): TracedModule[Linear]()
 (2): TracedModule[ReLU]()
 (3): TracedModule[Dropout]()
 (4): TracedModule[Linear]()

TorchScript | 151

 (5): TracedModule[ReLU]()
 (6): TracedModule[Linear]()
)
)

We can also see the code that the JIT engine has created if we call
print(traced_model.code):

def forward(self,
 input_1: Tensor) -> Tensor:
 input_2 = torch._convolution(input_1, getattr(self.features, "0").weight,
 getattr(self.features, "0").bias,
 [4, 4], [2, 2], [1, 1], False, [0, 0], 1, False, False, True)
 input_3 = torch.threshold_(input_2, 0., 0.)
 input_4, _0 = torch.max_pool2d_with_indices
 (input_3, [3, 3], [2, 2], [0, 0], [1, 1], False)
 input_5 = torch._convolution(input_4, getattr
 (self.features, "3").weight, getattr(self.features, "3").bias,
 [1, 1], [2, 2], [1, 1], False, [0, 0], 1, False, False, True)
 input_6 = torch.threshold_(input_5, 0., 0.)
 input_7, _1 = torch.max_pool2d_with_indices
 (input_6, [3, 3], [2, 2], [0, 0], [1, 1], False)
 input_8 = torch._convolution(input_7, getattr(self.features, "6").weight,
 getattr
 (self.features, "6").bias,
 [1, 1], [1, 1], [1, 1], False, [0, 0], 1, False, False, True)
 input_9 = torch.threshold_(input_8, 0., 0.)
 input_10 = torch._convolution(input_9, getattr
 (self.features, "8").weight, getattr(self.features, "8").bias,
 [1, 1], [1, 1], [1, 1], False, [0, 0], 1, False, False, True)
 input_11 = torch.threshold_(input_10, 0., 0.)
 input_12 = torch._convolution(input_11, getattr
 (self.features, "10").weight, getattr(self.features, "10").bias,
 [1, 1], [1, 1], [1, 1], False, [0, 0], 1, False, False, True)
 input_13 = torch.threshold_(input_12, 0., 0.)
 x, _2 = torch.max_pool2d_with_indices
 (input_13, [3, 3], [2, 2], [0, 0], [1, 1], False)
 _3 = ops.prim.NumToTensor(torch.size(x, 0))
 input_14 = torch.view(x, [int(_3), 9216])
 input_15 = torch.dropout(input_14, 0.5, False)
 _4 = torch.t(getattr(self.classifier, "1").weight)
 input_16 = torch.addmm(getattr(self.classifier, "1").bias,
 input_15, _4, beta=1, alpha=1)
 input_17 = torch.threshold_(input_16, 0., 0.)
 input_18 = torch.dropout(input_17, 0.5, False)
 _5 = torch.t(getattr(self.classifier, "4").weight)
 input_19 = torch.addmm(getattr(self.classifier, "4").bias,
 input_18, _5, beta=1, alpha=1)
 input = torch.threshold_(input_19, 0., 0.)
 _6 = torch.t(getattr(self.classifier, "6").weight)
 _7 = torch.addmm(getattr(self.classifier, "6").bias, input,
 _6, beta=1, alpha=1)
 return _7

152 | Chapter 8: PyTorch in Production

The model (code and parameters) can then be saved with torch.jit.save:

torch.jit.save(traced_model, "traced_model")

That covers how tracing works. Let’s see how to use TorchScript.

Scripting
You might wonder why we just can’t trace everything. Although the tracer is good at
what it does, it has limitations. For example, a simple function like the following is
not possible to trace with a single pass:

import torch

def example(x, y):
 if x.min() > y.min():
 r = x
 else:
 r = y
 return r

A single trace through the function will take us down one pathway and not the other,
meaning that the function will not be converted correctly. In these cases, we can use
TorchScript, which is a limited subset of Python, and produce our compiled code. We
use an annotation to tell PyTorch that we are using TorchScript, so the TorchScript
implementation would look like this:

@torch.jit.script
def example(x, y):
 if x.min() > y.min():
 r = x
 else:
 r = y
 return r

Happily, we’re not using any constructs in our function that aren’t in TorchScript or
referencing any global state, so this will just work. If we were creating a new architec‐
ture, we’d need to inherit from torch.jit.ScriptModule instead of nn.Module. You
might wonder how we can use other modules (say, CNN-based layers) if all modules
have to inherit from this different class. Is everything slightly different? The fix is that
we can mix and match both by using explicit TorchScript and traced objects at will.

Let’s go back to our CNNNet/AlexNet structure from Chapter 3 and see how it can be
converted into TorchScript using a combination of these methods. For the sake of
brevity, we’ll implement only the features component:

class FeaturesCNNNet(torch.jit.ScriptModule):
 def __init__(self, num_classes=2):
 super(FeaturesCNNNet, self).__init__()
 self.features = torch.jit.trace(nn.Sequential(
 nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),

TorchScript | 153

 nn.ReLU(),
 nn.MaxPool2d(kernel_size=3, stride=2),
 nn.Conv2d(64, 192, kernel_size=5, padding=2),
 nn.ReLU(),
 nn.MaxPool2d(kernel_size=3, stride=2),
 nn.Conv2d(192, 384, kernel_size=3, padding=1),
 nn.ReLU(),
 nn.Conv2d(384, 256, kernel_size=3, padding=1),
 nn.ReLU(),
 nn.Conv2d(256, 256, kernel_size=3, padding=1),
 nn.ReLU(),
 nn.MaxPool2d(kernel_size=3, stride=2)
), torch.rand(1,3,224,224))

 @torch.jit.script_method
 def forward(self, x):
 x = self.features(x)
 return x

There are two things to note here. First, inside classes, we need to annotate using
@torch.jit.script_method. Second, although we could have traced each separate
layer individually, we took advantage of the nn.Sequential wrapper layer to fire the
trace through just that instead. You could implement the classifier block yourself
to get a feel for how this mixing works. Remember that you’ll need to switch the Drop
out layers into eval() mode instead of training, and your input trace tensor will need
to be of shape [1, 256, 6, 6] because of the downsampling that the features block
carries out. And yes, you can save this network by using torch.jit.save just as we
did for the traced module. Let’s have a look at what TorchScript allows and forbids.

TorchScript Limitations
The biggest restriction in TorchScript compared to Python, at least in my mind, is the
reduced number of types available. Table 8-1 lists what’s available and what’s not.

Table 8-1. Available Python types in TorchScript

Type Description

tensor A PyTorch tensor of any dtype, dimension, or backend

tuple[T0, T1,…] A tuple containing subtypes T0, T1, etc. (e.g., tuple[tensor, tensor])

boolean Boolean

str String

int Int

float Float

list List of type T

optional[T] Either None or type T

dict[K, V] dict with keys of type K and values of type V; K can be only str, int, or float

154 | Chapter 8: PyTorch in Production

Another thing you can’t do that you can do in standard Python is have a function that
mixes return types. The following is illegal in TorchScript:

def maybe_a_string_or_int(x):
 if x > 3:
 return "bigger than 3!"
 else
 return 2

Of course, it’s not really a good idea in Python, either, but the language’s dynamic typ‐
ing will allow it. TorchScript is statically typed (which helps with applying optimiza‐
tions), so you simply can’t do this in TorchScript annotated code. Also, TorchScript
assumes that every parameter passed into a function is a tensor, which can result in
some weirdness if you’re not aware of what’s going on:

@torch.jit.script
def add_int(x,y):
 return x + y

print(add_int.code)
>> def forward(self,
 x: Tensor,
 y: Tensor) -> Tensor:
 return torch.add(x, y, alpha=1)

To force different types, we need to use Python 3’s type decorators:

@torch.jit.script
def add_int(x: int, y: int) -> int:
 return x + y
print(add_int.code)
>> def forward(self,
 x: int,
 y: int) -> int:
return torch.add(x, y)

As you’ve already seen, classes are supported, but there are a few twists. All methods
on a class have to be valid TorchScript, but although this code looks valid, it will fail:

@torch.jit.script
class BadClass:
 def __init__(self, x)
 self.x = x

 def set_y(y)
 self.y = y

This is, again, a consequence of TorchScript’s static typing. All instance variables have
to be declared during the __init__ and cannot be introduced elsewhere. Oh, and
don’t get any ideas about including any expressions inside a class that aren’t in a
method—these are explicitly banned by TorchScript.

TorchScript | 155

A useful feature of TorchScript being a subset of Python is that translation can be
approached in a piecemeal approach, and the intermediate code is still valid and exe‐
cutable Python. TorchScript-compliant code can call out to noncompliant code, and
while you won’t be able to execute torch.jit.save() until all the noncompliant code
is converted, you can still run everything under Python.

These are what I consider the major nuances of TorchScript. You can read about
more in the PyTorch documentation, which goes into depth about things like scoping
(mostly standard Pythonic rules), but the outline presented here is enough to convert
all the models you’ve seen so far in this book. Instead of regurgitating all of the refer‐
ence, let’s look at using one of our TorchScript-enabled models in C++.

Working with libTorch
In addition to TorchScript, PyTorch 1.0 introduced libTorch, a C++ library for inter‐
acting with PyTorch. Various levels of C++ interaction are available. The lowest levels
are ATen and autograd, the C++ implementations of the tensor and automatic differ‐
entiation that PyTorch itself is built on. On top of those are a C++ frontend, which
duplicates the Pythonic PyTorch API in C++, an interface to TorchScript, and finally
an extension interface that allows new custom C++/CUDA operators to be defined
and exposed to PyTorch’s Python implementation. We’re concerned with only the C+
+ frontend and the interface to TorchScript in this book, but more information on the
other parts is available in the PyTorch documentation. Let’s start by getting libTorch.

Obtaining libTorch and Hello World
Before we can do anything, we need a C++ compiler and a way of building C++ pro‐
grams on our machine. This is one of the few parts of the book where something like
Google Colab isn’t appropriate, so you may have to create a VM in Google Cloud,
AWS, or Azure if you don’t have easy access to a terminal window. (Everybody who
ignored my advice not to build a dedicated machine is feeling smug right now, I bet!)
The requirements for libTorch are a C++ compiler and CMake, so let’s get them
installed. With a Debian-based system, use this command:

apt install cmake g++

If you’re using a Red Hat–based system, use this:

yum install cmake g++

Next, we need to download libTorch itself. To make things a little easier, for what
follows, we’ll use the CPU-based distribution of libTorch, rather than dealing with
the additional CUDA dependencies that the GPU-enabled distribution brings. Create
a directory called torchscript_export and grab the distribution:

 wget https://download.pytorch.org/libtorch/cpu/libtorch-shared-with-deps-latest.zip

156 | Chapter 8: PyTorch in Production

https://oreil.ly/sS0o7
https://oreil.ly/y6NP5

Use unzip to expand the ZIP file (it should create a new libtorch directory) and create
a directory called helloworld. In this directory, we’re going to add a minimal CMakeL‐
ists.txt, which CMake will use to build our executable:

cmake_minimum_required(VERSION 3.0 FATAL_ERROR)
project(helloworld)

find_package(Torch REQUIRED)

add_executable(helloworld helloworld.cpp)
target_link_libraries(helloworld "${TORCH_LIBRARIES}")
set_property(TARGET helloword PROPERTY CXX_STANDARD 11)

And then helloworld.cpp is as follows:

#include <torch/torch.h>
#include <iostream>

int main() {
 torch::Tensor tensor = torch::ones({2, 2});
 std::cout << tensor << std::endl;
}

Create a build directory and run cmake, making sure that we provide an absolute path
to the libtorch distribution:

mkdir build
cd build
cmake -DCMAKE_PREFIX_PATH=/absolute/path/to/libtorch ..
cd ..

We can now run plain and simple make to create our executable:

make
./helloworld

1 1
1 1
[Variable[CPUType]{2,2}]

Congratulations on building your first C++ program with libTorch! Now, let’s
expand on this and see how to use the library to load in a model we’ve previously
saved with torch.jit.save().

Importing a TorchScript Model
We’re going to export our full CNNNet model from Chapter 3 and load it into C++.
In Python, create an instance of the CNNNet, switch it to eval() mode to ignore
Dropout, trace, and save to disk:

cnn_model = CNNNet()
cnn_model.eval()

Working with libTorch | 157

cnn_traced = torch.jit.trace(cnn_model, torch.rand([1,3,224,224]))
torch.jit.save(cnn_traced, "cnnnet")

Over in the C++ world, create a new directory called load-cnn and add in this new
CMakeLists.txt file:

cmake_minimum_required(VERSION 3.0 FATAL_ERROR)
project(load-cnn)

find_package(Torch REQUIRED)

add_executable(load-cnn.cpp load-cnn.cpp)
target_link_libraries(load-cnn "${TORCH_LIBRARIES}")
set_property(TARGET load-cnn PROPERTY CXX_STANDARD 11)

Let’s create our C++ program, load-cnn.cpp:

#include <torch/script.h>
#include <iostream>
#include <memory>

int main(int argc, const char* argv[]) {

 std::shared_ptr<torch::jit::script::Module> module = torch::jit::load("cnnnet");

 assert(module != nullptr);
 std::cout << "model loaded ok\n";

 // Create a vector of inputs.
 std::vector<torch::jit::IValue> inputs;
 inputs.push_back(torch::rand({1, 3, 224, 224}));

 at::Tensor output = module->forward(inputs).toTensor();

 std::cout << output << '\n'
}

A few new things are in this small program, though most of it should remind you of
the Python PyTorch API. Our first act is to load in our TorchScript model with
torch::jit::load (versus torch.jit.load in Python). We do a null pointer check
to make sure that the model has loaded correctly, and then we move on to testing the
model with a random tensor. Although we can do that fairly easily with torch::rand,
when interacting with a TorchScript model, we have to create a vector of
torch::jit::IValue inputs rather than just a normal tensor because of the way
TorchScript is implemented in C++. Once that is done, we can push the tensor
through our loaded model and then finally write the result back to standard output.
We compile this in the same way that we compiled our earlier program:

mkdir build
cd build
cmake -DCMAKE_PREFIX_PATH=/absolute/path/to/libtorch ..
cd ..

158 | Chapter 8: PyTorch in Production

make
./load-cnn

0.1775
0.9096
[Variable[CPUType]{2}]

And voila! A C++ program that executes a custom model with little effort on our
part. Be aware that the C++ interface is still at the time of writing in beta phase, so it’s
possible that some of the details here may change. Make sure to have a look at the
documentation before you use it in anger!

Conclusion
Hopefully you now understand how to take your trained (and debugged!) model and
turn it into a Dockerized web service that can be deployed via Kubernetes. You’ve also
seen how to use the JIT and TorchScript features to optimize our models and how to
load TorchScript models in C++, giving us the promise of low-level integration of
neural networks as well as in Python.

Obviously, with just one chapter, we can’t cover everything about production usage of
model serving. We got to the point of deploying our service, but that’s not the end of
the story; there’s the constant monitoring of the service to make sure that it is main‐
taining accuracy, retraining and testing against baselines, and more complicated ver‐
sioning schemes than the ones I’ve introduced here for both the service and the
model parameters. I recommend that you log as much detail as you possibly can and
take advantage of that logging information for retraining as well as monitoring pur‐
poses.

As for TorchScript, it’s still early days, but a few bindings for other languages (e.g., Go
and Rust) are starting to appear; by 2020 it should be easy to wire a PyTorch model
into any popular language.

I’ve intentionally left out a few bits and pieces that don’t quite line up with the book’s
scope. Back in the introduction, I promised that you could do everything in the book
with one GPU, so we haven’t talked about PyTorch’s support for distributed training
and inference. Also, if you read about PyTorch model exports, you’re almost certainly
going to come across a lot of references to the Open Neural Network Exchange
(ONNX). This standard, jointly authored by Microsoft and Facebook, was the main
method of exporting models before the advent of TorchScript. Models can be
exported via a similar tracing method to TorchScript and then imported in other
frameworks such as Caffe2, Microsoft Cognitive Toolkit, and MXNet. ONNX is still
supported and actively worked in PyTorch v1.x, but it appears that TorchScript is the
preferred way for model exporting. See the “Further Reading” section for more
details on ONNX if you’re interested.

Conclusion | 159

Having successfully created, debugged, and deployed our models, we’ll spend the
final chapter looking at what some companies have been doing with PyTorch.

Further Reading
• Flask documentation
• Waitress documentation
• Docker documentationd
• Kubernetes (k8s) documentation
• TorchScript documentation
• Open Neural Network Exchange
• Using ONNX with PyTorch
• Distributed training with PyTorch

160 | Chapter 8: PyTorch in Production

http://flask.pocoo.org
https://oreil.ly/bnelI
https://docs.docker.com
https://oreil.ly/jMVcN
https://oreil.ly/sS0o7
https://onnx.ai
https://oreil.ly/UXz5S
https://oreil.ly/Q-Jao

CHAPTER 9

PyTorch in the Wild

For our final chapter, we’ll look at how PyTorch is used by other people and compa‐
nies. You’ll also learn some new techniques along the way, including resizing pictures,
generating text, and creating images that can fool neural networks. In a slight change
from earlier chapters, we’ll be concentrating on how to get up and running with exist‐
ing libraries rather than starting from scratch in PyTorch. I’m hoping that this will be
a springboard for further exploration.

Let’s start by examining some of the latest approaches for squeezing the most out of
your data.

Data Augmentation: Mixed and Smoothed
Way back in Chapter 4, we looked at various ways of augmenting data to help reduce
the model overfitting on the training dataset. The ability to do more with less data is
naturally an area of high activity in deep learning research, and in this section we’ll
look at two increasingly popular ways to squeeze every last drop of signal from your
data. Both approaches will also see us changing how we calculate our loss function, so
it will be a good test of the more flexible training loop that we just created.

mixup
mixup is an intriguing augmentation technique that arises from looking askew at
what we want our model to do. Our normal understanding of a model is that we send
it an image like the one in Figure 9-1 and want the model to return a result that the
image is a fox.

161

Figure 9-1. A fox

But as you know, we don’t get just that from the model; we get a tensor of all the pos‐
sible classes and, hopefully, the element of that tensor with the highest value is the fox
class. In fact, in the ideal scenario, we’d have a tensor that is all 0s except for a 1 in the
fox class.

Except that is difficult for a neural network to do! There’s always going to be uncer‐
tainty, and our activation functions like softmax make it difficult for the tensors to
get to 1 or 0. mixup takes advantage of this by asking a question: what is the class of
Figure 9-2?

Figure 9-2. A mixture of cat and fox

To our eyes, this may be a bit of a mess, but it is 60% cat and 40% fox. What if, instead
of trying to make our model make a definitive guess, we could make it target two
classes? This would mean that our output tensor won’t run into the problem of
approaching but never reaching 1 in training, and we could alter each mixed image by
a different fraction, improving our model’s ability to generalize.

162 | Chapter 9: PyTorch in the Wild

1 See “mixup: Beyond Empirical Risk Minimization” by Hongyi Zhang et al. (2017).

But how do we calculate the loss function of this mixed-up image? Well, if p is the
percentage of the first image in the mixed image, then we have a simple linear combi‐
nation of the following:

p * loss(image1) + (1-p) * loss(image2)

It has to predict those images, right? And we need to scale according to how much of
those images is in the final mixed image, so this new loss function seems reasonable.
To choose p, we could just use random numbers drawn from a normal or uniform
distribution as we would do in many other cases. However, the writers of the mixup
paper determined that samples drawn from the beta distribution work out much bet‐
ter in practice.1 Don’t know what the beta distribution looks like? Well, neither did I
until I saw this paper! Figure 9-3 shows how it looks when given the characteristics
described in the paper.

Figure 9-3. Beta distribution, where ⍺ = β

The U-shape is interesting because it tells us that most of the time, our mixed image
will be mainly one image or another. Again, this makes intuitive sense as we can
imagine the network is going to have a harder time working out a 50/50 mixup than a
90/10 one.

Here’s a modified training loop that takes a new additional data loader, mix_loader,
and mixes the batches together:

def train(model, optimizer, loss_fn, train_loader, val_loader,
epochs=20, device, mix_loader):
 for epoch in range(epochs):
 model.train()
 for batch in zip(train_loader,mix_loader):
 ((inputs, targets),(inputs_mix, targets_mix)) = batch
 optimizer.zero_grad()
 inputs = inputs.to(device)
 targets = targets.to(device)
 inputs_mix = inputs_mix.to(device)

Data Augmentation: Mixed and Smoothed | 163

https://arxiv.org/abs/1710.09412

 target_mix = targets_mix.to(device)

 distribution = torch.distributions.beta.Beta(0.5,0.5)
 beta = distribution.expand(torch.zeros(batch_size).shape).sample().to(device)

 # We need to transform the shape of beta
 # to be in the same dimensions as our input tensor
 # [batch_size, channels, height, width]

 mixup = beta[:, None, None, None]

 inputs_mixed = (mixup * inputs) + (1-mixup * inputs_mix)

 # Targets are mixed using beta as they have the same shape

 targets_mixed = (beta * targets) + (1-beta * inputs_mix)

 output_mixed = model(inputs_mixed)

 # Multiply losses by beta and 1-beta,
 # sum and get average of the two mixed losses

 loss = (loss_fn(output, targets) * beta
 + loss_fn(output, targets_mixed)
 * (1-beta)).mean()

 # Training method is as normal from herein on

 loss.backward()
 optimizer.step()
 …

What’s happening here is after we get our two batches, we use torch.distribu
tion.Beta to generate a series of mix parameters, using the expand method to pro‐
duce a tensor of [1, batch_size]. We could iterate through the batch and generate
the parameters one by one, but this is neater, and remember, GPUs love matrix multi‐
plication, so it’ll end up being faster to do all the calculations across the batch at once
(this is shown in Chapter 7 when fixing our BadRandom transformation, remember!).
We multiply the entire batch by this tensor, and then the batch to mix in by 1 -
mix_factor_tensor using broadcasting (which we covered in Chapter 1).

We then take the losses of the predictions against our targets for both images, and our
final loss is the mean of the sum of those losses. What’s happening there? Well, if you
look at the source code for CrossEntropyLoss, you’ll see the comment The losses
are averaged across observations for each minibatch. There’s also a reduc
tion parameter that has a default set to mean (we’ve used the default so far, so that’s
why you haven’t seen it before!). We need to preserve that condition, so we take the
mean of our combined losses.

164 | Chapter 9: PyTorch in the Wild

Now, having two data loaders isn’t too much trouble, but it does make the code a little
more complicated. If you run this code, you might error out because the batches are
not balanced as final batches come out of the loaders, meaning that you’ll have to
write extra code to handle that case. The authors of the mixup paper suggest that you
could replace the mix data loader with a random shuffle of the incoming batch. We
can do this with torch.randperm():

shuffle = torch.randperm(inputs.size(0))
inputs_mix = inputs[shuffle]
targets_mix = targets[shuffle]

When using mixup in this way, be aware that you are much more likely to get colli‐
sions where you end up applying the same parameter to the same set of images,
potentially reducing the accuracy of training. For example, you could have cat1 mixed
with fish1, and draw a beta parameter of 0.3. Then later in the same batch, you pull
out fish1 and it gets mixed with cat1 with a parameter of 0.7—making it the same
mix! Some implementations of mixup—in particular, the fast.ai implementation—
resolve this issue by replacing our mix parameters with the following:

mix_parameters = torch.max(mix_parameters, 1 - mix_parameters)

This ensures that the nonshuffled batch will always have the highest component when
being merged with the mix batch, thus eliminating that potential issue.

Oh, and one more thing: we performed the mixup transformation after our image
transformation pipeline. At this point, our batches are just tensors that we’ve added
together. This means that there’s no reason mixup training should be restricted to
images. We could use it on any type of data that’s been transformed into tensors,
whether text, image, audio, or anything else.

We can still do a little more to make our labels work harder for us. Enter another
approach that is now a mainstay of state-of-the-art models: label smoothing.

Label Smoothing
In a similar manner to mixup, label smoothing helps to improve model performance
by making the model less sure of its predictions. Instead of trying to force it to pre‐
dict 1 for the predicted class (which has all the problems we talked about in the previ‐
ous section), we instead alter it to predict 1 minus a small value, epsilon. We can
create a new loss function implementation that wraps up our existing CrossEntropy
Loss function with this functionality. As it turns out, writing a custom loss function is
just another subclass of nn.Module:

class LabelSmoothingCrossEntropyLoss(nn.Module):
 def __init__(self, epsilon=0.1):
 super(LabelSmoothingCrossEntropyLoss, self).__init__()
 self.epsilon = epsilon

Data Augmentation: Mixed and Smoothed | 165

 def forward(self, output, target):
 num_classes = output.size()[-1]
 log_preds = F.log_softmax(output, dim=-1)
 loss = (-log_preds.sum(dim=-1)).mean()
 nll = F.nll_loss(log_preds, target)
 final_loss = self.epsilon * loss / num_classes +
 (1-self.epsilon) * nll
 return final_loss

When it comes to computing the loss function, we calculate the cross-entropy loss as
per the implementation of CrossEntropyLoss. Our final_loss is constructed from
negative log-likelihood being multiplied by 1 minus epsilon (our smoothed label)
added to the loss multiplied by epsilon divided by the number of classes. This occurs
because we are smoothing not only the label for the predicted class to be 1 minus
epsilon, but also the other labels so that they’re not being forced to zero, but instead a
value between zero and epsilon.

This new custom loss function can replace CrossEntropyLoss in training anywhere
we’ve used it in the book, and when combined with mixup, it is an incredibly effective
way of getting that little bit more from your input data.

We’ll now turn away from data augmentation to have a look at another hot topic in
current deep learning trends: generative adversarial networks.

Computer, Enhance!
One odd consequence of the increasing power of deep learning is that for decades, we
computer people have been mocking television crime shows that have a detective
click a button to make a blurry camera image suddenly become a sharp, in-focus pic‐
ture. How we laughed and cast derision on shows like CSI for doing this. Except we
can now actually do this, at least up to a point. Here’s an example of this witchcraft,
on a smaller 256 × 256 image scaled to 512 × 512, in Figures 9-4 and 9-5.

Figure 9-4. Mailbox at 256 × 256 resolution

166 | Chapter 9: PyTorch in the Wild

Figure 9-5. ESRGAN-enhanced mailbox at 512 × 512 resolution

The neural network learns how to hallucinate new details to fill in what’s not there,
and the effect can be impressive. But how does this work?

Introduction to Super-Resolution
Here’s the first part of a very simple super-resolution model. To start, it’s pretty much
exactly the same as any model you’ve seen so far:

class OurFirstSRNet(nn.Module):

 def __init__(self):
 super(OurFirstSRNet, self).__init__()
 self.features = nn.Sequential(
 nn.Conv2d(3, 64, kernel_size=8, stride=4, padding=2),
 nn.ReLU(inplace=True),
 nn.Conv2d(64, 192, kernel_size=2, padding=2),
 nn.ReLU(inplace=True),
 nn.Conv2d(192, 256, kernel_size=2, padding=2),
 nn.ReLU(inplace=True)
)

 def forward(self, x):
 x = self.features(x)
 return x

Computer, Enhance! | 167

If we pass a random tensor through the network, we end up with a tensor of shape
[1, 256, 62, 62]; the image representation has been compressed into a much
smaller vector. Let’s now introduce a new layer type, torch.nn.ConvTranspose2d.
You can think of this as a layer that inverts a standard Conv2d transform (with its own
learnable parameters). We’ll add a new nn.Sequential layer, upsample, and put in a
simple list of these new layers and ReLU activation functions. In the forward()
method, we pass input through that consolidated layer after the others:

class OurFirstSRNet(nn.Module):
 def __init__(self):
 super(OurFirstSRNet, self).__init__()
 self.features = nn.Sequential(
 nn.Conv2d(3, 64, kernel_size=8, stride=4, padding=2),
 nn.ReLU(inplace=True),
 nn.Conv2d(64, 192, kernel_size=2, padding=2),
 nn.ReLU(inplace=True),
 nn.Conv2d(192, 256, kernel_size=2, padding=2),
 nn.ReLU(inplace=True)

)
 self.upsample = nn.Sequential(
 nn.ConvTranspose2d(256,192,kernel_size=2, padding=2),
 nn.ReLU(inplace=True),
 nn.ConvTranspose2d(192,64,kernel_size=2, padding=2),
 nn.ReLU(inplace=True),
 nn.ConvTranspose2d(64,3, kernel_size=8, stride=4,padding=2),
 nn.ReLU(inplace=True)
)

 def forward(self, x):
 x = self.features(x)
 x = self.upsample(x)
 return x

If you now test the model with a random tensor, you’ll get back a tensor of exactly the
same size that went in! What we’ve built here is known as an autoencoder, a type of
network that rebuilds its input, usually after compressing it into a smaller dimension.
That is what we’ve done here; the features sequential layer is an encoder that trans‐
forms an image into a tensor of size [1, 256, 62, 62], and the upsample layer is our
decoder that turns it back into the original shape.

Our labels for training the image would, of course, be our input images, but that
means we can’t use loss functions like our fairly standard CrossEntropyLoss, because,
well, we don’t have classes! What we want is a loss function that tells us how different
our output image is from our input image, and for that, taking the mean squared loss
or mean absolute loss between the pixels of the image is a common approach.

168 | Chapter 9: PyTorch in the Wild

Although calculating the loss in terms of pixels makes a lot of
sense, it turns out that a lot of the most successful super-resolution
networks use augmented loss functions that try to capture how
much a generated image looks like the original, tolerating pixel loss
for better performance in areas like texture and content loss. Some
of the papers listed in “Further Reading” on page 190 go into
deeper detail.

Now that gets us back to the same size input we entered, but what if we add another
transposed convolution to the mix?

self.upsample = nn.Sequential(...
nn.ConvTranspose2d(3,3, kernel_size=2, stride=2)
nn.ReLU(inplace=True))

Try it! You should find that the output tensor is twice as big as the input. If we have
access to a set of ground truth images at that size to act as labels, we can train the
network to take in images at a size x and produce images for a size 2x. In practice, we
tend to perform this upsampling by scaling up twice as much as we need to and then
adding a standard convolutional layer, like so:

self.upsample = nn.Sequential(......
nn.ConvTranspose2d(3,3, kernel_size=2, stride=2),
nn.ReLU(inplace=True),
nn.Conv2d(3,3, kernel_size=2, stride=2),
nn.ReLU(inplace=True))

We do this because the transposed convolution has a tendency to add jaggies and
moiré patterns as it expands the image. By expanding twice and then scaling back
down to our required size, we hopefully provide enough information to the network
to smooth those out and make the output look more realistic.

Those are the basics behind super-resolution. Most current high-performing super-
resolution networks are trained with a technique called the generative adversarial
network, which has stormed the deep learning world in the past few years.

An Introduction to GANs
One of the universal problems in deep learning (or any machine learning application)
is the cost of producing labeled data. In this book, we’ve mostly avoided the problem
by using sample datasets that are all carefully labeled (even some that come prepack‐
aged in easy training/validation/test sets!). But in the real world producing large
quantities of labeled data. Indeed, techniques that you’ve learned a lot about so far,
like transfer learning, have all been about doing more with less. But sometimes you
need more, and generative adversarial networks (GANs) have a way to help.

Computer, Enhance! | 169

2 See “Generative Adversarial Networks” by Ian J. Goodfellow et al. (2014).

GANs were introduced by Ian Goodfellow in a 2014 paper and are a novel way of
providing more data to help train neural networks. And the approach is mainly “we
know you love neural networks, so we added another.”2

The Forger and the Critic
The setup of a GAN is as follows. Two neural networks are trained together. The first
is the generator, which takes random noise from the vector space of the input tensors
and produces fake data as output. The second network is the discriminator, which
alternates between the generated fake data and real data. Its job is to look at the
incoming inputs and decide whether they’re real or fake. A simple conceptual dia‐
gram of a GAN is shown in Figure 9-6.

Figure 9-6. A simple GAN setup

The great thing about GANs is that although the details end up being somewhat com‐
plicated, the general idea is easy to convey: the two networks are in opposition to
each other, and during training they work as hard as they can to defeat the other. By
the end of the process, the generator should be producing data that matches the distri‐
bution of the real input data to flummox the discriminator. And once you get to that
point, you can use the generator to produce more data for all your needs, while the
discriminator presumably retires to the neural network bar to drown its sorrows.

170 | Chapter 9: PyTorch in the Wild

https://arxiv.org/abs/1406.2661

Training a GAN
Training a GAN is a little more complicated than training traditional networks. Dur‐
ing the training loop, we first need to use real data to start training the discriminator.
We calculate the discriminator’s loss (using BCE, as we have only two classes: real or
fake), and then do a backward pass to update the parameters of the discriminator as
usual. But this time, we don’t call the optimizer to update. Instead, we generate a
batch of data from our generator and pass that through the model. We calculate the
loss and do another backward pass, so at this point the training loop has calculated
the losses of two passes through the model. Now, we call the optimizer to update
based on these accumulated gradients.

In the second half of training, we turn to the generator. We give the generator access
to the discriminator and then generate a new batch of data (which the generator
insists is all real!) and test it against the discriminator. We form a loss against this out‐
put data, where each data point that the discriminator says is fake is considered a
wrong answer—because we’re trying to fool it—and then do a standard backward/
optimize pass.

Here’s a generalized implementation in PyTorch. Note that the generator and discrim‐
inator are just standard neural networks, so theoretically they could be generating
images, text, audio, or whatever type of data, and be constructed of any of the types of
networks you’ve seen so far:

generator = Generator()
discriminator = Discriminator()

Set up separate optimizers for each network
generator_optimizer = ...
discriminator_optimizer = ...

def gan_train():
 for epoch in num_epochs:
 for batch in real_train_loader:
 discriminator.train()
 generator.eval()
 discriminator.zero_grad()

 preds = discriminator(batch)
 real_loss = criterion(preds, torch.ones_like(preds))
 discriminator.backward()

 fake_batch = generator(torch.rand(batch.shape))
 fake_preds = discriminator(fake_batch)
 fake_loss = criterion(fake_preds, torch.zeros_like(fake_preds))
 discriminator.backward()

 discriminator_optimizer.step()

Computer, Enhance! | 171

 discriminator.eval()
 generator.train()
 generator.zero_grad()

 forged_batch = generator(torch.rand(batch.shape))
 forged_preds = discriminator(forged_batch)
 forged_loss = criterion(forged_preds, torch.ones_like(forged_preds))

 generator.backward()
 generator_optimizer.step()

Note that the flexibility of PyTorch helps a lot here. Without a dedicated training loop
that is perhaps mainly designed for more standard training, building up a new train‐
ing loop is something we’re used to, and we know all the steps that we need to
include. In some other frameworks, training GANs is a bit more of a fiddly process.
And that’s important, because training GANs is a difficult enough task without the
framework getting in the way.

The Dangers of Mode Collapse
In an ideal world, what happens during training is that the discriminator will be good
at detecting fakes at first, because it’s training on real data, whereas the generator is
allowed access to only the discriminator and not the real data itself. Eventually, the
generator will learn how to fool the discriminator, and then it will soon improve rap‐
idly to match the data distribution in order to repeatedly produce forgeries that slip
past the critic.

But one thing that plagues many GAN architectures is mode collapse. If our real data
has three types of data, then maybe our generator will start generating the first type,
and perhaps it starts getting rather good at it. The discriminator may then decide that
anything that looks like the first type is actually fake, even the real example itself, and
the generator then starts to generate something that looks like the third type. The
discriminator starts rejecting all samples of the third type, and the generator picks
another one of the real examples to generate. The cycle continues endlessly; the gen‐
erator never manages to settle into a period where it can generate samples from
across the distribution.

Reducing mode collapse is a key performance issue of using GANs and is an on-
going research area. Some approaches include adding a similarity score to the gener‐
ated data, so that potential collapse can be detected and averted, keeping a replay
buffer of generated images around so that the discriminator doesn’t overfit onto just
the most current batch of generated images, allowing actual labels from the real data‐
set to be added to the generator network, and so on.

Next we round off this section by examining a GAN application that performs super-
resolution.

172 | Chapter 9: PyTorch in the Wild

ESRGAN
The Enhanced Super-Resolution Generative Adversarial Network (ESRGAN) is a net‐
work developed in 2018 that produces impressive super-resolution results. The gen‐
erator is a series of convolutional network blocks with a combination of residual and
dense layer connections (so a mixture of both ResNet and DenseNet), with Batch
Norm layers removed as they appear to create artifacts in upsampled images. For the
discriminator, instead of simply producing a result that says this is real or this is fake,
it predicts a probability that a real image is relatively more realistic than a fake one,
and this helps to make the model produce more natural results.

Running ESRGAN
To show off ESRGAN, we’re going to download the code from the GitHub repository.
Clone that using git:

git clone https://github.com/xinntao/ESRGAN

We then need to download the weights so we can use the model without training.
Using the Google Drive link in the README, download the RRDB_ESRGAN_x4.pth
file and place it in ./models. We’re going to upsample a scaled-down version of Helve‐
tica in her box, but feel free to place any image into the ./LR directory. Run the sup‐
plied test.py script and you’ll see upsampled images being generated and saved into
the results directory.

That wraps it up for super-resolution, but we haven’t quite finished with images yet.

Further Adventures in Image Detection
Our image classifications in Chapters 2–4 all had one thing in common: we deter‐
mined that the image belonged to a single class, cat or fish. And obviously, in real-
world applications, that would be extended to a much larger set of classes. But we’d
also expect images to potentially include both a cat and a fish (which might be bad
news for the fish), or any of the classes we’re looking for. There might be two people
in the scene, a car, and a boat, and we not only want to determine that they’re present
in the image, but also where they are in the image. There are two main ways to do
this: object detection and segmentation. We’ll look at both and then turn to Facebook’s
PyTorch implementations of Faster R-CNN and Mask R-CNN to look at concrete
examples.

Object Detection
Let’s take a look at our cat in a box. What we really want is for the network to put the
cat in a box in another box! In particular, we want a bounding box that encompasses
everything in the image that the model thinks is cat, as seen in Figure 9-7.

Further Adventures in Image Detection | 173

https://github.com/xinntao/ESRGAN

3 See “U-Net: Convolutional Networks for Biomedical Image Segmentation” by Olaf Ronneberger et al. (2015).

Figure 9-7. Cat in a box in a bounding box

But how can we get our networks to work this out? Remember that these networks
can predict anything that you want them to. What if alongside our prediction of a
class, we also produce four more outputs? In our CATFISH model, we’d have a
Linear layer of output size 6 instead of 2. The additional four outputs will define a
rectangle using x1, x2, y1, y2 coordinates. Instead of just supplying images as training
data, we’ll also have to augment them with bounding boxes so that the model has
something to train toward, of course. Our loss function will now be a combined loss
of the cross-entropy loss of our class prediction and a mean squared loss for the
bounding boxes.

There’s no magic here! We just design the model to give us what we need, feed in data
that has enough information to make and train to those predictions, and include a
loss function that tells our network how well or badly it’s doing.

An alternative to the proliferation of bounding boxes is segmentation. Instead of pro‐
ducing boxes, our network outputs an image mask of the same size of the input; the
pixels in the mask are colored depending on which class they fall into. For example,
grass could be green, roads could be purple, cars could be red, and so on.

As we’re outputting an image, you’d be right in thinking that we’ll probably end up
using a similar sort of architecture as in the super-resolution section. There’s a lot of
cross-over between the two topics, and one model type that has become popular over
the past few years is the U-Net architecture, shown in Figure 9-8.3

174 | Chapter 9: PyTorch in the Wild

https://arxiv.org/abs/1505.04597

Figure 9-8. Simplified U-Net architecture

As you can see, the classic U-Net architecture is a set of convolutional blocks that
scale down an image and another series of convolutions that scale it back up again to
the target image. However, the key of U-Net is the lines that go across from the left
blocks to their counterparts on the righthand side, which are concatenated with the
output tensors as the image is scaled back up. These connections allow information
from the higher-level convolutional blocks to transfer across, preserving details that
might be removed as the convolutional blocks reduce the input image.

You’ll find U-Net-based architectures cropping up all over Kaggle segmentation com‐
petitions, proving in some ways that this structure is a good one for segmentation.
Another technique that has been applied to the basic setup is our old friend transfer
learning. In this approach, the first part of the U is taken from a pretrained model
such as ResNet or Inception, and the other side of the U, plus skip connections, are
added on top of the trained network and fine-tuned as usual.

Let’s take a look at some existing pretrained models that can deliver state-of-the-art
object detection and segmentation, direct from Facebook.

Faster R-CNN and Mask R-CNN
Facebook Research has produced the maskrcnn-benchmark library, which contains
reference implementations of both object detection and segmentation algorithms.
We’re going to install the library and add code to generate predictions. At the time of
this writing, the easiest way to build the models is by using Docker (this may change
when PyTorch 1.2 is released). Clone the repository from https://github.com/facebook
research/maskrcnn-benchmark and add this script, predict.py, into the demo directory
to set up a prediction pipeline using a ResNet-101 backbone:

Further Adventures in Image Detection | 175

https://github.com/facebookresearch/maskrcnn-benchmark
https://github.com/facebookresearch/maskrcnn-benchmark

import matplotlib.pyplot as plt

from PIL import Image
import numpy as np
import sys
from maskrcnn_benchmark.config import cfg
from predictor import COCODemo

config_file = "../configs/caffe2/e2e_faster_rcnn_R_101_FPN_1x_caffe2.yaml"

cfg.merge_from_file(config_file)
cfg.merge_from_list(["MODEL.DEVICE", "cpu"])

coco_demo = COCODemo(
 cfg,
 min_image_size=500,
 confidence_threshold=0.7,
)

pil_image = Image.open(sys.argv[1])
image = np.array(pil_image)[:, :, [2, 1, 0]]
predictions = coco_demo.run_on_opencv_image(image)
predictions = predictions[:,:,::-1]

plt.imsave(sys.argv[2], predictions)

In this short script, we’re first setting up the COCODemo predictor, making sure that we
pass in the configuration that sets up Faster R-CNN instead of Mask R-CNN (which
will produce segmented output). We then open an image file set on the command
line, but we have to turn it into BGR format instead of RGB format as the predictor is
trained on OpenCV images rather than the PIL images we’ve been using so far.
Finally, we use imsave to write the predictions array (the original image plus
bounding boxes) to a new file, also specified on the command line. Copy in a test
image file into this demo directory and we can then build the Docker image:

docker build docker/

We run the script from inside the Docker container and produce output that looks
like Figure 9-7 (I actually used the library to generate that image). Try experimenting
with different confidence_threshold values and different pictures. You can also
switch to the e2e_mask_rcnn_R_101_FPN_1x_caffe2.yaml configuration to try out
Mask R-CNN and generate segmentation masks as well.

To train your own data on the models, you’ll need to supply your own dataset that
provides bounding box labels for each image. The library provides a helper function
called BoxList. Here’s a skeleton implementation of a dataset that you could use as a
starting point:

176 | Chapter 9: PyTorch in the Wild

from maskrcnn_benchmark.structures.bounding_box import BoxList

class MyDataset(object):
 def __init__(self, path, transforms=None):
 self.images = # set up image list
 self.boxes = # read in boxes
 self.labels = # read in labels

 def __getitem__(self, idx):
 image = # Get PIL image from self.images
 boxes = # Create a list of arrays, one per box in x1, y1, x2, y2 format
 labels = # labels that correspond to the boxes

 boxlist = BoxList(boxes, image.size, mode="xyxy")
 boxlist.add_field("labels", labels)

 if self.transforms:
 image, boxlist = self.transforms(image, boxlist)

 return image, boxlist, idx

 def get_img_info(self, idx):
 return {"height": img_height, "width": img_width

You’ll then need to add your newly created dataset to maskrcnn_benchmark/data/
datasets/init.py and maskrcnn_benchmark/config/paths_catalog.py. Training can then
be carried out using the supplied train_net.py script in the repo. Be aware that you
may have to decrease the batch size to train any of these networks on a single GPU.

That wraps it up for object detection and segmentation, though see “Further Reading”
on page 190 for more ideas, including the wonderfully entitled You Only Look Once
(YOLO) architecture. In the meantime, we look at how to maliciously break a model.

Adversarial Samples
You have probably seen articles online about images that can somehow prevent image
recognition from working properly. If a person holds up an image to the camera, the
neural network thinks it is seeing a panda or something like that. These are known as
adversarial samples, and they’re interesting ways of discovering the limitations of your
architectures and how best to defend against them.

Creating an adversarial sample isn’t too difficult, especially if you have access to the
model. Here’s a simple neural network that classifies images from the popular
CIFAR-10 dataset. There’s nothing special about this model, so feel free to swap it out
for AlexNet, ResNet, or any other network presented so far in the book:

class ModelToBreak(nn.Module):
 def __init__(self):
 super(ModelToBreak, self).__init__()
 self.conv1 = nn.Conv2d(3, 6, 5)

Adversarial Samples | 177

4 See “Explaining and Harnessing Adversarial Examples” by Ian Goodfellow et al. (2014).

 self.pool = nn.MaxPool2d(2, 2)
 self.conv2 = nn.Conv2d(6, 16, 5)
 self.fc1 = nn.Linear(16 * 5 * 5, 120)
 self.fc2 = nn.Linear(120, 84)
 self.fc3 = nn.Linear(84, 10)

 def forward(self, x):
 x = self.pool(F.relu(self.conv1(x)))
 x = self.pool(F.relu(self.conv2(x)))
 x = x.view(-1, 16 * 5 * 5)
 x = F.relu(self.fc1(x))
 x = F.relu(self.fc2(x))
 x = self.fc3(x)
 return x

Once the network has been trained on CIFAR-10, we can get a prediction for the
image in Figure 9-9. Hopefully the training has gone well enough to report that it’s a
frog (if not, you might want to train a little more!). What we’re going to do is change
our picture of a frog just enough that the neural network gets confused and thinks it’s
something else, even though we can still recognize that it’s clearly a frog.

Figure 9-9. Our frog example

To do this, we’ll use a method of attack called the fast gradient sign method.4 The idea
is to take the image we want to misclassify and run it through the model as usual,
which gives us an output tensor. Typically for predictions, we’d look to see which of
the tensor’s values was the highest and use that as the index into our classes, using
argmax(). But this time we’re going to pretend that we’re training the network again
and backpropagate that result back through the model, giving us the gradient changes
of the model with respect to the original input (in this case, our picture of a frog).

Having done that, we create a new tensor that looks at these gradients and replaces an
entry with +1 if the gradient is positive and –1 if the gradient is negative. That gives

178 | Chapter 9: PyTorch in the Wild

https://arxiv.org/abs/1412.6572

us the direction of travel that this image is pushing the model’s decision boundaries.
We then multiply by a small scalar (called epsilon in the paper) to produce our mali‐
cious mask, which we then add to the original image, creating an adversarial example.

Here’s a simple PyTorch method that returns the fast gradient sign tensors for an
input batch when supplied with the batch’s labels, plus the model and the loss func‐
tion used to evaluate the model:

def fgsm(input_tensor, labels, epsilon=0.02, loss_function, model):
 outputs = model(input_tensor)
 loss = loss_function(outputs, labels)
 loss.backward(retain_graph=True)
 fsgm = torch.sign(inputs.grad) * epsilon
 return fgsm

Epsilon is normally found via experimentation. By playing around with various
images, I discovered that 0.02 works well for this model, but you could also use
something like a grid or random search to find the value that turns a frog into a ship!

Running this function on our frog and our model, we get a mask, which we can then
add to our original image to generate our adversarial sample. Have a look at
Figure 9-10 to see what it looks like!

model_to_break = # load our model to break here
adversarial_mask = fgsm(frog_image.unsqueeze(-1),
 batch_labels,
 loss_function,
 model_to_break)
adversarial_image = adversarial_mask.squeeze(0) + frog_image

Figure 9-10. Our adversarial frog

Clearly, our created image is still a frog to our human eyes. (If it doesn’t look like a
frog to you, then you may be a neural network. Report yourself for a Voight-Kampff
test immediately.) But what happens if we get a prediction from the model on this
new image?

Adversarial Samples | 179

model_to_break(adversarial_image.unsqueeze(-1))
look up in labels via argmax()
>> 'cat'

We have defeated the model. But is this as much of a problem as it first appears?

Black-Box Attacks
You may have noticed that to produce an image that fools the classifier, we need to
know a lot about the model being used. We have the entire structure of the model in
front of us as well as the loss function that was used in training the model, and we
need to do forward and backward passes in the model to get our gradients. This is a
classic example of what’s known in computer security as a white-box attack, where we
can peek into any part of our code to work out what’s going on and exploit whatever
we can find.

So does this matter? After all, most models that you’ll encounter online won’t allow
you to peek inside. Is a black-box attack, where all you have is the input and output,
actually possible? Well, sadly, yes. Consider that we have a set of inputs, and a set of
outputs to match them against. The outputs are labels, and it is possible to use targe‐
ted queries of models to train a new model that you can use as a local proxy and carry
out attacks in a white-box manner. Just as you’ve seen with transfer learning, the
attacks on the proxy model can work effectively on the actual model. Are we
doomed?

Defending Against Adversarial Attacks
How can we defend against these attacks? For something like classifying an image as
a cat or a fish, it’s probably not the end of the world, but for self-driving systems,
cancer-detection applications, and so forth, it could literally mean the difference
between life and death. Successfully defending against all types of adversarial attacks
is still an area of research, but highlights so far include distilling and validation.

Distilling a model by using it to train another model seems to help. Using label
smoothing with the new model, as outlined earlier in this chapter, also seems to help.
Making the model less sure of its decisions appears to smooth out the gradients
somewhat, making the gradient-based attack we’ve outlined in this chapter less
effective.

A stronger approach is to go back to some parts of the early computer vision days. If
we perform input validation on the incoming data, we can possibly prevent the
adversarial image from getting to the model in the first place. In the preceding exam‐
ple, the generated attack image has a few pixels that are very out of place to what our
eyes are expecting when we see a frog. Depending on the domain, we could have a
filter that allows in only images that pass some filtering tests. You could in theory

180 | Chapter 9: PyTorch in the Wild

5 See “Neural Machine Translation by Jointly Learning to Align and Translate” by Dzmitry Bahdanau et al.
(2014).

make a neural net to do that too, because then the attackers have to try to break two
different models with the same image!

Now we really are done with images. But let’s look at some developments in text-
based networks that have occurred the past couple of years.

More Than Meets the Eye: The Transformer Architecture
Transfer learning has been a big feature in allowing image-based networks to become
so effective and prevalent over the past decade, but text has been a more difficult nut
to crack. In the last couple of years, though, some major steps have been taken that
are beginning to unlock the potential of using transfer learning in text for all sorts of
tasks, such as generation, classification, and answering questions. We’ve also seen a
new type of architecture begin to take center stage: the Transformer network. These
networks don’t come from Cybertron, but the technique is behind the most powerful
text-based networks we’ve seen, with OpenAI’s GPT-2 model, released in 2019, show‐
ing a scarily impressive quality in its generated text, to the extent that OpenAI ini‐
tially held back the larger version of the model to prevent it from being used for
nefarious purposes. We look at the general theory of Transformer and then dive into
how to use Hugging Face’s implementations of GPT-2 and BERT.

Paying Attention
The initial step along the way to the Transformer architecture was the attention
mechanism, which was initially introduced to RNNs to help in sequence-to-sequence
applications such as translation.5

The issue attention was trying to solve was the difficulty in translating sentences such
as “The cat sat on the mat and she purred.” We know that she in that sentence refers
to the cat, but it’s a hard concept to get a standard RNN to understand. It may have
the hidden state that we talked about in Chapter 5, but by the time we get to she, we
already have a lot of time steps and hidden state for each step!

So what attention does is add an extra set of learnable weights attached to each time
step that focuses the network onto a particular part of the sentence. The weights are
normally pushed through a softmax layer to generate probabilities for each step and
then the dot product of the attention weights is calculated with the previous hidden
state. Figure 9-11 shows a simplified version of this with respect to our sentence.

More Than Meets the Eye: The Transformer Architecture | 181

https://arxiv.org/abs/1409.0473

6 See “Attention Is All You Need” by Ashish Vaswani et al. (2017).

Figure 9-11. An attention vector pointing to cat

The weights ensure that when the hidden state gets combined with the current state,
cat will be a major part of determining the output vector at the time step for she,
which will provide useful context for translating into French, for example!

We won’t go into all the details about how attention can work in a concrete imple‐
mentation, but know the concept was powerful enough that it kickstarted the impres‐
sive growth and accuracy of Google Translate back in the mid-2010s. But more was to
come.

Attention Is All You Need
In the groundbreaking paper “Attention Is All You Need,”6 Google researchers pointed
out that we’d spent all this time bolting attention onto an already slow RNN-based
network (compared to CNNs or linear units, anyhow). What if we didn’t need the
RNN after all? The paper showed that with stacked attention-based encoders and
decoders, you could create a model that didn’t rely on the RNN’s hidden state at all,
leading the way to the larger and faster Transformer that dominates textual deep
learning today.

The key idea was to use what the authors called multihead attention, which parallel‐
izes the attention step over all the input by using a group of Linear layers. With these,
and borrowing some residual connection tricks from ResNet, Transformer quickly
began to supplant RNNs for many text-based applications. Two important Trans‐
former releases, BERT and GPT-2, represent the current state-of-the-art as this book
goes to print.

182 | Chapter 9: PyTorch in the Wild

https://arxiv.org/abs/1706.03762

Luckily for us, there’s a library from Hugging Face that implements both of them in
PyTorch. It can be installed using pip or conda, and you should also git clone the
repo itself, as we’ll be using some of the utility scripts later!

pip install pytorch-transformers
conda install pytorch-transformers

First, we’ll have a look at BERT.

BERT
Google’s 2018 Bidirectional Encoder Representations from Transformers (BERT) model
was one of the first successful examples of bringing transfer learning of a powerful
model to test. BERT itself is a massive Transformer-based model (weighing in at 110
million parameters in its smallest version), pretrained on Wikipedia and the Book‐
Corpus dataset. The issue that both Transformer and convolutional networks tradi‐
tionally have when working with text is that because they see all of the data at once,
it’s difficult for those networks to learn the temporal structure of language. BERT gets
around this in its pretraining stage by masking 15% of the text input at random and
forcing the model to predict the parts that have been masked. Despite being concep‐
tually simple, the combination of the massive size of the 340 million parameters in
the largest model with the Transformer architecture resulted in new state-of-the-art
results for a whole series of text-related benchmarks.

Of course, despite being created by Google with TensorFlow, there are implementa‐
tions of BERT for PyTorch. Let’s take a quick look at one now.

FastBERT
An easy way to start using the BERT model in your own classification applications is
to use the FastBERT library that mixes Hugging Face’s repository with the fast.ai API
(which you’ll see in a bit more detail when we come to ULMFiT shortly). It can be
installed via pip in the usual manner:

pip install fast-bert

Here’s a script that can be used to fine-tune BERT on our Sentiment140 Twitter data‐
set that we used into Chapter 5:

import torch
import logger

from pytorch_transformers.tokenization import BertTokenizer
from fast_bert.data import BertDataBunch
from fast_bert.learner import BertLearner
from fast_bert.metrics import accuracy

device = torch.device('cuda')
logger = logging.getLogger()

More Than Meets the Eye: The Transformer Architecture | 183

https://oreil.ly/xpDzq

metrics = [{'name': 'accuracy', 'function': accuracy}]

tokenizer = BertTokenizer.from_pretrained
 ('bert-base-uncased',
 do_lower_case=True)

databunch = BertDataBunch([PATH_TO_DATA],
 [PATH_TO_LABELS],
 tokenizer,
 train_file=[TRAIN_CSV],
 val_file=[VAL_CSV],
 test_data=[TEST_CSV],
 text_col=[TEST_FEATURE_COL], label_col=[0],
 bs=64,
 maxlen=140,
 multi_gpu=False,
 multi_label=False)

learner = BertLearner.from_pretrained_model(databunch,
 'bert-base-uncased',
 metrics,
 device,
 logger,
 is_fp16=False,
 multi_gpu=False,
 multi_label=False)

learner.fit(3, lr='1e-2')

After our imports, we set up the device, logger, and metrics objects, which are
required by the BertLearner object. We then create a BERTTokenizer for tokenizing
our input data, and in this base we’re going to use the bert-base-uncased model
(which has 12 layers and 110 million parameters). Next, we need a BertDataBunch
object that contains paths to the training, validation, and test datasets, where to find
the label column, our batch size, and the maximum length of our input data, which in
our case is simple because it can be only the length of a tweet, at that time 140 charac‐
ters. Having done that, we will set up a BERT model by using the Ber

tLearner.from_pretrained_model method. This passes in our input data, our BERT
model type, the metric, device, and logger objects we set up at the start of the script,
and finally some flags to turn off training options that we don’t need but aren’t given
defaults for the method signature.

Finally, the fit() method takes care of fine-tuning the BERT model on our input
data, running on its own internal training loop. In this example, we’re training for
three epochs with a learning rate of 1e-2. The trained PyTorch model can be accessed
afterward using learner.model.

184 | Chapter 9: PyTorch in the Wild

And that’s how to get up and running with BERT. Now, onto the competition.

GPT-2
Now, while Google was quietly working on BERT, OpenAI was working on its own
version of a Transformer-based text model. Instead of using masking to force the
model to learn language structure, the model constrains the attention mechanism
within the architecture to simply predict the next word in a sequence, in a similar
style to the RNNs in Chapter 5. As a result, GPT was somewhat left behind by the
impressive performance of BERT, but in 2019 OpenAI struck back with GPT-2, a new
version of the model that reset the bar for text generation.

The magic behind GPT-2 is scale: the model is trained on text from over 8 million
websites, and the largest variant of GPT-2 weighs in at 1.5 billion parameters. And
while it still doesn’t dislodge BERT on particular benchmarks for things like question/
answering or other NLP tasks, its ability to create incredibly realistic text from a basic
prompt led to OpenAI locking the full-size model behind closed doors for fear of it
being weaponized. They have, however, released smaller versions of the model, clock‐
ing in at 117 and 340 million parameters.

Here’s an example of the output that GPT-2 can generate. Everything in italics was
written by GPT-2’s 340M model:

Jack and Jill went up the hill on a bike ride. The sky was a grey white and the wind was
blowing, causing a heavy snowfall. It was really difficult to drive down the hill, I had to
lean forward on a bit of gear to get it on. But then there was a moment of freedom that I
would never forget: The bike was at a complete stop on the mountain side and I was in the
middle of it. I didn’t have time to say a word, but I did lean forward and touch the brakes
and the bike started to go.

Aside from switching from Jack and Jill to I, this is an impressive piece of text genera‐
tion. For short pieces of text, it can sometimes be indistinguishable from human-
created text. It does reveal the machine behind the curtain as the generated text
continues, but it’s an impressive feat that could be writing tweets and Reddit com‐
ments right now. Let’s have a look at how to do this with PyTorch.

Generating Text with GPT-2
Like BERT, the official GPT-2 release from OpenAI is a TensorFlow model. Also like
BERT, Hugging Face has released a PyTorch version that is contained within the same
library (pytorch-transformers). However, a burgeoning ecosystem has been built
around the original TensorFlow model that just doesn’t exist currently around the
PyTorch version. So just this once, we’re going to cheat: we’re going to use some of the
TensorFlow-based libraries to fine-tune the GPT-2 model, and then export the
weights and import them into the PyTorch version of the model. To save us from too

More Than Meets the Eye: The Transformer Architecture | 185

much setup, we also do all the TensorFlow operations in a Colab notebook! Let’s get
started.

Open a new Google Colab notebook and install the library that we’re using, Max
Woolf ’s gpt-2-simple, which wraps up GPT-2 fine-tuning in a single package. Install it
by adding this into a cell:

!pip3 install gpt-2-simple

Next up, you need some text. In this example, I’m using a public domain text of PG
Wodehouse’s My Man Jeeves. I’m also not going to do any further processing on the
text after downloading it from the Project Gutenberg website with wget:

!wget http://www.gutenberg.org/cache/epub/8164/pg8164.txt

Now we can use the library to train. First, make sure your notebook is connected to a
GPU (look in Runtime→Change Runtime Type), and then run this code in a cell:

import gpt_2_simple as gpt2

gpt2.download_gpt2(model_name="117M")

sess = gpt2.start_tf_sess()
gpt2.finetune(sess,
 "pg8164.txt",model_name="117M",
 steps=1000)

Replace the text file with whatever text file you’re using. As the model trains, it will
spit out a sample every hundred steps. In my case, it was interesting to see it turn
from spitting out vaguely Shakespearian play scripts to something that ended up
approaching Wodehouse prose. This will likely take an hour or two to train for 1,000
epochs, so go off and do something more interesting instead while the cloud’s GPUs
are whirring away.

Once it has finished, we need to get the weights out of Colab and into your Google
Drive account so you can download them to wherever you’re running PyTorch from:

gpt2.copy_checkpoint_to_gdrive()

That will point you to open a new web page to copy an authentication code into the
notebook. Do that, and the weights will be tarred up and saved to your Google Drive
as run1.tar.gz.

Now, on the instance or notebook where you’re running PyTorch, download that tar‐
file and extract it. We need to rename a couple of files to make these weights compati‐
ble with the Hugging Face reimplementation of GPT-2:

mv encoder.json vocab.json
mv vocab.bpe merges.txt

186 | Chapter 9: PyTorch in the Wild

We now need to convert the saved TensorFlow weights into ones that are compatible
with PyTorch. Handily, the pytorch-transformers repo comes with a script to do
that:

 python [REPO_DIR]/pytorch_transformers/convert_gpt2_checkpoint_to_pytorch.py
 --gpt2_checkpoint_path [SAVED_TENSORFLOW_MODEL_DIR]
 --pytorch_dump_folder_path [SAVED_TENSORFLOW_MODEL_DIR]

Creating a new instance of the GPT-2 model can then be performed in code like this:

from pytorch_transformers import GPT2LMHeadModel

model = GPT2LMHeadModel.from_pretrained([SAVED_TENSORFLOW_MODEL_DIR])

Or, just to play around with the model, you can use the run_gpt2.py script to get a
prompt where you enter text and get generated samples back from the PyTorch-based
model:

python [REPO_DIR]/pytorch-transformers/examples/run_gpt2.py
--model_name_or_path [SAVED_TENSORFLOW_MODEL_DIR]

Training GPT-2 is likely to become easier in the coming months as Hugging Face
incorporates a consistent API for all the models in its repo, but the TensorFlow
method is the easiest to get started with right now.

BERT and GPT-2 are the most popular names in text-based learning right now, but
before we wrap up, we cover the dark horse of the current state-of-the-art models:
ULMFiT.

ULMFiT
In contrast to the behemoths of BERT and GPT-2, ULMFiT is based on a good old
RNN. No Transformer in sight, just the AWD-LSTM, an architecture originally cre‐
ated by Stephen Merity. Trained on the WikiText-103 dataset, it has proven to be
amendable to transfer learning, and despite the old type of architecture, has proven to
be competitive with BERT and GPT-2 in the classification realm.

While ULMFiT is, at heart, just another model that can be loaded and used in
PyTorch like any other, its natural home is within the fast.ai library, which sits on top
of PyTorch and provides many useful abstractions for getting to grips with and being
productive with deep learning quickly. To that end, we’ll look at how to use ULMFiT
with the fast.ai library on the Twitter dataset we used in Chapter 5.

We first use fast.ai’s Data Block API to prepare our data for fine-tuning the LSTM:

data_lm = (TextList
 .from_csv("./twitter-data/",
 'train-processed.csv', cols=5,
 vocab=data_lm.vocab)
 .split_by_rand_pct()

More Than Meets the Eye: The Transformer Architecture | 187

 .label_from_df(cols=0)
 .databunch())

This is fairly similar to the torchtext helpers from Chapter 5 and just produces what
fast.ai calls a databunch, from which its models and training routines can easily grab
data. Next, we create the model, but in fast.ai, this happens a little differently. We cre‐
ate a learner that we interact with to train the model instead of the model itself,
though we pass that in as a parameter. We also supply a dropout value (we’re using
the one suggested in the fast.ai training materials):

learn = language_model_learner(data_lm, AWD_LSTM, drop_mult=0.3)

Once we have our learner object, we can find the optimal learning rate. This is just
like what we implemented in Chapter 4, except that it’s built into the library and uses
an exponentially moving average to smooth out the graph, which in our implementa‐
tion is pretty spiky:

learn.lr_find()
learn.recorder.plot()

From the plot in Figure 9-12, it looks like 1e-2 is where we’re starting to hit a steep
decline, so we’ll pick that as our learning rate. Fast.ai uses a method called
fit_one_cycle, which uses a 1cycle learning scheduler (see “Further Reading” on
page 190 for more details on 1cycle) and very high learning rates to train a model in
an order of magnitude fewer epochs.

Figure 9-12. ULMFiT learning rate plot

Here, we’re training for just one cycle and saving the fine-tuned head of the network
(the encoder):

learn.fit_one_cycle(1, 1e-2)
learn.save_encoder('twitter_encoder')

188 | Chapter 9: PyTorch in the Wild

With the fine-tuning of the language model completed (you may want to experiment
with more cycles in training), we build a new databunch for the actual classification
problem:

twitter_classifier_bunch = TextList
 .from_csv("./twitter-data/",
 'train-processed.csv', cols=5,
 vocab=data_lm.vocab)
 .split_by_rand_pct()
 .label_from_df(cols=0)
 .databunch())

The only real difference here is that we supply the actual labels by using
label_from_df and we pass in a vocab object from the language model training that
we performed earlier to make sure they’re using the same mapping of words to num‐
bers, and then we’re ready to create a new text_classifier_learner, where the
library does all the model creation for you behind the scenes. We load the fine-tuned
encoder onto this new model and begin the process of training again:

learn = text_classifier_learner(data_clas, drop_mult=0.5)
learn.load_encoder('fine_tuned_enc')

learn.lr_find()
learn.recorder.plot()

learn.fit_one_cycle(1, 2e-2, moms=(0.8,0.7))

And with a tiny amount of code, we have a classifier that reports an accuracy of 76%.
We could easily improve that by training the language model for more cycles, adding
differential learning rates and freezing parts of the model while training, all of which
fast.ai supports with methods defined on the learner.

What to Use?
Given that little whirlwind tour of the current cutting edge of text models in deep
learning, there’s probably one question on your mind: “That’s all great, but which one
should I actually use?” In general, if you’re working on a classification problem, I sug‐
gest you start with ULMFiT. BERT is impressive, but ULMFiT is competitive with
BERT in terms of accuracy, and it has the additional benefit that you don’t need to
buy a huge number of TPU credits to get the best out of it. A single GPU fine-tuning
ULMFiT is likely to be enough for most people.

And as for GPT-2, if you’re after generated text, then yes, it’s a better fit, but for classi‐
fication purposes, it’s going to be harder to approach ULMFiT or BERT performance.
One thing that I do think might be interesting is to let GPT-2 loose on data augmen‐
tation; if you have a dataset like Sentiment140, which we’ve been using throughout
this book, why not fine-tune a GPT-2 model on that input and use it to generate more
data?

More Than Meets the Eye: The Transformer Architecture | 189

Conclusion
This chapter looked at the wider world of PyTorch, including libraries with existing
models that you can import into your own projects, some cutting-edge data augmen‐
tation approaches that can be applied to any domain, as well as adversarial samples
that can ruin your model’s day and how to defend against them. I hope that as we
come to the end of our journey, you understand how neural networks are assembled
and how to get images, text, and audio to flow through them as tensors. You should
be able to train them, augment data, experiment with learning rates, and even debug
models when they’re not going quite right. And once all that’s done, you know how to
package them up in Docker and get them serving requests from the wider world.

Where do we go from here? Consider having a look at the PyTorch forums and the
other documentation on the website. I definitely also recommend visiting the fast.ai
community even if you don’t end up using the library; it’s a hive of activity, filled with
good ideas and people experimenting with new approaches, while also friendly to
newcomers!

Keeping up with the cutting edge of deep learning is becoming harder and harder.
Most papers are published on arXiv, but the rate of papers being published seems to
be rising at an almost exponential level; as I was typing up this conclusion, XLNet was
released, which apparently beats BERT on various tasks. It never ends! To try to help
in this, I listed a few Twitter accounts here where people often recommend interest‐
ing papers. I suggest following them to get a taste of current and interesting work,
and from there you can perhaps use a tool such as arXiv Sanity Preserver to drink
from the firehose when you feel more comfortable diving in.

Finally, I trained a GPT-2 model on the book and it would like to say a few words:
Deep learning is a key driver of how we work on today’s deep learning applications, and
deep learning is expected to continue to expand into new fields such as image-based clas‐
sification and in 2016, NVIDIA introduced the CUDA LSTM architecture. With LSTMs
now becoming more popular, LSTMs were also a cheaper and easier to produce method of
building for research purposes, and CUDA has proven to be a very competitive architec‐
ture in the deep learning market.

Thankfully, you can see there’s still a way to go before we authors are out of a job. But
maybe you can help change that!

Further Reading
• A survey of current super-resolution techniques
• Ian Goodfellow’s lecture on GANs
• You Only Look Once (YOLO), a family of fast object detection models with

highly readable papers

190 | Chapter 9: PyTorch in the Wild

https://arxiv.org
https://arxiv.org/abs/1906.08237
http://arxiv-sanity.com
https://arxiv.org/pdf/1902.06068.pdf
https://www.youtube.com/watch?v=Z6rxFNMGdn0
https://pjreddie.com/darknet/yolo

• CleverHans, a library of adversarial generation techniques for TensorFlow and
PyTorch

• The Illustrated Transformer, an in-depth voyage through the Transformer archi‐
tecture

Some Twitter accounts to follow:

• @jeremyphoward—Cofounder of fast.ai
• @miles_brundage—Research scientist (policy) at OpenAI
• @BrundageBot—Twitter bot that generates a daily summary of interesting papers

from arXiv (warning: often tweets out 50 papers a day!)
• @pytorch—Official PyTorch account

Further Reading | 191

https://github.com/tensorflow/cleverhans
http://jalammar.github.io/illustrated-transformer

Index

Symbols
@app.route() function, 140
@torch.jit.script_method, 154
__call__, 64, 110
__getitem__, 96, 102
__init__, 108, 155
__len__, 96
__repr__, 64

A
AdaGrad, 25
Adam, 25, 98
AdaptiveAvgPool layer, 38
AdaptiveMaxPool layer, 38
add_graph() function, 119
adversarial samples, 177-181

and black box attacks, 180
and defending against adversarial attacks,

180
AlexNet, 39, 135, 150
Amazon Web Services (see AWS)
AMD, 2
Anaconda, 9
ApacheMXNet, xii
append_effect_to_chain, 108
ARG, 142
argmax() function, 11, 29, 84, 178
arXiv, 190
arXiv Sanity Preserver, 190
attacks

adversarial, 180
black-box, 180
white-box, 180

attention, 181

audio (see sound)
autoencoder, 168
AutoML, 44
AWS (Amazon Web Services), 5, 147
Azure, 5, 6, 147
Azure Blob Storage, 144, 145
Azure Marketplace, 6

B
back translation, 86
backpropagation through time, 71
backward() function, 26
BadRandom, 130, 164
BatchNorm layer, 47, 52, 173
batch_size, 21
BCEWithLogitsLoss() function, 83
BertLearner.from_pretrained_model, 184
best_loss, 55
Bidirectional Encoder Representations from

Transformers (BERT), 183-185, 189
biLSTM (bidirectional LSTM), 73
Bitcoin, 2
black-box attacks, 180
BookCorpus dataset, 183
Borg, 147
broadcasting, tensor, 13

C
C++ compiler, 156
C++ library (see libTorch)
Caffe2, 159
CAM (class activation mapping), 122-125
Candadian Institute for Advanced Research

(CIFAR-10), 115

193

Chainer, xi
challenges with image classification, 17-21
checkbox, 7
checkpoint_sequential, 136
CIFAR-10 (Candadian Institute for Advanced

Research), 115
CIFAR-10 dataset, 177
class activation mapping, 115, 115
class activation mapping (CAM), 122-125
classifier, 52
cloud platforms, 3-7

Amazon Web Services, 5
Azure, 6
choosing, 7
Google Cloud Platform, 6
providers, 5-7

cloud storage
local storage versus, 144-145
pulling from, 145

CMake, 156
CNNs (see convolutional neural networks)
Colaboratory (Colab), 3
collisions, 165
color spaces

data augmentation with, 63
HSV, 63
RBG, 63

ColorJitter, 58
Compute Unified Device Architecture

(CUDA), 8, 132
conda, 95, 138
Conv2d layer, 34-37, 168
convolutional kernel, 35
convolutional neural networks (CNNs), 33-49

AlexNet, 39
architectures, 39-44
convolutions, 34-37
dropout, 38
ESC-50 model, 98
example, 33
history, ix
Inception/GoogLeNet, 40
pooling, 37
ResNet, 43
VGG, 41

convolutions, 34-37
COPY, 142
copyfileobj(), 144
CPU, 2, 131

CrossEntropyLoss() function, 23, 83, 98, 164,
165

CUDA (Compute Unified Device Architec‐
ture), 8, 132

cuda() function, 27
cuda.is_available() function, 10
custom deep learning machine

CPU/Motherboard, 2
GPU, 2
RAM, 2
storage, 2

custom transform classes, 64

D
data

augmentation (see data augmentation)
building training data set, 18-20
image classification, 17
loading and converting, 18
torchtext, 77
unbalanced, 94
validation and test datasets, 20

data augmentation, 57-66, 84-88
audio (see audio data augmentation)
back translation, 86
color spaces and Lamba transforms, 63
custom transform classes, 64
label smoothing, 165
mixed and smoothed, 161-166
mixup, 161-165
random deletion, 85
random insertion, 85
random swap, 86
starting small with, 65
torchtext, 87
torchvision transforms, 58-63
transfer learning and, 88

datasets
defined, 18
for frequency, 102-104
training, 18-20
types, 20
validation/test, 20
WikiText-103, 187

DDR4, 2
debugging, 115-136

flame graphs, 125-132
GPU issues, 132-136
TensorBoard and, 116-125

194 | Index

decoder, 168
deep learning, defined, x
degrees parameter, 62
deletion, random, 85
DenseNet, 43
differential learning rates, 56
DigitalOcean, 147
discriminator networks, 170, 172
distilling, 180
Docker, 175
Docker container, building, 141-143
Docker Hub, 141
download.py script, 18, 20
Dropout, x, 52
Dropout layer, 38, 39, 151

E
embedding matrix, 75
embeddings, for text classification, 74-76
encoder, 168
encoding, one-hot, 75
Enhanced Super-Resolution Generative Adver‐

sarial Network (ESRGAN), 173
ENTRYPOINT, 143
ENV, 142
Environmental Sound Classification (ESC)

dataset, 93-98
building, 96
CNN model for, 98
exploring, 94
obtaining, 93
playing audio in Jupyter for, 93
SoX and LibROSA for, 95
torchaudio, 95

epsilon, 179
ESC-50, 105

(see also Environmental Sound Classifica‐
tion (ESC) dataset)

exploding gradient, 71
EXPOSE, 143

F
Facebook, ix, 116
fast gradient sign method (fgsm), 178
fast.ai library, 54, 188
FastBERT, 183-185
Faster R-CNN, 175-177
fc, 52
feature map, 35

filesytem, 29
filter, 35
find_lr() function, 55, 105
fit() function, 184
fit_one_cycle, 188
flame graphs, 125-132

and installing py-spy, 127
fixing slow transformations, 129-132
reading, 128

Flask, 138-140
forward() function, 22, 34, 128
Fourier transform, 11
frequency domain, 99-107

and frequency masking, 109-110
and learning rate, 105
and ResNet, 104
dataset for, 102-104
mel spectrograms, 100-101

G
GANs (see generative adversarial networks)
gated recurrent units (GRUs), 73
gc.collect() function, 134
GCP (Google Cloud Platform), 5, 6
GCP Marketplace, 6
generative adversarial networks (GANs),

169-173
and ESRGAN, 173
and mode collapse, 172
neural networks, 170
training, 171

generator networks, 170
get_stopwords() function, 85
get_synonyms() function, 85
GKE (Google Kubernetes Engine), 147, 147
Google, xi
Google Cloud Platform (GCP), 5, 6
Google Cloud Storage, 144, 145
Google Colaboratory, 3
Google Kubernetes Engine (GKE), 147, 147
Google Translate, 69, 87
GoogLeNet, 40
googletrans, 86
GPT-2, 181, 185-187, 189
GPU (graphical processing unit)

checking, 132
CNNs and, 39
for custom deep learning machine, 2
debugging issues with, 132-136

Index | 195

flame graphs, 131
gradient checkpointing, 134-136
image classification, 27
matrix multiplication, 164
surge, ix

gradient
exploding, 71
vanishing, 71

gradient checkpointing, 134-136
Gregg, Brendan, 125
grid search, 53
GRUs (gated recurrent units), 73

H
heatmap, 122
hooks, 120
Howard, Jeremy, 53
HSV color space, 63

I
image classification, 15-31

activation functions, 22
and data loaders, 18
and GPU, 27
building training dataset for, 18-20
building validation and test datasets, 20
challenges with, 17-21
creating a network, 22
data for, 17
example, 15
loss functions, 23
model saving, 29
neural networks, 21-26
optimizing, 24-26
predictions, 28
training network for, 26

image detection, 173-177
Faster R-CNN and Mask R-CNN for,

175-177
object detection for, 173-175

Image.convert() function, 63
ImageFolder, 18
ImageNet, x, 17, 104
ImageNet Large Scale Visual Recognition Chal‐

lenge, x
import torch, 4
imsave, 176
in-place functions, 12
Inception, 40, 101, 113, 175

init() function, 22
insertion, random, 85
in_channels, 36
in_features, 53
item() function, 11, 84

J
JIT (just-in-time) tracing engine, 150
Joyent, 125
Jupyter Notebook, 7

on AWS, 5
on Azure, 6
playing ESC-50 audio, 93

just-in-time (JIT) tracing engine, 150

K
k80, 3, 6
k8s (see Kubernetes)
Kaggle, 48, 175
Karpathy, Andrej, 53
Karpathys constant, 53
Keras, xii
Kubernetes (k8s), 141, 147-150

cluster creation, 148
scaling services, 149
setting up on GKE, 147
updates and cleaning up with, 149

L
label smoothing, 165, 180
labelled, labelling, 17, 79, 115, 180
label_from_df, 189
Lambra transforms, 63
layers

AdaptiveAvgPool layer, 38
AdaptiveMaxPool layer, 38
BatchNorm layer, 47, 52, 173
Conv2d layer, 34-37, 168
Dropout layer, 38, 39, 151
Linear layer, 52
MaxPool layer, 39
MaxPool2d layer, 38
nn.Sequential layer, 121, 135, 168
torch.nn.ConvTranspose2d layer, 168
upsample layer, 168

learning
deep (see deep learning)
supervised, 17

196 | Index

transfer (see transfer learning)
unsupervised, 17

learning rates
and frequency, 105
and ResNet, 53-56
defined, 25
differential, 56

least recently used (LRU) cache, 103
LeNet-5, 39-44
LibROSA, 95, 100
libTorch, 156-159

importing TorchScript model, 157
installation and setup, 156

Linear layer, 52
list_effects() function, 108
load() function, 95
load_model() function, 140, 141, 144
load_state_dict() function, 128
local storage, cloud versus, 144-145
logging, 145
log_spectogram.shape, 101
Long Short-Term Memory (LSTM) Networks,

71-72
bidirectional, 73
gated recurrent units, 73
ULMFiT and, 187

loss functions, 23
LRU (least recently used) cache, 103
LSTM Networks (see Long Short-Term Mem‐

ory Networks)
Lua, xi

M
MacBook, 9
Mask R-CNN, 175-177
maskrcnn-benchmark library, 175
matplotlib, 55, 103
max() function, 11
MaxPool layer, 39
MaxPool2d layer, 38
max_size parameter, 80
max_width parameter, 110
md5sum, 9
mean function, 66
mean, plotting, 121
mel scale, 100
mel spectrograms, 100-101
Microsoft Azure (see Azure)
MIcrosoft Cognitive Toolkit, 159

mixup, 161-165
MNIST, 115
MobileNet, 43
mode collapse, 172
model saving, 29
model serving, 137-146

and local versus cloud storage, 144-145
building a flask service, 138-140
Docker containers, 141-143
logging and telemetry, 145
setting up model parameters, 140

model.children() function, 121
model.eval() function, 151
models.alexnet(pretrained=True) function, 44
Motherboard, 2
MSELoss, 23
multihead attention, 182
MXNet, 159
MySQL, 125

N
n1-standard-1 nodes, 148
NamedTemporaryFile() function, 144
NASNet, 44
natural language processing (NLP), 69
NC6, 6
NCv2, 6
network, creating, 22
neural networks

activation functions, 22
creating, 22
for image classification, 21-26
history, ix
loss functions, 23
optimizing, 24-26
recurrent, 69-71

NLP (natural language processing), 69
nn.Module, 165
nn.Sequential layer, 135, 168
nn.Sequential() function, 34
nn.Sequential() layer, 121
NumPy, 13
NVIDIA GeForce RTX 2080 Ti, 2, 132
Nvidia GTX 1080 Ti, 2, 4
Nvidia RTX 2080 Ti, 2, 3
nvidia-smi, 134

O
object detection, 173-175

Index | 197

OK, 139
one-hot encoding, 75
ones() function, 10
ONNX (Open Neural Network Exchange), 159
OpenAI, 181, 185
optim.Adam() function, 26
optimization of neural networks, 24-26
optimizer.step() function, 26
out_channels, 36
out_features, 53
overfitting, 20, 57

P
P100, 6
P2, P3, 5
p2.xlarge, 5
pad token, 81
PadTrim, 107
pandas, 77
parameters() function, 52
partial() function, 121
PCPartPicker, 3
permute() function, 13
pip, 95, 138
plt function, 55
pod, 148
pooling in CNN, 37
predict() function, 140
predictions, 176

and ensembling, 66
in image classification, 28
with torchtext, 84

preprocess() function, 84
pretrained models, 44-48

BatchNorm, 47
choosing, 48
examining model structure, 44-47

print() function, 120, 151
print(model) function, 47
process() function, 84
production, deploying PyTorch applications in,

137-160
building a flask service, 138-140
deploying on Kubernetes, 147-150
Docker containers, 141-143
libTorch, 156-159
local versus cloud storage, 144-145
logging and telemetry, 145
model serving, 137-146

setting up model parameters, 140
TorchScript, 150-156

py-spy, 127, 130
Python, 121, 137
Python 2.x, 8
PyTorch (generally), 1-14

building a custom deep learning machine,
1-3

cloud platforms and, 3-7
installation, 8-10
origins, xi
tensors and, 10-13

PyTorch Hub, 48
pytorch-transformers, 187

R
Raina, Rajat, x
RAM, 2
random deletion, 85
random insertion, 85
random swap, 86
RandomAffine, 62
RandomApply, 64
RandomCrop, 60
RandomGrayscale, 59
RandomResizeCrop, 60
RBG color space, 63
README, 93
rectified linear unit (see ReLU)
recurrent neural networks (RNNs), 69-71, 181
Red Hat Enterprise Linux (RHEL) 7, 9
register_backward_hook() function, 120
ReLU (rectified linear unit), 22, 30, 39, 52
remove() function, 120
requires_grad() function, 52
resample, 63
reshape() function, 12
reshaping a tensor, 12
Resize(64) transform, 19
ResNet architecture, 43, 48, 101, 175

and frequency, 104
and learning rate, 53-56
transfer learning with, 51-53

ResNet-152, 132
ResNet-18, 120
RHEL (Red Hat Enterprise Linux) 7, 9
RMSProp, 25
RNNs (recurrent neural networks), 69-71, 181
ROCm, 2

198 | Index

RUN, 142
run_gpt2.py, 187

S
Salesforce, xi
save() function, 95
savefig, 103
scaling, 63, 149
scripting, 153
Secure Shell (SSH), 4
segmentation, 174
send_to_log() function, 146
Sentiment140 dataset, 77
seq2seq, 70
SimpleNet, 30
simplenet.parameters() function, 26
slow transformations, fixing, 129-132
Smith, Leslie, 53
softmax function, 22
softmax() function, 23
sound, 91-113

about, 91
and ESC-50 dataset, 93-98
audio data augmentation, 107-113
frequency domain, 99-107
frequency masking, 109-110
in Jupyter Notebook, 93
mel spectrograms, 100-101
SoX effect chains, 107
SpecAugment, 108-113
time masking, 111-113
torchaudio, 95
torchaudio transforms, 107

SoX, 95
SoX effect chains, 107
sox_build_flow_effects(), 108
spaCy, 77
SpecAugment, 108-113

frequency masking, 109-110
time masking, 111-113

squeeze(0) function, 29
SqueezeNet, 43
SSH (Secure Shell), 4
stacktrace, 125, 126
standard deviation, plotting, 121
startup, 142, 144
state_dict() function, 140
stochastic gradient descent (SGD), 25
storage

in custom deep learning machine, 2
local versus cloud, 144-145

SummaryWriter, 117
super-resolution, 166-173

and GANs, 169-173
and generator and discriminator networks,

170
and mode collapse, 172
and training GANs, 171
ESGRAN, 173
example, 167-169

supervised learning, 17
swap, random, 86

T
telemetry, 145
tensor processing units (TPUs), x, 6
tensor.mean() function, 110
TensorBoard, 116-125

and PyTorch hooks, 120
class activation mapping, 122-125
installing, 116
plotting mean and standard deviation with,

121
sending data to, 117-120

TensorFlow, xi, 150, 185
tensors, 11-13

broadcasting, 13
operations, 11-13

TeslaV100, 3, 6
test datasets, building, 20
text classification, 69-88

and transfer learning, 88
back translation, 86
biLSTM, 73
data augmentation, 84-88
embeddings for, 74-76
gated recurrent units, 73
in Long Short-Term Memory Networks,

71-72
random deletion, 85
random insertion, 85
random swap, 86
recurrent neural networks, 69-71
torchtext, 76-84

text generation, with GPT-2, 185-187
tf.keras, xii
Theano, xii
time step, 70

Index | 199

to() function, 11, 27
top-5, 39, 43
torch.argmax() function, 140
torch.distribution.Beta, 164
torch.hub.list(pytorch/vision) function, 48
torch.jit.save, 153, 154
torch.jit.save() function, 156, 157
torch.load() function, 29
torch.nn.ConvTranspose2d layer, 168
torch.save() function, 29, 140
torch.topk() function, 123
torch.utils.checkpoint_sequential() function,

135
torch.utils.tensorboard, 117
torchaudio, 95, 107
torchaudio transforms, 107
torchaudio.load(), 108
torchaudio.sox_effects.effect_names() function,

108
torchaudio.sox_effects.SoxEffectsChain, 107
TorchScript, 150-156

libTorch, 157
limitations, 154-156
scripting, 153
tracing, 150-153

torchtext, 76-84
and data augmentation, 87
building vocabulary for, 80-82
creating model, 82
data for, 77
defining fields for, 78-80
predictions with, 84
updating training loop, 83

torchtext.datasets, 77
torchvision, 18
torchvision transforms, 58-63
torchvision.models, 48
TPUs (tensor processing units), x, 6
tracing, 150-153
train() function, 28
train_net.py, 177
transfer learning, 51-67

and data augmentation, 57-66
and differential learning rates, 56
and U-Net architecture, 175
color spaces and Lamba transforms, 63
custom transform classes, 64
ensembling, 66
starting small, 65

torchvision transforms, 58-63
with ResNet, 51-53

transformations, fixing slow, 129-132
Transformer architecture, 181-189

attention, 181
BERT, 183-185
choosing, 189
FastBERT, 183-185
GPT-2, 185-187
multihead attention, 182
ULMFiT, 187-189

transforms.ToTensor() function, 19
TWEET, 79, 84
Twitter, 77

U
U-Net architecture, 174
Uber, xi
Ubuntu, 9
ULMFiT, 187-189, 189
unknown word token, 81
unsqueeze() function, 29, 140
unsupervised learning, 17
upsample layer, 168
urlopen() function, 144

V
validation datasets, 20
vanishing gradient, 71
view() function, 12, 23
Visdom, 116
Visual Geometry Group (VGG), 41, 113

W
Waitress (web server), 143
waveform, 91, 100, 107
web, 5
white-box attack, 180
WikiText-103 dataset, 187
word2vec, 76

X
XLNet, 190

Z
Z370, 2
zeroes() function, 10
zero_grad() function, 26

200 | Index

About the Author
Ian Pointer is a data engineer specializing in machine learning solutions (including
deep learning techniques) for multiple Fortune 100 clients. Ian is currently at Lucid‐
works, where he works on cutting-edge NLP applications and engineering.

He immigrated to the United States from the United Kingdom in 2011 and became
an American citizen in 2017.

Colophon
The bird on the cover of Programming PyTorch for Deep Learning is a red-headed
woodpecker (Melanerpes erythrocephalus). Red-headed woodpeckers are native to
North America’s open forests and pine savannas. They migrate throughout the east‐
ern United States and southern Canada.

Red-headed woodpeckers don’t develop their striking red feathers until they become
adults. The adults have a black back and tail, red head and neck, and white under‐
sides. In contrast, the young woodpeckers have gray heads. At maturity, these wood‐
peckers weigh 2–3 ounces, have a 16.5-inch wingspan, and measure 7.5–9 inches
long. Females can lay four to seven eggs at a time. They breed in the spring, having up
to two broods per season. Males help with incubating and feeding.

Red-headed woodpeckers eat insects—which they can catch in midair—seeds, fruits,
berries, and nuts. They forage in trees and on the ground with that characteristic
pecking action. For the winter, red-headed woodpeckers store nuts in holes and crevi‐
ces in tree bark.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world.

The cover illustration is by Susan Thompson, based on a black-and-white engraving
from Pictorial Museum of Animated Nature. The cover fonts are Gilroy Semibold and
Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad
Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

There’s much more
where this came from.
Experience books, videos, live online
training courses, and more from O’Reilly
and our 200+ partners—all in one place.

Learn more at oreilly.com/online-learning

©
20

19
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

https://oreilly.com

