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Foreword

I am happy to know that Ashish, who was my student on the arti�cial neural networks 
course 8 years ago at IIT Roorkee, has now authored this hands-on book that covers  
a range of deep learning topics in reasonable depth.

Learning by coding is something every deep learning enthusiast wants to undertake, but 
tends to leave half way through. �e e�ort needed to go through documentation and 
extract useful information to run deep learning projects is cumbersome. I have seen far 
too many students become frustrated during the process. �ere are tons of resources 
available for any beginner to become an expert. However, it is easy for any beginner to 
lose sight of the learning task while trying to strike a balance between concept-oriented 
courses and the coding-savvy approach of many academic programs.

PyTorch is uniquely placed as being pythonic and very �exible. It is appealing both to 
beginners who have just started coding machine learning models and to experts who like 
to meddle in the �ner parameters of model designing and training. PyTorch is one library 
I am happy to recommend to any enthusiast, regardless of their level of expertise.

�e best way to learn machine learning and deep learning models is by practicing coding 
in PyTorch. �is book navigates the world of deep learning through PyTorch in a very 
engaging way. It starts from the basic building blocks of deep learning. �e visual appeal 
of learning the data pipeline is one of its strong points. �e PyTorch modules used for 
model building and training are introduced in the simplest of ways. Any student will 
appreciate the hands-on approach of this book. Every concept is explained through codes, 
and every step of the code is well documented. It should not be assumed that this book is 
just for beginners. Instead, any beginner can become an expert by following this book.

Starting from basic model building, such as the popular VGG16 or ResNet, to advanced 
topics, such as AutoML and distributed learning, all these aspects are covered here. �e book 
further encompasses concepts such as AI explainability, deep reinforcement learning, and 
GANs. �e exercises in this book range from building an image captioning model to music 
generation and neural style transfer models, as well as building PyTorch model servers in 
production systems. �is helps you to prepare for any niche deep learning ventures.

I recommend this book to anyone who wants to master PyTorch for deploying deep 
learning models with the latest libraries.

Dr. Gopinath Pillai  
Head Of Department, Electrical Engineering, IIT Roorkee
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Preface

Deep learning (DL) is driving the AI revolution, and PyTorch is making it easier 
than ever for people to build DL applications. �is book will help you discover expert 
techniques to get the most out of your data and build complex neural network models.

�e book starts with a quick overview of PyTorch and explores convolutional neural 

network (CNN) architectures for image classi�cation. You will explore recurrent neural 

network (RNN) architectures as well as Transformers and use them for sentiment 
analysis. As you advance, you'll apply DL across di�erent domains, such as music, text, 
and image generation, using generative models. A�er that, you'll delve into the world of 
generative adversarial networks (GANs), build and train your own deep reinforcement 
learning models in PyTorch, and interpret DL models. You will not only learn how to 
build models but also deploy PyTorch models into production using expert tips and 
techniques. Finally, you will master the skill of training large models e�ciently in a 
distributed fashion, search neural architectures e�ectively with AutoML, and rapidly 
prototype models using PyTorch and fast.ai.

By the end of this PyTorch book, you'll be well equipped to perform complex DL tasks 
using PyTorch to build smart arti�cial intelligence models.

Who this book is for
�is book is for data scientists, machine learning researchers, and DL practitioners 
looking to implement advanced DL paradigms using PyTorch 1.x. Working knowledge of 
DL with Python programming is required.

What this book covers
Chapter 1, Overview of Deep Learning Using PyTorch, includes brief notes on various 
DL terms and concepts that are will help you to understand later parts of the book. �is 
chapter also gives you a quick overview of PyTorch as a language and the tools that will 
be used throughout this book to build DL models. Finally, we will train a neural network 
model using PyTorch.

Page 16



viii     Preface

Chapter 2, Combining CNNs and LSTMs, walks us through an example where we will 
build a neural network model with a CNN and long short-term memory (LSTM) that 
generates text/captions as output when given images as input using PyTorch.

Chapter 3, Deep CNN Architectures, gives a rundown of the most advanced deep CNN 
model architectures in recent years. We use PyTorch to create many of these models and 
train them for di�erent tasks.

Chapter 4, Deep Recurrent Model Architectures, goes through the recent advancements 
in recurrent neural architectures, speci�cally RNNs, LSTMs, and gated recurrent units 
(GRUs). Upon completion of this chapter, you will be able to create your own complex 
recurrent architectures in PyTorch.

Chapter 5, Hybrid Advanced Models, discusses some advanced, unique hybrid neural 
architectures, such as Transformers, which have revolutionized the world of natural 
language processing. �is chapter also discusses RandWireNNs, taking a peek into the 
world of neural architecture search using PyTorch.

Chapter 6, Music and Text Generation with PyTorch, demonstrates the use of PyTorch to 
create DL models that can compose music and write text with practically nothing being 
provided to them at runtime.

Chapter 7, Neural Style Transfer, discusses a special type of generative neural network 
model that can mix multiple input images and generate artistic-looking arbitrary images.

Chapter 8, Deep Convolutional GANs, explains GANs and sees you train one on a speci�c 
task using PyTorch.

Chapter 9, Deep Reinforcement Learning, explores how PyTorch can be used to train agents 
in a deep reinforcement learning task, such as a video game.

Chapter 10, Operationalizing PyTorch Models into Production, runs through the process  
of deploying a DL model written in PyTorch into a real production system using Flask  
and Docker as well as TorchServe. �en, we'll learn how to export PyTorch models  
using TorchScript and ONNX. We'll also learn how to ship PyTorch code as a C++ 
application. Finally, we will also learn how to use PyTorch on some of the popular cloud 
computing platforms.

Chapter 11, Distributed Training, explores how to e�ciently train large models with 
limited resources through distributed training practices in PyTorch.

Chapter 12, PyTorch and AutoML, walks us through setting up machine learning 
experiments e�ectively using AutoML with PyTorch.
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Preface     ix

Chapter 13, PyTorch and Explainable AI, focuses on making machine learning models 
interpretable to a layman using tools such as Captum combined with PyTorch.

Chapter 14, Rapid Prototyping with PyTorch, discusses various tools and libraries such as 
fast.ai and PyTorch Lightning that make the process of model training in PyTorch several 
times faster.

To get the most out of this book
Hands-on Python experience as well as basic knowledge of PyTorch is expected. Because 
most exercises in this book are in the form of notebooks, experience of working with 
Jupyter notebooks is expected. Some of the exercises in some of the chapters might require 
a GPU for faster model training, and therefore having an NVIDIA GPU is a plus. Finally, 
having registered accounts with cloud computing platforms such as AWS, Google Cloud, 
and Microso� Azure will be helpful to navigate parts of Chapter 10, Operationalizing 
PyTorch Models into Production, and Chapter 11, Distributed Training, where you will 
distribute training over several virtual machines.

If you are using the digital version of this book, we advise you to type the code yourself 

or access the code via the GitHub repository (link available in the next section). Doing 

so will help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code �les for this book from GitHub at https://
github.com/PacktPublishing/Mastering-PyTorch. In case there's an update 
to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at 
https://github.com/PacktPublishing/. Check them out!
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x     Preface

Download the color images
We also provide a PDF �le that has color images of the screenshots/diagrams used 
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781789614381_ColorImages.pdf.

Conventions used
�ere are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, 
�lenames, �le extensions, pathnames, dummy URLs, user input, and Twitter handles. 
Here is an example: "And because batch_size is now coupled with world_size, we 
provide it as an input argument for an easier training interface."

A block of code is set as follows:

# define the optimization schedule for both G and D

opt_gen = torch.optim.Adam(gen.parameters(), lr=lrate)

opt_disc = torch.optim.Adam(disc.parameters(), lr=lrate)

When we wish to draw your attention to a particular part of a code block, the relevant 
lines or items are set in bold:

def main():

    parser.add_argument('--num-gpu-processes', default=1, 
type=int)

    args.world_size = args.num_gpu_processes * args.num_
machines                

    mp.spawn(train, nprocs=args.num_gpu_processes, 
args=(args,))

Any command-line input or output is written as follows:

jupyter==1.0.0

torch==1.4.0

torchvision==0.5.0 
matplotlib==3.1.2

pytorch-lightning==1.0.5

fastai==2.1.8
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Preface     xi

Bold: Indicates a new term, an important word, or words that you see onscreen. For 
example, words in menus or dialog boxes appear in the text like this. Here is an example: 
"First, the random noise input vector of size 64 is reshaped and projected into 128 feature 
maps of size 16x16 each."

Tips or important notes

Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book 
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you have found a mistake in this book, we would be grateful if you would 
report this to us. Please visit www.packtpub.com/support/errata, selecting your 
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, 
we would be grateful if you would provide us with the location address or website name. 
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in 
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on 
the site that you purchased it from? Potential readers can then see and use your unbiased 
opinion to make purchase decisions, we at Packt can understand what you think about 
our products, and our authors can see your feedback on their book. �ank you!

For more information about Packt, please visit packt.com.
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This section includes a refresher on deep learning concepts, as well as PyTorch 
essentials. Upon completing this section, you will be able to identify how to train your 
own PyTorch models, as well as how to build a neural network model that generates 
text/captions as output when given images as input using PyTorch.

This section comprises the following chapters:

• Chapter 1, Overview of Deep Learning Using PyTorch

• Chapter 2, Combining CNNs and LSTMs

Section 1:  
PyTorch Overview
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1
Overview of Deep 

Learning using 
PyTorch

Deep learning is a class of machine learning methods that has revolutionized the way 
computers/machines are used to perform cognitive tasks in real life. Based on the 
mathematical concept of deep neural networks, deep learning uses large amounts of data 
to learn non-trivial relationships between inputs and outputs in the form of complex 
nonlinear functions. Some of the inputs and outputs, as demonstrated in Figure 1.1, could 
be the following:

• Input: An image of a text; output: Text

• Input: Text; output: A natural voice speaking the text

• Input: A natural voice speaking the text; output: Transcribed text

Page 24



4     Overview of Deep Learning using PyTorch

And so on. Here is a �gure to support the preceding explanation:

Figure 1.1 – Deep learning model examples

Deep neural networks involve a lot of mathematical computations, linear algebraic 
equations, complex nonlinear functions, and various optimization algorithms. In order 
to build and train a deep neural network from scratch using a programming language 
such as Python, it would require us to write all the necessary equations, functions, and 
optimization schedules. Furthermore, the code would need to be written such that large 
amounts of data can be loaded e�ciently, and training can be performed in a reasonable 
amount of time. �is amounts to implementing several lower-level details each time we 
build a deep learning application.

Deep learning libraries such as �eano and TensorFlow, among various others, have been 
developed over the years to abstract these details out. PyTorch is one such Python-based 
deep learning library that can be used to build deep learning models.
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Technical requirements     5

TensorFlow was introduced as an open source deep learning Python (and C++) library by 
Google in late 2015, which revolutionized the �eld of applied deep learning. Facebook, in 
2016, responded with its own open source deep learning library and called it Torch. Torch 
was initially used with a scripting language called Lua, and soon enough, the Python 
equivalent emerged called PyTorch. Around the same time, Microso� released its own 
library – CNTK. Amidst the hot competition, PyTorch has been growing fast to become 
one of the most used deep learning libraries.

�is book is meant to be a hands-on resource on some of the most advanced deep 
learning problems, how they are solved using complex deep learning architectures, and 
how PyTorch can be e�ectively used to build, train, and evaluate these complex models. 
While the book keeps PyTorch at the center, it also includes comprehensive coverage of 
some of the most recent and advanced deep learning models. �e book is intended for 
data scientists, machine learning engineers, or researchers who have a working knowledge 
of Python and who, preferably, have used PyTorch before.

Due to the hands-on nature of this book, it is highly recommended to try the examples in 
each chapter by yourself on your computer to become pro�cient in writing PyTorch code. 
We begin with this introductory chapter and subsequently explore various deep learning 
problems and model architectures that will expose the various functionalities PyTorch has 
to o�er.

�is chapter will review some of the concepts behind deep learning and will provide a 
brief overview of the PyTorch library. We conclude this chapter with a hands-on exercise 
where we train a deep learning model using PyTorch.

�e following topics will be covered in this chapter:

• A refresher on deep learning

• Exploring the PyTorch library

• Training a neural network using PyTorch

Technical requirements
We will be using Jupyter notebooks for all of our exercises. And the following is the list of 
Python libraries that shall be installed for this chapter using pip. For example, run pip 
install torch==1.4.0 on the command line:

jupyter==1.0.0

torch==1.4.0

torchvision==0.5.0

matplotlib==3.1.2
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6     Overview of Deep Learning using PyTorch

All code �les relevant to this chapter are available at https://github.com/
PacktPublishing/Mastering-PyTorch/tree/master/Chapter01.

A refresher on deep learning
Neural networks are a sub-type of machine learning methods that are inspired by the 
structure and function of the human brain. In neural networks, each computational unit, 
analogically called a neuron, is connected to other neurons in a layered fashion. When the 
number of such layers is more than two, the neural network thus formed is called a deep 

neural network. Such models are generally called deep learning models.

Deep learning models have proven superior to other classical machine learning models 
because of their ability to learn highly complex relationships between input data and the 
output (ground truth). In recent times, deep learning has gained a lot of attention and 
rightly so, primarily because of the following two reasons: 

• �e availability of powerful computing machines, especially in the cloud

• �e availability of huge amounts of data

Owing to Moore's law, which states that the processing power of computers will double 
every 2 years, we are now living in a time when deep learning models with several 
hundreds of layers can be trained within a realistic and reasonably short amount of time. 
At the same time, with the exponential increase in the use of digital devices everywhere, 
our digital footprint has exploded, resulting in gigantic amounts of data being generated 
across the world every moment. 

Hence, it has been possible to train deep learning models for some of the most di�cult 
cognitive tasks that were either intractable earlier or had sub-optimal solutions through 
other machine learning techniques.
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A refresher on deep learning     7

Deep learning, or neural networks in general, has another advantage over the classical 
machine learning models. Usually, in a classical machine learning-based approach, 
feature engineering plays a crucial role in the overall performance of a trained model. 
However, a deep learning model does away with the need to manually cra� features. With 
large amounts of data, deep learning models can perform very well without requiring 
hand-engineered features and can outperform the traditional machine learning models. 
�e following graph indicates how deep learning models can leverage large amounts of 
data better than the classical machine models:

Figure 1.2 – Model performance versus dataset size

As can be seen in the graph, deep learning performance isn't necessarily distinguished up 
to a certain dataset size. However, as the data size starts to further increase, deep neural 
networks begin outperforming the non-deep learning models.
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8     Overview of Deep Learning using PyTorch

A deep learning model can be built based on various types of neural network architectures 
that have been developed over the years. A prime distinguishing factor between the 
di�erent architectures is the type and combination of layers that are used in the neural 
network. Some of the well-known layers are the following:

• Fully-connected or linear: In a fully connected layer, as shown in the following 
diagram, all neurons preceding this layer are connected to all neurons succeeding 
this layer:

Figure 1.3 – Fully connected layer

�is example shows two consecutive fully connected layers with N1 and N2 number 

of neurons, respectively. Fully connected layers are a fundamental unit of many – in 

fact, most – deep learning classi�ers.

• Convolutional: �e following diagram shows a convolutional layer, where a 
convolutional kernel (or �lter) is convolved over the input:

Page 29



A refresher on deep learning     9

Figure 1.4 – Convolutional layer

Convolutional layers are a fundamental unit of convolutional neural networks 

(CNNs), which are the most e�ective models for solving computer vision problems. 

• Recurrent: �e following diagram shows a recurrent layer. While it looks similar to 
a fully connected layer, the key di�erence is the recurrent connection (marked with 
bold curved arrows):

Figure 1.5 – Recurrent layer

Recurrent layers have an advantage over fully connected layers in that they exhibit 

memorizing capabilities, which comes in handy working with sequential data where 

one needs to remember past inputs along with the present inputs. 
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• DeConv (the reverse of a convolutional layer): Quite the opposite of a convolutional 
layer, a deconvolutional layer works as shown in the following diagram:

Figure 1.6 – Deconvolutional layer

�is layer expands the input data spatially and hence is crucial in models that aim to 

generate or reconstruct images, for example.

• Pooling: �e following diagram shows the max-pooling layer, which is perhaps the 
most widely used kind of pooling layer:

Figure 1.7 – Pooling layer

�is is a max-pooling layer that pools the highest number each from 2x2  

sized subsections of the input. Other forms of pooling are min-pooling and  

mean-pooling.
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• Dropout: �e following diagram shows how dropout layers work. Essentially, in a 
dropout layer, some neurons are temporarily switched o� (marked with X in the 
diagram), that is, they are disconnected from the network:

Figure 1.8 – Dropout layer

Dropout helps in model regularization as it forces the model to function well in 

sporadic absences of certain neurons, which forces the model to learn generalizable 

patterns instead of memorizing the entire training dataset.
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A number of well-known architectures based on the previously mentioned layers 

are shown in the following diagram:.

Figure 1.9 – Di�erent neural network architectures
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A more exhaustive set of neural network architectures can be found here:  
https://www.asimovinstitute.org/neural-network-zoo/.

Besides the types of layers and how they are connected in a network, other factors such as 
activation functions and the optimization schedule also de�ne the model.

Activation functions
Activation functions are crucial to neural networks as they add the non-linearity without 
which, no matter how many layers we add, the entire neural network would be reduced to 
a simple linear model. �e di�erent types of activation functions listed here are basically 
di�erent nonlinear mathematical functions.

Some of the popular activation functions are as follows:

• Sigmoid: A sigmoid (or logistic) function is expressed as follows:

�e function is shown in graph form as follows:

Figure 1.10 – Sigmoid function

𝑦𝑦 = 𝑓𝑓(𝑥𝑥) =  11 + 𝑒𝑒−𝑥𝑥 
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As can be seen from the graph, the sigmoid function takes in a numerical value x as 

input and outputs a value y in the range (0, 1).

• TanH: TanH is expressed as follows:

�e function is shown in graph form as follows:

Figure 1.11 – TanH function

Contrary to sigmoid, the output y varies from -1 to 1 in the case of the TanH 

activation function. Hence, this activation is useful in cases where we need both 

positive as well as negative outputs.

• Recti�ed linear units (ReLUs): ReLUs are more recent than the previous two and 
are simply expressed as follows:

𝑦𝑦 = 𝑓𝑓(𝑥𝑥) =  𝑒𝑒𝑥𝑥  − 𝑒𝑒−𝑥𝑥𝑒𝑒𝑥𝑥  + 𝑒𝑒−𝑥𝑥 

𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = 𝑚𝑚𝑚𝑚𝑥𝑥(0, 𝑥𝑥) 
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�e function is shown in graph form as follows:

Figure 1.12 – ReLU function

A distinct feature of ReLU in comparison with the sigmoid and TanH activation 

functions is that the output keeps growing with the input whenever the input is 

greater than 0. �is prevents the gradient of this function from diminishing to 0 as 

in the case of the previous two activation functions. Although, whenever the input 

is negative, both the output and the gradient will be 0.

• Leaky ReLU: ReLUs entirely suppress any incoming negative input by outputting 0. 
We may, however, want to also process negative inputs for some cases. Leaky ReLUs 
o�er the option of processing negative inputs by outputting a fraction k of the 
incoming negative input. �is fraction k is a parameter of this activation function, 
which can be mathematically expressed as follows:𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = 𝑚𝑚𝑚𝑚𝑥𝑥(𝑘𝑘𝑥𝑥, 𝑥𝑥) 
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�e following graph shows the input-output relationship for leaky ReLU:

Figure 1.13 – Leaky ReLU function

Activation functions are an actively evolving area of research within deep learning. It will 
not be possible to list all of the activation functions here but I encourage you to check out 
the recent developments in this domain. Many activation functions are simply nuanced 
modi�cations of the ones mentioned in this section.

Optimization schedule
So far, we have spoken of how a neural network structure is built. In order to train a 
neural network, we need to adopt an optimization schedule. Like any other parameter-
based machine learning model, a deep learning model is trained by tuning its parameters. 
�e parameters are tuned through the process of backpropagation, wherein the �nal or 
output layer of the neural network yields a loss. �is loss is calculated with the help of a 
loss function that takes in the neural network's �nal layer's outputs and the corresponding 
ground truth target values. �is loss is then backpropagated to the previous layers using 
gradient descent and the chain rule of di�erentiation. 
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�e parameters or weights at each layer are accordingly modi�ed in order to minimize 
the loss. �e extent of modi�cation is determined by a coe�cient, which varies from 0 
to 1, also known as the learning rate. �is whole procedure of updating the weights of a 
neural network, which we call the optimization schedule, has a signi�cant impact on how 
well a model is trained. �erefore, a lot of research has been done in this area and is still 
ongoing. �e following are a few popular optimization schedules:

• Stochastic Gradient Descent (SGD): It updates the model parameters in the 
following fashion:

β is the parameter of the model and X and y are the input training data and the 

corresponding labels respectively. L is the loss function and α is the learning rate. 

SGD performs this update for every training example pair (X, y). A variant of this –

mini-batch gradient descent – performs updates for every k examples, where k is the 

batch size. Gradients are calculated altogether for the whole mini-batch. Another 

variant, batch gradient descent, performs parameter updates by calculating the 

gradient across the entire dataset.

• Adagrad: In the previous optimization schedule, we used a single learning rate for 
all the parameters of the model. However, di�erent parameters might need to be 
updated at di�erent paces, especially in cases of sparse data, where some parameters 
are more actively involved in feature extraction than others. Adagrad introduces the 
idea of per-parameter updates, as shown here:

Here, we use the subscript i to denote the ith parameter and the superscript t is 

used to denote the time step t of the gradient descent iterations. SSG
i
t is the sum 

of squared gradients for the ith parameter starting from time step 0 to time step t. 

є is used to denote a small value added to SSG to avoid division by zero. Dividing 

the global learning rate α by the square root of SSG ensures that the learning rate 

for frequently changing parameters lowers faster than the learning rate for rarely 

updated parameters. 

𝛽𝛽 = 𝛽𝛽 −  𝛼𝛼 ∗ 𝛿𝛿𝛿𝛿(𝑋𝑋, 𝑦𝑦, 𝛽𝛽)𝛿𝛿𝛽𝛽  

𝛽𝛽𝑖𝑖𝑡𝑡+1  = 𝛽𝛽𝑖𝑖𝑡𝑡  − 𝛼𝛼√𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑡𝑡  +  𝜖𝜖 ∗ 𝛿𝛿𝛿𝛿(𝑋𝑋, 𝑦𝑦, 𝛽𝛽)𝛿𝛿𝛽𝛽𝒊𝒊𝒕𝒕  
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• Adadelta: In Adagrad, the denominator of the learning rate is a term that keeps 
on rising in value due to added squared terms in every time step. �is causes the 
learning rates to decay to vanishingly small values. To tackle this problem, Adadelta 
introduces the idea of computing the sum of squared gradients only up to previous 
time steps. In fact, we can express it as a running decaying average of the past 
gradients:

 

γ here is the decaying factor we wish to choose for the previous sum of squared 

gradients. With this formulation, we ensure that the sum of squared gradients 

does not accumulate to a large value, thanks to the decaying average. Once SSG
i
t is 

de�ned, we can use the Adagrad equation to de�ne the update step for Adadelta. 

However, if we look closely at the Adagrad equation, the root mean squared gradient 

is not a dimensionless quantity and hence should ideally not be used as a coe�cient 

for the learning rate. To resolve this, we de�ne another running average, this time 

for the squared parameter updates. Let's �rst de�ne the parameter update:

And then, similar to the running decaying average of the past gradients equation (the 

�rst equation under Adadelta), we can de�ne the square sum of parameter updates 

as follows:

Here, SSPU is the sum of squared parameter updates. Once we have this, we can 

adjust for the dimensionality problem in the Adagrad equation with the �nal 

Adadelta equation:

Noticeably, the �nal Adadelta equation doesn't require any learning rate. One can 

still however provide a learning rate as a multiplier. Hence, the only mandatory 

hyperparameter for this optimization schedule is the decaying factors..

𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑡𝑡  =  𝛾𝛾 ∗ 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑡𝑡−1 + (1 − 𝛾𝛾) ∗ (𝛿𝛿𝛿𝛿(𝑋𝑋, 𝑦𝑦, 𝛽𝛽)𝛿𝛿𝛽𝛽𝒊𝒊𝒕𝒕 )2 

𝛥𝛥𝛽𝛽𝑖𝑖𝑡𝑡  =  𝛽𝛽𝑖𝑖𝑡𝑡+1 − 𝛽𝛽𝑖𝑖𝑡𝑡  =  − 𝛼𝛼√𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑡𝑡  +  𝜖𝜖 ∗ 𝛿𝛿𝛿𝛿(𝑋𝑋, 𝑦𝑦, 𝛽𝛽)𝛿𝛿𝛽𝛽𝒊𝒊𝒕𝒕  

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑡𝑡  =  𝛾𝛾 ∗ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑡𝑡−1 + (1 − 𝛾𝛾) ∗ (𝛥𝛥𝛽𝛽𝑖𝑖𝑡𝑡)2 

𝛽𝛽𝑖𝑖𝑡𝑡+1  = 𝛽𝛽𝑖𝑖𝑡𝑡  − √𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑡𝑡  +  𝜖𝜖√𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑡𝑡  +  𝜖𝜖 ∗ 𝛿𝛿𝛿𝛿(𝑋𝑋, 𝑦𝑦, 𝛽𝛽)𝛿𝛿𝛽𝛽𝒊𝒊𝒕𝒕  
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• RMSprop: We have implicitly discussed the internal workings of RMSprop while 
discussing Adadelta as both are pretty similar. �e only di�erence is that RMSProp 
does not adjust for the dimensionality problem and hence the update equation stays 
the same as the equation presented in the Adagrad section, wherein the SSG

i
t is 

obtained from the �rst equation in the Adadelta section. �is essentially means that 
we do need to specify both a base learning rate as well as a decaying factor in the 
case of RMSProp.

• Adaptive Moment Estimation (Adam): �is is another optimization schedule 
that calculates customized learning rates for each parameter. Just like Adadelta and 
RMSprop, Adam also uses the decaying average of the previous squared gradients as 
demonstrated in the �rst equation in the Adadelta section. However, it also uses the 
decaying average of previous gradient values:

SG and SSG are mathematically equivalent to estimating the �rst and second 

moments of the gradient respectively, hence the name of this method – adaptive 

moment estimation. Usually, γ and γ' are close to 1 and in that case, the initial 

values for both SG and SSG might be pushed towards zero. To counteract that, these 

two quantities are reformulated with the help of bias correction:

    and         

Once they are de�ned, the parameter update is expressed as follows:

Basically, the gradient on the extreme right-hand side of the equation is replaced by 
the decaying average of the gradient. Noticeably, Adam optimization involves three 
hyperparameters – the base learning rate, and the two decaying rates for the gradients 
and squared gradients. Adam is one of the most successful, if not the most successful, 
optimization schedule in recent times for training complex deep learning models. 

𝑆𝑆𝑆𝑆𝑖𝑖𝑡𝑡  =  𝛾𝛾′ ∗ 𝑆𝑆𝑆𝑆𝑖𝑖𝑡𝑡−1 + (1 − 𝛾𝛾′) ∗ 𝛿𝛿𝛿𝛿(𝑋𝑋, 𝑦𝑦, 𝛽𝛽)𝛿𝛿𝛽𝛽𝒊𝒊𝒕𝒕  

𝑆𝑆𝑆𝑆𝑖𝑖𝑡𝑡  =  𝑆𝑆𝑆𝑆𝑖𝑖𝑡𝑡1 − 𝛾𝛾′ 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑡𝑡  =  𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑡𝑡1 − 𝛾𝛾 

𝛽𝛽𝑖𝑖𝑡𝑡+1  = 𝛽𝛽𝑖𝑖𝑡𝑡  − 𝛼𝛼√𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑡𝑡  +  𝜖𝜖 ∗ 𝑆𝑆𝑆𝑆𝑖𝑖𝑡𝑡 
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So, which optimizer shall we use? It depends. If we are dealing with sparse data, then the 
adaptive optimizers (numbers 2 to 5) will be advantageous because of the per-parameter 
learning rate updates. As mentioned earlier, with sparse data, di�erent parameters 
might be worked at di�erent paces and hence a customized per-parameter learning rate 
mechanism can greatly help the model in reaching optimal solutions. SGD might also �nd 
a decent solution but will take much longer in terms of training time. Among the adaptive 
ones, Adagrad has the disadvantage of vanishing learning rates due to a monotonically 
increasing learning rate denominator. 

RMSProp, Adadelta, and Adam are quite close in terms of their performance on various 
deep learning tasks. RMSprop is largely similar to Adadelta, except for the use of the base 
learning rate in RMSprop versus the use of the decaying average of previous parameter 
updates in Adadelta. Adam is slightly di�erent in that it also includes the �rst-moment 
calculation of gradients and accounts for bias correction. Overall, Adam could be 
the optimizer to go with, all else being equal. We will use some of these optimization 
schedules in the exercises in this book. Feel free to switch them with another one to 
observe changes in the following:

• Model training time and trajectory (convergence) 

• Final model performance

In the coming chapters, we will use many of these architectures, layers, activation 
functions, and optimization schedules in solving di�erent kinds of machine learning 
problems with the help of PyTorch. In the example included in this chapter, we will create 
a convolutional neural network that contains convolutional, linear, max-pooling, and 
dropout layers. Log-So�max is used for the �nal layer and ReLU is used as the activation 
function for all the other layers. And the model is trained using an Adadelta optimizer 
with a �xed learning rate of 0.5.

Exploring the PyTorch library
PyTorch is a machine learning library for Python based on the Torch library. PyTorch is 
extensively used as a deep learning tool both for research as well as building industrial 
applications. It is primarily developed by Facebook's machine learning research labs. 
PyTorch is competition for the other well-known deep learning library – TensorFlow, 
which is developed by Google. �e initial di�erence between these two was that PyTorch 
was based on eager execution whereas TensorFlow was built on graph-based deferred 

execution. Although, TensorFlow now also provides an eager execution mode. 
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Eager execution is basically an imperative programming mode where mathematical 
operations are computed immediately. A deferred execution mode would have all the 
operations stored in a computational graph without immediate calculations and then the 
entire graph would be evaluated later. Eager execution is considered advantageous for 
reasons such as intuitive �ow, easy debugging, and less sca�olding code.

PyTorch is more than just a deep learning library. With its NumPy-like syntax/interface, it 
provides tensor computation capabilities with strong acceleration using GPUs. But what is 
a tensor? Tensors are computational units, very similar to NumPy arrays, except that they 
can also be used on GPUs to accelerate computing. 

With accelerated computing and the facility to create dynamic computational graphs, 
PyTorch provides a complete deep learning framework. Besides all that, it is truly 
Pythonic in nature, which enables PyTorch users to exploit all the features Python 
provides, including the extensive Python data science ecosystem. 

In this section, we will take a look at some of the useful PyTorch modules that extend 
various functionalities helpful in loading data, building models, and specifying the 
optimization schedule during the training of a model. We will also expand on what a 
tensor is and how it is implemented with all of its attributes in PyTorch.

PyTorch modules
�e PyTorch library, besides o�ering the computational functions as NumPy does, also 
o�ers a set of modules that enable developers to quickly design, train, and test deep 
learning models. �e following are some of the most useful modules.

torch.nn

When building a neural network architecture, the fundamental aspects that the network is 
built on are the number of layers, the number of neurons in each layer, and which of those 
are learnable, and so on. �e PyTorch nn module enables users to quickly instantiate 
neural network architectures by de�ning some of these high-level aspects as opposed to 
having to specify all the details manually. �e following is a one-layer neural network 
initialization without using the nn module:

import math

# we assume a 256-dimensional input and a 4-dimensional output 
for this 1-layer neural network

# hence, we initialize a 256x4 dimensional matrix filled with 
random values

weights = torch.randn(256, 4) / math.sqrt(256)
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# we then ensure that the parameters of this neural network 
ar trainable, that is, the numbers in the 256x4 matrix can be 
tuned with the help of backpropagation of gradients

weights.requires_grad_()

# finally we also add the bias weights for the 4-dimensional 
output, and make these trainable too

bias = torch.zeros(4, requires_grad=True)

We can instead use nn.Linear(256, 4) to represent the same thing.

Within the torch.nn module, there is a submodule called torch.nn.functional. 
�is submodule consists of all the functions within the torch.nn module whereas all the 
other submodules are classes. �ese functions are loss functions, activating functions, 
and also neural functions that can be used to create neural networks in a functional 
manner (that is, when each subsequent layer is expressed as a function of the previous 
layer) such as pooling, convolutional, and linear functions. An example of a loss function 
using the torch.nn.functional module could be the following:

import torch.nn.functional as F

loss_func = F.cross_entropy

loss = loss_func(model(X), y)

Here, X is the input, y is the target output, and model is the neural network model.

torch.optim

As we train a neural network, we back-propagate errors to tune the weights or parameters 
of the network – the process that we call optimization. �e optim module includes all 
the tools and functionalities related to running various types of optimization schedules 
while training a deep learning model. Let's say we de�ne an optimizer during a training 
session using the torch.optim modules, as shown in the following snippet: 

opt = optim.SGD(model.parameters(), lr=lr)

�en, we don't need to manually write the optimization step as shown here:

with torch.no_grad():

    # applying the parameter updates using stochastic gradient 
descent

    for param in model.parameters(): param -= param.grad * lr

    model.zero_grad()
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We can simply write this instead:

opt.step()

opt.zero_grad()

Next, we will look at the utis.data module.

torch.utils.data

Under the utis.data module, torch provides its own dataset and DatasetLoader 
classes, which are extremely handy due to their abstract and �exible implementations. 
Basically, these classes provide intuitive and useful ways of iterating and performing 
other such operations on tensors. Using these, we can ensure high performance due to 
optimized tensor computations and also have fail-safe data I/O. For example, let's say we 
use torch.utils.data.DataLoader as follows:

from torch.utils.data import (TensorDataset, DataLoader)

train_dataset = TensorDataset(x_train, y_train)

train_dataloader = DataLoader(train_dataset, batch_size=bs)

�en, we don't need to iterate through batches of data manually, like this:

for i in range((n-1)//bs + 1):

    x_batch = x_train[start_i:end_i]

    y_batch = y_train[start_i:end_i]

    pred = model(x_batch)

We can simply write this instead:

for x_batch,y_batch in train_dataloader:

    pred = model(x_batch)

Let's now look at tensor modules.

Tensor modules
As mentioned earlier, tensors are conceptually similar to NumPy arrays. A tensor is 
an n-dimensional array on which we can operate mathematical functions, accelerate 
computations via GPUs, and tensors can also be used to keep track of a computational 
graph and gradients, which prove vital for deep learning. To run a tensor on a GPU, all we 
need is to cast the tensor into a certain data type.
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Here is how we can instantiate a tensor in PyTorch:

points = torch.tensor([1.0, 4.0, 2.0, 1.0, 3.0, 5.0]) 

To fetch the �rst entry, simply write the following:

float(points[0])

We can also check the shape of the tensor using this:

points.shape

In PyTorch, tensors are implemented as views over a one-dimensional array of numerical 
data stored in contiguous chunks of memory. �ese arrays are called storage instances. 
Every PyTorch tensor has a storage attribute that can be called to output the underlying 
storage instance for a tensor as shown in the following example:

points = torch.tensor([[1.0, 4.0], [2.0, 1.0], [3.0, 5.0]])

points.storage()

�is should output the following:

Figure 1.14 – PyTorch tensor storage

When we say a tensor is a view on the storage instance, the tensor uses the following 
information to implement the view:

• Size

• Storage

• O�set

• Stride
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Let's look into this with the help of our previous example:

points = torch.tensor([[1.0, 4.0], [2.0, 1.0], [3.0, 5.0]])

Let's investigate what these di�erent pieces of information mean:

points.size()

�is should output the following:

Figure 1.15 – PyTorch tensor size

As we can see, size is similar to the shape attribute in NumPy, which tells us the 
number of elements across each dimension. �e multiplication of these numbers equals 
the length of the underlying storage instance (6 in this case).

As we have already examined what the storage attribute means, let's look at offset:

points.storage_offset()

�is should output the following:

Figure 1.16 – PyTorch tensor storage o�set 1

�e o�set here represents the index of the �rst element of the tensor in the storage 
array. Because the output is 0, it means that the �rst element of the tensor is the �rst 
element in the storage array.

Let's check this:

points[1].storage_offset()

�is should output the following:

Figure 1.17 – PyTorch tensor storage o�set 2
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Because points[1] is [2.0, 1.0] and the storage array is [1.0, 4.0, 2.0, 
1.0, 3.0, 5.0], we can see that the �rst element of the tensor [2.0, 1.0], that is, 
. 2.0 is at index 2 of the storage array.

Finally, we'll look at the stride attribute:

points.stride()

Figure 1.18 – PyTorch tensor stride

As we can see, stride contains, for each dimension, the number of elements to be 
skipped in order to access the next element of the tensor. So, in this case, along the �rst 
dimension, in order to access the element a�er the �rst one, that is, 1.0 we need to skip 
2 elements (that is, 1.0 and 4.0) to access the next element, that is, 2.0. Similarly, 
along the second dimension, we need to skip 1 element to access the element a�er 1.0, 
that is, 4.0. �us, using all these attributes, tensors can be derived from a contiguous 
one-dimensional storage array. 

�e data contained within tensors is of numeric type. Speci�cally, PyTorch o�ers the 
following data types to be contained within tensors:

• torch.float32 or torch.float—32-bit �oating-point

• torch.float64 or torch.double—64-bit, double-precision �oating-point

• torch.float16 or torch.half—16-bit, half-precision �oating-point  

• torch.int8—Signed 8-bit integers  

• torch.uint8—Unsigned 8-bit integers  

• torch.int16 or torch.short—Signed 16-bit integers  

• torch.int32 or torch.int—Signed 32-bit integers  

• torch.int64 or torch.long—Signed 64-bit integers

An example of how we specify a certain data type to be used for a tensor is as follows:

points = torch.tensor([[1.0, 2.0], [3.0, 4.0]], dtype=torch.
float32)
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Besides the data type, tensors in PyTorch also need a device speci�cation where they will 
be stored. A device can be speci�ed as instantiation:

points = torch.tensor([[1.0, 2.0], [3.0, 4.0]], dtype=torch.
float32, device='cpu')

Or we can also create a copy of a tensor in the desired device:

points_2 = points.to(device='cuda')

As seen in the two examples, we can either allocate a tensor to a CPU (using 
device='cpu'), which happens by default if we do not specify a device, or we can 
allocate the tensor to a GPU (using device='cuda'). 

Note

PyTorch currently supports only GPUs that support CUDA.

When a tensor is placed on a GPU, the computations speed up and because the tensor 
APIs are largely uniform across CPU and GPU placed tensors in PyTorch, it is quite 
convenient to move the same tensor across devices, perform computations, and move it 
back. 

If there are multiple devices of the same type, say more than one GPU, we can precisely 
locate the device we want to place the tensor in using the device index, such as the 
following:

points_3 = points.to(device='cuda:0')

You can read more about PyTorch-CUDA here: https://pytorch.org/docs/
stable/notes/cuda.html. And you can read more generally about CUDA here: 
https://developer.nvidia.com/about-cuda.

Now that we have explored the PyTorch library and understood the PyTorch and Tensor 
modules, let's learn how to train a neural network using PyTorch.
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Training a neural network using PyTorch
For this exercise, we will be using the famous MNIST dataset (available at http://
yann.lecun.com/exdb/mnist/), which is a sequence of images of handwritten 
postcode digits, zero through nine, with corresponding labels. �e MNIST dataset  
consists of 60,000 training samples and 10,000 test samples, where each sample is a 
grayscale image with 28 x 28 pixels. PyTorch also provides the MNIST dataset under its 
Dataset module.

In this exercise, we will use PyTorch to train a deep learning multi-class classi�er on this 
dataset and test how the trained model performs on the test samples:

1. For this exercise, we will need to import a few dependencies. Execute the following 

import statements:

import torch

import torch.nn as nn

import torch.nn.functional as F

import torch.optim as optim

from torch.utils.data import DataLoader

from torchvision import datasets, transforms

import matplotlib.pyplot as plt

2. Next, we de�ne the model architecture as shown in the following diagram:

Figure 1.19 – Neural network architecture
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�e model consists of convolutional layers, dropout layers, as well as linear/fully 

connected layers, all available through the torch.nn module:

class ConvNet(nn.Module):

    def __init__(self):

        super(ConvNet, self).__init__()

        self.cn1 = nn.Conv2d(1, 16, 3, 1)

        self.cn2 = nn.Conv2d(16, 32, 3, 1)

        self.dp1 = nn.Dropout2d(0.10)

        self.dp2 = nn.Dropout2d(0.25)

        self.fc1 = nn.Linear(4608, 64) # 4608 is 
basically 12 X 12 X 32

        self.fc2 = nn.Linear(64, 10)

    def forward(self, x):

        x = self.cn1(x)

        x = F.relu(x)

        x = self.cn2(x)

        x = F.relu(x)

        x = F.max_pool2d(x, 2)

        x = self.dp1(x)

        x = torch.flatten(x, 1)

        x = self.fc1(x)

        x = F.relu(x)

        x = self.dp2(x)

        x = self.fc2(x)

        op = F.log_softmax(x, dim=1)

        return op

�e __init__ function de�nes the core architecture of the model, that is, all the 

layers with the number of neurons at each layer. And the forward function, as 

the name suggests, does a forward pass in the network. Hence it includes all the 

activation functions at each layer as well as any pooling or dropout used a�er any 

layer. �is function shall return the �nal layer output, which we call the prediction of 

the model, which has the same dimensions as the target output (the ground truth).
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Notice that the �rst convolutional layer has a 1-channel input, a 16-channel output, 

a kernel size of 3, and a stride of 1. �e 1-channel input is essentially for the 

grayscale images that will be fed to the model. We decided on a kernel size of 3x3 

for various reasons. Firstly, kernel sizes are usually odd numbers so that the input 

image pixels are symmetrically distributed around a central pixel. 1x1 would be 

too small because then the kernel operating on a given pixel would not have any 

information about the neighboring pixels. 3 comes next, but why not go further to 

5, 7, or, say, even 27? 

Well, at the extreme high end, a 27x27 kernel convolving over a 28x28 image would 

give us very coarse-grained features. However, the most important visual features in 

the image are fairly local and hence it makes sense to use a small kernel that looks 

at a few neighboring pixels at a time, for visual patterns. 3x3 is one of the most 

common kernel sizes used in CNNs for solving computer vision problems. 

Note that we have two consecutive convolutional layers, both with 3x3 kernels. �is, 

in terms of spatial coverage, is equivalent to using one convolutional layer with 

a 5x5 kernel. However, using multiple layers with a smaller kernel size is almost 

always preferred because it results in deeper networks, hence more complex learned 

features as well as fewer parameters due to smaller kernels.

�e number of channels in the output of a convolutional layer is usually higher than 

or equal to the input number of channels. Our �rst convolutional layer takes in one 

channel data and outputs 16 channels. �is basically means that the layer is trying 

to detect 16 di�erent kinds of information from the input image. Each of these 

channels is called a feature map and each of them has a dedicated kernel extracting 

features for them.

We escalate the number of channels from 16 to 32 in the second convolutional layer, 

in an attempt to extract more kinds of features from the image. �is increment in 

the number of channels (or image depth) is common practice in CNNs. We will 

read more on this under width-based CNNs in Chapter 3, Deep CNN Architectures.
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Finally, the stride of 1 makes sense, as our kernel size is just 3. Keeping a larger 

stride value – say, 10 – would result in the kernel skipping many pixels in the image 

and we don't want to do that. If, however, our kernel size was 100, we might have 

considered 10 as a reasonable stride value. �e larger the stride, the lower the 

number of convolution operations but the smaller the overall �eld of view for  

the kernel.

3. We then de�ne the training routine, that is, the actual backpropagation step. As can 

be seen, the torch.optim module greatly helps in keeping this code succinct:

def train(model, device, train_dataloader, optim, epoch):

    model.train()

    for b_i, (X, y) in enumerate(train_dataloader):

        X, y = X.to(device), y.to(device)

        optim.zero_grad()

        pred_prob = model(X)

        loss = F.nll_loss(pred_prob, y) # nll is the 
negative likelihood loss

        loss.backward()

        optim.step()

        if b_i % 10 == 0:

            print('epoch: {} [{}/{} ({:.0f}%)]\t training 
loss: {:.6f}'.format(

                epoch, b_i * len(X), len(train_ 
   dataloader.dataset),

                100. * b_i / len(train_dataloader), loss. 
   item()))

�is iterates through the dataset in batches, makes a copy of the dataset on the given 

device, makes a forward pass with the retrieved data on the neural network model, 

computes the loss between the model prediction and the ground truth, uses the 

given optimizer to tune model weights, and prints training logs every 10 batches. 

�e entire procedure done once quali�es as 1 epoch, that is, when the entire dataset 

has been read once.
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4. Similar to the preceding training routine, we write a test routine that can be used to 

evaluate the model performance on the test set:

def test(model, device, test_dataloader):

    model.eval()

    loss = 0

    success = 0

    with torch.no_grad():

        for X, y in test_dataloader:

            X, y = X.to(device), y.to(device)

            pred_prob = model(X)

            loss += F.nll_loss(pred_prob, y, 
reduction='sum').item()  # loss summed across the batch

            pred = pred_prob.argmax(dim=1,  
   keepdim=True)  # us argmax to get the most  
   likely prediction

            success += pred.eq(y.view_as(pred)).sum().
item()

    loss /= len(test_dataloader.dataset)

    print('\nTest dataset: Overall Loss: {:.4f}, Overall 
Accuracy: {}/{} ({:.0f}%)\n'.format(

        loss, success, len(test_dataloader.dataset),

        100. * success / len(test_dataloader.dataset)))

Most of this function is similar to the preceding train function. �e only 

di�erence is that the loss computed from the model predictions and the ground 

truth is not used to tune the model weights using an optimizer. Instead, the loss is 

used to compute the overall test error across the entire test batch.

5. Next, we come to another critical component of this exercise, which is loading 

the dataset. �anks to PyTorch's DataLoader module, we can set up the dataset 

loading mechanism in a few lines of code:

# The mean and standard deviation values are calculated 
as the mean of all pixel values of all images in the 
training dataset

train_dataloader = torch.utils.data.DataLoader(

    datasets.MNIST('../data', train=True, download=True,

                   transform=transforms.Compose([

                       transforms.ToTensor(),
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                       transforms.Normalize((0.1302,), 
(0.3069,))])), # train_X.mean()/256. and train_X.
std()/256.

    batch_size=32, shuffle=True)

test_dataloader = torch.utils.data.DataLoader(

    datasets.MNIST('../data', train=False, 

                   transform=transforms.Compose([

                       transforms.ToTensor(),

                       transforms.Normalize((0.1302,), 
(0.3069,)) 

                   ])),

    batch_size=500, shuffle=False)

As you can see, we set batch_size to 32, which is a fairly common choice. 

Usually, there is a trade-o� in deciding the batch size. A very small batch size  

can lead to slow training due to frequent gradient calculations and can lead to 

extremely noisy gradients. Very large batch sizes can, on the other hand, also slow 

down training due to a long waiting time to calculate gradients. It is mostly not 

worth waiting long before a single gradient update. It is rather advisable to make 

frequent, less precise gradients as it will eventually lead the model to a better set of 

learned parameters.

For both the training and test dataset, we specify the local storage location we want 

to save the dataset to, and the batch size, which determines the number of data 

instances that constitute one pass of a training and test run. We also specify that we 

want to randomly shu�e training data instances to ensure a uniform distribution 

of data samples across batches. Finally, we also normalize the dataset to a normal 

distribution with a speci�ed mean and standard deviation.

6. We de�ned the training routine earlier. Now is the time to actually de�ne which 

optimizer and device we will use to run the model training. And we will �nally get 

the following:

torch.manual_seed(0)

device = torch.device("cpu")

model = ConvNet()

optimizer = optim.Adadelta(model.parameters(), lr=0.5)
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We de�ne the device for this exercise as cpu. We also set a seed to avoid unknown 

randomness and ensure repeatability. We will use AdaDelta as the optimizer for  

this exercise with a learning rate of 0.5. While discussing optimization schedules 

earlier in the chapter, we mentioned that Adadelta could be a good choice if we are 

dealing with sparse data. And this is a case of sparse data, because not all pixels 

in the image are informative. Having said that, I encourage you to try out other 

optimizers such as Adam on this same problem to see how it a�ects the training 

process and model performance.

7. And then we start the actual process of training the model for k number of epochs, 

and we also keep testing the model at the end of each training epoch:

for epoch in range(1, 3):

    train(model, device, train_dataloader, optimizer, 
epoch)

    test(model, device, test_dataloader)

For demonstration purposes, we will run the training for only two epochs. �e 

output will be as follows:

Figure 1.20 – Training logs
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8. Now that we have trained a model, with a reasonable test set performance, we can 

also manually check whether the model inference on a sample image is correct:

test_samples = enumerate(test_dataloader)

b_i, (sample_data, sample_targets) = next(test_samples)

plt.imshow(sample_data[0][0], cmap='gray', 
interpolation='none')

�e output will be as follows:

Figure 1.21 – Sample handwritten image

And now we run the model inference for this image and compare it with the ground truth:

     print(f"Model prediction is : {model(sample_data).data.
max(1)[1][0]}")

print(f"Ground truth is : {sample_targets[0]}")

Note that, for predictions, we �rst calculate the class with maximum probability using 
the max function on axis=1. �e max function outputs two lists – a list of probabilities 
of classes for every sample in sample_data and a list of class labels for each sample. 
Hence, we choose the second list using index [1]. We further select the �rst class label by 
using index [0] to look at only the �rst sample under sample_data. �e output will be 
as follows:

Figure 1.22 – PyTorch model prediction

Page 56



36     Overview of Deep Learning using PyTorch

�is appears to be the correct prediction. �e forward pass of the neural network done 
using model() produces probabilities. Hence, we use the max function to output the 
class with the maximum probability.

Note

�e code pattern for this exercise is derived from the o�cial PyTorch 

examples repository, which can be found here: https://github.com/
pytorch/examples/tree/master/mnist.

Summary
In this chapter, we refreshed deep learning concepts such as layers, activation functions, 
and optimization schedules and how they contribute towards building varied deep 
learning architectures. We explored the PyTorch deep learning library, including some of 
the important modules, such as torch.nn, torch.optim, and torch.data, as well 
as tensor modules.

We then ran a hands-on exercise on training a deep learning model from scratch. We built 
a CNN for our exercise using PyTorch modules. We also wrote relevant PyTorch code 
to load the dataset, train and evaluate the model, and �nally, make predictions from the 
trained model. 

In the next chapter, we will explore a slightly more complex model architecture that 
involves multiple sub-models and use this type of hybrid model to tackle the real-world 
task of describing an image using natural text. Using PyTorch, we will implement such a 
system and generate captions for unseen images.
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and LSTMs

Convolutional Neural Networks (CNNs) are a type of deep learning model known to 
solve machine learning problems related to images and video, such as image classi�cation, 
object detection, segmentation, and more. �is is because CNNs use a special type of layer 
called convolutional layers, which have shared learnable parameters. �e weight  
or parameter sharing works because the patterns to be learned in an image (such as edges 
or contours) are assumed to be independent of the location of the pixels in the image. Just 
as CNNs are applied to images, Long Short-Term Memory (LSTM) networks – which are 
a type of Recurrent Neural Network (RNN) – prove to be extremely e�ective at solving 
machine learning problems related to sequential data. An example of sequential data 
could be text. For example, in a sentence, each word is dependent on the previous word(s). 
LSTM models are meant to model such sequential dependencies.

�ese two di�erent types of networks – CNNs and LSTMs – can be cascaded to form  
a hybrid model that takes in images or video and outputs text. One well-known 
application of such a hybrid model is image captioning, where the model takes in an 
image and outputs a plausible textual description of the image. Since 2010, machine 
learning has been used to perform the task of image captioning (https://dl.acm.
org/doi/10.5555/1858681.1858808). 
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However, neural networks were �rst successfully used for this task in around 2014/2015 
(https://www.cv-foundation.org/openaccess/content_cvpr_2015/
html/Vinyals_Show_and_Tell_2015_CVPR_paper.html). Ever since, image 
captioning has been actively researched. With signi�cant improvements each year, this 
deep learning application might help the visually impaired better visualize the world.

�is chapter �rst discusses the architecture of such a hybrid model, along with the related 
implementational details in PyTorch, and at the end of the chapter, we will build an image 
captioning system from scratch using PyTorch. �is chapter covers the following topics: 

• Building a neural network with CNNs and LSTMs

• Building an image caption generator using PyTorch 

Technical requirements
We will be using Jupyter notebooks for all of our exercises. �e following is the list of 
Python libraries that should be installed for this chapter using pip. For example, run 
pip install torch==1.4.0 on the command line, and so on:

jupyter==1.0.0

torch==1.4.0

torchvision==0.5.0

nltk==3.4.5

Pillow==6.2.2

pycocotools==2.0.0

All the code �les relevant to this chapter are available at https://github.com/
PacktPublishing/Mastering-PyTorch/tree/master/Chapter02.

Building a neural network with CNNs and 

LSTMs
A CNN-LSTM network architecture consists of a convolutional layer(s) for extracting 
features from the input data (image), followed by an LSTM layer(s) to perform sequential 
predictions. �is kind of model is both spatially and temporally deep. �e convolutional 
part of the model is o�en used as an encoder that takes in an input image and outputs 
high-dimensional features or embeddings. 
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In practice, the CNN used for these hybrid networks is o�en pre-trained on, say, an image 
classi�cation task. �e last hidden layer of the pre-trained CNN model is then used as an 
input to the LSTM component, which is used as a decoder to generate text. 

When we are dealing with textual data, we need to transform the words and other symbols 
(punctuation, identi�ers, and more) – together referred to as tokens – into numbers. We 
do so by representing each token in the text with a unique corresponding number. In the 
following sub-section, we will demonstrate an example of text encoding.

Text encoding demo
Let's assume we're building a machine learning model with textual data; say, for example, 
that our text is as follows:

<start> PyTorch is a deep learning library. <end>

�en, we would map each of these words/tokens to numbers, as follows:

<start> : 0

PyTorch : 1

is : 2

a : 3

deep : 4

learning : 5

library : 6

. : 7

<end> : 8

Once we have the mapping, we can represent this sentence numerically as a list of 
numbers:

<start> PyTorch is a deep learning library. <end> -> [0, 1, 2, 
3, 4, 5, 6, 7, 8]

Also, for example, <start> PyTorch is deep. <end> would be encoded  
as -> [0, 1, 2, 4, 7, 8] and so on. �is mapping, in general, is referred to  
as vocabulary, and building a vocabulary is a crucial part of most text-related machine 
learning problems.
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�e LSTM model, which acts as the decoder, takes in a CNN embedding as input at t=0. 
�en, each LSTM cell makes a token prediction at each time-step, which is fed as the input 
to the next LSTM cell. �e overall architecture thus generated can be visualized  
as shown in the following diagram:

Figure 2.1 – Example CNN-LSTM architecture 

�e demonstrated architecture is suitable for the image captioning task. If instead of just 
having a single image we had a sequence of images (say, in a video) as the input to the 
CNN layer, then we would include the CNN embedding as the LSTM cell input at each 
time-step, not just at t=0. �is kind of architecture would be useful for applications such 
as activity recognition or video description. 

In the next section, we will implement an image captioning system in PyTorch that 
includes building a hybrid model architecture as well as data loading, preprocessing, 
model training, and model evaluation pipelines.

Building an image caption generator using 

PyTorch
For this exercise, we will be using the Common Objects in Context (COCO) dataset 
(available at http://cocodataset.org/#overview), which is a large-scale object 
detection, segmentation, and captioning dataset. 
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�is dataset consists of over 200,000 labeled images with �ve captions for each image.  
�e COCO dataset emerged in 2014 and has helped signi�cantly in the advancement of 
object recognition-related computer vision tasks. It stands as one of the most commonly 
used datasets for benchmarking tasks such as object detection, object segmentation, 
instance segmentation, and image captioning.

In this exercise, we will use PyTorch to train a CNN-LSTM model on this dataset and use 
the trained model to generate captions for unseen samples. Before we do that, though, 
there are a few pre-requisites that we need to carry out.

Note

We will be referring to only the important snippets of code for illustration 

purposes. �e full exercise code can be found at https://github.com/
PacktPublishing/Mastering-PyTorch/blob/master/
Chapter02/image_captioning_pytorch.ipynb

Downloading the image captioning datasets
Before we begin building the image captioning system, we need to download the required 
datasets. If you do not have the datasets downloaded, then run the following script with 
the help of Jupyter Notebook. �is should help with downloading the datasets locally. 

Note

We are using a slightly older version of the dataset as it is slightly smaller in 
size, enabling us to get the results faster.

�e training and validation datasets are 13 GB and 6 GB in size, respectively. 
Downloading and extracting the dataset �les, as well as cleaning and processing them, 
might take a while. A good idea is to execute these steps as follows and let them �nish 
overnight:

# download images and annotations to the data directory

!wget http://msvocds.blob.core.windows.net/annotations-1-0-3/
captions_train-val2014.zip -P ./data_dir/

!wget http://images.cocodataset.org/zips/train2014.zip -P ./
data_dir/

!wget http://images.cocodataset.org/zips/val2014.zip -P ./data_
dir/

# extract zipped images and annotations and remove the zip 
files
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!unzip ./data_dir/captions_train-val2014.zip -d ./data_dir/

!rm ./data_dir/captions_train-val2014.zip

!unzip ./data_dir/train2014.zip -d ./data_dir/

!rm ./data_dir/train2014.zip 

!unzip ./data_dir/val2014.zip -d ./data_dir/ 

!rm ./data_dir/val2014.zip

You should see the following output:

Figure 2.2 – Data download and extraction
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�is step basically creates a data folder (./data_dir), downloads the zipped images and 
annotation �les, and extracts them inside the data folder.

Preprocessing caption (text) data
�e downloaded image captioning datasets consist of both text (captions) and images. 
In this section, we will preprocess the text data to make it usable for our CNN-LSTM 
model. �e exercise is laid out as a sequence of steps. �e �rst three steps are focused on 
processing the text data:

1. For this exercise, we will need to import a few dependencies. Some of the crucial 

modules we will import for this chapter are as follows:

import nltk

from pycocotools.coco import COCO

import torch.utils.data as data

import torchvision.models as models

import torchvision.transforms as transforms

from torch.nn.utils.rnn import pack_padded_sequence

nltk is the natural language toolkit, which will be helpful in building our 

vocabulary, while pycocotools is a helper tool to work with the COCO dataset. 

�e various Torch modules we have imported here have already been discussed in 

the previous chapter, except the last one – that is, pack_padded_sequence. �is 

function will be useful to transform sentences with variable lengths (number of 

words) into �xed-length sentences by applying padding.

Besides importing the nltk library, we will also need to download its punkt 

tokenizer model, as follows:

nltk.download('punkt')

�is will enable us to tokenize given text into constituent words. 

2. Next, we build the vocabulary – that is, a dictionary that can convert actual  

textual tokens (such as words) into numeric tokens. �is step is essential for any 

text-related tasks. �e approximate code here gives an idea of what is being done  

at this step:

def build_vocabulary(json, threshold):

    """Build a vocab wrapper."""

    coco = COCO(json)

    counter = Counter()
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    ids = coco.anns.keys()

    for i, id in enumerate(ids):

        caption = str(coco.anns[id]['caption'])

        tokens = nltk.tokenize.word_tokenize(caption.
lower())

        counter.update(tokens)

        if (i+1) % 1000 == 0:

            print("[{}/{}] Tokenized the 
captions.".format(i+1, len(ids)))

First, inside the vocabulary builder function, JSON text annotations are loaded, 

and individual words in the annotation/caption are tokenized or converted into 

numbers and stored in a counter.

�en, inside the vocabulary builder function, tokens with fewer than a certain 

number of occurrences are discarded, and the remaining tokens are added to  

a vocabulary object beside some wildcard tokens – start (of the sentence), end, 

unknown_word, and padding tokens, as follows:

    # If word freq < 'thres', then word is discarded.

    tokens = [token for token, cnt in counter.items() if 
cnt >= threshold]

    # Create vocab wrapper + add special tokens.

    vocab = Vocab()

    vocab.add_token('<pad>')

    vocab.add_token('<start>')

    vocab.add_token('<end>')

    vocab.add_token('<unk>')

    # Add words to vocab.

    for i, token in enumerate(tokens):

        vocab.add_token(token)

    return vocab

Finally, the vocabulary builder function, called a vocabulary object, is created and 

saved locally for further reuse, as shown in the following code:

vocab = build_vocabulary(json='data_dir/annotations/
captions_train2014.json', threshold=4)

vocab_path = './data_dir/vocabulary.pkl'

with open(vocab_path, 'wb') as f:

    pickle.dump(vocab, f)
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print("Total vocabulary size: {}".format(len(vocab)))

print("Saved the vocabulary wrapper to '{}'".
format(vocab_path))

�e output for this is as follows:

Figure 2.3 – Vocabulary creation

In this step, we de�ne a vocabulary object, vocab, where we add the tokens, which will 
eventually provide us with the mapping between the textual tokens and numeric tokens. 
�e vocabulary object is also saved locally to save us from having to re-run the vocabulary 
builder for re-training the model later. 

�e build_vocabulary function reads the annotations from the annotations 
�le downloaded in step 1 via the pycocotools helper library. A�er reading all the 
annotations, it loops over the text tokens and adds every newly discovered text token  
to the mapping. 

Once we have built the vocabulary, we can deal with the textual data by transforming  
it into numbers at runtime.
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Preprocessing image data
A�er downloading the data and building the vocabulary for the text captions, we need  
to perform some preprocessing for the image data. 

Because the images in the dataset can come in various sizes or shapes, we need to reshape 
all the images to a �xed shape so that they can be inputted to the �rst layer of our CNN 
model, as follows:

def reshape_images(image_path, output_path, shape):

    images = os.listdir(image_path)

    num_im = len(images)

    for i, im in enumerate(images):

        with open(os.path.join(image_path, im), 'r+b') as f:

            with Image.open(f) as image:

                image = reshape_image(image, shape)

                image.save(os.path.join(output_path, im), 
image.format)

        if (i+1) % 100 == 0:

            print ("[{}/{}] Resized the images and saved into 
'{}'.".format(i+1, num_im, output_path))

reshape_images(image_path, output_path, image_shape)

�e output for this will be as follows:

Figure 2.4 – Image preprocessing (reshaping)
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We have reshaped all the images to 256 X 256 pixels, which makes them compatible with 
our CNN model architecture.

Defining the image captioning data loader
We have already downloaded and preprocessed the image captioning data. Now it is time 
to cast this data as a PyTorch dataset object. �is dataset object can subsequently be used 
to de�ne a PyTorch data loader object, which we will use in our training loop to fetch 
batches of data as follows:

1. Now, we will implement our own custom Dataset module and a custom  

data loader:

class CustomCocoDataset(data.Dataset):

    """COCO Dataset compatible with torch.utils.data.
DataLoader."""

    def __init__(self, data_path, coco_json_path, 
vocabulary, transform=None):

        """Set path for images, texts and vocab wrapper.

        

        Args:

            data_path: image directory.

            coco_json_path: coco annotation file path.

            vocabulary: vocabulary wrapper.

            transform: image transformer.

        """

        ...

    def __getitem__(self, idx):

        """Returns one data sample (X, y)."""

        ...

        return image, ground_truth

    def __len__(self):

        return len(self.indices)

First, in order to de�ne our custom PyTorch Dataset object, we have de�ned 

our own __init__, __get_item__, and __len__ methods for instantiation, 

fetching items, and returning the size of the dataset, respectively. 
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2. Next, we de�ne collate_function, which returns mini batches of data in the 

form of X, y, as follows:

def collate_function(data_batch):

    """Creates mini-batches of data

    We build custom collate function rather than using 
standard collate function, 

    because padding is not supported in the standard 
version.

    Args:

        data: list of (image, caption)tuples. 

            - image: tensor of shape (3, 256, 256).

            - caption: tensor of shape (:); variable 
length.

    Returns:

        images: tensor of size (batch_size, 3, 256, 256).

        targets: tensor of size (batch_size, padded_
length).

        lengths: list.

    """

    ...       

    return imgs, tgts, cap_lens

Usually, we would not need to write our own collate function, but we do so to 

deal with variable-length sentences so that when the length of a sentence (say, k) 

is less than the �xed length, n, then we need to pad the n-k tokens with padding 

tokens using the pack_padded_sequence function.

3. Finally, we will implement the get_loader function, which returns a custom data 

loader for the COCO dataset in the following code:

def get_loader(data_path, coco_json_path, vocabulary, 
transform, batch_size, shuffle, num_workers):

    # COCO dataset

    coco_dataset = CustomCocoDataset(data_path=data_path,

                       coco_json_path=coco_json_path,

                       vocabulary=vocabulary,

                       transform=transform)

    custom_data_loader = torch.utils.data.
DataLoader(dataset=coco_dataset, batch_size=batch_size, 
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shuffle=shuffle, num_workers=num_workers, collate_
fn=collate_function)

    return custom_data_loader

During the training loop, this function will be extremely useful in fetching mini batches  
of data.

�is completes the work needed to set up the data pipeline for model training. We will 
now work toward the actual model itself.

Defining the CNN-LSTM model
In this section, we will de�ne the model architecture, which involves a CNN as well as  
an LSTM component.

Now that we have set up our data pipeline, we will de�ne the model architecture as per  
the description in Figure 2.1, as follows:

class CNNModel(nn.Module): 
    def __init__(self, embedding_size): 
        """Load pretrained ResNet-152 & replace last fully 
connected layer.""" 
        super(CNNModel, self).__init__() 
        resnet = models.resnet152(pretrained=True) 
        module_list = list(resnet.children())[:-1]      # 
delete last fully connected layer. 
        self.resnet_module = nn.Sequential(*module_list) 
        self.linear_layer = nn.Linear(resnet.fc.in_features, 
embedding_size) 
        self.batch_norm = nn.BatchNorm1d(embedding_size, 
momentum=0.01) 
         
    def forward(self, input_images): 
        """Extract feats from images.""" 
        with torch.no_grad(): 
            resnet_features = self.resnet_module(input_images) 
        resnet_features = resnet_features.reshape(resnet_
features.size(0), -1) 
        final_features = self.batch_norm(self.linear_
layer(resnet_features)) 
        return final_features
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We have de�ned two sub-models – that is, a CNN model and an RNN model. For 
the CNN part, we use a pre-trained CNN model available under the PyTorch models 
repository: the ResNet 152 architecture. While we will learn more about ResNet in detail 
in the next chapter, this deep CNN model with 152 layers is pre-trained on the ImageNet 
dataset (http://www.image-net.org/). �e ImageNet dataset contains over 1.4 
million RGB images labeled over 1,000 classes. �ese 1,000 classes belong to categories 
such as plants, animals, food, sports, and more.

We remove the last layer of this pre-trained ResNet model and replace it with a fully 
connected layer followed by a batch normalization layer. Why are we able to replace 
the fully connected layer? Well, the neural network can be seen as a sequence of weight 
matrices starting from the weight matrix between the input layer and the �rst hidden  
layer straight up to the weight matrix between the penultimate layer and the output layer. 
A pre-trained model can then be seen as a sequence of nicely tuned weight matrices. 

By replacing the �nal layer, we are essentially replacing the �nal weight matrix  
(K x 1000-dimensional, assuming K number of neurons in the penultimate layer) with 
a new randomly initialized weight matrix (K x 256-dimensional, where 256 is the new 
output size).

�e batch normalization layer normalizes the fully connected layer outputs with a mean 
of 0 and a standard deviation of 1 across the entire batch. �is is similar to the standard 
input data normalization that we perform using torch.transforms. Performing batch 
normalization helps limit the extent to which the hidden layer output values �uctuate.  
It also generally helps with faster learning. We can use higher learning rates because of  
a more uniform (0 mean, 1 standard deviation) optimization hyperplane.

Since this is the �nal layer of the CNN sub-model, batch normalization helps insulate 
the LSTM sub-model against any data shi�s that the CNN might introduce. If we do not 
use batch-norm, then in the worst-case scenario, the CNN �nal layer could output values 
with, say, mean > 0.5 and standard deviation = 1 during training. But during inference, if 
for a certain image the CNN outputs values with mean < 0.5 and standard deviation = 1, 
then the LSTM sub-model would struggle to operate on this unforeseen data distribution. 

Coming back to the fully connected layer, we introduce our own layer because we do  
not need the 1,000 class probabilities of the ResNet model. Instead, we want to use this 
model to generate an embedding vector for each image. �is embedding can be thought 
of as a one-dimensional, numerically encoded version of a given input image. �is 
embedding is then fed to the LSTM model.

Page 71



Building an image caption generator using PyTorch     51

We will explore LSTMs in detail in Chapter 4, Deep Recurrent Model Architectures. But, 
as we have seen in Figure 2.1, the LSTM layer takes in the embedding vectors as input 
and outputs a sequence of words that should ideally describe the image from which the 
embedding was generated:

class LSTMModel(nn.Module):

    def __init__(self, embedding_size, hidden_layer_size, 
vocabulary_size, num_layers, max_seq_len=20):

        ...

        self.lstm_layer = nn.LSTM(embedding_size, hidden_layer_
size, num_layers, batch_first=True)

        self.linear_layer = nn.Linear(hidden_layer_size, 
vocabulary_size)

        ...

        

    def forward(self, input_features, capts, lens):

        ... 

        hidden_variables, _ = self.lstm_layer(lstm_input)

        model_outputs = self.linear_layer(hidden_variables[0])

        return model_outputs

�e LSTM model consists of an LSTM layer followed by a fully connected linear layer.  
�e LSTM layer is a recurrent layer, which can be imagined as LSTM cells unfolded along 
the time dimension, forming a temporal sequence of LSTM cells. For our use case, these 
cells will output word prediction probabilities at each time-step and the word with the 
highest probability is appended to the output sentence. 

�e LSTM cell at each time-step also generates an internal cell state, which is passed  
on as input to the LSTM cell of the next time-step. �e process continues until an LSTM 
cell outputs an <end> token/word. �e <end> token is appended to the output sentence. 
�e completed sentence is our predicted caption for the image.

Note that we also specify the maximum allowed sequence length as 20 under the  
max_seq_len variable. �is will essentially mean that any sentence shorter than 20 
words will have empty word tokens padded at the end and sentences longer than 20 words 
will be curtailed to just the �rst 20 words. 
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Why do we do it and why 20? If we truly want our LSTM to handle sentences of any 
length, we might want to set this variable to an extremely large value, say, 9,999 words. 
However, (a) not many image captions come with that many words, and (b), more 
importantly, if there were ever such extra-long outlier sentences, the LSTM would struggle 
with learning temporal patterns across such a huge number of time-steps. 

We know that LSTMs are better than RNNs at dealing with longer sequences; however, it 
is di�cult to retain memory across such sequence lengths. We choose 20 as a reasonable 
number given the usual image caption lengths and the maximum length of captions we 
would like our model to generate.

Both the LSTM layer and the linear layer objects in the previous code are derived from 
nn.module and we de�ne the __init__ and forward methods to construct the 
model and run a forward pass through the model, respectively. For the LSTM model, we 
additionally implement a sample method, as shown in the following code, which will be 
useful for generating captions for a given image:

    def sample(self, input_features, lstm_states=None):

        """Generate caps for feats with greedy search."""

        sampled_indices = []

        ...

        for i in range(self.max_seq_len):

  ...

            sampled_indices.append(predicted_outputs)

            ...

        sampled_indices = torch.stack(sampled_indices, 1)

        return sampled_indices

�e sample method makes use of greedy search to generate sentences; that is, it chooses 
the sequence with the highest overall probability.

�is brings us to the end of the image captioning model de�nition step. We are now all set 
to train this model.

Page 73



Building an image caption generator using PyTorch     53

Training the CNN-LSTM model
As we have already de�ned the model architecture in the previous section, we will now 
train the CNN-LSTM model. Let's examine the details of this step one by one:

1. First, we de�ne the device. If there is a GPU available, use it for training; otherwise, 

use the CPU:

# Device configuration 
device = torch.device('cuda' if torch.cuda.is_available() 
else 'cpu')

Although we have already reshaped all the images to a �xed shape, (256, 256), 

that is not enough. We still need to normalize the data. Normalization is important 

because di�erent data dimensions might have di�erent distributions, which might 

skew the overall optimization space and lead to ine�cient gradient descent (think 

of an ellipse versus a circle). 

2. We will use PyTorch's transform module to normalize the input image  

pixel values:

# Image pre-processing, normalization for pretrained 
resnet

transform = transforms.Compose([ 

    transforms.RandomCrop(224),

    transforms.RandomHorizontalFlip(), 

    transforms.ToTensor(), 

    transforms.Normalize((0.485, 0.456, 0.406), 

                         (0.229, 0.224, 0.225))])

Furthermore, we augment the available dataset. �is helps not only in generating 

larger volumes of training data but also in making the model robust against 

potential variations in input data. Using PyTorch's transform module, we 

perform two data augmentation techniques here: 

i) Random cropping, resulting in the reduction of the image size from  

(256, 256) to (224, 224).

ii) Horizontal �ipping of the images.
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3. Next, we load the vocabulary that we built in the Preprocessing caption (text) data 

section. We also initialize the data loader using the get_loader function de�ned 

in the De�ning the image captioning data loader section:

# Load vocab wrapper

with open('data_dir/vocabulary.pkl', 'rb') as f:

    vocabulary = pickle.load(f)

    

# Instantiate data loader

custom_data_loader = get_loader('data_dir/resized_
images', 'data_dir/annotations/captions_train2014.json', 
vocabulary, 

                         transform, 128,

                         shuffle=True, num_workers=2) 

4. Next, we come to the main section of this step, where we instantiate the CNN and 

LSTM models in the form of encoder and decoder models. Furthermore, we also 

de�ne the loss function – cross entropy loss – and the optimization schedule – the 

Adam optimizer – as follows:

# Build models

encoder_model = CNNModel(256).to(device)

decoder_model = LSTMModel(256, 512, len(vocabulary), 
1).to(device)

 

    

# Loss & optimizer

loss_criterion = nn.CrossEntropyLoss()

parameters = list(decoder_model.parameters()) + 
list(encoder_model.linear_layer.parameters()) + 
list(encoder_model.batch_norm.parameters())

optimizer = torch.optim.Adam(parameters, lr=0.001)

As discussed in Chapter 1, Overview of Deep Learning Using PyTorch, Adam is 

possibly the best choice for an optimization schedule when dealing with sparse data. 

Here, we are dealing with both images and text – perfect examples of sparse data 

because not all pixels contain useful information and numericized/vectorized text  

is a sparse matrix in itself. 
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5. Finally, we run the training loop (for �ve epochs) where we use the data loader to 

fetch a mini batch of the COCO dataset, run a forward pass with the mini batch 

through the encoder and decoder networks, and �nally, tune the parameters of the 

CNN-LSTM model using backpropagation (backpropagation through time, for the 

LSTM network):

for epoch in range(5):

    for i, (imgs, caps, lens) in enumerate(custom_data_
loader):

        tgts = pack_padded_sequence(caps, lens, batch_
first=True)[0]

        # Forward pass, backward propagation

        feats = encoder_model(imgs)

        outputs = decoder_model(feats, caps, lens)

        loss = loss_criterion(outputs, tgts)

        decoder_model.zero_grad()

        encoder_model.zero_grad()

        loss.backward()

        optimizer.step()

Every 1,000 iterations into the training loop, we save a model checkpoint. For 

demonstration purposes, we have run the training for just two epochs, as follows:

        # Log training steps

        if i % 10 == 0:

            print('Epoch [{}/{}], Step [{}/{}], Loss: 
{:.4f}, Perplexity: {:5.4f}'

                  .format(epoch, 5, i, total_num_steps, 
loss.item(), np.exp(loss.item()))) 

        # Save model checkpoints

        if (i+1) % 1000 == 0:

            torch.save(decoder_model.state_dict(), 
os.path.join(

                'models_dir/', 'decoder-{}-{}.ckpt'.
format(epoch+1, i+1)))

            torch.save(encoder_model.state_dict(), 
os.path.join(

                'models_dir/', 'encoder-{}-{}.ckpt'.
format(epoch+1, i+1)))
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�e output will be as follows:

Figure 2.5 – Model training loop
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Generating image captions using the trained model
We have trained an image captioning model in the previous section. In this section,  
we will use the trained model to generate captions for images previously unseen by  
the model:

1. We have stored a sample image, sample.jpg, to run inference on. Just as we  

did during training, we de�ne the device to the GPU if available; otherwise, we 

de�ne it to the CPU. �en, we de�ne a function to load the image and reshape it  

to (224, 224) pixels. Finally, we de�ne the transformation module to normalize 

the image pixels, as follows:

image_file_path = 'sample.jpg'

# Device config

device = torch.device('cuda' if torch.cuda.is_available() 
else 'cpu')

def load_image(image_file_path, transform=None):

    img = Image.open(image_file_path).convert('RGB')

    img = img.resize([224, 224], Image.LANCZOS)

    if transform is not None:

        img = transform(img).unsqueeze(0)

    return img

# Image pre-processing

transform = transforms.Compose([

    transforms.ToTensor(), 

    transforms.Normalize((0.485, 0.456, 0.406), 

                         (0.229, 0.224, 0.225))])

2. Next, we load the vocabulary and instantiate the encoder and decoder models:

# Load vocab wrapper

with open('data_dir/vocabulary.pkl', 'rb') as f:

    vocabulary = pickle.load(f)

# Build models

encoder_model = CNNModel(256).eval()  # eval mode 
(batchnorm uses moving mean/variance)

decoder_model = LSTMModel(256, 512, len(vocabulary), 1)

encoder_model = encoder_model.to(device)

decoder_model = decoder_model.to(device)
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3. Once we have the model sca�old ready, we will use the latest saved checkpoint from 

the two epochs of training to set the model parameters:

# Load trained model params

encoder_model.load_state_dict(torch.load('models_dir/
encoder-2-3000.ckpt'))

decoder_model.load_state_dict(torch.load('models_dir/
decoder-2-3000.ckpt'))

A�er this point, the model is ready to use for inference. 

4. Next comes the main part of this step, where we actually load the image and run 

inference on it – that is, �rst we use the encoder model to generate embeddings 

from the image, and then we feed this embedding to the decoder network to 

generate sequences, as follows:

# Prepare image

img = load_image(image_file_path, transform)

img_tensor = img.to(device)

# Generate caption text from image

feat = encoder_model(img_tensor)

sampled_indices = decoder_model.sample(feat)

sampled_indices = sampled_indices[0].cpu().
numpy()          # (1, max_seq_length) -> (max_seq_
length)

5. At this stage, the caption predictions are still in the form of numeric tokens. 

We need to convert the numeric tokens into actual text using the vocabulary by 

applying the mapping between textual and numeric tokens in reverse:

# Convert numeric tokens to text tokens

predicted_caption = []

for token_index in sampled_indices:

    word = vocabulary.i2w[token_index]

    predicted_caption.append(word)

    if word == '<end>':

        break

predicted_sentence = ' '.join(predicted_caption)
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6. Once we have transformed our output into text, we can visualize both the image  

as well as the generated caption:

# Print image & generated caption text

print (predicted_sentence)

img = Image.open(image_file_path)

plt.imshow(np.asarray(img))

�e output will be as follows:

Figure 2.6 – Model inference on a sample image

It seems that although the model is not absolutely perfect, within two epochs, it is already 
trained well enough to generate sensible captions.

Summary
�is chapter discussed the concept of combining a CNN model and an LSTM model  
in an encoder-decoder framework, jointly training them, and using the combined model 
to generate captions for an image. We �rst described what the model architecture for such 
a system would look like and how minor changes to the architecture could lead to solving 
di�erent applications, such as activity recognition and video description. We also explored 
what building a vocabulary for a text dataset means in practice.
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In the second and �nal part of this chapter, we actually implemented an image captioning 
system using PyTorch. We downloaded datasets, wrote our own custom PyTorch dataset 
loader, built a vocabulary based on the caption text dataset, and applied transformations 
to images, such as reshaping, normalizing, random cropping, and horizontal �ipping.  
We then de�ned the CNN-LSTM model architecture, along with the loss function  
and optimization schedule, and �nally, we ran the training loop. Once the model was 
trained, we generated captions on a sample image and the model seemed to be working 
reasonably well.

We have used CNNs both in this and the previous chapter's exercises.

In the next chapter, we will take a deeper look at the gamut of di�erent CNN architectures 
developed over the years, how each of them is uniquely useful, and how they can be easily 
implemented using PyTorch.
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In this section, we'll use PyTorch to showcase some of the most advanced neural  
network architectures at the time of writing, as well as demonstrate their applications  
in real-life problems. Upon completing this section, you will be up to date with the  
most cutting-edge technologies in the world of convolutional, recurrent, and hybrid  
deep learning models and will be able to apply these models to advanced machine 
learning tasks.

This section comprises the following chapters:

• Chapter 3, Deep CNN Architectures

• Chapter 4, Deep Recurrent Model Architectures

• Chapter 5, Hybrid Advanced Models

Section 2:  
Working with 

Advanced 
Neural Network 

Architectures
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3
Deep CNN 

Architectures

In this chapter, we will �rst brie�y review the evolution of CNNs (in terms of architectures), 
and then we will study the di�erent CNN architectures in detail. We will implement these 
CNN architectures using PyTorch and in doing so, we aim to exhaustively explore the tools 
(modules and built-in functions) that PyTorch has to o�er in the context of building Deep 

CNNs. Building strong CNN expertise in PyTorch will enable us to solve a number of deep 
learning problems involving CNNs. �is will also help us in building more complex deep 
learning models or applications of which CNNs are a part.

�is chapter will cover the following topics:

• Why are CNNs so powerful?

• Evolution of CNN architectures

• Developing LeNet from scratch

• Fine-tuning the AlexNet model

• Running a pre-trained VGG model 

• Exploring GoogLeNet and Inception v3

• Discussing ResNet and DenseNet architectures

• Understanding E�cientNets and the future of CNN architectures
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Technical requirements 
We will be using Jupyter Notebooks for all of our exercises. �e following is the list of 
Python libraries that should be installed for this chapter using pip. For example, use  
run pip install torch==1.4.0 on the command line, and so on: 

jupyter==1.0.0 

torch==1.4.0 

torchvision==0.5.0 

nltk==3.4.5 

Pillow==6.2.2 

pycocotools==2.0.0 

All the code �les relevant to this chapter are available at https://github.com/
PacktPublishing/Mastering-PyTorch/tree/master/Chapter03.

Why are CNNs so powerful?
CNNs are among the most powerful machine learning models at solving challenging 
problems such as image classi�cation, object detection, object segmentation, video 
processing, natural language processing, and speech recognition. �eir success is 
attributed to various factors, such as the following:

• Weight sharing: �is makes CNNs parameter-e�cient, that is, di�erent features are 
extracted using the same set of weights or parameters. Features are the high-level 
representations of input data that the model generates with its parameters.

• Automatic feature extraction: Multiple feature extraction stages help a CNN to 
automatically learn feature representations in a dataset.

• Hierarchical learning: �e multi-layered CNN structure helps CNNs to learn low-, 
mid-, and high-level features.

• �e ability to explore both spatial and temporal correlations in the data, such as in 
video processing tasks.

Besides these pre-existing fundamental characteristics, CNNs have advanced over the 
years with the help of improvements in the following areas:

• �e use of better activation and loss functions, such as using ReLU to overcome 
the vanishing gradient problem. What is the vanishing gradient problem? Well,  
we know backpropagation in neural networks works on the basis of the chain rule  
of di�erentiation. 
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According to the chain rule, the gradient of the loss function with respect to the 

input layer parameters can be written as a product of gradients at each layer. If these 

gradients are all less than 1 – and worse still, tending toward 0 – then the product 

of these gradients will be a vanishingly small value. �e vanishing gradient problem 

can cause serious troubles in the optimization process by preventing the network 

parameters from changing their values, which is equivalent to stunted learning.

• Parameter optimization, such as using an optimizer based on Adaptive 

Momentum (Adam) instead of simple Stochastic Gradient Descent.

• Regularization: Applying dropouts and batch normalization besides L2 regularization.

But some of the most signi�cant drivers of development in CNNs over the years have been 
the various architectural innovations:

• Spatial exploration-based CNNs: �e idea behind spatial exploration is using 
di�erent kernel sizes in order to explore di�erent levels of visual features in input 
data. �e following diagram shows a sample architecture for a spatial exploration-
based CNN model:

Figure 3.1 – Spatial exploration-based CNN
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• Depth-based CNNs: �e depth here refers to the depth of the neural network,  
that is, the number of layers. So, the idea here is to create a CNN model with 
multiple convolutional layers in order to extract highly complex visual features.  
�e following diagram shows an example of such a model architecture:

Figure 3.2 – Depth-based CNN

• Width-based CNNs: Width refers to the number of channels or feature maps in 
the data or features extracted from the data. So, width-based CNNs are all about 
increasing the number of feature maps as we go from the input to the output layers, 
as demonstrated in the following diagram:

Figure 3.3 – Width-based CNN
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• Multi-path-based CNNs: So far, the preceding three types of architectures have 
monotonicity in connections between layers, that is, direct connections exist only 
between consecutive layers. Multi-path CNNs brought the idea of making shortcut 
connections or skip connections between non-consecutive layers. �e following 
diagram shows an example of a multi-path CNN model architecture:

Figure 3.4 – Multi-path CNN

A key advantage of multi-path architectures is a better �ow of information across several 
layers, thanks to the skip connections. �is, in turn, also lets the gradient �ow back to the 
input layers without too much dissipation.

Having looked at the di�erent architectural setups found in CNN models, we will now 
look at how CNNs have evolved over the years ever since they were �rst used.
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Evolution of CNN architectures
CNNs have been in existence since 1989, when the �rst multilayered CNN, called 
ConvNet, was developed by Yann LeCun. �is model could perform visual cognition 
tasks such as identifying handwritten digits. In 1998, LeCun developed an improved 
ConvNet model called LeNet. Due to its high accuracy in optical recognition tasks, LeNet 
was adopted for industrial use soon a�er its invention. Ever since, CNNs have been one of 
the most successful machine learning models, both in industry as well as academia. �e 
following diagram shows a brief timeline of architectural developments in the lifetime of 
CNNs, starting from 1989 all the way to 2020:

Figure 3.5 – CNN architecture evolution – a broad picture
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As we can see, there is a signi�cant gap between the years 1998 and 2012. �is was 
primarily because there wasn't a dataset big and suitable enough to demonstrate the 
capabilities of CNNs, especially deep CNNs. And on the existing small datasets of the 
time, such as MNIST, classical machine learning models such as SVMs were starting to 
beat CNN performance. During those years, a few CNN developments took place.

�e ReLU activation function was designed in order to deal with the gradient explosion 
and decay problem during backpropagation. Non-random initialization of network 
parameter values proved to be crucial. Max-pooling was invented as an e�ective method 
for subsampling. GPUs were getting popular for training neural networks, especially 
CNNs at scale. Finally, and most importantly, a large-scale dedicated dataset of annotated 
images called ImageNet (http://www.image-net.org/) was created by a research 
group at Stanford. �is dataset is still one of the primary benchmarking datasets for CNN 
models to date.

With all of these developments compounding over the years, in 2012, a di�erent 
architectural design brought about a massive improvement in CNN performance on 
the ImageNet dataset. �is network was called AlexNet (named a�er the creator, 
Alex Krizhevsky). AlexNet, along with having various novel aspects such as random 
cropping and pre-training, established the trend of uniform and modular convolutional 
layer design. �e uniform and modular layer structure was taken forward by repeatedly 
stacking such modules (of convolutional layers), resulting in very deep CNNs also known 
as VGGs. 

Another approach of branching the blocks/modules of convolutional layers and stacking 
these branched blocks on top of each other proved extremely e�ective for tailored visual 
tasks. �is network was called GoogLeNet (as it was developed at Google) or Inception 

v1 (inception being the term for those branched blocks). Several variants of the VGG and 
Inception networks followed, such as VGG16, VGG19, Inception v2, Inception v3, and 
so on.

�e next phase of development began with skip connections. To tackle the problem of 
gradient decay while training CNNs, non-consecutive layers were connected via skip 
connections lest information dissipated between them due to small gradients. A popular 
type of network that emerged with this trick, among other novel characteristics such as 
batch normalization, was ResNet.
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A logical extension of ResNet was DenseNet, where layers were densely connected to each 
other, that is, each layer gets the input from all the previous layers' output feature maps. 
Furthermore, hybrid architectures were then developed by mixing successful architectures 
from the past such as Inception-ResNet and ResNeXt, where the parallel branches within 
a block were increased in number.

Lately, the channel boosting technique has proven useful in improving CNN 
performance. �e idea here is to learn novel features and exploit pre-learned features 
through transfer learning. Most recently, automatically designing new blocks and �nding 
optimal CNN architectures has been a growing trend in CNN research. Examples of such 
CNNs are MnasNets and E�cientNets. �e approach behind these models is to perform 
a neural architecture search to deduce an optimal CNN architecture with a uniform model 
scaling approach.

In the next section, we will go back to one of the earliest CNN models and take a closer 
look at the various CNN architectures developed since. We will build these architectures 
using PyTorch, training some of the models on real-world datasets. We will also explore 
PyTorch's pre-trained CNN models repository, popularly known as model-zoo. We will 
learn how to �ne-tune these pre-trained models as well as running predictions on them.

Developing LeNet from scratch
LeNet, originally known as LeNet-5, is one of the earliest CNN models, developed in 
1998. �e number 5 in LeNet-5 represents the total number of layers in this model, that is, 
two convolutional and three fully connected layers. With roughly 60,000 total parameters, 
this model gave state-of-the-art performance on image recognition tasks for handwritten 
digit images in the year 1998. As expected from a CNN model, LeNet demonstrated 
rotation, position, and scale invariance as well as robustness against distortion in 
images. Contrary to the classical machine learning models of the time, such as SVMs, 
which treated each pixel of the image separately, LeNet exploited the correlation among 
neighboring pixels.
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Note that although LeNet was developed for handwritten digit recognition, it can certainly 
be extended for other image classi�cation tasks, as we shall see in our next exercise. �e 
following diagram shows the architecture of a LeNet model:

Figure 3.6 – LeNet architecture
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As mentioned earlier, there are two convolutional layers followed by three fully connected 
layers (including the output layer). �is approach of stacking convolutional layers followed 
by fully connected layers later became a trend in CNN research and is still applied to the 
latest CNN models. Besides these layers, there are pooling layers in between. �ese are 
basically subsampling layers that reduce the spatial size of image representation, thereby 
reducing the number of parameters and computations. �e pooling layer used in LeNet 
was an average pooling layer that had trainable weights. Soon a�er, max pooling emerged 
as the most commonly used pooling function in CNNs.

�e numbers in brackets in each layer in the �gure demonstrate the dimensions (for input, 
output, and fully connected layers) or window size (for convolutional and pooling layers). 
�e expected input for a grayscale image is 32x32 pixels in size. �is image is then operated 
on by 5x5 convolutional kernels, followed by 2x2 pooling, and so on. �e output layer size 
is 10, representing the 10 classes.

In this section, we will use PyTorch to build LeNet from scratch and train and evaluate it on 
a dataset of images for the task of image classi�cation. We will see how easy and intuitive it 
is to build the network architecture in PyTorch using the outline from Figure 3.6. 

Furthermore, we will demonstrate how e�ective LeNet is, even on a dataset di�erent from 
the ones it was originally developed on (that is, MNIST) and how PyTorch makes it easy 
to train and test the model in a few lines of code.

Using PyTorch to build LeNet
Observe the following steps to build the model:

1. For this exercise, we will need to import a few dependencies. Execute the following 

import statements:

import numpy as np

import matplotlib.pyplot as plt

import torch

import torchvision

import torch.nn as nn

import torch.nn.functional as F

import torchvision.transforms as transforms

torch.manual_seed(55)

Here, we are importing all the torch modules necessary for the exercise. We also 

import numpy and matplotlib to display images during the exercise. Besides 

imports, we also set the random seed to ensure the reproducibility of this exercise.
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2. Next, we will de�ne the model architecture based on the outline given in Figure 3.6:

class LeNet(nn.Module):

    def __init__(self):

        super(LeNet, self).__init__()

        # 3 input image channel, 6 output feature maps 
and 5x5 conv kernel

        self.cn1 = nn.Conv2d(3, 6, 5)

        # 6 input image channel, 16 output feature maps 
and 5x5 conv kernel

        self.cn2 = nn.Conv2d(6, 16, 5)

        # fully connected layers of size 120, 84 and 10

        self.fc1 = nn.Linear(16 * 5 * 5, 120)  # 5*5 is 
the spatial dimension at this layer

        self.fc2 = nn.Linear(120, 84)

        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):

        # Convolution with 5x5 kernel

        x = F.relu(self.cn1(x))

        # Max pooling over a (2, 2) window

        x = F.max_pool2d(x, (2, 2))

        # Convolution with 5x5 kernel

        x = F.relu(self.cn2(x))

        # Max pooling over a (2, 2) window

        x = F.max_pool2d(x, (2, 2))

        # Flatten spatial and depth dimensions into a 
single vector

        x = x.view(-1, self.flattened_features(x))

        # Fully connected operations

        x = F.relu(self.fc1(x))

        x = F.relu(self.fc2(x))

        x = self.fc3(x)

        return x

    def flattened_features(self, x):

        # all except the first (batch) dimension

        size = x.size()[1:]  

        num_feats = 1
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        for s in size:

            num_feats *= s

        return num_feats

lenet = LeNet()

print(lenet)

In the last two lines, we instantiate the model and print the network architecture. 

�e output will be as follows:

Figure 3.7 – LeNet PyTorch model object

�ere are the usual __init__ and forward methods for architecture 

de�nition and running a forward pass, respectively. �e additional flattened_

features method is meant to calculate the total number of features in an image 

representation layer (usually an output of a convolutional layer or pooling layer). 

�is method helps to �atten the spatial representation of features into a single vector 

of numbers, which is then used as input to fully connected layers. 

Besides the details of the architecture mentioned earlier, ReLU is used throughout 

the network as the activation function. Also, contrary to the original LeNet network, 

which takes in single-channel images, the current model is modi�ed to accept RGB 

images, that is, three channels as input. �is is done in order to adapt to the dataset 

that is used for this exercise.

3. We then de�ne the training routine, that is, the actual backpropagation step:

def train(net, trainloader, optim, epoch):

    # initialize loss

    loss_total = 0.0

     for i, data in enumerate(trainloader, 0):

        # get the inputs; data is a list of [inputs, 
labels]

        # ip refers to the input images, and ground_truth 
refers to the output classes the images belong to

        ip, ground_truth = data

        # zero the parameter gradients

        optim.zero_grad()
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        # forward-pass + backward-pass + optimization 
-step

        op = net(ip)

        loss = nn.CrossEntropyLoss()(op, ground_truth)

        loss.backward()

        optim.step()

        # update loss

        loss_total += loss.item()

         # print loss statistics

        if (i+1) % 1000 == 0:    # print at the interval 
of 1000 mini-batches

            print('[Epoch number : %d, Mini-batches: %5d] 
loss: %.3f' % (epoch + 1, i + 1, loss_total / 200))

            loss_total = 0.0

For each epoch, this function iterates through the entire training dataset, runs 

a forward pass through the network and, using backpropagation, updates the 

parameters of the model based on the speci�ed optimizer. A�er iterating through 

every 1,000 mini-batches of the training dataset, this method also logs the 

calculated loss.

4. Similar to the training routine, we will de�ne the test routine that we will use to 

evaluate model performance:

def test(net, testloader):

    success = 0

    counter = 0

    with torch.no_grad():

        for data in testloader:

            im, ground_truth = data

            op = net(im)

            _, pred = torch.max(op.data, 1)

            counter += ground_truth.size(0)

            success += (pred == ground_truth).sum().item()

    print('LeNet accuracy on 10000 images from test 
dataset: %d %%' % (100 * success / counter))
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�is function runs a forward pass through the model for each test-set image, 

calculates the correct number of predictions, and prints the percentage of correct 

predictions on the test set.

5. Before we get on to training the model, we need to load the dataset. For this 

exercise, we will be using the CIFAR-10 dataset.

Dataset citation

Learning Multiple Layers of Features from Tiny Images, Alex Krizhevsky, 2009

�is dataset consists of 60,000 32x32 RGB images labeled across 10 classes, 

with 6,000 images per class. �e 60,000 images are split into 50,000 training 

images and 10,000 test images. More details can be found here: https://www.

cs.toronto.edu/~kriz/cifar.html. Torch supports the CIFAR dataset 

under the torchvision.datasets module. We will be using the module to 

directly load the data and instantiate train and test dataloaders as demonstrated in 

the following code:

# The mean and std are kept as 0.5 for normalizing pixel 
values as the pixel values are originally in the range 0 
to 1 

train_transform = transforms.Compose([transforms.
RandomHorizontalFlip(),

transforms.RandomCrop(32, 4),

transforms.ToTensor(),

transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

trainset = torchvision.datasets.CIFAR10(root='./data', 
train=True, download=True, transform=train_transform)

trainloader = torch.utils.data.DataLoader(trainset, 
batch_size=8, shuffle=True, num_workers=1)

test_transform = transforms.Compose([transforms.
ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 
0.5, 0.5))])

testset = torchvision.datasets.CIFAR10(root='./data', 
train=False, download=True, transform=test_transform)

testloader = torch.utils.data.DataLoader(testset, batch_
size=10000, shuffle=False, num_workers=2)

# ordering is important

classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 
'frog', 'horse', 'ship', 'truck')
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Note

In the previous chapter, we manually downloaded the dataset and wrote a 

custom dataset class and a dataloader function. We will not need to write 

those here, thanks to the torchvision.datasets module.

Because we set the download �ag to True, the dataset will be downloaded locally. 

�en, we shall see the following dialog box:

Figure 3.8 – CIFAR-10 dataset download

�e transformations used for training and testing datasets are di�erent because we 

apply some data augmentation to the training dataset, such as �ipping and cropping, 

which are not applicable to the test dataset. Also, a�er de�ning trainloader and 

testloader, we declare the 10 classes in this dataset with a pre-de�ned ordering.

6. A�er loading the datasets, let's investigate how the data looks:

# define a function that displays an image

def imageshow(image):

    # un-normalize the image

    image = image/2 + 0.5     

    npimage = image.numpy()

    plt.imshow(np.transpose(npimage, (1, 2, 0)))

    plt.show()

# sample images from training set

dataiter = iter(trainloader)

images, labels = dataiter.next()

# display images in a grid

num_images = 4

imageshow(torchvision.utils.make_grid(images[:num_
images]))

# print labels

print('    '+'  ||  '.join(classes[labels[j]] for j in 
range(num_images)))
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�e preceding code shows us four sample images with their respective labels from 

the training dataset. �e output will be as follows:

Figure 3.9 – CIFAR-10 dataset samples

�e preceding output shows us four color images, which are 32x32 pixels in size. �ese 
four images belong to four di�erent labels, as displayed in the text following the images.

We will now train the LeNet model.

Training LeNet
Now we are ready to train the model. Let's do so with the help of the following steps:

1. We will de�ne optimizer and start the training loop as shown here:

# define optimizer

optim = torch.optim.Adam(lenet.parameters(), lr=0.001)

# training loop over the dataset multiple times

for epoch in range(50):  

    train(lenet, trainloader, optim, epoch)

    print()

    test(lenet, testloader)

    print()

print('Finished Training')
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�e output will be as follows:

Figure 3.10 – Training LeNet

2. Once the training is �nished, we can save the model �le locally:

model_path = './cifar_model.pth'

torch.save(lenet.state_dict(), model_path)

Having trained the LeNet model, we will now test its performance on the test dataset in 
the next section.

Testing LeNet
�e following steps need to be observed to test the LeNet model:

1. Let's make predictions by loading the saved model and running it on the test dataset:

# load test dataset images

d_iter = iter(testloader)

im, ground_truth = d_iter.next()

# print images and ground truth

imageshow(torchvision.utils.make_grid(im[:4]))

print('Label:      ', ' '.join('%5s' % classes[ground_
truth[j]] for j in range(4)))

# load model

lenet_cached = LeNet()
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lenet_cached.load_state_dict(torch.load(model_path))

# model inference

op = lenet_cached(im)

# print predictions

_, pred = torch.max(op, 1)

print('Prediction: ', ' '.join('%5s' % classes[pred[j]] 
for j in range(4)))

�e output will be as follows:

Figure 3.11 – LeNet predictions

Evidently, all four predictions are correct. 

2. Finally, we will check the overall accuracy of this model on the test dataset as well as 

per class accuracy:

success = 0

counter = 0

with torch.no_grad():

    for data in testloader:

        im, ground_truth = data

        op = lenet_cached(im)

        _, pred = torch.max(op.data, 1)

        counter += ground_truth.size(0)

        success += (pred == ground_truth).sum().item()

print('Model accuracy on 10000 images from test dataset: 
%d %%' % (

    100 * success / counter))

�e output will be as follows:

Figure 3.12 – LeNet overall accuracy
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3. For per class accuracy, the code is as follows: 

class_sucess = list(0. for i in range(10))

class_counter = list(0. for i in range(10))

with torch.no_grad():

    for data in testloader:

        im, ground_truth = data

        op = lenet_cached(im)

        _, pred = torch.max(op, 1)

        c = (pred == ground_truth).squeeze()

        for i in range(10000):

            ground_truth_curr = ground_truth[i]

            class_sucess[ground_truth_curr] += c[i].item()

            class_counter[ground_truth_curr] += 1

for i in range(10):

    print('Model accuracy for class %5s : %2d %%' % (

        classes[i], 100 * class_sucess[i] / class_
counter[i]))

�e output will be as follows:

Figure 3.13 – LeNet per class accuracy

Some classes have better performance than others. Overall, the model is far from perfect 
(that is, 100% accuracy) but much better than a model making random predictions, which 
would have an accuracy of 10% (due to the 10 classes).

Having built a LeNet model from scratch and evaluated its performance using PyTorch, 
we will now move on to a successor of LeNet – AlexNet. For LeNet, we built the model 
from scratch, trained, and tested it. For AlexNet, we will use a pre-trained model, �ne-
tune it on a smaller dataset, and test it.
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Fine-tuning the AlexNet model
In this section, we will �rst take a quick look at the AlexNet architecture and how to 
build one by using PyTorch. �en we will explore PyTorch's pre-trained CNN models 
repository, and �nally, use a pre-trained AlexNet model for �ne-tuning on an image 
classi�cation task, as well as making predictions.

AlexNet is a successor of LeNet with incremental changes in the architecture, such as 
8 layers (5 convolutional and 3 fully connected) instead of 5, and 60 million model 
parameters instead of 60,000, as well as using MaxPool instead of AvgPool. Moreover, 
AlexNet was trained and tested on a much bigger dataset – ImageNet, which is over 
100 GB in size, as opposed to the MNIST dataset (on which LeNet was trained), which 
amounts to a few MBs. AlexNet truly revolutionized CNNs as it emerged as a signi�cantly 
more powerful class of models on image-related tasks than the other classical machine 
learning models, such as SVMs. Figure 3.14 shows the AlexNet architecture:

Figure 3.14 – AlexNet architecture
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As we can see, the architecture follows the common theme from LeNet of having 
convolutional layers stacked sequentially, followed by a series of fully connected layers 
toward the output end. PyTorch makes it easy to translate such a model architecture into 
actual code. �is can be seen in the following PyTorch code equivalent of the architecture:

class AlexNet(nn.Module):

    def __init__(self, number_of_classes):

        super(AlexNet, self).__init__()

        self.feats = nn.Sequential(

            nn.Conv2d(in_channels=3, out_channels=64, kernel_
size=11, stride=4, padding=5),

            nn.ReLU(),

            nn.MaxPool2d(kernel_size=2, stride=2),

            nn.Conv2d(in_channels=64, out_channels=192, kernel_
size=5, padding=2),

            nn.ReLU(),

            nn.MaxPool2d(kernel_size=2, stride=2),

            nn.Conv2d(in_channels=192, out_channels=384, 
kernel_size=3, padding=1),

            nn.ReLU(),

            nn.Conv2d(in_channels=384, out_channels=256, 
kernel_size=3, padding=1),

            nn.ReLU(),

            nn.Conv2d(in_channels=256, out_channels=256, 
kernel_size=3, padding=1),

            nn.ReLU(),

            nn.MaxPool2d(kernel_size=2, stride=2),

        )

        self.clf = nn.Linear(in_features=256, out_
features=number_of_classes)

    def forward(self, inp):

        op = self.feats(inp)

        op = op.view(op.size(0), -1)

        op = self.clf(op)

        return op
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�e code is quite self-explanatory, wherein the __init__ function contains the 
initialization of the whole layered structure, consisting of convolutional, pooling, and fully 
connected layers, along with ReLU activations. �e forward function simply runs a data 
point x through this initialized network. Please note that the second line of the forward 
method already performs the �attening operation so that we need not de�ne that function 
separately as we did for LeNet.

But besides the option of initializing the model architecture and training it ourselves, 
PyTorch, with its torchvision package, provides a models sub-package, which 
contains de�nitions of CNN models meant for solving di�erent tasks, such as image 
classi�cation, semantic segmentation, object detection, and so on. Following is a list of 
available models for the task of image classi�cation (source: https://pytorch.org/
docs/stable/torchvision/models.html):

• AlexNet

• VGG

• ResNet

• SqueezeNet

• DenseNet

• Inception v3

• GoogLeNet

• Shu�eNet v2

• MobileNet v2

• ResNeXt

• Wide ResNet

• MNASNet

In the next section, we will use a pre-trained AlexNet model as an example and 
demonstrate how to �ne-tune it using PyTorch in the form of an exercise.
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Using PyTorch to fine-tune AlexNet
In the following exercise, we will load a pre-trained AlexNet model and �ne-tune it on an 
image classi�cation dataset di�erent from ImageNet (on which it was originally trained). 
Finally, we will test the �ne-tuned model's performance to see if it could transfer-learn 
from the new dataset. Some parts of the code in the exercise are trimmed for readability 
but you can �nd the full code here: https://github.com/PacktPublishing/
Mastering-PyTorch/blob/master/Chapter03/transfer_learning_
alexnet.ipynb.

For this exercise, we will need to import a few dependencies. Execute the following 
import statements:

import os

import time

import copy

import numpy as np

import matplotlib.pyplot as plt

import torch

import torchvision

import torch.nn as nn

import torch.optim as optim

from torch.optim import lr_scheduler

from torchvision import datasets, models, transforms

torch.manual_seed(0)

Next, we will download and transform the dataset. For this �ne-tuning exercise, we 
will use a small image dataset of bees and ants. �ere are 240 training images and 150 
validation images divided equally between the two classes (bees and ants). 

We download the dataset from https://www.kaggle.com/ajayrana/
hymenoptera-data and store it in the current working directory. More information 
about the dataset can be found at https://hymenoptera.elsiklab.missouri.
edu/. 

Dataset citation

Elsik CG, Tayal A, Diesh CM, Unni DR, Emery ML, Nguyen HN, Hagen 
DE. Hymenoptera Genome Database: integrating genome annotations in 
HymenopteraMine. Nucleic Acids Research 2016 Jan 4;44(D1):D793-800. doi: 
10.1093/nar/gkv1208. Epub 2015 Nov 17. PubMed PMID: 26578564.
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In order to download the dataset, you will need to log into Kaggle. If you do not already 
have a Kaggle account, you will need to register:

ddir = 'hymenoptera_data'

# Data normalization and augmentation transformations for train 
dataset

# Only normalization transformation for validation dataset

# The mean and std for normalization are calculated as the mean 
of all pixel values for all images in the training set per each 
image channel - R, G and B

data_transformers = {

    'train': transforms.Compose([transforms.
RandomResizedCrop(224), transforms.RandomHorizontalFlip(),

                                    transforms.ToTensor(), 

                                    transforms.
Normalize([0.490, 0.449, 0.411], [0.231, 0.221, 0.230])]),

    'val': transforms.Compose([transforms.Resize(256), 
transforms.CenterCrop(224), transforms.ToTensor(), transforms.
Normalize([0.490, 0.449, 0.411], [0.231, 0.221, 0.230])])}

img_data = {k: datasets.ImageFolder(os.path.join(ddir, k), 
data_transformers[k]) for k in ['train', 'val']}

dloaders = {k: torch.utils.data.DataLoader(img_data[k], batch_
size=8, shuffle=True, num_workers=0) 

            for k in ['train', 'val']}

dset_sizes = {x: len(img_data[x]) for x in ['train', 'val']}

classes = img_data['train'].classes

dvc = torch.device("cuda:0" if torch.cuda.is_available() else 

"cpu")

Now that we have completed the pre-requisites, let's begin:

1. Let's visualize some sample training dataset images:

def imageshow(img, text=None):

    img = img.numpy().transpose((1, 2, 0))

    avg = np.array([0.490, 0.449, 0.411])

    stddev = np.array([0.231, 0.221, 0.230])

    img = stddev * img + avg
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    img = np.clip(img, 0, 1)

    plt.imshow(img)

    if text is not None:

        plt.title(text)

# Generate one train dataset batch

imgs, cls = next(iter(dloaders['train']))

# Generate a grid from batch

grid = torchvision.utils.make_grid(imgs)

imageshow(grid, text=[classes[c] for c in cls])

�e output will be as follows: 

Figure 3.15 – Bees versus ants dataset

2. We now de�ne the �ne-tuning routine, which is essentially a training routine 

performed on a pre-trained model:

def finetune_model(pretrained_model, loss_func, optim, 
epochs=10):

    ...

    for e in range(epochs):

        for dset in ['train', 'val']:

            if dset == 'train':

                pretrained_model.train()  # set model to 
train mode (i.e. trainbale weights)

            else:

                pretrained_model.eval()   # set model to 
validation mode

            # iterate over the (training/validation) 
data.

            for imgs, tgts in dloaders[dset]:

                ...

                optim.zero_grad()

                with torch.set_grad_enabled(dset == 
'train'):
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                    ops = pretrained_model(imgs)

                    _, preds = torch.max(ops, 1)

                    loss_curr = loss_func(ops, tgts)

                    # backward pass only if in training 
mode

                    if dset == 'train':

                        loss_curr.backward()

                        optim.step()

                loss += loss_curr.item() * imgs.size(0)

                successes += torch.sum(preds == tgts.
data)

            loss_epoch = loss / dset_sizes[dset]

            accuracy_epoch = successes.double() / dset_
sizes[dset]

            if dset == 'val' and accuracy_epoch > 
accuracy:

                accuracy = accuracy_epoch

                model_weights = copy.deepcopy(pretrained_
model.state_dict())

    # load the best model version (weights)

    pretrained_model.load_state_dict(model_weights)

    return pretrained_model

In this function, we require the pre-trained model (that is, the architecture as well 

as weights) as input along with the loss function, optimizer, and number of epochs. 

Basically, instead of starting from a random initialization of weights, we start with 

the pre-trained weights of AlexNet. �e other parts of this function are pretty 

similar to our previous exercises.

3. Before starting to �ne-tune (train) the model, we will de�ne a function to visualize 

the model predictions:

def visualize_predictions(pretrained_model, max_num_
imgs=4):

    was_model_training = pretrained_model.training

    pretrained_model.eval()

    imgs_counter = 0

    fig = plt.figure()

    with torch.no_grad():
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        for i, (imgs, tgts) in enumerate(dloaders['val']):

            imgs = imgs.to(dvc)

            tgts = tgts.to(dvc)

            ops = pretrained_model(imgs)

            _, preds = torch.max(ops, 1)

             for j in range(imgs.size()[0]):

                imgs_counter += 1

                ax = plt.subplot(max_num_imgs//2, 2, 
imgs_counter)

                ax.axis('off')

                ax.set_title(f'Prediction: {class_
names[preds[j]]}, Ground Truth: {class_names[tgts[j]]}')

                imshow(inputs.cpu().data[j])

                if imgs_counter == max_num_imgs:

 pretrained_model.train(mode=was_training)

                    return

        model.train(mode=was_training)

4. Finally, we get to the interesting part. Let's use PyTorch's torchvision.models 

sub-package to load the pre-trained AlexNet model:

model_finetune = models.alexnet(pretrained=True) 

�is model object has the following two main components: 

i) features: �e feature extraction component, which contains all the 

convolutional and pooling layers

ii) classifier: �e classi�er block, which contains all the fully connected layers 

leading to the output layer

5. We can visualize these components as shown here:

print(model_finetune.features)
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�is should output the following: 

Figure 3.16 – AlexNet feature extractor

6. Now, we will run the classifier feature as follows:

print(model_finetune.classifier)

�is should output the following: 

Figure 3.17 – AlexNet classi�er

7. As you may have noticed, the pre-trained model has the output layer of size 1000, 

but we only have 2 classes in our �ne-tuning dataset. So, we shall alter that, as 

shown here:

# change the last layer from 1000 classes to 2 classes

model_finetune.classifier[6] = nn.Linear(4096, 
len(classes))
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8. And now, we are all set to de�ne the optimizer and loss function, and therea�er run 

the training routine as follows:

loss_func = nn.CrossEntropyLoss()

optim_finetune = optim.SGD(model_finetune.parameters(), 
lr=0.0001)

# train (fine-tune) and validate the model

model_finetune = finetune_model(model_finetune, loss_
func, optim_finetune, epochs=10)

�e output will be as follows:

Figure 3.18 – AlexNet �ne-tuning loop

9. Let's visualize some of the model predictions to see whether the model has indeed 

learned the relevant features from this small dataset:

visualize_predictions(model_finetune)
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�is should output the following: 

Figure 3.19 – AlexNet predictions

Clearly, the pretrained AlexNet model has been able to transfer-learn on this rather tiny 
image classi�cation dataset. �is both demonstrates the power of transfer learning as well 
as the speed and ease with which we can �ne-tune well known models using PyTorch.

In the next section, we will discuss an even deeper and more complex successor of 
AlexNet – the VGG network. We have demonstrated the model de�nition, dataset 
loading, model training (or �ne-tuning), and evaluation steps in detail for LeNet and 
AlexNet. In subsequent sections, we will focus mostly on model architecture de�nition, as 
the PyTorch code for other aspects (such as data loading and evaluation) will be similar.

Running a pre-trained VGG model
We have already discussed LeNet and AlexNet, two of the foundational CNN 
architectures. As we progress in the chapter, we will explore increasingly complex CNN 
models. Although, the key principles in building these model architectures will be the 
same. We will see a modular model-building approach in putting together convolutional 
layers, pooling layers, and fully connected layers into blocks/modules and then stacking 
these blocks sequentially or in a branched manner. In this section, we look at the successor 
to AlexNet – VGGNet.
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�e name VGG is derived from the Visual Geometry Group of Oxford University, where 
this model was invented. Compared to the 8 layers and 60 million parameters of AlexNet, 
VGG consists of 13 layers (10 convolutional layers and 3 fully connected layers) and 138 
million parameters. VGG basically stacks more layers onto the AlexNet architecture with 
smaller size convolution kernels (2x2 or 3x3). Hence, VGG's novelty lies in the unprecedented 
level of depth that it brings with its architecture. Figure 3.20 shows the VGG architecture:

Figure 3.20 – VGG16 architecture

Page 114



94     Deep CNN Architectures

�e preceding VGG architecture is called VGG13, because of the 13 layers. Other variants 
are VGG16 and VGG19, consisting of 16 and 19 layers, respectively. �ere is another set of 
variants – VGG13_bn, VGG16_bn, and VGG19_bn, where bn suggests that these models 
also consist of batch-normalization layers.

PyTorch's torchvision.model sub-package provides the pre-trained VGG model  
(with all of the six variants discussed earlier) trained on the ImageNet dataset. In the 
following exercise, we will use the pre-trained VGG13 model to make predictions on a 
small dataset of bees and ants (used in the previous exercise). We will focus on the key 
pieces of code here, as most other parts of our code will overlap with that of the previous 
exercises. We can always refer to our notebooks to explore the full code: https://
github.com/PacktPublishing/Mastering-PyTorch/blob/master/
Chapter03/vgg13_pretrained_run_inference.ipynb:

1. First, we need to import dependencies, including torchvision.models.

2. Download the data and set up the ants and bees dataset and dataloader, along with 

the transformations.

3. In order to make predictions on these images, we will need the 1,000 labels of the 

ImageNet dataset, which can be found here: https://gist.github.com/

yrevar/942d3a0ac09ec9e5eb3a.

4. Once downloaded, we need to create a mapping between the class indices 0 to 999 

and the corresponding class labels, as shown here:

import ast

with open('./imagenet1000_clsidx_to_labels.txt') as f:

    classes_data = f.read()

classes_dict = ast.literal_eval(classes_data)

print({k: classes_dict[k] for k in list(classes_dict)
[:5]})

�is should output the �rst �ve class mappings, as shown in the following 

screenshot:

Figure 3.21 – ImageNet class mappings
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5. De�ne the model prediction visualization function that takes in the pre-trained 

model object and the number of images to run predictions on. �is function should 

output the images with predictions.

6. Load the pretrained VGG13 model:

model_finetune = models.vgg13(pretrained=True)

�is should output the following:

Figure 3.22 – Loading the VGG13 model

�e 508 MB VGG13 model is downloaded in this step. 

7. Finally, we run predictions on our ants and bees dataset using this pre-trained model:

visualize_predictions(model_finetune)

�is should output the following:

Figure 3.23 – VGG13 predictions
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�e VGG13 model trained on an entirely di�erent dataset seems to predict all the test 
samples correctly in the ants and bees dataset. Basically, the model grabs the two most 
similar animals from the dataset out of the 1,000 classes and �nds them in the images. 
By doing this exercise, we see that the model is still able to extract relevant visual features 
out of the images and the exercise demonstrates the utility of PyTorch's out-of-the-box 
inference feature.

In the next section, we are going to study a di�erent type of CNN architecture – one that 
involves modules that have multiple parallel convolutional layers. �e modules are called 
Inception modules and the resulting network is called the Inception network. We will 
explore the various parts of this network and the reasoning behind its success. We will 
also build the inception modules and the Inception network architecture using PyTorch.

Exploring GoogLeNet and Inception v3
As we have discovered the progression of CNN models from LeNet to VGG so far, we 
have observed the sequential stacking of more convolutional and fully connected layers. 
�is resulted in deep networks with a lot of parameters to train. GoogLeNet emerged as 
a radically di�erent type of CNN architecture that is composed of a module of parallel 
convolutional layers called the inception module. Because of this, GoogLeNet is also 
called Inception v1 (v1 marked the �rst version as more versions came along later).  
Some of the drastically new elements introduced in GoogLeNet were the following:

• �e inception module – a module of several parallel convolutional layers

• Using 1x1 convolutions to reduce the number of model parameters

• Global average pooling instead of a fully connected layer – reduces over�tting

• Using auxiliary classi�ers for training – for regularization and gradient stability

GoogLeNet has 22 layers, which is more than the number of layers of any VGG model 
variant. Yet, due to some of the optimization tricks used, the number of parameters in 
GoogLeNet is 5 million, which is far less than the 138 million parameters of VGG. Let's 
expand on some of the key features of this model.
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Inception modules
Perhaps the single most important contribution of this model was the development of 
a convolutional module with several convolutional layers running in parallel, which 
are �nally concatenated to produce a single output vector. �ese parallel convolutional 
layers operate with di�erent kernel sizes ranging from 1x1 to 3x3 to 5x5. �e idea is to 
extract all levels of visual information from the image. Besides these convolutions, a 
3x3 max-pooling layer adds another level of feature extraction. Figure 3.24 shows the 
inception block diagram along with the overall GoogLeNet architecture:

Figure 3.24 – GoogLeNet architecture
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By using this architecture diagram, we can build the inception module in PyTorch as 
shown here:

class InceptionModule(nn.Module):

    def __init__(self, input_planes, n_channels1x1, n_
channels3x3red, n_channels3x3, n_channels5x5red, n_channels5x5, 
pooling_planes):

        super(InceptionModule, self).__init__()

        # 1x1 convolution branch

        self.block1 = nn.Sequential(

            nn.Conv2d(input_planes, n_channels1x1, kernel_
size=1),nn.BatchNorm2d(n_channels1x1),nn.ReLU(True),)

        # 1x1 convolution -> 3x3 convolution branch

        self.block2 = nn.Sequential(

            nn.Conv2d(input_planes, n_channels3x3red, kernel_
size=1),nn.BatchNorm2d(n_channels3x3red),

            nn.ReLU(True),nn.Conv2d(n_channels3x3red, n_
channels3x3, kernel_size=3, padding=1),nn.BatchNorm2d(n_
channels3x3),nn.ReLU(True),)

        # 1x1 conv -> 5x5 conv branch

        self.block3 = nn.Sequential(

            nn.Conv2d(input_planes, n_channels5x5red, kernel_
size=1),nn.BatchNorm2d(n_channels5x5red),nn.ReLU(True),

            nn.Conv2d(n_channels5x5red, n_channels5x5, kernel_
size=3, padding=1),nn.BatchNorm2d(n_channels5x5),nn.ReLU(True),

            nn.Conv2d(n_channels5x5, n_channels5x5, kernel_
size=3, padding=1),nn.BatchNorm2d(n_channels5x5),

            nn.ReLU(True),)

        # 3x3 pool -> 1x1 conv branch

        self.block4 = nn.Sequential(

            nn.MaxPool2d(3, stride=1, padding=1),
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            nn.Conv2d(input_planes, pooling_planes, kernel_
size=1),

            nn.BatchNorm2d(pooling_planes),

            nn.ReLU(True),)

    def forward(self, ip):

        op1 = self.block1(ip)

        op2 = self.block2(ip)

        op3 = self.block3(ip)

        op4 = self.block4(ip)

        return torch.cat([op1,op2,op3,op4], 1)

Next, we will look at another important feature of GoogLeNet – 1x1 convolutions.

1x1 convolutions
In addition to the parallel convolutional layers in an inception module, each parallel layer 
has a preceding 1x1 convolutional layer. �e reason behind using these 1x1 convolutional 
layers is dimensionality reduction. 1x1 convolutions do not change the width and height of 
the image representation but can alter the depth of an image representation. �is trick is 
used to reduce the depth of the input visual features before performing the 1x1, 3x3, and 
5x5 convolutions parallelly. Reducing the number of parameters not only helps build a 
lighter model but also combats over�tting.

Global average pooling
If we look at the overall GoogLeNet architecture in Figure 3.24, the penultimate output 
layer of the model is preceded by a 7x7 average pooling layer. �is layer again helps in 
reducing the number of parameters of the model, thereby reducing over�tting. Without 
this layer, the model would have millions of additional parameters due to the dense 
connections of a fully connected layer.
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Auxiliary classifiers
Figure 3.24 also shows two extra or auxiliary output branches in the model. �ese 
auxiliary classi�ers are supposed to tackle the vanishing gradient problem by adding to 
the gradients' magnitude during backpropagation, especially for the layers towards the 
input end. Because these models have a large number of layers, vanishing gradients can 
become a bottleneck. Hence, using auxiliary classi�ers has proven useful for this 22-layer 
deep model. Additionally, the auxiliary branches also help in regularization. Please note 
that these auxiliary branches are switched o�/discarded while making predictions.

Once we have the inception module de�ned using PyTorch, we can easily instantiate the 
entire Inception v1 model as follows: 

class GoogLeNet(nn.Module):

    def __init__(self):

        super(GoogLeNet, self).__init__()

        self.stem = nn.Sequential(

            nn.Conv2d(3, 192, kernel_size=3, padding=1),

            nn.BatchNorm2d(192),

            nn.ReLU(True),)

        self.im1 = InceptionModule(192,  64,  96, 128, 16, 32, 
32)

        self.im2 = InceptionModule(256, 128, 128, 192, 32, 96, 
64)

        self.max_pool = nn.MaxPool2d(3, stride=2, padding=1)

        self.im3 = InceptionModule(480, 192,  96, 208, 
16,  48,  64)

        self.im4 = InceptionModule(512, 160, 112, 224, 
24,  64,  64)

        self.im5 = InceptionModule(512, 128, 128, 256, 
24,  64,  64)

        self.im6 = InceptionModule(512, 112, 144, 288, 
32,  64,  64)

        self.im7 = InceptionModule(528, 256, 160, 320, 32, 128, 
128)

        self.im8 = InceptionModule(832, 256, 160, 320, 32, 128, 
128)

        self.im9 = InceptionModule(832, 384, 192, 384, 48, 128, 
128)
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        self.average_pool = nn.AvgPool2d(7, stride=1)

        self.fc = nn.Linear(4096, 1000)

    def forward(self, ip):

        op = self.stem(ip)

        out = self.im1(op)

        out = self.im2(op)

        op = self.maxpool(op)

        op = self.a4(op)

        op = self.b4(op)

        op = self.c4(op)

        op = self.d4(op)

        op = self.e4(op)

        op = self.max_pool(op)

        op = self.a5(op)

        op = self.b5(op)

        op = self.avgerage_pool(op)

        op = op.view(op.size(0), -1)

        op = self.fc(op)

        return op

Besides instantiating our own model, we can always load a pre-trained GoogLeNet with 
just two lines of code:

import torchvision.models as models

model = models.googlenet(pretrained=True)

Finally, as mentioned earlier, a number of versions of the Inception model were developed 
later. One of the eminent ones was Inception v3, which we will brie�y discuss next.

Inception v3
�is successor of Inception v1 has a total of 24 million parameters as compared to 5 
million in v1. Besides the addition of several more layers, this model introduced di�erent 
kinds of inception modules, which are stacked sequentially. Figure 3.25 shows the di�erent 
inception modules and the full model architecture:
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Fig 3.25 – Inception v3 architecture
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It can be seen from the architecture that this model is an architectural extension of the 
Inception v1 model. Once again, besides building the model manually, we can use the 
pre-trained model from PyTorch's repository as follows:

import torchvision.models as models

model = models.inception_v3(pretrained=True)

In the next section, we will go through the classes of CNN models that have e�ectively 
combatted the vanishing gradient problem in very deep CNNs – ResNet and DenseNet. 
We will learn about the novel techniques of skip connections and dense connections and 
use PyTorch to code the fundamental modules behind these advanced architectures.

Discussing ResNet and DenseNet architectures
In the previous section, we explored the Inception models, which had a reduced number 
of model parameters as the number of layers increased, thanks to the 1x1 convolutions 
and global average pooling. Furthermore, auxiliary classi�ers were used to combat the 
vanishing gradient problem.

ResNet introduced the concept of skip connections. �is simple yet e�ective trick 
overcomes the problem of both parameter over�ow and vanishing gradients. �e idea, 
as shown in the following diagram, is quite simple. �e input is �rst passed through a 
non-linear transformation (convolutions followed by non-linear activations) and then  
the output of this transformation (referred to as the residual) is added to the original 
input. Each block of such computation is called a residual block, hence the name of the 
model – residual network or ResNet.

Figure 3.26 – Skip connections
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Using these skip (or shortcut) connections, the number of parameters is limited to 26 
million parameters for a total of 50 layers (ResNet-50). Due to the limited number of 
parameters, ResNet has been able to generalize well without over�tting even when the 
number of layers is increased to 152 (ResNet-152). �e following diagram shows the 
ResNet-50 architecture:

Figure 3.27 – ResNet architecture
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�ere are two kinds of residual blocks – convolutional and identity, both having skip 
connections. For the convolutional block, there is an added 1x1 convolutional layer, which 
further helps to reduce dimensionality. A residual block for ResNet can be implemented 
in PyTorch as shown here:

class BasicBlock(nn.Module):

    multiplier=1

    def __init__(self, input_num_planes, num_planes, strd=1):

        super(BasicBlock, self).__init__()

        self.conv_layer1 = nn.Conv2d(in_channels=input_num_
planes, out_channels=num_planes, kernel_size=3, stride=stride, 
padding=1, bias=False)

        self.batch_norm1 = nn.BatchNorm2d(num_planes)

        self.conv_layer2 = nn.Conv2d(in_channels=num_planes, 
out_channels=num_planes, kernel_size=3, stride=1, padding=1, 
bias=False)

        self.batch_norm2 = nn.BatchNorm2d(num_planes)

        self.res_connnection = nn.Sequential()

        if strd > 1 or input_num_planes != self.multiplier*num_
planes:

            self.res_connnection = nn.Sequential(

                nn.Conv2d(in_channels=input_num_planes, 
out_channels=self.multiplier*num_planes, kernel_size=1, 
stride=strd, bias=False),

                nn.BatchNorm2d(self.multiplier*num_planes))

    def forward(self, inp):

        op = F.relu(self.batch_norm1(self.conv_layer1(inp)))

        op = self.batch_norm2(self.conv_layer2(op))

        op += self.res_connnection(inp)

        op = F.relu(op)

        return op
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To get started quickly with ResNet, we can always use the pre-trained ResNet model from 
PyTorch's repository:

import torchvision.models as models

model = models.resnet50(pretrained=True)

ResNet uses the identity function (by directly connecting input to output) to preserve 
the gradient during backpropagation (as the gradient will be 1). Yet, for extremely deep 
networks, this principle might not be su�cient to preserve strong gradients from the 
output layer back to the input layer.

�e CNN model we will discuss next is designed to ensure a strong gradient �ow, as well 
as a further reduction in the number of required parameters.

DenseNet
�e skip connections of ResNet connected the input of a residual block directly to its 
output. However, the inter-residual-blocks connection is still sequential, that is, residual 
block number 3 has a direct connection with block 2 but no direct connection with block 1.

DenseNet, or dense networks, introduced the idea of connecting every convolutional 
layer with every other layer within what is called a dense block. And every dense block is 
connected to every other dense block in the overall DenseNet. A dense block is simply a 
module of two 3x3 densely connected convolutional layers.

�ese dense connections ensure that every layer is receiving information from all of the 
preceding layers of the network. �is ensures that there is a strong gradient �ow from 
the last layer down to the very �rst layer. Counterintuitively, the number of parameters 
of such a network setting will also be low. As every layer is receiving the feature maps 
from all the previous layers, the required number of channels (depth) can be fewer. In 
the earlier models, the increasing depth represented the accumulation of information 
from earlier layers, but we don't need that anymore, thanks to the dense connections 
everywhere in the network.

One key di�erence between ResNet and DenseNet is also that, in ResNet, the input was 
added to the output using skip connections. But in the case of DenseNet, the preceding 
layers' outputs are concatenated with the current layer's output. And the concatenation 
happens in the depth dimension.
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�is might raise a question about the exploding size of outputs as we proceed further 
in the network. To combat this compounding e�ect, a special type of block called the 
transition block is devised for this network. Composed of a 1x1 convolutional layer 
followed by a 2x2 pooling layer, this block standardizes or resets the size of the depth 
dimension so that the output of this block can then be fed to the subsequent dense 
block(s). �e following diagram shows the DenseNet architecture:

Figure 3.28 – DenseNet architecture
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As mentioned earlier, there are two types of blocks involved – the dense block and the 
transition block. �ese blocks can be written as classes in PyTorch in a few lines of code, 
as shown here:

class DenseBlock(nn.Module):

    def __init__(self, input_num_planes, rate_inc):

        super(DenseBlock, self).__init__()

        self.batch_norm1 = nn.BatchNorm2d(input_num_planes)

        self.conv_layer1 = nn.Conv2d(in_channels=input_num_
planes, out_channels=4*rate_inc, kernel_size=1, bias=False)

        self.batch_norm2 = nn.BatchNorm2d(4*rate_inc)

        self.conv_layer2 = nn.Conv2d(in_channels=4*rate_inc, 
out_channels=rate_inc, kernel_size=3, padding=1, bias=False)

    def forward(self, inp):

        op = self.conv_layer1(F.relu(self.batch_norm1(inp)))

        op = self.conv_layer2(F.relu(self.batch_norm2(op)))

        op = torch.cat([op,inp], 1)

        return op

class TransBlock(nn.Module):

    def __init__(self, input_num_planes, output_num_planes):

        super(TransBlock, self).__init__()

        self.batch_norm = nn.BatchNorm2d(input_num_planes)

        self.conv_layer = nn.Conv2d(in_channels=input_num_
planes, out_channels=output_num_planes, kernel_size=1, 
bias=False)

    def forward(self, inp):

        op = self.conv_layer(F.relu(self.batch_norm(inp)))

        op = F.avg_pool2d(op, 2)

        return op

�ese blocks are then stacked densely to form the overall DenseNet architecture. DenseNet, 
like ResNet, comes in variants such as DenseNet121, DenseNet161, DenseNet169, 
and DenseNet201, where the numbers represent the total number of layers. Such large 
numbers of layers are obtained by the repeated stacking of the dense and transition blocks 
plus a �xed 7x7 convolutional layer at the input end and a �xed fully connected layer at the 
output end. PyTorch provides pre-trained models for all of these variants:

import torchvision.models as models

densenet121 = models.densenet121(pretrained=True)

densenet161 = models.densenet161(pretrained=True)

densenet169 = models.densenet169(pretrained=True)

densenet201 = models.densenet201(pretrained=True)
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DenseNet outperforms all the models discussed so far on the ImageNet dataset. Various 
hybrid models have been developed by mixing and matching the ideas presented in the 
previous sections. �e Inception-ResNet and ResNeXt models are examples of such hybrid 
networks. �e following diagram shows the ResNeXt architecture:

Figure 3.29 – ResNeXt architecture
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As you can see, it looks like a wider variant of a ResNet + Inception hybrid because there is 
a large number of parallel convolutional branches in the residual blocks – and the idea of 
parallelism is derived from the inception network.

In the next and last section of this chapter, we are going to look at the current best 
performing CNN architectures – E�cientNets. We will also discuss the future of CNN 
architectural development while touching upon the use of CNN architectures for tasks 
beyond image classi�cation.

Understanding EfficientNets and the future of 
CNN architectures
So far in our exploration from LeNet to DenseNet, we have noticed an underlying theme 
in the advancement of CNN architectures. �at theme is the expansion or scaling of the 
CNN model through one of the following:

• An increase in the number of layers

• An increase in the number of feature maps or channels in a convolutional layer

• An increase in the spatial dimension going from 32x32 pixel images in LeNet to 
224x224 pixel images in AlexNet and so on

�ese three di�erent aspects on which scaling can be performed are identi�ed as depth, 
width, and resolution, respectively. Instead of manually scaling these attributes, which 
o�en leads to suboptimal results, E�cientNets use neural architecture search to calculate 
the optimal scaling factors for each of them.

Scaling up depth is deemed important because the deeper the network, the more complex 
the model, and hence it can learn highly complex features. However, there is a trade-o� 
because, with increasing depth, the vanishing gradient problem escalates along with the 
general problem of over�tting.

Similarly, scaling up width should theoretically help, as with a greater number of channels, 
the network should learn more �ne-grained features. However, for extremely wide 
models, the accuracy tends to saturate quickly.
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Finally, higher resolution images, in theory, should work better as they have more �ne-
grained information. Empirically, however, the increase in resolution does not yield a 
linearly equivalent increase in the model performance. All of this is to say that there are 
trade-o�s to be made while deciding the scaling factors and hence, neural architecture 
search helps in �nding the optimal scaling factors.

E�cientNet proposes �nding the architecture that has the right balance between depth, 
width, and resolution, and all three of these aspects are scaled together using a global 
scaling factor. �e E�cientNet architecture is built in two steps. First, a basic architecture 
(called the base network) is devised by �xing the scaling factor to 1. At this stage, the 
relative importance of depth, width, and resolution is decided for the given task and 
dataset. �e base network obtained is pretty similar to a well-known CNN architecture 
– MnasNet, short for Mobile Neural Architecture Search Network. PyTorch o�ers the 
pre-trained MnasNet model, which can be loaded as shown here:

import torchvision.models as models

model = models.mnasnet1_0()

Once the base network is obtained in the �rst step, the optimal global scaling factor is 
then computed with the aim of maximizing the accuracy of the model and minimizing the 
number of computations (or �ops). �e base network is called E�cientNet B0 and the 
subsequent networks derived for di�erent optimal scaling factors are called E�cientNet 

B1-B7.

As we go forward, e�cient scaling of CNN architecture is going to be a prominent 
direction of research along with the development of more sophisticated modules inspired 
by the inception, residual, and dense modules. Another aspect of CNN architecture 
development is minimizing the model size while retaining performance. MobileNets 
(https://pytorch.org/hub/pytorch_vision_mobilenet_v2/) are a prime 
example and there is a lot of ongoing research on this front.

Besides the top-down approach of looking at architectural modi�cations of a pre-existing 
model, there will be continued e�orts adopting the bottom-up view of fundamentally 
rethinking the units of CNNs such as the convolutional kernels, pooling mechanism, more 
e�ective ways of �attening, and so on. One concrete example of this could be CapsuleNet 
(https://en.wikipedia.org/wiki/Capsule_neural_network), which 
revamped the convolutional units to cater to the third dimension (depth) in images.
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CNNs are a huge topic of study in themselves. In this chapter, we have touched upon 
the architectural development of CNNs, mostly in the context of image classi�cation. 
However, these same architectures are used across a wide variety of applications. One 
well-known example is the use of ResNets for object detection and segmentation in 
the form of RCNNs (https://en.wikipedia.org/wiki/Region_Based_
Convolutional_Neural_Networks). Some of the improved variants of RCNNs 
are Faster R-CNN, Mask-RCNN, and Keypoint-RCNN. PyTorch provides pre-trained 
models for all three variants:

faster_rcnn = models.detection.fasterrcnn_resnet50_fpn()

mask_rcnn = models.detection.maskrcnn_resnet50_fpn()

keypoint_rcnn = models.detection.keypointrcnn_resnet50_fpn()

PyTorch also provides pre-trained models for ResNets that are applied to video-related 
tasks such as video classi�cation. Two such ResNet-based models used for video 
classi�cation are ResNet3D and ResNet Mixed Convolution:

resnet_3d = models.video.r3d_18()

resnet_mixed_conv = models.video.mc3_18()

While we do not extensively cover these di�erent applications and corresponding CNN 
models in this chapter, we encourage you to read more on them. PyTorch's website can 
be a good starting point: https://pytorch.org/docs/stable/torchvision/
models.html#object-detection-instance-segmentation-and-person-
keypoint-detection.

Summary
�is chapter has been all about CNN architectures. First, we brie�y discussed the history 
and evolution of CNNs. We then explored in detail one of the earliest CNN models – 
LeNet. Using PyTorch, we built the model from scratch and trained and tested it on 
an image classi�cation dataset. We then explored LeNet's successor – AlexNet. Instead 
of building it from scratch, we used PyTorch's pre-trained model repository to load a 
pre-trained AlexNet model. We then �ne-tuned the loaded model on a di�erent dataset 
and evaluated its performance.
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Next, we looked at the VGG model, which is a deeper and a more advanced successor 
to AlexNet. We loaded a pre-trained VGG model using PyTorch and used it to make 
predictions on a di�erent image classi�cation dataset. We then successively discussed the 
GoogLeNet and Inception v3 models that are composed of several inception modules. 
Using PyTorch, we wrote the implementation of an inception module and the whole 
network. Moving on, we discussed ResNet and DenseNet. For each of these architectures, 
we implemented their building blocks, that is, residual blocks and dense blocks, using 
PyTorch. We also brie�y looked at an advanced hybrid CNN architecture – ResNeXt.

Finally, we concluded the chapter with an overview of the current state-of-the-art  
CNN model – E�cientNet. We discussed the idea behind it and the related pre-trained 
models available under PyTorch, such as MnasNet. We also provided plausible future 
directions for CNN architectural developments, along with brie�y mentioning other  
CNN architectures speci�c to object detection and video classi�cation, such as RCNNs 
and ResNet3D respectively.

Although this chapter does not cover every possible topic under the concept of CNN 
architectures, it still provides an elaborate understanding of the progression of CNNs from 
LeNet to E�cientNet and beyond. Moreover, this chapter highlights the e�ective use and 
application of PyTorch for the various CNN architectures that we have discussed.

In the next chapter, we will explore a similar journey but for another important type of 
neural network – recurrent neural networks. We will discuss the various recurrent net 
architectures and use PyTorch to e�ectively implement, train, and test them.
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4
Deep Recurrent 

Model Architectures

Neural networks are powerful machine learning tools that are used to help us learn 
complex patterns between the inputs (X) and outputs (y) of a dataset. In the previous 
chapter, we discussed convolutional neural networks, which learn a one-to-one mapping 
between X and y; that is, each input, X, is independent of the other inputs and each 
output, y, is independent of the other outputs of the dataset.

In this chapter, we will discuss a class of neural networks that can model sequences where 
X (or y) is not just a single independent data point, but a temporal sequence of data points 
[X1, X2, .. Xt] (or [y1, y2, .. yt]). Note that X2 (which is the data point at time step 2) is 
dependent on X1, X3 is dependent on X2 and X1, and so on.
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Such networks are classi�ed as recurrent neural networks (RNNs). �ese networks 
are capable of modeling the temporal aspect of data by including additional weights in 
the model that create cycles in the network. �is helps maintain a state, as shown in the 
following diagram:

Figure 4.1 – RNN

�e concept of cycles explains the term recurrence, and this recurrence helps establish 
the concept of memory in these networks. Essentially, such networks facilitate the use of 
intermediate outputs at time step t as inputs for time step t+1, while maintaining a hidden 
internal state. �ese connections across time steps are called recurrent connections.

�is chapter will focus on the various recurrent neural network architectures that have 
been developed over the years, such as di�erent types of RNNs, long short-term memory 
(LSTM), and gated recurrent units (GRUs). We will use PyTorch to implement some of 
these architectures and train and test recurrent models on real-world sequential modeling 
tasks. Besides model training and testing, we will also learn how to e�ciently use PyTorch 
to load and preprocess sequential data. By the end of this chapter, you will be ready to 
solve machine learning problems with sequential datasets using (RNNs) in PyTorch.

�is chapter covers the following topics:

• Exploring the evolution of recurrent networks

• Training RNNs for sentiment analysis

• Building a bidirectional LSTM

• Discussing GRUs and attention-based models
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Technical requirements
We will be using Jupyter notebooks for all our exercises. �e following is a list of 
Python libraries that must be installed for this chapter using pip; for example, run pip 
install torch==1.4.0 on the command line:

jupyter==1.0.0 
torch==1.4.0 
tqdm==4.43.0 
matplotlib==3.1.2 
torchtext==0.5.0

All the code �les that are relevant to this chapter are available at https://github.
com/PacktPublishing/Mastering-PyTorch/blob/master/Chapter04.

Exploring the evolution of recurrent networks
Recurrent networks have been around since the 80s. In this section, we will explore the 
evolution of the recurrent network architecture since its inception. We will discuss and 
reason about the developments that were made to the architecture by going through the 
key milestones in the evolution of (RNNs). Before jumping right into the timelines, we'll 
quickly review the di�erent types of RNNs and how they relate to a general feed-forward 
neural network.

Types of recurrent neural networks
While most supervised machine learning models model one-to-one relationships, (RNNs) 
can model the following types of input-output relationships:

• Many-to-many (instantaneous)

Example: Named-entity-recognition: Given a sentence/text, tag the words with 

named entity categories such as names, organizations, locations, and so on.

• Many-to-many (encoder-decoder)

Example: Machine translation (say, from English text to German text): Takes in a 

sentence/piece of text in a natural language, encodes it into a consolidated �xed size 

representation, and decodes that representation to produce an equivalent sentence/

piece of text in another language.

• Many-to-one

Example: Sentiment analysis: Given a sentence/piece of text, classify it as positive, 

negative, neutral, and so on.
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• One-to-many

Example: Image captioning: Given an image, produce a sentence/piece of text 

describing it.

• One-to-one (although not very useful)

Example: Image classi�cations (by processing image pixels sequentially).

�e following diagram shows these RNN types in contrast to the regular NN: 

Figure 4.2 – Types of RNNs
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Note

We provided an example of a one-to-many recurrent neural network in the 
image captioning exercise in Chapter 2, Combining CNNs and LSTMs.

As we can see, recurrent neural architectures have recurrent connections that do not  
exist in regular NNs. �ese recurrent connections are unfolded along the time dimension 
in the preceding diagram. �e following diagram shows the structure of an RNN in both 
time-folded and time-unfolded forms:

 Figure 4.3 – Temporal unfolding of an RNN

In the following sections, we will be using the time-unfolded version to demonstrate RNN 
architectures. In the preceding diagrams, we have marked the RNN layer in red as the 
hidden layer of the neural network. Although the network might seem to just have one 
hidden layer, once this hidden layer is unrolled along the time dimension, we can see that 
the network actually has T hidden layers. Here, T is the total number of time steps in the 
sequential data.

One of the powerful features of RNNs is that they can deal with sequential data of varying 
sequence lengths (T). One way of dealing with this variability in length is by padding 
shorter sequences and truncating longer sequences, as we will see in the exercises 
provided later in this chapter.
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Next, we will delve into the history and evolution of recurrent architectures, starting with 
basic RNNs.

RNNs
�e idea behind RNNs became evident with the emergence of the Hop�eld network in 
1982, which is a special type of RNN that tries to emulate the workings of the human 
memory. RNNs later came into their own existence based on the works of David 
Rumelhart, among others, in 1986. �ese RNNs were able to process sequences with an 
underlying concept of memory. From here, a series of improvements were made to its 
architecture, as shown in the following diagram:

Figure 4.4 – RNN architecture evolution – a broad picture

�e preceding diagram does not cover the entire history of the architecture evolution of 
RNNs, but it does cover the important checkpoints. Next, we will discuss the successors of 
RNNs chronologically, starting with bidirectional RNNs.
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Bidirectional RNNs
Although RNNs performed well on sequential data, it was later realized that some 
sequence-related tasks, such as language translation, can be done more e�ciently by 
looking at both past and future information. For example, I see you in English would be 
translated to Je te vois in French. Here, te means you and vois means see. Hence, in order to 
correctly translate English into French, we need all three words in English before writing 
the second and third words in French. 

To overcome this limitation, bidirectional RNNs were invented in 1997. �ese are pretty 
similar to conventional RNNs except that bidirectional RNNs have two RNNs working 
internally: one running the sequence from start to end, and another running the sequence 
backward from end to start, as shown in the following diagram:

Figure 4.5 – Bidirectional RNNs

Next, we will learn about LSTMs.
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LSTMs
While RNNs were able to deal with sequential data and remember information, they 
su�ered from the problem of exploding and vanishing gradients. �is happened because 
of the extremely deep networks that resulted from unfolding the recurrent networks in the 
time dimension.

In 1997, a di�erent approach was devised. �e RNN cell was replaced with a more 
sophisticated memory cell – the long short-term memory (LSTM) cell. �e RNN cell 
usually has a sigmoid or a tanh activation function. �ese functions are chosen because 
of their ability to control the output between the values of 0 (no information �ow) to 1 
(complete information �ow), or -1 to 1 in the case of tanh.

Tanh is additionally advantageous for providing a 0 mean output value and larger 
gradients in general – both of which contribute to faster learning (convergence). �ese 
activation functions are applied to the concatenation of the current time step's input and 
the previous time step's hidden state, as shown in the following diagram:

Figure 4.6 – RNN cell
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During backpropagation, the gradient either keeps diminishing across several of these 
RNN cells or keeps growing, due to the multiplication of gradient terms across time-
unfolded RNN cells. So, while RNNs can remember the sequential information across 
short sequences, they tend to struggle with long sequences due to the larger number of 
multiplications. LSTMs resolve this issue by controlling their input and output using gates. 

An LSTM layer essentially consists of various time-unfolded LSTM cells. Information 
passes from one cell to another in the form of cell states. �ese cell states are controlled 
or manipulated using multiplications and additions using the mechanism of gates. �ese 
gates, as shown in the following diagram, control the �ow of information to the next cell 
while preserving or forgetting the information that's coming in from the previous cell:

Figure 4.7 – LSTM network

LSTMs revolutionized recurrent networks as they can e�ciently deal with much longer 
sequences. Next, we discuss more advanced variants of LSTMs.

Extended and bidirectional LSTMs
Originally, in 1997, LSTMs were invented with just the input and output gates. Soon 
a�er, in 2000, an extended LSTM was developed with forget gates, which is mostly used 
nowadays. A few years later, bidirectional LSTMs were developed in 2005, which are 
similar in concept to bidirectional RNNs.
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Multi-dimensional RNNs
In 2007, multi-dimensional RNNs (MDRNNs) were invented. Here, a single recurrent 
connection between RNN cells is replaced by as many connections as there are 
dimensions in the data. �is was useful in video processing, for example, where the data is 
a sequence of images that is inherently two-dimensional.

Stacked LSTMs
Although single-layer LSTM networks did seem to overcome the problem of vanishing 
and exploding gradients, stacking more LSTM layers proved more helpful in learning 
highly complex patterns across various sequential processing tasks, such as speech 
recognition. �ese powerful models were called stacked LSTMs. �e following diagram 
shows a stacked LSTM model with two LSTM layers:

Figure 4.8 – Stacked LSTMs
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LSTM cells are, by their very nature, stacked in the time dimension of an LSTM layer. 
Stacking several such layers in the space dimension provides them with the additional 
depth in space they need. �e downside of these models is that they are signi�cantly slower 
to train due to the extra depth and extra recurrent connections they have. Furthermore, 
the additional LSTM layers need to be unrolled (in the time dimension) at every training 
iteration. Hence, training stacked recurrent models in general is not parallelizable.

GRUs
�e LSTM cell has two states – internal and external – as well as three di�erent  
gates – input gate, forget gate, and output gate. A similar type of cell, named gated 

recurrent unit (GRU), was invented in 2014 with the goal of learning long-term 
dependencies while e�ectively dealing with the exploding and vanishing gradients 
problem. GRUs have just one state and only two gates – a reset gate (a combination of the 
input and forget gates) and an update gate. �e following diagram shows a GRU network:

 

Figure 4.9 – GRU network

Next up is the grid LSTM.
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Grid LSTMs
A year later, in 2015, the grid LSTM model was developed as a successor to the MDLSTM 
model, as the LSTM equivalent of multi-dimensional RNNs. LSTM cells are arranged 
into a multi-dimensional grid in a grid LSTM model. �ese cells are connected along the 
spatiotemporal dimensions of the data, as well as between the network layers.

Gated orthogonal recurrent units
In 2017, gated orthogonal recurrent units were devised, which brought together the 
ideas of GRUs and unitary RNNs. Unitary RNNs are based on the idea of using unitary 

matrices (which are orthogonal matrices) as the hidden-state loop matrices of RNNs 
to deal with the problem of exploding and vanishing gradients. �is works because 
deviating gradients are attributed to deviating the eigenvalues of the hidden-to-hidden 
weight matrices from one. Due to this, these matrices have been replaced with orthogonal 
matrices to solve the gradients problem. You can read more about unitary RNNs in the 
original paper: https://arxiv.org/pdf/1511.06464.pdf.

We brie�y covered the evolution of recurrent neural architectures in this section.  
Next, we will dive deep into RNNs by performing an exercise with a simple RNN  
model architecture based on a text classi�cation task. We will also explore how PyTorch 
plays an important role in processing sequential data, as well as building and evaluating 
recurrent models.

Training RNNs for sentiment analysis
In this section, we will train an RNN model using PyTorch for a text classi�cation task – 
sentiment analysis. In this task, the model takes in a piece of text – a sequence of words 
– as input and outputs either 1 (meaning positive sentiment) or 0 (negative sentiment). 
For this binary classi�cation task involving sequential data, we will use a unidirectional 

single-layer RNN. 

Before training the model, we will manually process the textual data and convert it into a 
usable numeric form. Upon training the model, we will test it on some sample texts. We will 
demonstrate the use of various PyTorch functionalities to e�ciently perform this task. �e 
code for this exercise can be found at https://github.com/PacktPublishing/
Mastering-PyTorch/blob/master/Chapter04/rnn.ipynb.
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Loading and preprocessing the text dataset
For this exercise, we will need to import a few dependencies:

1. First, execute the following import statements:

import os 
import time 
import numpy as np 
from tqdm import tqdm 
from string import punctuation 
from collections import Counter 
import matplotlib.pyplot as plt

import torch 
import torch.nn as nn 
import torch.optim as optim 
from torch.utils.data import DataLoader, TensorDataset 
device = torch.device('cuda' if torch.cuda.is_available() 
else 'cpu') 
torch.manual_seed(123)

Besides importing the regular torch dependencies, we have also imported 

punctuation and Counter for text processing. We have also imported 

matplotlib to display images, numpy for array operations, and tqdm for 

visualizing progress bars. Besides imports, we have also set the random seed to 

ensure reproducibility of this exercise, as shown in the last line of the code snippet.

2. Next, we will read the data from the text �les. For this exercise, we will be using 

the IMDb sentiment analysis dataset, which can be found here: https://

ai.stanford.edu/~amaas/data/sentiment/. �is IMDb dataset consists 

of several movie reviews as texts and corresponding sentiment labels (positive or 

negative). First, we will download the dataset and run the following lines of code in 

order to read and store the list of texts and corresponding sentiment labels:

# read sentiments and reviews data from the text files

review_list = []

label_list = []

for label in ['pos', 'neg']:

    for fname in tqdm(os.listdir(f'./aclImdb/train/
{label}/')):

        if 'txt' not in fname:

            continue
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        with open(os.path.join(f'./aclImdb/train/
{label}/', fname), encoding="utf8") as f:

            review_list += [f.read()]

            label_list += [label]

print ('Number of reviews :', len(review_list))

�is should output the following:

Figure 4.10 – IMDb dataset loading

As we can see, there are a total of 25,000 movie reviews, with 12,500 positive and 

12,500 negative.

Dataset Citation

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, 
and Christopher Potts. (2011). Learning Word Vectors for Sentiment Analysis. 
�e 49th Annual Meeting of the Association for Computational Linguistics 
(ACL 2011).

3. Following the data loading step, we will now start processing the text data, as follows:

# pre-processing review text

review_list = [review.lower() for review in review_list]

review_list = [''.join([letter for letter in review if 
letter not in punctuation]) for review in tqdm(review_
list)]

# accumulate all review texts together

reviews_blob = ' '.join(review_list)

# generate list of all words of all reviews

review_words = reviews_blob.split()

# get the word counts

count_words = Counter(review_words)

# sort words as per counts (decreasing order)

total_review_words = len(review_words)

sorted_review_words = count_words.most_common(total_
review_words)

print(sorted_review_words[:10])
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�is should output the following:

Figure 4.11 – Word counts

As you can see, �rst, we lower-cased the entire text corpus and subsequently 

removed all punctuation marks from the review texts. �en, we accumulated all the 

words in all the reviews together to get word counts and sorted them in decreasing 

order of counts, to see the most popular words. Note that the most popular words 

are all non-nouns such as determiners, pronouns, and more, as shown in the 

preceding screenshot.

Ideally, these non-nouns, also referred to as stop words, would be removed from the 

corpus as they do not carry a lot of meaning. However, we will skip those advanced 

text processing steps to keep things simple.

4. We will continue with data processing by converting these individual words into 

numbers or tokens. �is is a crucial step because machine learning models only 

understand numbers, not words:

# create word to integer (token) dictionary in order to 
encode text as numbers

vocab_to_token = {word:idx+1 for idx, (word, count) in 
enumerate(sorted_review_words)}

print(list(vocab_to_token.items())[:10])

�is should output the following:

Figure 4.12 – Word token generation

Starting with the most popular word, numbers are assigned to words 1 onward.

5. We obtained the word-to-integer mapping in the previous step, which is also known 

as the vocabulary of our dataset. In this step, we will use the vocabulary to translate 

movie reviews in our dataset into a list of numbers: 

reviews_tokenized = []

for review in review_list:

    word_to_token = [vocab_to_token[word] for word in 
review.split()]
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    reviews_tokenized.append(word_to_token)

print(review_list[0])

print()

print (reviews_tokenized[0])

�is should output something like the following:

Figure 4.13 – Numericalized text

6. We shall also encode the sentiment targets – pos and neg – into numbers 1  

and 0, respectively:

# encode sentiments as 0 or 1

encoded_label_list = [1 if label =='pos' else 0 for label 
in label_list]

reviews_len = [len(review) for review in reviews_
tokenized]

reviews_tokenized = [reviews_tokenized[i] for i, l in 
enumerate(reviews_len) if l>0 ]

encoded_label_list = np.array([encoded_label_list[i] 
for i, l in enumerate(reviews_len) if l> 0 ], 
dtype='float32')

7. Before we train the model, we need a �nal data-processing step. Di�erent reviews 

can be of di�erent lengths. However, we will de�ne our simple RNN model for a 

�xed sequence length. Hence, we need to normalize di�erent length reviews so that 

they're all same length. 

For this, we will de�ne a sequence length L (512, in this case), and then pad 

sequences that are smaller than L in length and truncate sequences that are longer 

than L:

def pad_sequence(reviews_tokenized, sequence_length):

    ''' returns the tokenized review sequences padded 
with 0's or truncated to the sequence_length.

    '''

    padded_reviews = np.zeros((len(reviews_tokenized), 
sequence_length), dtype = int)
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    for idx, review in enumerate(reviews_tokenized):

        review_len = len(review)

        if review_len <= sequence_length:

            zeroes = list(np.zeros(sequence_length-
review_len))

            new_sequence = zeroes+review

        elif review_len > sequence_length:

            new_sequence = review[0:sequence_length]

        padded_reviews[idx,:] = np.array(new_sequence)

    return padded_reviews

sequence_length = 512

padded_reviews = pad_sequence(reviews_tokenized=reviews_
tokenized, sequence_length=sequence_length)

plt.hist(reviews_len);

�e output will be as follows:

Figure 4.14 – Histogram of review lengths

As we can see, the reviews are mostly below 500, so we have chosen 512 (a power 

of 2) as the sequence length for our model and modi�ed the sequences that are not 

exactly 512 words long accordingly.

8. Finally, we can train the model. To do this, we must split our dataset into training 

and validation sets with a 75:25 ratio:

train_val_split = 0.75

train_X = padded_reviews[:int(train_val_split*len(padded_
reviews))]
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train_y = encoded_label_list[:int(train_val_
split*len(padded_reviews))]

validation_X = padded_reviews[int(train_val_
split*len(padded_reviews)):]

validation_y = encoded_label_list[int(train_val_
split*len(padded_reviews)):]

9. At this stage, we can start using PyTorch to generate the dataset and 

dataloader objects from the processed data:

# generate torch datasets

train_dataset = TensorDataset(torch.from_numpy(train_X).
to(device), torch.from_numpy(train_y).to(device))

validation_dataset = TensorDataset(torch.from_
numpy(validation_X).to(device), torch.from_
numpy(validation_y).to(device))

batch_size = 32

# torch dataloaders (shuffle data)

train_dataloader = DataLoader(train_dataset, batch_
size=batch_size, shuffle=True)

validation_dataloader = DataLoader(validation_dataset, 
batch_size=batch_size, shuffle=True)

10. To get a feeling of what the data looks like before we feed it to the model, let's 

visualize a batch of 32 reviews and the corresponding sentiment labels:

# get a batch of train data

train_data_iter = iter(train_dataloader)

X_example, y_example = train_data_iter.next()

print('Example Input size: ', X_example.size()) # batch_
size, seq_length

print('Example Input:\n', X_example)

print()

print('Example Output size: ', y_example.size()) # batch_
size

print('Example Output:\n', y_example)
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�e output will be as follows:

Figure 4.15 – Sample data point

Having loaded and processed the textual dataset into sequences of numerical tokens, next, 
we will create the RNN model object in PyTorch and train the RNN model.

Instantiating and training the model
Now that we have prepared our datasets, we can instantiate our unidirectional single-layer 
RNN model. Firstly, PyTorch makes it incredibly compact through its nn.RNN module to 
instantiate the RNN layer. All it takes in is the input/embedding dimension, the hidden-
to-hidden state dimension, and the number of layers. Let's get started:

1. Let's de�ne our own wrapper RNN class. �is instantiates the whole RNN model, 

which is composed of the embedding layer, followed by the RNN layer, and �nally 

followed by a fully connected layer, as follows:

class RNN(nn.Module):

    def __init__(self, input_dimension, embedding_
dimension, hidden_dimension, output_dimension):

        super().__init__()

        self.embedding_layer = nn.Embedding(input_
dimension, embedding_dimension)  

        self.rnn_layer = nn.RNN(embedding_dimension, 
hidden_dimension, num_layers=1)

        self.fc_layer = nn.Linear(hidden_dimension, 
output_dimension)

    def forward(self, sequence):
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        # sequence shape = (sequence_length, batch_size)

        embedding = self.embedding_layer(sequence)  

        # embedding shape = [sequence_length, batch_size, 
embedding_dimension]

        output, hidden_state = self.rnn_layer(embedding)

        # output shape = [sequence_length, batch_size, 
hidden_dimension]

        # hidden_state shape = [1, batch_size, hidden_
dimension]

        final_output = self.fc_layer(hidden_state[-
1,:,:].squeeze(0))      

        return final_output

�e embedding layer's functionality is provided under the nn.Embedding 

module, which stores word embeddings (in the form of a lookup table) and 

retrieves them using indices. In this exercise, we set the embeddings dimension to 

100. �is implies that if we have a total of 1,000 words in our vocabulary, then the 

embeddings lookup table will be 1000x100 in size.

For example, the word it, which is tokenized as number 8 in our vocabulary, will be 

stored as a vector of size 100 at the 8th row in this lookup table. You can initialize 

the embeddings lookup table with pre-trained embeddings for better performance, 

but we will be training it from scratch in this exercise.

2. In the following code, we are instantiating the RNN model:

input_dimension = len(vocab_to_token)+1 # +1 to account 
for padding

embedding_dimension = 100

hidden_dimension = 32

output_dimension = 1

rnn_model = RNN(input_dimension, embedding_dimension, 
hidden_dimension, output_dimension)

optim = optim.Adam(rnn_model.parameters())

loss_func = nn.BCEWithLogitsLoss()

rnn_model = rnn_model.to(device)

loss_func = loss_func.to(device)
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We use the nn.BCEWithLogitsLoss module to compute losses. �is PyTorch 

module provides a numerically stable computation of a Sigmoid function, followed 

by a binary cross-entropy function, which is exactly what we want as a loss 

function for our binary classi�cation problem. �e hidden dimension of 32 simply 

means that each RNN cell (hidden) state will be a vector of size 32.

3. We will also de�ne an accuracy metric to measure the performance of our 

trained model on the validation set. We will be using simple 0-1 accuracy for 

this exercise:

def accuracy_metric(predictions, ground_truth):

    """

    Returns 0-1 accuracy for the given set of predictions 
and ground truth

    """

    # round predictions to either 0 or 1

    rounded_predictions = torch.round(torch.
sigmoid(predictions))

    success = (rounded_predictions == ground_truth).
float() #convert into float for division 

    accuracy = success.sum() / len(success)

    return accuracy

4. Once we've completed the model instantiation and metrics de�nition, we can de�ne 

the training and validation routines. �e code for the training routine is as follows:

def train(model, dataloader, optim, loss_func):

    loss = 0

    accuracy = 0

    model.train()

    for sequence, sentiment in dataloader:

        optim.zero_grad()     

        preds = model(sequence.T).squeeze()

        loss_curr = loss_func(preds, sentiment)

        accuracy_curr = accuracy_metric(preds, sentiment)

        loss_curr.backward()

        optim.step()

        loss += loss_curr.item()

        accuracy += accuracy_curr.item()

    return loss/len(dataloader), accuracy/len(dataloader)
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�e code for the validation routine is as follows:

def validate(model, dataloader, loss_func):

    loss = 0

    accuracy = 0

    model.eval()

    with torch.no_grad():

        for sequence, sentiment in dataloader:

            preds = model(sequence.T).squeeze()

            loss_curr = loss_func(preds, sentiment)   

            accuracy_curr = accuracy_metric(preds, 
sentiment)

            loss += loss_curr.item()

            accuracy += accuracy_curr.item()

    return loss/len(dataloader), accuracy/len(dataloader)

5. Finally, we are now ready to train the model:

num_epochs = 10

best_validation_loss = float('inf')

for ep in range(num_epochs):

    time_start = time.time()

    training_loss, train_accuracy = train(rnn_model, 
train_dataloader, optim, loss_func)

    validation_loss, validation_accuracy = validate(rnn_
model, validation_dataloader, loss_func)

    time_end = time.time()

    time_delta = time_end - time_start

    if validation_loss < best_validation_loss:

        best_validation_loss = validation_loss

        torch.save(rnn_model.state_dict(), 'rnn_model.
pt')

    print(f'epoch number: {ep+1} | time elapsed: {time_
delta}s')

    print(f'training loss: {training_loss:.3f} | training 
accuracy: {train_accuracy*100:.2f}%')

    print(f'\tvalidation loss: {validation_loss:.3f} 
|  validation accuracy: {validation_accuracy*100:.2f}%')
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�e output will be as follows:

Figure 4.16 – RNN model training logs

�e model seems to have learned especially well on the training set through 

over�tting. �e model has 512 layers in the time dimension, which explains why 

this powerful model can learn the training set quite well. �e performance of the 

validation set starts from a low value but then rises and �uctuates.

6. Let's quickly de�ne a helper function to make real-time inference on the trained 

model:

def sentiment_inference(model, sentence):

    model.eval()

    # text transformations

    sentence = sentence.lower()

    sentence = ''.join([c for c in sentence if c not in 
punctuation])

    tokenized = [vocab_to_token.get(token, 0) for token 
in sentence.split()]
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    tokenized = np.pad(tokenized, (512-len(tokenized), 
0), 'constant')

    # model inference

    model_input = torch.LongTensor(tokenized).to(device)

    model_input = model_input.unsqueeze(1)

    pred = torch.sigmoid(model(model_input))

    return pred.item()

7. As the last step of this exercise, we will test the performance of this model on some 

manually entered review texts:

print(sentiment_inference(rnn_model, "This film is 
horrible")) 
print(sentiment_inference(rnn_model, "Director tried too 
hard but this film is bad")) 
print(sentiment_inference(rnn_model, "Decent movie, 
although could be shorter")) 
print(sentiment_inference(rnn_model, "This film will be 
houseful for weeks")) 
print(sentiment_inference(rnn_model, "I loved the movie, 
every part of it"))

�e output will be as follows:

Figure 4.17 – RNN inference output

Here, we can see that the model indeed picks up on the notion of positive and negative. 
Also, it seems to be able to deal with sequences of variable lengths, even if they are all 
much shorter than 512 words.

In this exercise, we have trained a rather simple RNN model that has limitations not 
only on the model architecture aspect, but also on the data processing side. In the next 
exercise, we will use a more evolved recurrent architecture – a bidirectional LSTM model 
– to tackle the same task. We will use some regularization methods to overcome the 
problem of over�tting that we observed in this exercise. Moreover, we will use PyTorch's 
torchtext module to handle the data loading and processing pipelines more e�ciently 
and concisely.
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Building a bidirectional LSTM
So far, we have trained and tested a simple RNN model on the sentiment analysis task, 
which is a binary classi�cation task based on textual data. In this section, we will try 
to improve our performance on the same task by using a more advanced recurrent 
architecture – LSTMs.

LSTMs, as we know, are more capable of handling longer sequences due to their memory 
cell gates, which help retain important information from several time steps before and 
forget irrelevant information even if it was recent. With the exploding and vanishing 
gradients problem in check, LSTMs should be able to perform well when processing long 
movie reviews.

Moreover, we will be using a bidirectional model as it broadens the context window at 
any time step for the model to make a more informed decision about the sentiment of the 
movie review. �e RNN model we looked at in the previous exercise over�tted the dataset 
during training, so to tackle that, we will be using dropouts as a regularization mechanism 
in our LSTM model.

Loading and preprocessing text dataset
In this exercise, we will demonstrate the power of PyTorch's torchtext module. In the 
previous exercise, we roughly dedicated half of the exercise to loading and processing the 
text dataset. Using torchtext, we will do the same in less than 10 lines of code. 

Instead of manually downloading the dataset, we will use the pre-existing IMDb dataset 
under torchtext.datasets to load it. We will also use torchtext.data to 
tokenize words and generate vocabulary. Finally, we will use the nn.LSTM module to 
directly pad sequences instead of manually padding them. �e code for this exercise can 
be found at https://github.com/PacktPublishing/Mastering-PyTorch/
blob/master/Chapter04/lstm.ipynb. Let's get started:

1. For this exercise, we will need to import a few dependencies. First, we will execute 

the same import statements as we did for the previous exercise. However, we will 

also need to import the following:

import random 
from torchtext import (data, datasets)
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2. Next, we will use the datasets submodule from the torchtext module to directly 

download the IMDb sentiment analysis dataset. We will separate the review texts 

and the sentiment labels into two separate �elds and split the dataset into training, 

validation, and test sets:

TEXT_FIELD = data.Field(tokenize = data.get_
tokenizer("basic_english"), include_lengths = True) 
LABEL_FIELD = data.LabelField(dtype = torch.float)

train_dataset, test_dataset = datasets.IMDB.splits(TEXT_
FIELD, LABEL_FIELD) 
train_dataset, valid_dataset = train_dataset.
split(random_state = random.seed(123))

3. Next, we will use the build_vocab method of torchtext.data.Field and 

torchtext.data.LabelField to build the vocabulary for the movie reviews 

text dataset and the sentiment labels, respectively:

MAX_VOCABULARY_SIZE = 25000

TEXT_FIELD.build_vocab(train_dataset, 

                 max_size = MAX_VOCABULARY_SIZE)

LABEL_FIELD.build_vocab(train_dataset)

As we can see, it takes just three lines of code to build the vocabulary using the  

prede�ned functions.

4. Before we get into the model-related details, we will also create dataset iterators for 

the training, validation, and test sets.

Now that we've loaded and processed the dataset and derived the dataset iterators, let's 
create the LSTM model object and train the LSTM model.

Instantiating and training the LSTM model
In this section, we will instantiate the LSTM model object. We will then de�ne the 
optimizer, the loss function, and the model training performance metrics. Finally, we 
will run the model training loop using the de�ned model training and model validation 
routines. Let's get started:

1. First, we must instantiate the bidirectional LSTM model with dropout. While most 

of the model instantiation looks the same as in the previous exercise, the following 

line of code is the key di�erence:

self.lstm_layer = nn.LSTM(embedding_dimension, 

                           hidden_dimension, 
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                           num_layers=1, 

                           bidirectional=True, 

                           dropout=dropout)

2. We have added two special types of tokens – unknown_token (for words that 

do not exist in our vocabulary) and padding_token (for tokens that are just 

added for padding the sequence) – to our vocabulary. Hence, we will need to set the 

embeddings to all zeros for these two tokens:

UNK_INDEX = TEXT_FIELD.vocab.stoi[TEXT_FIELD.unk_token]

lstm_model.embedding_layer.weight.data[UNK_INDEX] = 
torch.zeros(EMBEDDING_DIMENSION)

lstm_model.embedding_layer.weight.data[PAD_INDEX] = 
torch.zeros(EMBEDDING_DIMENSION)

3. Next, we will de�ne the optimizer (Adam) and the loss function (Sigmoid followed 

by binary cross-entropy). We will also de�ne an accuracy metric calculation 

function, as we did in the previous exercise.

4. We will then de�ne the training and validation routines.

5. Finally, we will run the training loop with 10 epochs. �is should output the following:

Figure 4.18 – LSTM model training logs
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As we can see, the model is learning well as the epochs progress. Also, dropout 

seems to control over�tting as both the training and validation set accuracies are 

increasing at a similar pace. However, compared to RNNs, LSTMs are slower to 

train. As we can see, the epoch time for LSTMs is roughly 9 to 10 times that of 

RNNs. �is is also because we are using a bidirectional network in this exercise.

6. �e previous step also saves the best performing model. In this step, we will load the 

best performing model and evaluate it on the test set:

lstm_model.load_state_dict(torch.load('lstm_model.pt'))

test_loss, test_accuracy = validate(lstm_model, test_
data_iterator, loss_func)

print(f'test loss: {test_loss:.3f} | test accuracy: 
{test_accuracy*100:.2f}%')

�is should output the following:

Figure 4.19 – LSTM test set accuracy

7. Finally, we will de�ne a sentiment inference function, as we did in the previous 

exercise, and run some manually entered movie reviews against the trained model:

print(sentiment_inference(rnn_model, "This film is 
horrible")) 
print(sentiment_inference(rnn_model, "Director tried too 
hard but this film is bad")) 
print(sentiment_inference(rnn_model, "Decent movie, 
although could be shorter")) 
print(sentiment_inference(rnn_model, "This film will be 
houseful for weeks")) 
print(sentiment_inference(rnn_model, "I loved the movie, 
every part of it"))

�is should output the following:

Figure 4.20 – LSTM model inference output
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Clearly, the LSTM model has outperformed the RNN models in terms of performance  
on the validation set. Dropout helped to prevent over�tting, and the bidirectional  
LSTM architecture seems to have learned the sequential patterns in the movie review  
text sentences.

�e previous two exercises have both been about a many-to-one type sequence task, 
where the input is a sequence and output is a binary label. �ese two exercises, together 
with the one-to-many exercise in Chapter 2, Combining CNNs and LSTMs, should have 
provided you with enough context to get hands-on with di�erent recurrent architectures 
using PyTorch.

In the next and �nal section, we will brie�y discuss GRUs and how to use them in 
PyTorch. �en, we will introduce the concept of attention and how it is used in  
recurrent architectures.

Discussing GRUs and attention-based models
In the �nal section of this chapter, we will brie�y look at GRUs, how they are similar 
yet di�erent from LSTMs, and how to initialize a GRU model using PyTorch. We will 
also look at attention-based (RNNs). We will conclude this section by describing how 
attention-only (no recurrence or convolutions)-based models outperform the recurrent 
family of neural models when it comes to sequence modeling tasks.

GRUs and PyTorch
As we discussed in the Exploring the evolution of recurrent networks section, GRUs are a 
type of memory cell with two gates – a reset gate and an update gate, as well as one hidden 
state vector. In terms of con�guration, GRUs are simpler than LSTMs and yet equally 
e�ective in dealing with the exploding and vanishing gradients problem. Tons of research 
has been done to compare the performance of LSTMs and GRUs. While both perform 
better than the simple RNNs on various sequence-related tasks, one is slightly better than 
the other on some tasks and vice versa. 

GRUs train faster than LSTMs and on many tasks such as language modeling, GRUs can 
perform as well as LSTMs with much less training data. However, theoretically, LSTMs are 
supposed to retain information from longer sequences than GRUs. PyTorch provides the 
nn.GRU module to instantiate a GRU layer in one line of code. �e following code creates 
a deep GRU network with two bidirectional GRU layers, each with 80% recurrent dropout:

self.gru_layer = nn.GRU(input_size, hidden_size, num_layers=2, 
dropout=0.8, bidirectional=True)
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As we can see, it takes one line of code to get started with a PyTorch GRU model. I 
encourage you to plug the gru layer instead of the lstm layer or rnn layer into the 
previous exercises and see how it impacts the model training time, as well as model 
performance.

Attention-based models
�e models we have discussed in this chapter have been pathbreaking in solving problems 
related to sequential data. However, in 2017, a novel attention-only-based approach was 
invented that subsequently took the shine o� these recurrent networks. �e concept of 
attention is derived from the idea of how we, as humans, pay di�erent levels of attention to 
di�erent parts of a sequence (say, text) at di�erent times.

For example, if we were to complete the statement Martha sings beautifully, I am hooked 
to ___ voice., we would pay more attention to the word Martha to guess that the missing 
word might be her. On the other hand, if we were to complete the statement Martha sings 
beautifully, I am hooked to her ____., then we would pay more attention to the word sings 
to guess that the missing word is either voice, songs, singing, and so on.

In all our recurrent architectures, a mechanism for focusing on speci�c parts of the 
sequence in order to predict the output at the current time step does not exist. Instead, the 
recurrent models can only get a summary of the past sequence in the form of a condensed 
hidden state vector.

Attention-based recurrent networks were the �rst ones to exploit the concept of attention 
around the years 2014-2015. In these models, an additional attention layer was added on 
top of the usual recurrent layer. �is attention layer learned attention weights for each of 
the preceding words in the sequence.

A context vector was computed as an attention-weighted average of all the preceding 
words' hidden state vectors. �is context vector was fed to the output layer, in addition 
to the regular hidden state vector at any time step, t. �e following diagram shows the 
architecture of an attention-based (RNNs):
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Figure 4.21 – Attention-based RNN

In this architecture, a global context vector is being calculated at each time step. 
Variants of this architecture were then devised using a local context vector – not paying 
attention to all the preceding words but only k previous words. Attention-based RNNs 
outperformed the state-of-the-art recurrent models on tasks such as machine translation.
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A couple of years later, in 2017, it was realized that attention was all we needed for dealing 
with sequential data to outperform the various recurrent models we've discussed so far. 
Not only did this lead to achieving better accuracy on tasks, but more importantly, it 
signi�cantly reduced the model training (and inference) time.

Recurrent networks need to be unrolled in time, which makes them non-parallelizable. 
However, a new model called the transformer model, which we will discuss in the next 
chapter, has no recurrent (and convolutional) layers, making it both parallelizable and 
lightweight (in terms of computation �ops).

Summary
In this chapter, we have extensively explored recurrent neural architectures. First, we 
learned about various RNN types: one-to-many, many-to-many, and so on. We then 
delved into the history and evolution of RNN architectures. From here, we looked at 
simple RNNs, LSTMs, and GRUs to bidirectional, multi-dimensional, and stacked models. 
We also inspected what each of these individual architectures looked like and what was 
novel about them.

Next, we performed two hands-on exercises on a many-to-one sequence classi�cation 
task based on sentiment analysis. Using PyTorch, we trained a unidirectional RNN model, 
followed by a bidirectional LSTM model with dropout on the IMDb movie reviews 
dataset. In the �rst exercise, we manually loaded and processed the data. In the second 
exercise, using PyTorch's torchtext module, we demonstrated how to load the dataset 
and process the text data, including vocabulary generation, e�ciently and concisely.

In the �nal section of this chapter, we discussed GRUs, how to use them in PyTorch, and 
compared them to LSTMs. Finally, we explored the attention mechanism in recurrent 
models and discussed the architecture of an attention-based RNN model. We concluded 
by discussing attention-only-based models – known as transformers – that are devoid 
of recurrent layers and have outperformed recurrent models both in terms of (training) 
speed and accuracy.

In the next chapter, we will elaborate on transformers and other such model architectures, 
which are neither purely recurrent nor convolutional yet have achieved state-of-the art results.
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In the previous two chapters, we learned extensively about the various convolutional and 
recurrent network architectures available, along with their implementations in PyTorch. 
In this chapter, we will take a look at some other deep learning model architectures that 
have proven to be successful on various machine learning tasks and are neither purely 
convolutional nor recurrent in nature. We will continue from where we le� o� in both 
Chapter 3, Deep CNN Architectures, and Chapter 4, Deep Recurrent Model Architectures.

First, we will explore transformers, which, as we learnt toward the end of Chapter 4, Deep 
Recurrent Model Architectures, have outperformed recurrent architectures on various 
sequential tasks. �en, we will pick up from the E�cientNets discussion at the end of 
Chapter 3, Deep CNN Architectures, and explore the idea of generating randomly wired 
neural networks, also known as RandWireNNs.
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With this chapter, we aim to conclude our discussion of di�erent kinds of neural network 
architectures in this book. A�er completing this chapter, you will have a detailed 
understanding of transformers and how to apply these powerful models to sequential 
tasks using PyTorch. Furthermore, by building your own RandWireNN model, you will 
have hands-on experience of performing a neural architecture search in PyTorch. �is 
chapter is broken down into the following topics:

• Building a transformer model for language modeling

• Developing a RandWireNN model from scratch

Technical requirements
We will be using Jupyter notebooks for all our exercises. �e following is a list of Python 
libraries that must be installed for this chapter using pip. Here, you must run pip 
install torch==1.4.0 on the command line and then use the following commands:

jupyter==1.0.0

torch==1.4.0

tqdm==4.43.0

matplotlib==3.1.2

torchtext==0.5.0

torchvision==0.5.0

torchviz==0.0.1

networkx==2.4

All the code �les that are relevant to this chapter are available at https://github.
com/PacktPublishing/Mastering-PyTorch/tree/master/Chapter05.

Building a transformer model for language 

modeling
In this section, we will explore what transformers are and build one using PyTorch for 
the task of language modeling. We will also learn how to use some of its successors, such 
as BERT and GPT, via PyTorch's pretrained model repository. Before we start building a 
transformer model, let's quickly recap what language modeling is.
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Reviewing language modeling
Language modeling is the task of �guring out the probability of the occurrence of a word 
or a sequence of words that should follow a given sequence of words. For example, if we 
are given French is a beautiful _____ as our sequence of words, what is the probability that 
the next word will be language or word, and so on? �ese probabilities are computed by 
modeling the language using various probabilistic and statistical techniques. �e idea is to 
observe a text corpus and learn the grammar by learning which words occur together and 
which words never occur together. �is way, a language model establishes probabilistic rules 
around the occurrence of di�erent words or sequences, given various di�erent sequences.

Recurrent models have been a popular way of learning a language model. However, as 
with many sequence-related tasks, transformers have outperformed recurrent networks on 
this task as well. We will implement a transformer-based language model for the English 
language by training it on the Wikipedia text corpus.

Now, let's start training a transformer for language modeling. During this exercise, we 
will demonstrate only the most important parts of the code. �e full code can be accessed 
at https://github.com/PacktPublishing/Mastering-PyTorch/blob/
master/Chapter05/transformer.ipynb.

We will delve deeper into the various components of the transformer architecture 
in-between the exercise.

For this exercise, we will need to import a few dependencies. One of the important 
import statements is listed here:

from torch.nn import TransformerEncoder, 
TransformerEncoderLayer

Besides importing the regular torch dependencies, we must import some modules 
speci�c to the transformer model; these are provided directly under the torch library. We'll 
also import torchtext in order to download a text dataset directly from the available 
datasets under torchtext.datasets.

In the next section, we will de�ne the transformer model architecture and look at the 
details of the model's components.

Understanding the transformer model architecture
�is is perhaps the most important step of this exercise. Here, we de�ne the architecture 
of the transformer model.
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First, let's brie�y discuss the model architecture and then look at the PyTorch code for 
de�ning the model. �e following diagram shows the model architecture:

Figure 5.1 – Transformer model architecture

Page 171



Building a transformer model for language modeling     151

�e �rst thing to notice is that this is essentially an encoder-decoder based architecture, 
with the Encoder Unit on the le� (in purple) and the Decoder Unit (in orange) on 
the right. �e encoder and decoder units can be tiled multiple times for even deeper 
architectures. In our example, we have two cascaded encoder units and a single decoder 
unit. �is encoder-decoder setup essentially means that the encoder takes a sequence as 
input and generates as many embeddings as there are words in the input sequence (that is, 
one embedding per word). �ese embeddings are then fed to the decoder, along with the 
predictions made thus far by the model.

Let's walk through the various layers in this model:

• Embedding Layer: �is layer is simply meant to perform the traditional task of 
converting each input word of the sequence into a vector of numbers; that is, an 
embedding. As always, here, we use the torch.nn.Embedding module to code 
this layer.

• Positional Encoder: Note that transformers do not have any recurrent layers in 
their architecture, yet they outperform recurrent networks on sequential tasks. 
How? Using a neat trick known as positional encoding, the model is provided the 
sense of sequentiality or sequential-order in the data. Basically, vectors that follow a 
particular sequential pattern are added to the input word embeddings.

�ese vectors are generated in a way that enables the model to understand 

that the second word comes a�er the �rst word and so on. �e vectors are 

generated using the sinusoidal and cosinusoidal functions to represent a 

systematic periodicity and distance between subsequent words, respectively. �e 

implementation of this layer for our exercise is as follows:

class PosEnc(nn.Module):

    def __init__(self, d_m, dropout=0.2, size_
limit=5000):

        # d_m is same as the dimension of the embeddings

        pos = torch.arange(0, size_limit, dtype=torch.
float).unsqueeze(1)

        divider = torch.exp(torch.arange(0, d_m, 
2).float() * (-math.log(10000.0) / d_m))

        # divider is the list of radians, multiplied by 
position indices of words, and fed to the sinusoidal and 
cosinusoidal function.  

        p_enc[:, 0::2] = torch.sin(pos * divider)

        p_enc[:, 1::2] = torch.cos(pos * divider)

    def forward(self, x):
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        return self.dropout(x + self.p_enc[:x.size(0), 
:])

As you can see, the sinusoidal and cosinusoidal functions are used 

alternatively to give the sequential pattern. �ere are many ways to implement 

positional encoding though. Without a positional encoding layer, the model will be 

clueless about the order of the words.

• Multi-Head Attention: Before we look at the multi-head attention layer, let's �rst 
understand what a self-attention layer is. We covered the concept of attention in 
Chapter 4, Deep Recurrent Model Architectures, with respect to recurrent networks. 
Here, as the name suggests, the attention mechanism is applied to self; that is, each 
word of the sequence. Each word embedding of the sequence goes through the self-
attention layer and produces an individual output that is exactly the same length as 
the word embedding. �e following diagram describes the process of this in detail:

Figure 5.2 – Self-attention layer
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As we can see, for each word, three vectors are generated through three learnable 

parameter matrices (Pq, Pk, and Pv). �e three vectors are query, key, and value 

vectors. �e query and key vectors are dot-multiplied to produce a number for each 

word. �ese numbers are normalized by dividing the square root of the key vector 

length for each word. �e resultant numbers for all words are then So�maxed at the 

same time to produce probabilities that are �nally multiplied by the respective value 

vectors for each word. �is results in one output vector for each word of the sequence, 

with the lengths of the output vector and the input word embedding being the same.

A multi-head attention layer is an extension of the self-attention layer where 

multiple self-attention modules compute outputs for each word. �ese individual 

outputs are concatenated and matrix-multiplied with yet another parameter 

matrix (Pm) to generate the �nal output vector, whose length is equal to the input 

embedding vector's. �e following diagram shows the multi-head attention layer, 

along with two self-attention units that we will be using in this exercise:

Figure 5.3 – Multi-head attention layer with two self-attention units
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Having multiple self-attention heads helps di�erent heads focus on di�erent aspects 

of the sequence word, similar to how di�erent feature maps learn di�erent patterns in 

a convolutional neural network. Due to this, the multi-head attention layer performs 

better than an individual self-attention layer and will be used in our exercise.

Also, note that the masked multi-head attention layer in the decoder unit works in 

exactly the same way as a multi-head attention layer, except for the added masking; 

that is, given time step t of processing the sequence, all words from t+1 to n (length 

of the sequence) are masked/hidden.

During training, the decoder is provided with two types of inputs. On one 

hand, it receives query and key vectors from the �nal encoder as inputs to its 

(unmasked) multi-head attention layer, where these query and key vectors are 

matrix transformations of the �nal encoder output. On the other hand, the decoder 

receives its own predictions from previous time steps as sequential input to its 

masked multi-head attention layer.

• Addition and Layer Normalization: We discussed the concept of a residual 
connection in Chapter 3, Deep CNN Architectures, while discussing ResNets. In 
Figure 5.1, we can see that there are residual connections across the addition and 
layer normalization layers. In each instance, a residual connection is established by 
directly adding the input word embedding vector to the output vector of the multi-
head attention layer. �is helps with easier gradient �ow throughout the network 
and avoiding problems with exploding and vanishing gradients. Also, it helps with 
e�ciently learning identity functions across layers.

Furthermore, layer normalization is used as a normalization trick. Here, we 

normalize each feature independently so that all the features have a uniform mean 

and standard deviation. Please note that these additions and normalizations are 

applied individually to each word vector of the sequence at each stage of the network.

• Feedforward Layer: Within both the encoder and decoder units, the normalized 
residual output vectors for all the words of the sequence are passed through a 
common feedforward layer. Due to there being a common set of parameters across 
words, this layer helps with learning broader patterns across the sequence.

• Linear and So�max Layer: So far, each layer is outputting a sequence of vectors, 
one per word. For our task of language modeling, we need a single �nal output. �e 
linear layer transforms the sequence of vectors into a single vector whose size is equal 
to the length of our word vocabulary. �e So�max layer converts this output into a 
vector of probabilities summing to 1. �ese probabilities are the probabilities that the 
respective words (in the vocabulary) occur as the next words in the sequence.
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Now that we have elaborated on the various elements of a transformer model, let's look at 
the PyTorch code for instantiating the model.

Defining a transformer model in PyTorch
Using the architecture details described in the previous section, we will now write the 
necessary PyTorch code for de�ning a transformer model, as follows:

class Transformer(nn.Module):

    def __init__(self, num_token, num_inputs, num_heads, num_
hidden, num_layers, dropout=0.3):

        self.position_enc = PosEnc(num_inputs, dropout)

        layers_enc = TransformerEncoderLayer(num_inputs, num_
heads, num_hidden, dropout)

        self.enc_transformer = TransformerEncoder(layers_enc, 
num_layers)

        self.enc = nn.Embedding(num_token, num_inputs)

        self.num_inputs = num_inputs

        self.dec = nn.Linear(num_inputs, num_token)

As we can see, in the __init__ method of the class, thanks to PyTorch's 
TransformerEncoder and TransformerEncoderLayer functions, we do not 
need to implement these ourselves. For our language modeling task, we just need a single 
output for the input sequence of words. Due to this, the decoder is just a linear layer that 
transforms the sequence of vectors from an encoder into a single output vector. A position 
encoder is also initialized using the de�nition that we discussed earlier.

In the forward method, the input is positionally encoded and then passed through the 
encoder, followed by the decoder:

    def forward(self, source):

        source = self.enc(source) * math.sqrt(self.num_inputs)

        source = self.position_enc(source)

        op = self.enc_transformer(source, self.mask_source)

        op = self.dec(op)

        return op

Now that we have de�ned the transformer model architecture, we shall load the text 
corpus to train it on.

Page 176



156     Hybrid Advanced Models

Loading and processing the dataset

In this section, we will discuss the steps related to loading a text dataset for our task and 
making it usable for the model training routine. Let's get started:

1. For this exercise, we will be using texts from Wikipedia, all of which are available as 

the WikiText-2 dataset.

Dataset Citation

https://blog.einstein.ai/the-wikitext-long-term-
dependency-language-modeling-dataset/.

We'll use the functionality of torchtext to download the dataset (available under 

torchtext datasets), tokenize its vocabulary, and split the dataset into training, 

validation, and test sets:

TEXT = torchtext.data.Field(tokenize=get_
tokenizer("basic_english"), lower=True, eos_
token='<eos>', init_token='<sos>')

training_text, validation_text, testing_text = torchtext.
datasets.WikiText2.splits(TEXT)

TEXT.build_vocab(training_text)

device = torch.device("cuda" if torch.cuda.is_available() 
else "cpu")

2. We'll also de�ne the batch sizes for training and evaluation and declare a batch 

generation function, as shown here:

def gen_batches(text_dataset, batch_size):

    text_dataset = TEXT.numericalize([text_dataset.
examples[0].text])

    # distribute dataset across batches evenly

    text_dataset = text_dataset.view(batch_size, -1).t().
contiguous()

    return text_dataset.to(device)

training_batch_size = 32

training_data = gen_batches(training_text, training_
batch_size)
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3. Next, we must de�ne the maximum sequence length and write a function that will 

generate input sequences and output targets for each batch, accordingly: 

max_seq_len = 64

def return_batch(src, k):

    sequence_length = min(max_seq_len, len(src) - 1 - k)

    sequence_data = src[k:k+sequence_length]

    sequence_label = src[k+1:k+1+sequence_length].view(-
1)

    return sequence_data, sequence_label

Having de�ned the model and prepared the training data, we will now train the 
transformer model.

Training the transformer model

In this section, we will de�ne the necessary hyperparameters for model training, de�ne 
the model training and evaluation routines, and �nally execute the training loop. Let's  
get started:

1. In this step, we de�ne all the model hyperparameters and instantiate our 

transformer model. �e following code is self-explanatory:

num_tokens = len(TEXT.vocab.stoi) # vocabulary size

embedding_size = 256 # dimension of embedding layer

num_hidden_params = 256 # transformer encoder's hidden 
(feed forward) layer dimension

num_layers = 2 # num of transformer encoder layers within 
transformer encoder

num_heads = 2 # num of heads in (multi head) attention 
models

dropout = 0.25 # value (fraction) of dropout

loss_func = nn.CrossEntropyLoss()

lrate = 4.0 # learning rate

transformer_model = Transformer(num_tokens, embedding_
size, num_heads, num_hidden_params, num_layers, dropout).
to(device)
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2. Before starting the model training and evaluation loop, we need to de�ne the 

training and evaluation routines:

def train_model():

    num_tokens = len(TEXT.vocab.stoi)

    for b, i in enumerate(range(0, training_data.size(0) 
- 1, max_seq_len)):

        train_data_batch, train_label_batch = return_
batch(training_data, i)

        optim_module.zero_grad()

        op = transformer_model(train_data_batch)

        loss_curr = loss_func(op.view(-1, num_tokens), 
train_label_batch)

        loss_curr.backward()

torch.nn.utils.clip_grad_norm_(transformer_model.
parameters(), 0.6)

        optim_module.step()

        loss_total += loss_curr.item()

def eval_model(eval_model_obj, eval_data_source):

...

3. Finally, we must run the model training loop. For demonstration purposes, we are 

training the model for 5 epochs, but you are encouraged to run it for longer in order 

to get better performance:

min_validation_loss = float("inf")

eps = 5 

best_model_so_far = None

for ep in range(1, eps + 1):

    ep_time_start = time.time()

    train_model()

    validation_loss = eval_model(transformer_model, 
validation_data)

    if validation_loss < min_validation_loss:

        min_validation_loss = validation_loss

        best_model_so_far = transformer_model
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�is should result in the following output:

Figure 5.4 – Transformer training logs

Besides the cross-entropy loss, the perplexity is also reported. Perplexity is 

a popularly used metric in natural language processing to indicate how well 

a probability distribution (a language model, in our case) �ts or predicts a 

sample. �e lower the perplexity, the better the model is at predicting the sample. 

Mathematically, perplexity is just the exponential of the cross-entropy loss. 

Intuitively, this metric is used to indicate how perplexed or confused the model is 

while making predictions.

4. Once the model has been trained, we can conclude this exercise by evaluating the 

model's performance on the test set:

testing_loss = eval_model(best_model_so_far, testing_
data)

print(f"testing loss {testing_loss:.2f}, testing 
perplexity {math.exp(testing_loss):.2f}")
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�is should result in the following output:

Figure 5.5 – Transformer evaluation results

In this exercise, we built a transformer model using PyTorch for the task of language 
modeling. We explored the transformer architecture in detail and how it is implemented 
in PyTorch. We used the WikiText-2 dataset and torchtext functionalities to 
load and process the dataset. We then trained the transformer model for 5 epochs and 
evaluated it on a separate test set. �is shall provide us with all the information we need to 
get started on working with transformers.

Besides the original transformer model, which was devised in 2017, a number of 
successors have since been developed over the years, especially around the �eld of 
language modeling, such as the following:

• Bidirectional Encoder Representations from Transformers (BERT), 2018

• Generative Pretrained Transformer (GPT), 2018

• GPT-2, 2019

• Conditional Transformer Language Model (CTRL), 2019

• Transformer-XL, 2019

• Distilled BERT (DistilBERT), 2019

• Robustly optimized BERT pretraining Approach (RoBERTa), 2019

• GPT-3, 2020

While we will not cover these models in detail in this chapter, you can nonetheless 
get started with using these models with PyTorch thanks to the transformers 
library, developed by HuggingFace (https://github.com/huggingface/
transformers). It provides pre-trained transformer family models for various tasks, 
such as language modeling, text classi�cation, translation, question-answering, and so on.

Besides the models themselves, it also provides tokenizers for the respective models. For 
example, if we wanted to use a pre-trained BERT model for language modeling, we would 
need to write the following code once we have installed the transformers library:

import torch

from transformers import BertForMaskedLM, BertTokenizer

bert_model = BertForMaskedLM.from_pretrained('bert-base-
uncased')
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token_gen = BertTokenizer.from_pretrained('bert-base-uncased')

ip_sequence = token_gen("I love PyTorch !", return_
tensors="pt")["input_ids"]

op = bert_model(ip_sequence, labels=ip_sequence)

total_loss, raw_preds = op[:2]

As we can see, it takes just a couple of lines to get started with a BERT-based language 
model. �is demonstrates the power of the PyTorch ecosystem. You are encouraged to 
explore this with more complex variants, such as Distilled BERT or RoBERTa, using the 
transformers library. For more details, please refer to their GitHub page, which was 
mentioned previously.

�is concludes our exploration of transformers. We did this by both building one from 
scratch as well as by reusing pre-trained models. �e invention of transformers in the 
natural language processing space has been paralleled with the ImageNet moment in the 
�eld of computer vision, so this is going to be an active area of research. PyTorch will have 
a crucial role to play in the research and deployment of these types of models.

In the next and �nal section of this chapter, we will resume the neural architecture search 
discussions we provided at the end of Chapter 3, Deep CNN Architectures, where we brie�y 
discussed the idea of generating optimal network architectures. We will explore a type of 
model where we do not decide what the model architecture will look like, and instead run 
a network generator that will �nd an optimal architecture for the given task. �e resultant 
network is called a randomly wired neural network (RandWireNN) and we will develop 
one from scratch using PyTorch.

Developing a RandWireNN model from scratch
We discussed E�cientNets in Chapter 3, Deep CNN Architectures, where we explored 
the idea of �nding the best model architecture instead of specifying it manually. 
RandWireNNs, or randomly wired neural networks, as the name suggests, are built on 
a similar concept. In this section, we will study and build our own RandWireNN model 
using PyTorch.
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Understanding RandWireNNs
First, a random graph generation algorithm is used to generate a random graph with 
a prede�ned number of nodes. �is graph is converted into a neural network by a few 
de�nitions being imposed on it, such as the following:

• Directed: �e graph is restricted to be a directed graph, and the direction of edge is 
considered to be the direction of data �ow in the equivalent neural network.

• Aggregation: Multiple incoming edges to a node (or neuron) are aggregated by 
weighted sum, where the weights are learnable.

• Transformation: Inside each node of this graph, a standard operation is applied: 
ReLU followed by 3x3 separable convolution (that is, a regular 3x3 convolution 
followed by a 1x1 pointwise convolution), followed by batch normalization. �is 
operation is also referred to as a ReLU-Conv-BN triplet.

• Distribution: Lastly, multiple outgoing edges from each neuron carry a copy of the 
aforementioned triplet operation.

One �nal piece in the puzzle is to add a single input node (source) and a single output 
node (sink) to this graph in order to fully transform the random graph into a neural 
network. Once the graph is realized as a neural network, it can be trained for various 
machine learning tasks.

In the ReLU-Conv-BN triplet unit, the output number of channels/features are the same 
as the input number of channels/features for repeatability reasons. However, depending 
on the type of task at hand, you can stage several of these graphs with an increasing 
number of channels downstream (and decreasing spatial size of the data/images). Finally, 
these staged graphs can be connected to each other by connecting the sink of one to the 
source of the other in a sequential manner.

Next, in the form of an exercise, we will build a RandWireNN model from scratch using 
PyTorch.

Developing RandWireNNs using PyTorch
We will now develop a RandWireNN model for an image classi�cation task. �is will 
be performed on the CIFAR-10 dataset. We will start from an empty model, generate 
a random graph, transform it into a neural network, train it for the given task on the 
given dataset, evaluate the trained model, and �nally explore the resulting model that 
was generated. In this exercise, we will only show the important parts of the code for 
demonstration purposes. In order to access the full code, visit https://github.com/
PacktPublishing/Mastering-PyTorch/blob/master/Chapter05/rand_
wire_nn.ipynb.
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Defining a training routine and loading data
In the �rst sub-section of this exercise, we will de�ne the training function that will be 
called by our model training loop and de�ne our dataset loader, which will provide us 
with batches of data for training. Let's get started:

1. First, we need to import some libraries. Some of the new libraries that will be used 

in this exercise are as follows:

from torchviz import make_dot

import networkx as nx

2. Next, we must de�ne the training routine, which takes in a trained model that can 

produce prediction probabilities given an RGB input image:

def train(model, train_dataloader, optim, loss_func, 
epoch_num, lrate):

    for training_data, training_label in train_
dataloader:

        pred_raw = model(training_data)

        curr_loss = loss_func(pred_raw, training_label)

        training_loss += curr_loss.data

    return training_loss / data_size, training_accuracy / 
data_size

3. Next, we de�ne the dataset loader. We will use the CIFAR-10 dataset for this image 

classi�cation task, which is a well-known database of 60,000 32x32 RGB images 

labeled across 10 di�erent classes containing 6,000 images per class. We will use the 

torchvision.datasets module to directly load the data from the torch dataset 

repository.

Dataset Citation

Learning Multiple Layers of Features from Tiny Images, Alex Krizhevsky, 2009.

�e code is as follows:

def load_dataset(batch_size):

    train_dataloader = torch.utils.data.DataLoader(

        datasets.CIFAR10('dataset', transform=transform_
train_dataset, train=True, download=True),

        batch_size=batch_size,  shuffle=True)
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    return train_dataloader, test_dataloader

train_dataloader, test_dataloader = load_dataset(batch_
size)

�is should give us the following output:

Figure 5.6 – RandWireNN data loading

We will now move on to designing the neural network model. For this, we will need to 
design the randomly wired graph.

Defining the randomly wired graph
In this section, we will de�ne a graph generator in order to generate a random graph that 
will be later used as a neural network. Let's get started:

As shown in the following code, we must de�ne the random graph generator class:

class RndGraph(object):

    def __init__(self, num_nodes, graph_probability, nearest_
neighbour_k=4, num_edges_attach=5):

    def make_graph_obj(self):

        graph_obj = nx.random_graphs.connected_watts_strogatz_
graph(self.num_nodes, self.nearest_neighbour_k, 
self.graph_probability)

        return graph_obj

In this exercise, we'll be using a well-known random graph model – the Watts Strogatz 

(WS) model. �is is one of the three models that was experimented on in the original 
research paper about RandWireNNs. In this model, there are two parameters:

• �e number of neighbors for each node (which should be strictly even), K

• A rewiring probability, P

First, all the N nodes of the graph are organized in a ring fashion and each node is 
connected to K/2 nodes to its le� and K/2 to its right. �en, we traverse each node 
clockwise K/2 times. At the mth traversal (0<m<K/2), the edge between the current node 
and its mth neighbor to the right is rewired with a probability, P.
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Here, rewiring means that the edge is replaced by another edge between the current node 
and another node di�erent from itself, as well as the mth neighbor. In the preceding code, 
the make_graph_obj method of our random graph generator class instantiates the WS 
graph model using the networkx library.

In the preceding code, the make_graph_obj method of our random graph generator class 
instantiates the WS graph model using the networkx library.

Furthermore, we add a get_graph_config method to return the list of nodes and 
edges in the graph. �is will come in handy while we're transforming the abstract graph 
into a neural network. We will also de�ne some graph saving and loading methods for 
caching the generated graph both for reproducibility and e�ciency reasons:

    def get_graph_config(self, graph_obj):

        return node_list, incoming_edges

    def save_graph(self, graph_obj, path_to_write):

        nx.write_yaml(graph_obj, "./cached_graph_obj/" + path_
to_write)

    def load_graph(self, path_to_read):

        return nx.read_yaml("./cached_graph_obj/" + path_to_
read)

Next, we will work on creating the actual neural network model.

Defining RandWireNN model modules 
Now that we have the random graph generator, we need to transform it into a neural 
network. But before that, we will design some neural modules to facilitate that 
transformation. Let's get started:

1. Starting from the lowest level of the neural network, �rst, we will de�ne a separable 

2D convolutional layer, as follows:

class SepConv2d(nn.Module):

    def __init__(self, input_ch, output_ch, kernel_
length=3, dilation_size=1, padding_size=1, stride_
length=1, bias_flag=True):

        super(SepConv2d, self).__init__()

        self.conv_layer = nn.Conv2d(input_ch, input_ch, 
kernel_length, stride_length, padding_size, dilation_
size, bias=bias_flag, groups=input_ch)
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        self.pointwise_layer = nn.Conv2d(input_
ch, output_ch, kernel_size=1, stride=1, padding=0, 
dilation=1, groups=1, bias=bias_flag)

    def forward(self, x):

        return self.pointwise_layer(self.conv_layer(x))

�e separable convolutional layer is a cascade of a regular 3x3 2D convolutional 

layer followed by a pointwise 1x1 2D convolutional layer.

Having de�ned the separable 2D convolutional layer, we can now de�ne the ReLU-

Conv-BN triplet unit:

class UnitLayer(nn.Module):

    def __init__(self, input_ch, output_ch, stride_
length=1):

        self.unit_layer = nn.Sequential(

            nn.ReLU(),

            SepConv2d(input_ch, output_ch, stride_
length=stride_length),nn.BatchNorm2d(output_ch),nn.
Dropout(self.dropout)

        )

    def forward(self, x):

        return self.unit_layer(x)

As we mentioned earlier, the triplet unit is a cascade of a ReLU layer, followed by a 

separable 2D convolutional layer, followed by a batch normalization layer. We must 

also add a dropout layer for regularization.

With the triplet unit in place, we can now de�ne a node in the graph with all of the 

aggregation, transformation, and distribution functionalities we need, 

as discussed at the beginning of this exercise:

class GraphNode(nn.Module):

    def __init__(self, input_degree, input_ch, output_ch, 
stride_length=1):

        self.unit_layer = UnitLayer(input_ch, output_ch, 
stride_length=stride_length)

    def forward(self, *ip):
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        if len(self.input_degree) > 1:

            op = (ip[0] * torch.sigmoid(self.params[0]))

            for idx in range(1, len(ip)):

                op += (ip[idx] * torch.sigmoid(self.
params[idx]))

            return self.unit_layer(op)

        else:

            return self.unit_layer(ip[0])

In the forward method, we can see that if the number of incoming edges to the 

node is more than 1, then a weighted average is calculated and these weights are 

learnable parameters of this node. �e triplet unit is applied to the weighted average 

and the transformed (ReLU-Conv-BN-ed) output is returned.

2. We can now consolidate all of our graph and graph node de�nitions in order to 

de�ne a randomly wired graph class, as shown here:

class RandWireGraph(nn.Module):

    def __init__(self, num_nodes, graph_prob, input_ch, 
output_ch, train_mode, graph_name):

        # get graph nodes and in edges

        rnd_graph_node = RndGraph(self.num_nodes, self.
graph_prob)

        if self.train_mode is True:

            rnd_graph = rnd_graph_node.make_graph_obj()

            self.node_list, self.incoming_edge_list = 
rnd_graph_node.get_graph_config(rnd_graph)

        else:

        # define source Node

        self.list_of_modules = 
nn.ModuleList([GraphNode(self.incoming_edge_list[0], 
self.input_ch, self.output_ch, 

stride_length=2)])

        # define the sink Node

self.list_of_modules.extend([GraphNode(self.incoming_
edge_list[n], self.output_ch, self.output_ch) 

                                     for n in self.node_
list if n > 0])
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In the __init__ method of this class, �rst, an abstract random graph is generated. 

Its list of nodes and edges are derived. Using the GraphNode class, each abstract 

node of this abstract random graph is encapsulated as a neuron of the desired 

neural network. Finally, a source or input node and a sink or an output node  

are added to the network to make the neural network ready for the image 

classi�cation task.

�e forward method is also unconventional, as shown here:

    def forward(self, x):

        # source vertex

        op = self.list_of_modules[0].forward(x)

        mem_dict[0] = op

        # the rest of the vertices

        for n in range(1, len(self.node_list) - 1):

            if len(self.incoming_edge_list[n]) > 1:

                op = self.list_of_modules[n].
forward(*[mem_dict[incoming_vtx] 

                                                        
for incoming_vtx in self.incoming_edge_list[n]])

            mem_dict[n] = op

        for incoming_vtx in range(1, len(self.incoming_
edge_list[self.num_nodes + 1])):

            op += mem_dict[self.incoming_edge_list[self.
num_nodes + 1][incoming_vtx]]

        return op / len(self.incoming_edge_list[self.num_
nodes + 1])

First, a forward pass is run for the source neuron, and then a series of forward passes 
are run for the subsequent neurons based on the list_of_nodes for the graph. �e 
individual forward passes are executed using list_of_modules. Finally, the forward 
pass through the sink neuron gives us the output of this graph.

Next, we will use these de�ned modules and the randomly wired graph class to build the 
actual RandWireNN model class.
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Transforming a random graph into a neural network

In the previous step, we de�ned one randomly wired graph. However, as we mentioned 
at the beginning of this exercise, a randomly wired neural network consists of several 
staged randomly wired graphs. �e rationale behind that is to have a di�erent (increasing) 
number of channels/features as we progress from the input neuron to the output neuron 
in an image classi�cation task. �is would be impossible with just one randomly wired 
graph because the number of channels is constant through one such graph, by design. 
Let's get started:

1. In this step, we de�ne the ultimate randomly wired neural network. �is will 

have three randomly wired graphs cascaded next to each other. Each graph will 

have double the number of channels compared to the previous graph to help 

us align with the general practice of increasing the number of channels (while 

downsampling spatially) in an image classi�cation task:

class RandWireNNModel(nn.Module):

    def __init__(self, num_nodes, graph_prob, input_ch, 
output_ch, train_mode):

        self.conv_layer_1 = nn.Sequential(

            nn.Conv2d(in_channels=3, out_channels=self.
output_ch, kernel_size=3, padding=1),

            nn.BatchNorm2d(self.output_ch) )

        self.conv_layer_2 = … 

        self.conv_layer_3 = … 

        self.conv_layer_4 = … 

        self.classifier_layer = nn.Sequential(

            nn.Conv2d(in_channels=self.input_ch*8, out_
channels=1280, kernel_size=1), nn.BatchNorm2d(1280))

        self.output_layer = nn.Sequential(nn.
Dropout(self.dropout), nn.Linear(1280, self.class_num))

�e __init__ method starts with a regular 3x3 convolutional layer, followed by 

three staged randomly wired graphs with channels that double in terms of numbers. 

�is is followed by a fully connected layer that �attens the convolutional output from 

the last neuron of the last randomly wired graph into a vector that's 1280 in size.

2. Finally, another fully connected layer produces a 10-sized vector containing the 

probabilities for the 10 classes, as follows:

    def forward(self, x):

        x = self.conv_layer_1(x)
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        x = self.conv_layer_2(x)

        x = self.conv_layer_3(x)

        x = self.conv_layer_4(x)

        x = self.classifier_layer(x)

        # global average pooling

        _, _, h, w = x.size()

        x = F.avg_pool2d(x, kernel_size=[h, w])

        x = torch.squeeze(x)

        x = self.output_layer(x)

        return x

�e forward method is quite self-explanatory, besides the global average pooling that is 
applied right a�er the �rst fully connected layer. �is helps reduce dimensionality and the 
number of parameters in the network.

At this stage, we have successfully de�ned the RandWireNN model, loaded the datasets, 
and de�ned the model training routine. Now, we are all set to run the model training loop.

Training the RandWireNN model

In this section, we will set the model's hyperparameters and train the RandWireNN 
model. Let's get started:

1. We have de�ned all the building blocks for our exercise. Now, it is time to execute it. 

First, let's declare the necessary hyperparameters:

num_epochs = 5

graph_probability = 0.7

node_channel_count = 64

num_nodes = 16

lrate = 0.1

batch_size = 64

train_mode = True

2. Having declared the hyperparameters, we instantiate the RandWireNN model, 

along with the optimizer and loss function:

rand_wire_model = RandWireNNModel(num_nodes, graph_
probability, node_channel_count, node_channel_count, 
train_mode).to(device)
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optim_module = optim.SGD(rand_wire_model.parameters(), 
lr=lrate, weight_decay=1e-4, momentum=0.8)

loss_func = nn.CrossEntropyLoss().to(device)

3. Finally, we begin training the model. We're training the model for 5 epochs here for 

demonstration purposes, but you are encouraged to train for longer to see the boost 

in performance:

for ep in range(1, num_epochs + 1):

    epochs.append(ep)

    training_loss, training_accuracy = train(rand_wire_
model, train_dataloader, optim_module, loss_func, ep, 
lrate)

    test_accuracy = accuracy(rand_wire_model, test_
dataloader)

    test_accuracies.append(test_accuracy)

    training_losses.append(training_loss)

    training_accuracies.append(training_accuracy)

    if best_test_accuracy < test_accuracy:

        torch.save(model_state, './model_checkpoint/' + 
model_filename + 'ckpt.t7')

    print("model train time: ", time.time() - start_time)

�is should result in the following output:

Figure 5.7 – RandWireNN training logs
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It is evident from these logs that the model is progressively learning as the epochs 
progress. �e performance on the validation set seems to be consistently increasing, which 
indicates model generalizability.

With that, we have created a model with no particular architecture in mind that can 
reasonably perform the task of image classi�cation on the CIFAR-10 dataset.

Evaluating and visualizing the RandWireNN model

Finally, we will look at this model's test set performance before brie�y exploring the model 
architecture visually. Let's get started:

1. Once the model has been trained, we can evaluate it on the test set:

rand_wire_nn_model.load_state_dict(model_
checkpoint['model'])

for test_data, test_label in test_dataloader:

    success += pred.eq(test_label.data).sum()

    print(f"test accuracy: {float(success) * 100. / 
len(test_dataloader.dataset)} %")

�is should result in the following output:

Figure 5.8 – RandWireNN evaluation results

�e best performing model was found at the fourth epoch, with over 67% accuracy. 

Although the model is not perfect yet, we can train it for more epochs to achieve 

better performance. Also, a random model for this task would perform at an 

accuracy of 10% (because of 10 equally likely classes), so an accuracy of 67.73% is 

still promising, especially given the fact that we are using a randomly generated 

neural network architecture.

2. To conclude this exercise, let's look at the model architecture that was learned. 

�e original image is too large to be displayed here. You can �nd the full image in 

.svg format at https://github.com/PacktPublishing/Mastering-

PyTorch/blob/master/Chapter05/randwirenn.svg and in .png format 

at https://github.com/PacktPublishing/Mastering-PyTorch/

blob/master/Chapter05/randwirenn%5Brepresentational_

purpose_only%5D.png. In the following �gure, we have vertically stacked  

three parts - the input section, a mid section and the output section, of the original 

neural network:
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Figure 5.9 – RandWireNN architecture
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From this graph, we can observe the following key points:

• At the top, we can see the beginning of this neural network, which consists of a 
64-channel 3x3 2D convolutional layer, followed by a 64-channel 1x1 pointwise 2D 
convolutional layer.

• In the middle section, we can see the transition between the third- and fourth-stage 
random graphs, where we can see the sink neuron, conv_layer_3, of the stage 
3 random graph followed by the source neuron conv_layer_4, of the stage 4 
random graph.

• Lastly, the lowermost section of the graph shows the �nal output layers – the sink 
neuron (a 512-channel separable 2D convolutional layer) of the stage 4 random 
graph, followed by a fully connected �attening layer, resulting in a 1,280-size  
feature vector, followed by a fully connected so�max layer that produces the 10  
class probabilities.

Hence, we have built, trained, tested, and visualized a neural network model for image 
classi�cation without specifying any particular model architecture. We did specify  
some overarching constraints over the structure, such as the penultimate feature vector 
length (1280), the number of channels in the separable 2D convolutional layers (64),  
the number of stages in the RandWireNN model (4), the de�nition of each neuron 
(ReLU-Conv-BN triplet), and so on.

However, we didn't specify what the structure of this neural network architecture should 
look like. We used a random graph generator to do this for us, which opens up an almost 
in�nite number of possibilities in terms of �nding optimal neural network architectures.

Neural architecture search is an ongoing and promising area of research in the �eld of 
deep learning. Largely, this �ts in well with the �eld of training custom machine learning 
models for speci�c tasks, referred to as AutoML.

AutoML stands for automated machine learning as it does away with the necessity 
of having to manually load datasets, prede�ne a particular neural network model 
architecture to solve a given task, and manually deploy models into production systems. 
In Chapter 12, PyTorch and AutoML, we will discuss AutoML in detail and learn how to 
build such systems with PyTorch.
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Summary
In this chapter, we looked at two distinct hybrid types of neural networks. First, we 
looked at the transformer model – the attention-only-based models with no recurrent 
connections that have outperformed all recurrent models on multiple sequential tasks. We 
ran through an exercise where we built, trained, and evaluated a transformer model on a 
language modeling task with the WikiText-2 dataset using PyTorch. During this exercise, 
we explored the transformer architecture in detail, both through explained architectural 
diagrams as well as relevant PyTorch code.

We concluded the �rst section by brie�y discussing the successors of transformers – 
models such as BERT, GPT, and so on. We demonstrated how PyTorch helps in getting 
started with loading pre-trained versions of most of these advanced models in less than 
�ve lines of code.

In the second and �nal section of this chapter, we took up from where we le� o� in 
Chapter 3, Deep CNN Architectures, where we discussed the idea of optimizing for model 
architectures rather than optimizing for just the model parameters while �xing the 
architecture. We explored one of the approaches to do that – using randomly wired neural 
networks (RandWireNNs) – where we generated random graphs, assigned meanings to the 
nodes and edges of these graphs, and interconnected these graphs to form a neural network.

We built, trained, and evaluated a RandWireNN model for the task of image classi�cation 
on the CIFAR-10 dataset. We also visually investigated the resultant model architecture 
and zoomed into certain parts of it to understand what network structure had been 
generated for the task.

In the next chapter, we will switch gears and move away from model architectures and 
look at some interesting PyTorch applications. We will learn how to generate music and 
text through generative deep learning models using PyTorch.
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In this section, we will dive deep into generative neural network models, including deep 
generative adversarial networks. We will also cover deep reinforcement learning using 
PyTorch. Upon completing this section, you will be able to train your own deep learning 
models so that they can generate music, text, images, and more. You will also know how 
to train players (agents) for a video game.

This section comprises the following chapters:

• Chapter 6, Music and Text Generation with PyTorch

• Chapter 7, Neural Style Transfer

• Chapter 8, Deep Convolutional GANs

• Chapter 9, Deep Reinforcement Learning

Section 3:  
Generative 

Models and Deep 
Reinforcement 

Learning
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6
Music and  

Text Generation 
with PyTorch

PyTorch is a fantastic tool for both researching deep learning models and developing deep 
learning-based applications. In the previous chapters, we looked at model architectures 
across various domains and model types. We used PyTorch to build these architectures 
from scratch and used pre-trained models from the PyTorch model zoo. We will switch 
gears from this chapter onward and dive deep into generative models.

In the previous chapters, most of our examples and exercises revolved around developing 
models for classi�cation, which is a supervised learning task. However, deep learning 
models have also proven extremely e�ective when it comes to unsupervised learning 
tasks. Deep generative models are one such example. �ese models are trained using lots 
of unlabeled data. Once trained, the model can generate similar meaningful data. It does 
so by learning the underlying structure and patterns in the input data.
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In this chapter, we will develop text and music generators. For developing the text 
generator, we will utilize the transformer-based language model we trained in Chapter 
5, Hybrid Advanced Models. We will extend the transformer model using PyTorch so 
that it works as a text generator. Furthermore, we will demonstrate how to use advanced 
pre-trained transformer models in PyTorch in order to set up a text generator in a few 
lines of code. Finally, we will build a music generator model that's been trained on an 
MIDI dataset from scratch using PyTorch.

By the end of this chapter, you should be able to create your own text and music generation 
models in PyTorch. You will also be able to apply di�erent sampling or generation strategies 
to generate data from such models. �is chapter covers the following topics:

• Building a transformer-based text generator with PyTorch

• Using a pre-trained GPT 2 model as a text generator

• Generating MIDI music with LSTMs using PyTorch

Technical requirements
We will be using Jupyter notebooks for all our exercises. �e following is a list of Python 
libraries that you need to install for this chapter using pip; for example, run pip 
install torch==1.4.0 on the command line:

jupyter==1.0.0

torch==1.4.0

tqdm==4.43.0

matplotlib==3.1.2

torchtext==0.5.0

transformers==3.0.2

scikit-image==0.14.2

All the code �les that are relevant to this chapter are available at https://github.
com/PacktPublishing/Mastering-PyTorch/tree/master/Chapter06.
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Building a transformer-based text generator 

with PyTorch
We built a transformer-based language model using PyTorch in the previous chapter. 
Because a language model models the probability of a certain word following a given 
sequence of words, we are more than half-way through in building our own text generator. 
In this section, we will learn how to extend this language model as a deep generative 
model that can generate arbitrary yet meaningful sentences, given an initial textual  
cue in the form of a sequence of words.

Training the transformer-based language model
In the previous chapter, we trained a language model for 5 epochs. In this section, we 
will follow those exact same steps but will train the model for longer; that is, 50 epochs. 
�e goal here is to obtain a better performing language model that can then generate 
realistic sentences. Please note that model training can take several hours. Hence, it is 
recommended to train it in the background; for example, overnight. In order to follow 
the steps for training the language model, please follow the complete code at https://
github.com/PacktPublishing/Mastering-PyTorch/blob/master/
Chapter06/text_generation.ipynb. 

Upon training for 50 epochs, we get the following output:

Figure 6.1 – Language model training logs
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Now that we have successfully trained the transformer model for 50 epochs, we can move 
on to the actual exercise, where we will extend this trained language model as a text 
generation model.

Saving and loading the language model
Here, we will simply save the best performing model checkpoint once the training is 
complete. We can then separately load this pre-trained model:

1. Once the model has been trained, it is ideal to save it locally so that you avoid 

having to retrain it from scratch. You can save it as follows:

mdl_pth = './transformer.pth'

torch.save(best_model_so_far.state_dict(), mdl_pth)

2. We can now load the saved model so that we can extend this language model as a 

text generation model:

# load the best trained model

transformer_cached = Transformer(num_tokens, embedding_
size, num_heads, num_hidden_params, num_layers, dropout).
to(device)

transformer_cached.load_state_dict(torch.load(mdl_pth))

In this section, we re-instantiated a transformer model object and then loaded the 
pre-trained model weights into this new model object. Next, we will use this model  
to generate text.

Using the language model to generate text
Now that the model has been saved and loaded, we can extend the trained language model 
to generate text:

1. First, we must de�ne the target number of words we want to generate and provide 

an initial sequence of words as a cue to the model:

ln = 10

sntc = 'It will _'

sntc_split = sntc.split()
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2. Finally, we can generate the words one by one in a loop. At each iteration, we can 

append the predicted word in that iteration to the input sequence. �is extended 

sequence becomes the input to the model in the next iteration and so on. �e 

random seed is added to ensure consistency. By changing the seed, we can generate 

di�erent texts, as shown in the following code block:

torch.manual_seed(799)

with torch.no_grad():

    for i in range(ln):

        sntc = ' '.join(sntc_split)

        txt_ds = TEXT.numericalize([sntc_split])

        num_b = txt_ds.size(0)

        txt_ds = txt_ds.narrow(0, 0, num_b)

        txt_ds = txt_ds.view(1, -1).t().contiguous().
to(device)

        ev_X, _ = return_batch(txt_ds, i+1)

        op = transformer_cached(ev_X)

        op_flat = op.view(-1, num_tokens)

        res = TEXT.vocab.itos[op_flat.argmax(1)[0]]

        sntc_split.insert(-1, res)

print(sntc[:-2])

�is should output the following:

Figure 6.2 – Transformer generated text

As we can see, using PyTorch, we can train a language model (a transformer-based model, 
in this case) and then use it to generate text with a few additional lines of code. �e 
generated text seems to make sense. �e result of such text generators is limited by the 
amount of data the underlying language model is trained on, as well as how powerful the 
language model is. In this section, we have essentially built a text generator from scratch.

In the next section, we will load the pre-trained language model and use it as a text 
generator. We will be using an advanced successor of the transformer model – the 
generative pre-trained transformer (GPT-2). We will demonstrate how to build an 
out-of-the-box advanced text generator using PyTorch in less than 10 lines of code. We 
will also look at some strategies involved in generating text from a language model.
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Using a pre-trained GPT-2 model as a text 

generator
Using the transformers library together with PyTorch, we can load most of the latest 
advanced transformer models for performing various tasks such as language modeling, 
text classi�cation, machine translation, and so on. We demonstrated how to do so in 
Chapter 5, Hybrid Advanced Models.

In this section, we will load the pre-trained GPT-2-based language model. We will then 
extend this model so that we can use it as a text generator. �en, we will explore the 
various strategies we can follow to generate text from a pre-trained language model  
and use PyTorch to demonstrate those strategies.

Out-of-the-box text generation with GPT-2
In the form of an exercise, we will load a pre-trained GPT-2 language model using 
the transformers library and extend this language model as a text generation model to 
generate arbitrary yet meaningful texts. We will only show the important parts of the code 
for demonstration purposes. In order to access the full code, go to https://github.
com/PacktPublishing/Mastering-PyTorch/blob/master/Chapter06/
text_generation_out_of_the_box.ipynb. Follow these steps:

1. First, we need to import the necessary libraries:

from transformers import GPT2LMHeadModel, GPT2Tokenizer

import torch

We will import the GPT-2 multi-head language model and corresponding tokenizer 

to generate the vocabulary.

2. Next, we will instantiate GPT2Tokenizer and the language model. Setting a 

random seed will ensure repeatable results. We can change the seed to generate 

di�erent texts each time. Finally, we will provide an initial set of words as a cue  

to the model, as follows: 

torch.manual_seed(799)

tkz = GPT2Tokenizer.from_pretrained("gpt2")

mdl = GPT2LMHeadModel.from_pretrained('gpt2')

ln = 10

cue = "It will"
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gen = tkz.encode(cue)

ctx = torch.tensor([gen])

3. Finally, we will iteratively predict the next word for a given input sequence of words 

using the language model. At each iteration, the predicted word is appended to the 

input sequence of words for the next iteration:

prv=None

for i in range(ln):

    op, prv = mdl(ctx, past=prv)

    tkn = torch.argmax(op[..., -1, :])

    gen += [tkn.tolist()]

    ctx = tkn.unsqueeze(0)

seq = tkz.decode(gen)

print(seq)

�e output should be as follows:

Figure 6.3 – GPT-2 generated text

�is way of generating text is also called greedy search. In the next section, we will look at 
greedy search in more detail and some other text generation strategies as well.

Text generation strategies using PyTorch
When we use a trained text generation model to generate text, we typically make 
predictions word by word. We then consolidate the resulting sequence of predicted words 
as predicted text. When we are in a loop iterating over word predictions, we need to 
specify a method of �nding/predicting the next word given the previous k predictions. 
�ese methods are also known as text generation strategies, and we will discuss some 
well-known strategies in this section.
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Greedy search

�e name greedy is justi�ed by the fact that the model selects the word with the maximum 
probability at the current iteration, regardless of how many time steps further ahead they 
are. With this strategy, the model could potentially miss a highly probable word hiding 
(further ahead in time) behind a low probability word, merely because the model did 
not pursue the low probability word. �e following diagram demonstrates the greedy 
search strategy by illustrating a hypothetical scenario of what might be happening under 
the hood in step 3 of the previous exercise. At each time step, the text generation model 
outputs possible words, along with their probabilities:

Figure 6.4 – Greedy search

As we can see, at each step, the word with the highest probability is picked up by the 
model under the greedy search strategy of text generation. Note the penultimate step, 
where the model predicts the words system, people, and future with roughly equal 
probabilities. With greedy search, system is selected as the next word due to it having a 
slightly higher probability than the rest. However, you could argue that people or future 
could have led to a better or more meaningful generated text.
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�is is the core limitation of the greedy search approach. Besides, greedy search also 
results in repetitive results due to a lack of randomness. If someone wants to use  
such a text generator artistically, greedy search is not the best approach, merely due  
to its monotonicity.

In the previous section, we manually wrote the text generation loop. �anks to the 
transformers library, we can write the text generation step in three lines of code:

ip_ids = tkz.encode(cue, return_tensors='pt')

op_greedy = mdl.generate(ip_ids, max_length=ln)

seq = tkz.decode(op_greedy[0], skip_special_tokens=True)

print(seq)

�is should output the following:

Figure 6.5 – GPT-2 generated text (concise)

Notice that the generated sentence shown in Figure 6.5 has one word less than the 
sentence that was generated in Figure 6.3. �is di�erence is because in the latter code, the 
max_length argument includes the cue words. So, if we have one cue word, nine new 
words would be predicted. If we have two cue words, eight new words would be predicted 
(as is the case here), and so on.

Beam search

Greedy search is not the only way of generating texts. Beam search is a development of 
the greedy search method wherein we maintain a list of potential candidate sequences 
based on the overall predicted sequence probability, rather than just the next word 
probability. �e number of candidate sequences to be pursued is the number of beams 
along the tree of word predictions.
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�e following diagram demonstrates how beam search with a beam size of three would 
be used to produce three candidate sequences (ordered as per the overall sequence 
probability) of �ve words each:

Figure 6.6 – Beam search
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At each iteration in this beam search example, the three most likely candidate sequences 
are maintained. As we proceed further in the sequence, the possible number of candidate 
sequences increases exponentially. However, we are only interested in the top three 
sequences. �is way, we do not miss potentially better sequences as we might with  
greedy search.

In PyTorch, we can use beam search out of the box in one line of code. �e following code 
demonstrates beam search-based text generation with three beams generating the three 
most likely sentences, each containing �ve words:

op_beam = mdl.generate(

    ip_ids, 

    max_length=5, 

    num_beams=3, 

    num_return_sequences=3, 

)

for op_beam_cur in op_beam:

    print(tkz.decode(op_beam_cur, skip_special_tokens=True))

�is gives us the following output: 

Figure 6.7 – Beam search results

�e problem of repetitiveness or monotonicity still remains with the beam search. 
Di�erent runs would result in the same set of results as it deterministically looks for the 
sequence with the maximum overall probabilities. In the next section, we will look at 
some of the ways we can make the generated text more unpredictable or creative.

Top-k and top-p sampling
Instead of always picking the next word with the highest probability, we can randomly 
sample the next word out of the possible set of next words based on their relative 
probabilities. For example, in Figure 6.6, the words be, know, and show have probabilities of 
0.7, 0.2, and 0.1, respectively. Instead of always picking be against know and show, we can 
randomly sample any one of these three words based on their probabilities. If we repeat this 
exercise 10 times to generate 10 separate texts, be will be chosen roughly seven times and 
know and show will be chosen two and one times, respectively. �is gives us far too many 
di�erent possible combinations of words that beam or greedy search would never generate.
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Two of the most popular ways of generating texts using sampling techniques are known 
as top-k and top-p sampling. Under top-k sampling, we prede�ne a parameter, k, which is 
the number of candidate words that should be considered while sampling the next word. 
All the other words are discarded, and the probabilities are normalized among the top k 
words. In our previous example, if k is 2, then the word show will be discarded and the 
words be and know will have their probabilities (0.7 and 0.2, respectively) normalized to 
0.78 and 0.22, respectively.

�e following code demonstrates the top-k text generation method:

for i in range(3):

    torch.manual_seed(i)

    op = mdl.generate(

        ip_ids, 

        do_sample=True, 

        max_length=5, 

        top_k=2

    )

    seq = tkz.decode(op[0], skip_special_tokens=True)

    print(seq)

�is should generate the following output:

Figure 6.8 – Top-k search results

To sample from all possible words, instead of just the top-k words, we shall set the top-k 
argument to 0 in our code. As shown in the preceding screenshot, di�erent runs produce 
di�erent results as opposed to greedy search, which would result in the exact same result 
on each run, as shown in the following screenshot:

Figure 6.9 – Repetitive greedy search results
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Under the top-p sampling strategy, instead of de�ning the top k words to look at, we can 
de�ne a cumulative probability threshold (p) and then retain words whose probabilities 
add up to p. In our example, if p is between 0.7 and 0.9, then we discard know and show, 
if p is between 0.9 and 1.0, then we discard show, and if p is 1.0, then we keep all three 
words; that is, be, know, and show. 

�e top-k strategy can sometimes be unfair in scenarios where the probability distribution 
is �at. �is is because it clips o� words that are almost as probable as the ones that have 
been retained. In those cases, the top-p strategy would retain a larger pool of words to 
sample from and would retain a smaller pool of words in cases where the probability 
distribution is rather sharp.

�e following code demonstrates the top-p sampling method:

for i in range(3):

    torch.manual_seed(i)

    op = mdl.generate(

        ip_ids, 

        do_sample=True, 

        max_length=5, 

        top_p=0.75, 

        top_k=0

    )

    seq = tkz.decode(op[0], skip_special_tokens=True)

    print(seq)

�is should output the following:

Figure 6.10 – Top-p search results

We can set both top-k and top-p strategies together. In this example, we have set top-k 
to 0 to essentially disable the top-k strategy, and p is set to 0.75. Once again, this results 
in di�erent sentences across runs and can lead us to more creatively generated texts 
as opposed to greedy or beam search. �ere are many more text generation strategies 
available, and a lot of research is happening in this area. We encourage you to follow up on 
this further.
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A great starting point is playing around with the available text generation strategies  
in the transformers library. You can read more about it by going to this illustrative 
blog post from the makers of this library: https://huggingface.co/blog/
how-to-generate.

�is concludes our exploration of using PyTorch to generate text. In the next section, we 
will perform a similar exercise but this time for music instead of text. �e idea is to train 
an unsupervised model on a music dataset and use the trained model to generate melodies 
similar to those in the training dataset.

Generating MIDI music with LSTMs using 

PyTorch
Moving on from text, in this section, we will use PyTorch to create a machine learning 
model that can compose classical-like music. We used transformers for generating text in 
the previous section. Here, we will use an LSTM model to process sequential music data. 
We will train the model on Mozart's classical music compositions.

Each musical piece will essentially be broken down into a sequence of piano notes. We will 
be reading music data in the form of Musical Instruments Digital Interface (MIDI) �les, 
which is a well-known and commonly used format for conveniently reading and writing 
musical data across devices and environments.

A�er converting the MIDI �les into sequences of piano notes (which we call the piano 
roll), we will use them to train a next-piano-note detection system. In this system, we 
will build an LSTM-based classi�er that will predict the next piano note for the given 
preceding sequence of piano notes, of which there are 88 in total (as per the standard 88 
piano keys).

We will now demonstrate the entire process of building the AI music composer in the 
form of an exercise. Our focus will be on the PyTorch code that's used for data loading, 
model training, and generating music samples. Please note that the model training process 
may take several hours and therefore it is recommended to run the training process in the 
background; for example, overnight. �e code presented here has been curtailed in the 
interest of keeping the text short.

Details of handling the MIDI music �les are beyond the scope of this book, although you 
are encouraged to explore the full code, which is available at https://github.com/
PacktPublishing/Mastering-PyTorch/blob/master/Chapter06/music_
generation.ipynb.

Page 213



Generating MIDI music with LSTMs using PyTorch     193

Loading the MIDI music data 
First, we will demonstrate how to load the music data that is available in MIDI format. 
We will brie�y mention the code for handling MIDI data, and then illustrate how to make 
PyTorch dataloaders out of it. Let's get started:

1. As always, we will begin by importing the important libraries. Some of the new ones 

we'll be using in this exercise are as follows:

import skimage.io as io

from struct import pack, unpack

from io import StringIO, BytesIO

skimage is used to visualize the sequences of the music samples that are generated 

by the model. struct and io are used for handling the process of converting 

MIDI music data into piano rolls.

2. Next, we will write the helper classes and functions for loading MIDI �les and 

converting them into sequences of piano notes (matrices) that can be fed to the 

LSTM model. First, we de�ne some MIDI constants in order to con�gure various 

music controls such as pitch, channels, start of sequence, end of sequence, and so on:

NOTE_MIDI_OFF = 0x80

NOTE_MIDI_ON = 0x90

CHNL_PRESS = 0xD0

MIDI_PITCH_BND = 0xE0

...

3. �en, we will de�ne a series of classes that will handle MIDI data input and output 

streams, the MIDI data parser, and so on, as follows:

class MOStrm:

# MIDI Output Stream

...

class MIFl: 

# MIDI Input File Reader

...

class MOFl(MOStrm):

# MIDI Output File Writer

...
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class RIStrFl:

# Raw Input Stream File Reader

...

class ROStrFl:

# Raw Output Stream File Writer

...

class MFlPrsr:

# MIDI File Parser

...

class EvtDspch:

# Event Dispatcher

...

class MidiDataRead(MOStrm):

# MIDI Data Reader

...

4. Having handled all the MIDI data I/O-related code, we are all set to instantiate our 

own PyTorch dataset class. Before we do that, we must de�ne two crucial functions 

– one for converting the read MIDI �le into a piano roll and one for padding the 

piano roll with empty notes. �is will normalize the lengths of the musical pieces 

across the dataset:

def md_fl_to_pio_rl(md_fl):

    md_d = MidiDataRead(md_fl, dtm=0.3)

    pio_rl = md_d.pio_rl.transpose()

    pio_rl[pio_rl > 0] = 1    

    return pio_rl

def pd_pio_rl(pio_rl, mx_l=132333, pd_v=0):        

    orig_rol_len = pio_rl.shape[1]    

    pdd_rol = np.zeros((88, mx_l))

    pdd_rol[:] = pd_v    

    pdd_rol[:, - orig_rol_len:] = pio_rl

    return pdd_rol
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5. Now, we can de�ne our PyTorch dataset class, as follows:

class NtGenDataset(data.Dataset):    

    def __init__(self, md_pth, mx_seq_ln=1491):        

        ...    

    def mx_len_upd(self):        

        ...   

    def __len__(self):        

        return len(self.md_fnames_ful)    

    def __getitem__(self, index):        

        md_fname_ful = self.md_fnames_ful[index]        

        pio_rl = md_fl_to_pio_rl(md_fname_ful)

        seq_len = pio_rl.shape[1] - 1

        ip_seq = pio_rl[:, :-1]

        gt_seq = pio_rl[:, 1:]

        ...

        return (torch.FloatTensor(ip_seq_pad),

                torch.LongTensor(gt_seq_pad), torch.
LongTensor([seq_len]))

6. Besides the dataset class, we must add another helper function to post-process the 

music sequences in a batch of training data into three separate lists. �ese will be 

input sequences, output sequences, and lengths of sequences, ordered by the lengths 

of the sequences in descending order:

def pos_proc_seq(btch):

    ip_seqs, op_seqs, lens = btch    

    ...

    ord_tr_data_tups = sorted(tr_data_tups,

                                         key=lambda c: 
int(c[2]),

                                         reverse=True)

    ip_seq_splt_btch, op_seq_splt_btch, btch_splt_lens = 
zip(*ord_tr_data_tups)

    ...  

    return tps_ip_seq_btch, ord_op_seq_btch, list(ord_
btch_lens_l)
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7. For this exercise, we will be using a set of Mozart's compositions. You can download 

the dataset from here: http://www.piano-midi.de/mozart.htm . �e 

downloaded folder consists of 21 MIDI �les, which we will split into 18 training and 

three validation set �les. �e downloaded data is stored under ./mozart/train 

and ./mozart/valid. Once downloaded, we can read the data and instantiate 

our own training and validation dataset loaders:

training_dataset = NtGenDataset('./mozart/train', mx_seq_
ln=None)

training_datasetloader = data.DataLoader(training_
dataset, batch_size=5,shuffle=True, drop_last=True)

validation_dataset = NtGenDataset('./mozart/valid/', mx_
seq_ln=None)

validation_datasetloader = data.DataLoader(validation_
dataset, batch_size=3, shuffle=False, drop_last=False)

X_validation = next(iter(validation_datasetloader))

X_validation[0].shape

�is should give us the following output:

Figure 6.11 – Sample music data dimensions

As we can see, the �rst validation batch consists of three sequences of length 1,587 

(notes), where each sequence is encoded into an 88-size vector, with 88 being the 

total number of piano keys. For those of you who are trained musicians, here is a 

music sheet equivalent of the �rst few notes of one of the validation set music �les:

Figure 6.12 – Music sheet of a Mozart composition
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Alternatively, we can visualize the sequence of notes as a matrix with 88 rows, one 

per piano key. �e following is a visual matrix representation of the preceding 

melody (the �rst 300 notes out of 1,587):

Figure 6.13 – Matrix representation of a Mozart composition

Dataset citation

�e MIDI, audio (MP3, OGG), and video �les of Bernd Krueger are licensed 
under the CC BY-SA Germany License. 
Name: Bernd Krueger 

Source: http://www.piano-midi.de 
�e distribution or public playback of these �les is only allowed under identical 
license conditions. 
�e scores are open source.

We will now de�ne the LSTM model and training routine.

Defining the LSTM model and training routine
So far, we have managed to successfully load a MIDI dataset and use it to create our own 
training and validation data loaders. In this section, we will de�ne the LSTM model 
architecture, as well as the training and evaluation routines that shall be run during the 
model training loop. Let's get started:

1. First, we must de�ne the model architecture. As we mentioned earlier, we will use 

an LSTM model that consists of an encoder layer that encodes the 88-dimensional 

representation of the input data at each time step of the sequence into a 

512-dimensional hidden layer representation. �e encoder is followed by two LSTM 

layers, followed by a fully connected layer that �nally so�maxes into the 88 classes.
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As per the di�erent types of recurrent neural networks (RNNs) we discussed in 

Chapter 4, Deep Recurrent Model Architectures, this is a many-to-one sequence 

classi�cation task, where the input is the entire sequence from time step 0 to time 

step t and the output is one of the 88 classes at time step t+1, as follows:

class MusicLSTM(nn.Module):    

    def __init__(self, ip_sz, hd_sz, n_cls, lyrs=2):        

        ...       

        self.nts_enc = nn.Linear(in_features=ip_sz, out_
features=hd_sz)        

        self.bn_layer = nn.BatchNorm1d(hd_sz)        

        self.lstm_layer = nn.LSTM(hd_sz, hd_sz, lyrs)        

        self.fc_layer = nn.Linear(hd_sz, n_cls)

        

    def forward(self, ip_seqs, ip_seqs_len, hd=None):

        ...

        pkd = torch.nn.utils.rnn.pack_padded_
sequence(nts_enc_ful, ip_seqs_len)

        op, hd = self.lstm_layer(pkd, hd)

        ...

        lgts = self.fc_layer(op_nrm_drp.permute(2,0,1))

        ...

        zero_one_lgts = torch.stack((lgts, rev_lgts), 
dim=3).contiguous()

        flt_lgts = zero_one_lgts.view(-1, 2)

        return flt_lgts, hd

2. Once the model architecture has been de�ned, we can specify the model training 

routine. We will use the Adam optimizer with gradient clipping to avoid over�tting. 

Another measure that's already in place to counter over�tting is the use of a dropout 

layer, as speci�ed in the previous step:

def lstm_model_training(lstm_model, lr, ep=10, val_loss_
best=float("inf")):

    ...

    for curr_ep in range(ep):

        ...

        for batch in training_datasetloader:

            ...
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            lgts, _ = lstm_model(ip_seq_b_v, seq_l)

            loss = loss_func(lgts, op_seq_b_v)

            ...

        if vl_ep_cur < val_loss_best:

            torch.save(lstm_model.state_dict(), 'best_
model.pth')

            val_loss_best = vl_ep_cur

    return val_loss_best, lstm_model

3. Similarly, we will de�ne the model evaluation routine, where a forward pass is run 

on the model with its parameters remaining unchanged:

def evaluate_model(lstm_model):

    ...

    for batch in validation_datasetloader:

        ...

        lgts, _ = lstm_model(ip_seq_b_v, seq_l)

        loss = loss_func(lgts, op_seq_b_v)

        vl_loss_full += loss.item()

        seq_len += sum(seq_l)

    return vl_loss_full/(seq_len*88)

Now, let's train and test the music generation model.

Training and testing the music generation model
In this �nal section, we will actually train the LSTM model. We will then use the trained 
music generation model to generate a music sample that we can listen to and analyze.  
Let's get started:

1. We are all set to instantiate our model and start training it. We have used categorical 

cross-entropy as the loss function for this classi�cation task. We are training the 

model with a learning rate of 0.01 for 10 epochs:

loss_func = nn.CrossEntropyLoss().cpu()

lstm_model = MusicLSTM(ip_sz=88, hd_sz=512, n_cls=88).
cpu()

val_loss_best, lstm_model = lstm_model_training(lstm_
model, lr=0.01, ep=10)
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�is should output the following:

Figure 6. 14 – Music LSTM training logs

2. Here comes the fun part. Once we have a next-musical-note-predictor, we can use 

it as a music generator. All we need to do is simply initiate the prediction process by 

providing an initial note as a cue. �e model can then recursively make predictions 

for the next note at each time step, wherein the predictions at time step t are 

appended to the input sequence at time t+1.

Here, we will write a music generation function that takes in the trained model 

object, the intended length of music to be generated, a starting note to the 

sequence, and temperature. Temperature is a standard mathematical operation 

over the softmax function at the classi�cation layer. It is used to manipulate 

the distribution of so�max probabilities, either by broadening or shrinking the 

so�maxed probabilities distribution. �e code is as follows:

def generate_music(lstm_model, ln=100, tmp=1, seq_
st=None):

    ...
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    for i in range(ln):

        op, hd = lstm_model(seq_ip_cur, [1], hd)

        probs = nn.functional.softmax(op.div(tmp), dim=1)

        ...

    gen_seq = torch.cat(op_seq, dim=0).cpu().numpy()

    return gen_seq

Finally, we can use this function to create a brand-new music composition:

seq = generate_music(lstm_model, ln=100, tmp=1, seq_
st=None)

midiwrite('generated_music.mid', seq, dtm=0.2)

�is should create the musical piece and save it as a MIDI �le in the current directory. 

We can open the �le and play it to hear what the model has produced. Nonetheless, 

we can also view the visual matrix representation of the produced music:

io.imshow(seq)

�is should give us the following output:

Figure 6.15 – Matrix representation of an AI generated music sample
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Furthermore, here is what the generated music would look like as a music sheet:

Figure 6.16 – Music sheet of an AI generated music sample

Here, we can see that the generated melody seems to be not quite as melodious as Mozart's 
original compositions. Nonetheless, you can see consistencies in some key combinations 
that the model has learned. Moreover, the generated music quality can be enhanced by 
training the model on more data, as well as training it for more epochs.

�is concludes our exercise on using machine learning to generate music. In this section, 
we have demonstrated how to use existing musical data to train a note predictor model 
from scratch and use the trained model to generate music. In fact, you can extend 
the idea of using generative models to generate samples of any kind of data. PyTorch 
is an extremely e�ective tool when it comes to such use cases, especially due to its 
straightforward APIs for data loading, model building/training/testing, and using trained 
models as data generators. You are encouraged to try out more such tasks on di�erent use 
cases and data types.
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Summary
In this chapter, we explored generative models using PyTorch. Beginning with text 
generation, we utilized the transformer-based language model we built in the previous 
chapter to develop a text generator. We demonstrated how PyTorch can be used to convert 
a model that's been trained without supervision (a language model, in this case) into a 
data generator. A�er that, we exploited the pre-trained advanced transformer models 
that are available under the transformers library and used them as text generators. We 
discussed various text generation strategies, such as greedy search, beam search, and top-k 
and top-p sampling.

Next, we built an AI music composer from scratch. Using Mozart's piano compositions, 
we trained an LSTM model to predict the next piano note given by the preceding 
sequence of piano notes. A�er that, we used the classi�er we trained without supervision 
as a data generator to create music. �e results of both the text and the music generators 
are promising and show how powerful PyTorch can be as a resource for developing artistic 
AI generative models.

In the same artistic vein, in the next chapter, we shall learn how machine learning can be 
used to transfer the style of one image to another. With PyTorch at our disposal, we will 
use CNNs to learn artistic styles from various images and impose those styles on di�erent 
images – a task better known as neural style transfer.
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Transfer

In the previous chapter, we started exploring generative models using PyTorch. We built 
machine learning models that can generate text and music by training the models without 
supervision on text and music data, respectively. We will continue exploring generative 
modeling in this chapter by applying a similar methodology to image data. 

We will mix di�erent aspects of two di�erent images, A and B, to generate a resultant 
image, C, that contains the content of image A and the style of image B. �is task is also 
popularly known as neural style transfer because, in a way, we are transferring the style of 
image B to image A in order to achieve image C, as illustrated in the following �gure:

Figure 7.1 – Neural style transfer example
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First, we will brie�y discuss how to approach this problem and understand the idea 
behind achieving style transfer. Using PyTorch, we will then implement our own neural 
style transfer system and apply it to a pair of images. �rough this implementation 
exercise, we will also try to understand the e�ects of di�erent parameters in the style 
transfer mechanism.

By the end of this chapter, you will understand the concepts behind neural style transfer 
and be able to build and test your own neural style transfer model using PyTorch.

�is chapter covers the following topics:

• Understanding how to transfer style between images

• Implementing neural style transfer using PyTorch 

Technical requirements
We will be using Jupyter notebooks for all of our exercises. 

Here's the list of Python libraries that must be installed for this chapter using pip. For 
example, here, you must run pip install torch==1.4.0 on the command line  
and so on:

jupyter==1.0.0

torch==1.4.0

torchvision==0.5.0

matplotlib==3.1.2

Pillow==8.0.1

All the code �les that are relevant to this chapter are available at https://github.
com/PacktPublishing/Mastering-PyTorch/tree/master/Chapter07.

Understanding how to transfer style between 

images
In Chapter 3, Deep CNN Architectures, we discussed convolutional neural networks 

(CNNs) in detail. CNNs are largely the most successful class of models when working 
with image data. We have seen how CNN-based architectures are the best-performing 
architectures of neural networks on tasks such as image classi�cation, object detection, 
and so on. One of the core reasons behind this success is the ability of convolutional layers 
to learn spatial representations.
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For example, in a dog versus cat classi�er, the CNN model is essentially able to capture the 
content of an image in its higher-level features, which helps it detect dog-speci�c features 
against cat-speci�c features. We will leverage this ability of an image classi�er CNN to 
grasp the content of an image.

We know that VGG is a powerful image classi�cation model, as discussed in Chapter 3, 
Deep CNN Architectures. We are going to use the convolutional part of the VGG model 
(excluding the linear layers) to extract content-related features from an image.

We know that each convolutional layer produces, say, N feature maps of dimensions X*Y 
each. For example, let's say we have a single channel (grayscale) input image of size (3,3) 
and a convolutional layer where the number of output channels (N) is 3, the kernel size is 
(2,2) with a stride of (1,1), and there's no padding. �is convolutional layer will produce 3 
(N) feature maps each of size 2x2, hence X=2 and Y=2 in this case.

We can represent these N feature maps produced by the convolutional layer as a 2D matrix 
of size N*M, where M=X*Y. By de�ning the output of each convolutional layer as a 2D 
matrix, we can de�ne a loss function that's attached to each convolutional layer. �is loss 
function, called the content loss, is the squared loss between the expected and predicted 
outputs of the convolutional layers, as demonstrated in the following diagram, with N=3, 
X=2, and Y=2:

Figure 7.2 – Content loss schematic

As we can see, the input image (image C, as per our notation in Figure 7.1) in this example is 
transformed into three feature maps by the convolutional (conv) layer. �ese three feature 
maps, of size 2x2 each, are formatted into a 3x4 matrix. �is matrix is compared with the 
expected output, which is obtained by passing image A (the content image) through the same 
�ow. �e pixel-wise squared summed loss is then calculated, which we call the content loss.
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Now, for extracting style from an image, we will use gram matrices derived from the inner 
product between the rows of the reduced 2D matrix representations, as demonstrated in 
the following diagram:

Figure 7.3 – Style loss schematic

Gram matrices

You can read more about gram matrices here: https://mathworld.
wolfram.com/GramMatrix.html.

�e gram matrix computation is the only extra step here compared to the content loss 
calculations. Also, as we can see, the output of the pixel-wise squared summed loss is 
quite a large number compared to the content loss. Hence, this number is normalized 
by dividing it by N*X*Y; that is, the number of feature maps (N) times the length (X) 
times the breadth (Y) of a feature map. �is also helps standardize the style loss metric 
across di�erent convolutional layers, which have a di�erent N, X, and Y. Details of the 
implementation can be found in the original paper that introduced neural style transfer: 
https://arxiv.org/pdf/1508.06576.pdf.

Now that we understand the concept of content and style loss, let's take a look at how 
neural style transfer works, as follows:

1. For the given VGG (or any other CNN) network, we de�ne which convolutional 

layers in the network should have a content loss attached to them. Repeat this 

exercise for style loss.

2. Once we have those lists, we pass the content image through the network and 

compute the expected convolutional outputs (2D matrices) at the convolutional 

layers where the content loss is to be calculated.

3. Next, we pass the style image through the network and compute the expected gram 

matrices at the convolutional layers. �is is where the style loss is to be calculated, 

as demonstrated in the following diagram.
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In the following diagram, for example, the content loss is to be calculated at the second 
and third convolutional layers, while the style loss is to be calculated at the second, third, 
and ��h convolutional layers:

Figure 7.4 – Style transfer architecture schematic

Now that we have the content and style targets at the decided convolutional layers, we are 
all set to generate an image that contains the content of the content image and the style of 
the style image.

For initialization, we can either use a random noise matrix as our starting point for the 
generated image, or directly use the content image to start with. We pass this image 
through the network and compute the style and content losses at the pre-selected 
convolutional layers. We add style losses to get the total style loss and content losses to get 
the total content loss. Finally, we obtain a total loss by summing these two components in 
a weighted fashion.

If we give more weight to the style component, the generated image will have more style 
re�ected on it and vice versa. Using gradient descent, we backpropagate the loss all the way 
back to the input in order to update our generated image. A�er a few epochs, the generated 
image should evolve in a way that it produces the content and style representations that 
minimize the respective losses, thereby producing a style transferred image.

In the preceding diagram, the pooling layer is average pooling-based instead of the 
traditional max pooling. Average pooling is deliberately used for style transfer to ensure 
smooth gradient �ow. We want the generated images not to have sharp changes between 
pixels. Also, it is worth noticing that the network in the preceding diagram ends at the layer 
where the last style or content loss is calculated. Hence, in this case, because there is no loss 
associated with the sixth convolutional layer of the original network, it is meaningless to 
talk about layers beyond the ��h convolutional layer in the context of style transfer.
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In the next section, we will implement our own neural style transfer system using 
PyTorch. With the help of a pre-trained VGG model, we will use the concepts we've 
discussed in this section to generate artistically styled images. We will also explore the 
impact of tuning the various model parameters on the content and texture/style of 
generated images.

Implementing neural style transfer using 

PyTorch
Having discussed the internals of a neural style transfer system, we are all set to build one 
using PyTorch. In the form of an exercise, we will load a style and a content image. �en, 
we will load the pre-trained VGG model. A�er de�ning which layers to compute the 
style and content loss on, we will trim the model so that it only retains the relevant layers. 
Finally, we will train the neural style transfer model in order to re�ne the generated image 
epoch by epoch.

Loading the content and style images
In this exercise, we will only show the important parts of the code for demonstration 
purposes. To access the full code, go to https://github.com/PacktPublishing/
Mastering-PyTorch/blob/master/Chapter07/neural_style_transfer.
ipynb. Follow these steps:

1. Firstly, we need to import the necessary libraries by running the following lines  

of code:

from PIL import Image

import matplotlib.pyplot as pltimport torch

import torch.nn as nn

import torch.optim as optim

import torchvisiondvc = torch.device("cuda" if torch.
cuda.is_available() else "cpu")

We import image I/O-related libraries to load the content and style images and 

display the generated image. We also import standard Torch dependencies for the 

style transfer model's training, along with the torchvision library to load the 

pre-trained VGG model and other computer vision-related utilities.

Page 231



Implementing neural style transfer using PyTorch     211

2. Next, we need a style and content image. We will use https://unsplash.com/ 

to download an image of each kind. �e downloaded images are included in the 

code repository for this book. In the following code, we are writing a function that 

will load the images as tensors:

def image_to_tensor(image_filepath,  image_
dimension=128):

    img = Image.open(image_filepath).convert('RGB')

    # display image

    … 

    torch_transformation =       torchvision.transforms.
Compose([

        torchvision.transforms.Resize(img_size),

        torchvision.transforms.ToTensor()

                              ])

    img = torch_transformation(img).unsqueeze(0)

    return img.to(dvc, torch.float)

style_image = image_to_tensor("./images/style.jpg")

content_image =image_to_tensor("./images/content.jpg")

�is should give us the following output:

Figure 7.5 – Style and content images
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So, the content image is a real-life photograph of the Taj Mahal, whereas the style image 
is an art painting. Using style transfer, we hope to generate an artistic Taj Mahal painting. 
However, before we do that, we need to load and trim the VGG19 model.

Loading and trimming the pre-trained VGG19 model
In this part of the exercise, we will use a pre-trained VGG model and retain its 
convolutional layers. We will make some minor changes to the model to make it usable for 
neural style transfer. Let's get started:

1. We already have the content and style images. Here, we will load the pre-trained 

VGG19 model and use its convolutional layers to generate the content and style 

targets to yield the content and style losses, respectively:

vgg19_model = torchvision.models.vgg19(pretrained=True).
to(dvc)

print(vgg19_model)

�e output should be as follows:

Figure 7.6 – VGG19 model
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2. We do not need the linear layers; that is, we only need the convolutional part of the 

model. In the preceding code, this can be achieved by only retaining the features 

attribute of the model object, as follows:

vgg19_model = vgg19_model.features

Note

In this exercise, we are not going to tune the parameters of the VGG model. 
All we are going to tune is the pixels of the generated image, right at the input 
end of the model. Hence, we will ensure that the parameters of the loaded VGG 
model are �xed.

3. We must freeze the parameters of the VGG model with the following code:

for param in vgg19_model.parameters():

    param.requires_grad_(False)

4. Now that we've loaded the relevant section of the VGG model, we need to change 

the maxpool layers into average pooling layers, as discussed in the previous 

section. While doing so, we will take note of where the convolutional layers are 

located in the model:

conv_indices = []for i in range(len(vgg19_model)):

    if vgg19_model[i]._get_name() == 'MaxPool2d':

        vgg19_model[i] =  nn.AvgPool2d(kernel_size=vgg19_
model[i].kernel_size, 

stride=vgg19_model[i].stride, padding=vgg19_model[i].
padding)

    if vgg19_model[i]._get_name() == 'Conv2d':

        conv_indices.append(i)

 
conv_indices = dict(enumerate(conv_indices, 1)) 
print(vgg19_model)
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�e output should be as follows:

Figure 7.7 – Modi�ed VGG19 model

As we can see, the linear layers have been removed and the max pooling layers have been 
replaced by average pooling layers, as indicated by the red boxes in the preceding �gure.

In the preceding steps, we loaded a pre-trained VGG model and modi�ed it in order to 
use it as a neural style transfer model. Next, we will transform this modi�ed VGG model 
into a neural style transfer model.
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Building the neural style transfer model
At this point, we can de�ne which convolutional layers we want the content and style 
losses to be calculated on. In the original paper, style loss was calculated on the �rst �ve 
convolutional layers, while content loss was calculated on the fourth convolutional layer 
only. We will follow the same convention, although you are encouraged to try out di�erent 
combinations and observe their e�ects on the generated image. Follow these steps:

1. First, we list the layers we need to have the style and content loss on:

layers = {1: 's', 2: 's', 3: 's', 4: 'sc', 5: 's'}

Here, we have de�ned the �rst to ��h convolutional layers, which are attached to the 

style loss, and the fourth convolutional layer, which is attached to the content loss.

2. Now, let's remove the unnecessary parts of the VGG model. We shall only retain it 

until the ��h convolutional layer, as shown here:

vgg_layers = nn.ModuleList(vgg19_model)

last_layer_idx = conv_indices[max(layers.keys())]

vgg_layers_trimmed = vgg_layers[:last_layer_idx+1]

neural_style_transfer_model = nn.Sequential(*vgg_layers_
trimmed)

print(neural_style_transfer_model)

�is should give us the following output:

Figure 7.8 – Neural style transfer model object

As we can see, we have transformed the VGG model with 16 convolutional layers into a 
neural style transfer model with �ve convolutional layers.
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Training the style transfer model
In this section, we'll start working on the image that will be generated. We can initialize 
this image in many ways, such as by using a random noise image or using the content 
image as the initial image. Currently, we are going to start with random noise. Later, we 
will also see how using the content image as the starting point impacts the results. Follow 
these steps:

1. �e following code demonstrates the process of initializing a torch tensor with 

random numbers:

# initialize as the content image

# ip_image = content_image.clone()

# initialize as random noise:

ip_image = torch.randn(content_image.data.size(), 
device=dvc)

plt.figure()

plt.imshow(ip_image.squeeze(0).cpu().detach().numpy().
transpose(1,2,0).clip(0,1));

�is should give us the following output:

Figure 7.9 – Random noise image
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2. Finally, we can start the model training loop. First, we will de�ne the number of 

epochs to train for, the relative weightage to provide for the style and content losses, 

and instantiate the Adam optimizer for gradient descent-based optimization with a 

learning rate of 0.1:

num_epochs=180

wt_style=1e6

wt_content=1

style_losses = []

content_losses = []

opt = optim.Adam([ip_image.requires_grad_()], lr=0.1)

3. Upon starting the training loop, we initialize the style and content losses to zero 

at the beginning of the epoch, and then clip the pixel values of the input image 

between 0 and 1 for numerical stability:

for curr_epoch in range(1, num_epochs+1):    

    ip_image.data.clamp_(0, 1)

    opt.zero_grad()

    epoch_style_loss = 0

    epoch_content_loss = 0

4. At this stage, we have reached a crucial step in the training iteration. Here, we must 

calculate the style and content losses for each of the pre-de�ned style and content 

convolutional layers. �e individual style losses and content losses for each of the 

respective layers are added together to get the total style and content loss for the 

current epoch:

    for k in layers.keys():

        if 'c' in layers[k]:

            target = neural_style_transfer_model[:conv_
indices[k]+1](content_image).detach()

            ip = neural_style_transfer_model[:conv_
indices[k]+1](ip_image)

            epoch_content_loss += torch.nn.functional.
mse_loss(ip, target)

        if 's' in layers[k]:

            target = gram_matrix(neural_style_transfer_
model[:conv_indices[k]+1](style_image)).detach()
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            ip = gram_matrix(neural_style_transfer_
model[:conv_indices[k]+1](ip_image))

            epoch_style_loss += torch.nn.functional.mse_
loss(ip, target)

As shown in the preceding code, for both the style and content losses, �rst, we 

compute the style and content targets (ground truths) using the style and content 

image. We use .detach() for the targets to indicate that these are not trainable 

but just �xed target values. Next, we compute the predicted style and content 

outputs based on the generated image as input, at each of the style and content 

layers. Finally, we compute the style and content losses.

5. For the style loss, we also need to compute the gram matrix using a pre-de�ned 

gram matrix function, as shown in the following code:

def gram_matrix(ip):

    num_batch, num_channels, height, width = ip.size()

    feats = ip.view(num_batch * num_channels, width *   
height)

    gram_mat = torch.mm(feats, feats.t()) 

    return gram_mat.div(num_batch * num_channels *        
width * height)

As we mentioned earlier, we can compute an inner dot product using the torch.mm 

function. �is computes the gram matrix and normalizes the matrix by dividing it by 

the number of feature maps times the width times the height of each feature map.

6. Moving on in our training loop, now that we've computed the total style and content 

losses, we need to compute the �nal total loss as a weighted sum of these two, using 

the weights we de�ned earlier:

    epoch_style_loss *= wt_style

    epoch_content_loss *= wt_content

    total_loss = epoch_style_loss + epoch_content_loss

    total_loss.backward()
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Finally, at every k epochs, we can see the progression of our training by looking at 

the losses as well as looking at the generated image. �e following �gure shows the 

evolution of the generated style transferred image for the previous code for a total of 

180 epochs recorded at every 20 epochs:

Figure 7.10 – Neural style transfer epoch-wise generated image
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It is quite clear that the model begins by applying the style from the style image to the 
random noise. As training proceeds, the content loss starts playing its role, thereby 
imparting content to the styled image. By epoch 180, we can see the generated image, 
which looks like a good approximation of an artistic painting of the Taj Mahal. �e 
following graph shows the decreasing style and content losses as the epochs progress  
from 0 to 180:

Figure 7.11 – Style and content loss curves

Noticeably, the style loss sharply goes down initially, which is also evident in Figure 7.10 
in that the initial epochs mark the imposition of style on the image more than the content. 
At the advanced stages of training, both losses decline together gradually, resulting in a 
style transferred image, which is a decent compromise between the artwork of the style 
image and the realism of a photograph that's been taken with a camera.

Experimenting with the style transfer system
Having successfully trained a style transfer system in the previous section, we will now 
look at how the system responds to di�erent hyperparameter settings. Follow these steps:

1. In the preceding section, we set the content weight to 1 and the style weight to 

1e6. Let's increase the style weight 10x further – that is, to 1e7 – and observe how 

it a�ects the style transfer process. Upon training with the new weights for 600 

epochs, we get the following progression of style transfer:
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Figure 7.12 – Style transfer epochs with higher style weights

Here, we can see that initially, it required many more epochs than in the previous 

scenario to reach a reasonable result. More importantly, the higher style weight does 

seem to have an e�ect on the generated image. When we look at the images in the 

preceding �gure compared to the ones in Figure 7.10, we �nd that the former have a 

stronger resemblance to the style image shown in Figure 7.5.

Page 242



222     Neural Style Transfer

2. Likewise, reducing the style weight from 1e6 to 1e5 produces a more content-

focused result, as can be seen in the following screenshot:

Figure 7.13 – Style transfer epochs with lower style weights

Compared to the scenario with a higher style weight, having a lower style weight 

means it takes far fewer epochs to get a reasonable-looking result. �e amount of  

style in the generated image is much smaller and is mostly �lled with the content 

image data. We only trained this scenario for 6 epochs as the results saturate a�er 

that point.

3. A �nal change could be to initialize the generated image with the content image 

instead of the random noise, while using the original style and content weights of 

1e6 and 1, respectively. �e following �gure shows the epoch-wise progression in 

this scenario:
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Figure 7.14 – Style transfer epochs with content image initialization

By comparing the preceding �gure to Figure 7.10, we can see that having the 

content image as a starting point gives us a di�erent path of progression to getting 

a reasonable style transferred image. It seems that both the content and style 

components are being imposed on the generated image more simultaneously 

than in Figure 7.10, where the style got imposed �rst, followed by the content. �e 

following graph con�rms this hypothesis:

Figure 7.15 – Style and content loss curves with content image initialization
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As we can see, both style and content losses are decreasing together as the epochs 
progress, eventually saturating toward the end. Nonetheless, the end results in both 
Figures 7.10 and 7.14 or even Figures 7.12 and 7.13 all represent reasonable artistic 
impressions of the Taj Mahal.

We have successfully built a neural style transfer model using PyTorch, wherein using a 
content image – a photograph of the beautiful Taj Mahal – and a style image – a canvas 
painting – we generated a reasonable approximation of an artistic painting of the Taj 
Mahal. �is application can be extended to various other combinations. Swapping the 
content and style images could also produce interesting results and give more insight into 
the inner workings of the model.

You are encouraged to extend the exercise we discussed in this chapter by doing  
the following:

• Changing the list of style and content layers

• Using larger image sizes

• Trying more combinations of style and content loss weights

• Using other optimizers, such as SGD and LBFGS

• Training for longer epochs with di�erent learning rates, in order to observe the 
di�erences in the generated images across all these approaches

Summary
In this chapter, we applied the concept of generative machine learning to images by 
generating an image that contains the content of one image and the style of another – a 
task known as neural style transfer. First, we understood the idea behind the style  
transfer algorithm, especially the use of the gram matrix in order to extract styles from  
an image.

Next, we used PyTorch to build our own neural style transfer model. We used parts of 
a pre-trained VGG19 model to extract content and style information through some of 
its convolutional layers. We replaced the max pooling layers of the VGG19 model with 
average pooling layers for a smooth gradient �ow. We then input a random initial image 
to the style transfer model and with the help of a style and a content loss, we �ne-tuned 
the image pixels using gradient descent.

Page 245



Summary     225

�is input image evolves over epochs and gives us the �nal generated image, which 
contains the content of the content image and style of the style image. Finally, we 
conducted style experiments by changing the relative style loss weight and the initial input 
image to observe the e�ects on the evolution of the generated image along epochs.

�is concludes our discussions on neural style transfer using PyTorch. Note that in style 
transfer, we aren't generating data that looks like the data the model is being trained on 
(VGG19, in this case). In fact, we are generating data that is supposed to �nd the best 
compromise between two worlds – content and style. In the next chapter, we will expand 
on this paradigm, where we'll have a generator that generates fake data and there is a 
discriminator that tells apart fake versus real data. Such models are popularly known as 
generative adversarial networks (GANs). We will be exploring deep convolutional GANs 
in the next chapter.
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Deep Convolutional 

GANs

Generative neural networks have become a popular and active area of research and 
development. A huge amount of credit for this trend goes to a class of models that we  
are going to discuss in this chapter. �ese models are called generative adversarial 

networks (GANs) and were introduced in 2014. Ever since the introduction of the  
basic GAN model, various types of GANs have been, and are being, invented for  
di�erent applications.

Essentially, a GAN is composed of two neural networks – a generator and  
a discriminator. Let's look at an example of the GAN that is used to generate images.  
For such a GAN, the task of the generator would be to generate realistic-looking fake 
images, and the task of the discriminator would be to tell the real images apart from the 
fake images.

In a joint optimization procedure, the generator would ultimately learn to generate such 
good fake images that the discriminator will essentially be unable to tell them apart 
from real images. Once such a model is trained, the generator part of it can then be used 
as a reliable data generator. Besides being used as a generative model for unsupervised 
learning, GANs have also proven useful in semi-supervised learning. 
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In the image example, for instance, the features learned by the discriminator model could 
be used to improve the performance of classi�cation models trained on the image data. 
Besides semi-supervised learning, GANs have also proven to be useful in reinforcement 
learning, which is a topic that we will discuss in Chapter 9, Deep Reinforcement Learning.

A particular type of GAN that we will focus on in this chapter is the deep convolutional 

GAN (DCGAN). A DCGAN is essentially an unsupervised convolution neural network 
(CNN) model. Both the generator and the discriminator in a DCGAN are purely CNNs 
with no fully connected layers. DCGANs have performed well in generating realistic 
images, and they can be a good starting point for learning how to build, train, and run 
GANs from scratch.

In this chapter, we will �rst understand the various components within a GAN – the 
generator and the discriminator models and the joint optimization schedule. We will then 
focus on building a DCGAN model using PyTorch. Next, we will use an image dataset to 
train and test the performance of the DCGAN model. We will conclude this chapter by 
revisiting the concept of style transfer on images and exploring the Pix2Pix GAN model, 
which can e�ciently perform a style transfer on any given pair of images.

We will also learn how the various components of a Pix2Pix GAN model relate to that of 
a DCGAN model. A�er �nishing this chapter, we will truly understand how GANs work 
and will be able to build any type of GAN model using PyTorch. �is chapter is broken 
down into the following topics:

• De�ning the generator and discriminator networks

• Training a DCGAN using PyTorch

• Using GANs for style transfer

Technical requirements
We will be using Jupyter notebooks for all of our exercises. �e following is a list of 
Python libraries that should be installed for this chapter using pip. For example, run  
pip install torch==1.4.0 on the command line:

jupyter==1.0.0

torch==1.4.0

torchvision==0.5.0

All code �les relevant to this chapter are available here: https://github.com/
PacktPublishing/Mastering-PyTorch/tree/master/Chapter08.
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Defining the generator and discriminator 
networks
As mentioned earlier, GANs are composed of two components – the generator and 
the discriminator. Both of these are essentially neural networks. Generators and 
discriminators with di�erent neural architectures produce di�erent types of GANs.  
For example, DCGANs purely have CNNs as the generator and discriminator. You 
can �nd a list of di�erent types of GANs along with their PyTorch implementations at 
https://github.com/eriklindernoren/PyTorch-GAN.

For any GAN that is used to generate some kind of real data, the generator usually takes 
random noise as input and produces an output with the same dimensions as the real data. 
We call this generated output fake data. �e discriminator, on the other hand, works as  
a binary classi�er. It takes in the generated fake data and the real data (one at a time)  
as input and predicts whether the input data is real or fake. Figure 8.1 shows a diagram  
of the overall GAN model schematic:

Figure 8.1 – A GAN schematic

�e discriminator network is optimized like any binary classi�er, that is, using the binary 
cross-entropy function. �erefore, the discriminator model's motivation is to correctly 
classify real images as real and fake images as fake. �e generator network has quite the 
opposite motivation. �e generator loss is mathematically expressed as -log(D(G(x))), 
where x is random noise inputted into the generator model, G; G(x) is the generated fake 
image by the generator model; and D(G(x)) is the output probability of the discriminator 
model, D, that is, the probability of the image being real.
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�erefore, the generator loss is minimized when the discriminator thinks that the 
generated fake image is real. Essentially, the generator is trying to fool the discriminator  
in this joint optimization problem. 

In execution, these two loss functions are backpropagated alternatively. �at is, at every 
iteration of training, �rst, the discriminator is frozen, and the parameters of the generator 
networks are optimized by backpropagating the gradients from the generator loss. 

�en, the tuned generator is frozen while the discriminator is optimized by 
backpropagating the gradients from the discriminator loss. �is is what we call joint 
optimization. It has also been referred to as being equivalent to a two-player Minimax 
game in the original GAN paper, which you can �nd at https://arxiv.org/
pdf/1406.2661.pdf.

Understanding the DCGAN generator and 

discriminator 
For the particular case of DCGANs, let's consider what the generator and discriminator 
model architectures look like. As already mentioned, both are purely convolutional 
models. Figure 8.2 shows the generator model architecture for a DCGAN:

Figure 8.2 – �e DCGAN generator model architecture

First, the random noise input vector of size 64 is reshaped and projected into 128 feature 
maps of size 16x16 each. �is projection is achieved using a linear layer. From there on, 
a series of upsampling and convolutional layers follow. �e �rst upsampling layer simply 
transforms the 16x16 feature maps into 32x32 feature maps using the nearest neighbor 
upsampling strategy. 
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�is is followed by a 2D convolutional layer with a 3x3 kernel size and 128 output feature 
maps. �e 128 32x32 feature maps outputted by this convolutional layer are further 
upsampled to 64x64-sized feature maps, which is followed by two 2D convolutional layers 
resulting in the generated (fake) RGB image of size 64x64. 

Note

We have omitted the batch normalization and leaky ReLU layers to avoid 
clutter in the preceding architectural representation. �e PyTorch code in the 
next section will have these details mentioned and explained.

Now that we know what the generator model looks like, let's examine what the 
discriminator model looks like. Figure 8.3 shows the discriminator model architecture:

Figure 8.3 – �e DCGAN discriminator model architecture

As you can see, a stride of 2 at every convolutional layer in this architecture helps to 
reduce the spatial dimension, while the depth (that is, the number of feature maps) keeps 
growing. �is is a classic CNN-based binary classi�cation architecture being used here to 
classify between real images and generated fake images.

Having understood the architectures of the generator and the discriminator network, we 
can now build the entire DCGAN model based on the schematic in Figure 8.1 and train 
the DCGAN model on an image dataset. 
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In the next section, we will use PyTorch for this task. We will discuss, in detail, the 
DCGAN model instantiation, loading the image dataset, jointly training the DCGAN 
generator and discriminator, and generating sample fake images from the trained 
DCGAN generator.

Training a DCGAN using PyTorch
We have discussed the architectures of the generator and discriminator models within  
the DCGAN model in the previous section. In this section, we will build, train, and test  
a DCGAN model using PyTorch in the form of an exercise. We will use an image dataset 
to train the model and test how well the generator of the trained DCGAN model performs 
when producing fake images.

Defining the generator
In the following exercise, we will only show the important parts of the code for 
demonstration purposes. In order to access the full code, you can refer to https://
github.com/PacktPublishing/Mastering-PyTorch/blob/master/
Chapter08/dcgan.ipynb:

1. First, we need to import the required libraries, as follows:

import os

import numpy as np

import torch

import torch.nn as nn

import torch.nn.functional as F

from torch.utils.data import DataLoader

from torch.autograd import Variable

import torchvision.transforms as transforms

from torchvision.utils import save_image

from torchvision import datasets

In this exercise, we only need torch and torchvision to build the DCGAN 

model. By using torchvision, we will be able to directly use the available  

image datasets.
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2. A�er importing the libraries, we specify some model hyperparameters, as shown in 

the following code:

num_eps=10

bsize=32

lrate=0.001

lat_dimension=64

image_sz=64

chnls=1

logging_intv=200

We will be training the model for 10 epochs with a batch size of 32 and a learning 

rate of 0.001. �e expected image size is 64x64x3. lat_dimension is the length 

of the random noise vector, which essentially means that we will draw the random 

noise from a 64-dimensional latent space as input to the generator model.

3. Now we de�ne the generator model object. �e following code is in direct 

accordance with the architecture shown in Figure 8.2:

class GANGenerator(nn.Module):

    def __init__(self):

        super(GANGenerator, self).__init__()

        self.inp_sz = image_sz // 4

        self.lin =   nn.Sequential(nn.Linear(lat_
dimension, 128 * self.inp_sz ** 2))

        self.bn1 = nn.BatchNorm2d(128)

        self.up1 = nn.Upsample(scale_factor=2)

        self.cn1 = nn.Conv2d(128, 128, 3, stride=1, 
padding=1)

        self.bn2 = nn.BatchNorm2d(128, 0.8)

        self.rl1 = nn.LeakyReLU(0.2, inplace=True)

        self.up2 = nn.Upsample(scale_factor=2)

        self.cn2 = nn.Conv2d(128, 64, 3, stride=1, 
padding=1)

        self.bn3 = nn.BatchNorm2d(64, 0.8)

        self.rl2 = nn.LeakyReLU(0.2, inplace=True)

        self.cn3 = nn.Conv2d(64, chnls, 3, stride=1, 
padding=1)

        self.act = nn.Tanh()
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4. A�er de�ning the _init_ method, we de�ne the forward method, which is 

essentially just calling the layers in a sequential manner:

    def forward(self, x):

        x = self.lin(x)

        x = x.view(x.shape[0], 128, self.inp_sz, self.
inp_sz)

        x = self.bn1(x)

        x = self.up1(x)

        x = self.cn1(x)

        x = self.bn2(x)

        x = self.rl1(x)

        x = self.up2(x)

        x = self.cn2(x)

        x = self.bn3(x)

        x = self.rl2(x)

        x = self.cn3(x)

        out = self.act(x)

        return out

We have used the explicit layer-by-layer de�nition in this exercise as opposed to the 
nn.Sequential method; this is because it makes it easier to debug the model if 
something goes wrong.

We can also see the batch normalization and leaky ReLU layers in the code, which  
are not mentioned in Figure 8.2. Batch normalization is used a�er the linear or 
convolutional layers to both fasten the training process and reduce sensitivity to the  
initial network weights.

Additionally, a leaky ReLU is used as an activation function in a DCGAN instead of  
a regular ReLU because a ReLU might lose all the information for inputs with negative 
values. A leaky ReLU set with a 0.2 negative slope gives 20% weightage to incoming 
negative information, which might help us to avoid vanishing gradients during the 
training of a GAN model.

Next, we will take a look at the PyTorch code to de�ne the discriminator network.
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Defining the discriminator
Similar to the generator, we will now de�ne the discriminator model as follows: 

1. Once again, the following code is the PyTorch equivalent for the model architecture 

shown in Figure 8.3:

class GANDiscriminator(nn.Module):

    def __init__(self):

        super(GANDiscriminator, self).__init__()

        def disc_module(ip_chnls, op_chnls, bnorm=True):

            mod = [nn.Conv2d(ip_chnls, op_chnls, 3, 2, 
1), nn.LeakyReLU(0.2, inplace=True), 

                   nn.Dropout2d(0.25)] if bnorm:

                mod += [nn.BatchNorm2d(op_chnls, 0.8)]

            return mod

        self.disc_model = nn.Sequential(

            *disc_module(chnls, 16, bnorm=False),

            *disc_module(16, 32),

            *disc_module(32, 64),

            *disc_module(64, 128),

        )

        # width and height of the down-sized image

        ds_size = image_sz // 2 ** 4

        self.adverse_lyr = nn.Sequential(nn.Linear(128 * 
ds_size ** 2, 1), nn.Sigmoid())

First, we have de�ned a general discriminator module, which is a cascade of  

a convolutional layer, an optional batch normalization layer, a leaky ReLU layer,  

and a dropout layer. In order to build the discriminator model, we repeat this 

module sequentially four times – each time with a di�erent set of parameters for  

the convolutional layer. 

�e goal is to input a 64x64x3 RGB image and to increase the depth (that is, the 

number of channels) and decrease the height and width of the image as it is passed 

through the convolutional layers.

Page 256



236     Deep Convolutional GANs

�e �nal discriminator module's output is �attened and passed through the 

adversarial layer. Essentially, the adversarial layer fully connects the �attened 

representation to the �nal model output (that is, a single number). �is model 

output is then passed through a sigmoid activation function to give us the 

probability of the image being real (or not fake). 

2. �e following is the forward method for the discriminator, which takes in a 64x64 

RGB image as input and produces the probability of it being a real image:

    def forward(self, x):

        x = self.disc_model(x)

        x = x.view(x.shape[0], -1)

        out = self.adverse_lyr(x)

        return out

3. Having de�ned the generator and discriminator models, we can now instantiate one 

of each. We can also de�ne our adversarial loss function as the binary cross-entropy 

loss function in the following code:

# instantiate the discriminator and generator models

gen = GANGenerator()

disc = GANDiscriminator()

# define the loss metric

adv_loss_func = torch.nn.BCELoss()

�e adversarial loss function will be used to de�ne the generator and discriminator loss 
functions later in the training loop. Conceptually, we are using binary cross-entropy as 
the loss function because the targets are essentially binary – that is, either real images 
or fake images. And, binary cross-entropy loss is a well-suited loss function for binary 
classi�cation tasks.

Loading the image dataset
For the task of training a DCGAN to generate realistic-looking fake images, we are going 
to use the well-known MNIST dataset. �e MNIST dataset contains images of handwritten 
digits from 0 to 9. By using torchvision.datasets, we can directly download the 
MNIST dataset and create a dataset and a dataloader instance out of it:

# define the dataset and corresponding dataloader

dloader = torch.utils.data.DataLoader(

    datasets.MNIST(
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        "./data/mnist/", download=True,

        transform=transforms.Compose(

            [transforms.Resize((image_sz, image_sz)), 

             transforms.ToTensor(), transforms.Normalize([0.5], 
[0.5])]),), batch_size=bsize, shuffle=True,)

Here is an example of a real image from the MNIST dataset:

Figure 8.4 – A real image from the MNIST dataset

Dataset citation

[LeCun et al., 1998a] Y. LeCun, L. Bottou, Y. Bengio, and P. Ha�ner.  
"Gradient-based learning applied to document recognition." Proceedings of the 
IEEE, 86(11):2278-2324, November 1998.

Yann LeCun (Courant Institute, NYU) and Corinna Cortes (Google Labs, New 
York) hold the copyright of the MNIST dataset, which is a derivative work 
from the original NIST datasets. �e MNIST dataset is made available under 
the terms of the Creative Commons Attribution-Share Alike 3.0 license.

So far, we have de�ned the model architecture and the data pipeline. Now it is time  
for us to actually write the DCGAN model training routine, which we will do in the 
following section.

Training loops for DCGANs
We have already de�ned the model architecture and loaded the dataset. In this section, we 
will actually train the DCGAN model:

1. De�ning the optimization schedule: Before starting the training loop, we will 

de�ne the optimization schedule for both the generator and the discriminator. 

We will use the Adam optimizer for our model. In the original DCGAN paper 

(https://arxiv.org/pdf/1511.06434.pdf), the beta1 and beta2 

parameters of the Adam optimizer are set to 0.5 and 0.999, as opposed to the usual 

0.9 and 0.999. 
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We have retained the default values of 0.9 and 0.999 in our exercise. However,  

you are encouraged to use the exact same values mentioned in the paper for  

similar results:

# define the optimization schedule for both G and D

opt_gen = torch.optim.Adam(gen.parameters(), lr=lrate)

opt_disc = torch.optim.Adam(disc.parameters(), lr=lrate)

2. Training the generator: Finally, we can now run the training loop to train the 

DCGAN. As we will be jointly training the generator and the discriminator, the 

training routine will consist of both these steps – training the generator model 

and training the discriminator model – in an alternate fashion. We will begin with 

training the generator in the following code:

os.makedirs("./images_mnist", exist_ok=True)

for ep in range(num_eps):

    for idx, (images, _) in enumerate(dloader):

        # generate ground truths for real and fake images

        good_img = Variable(torch.FloatTensor(images.
shape[0], 1).fill_(1.0), requires_grad=False)

        bad_img = Variable(torch.FloatTensor(images.
shape[0], 1) .fill_(0.0), requires_grad=False)

        # get a real image

        actual_images = Variable(images.type(torch.
FloatTensor))

        # train the generator model

        opt_gen.zero_grad()

        # generate a batch of images based on random 
noise as input

        noise = Variable(torch.FloatTensor(np.random.
normal(0, 1, (images.shape[0], lat_dimension))))

        gen_images = gen(noise)

        # generator model optimization - how well can it 
fool the discriminator

        generator_loss = adv_loss_func(disc(gen_images), 
good_img)

        generator_loss.backward()

        opt_gen.step()
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In the preceding code, we �rst generate the ground truth labels for real and fake 

images. Real images are labeled as 1, and fake images are labeled as 0. �ese labels will 

serve as the target outputs for the discriminator model, which is a binary classi�er.

Next, we load a batch of real images from the MINST dataset loader, and we also 

use the generator to generate a batch of fake images using random noise as input.

Finally, we de�ne the generator loss as the adversarial loss between the following:

i) �e probability of realness of the fake images (produced by the generator model) 

as predicted by the discriminator model.

ii) �e ground truth value of 1.

Essentially, if the discriminator is fooled to perceive the fake generated image as  

a real image, then the generator has succeeded in its role, and the generator loss will 

be low. Once we have formulated the generator loss, we can use it to backpropagate 

gradients along the generator model in order to tune its parameters.

In the preceding optimization step of the generator model, we le� the discriminator 

model parameters unchanged and simply used the discriminator model for a 

forward pass.

3. Training the discriminator: Next, we will do the opposite, that is, we will retain the 

parameters of the generator model and train the discriminator model:

        # train the discriminator model

        opt_disc.zero_grad()

        # calculate discriminator loss as average of 
mistakes(losses) in confusing real images as fake and 
vice versa

        actual_image_loss = adv_loss_func(disc(actual_
images), good_img)

        fake_image_loss = adv_loss_func(disc(gen_images.
detach()), bad_img)

        discriminator_loss = (actual_image_loss + fake_
image_loss) / 2

        # discriminator model optimization

        discriminator_loss.backward()

        opt_disc.step()

        batches_completed = ep * len(dloader) + idx

        if batches_completed % logging_intv == 0:
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            print(f"epoch number {ep} | batch number 
{idx} | generator loss = {generator_loss.item()} \

            | discriminator loss = {discriminator_loss.
item()}")

            save_image(gen_images.data[:25], f"images_
mnist/{batches_completed}.png", nrow=5, normalize=True)

Remember that we have a batch of both real and fake images. In order to train the 
discriminator model, we will need both. We de�ne the discriminator loss simply to be the 
adversarial loss or the binary cross entropy loss as we do for any binary classi�er. 

We compute the discriminator loss for the batches of both real and fake images, keeping 
the target values at 1 for the batch of real images and at 0 for the batch of fake images. 
We then use the mean of these two losses as the �nal discriminator loss, and use it to 
backpropagate gradients to tune the discriminator model parameters.

A�er every few epochs and batches, we log the model's performance results, that is, the 
generator loss and the discriminator loss. For the preceding code, we should get an output 
similar to the following:

Figure 8.5 – DCGAN training logs

Notice how the losses are �uctuating a bit; that generally tends to happen during the 
training of GAN models due to the adversarial nature of the joint training mechanism. 
Besides outputting logs, we also save some network-generated images at regular intervals. 
Figure 8.6 shows the progression of those generated images along the �rst few epochs: 
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Figure 8.6 – DCGAN epoch-wise image generation

If we compare the results from the later epochs to the original MNIST images in Figure 
8.4, it looks like the DCGAN has learned reasonably well how to generate realistic-looking 
fake images of handwritten digits.

�at is it. We have learned how to use PyTorch to build a DCGAN model from scratch. 
�e original DCGAN paper has a few nuanced details, such as the normal initialization  
of the layer parameters of the generator and discriminator models, using speci�c beta1 
and beta2 values for the Adam optimizers, and more. We have omitted some of those 
details in the interest of focusing on the main parts of the GAN code. You are encouraged 
to incorporate those details and see how that changes the results.

Additionally, we have only used the MNIST database in our exercise. However, we can  
use any image dataset to train the DCGAN model. You are encouraged to try out this 
model on other image datasets. One popular image dataset that is used for DCGAN 
training is the celebrity faces dataset (http://mmlab.ie.cuhk.edu.hk/
projects/CelebA.html).

A DCGAN trained with this model can then be used to generate the faces of celebrities 
who do not exist. �isPersonDoesntExist (https://thispersondoesnotexist.
com/) is one such project that generates the faces of humans that do not exist. Spooky? 
Yes. �at is how powerful DCGANs and GANs, in general, are. Also, thanks to PyTorch, 
we can now build our own GANs in a few lines of code.

In the next and �nal section of this chapter, we will go beyond DCGANs and take a brief 
look at another type of GAN – the pix2pix model. �e pix2pix model can be used 
to generalize the task of style transfer in images and, more generally, the task of image-to-
image translation. We will discuss the architecture of the pix2pix model, its generator and 
discriminator, and use PyTorch to de�ne the generator and discriminator models. We will 
also contrast Pix2Pix with a DCGAN in terms of their architecture and implementation.
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Using GANs for style transfer
So far, we have only looked at DCGANs in detail. Although there exist hundreds of 
di�erent types of GAN models already, and many more are in the making, some of the 
well-known GAN models include the following:

• GAN

• DCGAN

• Pix2Pix

• CycleGAN

• SuperResolutionGAN (SRGAN)

• Context encoders

• Text-2-Image

• LeastSquaresGAN (LSGAN)

• So�maxGAN

• WassersteinGAN

Each of these GAN variants di�er by either the application they are catering to, their 
underlying model architecture, or due to some tweaks in their optimization strategy, such 
as modifying the loss function. For example, SRGANs are used to enhance the resolution 
of a low-resolution image. �e CycleGAN uses two generators instead of one, and the 
generators consist of ResNet-like blocks. �e LSGAN uses the mean square error as the 
discriminator loss function instead of the usual cross-entropy loss used in most GANs. 

It is impossible to discuss all of these GAN variants in a single chapter or even a book. 
However, in this section, we will explore one more type of GAN model that relates to both 
the DCGAN model discussed in the previous section and the neural style transfer model 
discussed in Chapter 7, Neural Style Transfer . 

�is special type of GAN generalizes the task of style transfer between images and, 
furthermore, provides a general image-to-image translation framework. It is called 
Pix2Pix, and we will brie�y explore its architecture and the PyTorch implementation of its 
generator and discriminator components.
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Understanding the pix2pix architecture
In Chapter 7, Neural Style Transfer, you may recall that a fully trained neural style transfer 
model only works on a given pair of images. Pix2Pix is a more general model that can 
transfer style between any pair of images once trained successfully. In fact, the model goes 
beyond just style transfer and can be used for any image-to-image translation application, 
such as background masking, color palette completion, and more.

Essentially, Pix2Pix works like any GAN model. �ere is a generator and a discriminator 
involved. Instead of taking in random noise as input and generating an image, as shown 
in Figure 8.1, the generator in a pix2pix model takes in a real image as input and tries 
to generate a translated version of that image. If the task at hand is style transfer, then the 
generator will try to generate a style-transferred image.

Subsequently, the discriminator now looks at a pair of images instead of just a single image, 
as was the case in Figure 8.1. A real image and its equivalent translated image is fed as 
input to the discriminator. If the translated image is a genuine one, then the discriminator 
is supposed to output 1, and if the translated image is generated by the generator, then the 
discriminator is supposed to output 0. Figure 8.7 shows the schematic for a pix2pix model:

Figure 8.7 – A Pix2Pix model schematic
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Figure 8.7 shows signi�cant similarities to Figure 8.1, which implies that the underlying 
idea is the same as a regular GAN. �e only di�erence is that the real or fake question to 
the discriminator is posed on a pair of images as opposed to a single image.

Exploring the Pix2Pix generator

�e generator sub-model used in the pix2pix model is a well-known CNN used for 
image segmentation – the UNet. Figure 8.8 shows the architecture of the UNet, which is 
used as a generator for the pix2pix model:

Figure 8.8 – �e Pix2Pix generator model architecture
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Firstly, the name, UNet, comes from the U shape of the network, as is made evident from 
the preceding diagram. �ere are two main components in this network, as follows:

• From the upper-le� corner to the bottom lies the encoder part of the network, 
which encodes the 256x256 RGB input image into a 512-sized feature vector. 

• From the upper-right corner to the bottom lies the decoder part of the network, 
which generates an image from the embedding vector of size 512. 

A key property of UNet is the skip connections, that is, the concatenation of features 
from the encoder section to the decoder section, as shown by the dotted arrows in Figure 
8.8. Using features from the encoder section helps the decoder to better localize the high-
resolution information at each upsampling step. �e concatenation always takes place 
along the depth dimension.

Essentially, the encoder section is a sequence of down-convolutional blocks, where each 
down-convolutional block is itself a sequence of a 2D convolutional layer, an instance 
normalization layer, and a leaky ReLU activation. Similarly, the decoder section consists of 
a sequence of up-convolutional blocks, where each block is a sequence of a 2D-transposed 
convolutional layer, an instance normalization layer, and a ReLU activation layer. 

�e �nal part of this UNet generator architecture is a nearest neighbor-based upsampling 
layer, followed by a 2D convolutional layer, and, �nally, a tanh activation. Let's now look 
at the PyTorch code for the UNet generator: 

1. Here is the equivalent PyTorch code for de�ning the UNet-based generator 

architecture:

class UNetGenerator(nn.Module):

    def __init__(self, chnls_in=3, chnls_op=3):

        super(UNetGenerator, self).__init__()

        self.down_conv_layer_1 = DownConvBlock(chnls_in, 
64, norm=False)

        self.down_conv_layer_2 = DownConvBlock(64, 128)

        self.down_conv_layer_3 = DownConvBlock(128, 256)

        self.down_conv_layer_4 = DownConvBlock(256, 512, 
dropout=0.5)

        self.down_conv_layer_5 = DownConvBlock(512, 512, 
dropout=0.5)

        self.down_conv_layer_6 = DownConvBlock(512, 512, 
dropout=0.5)

        self.down_conv_layer_7 = DownConvBlock(512, 512, 
dropout=0.5)
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        self.down_conv_layer_8 = DownConvBlock(512, 512, 
norm=False, dropout=0.5)

        self.up_conv_layer_1 = UpConvBlock(512, 512, 
dropout=0.5)

        self.up_conv_layer_2 = UpConvBlock(1024, 512, 
dropout=0.5)

        self.up_conv_layer_3 = UpConvBlock(1024, 512, 
dropout=0.5)

        self.up_conv_layer_4 = UpConvBlock(1024, 512, 
dropout=0.5)

        self.up_conv_layer_5 = UpConvBlock(1024, 256)

        self.up_conv_layer_6 = UpConvBlock(512, 128)

        self.up_conv_layer_7 = UpConvBlock(256, 64)

        self.upsample_layer = nn.Upsample(scale_factor=2)

        self.zero_pad = nn.ZeroPad2d((1, 0, 1, 0))

        self.conv_layer_1 = nn.Conv2d(128, chnls_op, 4, 
padding=1)

        self.activation = nn.Tanh()

As you can see, there are 8 down-convolutional layers and 7 up-convolutional 

layers. �e up-convolutional layers have two inputs, one from the previous 

up-convolutional layer output and another from the equivalent down-convolutional 

layer output, as shown by the dotted lines in Figure 8.7. 

2. We have used the UpConvBlock and DownConvBlock classes to de�ne the layers 

of the UNet model. �e following is the de�nition of these blocks, starting with the 

UpConvBlock class:

class UpConvBlock(nn.Module):

    def __init__(self, ip_sz, op_sz, dropout=0.0):

        super(UpConvBlock, self).__init__()

        self.layers = [

            nn.ConvTranspose2d(ip_sz, op_sz, 4, 2, 1),

            nn.InstanceNorm2d(op_sz), nn.ReLU(),]

        if dropout:

            self.layers += [nn.Dropout(dropout)]

    def forward(self, x, enc_ip):

        x = nn.Sequential(*(self.layers))(x)
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        op = torch.cat((x, enc_ip), 1)

        return op

�e transpose convolutional layer in this up-convolutional block consists of a 4x4 

kernel with a stride of 2 steps, which essentially doubles the spatial dimensions of 

its output compared to the input. 

In this transpose convolution layer, the 4x4 kernel is passed through every other 

pixel (due to a stride of 2) in the input image. At each pixel, the pixel value is 

multiplied with each of the 16 values in the 4x4 kernel. 

�e overlapping values of the kernel multiplication results across the image are  

then summed up, resulting in an output twice the length and twice the breadth of the 

input image. Also, in the preceding forward method, the concatenation operation 

is performed a�er the forward pass is done via the up-convolutional block. 

3. Next, here is the PyTorch code for de�ning the DownConvBlock class:

class DownConvBlock(nn.Module):

    def __init__(self, ip_sz, op_sz, norm=True, 
dropout=0.0):

        super(DownConvBlock, self).__init__()

        self.layers = [nn.Conv2d(ip_sz, op_sz, 4, 2, 1)]

        if norm:

            self.layers.append(nn.InstanceNorm2d(op_sz))

        self.layers += [nn.LeakyReLU(0.2)]

        if dropout:

            self.layers += [nn.Dropout(dropout)]

    def forward(self, x):

        op = nn.Sequential(*(self.layers))(x)

        return op

�e convolutional layer inside the down-convolutional block has a kernel of size 

4x4, a stride of 2, and the padding is activated. Because the stride value is 2, the 

output of this layer is half the spatial dimensions of its input. 

A leaky ReLU activation is also used for similar reasons as DCGANs – the ability  

to deal with negative inputs, which also helps with alleviating the vanishing 

gradients problem.
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So far, we have seen the __init__ method of our UNet-based generator. �e 

forward method is pretty straightforward herea�er:

    def forward(self, x):

        enc1 = self.down_conv_layer_1(x)

        enc2 = self.down_conv_layer_2(enc1)

        enc3 = self.down_conv_layer_3(enc2)

        enc4 = self.down_conv_layer_4(enc3)

        enc5 = self.down_conv_layer_5(enc4)

        enc6 = self.down_conv_layer_6(enc5)

        enc7 = self.down_conv_layer_7(enc6)

        enc8 = self.down_conv_layer_8(enc7)

        dec1 = self.up_conv_layer_1(enc8, enc7)

        dec2 = self.up_conv_layer_2(dec1, enc6)

        dec3 = self.up_conv_layer_3(dec2, enc5)

        dec4 = self.up_conv_layer_4(dec3, enc4)

        dec5 = self.up_conv_layer_5(dec4, enc3)

        dec6 = self.up_conv_layer_6(dec5, enc2)

        dec7 = self.up_conv_layer_7(dec6, enc1)

        final = self.upsample_layer(dec7)

        final = self.zero_pad(final)

        final = self.conv_layer_1(final)

        return self.activation(final)

Having discussed the generator part of the pix2pix model, let's take a look at the 
discriminator model as well.

Exploring the Pix2Pix discriminator

�e discriminator model, in this case, is also a binary classi�er – just as it was for the 
DCGAN. �e only di�erence is that this binary classi�er takes in two images as inputs. 
�e two inputs are concatenated along the depth dimension. Figure 8.9 shows the 
discriminator model's high-level architecture:
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Figure 8.9 – �e Pix2Pix discriminator model architecture

It is a CNN where the last 3 convolutional layers are followed by a normalization layer as 
well as a leaky ReLU activation. �e PyTorch code to de�ne this discriminator model will 
be as follows:

class Pix2PixDiscriminator(nn.Module):

    def __init__(self, chnls_in=3):

        super(Pix2PixDiscriminator, self).__init__()

        def disc_conv_block(chnls_in, chnls_op, norm=1):

            layers = [nn.Conv2d(chnls_in, chnls_op, 4, 
stride=2, padding=1)]

            if normalization:

                layers.append(nn.InstanceNorm2d(chnls_op))

            layers.append(nn.LeakyReLU(0.2, inplace=True))

            return layers

        self.lyr1 = disc_conv_block(chnls_in * 2, 64, norm=0)

        self.lyr2 = disc_conv_block(64, 128)

        self.lyr3 = disc_conv_block(128, 256)

        self.lyr4 = disc_conv_block(256, 512)
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As you can see, the 4 convolutional layers subsequently double the depth of the spatial 
representation at each step. Layers 2, 3, and 4 have added normalization layers a�er the 
convolutional layer, and a leaky ReLU activation with a negative slope of 20% is applied 
at the end of every convolutional block. Finally, here is the forward method of the 
discriminator model class in PyTorch:

    def forward(self, real_image, translated_image):

        ip = torch.cat((real_image, translated_image), 1)

        op = self.lyr1(ip)

        op = self.lyr2(op)

        op = self.lyr3(op)

        op = self.lyr4(op)

        op = nn.ZeroPad2d((1, 0, 1, 0))(op)

        op = nn.Conv2d(512, 1, 4, padding=1)(op)

        return op

First, the input images are concatenated and passed through the four convolutional 
blocks and �nally led into a single binary output that tells us the probability of the pair of 
images being genuine or fake (that is, generated by the generator model). In this way, the 
pix2pix model is trained at runtime so that the generator of the pix2pix model can 
take in any image as input and apply the image translation function that it has learned 
during training.

�e pix2pix model will be considered successful if the generated fake-translated image 
is di�cult to tell apart from a genuine translated version of the original image.

�is concludes our exploration of the pix2pix model. In principle, the overall model 
schematic for Pix2Pix is quite similar to that of the DCGAN model. �e discriminator 
network for both of these models is a CNN-based binary classi�er. �e generator network 
for the pix2pix model is a slightly more complex architecture inspired by the UNet 
image segmentation model.

Overall, we have been able to both successfully de�ne the generator and discriminator 
models for DCGAN and Pix2Pix using PyTorch, and understand the inner workings of 
these two GAN variants.

A�er �nishing this section, you should be able to get started with writing PyTorch 
code for the many other GAN variants out there. Building and training various GAN 
models using PyTorch can be a good learning experience and certainly a fun exercise. 
We encourage you to use the information from this chapter to work on your own GAN 
projects using PyTorch.
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Summary
GANs have been an active area of research and development in recent years, ever since 
their inception in 2014. �is chapter was an exploration of the concepts behind GANs, 
including the components of GANs, namely, the generator and the discriminator. We 
discussed the architectures of each of these components and the overall schematic of a 
GAN model.

Next, we did a deep dive into a particular type of GAN – the DCGAN. With the help of 
an exercise, we built a DCGAN model from scratch using PyTorch. We used the MNIST 
dataset to train the model. �e generator of the trained DCGAN model successfully 
generated realistic-looking fake images of handwritten digits a�er 10 epochs of training.

In the last section of this chapter, we explored another type of GAN, which is used for 
the task of image-to-image translation – the pix2pix model. Instead of working on just 
a pair of images, the pix2pix GAN model is architectured to generalize any image-to-
image translation task, including a style transfer for any given pair of images.

Additionally, we discussed how the pix2pix model schematic and the architecture 
of its generator and discriminator models di�er from that of the DCGAN model. �is 
concludes our ongoing discussion on generative models, which began in Chapter 6, Music 
and Text Generation with PyTorch, continued in Chapter 7, Neural Style Transfer, and now 
ends with GANs.

In the next chapter, we will change tracks and discuss one of the most exciting and 
upcoming areas of deep learning – deep reinforcement learning. �is branch of deep 
learning is still maturing. We will explore what PyTorch already has to o�er and how  
it is helping to further developments in this challenging �eld of deep learning.
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Deep Reinforcement 

Learning

Machine learning is usually classi�ed into three di�erent paradigms: supervised learning, 
unsupervised learning, and reinforcement learning (RL). Supervised learning requires 
labeled data and has been the most popularly used machine learning paradigm so far. 
However, applications based on unsupervised learning, which does not require labels, 
have been steadily on the rise, especially in the form of generative models. 

An RL, on the other hand, is a di�erent branch of machine learning that is considered to 
be the closest we have reached in terms of emulating how humans learn. It is an area of 
active research and development and is in its early stages, with some promising results. 
A prominent example is the famous AlphaGo model, built by Google's DeepMind, that 
defeated the world's best Go player.

In supervised learning, we usually feed the model with atomic input-output data pairs 
and hope for the model to learn the output as a function of the input. In RL, we are not 
keen on learning such individual input to individual output functions. Instead, we are 
interested in learning a strategy (or policy) that enables us to take a sequence of steps (or 
actions), starting from the input (state), in order to obtain the �nal output or achieve the 
�nal goal. 
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Looking at a photo and deciding whether it's a cat or a dog is an atomic input-output 
learning task that can be solved through supervised learning. However, looking at a chess 
board and deciding the next move with the aim of winning the game requires strategy, 
and we need RL for complex tasks like these.

In the previous chapters, we came across examples of supervised learning such as building 
a classi�er to classify handwritten digits using the MNIST dataset. We also explored 
unsupervised learning while building a text generation model using an unlabeled text 
corpus. 

In this chapter, we will uncover some of the basic concepts of RL and deep reinforcement 

learning (DRL). We will then focus on a speci�c and popular type of DRL model – 
the deep Q-learning Network (DQN) model. Using PyTorch, we will build a DRL 
application. We will train a DQN model to learn how to play the game of Pong against a 
computer opponent (bot).

By the end of this chapter, you will have all the necessary context to start working on your 
own DRL project in PyTorch. Additionally, you will have hands-on experience of building 
a DQN model for a real-life problem. �e skills you'll have gained in this chapter will be 
useful for working on other such RL problems.

�is chapter is broken down into the following topics:

• Reviewing reinforcement learning concepts

• Discussing Q-learning

• Understanding deep Q-learning

• Building a DQN model in PyTorch

Technical requirements
We will be using Jupyter notebooks for all of our exercises. �e following is a list of 
Python libraries that must be installed for this chapter using pip. For example, run pip 
install torch==1.4.0 on the command line:

jupyter==1.0.0

torch==1.4.0

atari-py==0.2.6

gym==0.17.2
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All the code �les that are relevant to this chapter are available at https://github.
com/PacktPublishing/Mastering-PyTorch/tree/master/Chapter09.

Reviewing reinforcement learning concepts
In a way, RL can be de�ned as learning from mistakes. Instead of getting the feedback  
for every data instance, as is the case with supervised learning, the feedback is received 
a�er a sequence of actions. �e following diagram shows the high-level schematic of an 
RL system:

Figure 9.1 – Reinforcement learning schematic 

In an RL setting, we usually have an agent, which does the learning. �e agent learns to 
make decisions and take actions according to these decisions. �e agent operates within 
a provided environment. �is environment can be thought of as a con�ned world where 
the agent lives, takes actions, and learns from its actions. An action here is simply the 
implementation of the decision the agent makes based on what it has learned.

We mentioned earlier that unlike supervised learning, RL does not have an output for 
each and every input; that is, the agent does not necessarily receive a feedback for each 
and every action. Instead, the agent works in states. Suppose it starts at an initial state, S

0
. 

It then takes an action, say a
0
. �is action transitions the state of the agent from S

0
 to S

1
, 

a�er which the agent takes another action, a
1
, and the cycle goes on. 
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Occasionally, the agent receives rewards based on its state. �e sequence of states and 
actions that the agent traverses is also known as a trajectory. Let's say the agent received  
a reward at state S

2
. In that case, the trajectory that resulted in this reward would be S

0
, a

0
, 

S
1
, a

1
, S

2
.

Note

�e rewards could either be positive or negative.

Based on the rewards, the agent learns to adjust its behavior so that it takes actions  
in a way that maximizes the long-term rewards. �is is the essence of RL. �e agent learns 
a strategy regarding how to act optimally (that is, to maximize the reward) based on the 
given state and reward.

�is learned strategy, which is basically actions expressed as a function of states and 
rewards, is called the policy of the agent. �e ultimate goal of RL is to compute a policy 
that enables the agent to always receive the maximum reward from the given situation the 
agent is placed in.

Video games are one of the best examples to demonstrate RL. Let's use the video game 
Pong as an example, which is a virtual version of table tennis. �e following is a snapshot 
of this game:

Figure 9.2 – Pong video game

Consider that the player to the right is the agent, which is represented by a short vertical 
line. Notice that there is a well-de�ned environment here. �e environment consists of 
the playing area, which is denoted by the brown pixels. �e environment also consists of 
a ball, which is denoted by a white pixel. As well as this, the environment consists of the 
boundaries of the playing area, denoted by the gray stripes and edges that the ball may 
bounce o�. Finally, and most importantly, the environment includes an opponent, which 
looks like the agent but is placed on the le�-hand side, opposite the agent.
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Usually, in an RL setting, the agent at any given state has a �nite set of possible actions, 
referred to as a discrete action space (as opposed to a continuous action space). In this 
example, the agent has two possible actions at all states – move up or move down, but with 
two exceptions. First, it can only move down when it is at the top-most position (state), 
and second, it can only move up when it is at the bottom-most position (state).

�e concept of reward in this case can be directly mapped to what happens in an actual 
table tennis game. If you miss the ball, your opponent gains a point. Whoever scores 21 
points �rst wins the game and receives a positive reward. Losing a game means negative 
rewards. Scoring a point or losing a point also results in smaller intermediate positive and 
negative rewards, respectively. A sequence of play starting from score 0-0 and leading to 
either of the players scoring 21 points is called an episode.

Training our agent for a Pong game using RL is equivalent to training someone to play 
table tennis from scratch. Training results in a policy that the agent follows while playing 
the game. In any given situation – which includes the position of the ball, the position of 
the opponent, the scoreboard, as well as the previous reward – a successfully trained agent 
moves up or down to maximize its chances of winning the game.

So far, we have discussed the basic concepts behind RL by providing an example. In  
doing so, we have repeatedly mentioned terms such as strategy, policy, and learning.  
But how does the agent actually learn the policy? �e answer is through an RL model, 
which works based on a pre-de�ned algorithm. Next, we will explore the di�erent kinds  
of RL algorithms.  

Types of reinforcement learning algorithms
In this section, we will look at the types of RL algorithms, as per the literature. We will 
then explore some of the subtypes within these types. Broadly speaking, RL algorithms 
can be categorized as either of the following:

• Model-based

• Model-free

Let's look at these one by one.
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Model-based
As the name suggests, in model-based algorithms, the agent knows about the model of the 
environment. �e model here refers to the mathematical formulation of a function that 
can be used to estimate rewards and how the states transition within the environment. 
Because the agent has some idea about the environment, it helps reduce the sample space 
to choose the next action from. �is helps with the e�ciency of the learning process. 

However, in reality, a modeled environment is not directly available most of the time. If 
we, nonetheless, want to use the model-based approach, we need to have the agent learn 
the environment model with its own experience. In such cases, the agent is highly likely 
to learn a biased representation of the model and perform poorly in the real environment. 
For this reason, model-based approaches are less frequently used for implementing RL 
systems. We will not be discussing models based on this approach in detail in this book, 
but here are some examples:

• Model-Based DRL with Model-Free Fine-Tuning (MBMF).

• Model-Based Value Estimation (MBVE) for e�cient Model-Free RL.

• Imagination-Augmented Agents (I2A) for DRL.

• AlphaZero, the famous AI bot that defeated Chess and Go champions.

Now, let's look at the other set of RL algorithms that work with a di�erent philosophy.

Model-free
�e model-free approach works without any model of the environment and is currently 
more popularly used for RL research and development. �ere are primarily two ways of 
training the agent in a model-free RL setting:

• Policy optimization

• Q-learning

Policy optimization

In this method, we formulate the policy in the form of a function of an action, given the 
current state, as demonstrated in the following equation:𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑦𝑦 =  𝐹𝐹𝛽𝛽(𝑎𝑎 | 𝑆𝑆) 
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Here, β represents the internal parameters of this function, which is updated to optimize 
the policy function via gradient ascent. �e objective function is de�ned using the policy 
function and the rewards. An approximation of the objective function may also be used in 
some cases for the optimization process. Furthermore, in some cases, an approximation 
of the policy function could be used instead of the actual policy function for the 
optimization process.

Usually, the optimizations that are performed under this approach are on-policy, which 
means that the parameters are updated based on the data gathered using the latest policy 
version. Some examples of policy optimization-based RL algorithms are as follows:

• Policy gradient: �is is the most basic policy optimization method and is where 
we directly optimize the policy function using gradient ascent. �e policy function 
outputs the probabilities of di�erent actions to be taken next, at each time step. 

• Actor-critic: Because of the on-policy nature of optimization under the policy 
gradient algorithm, every iteration of the algorithm needs the policy to be updated. 
�is takes a lot of time. �e actor-critic method introduces the use of a value 
function, as well as a policy function. �e actor models the policy function and the 
critic models the value function. 

By using a critic, the policy update process becomes faster. We will discuss the 

value function in more detail in the next section. However, we will not go into the 

mathematical details of the actor-critic method in this book.

• Trust region policy optimization (TRPO): Like the policy gradient method, TRPO 
consists of an on-policy optimization approach. In the policy-gradient approach, we 
use the gradient for updating the policy function parameters, β. Since the gradient 
is a �rst-order derivative, it can be noisy for sharp curvatures in the function. 
�is may lead us to making large policy changes that may destabilize the learning 
trajectory of the agent. 

To avoid that, TRPO proposes a trust region. It de�nes an upper limit on how 

much the policy may change in a given update step. �is ensures the stability of the 

optimization process.

• Proximal policy optimization (PPO): Similar to TRPO, PPO aims to stabilize the 
optimization process. During gradient ascent, an update is performed per data 
sample in the policy gradient approach. PPO, however, uses a surrogate objective 
function, which facilitates updates over batches of data samples. �is results in 
estimating gradients more conservatively, thereby improving the chances of the 
gradient ascent algorithm converging.
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Policy optimization functions directly work on optimizing the policy and hence are 
extremely intuitive algorithms. However, due to the on-policy nature of most of these 
algorithms, data needs to be resampled at each step a�er the policy is updated. �is  
can be a limiting factor in solving RL problems. Next, we will discuss the other kind of 
model-free algorithm that is more sample-e�cient, known as Q-learning.

Q-learning
Contrary to policy optimization algorithms, Q-learning relies on a value function instead 
of a policy function. From here on, this chapter will focus on Q-learning. We will explore 
the fundamentals of Q-learning in detail in the next section.

Discussing Q-learning
�e key di�erence between policy optimization and Q-learning is the fact that in the latter, 
we are not directly optimizing the policy. Instead, we optimize a value function. What is 
a value function? We have already learned that RL is all about an agent learning to gain 
the maximum overall rewards while traversing a trajectory of states and actions. A value 
function is a function of a given state the agent is currently at, and this function outputs  
the expected sum of rewards the agent will receive by the end of the current episode.

In Q-learning, we optimize a speci�c type of value function, known as the action-value 

function, which depends on both the current state and the action. At a given state, S, the 
action-value function determines the long-term rewards (rewards until the end of the 
episode) the agent will receive for taking action a. �is function is usually expressed as 
Q(S, a), and hence is also called the Q-function. �e action-value is also referred to as  
the Q-value.

�e Q-values for every (state, action) pair can be stored in a table where the two 
dimensions are state and action. For example, if there are four possible states, S

1
, S

2
, S

3
, 

and S
4
, and two possible actions, a

1
 and a

2
, then the eight Q-values will be stored in a 4x2 

table. �e goal of Q-learning, therefore, is to create this table of Q-values. Once the table 
is available, the agent can look up the Q-values for all possible actions from the given state 
and take the action with the maximum Q-value. However, the question is, where do we 
get the Q-values from? �e answer lies in the Bellman equation, which is mathematically 
expressed as follows: 𝑄𝑄 (𝑆𝑆𝑡𝑡, 𝑎𝑎𝑡𝑡)  =  𝑅𝑅 + 𝛾𝛾 ∗ 𝑄𝑄 (𝑆𝑆𝑡𝑡+1, 𝑎𝑎𝑡𝑡+1) 
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�e Bellman equation is a recursive way of calculating Q-values. R in this equation is the 
reward received by taking action a

t
 at state S

t
, while γ (gamma) is the discount factor, 

which is a scalar value between 0 and 1. Basically, this equation states that the Q-value for 
the current state, S

t
, and action, a

t
, is equal to the reward, R, received by taking action a

t
 

at state S
t
, plus the Q-value resulting from the most optimal action, a

t
+1, taken from the 

next state, S
t
+1, multiplied by a discount factor. �e discount factor de�nes how much 

weightage is to be given to the immediate reward versus the long-term future rewards.

Now that we have de�ned most of the underlying concepts of Q-learning, let's walk 
through an example to demonstrate how Q-learning exactly works. �e following diagram 
shows an environment that consists of �ve possible states:

Figure 9.3 – Q-learning example environment

�ere are two di�erent possible actions – moving up (a
1
) or down (a

2
). �ere are di�erent 

rewards at di�erent states ranging from +2 at state S
4
 to -1 at state S

0
. Every episode in this 

environment starts from state S
2
 and ends at either S

0
 or S

4
. Because there are �ve states 

and two possible actions, the Q-values can be stored in a 5x2 table. �e following code 
snippet shows how rewards and Q-values can be written in Python:

rwrds = [-1, 0, 0, 0, 2]

Qvals = [[0.0, 0.0], 

         [0.0, 0.0],

         [0.0, 0.0],

         [0.0, 0.0],

         [0.0, 0.0]]
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We initialize all the Q-values to zero. Also, because there are two speci�c end states, we 
need to specify those in the form of a list, as shown here:

end_states = [1, 0, 0, 0, 1]

�is basically indicates that states S
0
 and S

4
 are end states. �ere is one �nal piece we need 

to look at before we can run the complete Q-learning loop. At each step of Q-learning, the 
agent has two options with regards to taking the next action:

• Take the action that has the highest Q-value.

• Randomly choose the next action.

Why would the agent choose an action randomly? 

Remember that in Chapter 6, Music and Text Generation with PyTorch, in the Text 
generation section, we discussed how greedy search or beam search results in repetitive 
results, and hence introducing randomness helps in producing better results. With  
a similar approach, if the agent always chooses the next action based on Q-values, then it 
might get stuck choosing an action repeatedly that gives an immediate high reward in the 
short term. Hence, taking actions randomly once in a while will help the agent get out of 
such sub-optimal conditions.

Now that we've established that the agent has two possible ways of taking an action at each 
step, we need to decide which way the agent goes. �is is where the epsilon-greedy-action 
mechanism comes into play. �e following diagram shows how it works:

Figure 9.4 – Epsilon-greedy-action mechanism
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Under this mechanism, at each episode, an epsilon value is pre-decided, which is a scalar 
value between 0 and 1. In a given episode, for taking each next action, the agent generates 
a random number between 0 to 1. If the generated number is less than the pre-de�ned 
epsilon value, the agent chooses the next action randomly from the available set of next 
actions. Otherwise, the Q-values for each of the next possible actions are retrieved from 
the Q-value table, and the action with the highest Q-value is chosen. �e Python code for 
the epsilon-greedy-action mechanism is as follows:

def eps_greedy_action_mechanism(eps, S):

  rnd = np.random.uniform()

  if rnd < eps:

    return np.random.randint(0, 2)

  else:

    return np.argmax(Qvals[S])

Typically, we start with an epsilon value of 1 at the �rst episode and then linearly  
decrease it as the episodes progress. �e idea here is that we want the agent to explore 
di�erent options initially. However, as the learning process progresses, the agent is less 
susceptible to getting stuck collecting short-term rewards and hence it can better exploit 
the Q-values table.

We are now in a position to write the Python code for the main Q-learning loop, which 
will look as follows:

n_epsds = 100

eps = 1

gamma = 0.9

for e in range(n_epsds):

  S_initial = 2 # start with state S2

  S = S_initial

  while not end_states[S]:

    a = eps_greedy_action_mechanism(eps, S)

    R, S_next = take_action(S, a)

    if end_states[S_next]:

      Qvals[S][a] = R

    else:

      Qvals[S][a] = R + gamma * max(Qvals[S_next])

    S = S_next

  eps = eps - 1/n_epsds
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First, we de�ne that the agent shall be trained for 100 episodes. We begin with an epsilon 
value of 1 and we de�ne the discounting factor (gamma) as 0.9. Next, we run the 
Q-learning loop, which loops over the number of episodes. In each iteration of this loop, 
we run through an entire episode. Within the episode, we �rst initialize the state of the 
agent to S2. 

�ereon, we run another internal loop, which only breaks if the agent reaches an end state. 
Within this internal loop, we decide on the next action for the agent using the epsilon-
greedy-action mechanism. �e agent then takes the action, which transitions the agent to 
a new state and may possibly yield a reward. �e implementation for the take_action 
function is as follows:

def take_action(S, a):

  if a == 0: # move up

    S_next = S - 1

  else:

    S_next = S + 1

  return rwrds[S_next], S_next

Once we obtain the reward and the next state, we update the Q-value for the current state-
action pair using the Bellman equation. �e next state now becomes the current state and 
the process repeats. At the end of each episode, the epsilon value is reduced linearly. Once 
the entire Q-learning loop is over, we obtain a Q-values table. �is table is essentially all 
that the agent needs to operate in this environment in order to gain the maximum long-
term rewards. 

Ideally, a well-trained agent for this example would always move downward to receive the 
maximum reward of +2 at S

4
, and would avoid going toward S

0
, which contains a negative 

reward of -1.

�is completes our discussion on Q-learning. �e preceding code should help you get 
started with Q-learning in simple environments such as the one provided here. For  
more complex and realistic environments, such as video games, this approach will not 
work. Why? 

We have noticed that the essence of Q-learning lies in creating the Q-values table. In our 
example, we only had 5 states and 2 actions, and therefore the table was of size 10, which 
is manageable. But in video games such as Pong, there are far too many possible states. 
�is explodes the Q-values table's size, which makes our Q-learning algorithm extremely 
memory intensive and impractical to run. 
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�ankfully, there is a solution where we can still use the concept of Q-learning without 
our machines running out of memory. �is solution combines the worlds of Q-learning 
and deep neural networks and provides the extremely popular RL algorithm known 
as DQN. In the next section, we will discuss the basics of DQN and some of its novel 
characteristics.

Understanding deep Q-learning
Instead of creating a Q-values table, DQN uses a deep neural network (DNN) that 
outputs a Q-value for a given state-action pair. DQN is used with complex environments 
such as video games, where there are far too many states for them to be managed in a 
Q-values table. �e current image frame of the video game is used to represent the current 
state and is fed as input to the underlying DNN model, together with the current action. 

�e DNN outputs a scalar Q-value for each such input. In practice, instead of just passing 
the current image frame, N number of neighboring image frames in a given time window 
are passed as input to the model. 

We are using a DNN to solve an RL problem. �is has an inherent concern. While 
working with DNNs, we have always worked with independent and identically 

distributed (iid) data samples. However, in RL, every current output impacts the next 
input. For example, in the case of Q-learning, the Bellman equation itself suggests that the 
Q-value is dependent on another Q-value; that is, the Q-value of the next state-action pair 
impacts the Q-value of the current-state pair. 

�is implies that we are working with a constantly moving target and there is a high 
correlation between the target and the input. DQN addresses these issues with two  
novel features:

• Using two separate DNNs

• Experience replay bu�er

Let's look at these in more detail.

Using two separate DNNs
Let's rewrite the Bellman equation for DQNs:𝑄𝑄 (𝑆𝑆𝑡𝑡, 𝑎𝑎𝑡𝑡 , 𝜃𝜃)  =  𝑅𝑅 + 𝛾𝛾 ∗ 𝑄𝑄 (𝑆𝑆𝑡𝑡+1, 𝑎𝑎𝑡𝑡+1, 𝜃𝜃) 
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�is equation is mostly the same as for Q-learning except for the introduction of a new 
term, 𝜃𝜃  (theta). 𝜃𝜃  represents the weights of the DNN that the DQN model uses to get 
Q-values. But something is odd with this equation. 

Notice that 𝜃𝜃  is placed on both the le� hand-side and the right-hand side of the equation. 
�is means that at every step, we are using the same neural network for getting the 
Q-values of the current state-action, pair as well as the next state-action pair. �is means 
that we are chasing a non-stationary target because every step, 𝜃𝜃 , will be updated, which 
will change both the le�-hand side as well as the right-hand side of the equation for the 
next step, causing instability in the learning process.

�is can be more clearly seen by looking at the loss function, which the DNN will be 
trying to minimize using gradient descent. �e loss function is as follows: 𝐿𝐿 = 𝛦𝛦[(𝑅𝑅 + 𝛾𝛾 ∗ 𝑄𝑄 (𝑆𝑆𝑡𝑡+1, 𝑎𝑎𝑡𝑡+1, 𝜃𝜃)  − 𝑄𝑄 (𝑆𝑆𝑡𝑡, 𝑎𝑎𝑡𝑡 , 𝜃𝜃))2] 
Keeping R (reward) aside for a moment, having the exact same network producing 
Q-values for current and next state-action pairs will lead to volatility in the loss function 
as both terms will be constantly changing. To address this issue, DQN uses two separate 
networks – a main DNN and a target DNN. Both DNNs have the exact same architecture. 

�e main DNN is used for computing the Q-values of the current state-action pair, while 
the target DNN is used for computing the Q-values of the next (or target) state-action 
pair. However, although the weights of the main DNN are updated at every learning step, 
the weights of the target DNN are frozen. A�er every K gradient descent iterations, the 
weights of the main network are copied to the target network. �is mechanism keeps the 
training procedure relatively stable. �e weights-copying mechanism ensures accurate 
predictions from the target network.

Experience replay buffer
Because the DNN expects iid data as input, we simply cache the last X number of steps 
(frames of the video game) into a bu�er memory and then randomly sample batches 
of data from the bu�er. �ese batches are then fed as inputs to the DNN. Because the 
batches consist of randomly sampled data, the distribution looks similar to that of iid data 
samples. �is helps stabilize the DNN training process. 
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Note

Without the bu�er trick, the DNN would receive correlated data, which would 
result in poor optimization results.

�ese two tricks have proven signi�cant in contributing to the success of DQNs. Now that 
we have a basic understanding of how DQN models work and their novel characteristics, 
let's move on to the �nal section of this chapter, where we will implement our own DQN 
model. Using PyTorch, we will build a CNN-based DQN model that will learn to play 
the Atari video game known as Pong and potentially learn to win the game against the 
computer opponent.

Building a DQN model in PyTorch
We discussed the theory behind DQNs in the previous section. In this section, we will 
take a hands-on approach. Using PyTorch, we will build a CNN-based DQN model  
that will train an agent to play the video game known as Pong. �e goal of this exercise  
is to demonstrate how to develop DRL applications using PyTorch. Let's get straight into 
the exercise.

Initializing the main and target CNN models
In this exercise, we will only show the important parts of the code for demonstration 
purposes. In order to access the full code, visit https://github.com/
PacktPublishing/Mastering-PyTorch/blob/master/Chapter09/pong.
ipynb. Follow these steps:

1. First, we need to import the necessary libraries:

# general imports

import cv2

import math

import numpy as np

import random

# reinforcement learning related imports

import re

import atari_py as ap

from collections import deque

from gym import make, ObservationWrapper, Wrapper

from gym.spaces import Box

# pytorch imports 
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import torch

import torch.nn as nn

from torch import save

from torch.optim import Adam

In this exercise, besides the usual Python- and PyTorch-related imports, we are also 

using a Python library called gym. It is a Python library produced by OpenAI that 

provides a set of tools for building DRL applications. Essentially, importing gym 

does away with the need of writing all the sca�olding code for the internals of an RL 

system. It also consists of built-in environments, including one for the video game 

Pong, which we will use in this exercise. 

2. A�er importing the libraries, we must de�ne the CNN architecture for the DQN 

model. �is CNN model essentially takes in the current state input and outputs 

the probability distribution over all possible actions. �e action with the highest 

probability gets chosen as the next action by the agent. Instead of using a regression 

model to predict the Q-values for each state-action pair, we cleverly turn this into  

a classi�cation problem. 

�e Q-value regression model will have to be run separately for all possible actions, 

and we will choose the action with the highest predicted Q-value. But using this 

classi�cation model combines the task of calculating Q-values and predicting the 

best next action into one:

class ConvDQN(nn.Module):

    def __init__(self, ip_sz, tot_num_acts):

        super(ConvDQN, self).__init__()

        self._ip_sz = ip_sz

        self._tot_num_acts = tot_num_acts

        self.cnv1 = nn.Conv2d(ip_sz[0], 32, kernel_
size=8, stride=4)

        self.rl = nn.ReLU()

        self.cnv2 = nn.Conv2d(32, 64, kernel_size=4, 
stride=2)

        self.cnv3 = nn.Conv2d(64, 64, kernel_size=3, 
stride=1)

        self.fc1 = nn.Linear(self.feat_sz, 512)

        self.fc2 = nn.Linear(512, tot_num_acts)
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As we can see, the model consists of three convolutional layers – cnv1, cnv2, and 

cnv3 – with ReLU activations in-between them, followed by two fully connected 

layers. Now, let's look at what a forward pass through this model entails: 

    def forward(self, x):

        op = self.cnv1(x)

        op = self.rl(op)

        op = self.cnv2(op)

        op = self.rl(op)

        op = self.cnv3(op)

        op = self.rl(op).view(x.size()[0], -1)

        op = self.fc1(op)

        op = self.rl(op)

        op = self.fc2(op)

        return op

�e forward method simply demonstrates a forward pass by the model, where 

the input is passed through the convolutional layers, �attened, and �nally fed to the 

fully connected layers. Finally, let's look at the other model methods:

    @property

    def feat_sz(self):

        x = torch.zeros(1, *self._ip_sz)

        x = self.cnv1(x)

        x = self.rl(x)

        x = self.cnv2(x)

        x = self.rl(x)

        x = self.cnv3(x)

        x = self.rl(x)

        return x.view(1, -1).size(1)

    def perf_action(self, stt, eps, dvc):

        if random.random() > eps:

            stt=torch.from_numpy(np.float32(stt)).
unsqueeze(0).to(dvc)

            q_val = self.forward(stt)

            act = q_val.max(1)[1].item()

        else:

            act = random.randrange(self._tot_num_acts)

        return act
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In the preceding code snippet, the feat_size method is simply meant to calculate 

the size of the feature vector a�er �attening the last convolutional layer output. 

Finally, the perf_action method is the same as the take_action method we 

discussed previously in the Discussing Q-learning section. 

3. In this step, we de�ne a function that instantiates the main neural network and the 

target neural network:

def models_init(env, dvc):

    mdl = ConvDQN(env.observation_space.shape, env.
action_space.n).to(dvc)

    tgt_mdl = ConvDQN(env.observation_space.shape, env.
action_space.n).to(dvc)

    return mdl, tgt_mdl

�ese two models are instances of the same class and hence share the same architecture. 
However, they are two separate instances and hence will evolve di�erently with di�erent 
sets of weights.

Defining the experience replay buffer
As we discussed in the Understanding deep Q-learning section, the experience replay 
bu�er is a signi�cant feature of DQNs. With the help of this bu�er, we can store several 
thousand transitions (frames) of a game and then randomly sample those video frames to 
train the CNN model. �e following is the code for de�ning the replay bu�er:

class RepBfr:

    def __init__(self, cap_max):

        self._bfr = deque(maxlen=cap_max)

    def push(self, st, act, rwd, nxt_st, fin):

        self._bfr.append((st, act, rwd, nxt_st, fin))

    def smpl(self, bch_sz):

        idxs = np.random.choice(len(self._bfr), bch_sz, False)

        bch = zip(*[self._bfr[i] for i in idxs])

        st, act, rwd, nxt_st, fin = bch

        return (np.array(st), np.array(act), np.array(rwd,      
dtype=np.float32),np.array(nxt_st), np.array(fin, dtype=np.
uint8))

    def __len__(self):

        return len(self._bfr)
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Here, cap_max is the de�ned bu�er size; that is, the number of video game state 
transitions that shall be stored in the bu�er. �e smpl method is used during the CNN 
training loop to sample the stored transitions and generate batches of training data.

Setting up the environment
So far, we have mostly focused on the neural network side of DQNs. In this section, 
we will focus on building one of the foundational aspects in an RL problem – the 
environment. Follow these steps:

1. First, we must de�ne some video game environment initialization-related functions:

def gym_to_atari_format(gym_env):

    ...

def check_atari_env(env):

    ...

Using the gym library, we have access to a pre-built Pong video game environment. 

But here, we will augment the environment in a series of steps, which will include 

downsampling the video game image frames, pushing image frames to the 

experience replay bu�er, converting images into PyTorch tensors, and so on.

2. �e following are the de�ned classes that implement each of the environment 

control steps:

class CCtrl(Wrapper):

    ...

class FrmDwSmpl(ObservationWrapper):

    ...

class MaxNSkpEnv(Wrapper):

    ...

class FrRstEnv(Wrapper):

    ...

class FrmBfr(ObservationWrapper):

    ...

class Img2Trch(ObservationWrapper):

    ...

class NormFlts(ObservationWrapper):

    ...        
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�ese classes will now be used for initializing and augmenting the video  

game environment.

3. Once the environment-related classes have been de�ned, we must de�ne a �nal 

method that takes in the raw Pong video game environment as input and augments 

the environment, as follows:

def wrap_env(env_ip):

    env = make(env_ip)

    is_atari = check_atari_env(env_ip)

    env = CCtrl(env, is_atari)

    env = MaxNSkpEnv(env, is_atari)

    try:

        env_acts = env.unwrapped.get_action_meanings()

        if "FIRE" in env_acts:

            env = FrRstEnv(env)

    except AttributeError:

        pass

    env = FrmDwSmpl(env)

    env = Img2Trch(env)

    env = FrmBfr(env, 4)

    env = NormFlts(env)

    return env

Some of the code in this step have been omitted as our focus is on the PyTorch aspect of 
this exercise. Please refer to this book's GitHub repository for the full code.

Defining the CNN optimization function
In this section, we will de�ne the loss function for training our DRL model, as well as de�ne 
what needs to be done at the end of each model training iteration. Follow these steps:

1. We initialized our main and target CNN models in step 2 of the Initializing the main 

and target CNN models section. Now that we have de�ned the model architecture, 

we shall de�ne the loss function, which the model will be trained to minimize:

def calc_temp_diff_loss(mdl, tgt_mdl, bch, gm, dvc):

    st, act, rwd, nxt_st, fin = bch     
 
    st = torch.from_numpy(np.float32(st)).to(dvc)
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    nxt_st =      torch.from_numpy(np.float32(nxt_st)).
to(dvc)

    act = torch.from_numpy(act).to(dvc)

    rwd = torch.from_numpy(rwd).to(dvc)

    fin = torch.from_numpy(fin).to(dvc)  
    q_vals = mdl(st)

    nxt_q_vals = tgt_mdl(nxt_st)     
    q_val = q_vals.gather(1, act.unsqueeze(-1)).squeeze(-
1)

    nxt_q_val = nxt_q_vals.max(1)[0]

    exp_q_val = rwd + gm * nxt_q_val * (1 - fin)     
    loss = (q_val -exp_q_val.data.to(dvc)).pow(2).   
mean()

    loss.backward()

�e loss function de�ned here is derived from our earlier discussions of the loss 

function equation. �is loss is known as the time/temporal di�erence loss and is 

one of the foundational concepts of DQNs.

2. Now that the neural network architecture and loss function are in place, we shall 

de�ne the model updation function, which is called at every iteration of neural 

network training:

def upd_grph(mdl, tgt_mdl, opt, rpl_bfr, dvc, log):

    if len(rpl_bfr) > INIT_LEARN:

        if not log.idx % TGT_UPD_FRQ:

            tgt_mdl.load_state_dict(mdl.state_dict())

        opt.zero_grad()

        bch = rpl_bfr.smpl(B_S)

        calc_temp_diff_loss(mdl, tgt_mdl, bch, G, dvc)

        opt.step()

�is function samples a batch of data from the experience replay bu�er, computes the 
time di�erence loss on this batch of data, and also copies the weights of the main neural 
network to the target neural network once every TGT_UPD_FRQ iterations. TGT_UPD_
FRQ will be assigned a value later.
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Managing and running episodes
Now, let's learn how to de�ne the epsilon value:

1. First, we will de�ne a function that will update the epsilon value a�er each episode:

def upd_eps(epd):

    last_eps = EPS_FINL

    first_eps = EPS_STRT

    eps_decay = EPS_DECAY

    eps = last_eps + (first_eps - last_eps) * math.exp(-1 
* ((epd + 1) / eps_decay))

    return eps

�is function is the same as the epsilon update step in our Q-learning loop, as 

discussed in the Discussing Q-learning section. �e goal of this function is to 

linearly reduce the epsilon value per episode.

2. �e next function is to de�ne what happens at the end of an episode. If the overall 

reward that's scored in the current episode is the best we've achieved so far, we save 

the CNN model weights and print the reward value:

def fin_epsd(mdl, env, log, epd_rwd, epd, eps):

    bst_so_far = log.upd_rwds(epd_rwd)

    if bst_so_far:

        print(f"checkpointing current model weights. 
highest running_average_reward of\

 {round(log.bst_avg, 3)} achieved!")

        save(mdl.state_dict(), f"{env}.dat")

    print(f"episode_num {epd}, curr_reward: {epd_rwd},        
best_reward: {log.bst_rwd},\running_avg_reward: 
{round(log.avg, 3)}, curr_epsilon: {round(eps, 4)}")

At the end of each episode, we also log the episode number, the reward at the end 

of the current episode, a running average of reward values across the past few 

episodes, and �nally, the current epsilon value.

Page 295



Building a DQN model in PyTorch     275

3. We have �nally reached one of the most crucial function de�nitions of this exercise. 

Here, we must specify the DQN loop. �is is where we de�ne the steps that shall be 

executed in an episode:

def run_epsd(env, mdl, tgt_mdl, opt, rpl_bfr, dvc, log, 
epd):

    epd_rwd = 0.0

    st = env.reset()

    while True:

        eps = upd_eps(log.idx)

        act = mdl.perf_action(st, eps, dvc)

        env.render()

        nxt_st, rwd, fin, _ = env.step(act)

        rpl_bfr.push(st, act, rwd, nxt_st, fin)

        st = nxt_st

        epd_rwd += rwd

        log.upd_idx()

        upd_grph(mdl, tgt_mdl, opt, rpl_bfr, dvc, log)

        if fin:

            fin_epsd(mdl, ENV, log, epd_rwd, epd, eps)

            break

�e rewards and states are reset at the beginning of the episode. �en, we run an 

endless loop that only breaks if the agent reaches one of the end states. Within this 

loop, in each iteration, the following steps are executed: 

i) First, the epsilon value is modi�ed as per the linear depreciation scheme. 

ii)  �e next action is predicted by the main CNN model. �is action is executed, 

resulting in the next state and a reward. �is state transition is recorded in the 

experience replay bu�er. 

iii)  �e next state now becomes the current state and we calculate the time 

di�erence loss, which is used to update the main CNN model while keeping the 

target CNN model frozen. 

iv)  If the new current state is an end state, then we break the loop (that is, end the 

episode) and log the results for this episode.
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4. We have mentioned logging results throughout the training process. In order to 

store the various metrics around rewards and model performance, we must de�ne  

a training metadata class, which will consist of various metrics as attributes:

class TrMetadata:

    def __init__(self):

        self._avg = 0.0

        self._bst_rwd = -float("inf")

        self._bst_avg = -float("inf")

        self._rwds = []

        self._avg_rng = 100

        self._idx = 0

We will use these metrics to visualize model performance later in this exercise, once 

we've trained the model.

5. We store the model metric attributes in the previous step as private members and 

publicly expose their corresponding getter functions instead:

    @property

    def bst_rwd(self):

        ...

    @property

    def bst_avg(self):

        ...

    @property

    def avg(self):

        ...

    @property

    def idx(self):

        ...

    ...

�e idx attribute is critical for deciding when to copy the weights from the main CNN 
to the target CNN, while the avg attribute is useful for computing the running average of 
rewards that have been received in the past few episodes.

Page 297



Building a DQN model in PyTorch     277

Training the DQN model to learn Pong
Now, we have all the necessary ingredients to start training the DQN model. Let's  
get started:

1. �e following is a training wrapper function that will do everything we need it  

to do:

def train(env, mdl, tgt_mdl, opt, rpl_bfr, dvc):

    log = TrMetadata()

    for epd in range(N_EPDS):

        run_epsd(env, mdl, tgt_mdl, opt, rpl_bfr, dvc, 
log, epd)

Essentially, we initialize a logger and just run the DQN training system for a 

prede�ned number of episodes.

2. Before we actually run the training loop, we need to de�ne the hyperparameter 

values, which are as follows:

i) �e batch size for each iteration of gradient descent to tune the CNN model

ii) �e environment, which in this case is the Pong video game

iii) �e epsilon value for the �rst episode

iv) �e epsilon value for the last episode

v) �e rate of depreciation for the epsilon value

vi) Gamma; that is, the discounting factor

vii)  �e initial number of iterations that are reserved just for pushing data to the 

replay bu�er

viii) �e learning rate

ix) �e size or capacity of the experience replay bu�er

x) �e total number of episodes to train the agent for

xi)  �e number of iterations a�er which we copy the weights from the main CNN to 

the target CNN
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We can instantiate all of these hyperparameters in the following piece of code:

B_S = 64

ENV = "Pong-v4"

EPS_STRT = 1.0

EPS_FINL = 0.005

EPS_DECAY = 100000

G = 0.99

INIT_LEARN = 10000

LR = 1e-4

MEM_CAP = 20000

N_EPDS = 2000

TGT_UPD_FRQ = 1000

�ese values are experimental, and I encourage you to try changing them and 

observe the impact they have on the results.

3. �is is the last step of the exercise and is where we actually execute the DQN 

training routine, as follows:

i) First, we instantiate the game environment. 

ii)  �en, we de�ne the device that the training will happen on – either CPU or GPU, 

based on availability. 

iii)  Next, we instantiate the main and target CNN models. We also de�ne Adam as 

the optimizer for the CNN models. 

iv) We then instantiate an experience replay bu�er. 

v)  Finally, we begin training the main CNN model. Once the training routine 

�nishes, we close the instantiated environment.

�e code for this is as follows:

env = wrap_env(ENV)

dvc = torch.device("cuda") if torch.cuda.is_available() 
else torch.device("cpu")

mdl, tgt_mdl = models_init(env, dvc)

opt = Adam(mdl.parameters(), lr=LR)

rpl_bfr = RepBfr(MEM_CAP)

train(env, mdl, tgt_mdl, opt, rpl_bfr, dvc)

env.close()

Page 299



Building a DQN model in PyTorch     279

�is should give us the following output:

 

Figure 9.5 – DQN training logs
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Furthermore, the following graph shows the progression of the current rewards, best 
rewards, and average rewards, as well as the epsilon values against the progression of  
the episodes:

Figure 9.6 – DQN training curves

�e following graph shows how the epsilon value decreases over episodes during the 
training process:
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Figure 9.7 – Epsilon variation over episodes

Notice that in Figure 9.6, the running average value of rewards in an episode (red 
curve) starts at -20, which is the scenario where the agent scores 0 points in a game and 
the opponent scores all 20 points. As the episodes progress, the average rewards keep 
increasing and by episode number 1500, it crosses the zero mark. �is means that a�er 
1500 episodes of training, the agent has leveled up against the opponent.

From here onward, the average rewards are positive, which indicates that the agent is 
winning against the opponent on average. We have only trained until 2000 episodes, 
which already results in the agent winning by a margin of over 7 average points against the 
opponent. I encourage you to train it for longer and see if the agent can absolutely crush 
the opponent by always scoring all the points and winning by a margin of 20 points.

�is concludes our deep dive into the implementation of a DQN model. DQN has been 
vastly successful and popular in the �eld of RL and is de�nitely a great starting point for 
those interested in exploring the �eld further. PyTorch, together with the gym library, is a 
great resource that enables us to work in various RL environments and work with di�erent 
kinds of DRL models.

In this chapter, we have only focused on DQNs, but the lessons we've learned can be 
transferred to working with other variants of Q-learning models and other DRL algorithms.
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Summary
RL is one of the fundamental branches of machine learning and is currently one of the 
hottest, if not the hottest, areas of research and development. RL-based AI breakthroughs 
such as AlphaGo from Google's DeepMind have further increased enthusiasm and 
interest in the �eld. �is chapter provided an overview of RL and DRL and walked us 
through a hands-on exercise of building a DQN model using PyTorch.

First, we brie�y review the basic concepts of RL. We then explored the di�erent kinds 
of RL algorithms that have been developed over the years. We took a closer look at one 
such RL algorithm – the Q-learning algorithm. We then discussed the theory behind 
Q-learning, including the Bellman equation and the epsilon-greedy-action mechanism. 
We also explained how Q-learning di�ers from other RL algorithms, such as policy 
optimization methods. 

Next, we explored a speci�c type of Q-learning model – the deep Q-learning model. 
We discussed the key concepts behind DQNs and uncovered some of its novel features, 
such as the experience replay bu�er mechanism and separating main and target neural 
networks. Finally, we ran an exercise where we built a DQN system using the PyTorch 
and gym libraries, with CNNs as the underlying neural networks. In this exercise, we 
built an AI agent that successfully learned to play the video game Pong. Toward the end of 
training, the agent managed to win against the computer Pong player.

�is concludes our discussion on DRL using PyTorch. RL is a vast �eld and one chapter 
is not enough to cover everything. I encourage you to use the high-level discussions 
from this chapter to explore the details around those discussions. From the next chapter 
onward, we will focus on the practical aspects of working with PyTorch, such as model 
deployment, parallelized training, automated machine learning, and so on. In the next 
chapter, we will start by discussing how to e�ectively use PyTorch to put trained models 
into production systems.
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In this section, we will explore how to use PyTorch as a powerful tool for running light to 
extremely heavy deep learning applications. We'll then explore the journey of building 
a model and putting it into a live production system while grasping some optimization 
tricks along the way. We'll also dig deeper into the topics of neural architecture search, 
as well as explainability in AI. The final chapter of this book covers the various additional 
tools that can be used to accelerate model prototyping and productionizing in PyTorch.

Upon completing this section, you will have an understanding of using PyTorch in 
production systems at industrial scale. You will be further equipped with the latest 
PyTorch tools such as Captum and fast.ai and skills such as distributed training and 
AutoML that are crucial for building advanced deep learning systems.

This section comprises the following chapters:

• Chapter 10, Operationalizing PyTorch Models into Production

• Chapter 11, Distributed Training

• Chapter 12, PyTorch and AutoML

• Chapter 13, PyTorch and Explainable AI

• Chapter 14, Rapid Prototyping with PyTorch

Section 4:  
PyTorch in 

Production Systems

Page 304



Page 305



10
Operationalizing 

PyTorch Models into 
Production

So far in this book, we have covered how to train and test di�erent kinds of machine 
learning models using PyTorch. We started by reviewing the basic elements of PyTorch 
that enable us to work on deep learning tasks e�ciently. �en, we explored a wide range 
of deep learning model architectures and applications that can be written using PyTorch.

In this chapter, we will be focusing on taking these models into production. But what does 
that mean? Basically, we will be discussing the di�erent ways of taking a trained and tested 
model (object) into a separate environment where it can be used to make predictions or 
inferences on incoming data. �is is what is referred to as the productionization of a 
model, as the model is being deployed into a production system.

We will begin by discussing some common approaches you can take to serve PyTorch 
models in production environments, starting from de�ning a simple model inference 
function and going all the way to using model microservices. We will then take a look at 
TorchServe, which is a scalable PyTorch model-serving framework that has been recently 
(at the time of writing) and jointly developed by AWS and Facebook.
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We will then dive into the world of exporting PyTorch models using TorchScript, which, 
through serialization, makes our models independent of the Python ecosystem so that 
they can be, for instance, loaded in a C++ code base. We will also look beyond the Torch 
framework and the Python ecosystem as we explore ONNX – an open source universal 
format for machine learning models – which will help us export PyTorch trained models 
to non-PyTorch and non-Pythonic environments.

Finally, we will brie�y discuss how to use PyTorch for model serving with some of the 
well-known cloud platforms such as Amazon Web Services (AWS), Google Cloud, and 
Microso� Azure.

�roughout this chapter, we will use the handwritten digits image classi�cation 
convolutional neural network (CNN) model that we trained in Chapter 1, Overview of 
Deep Learning Using PyTorch, as our reference. We will demonstrate how that trained model 
can be deployed and exported using the di�erent approaches discussed in this chapter.

�is chapter is broken down into the following sections:

• Model serving in PyTorch

• Serving a PyTorch model using TorchServe

• Exporting universal PyTorch models using TorchScript and ONNX

• Serving PyTorch model in the cloud

Technical requirements
We will be using Jupyter notebooks and Python scripts for our exercises. Shown next is a 
list of Python libraries that shall be installed for this chapter using pip. To install them, 
run pip install torch==1.4.0 and so on at the command line:

jupyter==1.0.0

torch==1.4.0

torchvision==0.5.0

matplotlib==3.1.2

Pillow==6.2.2

torch-model-archiver==0.2.0

torchserve==0.2.0

Flask==1.1.1

onnx==1.7.0

onnx-tf==1.5.0

tensorflow==1.15.0
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All code �les relevant to this chapter are available at the following URL:  
https://github.com/PacktPublishing/Mastering-PyTorch/tree/
master/Chapter10.

Model serving in PyTorch
In this section, we will begin with building a simple PyTorch inference pipeline that can 
make predictions given some input data and the location of a previously trained and saved 
PyTorch model. We will proceed therea�er to place this inference pipeline on a model 
server that can listen to incoming data requests and return predictions. Finally, we will 
advance from developing a model server to creating a model microservice using Docker.

Creating a PyTorch model inference pipeline
We will be working on the handwritten digits image classi�cation CNN model that we 
built in Chapter 1, Overview of Deep Learning Using PyTorch, on the MNIST dataset. Using 
this trained model, we will build an inference pipeline that shall be able to predict a digit 
between 0 to 9 for a given handwritten-digit input image.

For the process of building and training the model, please refer to the Training a neural 
network using PyTorch section of Chapter 1, Overview of Deep Learning Using PyTorch. For the 
full code of this exercise, you can refer to https://github.com/PacktPublishing/
Mastering-PyTorch/blob/master/Chapter10/mnist_pytorch.ipynb.

Saving and loading a trained model

In this section, we will demonstrate how to e�ciently load a saved pre-trained PyTorch 
model, which will later be used for serving requests.

So, using the notebook code from Chapter 1, Overview of Deep Learning Using PyTorch, 
we have trained a model and evaluated it against test data samples. But what next? In 
real life, we would like to close this notebook and, later on, still be able to use this model 
that we worked hard on training to make inferences on handwritten-digit images. �is is 
where the concept of serving a model comes in.

From here, we will get into a position where we can use the preceding trained model in 
a separate Jupyter notebook without having to do any (re)training. �e crucial next step 
is to save the model object into a �le that can later be restored/de-serialized. PyTorch 
provides two main ways of doing this:

• �e less recommended way is to save the entire model object as follows:

torch.save(model, PATH_TO_MODEL)
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And then, the saved model can be later read as follows:

model = torch.load(PATH_TO_MODEL)

Although this approach looks the most straightforward, this can be problematic 

in some cases. �is is because we are not only saving the model parameters, but 

also the model classes and directory structure used in our source code. If our 

class signatures or directory structures change later, loading the model will fail in 

potentially un�xable ways.

• �e second and more recommended way is to only save the model parameters  
as follows:

torch.save(model.state_dict(), PATH_TO_MODEL)

Later, when we need to restore the model, �rst we instantiate an empty model object 

and then load the model parameters into that model object as follows:

model = ConvNet()

model.load_state_dict(torch.load(PATH_TO_MODEL))

We will use the more recommended way to save the model as shown in the 

following code:

PATH_TO_MODEL = "./convnet.pth"

torch.save(model.state_dict(), PATH_TO_MODEL)

�e convnet.pth �le is essentially a pickle �le containing model parameters.

At this point, we can safely close the notebook we were working on and open another one, 
which is available at: https://github.com/PacktPublishing/Mastering-
PyTorch/blob/master/Chapter10/run_inference.ipynb:

1. As a �rst step, we will once again need to import libraries:

import torch

2. Next, we need to instantiate an empty CNN model once again. Ideally, the model 

de�nition done in step 1 would be written in a Python script (say, cnn_model.py), 

and then we would simply need to write this:

from cnn_model import ConvNet

model = ConvNet()
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However, since we are operating in Jupyter notebooks in this exercise, we shall 

rewrite the model de�nition and then instantiate it as follows:

class ConvNet(nn.Module):

    def __init__(self):

       … 

    def forward(self, x):

        … 

model = ConvNet()

3. We can now restore the saved model parameters into this instantiated model object 

as follows:

PATH_TO_MODEL = "./convnet.pth"

model.load_state_dict(torch.load(PATH_TO_MODEL, map_
location="cpu"))

You shall see the following output:

Figure 10.1 – Model parameter loading

�is essentially means that the parameter loading is successful. �at is, the model 

that we have instantiated has the same structure as the model whose parameters 

were saved and are now being restored. We specify that we are loading the model on 

a CPU device as opposed to GPU (CUDA). 

4. Finally, we want to specify that we do not wish to update or change the parameter 

values of the loaded model, and we will do so with the following line of code:

model.eval()

�is should give the following output:

Figure 10.2 – Loaded model in evaluation mode
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�is again veri�es that we are indeed working with the same model (architecture) that  
we trained.

Building the inference pipeline

Having successfully loaded a pre-trained model in a new environment (notebook) in  
the previous section, we shall now build our model inference pipeline and use it to run 
model predictions:

1. At this point, we have the previously trained model object fully restored to us. 

We shall now load an image that we can run the model prediction on using the 

following code:

image = Image.open("./digit_image.jpg")

�e image �le should be available in the exercise folder and is as follows:

Figure 10.3 – Model inference input image

It is not necessary to use this particular image in the exercise. You may use any 

image you want, to check how the model reacts to it.

2. In any inference pipeline, there are three main components at the core of it: (a) the 

data preprocessing component, (b) the model inference (forward pass in the case of 

neural networks), and (c) the post-processing step.
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We will begin with the �rst part by de�ning a function that takes in an image and 

transforms it into the tensor that shall be fed to the model as input as follows:

def image_to_tensor(image):

    gray_image = transforms.functional.to_
grayscale(image)

    resized_image = transforms.functional.resize(gray_
image, (28, 28))

    input_image_tensor = transforms.functional.to_
tensor(resized_image)

    input_image_tensor_norm = transforms.functional.
normalize(input_image_tensor, (0.1302,), (0.3069,))

    return input_image_tensor_norm

�is can be seen as a series of steps as follows:

i) First, the RGB image is converted to a grayscale image. 

ii) �e image is then resized to a 28x28 pixels image because this is the image size 

the model is trained with. 

iii) �en, the image array is converted to a PyTorch tensor. 

iv) And �nally, the pixel values in the tensor are normalized with the same mean 

and standard deviation values as those used during model training time. 

Having de�ned this function, we call it to convert our loaded image into a tensor:

input_tensor = image_to_tensor(image)

3. Next, we de�ne the model inference functionality. �is is where the model takes  

in a tensor as input and outputs the predictions. In this case, the prediction will 

be any digit between 0 to 9 and the input tensor will be the tensorized form of the 

input image:

def run_model(input_tensor):

    model_input = input_tensor.unsqueeze(0)

    with torch.no_grad():

        model_output = model(model_input)[0]

    model_prediction = model_output.detach().numpy().
argmax()

    return model_prediction
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model_output contains the raw predictions of the model, which contains a list 

of predictions for each image. Because we have only one image in the input, this list 

of predictions will just have one entry at index 0. �e raw prediction at index 0 is 

essentially a tensor with 10 probability values for digits 0,1,2...9, in that order. �is 

tensor is converted to a numpy array, and �nally, we choose the digit that has the 

highest probability.

4. We can now use this function to generate our model prediction. �e following code 

uses the run_model model inference function from step 3 to generate the model 

prediction for the given input data, input_tensor:

output = run_model(input_tensor)

print(output)

print(type(output))

�is should output the following:

Figure 10.4 – Model inference output

As we can see from the preceding screenshot, the model outputs a numpy integer. 

And based on the image shown in Figure 10.3, the model output seems rather correct.

5. Besides just outputting the model prediction, we can also write a debug function 

to dig deeper into metrics such as raw prediction probabilities, as shown in the 

following code snippet:

def debug_model(input_tensor):

    model_input = input_tensor.unsqueeze(0)

    with torch.no_grad():

        model_output = model(model_input)[0]

    model_prediction = model_output.detach().numpy()

    return np.exp(model_prediction)
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�is function is exactly the same as the run_model function except that it 

returns the raw list of probabilities for each digit. �e model originally returns the 

logarithm of so�max outputs because of the log_softmax layer being used as the 

�nal layer in the model (refer to step 2 of this exercise). 

Hence, we need to exponentiate those numbers to return the so�max outputs, 

which are equivalent to model prediction probabilities. Using this debug function, 

we can look at how the model is performing in more detail, such as whether the 

probability distribution is �at or has clear peaks:

print(debug_model(input_tensor))

�is should output the following:

 

Figure 10.5 – Model inference debug output

We can see that the third probability in the list is the highest by far, which 

corresponds to digit 2.

6. Finally, we shall post-process the model prediction so that it can be used by other 

applications. In our case, we are just going to transform the digit predicted by the 

model from the integer type to the string type. 

�e post-processing step can be more complex in other scenarios, such as speech 

recognition, where we might want to process the output waveform by smoothening, 

removing outliers, and so on:

def post_process(output):

    return str(output)

Because string is a serializable format, this enables the model predictions to be 

communicated easily across servers and applications. We can check whether our 

�nal post-processed data is as expected:

final_output = post_process(output)

print(final_output)

print(type(final_output))
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�is should provide you with the following output:

 

Figure 10.6 – Post-processed model prediction

As expected, the output is now of the type string.

�is concludes our exercise of loading a saved model architecture, restoring its trained 
weights, and using the loaded model to generate predictions for sample input data (an 
image). We loaded a sample image, pre-processed it to transform it into a PyTorch tensor, 
passed it to the model as input to obtain the model prediction, and post-processed the 
prediction to generate the �nal output.

�is is a step forward in the direction of serving trained models with a clearly de�ned 
input and output interface. In this exercise, the input was an externally provided image �le 
and the output was a generated string containing a digit between 0 to 9. Such a system can 
be embedded by copying and pasting the provided code into any application that requires 
the functionality of digitizing hand-written digits.

In the next section, we will go a level deeper into model serving, where we aim to build 
a system that can be interacted with by any application to use the digitizing functionality 
without copying and pasting any code.

Building a basic model server
We have so far built a model inference pipeline that has all the code necessary to 
independently perform predictions from a pre-trained model. Here, we will work on 
building our �rst model server, which is essentially a machine that hosts the model 
inference pipeline, actively listens to any incoming input data via an interface, and outputs 
model predictions on any input data through the interface.
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Writing a basic app using Flask 

To develop our server, we will use a popular Python library – Flask. Flask will enable us to 
build our model server in a few lines of code. You can read about the library in detail here: 
https://flask.palletsprojects.com/en/1.1.x/. A good example of how 
this library works is shown with the following code:

from flask import Flask

app = Flask(__name__)

@app.route('/')

def hello_world():

    return 'Hello, World!'

if __name__ == '__main__': 

    app.run(host='localhost', port=8890)

Say we saved this Python script as example.py and ran it from the terminal:

python example.py

It would show the following output in the terminal:

Figure 10.7 – Flask example app launch

Basically, it will launch a Flask server that will serve an app called example. Let's open a 
browser and go to the following URL:

http://localhost:8890/

It will result in the following output in the browser:

Figure 10.8 – Flask example app testing
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Essentially, the Flask server is listening to port number 8890 on the IP address 0.0.0.0 
(localhost) at the endpoint /. As soon as we input localhost:8890/ in a browser 
search bar and press Enter, a request is received by this server. �e server then runs the 
hello_world function, which in turn returns the string Hello, World! as per the 
function de�nition provided in example.py.

Using Flask to build our model server

Using the principles of running a Flask server demonstrated in the preceding section, we 
will now use the model inference pipeline built in the previous section to create our �rst 
model server. At the end of the exercise, we will launch the server that will be listening to 
incoming requests (image data input).

We will furthermore write another Python script that will make a request to this server 
by sending the sample image shown in Figure 10.3. �e Flask server shall run the model 
inference on this image and output the post-processed predictions.

�e full code for this exercise is available on GitHub: go to https://github.com/
PacktPublishing/Mastering-PyTorch/blob/master/Chapter10/server.
py for the Flask server code and https://github.com/PacktPublishing/
Mastering-PyTorch/blob/master/Chapter10/make_request.py for the 
request maker (client) code.

Setting up model inference for Flask serving

In this section, we will load a pre-trained model and write the model inference  
pipeline code:

1. First, we will build the Flask server. And for that, we once again start by importing 

the necessary libraries:

from flask import Flask, request

import torch

Both flask and torch are vital necessities for this task, besides other basic 

libraries such as numpy and json.

2. Next, we will need to de�ne the model class (architecture):

class ConvNet(nn.Module):

    def __init__(self):

    def forward(self, x):
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Ideally, this piece of code will already exist in a separate Python script, say, model.

py, and all we need to do then is from model import ConvNet.

3. Now that we have the empty model class de�ned, we can instantiate a model object 

and load the pre-trained model parameters into this model object as follows:

model = ConvNet()

PATH_TO_MODEL = "./convnet.pth"

model.load_state_dict(torch.load(PATH_TO_MODEL, map_
location="cpu"))

model.eval()

We set the restored model to evaluation mode to indicate no tuning of  

model parameters. 

4. We will reuse the exact run_model function de�ned in step 3 of the Building the 

inference pipeline section:

def run_model(input_tensor):

    … 

    return model_prediction

As a reminder, this function takes in the tensorized input image and outputs the 

model prediction, which is any digit between 0 to 9.

5. Next, we will reuse the exact post_process function de�ned in step 6 of the 

Building the inference pipeline section:

def post_process(output):

    return str(output)

�is will essentially convert the integer output from the run_model function to a string. 

Building a Flask app to serve model

Having established the inference pipeline in the previous section, we will now build our 
own Flask app and use it to serve the loaded model:

1. We will instantiate our Flask app as shown in the following line of code:

app = Flask(__name__)

�is creates a Flask app with the same name as the Python script, which in our case 

is server(.py).
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2. �is is the critical step, where we will be de�ning an endpoint functionality of the 

Flask server. We will expose a /test endpoint and de�ne what happens when a 

POST request is made to that endpoint on the server as follows:

@app.route("/test", methods=["POST"])

def test():

    data = request.files['data'].read()

    md = json.load(request.files['metadata'])

    input_array = np.frombuffer(data, dtype=np.float32)

    input_image_tensor = torch.from_numpy(input_array).
view(md["dims"])

    output = run_model(input_image_tensor)

    final_output = post_process(output)

    return final_output

Let's go through the steps one by one:

a) First, we add a decorator to the function – test – de�ned underneath. �is 

decorator tells the Flask app to run this function whenever someone makes a POST 

request to the /test endpoint.

b) Next, we get to de�ning what exactly happens inside the test function. First, we 

read the data and metadata from the POST request. Because the data is in serialized 

form, we need to convert it into a numerical format – we convert it to a numpy 

array. And from a numpy array, we swi�ly cast it as a PyTorch tensor.

c) Next, we use the image dimensions provided in the metadata to reshape  

the tensor.

d) Finally, we run a forward pass of the model loaded earlier with this tensor. �is 

gives us the model prediction, which is then post-processed and returned by our 

test function.

3. We have all the necessary ingredients to launch our Flask app. We will add these last 

two lines to our server.py Python script:

if __name__ == '__main__':

    app.run(host='0.0.0.0', port=8890)

�is indicates that the Flask server will be hosted at IP address 0.0.0.0 (also 

known as localhost) and port number 8890. We may now save the Python 

script and in a new terminal window simply execute the following:

python server.py
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�is will run the entire script written in the previous steps and you shall see the 

following output:

Figure 10.9 – Flask server launch

�is looks similar to the example demonstrated in Figure 10.7. �e only di�erence is the 
app name.

Using a Flask server to run predictions

We have successfully launched our model server, which is actively listening to requests. 
Let's now work on making a request:

1. We will write a separate Python script in the next few steps to do this job. We begin 

with importing libraries:

import requests

from PIL import Image

from torchvision import transforms

�e requests library will help us make the actual POST request to the Flask 

server. Image helps us to read a sample input image �le, and transforms will 

help us to preprocess the input image array.

2. Next, we read an image �le:

image = Image.open("./digit_image.jpg") 

�e image read here is an RGB image and may have any dimensions (not necessarily 

28x28 as expected by the model as input).

3. We now de�ne a preprocessing function that converts the read image into a format 

that is readable by the model:

def image_to_tensor(image):

    gray_image = transforms.functional.to_
grayscale(image)

    resized_image = transforms.functional.resize(gray_
image, (28, 28))

Page 320



300     Operationalizing PyTorch Models into Production

    input_image_tensor = transforms.functional.to_
tensor(resized_image)

    input_image_tensor_norm = transforms.functional.
normalize(input_image_tensor, (0.1302,), (0.3069,))

    return input_image_tensor_norm

First the RGB image is converted to a grayscale image. �en, the image is resized to 

28x28 pixels. Next, the image is casted from an array into a PyTorch tensor. Lastly, 

the 28x28 pixel values are normalized based on the mean and standard deviation 

values obtained during the training of our model in the previous exercise.

Having de�ned the function, we can execute it:

image_tensor = image_to_tensor(image)

image_tensor is what we need to send as input data to the Flask server.

4. Let's now get into packaging our data together to send it over. We want to send 

both the pixel values of the image as well as the shape of the image (28x28) so that 

the Flask server at the receiving end knows how to reconstruct the stream of pixel 

values as an image:

dimensions = io.StringIO(json.dumps({'dims': list(image_
tensor.shape)}))

data = io.BytesIO(bytearray(image_tensor.numpy()))

We stringify the shape of our tensor and convert the image array into bytes to make 

it all serializable. 

5. �is is the most critical step in this request making script. �is is where we actually 

make the POST request:

r = requests.post('http://localhost:8890/test',

                  files={'metadata': dimensions,  
                         'data' : data})

Using the requests library, we make the POST request at the URL 

localhost:8890/test. �is is where the Flask server is listening for requests. 

We send both the actual image data (as bytes) and the metadata (as string) in the 

form of a dictionary

6. �e r variable in the preceding code will receive the response of the request from 

the Flask server. �is response should contain the post-processed model prediction. 

We will now read that output:

response = json.loads(r.content)
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�e response variable will essentially contain what the Flask server outputs, 

which is a digit between 0 and 9 as a string.

7. We can print the response just to be sure:

print("Predicted digit :", response)

At this point, we can save this Python script as make_request.py and execute 

the following command in the terminal:

python make_request.py

�is should output the following:

Figure 10.10 – Flask server response

Based on the input image (see Figure 10.3), the response seems rather correct. �is 
concludes our current exercise.

�us, we have successfully built a standalone model server that can render predictions 
for handwritten digit images. �e same set of steps can easily be extended to any other 
machine learning model, and so this opens up endless possibilities with regards to 
creating machine learning applications using PyTorch and Flask.

So far, we have moved from simply writing inference functions to creating model servers 
that can be hosted remotely and render predictions over the network. In our next and 
�nal model serving venture, we will go a level further. You might have noticed that in 
order to follow the steps in the previous two exercises, there were inherent dependencies 
to be considered. We are required to install certain libraries, save and load the models at 
particular locations, read image data, and so on. All of these manual steps slow down the 
development of a model server.

Up next, we will work on creating a model microservice that can be spun up with one 
command and replicated across several machines, say, for scalability reasons.

Creating a model microservice
Imagine you know nothing about training machine learning models but want to use an 
already-trained model without having to get your hands dirty with any PyTorch code. �is 
is where a paradigm such as the machine learning model microservice comes into play.
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A machine learning model microservice can be thought of as a black box to which  
you send input data and it sends back predictions to you. Moreover, it is easy to spin  
up this black box on a given machine with just a few lines of code. �e best part is that  
it scales e�ortlessly. You can scale a microservice vertically by using a bigger machine 
(more memory, more processing power) as well as horizontally, by replicating the 
microservice across multiple machines. You may read in detail about microservices here: 
https://opensource.com/resources/what-are-microservices.

How do we go about deploying a machine learning model as a microservice? �anks to 
the work done using Flask and PyTorch in the previous exercise, we are already a few steps 
ahead. We have already built a standalone model server using Flask.

In this section, we will take that idea forward and build a standalone model-serving 
environment using Docker. Docker helps containerize so�ware, which essentially means 
that it helps virtualize the entire operating system (OS), including so�ware libraries, 
con�guration �les, and even data �les.

Note

Docker is a huge topic of discussion in itself. However, because the book 
is focused on PyTorch, we will only cover the basic concepts and usage of 
Docker for our limited purposes. If you are interested in reading about Docker 

further, their own documentation is a great place to start: https://docs.
docker.com/get-started/overview/.

In our case, we have so far used the following libraries in building our model server:

• Python

• PyTorch

• Pillow (for image I/O)

• Flask

And, we have used the following data �le:

• Pre-trained model checkpoint �le (convnet.pth)

We have had to manually arrange for these dependencies by installing the libraries and 
placing the �le in the current working directory. What if we have to redo all of this in a 
new machine? We would have to manually install the libraries and copy and paste the 
�le once again. �is way of working is neither e�cient nor failproof, as we might end up 
installing di�erent library versions across di�erent machines, for example.
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To solve this problem, we would like to create an OS-level blueprint that can be 
consistently repeated across machines. �is is where Docker comes in handy. Docker lets 
us create that blueprint in the form of a Docker image. �is image can then be built on 
any empty machine with no assumptions regarding pre-installed Python libraries or an 
already-available model.

Let's actually create such a blueprint using Docker for our digits classi�cation model. In  
the form of an exercise, we will go from a Flask-based standalone model server to a 
Docker-based model microservice. Before delving into the exercise, you will need to install 
Docker. And based on your OS and machine con�gurations, you can �nd the Docker 
installation instructions here: https://docs.docker.com/engine/install/:

1. First, we need to list the Python library requirements for our Flask model server. 

�e requirements (with their versions) are as follows:

torch==1.5.0

torchvision==0.5.0

Pillow==6.2.2

Flask==1.1.1

As a general practice, we will save this list as a text �le – requirements.txt. 

�is �le is also available at https://github.com/PacktPublishing/

Mastering-PyTorch/blob/master/Chapter10/requirements.tx. 

�is list will come in handy for installing the libraries consistently in any given 

environment.

2. Next, we get straight to the blueprint, which, in Docker terms, will be Dockerfile. 

A Dockerfile is a script that is essentially a list of instructions. �e machine 

where this Dockerfile is run needs to execute the listed instructions in the �le. 

�is results in a Docker image, and the process is called building an image.

An image here is a system snapshot that can be e�ectuated on any machine, 

provided that the machine has the minimum necessary hardware resources (for 

example, installing PyTorch 1.5.0 alone requires 750 MB of memory space). 

Let's look at our Dockerfile and try to understand what it does step by step. 

�e full code for the Dockerfile is available at https://github.com/

PacktPublishing/Mastering-PyTorch/blob/master/Chapter10/

Dockerfile.

a) �e FROM keyword instructs Docker to fetch a standard Linux OS with  

python 3.8 baked in:

FROM python:3.8-slim
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�is ensures that we will have Python installed.

b) Next, install wget, which is a Unix command useful for downloading resources 

from the internet via the command line:

RUN apt-get -q update && apt-get -q install -y wget

�e && symbol indicates the sequential execution of commands written before and 

a�er the symbol.

c) Here, we are copying two �les from our local development environment into this 

virtual environment:

COPY ./server.py ./

COPY ./requirements.txt ./

We copy the requirements �le as discussed in step 1 as well as the Flask model 

server code that we worked on in the previous exercise.

d) Next, we download the pre-trained PyTorch model checkpoint �le:

RUN wget -q https://github.com/PacktPublishing/Mastering-
PyTorch/blob/master/Chapter10/convnet.pth

�is is the same model checkpoint �le that we had saved in the Saving and loading a 

trained model section of this chapter.

e) Here, we are installing all the relevant libraries listed under requirements.txt:

RUN pip install -r requirements.txt

�is txt �le is the one we wrote under step 1.

e) Next, we give root access to the Docker client:

USER root

�is step is important in this exercise as it ensures that the client has the credentials 

to perform all necessary operations on our behalf, such as saving model inference 

logs on the disk.

Note

In general, though, it is advised not to give root privileges to the client as 

per the principle of least privilege in data security (https://snyk.io/
blog/10-docker-image-security-best-practices/).
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f) Finally, we specify that a�er performing all the previous steps, Docker should 

execute the python server.py command:

ENTRYPOINT ["python", "server.py"]

�is will ensure the launch of a Flask model server in the virtual machine.

3. Let's now run this Docker�le. In other words, let's build a Docker image using the 

Docker�le from step 2. In the current working directory, on the command line, 

simply run this:

docker build -t digit_recognizer .

We are allocating a tag with the name digit_recognizer to our Docker image. 

�is should output the following:

Figure 10.11 – Building a Docker image

Figure 10.11 shows the sequential execution of the steps mentioned in step 2. 

Running this step might take a while, depending on your internet connection, as it 

downloads the entire PyTorch library among others to build the image.
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4. At this stage, we already have a Docker image with the name digit_recognizer. 

We are all set to deploy this image on any machine. In order to deploy the image on 

your own machine for now, just run the following command:

docker run -p 8890:8890 digit_recognizer

With this command, we are essentially starting a virtual machine inside our 

machine using the digit_recognizer Docker image. Because our original Flask 

model server was designed to listen to port 8890, we have forwarded our actual 

machine's port 8890 to the virtual machine's port 8890 using the -p argument. 

Running this command should output this:

Figure 10.12 – Running a Docker instance

�e preceding screenshot is remarkably similar to Figure 10.9 from the previous 

exercise, which is no surprise because the  Docker instance is running the same 

Flask model server that we were manually running in our previous exercise.

5. We can now test whether our Dockerized Flask model server (model microservice) 

works as expected by using it to make model predictions. We will once again use the 

make_request.py �le used in the previous exercise to send a prediction request 

to our model. From the current local working directory, simply execute this:

python make_request.py

�is should output the following:

Figure 10.13 – Microservice model prediction

�e microservice seems to be doing the job, and thus we have successfully built and 

tested our own machine learning model microservice using Python, PyTorch, Flask, 

and Docker.

6. Upon successful completion of the preceding steps, you can close the launched 

Docker instance from step 4 by pressing Ctrl+C as indicated in Figure 10.12. And 

once the running Docker instance is stopped, you can delete the instance by 

running the following command:

docker rm $(docker ps -a -q | head -1)
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�is command basically removes the most recent inactive Docker instance, which 

in our case is the Docker instance that we just stopped.

7. Finally, you can also delete the Docker image that we had built under step 3, by 

running the following command:

docker rmi $(docker images -q "digit_recognizer")

�is will basically remove the image that has been tagged with the digit_recognizer 
tag.

�is concludes our section for serving models written in PyTorch. We started o� by 
designing a local model inference system. We took this inference system and wrapped a 
Flask-based model server around it to create a standalone model serving system. 

Finally, we used the Flask-based model server inside a Docker container to essentially 
create a model serving microservice. Using both the theory as well as the exercises 
discussed in this section, you should be able to get started with hosting/serving your 
trained models across di�erent use cases, system con�gurations, and environments.

In the next section, we will stay with the model-serving theme but will discuss a particular 
tool that has been developed precisely to serve PyTorch models: TorchServe. We will also 
do a quick exercise to demonstrate how to use this tool.

Serving a PyTorch model using TorchServe
TorchServe, released in April 2020, is a dedicated PyTorch model-serving framework. 
Using the functionalities o�ered by TorchServe, we can serve multiple models at the 
same time with low prediction latency and without having to write much custom code. 
Furthermore, TorchServe o�ers features such as model versioning, metrics monitoring, 
and data preprocessing and post-processing.

�is clearly makes TorchServe a more advanced model-serving alternative than the model 
microservice we developed in the previous section. However, making custom model 
microservices still proves to be a powerful solution for complicated machine learning 
pipelines (which is more common than we might think).

In this section, we will continue working with our handwritten digits classi�cation model 
and demonstrate how to serve it using TorchServe. A�er reading this section, you should 
be able to get started with TorchServe and go further in utilizing its full set of features.
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Installing TorchServe
Before starting with the exercise, we will need to install Java 11 SDK as a requirement.  
For Linux OS, run the following:

sudo apt-get install openjdk-11-jdk

And for macOS, we need to run the following command on the command line:

brew tap AdoptOpenJDK/openjdk

brew cask install adoptopenjdk11

And therea�er, we need to install torchserve by running this: 

pip install torchserve torch-model-archiver

For detailed installation instructions, refer to https://github.com/pytorch/
serve/blob/master/README.md#install-torchserve.

Notice that we also install a library called torch-model-archiver. �is archiver  
aims at creating one model �le that will contain both the model parameters as well as  
the model architecture de�nition in an independent serialized format as a .mar �le.  
You can read about the archiver in detail here: https://pytorch.org/serve/
model-archiver.html.

Launching and using a TorchServe server
Now that we have installed all that we need, we can start putting together our existing 
code from the previous exercises to serve our model using TorchServe. We will hereon  
go through a number of steps in the form of an exercise:

1. First, we will place the existing model architecture code in a model �le saved as 

convnet.py:

==========================convnet.
py===========================

import torch

import torch.nn as nn

import torch.nn.functional as F

class ConvNet(nn.Module):

    def __init__(self):

        … 
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    def forward(self, x):

        … 

We will need this model �le as one of the inputs to torch-model-archiver  

to produce a uni�ed .mar �le. You can �nd the full model �le here:  

https://github.com/PacktPublishing/Mastering-PyTorch/blob/

master/Chapter10/convnet.pth.

Remember we had discussed the three parts of any model inference pipeline: 

data pre-processing, model prediction, and post-processing. TorchServe provides 

handlers, which handle the pre-processing and post-processing parts of popular 

kinds of machine learning tasks: image_classifier, image_segmenter, 

object_detector, and text_classifier.

�is list might grow in the future as TorchServe is actively being developed at the 

time of writing this book.

2. For our task, we will create a custom image handler that is inherited from the 

default Image_classifier handler. We choose to create a custom handler 

because as opposed to the usual image classi�cation models that deal with color 

(RGB) images, our model deals with grayscale images of a speci�c size (28x28 

pixels). �e following is the code for our custom handler, which you can also �nd at 

https://github.com/PacktPublishing/Mastering-PyTorch/blob/

master/10_operationalizing_pytorch_models_into_production/

convnet_handler.py:

========================convnet_handler.
py=======================

from torchvision import transforms

from ts.torch_handler.image_classifier import 
ImageClassifier

class ConvNetClassifier(ImageClassifier):

    image_processing = transforms.Compose([

        transforms.Grayscale(), transforms.Resize((28, 
28)),

        transforms.ToTensor(),  transforms.
Normalize((0.1302,), (0.3069,))])

    def postprocess(self, output):

        return output.argmax(1).tolist()
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First, we imported the image_classifer default handler, which will provide 

most of the basic image classi�cation inference pipeline handling capabilities. 

Next, we inherit the ImageClassifer handler class to de�ne our custom 

ConvNetClassifier handler class.

�ere are two blocks of custom code:

i) �e data pre-processing step, where we apply a sequence of transformations to the 

data exactly as we did in step 3 of the Building the inference pipeline section.

ii) �e postprocessing step, de�ned under the postprocess method, where we 

extract the predicted class label from the list of prediction probabilities of all classes

3. We already produced a convnet.pth �le in the Saving and loading a trained model 

section of this chapter while creating the model inference pipeline. Using convnet.

py, convnet_handler.py, and convnet.pth, we can �nally create the .mar 

�le using torch-model-archiver by running the following command:

torch-model-archiver --model-name convnet --version 1.0 
--model-file ./convnet.py --serialized-file ./convnet.pth 
--handler  ./convnet_handler.py

�is command should result in a convnet.mar �le written to the current working 

directory. We have speci�ed a model_name argument, which names the .mar �le. 

We have speci�ed a version argument, which will be helpful in model versioning 

while working with multiple variations of a model at the same time. 

We have located where our convnet.py (for model architecture), convnet.pth 

(for model weights) and convnet_handler.py (for pre- and post-processing) 

�les are, using the model_file, serialzed_file, and handler arguments, 

respectively.

4. Next, we need to create a new directory in the current working directory and move 

the convnet.mar �le created in step 3 to that directory, by running the following 

on the command line:

mkdir model_store

mv convnet.mar model_store/

We have to do so to follow the design requirements of the TorchServe framework.

5. Finally, we may launch our model server using TorchServe. On the command line, 

simply run the following:

torchserve --start --ncs --model-store model_store 
--models convnet.mar
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�is will silently start the model inference server and you will see some logs on the 

screen, including the following:

Figure 10.14 – TorchServe launch output

As you can see, TorchServe investigates the available devices on the machine among 

other details. It allocates three separate URLs for inference, management, and 

metrics. To check whether the launched server is indeed serving our model, we can 

ping the management server with the following command:

curl http://localhost:8081/models

�is should output the following:

 

Figure 10.15 – TorchServe-served models

�is veri�es that the TorchServe server is indeed hosting the model.

6. Finally, we can test our TorchServe model server by making an inference request. 

�is time, we won't need to write a Python script, because the handler will already 

take care of processing any input image �le. So, we can directly make a request using 

the digit_image.jpg sample image �le by running this:

curl http://127.0.0.1:8080/predictions/convnet -T ./
digit_image.jpg

�is should output 2 in the terminal, which is indeed the correct prediction as 

evident from Figure 10.3.

7. Finally, once we are done with using the model server, it can be stopped by running 

the following on the command line:

torchserve --stop
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�is concludes our exercise on how to use TorchServe to spin up our own PyTorch 
model server and use it to make predictions. �ere is a lot more to unpack here, such as 
model monitoring (metrics), logging, versioning, benchmarking, and so on. https://
pytorch.org/serve/ is a great place to pursue these advanced topics in detail.

A�er �nishing this section, you should be able to use TorchServe to serve your own 
models. I encourage you to write custom handlers for your own use cases, explore the 
various TorchServe con�guration settings (read more here: https://pytorch.org/
serve/configuration.html), and try out other advanced features of TorchServe 
(read more here: https://pytorch.org/serve/server.html#advanced-
features).

Note

TorchServe is in an experimental phase at the time of writing this book, with a 
lot of promise. My advice would be to keep an eye on the rapid updates in this 
territory of PyTorch.

In the next section, we will take a look at exporting PyTorch models so that they can be 
used in di�erent environments, programming languages, and deep learning libraries.

Exporting universal PyTorch models using 

TorchScript and ONNX
We have discussed serving PyTorch models extensively in the previous sections of this 
chapter, which is perhaps the most critical aspect of operationalizing PyTorch models in 
production systems. In this section, we will look at another important aspect – exporting 
PyTorch models. We have already learned how to save PyTorch models and load them 
back from disk in the classic Python scripting environment. But we need more ways of 
exporting PyTorch models. Why?

Well, for starters, the Python interpreter allows only one thread to run at a time using 
the global interpreter lock (GIL). �is keeps us from parallelizing operations. Secondly, 
Python might not be supported in every system or device that we might want to run our 
models on. To address these problems, PyTorch o�ers support for exporting its models in 
an e�cient format and in a platform- or language-agnostic manner such that a model can 
be run in environments di�erent from the one it was trained in.

We will �rst explore TorchScript, which enables us to export serialized and optimized 
PyTorch models into an intermediate representation that can then be run in a Python-
independent program (say, a C++ program).
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Next, we will look at ONNX and how it lets us save PyTorch models into a universal 
format that can then be loaded into other deep learning frameworks and di�erent 
programming languages.

Understanding the utility of TorchScript
�ere are two key reasons why TorchScript is a vital tool when it comes to putting 
PyTorch models into production:

• PyTorch works on an eager execution basis, as discussed in Chapter 1, Overview of 
Deep Learning Using PyTorch, of this book. �is has its advantages, such as easier 
debugging. However, executing steps/operations one by one by writing and reading 
intermediate results to and from memory may lead to high inference latency as 
well as limiting us from overall operational optimizations. To tackle this problem, 
PyTorch provides its own just-in-time (JIT) compiler, which is based on the 
PyTorch-centered parts of Python. 

�e JIT compiler compiles PyTorch models instead of interpreting, which is 

equivalent to creating one composite graph for the entire model by looking at all of 

its operations at once. �e JIT-compiled code is TorchScript code, which is basically 

a statically typed subset of Python. �is compilation leads to several performance 

improvements and optimizations, such as getting rid of the GIL and thereby 

enabling multithreading. 

• PyTorch is essentially built to be used with the Python programming language. 
Remember, we have used Python in almost the entirety of this book too. However, 
when it comes to productionizing models, there are more performant (that is, 
quicker) languages than Python, such as C++. And also, we might want to deploy 
our trained models on systems or devices that do not work with Python. 

�is is where TorchScript kicks in. As soon as we compile our PyTorch code into 
TorchScript code, which is an intermediate representation of our PyTorch model, we can 
serialize this representation into a C++-friendly format using the TorchScript compiler. 
�erea�er, this serialized �le can be read in a C++ model inference program using 
LibTorch – the PyTorch C++ API.

We have mentioned JIT compilation of PyTorch models several times in this section.  
Let's now look at two of the possible options of compiling our PyTorch models into 
TorchScript format.
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Model tracing with TorchScript
One way of translating PyTorch code to TorchScript is tracing the PyTorch model. Tracing 
requires the PyTorch model object along with a dummy example input to the model. As 
the name suggests, the tracing mechanism traces the �ow of this dummy input through 
the model (neural network), records the various operations, and renders a TorchScript 
Intermediate Representation (IR), which can be visualized both as a graph as well as 
TorchScript code.

We will now walk through the steps involved in tracing a PyTorch model using our 
handwritten digits classi�cation model. �e full code for this exercise is available at 
https://github.com/PacktPublishing/Mastering-PyTorch/blob/
master/Chapter10/model_tracing.ipynb.

�e �rst �ve steps of this exercise are the same as the steps of the Saving and loading 
a trained model and Building the inference pipeline sections, where we built the model 
inference pipeline:

1. We will start with importing libraries by running the following code:

import torch

...

2. Next, we will de�ne and instantiate the model object:

class ConvNet(nn.Module):

    def __init__(self):

       … 

    def forward(self, x):

        … 

model = ConvNet()

3. Next, we will restore the model weights using the following lines of code:

PATH_TO_MODEL = "./convnet.pth"

model.load_state_dict(torch.load(PATH_TO_MODEL, map_
location="cpu"))

model.eval()
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4. We then load a sample image:

image = Image.open("./digit_image.jpg")

5. Next, we de�ne the data pre-processing function:

def image_to_tensor(image):

    gray_image = transforms.functional.to_
grayscale(image)

    resized_image = transforms.functional.resize(gray_
image, (28, 28))

    input_image_tensor = transforms.functional.to_
tensor(resized_image)

    input_image_tensor_norm = transforms.functional.
normalize(input_image_tensor, (0.1302,), (0.3069,))

    return input_image_tensor_norm

And we then apply the pre-processing function to the sample image:

input_tensor = image_to_tensor(image)

6. In addition to the code under step 3, we also execute the following lines of code:

for p in model.parameters():

    p.requires_grad_(False)

If we do not do this, the traced model will have all parameters requiring gradients 

and we will have to load the model within the torch.no_grad() context. 

7. We already have the loaded PyTorch model object with pre-trained weights. We are 

ready to trace the model with a dummy input as shown next:

demo_input = torch.ones(1, 1, 28, 28)

traced_model = torch.jit.trace(model, demo_input)

�e dummy input is an image with all pixel values set to 1. 

8. We can now look at the traced model graph by running this:

print(traced_model.graph)
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�is should output the following:

Figure 10.16 – Traced model graph

Intuitively, the �rst few lines in the graph show the initialization of layers of this 

model, such as cn1, cn2, and so on. Toward the end, we see the last layer, that is, 

the so�max layer. Evidently, the graph is written in a lower-level language with 

statically typed variables and closely resembles the TorchScript language.

9. Besides the graph, we can also look at the exact TorchScript code behind the traced 

model by running this:

print(traced_model.code)

�is should output the following lines of Python-like code that de�ne the forward 

pass method for the model:

Figure 10.17 – Traced model code
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�is precisely is the TorchScript equivalent for the code that we wrote using 

PyTorch in step 2. 

10. Next, we will export or save the traced model:

torch.jit.save(traced_model, 'traced_convnet.pt')

11. Now we load the saved model:

loaded_traced_model = torch.jit.load('traced_convnet.pt')

Note that we didn't need to load the model architecture and parameters separately. 

12. Finally, we can use this model for inference:

loaded_traced_model(input_tensor.unsqueeze(0))

�e output is as follows:

�is should output the following:

Figure 10.18 – Traced model inference

13. We can check these results by re-running model inference on the original model:

model(input_tensor.unsqueeze(0))

�is should produce the same output as in Figure 10.18, which veri�es that our 

traced model is working properly.

You can use the traced model instead of the original PyTorch model object to build more 
e�cient Flask model servers and Dockerized model microservices, thanks to the GIL-free 
nature of TorchScript. While tracing is a viable option for JIT compiling PyTorch models, 
it has some drawbacks.

For instance, if the forward pass of the model consists of control �ows such as if and for 
statements, then the tracing will only render one of the multiple possible paths in the �ow. 
In order to accurately translate PyTorch code to TorchScript code for such scenarios, we 
will use the other compilation mechanism called scripting.
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Model scripting with TorchScript
Please follow steps 1 to 6 from the previous exercise and then follow up with the 
steps given in this exercise. �e full code is available at https://github.com/
PacktPublishing/Mastering-PyTorch/blob/master/Chapter10/model_
scripting.ipynb:

1. For scripting, we need not provide any dummy input to the model, and the 

following line of code transforms PyTorch code to TorchScript code directly:

scripted_model = torch.jit.script(model)

2. Let's look at the scripted model graph by running the following line of code:

print(scripted_model.graph)

�is should output the scripted model graph in a similar fashion as the traced 

model graph, as shown in the following �gure:

Figure 10.19 – Scripted model graph

Once again, we can see similar, verbose, low-level script that lists the various edges 

of the graph per line. Notice that the graph here is not the same as in Figure 10.16, 

which indicates di�erences in code compilation strategy in using tracing rather  

than scripting.
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3. We can also look at the equivalent TorchScript code by running this:

print(scripted_model.code)

�is should output the following:

Figure 10.20 – Scripted model code

In essence, the �ow is similar to that in Figure 10.17; however, there are subtle 

di�erences in the code signature resulting from di�erences in compilation strategy.

4. Once again, the scripted model can be exported and loaded back in the  

following way:

torch.jit.save(scripted_model, 'scripted_convnet.pt')

loaded_scripted_model = torch.jit.load('scripted_convnet.
pt')

5. Finally, we use the scripted model for inference using this:

loaded_scripted_model(input_tensor.unsqueeze(0))

�is should produce the exact same results as in Figure 10.18, which veri�es that the 

scripted model is working as expected. 
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Similar to tracing, a scripted PyTorch model is GIL-free and hence can improve 
model serving performance when used with Flask or Docker. Table 10.1 shows a quick 
comparison between the model tracing and scripting approaches:

Table 10.1 – Tracing versus scripting

We have so far demonstrated how PyTorch models can be translated and serialized 
as TorchScript models. In the next section, we will completely get rid of Python for a 
moment and demonstrate how to load the TorchScript serialized model using C++.

Running a PyTorch model in C++
Python can sometimes be limiting or unable to run machine learning models trained 
using PyTorch. In this section, we will use the serialized TorchScript model objects (using 
tracing and scripting) that we exported in the previous section to run model inferences 
inside C++ code.

Note

Basic working knowledge of C++ is assumed for this section. If you want 
to learn the basics of C++ coding, this could be a good starting point: 

https://www.learncpp.com/. �is section speci�cally talks a 
lot about C++ code compilation. You can read more about how C++ code 

compilation works here: https://www.toptal.com/c-plus-
plus/c-plus-plus-understanding-compilation.
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For this exercise, follow the steps here, https://cmake.org/install/, to install 
CMake to be able to build the C++ code. Following that, we will create a folder named 
cpp_convnet in the current working directory and work from that directory:

1. Let's get straight into writing the C++ �le that will run the model inference 

pipeline. �e full C++ code is available here: https://github.com/

PacktPublishing/Mastering-PyTorch/blob/master/Chapter10/

cpp_convnet/cpp_convnet.cpp:

#include <torch/script.h>

... 

int main(int argc, char **argv) {

    Mat img = imread(argv[2], IMREAD_GRAYSCALE);

First the .jpg image �le is read as a grayscale image using the OpenCV library. You 

will need to install the OpenCV library for C++ using the following links:

a) Mac: https://docs.opencv.org/master/d0/db2/tutorial_

macos_install.html

b) Linux: https://docs.opencv.org/3.4/d7/d9f/tutorial_linux_

install.html

c) Win: https://docs.opencv.org/master/d3/d52/tutorial_

windows_install.html

2. �e grayscale image is then resized to 28x28 pixels as that is the requirement for 

our CNN model:

resize(img, img, Size(28, 28));

3. �e image array is then converted to a PyTorch tensor:

auto input_ = torch::from_blob(img.data, { img.rows, img.
cols, img.channels() }, at::kByte);

For all torch-related operations as in this step, we use the libtorch library, 

which is the home for all torch C++-related APIs. If you have PyTorch installed, 

you need not install LibTorch separately.
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4. Because OpenCV reads the grayscale in (28, 28, 1) dimension, we need to turn it 

around as (1, 28, 28) to suit the PyTorch requirements. �e tensor is then reshaped 

to shape (1,1,28,28), where the �rst 1 is batch_size for inference and the second 

1 is the number of channels, which is 1 for grayscale:

    auto input = input_.permute({2,0,1}).unsqueeze_(0).
reshape({1, 1, img.rows, img.cols}).toType(c10::kFloat).
div(255);

    input = (input – 0.1302) / 0.3069;

Because OpenCV read images have pixel values ranging from 0 to 255, we 

normalize these values to the range of 0 to 1. �erea�er, we standardize the image 

with mean 0.1302 and std 0.3069, as we did in a previous section (see step 2 of 

the Building the inference pipeline section).

5. In this step, we load the JIT-ed TorchScript model object that we exported in the 

previous exercise:

    auto module = torch::jit::load(argv[1]);

    std::vector<torch::jit::IValue> inputs;

    inputs.push_back(input);

Once again, we have used the LibTorch JIT API to load the JIT-ed model compiled 

using TorchScript in Python.

6. Finally, we come to the model prediction, where we use the loaded model object to 

make a forward pass with the supplied input data (an image, in this case):

auto output_ = module.forward(inputs).toTensor();

�e output_ variable contains a list of probabilities for each class. Let's extract the 

class label with the highest probability and print it:

auto output = output_.argmax(1);

cout << output << '\n';

Finally, we successfully exit the C++ routine:

    return 0;

}

Page 343



Exporting universal PyTorch models using TorchScript and ONNX     323

7. While steps 1-6 concern the various parts of our C++, we also need to write a 

CMakeLists.txt �le in the same working directory. �e full code for this �le 

is available at https://github.com/PacktPublishing/Mastering-

PyTorch/blob/master/Chapter10/cpp_convnet/CMakeLists.txt:

cmake_minimum_required(VERSION 3.0 FATAL_ERROR)

project(cpp_convnet)

find_package(Torch REQUIRED)

find_package(OpenCV REQUIRED)

add_executable(cpp_convnet cpp_convnet.cpp)

...

�is �le is basically the library installation and building script similar to setup.

py in a Python project. In addition to this code, the OpenCV_DIR environment 

variable needs to be set to the path where the OpenCV build artifacts are created, 

shown in the following code block:

export OpenCV_DIR=/Users/ashish.jha/code/personal/
Mastering-PyTorch/tree/master/Chapter10/cpp_convnet/
build_opencv/

8. Next, we need to actually run the CMakeLists �le to create build artifacts. We do 

so by creating a new directory in the current working directory and run the build 

process from there. In the command line, we simply need to run the following:

mkdir build

cd build

cmake -DCMAKE_PREFIX_PATH=/Users/ashish.jha/opt/
anaconda3/lib/python3.7/site-packages/torch/share/cmake/ 
..

cmake --build . --config Release

In the third line, you shall provide the path to LibTorch. To �nd your own, open 

Python and execute this:

import torch; torch.__path__

For me, it outputs this:

['/Users/ashish.jha/opt/anaconda3/lib/python3.7/site-
packages/torch']_
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Executing the third line shall output the following:

Figure 10.21 – �e C++ CMake output

And the fourth line should result in this:

Figure 10.22 – C++ model building

9. Upon successful execution of the previous step, we will have produced a C++ 

compiled binary with the name cpp_convnet. It is now time to execute this 

binary program. In other words, we can now supply a sample image to our C++ 

model for inference. We may use the scripted model as input:

./cpp_convnet ../../scripted_convnet.pt ../../digit_
image.jpg

Alternatively, we may use the traced model as input:

./cpp_convnet ../../traced_convnet.pt ../../digit_image.
jpg

Either of these should result in the following output:

Figure 10.23 – C++ model prediction
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According to Figure 10.3, the C++ model seems to be working correctly. Because we 
have used a di�erent image handling library in C++ (that is, OpenCV) as compared to in 
Python (PIL), the pixel values are slightly di�erently encoded, which will result in slightly 
di�erent prediction probabilities, but the �nal model prediction in the two languages 
should not di�er signi�cantly if correct normalizations are applied.

�is concludes our exploration of PyTorch model inference using C++. �is exercise 
shall help you get started with transporting your favorite deep learning models written 
and trained using PyTorch into a C++ environment, which should make predictions 
more e�cient as well as opening up the possibility of hosting models in Python-less 
environments (for example, certain embedded systems, drones, and so on).

In the next section, we will move away from TorchScript and discuss a universal neural 
network modeling format – ONNX – that has enabled model usage across deep learning 
frameworks, programming languages, and OSes. We will work on loading a PyTorch 
trained model for inference in TensorFlow.

Using ONNX to export PyTorch models
�ere are scenarios in production systems where most of the already-deployed machine 
learning models are written in a certain deep learning library, say, TensorFlow, with its 
own sophisticated model-serving infrastructure. However, if a certain model is written 
using PyTorch, we would like it to be runnable using TensorFlow to conform to the the 
serving strategy. �is is one among various other use cases where a framework such as 
ONNX is useful.

ONNX is a universal format where the essential operations of a deep learning model such 
as matrix multiplications and activations, written di�erently in di�erent deep learning 
libraries, are standardized. It enables us to interchangeably use di�erent deep learning 
libraries, programming languages, and even operating environments to run the same deep 
learning model.

Here, we will demonstrate how to run a model, trained using PyTorch, in TensorFlow.  
We will �rst export the PyTorch model into ONNX format and then load the ONNX 
model inside TensorFlow code.
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ONNX works with restricted versions of TensorFlow and hence we will work with 
tensorflow==1.15.0. We will also need to install the onnx==1.7.0 and  
onnx-tf==1.5.0 libraries for the exercise. �e full code for this exercise is available 
at https://github.com/PacktPublishing/Mastering-PyTorch/blob/
master/Chapter10/onnx.ipynb. Please follow steps 1 to 11 from the Model tracing 
with TorchScript section, and then follow up with the steps given in this exercise:

1. Similar to model tracing, we again pass a dummy input through our loaded model:

demo_input = torch.ones(1, 1, 28, 28)

torch.onnx.export(model, demo_input, "convnet.onnx")

�is should save a model onnx �le. Under the hood, the same mechanism is used 

for serializing the model as was used in model tracing.

2. Next, we load the saved onnx model and convert it into a TensorFlow model:

import onnx

from onnx_tf.backend import prepare

model_onnx = onnx.load("./convnet.onnx")

tf_rep = prepare(model_onnx)

tf_rep.export_graph("./convnet.pb")

3. Next, we load the serialized tensorflow model to parse the model graph. �is 

will help us in verifying that we have loaded the model architecture correctly as well 

as in identifying the input and output nodes of the graph:

with tf.gfile.GFile("./convnet.pb", "rb") as f:

    graph_definition = tf.GraphDef()

    graph_definition.ParseFromString(f.read())

with tf.Graph().as_default() as model_graph:

    tf.import_graph_def(graph_definition, name="")

for op in model_graph.get_operations():

    print(op.values())
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�is should output the following:

 

Figure 10.24 – TensorFlow model graph

From the graph, we are able to identify the input and output nodes, as marked.

4. Finally, we can assign variables to the input and output nodes of the neural network 

model, instantiate a TensorFlow session, and run the graph to generate predictions 

for our sample image:

model_output = model_graph.get_tensor_by_name('18:0')

model_input = model_graph.get_tensor_by_name('input.1:0')

sess = tf.Session(graph=model_graph)

output = sess.run(model_output, feed_dict={model_input: 
input_tensor.unsqueeze(0)})

print(output)

�is should output the following:

Figure 10.25 – TensorFlow model prediction
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As you can see, in comparison with Figure 10.18, the predictions are exactly the same for the 
TensorFlow and PyTorch versions of our model. �is validates the successful functioning 
of the ONNX framework. I encourage you to dissect the TensorFlow model further and 
understand how ONNX helps regenerate the exact same model in a di�erent deep learning 
library by utilizing the underlying mathematical operations in the model graph.

�is concludes our discussion of the di�erent ways of exporting PyTorch models. �e 
techniques covered here will be useful in deploying PyTorch models in production 
systems as well as in working across various platforms. As new versions of deep learning 
libraries, programming languages, and even OSes keep coming, this is an area that will 
rapidly evolve accordingly.

Hence, it is highly advisable to keep an eye on the developments and make sure to use  
the latest and most e�cient ways of exporting models as well as operationalizing them 
into production.

So far, we have been working on our local machines for serving and exporting our 
PyTorch models. In the next and �nal section of this chapter, we will brie�y look at 
serving PyTorch models on some of the well-known cloud platforms, such as AWS, 
Google Cloud, and Microso� Azure.

Serving PyTorch models in the cloud
Deep learning is computationally expensive and therefore demands powerful and 
sophisticated computational hardware. Not everyone might have access to a local machine 
that has enough CPUs and GPUs to train gigantic deep learning models in a reasonable 
time. Furthermore, we cannot guarantee 100 percent availability for a local machine 
that is serving a trained model for inference. For reasons such as these, cloud computing 
platforms are a vital alternative for both training and serving deep learning models.

In this section, we will discuss how to use PyTorch with some of the most popular cloud 
platforms – AWS, Google Cloud, and Microso� Azure. We will explore the di�erent 
ways of serving a trained PyTorch model in each of these platforms. �e model-serving 
exercises we discussed in the earlier sections of this chapter were executed on a local 
machine. �e goal of this section is to enable you to perform similar exercises using 
virtual machines (VMs) on the cloud.

Using PyTorch with AWS
AWS is the oldest and one of the most popular cloud computing platforms. It has 
deep integrations with PyTorch. We have already seen an example of it in the form of 
TorchServe, which is jointly developed by AWS and Facebook.
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In this section, we will look at some of the common ways of serving PyTorch models 
using AWS. First, we will simply learn how to use an AWS instance as a replacement for 
our local machine (laptop) to serve PyTorch models. �en, we will brie�y discuss Amazon 
SageMaker, which is a fully dedicated cloud machine learning platform. We will brie�y 
discuss how TorchServe can be used together with SageMaker for model serving.

Note

�is section assumes basic familiarity with AWS. �erefore, we will not be 
elaborating on topics such as what an AWS EC2 instance is, what AMIs are, 
how to create an instance, and so on. To review such topics, please go to 

https://aws.amazon.com/getting-started/. We will instead 

focus on the components of AWS that are related to PyTorch.

Serving a PyTorch model using an AWS instance

In this section, we will demonstrate how we can use PyTorch within a VM – an AWS 
instance, in this case. A�er reading this section, you will be able to execute the exercises 
discussed in the Model serving in PyTorch section inside an AWS instance.

First, you will need to create an AWS account if you haven't done so already. Creating 
an account requires an email address and a payment method (credit card). You can �nd 
details on account creation here: https://aws.amazon.com/premiumsupport/
knowledge-center/create-and-activate-aws-account/.

Once you have an AWS account, you may log in to enter the AWS console  
(https://aws.amazon.com/console/). From here, we basically need to instantiate 
a VM (AWS instance) where we can start using PyTorch for training and serving models. 
Creating a VM requires two decisions: 

• Choosing the hardware con�guration of the VM, also known as the AWS  

instance type

• Choosing the Amazon Machine Image (AMI), which entails all the required 
so�ware, such as the OS (Ubuntu or Windows), Python, PyTorch, and so on

You can read in more detail about the interaction between the preceding two components 
here: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
ec2-instances-and-amis.html. Typically, when we refer to an AWS instance, we 
are referring to an Elastic Cloud Compute instance, also known as an EC2 instance.
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Based on the computational requirements of the VM (RAM, CPUs, and GPUs), you can 
choose from a long list of EC2 instances provided by AWS, which can be found here: 
https://aws.amazon.com/ec2/instance-types/. Because PyTorch heavily 
leverages GPU compute power, it is recommended to use EC2 instances that include 
GPUs, though they are generally costlier than CPU-only instances.

Regarding AMIs, there are two possible approaches to choosing an AMI. You may go 
for a barebones AMI that only has an OS installed, such as Ubuntu (Linux). In this case, 
you can then manually install Python (using the documentation here: https://docs.
python-guide.org/starting/install3/linux/) and subsequently install 
PyTorch (using the documentation here: https://pytorch.org/get-started/
locally/#linux-prerequisites).

An alternative and more recommended way is to start with a pre-built AMI that has 
PyTorch installed already. AWS o�ers Deep Learning AMIs, which make the process 
of getting started with PyTorch on AWS much faster and easier. You can read this well-
written blog for starting your own AWS EC2 instance with a Deep Learning AMI: 
https://aws.amazon.com/blogs/machine-learning/get-started-
with-deep-learning-using-the-aws-deep-learning-ami/.

Once you have launched an instance successfully using either of the suggested 
approaches, you may simply connect to the instance using one of the various available 
methods: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
AccessingInstances.html.

SSH is one of the most common ways of connecting to an instance. Once you are inside 
the instance, it will have the same layout as working on a local machine. One of the �rst 
logical steps would then be to test whether PyTorch is working inside the machine.

To test, �rst open a Python interactive session by simply typing python on the command 
line. �en, execute the following line of code:

import torch

If it executes without error, it means that you have PyTorch installed on the system.

At this point, you can simply fetch all the code that we wrote in the preceding sections of 
this chapter on model serving. On the command line inside your home directory, simply 
clone this book's GitHub repository by running this:

git clone https://github.com/PacktPublishing/Mastering-PyTorch.
git
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�en, within the Chapter10 subfolder, you will have all the code to serve the MNIST 
model that we worked on in the previous sections. You can basically re-run the exercises, 
this time on the AWS instance instead of your local computer.

Let's review the steps we need to take for working with PyTorch on AWS:

1. Create an AWS account.

2. Log in to the AWS console.

3. Click on the Launch a virtual machine button in the console.

4. Select an AMI. For example, select the Deep Learning AMI (Ubuntu).

5. Select an AWS instance type. For example, select p.2x large, as it contains a GPU.

6. Click Launch.

7. Click Create a new key pair. Give the key pair a name and download it locally.

8. Modify permissions of this key-pair �le by running this on the command line:

chmod 400 downloaded-key-pair-file.pem

9. On the console, click on View Instances to see the details of the launched instance 

and speci�cally note the public IP address of the instance.

10. Using SSH, connect to the instance by running this on the command line:

ssh -i downloaded-key-pair-file.pem ubuntu@<Public IP 
address>

�e public IP address is the same as obtained in the previous step.

11. Once connected, start a python shell and run import torch in the shell to 

ensure that PyTorch is correctly installed on the instance.

12. Clone this book's GitHub repository by running the following on the instance's 

command line:

git clone https://github.com/PacktPublishing/Mastering-
PyTorch.git

13. Go to the chapter10 folder within the repository and start working on the 

various model-serving exercises that are covered in the preceding sections of  

this chapter.
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�is brings us to the end of this section, where we have essentially learned how to 
start working with PyTorch on a remote AWS instance. You can read more about this 
topic on PyTorch's website: https://pytorch.org/get-started/cloud-
partners/#aws-quick-start. Next, we will look at AWS's fully dedicated cloud 
machine learning platform –Amazon SageMaker.

Using TorchServe with Amazon SageMaker

We have already discussed TorchServe in detail in the preceding section. As we know, 
TorchServe is a PyTorch model-serving library developed by AWS and Facebook. Instead 
of manually de�ning a model inference pipeline, model-serving APIs, and microservices, 
you can use TorchServe, which provides all of these functionalities.

Amazon SageMaker, on the other hand, is a cloud machine learning platform that o�ers 
functionalities such as the training of massive deep learning models as well as deploying 
and hosting trained models on custom instances. When working with SageMaker, all we 
need to do is this:

• Specify the type and number of AWS instances we would like to spin up to serve  
the model.

• Provide the location of the stored pre-trained model object.

We do not need to manually connect to the instance and serve the model using TorchServe. 
SageMaker takes care of all that. To get started with using SageMaker and TorchServe 
to serve PyTorch models on an industrial scale and within a few clicks, refer to this 
tutorial: https://aws.amazon.com/blogs/machine-learning/deploying-
pytorch-models-for-inference-at-scale-using-torchserve/. You 
can also explore use cases of Amazon SageMaker when working with PyTorch, here: 
https://docs.aws.amazon.com/sagemaker/latest/dg/pytorch.html.

Tools such as SageMaker are incredibly useful for scalability during both model training 
and serving. However, while using such one-click tools, we o�en tend to lose some 
�exibility and debuggability. �erefore, it is for you to decide what set of tools works best 
for your use case. �is concludes our discussion on using AWS as a cloud platform for 
working with PyTorch. Next, we will look at another cloud platform – Google Cloud.

Serving PyTorch model on Google Cloud
Similar to AWS, you �rst need to create a Google account (*@gmail.com) if you do 
not have one already. Furthermore, to be able to log in to the Google Cloud console 
(https://console.cloud.google.com), you will need to add a payment method 
(credit card details).
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Note

We will not be covering the basics of Google Cloud here. We will instead focus 
on using Google Cloud for serving PyTorch models within a VM. To review 

the basics of Google Cloud, please refer to https://console.cloud.
google.com/getting-started.

Once inside the console, we need to follow the steps similar to AWS to launch a VM where 
we can serve our PyTorch model. You can always start with a barebones VM and manually 
install PyTorch. But we will be using Google's Deep Learning VM Image (https://
cloud.google.com/deep-learning-vm), which has PyTorch pre-installed. Here 
are the steps for launching a Google Cloud VM and using it to serve PyTorch models:

1. Launch Deep Learning VM Image on Google Cloud by visiting the following link in 

the marketplace: https://console.cloud.google.com/marketplace/

product/click-to-deploy-images/deeplearning.

2. Input the deployment name in the command window. �is name su�xed with -vm 

acts as the name of the launched VM. �e command prompt inside this VM will 

look like this:

<user>@<deployment-name>-vm:~/

Here, user is the client connecting to the VM and deployment-name is the 

name of the VM chosen in this step.

3. Select PyTorch as the Framework in the next command window. �is tells the 

platform to pre-install PyTorch in the VM.

4. Select the zone for this machine. Preferably, choose the zone geographically 

closest to you. Also, di�erent zones have slightly di�erent hardware o�erings (VM 

con�gurations) and hence you might want to choose a speci�c zone for a speci�c 

machine con�guration.

5. Having speci�ed the so�ware requirement in step 3, we shall now specify the 

hardware requirements. In the GPU section of the command window, we need  

to specify the GPU type and subsequently the number of GPUs to be included in 

the VM.

�e list of GPU types available for Google Cloud can be found here:  

https://cloud.google.com/compute/docs/gpus. In the GPU section, 

also tick the checkbox that will automatically install the NVIDIA drivers that are 

necessary to utilize the GPUs for deep learning.
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6. Similarly, under the CPU section, we need to provide the machine type. �e list of 

machine types o�ered by Google Cloud can be found here: https://cloud.

google.com/compute/docs/machine-types. Regarding step 5 and step 6, 

please be aware that di�erent zones provide di�erent machine and GPU types as 

well as di�erent combinations of GPU types and GPU numbers.

7. Finally, click on the Deploy button. �is will launch the VM and lead you to a  

page that will have all the instructions needed to connect to the VM from your  

local computer.

8. At this point, you may connect to the VM and ensure that PyTorch is correctly 

installed by trying to import PyTorch from within a Python shell. Once veri�ed, 

clone this book's GitHub repository. Go to the Chapter10 folder and start 

working on the model-serving exercises within this VM.

You can read more about creating the PyTorch deep learning VM here: https://
cloud.google.com/ai-platform/deep-learning-vm/docs/pytorch_
start_instance. �is concludes our discussion of using Google Cloud as a cloud 
platform to work with PyTorch model serving. As you may have noticed, the process is 
very similar to that of AWS. In the next and �nal section, we will brie�y look at using 
Microso�'s cloud platform, Azure, to work with PyTorch.

Serving PyTorch models with Azure
Once again, similar to AWS and Google Cloud, Azure requires a Microso�-recognized 
email ID for signing up, along with a valid payment method.

Note

We assume a basic understanding of the Microso� Azure cloud platform 
for this section. In order to review the Azure basics, you may visit this link: 

https://azure.microsoft.com/en-us/get-started/.

Once you have access to the Azure portal (https://portal.azure.com/), there are 
broadly two recommended ways of getting started with using PyTorch on Azure:

• Data Science Virtual Machine (DSVM)

• Azure Machine Learning

We will now discuss these approaches brie�y.
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Working on Azure's Data Science Virtual Machine
Similar to Google Cloud's Deep Learning VM Image, Azure o�ers its own DSVM image 
(https://azure.microsoft.com/en-us/services/virtual-machines/
data-science-virtual-machines/), which is a fully dedicated VM image for data 
science and machine learning, including deep learning.

�ese images are available for Windows as well as Linux/Ubuntu. Links to the machine 
images are provided in the References section at the end of this chapter.

�e steps to create a DSVM instance using this image are quite similar to the steps 
discussed for Google Cloud. You can follow the steps to create a Linux or a Windows 
DSVM by following the appropriate links provided in the References section.

Once you have created the DSVM, you can launch a Python shell and try to import 
the PyTorch library to ensure that it is correctly installed. You may further test the 
functionalities available in this DSVM by following the steps provided in the this  
well-written articles for Linux as well as Windows, links to which are provided in the 
References section.

Finally, you may clone this book's GitHub repository within the DSVM instance and use 
the code within the Chapter10 folder to work on the PyTorch model-serving exercises 
discussed in this chapter.

Discussing Azure Machine Learning Service

Similar to and predating Amazon's SageMaker, Azure provides an end-to-end cloud 
machine learning platform. �e Azure Machine Learning Service (AMLS) comprises the 
following (to name just a few):

• Azure Machine Learning VMs

• Notebooks

• Virtual environments

• Datastores

• Tracking machine learning experiments

• Data labeling
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A key di�erence between AMLS VMs and DSVMs is that the former are fully managed. 
For instance, they can be scaled up or down based on the model training or serving 
requirements. You can read more about the di�erences between the Azure Machine 
Learning VMs and DSVMs here: https://docs.microsoft.com/en-gb/azure/
machine-learning/data-science-virtual-machine/overview.

Just like SageMaker, Azure Machine Learning is useful both for training large-scale 
models as well as deploying and serving those models. Azure website has a great tutorial 
for training PyTorch models on AMLS as well as for deploying PyTorch models on AMLS. 
Links to these tutorials can be found in the References section.

Azure Machine Learning aims at providing a one-click interface to the user for all 
machine learning tasks. Hence, it is important to keep in mind the �exibility trade-o�. 
Although we have not covered all the details about Azure Machine Learning here, Azure's 
website is a good resource for reading further: https://docs.microsoft.com/
en-us/azure/machine-learning/overview-what-is-azure-ml.

�is brings us to the end of discussing what Azure has to o�er as a cloud platform for 
working with PyTorch. You can read more about working with PyTorch on Azure here: 
https://azure.microsoft.com/en-us/develop/pytorch/.

And that also concludes our discussion of using PyTorch to serve models on the cloud. 
We have discussed AWS, Google Cloud, and Microso� Azure in this section. Although 
there are more cloud platforms available out there, the nature of their o�erings and the 
ways of using PyTorch within those platforms will be similar to what we have discussed. 
�is section will help you in getting started with working on your PyTorch projects on a 
VM in the cloud.

Summary
In this chapter, we have explored the world of deploying trained PyTorch deep learning 
models in production systems. We began with building a local model inference pipeline 
to be able to make predictions using a pre-trained model with a few lines of Python 
code. We then utilized the model inference logic of this pipeline to build our own model 
server using Python's Flask library. We went further with the model server to build a 
self-contained model microservice using Docker that can be deployed and scaled with a 
one-line command.

Next, we explored TorchServe, which is a recently developed dedicated model-serving 
framework for PyTorch. We learned how to use this tool to serve PyTorch models with a 
few lines of code and discussed the advanced capabilities it o�ers, such as model versioning 
and metrics monitoring. �erea�er, we elaborated on how to export PyTorch models.
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We �rst learned the two di�erent ways of doing so using TorchScript: tracing and 
scripting. We also demonstrated how to use an exported model using TorchScript to make 
predictions inside C++ code. And then, we discussed another way of exporting models 
using ONNX. We demonstrated how we can export a trained PyTorch model into ONNX 
format and thereon to TensorFlow, to make predictions using TensorFlow code.

In the �nal section of this chapter, we explored the various cloud platforms where we can 
train and serve PyTorch models. In particular, we looked at the AWS, Google Cloud, and 
Microso� Azure cloud platforms.

A�er �nishing this chapter, you are all set to start building model inference pipelines 
of your own. �e possibilities to develop a model-serving infrastructure are many and 
the optimal design choice will depend on the speci�c requirements of the model. Some 
models might require heavy performance optimizations to reduce inference latency. Some 
models might need to be deployed in a very sophisticated environment with limited 
so�ware options. �e topics covered in this chapter will surely help you in thinking 
reasonably through such di�erent scenarios and preparing a solid model serving system.

In the next chapter, we will look at another practical aspect of working with models in 
PyTorch that helps immensely in saving time and resources while training and validating 
deep learning models – distributed training.

References
• Azure Linux/Ubuntu Image : https://azuremarketplace.microsoft.

com/en-us/marketplace/apps/microsoft-dsvm.ubuntu-
1804?tab=Overview

• Azure Windows Image : https://azuremarketplace.microsoft.
com/en-us/marketplace/apps/microsoft-dsvm.dsvm-win-
2019?tab=Overview

• Steps to create Linux DSVM : https://docs.microsoft.com/en-gb/
azure/machine-learning/data-science-virtual-machine/dsvm-
ubuntu-intro

• Steps to create Windows DSVM : https://docs.microsoft.com/en-gb/
azure/machine-learning/data-science-virtual-machine/
provision-vm

• Linux DSVM walkthrough : https://docs.microsoft.com/en-gb/
azure/machine-learning/data-science-virtual-machine/linux-
dsvm-walkthrough
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• Windows DSVM walkthrough : https://docs.microsoft.com/en-gb/
azure/machine-learning/data-science-virtual-machine/vm-do-
ten-things

• Tutorial for training PyTorch model on AMLS: https://docs.microsoft.
com/en-us/azure/machine-learning/how-to-train-pytorch

• Tutorial for deploying PyTorch model on AMLS: https://docs.microsoft.
com/en-us/azure/machine-learning/how-to-deploy-and-
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Before serving pre-trained machine learning models, which we discussed extensively in 
the previous chapter, we need to train our machine learning models. In Chapter 3, Deep 
CNN Architectures; Chapter 4, Deep Recurrent Model Architectures; and Chapter 5, Hybrid 
Advanced Models, we have seen the vast expanse of increasingly complex deep learning 
model architectures.

Such gigantic models o�en have millions and even billions of parameters. �e recent  
(at the time of writing) Generative Pre-Trained Transformer 3 (GPT3) language model 
has 175 billion parameters. Using backpropagation to tune many parameters requires 
enormous amounts of memory and compute power. And even then, model training can 
take days to �nish.

In this chapter, we will explore ways of speeding up the model training process by 
distributing the training task across machines and processes within machines. We will 
learn about the distributed training APIs o�ered by PyTorch – torch.distributed, torch.

multiprocessing, and torch.utils.data.distributed.DistributedSampler – that will make 
distributed training look easy.
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Using the handwritten digits classi�cation example from Chapter 1, Overview of Deep 
Learning Using PyTorch, we will demonstrate the speedup in training on CPU by using 
PyTorch's distributed training tools. We will then discuss similar ways of speeding up  
on GPU.

By the end of this chapter, you will be able to fully utilize the hardware at your disposal  
for model training. For training extremely large models, the tools discussed in this chapter 
will prove vital, if not necessary.

In this chapter, we will cover the following topics:

• Distributed training with PyTorch

• Distributed training on GPUs with CUDA

Technical requirements
We will be using Python scripts for all our exercises. �e following is a list of Python 
libraries that must be installed for this chapter using pip. For example, run pip 
install torch==1.4.0 on the command line, like so to install torch:

jupyter==1.0.0

torch==1.4.0

torchvision==0.5.0

All the code �les that are relevant to this chapter are available at https://github.
com/PacktPublishing/Mastering-PyTorch/tree/master/Chapter11.

Distributed training with PyTorch
In the previous exercises in this book, we have implicitly assumed that model training 
happens in one machine and in a single Python process in that machine. In this  
section, we will revisit the exercise from Chapter 1, Overview of Deep Learning Using 
PyTorch – the handwritten digit classi�cation model – and transform the model training 
routine from regular training into distributed training. While doing so, we will explore 
the tools PyTorch o�ers for distributing the training process, thereby making it both faster 
and more hardware-e�cient. 

First, let's look at how the MNIST model can be trained without using distributed training. 
We will then contrast this with a distributed training PyTorch pipeline.
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Training the MNIST model in a regular fashion
�e handwritten digits classi�cation model that we built in Chapter 1, Overview of Deep 
Learning Using Python, was in the form of a Jupyter notebook. Here, we will put that 
notebook code together as a single Python script �le. �e full code can be found here: 
https://github.com/PacktPublishing/Mastering-PyTorch/blob/
master/Chapter11/convnet_undistributed.py.

In the following steps, we will recap on the di�erent parts of the model training code:

1. In the Python script, we must import the relevant libraries:

import torch

… 

import argparse

2. Next, we must de�ne the CNN model architecture:

class ConvNet(nn.Module):

    def __init__(self): … 

    def forward(self, x): … 

3. We must then de�ne the model training routine. �e full code has been deliberately 

written here so that we can compare it to the distributed training mode later:

def train(args):

    torch.manual_seed(0)

    device = torch.device("cpu")

    train_dataloader=torch.utils.data.DataLoader(...)  

    model = ConvNet()

    optimizer = optim.Adadelta(model.parameters(), 
lr=0.5)

    model.train()

In the �rst half of the function, we de�ne our PyTorch training dataloader using 

the PyTorch training dataset. We then instantiate our deep learning model, known 

as the ConvNet, and also de�ne the optimization module. In the second half, we 

run the training loop, which runs for a de�ned number of epochs, as shown in the 

following code: 

    for epoch in range(args.epochs):

        for b_i, (X, y) in enumerate(train_dataloader):

            X, y = X.to(device), y.to(device)
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            pred_prob = model(X)

            loss = F.nll_loss(pred_prob, y) # nll is the 
negative likelihood loss

            optimizer.zero_grad()

            loss.backward()

            optimizer.step()

Inside the loop, we run through the entire training dataset in batches with a de�ned 

batch size (128, in this case). For each batch containing 128 training data points,  

we run a forward pass through the model to compute prediction probabilities.  

We then use the predictions alongside ground truth labels to compute a batch loss. 

We use this loss to compute gradients in order to tune the model parameters using 

backpropagation.

4. We now have all the components we need. We can put this all together in a main() 

function:

def main():

    parser = argparse.ArgumentParser()

    … 

    train(args)

Here, we are using an arguments parser, which helps us enter hyperparameters 

such as the number of epochs while running our Python training program from the 

command line. We are also timing the training routine so that we can compare it 

with the distributed training routine later.

5. �e �nal thing we must do in our Python script is to make sure that the main() 

function runs when we execute this script from the command line:

if __name__ == '__main__':

    main()

6. Now, we can execute the Python script by running the following command on the 

command line:

python convnet_undistributed.py --epochs 1

We are running the training data for just a single epoch as the focus is not on model 

accuracy but on the model training time. �is should output the following:
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Figure 11.1 – Output of regular model training logs

It took roughly 50 seconds to train for 1 epoch, which equates to 469 batches, each 

of which has 128 data points. �e only exception is the last batch, which has 32 

fewer data points than usual (as there are 60,000 data points in total).

At this point, it is important to know what kind of machine this model is being 

trained on so that we know the reference context. As an example, the following 

screenshot shows the system speci�cations for my computer, which is a MacBook:

 

Figure 11.2 – Hardware speci�cations

�e preceding information can be obtained by running the following command on 

a mac Terminal:

/Volumes/Macintosh\ HD/usr/sbin/system_profiler 
SPHardwareDataType

It is important point to note that my machine consists of 4 CPU cores and 16 GB RAM. 
�is is useful information when you're trying to parallelize the training routine, which we 
will look at next.
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Training the MNIST model in a distributed fashion
In this section, we will basically repeat the six steps we provided of the previous section, 
but we will make a few edits to the code to enable distributed training, which should be 
faster than the regular training we performed. �e full code for this distributed training 
Python script can be found here: https://github.com/PacktPublishing/
Mastering-PyTorch/blob/master/Chapter11/convnet_distributed.py.

Defining a distributed training routine
In this section, we will import the additional PyTorch libraries that are crucial for 
facilitating distributed training. We will then rede�ne the model training routine, this 
time ensuring that di�erent machines and processes can work together when training  
a single model. Let's get started:

1. Once again, we will start by importing the necessary libraries. �is time, we will 

have a few additional imports:

import torch

import torch.multiprocessing as mp

import torch.distributed as dist

import argparse

While torch.multiprocessing helps spawn multiple Python processes within 

a machine (typically, we may spawn as many processes as there are CPU cores in 

the machine), torch.distributed enables communications between di�erent 

machines as they work together to train the model. During execution, we need to 

explicitly launch our model training script from within each of these machines.

One of the built-in PyTorch communication backends, such as Gloo, will then 

take care of the communication between these machines. Inside each machine, 

multiprocessing will take care of parallelizing the training task across several 

processes. I encourage you to read about multiprocessing and distribution in further 

detail at https://pytorch.org/docs/stable/multiprocessing.

html and https://pytorch.org/docs/stable/distributed.html, 

respectively.

2. �e model architecture de�nition step remains unchanged for obvious reasons:

class ConvNet(nn.Module):

    def __init__(self): … 

    def forward(self, x): … 
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3. At this point, it's time to de�ne the train() function, which is where most of the 

magic happens. �e following highlighted code helps facilitate distributed training:

def train(cpu_num, args):

    rank = args.machine_id * args.num_processes + cpu_num  
    dist.init_process_group(backend='gloo',

    init_method='env://', world_size=args.world_size,

    rank=rank) 

    torch.manual_seed(0)

    device = torch.device("cpu")  

As we can see, there is additional code at the very beginning that consists of two 

statements. First, a rank is calculated. �is is essentially the ordinal ID of a process 

within the entire distributed system; for example, if we are using two machines with 

four CPU cores each. For full hardware utilization, we might want to launch a total 

of eight processes, with four per machine.

In this scenario, we will need to somehow label these eight processes in order to 

remember which process is which. We can do so by assigning IDs 0 and 1 to the 

two machines and then IDs 0 to 3 to the four processes in each machine. Finally, the 

rank of the kth process of the nth machine is given by the following equation:

�e second additional line of code uses the torch.distributed module's 

init_process_group, which, for each launched process, speci�es the following:

a)  �e backend that will be used for communication between machines (Gloo, in 

this case).

b)  �e total number of processes involved in distributed training (given by args.

world_size), otherwise called world_size.

c)  �e rank of the process being launched.

d)  �e init_process_group method blocks each process from performing 

further actions until all the processes across machines have been initiated using 

this method.

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  𝑟𝑟 ∗ 4 +  𝑟𝑟 
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Regarding the backend, PyTorch provides the following three built-in backends 

for distributed training: Gloo, NCCL, and MPI. In short, for distributed training 

on CPUs, use Gloo, while for GPUs, use NCCL. You can read about these 

communication backends in detail here: https://pytorch.org/tutorials/

intermediate/dist_tuto.html#communication-backends. �e code 

is as follows:

    train_dataset = …  

    train_sampler = torch.utils.data.distributed.
DistributedSampler(

        train_dataset, num_replicas=args.world_size,

        rank=rank)

    train_dataloader = torch.utils.data.DataLoader(

 dataset=train_dataset, batch_size=args.batch_size,

 shuffle=False, num_workers=0, sampler=train_sampler)

    model = ConvNet()

    optimizer = optim.Adadelta(model.parameters(), 
lr=0.5)

    model = nn.parallel.DistributedDataParallel(model)

    model.train()

Compared to the undistributed training exercise, we have separated the MNIST 

dataset instantiation from the dataloader instantiation. And in-between these 

two steps, we have inserted a data sampler; that is, torch.utils.data.

distributed.DistributedSampler. 

�e sampler's task is to divide the training dataset into world_size number of 

partitions so that all the processes in the distributed training session get to work 

on equal portions of data. Note that we have set shu�e to False in the dataloader 

instantiation because we are using the sampler for distributing data.

Another addition to our code is the nn.parallel.

DistributedDataParallel function, which is applied to the 

model object. �is is perhaps the most important part of this code as 

DistributedDataParallel is a critical component/API that facilitates the 

gradient descent algorithm in a distributed fashion. �e following happens under 

the hood:

a)  Each spawned process in the distributed universe gets its own model copy.

b)  Each model per process maintains its own optimizer and undergoes a local 

optimization step that's in sync with the global iteration.
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c)  At each distributed training iteration, individual losses and hence gradients are 

calculated in each process. �ese gradients are then averaged across processes.

d)  �e averaged gradient is then universally backpropagated to each of the model 

copies, which tune their parameters.

e)  Because of the universal backpropagation step, all the model's parameters are the 

same at each iteration, which means they are automatically synced.

DistributedDataParallel ensures that each Python process runs on an 

independent Python interpreter. �is does away with the GIL limitation that could 

occur if multiple models were instantiated in multiple threads under the same 

interpreter. �is boosts performance even more, especially for models that require 

intense Python-speci�c processing:

    for epoch in range(args.epochs):

        for b_i, (X, y) in enumerate(train_dataloader):

            X, y = X.to(device), y.to(device)

            pred_prob = model(X)

            … 

        if b_i % 10 == 0 and cpu_num==0:

        print(...)

Finally, the training loop is almost the same as it was previously. �e only di�erence is  
that we restrict the logging to only the process with rank 0. We have done this because  
the machine with rank 0 is used to set up all communications. Hence, we notionally use 
the process with rank 0 as our reference to track the model's training performance. If we 
did not restrict this, we would get as many log lines per model training iteration as there 
are processes.

Executing distributed training on multiple processes

We de�ned the model, as well as the distributed training routine, in the previous section. 
In this section, we will execute that routine on multiple hardware settings and observe the 
impact of distributed training on model training time. Let's get started:

1. Moving on from the train() function to the main() function, we can see a lot  

of additions in the code:

def main():

    parser = argparse.ArgumentParser()

    parser.add_argument('--num-machines', default=1, 
type=int,)
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    parser.add_argument('--num-processes', default=1, 
type=int)

    parser.add_argument('--machine-id', default=0, 
type=int)

    parser.add_argument('--epochs', default=1, type=int)

    parser.add_argument('--batch-size', default=128, 
type=int)

    args = parser.parse_args()

    args.world_size = args.num_processes * args.num_
machines                

    os.environ['MASTER_ADDR'] = '127.0.0.1'              

    os.environ['MASTER_PORT'] = '8892'      

    start = time.time()

    mp.spawn(train, nprocs=args.num_processes, 
args=(args,))

    print(f"Finished training in {time.time()-start} 
secs")

First, we can observe the following additional arguments:

a)  num_machines: As its name suggests, this speci�es the number of machines.

b)  num_processes: �e number of processes to be spawned in each machine.

c)  machine_id: �e ordinal ID of the current machine. Remember, this Python 

script will need to be launched separately in each of the machines.

d)  batch_size: �e number of data points in a batch. Why do we suddenly  

need this?

As we mentioned earlier, there are two reasons why we need this. First, all the 

processes will have their own gradients, which will be averaged to get the overall 

gradient per iteration. Hence, we need to explicitly specify how many data points 

are processed by each process in one model training iteration. Secondly, the full 

training dataset is divided into  

world_size number of individual datasets.

�erefore, at each iteration, the full batch of data needs to be divided into  

world_size number of sub-batches of data per process. And because the  

batch_size is now coupled to world_size, we provide it as an input  

argument for easier training interface. So, for example, if the world_size 

is doubled, the batch_size needs to be halved in order to enable uniform 

distribution of data points across all machines and processes.
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A�er providing the preceding additional arguments, we calculate world_size as a 

derived argument. �en, we specify two important environment variables:

a)  MASTER_ADDR: �e IP address of the machine that runs the process with rank 0.

b)  MASTER_PORT: An available port on the machine that runs the process with 

rank 0.

As we mentioned in step 3 of the previous section - De�ning a distributed training 

routine, the machine with rank 0 sets up all the backend communications, and 

hence it is important for the entire system to be able to locate the hosting machine 

at all times. �at is why we provide its IP address and port. 

In this example, the training process will be run on a single local machine and 

hence a localhost address su�ces. However, when running multi-machine training 

across servers located remotely, we need to provide the exact IP address of the rank 

0 server with a free port.

�e �nal change we've made is the use of multiprocessing to spawn  

num_processes number of processes in a machine, instead of simply running 

a single training process. �e distributional arguments are passed to each of 

the spawned processes so that the processes and machines coordinate among 

themselves during the model training run.

2. �e �nal piece of our distributed training code is the same as it was previously:

if __name__ == '__main__':

    main()

3. We are now in a position to launch the distributed training script. We will begin 

with an undistributed-like run using the distributed-like script. We can do so by 

simply setting the number of machines, as well as the number of processes, to 1:

python convnet_distributed.py --num-machines 1 
--num-processes 1 --machine-id 0 --batch-size 128

Note

�e Gloo backend only works with Linux and macOS at the time of writing. 
Unfortunately, this means that this code will not run on Windows operating 
systems. 
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Note that since only a single process is being used for training, batch_size 

remains unchanged in comparison to the previous exercise. You shall see the 

following output:

Figure 11.3 – Distributed training with a single process

If we compare this result to the one shown in Figure 11.1, the training time is 

slightly shorter, although it follows a similar pattern. �e training loss' evolution is 

also quite similar.

4. We will now run a truly distributed training session with 2 processes instead of 1. 

Due to this, we will halve the batch size from 128 to 64:

python convnet_distributed.py --num-machines 1 
--num-processes 2 --machine-id 0 --batch-size 64

You shall see the following output:

Figure 11.4 – Distributed training with two processes
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As we can see, there is a quite a reduction in training time – from 44 seconds to 

30 seconds. Once again, the training loss' evolution seems to be una�ected, which 

shows how distributed training can speed up training without there being any loss 

in model accuracy.

5. Now, let's go even further and use 4 processes instead of 2. Due to this, we will 

reduce the batch size from 64 to 32:

python convnet_distributed.py --num-machines 1 
--num-processes 4 --machine-id 0 --batch-size 32

You shall see the following output:

Figure 11.5 – Distributed training with four processes

Contrary to our expectations, the training time doesn't reduce further and in 

fact increases slightly. �is is where we need to go back to Figure 11.2 – here, the 

machine has four CPU cores and all the cores are occupied by one process each. 

Since this session is being run on a local machine, there are other processes running 

as well (such as Google Chrome), which may �ght for resources with one or more of 

our distributed training processes.

In practice, training models in a distributed fashion is done on remote machines, 

whose only job is to perform model training. On such machines, it is advisable to 

use as many processes (or even more) as there are CPU cores. 

You can still launch more processes than there are cores, but that will not yield 

signi�cant training time improvements (if any) as multiple processes will be �ghting 

for one resource (a CPU core). You can read more about cores and processes here: 

https://www.guru99.com/cpu-core-multicore-thread.html.
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6. As a �nal note, because we have only used one machine in this exercise, we only 

needed to launch one Python script to start training. If, however, you are training 

on multiple machines, then besides applying the changes to MASTER_ADDR and 

MASTER_PORT, as advised in step 4, you need to launch one Python script in each 

machine. For example, if there are two machines, then on the �rst machine, run the 

following command:

python convnet_distributed.py --num-machines 2 
--num-processes 2 --machine-id 0 --batch-size 32

�en, on the second machine, run the following command:

python convnet_distributed.py --num-machines 2 
--num-processes 2 --machine-id 1 --batch-size 32

�is concludes our hands-on discussion of training deep learning models on CPUs using 
PyTorch in a distributed fashion. With a few lines of added code, a general PyTorch model 
training script can be turned into a distributed training environment. �e exercise we 
performed in this section was for a simple convolutional network. However, because we 
did not even touch the model architecture code, this exercise can easily be extended for 
more complex learning models, where the gains will be more visible and needed. 

In the next and �nal section, we will brie�y discuss how to apply similar code changes  
in order to facilitate distributed training on GPUs.

Distributed training on GPUs with CUDA
�roughout the various exercises in this book, you may have noticed a common line of 
PyTorch code:

device = torch.device('cuda' if torch.cuda.is_available() else 
'cpu')

�is code simply looks for the available compute device and prefers cuda (which uses 
the GPU) over cpu. �is preference is because of the computational speedups that GPUs 
can provide on regular neural network operations, such as matrix multiplications and 
additions through parallelization.
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In this section, we will learn how to speed this up further with the help of distributed 
training on GPUs. We will build upon the work done in the previous exercise. Note that 
most of the code looks the same. In the following steps, we will highlight the changes. 
Executing the script has been le� to you as an exercise.  
�e full code is available here: https://github.com/PacktPublishing/
Mastering-PyTorch/blob/master/Chapter11/convnet_distributed_
cuda.py. Let's get started:

1. While the imports and model architecture de�nition code are exactly the same as they 

were previously, there are a few changes we need to make in the train() function:

def train(gpu_num, args):

rank = args.machine_id * args.num_processes + cpu_num                        

dist.init_process_group(                                   

backend='nccl', init_method='env://',                                   

world_size=args.world_size, rank=rank) 

    torch.manual_seed(0)

    model = ConvNet()

torch.cuda.set_device(gpu_num)

model.cuda(gpu_num)

criterion = nn.NLLLoss().cuda(gpu_num) # nll is the 
negative likelihood loss

As we discussed in step 3 of the previous section- De�ning a distributed training 

routine, NCCL is the preferred choice of communication backend when working 

with GPUs. Both the model and the loss function need to be placed on the GPU 

device to ensure that the parallelized matrix operations o�ered by the GPUs are 

utilized and training is accordingly sped up:

    train_dataset = ...   

    train_sampler = ... 

    train_dataloader = torch.utils.data.DataLoader(

       dataset=train_dataset, batch_size=args.batch_size,

       shuffle=False, num_workers=0, pin_memory=True,

       sampler=train_sampler)

    optimizer = optim.Adadelta(model.parameters(), 
lr=0.5)

  model = nn.parallel.DistributedDataParallel(model,

       device_ids=[gpu_num])

    model.train()
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�e DistributedDataParallel API takes in an additional parameter, called 

device_ids, which takes in the rank of the GPU process it is called from. �ere 

is also an additional parameter, pin_memory, under the dataloader, which is set to 

True. �is essentially helps in faster data transfer from the host (the CPU, in this 

case, which is where the dataset is loaded) to the various devices (GPUs) during 

model training.

�is parameter enables the dataloader to pin data into CPU memory – in other 

words, allocate the data samples to �xed page-locked CPU memory slots. �e 

data from these slots is then copied to the respective GPUs during training. 

You can read more about the pinning strategy here: https://developer.

nvidia.com/blog/how-optimize-data-transfers-cuda-cc/. �e 

pin_memory=True mechanism works together with the non_blocking=True 

argument, as shown in the following code:

for epoch in range(args.epochs):

        for b_i, (X, y) in enumerate(train_dataloader):

      X, y = X.cuda(non_blocking=True), y.cuda(non_
blocking=True)

            pred_prob = model(X)

            …            

By invoking the pin_memory and non_blocking parameter, we enable overlap 

between the following:

a)  CPU to GPU data (ground truth) transfer 

b)  GPU model training compute (or GPU kernel execution)

�is basically makes the overall GPU training process more e�cient (faster).

2. Besides the changes in the train() function, we must change a few lines in the 

main() function as well:

def main():

    parser.add_argument('--num-gpu-processes', default=1, 
type=int)

    args.world_size = args.num_gpu_processes * args.num_
machines                

    mp.spawn(train, nprocs=args.num_gpu_processes, 
args=(args,))
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Instead of num_process, we now have num_gpu_processes. �e rest of the 

code changes accordingly. �e rest of the GPU code is the same as it was previously. 

Now, we are all set to the run distributed training on GPUs by executing the 

following command:

python convnet_distributed_cuda.py --num-machines 1 
--num-gpu-processes 2 --machine-id 0 --batch-size 64

�is brings us to the end of brie�y discussing distributed model training on GPUs using 
PyTorch. As we mentioned in the previous section, the code changes that have been 
suggested for the preceding example can be extended to other deep learning models. 
Using distributed training on GPUs is actually how most of the latest state-of-the-art deep 
learning models are trained. �is should get you started with training your own amazing 
models using GPUs.

Summary
In this chapter, we covered an important practical aspect of machine learning; that is, how 
to optimize the model training process. We explored the extent and power of distributed 
training using PyTorch. First, we discussed distributed training on CPUs. We re-trained 
the model we trained in Chapter 1, Overview of Deep Learning Using PyTorch, using the 
principles of distributed training.

While working on this exercise, we learned about some of the useful PyTorch APIs that 
make distributed training work once we've made a few code changes. Finally, we ran the 
new training script and observed a signi�cant speedup by distributing the training across 
multiple processes.

In the second half of this chapter, we brie�y discussed distributed training on GPUs using 
PyTorch. We highlighted the basic code changes needed for model training to work on 
multiple GPUs in a distributed fashion, while leaving out the actual execution for you as 
an exercise.

In the next chapter, we will move on to another important and promising aspect of 
applied machine learning that we already touched upon in both Chapter 3, Deep CNN 
Architectures, and Chapter 5, Hybrid Advanced Models: we will learn how to e�ectively use 
PyTorch for automated machine learning (AutoML). By doing this, we will be able to use 
AutoML to train machine learning models automatically; that is, without having to decide 
on and de�ne the model architecture.
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Automated machine learning (AutoML) provides methods to �nd the optimal neural 
architecture and the best hyperparameter settings for a given neural network. We have 
already covered neural architecture search in detail while discussing the RandWireNN 
model in Chapter 5, Hybrid Advanced Models.

In this chapter, we will look more broadly at the AutoML tool for PyTorch—Auto-

PyTorch—which performs both neural architecture search and hyperparameter search. 
We will also look at another AutoML tool called Optuna that performs hyperparameter 
search for a PyTorch model.

At the end of this chapter, non-experts will be able to design machine learning models 
with little domain experience, and experts will drastically speed up their model  
selection process.

�is chapter is broken down into the following topics:

• Finding the best neural architectures with AutoML

• Using Optuna for hyperparameter search
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Technical requirements
We will be using Jupyter Notebooks for all of our exercises. Here is a list of the Python 
libraries that will be installed for this chapter, using pip (for example, by running pip 
install torch==1.7.0 on the command line):

jupyter==1.0.0

torch==1.7.0

torchvision==0.8.1

torchviz==0.0.1

autoPyTorch==0.0.2

configspace==0.4.12

git+https://github.com/shukon/HpBandSter.git

optuna==2.2.0

Note

Auto-PyTorch is fully supported in Linux and macOS at the time of writing. 
However, Windows users might encounter issues while installing the library. 
It is therefore recommended to use macOS or Linux for working on Auto-
PyTorch.

All code �les relevant to this chapter are available at the following GitHub page: 
https://github.com/PacktPublishing/Mastering-PyTorch/tree/
master/Chapter12.

Finding the best neural architectures with 

AutoML
One way to think of machine learning algorithms is that they automate the process 
of learning relationships between given inputs and outputs. In traditional so�ware 
engineering, we would have to explicitly write/code these relationships in the form of 
functions that take in input and return output. In the machine learning world, machine 
learning models �nd such functions for us. Although we automate to a certain extent, 
there is still a lot to be done. Besides mining and cleaning data, here are a few routine 
tasks to be performed in order to get those functions:

• Choosing a machine learning model (or a model family and then a model)

• Deciding the model architecture (especially in the case of deep learning)

• Choosing hyperparameters
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• Adjusting hyperparameters based on validation set performance

• Trying di�erent models (or model families)

�ese are the kinds of tasks that justify the requirement of a human machine learning 
expert. Most of these steps are manual and either take a lot of time or need a lot of 
expertise to discount the required time, and we have far fewer machine learning experts 
than needed to create and deploy machine learning models that are increasingly popular, 
valuable, and useful across both industries and academia. 

�is is where AutoML comes to the rescue. AutoML has become a discipline within the 
�eld of machine learning that aims to automate the previously listed steps and beyond. 

In this section, we will take a look at Auto-PyTorch—an AutoML tool created to work 
with PyTorch. In the form of an exercise, we will �nd an optimal neural network along 
with the hyperparameters to perform handwritten digit classi�cation—a task that we 
worked on in Chapter 1, Overview of Deep Learning Using PyTorch. 

�e di�erence from the �rst chapter will be that this time, we do not decide the 
architecture or the hyperparameters, and instead let Auto-PyTorch �gure that out for us. 
We will �rst load the dataset, then de�ne an Auto-PyTorch model search instance, and 
�nally run the model searching routine, which will provide us with a best-performing 
model. 

Tool citation

Auto-PyTorch (https://github.com/automl/Auto-PyTorch) 
Auto-PyTorch Tabular: Multi-Fidelity MetaLearning for E�cient and Robust 

AutoDL, Lucas Zimmer, Marius Lindauer, and Frank Hutter https://
arxiv.org/abs/2006.13799

Using Auto-PyTorch for optimal MNIST model search 
We will execute the model search in the form of a Jupyter Notebook. In the text, we only 
show the important parts of the code. �e full code can be found here:

https://github.com/PacktPublishing/Mastering-PyTorch/blob/
master/Chapter12/automl-pytorch.ipynb
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Loading the MNIST dataset

We will now discuss the code for loading the dataset step by step, as follows:

1. First, we import the relevant libraries, like this:

import torch

from autoPyTorch import AutoNetClassification

�e last line is crucial, as we import the relevant Auto-PyTorch module here. �is 

will help us set up and execute a model search session.

2. Next, we load the training and test datasets using Torch application programming 

interfaces (APIs), as follows:

train_ds = datasets.MNIST(...)

test_ds = datasets.MNIST(...)

3. We then convert these dataset tensors into training and testing input (X) and output 

(y) arrays, like this:

X_train, X_test, y_train, y_test = train_ds.data.numpy().
reshape(-1, 28*28), test_ds.data.numpy().reshape(-1, 
28*28) ,train_ds.targets.numpy(), test_ds.targets.numpy()

Note that we are reshaping the images into �attened vectors of size 784. In the next 
section, we will be de�ning an Auto-PyTorch model searcher that expects a �attened 
feature vector as input, and hence we do the reshaping. 

Auto-PyTorch currently (at the time of writing) only provides support for 
featurized and image data in the form of AutoNetClassification and 
AutoNetImageClassification respectively. While we are using featurized data in 
this exercise, we leave it as an exercise for the reader to use image data instead, using the 
tutorial here: https://github.com/automl/Auto-PyTorch/blob/master/
examples/basics/Auto-PyTorch%20Tutorial.ipynb.
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Running a neural architecture search with Auto-PyTorch
Having loaded the dataset in the preceding section, we will now use Auto-PyTorch to 
de�ne a model search instance and use it to perform the tasks of neural architecture 
search and hyperparameter search. We'll proceed as follows:

1. �is is the most important step of the exercise, where we de�ne an autoPyTorch 

model search instance, like this:

autoPyTorch = AutoNetClassification("tiny_cs",  # config 
preset

             log_level='info', max_runtime=2000, min_
budget=100, max_budget=1500)

�e con�gs here are derived from the examples provided in the Auto-PyTorch 

repository at https://github.com/automl/Auto-PyTorch. But generally, 

tiny_cs is used for faster searches with fewer hardware requirements. 

�e budget argument is all about setting constraints on resource consumption by 

the Auto-PyTorch process. As a default, the unit of a budget is time—that is, how 

much central processing unit/graphics processing unit (CPU/GPU) time we are 

comfortable spending on the model search. 

2. A�er instantiating an Auto-PyTorch model search instance, we execute the search 

by trying to �t the instance on the training dataset, as follows:

autoPyTorch.fit(X_train, y_train, validation_split=0.1)

Internally, Auto-PyTorch will run several trials of di�erent model architectures 

and hyperparameter settings based on methods mentioned in the original paper, 

which can be found at https://arxiv.org/abs/2006.13799. 
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�e di�erent trials will be benchmarked against the 10% validation dataset, 

and the best-performing trial will be returned as output. �e command in the 

preceding code snippet should output the following:

Figure 12.1 – Auto-PyTorch model accuracy

Figure 12.1 basically shows the hyperparameter setting that Auto-PyTorch �nds 

optimal for the given task—for example, the learning rate is 0.068, momentum is 

0.934, and so on. �e preceding screenshot also shows the training and validation 

set accuracy for the chosen optimal model con�guration.

Page 383



Finding the best neural architectures with AutoML     363

3. Having converged to an optimal trained model, we can now make predictions on 

our test set using that model, as follows:

y_pred = autoPyTorch.predict(X_test) 
print("Accuracy score", np.mean(y_pred.reshape(-1) == y_
test))

It should output something like this:

Figure 12.2 – Auto-PyTorch model accuracy

As we can see, we have obtained a model with a decent test-set performance of 96.4%.  
For context, a random choice on this task would lead to a performance rate of 10%. We 
have obtained this good performance without de�ning either the model architecture or 
the hyperparameters. Upon setting a higher budget, a more extensive search could lead to 
an even better performance. 

Also, the performance will vary based on the hardware (machine) on which the search 
is being performed. Hardware with more compute power and memory can run more 
searches in the same time budget, and hence can lead to a better performance.

Visualizing the optimal AutoML model
In this section, we will look at the best-performing model that we have obtained by 
running the model search routine in the previous section. We'll proceed as follows:

1. Having already looked at the hyperparameters in the preceding section, let's look at 

the optimal model architecture that Auto-PyTorch has devised for us, as follows:

pytorch_model = autoPyTorch.get_pytorch_model()

print(pytorch_model)
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It should output something like this:

Figure 12.3 – Auto-PyTorch model architecture

�e model consists of some structured residual blocks containing fully connected 

layers, batch normalization layers, and ReLU activations. At the end, we see a �nal 

fully connected layer with 10 outputs—one for each digit from 0 to 9.

2. We can also visualize the actual model graph using torchviz, as shown in the 

next code snippet:

x = torch.randn(1, pytorch_model[0].in_features)

y = pytorch_model(x)

arch = make_dot(y.mean(), params=dict(pytorch_model.
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named_parameters()))

arch.format="pdf"

arch.filename = "convnet_arch"

arch.render(view=False)

�is should save a convnet_arch.pdf �le in the current working directory, 

which should look like this upon opening:

Figure 12.4 – Auto-PyTorch model diagram
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3. To peek into how the model converged to this solution, we can look at the search 

space that was used during the model-�nding process with the following code:

autoPyTorch.get_hyperparameter_search_space()

�is should output the following:

Figure 12.5 – Auto-PyTorch model search space

It essentially lists the various ingredients required to build the model, with an allocated 
range per ingredient. For instance, the learning rate is allocated a range of 0.0001 to 0.1 
and this space is sampled in a log scale—this is not linear but logarithmic sampling. 
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In Figure 12.1, we have already seen the exact hyperparameter values that Auto-PyTorch 
samples from these ranges as optimal values for the given task. We can also alter 
these hyperparameter ranges manually, or even add more hyperparameters, using the 
HyperparameterSearchSpaceUpdates sub-module under the Auto-PyTorch 
module. You can �nd further details in the Auto-PyTorch GitHub documentation at 
https://github.com/automl/Auto-PyTorch#configuration.

�is concludes our exploration of Auto-PyTorch—an AutoML tool for PyTorch. We 
successfully built an MNIST digit classi�cation model using Auto-PyTorch, without 
specifying either the model architecture or the hyperparameters. �is exercise will help 
you to get started with using this and other AutoML tools to build PyTorch models in an 
automated fashion. Some other similar tools are listed here:

• Hyperopt: https://github.com/hyperopt/hyperopt

• Tune: https://docs.ray.io/en/latest/tune/index.html

• Hypersearch: https://github.com/kevinzakka/hypersearch

• Skorch: https://github.com/skorch-dev/skorch

• BoTorch: https://botorch.org/

• Optuna: https://optuna.org/

While we cannot cover all of these tools in this chapter, in the next section we will discuss 
Optuna, which is a tool focused exclusively on �nding an optimal set of hyperparameters 
and one that works well with PyTorch.

Using Optuna for hyperparameter search
Optuna is one of the hyperparameter search tools that supports PyTorch. You can read 
in detail about the search strategies used by the tool, such as TPE (Tree-Structured 

Parzen Estimation) and CMA-ES (Covariance Matrix Adaptation Evolution Strategy) 
in the Optuna paper, at https://arxiv.org/pdf/1907.10902.pdf. Besides the 
advanced hyperparameter search methodologies, the tool provides a sleek API, which we 
will explore in a moment.
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Tool citation

Optuna: A Next-Generation Hyperparameter Optimization Framework.

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori 
Koyama (2019, in KDD).

In this section, we will once again build and train the MNIST model, this time using 
Optuna to �gure out the optimal hyperparameter setting. We will discuss important parts 
of the code step by step, in the form of an exercise. �e full code can be found here:

https://github.com/PacktPublishing/Mastering-PyTorch/blob/
master/Chapter12/optuna_pytorch.ipynb

Defining the model architecture and loading 
dataset
First, we will de�ne an Optuna-compliant model object. By Optuna-compliant, we mean 
adding APIs within the model de�nition code that are provided by Optuna to enable the 
parameterization of the model hyperparameters. To do this, we'll proceed as follows:

1. First, we import the necessary libraries, as follows:

import torch

import optuna

�e optuna library will manage the hyperparameter search for us throughout  

the exercise.

2. Next, we de�ne the model architecture. Because we want to be �exible with some of 

the hyperparameters—such as the number of layers and the number of units in each 

layer—we need to include some logic in the model de�nition code. So, �rst, we have 

declared that we need anywhere in between 1 to 4 convolutional layers and 1 to 2 

fully connected layers therea�er, as illustrated in the following code snippet:

class ConvNet(nn.Module):

    def __init__(self, trial):

        super(ConvNet, self).__init__()

        num_conv_layers =  trial.suggest_int("num_conv_
layers", 1, 4)

        num_fc_layers = trial.suggest_int("num_fc_
layers", 1, 2)
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3. We then successively append the convolutional layers, one by one. Each 

convolutional layer is instantly followed by a ReLU activation layer, and for each 

convolutional layer, we declare the depth of that layer to be between 16 and 64. 

�e stride and padding are �xed to 3 and True respectively, and the whole 

convolutional block is then followed by a MaxPool layer, then a Dropout 

layer, with dropout probability ranging anywhere between 0.1 to 0.4 (another 

hyperparameter), as illustrated in the following code snippet:

        self.layers = []

        input_depth = 1 # grayscale image

        for i in range(num_conv_layers):

            output_depth = trial.suggest_int(f"conv_
depth_{i}", 16, 64)

            self.layers.append(nn.Conv2d(input_depth, 
output_depth, 3, 1))

            self.layers.append(nn.ReLU())

            input_depth = output_depth

        self.layers.append(nn.MaxPool2d(2))

        p = trial.suggest_float(f"conv_dropout_{i}", 0.1, 
0.4)

        self.layers.append(nn.Dropout(p))

        self.layers.append(nn.Flatten())

4. Next, we add a �attening layer so that fully connected layers can follow. We have 

to de�ne a _get_flatten_shape function to derive the shape of the �attening 

layer output. We then successively add fully connected layers, where the number 

of units is declared to be between 16 and 64. A Dropout layer follows each fully 

connected layer, again with the probability range of 0.1 to 0.4. 

Finally, we append a �xed fully connected layer that outputs 10 numbers  

(one for each class/digit), followed by a LogSoftmax layer. Having de�ned  

all the layers, we then instantiate our model object, as follows:

        input_feat = self._get_flatten_shape()

        for i in range(num_fc_layers):

            output_feat = trial.suggest_int(f"fc_output_
feat_{i}", 16, 64)

            self.layers.append(nn.Linear(input_feat, 
output_feat))
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            self.layers.append(nn.ReLU())

            p = trial.suggest_float(f"fc_dropout_{i}", 
0.1, 0.4)

            self.layers.append(nn.Dropout(p))

            input_feat = output_feat

        self.layers.append(nn.Linear(input_feat, 10))

        self.layers.append(nn.LogSoftmax(dim=1))

        self.model = nn.Sequential(*self.layers)

    def _get_flatten_shape(self):

        conv_model = nn.Sequential(*self.layers)

        op_feat = conv_model(torch.rand(1, 1, 28, 28))

        n_size = op_feat.data.view(1, -1).size(1)

        return n_size

�is model initialization function is conditioned on the trial object, which is 

facilitated by Optuna and which will decide the hyperparameter setting for our 

model. Finally, the forward method is quite straightforward, as can be seen in the 

following code snippet:

    def forward(self, x):

        return self.model(x)

�us, we have de�ned our model object and we can now move on to loading  

the dataset.

5. �e code for dataset loading is the same as in Chapter 1, Overview of Deep Learning 

Using PyTorch and is shown again in the following snippet:

train_dataloader = torch.utils.data.DataLoader(...)

test_dataloader = ...

In this section, we have successfully de�ned our parameterized model object as well as 
loaded the dataset. We will now de�ne the model training and testing routines, along with 
the optimization schedule.
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Defining the model training routine and optimization 
schedule
Model training itself involves hyperparameters such as optimizer, learning rate, and so 
on. In this part of the exercise, we will de�ne the model training procedure while utilizing 
Optuna's parameterization capabilities. We'll proceed as follows:

1. First, we de�ne the training routine. Once again, the code is the same as the training 

routine code we had for this model in the exercise found in Chapter 1, Overview of 

Deep Learning Using PyTorch, and is shown again here:

def train(model, device, train_dataloader, optim, epoch):

    for b_i, (X, y) in enumerate(train_dataloader):

        … 

2. �e model testing routine needs to be slightly augmented. To operate as per Optuna 

API requirements, the test routine needs to return a model performance metric—

accuracy, in this case—so that Optuna can compare di�erent hyperparameter 

settings based on this metric, as illustrated in the following code snippet:

def test(model, device, test_dataloader):

    with torch.no_grad():

        for X, y in test_dataloader:

            … 

    accuracy = 100. * success/ len(test_dataloader.
dataset)

    return accuracy

3. Previously, we would instantiate the model and the optimization function with the 

learning rate, and start the training loop outside of any function. But to follow the 

Optuna API requirements, we do all that under an objective function, which 

takes in the same trial object that was fed as an argument to the __init__ 

method of our model object. 

�e trial object is needed here too because there are hyperparameters associated 

with deciding the learning rate value and choosing an optimizer, as illustrated in the 

following code snippet:

def objective(trial):

    model = ConvNet(trial)

    opt_name = trial.suggest_categorical("optimizer", 
["Adam", "Adadelta", "RMSprop", "SGD"])
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    lr = trial.suggest_float("lr", 1e-1, 5e-1, log=True)

    optimizer = getattr(optim,opt_name)(model.
parameters(), lr=lr)    

    for epoch in range(1, 3):

        train(model, device, train_dataloader, optimizer, 
epoch)

        accuracy = test(model, device,test_dataloader)

        trial.report(accuracy, epoch)

        if trial.should_prune():

            raise optuna.exceptions.TrialPruned()

    return accuracy

For each epoch, we record the accuracy returned by the model testing routine. 
Additionally, at each epoch, we check if we will prune—that is, if we will skip—the current 
epoch. �is is another feature o�ered by Optuna to speed up the hyperparameter search 
process so that we don't waste time on poor hyperparameter settings.

Running Optuna's hyperparameter search
In this �nal part of the exercise, we will instantiate what is called an Optuna study 
and, using the model de�nition and the training routine, we will execute Optuna's 
hyperparameter search process for the given model and the given dataset. We'll proceed  
as follows:

1. Having prepared all the necessary components in the preceding sections, we are 

ready to start the hyperparameter search process—something that is called a study 

in Optuna terminology. A trial is one hyperparameter-search iteration in  

a study. �e code can be seen in the following snippet:

study = optuna.create_study(study_name="mastering_
pytorch", direction="maximize")

study.optimize(objective, n_trials=10, timeout=2000)

�e direction argument helps Optuna compare di�erent hyperparameter 

settings. Because our metric is accuracy, we will need to maximize the metric.  

We allow a maximum of 2000 seconds for the study or a maximum of 10 

di�erent searches—whichever �nishes �rst. �e preceding command should  

output the following:
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Figure 12.6 – Optuna logs

As we can see, the third trial is the most optimal trial, producing a test set 

accuracy of 98.77%, and the last three trials are pruned. In the logs, we also see 

the hyperparameters for each non-pruned trial. For the most optimal trial, 

for example, there are three convolutional layers with 27, 28, and 46 feature maps 

respectively, and then there are two fully connected layers with 57 and 54 units/

neurons respectively, and so on.
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2. Each trial is given a completed or a pruned status. We can demarcate those with 

the following code:

pruned_trials = [t for t in study.trials if t.state == 
optuna.trial.TrialState.PRUNED] 
complete_trials = [t for t in study.trials if t.state == 
optuna.trial.TrialState.COMPLETE]

3. And �nally, we can speci�cally look at all the hyperparameters of the most 

successful trial with the following code:

print("results: ")

trial = study.best_trial

for key, value in trial.params.items():

    print("{}: {}".format(key, value))

You will see the following output:

Figure 12.7 – Optuna optimal hyperparameters

As we can see, the output shows us the total number of trials and the number of 
successful trials performed. It further shows us the model hyperparameters for the 
most successful trial, such as the number of layers, the number of neurons in layers, 
learning rate, optimization schedule, and so on.
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�is brings us to the end of the exercise. We have managed to use Optuna to de�ne  
a range of hyperparameter values for di�erent kinds of hyperparameters for a handwritten 
digit classi�cation model. Using Optuna's hyperparameter search algorithm, we ran 10 
di�erent trials and managed to obtain the highest accuracy of 98.77% in one of those 
trials. �e model (architecture and hyperparameters) from the most successful trial 
can be used for training with larger datasets, thereby serving in a production system.

Using the lessons from this section, you can use Optuna to �nd the optimal 
hyperparameters for any neural network model written in PyTorch. Optuna can also be 
used in a distributed fashion if the model is extremely large and/or there are way too many 
hyperparameters to tune. You can read more about distributed tuning here: https://
optuna.readthedocs.io/en/stable/tutorial/004_distributed.
html#distributed.

Lastly, Optuna supports not only PyTorch but other popular machine learning libraries 
too, such as TensorFlow, Sklearn, MXNet, and so on.

Summary
In this chapter, we discussed AutoML, which aims to provide methods for model 
selection and hyperparameter optimization. AutoML is useful for beginners who have 
little expertise on making decisions such as how many layers to put in a model, which 
optimizer to use, and so on. AutoML is also useful for experts to both speed up the model 
training process and discover superior model architectures for a given task that would be 
nearly impossible to �gure manually.

We looked at two di�erent AutoML tools that can be used with PyTorch. First, we 
discussed Auto-PyTorch, which does the task of both �nding an optimal neural 
architecture and �nding the perfect hyperparameter setting. We used the MNIST 
handwritten digit classi�cation task from Chapter 1, Overview of Deep Learning Using 
PyTorch, to �nd the best model for this task, using Auto-PyTorch. We obtained a best 
accuracy of 96.4%. 

Next, we explored Optuna which is another AutoML tool that automates hyperparameter 
search. We used this tool for the same task. A di�erence from Auto-PyTorch is that we 
needed to manually de�ne the architecture on a high level (types of layers); however, 
lower-level details (number of layers and units) were hyperparameterized. Optuna gave  
us a best-performing model, with 98.77% accuracy.
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Both of the exercises prove that we can �nd, train, and deploy performant PyTorch 
models without having to de�ne the model architecture or the hyperparameter values. 
�is opens up a lot of possibilities, and I encourage you to try AutoML in one of your 
machine learning projects by letting AutoML �nd the model for you instead of de�ning 
it manually. �is can, for instance, save you several days' worth of time typically spent on 
experimentation over di�erent model architectures.

In the next chapter, we will study another increasingly important and crucial aspect  
of machine learning, especially deep learning. We will closely look at how to interpret 
output produced by PyTorch models—a �eld popularly known as model interpretability 
or explainability.
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Explainable AI

�roughout this book, we have built several deep learning models that can perform 
di�erent kinds of tasks for us. For example, a handwritten digit classi�er, an image-caption 
generator, a sentiment classi�er, and more. Although we have mastered how to train and 
evaluate these models using PyTorch, we do not know what precisely is happening inside 
these models while they make predictions. Model interpretability or explainability is that 
�eld of machine learning where we aim to answer the question, why did the model make 
that prediction? More elaborately, what did the model see in the input data to make that 
particular prediction?

In this chapter, we will use the handwritten digit classi�cation model from Chapter 1, 
Overview of Deep Learning Using PyTorch, to understand its inner workings and thereby 
explain why the model makes a certain prediction for a given input. We will �rst dissect 
the model using only PyTorch code. �en, we will use a specialized model interpretability 
toolkit, called Captum, to further investigate what is happening inside the model. Captum 
is a dedicated third-party library for PyTorch that provides model interpretability tools for 
deep learning models, including image- and text-based models. 
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�is chapter should provide you with the skills that are necessary to uncover the internals 
of a deep learning model. Looking inside a model this way can help you to reason about 
the model's predictive behavior. At the end of this chapter, you will be able to use the 
hands-on experience to start interpreting your own deep learning models using PyTorch 
(and Captum).

�is chapter is broken down into the following topics:

• Model interpretability in PyTorch

• Using Captum to interpret models

Technical requirements
We will be using Jupyter notebooks for all of our exercises. �e following is a list of 
Python libraries that should be installed for this chapter using pip. For example, run pip 
install torch==1.4.0 on the command line:

jupyter==1.0.0

torch==1.4.0

torchvision==0.5.0 
matplotlib==3.1.2

captum==0.2.0

All code �les relevant to this chapter are available at https://github.com/
PacktPublishing/Mastering-PyTorch/tree/master/Chapter13.

Model interpretability in PyTorch
In this section, we will dissect a trained handwritten digits classi�cation model using 
PyTorch in the form of an exercise. More precisely, we will be looking at the details of the 
convolutional layers of the trained handwritten digits classi�cation model to understand 
what visual features the model is learning from the handwritten digit images. We will look 
at the convolutional �lters/kernels along with the feature maps produced by those �lters. 

Such details will help us to understand how the model is processing input images and, 
therefore, making predictions. �e full code for the exercise can be found at https://
github.com/PacktPublishing/Mastering-PyTorch/blob/master/
Chapter13/pytorch_interpretability.ipynb.
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Training the handwritten digits classifier – a recap
We will quickly revisit the steps involved in training the handwritten digits classi�cation 
model, as follows:

1. First, we import the relevant libraries, and then set the random seeds to be able to 

reproduce the results of this exercise:

import torch

np.random.seed(123)

torch.manual_seed(123)

2. Next, we will de�ne the model architecture:

class ConvNet(nn.Module):

    def __init__(self):

    def forward(self, x):

3. Next, we will de�ne the model training and testing routine:

def train(model, device, train_dataloader, 
optim,  epoch):

def test(model, device, test_dataloader):

4. We then de�ne the training and testing dataset loaders:

train_dataloader = torch.utils.data.DataLoader(...)

test_dataloader = torch.utils.data.DataLoader(...)

5. Next, we instantiate our model and de�ne the optimization schedule:

device = torch.device("cpu")

model = ConvNet()

optimizer = optim.Adadelta(model.parameters(), lr=0.5)

6. Finally, we start the model training loop where we train our model for 20 epochs:

for epoch in range(1, 20):

    train(model, device, train_dataloader, optimizer, 
epoch)

    test(model, device, test_dataloader)
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�is should output the following:

Figure 13.1 – Model training logs

7. Finally, we can test the trained model on a sample test image. �e sample test image 

is loaded as follows:

test_samples = enumerate(test_dataloader)

b_i, (sample_data, sample_targets) = next(test_samples)

plt.imshow(sample_data[0][0], cmap='gray', 
interpolation='none')

plt.show()

�is should output the following:

Figure 13.2 – An example of a handwritten image
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8. �en, we use this sample test image to make a model prediction, as follows:

print(f"Model prediction is : {model(sample_data).data.
max(1)[1][0]}")

print(f"Ground truth is : {sample_targets[0]}")

�is should output the following:

Figure 13.3 – Model prediction

�erefore, we have trained a handwritten digits classi�cation model and used it to make 
inference on a sample image. We will now look at the internals of the trained model. We 
will also investigate what convolutional �lters have been learned by this model. 

Visualizing the convolutional filters of the model
In this section, we will go through the convolutional layers of the trained model and 
look at the �lters that the model has learned during training. �is will tell us how the 
convolutional layers are operating on the input image, what kinds of features are being 
extracted, and more: 

1. First, we need to obtain a list of all the layers in the model, as follows:

model_children_list = list(model.children())

convolutional_layers = []

model_parameters = []

model_children_list

�is should output the following:

Figure 13.4 – Model layers
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As you can see, there are 2 convolutional layers that both have 3x3-sized �lters. �e 

�rst convolutional layer uses 16 such �lters, whereas the second convolutional layer 

uses 32. We are focusing on visualizing convolutional layers in this exercise because 

they are visually more intuitive. However, you can similarly explore the other layers, 

such as linear layers, by visualizing their learned weights.

2. Next, we select only the convolutional layers from the model and store them in a 

separate list:

for i in range(len(model_children_list)):

    if type(model_children_list[i]) == nn.Conv2d:

        model_parameters.append(model_children_
list[i].w      eight)

        convolutional_layers.append(model_children_
list[i])

In this process, we also make sure to store the parameters or weights learned in each 

convolutional layer.

3. We are now ready to visualize the learned �lters of the convolutional layers. We 

begin with the �rst layer, which has 16 �lters of size 3x3 each. �e following code 

visualizes those �lters for us:

plt.figure(figsize=(5, 4))

for i, flt in enumerate(model_parameters[0]):

    plt.subplot(4, 4, i+1)

    plt.imshow(flt[0, :, :].detach(), cmap='gray')

    plt.axis('off')

plt.show()

�is should output the following:

Figure 13.5 – �e �rst convolutional layer's �lters
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Firstly, we can see that all the learned �lters are slightly di�erent from each other, 

which is a good sign. �ese �lters usually have contrasting values inside them so 

that they can extract some types of gradients when convolved around an image. 

During model inference, each of these 16 �lters operates independently on the input 

grayscale image and produces 16 di�erent feature maps, which we will visualize in 

the next section.

4. Similarly, we can visualize the 32 �lters learned in the second convolutional layer 

using the same code, as in the preceding step, but with the following change:

plt.figure(figsize=(5, 8))

for i, flt in enumerate(model_parameters[1]):

plt.show()

�is should output the following:

Figure 13.6 – �e second convolutional layer's �lters

Once again, we have 32 di�erent �lters/kernels that have contrasting values aimed at 
extracting gradients from the image. �ese �lters are already applied to the output of the 
�rst convolutional layer, and hence produce even higher levels of output feature maps. �e 
usual goal of CNN models with multiple convolutional layers is to keep producing more 
and more complex, or higher-level, features that can represent complex visual elements 
such as a nose on a face, tra�c lights on the road, and more. 

Next, we will take a look at what comes out of these convolutional layers as these �lters 
operate/convolve on their given inputs.
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Visualizing the feature maps of the model
In this section, we will run a sample handwritten image through the convolutional layers 
and visualize the outputs of these layers:

1. First, we need to gather the results of every convolutional layer output in the form 

of a list, which is achieved using the following code:

per_layer_results = [convolutional_layers[0](sample_
data)]

for i in range(1, len(convolutional_layers)):

    per_layer_results.append(convolutional_layers[i](per_
layer_results[-1]))

Notice that we call the forward pass for each convolutional layer separately while 

ensuring that the nth convolutional layer receives as input the output of the (n-1)th 

convolutional layer. 

2. We can now visualize the feature maps produced by the two convolutional layers. 

We will begin with the �rst layer by running the following code:

plt.figure(figsize=(5, 4))

layer_visualisation = per_layer_results[0][0, :, :, :]

layer_visualisation = layer_visualisation.data

print(layer_visualisation.size())

for i, flt in enumerate(layer_visualisation):

    plt.subplot(4, 4, i + 1)

    plt.imshow(flt, cmap='gray')

    plt.axis("off")

plt.show()

�is should output the following:
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Figure 13.7 – �e �rst convolutional layer's feature maps

�e numbers, (16, 26, 26), represent the output dimensions of the �rst convolution 

layer. Essentially, the sample image size is (28, 28), the �lter size is (3,3), and there is 

no padding. �erefore, the resulting feature map size will be (26, 26). Because there 

are 16 such feature maps produced by the 16 �lters (please refer to Figure 13.5), the 

overall output dimension is (16, 26, 26). 

As you can see, each �lter produces a feature map from the input image. 

Additionally, each feature map represents a di�erent visual feature in the image. For 

example, the top-le� feature map essentially inverts the pixel values in the image 

(please refer to Figure 13.2), whereas the bottom-right feature map represents some 

form of edge detection. 

�ese 16 feature maps are then passed on to the second convolutional layer, where 

yet another 32 �lters convolve separately on these 16 feature maps to produce 32 

new feature maps. We will look at these next.

3. We can use the same code as the preceding one with minor changes (as highlighted 

in the following code) to visualize the 32 feature maps produced by the next 

convolutional layer:

plt.figure(figsize=(5, 8))

layer_visualisation = per_layer_results[1][0, :, :, :]

    plt.subplot(8, 4, i + 1)

plt.show()
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�is should output the following:

Figure 13.8 – �e second convolutional layer's feature maps

Compared to the earlier 16 feature maps, these 32 feature maps are evidently more 
complex. �ey seem to be doing more than just edge detection, and this is because they 
are already operating on the outputs of the �rst convolutional layer instead of the raw 
input image. 

In this model, the 2 convolutional layers are followed by 2 linear layers with (4,608x64) 
and (64x10) number of parameters, respectively. Although the linear layer weights are also 
useful to visualize, the sheer number of parameters (4,608x64) is, visually, a lot to get your 
head around. �erefore, in this section, we will restrict our visual analysis to convolutional 
weights only.
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And thankfully, we have more sophisticated ways of interpreting model prediction 
without having to look at such a large number of parameters. In the next section, we will 
explore Captum, which is a machine learning model interpretability toolkit that works 
with PyTorch and helps us to explain model decisions within a few lines of code.

Using Captum to interpret models
Captum (https://captum.ai/) is an open source model interpretability library 
built by Facebook on top of PyTorch, and it is currently (at the time of writing) under 
active development. In this section, we will use the handwritten digits classi�cation 
model that we had trained in the preceding section. We will also use some of the model 
interpretability tools o�ered by Captum to explain the predictions made by this model. 
�e full code for the following exercise can be found here: https://github.com/
PacktPublishing/Mastering-PyTorch/blob/master/Chapter13/
captum_interpretability.ipynb.

Setting up Captum
�e model training code is similar to the code shown under the Training the handwritten 
digits classi�er – a recap section. In the following steps, we will use the trained model and 
a sample image to understand what happens inside the model while making a prediction 
for the given image:

1. �ere are few extra imports related to Captum that we need to perform in order to 

use Captum's built-in model interpretability functions:

from captum.attr import IntegratedGradients 

from captum.attr import Saliency

from captum.attr import DeepLift

from captum.attr import visualization as viz

2. In order to do a model forward pass with the input image, we reshape the input 

image to match the model input size:

captum_input = sample_data[0].unsqueeze(0)

captum_input.requires_grad = True

As per Captum's requirements, the input tensor (image) needs to be involved in 

gradient computation. �erefore, we set the requires_grad �ag for input to True. 
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3. Next, we prepare the sample image to be processed by the model interpretability 

methods using the following code:

orig_image = np.tile(np.transpose((sample_data[0].cpu().
detach().numpy() / 2) + 0.5, (1, 2, 0)), (1,1,3))

_ = viz.visualize_image_attr(None, orig_image, 
cmap='gray', method="original_image", title="Original 
Image")

�is should output the following:

Figure 13.9 – �e original image

We have tiled the grayscale image across the depth dimension so that it can be consumed 
by the Captum methods, which expect a 3-channel image.

Next, we will actually apply some of Captum's interpretability methods to the forward 
pass of the prepared grayscale image through the pretrained handwritten digits 
classi�cation model.

Exploring Captum's interpretability tools
In this section, we will be looking at some of the model interpretability methods o�ered 
by Captum.
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One of the most fundamental methods of interpreting model results is by looking at 
saliency, which represents the gradients of the output (class 0, in this example) with 
respect to the input (that is, the input image pixels). �e larger the gradients with respect 
to a particular input, the more important that input is. You can read more about how these 
gradients are exactly calculated in the original saliency paper at https://arxiv.org/
pdf/1312.6034.pdf. Captum provides an implementation of the saliency method:

1. In the following code, we use Captum's Saliency module to compute the 

gradients:

saliency = Saliency(model)

gradients = saliency.attribute(captum_input, 
target=sample_targets[0].item())

gradients = np.reshape(gradients.squeeze().cpu().
detach().numpy(), (28, 28, 1))

_ = viz.visualize_image_attr(gradients, orig_image, 
method="blended_heat_map", sign="absolute_value",

show_colorbar=True, title="Overlayed Gradients")

�is should output the following:

Figure 13.10 – Overlayed gradients
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In the preceding code, we reshaped the obtained gradients to size (28,28,1) in 

order to overlay them on the original image, as shown in the preceding diagram. 

Captum's viz module takes care of the visualizations for us. We can further 

visualize only the gradients, without the original image, using the following code:

plt.imshow(np.tile(gradients/(np.max(gradients)), 
(1,1,3)));

We will get the following output:

Figure 13.11 – Gradients

As you can see, the gradients awre spread across those pixel regions in the image 

that are likely to contain the digit 0.

2. Next, using a similar code fashion, we will look at another interpretability method 

– integrated gradients. With this method, we will look for feature attribution or 

feature importance. �at is, we'll look for what pixels are important to use when 

making predictions. Under the integrated gradients technique, apart from the input 

image, we also need to specify a baseline image, which is usually set to an image 

with all of the pixel values set to zero. 
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An integral of gradients is then calculated with respect to the input image  

along the path from the baseline image to the input image. Details of the 

implementation of integrated gradients technique can be found in the original 

paper at https://arxiv.org/abs/1703.01365. �e following code uses 

Captum's IntegratedGradients module to derive the importance of each 

input image pixel:

integ_grads = IntegratedGradients(model)

attributed_ig, delta=integ_grads.attribute(captum_input, 
target=sample_targets[0], baselines=captum_input * 0, 
return_convergence_delta=True)

 
attributed_ig = np.reshape(attributed_ig.squeeze().cpu().
detach().numpy(), (28, 28, 1))

_ = viz.visualize_image_attr(attributed_ig, orig_image, 
method="blended_heat_map",sign="all",show_colorbar=True, 
title="Overlayed Integrated Gradients")

�is should output the following:

Figure 13.12 – Overlayed integrated gradients
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As expected, the gradients are high in the pixel regions that contain the digit 0.

3. Finally, we will look at yet another gradient-based attribution technique, called 

deepli�. Deepli� also requires a baseline image besides the input image. Once 

again for the baseline, we use an image with all the pixel values set to zero. Deepli� 

computes the change in non-linear activation outputs with respect to the change in 

input from the baseline image to the input image (Figure 13.9). �e following code 

uses the DeepLift module provided by Captum to compute the gradients and 

displays these gradients overlayed on the original input image:

deep_lift = DeepLift(model)

attributed_dl = deep_lift.attribute(captum_input, 
target=sample_targets[0], baselines=captum_input * 0, 
return_convergence_delta=False)

 
attributed_dl = np.reshape(attributed_dl.squeeze(0).
cpu().detach().numpy(), (28, 28, 1))

_ = viz.visualize_image_attr(attributed_dl, orig_image, 
method="blended_heat_map",sign="all",show_colorbar=True, 
title="Overlayed DeepLift")

You should see the following output:

Figure 13.13 – Overlayed deepli�
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Once again, the gradient values are extreme around the pixels that contain the digit 0. 

�is brings us to the end of this exercise and this section. �ere are more model 
interpretability techniques provided by Captum, such as LayerConductance, GradCAM, 
and SHAP. You can read more about these techniques at https://captum.ai/docs/
algorithms. Model interpretability is an active area of research, and hence libraries 
such as Captum are likely to evolve rapidly. More such libraries are likely to be developed 
in the near future, which will enable us to make model interpretability a standard 
component of the machine learning life cycle.

Summary
In this chapter, we have brie�y explored how to explain or interpret the decisions made 
by deep learning models using PyTorch. Using the handwritten digits classi�cation model 
as an example, we �rst uncovered the internal workings of a CNN model's convolutional 
layers. We demonstrated how to visualize the convolutional �lters and feature maps 
produced by convolutional layers. 

We then used a dedicated third-party model interpretability library built on PyTorch, 
called Captum. We used out-of-the-box implementations provided by Captum for feature 
attribution techniques, such as saliency, integrated gradients, and deepli�. Using these 
techniques, we demonstrated how the model is using an input to make predictions and 
which parts of the input are more important for a model to make predictions. 

In the next, and �nal, chapter of this book, we will learn how to rapidly train and test 
machine learning models on PyTorch – a skill that is useful for quickly iterating over 
various machine learning ideas. We will also discuss a few deep learning libraries and 
frameworks that enable rapid prototyping with PyTorch.
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with PyTorch

In the preceding chapters, we have seen multiple facets of PyTorch as a Python library. We 
have seen its use for training vision and text models. We have learned about its extensive 
application programming interfaces (APIs) for loading and processing datasets. We 
have explored the model inference support provided by PyTorch. We have also noticed the 
interoperability of PyTorch across programming languages (such as C++) as well as with 
other deep learning libraries (such as TensorFlow). 

To accommodate all of these features, PyTorch provides a rich and extensive family of 
APIs, which makes it one of the best deep learning libraries of all time. However, the vast 
expanse of those features also makes PyTorch a heavy library, and this can sometimes 
intimidate users about performing streamlined or simple model training and testing tasks.

�is chapter is focused on introducing some of the libraries that are built on top of 
PyTorch and that are aimed at providing intuitive and easy-to-use APIs for building quick 
model training and testing pipelines with a few lines of code. We will �rst discuss fast.ai, 
which is one of the most popular high-level deep learning libraries. 
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We will demonstrate how fast.ai helps speed up the deep learning research process as 
well as make deep learning accessible to all levels of expertise. Finally, we will look at 
PyTorch Lightning, which provides the ability to use the exact same code for training 
on any hardware con�guration, be it multiple central processing units (CPUs), graphics 

processing units (GPUs), or even tensor processing units (TPUs). 

�ere are other such libraries too—such as PyTorch Ignite, Poutyne, and more—
that aim to achieve similar goals, but we won't be covering them here. �is chapter should 
familiarize you with these higher-level deep learning libraries that can be extremely useful 
to rapidly prototype your deep learning models. 

By the end of this chapter, you will be able to use fast.ai and PyTorch Lightning in your 
own deep learning projects and hopefully see a signi�cant reduction in the amount of 
time spent on model training and testing.

�is chapter is broken down into the following topics:

• Using fast.ai to set up model training in a few minutes

• Training models on any hardware using PyTorch Lightning

Technical requirements
We will be using Jupyter Notebooks for all of our exercises. Here is a list of the Python 
libraries that will be installed for this chapter, using pip (for example, by running pip 
install torch==1.4.0 on the command line:

jupyter==1.0.0

torch==1.4.0

torchvision==0.5.0 
matplotlib==3.1.2

pytorch-lightning==1.0.5

fast.ai==2.1.8

All code �les relevant to this chapter are available at the following GitHub page: 
https://github.com/PacktPublishing/Mastering-PyTorch/tree/
master/Chapter14.
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Using fast.ai to set up model training in a  

few minutes
In this section, we will use the fast.ai library (https://docs.fast.ai/) to train and 
evaluate a handwritten digit classi�cation model in fewer than 10 lines of code, in the 
form of an exercise. We will also use fast.ai's interpretability module to understand 
where the trained model is still failing to perform well. �e full code for the exercise can 
be found at the following GitHub page: https://github.com/PacktPublishing/
Mastering-PyTorch/blob/master/Chapter14/fast.ai.ipynb.

Setting up fast.ai and loading data
In this section, we will �rst import the fast.ai library, load the MNIST dataset, and �nally 
preprocess the dataset for model training. We'll proceed as follows:

1. First, we will import fast.ai in the recommended way, as shown here:

import os

from fast.ai.vision.all import *

Although import * is not the recommended way of importing libraries in Python, 

the fast.ai documentation suggests this format because of the read-eval-print loop 

(REPL) environment that fast.ai is designed to be used in. You can read more about 

that reasoning here: https://www.fast.ai/2020/02/13/fast.ai-A-

Layered-API-for-Deep-Learning/.

Basically, this line of code imports some of the key modules from the fast.ai library 

that are usually necessary and mostly su�cient for a user to perform model training 

and evaluation. A list of implicitly imported modules can be found here: https://

fast.ai1.fast.ai/imports.html.

2. Next, by using fast.ai's ready-to-use data modules, we will load the MNIST dataset, 

which is among the provided list of datasets under the fast.ai library, as follows:

path = untar_data(URLs.MNIST)

print(path)
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An exhaustive list of available datasets under fast.ai can be seen at https://

docs.fast.ai/data.external. �e preceding code should output as follows:

Figure 14.1 – fast.ai dataset path

�is is where the dataset will be stored, just so we know for future purposes.

3. We can now look at a sample image path under the stored dataset, so as to 

understand how the dataset is laid out, as follows:

files = get_image_files(path/"training")

print(len(files))

print(files[0])

�is should output as follows:

Figure 14.2 – Fast.ai dataset sample

�ere are a total of 60,000 images in the training dataset. As we can see, inside the 

training folder, there is a 9 subfolder that refers to the digit 9, and inside that 

subfolder are images of the digit 9.

4. Using the information gathered in the preceding step, we can generate labels for 

the MNIST dataset. We �rst declare a function that takes an image path and uses its 

parent folder's name to derive the digit (class) that the image belongs to. Using this 

function and the MNIST dataset path, we instantiate a DataLoader, as shown in 

the following piece of code:

def label_func(f): return f.parent.name

dls = ImageDataLoaders.from_path_func(path, fnames=files, 
label_func=label_func, num_workers=0)

dls.show_batch()

It should output something like this:
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Figure 14.3 – fast.ai batch display

As we can see, the dataloader is correctly set up, and we are now ready to move on to 
model training, which we will do in the next section. 
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Training a MNIST model using fast.ai
Using the DataLoader created in the preceding section, we will now train a model with 
fast.ai using three lines of code, as follows:

1. First, we use fast.ai's cnn_learner module to instantiate our model. Instead 

of de�ning the model architecture from scratch, we use resnet18 as the base 

architecture. You can read about the extensive list of available base architectures  

for computer vision tasks here: https://fast.ai1.fast.ai/vision.

models.html.

Also, feel free to review the model architecture details provided in Chapter 3,  

Deep CNN Architectures. 

2. Next, we also de�ne the metric that the model training logs should contain. Before 

actually training the model, we use fast.ai's Learning Rate Finder to suggest a 

good learning rate for this model architecture and dataset combination. You can 

read more about the learning rate �nder at https://fast.ai1.fast.ai/

callbacks.lr_finder.html. �e code for this step is shown here:

learn = cnn_learner(dls, arch=resnet18, metrics=accuracy)

learn.lr_find()

It should output something like this:

Figure 14.4 – Learning rate �nder output
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�e learning rate �nder essentially does model training with varying learning  

rates per iteration, starting from a low value and ending with a high value. It  

then plots the loss for each of those iterations against the corresponding learning 

rate value. As we can see in this plot, a learning rate of 0.0209 is where the  

loss is minimal. Hence, we will choose this as our base learning rate value for  

model training.

3. We are now ready to train our model. We could use learn.fit to train the model 

from scratch, but to aim for a better performance we will �ne-tune a pre-trained 

resnet18 model using the learn.fine_tune method, as shown in the 

following line of code:

learn.fine_tune(epochs=2, base_lr=0.0209, freeze_
epochs=1)

Here, freeze_epochs refers to the number of epochs the model is trained on 

initially with a frozen network where only the last layer is unfrozen. epochs refers 

to the number of epochs the model is trained on therea�er, by unfreezing the entire 

resnet18 network. �e code should output something like this:

Figure 14.5 – Fast.ai training logs

As we can see, there is a �rst epoch of training with the frozen network, and then there are 
two subsequent epochs of training with the unfrozen network. We also see the accuracy 
metric in the logs, which we declared as our metric in step 2. �e training logs look 
reasonable, and it looks like the model is indeed learning the task. In the next and �nal 
part of this exercise, we will look at the performance of this model on some samples and 
try to understand where it fails.
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Evaluating and interpreting the model using fast.ai
We will �rst look at how the trained model performs on some of the sample images, and 
�nally explore the top mistakes made by the model in order to understand the scope for 
improvement. We'll proceed as follows:

1. With the trained model, we can use the show_results method to look at some of 

the model's predictions, as shown in the following line of code:

learn.show_results()

It should output something like this:

Figure 14.6 – Fast.ai sample predictions

In the preceding screenshot, we can see that the model has got all nine images 

right. Because the accuracy of the trained model is already at 99%, we will need 

100 images to look at a wrong prediction. We will instead look exclusively at the 

mistakes made by the model in the next step.
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2. In Chapter 13, PyTorch and Explainable AI, we learned about model 

interpretability. One of the ways of trying to understand how a trained model is 

working is to look at where it is failing the most. Using fast.ai's Interpretation 

module, we can do that in two lines of code, as shown here:

interp = Interpretation.from_learner(learn)

interp.plot_top_losses(9, figsize=(15,10))

�is should output the following:

 

Figure 14.7 – fast.ai top model mistakes
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In Figure 14.7, we can see that each image is titled with the prediction, ground truth, 
cross-entropy loss, and the prediction probability. Most of these cases are hard/wrong 
even for humans, and hence it is acceptable for the model to make mistakes. But for cases 
such as the one on the bottom right, the model is just plain wrong. �is type of analysis 
can then be followed up by further dissecting the model, for such curious cases as we did 
in the previous chapter. 

�is concludes the exercise and our discussion on fast.ai. fast.ai has a lot to o�er for 
machine learning engineers and researchers—both beginner and advanced users. �is 
exercise was aimed at demonstrating fast.ai's speediness and ease of use. Lessons from this 
section can be used for working on other machine learning tasks with fast.ai. Under the 
hood, fast.ai uses PyTorch's functionalities, and therefore it is always possible to switch 
between these two frameworks. 

In the next section, we will explore another such library that sits on top of PyTorch and 
facilitates users to train models with relatively few lines of code, rendering the code 
hardware-agnostic.

Training models on any hardware using 

PyTorch Lightning
PyTorch Lightning (https://github.com/PyTorchLightning/pytorch-
lightning) is yet another library that is built on top of PyTorch to abstract out the 
boilerplate code needed for model training and evaluation. A special feature of this library 
is that any model training code written using PyTorch Lightning can be run without 
changes on any hardware con�guration such as multiple CPUs, multiple GPUs, or even 
multiple TPUs. 

In the following exercise, we will train and evaluate a handwritten digit classi�cation 
model using PyTorch Lightning on CPUs. You can use the same code for training on 
GPUs or TPUs. �e full code for the following exercise can be found here: https://
github.com/PacktPublishing/Mastering-PyTorch/blob/master/
Chapter14/pytorch_lightning.ipynb.

Defining the model components in PyTorch Lightning
In this part of the exercise, we will demonstrate how to initialize the model class in 
PyTorch Lightning. �is library works on the philosophy of self-contained model systems—
that is, the model class contains not only the model architecture de�nition but also the 
optimizer de�nition and dataset loaders, as well as the training, validation, and test set 
performance computation functions, all in one place.
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We'll proceed as follows:

1. First, we need to import the relevant modules, as follows:

import torch

import torch.nn as nn

from torch.nn import functional as F

from torch.utils.data import DataLoader

from torchvision.datasets import MNIST

from torchvision import transforms

import pytorch_lightning as pl

As we can see, PyTorch Lightning still uses a lot of native PyTorch modules for the 

model class de�nition. We have additionally imported the MNIST dataset straight 

from the torchvision.datasets module to train the handwritten digit 

classi�er on.

2. Next, we de�ne the PyTorch Lightning model class, which contains everything that 

is needed to train and evaluate our model. Let's �rst look at the model architecture-

related methods of the class, as follows:

class ConvNet(pl.LightningModule):

    def __init__(self):

        super(ConvNet, self).__init__()

        self.cn1 = nn.Conv2d(1, 16, 3, 1)

        … 

        self.fc2 = nn.Linear(64, 10)

    def forward(self, x):

        x = self.cn1(x)

        … 

        op = F.log_softmax(x, dim=1)

        return op

�ese two methods—__init__ and forward—work in the same manner as they 

did with the native PyTorch code.
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3. Next, let's look at the other methods of the model class, as follows:

    def training_step(self, batch, batch_num):

        … 

    def validation_step(self, batch, batch_num):

        … 

    def validation_epoch_end(self, outputs):

        … 

    def test_step(self, batch, batch_num):

        … 

    def test_epoch_end(self, outputs):

        … 

    def configure_optimizers(self):

        return torch.optim.Adadelta(self.parameters(), 
lr=0.5)

    def train_dataloader(self):

       … 

    def val_dataloader(self):

        … 

    def test_dataloader(self):

       … 

While methods such as training_step, validation_step, and test_step 
are meant to evaluate per-iteration performances on the training, validation, and test 
sets, the *_epoch_end methods compute the per-epoch performances. �ere are *_
dataloader methods for the training, validation, and test sets. And �nally, there is the 
configure_optimizer method, which de�nes the optimizer to be used for training 
the model.

Training and evaluating the model using PyTorch 

Lightning
Having set up the model class, we will now train the model in this part of the exercise. 
�en, we will evaluate the performance of the trained model on the test set.
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We'll proceed as follows:

1. Instantiating the model object: Here, we will �rst instantiate the model object 

using the model class de�ned in step 3 of the previous section - De�ning the model 

components in PyTorch Lightning. We will then use the Trainer module from 

PyTorch Lightning to de�ne a trainer object.

Note that we are relying on CPUs only for model training. However, you can easily 

switch to GPUs or TPUs. �e beauty of PyTorch Lightning lies in the fact that you 

can add an argument such as gpus=8 or tpus=2 in the trainer de�nition code 

depending on your hardware settings, and the entire code will still run without any 

further modi�cations.

We begin the model training process with the following lines of code:

model = ConvNet()

trainer = pl.Trainer(progress_bar_refresh_rate=20, max_
epochs=10)    

trainer.fit(model)  

It should output something like this:

Figure 14.8 – PyTorch Lightning training logs

First, the trainer object assesses the available hardware, and then it also logs the 

entire model architecture that is to be trained, along with the number of parameters 

per layer in the architecture. �erea�er, it begins the model training epoch by 

epoch. It trains until 10 epochs as speci�ed using the max_epochs argument 

while de�ning the trainer object. We can also see that the training and validation 

losses are being logged at every epoch.
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2. Testing the model: Having trained the model for 10 epochs, we can now test it. 

Using the .test method, we request the trainer object, that was de�ned in  

step 1 of this section, to run inference on the test set, as follows:

trainer.test()

It should output something like this:

Figure 14.9 – PyTorch Lightning testing logs

We can see that the model outputs the train, validation, and test losses using the 

trained model.

3. Exploring the trained model: Finally, PyTorch Lightning also provides a 

neat interface with TensorBoard (https://www.tensorflow.org/

tensorboard), which is a great visualization toolkit made originally for 

TensorFlow. By running the following lines of code, we can explore the training, 

validation, and test set performance of the trained model interactively in a web app:

# Start TensorBoard.

%reload_ext tensorboard

%tensorboard --logdir lightning_logs/

�is should output the following:

Figure 14.10 – PyTorch Lightning TensorBoard logs

As suggested in the output prompt, if we go to http://localhost:6007/  

on a web browser, it will open a TensorBoard session that should look something 

like this:
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Figure 14.11 – PyTorch Lightning TensorBoard output

Within this interactive visualization toolkit, we can look at the epoch-wise model training 
progress in terms of loss, accuracy, and various other metrics. �is is another neat feature 
of PyTorch Lightning that enables us to have a rich model evaluation and debugging 
experience with just a few lines of code.
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Note

Regular PyTorch code also provides an interface with TensorBoard, 

although the code is lengthier. You can read more about it here: https://
pytorch.org/docs/stable/tensorboard.html.

�is brings us to the end of this exercise and this section. Although it is a brief overview  
of the PyTorch Lightning library, it should be enough to get an idea of the library,  
how it works, and how it can work for your projects. �ere are plenty more examples  
and tutorials available at PyTorch Lightning's documentation page, available at 
https://pytorch-lightning.readthedocs.io/en/stable/.

If you are in the process of rapidly experimenting with various models or want to reduce 
the sca�olding code in your model training pipeline, this library is worth a try.

Summary
In this �nal chapter of the book, we focused on both abstracting out the noisy details 
involved in model training code and the core components to facilitate the rapid 
prototyping of models. As PyTorch code can o�en be cluttered with a lot of such noisy 
detailed code components, we looked at some of the high-level libraries that are built  
on top of PyTorch.

First, we explored fast.ai, which enables PyTorch models to be trained in fewer than 10 
lines of code. In the form of an exercise, we demonstrated the e�ectiveness of training a 
handwritten digit classi�cation model using fast.ai. We used one of fast.ai's modules to 
load the dataset, another module to train and evaluate a model, and—�nally—another 
module to interpret the trained model behavior.

Next, we looked at PyTorch Lightning, which is another high-level library built on 
top of PyTorch. We did a similar exercise of training a handwritten digit classi�er. We 
demonstrated the code layout used in a typical PyTorch Lightning session and how it 
reduces clutter compared to regular PyTorch code.

We highlighted how PyTorch Lightning facilitates the use of the exact same model 
training code across di�erent hardware con�gurations. Finally, we also explored  
the model evaluation interface that PyTorch Lightning provides in association with 
TensorBoard. 
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While we discussed these two libraries, more of these are available, such as PyTorch 
Ignite and Poutyne. As PyTorch keeps evolving and expanding, such high-level 
libraries are going to be more and more prevalent among PyTorch users. Hence, similar 
to many other aspects of PyTorch that we have discussed in the preceding chapters—such 
as interpretability in Chapter 13, PyTorch and Explainable AI, and automated machine 
learning in Chapter 12, PyTorch and AutoML—this area is another one to keep an eye on.

We have reached the end of this book! I hope the various topics covered here will help you 
in using PyTorch e�ectively and e�ciently for deep learning. Besides writing various deep 
learning architectures and interesting applications in PyTorch, we have explored some 
useful practical concepts such as model deployment, distribution, and prototyping. �is 
book can therefore also act as a guide whenever you are in doubt regarding any particular 
aspect of working with PyTorch.

Now, it is your turn to apply the PyTorch skills you have mastered in this book to your 
deep learning projects. �ank you for reading this book, and keep learning!
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Other Books You 
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

PyTorch 1.x Reinforcement Learning

Yuxi (Hayden) Liu

ISBN: 978-1-83855-196-4

• Use Q-learning and the state–action–reward–state–action (SARSA) algorithm to 
solve various Gridworld problems

• Develop a multi-armed bandit algorithm to optimize display advertising

• Scale up learning and control processes using Deep Q-Networks

• Simulate Markov Decision Processes, OpenAI Gym environments, and other 
common control problems

• Select and build RL models, evaluate their performance, and optimize and  
deploy them
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Hands-On Natural Language Processing with PyTorch 1.x

�omas Dop

ISBN: 978-1-78980-274-0

• Use NLP techniques for understanding, processing, and generating text

• Understand PyTorch, its applications and how it can be used to build deep  
linguistic models

• Explore the wide variety of deep learning architectures for NLP

• Develop the skills you need to process and represent both structured and 
unstructured NLP data

• Become well-versed with state-of-the-art technologies and exciting new 
developments in the NLP domain

• Create chatbots using attention-based neural networks
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Leave a review - let other readers know what 

you think
Please share your thoughts on this book with others by leaving a review on the site that 
you bought it from. If you purchased the book from Amazon, please leave us an honest 
review on this book's Amazon page. �is is vital so that other potential readers can see 
and use your unbiased opinion to make purchasing decisions, we can understand what 
our customers think about our products, and our authors can see your feedback on the 
title that they have worked with Packt to create. It will only take a few minutes of your 
time, but is valuable to other potential customers, our authors, and Packt. �ank you!
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Intermediate Representation (IR)  314

J
just-in-time (JIT) compiler  313
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K
Keypoint-RCNN  112

L
language modeling

reviewing  149

transformer model, building for  148

Leaky ReLU  15

learning rate  17

LeNet

about  68

building, with PyTorch  72-78

developing  70, 72

testing  79-81

training  78, 79

LeNet-5  70

Log-So�max  20

long short-term memory (LSTM)

about  122, 123

used, for building neural network  38

loops

training, for DCGANs  237-241

loss functions  22

LSTM cells  123

LSTM model

instantiating  140-143

training  140-143

LSTM model object

creating  140-143

M
machine types, for Google Cloud

reference link  334

Mask-RCNN  112

max-pooling method  69, 72

mean-pooling  10

microservices

reference link  302

MIDI music, generating with 

LSTMs using PyTorch

about  192

LSTM model, de�ning  197-199

LSTM model training routine, 

de�ning  197-199

MIDI music data, loading  193-197

music generation model, testing  199-202

music generation model, 

training  199-202

min-pooling  10

MNIST model

distributed training, executing on 

multiple processes  347-352

distributed training routine, 

de�ning  344-347

training, in distributed fashion  344

training, in regular fashion  341-343

training, with fast.ai library  400, 401

MobileNets

reference link  111

Mobile Neural Architecture Search 

Network (MnasNet)  70, 111

model-based algorithms  258

Model-Based DRL with Model-Free 

Fine-Tuning (MBMF)  258

Model-Based Value Estimation 

(MBVE)  258

model components

de�ning, in PyTorch Lightning  404-406

model-free RL setting

about  258

policy optimization  258

Q-learning  260
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model inference functionality  291

model interpretability, with PyTorch

about  378

convolutional �lters of model, 

visualizing  381-383

feature maps of model, 

visualizing  384-387

handwritten digits classi�er, 

training  379-381

model microservice

creating  301-307

model object

instantiating, with PyTorch 

Lightning  407

models

evaluating, with fast.ai library  402, 404

evaluating, with PyTorch 

Lightning  406, 410

interpreting, with Captum  387

interpreting, with fast.ai library  402, 404

scripting, with TorchScript  318-320

serving, in PyTorch  287

testing, with PyTorch Lightning  408

tracing, with TorchScript  314-317

training, on hardware with 

PyTorch Lightning  404

training, with PyTorch 

Lightning  406, 410

model-zoo  70

Mozart’s compositions

download link  196

MPI  346

multi-dimensional RNNs (MDRNNs)  124

multi-path-based CNNs  67

Musical Instruments Digital 

Interface (MIDI)  192

N
NCCL  346

neural architectures

�nding, with AutoML  358, 359

neural architecture search

running, with Auto-PyTorch  361-363

neural functions  22

neural network

building, with CNNs  38

building, with LSTSMs  38

training, with PyTorch  28-36

neural network architectures

URL  13

neural style transfer, implementing 

with PyTorch

about  210

content, loading  210-212

model, building  215

model, training  216-220

pre-trained VGG19 model, 

loading  212-214

pre-trained VGG19 model, 

trimming  212-214

style images, loading  210-212

non-nouns words  129

O
ONNX

universal PyTorch models, 

exporting with  312

used, to export PyTorch models  325-328

on-policy  259

OpenCV library

installation links  321

operating system (OS)  302
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optimal AutoML model

visualizing  363-367

optimization  22

optimization schedule

Adadelta  18

Adagrad  17

Adaptive Moment Estimation 

(Adam)  19

RMSprop  19

Stochastic Gradient Descent (SGD)  17

optimizers

selecting  20

Optuna

about  367

reference link  367

Optuna, for hyperparameter search

about  368

dataset, loading  368-370

model architecture, de�ning  368-370

model training routine, de�ning  371

optimization schedule  371, 372

running  372-375

Optuna study  372

orthogonal matrices  126

out-of-the-box text generation

with GPT-2  184, 185

P
parameter matrix (Pm)  153

perplexity  159

Pix2Pix

about  242

architecture  243

Pix2Pix discriminator

exploring  248, 250

Pix2Pix generator

exploring  244-248

policy gradient  259

policy of agent  256

policy optimization  258, 260

policy optimization-based reinforcement 

learning algorithms, examples

actor-critic  259

policy gradient  259

proximal policy optimization (PPO)  259

trust region policy optimization 

(TRPO)  259

positional encoding  151

pre-trained GPT-2 model

using, as text generator  184

pre-trained VGG model

executing  92-96

probability distribution  159

proximal policy optimization (PPO)  259

PyTorch

about  5, 143, 144

distributed training  340

model, serving  287

transformer model, de�ning  155

URL  312

used, for building image 

caption generator  41

used, for building LeNet  72-78

used, for developing 

RandWireNN model  162

used, for generating MIDI 

music with LSTMs   192

used, for model interpretability  378

used, for training neural network  28-36

used, for �ne-tuning AlexNet 

model  85-92

using, with AWS  328

PyTorch, con�guration settings

reference link  312
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PyTorch-CUDA

URL  27

PyTorch deep learning VM, creating

reference link  334

PyTorch examples repository

URL  36

PyTorch library

exploring  20

PyTorch Lightning

model components, de�ning  404-406

used, for evaluating model  406, 410

used, for exploring trained model  408

used, for instantiating model object  407

used, for testing model  408

used, for training model  406, 410

used, for training model 

on hardware  404

PyTorch model inference pipeline

building  290-294

creating  287

PyTorch models

exporting, with ONNX  325-328

running, in C++  320-325

serving, in cloud  328

serving, on Google Cloud  332, 333

serving, with AWS instance  329-332

serving, with Azure  334

serving, with TorchServe  307

PyTorch models, deploying on 

Azure Machine Learning

reference link 336

PyTorch model server, building with Flask

about  296

Flask app, building to serve 

model  297, 298

Flask server, used for running 

predictions  299-301

model inference, setting up for 

Flask serving  296, 297

PyTorch modules

about  21

torch.nn  21, 22

torch.optim  22

torch.utils.data  23

Q
Q-learning

about  260

example environment  261

Q-value  260

R
randomly wired neural network 

(RandWireNN)

about  161, 162

aggregation  162

directed graph  162

distribution  162

transformation  162

RandWireNN model

data, loading  163

developing, from scratch  161

developing, PyTorch used  162

evaluating  172, 174

modules, de�ning  165-168

random graph, transforming into 

neural network  169, 170

randomly wired graph, 

de�ning  164, 165

training  170-172

training routine, de�ning  163

visualizing  172, 174
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RCNNs

reference link  112

read-eval-print loop (REPL)  397

recti�ed linear units (ReLUs)  14, 15, 64

recurrent networks, evolution

exploring  117

recurrent neural network (RNN)

about  120, 198

features  119

temporal unfolding  119

recurrent neural network 

(RNN), structure

in time-folded forms  119

in time-unfolded forms  119

recurrent neural network (RNN), 

training sentiment analysis

about  126

model, instantiating  133-138

model, training  133-138

text dataset, loading  127-133

text dataset, preprocessing  127-133

recurrent neural network (RNN), types

about  117, 118

many-to-many (encoder-decoder)  117

many-to-many (instantaneous)  117

many-to-one  117

one-to-many  118

one-to-one  118

reinforcement learning

concepts  255, 256

reinforcement learning algorithms

about  257

model-based  258

model-free  258

ReLU-Conv-BN triplet  162

residual block  103

residual network (ResNet) architecture

about  69, 103

building  103-106

ResNet3D  112

ResNet Mixed Convolution  112

ResNeXt  70

RMSprop  19

RNN cell  122

Robustly optimized BERT pretraining 

Approach (RoBERTa)  160

S
scripting  317

self-attention layer  152

sentiment analysis

RNNs, training for  126

sigmoid activation function  13, 122

skip connections  69, 103, 245

Skorch

reference link  367

So�max layer  154

spatial correlations  64

spatial exploration  65

Spatial exploration-based CNNs  65

stacked LSTMs  124, 125

Stochastic Gradient Descent (SGD)  17, 65

stop words  129

storage instances  24

style

transferring, between images  206-209

style loss metric  208

style transfer

GANs, using for  242

style transfer system

working with  220-224
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T
TanH activation function  14

temporal correlations  64

TensorBoard

reference link  408, 410

tensor modules  23-27

tensors  21

text encoding

example  39, 40

text generation strategies, with PyTorch

about  185

beam search  187-189

greedy search  186, 187

top-k sampling  189-192

top-p sampling  189-192

time/temporal di�erence loss  273

tokens  39

top-k sampling  190-192

top-p sampling  190-192

Torch  5

TorchScript

model, scripting with  318-320

model, tracing with  314-317

universal PyTorch models, 

exporting with  312

utility  313

TorchServe

installing  308

PyTorch model, serving with  307

using, with Amazon SageMaker  332

TorchServe, advanced features

reference link  312

TorchServe server

launching  308-311

using  308-311

torchtext module  139

torchvision model

reference link  84

trained model

exploring, with PyTorch Lightning  408

trained PyTorch model

loading  287-289

saving  287-289

trajectory  256

transformer-based text generator, 

building with PyTorch

about  181

transformer-based language 

model, loading  182

transformer-based language 

model, saving  182

transformer-based language 

model, training  181, 182

transformer-based language model, 

used for generating text  182, 183

transformer model

about  146

addition and layer normalization 

layer  154

architecture  149-152

building, for language modeling  148

dataset, loading  156

dataset, processing  156, 157

de�ning, in PyTorch  155

embedding layer  151

feedforward layer  154

Linear and So�max Layer  154

multi-head attention layer  152-154

positional encoder layer  151, 152

training  157-161

transformers  146

transition block  107, 108
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Tree-structured Parzen 

Estimation (TPE)  367

trust region policy optimization 

(TRPO)  259

Tune

reference link  367

U
UNet  244

unidirectional single-layer RNN

using  126

unitary matrices  126

Unitary RNNs

about  126

reference link  126

universal PyTorch

exporting, with ONNX  312, 313

exporting, with TorchScript  312, 313

V
value function  260

vanishing gradient problem  64

VGG13  94

VGG13_bn  94

VGG16  69

VGG16_bn  94

VGG19  69

VGG19_bn  94

VGG networks  69

VGGs  69

virtual machines (VMs)  328

Visual Geometry Group of 

Oxford University  93

vocabulary  39

vocabulary, of dataset  129

W
Watts Strogatz (WS) model  164
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