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Unleashing the Power of Machine Learning 

 
"The only limit to our realization of tomorrow will be our doubts of today." 

 
Franklin D. Roosevelt 

 
 
Greetings, my name is Stefan Weiß, I am a 20-year-old student from Germany. I am welcoming you to a 
journey of innovation and discovery. In a world driven by technology, we stand at the threshold of endless 
possibilites. Our generation has the power to shape the future and unleash the potential of tomorrow. With 
curiosity as our compass, we´ll explore the uncharted territories of knowledge and creativity. The digital age 
offers opportunies beyond our wildest dreams.  
 
 
In today´s fast-paced and data-rich world, machine learning is no longer just a buzzword. It´s a 
transformative force that´s reshaping industries, solving complex problems and fueling innovation. 
 
Machine Learning is not just about algorithms and data. It´s about transforming the way we live, work and 
innovate. With the knowledge and skills gained in this journey, you will be able to understand the theory 
and code behind Machine Learning. I tried my best to explain everything the simplest way possible. 
The birth of Machine Learning was back at the years of 1950s – 1960s, pioneers like Alan Turing and John 
von Neumann laid the theoretical foundations for artificial intelligence (AI) and machine learning. 
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Introduction 
 

What is Machine Learning?  
The use and development of computer systems that are able to learn and adapt without following explicit 
instructions, by using algorithms and statistical models to analyse and draw inferences from patterns in data. 
 
Branches of Machine Learning: 

• Supervised Learning 
• Unsupervised Learning 
• Reinforcement Learning 
• Neural Networks (Deep Learning) 

 
 

• The Problem: 
o In ML we have a problem to solve. Normally the problem corresponds to evaluating some data and 

making predictions. 
 

• Tools:  
o In order to solve those problems, we have a few tools. Those tools are called algorithms, for example: 

§ Linear Regression 
§ Classifcation Regression 
§ Decision Trees 

 
• Evaluation metrics 

o How do we know which tool works best for the problem? For that we have a bunch of measurement 
tools and we use them to evaluate all the algorithms. So once we evaluate the algorithms and their 
parameters and decide which ones are best for our problem, then we go ahead and solve the 
problem. 
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Supervised Learning 
 
Im beginning with Supervised Learning as first topic in this journey. It´s the simplest way to get into machine learning 
and to understand the basics behind the processes. 
 
What is Supervised Learning?  
In Supervised Machine Learning, our algorithms learn from labeled data. After studying the labeled data, these 
techniques are able to determine which label should be given to new data based on observing patterns and 
associating those patterns to new unlabeled data.  
 
Classifcation: 
 

• Model that predict a category that an item belongs to. In some cases used for events with only two possible 
outcomes, like whether an email is spam or not, but also can be extended to predict any number of categories 
such as predicting which of many breeds a dog belongs to  
 

• Answers questions of the form yes-no.  
Example: 

o Is this email spam or not 
o Is the patient sick or not 

 
Regression: 
 

• Model that predict a numeric value like home price or an individual´s height. 
• Answers questions of the form how much 

Example: 
o How much does this house cost? 
o How many seconds do expect someone to watch this video? 

 
 
Supervised Learning is used in a wide range of applications, including image classification, natural language 
processing, fraud detection, antonomous driving and healthcare diagnostics.  
 
 
Algorithms: 

• Support-Vector machines 
• Linear Regression 
• Logistic Regression 
• Naive Bayes 
• Decision Trees 
• K-nearest neighbor 
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Regression 
 
Linear Regression 
Based around the idea of trying to draw a line (“fitting”) through an entire dataset of points. The algorithm uses the 
value of every point in the dataset to find the optimum line equation. Ultimately the equation of that line can be used 
to plot new data. Sometimes this is perfectly clear and other times it is quite challenging, it depends on the data in the 
dataset. 
 
Examples for Linear Regression: 
 

 
 
 

Example House Prices: 
 

 
 

 
Question: 

• What´s the best estimate for the price of the house?  
o $80.000 
o $120.000 
o $190.000 
 

Answer:  
$120.000. The point resemble a line. On this line, we can see that our best guess for the price of the house is point 
here over the line which corresponds to $120.000. 
 
This method we call linear regression. 
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Optimization techniques 
 
Absolute Trick 
Let´s start with a point and a line: 

• A point with coordinates (p,q) 
• A line represented by 𝑦 = 𝑤1𝑥 + 𝑤2 

 
How do we move it closer to the point (p,q) with the absolute trick?  

• Add to the y-intercept so that the line moves up 
• Add to the slope to make the line rotate in the direction of the point  

 
If we add 1 to the y-intercept and p to the slope, it´s giving us the equation 

• y = (w1 + p)x + (w2 + 1) 
 
That´s a too large step and we have over-corrected our line. Instead we add a small number called 
 “learning rate” with the variable name alpha (a), to take smaller steps. 
 
Equation with learning rate for above the line:  

• y = (w1 + pa)x + (w2 + a) 
 
Equation with learning rate underneath the line: 

• y = (w1 – pa)x + (w2 – a)  
 
The purpose of the learning rate is the amount by which we change the y-intercept and slope. It´s usually a 
small number 
 
 
Square Trick 
 
The difference to the Absolute trick is simple, both move the line, the Absolute trick moves the line by a 
constant value, whereas the Square Trick moves it more or less depending on the distance to the point from 
the line. 
 
The vertical distance between the point and the line, the point over the line has coordinates (p,q) and the 
corresponding point on the line is (p,q’). The distance between the point and the line (q  - q’). 
 
We take this distance and multiply it into what we add to both the y-intercept and to the slope. 

• Update the y-intercept by adding a(q-q’) 
• Update the slope by adding pa(q-q’) 

 
This gives us the equation  

• y = (w1 + p(q-q’)a)x + (w2 + (q-q’)a) 
 
This trick automatically takes care of points that are under the line and we don´t need two rules as we had on the 
absolute trick. We just have the same rule for both. 
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Gradient Descent 
 
Gradient Descent  
Let´s say we have our points on our plan is to develop an algorithm that will find the line that best fits this set of 
points. And the algorithm works like this 
 

• First draw a random line and calculate the error. The error is some measure of how far the points are from 
the line, it could be any measure that tells us how far we are from the points  

• Now move the line around and see if we can decrease this error. 
o  We move in this direction and we see that the error kind of increases so that´s not the way to go. 
o We move in the other direction and see that the error decreased, so we pick this one and stay there 

• Repeat these steps many times over and over every time descending the error a bit until we get to the 
perfect line. 

 
To minimize this error, we are going to use something called “gradient descent”. 
Gradient Descent is a strategy that helps to minimize the error between to points of the actual data and the “best-fit 
line”. We use gradient descent to update the parameters of our model as we train. 
 
 

 
 

 
 
 

What is the meaning of the word “gradient descent”?  
• It is the reduction of the error by taking the derivative of the error function with respect to the weights. 

 
 
 
 
 



 9 

Error Functions  
Mean Absolute Error 
 
The two most common error functions for linear regression are: 
 

• Mean absolute error 
• Mean squared error 

 
Mean Absolute Error 
 
The mean absolute error is the sum of all the errors divided by m (points). It is also the average error of all points. 
 
Let´s say we have a point with coordinates (x, y) and the line is called Y* since it is our prediction. The corresponding point 
on the line is (x, y*) and the vertical distance from the point to the line is (y – y*). This is the error. 
 
Our total error is going to be the sum of all these distances for all the points in our dataset.  

• Error=i=1∑m∣y−y^∣ 
 
In some cases, we will use the average or the mean absolute error, which is the sum of all the errors divided by m, m 
is the number of points in our dataset 

• Error=m1i=1∑m∣y−y^∣ 
 
Using the sum or the average won´t change our algorithms, since that would only scale our error by a constant, 
namely m. 
 
We have an absolute value around y – y*, the reason is that if the point is on top of the line, the distance is  
y-y*, but if it´s under the line then it is y* - y. Error should always be positive, otherwise negative errors will cancel 
with positive errors.  
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Mean Squared Error 
 
It is very similar to the Mean Absolute Error, but instead of taking the distance between the point and the prediction, 
we are going to draw a square with this segment as its side. This area is (y -y*)2. 
Notice that this is always non-negative, so we don´t need to worry about absolute values. 
 
Our mean squared error is going to be the average of all these series of squares. 

• Error=2m1i=1∑m(y−y^)2 
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Mini-batch Gradient Descent 
 
We don´t use those two, cause if our data is huge, both are a bit slow. The best way to linear regression is to split your 
data into many small batches. Each batch with roughly the same number of points. Then use each batch to update 
your weights. This is called “mini-batch gradient descent”. 
 

 
 
 
Mini-batch gradient descent 
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Linear Regression Warnings 
 
Linear Regression works best when the data is linear. It produces a straight line model from the training data. If the 
relationship in the training data is not really linear, you´ll need to either make adjustments (like transforming training 
data), add features, or use another kind of model. 
 

 
 

 
Linear Regression is sensitive to outliers. It tries to find a ‘best fit’ ling among the training data. If the dataset has some 
outlying extreme value that don’t fit a general patter, they can have a suprisingly large effect.  
 

Left with no outliers and right with outliers. 
 

 
 
Examples for Linear Regression: 

• Predicting the best stock price for an IPO 
• Predicting the cost of college tuition for a new college in a new city 

 
Examples for Not Linear Regression: 

• Finding clusters of customers who reserve an Uber in the evening 
• Deciding if an email is spam or not. 
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Polynomial Regression  
 
We use this when a line won´t do a good job fitting in our data. This can be solved using a very similar algorithm to 
linear regression. Instead of considering lines, we consider “higher degree polynomials”. This would give us more 
weight to solve our problem. 
 

 
 
This algorithm is known as polynomial regression 
 
Linear vs Polynomial Regression: 
 

• Linear Regression assumes a linear relationship between the dependent and independent variables and 
models it as a straight line ( y = mx + b) 
 

• Polynomial Regression allows curved relationships between variables by using polynomial functions of 
different degrees to fit the data. 
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Regularization 
 
Technique used to prevent overfitting, improve the generalization of the model and make them more robust.  
Regularization methods add a penalty term to the model´s objective function, encouraging it to have smaller or more 
stable coefficients, which helps control complexity and reduces the risk of overfitting. 

 

 
 
Regularization through a classifcation problem 
 

 
 
Left: Line  -> Makes couple of mistakes 
Right: Higher degree polynomial curve  -> Zero mistakes but is more complicated 
 
L1 regularization: 
It takes the absolute value of the coefficients of the model as a penalty term to the objective function.  
 
For example: 

• Polynomial Model: 
o 2x1

3−2x1
2x2−4x2

3+3x1
2+6x1x2+4x2

2+5=0  -> (2+2+4+3+6+4)=21 
 

• Linear Model: 
o (3x1 + 4x2 + 5 = 0)   -> (3 + 4 = 7) 
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L2 Regularization & Lambda 
 
L2 regularization  
Instead of adding the absolute values, we add the squares of the coefficients. 
 
For example: 
 

• Polynomial Model 
o 2x13−2x12x2−4x23+3x12+6x1x2+4x22+5=0  -> (22+−22+−42+32+62+42)=85 

 
• Linear Model 

o (3x1 + 4x2 + 5 = 0)  ->  (32 + 42 = 25) 
 
Lambda  
If we punish the complicated model too little, or too much we can use lambda to tune or alter the amount that we 
want to punish the complex model. 

 
• With a small lambda, the error that comes from the complexity of the model is not large enough to overtake 

the errors in the simplified model misclassifying points, so we will choose the complet model. 
• With a large value for lambda, we´re multiplying the complexity part of the error by a lot. This punishes the 

complex model more so the simple model wins. 
 
If we have a large lambda then we´re punishing complexity by a large amount and we´re picking a simpler model. 
Whereas if we have a small lambda, we´re punishing complexity by a small amount, so we are okay with having more 
complex models. 
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Cheat Sheet  - Regularization 
 
Cheat Sheet 
 

• Efficiency 
o Contra: L1 regularization is actually computationally inefficient even though it seems simpler because 

it has no squares, but actually, those absolute values are hard to differentiate. 
o Pro: L2 regularization squares have very nice derivatives. These are easy to deal with computation 

 
• Spare Data 

o Pro: L1 regularization is faster than L2 regularization. If you have a thousand columns of data but only 
10 are relevant and the rest are mostly zeros, then L1 is faster. 

o Pro: L2 is better for non-sparse outputs which are when the data is more equally distributed among 
the columns 
 

• Feature selection  
o Pro: L1 has one huge benefit which is that it gives us feature selection. So let´s say, we have again, 

data in a thousand columns but really only 10 of the matters, and the rest are mostly noise. So, L1 will 
detect this and will make the relevant columns into zeroes. 

o Con: L2 on the other hand won´t do this and it just takes the columns and treat them similarly. 
 

• Gradient descent is a method to optimize your linear models. 
• Multiple Linear Regression is a technique for when you are comparing more than two variables. 
• Polynomial Regression for relationships between variables that aren´t linear 
• Regularization is a technique to assure that your models will not only fit the data available but also extend to 

new situations. 
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Perceptron Algorithm 
 
Classification Problems 
A predictive modeling problem where a predefined class label is predicted based on training for a given dataset. 
 
Perceptrons 
It is the building block of nerual networks, and it´s an encoding of our equation into a small graph. 
 
Logical operators as perceptrons  
 
AND operator:  

• It takes two inputs and returns an output 
 

 
 

 
What is the purpose of the learning rate?  
It´s a hyperparameter value that is used in the calculation that controls how fast/far the model adjusts during training. 
It is used to move the line closer towards the points. 
One important aspect of the Perceptron Trick is, that it uses the coordinates of misclassified points to adjust the 
parameters in the line equation. To keep the adjustments small, the adjustment calculations are multiplied by the 
Learning Rate. 
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Decision Trees  
 
Decision Tree is a supervised machine learning algorithm, used for both classification and regression tasks.  
 

• Root Node: 
o The top node is called the root node and contains all the data in the dataset 

 
• Splitting: 

o The tree splits the data into subsets based on feature´s value. The feature and value that provides the 
best split (maximizing information gain or minimizing impurity) are chosen at each node  

o For classification commonly used measures include Gini impurity and entropy 
o For regression commonly used measure is the Mean Squared Error (MSE) 

 
• Internal Nodes: 

o Internal Nodes represent decisions based on features. For example, in a decision tree for classifying 
animals, an internal node might ask whether the animal has fur or not 

 
• Leaf Nodes: 

o Leaf Nodes represent the final class label (classification) or regression value (regression) assigned to a 
sample. 

o For classification each leafe node corresponds to a class label. For regression, it contains a numeric 
prediction. 

 
• Decision Making: 

o To make predictions, start at the root node and follow the path down the tree based on feature value. 
o At each internal node, evaluate the feature value for the sample and choose the branch that matches 

the condition. 
o Continue until a leaf node is reached and assign the class label or regression value of that leaf to the 

sample 
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Entropy 
 
It´s like a measure of surprise or disorder. In the context of a dataset, it tells you how mixed or uncertain the data is. 
Low entropy means the data is predictable and well organized, while high entropy indicated unpredictability and 
randomness.  
 

 
 

 
 
Hyperparameters 
 

• Minimum number of samples to split.  
o A node must have at least ‘min_samples_split’ samples in order to be large enough to split. If a node 

has fewer samples than ‘min_samples_split’ samples, it will not be split. 
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Hyperparameters 
 

• Minimum number of samples per leaf.  
o When splitting a node, one could run into the problem of having 99 samples in one of them, and 1 on 

the other. This will not take us too far in our process and would be waste of resources and time. If we 
want to avoid this, we can set a minimum for the number of samples we allow on each leaf. The 
function is ‘min_samples_leaf’ 
 

 
 

 
• Small maximum depth   -> Underfitting 
• Large maximum depth  -> Overfitting 
• Small minimum samples per split  -> Overfitting 
• Large minimum samples per split  -> Underfitting 
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Naive Bayes Algorithm 
 
Naive Bayes 
It´s a supervised machine learning algorithm that can be trained to classify data into multi-class categories. In the 
heart of Naive Bayes algorithm is the probabilistic model that computes the conditional probabilities of the input 
features and assigns the probability distributions to each of the possible classes. This algorithm has great benefits such 
as being easy to implement and very fast to train. 
 

 
 

• Prior: 
o Refers to guesses we make before having complete information 

• Posterior: 
o Refers to guesses we´ve inferred after the new information has arrived. 

 
 
Bayes theorem 
 

 
 
What Bayes theorem does is from these two, it infers the probability of A given R 
Based on information that is known, it can infer other information. 
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Conditional Probability 
 
In Naive Bayes we assume that our probabilities are independent. 
 
Conditional probability 
We have P(A∣B) to be proportional to  P(B∣A)P(A)P(B∣A)P(A). 
 
 

 
 
Advantages of using Naive Bayes: 
 

• It has over other classifcation algorithms is its ability to handle an extremely large number of features 
• It performs well even with presence of irrelevant features and is relatively unaffected by them. It has its 

relative simplicity 
• It works well right out of the box and tuning its parameters is rarely ever necessary, excpet usually in cases 

where the distribution of the data is known 
• It rarely ever overfits the data 
• Its model training and prediction times are very fast for the amount of data it can handle 
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Support Vector Machines (SVM) 
 
SVM is a powerful algorithm for classification which also finds the best boundary. 
We want the boundary to be as far away from the points as possible.  
The error for the SVM algorithm is Classification Error + Margin Error 
 

 
 
Calculating errors for misclassified points 
Adding the errors of each individual misclassified point gives us 2.5 + 0.5 + 1 + 2 = 6. So the error is 6 
 
Margin Error 

• Large margin = small error 
• Small margin = large error 

It can be minimized by using gradient descent. 
 
 
 
Kernel Trick  
Powerful technique for handling non-linear classification problems by implicitly transforming data into high-
dimensional feature spaces using kernel functions. 
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C Parameter & Gamma 
 

The C Parameter 
It´s just a constant that attaches itself to the classification error by multiplying the classification error by the constant. 
 

• It is used to modify the classification error 
• It is a hyperparameter that provides some flexibility during training 
• A large value for C will usually result in a small margin 
• A small value for C will usually result in a large margin 

 

 
 
Gamma 

• If gamma is small, then sigma is large and the curve is wide 
• If gamme is large, then sigma is small and the curve is narrow 
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Ensemble Methods 
 
What is Ensemble Methods? 
It´s about bringing together multiple models (Weak Learners) so that the result is an incredibly powerful and more 
accurate model (Strong Learner). The idea behind ensemble methods is that by combining the strengths of multiple 
models, they can compensate for each other´s weaknesses and produce more accurate and stable predictions. They 
are particularly effective in classification and regression tasks. 
 

 
 
To find a well-fitting machine learning model, there are two competing variables.  
 

• Bias 
o When a model has a high bias, this means that it doesn´t do a good job of bending to the data. Linear 

regression is an example of an algorithm that usually has a high bias. When a model have high bias, 
it´s bad.  
 

 
 

• Variance 
o When a model has high variance, it means that it changes drastically to meet the needs of every point 

in our dataset. Linear models like the one above has low variance, but high bias. An example of an 
algorithm that tends to have high variance and low bias is a decision tree. A decision tree, as a high 
variance algorithm, will attempt to split every point into its own branch if possible. This is a trait of 
high variance, low bias algorithms  - they are extremely flexible to fit exactly whatever data they see. 
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Examples Ensemble Methods 
 
Randomness into Ensembles 
Another method to improve ensemble methods is to introduce randomness into high variance algorithms before they 
are ensembled together. There are two main ways that randomness is introduced: 
 

• Bootstrap the data  
o Sampling the data with replacement and fitting your algorithm to the sampled data. 

 
• Subset the features 

o In each split of a decision tree or with each algorithm used in an ensemble, only a subset of the total 
possible features are used. 

 
Decision Trees 
They tend to overfit a lot, but how we solve this? Don´t create a decision tree from all columns, pick some columns 
randomly of the data and build a decision tree in those columns, and so on.  
This is called random forest. 
 
 
Bagging 

o Voting: 
o It´s the last step after training and is used to combine the weak learne results. We over impose each 

learner on the data. 
§ If we have 3 examples: 

• 2 or more blue  -> region is blue 
• 2 or more red  -> region is red 

 
ADABoost 
 
3 Steps of the AdaBoost: 

o 1. Maximize accuracy, minimize errors 
o 2. Identify misclassified points from previous step and fix the mistakes. 
o 3. Try to classify points identified in the previous step 
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Ensemble Methods in Python 
 
# Import necessary libraries 
from sklearn.ensemble import AdaBoostClassifier 
from sklearn.tree import DecisionTreeClassifier 
from sklearn.datasets import make_classification 
from sklearn.model_selection import train_test_split 
from sklearn.metrics import accuracy_score 
  
# Create a synthetic dataset for classification 
X, y = make_classification(n_samples=1000, n_features=20, random_state=42) 
  
# Split the dataset into training and testing sets 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) 
  
# Create a weak learner (decision tree) as the base estimator 
base_estimator = DecisionTreeClassifier(max_depth=1) 
  
# Create an AdaBoost classifier with the base estimator 
# You can specify the number of weak learners (n_estimators) and other hyperparameters 
adaboost_classifier = AdaBoostClassifier(base_estimator=base_estimator, n_estimators=50, random_state=42) 
  
# Train the AdaBoost classifier on the training data 
adaboost_classifier.fit(X_train, y_train) 
  
# Make predictions on the test data 
y_pred = adaboost_classifier.predict(X_test) 
  
# Calculate the accuracy of the classifier 
accuracy = accuracy_score(y_test, y_pred) 
print(f"Accuracy: {accuracy:.2f}") 
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Model Evaluation Metrics 
 

 
 
 

o Prediction: 
o Out of all the points predicted to be positive, how many of them were actually positive? 

 
o Recall: 

o Out of the points that are labeled positive, how many of them were correctly predicted as positive? 
 

o F1 Score: 
o It will always be closer to the larger result of precision and recall values. 
o F1 Score = 2 * (Precision * Recall) / (Precision + Recall) 

 

 
 
 
ROC Curve 
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Regression Metrics 
 

 
 
Calculating R2 Score in Python: 
 
from sklearn.metrics import r2_score 
y_true = [1, 2, 4] 
y_pred = [1.3, 2.5, 3.7] 
  
r2_score(y_true, y_pred) 

 

 
 

 
 

 
 
 
 
 
 

 
 



 30 

Training and Tuning 
 

 
 

o Underfitting: 
o We oversimplify the problem 
o Does not well in the training set 
o Error due to bias 

 
o Overfitting: 

o We overcomplicate the problem 
o Does well in the training set, but tends to memorize it itnstead of learning the charasteristics of it 
o Error due to variance 

 

 
 
 
MARK: NEVER USE TESTING DATA FOR TRAINING 
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Training and Tuning 
 

 
 

• Logistic Regression model has a low training and testing score  
• Decision Tree model has a high training and testing score 
• Support Vector Machine model has a high training score and a low testing score 

 

 
 

• Logistic Regression model uses a line, which is too simple. It doesn’t do very well on the training set -> It 
underfits. 

• Decision Tree model uses a square, which is a pretty good fit and generalizes well -> Good model. 
• Support Vector Machine model actually draws a tiny circle around each point. This is clearly just memorizing 

the training set and won´t generalize well -> It overfits 
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Neural Networks 
 
A neural network is a computational model inspired by the way biological neural networks in our brain work. It´s 
designed to learn and recognize patterns, correlations and relationships within data. They consist of interconnected 
nodes, called ‘neurons’, organized into layers. Each neuron processes information and passes its output to other 
neurons, mimicking the information processing that occurs in the brain. 
 
A network typically consists of three main types of layers:  
 

• Input Layers 
o They receive raw data 

 
• Hidden Layers 

o Computations take place 
 

• Output Layer 
o Produces the final result 

 
Neurons in one layer are connected to neurons in the next layer, each connection has a weight that adjusts during 
training to fine-tune the network´s behavior. 
 
Cross Entropy 
Cross Entropy is a statistical measure that quantifies the difference between two probability distributions. It is often 
used to compare the predicted probability distribution (output by a machine learning model) with the actual 
distribution (ground truth). 
 
A higher cross-entropy implies a lower probability for an event. 
 
Formular: 
CE(P, Q) = -Σ(P(x) * log(Q(x))) 
 
 
Logistic Regression 
 

• Take data  
• Pick a random model 
• Calculate the error 
• Minimize the error, obtain a better model 
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Functions & Matrix 
 
Functions in Formulas 
 

 
 
Functions in Python 
 
def sigmoid(x): 
 return 1 / (1 + np.exp(-x)) 
  
def output_formula(features, weights, bias): 
 return sigmoid(np.dot(features, weights) + bias) 
 
def error_formula(y, output): 
 return -y * np.log(output) – (1 – y) * np.log(1 – output) 
  
def update_weights(x, y, weights, bias, learnrate): 
 output = output_formula(x, weights, bias) 
 d_error = -(y – output) 
 weights -= learnrate * d_error * x 
 bias -= learnrate * d_error  
 return weights, bias 

 
Backpropagation 

• Doing a feedforward operation 
• Comparing the output of the model with the desired output 
• Calculating the error 
• Running the feedforward operation backwards (backpropagation) to spread the error to each of the weights 
• Use this to update the weights and get a better model 
• Continue this until we have a model that is good 

 
Matrix 
In mathematics and linear algebra a matrix is a two-dimensional data structure consisting of a rectangular 
arrangement of numbers, symbols or expressions. Matrices have rows and columns and each entry in the matrix is 
called an element or a coefficient. 
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Weights 
 
Initalizing weights in NumPy 
The input to a hidden unit is the sum of all the inputs multiplied by the hidden unit´s weights. 
 
import numpy as np 
  
# Define the size of the input, hidden, and output layers 
input_size = 10 
hidden_size = 20 
output_size = 5 
  
# Initialize weights and biases for the hidden layer and output layer 
# You can choose from various initialization methods; here are a few examples: 
  
# Method 1: Random Initialization 
np.random.seed(0)  # For reproducibility 
W1 = np.random.randn(input_size, hidden_size)  # Weight matrix for the hidden layer 
b1 = np.zeros((1, hidden_size))  # Bias for the hidden layer 
W2 = np.random.randn(hidden_size, output_size)  # Weight matrix for the output layer 
b2 = np.zeros((1, output_size)) 
  

 

 
 
 

Training:  ---------------------------------------------------------------- Testing: 
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Layers 
 
Input Layer  - Eyes 
It´s the starting point of the machine learning system. It´s like the ‘eyes’ of the model. This layer takes in the initial 
information about what you want the model to work with.  
Let´s say we are trying to teach a model to recognize animals from pictures. Each pixel in the picture could be an input 
to the input layer. So if we are showing the model a picture of a cat, the input layer is what receives all the pixel values 
from that image. 
 
 
Hidden Layer  - Brain 
The hidden layer is where the magic happens in a NN. It´s like the ‘brain’ of the model. This layer processes the 
information from the input layer and tries to figure out patterns and relationships in the data. Imagine we are 
teaching the model to recognize whether a person is happy or sad from a picture of their face. The hidden layer would 
analyze the various features of the face, like the position of the mouth and the shape of the eyes and use that 
information to make a guess about the person´s emotion. 
 
 
Output Layer   - Mouth  
The output layer is where the model gives you its final answers. It´s like the ‘mouth’ of the model. This layer takes the 
processed information from the hidden layer and presents the model´s prediction or decision. If we are going back to 
the example of recognizing animal pictures, the output layer might tell you whether the model thinks the picture 
contains a cat, a dog, or something else 
 
Simple Terms: 

• Input layer: Receives initial data 
• Hidden layer: Processes and understands the data 
• Output layer: Gives you the final result or prediction 

 
 
Weights 
Think of it as the ‘importance knobs’ that the model uses to adjust how much it pays attention to different things in 
the input data. Imagine we are teaching a model to predict the price of a house based on its size and number of 
rooms. The weights are like the factors that the model learns to multiply with the size and number of rooms to get a 
reasonable prediction. If the model figures out that size is really important in determining the price, it will give a larger 
weight to the size feature. 
 
Biases 
Biases are like the ‘base values’ that the model adds to the weighted input before making a prediction. They allow the 
model to make predictions even when all the input values are zero. Sticking with the house price prediction example, 
let´s say the model knows that even if a house has zero size and zero rooms, it should still have some base price 
(maybe due to other factors like location). The bias helps the model account for this base value. 
 
Simple Terms: 

• Weights: Adjust how much the model cares about different aspects of the input data 
• Biases: Add a base value to the model´s prediction, even when input values are zero. 

 
 
 
 
 
 



 36 

Cross Entropy & Forward Pass 
 
Cross Entropy 
It´s like a yardstick that measures how well your guesses match reality. Imagine we are playing a guessing game where 
you try to predict things like whether it will rain tomorrow or not. Cross entropy is a way to see how close your 
guesses ( your predicted probabilites) are to what really happens (the actual probabilities). If the guesses match 
perfectly, cross entropy is low, if the guesses are far off from reality, cross entropy is higher. 
 
Forward Pass 
It´s like following a recipe. You start with the raw ingredients ( input data ), mix them together using a set of rules ( 
weights and biases ) and end up with a delicious dish ( output prediction ).  
It´s the process of taking input data, processing it through the network layers with weights and biases and getting an 
output prediction. 
 

1. Input Data:  
a. Imagine we are baking a cake. We gather all the ingredients like flour, eggs and sugar. These 

ingredients are like the data you want to process. 
 

2. Weights and Biases:  
a. They are the recipe to mix the ingredients. The weights and biases are like the secret proportions we 

use in our recipe. They tell the model how much attention to give to each ingredient. 
 

3. Mixing:  
a. We follow the recipe step by step, combining the ingredients and applying the proportions. This 

mixing process is like the calculations that happen in the neural network layers. 
 

4. Output Prediction: 
a.  When we are done, we have a cake. This cake is our output prediction. It´s what the model thinks the 

result should be based on the input data and the ‘recipe’ 
 
 
Calculating Bias and Weights in Python 
 
import numpy as np 
  
# Define the input size and the number of neurons in the layer 
input_size = 5 
output_size = 3 
  
# Initialize weights and biases 
# Random initialization is common, but you can choose other methods as well 
weights = np.random.randn(input_size, output_size) 
biases = np.zeros((1, output_size)) 
  
print("Weights:") 
print(weights) 
print("\nBiases:") 
print(biases) 
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Calculating in Python 
 
Calculating the input, output and hidden layer in Python 
 
import numpy as np 
  
# Define input features (example data with 4 features) 
input_features = np.array([0.2, 0.5, 0.7, 0.9]) 
  
# Define the architecture of the neural network 
input_size = 4 
hidden_size = 3 
output_size = 2 
  
# Initialize weights and biases 
# Weights are initialized with small random values and biases with zeros 
input_to_hidden_weights = np.random.randn(input_size, hidden_size) 
hidden_layer_biases = np.zeros((1, hidden_size)) 
hidden_to_output_weights = np.random.randn(hidden_size, output_size) 
output_layer_biases = np.zeros((1, output_size)) 
  
# Perform the forward pass 
hidden_layer_input = np.dot(input_features, input_to_hidden_weights) + hidden_layer_biases 
hidden_layer_output = 1 / (1 + np.exp(-hidden_layer_input))  # Sigmoid activation for the hidden layer 
output_layer_input = np.dot(hidden_layer_output, hidden_to_output_weights) + output_layer_biases 
output_layer_output = 1 / (1 + np.exp(-output_layer_input))  # Sigmoid activation for the output layer 

 
 
Calculating Cross Entropy 
 
# True labels (ground truth) 
y_true = np.array([1, 0, 1, 1, 0]) 
  
# Predicted probabilities (predicted by your model) 
y_pred_prob = np.array([0.9, 0.2, 0.8, 0.75, 0.3]) 
  
# Calculate binary cross-entropy loss 
epsilon = 1e-15  # Small constant to prevent log(0) 
y_pred_prob = np.clip(y_pred_prob, epsilon, 1 - epsilon)  # Clip values to avoid taking the log of 0 or 1 
cross_entropy_loss = -np.mean(y_true * np.log(y_pred_prob) + (1 - y_true) * np.log(1 - y_pred_prob)) 

 
 
 
How to train the network?  

1. Make a forward pass through the network 
2. Use the network output to calculate the loss 
3. Perform a backward pass through the network with loss.backward() to calculate the gradients 
4. Take a step with the optimizer to update the weights 
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Neural Network Example 
 
class CIFARNeuralNetwork(nn.Module): 
    def __init__(self): 
        super().__init__() 
        ## Conv 
        self.conv1 = nn.Conv2d(3, 128, 5, padding=2) 
        self.conv2 = nn.Conv2d(128, 128, 5, padding=2) 
        self.conv3 = nn.Conv2d(128, 256, 3, padding=1) 
        self.conv4 = nn.Conv2d(256, 256, 3, padding=1) 
        # Pool 
        self.pool = nn.MaxPool2d(2, 2) 
        # Dropout 
        self.dropout_conv = nn.Dropout2d(p=0.25) 
        self.dropout = nn.Dropout(0.5) 
        # Batch Norm 2d 
        self.bn_conv1 = nn.BatchNorm2d(128) 
        self.bn_conv2 = nn.BatchNorm2d(128) 
        self.bn_conv3 = nn.BatchNorm2d(256) 
        self.bn_conv4 = nn.BatchNorm2d(256) 
        #Batch Norm 1d 
        self.bn_dense1 = nn.BatchNorm1d(1024) 
        self.bn_dense2 = nn.BatchNorm1d(512) 
        # Linear 
        self.fc1 = nn.Linear(256 * 8 * 8, 1024) 
        self.fc2 = nn.Linear(1024, 512) 
        self.fc3 = nn.Linear(512, 10) # 10 Classes 
         
    def conv_layers(self, x): 
        x = F.relu(self.bn_conv1(self.conv1(x))) 
        x = F.relu(self.bn_conv2(self.conv2(x))) 
        x = self.pool(x) 
        x = self.dropout_conv(x) 
        x = F.relu(self.bn_conv3(self.conv3(x))) 
        x = F.relu(self.bn_conv4(self.conv4(x))) 
        x = self.pool(x) 
        x = self.dropout_conv(x) 
        return x  
         
         
    def forward(self, x): 
        x = self.conv_layers(x) 
        x = x.view(-1, 256 * 8 * 8) 
        x = F.relu(self.bn_dense1(self.fc1(x))) 
        x = self.dropout(x) 
        x = F.relu(self.bn_dense2(self.fc2(x))) 
        x = self.dropout(x) 
        x = self.fc3(x) 
         
        return x 
  

 
Simple Image of a Neural Network 
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Unsupervised Learning 
 
Unsupervised Learning is a category of machine learning where the algorithm learns patterns and structures in data 
without explicit supervision or labeled target values. Instead, it focuses on finding hidden patterns, grouping similar 
data points, or reducing the dimensionality of data. 
Some real world examples for unsupervised learning and when to choose it are Recommendation Systems, Customer 
Segmentation or Autnomous Vehicles. 
 

• Supervised Learning:  
o Starting with a label or a value that you are trying to predict 

 
• Unsupervised Learning: 

o Starting with grouping data together that does not have labels 
 
Clustering: 

è Groups data together based on similarities 
 
Dimensionality Reduction: 

è Condenses a large number of features into a (usually much) smaller set of features 
 
K-Means Algo: 

1. Books of similar genres or written by the same authors. 
2. Similar movies 
3. Similar music 
4. Similar groups of customers. 

 
from sklearn.cluster import KMeans 
  
# Generate some example data 
from sklearn.datasets import make_blobs 
X, _ = make_blobs(n_samples=300, centers=4, random_state=42) 
  
# Instantiate K-Means with the number of clusters 
kmeans = KMeans(n_clusters=4) 
  
# Fit the model to the data 
kmeans.fit(X) 
  
# Get cluster labels and cluster centers 
labels = kmeans.labels_ 
centers = kmeans.cluster_centers_ 

‘k’ represents the number of clusters you have in your dataset. 
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Hierarchical Clustering  
 
It is used to group similar data points into clusters or groups. It creates a hierarchical representation of data by 
successively merging or splitting clusters based on their similarity. 
 
Agglomerative (Bottom-Up) Hierarchical Clustering: 
In agglomerative hierarchical clustering, each data point initially represents a separate cluster, and the algorithm 
proceeds by iteratively merging clusters based on their similarity. It is often used when the number of clusters is 
unknown. Agglomerative clustering is usually the right choice to make if you have large datasets, because it tends to 
be computationally less expensive than Divisive Clustering. 
 
Divisive (Top-Down) Hierarchical Clustering: 
It takes the opposite approach by starting with all data points in a single cluster and then successively splitting the 
clusters into smaller ones based on dissimilarity. Divisive Clustering can be more effective when you want to perform 
a detailed analysis of the data structure by successively splitting clusters into smaller ones. 
 
 

 
https://images.datacamp.com/image/upload/v1674149819/Dendrogram_of_Agglomerative_Clustering_Approach_4eba3586ec.png 

 
 
from sklearn import datasets, cluster 
from scipy.cluster.hierarchy import dendrogram, ward, single 
import matplotlib.pyplot as plt 
 
X = datasets.load_iris().data[:10] 
 
# Set Clusters 
clust = cluster.AgglomerativeClustering(n_clusters=3, linkage='ward') 
labels = clust.fit_predict(X) 
 
# Plotting Dendrogram 
linkage_matrix = ward(X) 
  
dendrogram(linkage_matrix) 
plt.show() 
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DBSCAN  
DBSCAN (Density-based spatial clustering of application with noise) is a clustering method that groups points closely 
packed together. It is expecting the inputs Epsilon (the distance that defines each point´s neighborhood) and 
MinPts/min_samples (the number of points in a neighborhood for a point to be regarded as a core point). Usually 
good reasons to use DBSCAN are clustering a dataset based on point density or identifying noise in a dataset. 
 
Steps for DBSCAN: 

1. Select a point arbitrarily 
 

2. Define a search area around the selected point using a predefined search distance  
 

3. Search if there is any point in the search area 
a. If there is NOT a single point in the area, the selected point is labeled as noise 
b. If there are points in the area, compare the number of points in the search area (including the 

selected point) to a predefined minimum number of points parameter MinPts. 
 

4. Procced to each point in the cluster found above and search for point in its search area  
a. If the number of points is greater than MinPts, the point is also a core point in the same cluster. 
b. If the number of points is smaller than MinPts, the point is a border point in the same cluster. 

 
# Import Libraries 
from sklearn import datasets, cluster 
  
# Load Data 
X = datasets.load_iris().data 
  
# Define and Fit DBSCAN 
db = cluster.DBSCAN(eps=0.5, min_samples=5) 
db.fit(X) 
 
OUTPUT: 

db.labels_ 

array([ 0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0, 
        0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0, 
        0,  0,  0,  0,  0,  0,  0, -1,  0,  0,  0,  0,  0,  0,  0,  0,  1, 
        1,  1,  1,  1,  1,  1, -1,  1,  1, -1,  1,  1,  1,  1,  1,  1,  1, 
       -1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1, 
        1,  1, -1,  1,  1,  1,  1,  1, -1,  1,  1,  1,  1, -1,  1,  1,  1, 
        1,  1,  1, -1, -1,  1, -1, -1,  1,  1,  1,  1,  1,  1,  1, -1, -1, 
        1,  1,  1, -1,  1,  1,  1,  1,  1,  1,  1,  1, -1,  1,  1, -1, -1, 
        1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1]) 
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Gaussian Mixture Model (GMM) Clustering 
It assumes that each cluster follows a particular statistical distribution. Its clustering methodology relies heavily on 
probability and statistics. The  Gaussian distribution is also known as a normal distribution. 
 

 
 
 
 

Advantages Disadvantages 
• Soft-clustering (sample 

membership of multiple 
clusters) 

• Cluster shape flexibility 

• Sensitive to initialization values 
• Possible to converge to a local 

optimum 
• Slow convergence rate 

 
 
# Import Libraries  
from sklearn import datasets, mixture  
  
# Load Dataset 
X = datasets.load_iris().data 
  
# Set Gaussian Mixture 
gmm = mixture.GaussianMixture(n_components=3) 
gmm.fit(X) 
clustering = gmm.predict(X) 
  
OUTPUT: 
clustering 

array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
       1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
       0, 0, 2, 0, 2, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]) 
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Cluster Analysis 
 

 
 

1. Feature selection 
a. Choose best features in the dataset needed for analysis 
b. Transform data to generate additional new and useful features, using principal component analysis 

(PCA) 
2. Choose a clustering algorithm 

a. Make the selection using best results based on your use case  
3. Clustering validation  

a. Evaluating how well a clustering performed based on visualizations and using a clustering validation 
index 

4. Results and Interpretation 
a. What can be understood from the clustering structure, using background knowledge and domain 

expertise 
 
Cluster Validation 
Three categories of cluster validation are: 
 

• External indices  - used to score clustering model performance when a dataset is labeled 
 

• Internal indices  - used to measure the fit between data and structure using only the data, when the dataset is 
unlabeled 

 
• Relative Indices  - used to indicated which of two clustering structures is ‘better’ 

 
 
 
 
 
 
 
 
 
 
 
 
 



 44 

Dimensionality Reduction and PCA 
 
Feature Selection 
It involves finding a subset of the original features of the data that you determine are most relevant and useful.  

• Filter methods – Filtering approaches use a ranking or sorting algorithm to filter out those features that have 
less usefulness. Filter methods are based on discerning some inherent correlations among the feature data in 
unsupervised learning or on correlations with the output variable in supervised settings. Common tools are 
Pearon´s Correlation, Linear Discriminant Analysis (LDA) and Analysis of Variance (ANOVA) 

 
Feature Extraction 
Feature Extraction involves extracting or constructing new features called latent features.   
Some other words for principal components are linear combination of the original features in a dataset, latent variable 
or a new feature that can be used in a future analysis 
 

 
 
 
PCA in Python 
 
import numpy as np 
from sklearn.decomposition import PCA 
import matplotlib.pyplot as plt 
  
# Create some sample data 
np.random.seed(0) 
n_samples = 100 
n_features = 2 
X = np.random.randn(n_samples, n_features) 
  
# Instantiate PCA with the number of components you want to retain 
pca = PCA(n_components=1) 
  
# Fit PCA on your data 
pca.fit(X) 
  
# Transform the data into the reduced feature space 
X_reduced = pca.transform(X) 
  
# Transform the reduced data back to the original space (for illustration) 
X_original = pca.inverse_transform(X_reduced) 
  
# Plot the original data and the reduced data 
plt.figure(figsize=(8, 4)) 
plt.subplot(1, 2, 1) 
plt.scatter(X[:, 0], X[:, 1], alpha=0.6) 
plt.title("Original Data") 
  
plt.subplot(1, 2, 2) 
plt.scatter(X_reduced, np.zeros_like(X_reduced), alpha=0.6) 
plt.title("Reduced Data") 
plt.tight_layout() 
plt.show() 
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Definitions and Theory 
 
Cross Entropy Loss (Loss Function) 
 
Cross Entropy Loss is like a scorecard for how well your machine learning model is performing in classification tasks. 
In classifications, you want the model to predict which category an input belongs (classifying emails as spam or not). 
Cross Entropy Loss measures how different the model´s predictions are from the actual labels. If the prediction is 
perfect, the loss is low (close to 0), otherwise if it´s way off, the loss will be high. The goal is to minimize this loss 
during training, making the model better at making accurate predictions. 
It should be used for classification tasks, where you have to predict categories or classes. You might ask why, because 
the Cross Entropy Loss is well-suited for classification because it measures the difference between predicted 
probabilities and actual labels. It´s particularly effective when you have multiple classes to predict. One real world 
example would be Sentiment Analysis in Natural Language Processing (NLP) where you classify text as positive, 
negative or neutral. 
 
 
Optimizer 
 
An optimizer is like a GPS for teaching the model to find the best parameters for making predictions. 
During training, the model´s goal is to find the best set of parameters (weights and biases) to minimize the loss 
function. Optimizers help adjust these parameters step by step to reach that goal. Think of it like fine-tuning a musical 
instrument  -> the optimizer guides the process of getting the best tune out of the model. It is used in every machine 
learning task that involves parameter tuning. It is crucial for finding the best set of model parameters that minimize 
the loss function. Without them, training would be slow or inefficient + models wouldn´t improve over time. 
 
 
Criterion  
 
Criterion is like a teacher´s feedback, telling the model how well it´s doing and where it needs improvement. 
Criterion and loss functions are often used interchangeably. It´s the mathematical formula that calculates the loss 
based on model predictions and actual labels. Different tasks (classification, regression) require different loss 
functions. For example, the Mean Squared Error is a common loss function for regression tasks, while Cross Entropy 
Loss is often used for classification. One real world example would be predicting house prices. 
 
 
Scheduler (Learning Rate Scheduler): 
 
A scheduler is like adjusting the volume of the training process, making it louder (faster learning) or quieter (slower 
learning) as needed. 
The learning rate is a crucial hyperparameter that controls the size of steps the optimizer takes during training. If it´s 
too big it might overshoot the best solution and if it´s too small it will take forever. A scheduler helps adjust the 
learning rate during training. For example, we might start with a high learning rate to make quick progress and then 
reduce it gradually to fine-tune and converge to the best model. Schedulers are handy for avoiding overshooting and 
getting stuck in local minima. They are primarily used in deep learning for controlling the learning rate. 
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Features Definitions 
 
Features are also known as attributes, variables or columns in a dataset. They are the specific data elements or 
attributes that provide information about each data point in a dataset. They are building blocks for creating models 
and making predictions. 
 

• Numerical Features 
o These are features with numeric values, for example age, price, temperature or income 

 
• Categorical Features 

o These are features that represent categories or labels, for example color, gender or country 
 

• Text Features  
o In natural language processing, text data is often converted into features using techniques like TF-IDF 

or word embeddings  
 

• Image Features 
o In computer vision, image data is represented by pixel values and extracted features like edge, 

textures, or shape  
 

• Time Series Features 
o In time series analysis time-related data points are treated as features  

 
 
Feature Scaling: 
 
Feature scaling is like making sure all ingredients in a recipe are in the same units (e.g. all measurements in 
tablespoons) to create a blanaced and tasty dish. In machine learning, it ensures all input features have the same 
units. Imagine the task is to create a model to predict house prices, and the features include the number of bedrooms 
and the total square footage of the house. The number of bedrooms might range form 1 to 5, while the square 
footage could range from 800 to 4000. These two features are on very different scales. If we use an algorithm that 
calculates distances between data points, like k-nearest neighbors or gradient descent, the algorithm will be heavily 
influenced by the feature with the larger scale ( square footage).  
Feature scaling techniques standardize these features, typically to have a mean of 0 and a standard deviation of 1 
(known as z-score scaling), or to a range between 0 and 1 (known as min-max scaling). This ensures that all features 
contribute equally to the model´s learning process and makes the model less sensitive to the scale of the data. 
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Ending 
 
Congratulations on completing 'Intro to Machine Learning with PyTorch'! We hope this journey through the 
fascinating world of machine learning has equipped you with valuable insights and practical skills. By grasping the 
fundamentals of PyTorch and delving into the essentials of machine learning, you've taken a significant step toward 
mastering this dynamic field. 
 
As you conclude this guide, remember that learning is a continuous process. We encourage you to apply the 
knowledge you've gained to real-world projects and explore advanced concepts to further enhance your 
understanding. 
 
We hope you've enjoyed the hands-on examples, practical exercises, and the journey through constructing and 
training neural networks. The skills you've acquired are invaluable, and we trust they will serve as a solid foundation 
for your future endeavors in the realms of data science, predictive modeling, and artificial intelligence. 
 
Keep exploring, experimenting, and most importantly, enjoy the process. Your curiosity and dedication to learning are 
the keys to unlocking new opportunities and innovations in the realm of machine learning. 
 
Thank you for joining us on this learning adventure. Your enthusiasm and commitment are truly appreciated. We wish 
you the very best in all your future machine learning endeavors. Keep innovating, keep learning, and keep pushing the 
boundaries of what's possible in the world of PyTorch and machine learning! 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


