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Preface

If you’re reading this, I probably don’t need to tell you that deep learning is amazing

and PyTorch is cool, right?

But I will tell you, briefly, how this book came to be. In 2016, I started teaching a

class on machine learning with Apache Spark and, a couple of years later, another

class on the fundamentals of machine learning.

At some point, I tried to find a blog post that would visually explain, in a clear and

concise manner, the concepts behind binary cross-entropy so that I could show it

to my students. Since I could not find any that fit my purpose, I decided to write one

myself. Although I thought of it as a fairly basic topic, it turned out to be my most

popular blog post[1]! My readers have welcomed the simple, straightforward, and

conversational way I explained the topic.

Then, in 2019, I used the same approach for writing another blog post:

"Understanding PyTorch with an example: a step-by-step tutorial."[2] Once again, I

was amazed by the reaction from the readers!

It was their positive feedback that motivated me to write this book to help

beginners start their journey into deep learning and PyTorch. I hope you enjoy

reading this book as much as I enjoyed writing it.

[1] https://bit.ly/2UW5iTg

[2] https://bit.ly/2TpzwxR
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Frequently Asked Questions (FAQ)

Why PyTorch?

First, coding in PyTorch is fun :-) Really, there is something to it that makes it very

enjoyable to write code in. Some say it is because it is very pythonic, or maybe

there is something else, who knows? I hope that, by the end of this book, you feel

like that too!

Second, maybe there are even some unexpected benefits to your health—check

Andrej Karpathy’s tweet[3] about it!

Jokes aside, PyTorch is the fastest-growing[4] framework for developing deep

learning models and it has a huge ecosystem.[5] That is, there are many tools and

libraries developed on top of PyTorch. It is the preferred framework[6] in academia

already and is making its way in the industry.

Several companies are already powered by PyTorch;[7] to name a few:

• Facebook: The company is the original developer of PyTorch, released in

October 2016.

• Tesla: Watch Andrej Karpathy (AI director at Tesla) speak about "how Tesla is

using PyTorch to develop full self-driving capabilities for its vehicles" in this video.[8]

• OpenAI: In January 2020, OpenAI decided to standardize its deep learning

framework on PyTorch (source[9]).

• fastai: fastai is a library[10] built on top of PyTorch to simplify model training and

is used in its "Practical Deep Learning for Coders"[11] course. The fastai library is

deeply connected to PyTorch and "you can’t become really proficient at using

fastai if you don’t know PyTorch well, too."[12]

• Uber: The company is a significant contributor to PyTorch’s ecosystem, having

developed libraries like Pyro[13] (probabilistic programming) and Horovod[14] (a

distributed training framework).

• Airbnb: PyTorch sits at the core of the company’s dialog assistant for customer

service.(source[15])

This book aims to get you started with PyTorch while giving you a solid

understanding of how it works.
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Why This Book?

If you’re looking for a book where you can learn about deep learning and PyTorch

without having to spend hours deciphering cryptic text and code, and one that’s

easy and enjoyable to read, this is it :-)

The book covers from the basics of gradient descent all the way up to fine-tuning

large NLP models (BERT and GPT-2) using HuggingFace. It is divided into four

parts:

• Part I: Fundamentals (gradient descent, training linear and logistic regressions

in PyTorch)

• Part II: Computer Vision (deeper models and activation functions,

convolutions, transfer learning, initialization schemes)

• Part III: Sequences (RNN, GRU, LSTM, seq2seq models, attention, self-

attention, Transformers)

• Part IV: Natural Language Processing (tokenization, embeddings, contextual

word embeddings, ELMo, BERT, GPT-2)

This is not a typical book: most tutorials start with some nice and pretty image

classification problem to illustrate how to use PyTorch. It may seem cool, but I

believe it distracts you from the main goal: learning how PyTorch works. In this

book, I present a structured, incremental, and from-first-principles approach to

learn PyTorch.

Moreover, this is not a formal book in any way: I am writing this book as if I were

having a conversation with you, the reader. I will ask you questions (and give you

answers shortly afterward), and I will also make (silly) jokes.

My job here is to make you understand the topic, so I will avoid fancy

mathematical notation as much as possible and spell it out in plain English.

In this book, I will guide you through the development of many models in PyTorch,

showing you why PyTorch makes it much easier and more intuitive to build models

in Python: autograd, dynamic computation graph, model classes, and much, much

more.

We will build, step-by-step, not only the models themselves but also your

understanding as I show you both the reasoning behind the code and how to avoid

some common pitfalls and errors along the way.
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There is yet another advantage of focusing on the basics: this book is likely to have

a longer shelf life. It is fairly common for technical books, especially those focusing

on cutting-edge technology, to become outdated quickly. Hopefully, this is not

going to be the case here, since the underlying mechanics are not changing, and

neither are the concepts. It is expected that some syntax changes over time, but I

do not see backward compatibility breaking changes coming anytime soon.



One more thing: If you hadn’t noticed already, I really like to

make use of visual cues, that is, bold and italic highlights. I firmly

believe this helps the reader to grasp the key ideas I am trying to

convey in a sentence more easily. You can find more on that in

the section "How to Read This Book."

Who Should Read This Book?

I wrote this book for beginners in general—not only PyTorch beginners. Every now

and then, I will spend some time explaining some fundamental concepts that I

believe are essential to have a proper understanding of what’s going on in the

code.

The best example is gradient descent, which most people are familiar with at some

level. Maybe you know its general idea, perhaps you’ve seen it in Andrew Ng’s

Machine Learning course, or maybe you’ve even computed some partial

derivatives yourself!

In real life, the mechanics of gradient descent will be handled automatically by

PyTorch (uh, spoiler alert!). But, I will walk you through it anyway (unless you

choose to skip Chapter 0 altogether, of course), because lots of elements in the

code, as well as choices of hyper-parameters (learning rate, mini-batch size, etc.),

can be much more easily understood if you know where they come from.

Maybe you already know some of these concepts well: If this is the case, you can

simply skip them, since I’ve made these explanations as independent as possible

from the rest of the content.

But I want to make sure everyone is on the same page, so, if you have just heard

about a given concept or if you are unsure if you have entirely understood it, these

explanations are for you.
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What Do I Need to Know?

This is a book for beginners, so I am assuming as little prior knowledge as possible;

as mentioned in the previous section, I will take the time to explain fundamental

concepts whenever needed.

That being said, this is what I expect from you, the reader:

• to be able to code in Python (if you are familiar with object-oriented

programming [OOP], even better)

• to be able to work with PyData stack (numpy, matplotplib, and pandas) and

Jupyter notebooks

• to be familiar with some basic concepts used in machine learning, like:

◦ supervised learning: regression and classification

◦ loss functions for regression and classification (mean squared error, cross-

entropy, etc.)

◦ training-validation-test split

◦ underfitting and overfitting (bias-variance trade-off)

Even so, I am still briefly touching on some of these topics, but I need to draw a line

somewhere; otherwise, this book would be gigantic!

How to Read This Book

Since this book is a beginner’s guide, it is meant to be read sequentially, as ideas

and concepts are progressively built. The same holds true for the code inside the

book—you should be able to reproduce all outputs, provided you execute the

chunks of code in the same order as they are introduced.

This book is visually different than other books: As I’ve mentioned already in the

"Why This Book?" section, I really like to make use of visual cues. Although this is

not, strictly speaking, a convention, this is how you can interpret those cues:

• I use bold to highlight what I believe to be the most relevant words in a

sentence or paragraph, while italicized words are considered important too (not

important enough to be bold, though)

• Variables, coefficients, and parameters in general, are italicized
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• Classes and methods are written in a monospaced font, and they link to PyTorch
[16] documentation the first time they are introduced, so you can easily follow it

(unlike other links in this book, links to documentation are numerous and thus

not included in the footnotes)

• Every code cell is followed by another cell showing the corresponding outputs

(if any)

• All code presented in the book is available at its official repository on GitHub:

https://github.com/dvgodoy/PyTorchStepByStep

Code cells with titles are an important piece of the workflow:

Title Goes Here

1 # Whatever is being done here is going to impact OTHER code
2 # cells. Besides, most cells have COMMENTS explaining what
3 # is happening
4 x = [1., 2., 3.]
5 print(x)

If there is any output to the code cell, titled or not, there will be another code cell

depicting the corresponding output so you can check if you successfully

reproduced it or not.

Output

[1.0, 2.0, 3.0]

Some code cells do not have titles—running them does not affect the workflow:

# Those cells illustrate HOW TO CODE something, but they are
# NOT part of the main workflow
dummy = ['a', 'b', 'c']
print(dummy[::-1])

But even these cells have their outputs shown!
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Output

['c', 'b', 'a']

I use asides to communicate a variety of things, according to the corresponding

icon:


WARNING

Potential problems or things to look out for.


TIP

Key aspects I really want you to remember.


INFORMATION

Important information to pay attention to.


IMPORTANT

Really important information to pay attention to.


TECHNICAL

Technical aspects of parameterization or inner workings of

algorithms.


QUESTION AND ANSWER

Asking myself questions (pretending to be you, the reader) and

answering them, either in the same block or shortly after.


DISCUSSION

Really brief discussion on a concept or topic.


LATER

Important topics that will be covered in more detail later.


SILLY

Jokes, puns, memes, quotes from movies.
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What’s Next?

It’s time to set up an environment for your learning journey using the Setup Guide.

[3] https://bit.ly/2MQoYRo

[4] https://bit.ly/37uZgLB

[5] https://pytorch.org/ecosystem/

[6] https://bit.ly/2MTN0Lh

[7] https://bit.ly/2UFHFve

[8] https://bit.ly/2XXJkyo

[9] https://openai.com/blog/openai-pytorch/

[10] https://docs.fast.ai/

[11] https://course.fast.ai/

[12] https://course.fast.ai/

[13] http://pyro.ai/

[14] https://github.com/horovod/horovod

[15] https://bit.ly/30CPhm5

[16] https://bit.ly/3cT1aH2
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Setup Guide

Official Repository

This book’s official repository is available on GitHub:

https://github.com/dvgodoy/PyTorchStepByStep

It contains one Jupyter notebook for every chapter in this book. Each notebook

contains all the code shown in its corresponding chapter, and you should be able to

run its cells in sequence to get the same outputs, as shown in the book. I strongly

believe that being able to reproduce the results brings confidence to the reader.



Even though I did my best to ensure the reproducibility of the

results, you may still find some minor differences in your outputs

(especially during model training). Unfortunately, completely

reproducible results are not guaranteed across PyTorch releases,

and results may not be reproducible between CPU and GPU

executions, even when using identical seeds.[17]

Environment

There are three options for you to run the Jupyter notebooks:

• Google Colab (https://colab.research.google.com)

• Binder (https://mybinder.org)

• Local Installation

Let’s briefly explore the pros and cons of each of these options.

Google Colab

Google Colab "allows you to write and execute Python in your browser, with zero

configuration required, free access to GPUs and easy sharing."[18].

You can easily load notebooks directly from GitHub using Colab’s special URL

(https://colab.research.google.com/github/). Just type in the GitHub’s user or

organization (like mine, dvgodoy), and it will show you a list of all its public

repositories (like this book’s, PyTorchStepByStep).
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After choosing a repository, it will list the available notebooks and corresponding

links to open them in a new browser tab.

Figure S.1 - Google Colab’s special URL

You also get access to a GPU, which is very useful to train deep learning models

faster. More important, if you make changes to the notebook, Google Colab will

keep them. The whole setup is very convenient; the only cons I can think of are:

• You need to be logged in to a Google account.

• You need to (re)install Python packages that are not part of Google Colab’s

default configuration.

Binder

Binder "allows you to create custom computing environments that can be shared and

used by many remote users."[19]

You can also load notebooks directly from GitHub, but the process is slightly

different. Binder will create something like a virtual machine (technically, it is a

container, but let’s leave it at that), clone the repository, and start Jupyter. This

allows you to have access to Jupyter’s home page in your browser, just like you

would if you were running it locally, but everything is running in a JupyterHub

server on their end.

Just go to Binder’s site (https://mybinder.org/) and type in the URL to the GitHub

repository you want to explore (for instance,

https://github.com/dvgodoy/PyTorchStepByStep) and click on Launch. It will take

a couple of minutes to build the image and open Jupyter’s home page.

You can also launch Binder for this book’s repository directly using the following
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link: https://mybinder.org/v2/gh/dvgodoy/PyTorchStepByStep/master.

Figure S.2 - Binder’s page

Binder is very convenient since it does not require a prior setup of any kind. Any

Python packages needed to successfully run the environment are likely installed

during launch (if provided by the author of the repository).

On the other hand, it may take time to start, and it does not keep your changes

after your session expires (so, make sure you download any notebooks you

modify).

Local Installation

This option will give you more flexibility, but it will require more effort to set up. I

encourage you to try setting up your own environment. It may seem daunting at

first, but you can surely accomplish it by following seven easy steps:

Checklist

☐ 1. Install Anaconda.

☐ 2. Create and activate a virtual environment.

☐ 3. Install PyTorch package.

☐ 4. Install TensorBoard package.

☐ 5. Install GraphViz software and TorchViz package (optional).

☐ 6. Install git and clone the repository.

☐ 7. Start Jupyter notebook.
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1. Anaconda

If you don’t have Anaconda’s Individual Edition[20] installed yet, this would be a

good time to do it. It is a convenient way to start since it contains most of the

Python libraries a data scientist will ever need to develop and train models.

Please follow the installation instructions for your OS:

• Windows (https://docs.anaconda.com/anaconda/install/windows/)

• macOS (https://docs.anaconda.com/anaconda/install/mac-os/)

• Linux (https://docs.anaconda.com/anaconda/install/linux/)


Make sure you choose Python 3.X version since Python 2 was

discontinued in January 2020.

After installing Anaconda, it is time to create an environment.

2. Conda (Virtual) Environments

Virtual environments are a convenient way to isolate Python installations

associated with different projects.

 "What is an environment?"

It is pretty much a replication of Python itself and some (or all) of its libraries, so,

effectively, you’ll end up with multiple Python installations on your computer.

 "Why can’t I just use one single Python installation for everything?"

With so many independently developed Python libraries, each having many

different versions and each version having various dependencies (on other

libraries), things can get out of hand real quick.

It is beyond the scope of this guide to debate these issues, but take my word for it

(or Google it!)—you’ll benefit a great deal if you pick up the habit of creating a

different environment for every project you start working on.

 "How do I create an environment?"

First, you need to choose a name for your environment :-) Let’s call ours
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pytorchbook (or anything else you find easy to remember). Then, you need to open

a terminal (in Ubuntu) or Anaconda Prompt (in Windows or macOS) and type the

following command:

$ conda create -n pytorchbook anaconda

The command above creates a Conda environment named pytorchbook and

includes all Anaconda packages in it (time to get a coffee, it will take a while…). If

you want to learn more about creating and using Conda environments, please

check Anaconda’s "Managing Environments"[21] user guide.

Did it finish creating the environment? Good! It is time to activate it, meaning,

making that Python installation the one to be used now. In the same terminal (or

Anaconda prompt), just type:

$ conda activate pytorchbook

Your prompt should look like this (if you’re using Linux):

(pytorchbook)$

or like this (if you’re using Windows):

(pytorchbook)C:\>

Done! You are using a brand new Conda environment now. You’ll need to activate

it every time you open a new terminal, or, if you’re a Windows or macOS user, you

can open the corresponding Anaconda prompt (it will show up as Anaconda

Prompt (pytorchbook), in our case), which will have it activated from the start.



IMPORTANT: From now on, I am assuming you’ll activate the

pytorchbook environment every time you open a terminal or

Anaconda prompt. Further installation steps must be executed

inside the environment.
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3. PyTorch

PyTorch is the coolest deep learning framework, just in case you skipped the

introduction.

It is "an open source machine learning framework that accelerates the path from

research prototyping to production deployment."[22] Sounds good, right? Well, I

probably don’t have to convince you at this point :-)

It is time to install the star of the show :-) We can go straight to the Start Locally

(https://pytorch.org/get-started/locally/) section of PyTorch’s website, and it will

automatically select the options that best suit your local environment, and it will

show you the command to run.

Figure S.3 - PyTorch’s Start Locally page

Some of these options are given:

• PyTorch Build: Always select a Stable version.

• Package: I am assuming you’re using Conda.

• Language: Obviously, Python.

So, two options remain: Your OS and CUDA.

 "What is CUDA?" you ask.
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Using GPU / CUDA

CUDA "is a parallel computing platform and programming model developed by NVIDIA

for general computing on graphical processing units (GPUs)."[23]

If you have a GPU in your computer (likely a GeForce graphics card), you can

leverage its power to train deep learning models much faster than using a CPU. In

this case, you should choose a PyTorch installation that includes CUDA support.

This is not enough, though: If you haven’t done so yet, you need to install up-to-

date drivers, the CUDA Toolkit, and the CUDA Deep Neural Network library

(cuDNN). Unfortunately, more detailed installation instructions for CUDA are

outside the scope of this book.

The advantage of using a GPU is that it allows you to iterate faster and experiment

with more-complex models and a more extensive range of hyper-parameters.

In my case, I use Linux, and I have a GPU with CUDA version 10.2 installed. So I

would run the following command in the terminal (after activating the

environment):

(pytorchbook)$ conda install pytorch torchvision\
cudatoolkit=10.2 -c pytorch

Using CPU

If you do not have a GPU, you should choose None for CUDA.

 "Would I be able to run the code without a GPU?" you ask.

Sure! The code and the examples in this book were designed to allow all readers to

follow them promptly. Some examples may demand a bit more computing power,

but we are talking about a couple of minutes in a CPU, not hours. If you do not have

a GPU, don’t worry! Besides, you can always use Google Colab if you need to use a

GPU for a while!

If I had a Windows computer, and no GPU, I would have to run the following

command in the Anaconda prompt (pytorchbook):
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(pytorchbook) C:\> conda install pytorch torchvision cpuonly\
 -c pytorch

Installing CUDA

CUDA: Installing drivers for a GeForce graphics card, NVIDIA’s cuDNN, and

CUDA Toolkit can be challenging and is highly dependent on which model

you own and which OS you use.

For installing GeForce’s drivers, go to GeForce’s website

(https://www.geforce.com/drivers), select your OS and the model of your

graphics card, and follow the installation instructions.

For installing NVIDIA’s CUDA Deep Neural Network library (cuDNN), you

need to register at https://developer.nvidia.com/cudnn.

For installing CUDA Toolkit (https://developer.nvidia.com/cuda-toolkit), please

follow instructions for your OS and choose a local installer or executable file.

macOS: If you’re a macOS user, please beware that PyTorch’s binaries DO

NOT support CUDA, meaning you’ll need to install PyTorch from source if

you want to use your GPU. This is a somewhat complicated process (as

described in https://github.com/pytorch/pytorch#from-source), so, if you don’t

feel like doing it, you can choose to proceed without CUDA, and you’ll still be

able to execute the code in this book promptly.

4. TensorBoard

TensorBoard is TensorFlow’s visualization toolkit, and "provides the visualization

and tooling needed for machine learning experimentation."[24]

TensorBoard is a powerful tool, and we can use it even if we are developing models

in PyTorch. Luckily, you don’t need to install the whole TensorFlow to get it; you

can easily install TensorBoard alone using Conda. You just need to run this

command in your terminal or Anaconda prompt (again, after activating the

environment):

 (pytorchbook)$ conda install -c conda-forge tensorboard
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5. GraphViz and Torchviz (optional)



This step is optional, mostly because the installation of GraphViz

can sometimes be challenging (especially on Windows). If for any

reason you do not succeed in installing it correctly, or if you

decide to skip this installation step, you will still be able to

execute the code in this book (except for a couple of cells that

generate images of a model’s structure in the "Dynamic

Computation Graph" section of Chapter 1).

GraphViz is an open source graph visualization software. It is "a way of representing

structural information as diagrams of abstract graphs and networks."[25]

We need to install GraphViz to use TorchViz, a neat package that allows us to

visualize a model’s structure. Please check the installation instructions for your OS

at https://www.graphviz.org/download/.


If you are using Windows, please use the GraphViz’s Windows

Package installer at https://graphviz.gitlab.io/_pages/Download/

windows/graphviz-2.38.msi.



You also need to add GraphViz to the PATH (environment

variable) in Windows. Most likely, you can find the GraphViz

executable file at C:\ProgramFiles(x86)\Graphviz2.38\bin.

Once you find it, you need to set or change the PATH accordingly,

adding GraphViz’s location to it.

For more details on how to do that, please refer to "How to Add

to Windows PATH Environment Variable."[26]

For additional information, you can also check the "How to Install Graphviz

Software"[27] guide.

After installing GraphViz, you can install the torchviz[28] package. This package is

not part of Anaconda Distribution Repository[29] and is only available at PyPI[30], the

Python Package Index, so we need to pip install it.

Once again, open a terminal or Anaconda prompt and run this command (just once

more: after activating the environment):
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(pytorchbook)$ pip install torchviz

To check your GraphViz / TorchViz installation, you can try the Python code below:

(pytorchbook)$ python

Python 3.7.5 (default, Oct 25 2019, 15:51:11)
[GCC 7.3.0] :: Anaconda, Inc. on linux
Type "help", "copyright", "credits" or "license" for more
information.
>>> import torch
>>> from torchviz import make_dot
>>> v = torch.tensor(1.0, requires_grad=True)
>>> make_dot(v)

If everything is working correctly, you should see something like this:

Output

<graphviz.dot.Digraph object at 0x7ff540c56f50>

If you get an error of any kind (the one below is pretty common), it means there is

still some kind of installation issue with GraphViz.

Output

ExecutableNotFound: failed to execute ['dot', '-Tsvg'], make
sure the Graphviz executables are on your systems' PATH

6. Git

It is way beyond this guide’s scope to introduce you to version control and its most

popular tool: git. If you are familiar with it already, great, you can skip this section

altogether!

Otherwise, I’d recommend you to learn more about it; it will definitely be useful for

you later down the line. In the meantime, I will show you the bare minimum so you

can use git to clone the repository containing all code used in this book and get

your own, local copy of it to modify and experiment with as you please.
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First, you need to install it. So, head to its downloads page (https://git-scm.com/

downloads) and follow instructions for your OS. Once the installation is complete,

please open a new terminal or Anaconda prompt (it’s OK to close the previous

one). In the new terminal or Anaconda prompt, you should be able to run git
commands.

To clone this book’s repository, you only need to run:

(pytorchbook)$ git clone https://github.com/dvgodoy/\
PyTorchStepByStep.git

The command above will create a PyTorchStepByStep folder that contains a local

copy of everything available on GitHub’s repository.

conda install vs pip install

Although they may seem equivalent at first sight, you should prefer conda
install over pip install when working with Anaconda and its virtual

environments.

This is because conda install is sensitive to the active virtual environment:

The package will be installed only for that environment. If you use pip
install, and pip itself is not installed in the active environment, it will fall

back to the global pip, and you definitely do not want that.

Why not? Remember the problem with dependencies I mentioned in the

virtual environment section? That’s why! The conda installer assumes it

handles all packages that are part of its repository and keeps track of the

complicated network of dependencies among them (to learn more about

this, check this link[31]).

To learn more about the differences between conda and pip, read

"Understanding Conda and Pip."[32]

As a rule, first try to conda install a given package and, only if it does not

exist there, fall back to pip install, as we did with torchviz.
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7. Jupyter

After cloning the repository, navigate to the PyTorchStepByStep folder and, once

inside it, start Jupyter on your terminal or Anaconda prompt:

(pytorchbook)$ jupyter notebook

This will open your browser, and you will see Jupyter’s home page containing the

repository’s notebooks and code.

Figure S.4 - Running Jupyter

Moving On

Regardless of which of the three environments you chose, now you are ready to

move on and tackle the development of your first PyTorch model, step-by-step!

[17] https://pytorch.org/docs/stable/notes/randomness.html

[18] https://colab.research.google.com/notebooks/intro.ipynb

[19] https://mybinder.readthedocs.io/en/latest/

[20] https://www.anaconda.com/products/individual

[21] https://bit.ly/2MVk0CM

[22] https://pytorch.org/

[23] https://developer.nvidia.com/cuda-zone

[24] https://www.tensorflow.org/tensorboard

[25] https://www.graphviz.org/

[26] https://bit.ly/3fIwYA5
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[27] https://bit.ly/30Ayct3

[28] https://github.com/szagoruyko/pytorchviz

[29] https://docs.anaconda.com/anaconda/packages/pkg-docs/

[30] https://pypi.org/

[31] https://bit.ly/37onBTt

[32] https://bit.ly/2AAh8J5
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Chapter 0
Visualizing Gradient Descent

Spoilers

In this chapter, we will:

• define a simple linear regression model

• walk through every step of gradient descent: initializing parameters,

performing a forward pass, computing errors and loss, computing gradients,

and updating parameters

• understand gradients using equations, code, and geometry

• understand the difference between batch, mini-batch, and stochastic gradient

descent

• visualize the effects on the loss of using different learning rates

• understand the importance of standardizing / scaling features

• and much, much more!

There is no actual PyTorch code in this chapter… it is Numpy all along because our

focus here is to understand, inside and out, how gradient descent works. PyTorch

will be introduced in the next chapter.

Jupyter Notebook

The Jupyter notebook corresponding to Chapter 0[33] is part of the official Deep

Learning with PyTorch Step-by-Step repository on GitHub. You can also run it

directly in Google Colab[34].

If you’re using a local installation, open your terminal or Anaconda prompt and

navigate to the PyTorchStepByStep folder you cloned from GitHub. Then, activate

the pytorchbook environment and run jupyter notebook:

$ conda activate pytorchbook

(pytorchbook)$ jupyter notebook

If you’re using Jupyter’s default settings, this link should open Chapter 0’s
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notebook. If not, just click on Chapter00.ipynb on your Jupyter’s home page.

Imports

For the sake of organization, all libraries needed throughout the code used in any

given chapter are imported at its very beginning. For this chapter, we’ll need the

following imports:

import numpy as np
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import StandardScaler

Visualizing Gradient Descent



According to Wikipedia[35]: "Gradient descent is a first-order

iterative optimization algorithm for finding a local minimum of a

differentiable function."

But I would go with: "Gradient descent is an iterative technique

commonly used in machine learning and deep learning to find the

best possible set of parameters / coefficients for a given model,

data points, and loss function, starting from an initial, and usually

random, guess."

 "Why visualizing gradient descent?"

I believe the way gradient descent is usually explained lacks intuition. Students and

beginners are left with a bunch of equations and rules of thumb—this is not the way

one should learn such a fundamental topic.

If you really understand how gradient descent works, you will also understand how

the characteristics of your data and your choice of hyper-parameters (mini-batch

size and learning rate, for instance) have an impact on how well and how fast the

model training is going to be.

By really understanding, I do not mean working through the equations manually: this

does not develop intuition either. I mean visualizing the effects of different

settings; I mean telling a story to illustrate the concept. That’s how you develop

intuition.
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That being said, I’ll cover the five basic steps you’d need to go through to use

gradient descent. I’ll show you the corresponding Numpy code while explaining lots

of fundamental concepts along the way.

But first, we need some data to work with. Instead of using some external dataset,

let’s

• define which model we want to train to better understand gradient descent;

and

• generate synthetic data for that model.

Model

The model must be simple and familiar, so you can focus on the inner workings of

gradient descent.

So, I will stick with a model as simple as it can be: a linear regression with a single

feature, x!

Equation 0.1 - Simple linear regression model

In this model, we use a feature (x) to try to predict the value of a label (y). There are

three elements in our model:

• parameter b, the bias (or intercept), which tells us the expected average value of

y when x is zero

• parameter w, the weight (or slope), which tells us how much y increases, on

average, if we increase x by one unit

• and that last term (why does it always have to be a Greek letter?), epsilon, which

is there to account for the inherent noise; that is, the error we cannot get rid of

We can also conceive the very same model structure in a less abstract way:

salary = minimum wage + increase per year * years of experience + noise

And to make it even more concrete, let’s say that the minimum wage is $1,000

(whatever the currency or time frame, this is not important). So, if you have no

experience, your salary is going to be the minimum wage (parameter b).
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Also, let’s say that, on average, you get a $2,000 increase (parameter w) for every

year of experience you have. So, if you have two years of experience, you are

expected to earn a salary of $5,000. But your actual salary is $5,600 (lucky you!).

Since the model cannot account for those extra $600, your extra money is,

technically speaking, noise.

Data Generation

We know our model already. In order to generate synthetic data for it, we need to

pick values for its parameters. I chose b = 1 and w = 2 (as in thousands of dollars)

from the example above.

First, let’s generate our feature (x): We use Numpy's rand() method to randomly

generate 100 (N) points between 0 and 1.

Then, we plug our feature (x) and our parameters b and w into our equation to

compute our labels (y). But we need to add some Gaussian noise[36] (epsilon) as well;

otherwise, our synthetic dataset would be a perfectly straight line. We can

generate noise using Numpy's randn() method, which draws samples from a normal

distribution (of mean 0 and variance 1), and then multiply it by a factor to adjust for

the level of noise. Since I don’t want to add too much noise, I picked 0.1 as my

factor.

Synthetic Data Generation

Data Generation

1 true_b = 1
2 true_w = 2
3 N = 100
4 
5 # Data Generation
6 np.random.seed(42)
7 x = np.random.rand(N, 1)
8 epsilon = (.1 * np.random.randn(N, 1))
9 y = true_b + true_w * x + epsilon

Did you notice the np.random.seed(42) at line 6? This line of code is actually more

important than it looks. It guarantees that, every time we run this code, the same

random numbers will be generated.
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"Wait; what?! Aren’t the numbers supposed to be random? How could

they possibly be the same numbers?" you ask, perhaps even a bit

annoyed by this.

(Not So) Random Numbers

Well, you know, random numbers are not quite random… They are really

pseudo-random, which means Numpy's number generator spits out a

sequence of numbers that looks like it’s random. But it is not, really.

The good thing about this behavior is that we can tell the generator to start a

particular sequence of pseudo-random numbers. To some extent, it works

as if we tell the generator: "please generate sequence #42," and it will spill out

a sequence of numbers. That number, 42, which works like the index of the

sequence, is called a seed. Every time we give it the same seed, it generates

the same numbers.

This means we have the best of both worlds: On the one hand, we do

generate a sequence of numbers that, for all intents and purposes, is

considered to be random; on the other hand, we have the power to

reproduce any given sequence. I cannot stress enough how convenient that

is for debugging purposes!

Moreover, you can guarantee that other people will be able to reproduce

your results. Imagine how annoying it would be to run the code in this book

and get different outputs every time, having to wonder if there is anything

wrong with it. But since I’ve set a seed, you and I can achieve the very same

outputs, even if it involved generating random data!

Next, let’s split our synthetic data into train and validation sets, shuffling the array

of indices and using the first 80 shuffled points for training.


"Why do you need to shuffle randomly generated data points? Aren’t

they random enough?"

Yes, they are random enough, and shuffling them is indeed redundant in this

example. But it is best practice to always shuffle your data points before training a

model to improve the performance of gradient descent.
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There is one exception to the "always shuffle" rule, though: time

series problems, where shuffling can lead to data leakage.

Train-Validation-Test Split

It is beyond the scope of this book to explain the reasoning behind the train-

validation-test split, but there are two points I’d like to make:

1. The split should always be the first thing you do—no preprocessing, no

transformations; nothing happens before the split. That’s why we do this

immediately after the synthetic data generation.

2. In this chapter we will use only the training set, so I did not bother to create a

test set, but I performed a split nonetheless to highlight point #1 :-)

Train-Validation Split

 1 # Shuffles the indices
 2 idx = np.arange(N)
 3 np.random.shuffle(idx)
 4 
 5 # Uses first 80 random indices for train
 6 train_idx = idx[:int(N*.8)]
 7 # Uses the remaining indices for validation
 8 val_idx = idx[int(N*.8):]
 9 
10 # Generates train and validation sets
11 x_train, y_train = x[train_idx], y[train_idx]
12 x_val, y_val = x[val_idx], y[val_idx]


"Why didn’t you use train_test_split() from Scikit-Learn?" you

may be asking.

That’s a fair point. Later on, we will refer to the indices of the data points belonging

to either train or validation sets, instead of the points themselves. So, I thought of

using them from the very start.
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Figure 0.1 - Synthetic data: train and validation sets

We know that b = 1, w = 2, but now let’s see how close we can get to the true

values by using gradient descent and the 80 points in the training set (for training,

N = 80).

Step 0 - Random Initialization

In our example, we already know the true values of the parameters, but this will

obviously never happen in real life: If we knew the true values, why even bother to

train a model to find them?!

OK, given that we’ll never know the true values of the parameters, we need to set

initial values for them. How do we choose them? It turns out a random guess is as

good as any other.


Even though the initialization is random, there are some clever

initialization schemes that should be used when training more-

complex models. We’ll get back to them (much) later.

For training a model, you need to randomly initialize the parameters / weights (we

have only two, b and w).
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Random Initialization

1 # Step 0 - Initializes parameters "b" and "w" randomly
2 np.random.seed(42)
3 b = np.random.randn(1)
4 w = np.random.randn(1)
5 
6 print(b, w)

Output

[0.49671415] [-0.1382643]

Step 1 - Compute Model’s Predictions

This is the forward pass; it simply computes the model’s predictions using the current

values of the parameters / weights. At the very beginning, we will be producing really

bad predictions, as we started with random values in Step 0.

Step 1

1 # Step 1 - Computes our model's predicted output - forward pass
2 yhat = b + w * x_train

Figure 0.2 - Model’s predictions (with random parameters)
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Step 2 - Compute the Loss

There is a subtle but fundamental difference between error and loss.

The error is the difference between the actual value (label) and the predicted

value computed for a single data point. So, for a given i-th point (from our dataset

of N points), its error is:

Equation 0.2 - Error

The error of the first point in our dataset (i = 0) can be represented like this:

Figure 0.3 - Prediction error (for one data point)

The loss, on the other hand, is some sort of aggregation of errors for a set of data

points.

It seems rather obvious to compute the loss for all (N) data points, right? Well, yes

and no. Although it will surely yield a more stable path from the initial random

parameters to the parameters that minimize the loss, it will also surely be slow.

This means one needs to sacrifice (a bit of) stability for the sake of speed. This is easily

accomplished by randomly choosing (without replacement) a subset of n out of N

data points each time we compute the loss.
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Batch, Mini-batch, and Stochastic Gradient Descent

• If we use all points in the training set (n = N) to compute the

loss, we are performing a batch gradient descent;

• If we were to use a single point (n = 1) each time, it would be a

stochastic gradient descent;

• Anything else (n) in between 1 and N characterizes a mini-

batch gradient descent;

For a regression problem, the loss is given by the mean squared error (MSE); that

is, the average of all squared errors; that is, the average of all squared differences

between labels (y) and predictions (b + wx).

Equation 0.3 - Loss: mean squared error (MSE)

In the code below, we are using all data points of the training set to compute the

loss, so n = N = 80, meaning we are indeed performing batch gradient descent.

Step 2

1 # Step 2 - Computing the loss
2 # We are using ALL data points, so this is BATCH gradient
3 # descent. How wrong is our model? That's the error!
4 error = (yhat - y_train)
5 
6 # It is a regression, so it computes mean squared error (MSE)
7 loss = (error ** 2).mean()
8 
9 print(loss)
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Output

2.7421577700550976

Loss Surface

We have just computed the loss (2.74) corresponding to our randomly initialized

parameters (b = 0.49 and w = -0.13). What if we did the same for ALL possible

values of b and w? Well, not all possible values, but all combinations of evenly spaced

values in a given range, like:

# Reminder:
# true_b = 1
# true_w = 2

# we have to split the ranges in 100 evenly spaced intervals each
b_range = np.linspace(true_b - 3, true_b + 3, 101)
w_range = np.linspace(true_w - 3, true_w + 3, 101)
# meshgrid is a handy function that generates a grid of b and w
# values for all combinations
bs, ws = np.meshgrid(b_range, w_range)
bs.shape, ws.shape

Output

((101, 101), (101, 101))

The result of the meshgrid() operation was two (101, 101) matrices representing

the values of each parameter inside a grid. What does one of these matrices look

like?

bs
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Output

array([[-2.  , -1.94, -1.88, ...,  3.88,  3.94,  4.  ],
       [-2.  , -1.94, -1.88, ...,  3.88,  3.94,  4.  ],
       [-2.  , -1.94, -1.88, ...,  3.88,  3.94,  4.  ],
       ...,
       [-2.  , -1.94, -1.88, ...,  3.88,  3.94,  4.  ],
       [-2.  , -1.94, -1.88, ...,  3.88,  3.94,  4.  ],
       [-2.  , -1.94, -1.88, ...,  3.88,  3.94,  4.  ]])

Sure, we’re somewhat cheating here, since we know the true values of b and w, so

we can choose the perfect ranges for the parameters. But it is for educational

purposes only :-)

Next, we could use those values to compute the corresponding predictions, errors,

and losses. Let’s start by taking a single data point from the training set and

computing the predictions for every combination in our grid:

dummy_x = x_train[0]
dummy_yhat = bs + ws * dummy_x
dummy_yhat.shape

Output

(101, 101)

Thanks to its broadcasting capabilities, Numpy is able to understand we want to

multiply the same x value by every entry in the ws matrix. This operation resulted

in a grid of predictions for that single data point. Now we need to do this for every

one of our 80 data points in the training set.

We can use Numpy's apply_along_axis() to accomplish this:

 Look ma, no loops!
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all_predictions = np.apply_along_axis(
    func1d=lambda x: bs + ws * x,
    axis=1,
    arr=x_train,
)
all_predictions.shape

Output

(80, 101, 101)

Cool! We got 80 matrices of shape (101, 101), one matrix for each data point, each

matrix containing a grid of predictions.

The errors are the difference between the predictions and the labels, but we

cannot perform this operation right away—we need to work a bit on our labels (y),

so they have the proper shape for it (broadcasting is good, but not that good):

all_labels = y_train.reshape(-1, 1, 1)
all_labels.shape

Output

(80, 1, 1)

Our labels turned out to be 80 matrices of shape (1, 1)—the most boring kind of

matrix—but that is enough for broadcasting to work its magic. We can compute the

errors now:

all_errors = (all_predictions - all_labels)
all_errors.shape

Output

(80, 101, 101)

Each prediction has its own error, so we get 80 matrices of shape (101, 101), again,
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one matrix for each data point, each matrix containing a grid of errors.

The only step missing is to compute the mean squared error. First, we take the

square of all errors. Then, we average the squares over all data points. Since our

data points are in the first dimension, we use axis=0 to compute this average:

all_losses = (all_errors ** 2).mean(axis=0)
all_losses.shape

Output

(101, 101)

The result is a grid of losses, a matrix of shape (101, 101), each loss corresponding

to a different combination of the parameters b and w.

These losses are our loss surface, which can be visualized in a 3D plot, where the

vertical axis (z) represents the loss values. If we connect the combinations of b and

w that yield the same loss value, we’ll get an ellipse. Then, we can draw this ellipse

in the original b x w plane (in blue, for a loss value of 3). This is, in a nutshell, what a

contour plot does. From now on, we’ll always use the contour plot, instead of the

corresponding 3D version.

Figure 0.4 - Loss surface

In the center of the plot, where parameters (b, w) have values close to (1, 2), the loss

is at its minimum value. This is the point we’re trying to reach using gradient
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descent.

In the bottom, slightly to the left, there is the random start point, corresponding to

our randomly initialized parameters.

This is one of the nice things about tackling a simple problem like a linear

regression with a single feature: We have only two parameters, and thus we can

compute and visualize the loss surface.



Unfortunately, for the absolute majority of problems, computing

the loss surface is not going to be feasible: we have to rely on

gradient descent’s ability to reach a point of minimum, even if it

starts at some random point.

Cross-Sections

Another nice thing is that we can cut a cross-section in the loss surface to check

what the loss would look like if the other parameter were held constant.

Let’s start by making b = 0.52 (the value from b_range that is closest to our initial

random value for b, 0.4967). We cut a cross-section vertically (the red dashed line)

on our loss surface (left plot), and we get the resulting plot on the right:

Figure 0.5 - Vertical cross-section; parameter b is fixed

What does this cross-section tell us? It tells us that, if we keep b constant (at 0.52),

the loss, seen from the perspective of parameter w, can be minimized if w gets

increased (up to some value between 2 and 3).
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Sure, different values of b produce different cross-section loss curves for w. And

those curves will depend on the shape of the loss surface (more on that later, in the

"Learning Rate" section).

OK, so far, so good… What about the other cross-section? Let’s cut it horizontally

now, making w = -0.16 (the value from w_range that is closest to our initial random

value for b, -0.1382). The resulting plot is on the right:

Figure 0.6 - Horizontal cross-section; parameter w is fixed

Now, if we keep w constant (at -0.16), the loss, seen from the perspective of

parameter b, can be minimized if b gets increased (up to some value close to 2).


In general, the purpose of this cross-section is to get the effect on

the loss of changing a single parameter, while keeping

everything else constant. This is, in a nutshell, a gradient :-)



Now I have a question for you: Which of the two dashed curves,

red (w changes, b is constant) or black (b changes, w is constant)

yields the largest changes in loss when we modify the changing

parameter?

The answer is coming right up in the next section!

Step 3 - Compute the Gradients

A gradient is a partial derivative—why partial? Because one computes it with

Step 3 - Compute the Gradients | 37



respect to (w.r.t.) a single parameter. We have two parameters, b and w, so we must

compute two partial derivatives.

A derivative tells you how much a given quantity changes when you slightly vary

some other quantity. In our case, how much does our MSE loss change when we

vary each of our two parameters separately?


Gradient = how much the loss changes if ONE parameter

changes a little bit!

The right-most part of the equations below is what you usually see in

implementations of gradient descent for simple linear regression. In the

intermediate step, I show you all elements that pop up from the application of the

chain rule,[37] so you know how the final expression came to be.

Equation 0.4 - Computing gradients w.r.t coefficients b and w using n points

Just to be clear: We will always use our "regular" error computed at the beginning

of Step 2. The loss surface is surely eye candy, but, as I mentioned before, it is only

feasible to use it for educational purposes.

Step 3

1 # Step 3 - Computes gradients for both "b" and "w" parameters
2 b_grad = 2 * error.mean()
3 w_grad = 2 * (x_train * error).mean()
4 print(b_grad, w_grad)
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Output

-3.044811379650508 -1.8337537171510832

Visualizing Gradients

Since the gradient for b is larger (in absolute value, 3.04) than the gradient for w (in

absolute value, 1.83), the answer for the question I posed you in the "Cross-

Sections" section is: The black curve (b changes, w is constant) yields the largest

changes in loss.

 "Why is that?"

To answer that, let’s first put both cross-section plots side-by-side, so we can more

easily compare them. What is the main difference between them?

Figure 0.7 - Cross-sections of the loss surface

The curve on the right is steeper. That’s your answer! Steeper curves have larger

gradients.

Cool! That’s the intuition… Now, let’s get a bit more geometrical. So, I am zooming

in on the regions given by the red and black squares of Figure 0.7.

From the "Cross-Sections" section, we already know that to minimize the loss, both

b and w needed to be increased. So, keeping in the spirit of using gradients, let’s

increase each parameter a little bit (always keeping the other one fixed!). By the
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way, in this example, a little bit equals 0.12 (for convenience’s sake, so it results in a

nicer plot).

What effect do these increases have on the loss? Let’s check it out:

Figure 0.8 - Computing (approximate) gradients, geometrically

On the left plot, increasing w by 0.12 yields a loss reduction of 0.21. The

geometrically computed and roughly approximate gradient is given by the ratio

between the two values: -1.79. How does this result compare to the actual value of

the gradient (-1.83)? It is actually not bad for a crude approximation. Could it be

better? Sure, if we make the increase in w smaller and smaller (like 0.01, instead of

0.12), we’ll get better and better approximations. In the limit, as the increase

approaches zero, we’ll arrive at the precise value of the gradient. Well, that’s the

definition of a derivative!

The same reasoning goes for the plot on the right: increasing b by the same 0.12

yields a larger loss reduction of 0.35. Larger loss reduction, larger ratio, larger

gradient—and larger error, too, since the geometric approximation (-2.90) is

farther away from the actual value (-3.04).

Time for another question: Which curve, red or black, do you like best to reduce

the loss? It should be the black one, right? Well, yes, but it is not as straightforward

as we’d like it to be. We’ll dig deeper into this in the "Learning Rate" section.

Backpropagation

Now that you’ve learned about computing the gradient of the loss function w.r.t. to
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each parameter using the chain rule, let me show you how Wikipedia describes

backpropagation (highlights are mine):

The backpropagation algorithm works by computing the gradient of the loss

function with respect to each weight by the chain rule, computing the

gradient one layer at a time, iterating backward from the last layer to avoid

redundant calculations of intermediate terms in the chain rule;

…

The term backpropagation strictly refers only to the algorithm for computing

the gradient, not how the gradient is used; but the term is often used loosely

to refer to the entire learning algorithm, including how the gradient is used,

such as by stochastic gradient descent.

Does it seem familiar? That’s it; backpropagation is nothing more than "chained"

gradient descent. That’s, in a nutshell, how a neural network is trained: It uses

backpropagation, starting at its last layer and working its way back, to update the

weights through all the layers.

In our example, we have a single layer, even a single neuron, so there is no need to

backpropagate anything (more on that in the next chapter).

Step 4 - Update the Parameters

In the final step, we use the gradients to update the parameters. Since we are

trying to minimize our losses, we reverse the sign of the gradient for the update.

There is still another (hyper-)parameter to consider: the learning rate, denoted by

the Greek letter eta (that looks like the letter n), which is the multiplicative factor

that we need to apply to the gradient for the parameter update.

Equation 0.5 - Updating coefficients b and w using computed gradients and a learning rate

We can also interpret this a bit differently: Each parameter is going to have its
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value updated by a constant value eta (the learning rate), but this constant is going

to be weighted by how much that parameter contributes to minimizing the loss

(its gradient).

Honestly, I believe this way of thinking about the parameter update makes more

sense. First, you decide on a learning rate that specifies your step size, while the

gradients tell you the relative impact (on the loss) of taking a step for each

parameter. Then, you take a given number of steps that’s proportional to that

relative impact: more impact, more steps.



"How do you choose a learning rate?"

That is a topic on its own and beyond the scope of this section as

well. We’ll get back to it later on.

In our example, let’s start with a value of 0.1 for the learning rate (which is a

relatively high value, as far as learning rates are concerned).

Step 4

 1 # Sets learning rate - this is "eta" ~ the "n"-like Greek letter
 2 lr = 0.1
 3 print(b, w)
 4 
 5 # Step 4 - Updates parameters using gradients and the
 6 # learning rate
 7 b = b - lr * b_grad
 8 w = w - lr * w_grad
 9 
10 print(b, w)

Output

[0.49671415] [-0.1382643]
[0.80119529] [0.04511107]
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What’s the impact of one update on our model? Let’s visually check its predictions.

Figure 0.9 - Updated model’s predictions

It looks better … at least it started pointing in the right direction!

Learning Rate

The learning rate is the most important hyper-parameter. There is a gigantic

amount of material on how to choose a learning rate, how to modify the learning

rate during the training, and how the wrong learning rate can completely ruin the

model training.

Maybe you’ve seen this famous graph[38](from Stanford’s CS231n class) that shows

how a learning rate that is too high or too low affects the loss during training. Most

people will see it (or have seen it) at some point in time. This is pretty much general

knowledge, but I think it needs to be thoroughly explained and visually

demonstrated to be truly understood. So, let’s start!

I will tell you a little story (trying to build an analogy here, please bear with me!):

Imagine you are coming back from hiking in the mountains and you want to get

back home as quickly as possible. At some point in your path, you can either choose

to go ahead or to make a right turn.

The path ahead is almost flat, while the path to your right is kinda steep. The

steepness is the gradient. If you take a single step one way or the other, it will lead

to different outcomes (you’ll descend more if you take one step to the right instead

of going ahead).
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But, here is the thing: You know that the path to your right is getting you home

faster, so you don’t take just one step, but multiple steps in that direction. The

steeper the path, the more steps you take! Remember, "more impact, more steps!"

You just cannot resist the urge to take that many steps; your behavior seems to be

completely determined by the landscape (This analogy is getting weird, I know…)

But, you still have one choice: You can adjust the size of your step. You can choose

to take steps of any size, from tiny steps to long strides. That’s your learning rate.

OK, let’s see where this little story brought us so far. That’s how you’ll move, in a

nutshell:

updated location = previous location + step size * number of steps

Now, compare it to what we did with the parameters:

updated value = previous value - learning rate * gradient

You get the point, right? I hope so, because the analogy completely falls apart now.

At this point, after moving in one direction (say, the right turn we talked about),

you’d have to stop and move in the other direction (for just a fraction of a step,

because the path was almost flat, remember?). And so on and so forth. Well, I don’t

think anyone has ever returned from hiking in such an orthogonal zig-zag path!

Anyway, let’s explore further the only choice you have: the size of your step—I

mean, the learning rate.


"Choose your learning rate wisely."

Grail Knight

Low Learning Rate

It makes sense to start with baby steps, right? This means using a low learning rate.

Low learning rates are safe(r), as expected. If you were to take tiny steps while

returning home from your hiking, you’d be more likely to arrive there safe and

sound—but it would take a lot of time. The same holds true for training models:

Low learning rates will likely get you to (some) minimum point, eventually.

Unfortunately, time is money, especially when you’re paying for GPU time in the

cloud, so, there is an incentive to try higher learning rates.

How does this reasoning apply to our model? From computing our (geometric)
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gradients, we know we need to take a given number of steps: 1.79 (parameter w)

and 2.90 (parameter b), respectively. Let’s set our step size to 0.2 (low-ish). It

means we move 0.36 for w and 0.58 for b.


IMPORTANT: In real life, a learning rate of 0.2 is usually

considered HIGH—but in our very simple linear regression

example, it still qualifies as low-ish.

Where does this movement lead us? As you can see in the plots below (as shown by

the new dots to the right of the original ones), in both cases, the movement took us

closer to the minimum; more so on the right because the curve is steeper.

Figure 0.10 - Using a low-ish learning rate
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High Learning Rate

What would have happened if we had used a high learning rate instead, say, a step

size of 0.8? As we can see in the plots below, we start to, literally, run into trouble.

Figure 0.11 - Using a high learning rate

Even though everything is still OK on the left plot, the right plot shows us a

completely different picture: We ended up on the other side of the curve. That is

not good… You’d be going back and forth, alternately hitting both sides of the

curve.

 "Well, even so, I may still reach the minimum; why is it so bad?"

In our simple example, yes, you’d eventually reach the minimum because the curve

is nice and round.

But, in real problems, the "curve" has a really weird shape that allows for bizarre

outcomes, such as going back and forth without ever approaching the minimum.

In our analogy, you moved so fast that you fell down and hit the other side of the

valley, then kept going down like a ping-pong. Hard to believe, I know, but you

definitely don’t want that!
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Very High Learning Rate

Wait, it may get worse than that! Let’s use a really high learning rate, say, a step

size of 1.1!

Figure 0.12 - Using a really high learning rate


"He chose … poorly."

Grail Knight

Ok, that is bad. On the right plot, not only did we end up on the other side of the

curve again, but we actually climbed up. This means our loss increased, instead of

decreased! How is that even possible? You’re moving so fast downhill that you end up

climbing it back up?! Unfortunately, the analogy cannot help us anymore. We need

to think about this particular case in a different way.

First, notice that everything is fine on the left plot. The enormous learning rate did

not cause any issues, because the left curve is less steep than the one on the right.

In other words, the curve on the left can take higher learning rates than the curve

on the right.

What can we learn from it?
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Too high, for a learning rate, is a relative concept: It depends on

how steep the curve is, or, in other words, it depends on how

large the gradient is.

We do have many curves, many gradients: one for each

parameter. But we only have one single learning rate to choose

(sorry, that’s the way it is!).

It means that the size of the learning rate is limited by the

steepest curve. All other curves must follow suit, meaning they’d

be using a suboptimal learning rate, given their shapes.

The reasonable conclusion is: It is best if all the curves are

equally steep, so the learning rate is closer to optimal for all of

them!

"Bad" Feature

How do we achieve equally steep curves? I’m on it! First, let’s take a look at a slightly

modified example, which I am calling the "bad" dataset:

• I multiplied our feature (x) by 10, so it is in the range [0, 10] now, and renamed

it bad_x.

• But since I do not want the labels (y) to change, I divided the original true_w
parameter by 10 and renamed it bad_w—this way, both bad_w * bad_x and w *
x yield the same results.
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true_b = 1
true_w = 2
N = 100

# Data Generation
np.random.seed(42)

# We divide w by 10
bad_w = true_w / 10
# And multiply x by 10
bad_x = np.random.rand(N, 1) * 10

# So, the net effect on y is zero - it is still
# the same as before
y = true_b + bad_w * bad_x + (.1 * np.random.randn(N, 1))

Then, I performed the same split as before for both original and bad datasets and

plotted the training sets side-by-side, as you can see below:

# Generates train and validation sets
# It uses the same train_idx and val_idx as before,
# but it applies to bad_x
bad_x_train, y_train = bad_x[train_idx], y[train_idx]
bad_x_val, y_val = bad_x[val_idx], y[val_idx]

Figure 0.13 - Same data, different scales for feature x
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The only difference between the two plots is the scale of feature x. Its range was

[0, 1], now it is [0, 10]. The label y hasn’t changed, and I did not touch true_b.

Does this simple scaling have any meaningful impact on our gradient descent?

Well, if it hadn’t, I wouldn’t be asking it, right? Let’s compute a new loss surface and

compare to the one we had before.

Figure 0.14 - Loss surface—before and after scaling feature x (Obs.: left plot looks a bit different

than Figure 0.6 because it is centered at the "after" minimum)

Look at the contour values of Figure 0.14: The dark blue line was 3.0, and now it is

50.0! For the same range of parameter values, loss values are much higher.
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Let’s look at the cross-sections before and after we multiplied feature x by 10.

Figure 0.15 - Comparing cross-sections: before and after

What happened here? The red curve got much steeper (larger gradient), and thus

we must use a lower learning rate to safely descend along it.



More important, the difference in steepness between the red

and the black curves increased.

This is exactly what WE NEED TO AVOID!

Do you remember why?

Because the size of the learning rate is limited by the steepest

curve!

How can we fix it? Well, we ruined it by scaling it 10x larger. Perhaps we can make

it better if we scale it in a different way.

Scaling / Standardizing / Normalizing

Different how? There is this beautiful thing called the StandardScaler, which

transforms a feature in such a way that it ends up with zero mean and unit

standard deviation.

How does it achieve that? First, it computes the mean and the standard deviation of

a given feature (x) using the training set (N points):
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Equation 0.6 - Computing mean and standard deviation

Then, it uses both values to scale the feature:

Equation 0.7 - Standardizing

If we were to recompute the mean and the standard deviation of the scaled

feature, we would get 0 and 1, respectively. This pre-processing step is commonly

referred to as normalization, although, technically, it should always be referred to as

standardization.



IMPORTANT: Pre-processing steps like the StandardScaler
MUST be performed AFTER the train-validation-test split;

otherwise, you’ll be leaking information from the validation and /

or test sets to your model!

After using the training set only to fit the StandardScaler, you

should use its transform() method to apply the pre-processing

step to all datasets: training, validation, and test.
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Zero Mean and Unit Standard Deviation

Let’s start with the unit standard deviation; that is, scaling the feature

values such that its standard deviation equals one. This is one of the most

important pre-processing steps, not only for the sake of improving the

performance of gradient descent, but for other techniques such as principal

component analysis (PCA) as well. The goal is to have all numerical features

in a similar scale, so the results are not affected by the original range of each

feature.

Think of two common features in a model: age and salary. While age usually

varies between 0 and 110, salaries can go from the low hundreds (say, 500)

to several thousand (say, 9,000). If we compute the corresponding standard

deviations, we may get values like 25 and 2,000, respectively. Thus, we need

to standardize both features to have them on equal footing.

And then there is the zero mean; that is, centering the feature at zero.

Deeper neural networks may suffer from a very serious condition called

vanishing gradients. Since the gradients are used to update the parameters,

smaller and smaller (that is, vanishing) gradients mean smaller and smaller

updates, up to the point of a standstill: The network simply stops learning.

One way to help the network to fight this condition is to center its inputs,

the features, at zero. We’ll get back to this later on in Chapter 4.

The code below will illustrate this well.

scaler = StandardScaler(with_mean=True, with_std=True)
# We use the TRAIN set ONLY to fit the scaler
scaler.fit(x_train)

# Now we can use the already fit scaler to TRANSFORM
# both TRAIN and VALIDATION sets
scaled_x_train = scaler.transform(x_train)
scaled_x_val = scaler.transform(x_val)

Notice that we are not regenerating the data—we are using the original feature x

as input for the StandardScaler and transforming it into a scaled x. The labels (y)

are left untouched.
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Let’s plot the three of them—original, "bad", and scaled—side-by-side to illustrate

the differences.

Figure 0.16 - Same data, three different scales for feature x

Once again, the only difference between the plots is the scale of feature x. Its

range was originally [0, 1], then we made it [0, 10], and now the StandardScaler
made it [-1.5, 1.5].

OK, time to check the loss surface: To illustrate the differences, I am plotting the

three of them side-by-side: original, "bad", and scaled. It looks like Figure 0.17.

Figure 0.17 - Loss surfaces for different scales for feature x (Obs.: left and center plots look a bit

different than Figure 0.14 because they are centered at the "scaled" minimum)

BEAUTIFUL, isn’t it? The textbook definition of a bowl :-)

In practice, this is the best surface one could hope for: The cross-sections are going

to be similarly steep, and a good learning rate for one of them is also good for the

other.
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Sure, in the real world, you’ll never get a pretty bowl like that. But our conclusion

still holds:


1. Always standardize (scale) your features.

2. DO NOT EVER FORGET #1!

Step 5 - Rinse and Repeat!

Now we use the updated parameters to go back to Step 1 and restart the process.



Definition of Epoch

An epoch is complete whenever every point in the training set

(N) has already been used in all steps: forward pass, computing

loss, computing gradients, and updating parameters.



During one epoch, we perform at least one update, but no more

than N updates.

The number of updates (N/n) will depend on the type of gradient

descent being used:

• For batch (n = N) gradient descent, this is trivial, as it uses all

points for computing the loss—one epoch is the same as one

update.

• For stochastic (n = 1) gradient descent, one epoch means N

updates, since every individual data point is used to perform

an update.

• For mini-batch (of size n), one epoch has N/n updates, since a

mini-batch of n data points is used to perform an update.

Repeating this process over and over for many epochs is, in a nutshell, training a

model.

What happens if we run it over 1,000 epochs?
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Figure 0.18 - Final model’s predictions

In the next chapter, we’ll put all these steps together and run it for 1,000 epochs, so

we’ll get to the parameters depicted in the figure above, b = 1.0235 and w = 1.9690.

 "Why 1,000 epochs?"

No particular reason, but this is a fairly simple model, and we can afford to run it

over a large number of epochs. In more-complex models, though, a couple of dozen

epochs may be enough. We’ll discuss this a bit more in Chapter 1.

The Path of Gradient Descent

In Step 3, we have seen the loss surface and both random start and minimum

points.

Which path is gradient descent going to take to go from random start to a

minimum? How long will it take? Will it actually reach the minimum?

The answers to all these questions depend on many things, like the learning rate, the

shape of the loss surface, and the number of points we use to compute the loss.

Depending on whether we use batch, mini-batch, or stochastic gradient descent,

the path is going to be more or less smooth, and it is likely to reach the minimum in

more or less time.

To illustrate the differences, I’ve generated paths over 100 epochs using either 80

data points (batch), 16 data points (mini-batch), or a single data point (stochastic) for
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computing the loss, as shown in the figure below.

Figure 0.19 - The paths of gradient descent (Obs.: random start is different from Figure 0.4)

You can see that the resulting parameters at the end of Epoch 1 differ greatly from

one another. This is a direct consequence of the number of updates happening

during one epoch, according to the batch size. In our example, for 100 epochs:

• 80 data points (batch): 1 update / epoch, totaling 100 updates

• 16 data points (mini-batch): 5 updates / epoch, totaling 500 updates

• 1 data point (stochastic): 80 updates / epoch, totaling 8,000 updates

So, for both center and right plots, the path between random start and Epoch 1

contains multiple updates, which are not depicted in the plot (otherwise it would

be very cluttered)—that’s why the line connecting two epochs is dashed, instead of

solid. In reality, there would be zig-zagging lines connecting every two epochs.

There are two things to notice:

• It should be no surprise that mini-batch gradient descent is able to get closer to

the minimum point (using the same number of epochs) since it benefits from a

larger number of updates than batch gradient descent.

• The stochastic gradient descent path is somewhat weird: It gets quite close to

the minimum point at the end of Epoch 1 already, but then it seems to fail to

actually reach it. But this is expected since it uses a single data point for each

update; it will never stabilize, forever hovering in the neighborhood of the

minimum point.

Clearly, there is a trade-off here: Either we have a stable and smooth trajectory, or

we move faster toward the minimum.
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Recap

This finishes our journey through the inner workings of gradient descent. By now, I

hope you have developed better intuition about the many different aspects

involved in the process.

In time, with practice, you’ll observe the behaviors described here in your own

models. Make sure to try plenty of different combinations: mini-batch sizes,

learning rates, etc. This way, not only will your models learn, but so will you :-)

This is a (not so) short recap of everything we covered in this chapter:

• defining a simple linear regression model

• generating synthetic data for it

• performing a train-validation split on our dataset

• randomly initializing the parameters of our model

• performing a forward pass; that is, making predictions using our model

• computing the errors associated with our predictions

• aggregating the errors into a loss (mean squared error)

• learning that the number of points used to compute the loss defines the kind of

gradient descent we’re using: batch (all), mini-batch, or stochastic (one)

• visualizing an example of a loss surface and using its cross-sections to get the

loss curves for individual parameters

• learning that a gradient is a partial derivative and it represents how much the

loss changes if one parameter changes a little bit

• computing the gradients for our model’s parameters using equations, code,

and geometry

• learning that larger gradients correspond to steeper loss curves

• learning that backpropagation is nothing more than "chained" gradient

descent

• using the gradients and a learning rate to update the parameters

• comparing the effects on the loss of using low, high, and very high learning

rates

• learning that loss curves for all parameters should be, ideally, similarly steep
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• visualizing the effects of using a feature with a larger range, making the loss

curve for the corresponding parameter much steeper

• using Scikit-Learn’s StandardScaler to bring a feature to a reasonable range

and thus making the loss surface more bowl-shaped and its cross-sections

similarly steep

• learning that preprocessing steps like scaling should be applied after the train-

validation split to prevent leakage

• figuring out that performing all steps (forward pass, loss, gradients, and

parameter update) makes one epoch

• visualizing the path of gradient descent over many epochs and realizing it is

heavily dependent on the kind of gradient descent used: batch, mini-batch, or

stochastic

• learning that there is a trade-off between the stable and smooth path of batch

gradient descent and the fast and somewhat chaotic path of stochastic gradient

descent, making the use of mini-batch gradient descent a good compromise

between the other two

You are now ready to put it all together and actually train a model using PyTorch!

[33] https://github.com/dvgodoy/PyTorchStepByStep/blob/master/Chapter00.ipynb

[34] https://colab.research.google.com/github/dvgodoy/PyTorchStepByStep/blob/master/Chapter00.ipynb

[35] https://en.wikipedia.org/wiki/Gradient_descent

[36] https://en.wikipedia.org/wiki/Gaussian_noise

[37] https://en.wikipedia.org/wiki/Chain_rule

[38] https://bit.ly/2BxCxTO
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Chapter 1
A Simple Regression Problem

Spoilers

In this chapter, we will:

• briefly review the steps of gradient descent (optional)

• use gradient descent to implement a linear regression in Numpy

• create tensors in PyTorch (finally!)

• understand the difference between CPU and GPU tensors

• understand PyTorch’s main feature, autograd, used to perform automatic

differentiation

• visualize the dynamic computation graph

• create a loss function

• define an optimizer

• implement our own model class

• implement nested and sequential models, using PyTorch’s layers

• organize our code into three parts: data preparation, model configuration, and

model training

Jupyter Notebook

The Jupyter notebook corresponding to Chapter 1[39] is part of the official Deep

Learning with PyTorch Step-by-Step repository on GitHub. You can also run it

directly in Google Colab[40].

If you’re using a local installation, open your terminal or Anaconda prompt and

navigate to the PyTorchStepByStep folder you cloned from GitHub. Then, activate

the pytorchbook environment and run jupyter notebook:

$ conda activate pytorchbook

(pytorchbook)$ jupyter notebook
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If you’re using Jupyter’s default settings, this link should open Chapter 1’s

notebook. If not, just click on Chapter01.ipynb on your Jupyter’s home page.

Imports

For the sake of organization, all libraries needed throughout the code used in any

given chapter are imported at its very beginning. For this chapter, we’ll need the

following imports:

import numpy as np
from sklearn.linear_model import LinearRegression

import torch
import torch.optim as optim
import torch.nn as nn
from torchviz import make_dot

A Simple Regression Problem

Most tutorials start with some nice and pretty image classification problem to

illustrate how to use PyTorch. It may seem cool, but I believe it distracts you from

the main goal: learning how PyTorch works.

For this reason, in this first example, I will stick with a simple and familiar problem:

a linear regression with a single feature x! It doesn’t get much simpler than that!

Equation 1.1 - Simple linear regression model
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It is also possible to think of it as the simplest neural network possible: one input,

one output, and no activation function (that is, linear).

Figure 1.1 - The simplest of all neural networks


If you have read Chapter 0, you can either choose to skip to the

"Linear Regression in Numpy" section or to use the next two

sections as a review.

Data Generation

Let’s start generating some synthetic data. We start with a vector of 100 (N) points

for our feature (x) and create our labels (y) using b = 1, w = 2, and some Gaussian

noise[41] (epsilon).

Synthetic Data Generation

Data Generation

1 true_b = 1
2 true_w = 2
3 N = 100
4 
5 # Data Generation
6 np.random.seed(42)
7 x = np.random.rand(N, 1)
8 epsilon = (.1 * np.random.randn(N, 1))
9 y = true_b + true_w * x + epsilon

Next, let’s split our synthetic data into train and validation sets, shuffling the array

of indices and using the first 80 shuffled points for training.
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Notebook Cell 1.1 - Splitting synthetic dataset into train and validation sets for linear regression

 1 # Shuffles the indices
 2 idx = np.arange(N)
 3 np.random.shuffle(idx)
 4 
 5 # Uses first 80 random indices for train
 6 train_idx = idx[:int(N*.8)]
 7 # Uses the remaining indices for validation
 8 val_idx = idx[int(N*.8):]
 9 
10 # Generates train and validation sets
11 x_train, y_train = x[train_idx], y[train_idx]
12 x_val, y_val = x[val_idx], y[val_idx]

Figure 1.2 - Synthetic data: train and validation sets

We know that b = 1, w = 2, but now let’s see how close we can get to the true

values by using gradient descent and the 80 points in the training set (for training,

N = 80).

Gradient Descent

I’ll cover the five basic steps you’ll need to go through to use gradient descent and

the corresponding Numpy code.
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Step 0 - Random Initialization

For training a model, you need to randomly initialize the parameters / weights (we

have only two, b and w).

Step 0

# Step 0 - Initializes parameters "b" and "w" randomly
np.random.seed(42)
b = np.random.randn(1)
w = np.random.randn(1)

print(b, w)

Output

[0.49671415] [-0.1382643]

Step 1 - Compute Model’s Predictions

This is the forward pass; it simply computes the model’s predictions using the current

values of the parameters / weights. At the very beginning, we will be producing really

bad predictions, as we started with random values from Step 0.

Step 1

# Step 1 - Computes our model's predicted output - forward pass
yhat = b + w * x_train

Step 2 - Compute the Loss

For a regression problem, the loss is given by the mean squared error (MSE); that

is, the average of all squared errors; that is, the average of all squared differences

between labels (y) and predictions (b + wx).

In the code below, we are using all data points of the training set to compute the

loss, so n = N = 80, meaning we are performing batch gradient descent.
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Step 2

# Step 2 - Computing the loss
# We are using ALL data points, so this is BATCH gradient
# descent. How wrong is our model? That's the error!
error = (yhat - y_train)

# It is a regression, so it computes mean squared error (MSE)
loss = (error ** 2).mean()

print(loss)

Output

2.7421577700550976



Batch, Mini-batch, and Stochastic Gradient Descent

• If we use all points in the training set (n = N) to compute the

loss, we are performing a batch gradient descent.

• If we were to use a single point (n = 1) each time, it would be a

stochastic gradient descent.

• Anything else (n) in between 1 and N characterizes a mini-

batch gradient descent.

Step 3 - Compute the Gradients

A gradient is a partial derivative. Why partial? Because one computes it with

respect to (w.r.t.) a single parameter. We have two parameters, b and w, so we must

compute two partial derivatives.

A derivative tells you how much a given quantity changes when you slightly vary

some other quantity. In our case, how much does our MSE loss change when we

vary each of our two parameters separately?


Gradient = how much the loss changes if ONE parameter

changes a little bit!

Gradient Descent | 65



Step 3

# Step 3 - Computes gradients for both "b" and "w" parameters
b_grad = 2 * error.mean()
w_grad = 2 * (x_train * error).mean()
print(b_grad, w_grad)

Output

-3.044811379650508 -1.8337537171510832

Step 4 - Update the Parameters

In the final step, we use the gradients to update the parameters. Since we are

trying to minimize our losses, we reverse the sign of the gradient for the update.

There is still another (hyper-)parameter to consider: the learning rate, denoted by

the Greek letter eta (that looks like the letter n), which is the multiplicative factor

that we need to apply to the gradient for the parameter update.



"How do you choose a learning rate?"

That is a topic on its own and beyond the scope of this section as

well. We’ll get back to it later on.

In our example, let’s start with a value of 0.1 for the learning rate (which is a

relatively high value, as far as learning rates are concerned!).

Step 4

# Sets learning rate - this is "eta" ~ the "n"-like Greek letter
lr = 0.1
print(b, w)

# Step 4 - Updates parameters using gradients and
# the learning rate
b = b - lr * b_grad
w = w - lr * w_grad

print(b, w)
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Output

[0.49671415] [-0.1382643]
[0.80119529] [0.04511107]

Step 5 - Rinse and Repeat!

Now we use the updated parameters to go back to Step 1 and restart the process.



Definition of Epoch

An epoch is complete whenever every point in the training set

(N) has already been used in all steps: forward pass, computing

loss, computing gradients, and updating parameters.



During one epoch, we perform at least one update, but no more

than N updates.

The number of updates (N/n) will depend on the type of gradient

descent being used:

• For batch (n = N) gradient descent, this is trivial, as it uses all

points for computing the loss—one epoch is the same as one

update.

• For stochastic (n = 1) gradient descent, one epoch means N

updates, since every individual data point is used to perform

an update.

• For mini-batch (of size n), one epoch has N/n updates, since a

mini-batch of n data points is used to perform an update.

Repeating this process over and over for many epochs is, in a nutshell, training a

model.

Linear Regression in Numpy

It’s time to implement our linear regression model using gradient descent and

Numpy only.
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"Wait a minute … I thought this book was about PyTorch!" Yes, it is,

but this serves two purposes: first, to introduce the structure of

our task, which will remain largely the same and, second, to show

you the main pain points so you can fully appreciate how much

PyTorch makes your life easier :-)

For training a model, there is a first initialization step (line numbers refer to

Notebook Cell 1.2 code below):

• Random initialization of parameters / weights (we have only two, b and

w)—lines 3 and 4

• Initialization of hyper-parameters (in our case, only learning rate and number of

epochs)—lines 9 and 11



Make sure to always initialize your random seed to ensure the

reproducibility of your results. As usual, the random seed is 42[42],

the (second) least random[43] of all random seeds one could

possibly choose.

For each epoch, there are four training steps (line numbers refer to Notebook Cell

1.2 code below):

• Compute model’s predictions—this is the forward pass—line 15

• Compute the loss, using predictions and labels and the appropriate loss function

for the task at hand—lines 20 and 22

• Compute the gradients for every parameter—lines 25 and 26

• Update the parameters—lines 30 and 31

For now, we will be using batch gradient descent only, meaning, we’ll use all data

points for each one of the four steps above. It also means that going once through

all of the steps is already one epoch. Then, if we want to train our model over 1,000

epochs, we just need to add a single loop.


In Chapter 2, we’ll introduce mini-batch gradient descent, and

then we’ll have to include a second inner loop.
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Notebook Cell 1.2 - Implementing gradient descent for linear regression using Numpy

 1 # Step 0 - Initializes parameters "b" and "w" randomly
 2 np.random.seed(42)
 3 b = np.random.randn(1)                                     ①
 4 w = np.random.randn(1)                                     ①
 5 
 6 print(b, w)
 7 
 8 # Sets learning rate - this is "eta" ~ the "n"-like Greek letter
 9 lr = 0.1                                                   ②
10 # Defines number of epochs
11 n_epochs = 1000                                            ②
12 
13 for epoch in range(n_epochs):
14     # Step 1 - Computes model's predicted output - forward pass
15     yhat = b + w * x_train                                 ③
16 
17     # Step 2 - Computes the loss
18     # We are using ALL data points, so this is BATCH gradient
19     # descent. How wrong is our model? That's the error!
20     error = (yhat - y_train)                               ④
21     # It is a regression, so it computes mean squared error (MSE)
22     loss = (error ** 2).mean()                             ④
23 
24     # Step 3 - Computes gradients for both "b" and "w" parameters
25     b_grad = 2 * error.mean()                              ⑤
26     w_grad = 2 * (x_train * error).mean()                  ⑤
27 
28     # Step 4 - Updates parameters using gradients and
29     # the learning rate
30     b = b - lr * b_grad                                    ⑥
31     w = w - lr * w_grad                                    ⑥
32 
33 print(b, w)

① Step 0: Random initialization of parameters / weights

② Initialization of hyper-parameters

③ Step 1: Forward pass

④ Step 2: Computing loss
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⑤ Step 3: Computing gradients

⑥ Step 4: Updating parameters

Output

# b and w after initialization
[0.49671415] [-0.1382643]
# b and w after our gradient descent
[1.02354094] [1.96896411]


"Do we need to run it for 1,000 epochs? Shouldn’t it stop

automatically after getting close enough to the minimum loss?"

Good question: We don’t need to run it for 1,000 epochs. There are ways of

stopping it earlier, once the progress is considered negligible (for instance, if the

loss was barely reduced). These are called, most appropriately, early stopping

methods. For now, since our model is a very simple one, we can afford to train it for

1,000 epochs.

Figure 1.3 - Fully trained model’s predictions

Just to make sure we haven’t made any mistakes in our code, we can use Scikit-

Learn’s linear regression to fit the model and compare the coefficients.
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# Sanity Check: do we get the same results as our
# gradient descent?
linr = LinearRegression()
linr.fit(x_train, y_train)
print(linr.intercept_, linr.coef_[0])

Output

# intercept and coef from Scikit-Learn
[1.02354075] [1.96896447]

They match up to six decimal places—we have a fully working implementation of

linear regression using Numpy.

Time to TORCH it!

PyTorch

First, we need to cover a few basic concepts that may throw you off-balance if you

don’t grasp them well enough before going full-force on modeling.

In deep learning, we see tensors everywhere. Well, Google’s framework is called

TensorFlow for a reason! What is a tensor, anyway?

Tensor

In Numpy, you may have an array that has three dimensions, right? That is,

technically speaking, a tensor.


A scalar (a single number) has zero dimensions, a vector has one

dimension, a matrix has two dimensions, and a tensor has three

or more dimensions. That’s it!

But, to keep things simple, it is commonplace to call vectors and matrices tensors as

well—so, from now on, everything is either a scalar or a tensor.
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Figure 1.4 - Tensors are just higher-dimensional matrices - make sure to check this version out :-)

You can create tensors in PyTorch pretty much the same way you create arrays in

Numpy. Using tensor() you can create either a scalar or a tensor.

PyTorch’s tensors have equivalent functions to its Numpy counterparts, like

ones(), zeros(), rand(), randn(), and many more. In the example below, we create

one of each: scalar, vector, matrix, and tensor—or, saying it differently, one scalar

and three tensors.

scalar = torch.tensor(3.14159)
vector = torch.tensor([1, 2, 3])
matrix = torch.ones((2, 3), dtype=torch.float)
tensor = torch.randn((2, 3, 4), dtype=torch.float)

print(scalar)
print(vector)
print(matrix)
print(tensor)
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Output

tensor(3.1416)
tensor([1, 2, 3])
tensor([[1., 1., 1.],
        [1., 1., 1.]])
tensor([[[-1.0658, -0.5675, -1.2903, -0.1136],
         [ 1.0344,  2.1910,  0.7926, -0.7065],
         [ 0.4552, -0.6728,  1.8786, -0.3248]],

        [[-0.7738,  1.3831,  1.4861, -0.7254],
         [ 0.1989, -1.0139,  1.5881, -1.2295],
         [-0.5338, -0.5548,  1.5385, -1.2971]]])

You can get the shape of a tensor using its size() method or its shape attribute.

print(tensor.size(), tensor.shape)

Output

torch.Size([2, 3, 4]) torch.Size([2, 3, 4])

All tensors have shapes, but scalars have "empty" shapes, since they are

dimensionless (or zero dimensions, if you prefer):

print(scalar.size(), scalar.shape)

Output

torch.Size([]) torch.Size([])

You can also reshape a tensor using its view() (preferred) or reshape() methods.
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Beware: The view() method only returns a tensor with the

desired shape that shares the underlying data with the original

tensor—it DOES NOT create a new, independent, tensor!

The reshape() method may or may not create a copy! The

reasons behind this apparently weird behavior are beyond the

scope of this section, but this behavior is the reason why view()
is preferred.

# We get a tensor with a different shape but it still is
# the SAME tensor
same_matrix = matrix.view(1, 6)
# If we change one of its elements...
same_matrix[0, 1] = 2.
# It changes both variables: matrix and same_matrix
print(matrix)
print(same_matrix)

Output

tensor([[1., 2., 1.],
        [1., 1., 1.]])
tensor([[1., 2., 1., 1., 1., 1.]])

If you want to copy all data, that is, duplicate the data in memory, you may use

either its new_tensor() or clone() methods.

# We can use "new_tensor" method to REALLY copy it into a new one
different_matrix = matrix.new_tensor(matrix.view(1, 6))
# Now, if we change one of its elements...
different_matrix[0, 1] = 3.
# The original tensor (matrix) is left untouched!
# But we get a "warning" from PyTorch telling us
# to use "clone()" instead!
print(matrix)
print(different_matrix)
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Output

tensor([[1., 2., 1.],
        [1., 1., 1.]])
tensor([[1., 3., 1., 1., 1., 1.]])

Output

UserWarning: To copy construct from a tensor, it is
recommended to use sourceTensor.clone().detach() or
sourceTensor.clone().detach().requires_grad_(True),
rather than tensor.new_tensor(sourceTensor).
 """Entry point for launching an IPython kernel.

It seems that PyTorch prefers that we use clone()—together with

detach()—instead of new_tensor(). Both ways accomplish exactly the same

result, but the code below is deemed cleaner and more readable.

# Let's follow PyTorch's suggestion and use "clone" method
another_matrix = matrix.view(1, 6).clone().detach()
# Again, if we change one of its elements...
another_matrix[0, 1] = 4.
# The original tensor (matrix) is left untouched!
print(matrix)
print(another_matrix)

Output

tensor([[1., 2., 1.],
        [1., 1., 1.]])
tensor([[1., 4., 1., 1., 1., 1.]])


You’re probably asking yourself: "But, what about the detach()
method—what does it do?"

It removes the tensor from the computation graph, which probably raises more

questions than it answers, right? Don’t worry, we’ll get back to it later in this

chapter.
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Loading Data, Devices, and CUDA

It is time to start converting our Numpy code to PyTorch: We’ll start with the

training data; that is, our x_train and y_train arrays.

 "How do we go from Numpy’s arrays to PyTorch’s tensors?"

That’s what as_tensor() is good for (which works like from_numpy()).

This operation preserves the type of the array:

x_train_tensor = torch.as_tensor(x_train)
x_train.dtype, x_train_tensor.dtype

Output

(dtype('float64'), torch.float64)

You can also easily cast it to a different type, like a lower-precision (32-bit) float,

which will occupy less space in memory, using float():

float_tensor = x_train_tensor.float()
float_tensor.dtype

Output

torch.float32



IMPORTANT: Both as_tensor() and from_numpy() return a

tensor that shares the underlying data with the original Numpy

array. Similar to what happened when we used view() in the last

section, if you modify the original Numpy array, you’re modifying

the corresponding PyTorch tensor too, and vice-versa.
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dummy_array = np.array([1, 2, 3])
dummy_tensor = torch.as_tensor(dummy_array)
# Modifies the numpy array
dummy_array[1] = 0
# Tensor gets modified too...
dummy_tensor

Output

tensor([1, 0, 3])


"What do I need as_tensor() for? Why can’t I just use

torch.tensor()?"

Well, you could … just keep in mind that torch.tensor() always makes a copy of

the data, instead of sharing the underlying data with the Numpy array.

You can also perform the opposite operation, namely, transforming a PyTorch

tensor back to a Numpy array. That’s what numpy() is good for:

dummy_tensor.numpy()

Output

array([1, 0, 3])

So far, we have only created CPU tensors. What does it mean? It means the data in

the tensor is stored in the computer’s main memory and any operations performed

on it are going to be handled by its CPU (the central processing unit; for instance,

an Intel® Core™ i7 Processor). So, although the data is, technically speaking, in the

memory, we’re still calling this kind of tensor a CPU tensor.

 "Is there any other kind of tensor?"

Yes, there is also a GPU tensor. A GPU (which stands for graphics processing unit)

is the processor of a graphics card. These tensors store their data in the graphics

card’s memory, and operations on top of them are performed by the GPU. For
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more information on the differences between CPUs and GPUs, please refer to this

link[44].

If you have a graphics card from NVIDIA, you can use the power of its GPU to

speed up model training. PyTorch supports the use of these GPUs for model

training using CUDA (Compute Unified Device Architecture), which needs to be

previously installed and configured (please refer to the "Setup Guide" for more

information on this).

If you do have a GPU (and you managed to install CUDA), we’re getting to the part

where you get to use it with PyTorch. But, even if you do not have a GPU, you

should stick around in this section anyway. Why? First, you can use a free GPU

from Google Colab, and, second, you should always make your code GPU-ready;

that is, it should automatically run in a GPU, if one is available.

 "How do I know if a GPU is available?"

PyTorch has your back once more—you can use cuda.is_available() to find out if

you have a GPU at your disposal and set your device accordingly. So, it is good

practice to figure this out at the top of your code:

Defining Your Device

device = 'cuda' if torch.cuda.is_available() else 'cpu'

So, if you don’t have a GPU, your device is called cpu. If you do have a GPU, your

device is called cuda or cuda:0. Why isn’t it called gpu, then? Don’t ask me… The

important thing is, your code will be able to always use the appropriate device.

 "Why cuda:0? Are there others, like cuda:1, cuda:2 and so on?"

There may be if you are lucky enough to have multiple GPUs in your computer. Since

this is usually not the case, I am assuming you have either one GPU or none. So,

when we tell PyTorch to send a tensor to cuda without any numbering, it will send it

to the current CUDA device, which is device #0 by default.

If you are using someone else’s computer and you don’t know how many GPUs it

has, or which model they are, you can figure it out using cuda.device_count() and

cuda.get_device_name():
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n_cudas = torch.cuda.device_count()
for i in range(n_cudas):
    print(torch.cuda.get_device_name(i))

Output

GeForce GTX 1060 6GB

In my case, I have only one GPU, and it is a GeForce GTX 1060 model with 6 GB RAM.

There is only one thing left to do: turn our tensor into a GPU tensor. That’s what

to() is good for. It sends a tensor to the specified device.

gpu_tensor = torch.as_tensor(x_train).to(device)
gpu_tensor[0]

Output - GPU

tensor([0.7713], device='cuda:0', dtype=torch.float64)

Output - CPU

tensor([0.7713], dtype=torch.float64)

In this case, there is no device information in the printed output because PyTorch

simply assumes the default (cpu).

 "Should I use to(device), even if I am using CPU only?"

Yes, you should, because there is no cost in doing so. If you have only a CPU, your

tensor is already a CPU tensor, so nothing will happen. But if you share your code

with others on GitHub, whoever has a GPU will benefit from it.

Let’s put it all together now and make our training data ready for PyTorch.
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Notebook Cell 1.3 - Loading data: turning Numpy arrays into PyTorch tensors

1 device = 'cuda' if torch.cuda.is_available() else 'cpu'
2 
3 # Our data was in Numpy arrays, but we need to transform them
4 # into PyTorch tensors and then send them to the
5 # chosen device
6 x_train_tensor = torch.as_tensor(x_train).float().to(device)
7 y_train_tensor = torch.as_tensor(y_train).float().to(device)

So, we defined a device, converted both Numpy arrays into PyTorch tensors, cast

them to floats, and sent them to the device. Let’s take a look at the types:

# Here we can see the difference - notice that .type() is more
# useful since it also tells us WHERE the tensor is (device)
print(type(x_train), type(x_train_tensor), x_train_tensor.type())

Output - GPU

<class 'numpy.ndarray'> <class 'torch.Tensor'>
torch.cuda.FloatTensor

Output - CPU

<class 'numpy.ndarray'> <class 'torch.Tensor'>
torch.FloatTensor

If you compare the types of both variables, you’ll get what you’d expect:

numpy.ndarray for the first one and torch.Tensor for the second one.

But where does the x_train_tensor "live"? Is it a CPU or a GPU tensor? You can’t

say, but if you use PyTorch’s type(), it will reveal its location

—torch.cuda.FloatTensor—a GPU tensor in this case (assuming the output using a

GPU, of course).

There is one more thing to be aware of when using GPU tensors. Remember

numpy()? What if we want to turn a GPU tensor back into a Numpy array? We’ll get

an error:
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back_to_numpy = x_train_tensor.numpy()

Output

TypeError: can't convert CUDA tensor to numpy. Use
Tensor.cpu() to copy the tensor to host memory first.

Unfortunately, Numpy cannot handle GPU tensors! You need to make them CPU

tensors first using cpu():

back_to_numpy = x_train_tensor.cpu().numpy()

So, to avoid this error, use first cpu() and then numpy(), even if you are using a CPU.

It follows the same principle of to(device): You can share your code with others

who may be using a GPU.

Creating Parameters

What distinguishes a tensor used for training data (or validation, or test)—like the

ones we’ve just created—from a tensor used as a (trainable) parameter / weight?

The latter requires the computation of its gradients, so we can update their values

(the parameters’ values, that is). That’s what the requires_grad=True argument is

good for. It tells PyTorch to compute gradients for us.

 A tensor for a learnable parameter requires a gradient!

You may be tempted to create a simple tensor for a parameter and, later on, send it

to your chosen device, as we did with our data, right? Not so fast…
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In the next few pages, I will present four chunks of code showing

different attempts at creating parameters.

The first three attempts are shown to build up to a solution. The

first one only works well if you never use a GPU. The second one

doesn’t work at all. The third one works, but it is too verbose.

The recommended way of creating parameters is the last:

Notebook Cell 1.4.

The first chunk of code below creates two tensors for our parameters, including

gradients and all. But they are CPU tensors, by default.

# FIRST
# Initializes parameters "b" and "w" randomly, ALMOST as we
# did in Numpy, since we want to apply gradient descent on
# these parameters we need to set REQUIRES_GRAD = TRUE
torch.manual_seed(42)
b = torch.randn(1, requires_grad=True, dtype=torch.float)
w = torch.randn(1, requires_grad=True, dtype=torch.float)
print(b, w)

Output

tensor([0.3367], requires_grad=True)
tensor([0.1288], requires_grad=True)


Never forget to set the seed to ensure reproducibility, just like

we did before while using Numpy. PyTorch’s equivalent is

torch.manual_seed().


"If I use the same seed in PyTorch as I used in Numpy (or, to put it

differently, if I use 42 everywhere), will I get the same numbers?"

Unfortunately, NO.

You’ll get the same numbers for the same seed in the same package. PyTorch

generates a number sequence that is different from the one generated by Numpy,

even if you use the same seed in both.
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I am assuming you’d like to use your GPU (or the one from Google Colab), right? So

we need to send those tensors to the device. We can try the naive approach, the

one that worked well for sending the training data to the device. That’s our second

(and failed) attempt:

# SECOND
# But what if we want to run it on a GPU? We could just
# send them to device, right?
torch.manual_seed(42)
b = torch.randn(1, requires_grad=True, dtype=torch.float).to(device)
w = torch.randn(1, requires_grad=True, dtype=torch.float).to(device)
print(b, w)
# Sorry, but NO! The to(device) "shadows" the gradient...

Output

tensor([0.3367], device='cuda:0', grad_fn=<CopyBackwards>)
tensor([0.1288], device='cuda:0', grad_fn=<CopyBackwards>)

We succeeded in sending them to another device, but we "lost" the gradients

somehow, since there is no more requires_grad=True, (don’t bother with the weird

grad_fn). Clearly, we need to do better…

In the third chunk, we first send our tensors to the device and then use the

requires_grad_() method to set its requires_grad attribute to True in place.


In PyTorch, every method that ends with an underscore (_), like

the requires_grad_() method above, makes changes in-place,

meaning, they will modify the underlying variable.
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# THIRD
# We can create regular tensors and send them to
# the device (as we did with our data)
torch.manual_seed(42)
b = torch.randn(1, dtype=torch.float).to(device)
w = torch.randn(1, dtype=torch.float).to(device)
# and THEN set them as requiring gradients...
b.requires_grad_()
w.requires_grad_()
print(b, w)

Output

tensor([0.3367], device='cuda:0', requires_grad=True)
 tensor([0.1288], device='cuda:0', requires_grad=True)

This approach worked fine; we managed to end up with gradient-requiring GPU

tensors for our parameters b and w. It seems a lot of work, though… Can we do

better still?

Yes, we can do better: We can assign tensors to a device at the moment of their

creation.

Notebook Cell 1.4 - Actually creating variables for the coefficients

# FINAL
# We can specify the device at the moment of creation
# RECOMMENDED!

# Step 0 - Initializes parameters "b" and "w" randomly
torch.manual_seed(42)
b = torch.randn(1, requires_grad=True, \
                dtype=torch.float, device=device)
w = torch.randn(1, requires_grad=True, \
                dtype=torch.float, device=device)
print(b, w)

84 | Chapter 1: A Simple Regression Problem



Output

tensor([0.1940], device='cuda:0', requires_grad=True)
tensor([0.1391], device='cuda:0', requires_grad=True)

Much easier, right?


Always assign tensors to a device at the moment of their

creation to avoid unexpected behaviors!

If you do not have a GPU, your outputs are going to be slightly different:

Output - CPU

tensor([0.3367], requires_grad=True)
tensor([0.1288], requires_grad=True)

 "Why are they different, even if I am using the same seed?"

Similar to what happens when using the same seed in different packages (Numpy

and PyTorch), we also get different sequences of random numbers if PyTorch

generates them in different devices (CPU and GPU).

Now that we know how to create tensors that require gradients, let’s see how

PyTorch handles them. That’s the role of the…

Autograd

Autograd is PyTorch’s automatic differentiation package. Thanks to it, we don’t need

to worry about partial derivatives, chain rule, or anything like it.

backward

So, how do we tell PyTorch to do its thing and compute all gradients? That’s the

role of the backward() method. It will compute gradients for all (gradient-requiring)

tensors involved in the computation of a given variable.

Do you remember the starting point for computing the gradients? It was the loss,

as we computed its partial derivatives w.r.t. our parameters. Hence, we need to

invoke the backward() method from the corresponding Python variable:
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loss.backward().

Notebook Cell 1.5 - Autograd in action!

# Step 1 - Computes our model's predicted output - forward pass
yhat = b + w * x_train_tensor

# Step 2 - Computes the loss
# We are using ALL data points, so this is BATCH gradient
# descent. How wrong is our model? That's the error!
error = (yhat - y_train_tensor)
# It is a regression, so it computes mean squared error (MSE)
loss = (error ** 2).mean()

# Step 3 - Computes gradients for both "b" and "w" parameters
# No more manual computation of gradients!
# b_grad = 2 * error.mean()
# w_grad = 2 * (x_tensor * error).mean()
loss.backward() ①

① New "Step 3 - Computing Gradients" using backward()

Which tensors are going to be handled by the backward() method applied to the

loss?

• b

• w

• yhat

• error

We have set requires_grad=True to both b and w, so they are obviously included in

the list. We use them both to compute yhat, so it will also make it to the list. Then

we use yhat to compute the error, which is also added to the list.

Do you see the pattern here? If a tensor in the list is used to compute another

tensor, the latter will also be included in the list. Tracking these dependencies is

exactly what the dynamic computation graph is doing, as we’ll see shortly.

What about x_train_tensor and y_train_tensor? They are involved in the

computation too, but we created them as non-gradient-requiring tensors, so

backward() does not care about them.
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print(error.requires_grad, yhat.requires_grad, \
      b.requires_grad, w.requires_grad)
print(y_train_tensor.requires_grad, x_train_tensor.requires_grad)

Output

True True True True
False False

grad

What about the actual values of the gradients? We can inspect them by looking at

the grad attribute of a tensor.

print(b.grad, w.grad)

Output

tensor([-3.3881], device='cuda:0')
tensor([-1.9439], device='cuda:0')

If you check the method’s documentation, it clearly states that gradients are

accumulated. What does that mean? It means that, if we run Notebook Cell 1.5's

code (Steps 1 to 3) twice and check the grad attribute afterward, we will end up

with:

Output

tensor([-6.7762], device='cuda:0')
tensor([-3.8878], device='cuda:0')

If you do not have a GPU, your outputs are going to be slightly different:

Output

tensor([-3.1125]) tensor([-1.8156])

Autograd | 87

https://bit.ly/3fYtNFa


Output

tensor([-6.2250]) tensor([-3.6313])

These gradients' values are exactly twice as much as they were before, as

expected!

OK, but that is actually a problem: We need to use the gradients corresponding to

the current loss to perform the parameter update. We should NOT use

accumulated gradients.


"If accumulating gradients is a problem, why does PyTorch do it by

default?"

It turns out this behavior can be useful to circumvent hardware limitations.

During the training of large models, the necessary number of data points in a mini-

batch may be too large to fit in memory (of the graphics card). How can one solve

this, other than buying more-expensive hardware?

One can split a mini-batch into "sub-mini-batches" (horrible name, I know, don’t

quote me on this!), compute the gradients for those "subs" and accumulate them to

achieve the same result as computing the gradients on the full mini-batch.

Sounds confusing? No worries, this is fairly advanced already and somewhat

outside of the scope of this book, but I thought this particular behavior of PyTorch

needed to be explained.

Luckily, this is easy to solve!

zero_

Every time we use the gradients to update the parameters, we need to zero the

gradients afterward. And that’s what zero_() is good for.

# This code will be placed _after_ Step 4
# (updating the parameters)
b.grad.zero_(), w.grad.zero_()
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Output

(tensor([0.], device='cuda:0'),
tensor([0.], device='cuda:0'))


What does the underscore (_) at the end of the method’s name

mean? Do you remember? If not, go back to the previous section

and find out.

So, let’s ditch the manual computation of gradients and use both the backward()
and zero_() methods instead.

That’s it? Well, pretty much … but there is always a catch, and this time it has to do

with the update of the parameters.

Updating Parameters


"One does not simply update parameters…"

Boromir

Unfortunately, our Numpy's code for updating parameters is not enough. Why

not?! Let’s try it out, simply copying and pasting it (this is the first attempt), changing

it slightly (second attempt), and then asking PyTorch to back off (yes, it is PyTorch’s

fault!).

Notebook Cell 1.6 - Updating parameters

 1 # Sets learning rate - this is "eta" ~ the "n"-like Greek letter
 2 lr = 0.1
 3 
 4 # Step 0 - Initializes parameters "b" and "w" randomly
 5 torch.manual_seed(42)
 6 b = torch.randn(1, requires_grad=True, \
 7                 dtype=torch.float, device=device)
 8 w = torch.randn(1, requires_grad=True, \
 9                 dtype=torch.float, device=device)
10 
11 # Defines number of epochs
12 n_epochs = 1000
13 
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14 for epoch in range(n_epochs):
15     # Step 1 - Computes model's predicted output - forward pass
16     yhat = b + w * x_train_tensor
17 
18     # Step 2 - Computes the loss
19     # We are using ALL data points, so this is BATCH gradient
20     # descent. How wrong is our model? That's the error!
21     error = (yhat - y_train_tensor)
22     # It is a regression, so it computes mean squared error (MSE)
23     loss = (error ** 2).mean()
24 
25     # Step 3 - Computes gradients for both "b" and "w"
26     # parameters. No more manual computation of gradients!
27     # b_grad = 2 * error.mean()
28     # w_grad = 2 * (x_tensor * error).mean()
29     # We just tell PyTorch to work its way BACKWARDS
30     # from the specified loss!
31     loss.backward()
32 
33     # Step 4 - Updates parameters using gradients and
34     # the learning rate. But not so fast...
35     # FIRST ATTEMPT - just using the same code as before
36     # AttributeError: 'NoneType' object has no attribute 'zero_'
37     # b = b - lr * b.grad                          ①
38     # w = w - lr * w.grad                          ①
39     # print(b)                                     ①
40 
41     # SECOND ATTEMPT - using in-place Python assignment
42     # RuntimeError: a leaf Variable that requires grad
43     # has been used in an in-place operation.
44     # b -= lr * b.grad                             ②
45     # w -= lr * w.grad                             ②
46 
47     # THIRD ATTEMPT - NO_GRAD for the win!
48     # We need to use NO_GRAD to keep the update out of
49     # the gradient computation. Why is that? It boils
50     # down to the DYNAMIC GRAPH that PyTorch uses...
51     with torch.no_grad():                          ③
52         b -= lr * b.grad                           ③
53         w -= lr * w.grad                           ③
54 
55     # PyTorch is "clingy" to its computed gradients; we
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56     # need to tell it to let it go...
57     b.grad.zero_()                                 ④
58     w.grad.zero_()                                 ④
59 
60 print(b, w)

① First Attempt: leads to an AttributeError

② Second Attempt: leads to a RuntimeError

③ Third Attempt: no_grad() solves the problem!

④ zero_() prevents gradient accumulation

In the first attempt, if we use the same update structure as in our Numpy code, we’ll

get the weird error below, but we can get a hint of what’s going on by looking at the

tensor itself. Once again, we "lost" the gradient while reassigning the update

results to our parameters. Thus, the grad attribute turns out to be None, and it

raises the error.

Output - First Attempt - Keeping the same code

tensor([0.7518], device='cuda:0', grad_fn=<SubBackward0>)
AttributeError: 'NoneType' object has no attribute 'zero_'

We then change it slightly, using a familiar in-place Python assignment in our

second attempt. And, once again, PyTorch complains about it and raises an error.

Output - Second Attempt - In-place assignment

RuntimeError: a leaf Variable that requires grad has been used in
an in-place operation.

Why?! It turns out to be a case of "too much of a good thing." The culprit is

PyTorch’s ability to build a dynamic computation graph from every Python

operation that involves any gradient-computing tensor or its dependencies.

We’ll go deeper into the inner workings of the dynamic computation graph in the

next section.

Time for our third attempt…
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no_grad

So, how do we tell PyTorch to "back off" and let us update our parameters without

messing up its fancy dynamic computation graph? That’s what torch.no_grad() is

good for. It allows us to perform regular Python operations on tensors without

affecting PyTorch’s computation graph.

Finally, we managed to successfully run our model and get the resulting

parameters. Surely enough, they match the ones we got in our Numpy-only

implementation.

Output - Third Attempt - NO_GRAD for the win!

# THIRD ATTEMPT - NO_GRAD for the win!
tensor([1.0235], device='cuda:0', requires_grad=True)
tensor([1.9690], device='cuda:0', requires_grad=True)

Remember:


"One does not simply update parameters … without no_grad"

Boromir

It was true for going into Mordor, and it is also true for updating parameters.

It turns out, no_grad() has another use case other than allowing us to update

parameters; we’ll get back to it in Chapter 2 when dealing with a model’s

evaluation.

Dynamic Computation Graph



"Unfortunately, no one can be told what the dynamic computation

graph is. You have to see it for yourself."

Morpheus

How great was The Matrix? Right? Right? But, jokes aside, I want you to see the

graph for yourself too!

The PyTorchViz package and its make_dot(variable) method allow us to easily

visualize a graph associated with a given Python variable involved in the gradient
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computation.



If you chose "Local Installation" in the "Setup Guide" and skipped

or had issues with Step 5 ("Install GraphViz software and

TorchViz package"), you will get an error when trying to visualize

the graphs using make_dot.

So, let’s stick with the bare minimum: two (gradient-computing) tensors for our

parameters, predictions, errors, and loss—these are Steps 0, 1, and 2.

# Step 0 - Initializes parameters "b" and "w" randomly
torch.manual_seed(42)
b = torch.randn(1, requires_grad=True, \
                dtype=torch.float, device=device)
w = torch.randn(1, requires_grad=True, \
                dtype=torch.float, device=device)
# Step 1 - Computes our model's predicted output - forward pass
yhat = b + w * x_train_tensor
# Step 2 - Computes the loss
error = (yhat - y_train_tensor)
loss = (error ** 2).mean()
# We can try plotting the graph for any variable: yhat, error, loss
make_dot(yhat)

Running the code above will produce the graph below:

Figure 1.5 - Computation graph generated for yhat; Obs.: the corresponding variable names were

inserted manually
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Let’s take a closer look at its components:

• blue boxes ((1)s): these boxes correspond to the tensors we use as

parameters, the ones we’re asking PyTorch to compute gradients for

• gray boxes (MulBackward0 and AddBackward0): Python operations that involve

gradient-computing tensors or its dependencies

• green box ((80, 1)): the tensor used as the starting point for the computation

of gradients (assuming the backward() method is called from the variable used

to visualize the graph)—they are computed from the bottom-up in a graph

Now, take a closer look at the gray box at the bottom of the graph: Two arrows are

pointing to it since it is adding up two variables, b and w*x. Seems obvious, right?

Then, look at the other gray box (MulBackward0) of the same graph: It is performing

a multiplication operation, namely, w*x. But there is only one arrow pointing to it!

The arrow comes from the blue box that corresponds to our parameter w.

 "Why don’t we have a box for our data (x)?"

The answer is: We do not compute gradients for it!

So, even though there are more tensors involved in the operations performed by

the computation graph, it only shows gradient-computing tensors and their

dependencies.

What would happen to the computation graph if we set requires_grad to False for

our parameter b?

b_nograd = torch.randn(1, requires_grad=False, \
                       dtype=torch.float, device=device)
w = torch.randn(1, requires_grad=True, \
                dtype=torch.float, device=device)

yhat = b_nograd + w * x_train_tensor

make_dot(yhat)
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Figure 1.6 - Now parameter "b" does NOT have its gradient computed, but it is STILL used in

computation

Unsurprisingly, the blue box corresponding to parameter b is no more!

 Simple enough: No gradients, no graph!

The best thing about the dynamic computation graph is that you can make it as

complex as you want it. You can even use control flow statements (e.g., if

statements) to control the flow of the gradients.

Figure 1.7 shows an example of this. And yes, I do know that the computation itself

is complete nonsense!

b = torch.randn(1, requires_grad=True, \
                dtype=torch.float, device=device)
w = torch.randn(1, requires_grad=True, \
                dtype=torch.float, device=device)
yhat = b + w * x_train_tensor
error = yhat - y_train_tensor
loss = (error ** 2).mean()
# this makes no sense!!
if loss > 0:
    yhat2 = w * x_train_tensor
    error2 = yhat2 - y_train_tensor

# neither does this!!
loss += error2.mean()
make_dot(loss)
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Figure 1.7 - Complex (and nonsensical!) computation graph just to make a point

Even though the computation is nonsensical, you can clearly see the effect of

adding a control flow statement like if loss > 0: It branches the computation

graph into two parts. The right branch performs the computation inside the if
statement, which gets added to the result of the left branch in the end. Cool, right?

Even though we are not building more-complex models like that in this book, this

small example illustrates very well PyTorch’s capabilities and how easily they can

be implemented in code.

Optimizer

So far, we’ve been manually updating the parameters using the computed

gradients. That’s probably fine for two parameters, but what if we had a whole lot

of them? We need to use one of PyTorch’s optimizers, like SGD, RMSprop, or

Adam.
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There are many optimizers: SGD is the most basic of them, and

Adam is one of the most popular.

Different optimizers use different mechanics for updating the

parameters, but they all achieve the same goal through, literally,

different paths.

To see what I mean by this, check out this animated GIF[45]

developed by Alec Radford[46], available at Stanford’s "CS231n:

Convolutional Neural Networks for Visual Recognition"[47]

course. The animation shows a loss surface, just like the ones we

computed in Chapter 0, and the paths traversed by some

optimizers to achieve the minimum (represented by a star).

Remember, the choice of mini-batch size influences the path of

gradient descent, and so does the choice of an optimizer.

step / zero_grad

An optimizer takes the parameters we want to update, the learning rate we want

to use (and possibly many other hyper-parameters as well!), and performs the

updates through its step() method.

# Defines an SGD optimizer to update the parameters
optimizer = optim.SGD([b, w], lr=lr)

Besides, we also don’t need to zero the gradients one by one anymore. We just

invoke the optimizer’s zero_grad() method, and that’s it!

In the code below, we create a stochastic gradient descent (SGD) optimizer to update

our parameters b and w.



Don’t be fooled by the optimizer’s name: If we use all training

data at once for the update—as we are actually doing in the

code—the optimizer is performing a batch gradient descent,

despite its name.
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Notebook Cell 1.7 - PyTorch’s optimizer in action—no more manual update of parameters!

 1 # Sets learning rate - this is "eta" ~ the "n"-like Greek letter
 2 lr = 0.1
 3 
 4 # Step 0 - Initializes parameters "b" and "w" randomly
 5 torch.manual_seed(42)
 6 b = torch.randn(1, requires_grad=True, \
 7                 dtype=torch.float, device=device)
 8 w = torch.randn(1, requires_grad=True, \
 9                 dtype=torch.float, device=device)
10 
11 # Defines a SGD optimizer to update the parameters
12 optimizer = optim.SGD([b, w], lr=lr)               ①
13 
14 # Defines number of epochs
15 n_epochs = 1000
16 
17 for epoch in range(n_epochs):
18     # Step 1 - Computes model's predicted output - forward pass
19     yhat = b + w * x_train_tensor
20 
21     # Step 2 - Computes the loss
22     # We are using ALL data points, so this is BATCH gradient
23     # descent. How wrong is our model? That's the error!
24     error = (yhat - y_train_tensor)
25     # It is a regression, so it computes mean squared error (MSE)
26     loss = (error ** 2).mean()
27 
28     # Step 3 - Computes gradients for both "b" and "w" parameters
29     loss.backward()
30 
31     # Step 4 - Updates parameters using gradients and
32     # the learning rate. No more manual update!
33     # with torch.no_grad():
34     #     b -= lr * b.grad
35     #     w -= lr * w.grad
36     optimizer.step()                               ②
37 
38     # No more telling Pytorch to let gradients go!
39     # b.grad.zero_()
40     # w.grad.zero_()
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41     optimizer.zero_grad()                          ③
42 
43 print(b, w)

① Defining an optimizer

② New "Step 4 - Updating Parameters" using the optimizer

③ New "gradient zeroing" using the optimizer

Let’s inspect our two parameters just to make sure everything is still working fine:

Output

tensor([1.0235], device='cuda:0', requires_grad=True)
tensor([1.9690], device='cuda:0', requires_grad=True)

Cool! We’ve optimized the optimization process :-) What’s left?

Loss

We now tackle the loss computation. As expected, PyTorch has us covered once

again. There are many loss functions to choose from, depending on the task at

hand. Since ours is a regression, we are using the mean squared error (MSE) as loss,

and thus we need PyTorch’s nn.MSELoss():

# Defines an MSE loss function
loss_fn = nn.MSELoss(reduction='mean')
loss_fn

Output

MSELoss()

Notice that nn.MSELoss() is NOT the loss function itself: We do not pass

predictions and labels to it! Instead, as you can see, it returns another function,

which we called loss_fn: That is the actual loss function. So, we can pass a

prediction and a label to it and get the corresponding loss value:
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# This is a random example to illustrate the loss function
predictions = torch.tensor(0.5, 1.0)
labels = torch.tensor(2.0, 1.3)
loss_fn(predictions, labels)

Output

tensor(1.1700)



Moreover, you can also specify a reduction method to be applied;

that is, how do you want to aggregate the errors for individual

points? You can average them (reduction=“mean”) or simply sum

them up (reduction=“sum”). In our example, we use the typical

mean reduction to compute MSE. If we had used sum as reduction,

we would actually be computing SSE (sum of squared errors).



Technically speaking, nn.MSELoss() is a higher-order function.

If you’re not familiar with the concept, I will explain it briefly in

Chapter 2.

We then use the created loss function in the code below, at line 29, to compute the

loss, given our predictions and our labels:
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Notebook Cell 1.8 - PyTorch’s loss in action: no more manual loss computation!

 1 # Sets learning rate - this is "eta" ~ the "n"-like
 2 # Greek letter
 3 lr = 0.1
 4 
 5 # Step 0 - Initializes parameters "b" and "w" randomly
 6 torch.manual_seed(42)
 7 b = torch.randn(1, requires_grad=True, \
 8                 dtype=torch.float, device=device)
 9 w = torch.randn(1, requires_grad=True, \
10                 dtype=torch.float, device=device)
11 
12 # Defines an SGD optimizer to update the parameters
13 optimizer = optim.SGD([b, w], lr=lr)
14 
15 # Defines an MSE loss function
16 loss_fn = nn.MSELoss(reduction='mean')             ①
17 
18 # Defines number of epochs
19 n_epochs = 1000
20 
21 for epoch in range(n_epochs):
22     # Step 1 - Computes model's predicted output - forward pass
23     yhat = b + w * x_train_tensor
24 
25     # Step 2 - Computes the loss
26     # No more manual loss!
27     # error = (yhat - y_train_tensor)
28     # loss = (error ** 2).mean()
29     loss = loss_fn(yhat, y_train_tensor)           ②
30 
31     # Step 3 - Computes gradients for both "b" and "w" parameters
32     loss.backward()
33 
34     # Step 4 - Updates parameters using gradients and
35     # the learning rate
36     optimizer.step()
37     optimizer.zero_grad()
38 
39 print(b, w)
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① Defining a loss function

② New "Step 2 - Computing Loss" using loss_fn()

Output

tensor([1.0235], device='cuda:0', requires_grad=True)
tensor([1.9690], device='cuda:0', requires_grad=True)

Let’s take a look at the loss value at the end of training…

loss

Output

tensor(0.0080, device='cuda:0', grad_fn=<MeanBackward0>)

What if we wanted to have it as a Numpy array? I guess we could just use numpy()
again, right? (And cpu() as well, since our loss is in the cuda device.)

loss.cpu().numpy()

Output

RuntimeError              Traceback (most recent call last)
<ipython-input-43-58c76a7bac74> in <module>
----> 1 loss.cpu().numpy()

RuntimeError: Can't call numpy() on Variable that requires
grad. Use var.detach().numpy() instead.

What happened here? Unlike our data tensors, the loss tensor is actually computing

gradients; to use numpy(), we need to detach() the tensor from the computation

graph first:

loss.detach().cpu().numpy()
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Output

array(0.00804466, dtype=float32)

This seems like a lot of work; there must be an easier way! And there is one,

indeed: We can use item(), for tensors with a single element, or tolist()
otherwise (it still returns a scalar if there is only one element, though).

print(loss.item(), loss.tolist())

Output

0.008044655434787273 0.008044655434787273

At this point, there’s only one piece of code left to change: the predictions. It is

then time to introduce PyTorch’s way of implementing a…

Model

In PyTorch, a model is represented by a regular Python class that inherits from the

Module class.



IMPORTANT: Are you comfortable with object-oriented

programming (OOP) concepts like classes, constructors, methods,

instances, and attributes?

If you’re unsure about any of these terms, I’d strongly

recommend you follow tutorials like Real Python’s "Object-

Oriented Programming (OOP) in Python 3"[48] and "Supercharge

Your Classes With Python super()"[49] before proceeding.

Having a good understanding of OOP is key to benefitting the

most from PyTorch’s capabilities.

So, assuming you’re already comfortable with OOP, let’s dive into developing a

model in PyTorch.

Model | 103

https://pytorch.org/docs/stable/generated/torch.Tensor.item.html
https://pytorch.org/docs/stable/generated/torch.Tensor.tolist.html
https://pytorch.org/docs/stable/generated/torch.nn.Module.html
https://realpython.com/python3-object-oriented-programming/
https://realpython.com/python3-object-oriented-programming/
https://realpython.com/python-super/
https://realpython.com/python-super/


The most fundamental methods a model class needs to implement are:

• __init__(self): It defines the parts that make up the model—in our case, two

parameters, b and w.



You are not limited to defining parameters, though. Models can

contain other models as their attributes as well, so you can easily

nest them. We’ll see an example of this shortly as well.

Besides, do not forget to include super().__init__() to execute

the __init__() method of the parent class (nn.Module) before

your own.

• forward(self, x): It performs the actual computation; that is, it outputs a

prediction, given the input x.



It may seem weird but, whenever using your model to make

predictions, you should NOT call the forward(x) method!

You should call the whole model instead, as in model(x), to

perform a forward pass and output predictions.

The reason is, the call to the whole model involves extra steps,

namely, handling forward and backward hooks. If you don’t use

hooks (and we don’t use any right now), both calls are equivalent.


Hooks are a very useful mechanism that allows retrieving

intermediate values in deeper models. We’ll get to them

eventually.
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Let’s build a proper (yet simple) model for our regression task. It should look like

this:

Notebook Cell 1.9 - Building our "Manual" model, creating parameter by parameter!

 1 class ManualLinearRegression(nn.Module):
 2     def __init__(self):
 3         super().__init__()
 4         # To make "b" and "w" real parameters of the model,
 5         # we need to wrap them with nn.Parameter
 6         self.b = nn.Parameter(torch.randn(1,
 7                                           requires_grad=True,
 8                                           dtype=torch.float))
 9         self.w = nn.Parameter(torch.randn(1,
10                                           requires_grad=True,
11                                           dtype=torch.float))
12 
13     def forward(self, x):
14         # Computes the outputs / predictions
15         return self.b + self.w * x

Parameters

In the __init__() method, we define our two parameters, b and w, using the

Parameter class, to tell PyTorch that these tensors, which are attributes of the

ManualLinearRegression class, should be considered parameters of the model the

class represents.

Why should we care about that? By doing so, we can use our model’s parameters()
method to retrieve an iterator over the model’s parameters, including parameters

of nested models. Then we can use it to feed our optimizer (instead of building a list

of parameters ourselves!).

torch.manual_seed(42)
# Creates a "dummy" instance of our ManualLinearRegression model
dummy = ManualLinearRegression()
list(dummy.parameters())
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Output

[Parameter containing:
 tensor([0.3367], requires_grad=True), Parameter containing:
 tensor([0.1288], requires_grad=True)]

state_dict

Moreover, we can get the current values of all parameters using our model’s

state_dict() method.

dummy.state_dict()

Output

OrderedDict([('b', tensor([0.3367])), ('w', tensor([0.1288]))])

The state_dict() of a given model is simply a Python dictionary that maps each

attribute / parameter to its corresponding tensor. But only learnable parameters

are included, as its purpose is to keep track of parameters that are going to be

updated by the optimizer.

By the way, the optimizer itself has a state_dict() too, which contains its internal

state, as well as other hyper-parameters. Let’s take a quick look at it:

optimizer.state_dict()

Output

{'state': {},
 'param_groups': [{'lr': 0.1,
   'momentum': 0,
   'dampening': 0,
   'weight_decay': 0,
   'nesterov': False,
   'params': [140535747664704, 140535747688560]}]}
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 "What do we need this for?"

It turns out, state dictionaries can also be used for checkpointing a model, as we will

see in Chapter 2.

Device


IMPORTANT: We need to send our model to the same device

where the data is. If our data is made of GPU tensors, our model

must "live" inside the GPU as well.

If we were to send our dummy model to a device, it would look like this:

torch.manual_seed(42)
# Creates a "dummy" instance of our ManualLinearRegression model
# and sends it to the device
dummy = ManualLinearRegression().to(device)

Forward Pass

The forward pass is the moment when the model makes predictions.



Remember: You should make predictions calling model(x).

DO NOT call model.forward(x)!

Otherwise, your model’s hooks will not work (if you have them).

We can use all these handy methods to change our code, which should be looking

like this:
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Notebook Cell 1.10 - PyTorch’s model in action: no more manual prediction / forward step!

 1 # Sets learning rate - this is "eta" ~ the "n"-like
 2 # Greek letter
 3 lr = 0.1
 4 
 5 # Step 0 - Initializes parameters "b" and "w" randomly
 6 torch.manual_seed(42)
 7 # Now we can create a model and send it at once to the device
 8 model = ManualLinearRegression().to(device)        ①
 9 
10 # Defines an SGD optimizer to update the parameters
11 # (now retrieved directly from the model)
12 optimizer = optim.SGD(model.parameters(), lr=lr)
13 
14 # Defines an MSE loss function
15 loss_fn = nn.MSELoss(reduction='mean')
16 
17 # Defines number of epochs
18 n_epochs = 1000
19 
20 for epoch in range(n_epochs):
21     model.train() # What is this?!?                ②
22 
23     # Step 1 - Computes model's predicted output - forward pass
24     # No more manual prediction!
25     yhat = model(x_train_tensor)                   ③
26 
27     # Step 2 - Computes the loss
28     loss = loss_fn(yhat, y_train_tensor)
29 
30     # Step 3 - Computes gradients for both "b" and "w" parameters
31     loss.backward()
32 
33     # Step 4 - Updates parameters using gradients and
34     # the learning rate
35     optimizer.step()
36     optimizer.zero_grad()
37 
38 # We can also inspect its parameters using its state_dict
39 print(model.state_dict())
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① Instantiating a model

② What IS this?!?

③ New "Step 1 - Forward Pass" using a model

Now, the printed statements will look like this—final values for parameters b and w

are still the same, so everything is OK :-)

Output

OrderedDict([('b', tensor([1.0235], device='cuda:0')),
('w', tensor([1.9690], device='cuda:0'))])

train

I hope you noticed one particular statement in the code (line 21), to which I

assigned a comment "What is this?!?"—model.train().



In PyTorch, models have a train() method, which, somewhat

disappointingly, does NOT perform a training step. Its only

purpose is to set the model to training mode.

Why is this important? Some models may use mechanisms like

Dropout, for instance, which have distinct behaviors during

training and evaluation phases.

It is good practice to call model.train() in the training loop. It is also possible to set

a model to evaluation mode, but this is a topic for the next chapter.

Nested Models

In our model, we manually created two parameters to perform a linear regression.

What if, instead of defining individual parameters, we use PyTorch’s Linear model?

We are implementing a single-feature linear regression, one input and one output, so

the corresponding linear model would look like this:

linear = nn.Linear(1, 1)
linear
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Output

Linear(in_features=1, out_features=1, bias=True)

Do we still have our b and w parameters? Sure, we do:

linear.state_dict()

Output

OrderedDict([('weight', tensor([[-0.2191]])),
('bias', tensor([0.2018]))])

So, our former parameter b is the bias, and our former parameter w is the weight

(your values will be different since I haven’t set up a random seed for this example).

Now, let’s use PyTorch’s Linear model as an attribute of our own, thus creating a

nested model.


You are not limited to defining parameters, though; models can

contain other models as their attributes as well, so you can easily

nest them. We’ll see an example of this shortly.

Even though this clearly is a contrived example, since we are pretty much wrapping

the underlying model without adding anything useful (or, at all!) to it, it illustrates the

concept well.

Notebook Cell 1.11 - Building a model using PyTorch’s Linear model

class MyLinearRegression(nn.Module):
    def __init__(self):
        super().__init__()
        # Instead of our custom parameters, we use a Linear model
        # with a single input and a single output
        self.linear = nn.Linear(1, 1)

    def forward(self, x):
        # Now it only makes a call
        self.linear(x)
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In the __init__() method, we create an attribute that contains our nested Linear
model.

In the forward() method, we call the nested model itself to perform the forward

pass (notice, we are not calling self.linear.forward(x)!).

Now, if we call the parameters() method of this model, PyTorch will figure out the

parameters of its attributes recursively.

torch.manual_seed(42)
dummy = MyLinearRegression().to(device)
list(dummy.parameters())

Output

[Parameter containing:
 tensor([[0.7645]], device='cuda:0', requires_grad=True),
 Parameter containing:
 tensor([0.8300], device='cuda:0', requires_grad=True)]

You can also add extra Linear attributes, and, even if you don’t use them at all in

the forward pass, they will still be listed under parameters().

If you prefer, you can also use state_dict() to get the parameter values, together

with their names:

dummy.state_dict()

Output

OrderedDict([('linear.weight',
              tensor([[0.7645]], device='cuda:0')),
             ('linear.bias',
              tensor([0.8300], device='cuda:0'))])

Notice that both bias and weight have a prefix with the attribute name: linear, from

the self.linear in the __init__() method.
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Sequential Models

Our model was simple enough. You may be thinking: "Why even bother to build a

class for it?!" Well, you have a point…

For straightforward models that use a series of built-in PyTorch models (like

Linear), where the output of one is sequentially fed as an input to the next, we can

use a, er … Sequential model :-)

In our case, we would build a sequential model with a single argument; that is, the

Linear model we used to train our linear regression. The model would look like

this:

Notebook Cell 1.12 - Building a model using PyTorch’s Sequential model

1 torch.manual_seed(42)
2 # Alternatively, you can use a Sequential model
3 model = nn.Sequential(nn.Linear(1, 1)).to(device)
4 
5 model.state_dict()

Output

OrderedDict([('0.weight', tensor([[0.7645]], device='cuda:0')),
             ('0.bias', tensor([0.8300], device='cuda:0'))])

Simple enough, right?

We’ve been talking about models inside other models. This may get confusing real

quick, so let’s follow convention and call any internal model a layer.
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Layers

A Linear model can be seen as a layer in a neural network.

Figure 1.8 - Layers of a neural network

In the figure above, the hidden layer would be nn.Linear(3, 5) (since it takes

three inputs—from the input layer—and generates five outputs), and the output

layer would be nn.Linear(5, 1) (since it takes five inputs—the outputs from the

hidden layer—and generates a single output).

If we use Sequential() to build it; it looks like this:

torch.manual_seed(42)
# Building the model from the figure above
model = nn.Sequential(nn.Linear(3, 5), nn.Linear(5, 1)).to(device)

model.state_dict()
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Output

OrderedDict([
 ('0.weight',
   tensor([[ 0.4414,  0.4792, -0.1353],
           [ 0.5304, -0.1265,  0.1165],
           [-0.2811,  0.3391,  0.5090],
           [-0.4236,  0.5018,  0.1081],
           [ 0.4266,  0.0782,  0.2784]],
           device='cuda:0')),
 ('0.bias',
   tensor([-0.0815,  0.4451,  0.0853, -0.2695,  0.1472],
          device='cuda:0')),
 ('1.weight',
   tensor([[-0.2060, -0.0524, -0.1816,  0.2967, -0.3530]],
          device='cuda:0')),
 ('1.bias',
   tensor([-0.2062], device='cuda:0'))])

Since this sequential model does not have attribute names, state_dict() uses

numeric prefixes.

You can also use a model’s add_module() method to name the layers:

torch.manual_seed(42)
# Building the model from the figure above
model = nn.Sequential()
model.add_module('layer1', nn.Linear(3, 5))
model.add_module('layer2', nn.Linear(5, 1))
model.to(device)

Output

Sequential(
  (layer1): Linear(in_features=3, out_features=5, bias=True)
  (layer2): Linear(in_features=5, out_features=1, bias=True)
)
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There are MANY different layers that can be used in PyTorch:

• Convolution Layers

• Pooling Layers

• Padding Layers

• Non-linear Activations

• Normalization Layers

• Recurrent Layers

• Transformer Layers

• Linear Layers

• Dropout Layers

• Sparse Layers (embeddings)

• Vision Layers

• DataParallel Layers (multi-GPU)

• Flatten Layer

So far, we have just used a Linear layer. In the chapters ahead, we’ll use many

others, like convolution, pooling, padding, flatten, dropout, and non-linear

activations.

Putting It All Together

We’ve covered a lot of ground so far, from coding a linear regression in Numpy

using gradient descent to transforming it into a PyTorch model, step-by-step.

It is time to put it all together and organize our code into three fundamental parts,

namely:

• data preparation (not data generation!)

• model configuration

• model training

Let’s tackle these three parts, in order.
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Data Preparation

There hasn’t been much data preparation up to this point, to be honest. After

generating our data points in Notebook Cell 1.1, the only preparation step

performed so far has been transforming Numpy arrays into PyTorch tensors, as in

Notebook Cell 1.3, which is reproduced below:

Define - Data Preparation V0

1 %%writefile data_preparation/v0.py
2 
3 device = 'cuda' if torch.cuda.is_available() else 'cpu'
4 
5 # Our data was in Numpy arrays, but we need to transform them
6 # into PyTorch's Tensors and then send them to the
7 # chosen device
8 x_train_tensor = torch.as_tensor(x_train).float().to(device)
9 y_train_tensor = torch.as_tensor(y_train).float().to(device)

Run - Data Preparation V0

%run -i data_preparation/v0.py

This part will get much more interesting in the next chapter when we get to use

Dataset and DataLoader classes :-)

 "What’s the purpose of saving cells to these files?"

We know we have to run the full sequence to train a model: data preparation,

model configuration, and model training. In Chapter 2, we’ll gradually improve each

of these parts, versioning them inside each corresponding folder. So, saving them to

files allows us to run a full sequence using different versions without having to

duplicate code.

Let’s say we start improving model configuration (and we will do exactly that in

Chapter 2), but the other two parts are still the same; how do we run the full

sequence?
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We use magic, just like that:

%run -i data_preparation/v0.py
%run -i model_configuration/v1.py
%run -i model_training/v0.py

Since we’re using the -i option, it works exactly as if we had copied the code from

the files into a cell and executed it.

Jupyter’s Magic Commands

You probably noticed the somewhat unusual %%writefile and %run
commands above. These are built-in magic commands.[50] A magic is a kind of

shortcut that extends a notebook’s capabilities.

We are using the following two magics to better organize our code:

• %%writefile[51]: As its name says, it writes the contents of the cell to a

file, but it does not run it, so we need to use yet another magic.

• %run[52]: It runs the named file inside the notebook as a program—but

independent of the rest of the notebook, so we need to use the -i
option to make all variables available, from both the notebook and the

file (technically speaking, the file is executed in IPython’s namespace).

In a nutshell, a cell containing one of our three fundamental parts will be

written to a versioned file inside the folder corresponding to that part.

In the example above, we write the cell to the data_preparation folder,

name it v0.py, and then execute it using the %run -i magic.

Model Configuration

We have seen plenty of this part: from defining parameters b and w manually, then

wrapping them up using the Module class, to using layers in a Sequential model.

We have also defined a loss function and an optimizer for our particular linear

regression model.

For the purpose of organizing our code, we’ll include the following elements in the

model configuration part:
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• a model

• a loss function (which needs to be chosen according to your model)

• an optimizer (although some people may disagree with this choice, it makes it

easier to further organize the code)

Most of the corresponding code can be found in Notebook Cell 1.10, lines 1-15, but

we’ll replace the ManualLinearRegression model with the Sequential model from

Notebook Cell 1.12:

Define - Model Configuration V0

 1 %%writefile model_configuration/v0.py
 2 
 3 # This is redundant now, but it won't be when we introduce
 4 # Datasets...
 5 device = 'cuda' if torch.cuda.is_available() else 'cpu'
 6 
 7 # Sets learning rate - this is "eta" ~ the "n"-like Greek letter
 8 lr = 0.1
 9 
10 torch.manual_seed(42)
11 # Now we can create a model and send it at once to the device
12 model = nn.Sequential(nn.Linear(1, 1)).to(device)
13 
14 # Defines an SGD optimizer to update the parameters
15 # (now retrieved directly from the model)
16 optimizer = optim.SGD(model.parameters(), lr=lr)
17 
18 # Defines an MSE loss function
19 loss_fn = nn.MSELoss(reduction='mean')

Run - Model Configuration V0

%run -i model_configuration/v0.py

Model Training

This is the last part, where the actual training takes place. It loops over the gradient

descent steps we saw at the beginning of this chapter:
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• Step 1: compute model’s predictions

• Step 2: compute the loss

• Step 3: compute the gradients

• Step 4: update the parameters

This sequence is repeated over and over until the number of epochs is reached.

The corresponding code for this part also comes from Notebook Cell 1.10, lines 17-

36.

 "What happened to the random initialization step?"

Since we are not manually creating parameters anymore, the initialization is

handled inside each layer during model creation.

Define - Model Training V0

 1 %%writefile model_training/v0.py
 2 
 3 # Defines number of epochs
 4 n_epochs = 1000
 5 
 6 for epoch in range(n_epochs):
 7     # Sets model to TRAIN mode
 8     model.train()
 9 
10     # Step 1 - Computes model's predicted output - forward pass
11     yhat = model(x_train_tensor)
12 
13     # Step 2 - Computes the loss
14     loss = loss_fn(yhat, y_train_tensor)
15 
16     # Step 3 - Computes gradients for both "b" and "w" parameters
17     loss.backward()
18 
19     # Step 4 - Updates parameters using gradients and
20     # the learning rate
21     optimizer.step()
22     optimizer.zero_grad()

Putting It All Together | 119



Run - Model Training V0

%run -i model_training/v0.py

One last check to make sure we have everything right:

print(model.state_dict())

Output

OrderedDict([('0.weight', tensor([[1.9690]], device='cuda:0')),
('0.bias', tensor([1.0235], device='cuda:0'))])

Now, take a close, hard look at the code inside the training loop.

Ready? I have a question for you then…


"Would this code change if we were using a different optimizer, or

loss, or even model?"

Before I give you the answer, let me address something else that may be on your

mind: "What is the point of all this?"

Well, in the next chapter we’ll get fancier, using more of PyTorch’s classes (like

Dataset and DataLoader) to further refine our data preparation step, and we’ll also

try to reduce boilerplate code to a minimum. So, splitting our code into three

logical parts will allow us to better handle these improvements.

And here is the answer: NO, the code inside the loop would not change.

I guess you figured out which boilerplate I was referring to, right?
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Recap

First of all, congratulations are in order: You have successfully implemented a fully

functioning model and training loop in PyTorch!

We have covered a lot of ground in this first chapter:

• implementing a linear regression in Numpy using gradient descent

• creating tensors in PyTorch, sending them to a device, and making parameters

out of them

• understanding PyTorch’s main feature, autograd, to perform automatic

differentiation using its associated properties and methods, like backward(),

grad, zero_(), and no_grad()

• visualizing the dynamic computation graph associated with a sequence of

operations

• creating an optimizer to simultaneously update multiple parameters, using its

step() and zero_grad() methods

• creating a loss function using PyTorch’s corresponding higher-order function

(more on that topic in the next chapter)

• understanding PyTorch’s Module class and creating your own models,

implementing __init__() and forward() methods, and making use of its built-

in parameters() and state_dict() methods

• transforming the original Numpy implementation into a PyTorch one using the

elements above

• realizing the importance of including model.train() inside the training loop

(never forget that!)

• implementing nested and sequential models using PyTorch’s layers

• putting it all together into neatly organized code divided into three distinct

parts: data preparation, model configuration, and model training

You are now ready for the next chapter. We’ll see more of PyTorch’s capabilities,

and we’ll further develop our training loop so it can be used for different problems

and models. You’ll be building your own, small draft of a library for training deep

learning models.

[39] https://github.com/dvgodoy/PyTorchStepByStep/blob/master/Chapter01.ipynb

[40] https://colab.research.google.com/github/dvgodoy/PyTorchStepByStep/blob/master/Chapter01.ipynb
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[41] https://en.wikipedia.org/wiki/Gaussian_noise

[42] https://bit.ly/2XZXjnk

[43] https://bit.ly/3fjCSHR

[44] https://bit.ly/2Y0lhPn

[45] https://bit.ly/2UDXDWM

[46] https://twitter.com/alecrad

[47] http://cs231n.stanford.edu/

[48] https://realpython.com/python3-object-oriented-programming/
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[50] https://ipython.readthedocs.io/en/stable/interactive/magics.html

[51] https://bit.ly/30GH0vO

[52] https://bit.ly/3g1eQCm
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Chapter 2
Rethinking the Training Loop

Spoilers

In this chapter, we will:

• build a function to perform training steps

• implement our own dataset class

• use data loaders to generate mini-batches

• build a function to perform mini-batch gradient descent

• evaluate our model

• integrate TensorBoard to monitor model training

• save / checkpoint our model to disk

• load our model from disk to resume training or to deploy

Jupyter Notebook

The Jupyter notebook corresponding to Chapter 2[53] is part of the official Deep

Learning with PyTorch Step-by-Step repository on GitHub. You can also run it

directly in Google Colab[54].

If you’re using a local installation, open your terminal or Anaconda prompt and

navigate to the PyTorchStepByStep folder you cloned from GitHub. Then, activate

the pytorchbook environment and run jupyter notebook:

$ conda activate pytorchbook

(pytorchbook)$ jupyter notebook

If you’re using Jupyter’s default settings, this link should open Chapter 2’s

notebook. If not, just click on Chapter02.ipynb on your Jupyter’s home page.

Imports

For the sake of organization, all libraries needed throughout the code used in any
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given chapter are imported at its very beginning. For this chapter, we’ll need the

following imports:

import numpy as np
from sklearn.linear_model import LinearRegression

import torch
import torch.optim as optim
import torch.nn as nn
from torch.utils.data import Dataset, TensorDataset, DataLoader
from torch.utils.data.dataset import random_split
from torch.utils.tensorboard import SummaryWriter

import matplotlib.pyplot as plt
%matplotlib inline
plt.style.use('fivethirtyeight')

Rethinking the Training Loop

We finished the previous chapter with an important question:


"Would the code inside the training loop change if we were using a

different optimizer, or loss, or even model?"

The answer: NO.

But we did not actually elaborate on it in the previous chapter, so let’s do so now.

The model training involves looping over the four gradient descent steps (or one

training step, for that matter), and those are always the same, regardless of which

model, loss, or optimizer we use (there may be exceptions to this, but it holds true

for the scope of this book).

124 | Chapter 2: Rethinking the Training Loop



Let’s take a look at the code once again:

Run - Data Generation & Preparation, Model Configuration

%run -i data_generation/simple_linear_regression.py
%run -i data_preparation/v0.py
%run -i model_configuration/v0.py

Run - Model Training V0

 1 # %load model_training/v0.py
 2 
 3 # Defines number of epochs
 4 n_epochs = 1000
 5 
 6 for epoch in range(n_epochs):
 7     # Sets model to TRAIN mode
 8     model.train()
 9 
10     # Step 1 - Computes model's predicted output - forward pass
11     # No more manual prediction!
12     yhat = model(x_train_tensor)
13 
14     # Step 2 - Computes the loss
15     loss = loss_fn(yhat, y_train_tensor)
16 
17     # Step 3 - Computes gradients for both "b" and "w" parameters
18     loss.backward()
19 
20     # Step 4 - Updates parameters using gradients and
21     # the learning rate
22     optimizer.step()
23     optimizer.zero_grad()
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print(model.state_dict())

Output

OrderedDict([('0.weight', tensor([[1.9690]], device='cuda:0')),
('0.bias', tensor([1.0235], device='cuda:0'))])

So, I guess we could say all these lines of code (7-23) perform a training step. For a

given combination of model, loss, and optimizer, it takes the features and

corresponding labels as arguments. Right?

How about writing a function that takes a model, a loss, and an optimizer and

returns another function that performs a training step? The latter would then

take the features and corresponding labels as arguments and return the

corresponding loss.

 "Wait; what?! A function that returns another function?"

Sounds complicated, right? It is not as bad as it sounds, though; that’s called a

higher-order function, and it is very useful for reducing boilerplate.

If you’re familiar with the concept of higher-order functions, feel free to skip the

aside.
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Higher-Order Functions

Although this is more of a coding topic, I believe it is necessary to have a good

grasp on how higher-order functions work to fully benefit from Python’s

capabilities and make the best out of our code.

I will illustrate higher-order functions with an example so that you can gain a

working knowledge of it, but I am not delving any deeper into the topic, as it

is outside the scope of this book.

Let’s say we’d like to build a series of functions, each performing an

exponentiation to a given power. The code would look like this:

def square(x):
    return x ** 2

def cube(x):
    return x ** 3

def fourth_power(x):
    return x ** 4

# and so on and so forth...

Well, clearly there is a higher structure to this:

• every function takes a single argument x, which is the number we’d like

to exponentiate

• every function performs the same operation, an exponentiation, but

each function has a different exponent

One way of solving this is to make the exponent an explicit argument, just

like the code below:

def generic_exponentiation(x, exponent):
    return x ** exponent
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That’s perfectly fine, and it works quite well. But it also requires that you

specify the exponent every time you call the function. There must be another

way! Of course, there is; that’s the purpose of this section!

We need to build another (higher-order) function to build those functions

(square, cube, etc.) for us. The (higher-order) function is just a function

builder. But how do we do that?

First, let’s build the "skeleton" of the functions we are trying to generate; they

all take a single argument x, and they all perform an exponentiation, each

using a different exponent.

Fine. It should look like this:

def skeleton_exponentiation(x):
    return x ** exponent

If you try calling this function with any x, say, skeleton_exponentiation(2),

you’ll get the following error:

skeleton_exponentiation(2)

Output

NameError: name 'exponent' is not defined

This is expected: Your "skeleton" function has no idea what the variable

exponent is! And that’s what the higher-order function is going to

accomplish.

We "wrap" our skeleton function with a higher-order function (which will

build the desired functions). Let’s call it, rather unimaginatively,

exponentiation_builder(). What are its arguments, if any? Well, we’re

trying to tell our skeleton function what its exponent should be, so let’s

start with that!
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def exponentiation_builder(exponent):
    def skeleton_exponentiation(x):
        return x ** exponent

    return skeleton_exponentiation

Now I want you to take a look at the (outer) return statement. It is not

returning a value; it is returning the skeleton function instead. This is a

function builder after all: It should build (and return) functions.

What happens if we call this higher-order function with a given exponent,

say, 2?

returned_function = exponentiation_builder(2)

returned_function

Output

<function __main__.exponentiation_builder.<locals>.skeleton_
exponentiation(x)>

The result is, as expected, a function! What does this function do? It should

square its argument—let’s check it out:

returned_function(5)

Output

25
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And voilà! We have a function builder! We can use it to create as many

exponentiation functions as we’d like:

square = exponentiation_builder(2)
cube = exponentiation_builder(3)
fourth_power = exponentiation_builder(4)

# and so on and so forth...

 "How does this apply to the training loop?" you may ask.

We’ll be doing something similar to our training loop: The equivalent to the

exponent argument of the higher-order function is the combination of model, loss,

and optimizer. Every time we execute a training step for a different set of features

and labels, which are the equivalent of the x argument in the skeleton function,

we’ll be using the same model, loss, and optimizer.

Training Step

The higher-order function that builds a training step function for us is taking, as

already mentioned, the key elements of our training loop: model, loss, and

optimizer. The actual training step function to be returned will have two

arguments, namely, features and labels, and will return the corresponding loss

value.
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Apart from returning the loss value, the inner perform_train_step_fn() function

below is exactly the same as the code inside the loop in Model Training V0. The

code should look like this:

Helper Function #1

 1 def make_train_step_fn(model, loss_fn, optimizer):
 2     # Builds function that performs a step in the train loop
 3     def perform_train_step_fn(x, y):
 4         # Sets model to TRAIN mode
 5         model.train()
 6 
 7         # Step 1 - Computes model's predictions - forward pass
 8         yhat = model(x)
 9         # Step 2 - Computes the loss
10         loss = loss_fn(yhat, y)
11         # Step 3 - Computes gradients for "b" and "w" parameters
12         loss.backward()
13         # Step 4 - Updates parameters using gradients and
14         # the learning rate
15         optimizer.step()
16         optimizer.zero_grad()
17 
18         # Returns the loss
19         return loss.item()
20 
21     # Returns the function that will be called inside the
22     # train loop
23     return perform_train_step_fn

Then we need to update our model configuration code (adding line 20 in the next

snippet) to call this higher-order function to build a train_step_fn() function. But

we need to run a data preparation script first.

Run - Data Preparation V0

%run -i data_preparation/v0.py
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Define - Model Configuration V1

 1 %%writefile model_configuration/v1.py
 2 
 3 device = 'cuda' if torch.cuda.is_available() else 'cpu'
 4 
 5 # Sets learning rate - this is "eta" ~ the "n"-like Greek letter
 6 lr = 0.1
 7 
 8 torch.manual_seed(42)
 9 # Now we can create a model and send it at once to the device
10 model = nn.Sequential(nn.Linear(1, 1)).to(device)
11 
12 # Defines an SGD optimizer to update the parameters
13 optimizer = optim.SGD(model.parameters(), lr=lr)
14 
15 # Defines an MSE loss function
16 loss_fn = nn.MSELoss(reduction='mean')
17 
18 # Creates the train_step function for our model, loss function
19 # and optimizer
20 train_step_fn = make_train_step_fn(model, loss_fn, optimizer) ①

① Creating a function that performs a training step

Run - Model Configuration V1

%run -i model_configuration/v1.py

Let’s check our train_step_fn() function out!

train_step_fn

Output

<function __main__.make_train_step_fn.<locals>\
.perform_train_step_fn(x, y)>

Looking good! Now we need to update our model training to replace the code

inside the loop with a call to our newly created function.
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Our code should look like this; see how tiny the training loop is now? Lots of

boilerplate code is inside the make_train_step_fn() helper function now!

Define - Model Training V1

 1 %%writefile model_training/v1.py
 2 
 3 # Defines number of epochs
 4 n_epochs = 1000
 5 
 6 losses = []                                              ②
 7 
 8 # For each epoch...
 9 for epoch in range(n_epochs):
10     # Performs one train step and returns the corresponding loss
11     loss = train_step_fn(x_train_tensor, y_train_tensor) ①
12     losses.append(loss)                                  ②

① Performing one training step

② Keeping track of the training loss

Run - Model Training V1

%run -i model_training/v1.py

Besides getting rid of boilerplate code, there is another change introduced in the

code. We keep track of the loss value now. Every epoch, we append the last

computed loss to a list.

 "Adding to a list? This does not seem very cutting-edge…"

Indeed, it is not. But please bear with me, as we’ll replace it with something nicer

soon enough :-)
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After updating two out of three fundamental parts, our current

state of development is:

• Data Preparation V0

• Model Configuration V1

• Model Training V1

How do we check if our changes introduced any bugs? We can inspect our model’s

state_dict():

# Checks model's parameters
print(model.state_dict())

Output

OrderedDict([('0.weight', tensor([[1.9690]], device='cuda:0')),
('0.bias', tensor([1.0235], device='cuda:0'))])

Let’s give our training loop a rest and focus on our data for a while. So far, we’ve

simply used our Numpy arrays turned into PyTorch tensors. But we can do better;

we can build a…

Dataset

In PyTorch, a dataset is represented by a regular Python class that inherits from

the Dataset class. You can think of it as a list of tuples, each tuple corresponding to

one point (features, label).

The most fundamental methods it needs to implement are:

• __init__(self): This takes whatever arguments are needed to build a list of

tuples—it may be the name of a CSV file that will be loaded and processed; it

may be two tensors, one for features, another one for labels; or anything else,

depending on the task at hand.
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There is no need to load the whole dataset in the constructor

method (__init__()). If your dataset is large (tens of thousands

of image files, for instance), loading it all at once would not be

memory efficient. It is recommended to load them on demand

(whenever __getitem__() is called).

• __getitem__(self, index): This allows the dataset to be indexed so that it can

work like a list (dataset[i])—it must return a tuple (features, label)

corresponding to the requested data point. We can either return the

corresponding slices of our pre-loaded dataset or, as mentioned above, load

them on demand (like in this example[55]).

• __len__(self): This should simply return the size of the whole dataset so,

whenever it is sampled, its indexing is limited to the actual size.

Let’s build a simple custom dataset that takes two tensors as arguments: one for

the features, one for the labels. For any given index, our dataset class will return

the corresponding slice of each of those tensors. It should look like this:

Notebook Cell 2.1 - Creating a custom dataset

class CustomDataset(Dataset):
    def __init__(self, x_tensor, y_tensor):
        self.x = x_tensor
        self.y = y_tensor

    def __getitem__(self, index):
        return (self.x[index], self.y[index])

    def __len__(self):
        return len(self.x)

# Wait, is this a CPU tensor now? Why? Where is .to(device)?
x_train_tensor = torch.as_tensor(x_train).float()
y_train_tensor = torch.as_tensor(y_train).float()

train_data = CustomDataset(x_train_tensor, y_train_tensor)
print(train_data[0])
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Output

(tensor([0.7713]), tensor([2.4745]))



Did you notice we built our training tensors out of Numpy arrays,

but we did not send them to a device? So, they are CPU tensors

now! Why?

We don’t want our whole training data to be loaded into GPU

tensors, as we have been doing in our example so far, because

this takes up space in our precious graphics card’s RAM.

TensorDataset

Once again, you may be thinking, “Why go through all this trouble to wrap a couple of

tensors in a class?" And, once again, you do have a point… If a dataset is nothing

more than a couple of tensors, we can use PyTorch’s TensorDataset class, which

will do pretty much the same thing as our custom dataset above.

Right now, the full-fledged custom dataset class may seem like a stretch, but we

will use this structure repeatedly in later chapters. For now, let’s enjoy the

simplicity of the TensorDataset class :-)

Notebook Cell 2.2 - Creating a dataset from tensors

train_data = TensorDataset(x_train_tensor, y_train_tensor)
print(train_data[0])

Output

(tensor([0.7713]), tensor([2.4745]))

OK, fine, but then again, why are we building a dataset anyway? We’re doing it

because we want to use a…

DataLoader

Until now, we have used the whole training data at every training step. It has been

batch gradient descent all along. This is fine for our ridiculously small dataset, sure,

136 | Chapter 2: Rethinking the Training Loop

https://bit.ly/3jCwIp9


but if we want to get serious about all this, we must use mini-batch gradient

descent. Thus, we need mini-batches. Thus, we need to slice our dataset

accordingly. Do you want to do it manually?! Me neither!

So we use PyTorch’s DataLoader class for this job. We tell it which dataset to use

(the one we just built in the previous section), the desired mini-batch size, and if

we’d like to shuffle it or not. That’s it!



IMPORTANT: in the absolute majority of cases, you should set

shuffle=True for your training set to improve the performance

of gradient descent. There are a few exceptions, though, like time

series problems, where shuffling actually leads to data leakage.

So, always ask yourself: "Do I have a reason NOT to shuffle the

data?"

"What about the validation and test sets?" There is no need to

shuffle them since we are not computing gradients with them.



There is more to a DataLoader than meets the eye—it is also

possible to use it together with a sampler to fetch mini-batches

that compensate for imbalanced classes, for instance. Too much

to handle right now, but we will eventually get there.

Our loader will behave like an iterator, so we can loop over it and fetch a different

mini-batch every time.

 "How do I choose my mini-batch size?"

It is typical to use powers of two for mini-batch sizes, like 16, 32, 64, or 128, and 32

seems to be the choice of most people, Yann LeCun[56] included.

Some more-complex models may use even larger sizes, although sizes are usually

constrained by hardware limitations (i.e., how many data points actually fit into

memory).

In our example, we have only 80 training points, so I chose a mini-batch size of 16

to conveniently split the training set into five mini-batches.
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Notebook Cell 2.3 - Building a data loader for our training data

train_loader = DataLoader(
    dataset=train_data,
    batch_size=16,
    shuffle=True,
)

To retrieve a mini-batch, one can simply run the command below—it will return a

list containing two tensors, one for the features, another one for the labels:

next(iter(train_loader))

Output

[tensor([[0.1196],
         [0.1395],
         ...
         [0.8155],
         [0.5979]]), tensor([[1.3214],
         [1.3051],
         ...
         [2.6606],
         [2.0407]])]

 "Why not use a list instead?"

If you call list(train_loader), you’ll get, as a result, a list of five elements; that is,

all five mini-batches. Then you could take the first element of that list to obtain a

single mini-batch as in the example above. It would defeat the purpose of using the

iterable provided by the DataLoader; that is, to iterate over the elements (mini-

batches, in that case) one at a time.

To learn more about it, check RealPython’s material on iterables[57] and iterators[58].
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How does this change our code so far? Let’s check it out!

First, we need to add both Dataset and DataLoader elements into our data

preparation part of the code. Also, notice that we do not send our tensors to the

device just yet (just like we did in Notebook Cell 2.1). It should look like this:

Define - Data Preparation V1

 1 %%writefile data_preparation/v1.py
 2 
 3 # Our data was in Numpy arrays, but we need to transform them
 4 # into PyTorch's Tensors
 5 x_train_tensor = torch.as_tensor(x_train).float()
 6 y_train_tensor = torch.as_tensor(y_train).float()
 7 
 8 # Builds Dataset
 9 train_data = TensorDataset(x_train_tensor, y_train_tensor) ①
10 
11 # Builds DataLoader
12 train_loader = DataLoader(                                 ②
13     dataset=train_data,
14     batch_size=16,
15     shuffle=True,
16 )

① Building a dataset of tensors

② Building a data loader that yields mini-batches of size 16

Run - Data Preparation V1

%run -i data_preparation/v1.py

Next, we need to incorporate the mini-batch gradient descent logic into our model

training part of the code. But we need to run the model configuration first.

Run - Model Configuration V1

%run -i model_configuration/v1.py
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Define - Model Training V2

 1 %%writefile model_training/v2.py
 2 
 3 # Defines number of epochs
 4 n_epochs = 1000
 5 
 6 losses = []
 7 
 8 # For each epoch...
 9 for epoch in range(n_epochs):
10     # inner loop
11     mini_batch_losses = []                                ④
12     for x_batch, y_batch in train_loader:                 ①
13         # the dataset "lives" in the CPU, so do our mini-batches
14         # therefore, we need to send those mini-batches to the
15         # device where the model "lives"
16         x_batch = x_batch.to(device)                      ②
17         y_batch = y_batch.to(device)                      ②
18 
19         # Performs one train step and returns the
20         # corresponding loss for this mini-batch
21         mini_batch_loss = train_step_fn(x_batch, y_batch) ③
22         mini_batch_losses.append(mini_batch_loss)         ④
23 
24     # Computes average loss over all mini-batches
25     # That's the epoch loss
26     loss = np.mean(mini_batch_losses)                     ⑤
27 
28     losses.append(loss)

① Mini-batch inner loop

② Sending one mini-batch to the device

③ Performing a training step

④ Keeping track of the loss inside each mini-batch

⑤ Averaging losses of mini-batches to get epoch’s loss
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Run - Model Training V2

%run -i model_training/v2.py

 "Wow! What happened here?!"

It seems like a lot changed. Let’s take a closer look, step by step:

• We added an inner loop to handle the mini-batches produced by the

DataLoader (line 12).

• We sent only one mini-batch to the device, as opposed to sending the whole

training set (lines 16 and 17).



For larger datasets, loading data on demand (into a CPU tensor)

inside Dataset’s __getitem__() method and then sending all data

points that belong to the same mini-batch at once to your GPU

(device) is the way to go to make the best use of your graphics

card’s RAM.

Moreover, if you have many GPUs to train your model on, it is

best to keep your dataset “device agnostic" and assign the

batches to different GPUs during training.

• We performed a train_step_fn() on a mini-batch (line 21) and appended the

corresponding loss to a list (line 22).

• After going through all mini-batches, that is, at the end of an epoch, we

calculated the total loss for the epoch, which is the average loss over all mini-

batches, appending the result to a list (lines 26 and 28).



After another two updates, our current state of development is:

• Data Preparation V1

• Model Configuration V1

• Model Training V2
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Not so bad, right? So, it is time to check if our code still works well:

# Checks model's parameters
print(model.state_dict())

Output

OrderedDict([('0.weight', tensor([[1.9684]], device='cuda:0')),
('0.bias', tensor([1.0235], device='cuda:0'))])



Did you get slightly different values? Try running the whole

pipeline again:

Full Pipeline

%run -i data_preparation/v1.py
%run -i model_configuration/v1.py
%run -i model_training/v2.py

Since the DataLoader draws random samples, executing other

code between the last two steps of the pipeline may interfere

with the reproducibility of the results.

Anyway, as long as your results are less than 0.01 far from mine

for both weight and bias, your code is working fine :-)


Did you notice it is taking longer to train now? Can you guess

why?

ANSWER: The training time is longer now because the inner loop is executed five

times for each epoch (in our example, since we are using a mini-batch of size 16 and

we have 80 training data points in total, we execute the inner loop 80 / 16 = 5

times). So, in total, we are calling the train_step_fn() a total of 5,000 times now!

No wonder it’s taking longer!

Mini-Batch Inner Loop

From now on, it is very unlikely that you’ll ever use (full) batch gradient descent

again, both in this book or in real life :-) So, it makes sense to, once again, organize a
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piece of code that’s going to be used repeatedly into its own function: the mini-

batch inner loop!

The inner loop depends on three elements:

• the device where data is being sent

• a data loader to draw mini-batches from

• a step function, returning the corresponding loss

Taking these elements as inputs and using them to perform the inner loop, we’ll

end up with a function like this:

Helper Function #2

 1 def mini_batch(device, data_loader, step_fn):
 2     mini_batch_losses = []
 3     for x_batch, y_batch in data_loader:
 4         x_batch = x_batch.to(device)
 5         y_batch = y_batch.to(device)
 6 
 7         mini_batch_loss = step_fn(x_batch, y_batch)
 8         mini_batch_losses.append(mini_batch_loss)
 9 
10     loss = np.mean(mini_batch_losses)
11     return loss

In the last section, we realized that we were executing five times more updates

(the train_step_fn() function) per epoch due to the mini-batch inner loop. Before,

1,000 epochs meant 1,000 updates. Now, we only need 200 epochs to perform the

same 1,000 updates.

What does our training loop look like now? It’s very lean!

Run - Data Preparation V1, Model Configuration V1

%run -i data_preparation/v1.py
%run -i model_configuration/v1.py
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Define - Model Training V3

 1 %%writefile model_training/v3.py
 2 
 3 # Defines number of epochs
 4 n_epochs = 200
 5 
 6 losses = []
 7 
 8 for epoch in range(n_epochs):
 9     # inner loop
10     loss = mini_batch(device, train_loader, train_step_fn) ①
11     losses.append(loss)

① Performing mini-batch gradient descent

Run - Model Training V3

%run -i model_training/v3.py



After updating the model training part, our current state of

development is:

• Data Preparation V1

• Model Configuration V1

• Model Training V3

Let’s inspect the model’s state:

# Checks model's parameters
print(model.state_dict())

Output

OrderedDict([('0.weight', tensor([[1.9687]], device='cuda:0')),
('0.bias', tensor([1.0236], device='cuda:0'))])

So far, we’ve focused on the training data only. We built a dataset and a data loader
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for it. We could do the same for the validation data, using the split we performed at

the beginning of this book, or we could use random_split() instead.

Random Split

PyTorch’s random_split() method is an easy and familiar way of performing a

training-validation split.

So far, we’ve been using x_train_tensor and y_train_tensor, built out of the

original split in Numpy, to build the training dataset. Now, we’re going to be using

the full data from Numpy (x and y) to build a PyTorch Dataset first and only then

split the data using random_split().


Although there was a (funny) reasoning behind my choice of 42 as

a random seed, I’ll be using other numbers as seeds, mostly odd

numbers, just because I like them better :-)
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Then, for each subset of data, we’ll build a corresponding DataLoader, so our code

will look like this:

Define - Data Preparation V2

 1 %%writefile data_preparation/v2.py
 2 
 3 torch.manual_seed(13)
 4 
 5 # Builds tensors from numpy arrays BEFORE split
 6 x_tensor = torch.as_tensor(x).float()                          ①
 7 y_tensor = torch.as_tensor(y).float()                          ①
 8 
 9 # Builds dataset containing ALL data points
10 dataset = TensorDataset(x_tensor, y_tensor)
11 
12 # Performs the split
13 ratio = .8
14 n_total = len(dataset)
15 n_train = int(n_total * ratio)
16 n_val = n_total - n_train
17 train_data, val_data = random_split(dataset, [n_train, n_val]) ②
18 
19 # Builds a loader of each set
20 train_loader = DataLoader(
21     dataset=train_data,
22     batch_size=16,
23     shuffle=True,
24 )
25 val_loader = DataLoader(dataset=val_data, batch_size=16)       ③

① Making tensors out of the full dataset (before split)

② Performing train-validation split in PyTorch

③ Creating a data loader for the validation set

Run - Data Preparation V2

%run -i data_preparation/v2.py

Now that we have a data loader for our validation set, it makes sense to use it for

the…
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Evaluation

How can we evaluate the model? We can compute the validation loss; that is, how

wrong the model’s predictions are for unseen data.

First, we need to use the model to compute predictions and then use the loss

function to compute the loss, given our predictions and the true labels. Sounds

familiar? These are pretty much the first two steps of the training step function we

built as Helper Function #1.

So, we can use that code as a starting point, getting rid of steps 3 and 4, and, most

important, we need to use the model’s eval() method. The only thing it does is set

the model to evaluation mode (just like its train() counterpart did), so the model

can adjust its behavior accordingly when it has to perform some operations, like

Dropout.

 "Why is setting the mode so important?"

As mentioned above, dropout (a regularization technique commonly used for

reducing overfitting) is the main reason for it, since it requires the model to behave

differently during training and evaluation. In a nutshell, dropout randomly sets

some weights to zero during training.

 We’ll get back to dropout in the second volume of the series.

What would happen if this behavior persisted outside of training time? You would

end up with possibly different predictions for the same input since different

weights would be set to zero every time you made a prediction. It would ruin

evaluation and, if deployed, would also ruin the confidence of the user.

We don’t want that, so we use model.eval() to prevent it!
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Just like make_train_step_fn(), our new function, make_val_step_fn(), is a

higher-order function. Its code looks like this:

Helper Function #3

 1 def make_val_step_fn(model, loss_fn):
 2     # Builds function that performs a step
 3     # in the validation loop
 4     def perform_val_step_fn(x, y):
 5         # Sets model to EVAL mode
 6         model.eval()     ①
 7 
 8         # Step 1 - Computes our model's predicted output
 9         # forward pass
10         yhat = model(x)
11         # Step 2 - Computes the loss
12         loss = loss_fn(yhat, y)
13         # There is no need to compute Steps 3 and 4,
14         # since we don't update parameters during evaluation
15         return loss.item()
16 
17     return perform_val_step_fn

① Setting model to evaluation mode
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And then, we update our model configuration code to include the creation of the

corresponding function for the validation step.

Define - Model Configuration V2

 1 %%writefile model_configuration/v2.py
 2 
 3 device = 'cuda' if torch.cuda.is_available() else 'cpu'
 4 
 5 # Sets learning rate - this is "eta" ~ the "n"-like Greek letter
 6 lr = 0.1
 7 
 8 torch.manual_seed(42)
 9 # Now we can create a model and send it at once to the device
10 model = nn.Sequential(nn.Linear(1, 1)).to(device)
11 
12 # Defines an SGD optimizer to update the parameters
13 optimizer = optim.SGD(model.parameters(), lr=lr)
14 
15 # Defines an MSE loss function
16 loss_fn = nn.MSELoss(reduction='mean')
17 
18 # Creates the train_step function for our model, loss function
19 # and optimizer
20 train_step_fn = make_train_step_fn(model, loss_fn, optimizer)
21 
22 # Creates the val_step function for our model and loss function
23 val_step_fn = make_val_step_fn(model, loss_fn) ①

① Creating a function that performs a validation step

Run - Model Configuration V2

%run -i model_configuration/v2.py

Finally, we need to change the training loop to include the evaluation of our model.

The first step is to include another inner loop to handle the mini-batches that come

from the validation loader, sending them to the same device as our model. Then,

inside that inner loop, we use the validation step function to compute the loss.

 "Wait, this looks oddly familiar too…"
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And indeed, it is—it is structurally the same as our mini-batch function (Helper

Function #2). So let’s use it once again!

There is just one small, yet important detail to consider: Remember no_grad()?

We used it in Chapter 1 to avoid messing with PyTorch’s dynamic computation

graph during the (manual) update of the parameters. And it is making a comeback

now—we need to use it to wrap our new validation’s inner loop:



torch.no_grad(): Even though it won’t make a difference in our

simple model, it is a good practice to wrap the validation inner

loop with this context manager[59] to disable any gradient

computation that you may inadvertently trigger—gradients

belong in training, not in validation steps.

Now, our training loop should look like this:

Define - Model Training V4

 1 %%writefile model_training/v4.py
 2 
 3 # Defines number of epochs
 4 n_epochs = 200
 5 
 6 losses = []
 7 val_losses = []                                               ③
 8 
 9 for epoch in range(n_epochs):
10     # inner loop
11     loss = mini_batch(device, train_loader, train_step_fn)
12     losses.append(loss)
13 
14     # VALIDATION - no gradients in validation!
15     with torch.no_grad():                                     ①
16         val_loss = mini_batch(device, val_loader, val_step_fn)②
17         val_losses.append(val_loss)                           ③

① Using no_grad() as context manager to prevent gradient computation

② Performing a validation step

③ Keeping track of validation loss
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Run - Model Training V4

%run -i model_training/v4.py



After updating all parts, in sequence, our current state of

development is:

• Data Preparation V2

• Model Configuration V2

• Model Training V4

Let’s inspect the model’s state:

# Checks model's parameters
print(model.state_dict())

Output

OrderedDict([('0.weight', tensor([[1.9419]], device='cuda:0')),
('0.bias', tensor([1.0244], device='cuda:0'))])

Plotting Losses

Let’s take a look at both losses—training and validation.

Figure 2.1 - Training and validation losses during training
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Does your plot look different? Try running the whole pipeline

again:

Full Pipeline

%run -i data_preparation/v2.py
%run -i model_configuration/v2.py
%run -i model_training/v4.py

And then plot the resulting losses one more time.

Cool, right? But, remember in the training step function, when I mentioned that

adding losses to a list was not very cutting-edge? Time to fix that! To better

visualize the training process, we can make use of…

TensorBoard

Yes, TensorBoard is that good! So good that we’ll be using a tool from the

competing framework, TensorFlow :-) Jokes aside, TensorBoard is a very useful

tool, and PyTorch provides classes and methods so that we can integrate it with

our model.

Running It Inside a Notebook



This section applies to both Google Colab and local installation.

If you are using a local installation, you can either run

TensorBoard inside a notebook or separately (check the next

section for instructions).

If you chose to follow this book using Google Colab, you’ll need to run TensorBoard

inside a notebook. Luckily, this is easily accomplished using some Jupyter magics.



If you are using Binder, this Jupyter magic will not work, for

reasons that are beyond the scope of this section. More details on

how to use TensorBoard with Binder can be found in the

corresponding section below.

First, we need to load TensorBoard’s extension for Jupyter:
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Loading Extension

# Load the TensorBoard notebook extension
%load_ext tensorboard

Then, we run TensorBoard using the newly available magic:

Running TensorBoard

%tensorboard --logdir runs

The magic above tells TensorBoard to look for logs inside the folder specified by the

logdir argument: runs. So, there must be a runs folder in the same location as the

notebook you’re using to train the model. To make things easier for you, I created a

runs folder in the repository, so you get it out-of-the-box.


If you get the error "TypeError: Function expected," please

switch to a modern browser like Firefox or Chrome.

Your notebook will show TensorBoard inside a cell, just like this:

Figure 2.2 - TensorBoard running inside a notebook
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It doesn’t show you anything yet because it cannot find any data inside the runs
folder, as we haven’t sent anything there yet. It will be automatically updated when

we send some data to it, so let’s send some data to TensorBoard!

If you want to learn more about running TensorBoard inside a notebook,

configuration options, and more, please check this official guide[60].

Running It Separately (Local Installation)

Assuming you’ve installed TensorBoard while following the "Setup Guide", now

you need to open a new terminal or Anaconda prompt, navigate to the

PyTorchStepByStep folder you cloned from GitHub, and activate the pytorchbook
environment:

Activating Environment

conda activate pytorchbook

Then you can run TensorBoard:

Running TensorBoard

(pytorchbook)$ tensorboard --logdir runs

The above command tells TensorBoard to look for logs inside the folder specified by

the logdir argument: runs. So, there must be a runs folder in the same location as the

notebook you’re using to train the model. To make things easier, I created a runs
folder in the repository, so you get it out-of-the-box. After running it, you’ll see a

message like this one (the version of TensorBoard may be different, though):

Output

TensorFlow installation not found - running with reduced
feature set.
Serving TensorBoard on localhost; to expose to the network,
use a proxy or pass --bind_all
TensorBoard 2.2.0 at http://localhost:6006/ (Press CTRL+C to quit)

You see, it "complains" about not finding TensorFlow :-) Nonetheless, it is up and

running! If you throw the address http://localhost:6006/ at your favorite
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browser, you’ll likely see something like this:

Figure 2.3 - Empty TensorBoard

It doesn’t show you anything yet because it cannot find any data inside the runs
folder, as we haven’t sent anything there yet. It will be automatically updated when

we send some data to it so, let’s send some data to TensorBoard!

Running It Separately (Binder)

If you chose to follow this book using Binder, you’ll need to run TensorBoard

separately.

But you won’t have to actually do much. Configuring TensorBoard for running

inside Binder’s environment is a bit tricky (it involves Jupyter’s server extensions),

so I took care of that for you :-)

Moreover, I’ve provided an automatically generated link that will open a new tab

pointing to the TensorBoard instance running in your Binder environment.

The link looks like this (the actual URL is generated on the spot, this one is just a

dummy):

Click here to open TensorBoard

The only downside is that the folder where TensorBoard will look for logs is fixed:

runs.

SummaryWriter

It all starts with the creation of a SummaryWriter:
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SummaryWriter

writer = SummaryWriter('runs/test')

Since we told TensorBoard to look for logs inside the runs folder, it makes sense to

actually log to that folder. Moreover, to be able to distinguish between different

experiments or models, we should also specify a sub-folder: test.



If we do not specify any folder, TensorBoard will default to

runs/CURRENT_DATETIME_HOSTNAME, which is not such a great

name if you’ll be looking for your experiment results in the future.

So, it is recommended to name it in a more meaningful way, like

runs/test or runs/simple_linear_regression. It will then create

a sub-folder inside runs (the folder we specified when we started

TensorBoard).

Even better, you should name it in a meaningful way and add

datetime or a sequential number as a suffix, like runs/test_001
or runs/test_20200502172130, to avoid writing data of multiple

runs into the same folder (we’ll see why this is bad in the

"add_scalars" section below).

The summary writer implements several methods to allow us to send information

to TensorBoard:

add_graph() add_scalars() add_scalar()

add_histogram() add_images() add_image()

add_figure() add_video() add_audio()

add_text() add_embedding() add_pr_curve()

add_custom_scalars() add_mesh() add_hparams()

It also implements two other methods for effectively writing data to disk:

• flush()

• close()

We’ll be using the first two methods (add_graph() and add_scalars()) to send our
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model’s graph (not quite the same as the dynamic computation graph we drew using

make_dot(), though), and, of course, both scalars: training and validation losses.

add_graph

Let’s start with add_graph(): unfortunately, its documentation seems to be absent

(as at the time of writing), and its default values for arguments lead you to believe

you don’t need to provide any inputs (input_to_model=None). What happens if we

try it?

writer.add_graph(model)

We’ll get an enormous error message that ends with:

Output

...
TypeError: 'NoneType' object is not iterable

So, we do need to send it some inputs together with our model. Let’s fetch a mini-

batch of data points from our train_loader and then pass it as input to

add_graph():

Adding the Model’s Graph

# Fetching a tuple of feature (dummy_x) and label (dummy_y)
dummy_x, dummy_y = next(iter(train_loader))

# Since our model was sent to device, we need to do the same
# with the data.
# Even here, both model and data need to be on the same device!
writer.add_graph(model, dummy_x.to(device))

If you open (or refresh) your browser (or re-run the cell containing the magic

%tensorboard --logdir runs inside a notebook) to look at TensorBoard, it should

look like this:
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Figure 2.4 - Dynamic computation graph on TensorBoard

add_scalars

What about sending the loss values to TensorBoard? I’m on it! We can use the

add_scalars() method to send multiple scalar values at once; it needs three

arguments:

• main_tag: the parent name of the tags, or the "group tag," if you will

• tag_scalar_dict: the dictionary containing the key: value pairs for the scalars

you want to keep track of (in our case, training and validation losses)

• global_step: step value; that is, the index you’re associating with the values

you’re sending in the dictionary; the epoch comes to mind in our case, as losses

are computed for each epoch

How does it translate into code? Let’s check it out:

Adding Losses

writer.add_scalars(
    main_tag='loss',
    tag_scalar_dict={'training': loss,
                     'validation': val_loss},
    global_step=epoch
)

If you run the code above after performing the model training, it will just send both

loss values computed for the last epoch (199). Your TensorBoard will look like this

(don’t forget to refresh it—it may take a while if you’re running it on Google Colab):
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Figure 2.5 - Scalars on TensorBoard

Not very useful, eh? We need to incorporate these elements into our model

configuration and model training codes, which look like this now:

Run - Data Preparation V2

%run -i data_preparation/v2.py
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Define - Model Configuration V3

 1 %%writefile model_configuration/v3.py
 2 
 3 device = 'cuda' if torch.cuda.is_available() else 'cpu'
 4 
 5 # Sets learning rate - this is "eta" ~ the "n"-like Greek letter
 6 lr = 0.1
 7 
 8 torch.manual_seed(42)
 9 # Now we can create a model and send it at once to the device
10 model = nn.Sequential(nn.Linear(1, 1)).to(device)
11 
12 # Defines an SGD optimizer to update the parameters
13 optimizer = optim.SGD(model.parameters(), lr=lr)
14 
15 # Defines an MSE loss function
16 loss_fn = nn.MSELoss(reduction='mean')
17 
18 # Creates the train_step function for our model,
19 # loss function and optimizer
20 train_step_fn = make_train_step_fn(model, loss_fn, optimizer)
21 
22 # Creates the val_step function for our model and loss function
23 val_step_fn = make_val_step_fn(model, loss_fn)
24 
25 # Creates a Summary Writer to interface with TensorBoard
26 writer = SummaryWriter('runs/simple_linear_regression') ①
27 # Fetches a single mini-batch so we can use add_graph
28 x_dummy, y_dummy = next(iter(train_loader))
29 writer.add_graph(model, x_dummy.to(device))

① Creating SummaryWriter to interface with TensorBoard

Run - Model Configuration V3

%run -i model_configuration/v3.py
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Define - Model Training V5

 1 %%writefile model_training/v5.py
 2 
 3 # Defines number of epochs
 4 n_epochs = 200
 5 
 6 losses = []
 7 val_losses = []
 8 
 9 for epoch in range(n_epochs):
10     # inner loop
11     loss = mini_batch(device, train_loader, train_step_fn)
12     losses.append(loss)
13 
14     # VALIDATION - no gradients in validation!
15     with torch.no_grad():
16         val_loss = mini_batch(device, val_loader, val_step_fn)
17         val_losses.append(val_loss)
18 
19     # Records both losses for each epoch under tag "loss"
20     writer.add_scalars(main_tag='loss',      ①
21                        tag_scalar_dict={
22                             'training': loss,
23                             'validation': val_loss},
24                        global_step=epoch)
25 
26 # Closes the writer
27 writer.close()

① Sending losses to TensorBoard

Run - Model Training V5

%run -i model_training/v5.py
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After the last update of both the model configuration and

training parts, our current state of development is:

• Data Preparation V2

• Model Configuration V3

• Model Training V5

You probably noticed we did not throw the two lists (losses and val_losses) away.

There is a reason for this, which will be clear in the next section.

Let’s inspect the model’s state:

# Checks model's parameters
print(model.state_dict())

Output

OrderedDict([('0.weight', tensor([[1.9448]], device='cuda:0')),
('0.bias', tensor([1.0295], device='cuda:0'))])

Now, let’s inspect TensorBoard. You should see something like this:

Figure 2.6 - Finally, losses on TensorBoard

This is the same plot we’ve built before using our lists and Matplotlib. If our model

were large or complex enough to take at least a couple of minutes to train, we

would be able to see the evolution of our losses in TensorBoard during training.
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If, by any chance, you ended up with something like the weird plot below, don’t

worry just yet!

Figure 2.7 - Weird results on TensorBoard :P



Remember, I said writing the data of multiple runs into the same

folder was bad? This is why…

Since we’re writing data to the folder

runs/simple_linear_regression, if we do not change the name

of the folder (or erase the data there) before running the code a

second time, TensorBoard gets somewhat confused, as you can

guess from its output:

• Found more than one graph event per run (because we ran

add_graph() more than once)

• Found more than one "run metadata" event with tag step1

(because we ran add_scalars() more than once)

If you are using a local installation, you can see those messages in

the terminal window or Anaconda prompt you used to run

tensorboard --log_dir=runs.

So, you finished training your model, you inspected TensorBoard plots, and you’re

happy with the losses you got.

Congratulations! Your job is done; you successfully trained your model!

There is only one more thing you need to know, and that is how to handle…
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Saving and Loading Models

Training a model successfully is great, no doubt about that, but not all models will

train quickly, and training may get interrupted (computer crashing, timeout after

12 hours of continuous GPU usage on Google Colab, etc.). It would be a pity to have

to start over, right?

So, it is important to be able to checkpoint or save our model, that is, save it to disk,

in case we’d like to restart training later or deploy it as an application to make

predictions.

Model State

To checkpoint a model, we basically have to save its state to a file so that it can be

loaded back later—nothing special, actually.

What defines the state of a model?

• model.state_dict(): kinda obvious, right?

• optimizer.state_dict(): remember, optimizers have a state_dict() as well

• losses: after all, you should keep track of its evolution

• epoch: it is just a number, so why not? :-)

• anything else you’d like to have restored later

Saving

Now, we wrap everything into a Python dictionary and use torch.save() to dump

it all into a file. Easy peasy! We have just saved our model to a file named

model_checkpoint.pth.

Notebook Cell 2.4 - Saving checkpoint

checkpoint = {'epoch': n_epochs,
              'model_state_dict': model.state_dict(),
              'optimizer_state_dict': optimizer.state_dict(),
              'loss': losses,
              'val_loss': val_losses}

torch.save(checkpoint, 'model_checkpoint.pth')
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The procedure is exactly the same, whether you are checkpointing a partially

trained model to resume training later or saving a fully trained model to deploy

and make predictions.

OK, what about loading it back? In that case, it will be a bit different, depending on

what you’re doing.

Resuming Training

If we’re starting fresh (as if we had just turned on the computer and started

Jupyter), we have to set the stage before actually loading the model. This means

we need to load the data and configure the model.

Luckily, we have code for that already: Data Preparation V2 and Model

Configuration V3:

Notebook Cell 2.5

%run -i data_preparation/v2.py
%run -i model_configuration/v3.py

Let’s double-check that we do have an untrained model:

print(model.state_dict())

Output

OrderedDict([('0.weight', tensor([[0.7645]], device='cuda:0')),
('0.bias', tensor([0.8300], device='cuda:0'))])

Now we are ready to load the model back, which is easy:

• load the dictionary back using torch.load()

• load model and optimizer state dictionaries back using the load_state_dict()
method

• load everything else into their corresponding variables
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Notebook Cell 2.6 - Loading checkpoint to resume training

checkpoint = torch.load('model_checkpoint.pth')

model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])

saved_epoch = checkpoint['epoch']
saved_losses = checkpoint['loss']
saved_val_losses = checkpoint['val_loss']

model.train() # always use TRAIN for resuming training ①

① Never forget to set the mode!

print(model.state_dict())

Output

OrderedDict([('0.weight', tensor([[1.9448]], device='cuda:0')),
('0.bias', tensor([1.0295], device='cuda:0'))])

Cool, we recovered our model’s state, and we can resume training.



After loading a model to resume training, make sure you

ALWAYS set it to training mode:

model.train()

In our example, this is going to be redundant because our

train_step_fn() function already does it. But it is important to

pick up the habit of setting the mode of the model accordingly.

Next, we can run Model Training V5 to train it for another 200 epochs.

 "Why 200 more epochs? Can’t I choose a different number?"

Well, you could, but you’d have to change the code in Model Training V5. This

clearly isn’t ideal, but we will make our model training code more flexible very
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soon, so please bear with me for now.

Notebook Cell 2.7

%run -i model_training/v5.py

What does the model look like after training another 200 epochs?

print(model.state_dict())

Output

OrderedDict([('0.weight', tensor([[1.9448]], device='cuda:0')),
('0.bias', tensor([1.0295], device='cuda:0'))])

Well, it didn’t change at all, which is no surprise: The original model had converged

already; that is, the loss was at a minimum. These extra epochs served an

educational purpose only; they did not improve the model. But, since we are at it,

let’s check the evolution of the losses, before and after checkpointing:

Figure 2.8 - Losses, before and after resuming training

Clearly, the loss was already at a minimum before the checkpoint, so nothing has

changed!

It turns out, the model we saved to disk was a fully trained model, so we can use it

for…
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Deploying / Making Predictions

Again, if we’re starting fresh (as if we had just turned on the computer and started

Jupyter), we have to set the stage before actually loading the model. But, this time,

we only need to configure the model:

Notebook Cell 2.8

%run -i model_configuration/v3.py

Once again, we have an untrained model at this point. The loading procedure is

simpler, though:

• load the dictionary back using torch.load()

• load model state dictionary back using its method load_state_dict()

Since the model is fully trained, we don’t need to load the optimizer or anything

else.

Notebook Cell 2.9 - Loading a fully trained model to make predictions

checkpoint = torch.load('model_checkpoint.pth')

model.load_state_dict(checkpoint['model_state_dict'])

print(model.state_dict())

Output

OrderedDict([('0.weight', tensor([[1.9448]], device='cuda:0')),
('0.bias', tensor([1.0295], device='cuda:0'))])
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After recovering our model’s state, we can finally use it to make predictions for

new inputs:

Notebook Cell 2.10

new_inputs = torch.tensor([[.20], [.34], [.57]])

model.eval() # always use EVAL for fully trained models! ①
model(new_inputs.to(device))

① Never forget to set the mode!

Output

tensor([[1.4185],
        [1.6908],
        [2.1381]], device='cuda:0', grad_fn=<AddmmBackward>)

Since Model Configuration V3 created a model and sent it automatically to our

device, we need to do the same with our new inputs.



After loading a fully trained model for deployment / to make

predictions, make sure you ALWAYS set it to evaluation mode:

model.eval()

Congratulations, you "deployed" your first model :-)

Setting the Model’s Mode

I know, I am probably a bit obsessive about this, but here we go one more time:



After loading the model, DO NOT FORGET to SET THE MODE:

• checkpointing: model.train()

• deploying / making predictions: model.eval()
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Putting It All Together

We have updated each of the three fundamental parts of our code at least twice. It

is time to put it all together to get an overall view of what we have achieved so far.

Behold your pipeline: Data Preparation V2, Model Configuration V3, and Model

Training V5!

Run - Data Preparation V2

 1 # %load data_preparation/v2.py
 2 
 3 torch.manual_seed(13)
 4 
 5 # Builds tensors from numpy arrays BEFORE split
 6 x_tensor = torch.as_tensor(x).float()
 7 y_tensor = torch.as_tensor(y).float()
 8 
 9 # Builds dataset containing ALL data points
10 dataset = TensorDataset(x_tensor, y_tensor)
11 
12 # Performs the split
13 ratio = .8
14 n_total = len(dataset)
15 n_train = int(n_total * ratio)
16 n_val = n_total - n_train
17 train_data, val_data = random_split(dataset, [n_train, n_val])
18 # Builds a loader of each set
19 train_loader = DataLoader(
20     dataset=train_data,
21     batch_size=16,
22     shuffle=True,
23 )
24 val_loader = DataLoader(dataset=val_data, batch_size=16)
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Run - Model Configuration V3

 1 # %load model_configuration/v3.py
 2 
 3 device = 'cuda' if torch.cuda.is_available() else 'cpu'
 4 
 5 # Sets learning rate - this is "eta" ~ the "n"-like Greek letter
 6 lr = 0.1
 7 
 8 torch.manual_seed(42)
 9 # Now we can create a model and send it at once to the device
10 model = nn.Sequential(nn.Linear(1, 1)).to(device)
11 
12 # Defines an SGD optimizer to update the parameters
13 optimizer = optim.SGD(model.parameters(), lr=lr)
14 
15 # Defines an MSE loss function
16 loss_fn = nn.MSELoss(reduction='mean')
17 
18 # Creates the train_step function for our model,
19 # loss function and optimizer
20 train_step_fn = make_train_step_fn(model, loss_fn, optimizer)
21 
22 # Creates the val_step function for our model and loss function
23 val_step_fn = make_val_step_fn(model, loss_fn)
24 
25 # Creates a Summary Writer to interface with TensorBoard
26 writer = SummaryWriter('runs/simple_linear_regression')
27 # Fetches a single mini-batch so we can use add_graph
28 x_dummy, y_dummy = next(iter(train_loader))
29 writer.add_graph(model, x_dummy.to(device))
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Run - Model Training V5

 1 # %load model_training/v5.py
 2 
 3 # Defines number of epochs
 4 n_epochs = 200
 5 
 6 losses = []
 7 val_losses = []
 8 
 9 for epoch in range(n_epochs):
10     # inner loop
11     loss = mini_batch(device, train_loader, train_step_fn)
12     losses.append(loss)
13 
14     # VALIDATION - no gradients in validation!
15     with torch.no_grad():
16         val_loss = mini_batch(device, val_loader, val_step_fn)
17         val_losses.append(val_loss)
18 
19     # Records both losses for each epoch under tag "loss"
20     writer.add_scalars(main_tag='loss',
21                        tag_scalar_dict={
22                             'training': loss,
23                             'validation': val_loss},
24                        global_step=epoch)
25 
26 # Closes the writer
27 writer.close()

print(model.state_dict())

Output

OrderedDict([('0.weight', tensor([[1.9440]], device='cuda:0')),
('0.bias', tensor([1.0249], device='cuda:0'))])
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This is the general structure you’ll use over and over again for

training PyTorch models.

Sure, a different dataset and problem will require a different

model and loss function, and you may want to try a different

optimizer and a cycling learning rate (we’ll get to that later!), but

the rest is likely to remain exactly the same.

Recap

We have covered a lot of ground in this chapter:

• writing a higher-order function that builds functions to perform training steps

• understanding PyTorch’s Dataset and TensorDataset classes, implementing its

__init__(), __getitem__(), and __len__() methods

• using PyTorch’s DataLoader class to generate mini-batches out of a dataset

• modifying our training loop to incorporate mini-batch gradient descent logic

• writing a helper function to handle the mini-batch inner loop

• using PyTorch’s random_split() method to generate training and validation

datasets

• writing a higher-order function that builds functions to perform validation

steps

• realizing the importance of including model.eval() inside the validation loop

• remembering the purpose of no_grad() and using it to prevent any kind of

gradient computation during validation

• using SummaryWriter to interface with TensorBoard for logging

• adding a graph representing our model to TensorBoard

• sending scalars to TensorBoard to track the evolution of training and validation

losses

• saving / checkpointing and loading models to and from disk to allow resuming

model training or deployment

• realizing the importance of setting the mode of the model: train() or eval(),

for checkpointing or deploying for prediction, respectively
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Congratulations! You now possess the necessary knowledge and tools to tackle

more interesting (and complex!) problems using PyTorch. We’ll put them to good

use in the next chapters.

[53] https://github.com/dvgodoy/PyTorchStepByStep/blob/master/Chapter02.ipynb

[54] https://colab.research.google.com/github/dvgodoy/PyTorchStepByStep/blob/master/Chapter02.ipynb

[55] https://bit.ly/3jJtJeT

[56] https://bit.ly/37vJVdG

[57] https://bit.ly/39u1tbo

[58] https://bit.ly/39ovRUx

[59] https://www.geeksforgeeks.org/context-manager-in-python/

[60] https://www.tensorflow.org/tensorboard/tensorboard_in_notebooks
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Chapter 2.1
Going Classy

Spoilers

In this chapter, we will:

• define a class to handle model training

• implement the constructor method

• understand the difference between public, protected, and private methods of

a class

• integrate the code we’ve developed so far into our class

• instantiate our class and use it to run a classy pipeline

Jupyter Notebook

The Jupyter notebook corresponding to Chapter 2.1[61] is part of the official Deep

Learning with PyTorch Step-by-Step repository on GitHub. You can also run it

directly in Google Colab[62].

If you’re using a local installation, open your terminal or Anaconda prompt and

navigate to the PyTorchStepByStep folder you cloned from GitHub. Then, activate

the pytorchbook environment and run jupyter notebook:

$ conda activate pytorchbook

(pytorchbook)$ jupyter notebook

If you’re using Jupyter’s default settings, this link should open Chapter 2.1’s

notebook. If not, just click on Chapter02.1.ipynb on your Jupyter’s home page.

Imports

For the sake of organization, all libraries needed throughout the code used in any

given chapter are imported at its very beginning. For this chapter, we’ll need the

following imports:

Spoilers | 175

https://github.com/dvgodoy/PyTorchStepByStep/blob/master/Chapter02.1.ipynb
https://colab.research.google.com/github/dvgodoy/PyTorchStepByStep/blob/master/Chapter02.1.ipynb
http://localhost:8888/notebooks/Chapter02.1.ipynb


import numpy as np
import datetime

import torch
import torch.optim as optim
import torch.nn as nn
import torch.functional as F
from torch.utils.data import DataLoader, TensorDataset, random_split
from torch.utils.tensorboard import SummaryWriter

import matplotlib.pyplot as plt
%matplotlib inline
plt.style.use('fivethirtyeight')

Going Classy

So far, the %%writefile magic has helped us to organize the code into three distinct

parts: data preparation, model configuration, and model training. At the end of

Chapter 2, though, we bumped into some of its limitations, like being unable to

choose a different number of epochs without having to edit the model training

code.

Clearly, this situation is not ideal. We need to do better. We need to go classy; that

is, we need to build a class to handle the model training part.



I am assuming you have a working knowledge of object-oriented

programming (OOP) in order to benefit the most from this

chapter. If that’s not the case, and if you didn’t do it in Chapter 1,

now is the time to follow tutorials like Real Python’s "Object-

Oriented Programming (OOP) in Python 3"[63] and "Supercharge

Your Classes With Python super()."[64]

The Class

Let’s start by defining our class with a rather unoriginal name: StepByStep. We’re

starting it from scratch: Either we don’t specify a parent class, or we inherit it from

the fundamental object class. I personally prefer the latter, so our class definition

looks like this:
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# A completely empty (and useless) class
class StepByStep(object):
    pass

Boring, right? Let’s make it more interesting.

The Constructor

 "From where do we start building a class?"

That would be the constructor, the __init__(self) method that we’ve already

seen a couple of times when handling both model and dataset classes.

The constructor defines the parts that make up the class. These parts are the

attributes of the class. Typical attributes include:

• arguments provided by the user

• placeholders for other objects that are not available at the moment of creation

(pretty much like delayed arguments)

• variables we may want to keep track of

• functions that are dynamically built using some of the arguments and higher-

order functions

Let’s see how each of these applies to our problem.

Arguments

Let’s start with the arguments, the part that needs to be specified by the user. At

the beginning of Chapter 2, we asked ourselves: "Would the code inside the training

loop change if we were using a different optimizer, or loss, or even model?" The answer

was and still is, no, it wouldn’t change.

So, these three elements, optimizer, loss, and model, will be our main arguments.

The user needs to specify these; we can’t figure them out on our own.

But there is one more piece of information needed: the device to be used for

training the model. Instead of asking the user to supply it, we’ll automatically check

if there is a GPU available and fall back to a CPU if there isn’t. But we still want to

give the user a chance to use a different device (whatever the reason may be); thus,
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we add a very simple method (conveniently named to()) that allows the user to

specify a device.

Our constructor (__init__()) method will initially look like this:

class StepByStep(object):
    def __init__(self, model, loss_fn, optimizer):
        # Here we define the attributes of our class
        # We start by storing the arguments as attributes
        # to use later
        self.model = model
        self.loss_fn = loss_fn
        self.optimizer = optimizer
        self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
        # Let's send the model to the specified device right away
        self.model.to(self.device)

    def to(self, device):
        # This method allows the user to specify a different device
        # It sets the corresponding attribute (to be used later in
        # the mini-batches) and sends the model to the device
        try:
            self.device = device
            self.model.to(self.device)
        except RuntimeError:
            self.device = ('cuda' if torch.cuda.is_available()
                           else 'cpu')
            print(f"Couldn't send it to {device}, \
                    sending it to {self.device} instead.")
            self.model.to(self.device)

Placeholders

Next, let’s tackle the placeholders or delayed arguments. We expect the user to

eventually provide some of these, as they are not necessarily required. There are

another three elements that fall into that category: train and validation data

loaders and a summary writer to interface with TensorBoard.

We need to append the following code to the constructor method above (I am not

reproducing the rest of the method here for the sake of simplicity; in the Jupyter

notebook you’ll find the full code):
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        # These attributes are defined here, but since they are
        # not available at the moment of creation, we keep them None
        self.train_loader = None
        self.val_loader = None
        self.writer = None

The train data loader is obviously required. How could we possibly train a model

without it?

 "Why don’t we make the train data loader an argument then?"

Conceptually speaking, the data loader (and the dataset it contains) is not part of

the model. It is the input we use to train the model. Since we can specify a model

without it, it shouldn’t be made an argument of our class.

In other words, our StepByStep class is defined by a particular combination of

arguments (model, loss function, and optimizer), which can then be used to

perform model training on any (compatible) dataset.

The validation data loader is not required (although it is recommended), and the

summary writer is definitely optional.

The class should implement methods to allow the user to supply those at a later

time (both methods should be placed inside the StepByStep class, after the

constructor method):

    def set_loaders(self, train_loader, val_loader=None):
        # This method allows the user to define which train_loader
        # (and val_loader, optionally) to use
        # Both loaders are then assigned to attributes of the class
        # So they can be referred to later
        self.train_loader = train_loader
        self.val_loader = val_loader

    def set_tensorboard(self, name, folder='runs'):
        # This method allows the user to create a SummaryWriter to
        # interface with TensorBoard
        suffix = datetime.datetime.now().strftime('%Y%m%d%H%M%S')
        self.writer = SummaryWriter(f'{folder}/{name}_{suffix}')
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"Why do we need to specify a default value to the val_loader? Its

placeholder value is already None."

Since the validation loader is optional, setting a default value for a particular

argument in the method’s definition frees the user from having to provide that

argument when calling the method. The best default value, in our case, is the same

value we chose when specifying the placeholder for the validation loader: None.

Variables

Then, there are variables we may want to keep track of. Typical examples are the

number of epochs, and the training and validation losses. These variables are likely

to be computed and updated internally by the class.

We need to append the following code to the constructor method (like we did

with the placeholders):

        # These attributes are going to be computed internally
        self.losses = []
        self.val_losses = []
        self.total_epochs = 0


"Can’t we just set these variables whenever we use them for the first

time?"

Yes, we could, and we would probably get away with it just fine since our class is

quite simple. As classes grow more complex, though, it may lead to problems. So, it

is best practice to define all attributes of a class in the constructor method.

Functions

For convenience, sometimes it is useful to create attributes that are functions,

which will be called somewhere else inside the class. In our case, we can create

both train_step_fn() and val_step_fn() using the higher-order functions we

defined in Chapter 2 (Helper Functions #1 and #3, respectively). Both of them take

a model, a loss function, and an optimizer as arguments, and all of those are already

known attributes of our StepByStep class at construction time.

The code below will be the last addition to our constructor method (once again, as

we did with the placeholders):
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        # Creates the train_step function for our model,
        # loss function and optimizer
        # Note: there are NO ARGS there! It makes use of the class
        # attributes directly
        self.train_step_fn = self._make_train_step_fn()
        # Creates the val_step function for our model and loss
        self.val_step_fn = self._make_val_step_fn()

If you have patched together the pieces of code above, your code should look like

this:

StepByStep Class

class StepByStep(object):
    def __init__(self, model, loss_fn, optimizer):
        # Here we define the attributes of our class
        # We start by storing the arguments as attributes
        # to use them later
        self.model = model
        self.loss_fn = loss_fn
        self.optimizer = optimizer
        self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
        # Let's send the model to the specified device right away
        self.model.to(self.device)

        # These attributes are defined here, but since they are
        # not available at the moment of creation, we keep them None
        self.train_loader = None
        self.val_loader = None
        self.writer = None

        # These attributes are going to be computed internally
        self.losses = []
        self.val_losses = []
        self.total_epochs = 0

        # Creates the train_step function for our model,
        # loss function and optimizer
        # Note: there are NO ARGS there! It makes use of the class
        # attributes directly
        self.train_step_fn = self._make_train_step_fn()
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        # Creates the val_step function for our model and loss
        self.val_step_fn = self._make_val_step_fn()

    def to(self, device):
        # This method allows the user to specify a different device
        # It sets the corresponding attribute (to be used later in
        # the mini-batches) and sends the model to the device
        try:
            self.device = device
            self.model.to(self.device)
        except RuntimeError:
            self.device = ('cuda' if torch.cuda.is_available()
                           else 'cpu')
            print(f"Couldn't send it to {device}, \
                    sending it to {self.device} instead.")
            self.model.to(self.device)

    def set_loaders(self, train_loader, val_loader=None):
        # This method allows the user to define which train_loader
        # (and val_loader, optionally) to use
        # Both loaders are then assigned to attributes of the class
        # So they can be referred to later
        self.train_loader = train_loader
        self.val_loader = val_loader

    def set_tensorboard(self, name, folder='runs'):
        # This method allows the user to create a SummaryWriter to
        # interface with TensorBoard
        suffix = datetime.datetime.now().strftime('%Y%m%d%H%M%S')
        self.writer = SummaryWriter(f'{folder}/{name}_{suffix}')

Sure, we are still missing both _make_train_step_fn() and _make_val_step_fn()
functions. Both are pretty much the same as before, except that they refer to the

class attributes self.model, self.loss_fn, and self.optimizer, instead of taking

them as arguments. They look like this now:

Step Methods

def _make_train_step_fn(self):
    # This method does not need ARGS... it can use directly
    # the attributes: self.model, self.loss_fn and self.optimizer
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    # Builds function that performs a step in the train loop
    def perform_train_step_fn(x, y):
        # Sets model to TRAIN mode
        self.model.train()

        # Step 1 - Computes model's predicted output - forward pass
        yhat = self.model(x)
        # Step 2 - Computes the loss
        loss = self.loss_fn(yhat, y)
        # Step 3 - Computes gradients for "b" and "w" parameters
        loss.backward()
        # Step 4 - Updates parameters using gradients and the
        # learning rate
        self.optimizer.step()
        self.optimizer.zero_grad()

        # Returns the loss
        return loss.item()

    # Returns the function that will be called inside the train loop
    return perform_train_step_fn

def _make_val_step_fn(self):
    # Builds function that performs a step in the validation loop
    def perform_val_step_fn(x, y):
        # Sets model to EVAL mode
        self.model.eval()

        # Step 1 - Computes model's predicted output - forward pass
        yhat = self.model(x)
        # Step 2 - Computes the loss
        loss = self.loss_fn(yhat, y)
        # There is no need to compute Steps 3 and 4,
        # since we don't update parameters during evaluation
        return loss.item()

    return perform_val_step_fn


"Why do these methods have an underscore as a prefix? How is this

different than the double underscore in the __init__() method?"
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Methods, _methods, and __methods

Some programming languages, like Java, have three kinds of methods: public,

protected, and private. Public methods are the kind you’re most familiar

with: They can be called by the user.

Protected methods, on the other hand, shouldn’t be called by the user—they

are supposed to be called either internally or by the child class (the child

class can call a protected method from its parent class).

Finally, private methods are supposed to be called exclusively internally.

They should be invisible even to a child class.

These rules are strictly enforced in Java, but Python takes a more relaxed

approach: All methods are public, meaning you can call whatever method

you want. But you can suggest the appropriate usage by prefixing the

method name with a single underscore (for protected methods) or a double

underscore (for private methods). This way, the user is aware of the

programmer’s intention.

In our example, both _make_train_step_fn() and _make_val_step_fn() are

defined as protected methods. I expect users not to call them directly, but if

someone decides to define a class that inherits from StepByStep, they should feel

entitled to do so.

In order to make the additions to our code visually simpler; that is, without having

to replicate the full class every time I introduce a new method, I am resorting to

something that shouldn’t be used in regular circumstances: setattr.[65]

# ATTENTION! Using SETATTR for educational purposes only :-)
setattr(StepByStep, '_make_train_step_fn', _make_train_step_fn)
setattr(StepByStep, '_make_val_step_fn', _make_val_step_fn)


Using setattr is a hack, I can’t stress this enough! Please don’t

use setattr in your regular code.
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setattr

The setattr function sets the value of the specified attribute of a given

object. But methods are also attributes, so we can use this function to

"attach" a method to an existing class and to all its existing instances in one

go!

Yes, this is a hack! No, you should not use it in your regular code! Using

setattr to build a class by appending methods to it incrementally serves

educational purposes only.

To illustrate how it works and why it may be dangerous, I will show you a

little example. Let’s create a simple Dog class, which takes only the dog’s

name as argument:

class Dog(object):
    def __init__(self, name):
        self.name = name

Next, let’s instantiate our class; that is, we are creating a dog. Let’s call it Rex.

Its name is going to be stored in the name attribute:

rex = Dog('Rex')
print(rex.name)

Output

Rex

Then, let’s create a bark() function that takes an instance of Dog as

argument:

def bark(dog):
    print('{} barks: "Woof!"'.format(dog.name))

Sure enough, we can call this function to make Rex bark:
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bark(rex)

Output

Rex barks: "Woof!"

But that’s not what we want. We want our dogs to be able to bark out of the

box! So we will use setattr to give dogs the ability to bark. There is one

thing we need to change, though, and that’s the function’s argument. Since

we want the bark function to be a method of the Dog class itself, the

argument needs to be the method’s own instance: self.

def bark(self):
    print('{} barks: "Woof!"'.format(self.name))

setattr(Dog, 'bark', bark)

Does it work? Let’s create a new dog:

fido = Dog('Fido')
fido.bark()

Output

Fido barks: "Woof!"

Of course it works! Not only new dogs can bark now, but all dogs can bark:

rex.bark()

Output

Rex barks: "Woof!"
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See? We effectively modified the underlying Dog class and all its instances at

once! It looks very cool, sure. And it can wreak havoc too!

Instead of creating an attribute or method directly in the class, as we’ve been doing

so far, it is possible to use setattr to create them dynamically. In our StepByStep
class, the last two lines of code created two methods in the class, each having the

same name of the function used to create the method.

OK, but there are still some parts missing in order to perform model training. Let’s

keep adding more methods.

Training Methods

The next method we need to add corresponds to the Helper Function #2 in

Chapter 2: the mini-batch loop. We need to change it a bit, though; there, both the

data loader and the step function were arguments. This is not the case anymore

since we have both of them as attributes: self.train_loader and

self.train_step_fn, for training; self.val_loader and self.val_step_fn, for

validation. The only thing this method needs to know is if it is handling training or

validation data.
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The code should look like this:

Mini-Batch

 1 def _mini_batch(self, validation=False):
 2     # The mini-batch can be used with both loaders
 3     # The argument `validation` defines which loader and
 4     # corresponding step function are going to be used
 5     if validation:
 6         data_loader = self.val_loader
 7         step_fn = self.val_step_fn
 8     else:
 9         data_loader = self.train_loader
10         step_fn = self.train_step_fn
11 
12     if data_loader is None:
13         return None
14 
15     # Once the data loader and step function are set, this is the
16     # same mini-batch loop we had before
17     mini_batch_losses = []
18     for x_batch, y_batch in data_loader:
19         x_batch = x_batch.to(self.device)
20         y_batch = y_batch.to(self.device)
21 
22         mini_batch_loss = step_fn(x_batch, y_batch)
23         mini_batch_losses.append(mini_batch_loss)
24 
25     loss = np.mean(mini_batch_losses)
26 
27     return loss
28 
29 setattr(StepByStep, '_mini_batch', _mini_batch)

Moreover, if the user decides not to provide a validation loader, it will retain its

initial None value from the constructor method. If that’s the case, we don’t have a

corresponding loss to compute, and it returns None instead (line 13 in the snippet

above).

What’s left to do? The training loop, of course! This is similar to our Model Training

V5 in Chapter 2, but we can make it more flexible, taking the number of epochs and
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the random seed as arguments.

This solves the issue we faced in Chapter 2, when we had to train for another 200

epochs after loading a checkpoint, just because it was hard-coded into the training

loop. Well, not anymore!

Moreover, we need to ensure the reproducibility of the training loop. We already

set up seeds to ensure the reproducibility of the random split (data preparation) and

the model initialization (model configuration). So far, we have been running the full

pipeline in order, so the training loop yielded the same results every time. Now, to

gain flexibility without compromising reproducibility, we need to set yet another

random seed.

We’re building a method to take care of seed-setting only, following PyTorch’s

guidelines on reproducibility[66]:

Seeds

def set_seed(self, seed=42):
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False
    torch.manual_seed(seed)
    np.random.seed(seed)

setattr(StepByStep, 'set_seed', set_seed)

It is also time to use the variables we defined as attributes in the constructor

method: self.total_epochs, self.losses, and self.val_losses. All of them are

being updated inside the training loop.
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Training Loop

def train(self, n_epochs, seed=42):
    # To ensure reproducibility of the training process
    self.set_seed(seed)

    for epoch in range(n_epochs):
        # Keeps track of the number of epochs
        # by updating the corresponding attribute
        self.total_epochs += 1

        # inner loop
        # Performs training using mini-batches
        loss = self._mini_batch(validation=False)
        self.losses.append(loss)

        # VALIDATION
        # no gradients in validation!
        with torch.no_grad():
            # Performs evaluation using mini-batches
            val_loss = self._mini_batch(validation=True)
            self.val_losses.append(val_loss)

        # If a SummaryWriter has been set...
        if self.writer:
            scalars = {'training': loss}
            if val_loss is not None:
                scalars.update({'validation': val_loss})
            # Records both losses for each epoch under tag "loss"
            self.writer.add_scalars(main_tag='loss',
                                    tag_scalar_dict=scalars,
                                    global_step=epoch)

    if self.writer:
        # Flushes the writer
        self.writer.flush()

setattr(StepByStep, 'train', train)

Did you notice this function does not return anything? It doesn’t need to! Instead

of returning values, it simply updates several class attributes: self.losses,

self.val_losses, and self.total_epochs.
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The current state of development of our StepByStep class already allows us to train

a model fully. Now, let’s give our class the ability to save and load models as well.

Saving and Loading Models

Most of the code here is exactly the same as the code we had in Chapter 2. The only

difference is that we use the class' attributes instead of local variables.

The methods for saving and loading checkpoints should look like this now:

Saving

def save_checkpoint(self, filename):
    # Builds dictionary with all elements for resuming training
    checkpoint = {
        'epoch': self.total_epochs,
        'model_state_dict': self.model.state_dict(),
        'optimizer_state_dict': self.optimizer.state_dict(),
        'loss': self.losses,
        'val_loss': self.val_losses
    }
    torch.save(checkpoint, filename)

setattr(StepByStep, 'save_checkpoint', save_checkpoint)

Loading

def load_checkpoint(self, filename):
    # Loads dictionary
    checkpoint = torch.load(filename)
    # Restore state for model and optimizer
    self.model.load_state_dict(checkpoint['model_state_dict'])
    self.optimizer.load_state_dict(
        checkpoint['optimizer_state_dict']
    )
    self.total_epochs = checkpoint['epoch']
    self.losses = checkpoint['loss']
    self.val_losses = checkpoint['val_loss']
    self.model.train() # always use TRAIN for resuming training

setattr(StepByStep, 'load_checkpoint', load_checkpoint)
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Notice that the model is set to training mode after loading the checkpoint.

What about making predictions? To make it easier for the user to make predictions

for any new data points, we will be handling all the Numpy to PyTorch back and

forth conversion inside the function.

Making Predictions

def predict(self, x):
    # Set it to evaluation mode for predictions
    self.model.eval()
    # Take a Numpy input and make it a float tensor
    x_tensor = torch.as_tensor(x).float()
    # Send input to device and use model for prediction
    y_hat_tensor = self.model(x_tensor.to(self.device))
    # Set it back to train mode
    self.model.train()
    # Detach it, bring it to CPU and back to Numpy
    return y_hat_tensor.detach().cpu().numpy()

setattr(StepByStep, 'predict', predict)

First, we set the model to evaluation mode, as it is required in order to make

predictions. Then, we convert the x argument (assumed to be a Numpy array) to a

float PyTorch tensor, send it to the configured device, and use the model to make a

prediction.

Next, we set the model back to training mode. The last step includes detaching the

tensor containing the predictions and making it a Numpy array to be returned to

the user.

We have already covered most of what was developed in the previous chapters,

except for a couple of visualization functions. Let’s tackle them now.

Visualization Methods

Since we have kept track of both training and validation losses as attributes, let’s

build a simple plot for them:
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Losses

def plot_losses(self):
    fig = plt.figure(figsize=(10, 4))
    plt.plot(self.losses, label='Training Loss', c='b')
    if self.val_loader:
        plt.plot(self.val_losses, label='Validation Loss', c='r')
    plt.yscale('log')
    plt.xlabel('Epochs')
    plt.ylabel('Loss')
    plt.legend()
    plt.tight_layout()
    return fig

setattr(StepByStep, 'plot_losses', plot_losses)

Finally, if both training loader and TensorBoard were already configured, we can

use the former to fetch a single mini-batch and the latter to build the model graph

in TensorBoard:

Model Graph

def add_graph(self):
    if self.train_loader and self.writer:
        # Fetches a single mini-batch so we can use add_graph
        x_dummy, y_dummy = next(iter(self.train_loader))
        self.writer.add_graph(self.model, x_dummy.to(self.device))

setattr(StepByStep, 'add_graph', add_graph)

The Full Code

If you’d like to check what the full code of the class looks like, you can see it here[67]

or in the Jupyter notebook of this chapter.

We are classy now, so let’s build a classy pipeline too!
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Classy Pipeline

In Chapter 2, our pipeline was composed of three steps: Data Preparation V2,

Model Configuration V3, and Model Training V5. The last step, model training, has

already been integrated into our StepByStep class. Let’s take a look at the other

two steps.

But, first, let’s generate our synthetic data once again.

Run - Data Generation

# Runs data generation - so we do not need to copy code here
%run -i data_generation/simple_linear_regression.py

Figure 2.1.1 - Full dataset

Looks familiar, doesn’t it?

The first part of the pipeline is the data preparation. It turns out, we can keep it

exactly the way it was.
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Run - Data Preparation V2

 1 # %load data_preparation/v2.py
 2 
 3 torch.manual_seed(13)
 4 
 5 # Builds tensors from Numpy arrays BEFORE split
 6 x_tensor = torch.as_tensor(x).float()
 7 y_tensor = torch.as_tensor(y).float()
 8 
 9 # Builds dataset containing ALL data points
10 dataset = TensorDataset(x_tensor, y_tensor)
11 
12 # Performs the split
13 ratio = .8
14 n_total = len(dataset)
15 n_train = int(n_total * ratio)
16 n_val = n_total - n_train
17 
18 train_data, val_data = random_split(dataset, [n_train, n_val])
19 
20 # Builds a loader of each set
21 train_loader = DataLoader(
22     dataset=train_data,
23     batch_size=16,
24     shuffle=True
25 )
26 val_loader = DataLoader(dataset=val_data, batch_size=16)

Next in line is the model configuration. Some of its code got integrated into our

class already: both train_step_fn() and val_step_fn() functions, the

SummaryWriter, and adding the model graph.

So, we strip the model configuration code down to its bare minimum; that is, we

keep only the elements we need to pass as arguments to our StepByStep class:

model, loss function, and optimizer. Notice that we do not send the model to the

device at this point anymore since that is going to be handled by our class'

constructor.
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Define - Model Configuration V4

 1 %%writefile model_configuration/v4.py
 2 
 3 # Sets learning rate - this is "eta" ~ the "n"-like Greek letter
 4 lr = 0.1
 5 
 6 torch.manual_seed(42)
 7 # Now we can create a model
 8 model = nn.Sequential(nn.Linear(1, 1))
 9 
10 # Defines an SGD optimizer to update the parameters
11 # (now retrieved directly from the model)
12 optimizer = optim.SGD(model.parameters(), lr=lr)
13 
14 # Defines an MSE loss function
15 loss_fn = nn.MSELoss(reduction='mean')

Run - Model Configuration V4

%run -i model_configuration/v4.py

Let’s inspect the randomly initialized parameters of our model:

print(model.state_dict())

Output

OrderedDict([('0.weight', tensor([[0.7645]])),
             ('0.bias', tensor([0.8300]))])

These are CPU tensors, since our model wasn’t sent anywhere (yet).

And now the fun begins: Let’s put our StepByStep class to good use and train our

model.
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Model Training

We start by instantiating the StepByStep class with the corresponding arguments.

Next, we set its loaders using the appropriately named method set_loaders().

Then, we set up an interface with TensorBoard and name our experiment classy

(what else could it be?!).

Notebook Cell 2.1.1

1 sbs = StepByStep(model, loss_fn, optimizer)
2 sbs.set_loaders(train_loader, val_loader)
3 sbs.set_tensorboard('classy')

One important thing to notice is that the model attribute of the sbs object is the

same object as the model variable created in the model configuration. It is not a

copy! We can easily verify this:

print(sbs.model == model)
print(sbs.model)

Output

True
Sequential(
  (0): Linear(in_features=1, out_features=1, bias=True)
)

As expected, the equality holds. If we print the model itself, we get our simple one

input-one output model.

Let’s train the model now, using the same 200 epochs as before:

Notebook Cell 2.1.2

1 sbs.train(n_epochs=200)

Done! It is trained! Really? Really! Let’s check it out:
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print(model.state_dict()) # remember, model == sbs.model
print(sbs.total_epochs)

Output

OrderedDict([('0.weight', tensor([[1.9414]], device='cuda:0')),
             '0.bias', tensor([1.0233], device='cuda:0'))])
200

Our class sent the model to the available device (a GPU, in this case), and now the

model’s parameters are GPU tensors.

The weights of our trained model are quite close to the ones we got in Chapter 2.

They are slightly different, though, because we are now using yet another random

seed before starting the training loop. The total number of epochs was tracked by

the total_epochs attribute, as expected.

Let’s take a look at the losses:

fig = sbs.plot_losses()

Figure 2.1.2 - Losses

Again, no surprises here; what about making predictions for new, never seen

before data points?
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Making Predictions

Let’s make up some data points for our feature x, and shape them as a single-

column matrix:

new_data = np.array([.5, .3, .7]).reshape(-1, 1)

Output

array([[0.5],
       [0.3],
       [0.7]])

Since the Numpy array to PyTorch tensor conversion is already handled by the

predict() method, we can call the method right away, passing the array as its

argument:

predictions = sbs.predict(new_data)
predictions

Output

array([[1.9939734],
       [1.6056864],
       [2.3822603]], dtype=float32)

And now we have predictions! Easy, right?

What if, instead of making predictions, we wanted to checkpoint the model to

resume training later?

Checkpointing

That’s a no-brainer—the save_checkpoint() method handles the state dictionaries

for us and saves them to a file:
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Notebook Cell 2.1.3

sbs.save_checkpoint('model_checkpoint.pth')

Resuming Training

Remember, when we did this in Chapter 2 we had to set the stage, loading the data

and configuring the model, before actually loading the model. We still need to do

this, but we are now using the latest version of model configuration:

Run - Model Configuration V4

%run -i model_configuration/v4.py

Let’s double-check that we do have an untrained model:

print(model.state_dict())

Output

OrderedDict([('0.weight', tensor([[0.7645]], device='cuda:0')),
             ('0.bias', tensor([0.8300], device='cuda:0'))])

Good, same as before! Besides, the model configuration has created the three

elements we need to pass as arguments to instantiate our StepByStep class:

Notebook Cell 2.1.4

new_sbs = StepByStep(model, loss_fn, optimizer)

Next, let’s load the trained model back using the load_checkpoint() method and

then inspect the model’s weights:

Notebook Cell 2.1.5

new_sbs.load_checkpoint('model_checkpoint.pth')
print(model.state_dict())
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Output

OrderedDict([('0.weight', tensor([[1.9414]], device='cuda:0')),
             ('0.bias', tensor([1.0233], device='cuda:0'))])

Great, these are the weights of our trained model. Let’s train it a bit further.

In Chapter 2, we could only train it for another 200 epochs since the number of

epochs was hard-coded. Not anymore! Thanks to our StepByStep class, we have

the flexibility to train the model for as many epochs as we please.

But we are still missing one thing … the data! First, we need to set the data

loader(s), and then we can train our model for another, say, 50 epochs.

Notebook Cell 2.1.6

new_sbs.set_loaders(train_loader, val_loader)
new_sbs.train(n_epochs=50)

Let’s take a look at the losses:

fig = new_sbs.plot_losses()

Figure 2.1.3 - More losses!

We have loss values over 250 epochs now. The losses for the first 200 epochs were

loaded from the checkpoint, and the losses for the last 50 epochs were computed

after training was resumed. Once again, as in Chapter 2, the overall levels of the

losses didn’t change much.
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If the losses haven’t changed, it means the training loss was at a minimum already.

So, we expect the weights to remain unchanged. Let’s check it out:

print(sbs.model.state_dict())

Output

OrderedDict([('0.weight', tensor([[1.9414]], device='cuda:0')),
('0.bias', tensor([1.0233], device='cuda:0'))])

No changes, indeed.

Putting It All Together

In this chapter, we have heavily modified the training pipeline. Even though the

data preparation part was left unchanged, the model configuration part was

reduced to its bare minimum, and the model training part was fully integrated into

the StepByStep class. In other words, our pipeline went classy!
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Run - Data Preparation V2

 1 # %load data_preparation/v2.py
 2 
 3 torch.manual_seed(13)
 4 
 5 # Builds tensors from Numpy arrays BEFORE split
 6 x_tensor = torch.as_tensor(x).float()
 7 y_tensor = torch.as_tensor(y).float()
 8 
 9 # Builds dataset containing ALL data points
10 dataset = TensorDataset(x_tensor, y_tensor)
11 
12 # Performs the split
13 ratio = .8
14 n_total = len(dataset)
15 n_train = int(n_total * ratio)
16 n_val = n_total - n_train
17 
18 train_data, val_data = random_split(dataset, [n_train, n_val])
19 
20 # Builds a loader of each set
21 train_loader = DataLoader(
22     dataset=train_data,
23     batch_size=16,
24     shuffle=True
25 )
26 val_loader = DataLoader(dataset=val_data, batch_size=16)
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Run - Model Configuration V4

 1 # %load model_configuration/v4.py
 2 
 3 # Sets learning rate - this is "eta" ~ the "n"-like Greek letter
 4 lr = 0.1
 5 
 6 torch.manual_seed(42)
 7 # Now we can create a model
 8 model = nn.Sequential(nn.Linear(1, 1))
 9 
10 # Defines an SGD optimizer to update the parameters
11 # (now retrieved directly from the model)
12 optimizer = optim.SGD(model.parameters(), lr=lr)
13 
14 # Defines an MSE loss function
15 loss_fn = nn.MSELoss(reduction='mean')

Run - Model Training

1 n_epochs = 200
2 
3 sbs = StepByStep(model, loss_fn, optimizer)
4 sbs.set_loaders(train_loader, val_loader)
5 sbs.set_tensorboard('classy')
6 sbs.train(n_epochs=n_epochs)

print(model.state_dict())

Output

OrderedDict([('0.weight', tensor([[1.9414]], device='cuda:0')),
             ('0.bias', tensor([1.0233], device='cuda:0'))])

Recap

In this chapter, we’ve revisited and reimplemented many methods. This is what

we’ve covered:
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• defining our StepByStep class

• understanding the purpose of the constructor (__init__()) method

• defining the arguments of the constructor method

• defining class' attributes to store arguments, placeholders, and variables we need

to keep track of

• defining functions as attributes, using higher-order functions and the class'

attributes to build functions that perform training and validation steps

• understanding the difference between public, protected, and private methods,

and Python’s "relaxed" approach to it

• creating methods to set data loaders and TensorBoard integration

• (re)implementing training methods: _mini_batch() and train()

• implementing saving and loading methods: save_checkpoint() and

load_checkpoint()

• implementing a method for making predictions that takes care of all

boilerplate code regarding Numpy-to-PyTorch conversion and back

• implementing methods to plot losses and add the model’s graph to

TensorBoard

• instantiating our StepByStep class and running a classy pipeline: configuring

the model, loading the data, training the model, making predictions,

checkpointing, and resuming training. The whole nine yards!

Congratulations! You have developed a fully functioning class that implements all

methods relevant to model training and evaluation. From now on, we’ll use it over

and over again to tackle different tasks and models. Next stop: classification!

[61] https://github.com/dvgodoy/PyTorchStepByStep/blob/master/Chapter02.1.ipynb

[62] https://colab.research.google.com/github/dvgodoy/PyTorchStepByStep/blob/master/Chapter02.1.ipynb

[63] https://realpython.com/python3-object-oriented-programming/

[64] https://realpython.com/python-super/

[65] https://www.w3schools.com/python/ref_func_setattr.asp

[66] https://pytorch.org/docs/stable/notes/randomness.html

[67] https://github.com/dvgodoy/PyTorchStepByStep/blob/master/stepbystep/v0.py
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Chapter 3
A Simple Classification Problem

Spoilers

In this chapter, we will:

• build a model for binary classification

• understand the concept of logits and how it is related to probabilities

• use binary cross-entropy loss to train a model

• use the loss function to handle imbalanced datasets

• understand the concepts of decision boundary and separability

• learn how the choice of a classification threshold impacts evaluation metrics

• build ROC and precision-recall curves

Jupyter Notebook

The Jupyter notebook corresponding to Chapter 3[68] is part of the official Deep

Learning with PyTorch Step-by-Step repository on GitHub. You can also run it

directly in Google Colab[69].

If you’re using a local installation, open your terminal or Anaconda prompt and

navigate to the PyTorchStepByStep folder you cloned from GitHub. Then, activate

the pytorchbook environment and run jupyter notebook:

$ conda activate pytorchbook

(pytorchbook)$ jupyter notebook

If you’re using Jupyter’s default settings, this link should open Chapter 3’s

notebook. If not, just click on Chapter03.ipynb on your Jupyter’s home page.

Imports

For the sake of organization, all libraries needed throughout the code used in any

given chapter are imported at its very beginning. For this chapter, we’ll need the

following imports:
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import numpy as np

import torch
import torch.optim as optim
import torch.nn as nn
import torch.functional as F
from torch.utils.data import DataLoader, TensorDataset

from sklearn.datasets import make_moons
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, roc_curve, \
precision_recall_curve, auc

from stepbystep.v0 import StepByStep

A Simple Classification Problem

It is time to handle a different class of problems: classification problems (pun

intended). In a classification problem, we’re trying to predict which class a data

point belongs to.

Let’s say we have two classes of points: They are either red or blue. These are the

labels (y) of the points. Sure enough, we need to assign numeric values to them. We

could assign zero to red and one to blue. The class associated with zero is the

negative class, while one corresponds to the positive class.

In a nutshell, for binary classification, we have:

Color Value Class

Red 0 Negative

Blue 1 Positive


IMPORTANT: In a classification model, the output is the

predicted probability of the positive class. In our case, the model

will predict the probability of a point being blue.
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The choice of which class is positive and which class is negative does

not affect model performance. If we reverse the mapping, making

red the positive class, the only difference would be that the model

would predict the probability of a point being red. But, since both

probabilities have to add up to one, we could easily convert

between them, so the models are equivalent.

Instead of defining a model first and then generating synthetic data for it, we’ll do it

the other way around.

Data Generation

Let’s make the data a bit more interesting by using two features (x1 and x2) this

time. We’ll use Scikit-Learn’s make_moons() to generate a toy dataset with 100

data points. We will also add some Gaussian noise and set a random seed to ensure

reproducibility.

Data Generation

1 X, y = make_moons(n_samples=100, noise=0.3, random_state=0)

Then, we’ll perform the train-validation split using Scikit-Learn’s

train_test_split() for convenience (we’ll get back to splitting indices later):

Train-validation Split

1 X_train, X_val, y_train, y_val = train_test_split(
2     X,
3     y,
4     test_size=.2,
5     random_state=13
6 )


Remember, the split should always be the first thing you do—no

pre-processing, no transformations, nothing happens before the

split.

208 | Chapter 3: A Simple Classification Problem

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html


Next, we’ll standardize the features using Scikit-Learn’s StandardScaler:

Feature Standardization

1 sc = StandardScaler()
2 sc.fit(X_train)
3 
4 X_train = sc.transform(X_train)
5 X_val = sc.transform(X_val)



Remember, you should use only the training set to fit the

StandardScaler, and then use its transform() method to apply

the pre-processing step to all datasets: training, validation, and

test. Otherwise, you’ll be leaking information from the validation

and / or test sets to your model!

Figure 3.1 - Moons dataset

Data Preparation

Hopefully, this step feels familiar to you already! As usual, the data preparation

step converts Numpy arrays into PyTorch tensors, builds TensorDatasets for them,

and creates the corresponding data loaders.
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Data Preparation

 1 torch.manual_seed(13)
 2 
 3 # Builds tensors from Numpy arrays
 4 x_train_tensor = torch.as_tensor(X_train).float()
 5 y_train_tensor = torch.as_tensor(y_train.reshape(-1, 1)).float()
 6 
 7 x_val_tensor = torch.as_tensor(X_val).float()
 8 y_val_tensor = torch.as_tensor(y_val.reshape(-1, 1)).float()
 9 
10 # Builds dataset containing ALL data points
11 train_dataset = TensorDataset(x_train_tensor, y_train_tensor)
12 val_dataset = TensorDataset(x_val_tensor, y_val_tensor)
13 
14 # Builds a loader of each set
15 train_loader = DataLoader(
16     dataset=train_dataset,
17     batch_size=16,
18     shuffle=True
19 )
20 val_loader = DataLoader(dataset=val_dataset, batch_size=16)

There are 80 data points (N = 80) in our training set. We have two features, x1 and

x2, and the labels (y) are either zero (red) or one (blue). We have a dataset; now we

need a…

Model

Given a classification problem, one of the more straightforward models is the

logistic regression. But, instead of simply presenting it and using it right away, I am

going to build up to it. The rationale behind this approach is twofold: First, it will

make clear why this algorithm is called logistic regression if it is used for

classification; second, you’ll get a clear understanding of what a logit is.

Well, since it is called logistic regression, I would say that linear regression is a

good starting point. What would a linear regression model with two features look

like?
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Equation 3.1 - A linear regression model with two features

There is one obvious problem with the model above: Our labels (y) are discrete;

that is, they are either zero or one; no other value is allowed. We need to change

the model slightly to adapt it to our purposes.


"What if we assign the positive outputs to one and the negative

outputs to zero?"

Makes sense, right? We’re already calling them positive and negative classes

anyway; why not put their names to good use? Our model would look like this:

Equation 3.2 - Mapping a linear regression model to discrete labels

Logits

To make our lives easier, let’s give the right-hand side of the equation above a

name: logit (z).

Equation 3.3 - Computing logits

The equation above is strikingly similar to the original linear regression model, but

we’re calling the resulting value z, or logit, instead of y, or label.

 "Does it mean a logit is the same as linear regression?"

Not quite—there is one fundamental difference between them: There is no error

term (epsilon) in Equation 3.3.

 "If there is no error term, where does the uncertainty come from?"

I am glad you asked :-) That’s the role of the probability: Instead of assigning a data

Model | 211



point to a discrete label (zero or one), we’ll compute the probability of a data

point’s belonging to the positive class.

Probabilities

If a data point has a logit that equals zero, it is exactly at the decision boundary

since it is neither positive nor negative. For the sake of completeness, we assigned

it to the positive class, but this assignment has maximum uncertainty, right? So,

the corresponding probability needs to be 0.5 (50%), since it could go either way.

Following this reasoning, we would like to have large positive logit values assigned

to higher probabilities (of being in the positive class) and large negative logit values

assigned to lower probabilities (of being in the positive class).

For really large positive and negative logit values (z), we would like to have:

Equation 3.4 - Probabilities assigned to different logit values (z)

We still need to figure out a function that maps logit values into probabilities.

We’ll get there soon enough, but first, we need to talk about…

Odds Ratio

 "What are the odds?!"

This is a colloquial expression meaning something very unlikely has happened. But

odds do not have to refer to an unlikely event or a slim chance. The odds of getting

heads in a (fair) coin flip are 1 to 1 since there is a 50% chance of success and a 50%

chance of failure.

Let’s imagine we are betting on the winner of the World Cup final. There are two

countries: A and B. Country A is the favorite: It has a 75% chance of winning. So,

Country B has only a 25% chance of winning. If you bet on Country A, your chances

of winning—that is, your odds (in favor)—are 3 to 1 (75 to 25). If you decide to test

your luck and bet on Country B, your chances of winning—that is, your odds (in

favor)—are 1 to 3 (25 to 75), or 0.33 to 1.
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The odds ratio is given by the ratio between the probability of success (p) and the

probability of failure (q):

Equation 3.5 - Odds ratio

In code, our odds_ratio() function looks like this:

def odds_ratio(prob):
    return prob / (1 - prob)

p = .75
q = 1 - p
odds_ratio(p), odds_ratio(q)

Output

(3.0, 0.3333333333333333)

We can also plot the resulting odds ratios for probabilities ranging from 1% to

99%. The red dots correspond to the probabilities of 25% (q), 50%, and 75% (p).

Figure 3.2 - Odds ratio

Clearly, the odds ratios (left plot) are not symmetrical. But, in a log scale (right
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plot), they are. This serves us very well since we’re looking for a symmetrical

function that maps logit values into probabilities.

 "Why does it need to be symmetrical?"

If the function weren’t symmetrical, different choices for the positive class would

produce models that were not equivalent. But, using a symmetrical function, we

could train two equivalent models using the same dataset, just flipping the classes:

• Blue Model (the positive class (y=1) corresponds to blue points)

◦ Data Point #1: P(y=1) = P(blue) = .83 (which is the same as P(red) = .17)

• Red Model (the positive class (y=1) corresponds to red points)

◦ Data Point #1: P(y=1) = P(red) = .17 (which is the same as P(blue) = .83)

Log Odds Ratio

By taking the logarithm of the odds ratio, the function is not only symmetrical, but

also maps probabilities into real numbers, instead of only the positive ones:

Equation 3.6 - Log odds ratio

In code, our log_odds_ratio() function looks like this:

def log_odds_ratio(prob):
    return np.log(odds_ratio(prob))

p = .75
q = 1 - p
log_odds_ratio(p), log_odds_ratio(q)

Output

(1.0986122886681098, -1.0986122886681098)
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As expected, probabilities that add up to 100% (like 75% and 25%) correspond to

log odds ratios that are the same in absolute value. Let’s plot it:

Figure 3.3 - Log odds ratio and probability

On the left, each probability maps into a log odds ratio. The red dots correspond to

probabilities of 25%, 50%, and 75%, the same as before.

If we flip the horizontal and vertical axes (right plot), we are inverting the function,

thus mapping each log odds ratio into a probability. That’s the function we were

looking for!

Does its shape look familiar? Wait for it…

From Logits to Probabilities

In the previous section, we were trying to map logit values into probabilities, and

we’ve just found out, graphically, a function that maps log odds ratios into

probabilities.

Clearly, our logits are log odds ratios :-) Sure, drawing conclusions like this is not

very scientific, but the purpose of this exercise is to illustrate how the results of a

regression, represented by the logits (z), get to be mapped into probabilities.
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So, here’s what we arrived at:

Equation 3.7 - Regression, logits, and log odds ratios

Let’s work this equation out a bit, inverting, rearranging, and simplifying some

terms to isolate p:

Equation 3.8 - From logits (z) to probabilities (p)

Does it look familiar? That’s a sigmoid function! It is the inverse of the log odds

ratio.

Equation 3.9 - Sigmoid function
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Sigmoid Function

def sigmoid(z):
    return 1 / (1 + np.exp(-z))

p = .75
q = 1 - p
sigmoid(log_odds_ratio(p)), sigmoid(log_odds_ratio(q))

Output

(0.75, 0.25)

Sigmoid

There is no need to implement our own sigmoid function, though. PyTorch provides

two different ways of using a sigmoid: torch.sigmoid() and nn.Sigmoid.

The first one is a simple function, like the one above, but takes a tensor as input and

returns another tensor:

torch.sigmoid(torch.tensor(1.0986)), torch.sigmoid(torch.tensor(
-1.0986))

Output

(tensor(0.7500), tensor(0.2500))
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Figure 3.4 - Sigmoid function

The second one is a full-fledged class inherited from nn.Module. It is, for all intents

and purposes, a model on its own. It is quite a simple and straightforward model: It

only implements a forward() method, which, surprise, surprise, calls

torch.sigmoid().

 "Why do you need a model for a sigmoid function?"

Remember, models can be used as layers of another, larger model. That’s exactly

what we’re going to do with the sigmoid class.

Logistic Regression

Given two features, x1 and x2, the model will fit a linear regression such that its

outputs are logits (z), which are then converted into probabilities using a sigmoid

function.

Equation 3.10 - Logistic regression
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A picture is worth a thousand words, so let’s visualize it:

Figure 3.5 - The (second) simplest of all neural networks

We can think of the logistic regression as the second simplest neural network

possible. It is pretty much the same as the linear regression, but with a sigmoid

applied to the results of the output layer (z).

Sigmoid, nonlinearities, and activation functions

The sigmoid function is nonlinear. It can be used to map logits into

probabilities, as we’ve just figured out. But this is not its only purpose!

Nonlinear functions play a fundamental role in neural networks. We know

these nonlinearities by their usual name: activation functions.

The sigmoid is the "biologically-inspired" and first activation function to be

used back in the old days. It was followed by the hyperbolic-tangent (TanH)

and, more recently, by the rectified linear unit (ReLU) and the whole family of

functions it spawned.

Moreover, there would be no neural networks without a nonlinear function.

Have you ever wondered what would happen to a neural network, no matter

how many layers deep, if all its activation functions were removed?

I will get back to this topic in the next chapter, but I will spoil the answer

now: The network would be equivalent to linear regression. True story!

Model | 219



A Note on Notation

So far, we’ve handled either one feature (up to Chapter 2) or two features

(this chapter). It has allowed us to spell equations out, listing all terms.

But the number of features will soon increase quickly when we tackle images

as inputs. So we need to agree on notation for vectorized features. Actually,

I already used it in Figure 3.5 above.

The vectorized representations of the weights (W) and features (X) are:

I will always place the dimensions below the vectors to make it more clear.

The logits (z), as shown in Figure 3.5, are given by the expression below:

From now on, instead of using the final and long expression, we’ll use the first

and more concise one.

Now let’s use the Sequential model to build our logistic regression in PyTorch:

torch.manual_seed(42)
model1 = nn.Sequential()
model1.add_module('linear', nn.Linear(2, 1))
model1.add_module('sigmoid', nn.Sigmoid())
print(model1.state_dict())
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Output

OrderedDict([('linear.weight', tensor([[0.5406, 0.5869]])),
             ('linear.bias', tensor([-0.1657]))])

Did you notice that state_dict() contains parameters from the linear layer only?

Even though the model has a second sigmoid layer, this layer does not contain any

parameters since it does not need to learn anything: The sigmoid function will be

the same regardless of which model it is a part of.

Loss

We already have a model, and now we need to define an appropriate loss for it. A

binary classification problem calls for the binary cross-entropy (BCE) loss,

sometimes known as log loss.

The BCE loss requires the predicted probabilities, as returned by the sigmoid

function, and the true labels (y) for its computation. For each data point i in the

training set, it starts by computing the error corresponding to the point’s true

class.

If the data point belongs to the positive class (y=1), we would like our model to

predict a probability close to one, right? A perfect one would result in the

logarithm of one, which is zero. It makes sense; a perfect prediction means zero

loss. It goes like this:

Equation 3.11 - Error for a data point in the positive class

What if the data point belongs to the negative class (y=0)? Then we cannot simply

use the predicted probability. Why not? Because the model outputs the probability

of a point’s belonging to the positive, not the negative, class. Luckily, the latter can

be easily computed:

Equation 3.12 - Probability of a data point’s belonging to the negative class

And thus, the error associated with a data point’s belonging to the negative class
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goes like this:

Equation 3.13 - Error for a data point in the negative class

Once all errors are computed, they are aggregated into a loss value. For the

binary-cross entropy loss, we simply take the average of the errors and invert its

sign.

Equation 3.14 - Binary Cross-Entropy formula, the intuitive way

Let’s assume we have two dummy data points, one for each class. Then, let’s

pretend our model made predictions for them: 0.9 and 0.2. The predictions are not

bad since it predicts a 90% probability of being positive for an actual positive, and

only 20% of being positive for an actual negative. How does this look in code? Here

it is:

dummy_labels = torch.tensor([1.0, 0.0])
dummy_predictions = torch.tensor([.9, .2])

# Positive class (labels == 1)
positive_pred = dummy_predictions[dummy_labels == 1]
first_summation = torch.log(positive_pred).sum()
# Negative class (labels == 0)
negative_pred = dummy_predictions[dummy_labels == 0]
second_summation = torch.log(1 - negative_pred).sum()
# n_total = n_pos + n_neg
n_total = dummy_labels.size(0)

loss = -(first_summation + second_summation) / n_total
loss

Output

tensor(0.1643)
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The first summation adds up the errors corresponding to the points in the positive

class. The second summation adds up the errors corresponding to the points in the

negative class. I believe the formula above is quite straightforward and easy to

understand. Unfortunately, it is usually skipped over, and only its equivalent is

presented:

Equation 3.15 - Binary Cross-Entropy formula, the clever way

The formula above is a clever way of computing the loss in a single expression, sure,

but the split of positive and negative points is less obvious. If you pause for a

minute, you’ll realize that points in the positive class (y=1) have their second term

equal zero, while points in the negative class (y=0) have their first term equal zero.

Let’s see how it looks in code:

summation = torch.sum(
    dummy_labels * torch.log(dummy_predictions) +
    (1 - dummy_labels) * torch.log(1 - dummy_predictions)
)
loss = -summation / n_total
loss

Output

tensor(0.1643)

Of course, we got the same loss (0.1643) as before.

For a very detailed explanation of the rationale behind this loss function, make sure

to check my post: "Understanding binary cross-entropy / log loss: a visual

explanation."[70]

BCELoss

Sure enough, PyTorch implements the binary cross-entropy loss, nn.BCELoss(). Just

like its regression counterpart, nn.MSELoss(), introduced in Chapter 1, it is a higher-

order function that returns the actual loss function.
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The nn.BCELoss() higher-order function takes two optional arguments (the others

are deprecated, and you can safely ignore them):

• reduction: It takes either mean, sum, or none. The default mean corresponds to

our Equation 3.15 above. As expected, sum will return the sum of the errors,

instead of the average. The last option, none, corresponds to the unreduced

form; that is, it returns the full array of errors.

• weight: The default is none, meaning every data point has equal weight. If

supplied, it needs to be a tensor with a size equal to the number of elements in a

mini-batch, representing the weights assigned to each element in the batch. In

other words, this argument allows you to assign different weights to each

element of the current batch, based on its position. So, the first element would

have a given weight, the second element would have a different weight, and so

on, regardless of the actual class of that particular data point. Sounds

confusing? Weird? Yes, this is weird; I think so too. Of course, this is not useless

or a mistake, but the proper usage of this argument is a more advanced topic

and outside the scope of this book.


This argument DOES NOT help with weighting imbalanced

datasets! We’ll see how to handle that shortly.

We’ll be sticking with the default arguments, corresponding to Equation 3.15

above.

loss_fn = nn.BCELoss(reduction='mean')

loss_fn

Output

BCELoss()

As expected, nn.BCELoss() returned another function; that is, the actual loss

function. The latter takes both predictions and labels to compute the loss.
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IMPORTANT: Make sure to pass the predictions first and then

the labels to the loss function. The order matters in the

implementation of this loss function, unlike with the mean

squared error.

Let’s check this out:

dummy_labels = torch.tensor([1.0, 0.0])
dummy_predictions = torch.tensor([.9, .2])

# RIGHT
right_loss = loss_fn(dummy_predictions, dummy_labels)

# WRONG
wrong_loss = loss_fn(dummy_labels, dummy_predictions)

print(right_loss, wrong_loss)

Output

tensor(0.1643) tensor(15.0000)

Clearly, the order matters. It matters because the nn.BCELoss() takes the

logarithm of the probabilities, which is expected as the first argument. If we swap

the arguments, it will yield different results. In Chapter 1, we followed the same

convention when using nn.MSELoss()—first predictions, then labels—even though

it wouldn’t make any difference there.

So far, so good. But there is yet another binary cross-entropy loss available, and it

is very important to know when to use one or the other, so you don’t end up with

an inconsistent combination of model and loss function. Moreover, you’ll

understand why I made such a fuss about the logits.

BCEWithLogitsLoss

The former loss function took probabilities as an argument (together with the

labels, obviously). This loss function takes logits as an argument, instead of

probabilities.
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 "What does that mean, in practical terms?"

It means you should NOT add a sigmoid as the last layer of your model when using

this loss function. This loss combines both the sigmoid layer and the former binary

cross-entropy loss into one.



IMPORTANT: I can’t stress this enough: You must use the right

combination of model and loss function.

Option 1: nn.Sigmoid as the last layer, meaning your model is

producing probabilities, combined with the nn.BCELoss()
function.

Option 2: No sigmoid in the last layer, meaning your model is

producing logits, combined with the nn.BCEWithLogitsLoss()
function.

Mixing nn.Sigmoid and nn.BCEWithLogitsLoss() is just wrong.

Besides, Option 2 is preferred since it is numerically more stable

than Option 1.

Now, let’s take a closer look at the nn.BCEWithLogitsLoss() function. It is also a

higher-order function, but it takes three optional arguments (the others are

deprecated, and you can safely ignore them):

• reduction: It takes either mean, sum, or none, and it works just like in

nn.BCELoss(). The default is mean.

• weight: This argument also works just like in nn.BCELoss(), and it is unlikely to

be used.

• pos_weight: The weight of positive samples, it must be a tensor with length

equal to the number of labels associated with a data point (the documentation

refers to classes, instead of labels, which just makes everything even more

confusing).
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To make it clear: In this chapter, we’re dealing with a single-label

binary classification (we have only one label per data point), and

the label is binary (there are only two possible values for it, zero

or one). If the label is zero, we say it belongs to the negative class.

If the label is one, it belongs to the positive class.

Please do not confuse the positive and negative classes of our

single label with c, the so-called class number in the

documentation. That c corresponds to the number of different

labels associated with a data point. In our example, c = 1.


You can use this argument to handle imbalanced datasets, but

there’s more to it than meets the eye. We’ll get back to it in the

next sub-section.

Enough talking (or writing!): Let’s see how to use this loss in code. We start by

creating the loss function itself:

loss_fn_logits = nn.BCEWithLogitsLoss(reduction='mean')

loss_fn_logits

Output

BCEWithLogitsLoss()

Next, we use logits and labels to compute the loss. Following the same principle as

before, logits first, then labels. To keep the example consistent, let’s get the values

of the logits corresponding to the probabilities we used before, 0.9 and 0.2, using

our log_odds_ratio() function:
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logit1 = log_odds_ratio(.9)
logit2 = log_odds_ratio(.2)

dummy_labels = torch.tensor([1.0, 0.0])
dummy_logits = torch.tensor([logit1, logit2])

print(dummy_logits)

Output

tensor([ 2.1972, -1.3863])

We have logits, and we have labels. Time to compute the loss:

loss = loss_fn_logits(dummy_logits, dummy_labels)
loss

Output

tensor(0.1643)

OK, we got the same result, as expected.

Imbalanced Dataset

In our dummy example with two data points, we had one of each class: positive and

negative. The dataset was perfectly balanced. Let’s create another dummy example

but with an imbalance, adding two extra data points belonging to the negative

class. For the sake of simplicity and to illustrate a quirk in the behavior of

nn.BCEWithLogitsLoss(), I will give those two extra points the same logits as the

other data point in the negative class. It looks like this:

dummy_imb_labels = torch.tensor([1.0, 0.0, 0.0, 0.0])
dummy_imb_logits = torch.tensor([logit1, logit2, logit2, logit2])

Clearly, this is an imbalanced dataset. There are three times more data points in

the negative class than in the positive one. Now, let’s turn to the pos_weight
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argument of nn.BCEWithLogitsLoss(). To compensate for the imbalance, one can

set the weight to equal the ratio of negative to positive examples:

In our imbalanced dummy example, the result would be 3.0. This way, every point

in the positive class would have its corresponding loss multiplied by three. Since

there is a single label for each data point (c = 1), the tensor used as an argument for

pos_weight has only one element: tensor([3.0]). We could compute it like this:

n_neg = (dummy_imb_labels == 0).sum().float()
n_pos = (dummy_imb_labels == 1).sum().float()

pos_weight = (n_neg / n_pos).view(1,)
pos_weight

Output

tensor([3])

Now, let’s create yet another loss function, including the pos_weight argument this

time:

loss_fn_imb = nn.BCEWithLogitsLoss(
    reduction='mean',
    pos_weight=pos_weight
)

Then, we can use this weighted loss function to compute the loss for our

imbalanced dataset. I guess one would expect the same loss as before; after all,

this is a weighted loss. Right?

loss = loss_fn_imb(dummy_imb_logits, dummy_imb_labels)
loss
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Output

tensor(0.2464)

Wrong! It was 0.1643 when we had two data points, one of each class. Now it is

0.2464, even though we assigned a weight to the positive class.

 "Why is it different?"

Well, it turns out, PyTorch does not compute a weighted average. Here’s what you

would expect from a weighted average:

Equation 3.16 - Weighted average of losses

But this is what PyTorch does:

Equation 3.17 - PyTorch’s BCEWithLogitsLoss

See the difference in the denominator? Of course, if you multiply the losses of the

positive examples without multiplying their count (Npos), you’ll end up with a

number larger than an actual weighted average.

 "What if I really want the weighted average?"
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It is not that hard, to be honest. Remember the reduction argument? If we set it to

sum, our loss function will only return the numerator of the equation above. And

then we can divide it by the weighted counts ourselves:

loss_fn_imb_sum = nn.BCEWithLogitsLoss(
    reduction='sum',
    pos_weight=pos_weight
)

loss = loss_fn_imb_sum(dummy_imb_logits, dummy_imb_labels)

loss = loss / (pos_weight * n_pos + n_neg)
loss

Output

tensor([0.1643])

There we go!

Model Configuration

In Chapter 2.1, we ended up with a lean "Model Configuration" section: We only

need to define a model, an appropriate loss function, and an optimizer. Let’s define

a model that produces logits and use nn.BCEWithLogitsLoss() as the loss function.

Since we have two features, and we are producing logits instead of probabilities,

our model will have one layer and one layer alone: Linear(2, 1). We will keep

using the SGD optimizer with a learning rate of 0.1 for now.
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This is what the model configuration looks like for our classification problem:

Model Configuration

 1 # Sets learning rate - this is "eta" ~ the "n"-like Greek letter
 2 lr = 0.1
 3 
 4 torch.manual_seed(42)
 5 model = nn.Sequential()
 6 model.add_module('linear', nn.Linear(2, 1))
 7 
 8 # Defines an SGD optimizer to update the parameters
 9 optimizer = optim.SGD(model.parameters(), lr=lr)
10 
11 # Defines a BCE with logits loss function
12 loss_fn = nn.BCEWithLogitsLoss()

Model Training

Time to train our model! We can leverage the StepByStep class we built in Chapter

2.1 and use pretty much the same code as before:

Model Training

1 n_epochs = 100
2 
3 sbs = StepByStep(model, loss_fn, optimizer)
4 sbs.set_loaders(train_loader, val_loader)
5 sbs.train(n_epochs)

fig = sbs.plot_losses()
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Figure 3.6 - Training and validation losses

 "Wait, there is something weird with this plot." you say.

You’re right; the validation loss is lower than the training loss. Shouldn’t it be the

other way around?! Well, generally speaking, YES, it should, but you can learn more

about situations where this swap happens at this great post[71]. In our case, it is

simply that the validation set is easier to classify: If you check Figure 3.1 at the

beginning of the chapter, you’ll notice that the red and blue points in the right plot

(validation) are not as mixed up as the ones in the left plot (training).

Having settled that, it is time to inspect the model’s trained parameters:

print(model.state_dict())

Output

OrderedDict([('linear.weight', tensor([[ 1.1822, -1.8684]], device
='cuda:0')),
             ('linear.bias', tensor([-0.0587], device='cuda:0'))])

Our model produced logits, right? So we can plug the weights above into the

corresponding logit equation (Equation 3.3), and end up with:

Equation 3.18 - Model’s output
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The value z above is the output of our model. It is a "glorified linear regression!"

And this is a classification problem! How come?! Hold that thought; it will become

more clear in the next section, "Decision Boundary".

But, before going down that road, I would like to use our model (and the

StepByStep class) to make predictions for, say, the first four data points in our

training set:

Making Predictions (Logits)

predictions = sbs.predict(x_train_tensor[:4])
predictions

Output

array([[ 0.20252657],
       [ 2.944347  ],
       [ 3.6948545 ],
       [-1.2356305 ]], dtype=float32)

Clearly, these are not probabilities, right? These are logits, as expected.

We can still get the corresponding probabilities, though.


"How do we go from logits to probabilities," you ask, just to make

sure you got it right.

That’s what the sigmoid function is good for.

Making Predictions (Probabilities)

probabilities = sigmoid(predictions)
probabilities
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Output

array([[0.5504593 ],
       [0.94999564],
       [0.9757515 ],
       [0.22519748]], dtype=float32)

Now we’re talking! These are the probabilities, given our model, of those four

points being positive examples.

Lastly, we need to go from probabilities to classes. If the probability is greater than

or equal to a threshold, it is a positive example. If it is less than the threshold, it is a

negative example. Simple enough. The trivial choice of a threshold is 0.5:

Equation 3.19 - From probabilities to classes

But the probability itself is just the sigmoid function applied to the logit (z):

Equation 3.20 - From logits to classes, via sigmoid function

But the sigmoid function has a value of 0.5 only when the logit (z) has a value of

zero:

Equation 3.21 - From logits to classes, directly

Thus, if we don’t care about the probabilities, we could use the predictions (logits)

directly to get the predicted classes for the data points:
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Making Predictions (Classes)

classes = (predictions >= 0).astype(np.int)
classes

Output

array([[1],
       [1],
       [1],
       [0]])

Clearly, the points where the logits (z) equal zero determine the boundary

between positive and negative examples.

 "Why 0.5? Can I choose a different threshold?"

Sure, you can! Different thresholds will give you different confusion matrices and,

therefore, different metrics, like accuracy, precision, and recall. We’ll get back to

that in the "Decision Boundary" section.

By the way, are you still holding that thought about the "glorified linear regression?"

Good!

Decision Boundary

We have just figured out that whenever z equals zero, we are in the decision

boundary. But z is given by a linear combination of features x1 and x2. If we work

out some basic operations, we arrive at:

Equation 3.22 - Decision boundary for logistic regression with two features

Given our model (b, w1, and w2), for any value of the first feature (x1), we can

compute the corresponding value of the second feature (x2) that sits exactly at the
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decision boundary.


Look at the expression in Equation 3.22: This is a straight line. It

means the decision boundary is a straight line.

Let’s plug the weights of our trained model into it:

An image is worth a thousand words, right? Let’s plot it!

Figure 3.7 - Decision boundary

The figure above tells the whole story! It contains only data points from the

training set. So, that’s what the model "sees" when it is training. It will try to

achieve the best possible separation between the two classes, depicted as red

(negative class) and blue (positive class) points.

In the left plot, we have a contour plot (remember those from the loss surfaces in

Chapter 0?) of the logits (z).

In the center plot, we have a 3D plot of the probabilities resulting from applying a

sigmoid function to the logits. You can even see the shape of the sigmoid function

in 3D, approaching zero to the left and one to the right.

Finally, in the right plot, we have a contour plot of the probabilities, so it is the

same as the center plot but without the cool 3D effect. Maybe it is not as cool, but it

is surely easier to understand. Darker blue (red) colors mean higher (lower)

probabilities, and we have the decision boundary as a straight gray line,

corresponding to a probability of 50% (and a logit value of zero).

Decision Boundary | 237




A logistic regression always separates two classes with a

straight line.

Our model produced a straight line that does quite a good job of separating red and

blue points, right? Well, it was not that hard anyway, since the blue points were

more concentrated on the bottom right corner, while the red points were mostly

on the top left corner. In other words, the classes were quite separable.

 The more separable the classes are, the lower the loss will be.

Now we can make sense of the validation loss, being lower than the training loss. In

the validation set, the classes are more separable than in the training set. The

decision boundary obtained using the training set can do an even better job

separating red and blue points. Let’s check it out, plotting the validation set against

the same contour plots as above:

Figure 3.8 - Decision boundary (validation dataset)

See? Apart from three points, two red and one blue, which are really close to the

decision boundary, the data points are correctly classified. More separable,

indeed.
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Are my data points separable?

That’s the million-dollar question! In the example above, we can clearly see

that data points in the validation set are more separable than those in the

training set.

What happens if the points are not separable at all? Let’s take a quick detour

and look at another tiny dataset with 10 data points, seven red, three blue.

The colors are the labels (y), and each data point has a single feature (x1). We

could plot them along a line; after all, we have only one dimension.

Can you separate the blue points from the red ones with one straight line?

Obviously not—these points are not separable (in one dimension, that is).

Should we give up, then?


"Never give up, never surrender!"

Commander Taggart

If it doesn’t work in one dimension, try using two! There is just one problem,

though: Where does the other dimension come from? We can use a trick

here: We apply a function to the original dimension (feature) and use the

result as a second dimension (feature). Quite simple, right?

For the tiny dataset at hand, we could try the square function:

What does it look like?
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Back to the original question: "Can you separate the blue points from the red

ones with one straight line?"

In two dimensions, that’s a piece of cake!

 The more dimensions, the more separable the points are.

It is beyond the scope of this book to explain why this trick works. The

important thing is to understand the general idea: As the number of

dimensions increases, there is more and more empty space. If the data

points are farther apart, it is likely easier to separate them. In two

dimensions, the decision boundary is a line. In three dimensions, it is a plane.

In four dimensions and more, it is a hyper-plane (fancier wording for a plane

you can’t draw).

Have you heard of the kernel trick for support vector machines (SVMs)?

That’s pretty much what it does! The kernel is nothing but the function we

use to create additional dimensions. The square function we used is a

polynomial, so we used a polynomial kernel.

 "Why are we talking about SVMs in a deep learning book?"

Excellent question! It turns out neural networks may also increase the

dimensionality. That’s what happens if you add a hidden layer with more

units than the number of features. For instance:
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model = nn.Sequential()
model.add_module('hidden', nn.Linear(2, 10))
model.add_module('activation', nn.ReLU())
model.add_module('output', nn.Linear(10, 1))
model.add_module('sigmoid', nn.Sigmoid())

loss_fn = nn.BCELoss()

The model above increases dimensionality from two dimensions (two

features) to ten dimensions and then uses those ten dimensions to compute

logits. But it only works if there is an activation function between the

layers.

I suppose you may have two questions right now: "Why is that?" and "What

actually is an activation function?" Fair enough. But these are topics for the

next chapter.

Classification Threshold



This section is optional. In it, I will dive deeper into using different

thresholds for classification and how this affects the confusion

matrix. I will explain the most common classification metrics: true

and false positive rates, precision and recall, and accuracy.

Finally, I will show you how these metrics can be combined to

build ROC and Precision-Recall curves.

If you are already comfortable with these concepts, feel free to

skip this section.

So far, we’ve been using the trivial threshold of 50% to classify our data points,

given the probabilities predicted by our model. Let’s dive a bit deeper into this and

see the effects of choosing different thresholds. We’ll be working on the data

points in the validation set. There are only 20 data points in it, so we can easily

keep track of all of them.
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First, let’s compute the logits and corresponding probabilities:

Evaluation

logits_val = sbs.predict(X_val)
probabilities_val = sigmoid(logits_val).squeeze()

Then, let’s visualize the probabilities on a line. It means we’re going from the fancy

contour plot to a simpler plot:

Figure 3.9 - Probabilities on a line

The left plot comes from Figure 3.8. It shows the contour plot of the probabilities

and the decision boundary as a straight gray line. We place the data points on a

line, according to their predicted probabilities. That’s the plot on the right.

The decision boundary is shown as a vertical dashed line placed at the chosen

threshold (0.5). Points to the left of the dashed line are classified as red, and

therefore have red edges around them, while those to the right are classified as

blue, and have blue edges around them.

The points are filled with their actual color, meaning that those with distinct

colors for edge and filling are misclassified. In the figure above, we have one blue

point classified as red (left) and two red points classified as blue (right).

Now, let’s make a tiny change to our plot to make it more visually interesting: We’ll

plot blue (positive) points below the probability line and red (negative) points

above the probability line.
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It looks like this:

Figure 3.10 - Split probability line

 "Why is it more visually interesting?" you ask.

Well, now all correctly classified and all misclassified points are in different

quadrants. There is something else that looks exactly like this…

Confusion Matrix

Those quadrants have names: true negative (TN) and false positive (FP), above the

line, false negative (FN) and true positive (TP), below the line.

Figure 3.11 - Probability line as a confusion matrix

Points above the line are actual negatives, points below the line are actual

positives.

Points to the right of the threshold are classified as positive, points to the left of

the threshold are classified as negative.

Cool, right? Let’s double-check it with Scikit-Learn’s confusion_matrix() method:

cm_thresh50 = confusion_matrix(y_val, (probabilities_val >= 0.5))
cm_thresh50
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Output

array([[ 7,  2],
       [ 1, 10]])

All 20 points in our validation set are accounted for. There are three misclassified

points: one false negative and two false positives, just like in the figure above. I

chose to move the blue points (positive) below the line to match Scikit-Learn’s

convention for the confusion matrix.



Confusion matrices are already confusing enough on their own,

but what’s even worse is that you’ll find all sorts of layouts

around. Some people list positives first and negatives last. Some

people even flip actuals and predicted classes, effectively

transposing the confusion matrix. Make sure to always check the

layout before drawing conclusions from matrices you see "in the

wild."

To make your life, and mine, simpler, I am just sticking with Scikit-

Learn’s convention throughout this book.

There is one more thing I hope you noticed already: The confusion matrix depends

on the threshold. If you shift the threshold along the probability line, you’ll end up

changing the number of points in each quadrant.

 There are many confusion matrices, one for each threshold.

Moreover, different confusion matrices mean different metrics. We need the

individual components of the confusion matrix, namely, TN, FP, FN, and TP, to

construct those metrics. The function below splits the confusion matrix

accordingly:
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True and False Positives and Negatives

def split_cm(cm):
    # Actual negatives go in the top row, above probability line
    actual_negative = cm[0]
    # Predicted negatives go in the first column
    tn = actual_negative[0]
    # Predicted positives go in the second column
    fp = actual_negative[1]
    # Actual positives go in the bottow row, below probability line
    actual_positive = cm[1]
    # Predicted negatives go in the first column
    fn = actual_positive[0]
    # Predicted positives go in the second column
    tp = actual_positive[1]
    return tn, fp, fn, tp

Metrics

Starting with these four numbers, TN, FP, FN, and TP, you may construct a ton of

metrics. We’re focusing here on the most commonly used: true and false positive

rates (TPR and FPR), precision, recall, and accuracy.

True and False Positive Rates

Let’s start with the first two:

For both of them, you divide one value on the right column (positive) by the sum

of the corresponding row. So, the true positive rate is computed by dividing the

value on the bottom right by the sum of the bottom row. Similarly, the false

positive rate is computed by dividing the value on the top right by the sum of the

top row. Fine, but what do they mean?

The true positive rate tells you, from all points you know to be positive, how many

your model got right. In our example, we know there are 11 positive examples.

Our model got ten right. The TPR is 10 out of 11, or roughly 91%. There is yet

another name for this metric: recall. Makes sense, right? From all the positive
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examples, how many does your model recall?


If false negatives are bad for your application, you need to focus

on improving the TPR (recall) metric of your model.



When is a false negative really bad? Take airport security

screening, for example, where positive means the existence of a

threat. False positives are common: You have nothing to hide,

and still, your bag will eventually be more thoroughly inspected

due to the extreme sensitivity of the machinery. A false negative

means that the machine failed to detect an actual threat. I don’t

have to explain why this is bad.

The false positive rate tells you, from all points you know to be negative, how

many your model got wrong. In our example, we know there are nine negative

examples. Our model got two wrong. The FPR is 2 out of 9, or roughly 22%.


If false positives are bad for your application, you need to focus

on reducing the FPR metric of your model.



When is a false positive really bad? Take an investment decision,

for example, where positive means a profitable investment.

False negatives are missed opportunities: They seemed like bad

investments, but they weren’t. You did not make a profit, but you

didn’t sustain any losses either. A false positive means that you

chose to invest but ended up losing your money.

We can use the function below to compute both metrics, given a confusion matrix:

True and False Positive Rates

def tpr_fpr(cm):
    tn, fp, fn, tp = split_cm(cm)

    tpr = tp / (tp + fn)
    fpr = fp / (fp + tn)

    return tpr, fpr
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tpr_fpr(cm_thresh50)

Output

(0.9090909090909091, 0.2222222222222222)

The trade-off between TPR and FPR

As always, there is a trade-off between the two metrics.

Let’s say false negatives are bad for our application, and we want to improve

TPR. Here is one quick idea: Let’s make a model that only predicts the

positive class, using a threshold of zero. We get no false negatives

whatsoever (because there aren’t any negatives in the first place). Our TPR

is 100%. Awesome, right?

Wrong! If all points are predicted to be positive, every negative example will

be a false positive, and there are no true negatives. Our FPR is 100% too.

There is no free lunch: The model is useless.

What if false positives are the problem instead? We would like to reduce

FPR. Another brilliant idea comes to mind: Let’s make a model that only

predicts the negative class, using a threshold of one. We get no false

positives whatsoever (because there aren’t any positives in the first place).

Our FPR is 0%. Mission accomplished, right?

Guess what? Wrong again! If all points are predicted to be negative, every

positive example will be a false negative, and there are no true positives.

Our TPR is 0% too.

It turns out, you cannot have the cake and eat it too.
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Precision and Recall

Moving on to the next pair of metrics, we have:

We can skip the recall because, as I mentioned above, it is the same as TPR: from all

the positive examples, how many does your model recall?

What about precision? We compute it in the right column (positive) only. We

divide the value on the bottom right by the sum of the right column. Its meaning is

somewhat complementary to that of recall: From all points classified as positive by

your model, how many did it get right? In our example, the model classified 12

points as positive. The model got 10 right. The precision is 10 out of 12, or roughly

83%.


If false positives are bad for your application, you need to focus

on improving the precision metric of your model.

We can use the function below to compute both metrics, given a confusion matrix:

Precision and Recall

def precision_recall(cm):
    tn, fp, fn, tp = split_cm(cm)

    precision = tp / (tp + fp)
    recall = tp / (tp + fn)

    return precision, recall

precision_recall(cm_thresh50)

Output

(0.8333333333333334, 0.9090909090909091)
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The trade-off between precision and recall

Here, too, there is no free lunch. The trade-off is a bit different, though.

Let’s say false negatives are bad for our application, and we want to improve

recall. Once again, let’s make a model that only predicts the positive class,

using a threshold of zero. We get no false negatives whatsoever (because

there aren’t any negatives in the first place). Our recall is 100%. Now you’re

probably waiting for the bad news, right?

If all points are predicted to be positive, every negative example will be a

false positive. The precision is exactly the proportion of positive samples in

the dataset.

What if false positives are the problem instead? We would like to increase

precision. It’s time to make a model that only predicts the negative class by

using a threshold of one. We get no false positives whatsoever (because

there aren’t any positives in the first place). Our precision is 100%.

Of course, this is too good to be true. If all points are predicted to be

negative, there are no true positives. Our recall is 0%.

No free lunch, no cake, just another couple of useless models.

There is one metric left to explore.

Accuracy

This is the simplest and most intuitive of them all: how many times your model got

it right, considering all data points. Totally straightforward!

In our example, the model got 17 points right out of a total of 20 data points. Its

accuracy is 85%. Not bad, right? The higher the accuracy, the better, but it does not

tell the whole story. If you have an imbalanced dataset, relying on accuracy can be

misleading.

Let’s say we have 1,000 data points: 990 points are negative, and only 10 are
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positive. Now, let’s take that model that uses a threshold of one and only predicts

the negative class. This way, we get all 990 negative points right at the cost of ten

false negatives. This model’s accuracy is 99%. But the model is still useless because

it will never get a positive example right.

Accuracy may be misleading because it does not involve a trade-off with another

metric, like the previous ones.

Speaking of trade-offs…

Trade-offs and Curves

We already know there are trade-offs between true and false positive rates, as well

as between precision and recall. We also know that there are many confusion

matrices, one for each threshold. What if we combine these two pieces of

information? I present to you the receiver operating characteristic (ROC) and

precision-recall (PR) curves! Well, they are not curves yet, but they will be soon

enough!

Figure 3.12 - Trade-offs for a threshold of 50%

We’ve already computed TPR (recall) (91%), FPR (22%), and precision (83%) for our

model using the threshold of 50%. If we plot them, we’ll get the figure above.

Time to try different thresholds.

Low Threshold

What about 30%? If the predicted probability is greater than or equal to 30%, we

classify the data point as positive, and as negative otherwise. That’s a very loose

threshold since we don’t require the model to be very confident to consider a data

point to be positive. What can we expect from it? More false positives, fewer false

negatives.
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Figure 3.13 - Using a low threshold

You can see in the figure above that lowering the threshold (moving it to the left

on the probability line) turned one false negative into a true positive (blue point

close to 0.4), but it also turned one true negative into a false positive (red point

close to 0.4).

Let’s double-check it with Scikit-Learn’s confusion matrix:

confusion_matrix(y_val, (probabilities_val >= 0.3))

Output

array([[ 6,  3],
       [ 0, 11]])

OK, now let’s plot the corresponding metrics one more time:

Figure 3.14 - Trade-offs for two different thresholds

Still not a curve, I know, but we can already learn something from these two points.
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Lowering the threshold moves you to the right along both

curves.

Let’s move to the other side now.

High Threshold

What about 70%? If the predicted probability is greater than or equal to 70%, we

classify the data point as positive, and as negative otherwise. That’s a very strict

threshold since we require the model to be very confident to consider a data point

to be positive. What can we expect from it? Fewer false positives, more false

negatives.

Figure 3.15 - Using a high threshold

You can see in the figure above that raising the threshold (moving it to the right on

the probability line) turned two false positives into true negatives (red points

close to 0.6), but it also turned one true positive into a false negative (blue point

close to 0.6).

Let’s double-check it with Scikit-Learn’s confusion matrix:

confusion_matrix(y_val, (probabilities_val >= 0.7))

Output

array([[9, 0],
       [2, 9]])

OK, now let’s plot the corresponding metrics again:
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Figure 3.16 - Trade-offs for two different thresholds

I guess we earned the right to call it a curve now :-)

 Raising the threshold moves you to the left along both curves.

Can we just connect the dots and call it a curve for real? Actually, no, not yet.

ROC and PR Curves

We need to try out more thresholds to actually build a curve. Let’s try multiples of

10%:

threshs = np.linspace(0,1,11)

Figure 3.17 - Full curves

Cool! We finally have proper curves! I have some questions for you:

• In each plot, which point corresponds to a threshold of zero (every prediction

is positive)?

• In each plot, which point corresponds to a threshold of one (every prediction is

negative)?
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• What does the right-most point in the PR curve represent?

• If I raise the threshold, how do I move along the curve?

You should be able to answer all of these questions by referring to the "Metrics"

section. But, if you are eager to get the answers, here they are:

• The threshold of zero corresponds to the right-most point in both curves.

• The threshold of one corresponds to the left-most point in both curves.

• The right-most point in the PR curve represents the proportion of positive

examples in the dataset.

• If I raise the threshold, I am moving to the left along both curves.

Now, let’s double-check our curves with Scikit-Learn’s roc_curve() and

precision_recall_curve() methods:

fpr, tpr, thresholds1 = roc_curve(y_val, probabilities_val)
prec, rec, thresholds2 = \
    precision_recall_curve(y_val, probabilities_val)

Figure 3.18 - Scikit-Learn’s curves

Same shapes, different points.

 "Why do these curves have different points than ours?"

Simply put, Scikit-Learn uses only meaningful thresholds; that is, those thresholds

that actually make a difference to the metrics. If moving the threshold a bit does

not modify the classification of any points, it doesn’t matter for building a curve.

Also, notice that the two curves have a different number of points because

different metrics have different sets of meaningful thresholds. Moreover, these
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thresholds do not necessarily include the extremes: zero and one. In Scikit-

Learn’s PR curve, the right-most point is clearly different than ours.


"How come the PR curve dips to lower precision? Shouldn’t it always

go up as we raise the threshold, moving to the left along the curve?"

The Precision Quirk

Glad you asked! This is very annoying and somewhat counterintuitive, but it

happens often, so let’s take a closer look at it. To illustrate why this happens, I will

plot the probability lines for three distinct thresholds: 0.4, 0.5, and 0.57.

Figure 3.19 - The precision quirk

At the top, with a threshold of 0.4, we have 15 points on the right (classified as

positive), two of which are false positives. The precision is given by:

But if we move the threshold to the right, up to 0.5, we lose one true positive,

effectively reducing precision:

This is a temporary side effect, though. As we raise the threshold even further to

0.57, we get the benefit of getting rid of a false positive, thus increasing precision:
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In general, raising the threshold will reduce the number of false

positives and increase precision.

But, along the way, we may lose some of the true positives,

which will temporarily reduce precision. Quirky, right?

Best and Worst Curves

Let’s ask ourselves: What would the best possible (and, of course, the worst

possible) curve look like?

The best curve belongs to a model that predicts everything perfectly: It gives us a

100% probability to all actual positive data points and 0% probability to all actual

negative data points. Of course, such a model does not exist in real life. But cheating

does exist. So, let’s cheat and use the true labels as the probabilities. These are the

curves we get:

Figure 3.20 - Perfect curves

Nice! If a perfect model exists, its curves are actually squares! The top-left corner

on the ROC curve, as well as the top-right corner on the PR curve, are the

(unattainable) sweet spots. Our logistic regression was not bad, actually—but, of

course, our validation set was ridiculously easy.


"And the Oscar for the worst curve goes to…"

"…the random model!"

If a model spits out probabilities all over the place, without any regard to the
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actual data, it is as bad as it can be. We can simply generate uniformly distributed

values between zero and one as our random probabilities:

np.random.seed(39)
random_probs = np.random.uniform(size=y_val.shape)

fpr_random, tpr_random, thresholds1_random = \
    roc_curve(y_val, random_probs)
prec_random, rec_random, thresholds2_random = \
    precision_recall_curve(y_val, random_probs)

Figure 3.21 - Worst curves ever

We have only 20 data points, so our curves are not as bad as they theoretically are

:-) The black dashed lines are the theoretical worst for both curves. On the left, the

diagonal line is as bad as it can be. On the right, it is a bit more nuanced: The worst

is a horizontal line, but the level is given by the proportion of positive samples in

the dataset. In our example, we have 11 positive examples out of 20 data points, so

the line sits at the level of 0.55.

Comparing Models

 "If I have two models, how do I choose the best one?"


"The best model is the one with the best curve."

Captain Obvious

Thank you, Captain. The real question here is: How do you compare curves? The

closer they are to squares, the better they are, this much we already know.

Besides, if one curve has all its points above all the points of another curve, the

one above is clearly the best. The problem is, two different models may produce
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curves that intersect each other at some point. If that’s the case, there is no clear

winner.

One possible solution to this dilemma is to look at the area under the curve. The

curve with more area under it wins! Luckily, Scikit-Learn has an auc() (area under

the curve) method, which we can use to compute the area under the curves for our

(good) model:

# Area under the curves of our model
auroc = auc(fpr, tpr)
aupr = auc(rec, prec)
print(auroc, aupr)

Output

0.9797979797979798 0.9854312354312356

Very close to the perfect value of one! But then again, this is a test example—you

shouldn’t expect figures so high in real-life problems. What about the random

model? The theoretical minimum for the area under the worst ROC curve is 0.5,

which is the area under the diagonal. The theoretical minimum for the area under

the worst PR curve is the proportion of positive samples in the dataset, which is

0.55 in our case.

# Area under the curves of the random model
auroc_random = auc(fpr_random, tpr_random)
aupr_random = auc(rec_random, prec_random)
print(auroc_random, aupr_random)

Output

0.505050505050505 0.570559046216941

Close enough; after all, the curves produced by our random model were only

roughly approximating the theoretical ones.
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If you want to learn more about both curves, you can check

Scikit-Learn’s documentation for "Receiver Operating

Characteristic (ROC)"[72] and "Precision-Recall"[73]. Another good

resource is Jason Brownlee’s Machine Learning Mastery blog:

"How to Use ROC Curves and Precision-Recall Curves for

Classification in Python"[74] and "ROC Curves and Precision-

Recall Curves for Imbalanced Classification"[75].

Putting It All Together

In this chapter, we haven’t modified the training pipeline much. The data

preparation part is roughly the same as in the previous chapter, except for the fact

that we performed the split using Scikit-Learn this time. The model configuration

part is largely the same as well, but we changed the loss function, so it is the

appropriate one for a classification problem. The model training part is quite

straightforward given the development of the StepByStep class in the last chapter.

But now, after training a model, we can use our class' predict() method to get

predictions for our validation set and use Scikit-Learn’s metrics module to

compute a wide range of classification metrics, like the confusion matrix, for

example.
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Data Preparation

 1 torch.manual_seed(13)
 2 
 3 # Builds tensors from Numpy arrays
 4 x_train_tensor = torch.as_tensor(X_train).float()
 5 y_train_tensor = torch.as_tensor(y_train.reshape(-1, 1)).float()
 6 
 7 x_val_tensor = torch.as_tensor(X_val).float()
 8 y_val_tensor = torch.as_tensor(y_val.reshape(-1, 1)).float()
 9 
10 # Builds dataset containing ALL data points
11 train_dataset = TensorDataset(x_train_tensor, y_train_tensor)
12 val_dataset = TensorDataset(x_val_tensor, y_val_tensor)
13 
14 # Builds a loader of each set
15 train_loader = DataLoader(
16     dataset=train_dataset,
17     batch_size=16,
18     shuffle=True
19 )
20 val_loader = DataLoader(dataset=val_dataset, batch_size=16)

Model Configuration

 1 # Sets learning rate - this is "eta" ~ the "n"-like Greek letter
 2 lr = 0.1
 3 
 4 torch.manual_seed(42)
 5 model = nn.Sequential()
 6 model.add_module('linear', nn.Linear(2, 1))
 7 
 8 # Defines an SGD optimizer to update the parameters
 9 optimizer = optim.SGD(model.parameters(), lr=lr)
10 
11 # Defines a BCE loss function
12 loss_fn = nn.BCEWithLogitsLoss()
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Model Training

1 n_epochs = 100
2 
3 sbs = StepByStep(model, loss_fn, optimizer)
4 sbs.set_loaders(train_loader, val_loader)
5 sbs.train(n_epochs)

print(model.state_dict())

Output

OrderedDict([('linear.weight', tensor([[ 1.1822, -1.8684]], device
='cuda:0')),
             ('linear.bias', tensor([-0.0587], device='cuda:0'))])

Evaluating

logits_val = sbs.predict(X_val)
probabilities_val = sigmoid(logits_val).squeeze()
cm_thresh50 = confusion_matrix(y_val, (probabilities_val >= 0.5))
cm_thresh50

Output

array([[ 7,  2],
       [ 1, 10]])

Recap

In this chapter, we’ve gone through many concepts related to classification

problems. This is what we’ve covered:

• defining a binary classification problem

• generating and preparing a toy dataset using Scikit-Learn’s make_moons()
method

• defining logits as the result of a linear combination of features
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• understanding what odds ratios and log odds ratios are

• figuring out we can interpret logits as log odds ratios

• mapping logits into probabilities using a sigmoid function

• defining a logistic regression as a simple neural network with a sigmoid

function in the output

• understanding the binary cross-entropy loss and its PyTorch implementation

nn.BCELoss()

• understanding the difference between nn.BCELoss() and

nn.BCEWithLogitsLoss()

• highlighting the importance of choosing the correct combination of the last

layer and loss function

• using PyTorch’s loss functions' arguments to handle imbalanced datasets

• configuring model, loss function, and optimizer for a classification problem

• training a model using the StepByStep class

• understanding that the validation loss may be lower than the training loss

• making predictions and mapping predicted logits to probabilities

• using a classification threshold to convert probabilities into classes

• understanding the definition of a decision boundary

• understanding the concept of separability of classes and how it’s related to

dimensionality

• exploring different classification thresholds and their effect on the confusion

matrix

• reviewing typical metrics for evaluating classification algorithms, like true and

false positive rates, precision, and recall

• building ROC and precision-recall curves out of metrics computed for multiple

thresholds

• understanding the reason behind the quirk of losing precision while raising the

classification threshold

• defining the best and worst possible ROC and PR curves

• using the area under the curve to compare different models

Wow! That’s a whole lot of material! Congratulations on finishing yet another big
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step in your journey! What’s next? We’ll build upon this knowledge to tackle an

image classification problem first and then a multiclass classification problem

later.

[68] https://github.com/dvgodoy/PyTorchStepByStep/blob/master/Chapter03.ipynb

[69] https://colab.research.google.com/github/dvgodoy/PyTorchStepByStep/blob/master/Chapter03.ipynb

[70] https://bit.ly/2GlmLO0

[71] http://pyimg.co/kku35

[72] https://bit.ly/34lPAlx

[73] https://bit.ly/30xB9JZ

[74] https://bit.ly/30vF7TE

[75] https://bit.ly/2GCEL6A
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Part II
Computer Vision
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Chapter 4
Classifying Images

Spoilers

In this chapter, we will:

• build models to classify images

• use Torchvision to apply transformations to images

• compose transformations and apply them to datasets

• perform data augmentation in the training set

• use samplers to handle imbalanced datasets

• understand why we need activation functions

• build a deeper model using activation functions

Jupyter Notebook

The Jupyter notebook corresponding to Chapter 4[76] is part of the official Deep

Learning with PyTorch Step-by-Step repository on GitHub. You can also run it

directly in Google Colab[77].

If you’re using a local installation, open your terminal or Anaconda prompt and

navigate to the PyTorchStepByStep folder you cloned from GitHub. Then, activate

the pytorchbook environment and run jupyter notebook:

$ conda activate pytorchbook

(pytorchbook)$ jupyter notebook

If you’re using Jupyter’s default settings, this link should open Chapter 4’s

notebook. If not, just click on Chapter04.ipynb in your Jupyter’s home page.

Imports

For the sake of organization, all libraries needed throughout the code used in any

given chapter are imported at its very beginning. For this chapter, we’ll need the

following imports:
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import random
import numpy as np
from PIL import Image

import torch
import torch.optim as optim
import torch.nn as nn
import torch.nn.functional as F

from torch.utils.data import DataLoader, Dataset, random_split, \
WeightedRandomSampler, SubsetRandomSampler
from torchvision.transforms import Compose, ToTensor, Normalize,\
ToPILImage, RandomHorizontalFlip, Resize

import matplotlib.pyplot as plt
plt.style.use('fivethirtyeight')
%matplotlib inline

from data_generation.image_classification import generate_dataset
from stepbystep.v0 import StepByStep

Classifying Images

Enough already with simple data points: Let’s classify images! Although the data is

different, it is still a classification problem, so we will try to predict which class an

image belongs to.

First, let’s generate some images to work with (so we don’t have to use MNIST![78]).
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Data Generation

Our images are quite simple: They have black backgrounds and white lines drawn

on top of them. The lines can be drawn either in a diagonal or in a parallel (to one of

the edges, so they could be either horizontal or vertical) way. So, our classification

problem can be simply stated as: Is the line diagonal?

If the line is diagonal, then we assume it belongs to the positive class. If it is not

diagonal, it belongs to the negative class. We have our labels (y), which we can

summarize like this:

Line Value Class

Not Diagonal 0 Negative

Diagonal 1 Positive

Let’s generate 300 random images, each one five-by-five pixels in size:

Data Generation

1 images, labels = generate_dataset(
2   img_size=5, n_images=300, binary=True, seed=13
3 )

And then let’s visualize the first 30 images:

fig = plot_images(images, labels, n_plot=30)
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Figure 4.1 - Image dataset

Since our images are quite small, there aren’t that many possibilities for drawing

lines on top of them. There are actually 18 different configurations for diagonal

lines (nine to the left, nine to the right), and 10 different configurations for

horizontal and vertical lines (five each). That’s a total of 28 possibilities in a 300-

image dataset. So, there will be lots of duplicates (like images #1 and #2, or #6 and

#7, for example), but that’s fine.
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Images and Channels

In case you’re not familiar with the meaning of channels, pixel values, and

how images are represented as tensors, this is a brief overview of these

topics.

To illustrate how images are represented, let’s create three separate images

first:

image_r  = np.zeros((5, 5), dtype=np.uint8)
image_r[:, 0] = 255
image_r[:, 1] = 128

image_g = np.zeros((5, 5), dtype=np.uint8)
image_g[:, 1] = 128
image_g[:, 2] = 255
image_g[:, 3] = 128

image_b = np.zeros((5, 5), dtype=np.uint8)
image_b[:, 3] = 128
image_b[:, 4] = 255

Each of these images is five-by-five pixels and is represented by a five-by-

five matrix. It is a two-dimensional representation, which means it is a

single-channel image. Moreover, its dtype is np.uint8, which only accepts

values from zero to 255.



If an image has only one channel, it is a grayscale image.

The range of pixel values goes from zero (black) to 255

(white), and everything in between is a shade of gray.
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Let’s see what the matrices above represent.

Taken individually, they are three images with vertical stripes. But we can

pretend they represent different colors: red, green, and blue. These three

colors are the base colors used to build all others. That’s where the RGB

acronym comes from!

If we perform a weighted average of these three colors, we’ll get another

grayscale image. This should be no surprise since it still has only one

channel.

image_gray = .2126*image_r + .7152*image_g + .0722*image_b



By the way, these weights are not arbitrary: They are

considered to best preserve the original characteristics of

the image. If you use an image editor to convert a colored

image to grayscale, this is what the software is doing under

the hood.

Grayscale images are boring, though. May I have some color, please? It turns

out to do so, we only need to stack the three images representing the three

colors, each image becoming a channel.


Colored images have three channels, one for each color:

red, green, and blue, in that order.
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image_rgb = np.stack([image_r, image_g, image_b], axis=2)

Let’s see what those same matrices represent, once we consider them

channels (unfortunately, the visual impact is completely lost in print).

Before moving on with our classification problem, we need to address the shape

issue: Different frameworks (and Python packages) use different conventions for

the shape of the images.

Shape (NCHW vs NHWC)

 "What do these acronyms stand for?"

It’s quite simple, actually:

• N stands for the Number of images (in a mini-batch, for instance).

• C stands for the number of Channels (or filters) in each image.

• H stands for each image’s Height.

• W stands for each image’s Width.

Thus the acronyms indicate the expected shape of the mini-batch:

• NCHW: (number of images, channels, height, width)

• NHWC: (number of images, height, width, channels)

Basically, everyone agrees that the number of images comes first, and that height

and width are an inseparable duo. It all comes down to the channels (or filters):
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For each individual image, it may be either the first dimension (before HW) or the

last dimension (after HW).

There are endless discussions about which format is better, faster, or whatever.

We’re not getting into that here. Nonetheless, we need to address this difference

because it is a common source of confusion and error since each package or

framework uses a different one:

• PyTorch uses NCHW.

• TensorFlow uses NHWC.

• PIL images are HWC.

Annoying, right? I think so, too. But it is only a matter of paying close attention to

which format is coming in, and which format is going out after an operation. Let’s

work our way through it.

Our dataset generates images following the PyTorch format; that is, NCHW.

What’s the shape of our dataset, then?

images.shape

Output

(300, 1, 5, 5)

As expected, 300 images, single-channel, five pixels wide, five pixels high. Let’s take

a closer look at one image, say, image #7:

example = images[7]
example

Output

array([[[  0, 255,   0,   0,   0],
        [  0,   0, 255,   0,   0],
        [  0,   0,   0, 255,   0],
        [  0,   0,   0,   0, 255],
        [  0,   0,   0,   0,   0]]], dtype=uint8)
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That’s fairly straightforward; we can even "see" the diagonal line of values equal to

255 representing the white pixels.

What would an image in the HWC (PIL image format) look like? We can transpose

the first dimension to become the last using Numpy's transpose():

example_hwc = np.transpose(example, (1, 2, 0))
example_hwc.shape

Output

(5, 5, 1)

The shape is correct: HWC. What about the content?

example_hwc

Output

array([[[  0],
        [255],
        [  0],
        [  0],
        [  0]],
        ...
       [[  0],
        [  0],
        [  0],
        [  0],
        [  0]]], dtype=uint8)

Say what you want, but this HWC format is surely not intuitive to look at, array-

style!

The good thing is, PyTorch’s default shape for a single image (CHW) is much better

to look at. And, if you need a PIL image at some point, PyTorch provides means for

transforming images back and forth between the two shapes.

It is time to introduce you to…
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Torchvision

Torchvision is a package containing popular datasets, model architectures, and

common image transformations for computer vision.

Datasets

Many of the popular and common datasets are included out of the box, like MNIST,

ImageNet, CIFAR, and many more. All these datasets inherit from the original

Dataset class, so they can be naturally used with a DataLoader in exactly the same

way we’ve been doing so far.

There is one particular dataset we should pay more attention to: ImageFolder. This

is not a dataset itself, but a generic dataset that you can use with your own images,

provided that they are properly organized into sub-folders, with each sub-folder

named after a class and containing the corresponding images.


We’ll get back to it in Chapter 6 when we use Rock Paper Scissors

images to build a dataset using ImageFolder.

Models

PyTorch also includes the most popular model architectures, including their pre-

trained weights, for tackling many tasks like image classification, semantic

segmentation, object detection, instance segmentation, person keypoint detection,

and video classification.

Among the many models, we can find the well-known AlexNet, VGG (in its many

incarnations: VGG11, VGG13, VGG16, and VGG19), ResNet (also in many flavors:

ResNet18, ResNet34, ResNet50, ResNet101, ResNet152), and Inception V3.


In Chapter 7, we will load a pre-trained model and fine-tune it to

our particular task. In other words, we’ll use transfer learning.

Transforms

Torchvision has some common image transformations in its transforms module. It

is important to realize there are two main groups of transformations:

• Transformations based on images (in either PIL or PyTorch shapes)
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• Transformations based on Tensors

Obviously, there are conversion transforms to convert from tensor ToPILImage()
and from PIL image ToTensor().

Let’s start by using ToTensor() to convert a Numpy array (in PIL shape) to a

PyTorch tensor. We can create a "tensorizer" (for lack of a better name) and feed it

our example image (#7) in HWC shape:

tensorizer = ToTensor()
example_tensor = tensorizer(example_hwc)
example_tensor.shape

Output

torch.Size([1, 5, 5])

Cool, we got the expected CHW shape. So, its content should be easy to associate

with the underlying image:

example_tensor

Output

tensor([[[0., 1., 0., 0., 0.],
         [0., 0., 1., 0., 0.],
         [0., 0., 0., 1., 0.],
         [0., 0., 0., 0., 1.],
         [0., 0., 0., 0., 0.]]])

And indeed it is: Once again we can "see" the diagonal line. But, this time, its values

are not equal to 255; they are equal to 1.0 instead.
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ToTensor() may scale the values from a [0, 255] range to a [0.0,

1.0] range if the input is either a Numpy array with dtype equal to

uint8 (as in our example) or a PIL image belonging to one of the

following modes (L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1).

To learn more about image modes, check this[79] documentation

out.


"So, I convert PIL images and Numpy arrays to PyTorch tensors from

the start and it is all good?"

That’s pretty much it, yes. It wasn’t always like that, though, since earlier versions

of Torchvision implemented the interesting transformations for PIL images only.


"What do you mean by interesting transformations? What do they

do?"

These transformations modify the training images in many different ways:

rotating, shifting, flipping, cropping, blurring, zooming in, adding noise, or erasing

parts of it.

 "Why would I ever want to modify my training images like that?"

That’s what’s called data augmentation. It is a clever technique to expand a

dataset (augment it) without collecting more data. In general, deep learning

models are very data-hungry, requiring a massive number of examples to perform

well. But collecting large datasets is often challenging, and sometimes impossible.



Enter data augmentation: Rotate an image and pretend it is a

brand new image. Flip an image and do the same. Even better, do

it randomly during model training, so the model sees many

different versions of it.

Let’s say we have an image of a dog. If we rotate it, it is still a dog, but from a

different angle. Instead of taking two pictures of the dog, one from each angle, we

take the picture we already have and use data augmentation to simulate many

different angles. Not quite the same as the real deal, but close enough to improve

our model’s performance. Needless to say, data augmentation is not suited for

every task: If you are trying to perform object detection—that is, detecting the
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position of an object in a picture—you shouldn’t do anything that changes its

position, like flipping or shifting. Adding noise would still be fine, though.

This is just a brief overview of data augmentation techniques so you understand

the reasoning behind including this kind of transformation in a training set.


There is also "test-time augmentation," which can be used to

improve the performance of a model after it’s deployed. This is

more advanced, though, and beyond the scope of this book.

The bottom line is, these transformations are important. To more easily visualize

the resulting images, we may use ToPILImage() to convert a tensor to a PIL image:

example_img = ToPILImage()(example_tensor)
print(type(example_img))

Output

<class 'PIL.Image.Image'>

Notice that it is a real PIL image, not a Numpy array anymore, so we can use

Matplotlib to visualize it:

plt.imshow(example_img, cmap='gray')
plt.grid(False)

Figure 4.2 - Image #7


ToPILImage() can take either a tensor in PyTorch shape (CHW)

or a Numpy array in PIL shape (HWC) as inputs.
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Transforms on Images

These transforms include the typical things you’d like to do with an image for the

purpose of data augmentation: Resize(), CenterCrop(), GrayScale(),

RandomHorizontalFlip(), and RandomRotation(), to name a few. Let’s use our

example image above and try some random horizontal flipping. But, just to make

sure we flip it, let’s ditch the randomness and make it flip 100% of the time:

flipper = RandomHorizontalFlip(p=1.0)
flipped_img = flipper(example_img)

OK, the image should be flipped horizontally now. Let’s check it out:

plt.imshow(flipped_img, cmap='gray')
plt.grid(False)

Figure 4.3 - Flipped image #7

Transforms on Tensor

There are only four transforms that take (non-image) tensors as inputs:

LinearTransformation(), Normalize(), RandomErasing() (although I believe this

one was a better fit for the other group of transforms), and ConvertImageDtype().

First, let’s transform our flipped image to a tensor using the tensorizer() we’ve

already created:

img_tensor = tensorizer(flipped_img)
img_tensor
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Output

tensor([[[0., 0., 0., 1., 0.],
         [0., 0., 1., 0., 0.],
         [0., 1., 0., 0., 0.],
         [1., 0., 0., 0., 0.],
         [0., 0., 0., 0., 0.]]])

Normalize Transform

Now we can apply one of the most common transformations: Normalize(). In its

documentation, we get a brief description of this transformation:

Normalize a tensor image with mean and standard deviation. Given mean:

(mean[1],...,mean[n]) and std: (std[1],..,std[n]) for n channels, this

transform will normalize each channel of the input torch.*Tensor i.e.,

output[channel] = (input[channel] - mean[channel]) / std[channel]

Does it look familiar? Remember the StandardScaler we have used in previous

chapters to standardize our features? That’s the tensor-based version of it,

operating independently on each image channel.

 "Why is it called normalize then?"

Unfortunately, there are many names for the procedure that involves subtracting

the mean value first, and then dividing the result by the standard deviation. In my

opinion, it should always be called standardization, as in Scikit-Learn, since

"normalizing" means something else (transforming the features such that every

data point has a unit norm). But, in many cases, and Torchvision is one of those

cases, the standardization procedure is called normalization (coming from normal

distribution, not from the unit norm).



Regardless of its name, standardization or normalization, this

transformation modifies the range of values of a given feature or

set of features. As we have seen in Chapter 0, having features in

well-behaved ranges greatly improves the performance of

gradient descent. Moreover, as we’ll see shortly, it is better to

have features with symmetrical ranges of values (from -1 to 1, for

example) when training neural networks.
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By definition, pixel values can only be positive, usually in the range [0, 255]. We

see our image tensor has values that are in the [0, 1] range, and that we have only

one channel. We can use the Normalize() transform to have its values mapped to a

symmetrical range.

But, instead of computing mean and standard deviation first (as we did in previous

chapters), let’s set the mean to 0.5 and set the standard deviation to 0.5 as well.

 "Wait a moment … why?!"

By doing so, we’ll effectively be performing a min-max scaling (like Scikit-Learn’s

MinMaxScaler) such that the resulting range is [-1, 1]. It is easy to see why, if we

compute the resulting values for the extremes of our original range [0, 1].

Normalizer

There we go: The resulting range is [-1, 1]. Actually, we could set it to anything we

want. Had we chosen a standard deviation of 0.25, we would get a [-2, 2] range

instead. If we had chosen a mean value different than the midpoint of the original

range, we would end up with an asymmetrical range as a result.

Now, if we had taken the trouble of actually computing the real mean and

standard deviation of the training data, we would have achieved an actual

standardization; that is, our training data would have zero mean and unit standard

deviation.

For now, let’s stick with the lazy approach and use the Normalize() transformation

as a min-max scaler to the [-1, 1] range:

normalizer = Normalize(mean=(.5,), std=(.5,))
normalized_tensor = normalizer(img_tensor)
normalized_tensor
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Output

tensor([[[-1., -1., -1.,  1., -1.],
         [-1., -1.,  1., -1., -1.],
         [-1.,  1., -1., -1., -1.],
         [ 1., -1., -1., -1., -1.],
         [-1., -1., -1., -1., -1.]]])

Notice that the transformation takes two tuples as arguments, one tuple for the

means, another one for the standard deviations. Each tuple has as many values as

channels in the image. Since we have single-channel images, our tuples have a

single element each.

It is also easy to see that we achieved the desired range of values: The

transformation simply converted zeros into negative ones and preserved the

original ones. Good for illustrating the concept, but surely not exciting.


In Chapter 6, we’ll use Normalize() to standardize real (three-

channel) images.

Composing Transforms

No one expects you to run these transformations one by one; that’s what

Compose() can be used for: composing several transformations into a single, big,

composed transformation. Also, I guess I could have composed a better sentence to

explain it (pun intended).

It is quite simple, actually: Just line up all desired transformations in a list. This

works pretty much the same way as a pipeline in Scikit-Learn. We only need to

make sure the output of a given transformation is an appropriate input for the

next one.

Let’s compose a new transformation using the following list of transformations:

• First, let’s flip an image using RandomHorizontalFlip().

• Next, let’s perform some min-max scaling using Normalize().

In code, the sequence above looks like this:
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composer = Compose([RandomHorizontalFlip(p=1.0),
                    Normalize(mean=(.5,), std=(.5,))])

If we use the composer above to transform the example tensor, we should get the

same normalized tensor as output. Let’s double-check it:

composed_tensor = composer(example_tensor)
(composed_tensor == normalized_tensor).all()

Output

tensor(True)

Great! We can use a single composed transformation from now on!

Notice that we have not used the original example, a Numpy array already in

PyTorch shape (CHW), as input. To understand why, let’s briefly compare it to the

example_tensor we used as the actual input (a PyTorch tensor, also in CHW shape):

print(example)
print(example_tensor)

Output

[[[  0 255   0   0   0]
  [  0   0 255   0   0]
  [  0   0   0 255   0]
  [  0   0   0   0 255]
  [  0   0   0   0   0]]]
tensor([[[0., 1., 0., 0., 0.],
         [0., 0., 1., 0., 0.],
         [0., 0., 0., 1., 0.],
         [0., 0., 0., 0., 1.],
         [0., 0., 0., 0., 0.]]])

As you can see, the only differences between them are the scale (255 vs one) and

the type (integer and float).
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We can convert the former into the latter using a one-liner:

example_tensor = torch.as_tensor(example / 255).float()

Moreover, we can use this line of code to convert our whole Numpy dataset into

tensors so they become an appropriate input to our composed transformation.

Data Preparation

The first step of data preparation, as in previous chapters, is to convert our

features and labels from Numpy arrays to PyTorch tensors:

# Builds tensors from numpy arrays BEFORE split
x_tensor = torch.as_tensor(images / 255).float()
y_tensor = torch.as_tensor(labels.reshape(-1, 1)).float()

The only difference is that we scaled the images to get them into the expected [0.0,

1.0] range.

Dataset Transforms

Next, we use both tensors to build a Dataset, but not a simple TensorDataset like

before. Once again, we’ll build our own custom dataset that is capable of handling

transformations. Its code is actually quite simple:
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Transformed Dataset

 1 class TransformedTensorDataset(Dataset):
 2     def __init__(self, x, y, transform=None):
 3         self.x = x
 4         self.y = y
 5         self.transform = transform
 6 
 7     def __getitem__(self, index):
 8         x = self.x[index]
 9 
10         if self.transform:
11             x = self.transform(x)
12 
13         return x, self.y[index]
14 
15     def __len__(self):
16         return len(self.x)

It takes three arguments: a tensor for features (x), another tensor for labels (y),

and an optional transformation. These arguments are then stored as attributes of

the class. Of course, if no transformation is given, it will behave similarly to a regular

TensorDataset.

The main difference is in the __getitem__() method: Instead of simply returning

the elements corresponding to a given index in both tensors, it transforms the

features, if a transformation is defined.

 "Do I have to create a custom dataset to perform transformations?"

Not necessarily, no. The ImageFolder dataset, which you’ll likely use for handling

real images, handles transformations out of the box. The mechanism is essentially

the same: If a transformation is defined, the dataset applies it to the images. The

purpose of using yet another custom dataset here is to illustrate this mechanism.

So, let’s redefine our composed transformations (so it actually flips the image

randomly instead of every time) and create our dataset:
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composer = Compose([RandomHorizontalFlip(p=0.5),
                    Normalize(mean=(.5,), std=(.5,))])

dataset = TransformedTensorDataset(x_tensor, y_tensor, composer)

Cool! But we still have to split the dataset as usual. But we’ll do it a bit differently

this time.

SubsetRandomSampler

Previously, when creating a data loader for the training set, we set its argument

shuffle to True (since shuffling data points, in most cases, improves the

performance of gradient descent). This was a very convenient way of shuffling the

data that was implemented using a RandomSampler under the hood. Every time a

new mini-batch was requested, it sampled some indices randomly, and the data

points corresponding to those indices were returned.

Even when there was no shuffling involved, as in the data loader used for the

validation set, a SequentialSampler was used. In this case, whenever a new mini-

batch was requested, this sampler simply returned a sequence of indices, in order,

and the data points corresponding to those indices were returned.

In a nutshell, a sampler can be used to return sequences of indices to be used for

data loading. In the two examples above, each sampler would take a Dataset as an

argument. But not all samplers are like that.

The SubsetRandomSampler samples indices from a list, given as argument, without

replacement. As in the other samplers, these indices are used to load data from a

dataset. If an index is not on the list, the corresponding data point will never be

used.

So, if we have two disjoint lists of indices (that is, no intersection between them,

and they cover all elements if added together), we can create two samplers to

effectively split a dataset. Let’s put this into code to make it more clear.

First, we need to generate two shuffled lists of indices, one corresponding to the

points in the training set, the other to the points in the validation set. We have

done this already using Numpy. Let’s make it a bit more interesting and useful this

time by assembling Helper Function #4, aptly named index_splitter(), to split

the indices:
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Helper Function #4

 1 def index_splitter(n, splits, seed=13):
 2     idx = torch.arange(n)
 3     # Makes the split argument a tensor
 4     splits_tensor = torch.as_tensor(splits)
 5     # Finds the correct multiplier, so we don't have
 6     # to worry about summing up to N (or one)
 7     multiplier = n / splits_tensor.sum()
 8     splits_tensor = (multiplier * splits_tensor).long()
 9     # If there is a difference, throws at the first split
10     # so random_split does not complain
11     diff = n - splits_tensor.sum()
12     splits_tensor[0] += diff
13     # Uses PyTorch random_split to split the indices
14     torch.manual_seed(seed)
15     return random_split(idx, splits_tensor)

The function above takes three arguments:

• n: The number of data points to generate indices for.

• splits: A list of values representing the relative weights of the split sizes.

• seed: A random seed to ensure reproducibility.

It always bugged me a little that PyTorch’s random_split() needs a list with the

exact number of data points in each split. I wish I could give it proportions, like [80,
20], or [.8, .2], or even [4, 1], and then it would figure out how many points go

into each split on its own. That’s the main reason index_splitter() exists: We can

give it relative weights, and it figures the number of points out.

Sure, it still calls random_split() to split a tensor containing a list of indices (in

previous chapters, we used it to split Dataset objects instead). The resulting splits

are Subset objects:

train_idx, val_idx = index_splitter(len(x_tensor), [80, 20])
train_idx
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Output

<torch.utils.data.dataset.Subset at 0x7fc6e7944290>

Each subset contains the corresponding indices as an attribute:

train_idx.indices

Output

[118,
 170,
 ...
 10,
 161]

Next, each Subset object is used as an argument to the corresponding sampler:

train_sampler = SubsetRandomSampler(train_idx)
val_sampler = SubsetRandomSampler(val_idx)

So, we can use a single dataset from which to load the data since the split is

controlled by the samplers. But we still need two data loaders, each using its

corresponding sampler:

# Builds a loader of each set
train_loader = DataLoader(
    dataset=dataset, batch_size=16, sampler=train_sampler
)
val_loader = DataLoader(
    dataset=dataset, batch_size=16, sampler=val_sampler
)

 If you’re using a sampler, you cannot set shuffle=True.
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We can also check if the loaders are returning the correct number of mini-batches:

len(iter(train_loader)), len(iter(val_loader))

Output

(15, 4)

There are 15 mini-batches in the training loader (15 mini-batches * 16 batch size =

240 data points), and four mini-batches in the validation loader (4 mini-batches *

16 batch size = 64 data points). In the validation set, the last mini-batch will have

only 12 points, since there are only 60 points in total.

OK, cool, this means we don’t need two (split) datasets anymore—we only need

two samplers. Right? Well, it depends.

Data Augmentation Transforms

No, I did not change topics :-) The reason why we may still need two split datasets

is exactly that: data augmentation. In general, we want to apply data augmentation

to the training data only (yes, there is test-data augmentation too, but that’s a

different matter). Data augmentation is accomplished using composing

transforms, which will be applied to all points in the dataset. See the problem?

If we need some data points to be augmented, but not others, the easiest way to

accomplish this is to create two composers and use them in two different datasets.

We can still use the indices, though:

# Uses indices to perform the split
x_train_tensor = x_tensor[train_idx]
y_train_tensor = y_tensor[train_idx]
x_val_tensor = x_tensor[val_idx]
y_val_tensor = y_tensor[val_idx]

Then, here come the two composers: The train_composer() augments the data,

and then scales it (min-max); the val_composer() only scales the data (min-max).
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train_composer = Compose([RandomHorizontalFlip(p=.5),
                          Normalize(mean=(.5,), std=(.5,))])

val_composer = Compose([Normalize(mean=(.5,), std=(.5,))])

Next, we use them to create two datasets and their corresponding data loaders:

train_dataset = TransformedTensorDataset(
    x_train_tensor, y_train_tensor, transform=train_composer
)
val_dataset = TransformedTensorDataset(
    x_val_tensor, y_val_tensor, transform=val_composer
)

# Builds a loader of each set
train_loader = DataLoader(
    dataset=train_dataset, batch_size=16, shuffle=True
)
val_loader = DataLoader(dataset=val_dataset, batch_size=16)

And, since we’re not using a sampler to perform the split anymore, we can (and

should) set shuffle to True.


If you do not perform data augmentation, you may keep using

samplers and a single dataset.

Disappointed with the apparently short-lived use of samplers? Don’t be! I saved

the best sampler for last.

WeightedRandomSampler

We have already talked about imbalanced datasets when learning about binary

cross-entropy losses in Chapter 3. We adjusted the loss weight for points in the

positive class to compensate for the imbalance. It wasn’t quite the weighted average

one would expect, though. Now, we can tackle the imbalance using a different

approach: A weighted sampler.

The reasoning is pretty much the same but, instead of weighted losses, we use

weights for sampling: The class with fewer data points (minority class) should get
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larger weights, while the class with more data points (majority class) should get

smaller weights. This way, on average, we’ll end up with mini-batches containing

roughly the same number of data points in each class: A balanced dataset.

 "How are the weights computed?"

First, we need to find how imbalanced the dataset is; that is, how many data points

belong to each label. We can use PyTorch’s unique() method on our training set

labels (y_train_tensor), with return_counts equals True, to get a list of the

existing labels and the corresponding number of data points:

classes, counts = y_train_tensor.unique(return_counts=True)
print(classes, counts)

Output

tensor([0., 1.]) tensor([ 80, 160])

Ours is a binary classification, so it is no surprise we have two classes: zero (not

diagonal) and one (diagonal). There are 80 images with lines that are not diagonal,

and 160 images with diagonal lines. Clearly, an imbalanced dataset.

Next, we compute the weights by inverting the counts. It is as simple as that:

weights = 1.0 / counts.float()
weights

Output

tensor([0.0125, 0.0063])

The first weight (0.0125) corresponds to the negative class (not diagonal). Since

this class has only 80 out of 240 images in our training set, it is also the minority

class. The other weight (0.0063) corresponds to the positive class (diagonal), which

has the remaining 160 images, thus making it the majority class.
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The minority class should have the largest weight, so each data

point belonging to it gets overrepresented to compensate for the

imbalance.

 "But these weights do not sum up to one—isn’t it wrong?"

It is common to have weights summing up to one, sure, but this is not required by

PyTorch’s weighted sampler. We can get away with having weights inversely

proportional to the counts. In this sense, the sampler is very "forgiving." But it is

not without its own quirks, unfortunately.

It is not enough to provide a sequence of weights that correspond to each different

class in the training set. It requires a sequence containing the corresponding

weight for each and every data point in the training set. Even though this is a bit

annoying, it is not so hard to accomplish: We can use the labels as indexes of the

weights we computed above. It is probably easier to see it in code:

sample_weights = weights[y_train_tensor.squeeze().long()]

print(sample_weights.shape)
print(sample_weights[:10])
print(y_train_tensor[:10].squeeze())

Output

torch.Size([240])
tensor([0.0063, 0.0063, 0.0063, 0.0063, 0.0063, 0.0125, 0.0063,
        0.0063, 0.0063, 0.0063])
tensor([1., 1., 1., 1., 1., 0., 1., 1., 1., 1.])

Since there are 240 images in our training set, we need 240 weights. We squeeze

our labels (y_train_tensor) to a single dimension and cast them to long type since

we want to use them as indices. The code above shows the first ten elements, so

you can actually see the correspondence between class and weight in the resulting

tensor.

The sequence of weights is the main argument used to create the

WeightedRandomSampler, but not the only one. Let’s take a look at its arguments:
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• weights: A sequence of weights like the one we have just computed.

• num_samples: How many samples are going to be drawn from the dataset.

◦ A typical value is the length of the sequence of weights, as you’re likely

sampling from the whole training set.

• replacement: If True (the default value), it draws samples with replacement.

◦ If num_samples equals the length—that is, if the whole training set is used—it

makes sense to draw samples with replacement to effectively compensate

for the imbalance.

◦ It only makes sense to set it to False if num_samples < length of the dataset.

• generator: Optional, it takes a (pseudo) random number Generator that will be

used for drawing the samples.

◦ To ensure reproducibility, we need to create and assign a generator (which

has its own seed) to the sampler, since the manual seed we’ve already set is

not enough.

OK, we’ll sample from the whole training set, and we have our sequence of weights

ready. We are still missing a generator, though. Let’s create both the generator and

the sampler now:

generator = torch.Generator()

sampler = WeightedRandomSampler(
    weights=sample_weights,
    num_samples=len(sample_weights),
    generator=generator,
    replacement=True
)

 "Didn’t you say we need to set a seed for the generator?! Where is it?"

Indeed, I said it. We’ll set it soon, after assigning the sampler to the data loader.

You’ll understand the reasoning behind this choice shortly, so please bear with me.

Now, let’s (re-)create the data loaders using the weighted sampler with the training

set:
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train_loader = DataLoader(
    dataset=train_dataset, batch_size=16,  sampler=sampler
)
val_loader = DataLoader(dataset=val_dataset, batch_size=16)

Once again, if we’re using a sampler, we cannot use the shuffle argument.

There is a lot of boilerplate code here, right? Let’s build yet another function,

Helper Function #5, to wrap it all up:

Helper Function #5

 1 def make_balanced_sampler(y):
 2     # Computes weights for compensating imbalanced classes
 3     classes, counts = y.unique(return_counts=True)
 4     weights = 1.0 / counts.float()
 5     sample_weights = weights[y.squeeze().long()]
 6     # Builds sampler with compute weights
 7     generator = torch.Generator()
 8     sampler = WeightedRandomSampler(
 9         weights=sample_weights,
10         num_samples=len(sample_weights),
11         generator=generator,
12         replacement=True
13     )
14     return sampler

sampler = make_balanced_sampler(y_train_tensor)

Much better! Its only argument is the tensor containing the labels: The function

will compute the weights and build the corresponding weighted sampler on its own.

Seeds and more (seeds)

Time to set the seed for the generator used in the sampler assigned to the data

loader. It is a long sequence of objects, but we can work our way through it to

retrieve the generator and call its manual_seed() method:
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train_loader.sampler.generator.manual_seed(42)
random.seed(42)

Now we can check if our sampler is doing its job correctly. Let’s have it sample a full

run (240 data points in 15 mini-batches of 16 points each), and sum up the labels so

we know how many points are in the positive class:

torch.tensor([t[1].sum() for t in iter(train_loader)]).sum()

Output

tensor(123.)

Close enough! We have 160 images of the positive class, and now, thanks to the

weighted sampler, we’re sampling only 123 of them. It means we’re oversampling

the negative class (which has 80 images) to a total of 117 images, adding up to 240

images. Mission accomplished, our dataset is balanced now.


"Wait a minute! Why on Earth there was an extra seed

(random.seed(42)) in the code above? Don’t we have enough

already?"

I agree, too many seeds. Besides one specific seed for the generator, we also have

to set yet another seed for Python’s random module.



Honestly, this came to me as a surprise too when I found out

about it! As weird as it may sound, in Torchvision versions prior

to 0.8, there was still some code that depended upon Python’s

native random module, instead of PyTorch’s own random

generators. The problem happened when some of the random

transformations for data augmentation were used, like

RandomRotation(), RandomAffine(), and others.

It’s better to be safe than sorry, so we better set yet another seed to ensure the

reproducibility of our code.

And that’s exactly what we’re going to do! Remember the set_seed() method we
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implemented in Chapter 2.1? Let’s update it to include more seeds:

StepByStep Method

def set_seed(self, seed=42):
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False
    torch.manual_seed(seed)
    np.random.seed(seed)
    random.seed(seed)
    try:
        self.train_loader.sampler.generator.manual_seed(seed)
    except AttributeError:
        pass

setattr(StepByStep, 'set_seed', set_seed)

Four seeds and counting! Our updated method tries to update the seed of the

generator used by the sampler assigned to the data loader of the training set. But, if

there is no generator (the argument is optional, after all), it fails silently.

Putting It Together

We’ve gone through a lot of things regarding the data preparation step. Let’s put

them all together to get a better view of the big picture here.

First, we’ve built a custom dataset to handle transforms on tensors, and two

helper functions to handle boilerplate code for splitting indices and building a

weighted random sampler.

Then, we performed many different processing steps as data preparation:

• modifying the scale of pixel values from [0, 255] to [0, 1]

• splitting indices and tensors into training and validation sets

• building composed transforms, including data augmentation, in the training set

• using a custom dataset to apply transforms to tensors

• creating a weighted random sampler to handle class imbalance

• creating data loaders, using the sampler together with the training set
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Data Preparation

 1 # Builds tensors from numpy arrays BEFORE split
 2 # Modifies the scale of pixel values from [0, 255] to [0, 1]
 3 x_tensor = torch.as_tensor(images / 255).float()
 4 y_tensor = torch.as_tensor(labels.reshape(-1, 1)).float()
 5 # Uses index_splitter to generate indices
 6 train_idx, val_idx = index_splitter(len(x_tensor), [80, 20])
 7 # Uses indices to perform the split
 8 x_train_tensor = x_tensor[train_idx]
 9 y_train_tensor = y_tensor[train_idx]
10 x_val_tensor = x_tensor[val_idx]
11 y_val_tensor = y_tensor[val_idx]
12 # Builds different composers because of data augmentation on
   training set
13 train_composer = Compose([RandomHorizontalFlip(p=.5),
14                           Normalize(mean=(.5,), std=(.5,))])
15 val_composer = Compose([Normalize(mean=(.5,), std=(.5,))])
16 # Uses custom dataset to apply composed transforms to each set
17 train_dataset = TransformedTensorDataset(
18     x_train_tensor, y_train_tensor, transform=train_composer
19 )
20 val_dataset = TransformedTensorDataset(
21     x_val_tensor, y_val_tensor, transform=val_composer
22 )
23 # Builds a weighted random sampler to handle imbalanced classes
24 sampler = make_balanced_sampler(y_train_tensor)
25 # Uses sampler in the training set to get a balanced data loader
26 train_loader = DataLoader(
27     dataset=train_dataset, batch_size=16, sampler=sampler
28 )
29 val_loader = DataLoader(dataset=val_dataset, batch_size=16)

We’re almost finished with the data preparation section! There is one last thing to

discuss…

Pixels as Features

So far, we’ve been handling our data as either PIL images or three-dimensional

tensors (CHW) with shape (1, 5, 5). It is also possible to consider each pixel and

channel as an individual feature by flattening the pixels with a nn.Flatten layer.
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Let’s take one mini-batch of images from our training set to illustrate how it works:

dummy_xs, dummy_ys = next(iter(train_loader))
dummy_xs.shape

Output

torch.Size([16, 1, 5, 5])

Our dummy mini-batch has 16 images, one channel each, dimensions five-by-five

pixels. What if we flatten this mini-batch?

flattener = nn.Flatten()
dummy_xs_flat = flattener(dummy_xs)

print(dummy_xs_flat.shape)
print(dummy_xs_flat[0])

Output

torch.Size([16, 25])
tensor([-1., -1., -1., -1., -1., -1., -1., -1., -1., -1.,  1., -1.,
-1., -1., -1., -1.,  1., -1., -1., -1., -1., -1.,  1., -1., -1.])

By default, it preserves the first dimension such that we keep the number of data

points in the mini-batch, but it collapses the remaining dimensions. If we look at the

first element of the flattened mini-batch, we find a long tensor with 25 (1 x 5 x 5)

elements in it. If our images had three channels, the tensor would be 75 (3 x 5 x 5)

elements long.

 "Don’t we lose information when we flatten pixels?"

Sure we do! And that’s why convolutional neural networks (CNNs), which we’ll

cover in the next chapter, are so successful: They do not lose this information. But,

for now, let’s do it really old style and flatten the pixels. It will make it much simpler

to illustrate a couple of other concepts before we get to the fancier CNNs.

Now, assuming the flattened version of our dataset, I ask you:
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"How is this different from the datasets we worked with in previous

chapters?"

It isn’t! Before, our data points were tensors with one or two elements in them;

that is, one or two features. Now, our data points are tensors with 25 elements in

them, each corresponding to a pixel / channel in the original image, as if they were

25 "features."

And, since it is not different, apart from the number of features, we can start from

what we already know about defining a model to handle a binary classification task.

Shallow Model

Guess what? It is a logistic regression!

Equation 4.1 - Logistic regression

Given 25 features, x0 through x24, each corresponding to the value of a pixel in a

given channel, the model will fit a linear regression such that its outputs are logits

(z), which are converted into probabilities using a sigmoid function.

 "Oh no, not this again … where are the deep models?"

Don’t worry, this section was named "Shallow Model" for a reason—in the next one,

we’ll build a deeper model with a hidden layer in it—finally!
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What does our model look like? Visualization always helps, so here we go.

Figure 4.4 - Yet another logistic regression

 "Wait, where is the bias?"

I am glad you noticed. I removed it on purpose! I want to illustrate the difference

between a shallow model like this and a deeper one, and it is much easier to work it

out if we ditch the bias. Moreover, I would also like to recall the corresponding

notation for our model, since I am planning on using this notation to illustrate that

point.

Notation

The vectorized representations of the weights (W) and features (X) are:
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The logits (z), as shown in Figure 4.4, are given by the following expression:

Model Configuration

As usual, we only need to define a model, an appropriate loss function, and an

optimizer. Since we have five-by-five single-channel images as inputs now, we

need to flatten them first so they can be proper inputs to our linear layer (without

bias). We will keep using the SGD optimizer with a learning rate of 0.1 for now.

This is what the model configuration looks like for our classification problem:

Model Configuration

 1 # Sets learning rate - this is "eta" ~ the "n"-like Greek letter
 2 lr = 0.1
 3 
 4 torch.manual_seed(17)
 5 # Now we can create a model
 6 model_logistic = nn.Sequential()
 7 model_logistic.add_module('flatten', nn.Flatten())
 8 model_logistic.add_module('output', nn.Linear(25, 1, bias=False))
 9 model_logistic.add_module('sigmoid', nn.Sigmoid())
10 
11 # Defines an SGD optimizer to update the parameters
12 optimizer_logistic = optim.SGD(
13     model_logistic.parameters(), lr=lr
14 )
15 # Defines a binary cross-entropy loss function
16 binary_loss_fn = nn.BCELoss()
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Model Training

Let’s train our model for 100 epochs using the StepByStep class and visualize the

losses:

Model Training

1 n_epochs = 100
2 
3 sbs_logistic = StepByStep(
4     model_logistic, binary_loss_fn, optimizer_logistic
5 )
6 sbs_logistic.set_loaders(train_loader, val_loader)
7 sbs_logistic.train(n_epochs)

fig = sbs_logistic.plot_losses()

Figure 4.5 - Losses for the logistic regression model

Awful, right? It seems our model is barely learning anything! Maybe a deeper

model can do better.

Deep-ish Model

There we go, let’s add not one, but two hidden layers to our model and make it

deep-ish. We still start with a nn.Flatten layer, and the last part of our model still

is a Sigmoid, but there are two extra Linear layers before the already existing

output layer.
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Let’s visualize it.

Figure 4.6 - Deep-ish model

By the way, in the figure above, the subscripts for both w and z represent the zero-

based indices for layer and unit: In the output layer, for instance, w20 represents the

weights corresponding to the first unit (#0) of the third layer (#2).

What’s happening here? Let’s work out the forward pass; that is, the path from

inputs (x) to output (y):

1. An image is flattened to a tensor with 25 features, from x0 to x24 (not depicted

in the figure above).

2. The 25 features are forwarded to each of the five units in Hidden Layer #0.

3. Each unit in Hidden Layer #0 use its weights, from w00 to w04, and the features

from the Input Layer to compute its corresponding outputs, from z00 to z04.

4. The outputs of Hidden Layer #0 are forwarded to each of the three units in

Hidden Layer #1 (in a way, the outputs of Hidden Layer #0 work as if they were

features to Hidden Layer #1).

5. Each unit in Hidden Layer #1 uses its weights, from w10 to w12, and the z0 values

from the preceding hidden layer to compute its corresponding outputs, from z10

to z12.

6. The outputs of Hidden Layer #1 are forwarded to the single unit in the output

layer (again, the outputs of Hidden Layer #1 work as if they were features to the

Output Layer).

7. The unit in the Output Layer uses its weights (w20) and the z1 values from the
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preceding hidden layer to compute its corresponding output (z2).

8. z2 is a logit, which is converted to a probability using a sigmoid function.

There are a couple of things to highlight:

• All units in the hidden layers, and the one in the output layer, take a set of

inputs (x or z) and perform the same operation (wTx or wTz, each using its own

weights, of course), producing an output (z).

• In the hidden layers, these operations are exactly like the logistic regression

models we have used so far, up to the point where the logistic regression

produced a logit.

• It is perfectly fine to think of the outputs of one layer as features of the next

layer; actually, this is at the heart of the transfer learning technique we’ll see in

Chapter 7.

• For a binary classification problem, the output layer is a logistic regression,

where the "features" are the outputs produced by the previous hidden layer.

Not so complicated, right? It actually seems like a natural extension of the logistic

regression. Let’s see how it performs in practice.
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Model Configuration

We can easily translate the model depicted above to code:

Model Configuration

 1 # Sets learning rate - this is "eta" ~ the "n"-like Greek letter
 2 lr = 0.1
 3 
 4 torch.manual_seed(17)
 5 # Now we can create a model
 6 model_nn = nn.Sequential()
 7 model_nn.add_module('flatten', nn.Flatten())
 8 model_nn.add_module('hidden0', nn.Linear(25, 5, bias=False))
 9 model_nn.add_module('hidden1', nn.Linear(5, 3, bias=False))
10 model_nn.add_module('output', nn.Linear(3, 1, bias=False))
11 model_nn.add_module('sigmoid', nn.Sigmoid())
12 
13 # Defines an SGD optimizer to update the parameters
14 optimizer_nn = optim.SGD(model_nn.parameters(), lr=lr)
15 
16 # Defines a binary cross-entropy loss function
17 binary_loss_fn = nn.BCELoss()

I’ve kept the names of the modules consistent with the captions in the figure so it is

easier to follow. The rest of the code should already be familiar to you.

Model Training

Let’s train our new deep-ish model for 100 epochs using the StepByStep class and

visualize the losses:

Model Training

1 n_epochs = 100
2 
3 sbs_nn = StepByStep(model_nn, binary_loss_fn, optimizer_nn)
4 sbs_nn.set_loaders(train_loader, val_loader)
5 sbs_nn.train(n_epochs)
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fig = sbs_nn.plot_losses()

Figure 4.7 - Losses for deep-ish model

Well, that does not look good at all! It seems even worse than the logistic

regression. Or is it? Let’s plot them both on the same chart to more easily compare

them.

Figure 4.8 - Comparing losses of shallow and deep-ish models

 "How could it be? They are … the same?"

Apparently, the deep-ish model is neither better nor worse; it is unbelievably

similar. There’s got to be something wrong. After all, a deeper model should

perform, if not better, at least, differently from a plain logistic regression.

 "What are we missing?"
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We are missing the activation functions!



An activation function is a nonlinear function that transforms

the outputs of the hidden layers, in a similar way to how the

sigmoid function transforms the logits in the output layer.

Actually, the sigmoid is one of many activation functions. There

are others, like the hyperbolic-tangent (tanh) and the rectified

linear unit (ReLU).



A deeper model without activation functions in its hidden layers

is no better than a linear or logistic regression. That’s what I

wanted to illustrate with the two models we’ve trained, the

shallow and the deep. That’s why I removed the bias in both

models too: It makes the comparison more straightforward.

Show Me the Math!

This subsection is optional. If you’re curious to understand, using matrix

multiplication, why our deep-ish model is equivalent to a logistic regression, check

the sequence of equations below.

The deep-ish model is above the line, each row corresponding to a layer. The data

flows from right to left (since that’s how one multiplies a sequence of matrices),

starting with the 25 features on the right and finishing with a single logit output on

the left. Looking at each layer (row) individually, it should also be clear that the

outputs of a given layer (each row’s left-most vector) are the inputs of the next

layer, the same way the features are the inputs of the first layer.
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Equation 4.2 - Equivalence of deep and shallow models

The first row below the line shows the sequence of matrices. The bottom row

shows the result of the matrix multiplication. This result is exactly the same

operation shown in the "Notation" subsection of the shallow model; that is, the

logistic regression.

In a nutshell, a model with any number of hidden layers has an equivalent model
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with no hidden layers. We’re not including the bias here, because it would make it

much harder to illustrate this point.

Show Me the Code!

If equations are not your favorite way of looking at this, let’s try using some code.

First, we need to get the weights for the layers in our deep-ish model. We can use

the weight attribute of each layer, without forgetting to detach() it from the

computation graph, so we can freely use them in other operations:

w_nn_hidden0 = model_nn.hidden0.weight.detach()
w_nn_hidden1 = model_nn.hidden1.weight.detach()
w_nn_output = model_nn.output.weight.detach()

w_nn_hidden0.shape, w_nn_hidden1.shape, w_nn_output.shape

Output

(torch.Size([5, 25]), torch.Size([3, 5]), torch.Size([1, 3]))

The shapes should match both our model’s definition and the weight matrices in

the equations above the line.

We can compute the bottom row—that is, the equivalent model—using matrix

multiplication (which happens from right to left, as in the equations):

w_nn_equiv = w_nn_output @ w_nn_hidden1 @ w_nn_hidden0
w_nn_equiv.shape

Output

torch.Size([1, 25])

 "What is @ doing in the expression above?"

It is performing a matrix multiplication, exactly like torch.mm() does. We could

have written the expression above like this:
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w_nn_equiv = w_nn_output.mm(w_nn_hidden1.mm(w_nn_hidden0))

In my opinion, the sequence of operations looks more clear using "@" for matrix

multiplication.

Next, we need to compare them to the weights of the shallow model; that is, the

logistic regression:

w_logistic_output = model_logistic.output.weight.detach()

w_logistic_output.shape

Output

torch.Size([1, 25])

Same shape, as expected. If we compare the values one by one, we’ll find that they

are similar, but not quite the same. Let’s try to grasp the full picture by looking at a

picture (yes, pun intended!).

Figure 4.9 - Comparing weights of deep-ish and shallow models

On the left, we plot all 25 weights / parameters for both models. Even though they

are not quite the same, the similarity is striking. On the right, we can appreciate

that the weights are, indeed, highly correlated.
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"If the models are equivalent, how come the weights ended up being

slightly different?"

That’s a fair question. First, remember that every model is randomly initialized. We

did use the same random seed, but this was not enough to make both models

identical at the beginning. Why not? Simply put, the deep-ish model had many

more weights to be initialized, so they couldn’t have been identical at the start.

It is fairly straightforward that the logistic regression model has 25 weights. But

how many weights does the deep-ish model have? We could work it out: 25

features times five units in Hidden Layer #0 (125), plus those five units times three

units in Hidden Layer #1 (15), plus the last three weights from Hidden Layer #1 to

the Output Layer, adding up to a total of 143.

Or we could just use PyTorch’s numel() instead to return the total number of

elements (clever, right?) in a tensor. Even better, let’s make it a method of our

StepByStep class, and take only gradient-requiring tensors, so we count only those

weights that need to be updated.

StepByStep Method

def count_parameters(self):
    return sum(p.numel()
               for p in self.model.parameters()
               if p.requires_grad)

setattr(StepByStep, 'count_parameters', count_parameters)

Right now, it is all of them, sure, but that will not necessarily be the case anymore

when we use transfer learning in Chapter 7.

sbs_logistic.count_parameters(), sbs_nn.count_parameters()

Output

(25, 143)
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Weights as Pixels

During data preparation, we flattened the inputs from five-by-five images to 25-

element-long tensors. Here is a crazy idea: What if we take some other tensor with

25 elements in it and try to visualize it as an image?

We have some perfect candidates for this: The weights used by each unit in

Hidden Layer #0. Each unit uses 25 weights since each unit receives values from 25

features. We even have these weights in a variable already:

w_nn_hidden0.shape

Output

torch.Size([5, 25])

Five units, 25 weights each. Perfect! We only need to use view() to reshape the 25-

element-long tensors representing the weights into two-dimensional tensors

(5x5), and visualize them as if they were images:

Figure 4.10 - Weights as pixels

 "What’s the point of doing that?"

Visualizing weights as images is commonplace when using convolutional neural

networks (CNNs). These images will be called filters, and trained models will likely

exhibit more recognizable characteristics in their filters. Since our model was

poorly trained, it’s no wonder the images above are not very informative.

Moreover, in our case, these are not quite "filters," since they have the same size as

the input image. In CNN-based models, real filters cover only part of the image.

We’ll get back to it in the next chapter.
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Activation Functions

 "What are activation functions?"

Activation functions are nonlinear functions. They either squash or bend straight

lines. They will break the equivalence between the deep-ish and the shallow

models.

 "What exactly do you mean by squash or bend straight lines?"

Excellent question! Please hold this thought, as I will illustrate this in the next

chapter, "Feature Space." First, let’s take a look at some common activation

functions. PyTorch has plenty of activation functions to choose from, but we are

focusing on five of them only.

Sigmoid

Let’s start with the most traditional of the activation functions, the sigmoid, which

we’ve already used to transform logits into probabilities. Nowadays, that is pretty

much its only usage, but in the early days of neural networks, one would find it

everywhere!

Figure 4.11 - Sigmoid function and its gradient

Let’s quickly recap the shape of a sigmoid: As you can see in the figure above, a

sigmoid activation function "squashes" its input values (z) into the range (0, 1)

(same range probabilities can take, which is why it is used in the output layer for

binary classification tasks). It is also possible to verify that its gradient peak value

312 | Chapter 4: Classifying Images

https://bit.ly/2EkYdDG


is only 0.25 (for z = 0) and that it gets close to zero as the absolute value of z

reaches a value of five.

Also, remember that the activation values of any given layer are the inputs of the

following layer and, given the range of the sigmoid, the activation values are going

to be centered around 0.5, instead of zero. This means that, even if we normalize

our inputs to feed the first layer, it will not be the case anymore for the other

layers.

 "Why does it matter if the outputs are centered around zero or not?"

In previous chapters, we standardized features (zero mean, unit standard

deviation) to improve the performance of gradient descent. The same reasoning

applies here since the outputs of any given layer are the inputs of the following

layer. There is actually more to it, and we’ll briefly touch on this topic again in the

ReLU activation function when talking about the "internal covariate shift."

PyTorch has the sigmoid function available in two flavors, as we’ve already seen it

in Chapter 3: torch.sigmoid() and nn.Sigmoid. The first one is a simple function,

and the second one is a full-fledged class inherited from nn.Module, thus being, for

all intents and purposes, a model on its own.

dummy_z = torch.tensor([-3., 0., 3.])
torch.sigmoid(dummy_z)

Output

tensor([0.0474, 0.5000, 0.9526])

nn.Sigmoid()(dummy_z)

Output

tensor([0.0474, 0.5000, 0.9526])
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Hyperbolic Tangent (TanH)

The hyperbolic tangent activation function was the evolution of the sigmoid, as its

outputs are values with a zero mean, different from its predecessor.

Figure 4.12 - TanH function and its gradient

As you can see in Figure 4.12, the TanH activation function "squashes" the input

values into the range (-1, 1). Therefore, being centered at zero, the activation

values are already (somewhat) normalized inputs for the next layer, making the

hyperbolic tangent a better activation function than the sigmoid.

Regarding the gradient, it has a much larger peak value of 1.0 (again, for z = 0), but

its decrease is even faster, approaching zero to absolute values of z as low as three.

This is the underlying cause of what is referred to as the problem of vanishing

gradients, which causes the training of the network to be progressively slower.

Just like the sigmoid function, the hyperbolic tangent also comes in two flavors:

torch.tanh() and nn.Tanh.

dummy_z = torch.tensor([-3., 0., 3.])
torch.tanh(dummy_z)

Output

tensor([-0.9951,  0.0000,  0.9951])
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nn.Tanh()(dummy_z)

Output

tensor([-0.9951,  0.0000,  0.9951])

Rectified Linear Unit (ReLU)

Maybe "squashing" is not the way to go—what if we bend the rules a bit and use an

activation function that bends (yay, another pun!) the line? The ReLU was born like

that, and it spawned a whole family of similar functions! The ReLU, or one of its

relatives, is the commonplace choice of activation function nowadays. It addresses

the problem of vanishing gradients found with its two predecessors, while also

being the fastest to compute gradients for.

Figure 4.13 - ReLU function and its gradient

As you can see in Figure 4.13, the ReLU is a totally different beast: It does not

"squash" the values into a range—it simply preserves positive values and turns all

negative values into zero.

The upside of using a ReLU is that its gradient is either one (for positive values) or

zero (for negative values)—no more vanishing gradients! This pattern leads to a
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faster convergence of the network. However, this behavior can also lead to what is

called a "dead neuron"; that is, a neuron whose inputs are consistently negative

and, therefore, always has an activation value of zero. Worse yet, the gradient is

also zero for negative inputs, meaning the weights are not updated. It’s like the

neuron got stuck.

The activation values of the ReLU are obviously not centered at zero. Does it make

it worse than the hyperbolic tangent? It surely doesn’t, otherwise it would not have

become such a popular activation function among practitioners. The ReLU, with its

comparably larger gradients, is able to achieve better and faster results than the

other two activation functions despite the fact that its outputs are not centered at

zero.



For deeper and more complex models, this may become an issue

commonly called "internal covariate shift," which is just fancy for

there being different distributions of activation values  in

different layers. In general, we would like to have all layers

producing activation values with similar distributions, ideally

zero centered and with unit standard deviation.

To address this issue, you can use normalization layers, such as

nn.BatchNorm. We’ll get back to it in Chapter 7.

There are three different ways of implementing a ReLU in PyTorch: F.ReLU(),

nn.ReLU, and torch.clamp().

 "What is this F? Why isn’t it torch anymore?"

The F stands for functional, and it is a common abbreviation for

torch.nn.functional (as we did in the "Imports" section at the beginning of this

chapter). The functional module has lots of, well … functions, many of them

performing the operation of the corresponding module. In this case, there is an

F.ReLU(), which is actually called by the forward method of its corresponding

module nn.ReLU.

Some functions, like sigmoid() and tanh(), have been deprecated from the

functional module and moved to the torch module. This is not the case for ReLU

and its relatives, though, which remain functional:
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dummy_z = torch.tensor([-3., 0., 3.])
F.relu(dummy_z)

Output

tensor([0., 0., 3.])

As before, we can still use the full-fledged module version:

nn.ReLU()(dummy_z)

Output

tensor([0., 0., 3.])

And, in the particular case of the ReLU, we can use clamp() to directly cap z at a

minimum value of zero:

dummy_z.clamp(min=0)

Output

tensor([0., 0., 3.])

Leaky ReLU

How can you give a "dead neuron" a chance to come back to life? If the underlying

problem is the fact that it got stuck, we need to nudge it a bit. And that’s what a

Leaky ReLU does: For negative inputs, it returns a tiny activation value and yields

a tiny gradient, instead of a fixed zero for both. The multiplier for negative values,

0.01, is called the coefficient of leakage.

It may not be much, but it gives the neuron a chance to get unstuck. And it keeps

the nice properties of the ReLU: larger gradients and faster convergence.
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Figure 4.14 - Leaky ReLU function and its gradient

As you can see in the figure above, the Leaky ReLU is pretty much the same as the

ReLU, except for the tiny, barely visible slope on the left-hand side.

Once again, we have two options. Functional (F.leaky_relu()):

dummy_z = torch.tensor([-3., 0., 3.])
F.leaky_relu(dummy_z, negative_slope=0.01)

Output

tensor([-0.0300,  0.0000,  3.0000])

And module (nn.LeakyReLU):

nn.LeakyReLU(negative_slope=0.02)(dummy_z)

Output

tensor([-0.0600,  0.0000,  3.0000])
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As you can see, in PyTorch the coefficient of leakage is called negative_slope, with

a default value of 0.01.

 "Any particular reason to choose 0.01 as the coefficient of leakage?"

Not really, it is just a small number that enables the update of the weights, which

leads to another question: Why not try a different coefficient? Sure enough,

people started using other coefficients to improve performance.

 "Maybe the model can learn the coefficient of leakage too?"

Sure it can!

Parametric ReLU (PReLU)

The Parametric ReLU is the natural evolution of the Leaky ReLU: Instead of

arbitrarily choosing a coefficient of leakage (such as 0.01), let’s make it a

parameter (a). Hopefully, the model will learn how to prevent dead neurons, or

how to bring them back to life (zombie neurons?!). Jokes aside, that’s an ingenious

solution to the problem.

Figure 4.15 - Parametric ReLU function and its gradient

As you can see in Figure 4.15, the slope on the left-hand side is much larger now,

0.25 to be precise, PyTorch’s default value for the parameter a.
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We can set the parameter a using the functional version (argument weight in

F.prelu()):

dummy_z = torch.tensor([-3., 0., 3.])
F.prelu(dummy_z, weight=torch.tensor(0.25))

Output

tensor([-0.7500,  0.0000,  3.0000])

But, in the regular module (nn.PReLU), it doesn’t make sense to set it, since it is going

to be learned, right? We can still set the initial value for it, though:

nn.PReLU(init=0.25)(dummy_z)

Output

tensor([-0.7500,  0.0000,  3.0000], grad_fn=<PreluBackward>)

Did you notice the grad_fn attribute on the resulting tensor? It shouldn’t be a

surprise, after all—where there is learning, there is a gradient.

Deep Model

Now that we’ve learned that activation functions break the equivalence to a

shallow model, let’s use them to transform our former deep-ish model into a real

deep model. It has the same architecture as the previous model, except for the

activation functions applied to the outputs of the hidden layers. Here is the

diagram of the updated model.
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Figure 4.16 - Deep model (for real)

Let’s see how it performs now.

Model Configuration

First, we translate the model above to code:

Model Configuration

 1 # Sets learning rate - this is "eta" ~ the "n"-like Greek letter
 2 lr = 0.1
 3 
 4 torch.manual_seed(17)
 5 # Now we can create a model
 6 model_relu = nn.Sequential()
 7 model_relu.add_module('flatten', nn.Flatten())
 8 model_relu.add_module('hidden0', nn.Linear(25, 5, bias=False))
 9 model_relu.add_module('activation0', nn.ReLU())
10 model_relu.add_module('hidden1', nn.Linear(5, 3, bias=False))
11 model_relu.add_module('activation1', nn.ReLU())
12 model_relu.add_module('output', nn.Linear(3, 1, bias=False))
13 model_relu.add_module('sigmoid', nn.Sigmoid())
14 
15 # Defines an SGD optimizer to update the parameters
16 # (now retrieved directly from the model)
17 optimizer_relu = optim.SGD(model_relu.parameters(), lr=lr)
18 
19 # Defines a binary cross-entropy loss function
20 binary_loss_fn = nn.BCELoss()

Deep Model | 321



The chosen activation function is the rectified linear unit (ReLU), one of the most

commonly used functions.

We kept the bias out of the picture for the sake of comparing this model to the

previous one, which is completely identical except for the activation functions

introduced after each hidden layer.

 In real problems, as a general rule, you should keep bias=True.

Model Training

Let’s train our new, deep, and activated model for 50 epochs using the StepByStep
class and visualize the losses:

Model Training

1 n_epochs = 50
2 
3 sbs_relu = StepByStep(model_relu, binary_loss_fn, optimizer_relu)
4 sbs_relu.set_loaders(train_loader, val_loader)
5 sbs_relu.train(n_epochs)

fig = sbs_relu.plot_losses()

Figure 4.17 - Losses

This is more like it! But, to really grasp the difference made by the activation

functions, let’s plot all models on the same chart.
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Figure 4.18 - Losses (before and after activations)

It took only a handful of epochs for our new model to outperform the previous one.

Clearly, this model is not equivalent to a logistic regression: It is much, much

better.

To be completely honest with you, both models are kinda crappy. They perform

quite poorly if you look at their accuracies (ranging from 43% to 65% for the

validation set). The sole purpose of this exercise is to demonstrate that activation

functions, by breaking the equivalence to a logistic regression, are capable of

achieving better results in minimizing losses.

This particular model also exhibits a validation loss lower than the training loss,

which isn’t what you generally expect. We’ve already seen a case like this in

Chapter 3: The validation set was easier than the training set. The current example

is a bit more nuanced than that—here is the explanation:

• Short version: This is a quirk!

• Long version: First, our model is not so great and has a tendency to predict

more points in the positive class (high FPR and TPR); second, one of the mini-

batches from the validation set has almost all of its points in the positive class,

so its loss is very low; third, there are only four mini-batches in the validation

set, so the average loss is easily affected by a single mini-batch.

It’s time to ask ourselves two questions:

• Why is the equivalence to a logistic regression broken?

• What exactly are the activation functions doing under the hood?

The first question is answered in the next subsection, "Show Me the Math Again!"
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The other, and more interesting question, is answered in the next chapter, "Feature

Space."

Show Me the Math Again!

This subsection is also optional. If you’re curious to understand, using matrix

multiplication, why our deep model is not equivalent to a logistic regression

anymore, check the sequence of equations below.

As before, the data flows from right to left (since that’s how one multiplies a

sequence of matrices), starting with the 25 features on the right and finishing with

a single logit output on the left. Looking at each layer (row) individually, it should

also be clear that the outputs of a given layer (the row’s left-most vector) are

transformed by an activation function before turning into the inputs of the next

layer.

The row below the line shows the result of composing all operations above the

line. There is no way to further simplify the expression due to the existence of the

two activation functions (f0 and f1). They indeed break the equivalence to a logistic

regression.
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Equation 4.3 - Activation functions break the equivalence
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Putting It All Together

In this chapter, we have focused mostly on the data preparation part of our

pipeline. Sure, we have a fancier and deeper model, activation functions, and all,

but the model configuration part hasn’t changed, and neither has the model

training.

This should not come as a surprise since it is somewhat common knowledge that a

data scientist spends more time on data preparation than on actual model

training.

Transformed Dataset

 1 class TransformedTensorDataset(Dataset):
 2     def __init__(self, x, y, transform=None):
 3         self.x = x
 4         self.y = y
 5         self.transform = transform
 6 
 7     def __getitem__(self, index):
 8         x = self.x[index]
 9 
10         if self.transform:
11             x = self.transform(x)
12 
13         return x, self.y[index]
14 
15     def __len__(self):
16         return len(self.x)
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Helper Function #4

 1 def index_splitter(n, splits, seed=13):
 2     idx = torch.arange(n)
 3     # Makes the split argument a tensor
 4     splits_tensor = torch.as_tensor(splits)
 5     # Finds the correct multiplier, so we don't have
 6     # to worry about summing up to N (or one)
 7     multiplier = n / splits_tensor.sum()
 8     splits_tensor = (multiplier * splits_tensor).long()
 9     # If there is a difference, throws at the first split
10     # so random_split does not complain
11     diff = n - splits_tensor.sum()
12     splits_tensor[0] += diff
13     # Uses PyTorch random_split to split the indices
14     torch.manual_seed(seed)
15     return random_split(idx, splits_tensor)

Helper Function #5

 1 def make_balanced_sampler(y):
 2     # Computes weights for compensating imbalanced classes
 3     classes, counts = y.unique(return_counts=True)
 4     weights = 1.0 / counts.float()
 5     sample_weights = weights[y.squeeze().long()]
 6     # Builds sampler with compute weights
 7     generator = torch.Generator()
 8     sampler = WeightedRandomSampler(
 9         weights=sample_weights,
10         num_samples=len(sample_weights),
11         generator=generator,
12         replacement=True
13     )
14     return sampler
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Data Preparation

 1 # Builds tensors from numpy arrays BEFORE split
 2 # Modifies the scale of pixel values from [0, 255] to [0, 1]
 3 x_tensor = torch.as_tensor(images / 255).float()
 4 y_tensor = torch.as_tensor(labels.reshape(-1, 1)).float()
 5 
 6 # Uses index_splitter to generate indices for training and
 7 # validation sets
 8 train_idx, val_idx = index_splitter(len(x_tensor), [80, 20])
 9 # Uses indices to perform the split
10 x_train_tensor = x_tensor[train_idx]
11 y_train_tensor = y_tensor[train_idx]
12 x_val_tensor = x_tensor[val_idx]
13 y_val_tensor = y_tensor[val_idx]
14 
15 # Builds different composers because of data augmentation on
   training set
16 train_composer = Compose([RandomHorizontalFlip(p=.5),
17                           Normalize(mean=(.5,), std=(.5,))])
18 val_composer = Compose([Normalize(mean=(.5,), std=(.5,))])
19 # Uses custom dataset to apply composed transforms to each set
20 train_dataset = TransformedTensorDataset(
21     x_train_tensor, y_train_tensor, transform=train_composer
22 )
23 val_dataset = TransformedTensorDataset(
24     x_val_tensor, y_val_tensor, transform=val_composer
25 )
26 
27 # Builds a weighted random sampler to handle imbalanced classes
28 sampler = make_balanced_sampler(y_train_tensor)
29 
30 # Uses sampler in the training set to get a balanced data loader
31 train_loader = DataLoader(
32     dataset=train_dataset, batch_size=16, sampler=sampler
33 )
34 val_loader = DataLoader(dataset=val_dataset, batch_size=16)
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Model Configuration

 1 # Sets learning rate - this is "eta" ~ the "n"-like Greek letter
 2 lr = 0.1
 3 
 4 torch.manual_seed(42)
 5 # Now we can create a model
 6 model_relu = nn.Sequential()
 7 model_relu.add_module('flatten', nn.Flatten())
 8 model_relu.add_module('hidden0', nn.Linear(25, 5, bias=False))
 9 model_relu.add_module('activation0', nn.ReLU())
10 model_relu.add_module('hidden1', nn.Linear(5, 3, bias=False))
11 model_relu.add_module('activation1', nn.ReLU())
12 model_relu.add_module('output', nn.Linear(3, 1, bias=False))
13 model_relu.add_module('sigmoid', nn.Sigmoid())
14 
15 # Defines an SGD optimizer to update the parameters
16 optimizer_relu = optim.SGD(model_relu.parameters(), lr=lr)
17 
18 # Defines a binary cross-entropy loss function
19 binary_loss_fn = nn.BCELoss()

Model Training

1 n_epochs = 50
2 
3 sbs_relu = StepByStep(model_relu, binary_loss_fn, optimizer_relu)
4 sbs_relu.set_loaders(train_loader, val_loader)
5 sbs_relu.train(n_epochs)
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Recap

Once again, we’ve covered a lot of ground, from transforming images to the inner

workings of activation functions. This is what we’ve covered:

• generating a dataset with 300 tiny, simple images

• understanding the difference between NCHW and NHWC shapes for data

• learning about Torchvision, its built-in datasets, and model architectures

• using Torchvision to transform images from PIL to Tensor and vice-versa

• performing data augmentation, like rotating, cropping, and flipping images

• normalizing a dataset of images

• composing transformations to use them with Datasets

• using samplers to perform dataset splits, and to handle imbalanced datasets

• using pixels as individual features to build a shallow model (logistic regression)

for image classification

• trying to make a model deeper by adding extra hidden layers

• realizing, using math and code, that the model was still equivalent to a logistic

regression

• visualizing the weights of a hidden layer as pixels and images

• learning what an activation function does, and going over the most common

ones: sigmoid, TanH, ReLU, leaky ReLU, and PReLU

• using activation functions to make our model effectively deeper, observing a

huge improvement in loss minimization

Well, that was a long one for sure! Congratulations on finishing yet another step

toward understanding the main concepts used in developing and training deep

learning models. In this chapter, we’ve trained simple models to classify images; in

Chapter 5, we’ll learn about and use convolutional neural networks (CNNs) and

perform multiclass classification.

[76] https://github.com/dvgodoy/PyTorchStepByStep/blob/master/Chapter04.ipynb

[77] https://colab.research.google.com/github/dvgodoy/PyTorchStepByStep/blob/master/Chapter04.ipynb

[78] http://yann.lecun.com/exdb/mnist/

[79] https://bit.ly/3kyYvY7
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Bonus Chapter
Feature Space

This chapter is different from the others. We’re not coding anything.

The purpose of this chapter is to illustrate the effect activation functions have on

the feature space.

 "What do you mean by 'feature space'?"

The feature space is the n-dimensional space where our features "live." In Chapter 3

we used two features for our binary classification, so the feature space there was

two-dimensional, a plane. In Chapter 4, we used 25 features, so the feature space

was 25-dimensional, a hyper-plane.

Two-Dimensional Feature Space

Let’s forget about hyper-planes (phew!), and go back to the comfy and familiar

world of two dimensions for now.


This is an entirely new dataset; it is not the image dataset

anymore!

Our new, two-dimensional, data has 2,000 points, evenly split into two classes: red

(negative) and blue (positive), which are neatly organized in two distinct parabolas,

as in the figure below.

Figure B.1 - Two-dimensional feature space
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Our goal is to train a binary classifier that is able to separate the two curves,

drawing a decision boundary between them. In Chapter 3, we figured out that the

decision boundary for a binary classification problem was a straight line.

So I ask you: Is it possible to draw a straight line that separates the parabolas?

Obviously not—but does it mean the problem is unsolvable? Same answer:

Obviously not. It only means we need to look at the problem from a different

perspective!

Transformations

In the "Are My Data Points Separable?" section of Chapter 3, we talked briefly

about dimensionality, the kernel trick in Support Vector Machines, and the

separability of data points. In a way, that was a different perspective already. There,

we would transform the feature space, mapping it into a higher-dimensional one,

and hoping to more easily separate the data points.

In Chapter 4, we established that, without activation functions, a deeper model

has an equivalent shallow model (a logistic regression, in case of a binary

classification). This means we need an activation function to be able to effectively

increase dimensionality and, more important, to twist and turn the feature space.


You may be thinking: "How is this different from the example in

Chapter 3 where we took the square of the feature values?"

There is a difference: Neurons can only perform affine transformations in the form

wTx + b. Therefore, an operation like x2, although simple, is still impossible.

This means we need a different transformation to be able to effectively increase

dimensionality and, more importantly, to twist and turn the feature space. That’s

the role of the activation function, as you’ve probably already guessed.
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Affine Transformations

An affine transformation is simply a linear transformation (wTx), such as

rotating, scaling, flipping, or shearing, followed by a translation (b).

If you want to learn more about it, and really understand the role of matrices

in linear transformations, including beautiful visualizations, make sure to

check 3Blue1Brown's channel on YouTube, especially the "Essence of linear

algebra"[80] series. It is amazing! Seriously, don’t miss it!

If you have time to watch the entire series, great, but if you need to keep it to

a minimum, stick with these three:

• Linear transformations and matrices—Chapter 3[81]

• Matrix multiplication as composition—Chapter 4[82]

• Nonsquare matrices as transformations between dimensions—Chapter 8
[83]

A Two-Dimensional Model

To visualize these effects, we’ll have to keep everything in a two-dimensional

feature space. Our model looks like the figure below.

Figure B.2 - Model diagram

It has one hidden layer with an activation function (and here we can try any of our

choosing), and an output layer followed by a sigmoid function, typical of a binary

classification. The model above corresponds to the following code:
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fs_model = nn.Sequential()
fs_model.add_module('hidden', nn.Linear(2, 2))
fs_model.add_module('activation', nn.Sigmoid())
fs_model.add_module('output', nn.Linear(2, 1))
fs_model.add_module('sigmoid', nn.Sigmoid())

Let’s take a quick look at "Hidden Layer #0," which performs an affine

transformation:

• First, it uses the weights to perform a linear transformation of the feature

space (features x0 and x1), such that the resulting feature space is a rotated,

scaled, maybe flipped, and likely sheared version of the original.

• Then, it uses the bias to translate the whole feature space to a different origin,

resulting in a transformed feature space (z0 and z1).

The equation below shows the whole operation, from inputs (x) to logits (z):

Equation B.1 - From inputs to logits using an affine transformation

It is on top of this transformed feature space that the activation function will work

its magic, twisting and turning the feature space beyond recognition.

Next, the resulting activated feature space will feed the output layer. But, if we look

at the output layer alone, it is like a logistic regression, right? This means that the

output layer will use its inputs (z0 and z1) to draw a decision boundary.

We can annotate the model diagram to, hopefully, make it more clear.
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Figure B.3 - Annotated model diagram

Decision Boundary, Activation Style!

And then I have a question for you:


"What does the decision boundary drawn by a logistic regression look

like?"

It is a straight line! We’ve seen this in Chapter 3 already. Before proceeding, let’s

make a quick summary to organize our findings so far:

• In the original feature space (x0 and x1), depicted in Figure B.1, it is impossible to

draw a straight line that separates the red and blue parabolas.

• In the transformed feature space (z0 and z1), it is still impossible to draw a

straight line that separates both parabolas, since the affine transformation

preserves parallel lines.

• In the activated feature space, (f(z0) and f(z1)), where f is an activation function of

our choice, it becomes possible to draw a straight line that separates the red

and blue parabolas.

Even better, let’s look at the result of a trained model (using a sigmoid as activation

function f).
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Figure B.4 - From original to activated feature space

On the left, we have the original feature space, followed by the transformed feature

space in the center (corresponding to the output of the "Hidden Layer #0," before

the activation), and the activated feature space on the right.

Let’s focus on the right plot: As promised, the decision boundary is a straight line.

Now, pay attention to the grid lines there: They are twisted and turned beyond

recognition, as promised. This is the work of the activation function.

Moreover, I’ve plotted the decision boundary in the first two features spaces as

well: They are curves now!


It turns out, a curved decision boundary in the original feature

space corresponds to a straight line in the activated feature

space.

Cool, right? The first time I looked at those, many years ago, it was a defining

moment in my own understanding of the role and importance of activation

functions.

I showed you the trained model first to make an impact. At the beginning of the

training process, the visuals are not nearly as impressive.
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Figure B.5 - In the beginning…

But it gets better as the training progresses (pay attention to the scale of the plots

in the center column).

Figure B.6 - After a while…
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The solution found by the model was to rotate it to the right and scale it up (the

linear transformation), and then translate it to the right and up (making it an affine

transformation). That was achieved by "Hidden Layer #0." Then the sigmoid

activation function turned that transformed feature space into these oddly

shaped figures in the right column. In the final plot, the resulting activated feature

space looks like it was "zoomed in" on its center, as if we were looking at it through a

magnifying glass. Notice the ranges in the right-side plots: They are restricted to

the (0, 1) interval. That’s the range of the sigmoid. What if we try a different

activation function?

More Functions, More Boundaries

Let’s try the hyperbolic tangent.

Figure B.7 - Activated feature space—TanH

It is actually quite similar—especially the transformed feature space of the hidden

layer. The range of the activated feature space is different though: It is restricted to

the (-1, 1) interval, corresponding to the range of the hyperbolic tangent.

What about the famous ReLU?

Figure B.8 - Activated feature space—ReLU
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OK, now we can clearly see a difference: The decision boundary on the original

feature space has a corner, a direct consequence of the ReLU’s own corner when its

input is zero. On the right, we can also verify that the range of the activated feature

space has only positive values, as expected.

Next, let’s try the Parametric ReLU (PReLU).

Figure B.9 - Activated feature space—PReLU

This is even more different! Given that the PReLU learns a slope for the negative

values, effectively bending the feature space instead of simply chopping off parts of

it like the plain ReLU, the result looks like the feature space was folded in two

different places. I don’t know about you, but I find this really cool!

So far, all models were trained for 160 epochs, which was about enough training for

them to converge to a solution that would completely separate both parabolas.

This seems like quite a lot of epochs to solve a rather simple problem, right? But,

keep in mind what we discussed in Chapter 3: Increasing dimensionality makes it

easier to separate the classes. So, we’re actually imposing a severe restriction on

these models by keeping it two-dimensional (two units in the hidden layer) and

performing only one transformation (only one hidden layer).

Let’s cut our models some slack and give them more power…
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More Layers, More Boundaries

One way to give a model more power is to make it deeper. We can make it deeper,

while keeping it strictly two-dimensional, by adding another hidden layer with

two units. It looks like the diagram:

Figure B.10 - Deeper model



A sequence of one or more hidden layers, all with the same size as

the input layer, as in the figure above (up to "Activation #1"), is a

typical architecture used to model the hidden state in recurrent

neural networks (RNNs). We’ll get back to it in a later chapter.

And it looks like this in code (we’re using a hyperbolic tangent as an activation

function because it looks good when visualizing a sequence of transformations):

fs_model = nn.Sequential()
fs_model.add_module('hidden0', nn.Linear(2, 2))
fs_model.add_module('activation0', nn.Tanh())
fs_model.add_module('hidden1', nn.Linear(2, 2))
fs_model.add_module('activation1', nn.Tanh())
fs_model.add_module('output', nn.Linear(2, 1))
fs_model.add_module('sigmoid', nn.Sigmoid())
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In the model above, the sigmoid function isn’t an activation

function: It is there only to convert logits into probabilities.

You may be wondering: "Can I mix different activation functions in

the same model?" It is definitely possible, but it is also highly

unusual. In general, models are built using the same activation

function across all hidden layers. The ReLU or one of its variants

are the most common choices because they lead to faster

training, while TanH and sigmoid activation functions are used in

very specific cases (recurrent neural networks, for instance).

But, more important, since it can perform two transformations now (and

activations, obviously), this is how the model is working:

Figure B.11 - Activated feature space—deeper model

First of all, these plots were built using a model trained for 15 epochs only

(compared to 160 epochs in all previous models). Adding another hidden layer

surely makes the model more powerful, thus leading to a satisfactory solution in a

much shorter amount of time.


"Great, let’s just make ridiculously deep models and solve everything!

Right?"

Not so fast! As models grow deeper, other issues start popping up, like the

(in)famous vanishing gradients problem. We’ll get back to that later. For now,

adding one or two extra layers is likely safe, but please don’t get carried away with

it.

More Dimensions, More Boundaries

We can also make a model more powerful by adding more units to a hidden layer.

By doing this, we’re increasing dimensionality; that is, mapping our two-

dimensional feature space into a, say, ten-dimensional feature space (which we

cannot visualize). But we can map it back to two dimensions in a second hidden
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layer with the sole purpose of taking a peek at it.

I am skipping the diagram, but here is the code:

fs_model = nn.Sequential()
fs_model.add_module('hidden0', nn.Linear(2, 10))
fs_model.add_module('activation0', nn.PReLU())
fs_model.add_module('hidden1', nn.Linear(10, 2))
fs_model.add_module('output', nn.Linear(2, 1))
fs_model.add_module('sigmoid', nn.Sigmoid())

Its first hidden layer has ten units now and uses PReLU as an activation function.

The second hidden layer, however, has no activation function: This layer is

working as a projection of 10D into 2D, such that the decision boundary can be

visualized in two dimensions.



In practice, this extra hidden layer is redundant. Remember,

without an activation function between two layers, they are

equivalent to a single layer. We are doing this here with the sole

purpose of visualizing it.

And here are the results, after training it for ten epochs only.

Figure B.12 - Activated feature space—wider model

By mapping the original feature space into some crazy ten-dimensional one, we

make it easier for our model to figure out a way of separating the data. Remember,
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the more dimensions, the more separable the points are, as we’ve seen in the "Are

My Data Points Separable?" section in Chapter 3.

Then, by projecting it back into two dimensions, we can visualize the decision

boundary in the modified feature space. The overall shape is more complex, as if it

went through multiple foldings, as a result of the increase in dimensionality.

Personally, this is one of my favorite topics, and it was the subject of my very first

blog post: "Hyper-parameters in Action! Part I—Activation Functions."[84] You can

also check out some animations I built back then for visualizing the training

process using different activation functions: sigmoid,[85] hyperbolic tangent,[86] and

ReLU.[87]

Recap

And that’s enough for our feature space visualization journey! I hope you liked it.

This is what we’ve covered:

• learning what a feature space is and how a hidden layer performs affine

transformations to modify it

• visualizing the effect of activation functions on the feature space

• learning that the decision boundary is a straight line in the activated feature

space, but a curve in the original feature space

• visualizing different decision boundaries (in original feature space) for

different activation functions

• making a more powerful model by making it deeper

• making a more powerful model by making it wider, thus increasing

dimensionality

Now, let’s get back to the main track, tackling a multiclass classification problem

using convolutional neural networks (CNNs).

[80] https://bit.ly/3l5XVkN

[81] https://bit.ly/2QgEmYR

[82] https://bit.ly/34mw0ai

[83] https://bit.ly/3hgfIU6

[84] https://towardsdatascience.com/hyper-parameters-in-action-a524bf5bf1c

[85] https://youtu.be/4RoTHKKRXgE

[86] https://youtu.be/PFNp8_V_Apg
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Chapter 5
Convolutions

Spoilers

In this chapter, we will:

• understand the arithmetic of convolutional layers in detail

• build a model for multiclass classification

• understand the role of the softmax function

• use negative log-likelihood and cross-entropy losses

• visualize filters learned by our convolutional neural network

• understand and use hooks to capture outputs from intermediate layers

• visualize feature maps to better understand what’s happening inside the model

Jupyter Notebook

The Jupyter notebook corresponding to Chapter 5[88] is part of the official Deep

Learning with PyTorch Step-by-Step repository on GitHub. You can also run it

directly in Google Colab[89].

If you’re using a local installation, open your terminal or Anaconda prompt and

navigate to the PyTorchStepByStep folder you cloned from GitHub. Then, activate

the pytorchbook environment and run jupyter notebook:

$ conda activate pytorchbook

(pytorchbook)$ jupyter notebook

If you’re using Jupyter’s default settings, this link should open Chapter 5’s

notebook. If not, just click on Chapter05.ipynb in your Jupyter’s home page.

Imports

For the sake of organization, all libraries needed throughout the code used in any

given chapter are imported at its very beginning. For this chapter, we’ll need the

following imports:
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import random
import numpy as np
from PIL import Image

import torch
import torch.optim as optim
import torch.nn as nn
import torch.nn.functional as F

from torch.utils.data import DataLoader, Dataset
from torchvision.transforms import Compose, Normalize

from data_generation.image_classification import generate_dataset
from helpers import index_splitter, make_balanced_sampler
from stepbystep.v1 import StepByStep

Convolutions

In Chapter 4, we talked about pixels as features. We considered each pixel as an

individual, independent feature, thus losing information while flattening the

image. We also talked about weights as pixels and how we could interpret the

weights used by a neuron as an image, or, more specifically, a filter.

Now, it is time to take that one step further and learn about convolutions. A

convolution is "a mathematical operation on two functions (f and g) that produces a

third function (f * g) expressing how the shape of one is modified by the other."[90] In

image processing, a convolution matrix is also called a kernel or filter. Typical

image processing operations—like blurring, sharpening, edge detection, and more, are

accomplished by performing a convolution between a kernel and an image.

Filter / Kernel

Simply put, one defines a filter (or kernel, but we’re sticking with "filter" here) and

applies this filter to an image (that is, convolving an image). Usually, the filters are

small square matrices. The convolution itself is performed by applying the filter on

the image repeatedly. Let’s try a concrete example to make it more clear.
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We’re using a single-channel image, and the most boring filter ever, the identity

filter.

Figure 5.1 - Identity filter

See the gray region on the top left corner of the image, which is the same size as

the filter? That’s the region to which the filter is being applied and is called the

receptive field, drawing an analogy to the way human vision works.

Moreover, look at the shapes underneath the images: They follow the NCHW

shape convention used by PyTorch. There is one image, one channel, six-by-six

pixels in size. There is one filter, one channel, three-by-three pixels in size.

Finally, the asterisk represents the convolution operation between the two.

Let’s create Numpy arrays to follow the operations; after all, everything gets easier

to understand in code, right?

single = np.array(
    [[[[5, 0, 8, 7, 8, 1],
       [1, 9, 5, 0, 7, 7],
       [6, 0, 2, 4, 6, 6],
       [9, 7, 6, 6, 8, 4],
       [8, 3, 8, 5, 1, 3],
       [7, 2, 7, 0, 1, 0]]]]
)
single.shape

Output

(1, 1, 6, 6)
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identity = np.array(
    [[[[0, 0, 0],
       [0, 1, 0],
       [0, 0, 0]]]]
)
identity.shape

Output

(1, 1, 3, 3)

Convolving

 "How does the filter modify the selected region / receptive field?"

It is actually quite simple: It performs an element-wise multiplication between the

two, region and filter, and adds everything up. That’s it! Let’s check it out, zooming

in on the selected region.

Figure 5.2 - Element-wise multiplication

In code, we have to slice the corresponding region (remember the NCHW shape, so

we’re operating on the last two dimensions):

region = single[:, :, 0:3, 0:3]
filtered_region = region * identity
total = filtered_region.sum()
total
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Output

9

And we’re done for the first region of the image!


"Wait, there are nine pixel values coming in, but only ONE value

coming out!"

Good point, you’re absolutely right! Doing a convolution produces an image with a

reduced size. It is easy to see why, if we zoom out back to the full image.

Figure 5.3 - Shrinking images with convolutions

Since the filter gets applied to the gray region, and we’re using an identity filter, it

is fairly straightforward to see it is simply copying the value in the center of the

region. The remaining values are simply multiplied by zero and do not make it to

the sum. But even if they did, it wouldn’t change the fact that the result of one

operation is a single value.

Moving Around

Next, we move the region one step to the right; that is, we change the receptive

field and apply the filter again.
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Figure 5.4 - Striding the image, one step at a time


The size of the movement, in pixels, is called a stride. In our

example, the stride is one.

In code, it means we’re changing the slice of the input image:

new_region = single[:, :, 0:3, (0+1):(3+1)]

But the operation remains the same: First, an element-wise multiplication, and

then adding up the elements of the resulting matrix.

Figure 5.5 - Element-wise multiplication

new_filtered_region = new_region * identity
new_total = new_filtered_region.sum()
new_total
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Output

5

Great! We have a second pixel value to add to our resulting image.

Figure 5.6 - Taking one step to the right

We can keep moving the gray region to the right until we can’t move it anymore.

Figure 5.7 - An invalid step!

The fourth step to the right will actually place the region partially outside the

input image. That’s a big no-no!

last_horizontal_region = single[:, :, 0:3, (0+4):(3+4)]

The selected region does not match the shape of the filter anymore. So, if we try to

perform the element-wise multiplication, it fails:

last_horizontal_region * identity
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Output

----------------------------------------------------------------
ValueError                     Traceback (most recent call last)
<ipython-input-9-fa0fcce9e228> in <module>
----> 1 last_horizontal_region * identity

ValueError: operands could not be broadcast together with shapes
 (1,1,3,2) (1,1,3,3)

Shape

Next, we go back to the left side and move down one step. If we repeat the

operation, covering all valid regions, we’ll end up with a resulting image that is

smaller (on the right).

Figure 5.8 - Fully convolved

 "How much smaller is it going to be?"

It depends on the size of the filter.

 The larger the filter, the smaller the resulting image.

Since applying a filter always produces a single value, the reduction is equal to the

filter size minus one. If the input image has (hi, wi) shape (we’re disregarding the

channel dimension for now), and the filter has (hf, wf) shape, the shape of the

resulting image is given by:

Equation 5.1 - Shape after a convolution
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If we assume the filter is a square matrix of size f, we can simplify the expression

above to:

Equation 5.2 - Shape after a convolution (square filter)

Makes sense, right? The filter has its dimensions reduced from (f, f) to (1, 1), so the

operation reduces the original size by (f-1).

 "But I’d like to keep the image size, is it possible?"

Sure it is! Padding comes to our rescue in this case. We’ll get to that in a couple of

sections.

Convolving in PyTorch

Now that we know how a convolution works, let’s try it out using PyTorch. First, we

need to convert our image and filter to tensors:

image = torch.as_tensor(single).float()
kernel_identity = torch.as_tensor(identity).float()

Since kernel and filter are used interchangeably, especially when it comes to

arguments of different methods, I am calling the variable kernel_identity, even

though it is exactly the same identity filter we have used so far.

Just like the activation functions we saw in Chapter 4, convolutions come in two

flavors: functional and module. There is a fundamental difference between the

two, though: The functional convolution takes the kernel / filter as an argument

while the module has (learnable) weights to represent the kernel / filter.

Let’s use the functional convolution, F.conv2d(), to apply the identity filter to our

input image (notice we’re using stride=1 since we moved the region around one

pixel at a time):

convolved = F.conv2d(image, kernel_identity, stride=1)
convolved
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Output

tensor([[[[9., 5., 0., 7.],
          [0., 2., 4., 6.],
          [7., 6., 6., 8.],
          [3., 8., 5., 1.]]]])

As expected, we got the same result shown in the previous section. No surprises

there.

Now, let’s turn our attention to PyTorch’s convolution module, nn.Conv2d. It has

many arguments; let’s focus on the first four of them:

• in_channels: number of channels of the input image

• out_channels: number of channels produced by the convolution

• kernel_size: size of the (square) convolution filter / kernel

• stride: the size of the movement of the selected region

There are a couple of things to notice here. First, there is no argument for the

kernel / filter itself, there is only a kernel_size argument.


The actual filter, that is, the square matrix used to perform

element-wise multiplication, is learned by the module.

Second, it is possible to produce multiple channels as output. It simply means the

module is going to learn multiple filters. Each filter is going to produce a different

result, which is being called a channel here.

So far, we’ve been using a single-channel image as input, and applying one filter

(size three by three) to it, moving one pixel at a time, resulting in one output per

channel. Let’s do it in code:

conv = nn.Conv2d(
    in_channels=1, out_channels=1, kernel_size=3, stride=1
)
conv(image)
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Output

tensor([[[[-4.2000, -6.6859, -4.9735, -3.5615],
          [-1.2363,  0.5150, -1.8602, -4.7287],
          [-2.1209, -4.1894, -4.3694, -5.5897],
          [-4.3954, -6.1578, -4.5968, -5.0000]]]],
       grad_fn=<MkldnnConvolutionBackward>)

These results are gibberish now (and yours are going to be different than mine)

because the convolutional module randomly initializes the weights representing

the kernel / filter.



That’s the whole point of the convolutional module: It will learn

the kernel / filter on its own.

In traditional computer vision, people would develop different

filters for different purposes: blurring, sharpening, edge

detection, and so on.

But, instead of being clever and trying to manually devise a filter

that does the trick for a given problem, why not outsource the

filter definition to the neural network as well? This way, the

network will come up with filters that highlight features that are

relevant to the task at hand.

It’s no surprise that the resulting image shows a grad_fn attribute

now: It will be used to compute gradients so the network can

actually learn how to change the weights representing the filter.

 "Can we tell it to learn multiple filters at once?"

Sure we can; that’s the role of the out_channels argument. If we set it to 2, it will

generate two (randomly initialized) filters:

conv_multiple = nn.Conv2d(
    in_channels=1, out_channels=2, kernel_size=3, stride=1
)
conv_multiple.weight
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Output

Parameter containing:
tensor([[[[ 0.0009, -0.1240, -0.0231],
          [-0.2259, -0.2288, -0.1945],
          [-0.1141, -0.2631,  0.2795]]],

        [[[-0.0662,  0.2868,  0.1039],
          [-0.2823,  0.2307, -0.0917],
          [-0.1278, -0.2767, -0.3314]]]], requires_grad=True)

See? There are two filters represented by three-by-three matrices of weights

(your values are going to be different than mine).


Even if you have only one channel as input, you can have many

channels as output.



Spoiler alert: The filters learned by the network are going to

show edges, patterns, and even more complex shapes (sometimes

resembling faces, for instance). We’ll get back to visualizing

those filters later in this chapter.

We can also force a convolutional module to use a particular filter by setting its

weights:

with torch.no_grad():
    conv.weight[0] = kernel_identity ①
    conv.bias[0] = 0                 ①

① weight[0] and bias[0] are indexing the first (and only) output channel in this

convolutional layer.


IMPORTANT: Setting the weights is a strictly no-gradient

operation, so you should always use the no_grad() context

manager.

In the code snippet above, we are forcing the module to use the (boring) identity

kernel we have been using so far. As expected, if we convolve our input image we’ll
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get the familiar result:

conv(image)

Output

tensor([[[[9., 5., 0., 7.],
          [0., 2., 4., 6.],
          [7., 6., 6., 8.],
          [3., 8., 5., 1.]]]], grad_fn=<MkldnnConvolutionBackward>)



Setting the weights to get specific filters is at the heart of

transfer learning. Someone else trained a model, and that model

learned lots of useful filters, so we don’t have to learn them

again. We can set the corresponding weights and go from there.

We’ll see this in practice in Chapter 7.

Striding

So far, we’ve been moving the region of interest one pixel at a time: a stride of one.

Let’s try a stride of two for a change and see what happens to the resulting image. I

am not reproducing the first step here, because it is always the same: The gray

region is centered at the number nine.

Figure 5.9 - Increasing stride

The second step, depicted above, shows the gray region moved two pixels to the

right: That’s a stride of two.
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Moreover, notice that if we were to take another step of two pixels the gray region

would be placed partially outside the underlying image. This is a big no-no, so there

are only two valid operations while moving horizontally. The same thing will

eventually happen when we move vertically. The first stride of two pixels down is

fine, but the second will be, once again, a failed operation.

The resulting image, after the only four valid operations, looks like this.

Figure 5.10 - Shrinking even more!

The identity kernel may be boring, but it is definitely useful for highlighting the

inner workings of the convolutions. It is crystal clear in the figure above where the

pixel values in the resulting image come from.

Also, notice that using a larger stride made the shape of the resulting image even

smaller.

 The larger the stride, the smaller the resulting image.

Once again, it makes sense: If we are skipping pixels in the input image, there are

fewer regions of interest to apply the filter to. We can extend our previous formula

to include the stride size (s):

Equation 5.3 - Shape after a convolution with stride

As we’ve seen before, the stride is only an argument of the convolution, so let’s use

PyTorch’s functional convolution to double-check the results:
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convolved_stride2 = F.conv2d(image, kernel_identity, stride=2)
convolved_stride2

Output

tensor([[[[9., 0.],
          [7., 6.]]]])

Cool, it works!

So far, the operations we have performed have been shrinking the images. What

about restoring them to their original glory, I mean, size?

Padding

Padding means stuffing. We need to stuff the original image so it can sustain the

"attack" on its size.

 "How do I stuff an image?"

Glad you asked! Simply add zeros around it. An image is worth a thousand words in

this case.

Figure 5.11 - Zero-padded image

See what I mean? By adding columns and rows of zeros around it, we expand the

input image such that the gray region starts centered in the actual top left corner

of the input image. This simple trick can be used to preserve the original size of the

image.
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In code, as usual, PyTorch gives us two options: functional (F.pad()) and module

(nn.ConstantPad2d). Let’s start with the module version this time:

constant_padder = nn.ConstantPad2d(padding=1, value=0)
constant_padder(image)

Output

tensor([[[[0., 0., 0., 0., 0., 0., 0., 0.],
          [0., 5., 0., 8., 7., 8., 1., 0.],
          [0., 1., 9., 5., 0., 7., 7., 0.],
          [0., 6., 0., 2., 4., 6., 6., 0.],
          [0., 9., 7., 6., 6., 8., 4., 0.],
          [0., 8., 3., 8., 5., 1., 3., 0.],
          [0., 7., 2., 7., 0., 1., 0., 0.],
          [0., 0., 0., 0., 0., 0., 0., 0.]]]])

There are two arguments: padding, for the number of columns and rows to be

stuffed in the image; and value, for the value that is filling these new columns and

rows. One can also do asymmetric padding by specifying a tuple in the padding

argument representing (left, right, top, bottom). So, if we were to stuff our

image on the left and right sides only, the argument would go like this: (1, 1, 0,
0).

We can achieve the same result using the functional padding:

padded = F.pad(image, pad=(1, 1, 1, 1), mode='constant', value=0)

In the functional version, one must specify the padding as a tuple. The value
argument is straightforward, and there is yet another argument, mode, which was

set to constant to match the module version above.
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In PyTorch’s documentation there is a note warning about

possible reproducibility issues while using padding:

"When using the CUDA backend, this operation may induce

nondeterministic behaviour in its backward pass that is not easily

switched off. Please see the notes on reproducibility for background."

It strikes me as a bit odd that such a straightforward operation, of

all things, would jeopardize reproducibility. Go figure!

 "What are the other available modes?"

There are three other modes: replicate, reflect, and circular. Let’s take a look at

them, starting with the visualization.

Figure 5.12 - Paddings modes

In replication padding, the padded pixels have the same value as the closest real

pixel. The padded corners have the same value as the real corners. The other

columns (left and right) and rows (top and bottom) replicate the corresponding

values of the original image. The values used in the replication are in a darker shade

of orange.

In PyTorch, one can use the functional form F.pad() with mode="replicate", or use

the module version nn.ReplicationPad2d:

replication_padder = nn.ReplicationPad2d(padding=1)
replication_padder(image)
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Output

tensor([[[[5., 5., 0., 8., 7., 8., 1., 1.],
          [5., 5., 0., 8., 7., 8., 1., 1.],
          [1., 1., 9., 5., 0., 7., 7., 7.],
          [6., 6., 0., 2., 4., 6., 6., 6.],
          [9., 9., 7., 6., 6., 8., 4., 4.],
          [8., 8., 3., 8., 5., 1., 3., 3.],
          [7., 7., 2., 7., 0., 1., 0., 0.],
          [7., 7., 2., 7., 0., 1., 0., 0.]]]])

In reflection padding, it gets a bit trickier. It is like the outer columns and rows are

used as axes for the reflection. So, the left padded column (forget about the

corners for now) reflects the second column (since the first column is the axis of

reflection). The same reasoning goes for the right padded column. Similarly, the top

padded row reflects the second row (since the first row is the axis of reflection),

and the same reasoning goes for the bottom padded row. The values used in the

reflection are in a darker shade of orange. The corners have the same values as the

intersection of the reflected rows and columns of the original image. Hopefully,

the image can convey the idea better than my words.

In PyTorch, you can use the functional form F.pad() with mode="reflect", or use

the module version nn.ReflectionPad2d:

reflection_padder = nn.ReflectionPad2d(padding=1)
reflection_padder(image)

Output

tensor([[[[9., 1., 9., 5., 0., 7., 7., 7.],
          [0., 5., 0., 8., 7., 8., 1., 8.],
          [9., 1., 9., 5., 0., 7., 7., 7.],
          [0., 6., 0., 2., 4., 6., 6., 6.],
          [7., 9., 7., 6., 6., 8., 4., 8.],
          [3., 8., 3., 8., 5., 1., 3., 1.],
          [2., 7., 2., 7., 0., 1., 0., 1.],
          [3., 8., 3., 8., 5., 1., 3., 1.]]]])

In circular padding, the left-most (right-most) column gets copied as the right (left)
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padded column (forget about the corners for now too). Similarly, the top-most

(bottom-most) row gets copied as the bottom (top) padded row. The corners

receive the values of the diametrically opposed corner: The top-left padded pixel

receives the value of the bottom-right corner of the original image. Once again, the

values used in the padding are in a darker shade of orange.

In PyTorch, you must use the functional form F.pad() with mode="circular" since

there is no module version of the circular padding (at time of writing):

F.pad(image, pad=(1, 1, 1, 1), mode='circular')

Output

tensor([[[[0., 7., 2., 7., 0., 1., 0., 7.],
          [1., 5., 0., 8., 7., 8., 1., 5.],
          [7., 1., 9., 5., 0., 7., 7., 1.],
          [6., 6., 0., 2., 4., 6., 6., 6.],
          [4., 9., 7., 6., 6., 8., 4., 9.],
          [3., 8., 3., 8., 5., 1., 3., 8.],
          [0., 7., 2., 7., 0., 1., 0., 7.],
          [1., 5., 0., 8., 7., 8., 1., 5.]]]])

By padding an image, it is possible to get resulting images with the same shape as

input images, or even larger, should you choose to stuff more and more rows and

columns into the input image. Assuming we’re doing symmetrical padding of size p,

the resulting shape is given by the formula below:

Equation 5.4 - Shape after a convolution with stride and padding

We’re basically extending the original dimensions by 2p pixels each.

A REAL Filter

Enough with the identity filter! Let’s try an edge detector[91] filter from traditional

computer vision for a change:
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edge = np.array(
    [[[[0,  1, 0],
       [1, -4, 1],
       [0,  1, 0]]]]
)
kernel_edge = torch.as_tensor(edge).float()
kernel_edge.shape

Output

torch.Size([1, 1, 3, 3])

And let’s apply it to a different region of our (padded) input image.

Figure 5.13 - Convolving a padded image—no shrinking!

As you can see, filters, other than the identity one, do not simply copy the value at

the center. The element-wise multiplication finally means something.

Figure 5.14 - Element-wise multiplication—edge filter
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Let’s apply this filter to our image so we can use the resulting image in our next

operation:

padded = F.pad(image, (1, 1, 1, 1), mode='constant', value=0)
conv_padded = F.conv2d(padded, kernel_edge, stride=1)

Pooling

Now we’re back in the business of shrinking images. Pooling is different than the

former operations: It splits the image into tiny chunks, performs an operation on

each chunk (that yields a single value), and puts the chunks together as the

resulting image. Again, an image is worth a thousand words.

Figure 5.15 - Max pooling

In the image above, we’re performing a max pooling with a kernel size of two. Even

though this is not quite the same as the filters we’ve already seen, it is still called a

kernel.


In this example, the stride is assumed to be the same size as the

kernel.

Our input image is split into nine chunks, and we perform a simple max operation

(hence, max pooling) on each chunk (really, it is just taking the largest value in each

chunk). Then, these values are put together, in order, to produce a smaller

resulting image.

 The larger the pooling kernel, the smaller the resulting image.
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A pooling kernel of two-by-two results in an image whose dimensions are half of

the original. A pooling kernel of three-by-three makes the resulting image one-

third the size of the original, and so on. Moreover, only full chunks count: If we try a

kernel of four-by-four in our six-by-six image, only one chunk fits, and the resulting

image would have a single pixel.

In PyTorch, as usual, we have both forms: F.max_pool2d() and nn.MaxPool2d. Let’s

use the functional form to replicate the max pooling in the figure above:

pooled = F.max_pool2d(conv_padded, kernel_size=2)
pooled

Output

tensor([[[[22., 23., 11.],
          [24.,  7.,  1.],
          [13., 13., 13.]]]])

And then let’s use the module version to illustrate the large four-by-four pooling:

maxpool4 = nn.MaxPool2d(kernel_size=4)
pooled4 = maxpool4(conv_padded)
pooled4

Output

tensor([[[[24.]]]])

A single pixel, as promised!

 "Can I perform some other operation?"

Sure, besides max pooling, average pooling is also fairly common. As the name

suggests, it will output the average pixel value for each chunk. In PyTorch, we have

F.avg_pool2d() and nn.AvgPool2d.

 "Can I use a stride of a different size?"
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Of course, you can! In this case, there will be an overlap between regions instead of

a clean split into chunks. So, it looks like a regular kernel of a convolution, but the

operation is already defined (max or average, for instance). Let’s go through a

quick example:

F.max_pool2d(conv_padded, kernel_size=3, stride=1)

Output

tensor([[[[24., 24., 23., 23.],
          [24., 24., 23., 23.],
          [24., 24., 13., 13.],
          [13., 13., 13., 13.]]]])

The max pooling kernel, sized three-by-three, will move over the image (just like

the convolutional kernel) and compute the maximum value of each region it goes

over. The resulting shape follows the formula in Equation 5.4.

Flattening

We’ve already seen this one! It simply flattens a tensor, preserving the first

dimension such that we keep the number of data points while collapsing all other

dimensions. It has a module version, nn.Flatten:

flattened = nn.Flatten()(pooled)
flattened

Output

tensor([[22., 23., 11., 24.,  7.,  1., 13., 13., 13.]])

It has no functional version, but there is no need for one since we can accomplish

the same thing using view():

pooled.view(1, -1)
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Output

tensor([[22., 23., 11., 24.,  7.,  1., 13., 13., 13.]])

Dimensions

We’ve performed convolutions, padding, and pooling in two dimensions because

we’re handling images. But there are one- and three-dimensional versions of some

of them as well:

• nn.Conv1d and F.conv1d(); nn.Conv3d and F.conv3d()

• nn.ConstandPad1d and nn.ConstandPad3d

• nn.ReplicationPad1d and nn.ReplicationPad3d

• nn.ReflectionPad1d

• nn.MaxPool1d and F.max_pool1d(); nn.MaxPool3d and F.max_pool3d()

• nn.AvgPool1d and F.avg_pool1d(); nn.AvgPool3d and F.avg_pool3d()

We will not venture into the third dimension in this book, but we’ll get back to one-

dimension operations later.


"Aren’t color images three-dimensional since they have three

channels?"

Well, yes, but we will still be applying two-dimensional convolutions to them. We’ll

go through a detailed example using a three-channel image in the next chapter.

Typical Architecture

A typical architecture uses a sequence of one or more typical convolutional

blocks, with each block consisting of three operations:

1. Convolution

2. Activation function

3. Pooling

As images go through these operations, they will shrink in size. After three of these

blocks (assuming kernel size of two for pooling), for instance, an image will be
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reduced to 1/8 or less of its original dimensions (and thus 1/64 of its total number

of pixels). The number of channels / filters produced by each block, though, usually

increases as more blocks are added.

After the sequence of blocks, the image gets flattened: Hopefully, at this stage,

there is no loss of information occurring by considering each value in the flattened

tensor a feature on its own.

Once the features are dissociated from pixels, it becomes a fairly standard

problem, like the ones we’ve been handling in this book: The features feed one or

more hidden layers, and an output layer produces the logits for classification.



If you think of it, what those typical convolutional blocks do is

akin to pre-processing images and converting them into

features. Let’s call this part of the network a featurizer (the one

that generates features).

The classification itself is handled by the familiar and well-known

hidden and output layers.

In transfer learning, which we’ll see in Chapter 7, this will

become even more clear.

LeNet-5

LeNet-5 is a seven-level convolutional neural network developed by Yann LeCun in

1998 to recognize hand-written digits in 28x28 pixel images—the famous MNIST

dataset! That’s when it all started (kinda). In 1989, LeCun himself used back-

propagation (chained gradient descent, remember?) to learn the convolution

filters, as we discussed above, instead of painstakingly developing them manually.

His network had the architecture depicted next.
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Figure 5.15 - LeNet-5 architecture

Source: Generated using Alexander Lenail’s NN-SVG and adapted by the author. For

more details, see LeCun, Y., et al. (1998). "Gradient-based learning applied to

document recognition," Proceedings of the IEEE, 86(11), 2278–2324.[92]

Do you see anything familiar? The typical convolutional blocks are already there

(to some extent): convolutions (C layers), activation functions (not shown), and

subsampling (S layers). There are some differences, though:

• Back then, the subsampling was more complex than today’s max pooling, but

the general idea still holds.

• The activation function, a sigmoid at the time, was applied after the

subsampling instead of before, as is typical today.

• The F6 and Output layers were connected by something called Gaussian

connections, which is more complex than the typical activation function one

would use today.
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Adapting LeNet-5 to today’s standards, it could be implemented like this:

lenet = nn.Sequential()

# Featurizer
# Block 1: 1@28x28 -> 6@28x28 -> 6@14x14
lenet.add_module('C1',
  nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5, padding=2)
)
lenet.add_module('func1', nn.ReLU())
lenet.add_module('S2', nn.MaxPool2d(kernel_size=2))
# Block 2: 6@14x14 -> 16@10x10 -> 16@5x5
lenet.add_module('C3',
  nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5)
)
lenet.add_module('func2', nn.ReLU())
lenet.add_module('S4', nn.MaxPool2d(kernel_size=2))
# Block 3: 16@5x5 -> 120@1x1
lenet.add_module('C5',
  nn.Conv2d(in_channels=16, out_channels=120, kernel_size=5)
)
lenet.add_module('func2', nn.ReLU())
# Flattening
lenet.add_module('flatten', nn.Flatten())

# Classification
# Hidden Layer
lenet.add_module('F6', nn.Linear(in_features=120, out_features=84))
lenet.add_module('func3', nn.ReLU())
# Output Layer
lenet.add_module('OUTPUT',
  nn.Linear(in_features=84, out_features=10)
)

LeNet-5 used three convolutional blocks, although the last one does not have a

max pooling, because the convolution already produces a single pixel. Regarding

the number of channels, they increase as the image size decreases:

• input image: single-channel 28x28 pixels

• first block: produces six-channel 14x14 pixels
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• second block: produces 16-channel 5x5 pixels

• third block: produces 120-channel single pixel (1x1)

Then, these 120 values (or features) are flattened and fed to a typical hidden layer

with 84 units. The last step is, obviously, the output layer, which produces ten

logits to be used for digit classification (from 0 to 9, there are ten classes).


"Wait, we haven’t seen any of those multiclass classification problems

yet!"

You’re right, it is about time. But we’re still not using MNIST for this.

A Multiclass Classification Problem

A problem is considered a multiclass classification problem if there are more than

two classes. So, let’s keep it as simple as possible and build a model to classify

images into three classes.

Data Generation

Our images are going to have either a diagonal or a parallel line, BUT this time we

will make a distinction between a diagonal line tilted to the right, a diagonal line

tilted to the left, and a parallel line (it doesn’t matter if it is horizontal or vertical).

We can summarize the labels (y) like this:

Line Label / Class Index

Parallel (Horizontal OR Vertical) 0

Diagonal, Tilted to the Right 1

Diagonal, Tilted to the Left 2

Also, let’s generate more and larger images: one thousand images, each one ten-

by-ten pixels in size.

Data Generation

1 images, labels = generate_dataset(
2   img_size=10, n_images=1000, binary=False, seed=17
3 )
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fig = plot_images(images, labels, n_plot=30)

Figure 5.16 - Generated dataset

Just like in Chapter 4, the dataset is generated following PyTorch’s format: NCHW.

Data Preparation

The data preparation step would be identical to the one we used in Chapter 4 if it

weren’t for one change: We will not perform data augmentation this time.

 "Why not?"

In our particular problem, flipping an image has the potential to ruin the label. If

we have an image containing a diagonal line tilted to the right (thus labeled class

index #1), and we flip it, the diagonal line would end up tilted to the left. But data

augmentation does not change the labels, so the result would be an image with a

wrong label (class index #1, even though it would contain a left-tilted diagonal

line).


Data augmentation may be useful, but it should not produce

images that are inconsistent with their labels.

That being said, we’re only keeping the min-max scaling by using the Normalize()
transform. All the rest remains the same: splitting, datasets, sampler, and data

loaders.
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Transformed Dataset

 1 class TransformedTensorDataset(Dataset):
 2     def __init__(self, x, y, transform=None):
 3         self.x = x
 4         self.y = y
 5         self.transform = transform
 6 
 7     def __getitem__(self, index):
 8         x = self.x[index]
 9 
10         if self.transform:
11             x = self.transform(x)
12 
13         return x, self.y[index]
14 
15     def __len__(self):
16         return len(self.x)
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Data Preparation

 1 # Builds tensors from numpy arrays BEFORE split
 2 # Modifies the scale of pixel values from [0, 255] to [0, 1]
 3 x_tensor = torch.as_tensor(images / 255).float()
 4 y_tensor = torch.as_tensor(labels).long()
 5 
 6 # Uses index_splitter to generate indices for training and
 7 # validation sets
 8 train_idx, val_idx = index_splitter(len(x_tensor), [80, 20])
 9 # Uses indices to perform the split
10 x_train_tensor = x_tensor[train_idx]
11 y_train_tensor = y_tensor[train_idx]
12 x_val_tensor = x_tensor[val_idx]
13 y_val_tensor = y_tensor[val_idx]
14 
15 # We're not doing any data augmentation now
16 train_composer = Compose([Normalize(mean=(.5,), std=(.5,))])
17 val_composer = Compose([Normalize(mean=(.5,), std=(.5,))])
18 
19 # Uses custom dataset to apply composed transforms to each set
20 train_dataset = TransformedTensorDataset(
21     x_train_tensor, y_train_tensor,
22     transform=train_composer
23 )
24 val_dataset = TransformedTensorDataset(
25     x_val_tensor, y_val_tensor,
26     transform=val_composer
27 )
28 
29 # Builds a weighted random sampler to handle imbalanced classes
30 sampler = make_balanced_sampler(y_train_tensor)
31 
32 # Uses sampler in the training set to get a balanced data loader
33 train_loader = DataLoader(
34     dataset=train_dataset, batch_size=16,
35     sampler=sampler
36 )
37 val_loader = DataLoader(dataset=val_dataset, batch_size=16)

Before defining a model to classify our images, we need to discuss something else:

the loss function.
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Loss

New problem, new loss. Since we’re embracing multiclass classification now, we

need to use a different loss. And, once again, it all starts with our "favorite" subject:

logits.

Logits

In binary classification problems, the model would produce one logit, and one logit

only, for each data point. It makes sense, as binary classification is about answering

a simple question: "Does a given data point belong to the positive class?"

The logit output represented the log odds ratio (remember that, from Chapter 3?)

of answering "yes" to the question above. The log odds ratio of a "no" answer was

simply the inverse. There was no need to pose any other question to make a

decision. And we used a sigmoid function to map logits to probabilities. It was a

simple world :-)

But a multiclass classification is more complex: We need to ask more questions;

that is, we need to get log odds ratios for every possible class. In other words, we

need as many logits as there are classes.


"But a sigmoid takes only one logit. I guess we need something else to

get probabilities, right?"

Absolutely correct! The function we’re looking for here is called softmax.

Softmax

The softmax function returns, for each class, the contribution that a given class

had to the sum of odds ratios. The class with a higher odds ratio will have the

largest contribution and thus the highest probability.
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Since the softmax is computed using odds ratios instead of log

odds ratios (logits), we need to exponentiate the logits!

Equation 5.5 - Logit and odds ratio

The softmax formula itself is quite simple:

Equation 5.6 - Softmax function

In the equation above, C stands for the number of classes and i corresponds to the

index of a particular class. In our example, we have three classes, so our model

needs to output three logits (z0, z1, z2). Applying softmax to these logits, we would

get the following:

Equation 5.7 - Softmax for a three-class classification problem

Simple, right? Let’s see it in code now. Assuming our model produces this tensor

containing three logits:

logits = torch.tensor([ 1.3863,  0.0000, -0.6931])

We exponentiate the logits to get the corresponding odds ratios:

odds_ratios = torch.exp(logits)
odds_ratios
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Output

tensor([4.0000, 1.0000, 0.5000])

The resulting tensor is telling us that the first class has much better odds than the

other two, and the second one has better odds than the third. So we take these

odds and add them together, and then compute each class' contribution to the

sum:

softmaxed = odds_ratios / odds_ratios.sum()
softmaxed

Output

tensor([0.7273, 0.1818, 0.0909])

Voilà! Our logits were softmaxed: The probabilities are proportional to the odds

ratios. This data point most likely belongs to the first class since it has a probability

of 72.73%.

But there is absolutely no need to compute it manually, of course. PyTorch

provides the typical implementations: functional (F.softmax()) and module

(nn.Softmax):

nn.Softmax(dim=-1)(logits), F.softmax(logits, dim=-1)

Output

(tensor([0.7273, 0.1818, 0.0909]), tensor([0.7273, 0.1818, 0.0909]))

In both cases, it asks you to provide which dimension the softmax function should

be applied to. In general, our models will produce logits with the shape (number of

data points, number of classes), so the right dimension to apply softmax to is the

last one (dim=-1).
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LogSoftmax

The logsoftmax function returns, well, the logarithm of the softmax function

above. But, instead of manually taking the logarithm, PyTorch provides

F.log_softmax() and nn.LogSoftmax out of the box.

These functions are fast and also have better numerical properties. But, I guess your

main question at this point is:

 "Why do I need to take the log of the softmax?"

The simple and straightforward reason is that the loss function expects log

probabilities as input.

Negative Log-Likelihood Loss

Since softmax returns probabilities, logsoftmax returns log probabilities. And

that’s the input for computing the negative log-likelihood loss, or nn.NLLLoss() for

short. This loss is simply an extension of the binary cross-entropy loss for handling

multiple classes.

This was the formula for computing binary cross-entropy:

Equation 5.8 - Binary cross-entropy

See the log probabilities in the summation terms? In our example, there are three

classes; that is, our labels (y) could be either zero, one, or two. So, the loss function

will look like this:

Equation 5.9 - Negative log-likelihood loss for a three-class classification problem

Take, for instance, the first class (y=0). For every data point belonging to this class

(there are N0 of them), we take the logarithm of the predicted probability for that

point and class (log(P(yi=0))) and add them all up. Next, we repeat the process for

the other two classes, add all three results up, and divide by the total number of

data points.
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The loss only considers the predicted probability for the true

class.

If a data point is labeled as belonging to class index two, the loss will consider the

probability assigned to class index two only. The other probabilities will be

completely ignored.

For a total of C classes, the formula can be written like this:

Equation 5.10 - Negative log-likelihood loss for a classification problem with C classes

Since the log probabilities are obtained by applying logsoftmax, this loss isn’t doing

much more than looking up the inputs corresponding to the true class and adding

them up. Let’s see this in code:

log_probs = F.log_softmax(logits, dim=-1)
log_probs

Output

tensor([-0.3185, -1.7048, -2.3979])

These are the log probabilities for each class we computed using logsoftmax for

our single data point. Now, let’s assume its label is two: What is the corresponding

loss?

label = torch.tensor([2])
F.nll_loss(log_probs.view(-1, 3), label)

Output

tensor(2.3979)

It is the negative of the log probability corresponding to the class index (two) of
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the true label.

As you’ve probably noticed, I used the functional version of the loss in the snippet of

code above: F.nll_loss(). But, as we’ve done with the binary cross-entropy loss in

Chapter 3, we’re likely to use the module version: nn.NLLLoss().

Just like before, this loss function is a higher-order function, and this one takes

three optional arguments (the others are deprecated, and you can safely ignore

them):

• reduction: It takes either mean, sum, or none. The default, mean, corresponds to

Equation 5.10. As expected, sum will return the sum of the errors, instead of the

average. The last option, none, corresponds to the unreduced form; that is, it

returns the full array of errors.

• weight: It takes a tensor of length C; that is, containing as many weights as

there are classes.



IMPORTANT: This argument can be used to handle imbalanced

datasets, unlike the weight argument in the binary cross-entropy

loss we’ve seen in Chapter 3.

Also, unlike the pos_weight argument of

nn.BCEWithLogitsLoss(), the nn.NLLLoss() computes a true

weighted average when this argument is used.

• ignore_index: It takes one integer, which corresponds to the one (and only

one) class index that should be ignored when computing the loss. It can be

used to mask a particular label that is not relevant to the classification task.

Let’s go through some quick examples using the arguments above. First, we need to

generate some dummy logits (we’ll keep using three classes, though) and the

corresponding log probabilities:

torch.manual_seed(11)
dummy_logits = torch.randn((5, 3))
dummy_labels = torch.tensor([0, 0, 1, 2, 1])
dummy_log_probs = F.log_softmax(dummy_logits, dim=-1)
dummy_log_probs
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Output

tensor([[-1.5229, -0.3146, -2.9600],
        [-1.7934, -1.0044, -0.7607],
        [-1.2513, -1.0136, -1.0471],
        [-2.6799, -0.2219, -2.0367],
        [-1.0728, -1.9098, -0.6737]])


Can you hand-pick the log probabilities that are going to be

actually used in the loss computation?

relevant_log_probs = torch.tensor([-1.5229, -1.7934, -1.0136,
-2.0367, -1.9098])
-relevant_log_probs.mean()

Output

tensor(1.6553)

Now, let’s use nn.NLLLoss() to create the actual loss function, and then use

predictions and labels to check if we got the relevant log probabilities right:

loss_fn = nn.NLLLoss()
loss_fn(dummy_log_probs, dummy_labels)

Output

tensor(1.6553)

Right, indeed! What if we want to balance our dataset, giving data points with label

(y=2) double the weight of the other classes?

loss_fn = nn.NLLLoss(weight=torch.tensor([1., 1., 2.]))
loss_fn(dummy_log_probs, dummy_labels)
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Output

tensor(1.7188)

And what if we want to simply ignore data points with label (y=2)?

loss_fn = nn.NLLLoss(ignore_index=2)
loss_fn(dummy_log_probs, dummy_labels)

Output

tensor(1.5599)

And, once again, there is yet another loss function available for multiclass

classification. And, once again, it is very important to know when to use one or the

other, so you don’t end up with an inconsistent combination of model and loss

function.

Cross-Entropy Loss

The former loss function took log probabilities as an argument (together with the

labels, obviously). Guess what this function takes? Logits, of course! This is the

multiclass version of nn.BCEWithLogitsLoss().

 "What does it mean, in practical terms?"

It means you should NOT add a logsoftmax as the last layer of your model when

using this loss function. This loss function combines both the logsoftmax layer and

the negative log-likelihood loss into one.
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IMPORTANT: I can’t stress this enough: You must use the right

combination of model and loss function!

Option 1: nn.LogSoftmax as the last layer, meaning your model is

producing log probabilities, combined with the nn.NLLLoss()
function.

Option 2: No logsoftmax in the last layer, meaning your model is

producing logits, combined with the nn.CrossEntropyLoss()
function.

Mixing nn.LogSoftmax and nn.CrossEntropyLoss() is just wrong.

Now that the difference between the arguments is clear, let’s take a closer look at

the nn.CrossEntropyLoss() function. It is a higher-order function, and it takes the

same three optional arguments as nn.NLLLoss():

• reduction: It takes either mean, sum, or none, and the default is mean.

• weight: It takes a tensor of length C; that is, containing as many weights as

there are classes.

• ignore_index: It takes one integer, which corresponds to the one (and only

one) class index that should be ignored.

Let’s see a quick example of its usage, taking dummy logits as input:

torch.manual_seed(11)
dummy_logits = torch.randn((5, 3))
dummy_labels = torch.tensor([0, 0, 1, 2, 1])

loss_fn = nn.CrossEntropyLoss()
loss_fn(dummy_logits, dummy_labels)

Output

tensor(1.6553)

No logsoftmax whatsoever, but the same resulting loss, as expected.
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Classification Losses Showdown!

Honestly, I always feel this whole thing is a bit confusing, especially for someone

who’s learning it for the first time.

Which loss functions take logits as inputs? Should I add a (log)softmax layer or not?

Can I use the weight argument to handle imbalanced datasets? Too many

questions, right?

So, here is a table to help you figure out the landscape of loss functions for

classification problems, both binary and multiclass:

BCE Loss BCE With

Logits Loss

NLL Loss Cross-Entropy

Loss

Classification binary binary multiclass multiclass

Input (each

data point)

probability logit array of log

probabilities

array of logits

Label (each

data point)

float (0.0 or

1.0)

float (0.0 or

1.0)

long (class

index)

long (class

index)

Model’s last

layer

Sigmoid - LogSoftmax -

weight
argument

not class

weights

not class

weights

class weights class weights

pos_weight
argument

n/a "weighted" loss n/a n/a

Model Configuration

Let’s build our first convolutional neural network for real! We can use the typical

convolutional block: convolutional layer, activation function, pooling layer. Our

images are quite small, so we only need one of those.

We still need to decide how many channels our convolutional layer is going to

produce. In general, the number of channels increases with each convolutional

block. For the sake of simplicity (and later visualization), let’s keep a single channel.

We also need to decide on a kernel size (the receptive field or gray regions in the
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figures at the beginning of this chapter). Let’s stick with a kernel size of three,

which will reduce the image size by two pixels in each dimension (we are not using

padding here).

Our featurizer, which will encode our images into features using convolutions,

should look like this:

Model Configuration — Featurizer

 1 torch.manual_seed(13)
 2 model_cnn1 = nn.Sequential()
 3 
 4 # Featurizer
 5 # Block 1: 1@10x10 -> n_channels@8x8 -> n_channels@4x4
 6 n_channels = 1
 7 model_cnn1.add_module('conv1', nn.Conv2d(
 8   in_channels=1, out_channels=n_channels, kernel_size=3
 9 ))
10 model_cnn1.add_module('relu1', nn.ReLU())
11 model_cnn1.add_module('maxp1', nn.MaxPool2d(kernel_size=2))
12 # Flattening: n_channels _ 4 _ 4
13 model_cnn1.add_module('flatten', nn.Flatten())

I am keeping the number of channels as a variable, so you can try different values

for it if you like.

Let’s follow what happens to an input image (single-channel, 10x10 pixels in

size—1@10x10):

• The image is convolved with the kernel, and the resulting image has one

channel, and is 8x8 pixels in size (1@8x8).

• A ReLU activation function is applied to the resulting image.

• The "activated" image goes under a max pooling operation with a kernel size of

two, so it is divided into 16 chunks of size two-by-two, resulting in an image

with one channel, but only 4x4 pixels in size (1@4x4).

• These 16 values can be considered features, and are flattened into a tensor

with 16 elements.
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The next part of our model, the classifier part, uses these features to feed what

would be a simple neural network with a single hidden layer if considered on its

own:

Model Configuration - Classifier

1 # Classification
2 # Hidden Layer
3 model_cnn1.add_module('fc1',
4   nn.Linear(in_features=n_channels*4*4, out_features=10)
5 )
6 model_cnn1.add_module('relu2', nn.ReLU())
7 # Output Layer
8 model.add_module('fc2', nn.Linear(in_features=10, out_features=3))

See? There is a hidden layer that takes the 16 features as inputs and maps them

into a ten-dimensional space that is going to be "activated" by the ReLU.

Then, the output layer produces three distinct linear combinations of the ten

activation values, each combination corresponding to a different class. The figure

below, depicting the second half of the model, should make it more clear.

Figure 5.17 - Classifier with softmax output
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The three units in the output layer produce three logits, one for each class (C0, C1,

and C2). We could have added an nn.LogSoftmax layer to the model, and it would

have converted the three logits to log probabilities.

Since our model produces logits, we must use the nn.CrossEntropyLoss()
function:

Model Configuration — Loss and Optimizer

1 lr = 0.1
2 multi_loss_fn = nn.CrossEntropyLoss(reduction='mean')
3 optimizer_cnn1 = optim.SGD(model_cnn1.parameters(), lr=lr)

And then we create an optimizer (SGD) with a given learning rate (0.1), as usual.

Boring, right? No worries; we’ll finally change the optimizer in the Rock Paper

Scissors classification problem in the next chapter.

Model Training

This part is completely straightforward. First, we instantiate our class and set the

loaders:

Model Training

1 sbs_cnn1 = StepByStep(model_cnn1, multi_loss_fn, optimizer_cnn1)
2 sbs_cnn1.set_loaders(train_loader, val_loader)

Then, we train it for 20 epochs and visualize the losses:

Model Training

1 sbs_cnn1.train(20)

fig = sbs_cnn1.plot_losses()
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Figure 5.18 - Losses

OK, it seems to have reached a minimum at the fifth epoch.

Visualizing Filters and More!

In Chapter 4, we briefly discussed visualizing weights as pixels. We’re going to dive

deeper into the visualization of filters (weights), as well as the transformed images

produced by each of our model’s layers.

First, let’s add another method to our tool belt!
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StepByStep Method

@staticmethod
def _visualize_tensors(axs, x, y=None, yhat=None,
                       layer_name='', title=None):
    # The number of images is the number of subplots in a row
    n_images = len(axs)
    # Gets max and min values for scaling the grayscale
    minv, maxv = np.min(x[:n_images]), np.max(x[:n_images])
    # For each image
    for j, image in enumerate(x[:n_images]):
        ax = axs[j]
        # Sets title, labels, and removes ticks
        if title is not None:
            ax.set_title(f'{title} #{j}', fontsize=12)
        shp = np.atleast_2d(image).shape
        ax.set_ylabel(
            f'{layer_name}\n{shp[0]}x{shp[1]}',
            rotation=0, labelpad=40
        )
        xlabel1 = '' if y is None else f'\nLabel: {y[j]}'
        xlabel2 = '' if yhat is None else f'\nPredicted: {yhat[j]}'
        xlabel = f'{xlabel1}{xlabel2}'
        if len(xlabel):
            ax.set_xlabel(xlabel, fontsize=12)
        ax.set_xticks([])
        ax.set_yticks([])

        # Plots weight as an image
        ax.imshow(
            np.atleast_2d(image.squeeze()),
            cmap='gray',
            vmin=minv,
            vmax=maxv
        )
    return

setattr(StepByStep, '_visualize_tensors', _visualize_tensors)

 "What is that @staticmethod thingy above the method’s definition?"
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Static Method

The “@” indicates that the method sitting below it, _visualize_tensors(), is

being decorated by the staticmethod decorator function.

 "What is a decorator?"

Python decorators is a big topic on its own, too involved to explain here. If

you want to learn more about it, check Real Python’s "Primer on Python

Decorators."[93] But I will not leave you without a working knowledge of what

that particular (and somewhat common) decorator does.

The @staticmethod decorator allows the method to be called on an

uninstantiated class object. It is as if we’re attaching a method to a class but

that method does not depend on an instance of the class it is attached to.

It is easy to see why: In every other method we have created so far for the

StepByStep class, the first argument has ALWAYS been self. So, those

methods had access to the class they belonged to; better yet, they had access

to a particular instance and its attributes. Remember the Dog class? The

bark() method knew the name of the dog because its first argument was the

instance representing the dog (self).



A static method does not have a self argument. The inner

workings of the function must be independent of the

instance of the class it belongs to. The static method can

be executed from the class itself instead of from one of its

instances.

Let me illustrate it with yet another silly example:

class Cat(object):
    def __init__(self, name):
        self.name = name

    @staticmethod
    def meow():
        print('Meow')
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The meow() method is totally independent of the Cat class. We do not even

need to create a cat! That’s what I meant by "called on an uninstantiated class

object."

Cat.meow()

Output

Meow

See? The meow() method could well be an independent function because it

works like one. But, in the context of a Cat class, it makes sense to have that

method attached to it since they belong together, conceptually speaking.

Most of the _visualize_tensors() method’s body consists of handling titles,

labels, and axes' ticks before using imshow() to actually plot the image, so it is not

that interesting. Let’s check its arguments:

• axs: an array of subplots, corresponding to one row of subplots as returned by

Matplotlib’s subplot

• x: a Numpy array containing at least as many images / filters as subplots in axs

• y: optional, a Numpy array containing at least as many labels as subplots in axs

• yhat: optional, a Numpy array containing at least as many predicted labels as

subplots in axs

• layer_name: label for the row of subplots

• title: title prefix for each subplot

We’ll call our static method from other (regular) methods to plot the images we’re

interested in. Let’s start with the filters.

Visualizing Filters

We can apply the same principle to the weights of the filter learned by our

convolutional layer. We can access the weights of any given layer using dot

notation:
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weights_filter = model_cnn1.conv1.weight.data.cpu().numpy()
weights_filter.shape

Output

(1, 1, 3, 3)

Each layer has its own weight attribute, which is an nn.Parameter. We could use it

directly, but then we would also have to detach() the parameter from the

computation graph before converting it to Numpy. So, it is easier to use the data
attribute of weight because it is simply a tensor, and no detaching is needed.

The shape of the weights (representing the filters) of a two-dimensional

convolutional layer is given by (out_channels, in_channels, kernel_size,

kernel_size). In our case, the kernel size is three, and we have a single channel, both

in and out, so the shape of the weights is (1, 1, 3, 3).

And that’s when the static method we developed in the previous section comes in

handy: We can loop through the filters (output channels) that the model learned to

convolve each of the input channels.
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StepByStep Method

def visualize_filters(self, layer_name, **kwargs):
    try:
        # Gets the layer object from the model
        layer = self.model
        for name in layer_name.split('.'):
            layer = getattr(layer, name)
        # We are only looking at filters for 2D convolutions
        if isinstance(layer, nn.Conv2d):
            # Takes the weight information
            weights = layer.weight.data.cpu().numpy()
            # weights -> (channels_out (filter), channels_in, H, W)
            n_filters, n_channels, _, _ = weights.shape

            # Builds a figure
            size = (2 * n_channels + 2, 2 * n_filters)
            fig, axes = plt.subplots(n_filters, n_channels,
                                     figsize=size)
            axes = np.atleast_2d(axes)
            axes = axes.reshape(n_filters, n_channels)
            # For each channel_out (filter)
            for i in range(n_filters):
                StepByStep._visualize_tensors(
                    axes[i, :],                  ①
                    weights[i],                  ②
                    layer_name=f'Filter #{i}',
                    title='Channel'
                )

            for ax in axes.flat:
                ax.label_outer()

            fig.tight_layout()
            return fig
    except AttributeError:
        return

setattr(StepByStep, 'visualize_filters', visualize_filters)

① The i-th row of subplots corresponds to a particular filter; each row has as many

columns as there are input channels.
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② The i-th element of the weights corresponds to the i-th filter, which learned

different weights to convolve each of the input channels.

OK, let’s see what the filter looks like:

fig = sbs_cnn1.visualize_filters('conv1', cmap='gray')

Figure 5.19 - Our model’s only filter

Is this a filter one could come up with to try distinguishing between the different

classes we have? Maybe, but it is not easy to grasp, just by looking at this filter, what

it is effectively accomplishing.

To really understand the effect this filter has on each image, we need to visualize

the intermediate values produced by our model, namely, the output of each and

every layer!


"How can we visualize the output of each layer? Do we have to

modify our StepByStep class to capture those?"

It is much easier than that: We can use hooks!

Hooks

A hook is simply a way to force a model to execute a function either after its

forward pass or after its backward pass. Hence, there are forward hooks and

backward hooks. We’re using only forward hooks here, but the idea is the same for

both.

First, we create a function that is going to be, guess what, hooked to the forward

pass. Let’s illustrate the process with a dummy model:
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dummy_model = nn.Linear(1, 1)

dummy_list = []

def dummy_hook(layer, inputs, outputs):
    dummy_list.append((layer, inputs, outputs))

The (forward) hook function takes three arguments:

• a model (or layer)

• a tensor representing the inputs taken by that model (or layer)

• a tensor representing the outputs generated by that model (or layer)

So, any function that takes three arguments, regardless of their names, can work as

a hook. In our case (and in many other cases too), we would like to keep the

information that goes through the hook function.


You should use a variable (or variables) defined outside the

hook function to store values.

That’s the role of the dummy_list variable in the snippet above. Our dummy_hook()
function is as basic as it gets: It simply appends a tuple of its three arguments to the

dummy_list variable defined outside the hook function.

 "How do you hook the hook function to the model?"

There is a method for it, register_forward_hook(), which takes the hook function

and returns a handle, so we can keep track of the hooks attached to our model.

dummy_handle = dummy_model.register_forward_hook(dummy_hook)
dummy_handle

Output

<torch.utils.hooks.RemovableHandle at 0x7fc9a003e190>

Simple enough, right? Let’s see it in action:
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dummy_x = torch.tensor([0.3])
dummy_model.forward(dummy_x)

Output

tensor([-0.7514], grad_fn=<AddBackward0>)

It should add a new tuple to the dummy list, one containing a linear layer, an input

tensor (0.3), and an output tensor (-0.7514). By the way, your values are going to be

different than mine, since we didn’t bother to use a seed here.

dummy_list

Output

[]

 "Empty?! So it is not working?"

GOTCHA! I deliberately used the model’s forward() method here to illustrate

something we’ve discussed much earlier, in Chapter 1:



You should NOT call the forward(x) method! You should call the

whole model instead, as in model(x), to perform a forward pass.

Otherwise, your hooks won’t work.

Let’s do it right this time:

dummy_model(dummy_x)

Output

tensor([-0.7514], grad_fn=<AddBackward0>)
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dummy_list

Output

[(Linear(in_features=1, out_features=1, bias=True),
  (tensor([0.3000]),),
  tensor([-0.7514], grad_fn=<AddBackward0>))]

Now we’re talking! Here is the tuple we were expecting! If you call the model once

again, it will append yet another tuple to the list, and so on and so forth. This hook

is going to be hooked to our model until it is explicitly removed (hence the need to

keep the handles). To remove a hook, you can simply call its remove() method:

dummy_handle.remove()

And the hook goes bye-bye! But we did not lose the collected information, since

our variable, dummy_list, was defined outside the hook function.

Look at the first element of the tuple: It is an instance of a model (or layer). Even if

we use a Sequential model and name the layers, the names won’t make it to the

hook function. So we need to be clever here and make the association ourselves.

Let’s get back to our real model now. We can get a list of all its named modules by

using the appropriate method: named_modules() (what else could it be?!).

modules = list(sbs_cnn1.model.named_modules())
modules
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Output

[('', Sequential(
    (conv1): Conv2d(1, 1, kernel_size=(3, 3), stride=(1, 1))
    (relu1): ReLU()
    (maxp1): MaxPool2d(kernel_size=2, stride=2, padding=0,
dilation=1, ceil_mode=False)
    (flatten): Flatten()
    (fc1): Linear(in_features=16, out_features=10, bias=True)
    (relu2): ReLU()
    (fc2): Linear(in_features=10, out_features=3, bias=True)
  )),
 ('conv1', Conv2d(1, 1, kernel_size=(3, 3), stride=(1, 1))),
 ('relu1', ReLU()),
 ('maxp1',
  MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1,
ceil_mode=False)),
 ('flatten', Flatten()),
 ('fc1', Linear(in_features=16, out_features=10, bias=True)),
 ('relu2', ReLU()),
 ('fc2', Linear(in_features=10, out_features=3, bias=True))]

The first, unnamed, module is the whole model itself. The other, named, modules

are its layers. Any of those layers may be one of the inputs of the hook function. So,

we need to be able to look up the layer name, given the corresponding layer

instance—if only there was something we could use to easily look up values, right?

layer_names = {layer: name for name, layer in modules[1:]}
layer_names
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Output

{Conv2d(1, 1, kernel_size=(3, 3), stride=(1, 1)): 'conv1',
 ReLU(): 'relu1',
 MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1,
ceil_mode=False): 'maxp1',
 Flatten(): 'flatten',
 Linear(in_features=16, out_features=10, bias=True): 'fc1',
 ReLU(): 'relu2',
 Linear(in_features=10, out_features=3, bias=True): 'fc2'}

A dictionary is perfect for that: The hook function will take the layer instance as an

argument and look its name up in the dictionary!

OK, it is time to create a real hook function:

visualization = {}

def hook_fn(layer, inputs, outputs):
    name = layer_names[layer]
    visualization[name] = outputs.detach().cpu().numpy()

It is actually quite simple: It looks up the name of the layer and uses it as a key to a

dictionary defined outside the hook function, which will store the outputs

produced by the hooked layer. The inputs are being ignored in this function.

We can make a list of the layers we’d like to get the outputs from, loop through the

list of named modules, and hook our function to the desired layers, keeping the

handles in another dictionary:

layers_to_hook = ['conv1', 'relu1', 'maxp1', 'flatten',
                  'fc1', 'relu2', 'fc2']

handles = {}

for name, layer in modules:
    if name in layers_to_hook:
        handles[name] = layer.register_forward_hook(hook_fn)
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Everything is in place now! The only thing left to do is to actually call the model, so

a forward pass is triggered, the hooks are executed, and the outputs to all these

layers are stored in the visualization dictionary.

Let’s fetch one mini-batch from the validation loader and use the predict()
method of our StepByStep class (which will then call the trained model):

images_batch, labels_batch = iter(val_loader).next()
logits = sbs_cnn1.predict(images_batch)

Now, if everything went well, our visualization dictionary should contain one key

for each layer we hooked a function to:

visualization.keys()

Output

dict_keys(['conv1', 'relu1', 'maxp1', 'flatten', 'fc1', 'relu2',
'fc2'])

Bingo! They are all there! But, before checking what’s stored inside it, let’s remove

the hooks:

for handle in handles.values():
    handle.remove()
handles = {}


Make sure to always remove the hooks after they have served

their purpose to avoid unnecessary operations that may slow

down your model.

Maybe I got you hooked (sorry, I really like puns!), maybe not. Anyway, to make it

easier for you to get some layers hooked so you can take a peek at what they are

producing, we will append some methods to our StepByStep class: attach_hooks()
and remove_hooks().

First, we create two dictionaries as attributes, visualization and handles, which
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will be the externally defined variables (external to the methods, that is).

The attach_hooks() method has its own internal hook function that is going to

store a layer’s outputs in the visualization attribute. The method handles

everything for us: mapping between layer instances and their names, and

registering the hook function with the desired layers.

The remove_hooks() is pretty much exactly the same code as the previous snippet,

except for the fact that it uses the handles attribute now.

StepByStep Method

setattr(StepByStep, 'visualization', {})
setattr(StepByStep, 'handles', {})

def attach_hooks(self, layers_to_hook, hook_fn=None):
    # Clear any previous values
    self.visualization = {}
    # Creates the dictionary to map layer objects to their names
    modules = list(self.model.named_modules())
    layer_names = {layer: name for name, layer in modules[1:]}

    if hook_fn is None:
        # Hook function to be attached to the forward pass
        def hook_fn(layer, inputs, outputs):
            # Gets the layer name
            name = layer_names[layer]
            # Detaches outputs
            values = outputs.detach().cpu().numpy()
            # Since the hook function may be called multiple times
            # for example, if we make predictions for multiple
            # mini-batches, it concatenates the results
            if self.visualization[name] is None:
                self.visualization[name] = values
            else:
                self.visualization[name] = \
                  np.concatenate([self.visualization[name], values])

    for name, layer in modules:
        # If the layer is in our list
        if name in layers_to_hook:
            # Initializes the corresponding key in the dictionary

Visualizing Filters and More! | 401



            self.visualization[name] = None
            # Register the forward hook and keep the handle
            # in another dict
            self.handles[name] = \
              layer.register_forward_hook(hook_fn)

def remove_hooks(self):
    # Loops through all hooks and removes them
    for handle in self.handles.values():
        handle.remove()
    # Clear the dict, as all hooks have been removed
    self.handles = {}

setattr(StepByStep, 'attach_hooks', attach_hooks)
setattr(StepByStep, 'remove_hooks', remove_hooks)

The procedure is fairly straightforward now: Give it a list containing the names of

the layers to attach hooks to, and you’re done!

Hooking It

sbs_cnn1.attach_hooks(
  layers_to_hook=['conv1', 'relu1', 'maxp1', 'flatten',
                  'fc1', 'relu2', 'fc2']
)

To get the visualization attribute filled with values, we still need to make

predictions:

Making Predictions (Logits)

images_batch, labels_batch = iter(val_loader).next()
logits = sbs_cnn1.predict(images_batch)

Don’t forget to remove the hooks after you’re finished with the predictions. By the

way, you can call predict() multiple times, and the outputs produced by the

hooked layers will be concatenated.
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Removing Hooks

sbs_cnn1.remove_hooks()

Before moving on, don’t forget the model is producing logits as outputs. To get the

predicted classes, we can simply take the index of the largest logit for each data

point:

Making Predictions (Classes)

predicted = np.argmax(logits, 1)
predicted

Output

array([2, 2, 2, 0, 0, 0, 2, 2, 2, 1, 0, 1, 2, 1, 2, 0])

We’ll use the predicted classes in the next section.

Visualizing Feature Maps

First, let’s visualize the first ten images sampled from the validation loader:

fig = plot_images(images_batch.squeeze(), labels_batch.squeeze(),
                  n_plot=10)

Figure 5.20 - Mini-batch of images

The first part of our model, which we called featurizer, has four layers: three in a

typical convolutional block, and a flattening layer. The outputs of these layers are

the feature maps, which were captured by our hook function when we made

predictions for the first mini-batch of the validation loader.

To visualize the feature maps, we can add another method to our class:

visualize_outputs(). This method simply retrieves the captured feature maps

from the visualization dictionary and uses our _visualize_tensors() method to
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plot them:

StepByStep Method

def visualize_outputs(self, layers, n_images=10, y=None, yhat=None):
    layers = filter(lambda l: l in self.visualization.keys(),
                    layers)
    layers = list(layers)
    shapes = [self.visualization[layer].shape for layer in layers]
    n_rows = [shape[1] if len(shape) == 4 else 1
              for shape in shapes]
    total_rows = np.sum(n_rows)

    fig, axes = plt.subplots(total_rows, n_images,
                             figsize=(1.5*n_images, 1.5*total_rows))
    axes = np.atleast_2d(axes).reshape(total_rows, n_images)

    # Loops through the layers, one layer per row of subplots
    row = 0
    for i, layer in enumerate(layers):
        start_row = row
        # Takes the produced feature maps for that layer
        output = self.visualization[layer]

        is_vector = len(output.shape) == 2

        for j in range(n_rows[i]):
            StepByStep._visualize_tensors(
                axes[row, :],
                output if is_vector else output[:, j].squeeze(),
                y,
                yhat,
                layer_name=layers[i] \
                           if is_vector \
                           else f'{layers[i]}\nfil#{row-start_row}',
                title='Image' if (row == 0) else None
            )
            row += 1

    for ax in axes.flat:
        ax.label_outer()

    plt.tight_layout()
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    return fig

setattr(StepByStep, 'visualize_outputs', visualize_outputs)

Then, let’s use the method above to plot the feature maps for the layers in the

featurizer part of our model:

featurizer_layers = ['conv1', 'relu1', 'maxp1', 'flatten']

with plt.style.context('seaborn-white'):
    fig = sbs_cnn1.visualize_outputs(featurizer_layers)

Figure 5.20 - Feature maps (featurizer)

Figure 5.21 - Mini-batch of images (reproduced here for an easier comparison)

Looks cool, right? Even though I’ve plotted the images in the first four rows with

the same size, they have different dimensions, as indicated by the row labels on the

left. The shade of gray is also computed per row: The maximum (white) and

minimum (black) values were computed across the ten images produced by a given

layer; otherwise, some rows would be too dark (the ranges vary a lot from one layer

to the next).

What can we learn from these images? First, convolving the learned filter with the

input image produces some interesting results:
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• For diagonals tilted to the left (images #0, #1, #2, and #7), the filter seems to

suppress the diagonal completely.

• For parallel lines (only verticals in the example above, images #3 to #6, and #8),

the filter produces a striped pattern, brighter to the left of the original line,

darker to its right.

• For diagonals tilted to the right (only image #9), the filter produces a thicker

line with multiple shades.

Then, the ReLU activation function removes the negative values. Unfortunately,

after this operation, images #6 and #8 (parallel vertical lines) had all lines

suppressed and seem indistinguishable from images #0, #1, #2, and #7 (diagonals

tilted to the left).

Next, max pooling reduces the dimensions of the images, and they get flattened to

represent sixteen features.

Now, look at the flattened features. That’s what the classifier will look at to try to

split the images into three different classes. For a relatively simple problem like

this, we can pretty much see the patterns there. Let’s see what the classifier layers

can make of it.

Visualizing Classifier Layers

The second part of our model, which is aptly called a classifier, has the typical

structure: a hidden layer (FC1), an activation function, and an output layer (FC2).

Let’s visualize the outputs of each and every one of the layers that were captured

by our hook function for the same ten images:

classifier_layers = ['fc1', 'relu2', 'fc2']

with plt.style.context('seaborn-white'):
    fig = sbs_cnn1.visualize_outputs(
            classifier_layers, y=labels_batch, yhat=predicted
          )
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Figure 5.22 - Feature maps (classifier)

The hidden layer performed an affine transformation (remember those?), reducing

the dimensionality from sixteen to ten dimensions. Next, the activation function, a

ReLU, eliminated negative values, resulting in the "activated" feature space in the

middle row.

Finally, the output layer used these ten values to compute three logits, one for

each class. Even without transforming them into probabilities, we know that the

largest logit wins. The largest logit is shown as the brightest pixel, so we can tell

which class was predicted by looking at the three shades of gray and picking the

index of the brightest one.

The classifier got eight out of ten right. It made wrong predictions for images #6

and #8. Unsurprisingly, these are the two images that got their vertical lines

suppressed. The filter doesn’t seem to work so well whenever the vertical line is

too close to the left edge of the image.

 "How good is the model actually?"

Good question! Let’s check it out.

Accuracy

In Chapter 3, we made predictions using our own predict() method and used

Scikit-Learn’s metrics module to evaluate them. Now, let’s build a method that also

takes features (x) and labels (y), as returned by a data loader, and that takes all

necessary steps to produce two values for each class: the number of correct

predictions and the number of data points in that class.
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StepByStep Method

def correct(self, x, y, threshold=.5):
    self.model.eval()
    yhat = self.model(x.to(self.device))
    y = y.to(self.device)
    self.model.train()

    # We get the size of the batch and the number of classes
    # (only 1, if it is binary)
    n_samples, n_dims = yhat.shape
    if n_dims > 1:
        # In a multiclass classification, the largest logit
        # always wins, so we don't bother getting probabilities

        # This is PyTorch's version of argmax,
        # but it returns a tuple: (max value, index of max value)
        _, predicted = torch.max(yhat, 1)
    else:
        n_dims += 1
        # In binary classification, we NEED to check if the
        # last layer is a sigmoid (and then it produces probs)
        if isinstance(self.model, nn.Sequential) and \
           isinstance(self.model[-1], nn.Sigmoid):
            predicted = (yhat > threshold).long()
        # or something else (logits), which we need to convert
        # using a sigmoid
        else:
            predicted = (torch.sigmoid(yhat) > threshold).long()

    # How many samples got classified
    correctly for each class
    result = []
    for c in range(n_dims):
        n_class = (y == c).sum().item()
        n_correct = (predicted[y == c] == c).sum().item()
        result.append((n_correct, n_class))
    return torch.tensor(result)

setattr(StepByStep, 'correct', correct)

If the labels have two or more columns, it means we’re dealing with a multiclass
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classification: The predicted class is the one with the largest logit.

If there is a single column of labels, that would be a binary classification: The

predicted class will be the positive class if the predicted probability is above a

given threshold (usually 0.5). But there’s a catch here: If the last layer of the model

is not a sigmoid, we need to apply a sigmoid to the logits first to get the

probabilities, and only then compare them with the threshold.

Then, for each possible class, the method figures out how many predictions match

the labels, and appends the result to a tensor. The shape of the resulting tensor will

be (number of classes, 2), the first column representing correct predictions, the

second, the number of data points.

Let’s try applying this new method to the first mini-batch of our data loader:

sbs_cnn1.correct(images_batch, labels_batch)

Output

tensor([[5, 7],
        [3, 3],
        [6, 6]])

So, there are only two wrong predictions, both for class #0 (parallel lines),

corresponding to images #6 and #8, as we’ve already seen in the previous section.

 "What if I want to compute it for all mini-batches in a data loader?"

Loader Apply

On it! That’s the role of the static method loader_apply(): It applies a function to

each mini-batch, and stacks the results before applying a reducing function such as

sum or mean.
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StepByStep Method

@staticmethod
def loader_apply(loader, func, reduce='sum'):
    results = [func(x, y) for i, (x, y) in enumerate(loader)]
    results = torch.stack(results, axis=0)

    if reduce == 'sum':
        results = results.sum(axis=0)
    elif reduce == 'mean':
        results = results.float().mean(axis=0)

    return results

setattr(StepByStep, 'loader_apply', loader_apply)

Since it is a static method, we can call it from the class itself, passing the loader as

its first argument, and a function (or method, in this case) as its second argument. It

will call the correct() method for each mini-batch (as in the example above), and

sum all the results up:

StepByStep.loader_apply(sbs_cnn1.val_loader, sbs_cnn1.correct)

Output

tensor([[59, 67],
        [55, 62],
        [71, 71]])

Quite simple, right? This method will be very useful for us in the next chapter when

we normalize the images and thus need to compute the mean and standard

deviation over all images in the training loader.

From the results above, we see that our model got 185 out of 200 images correctly

classified in the validation set, an accuracy of 92.5%! Not bad, not bad at all :-)

Putting It All Together

In this chapter, we focused mostly on the model configuration part, adding
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convolutional layers to our model and defining a different loss function to handle

the multiclass classification problem. We also added some more methods to our

class, such that we can visualize the filters learned by our model, attach hooks to

the model’s forward pass, and use the captured results to visualize the

corresponding feature maps.

Data Preparation

 1 # Builds tensors from numpy arrays BEFORE split
 2 # Modifies the scale of pixel values from [0, 255] to [0, 1]
 3 x_tensor = torch.as_tensor(images / 255).float()
 4 y_tensor = torch.as_tensor(labels).long()
 5 
 6 # Uses index_splitter to generate indices for training and
 7 # validation sets
 8 train_idx, val_idx = index_splitter(len(x_tensor), [80, 20])
 9 # Uses indices to perform the split
10 x_train_tensor = x_tensor[train_idx]
11 y_train_tensor = y_tensor[train_idx]
12 x_val_tensor = x_tensor[val_idx]
13 y_val_tensor = y_tensor[val_idx]
14 
15 # We're not doing any data augmentation now
16 train_composer = Compose([Normalize(mean=(.5,), std=(.5,))])
17 val_composer = Compose([Normalize(mean=(.5,), std=(.5,))])
18 
19 # Uses custom dataset to apply composed transforms to each set
20 train_dataset = TransformedTensorDataset(
21     x_train_tensor, y_train_tensor,
22     transform=train_composer
23 )
24 val_dataset = TransformedTensorDataset(
25     x_val_tensor, y_val_tensor,
26     transform=val_composer
27 )
28 # Builds a weighted random sampler to handle imbalanced classes
29 sampler = make_balanced_sampler(y_train_tensor)
30 # Uses sampler in the training set to get a balanced data loader
31 train_loader = DataLoader(
32     dataset=train_dataset, batch_size=16, sampler=sampler
33 )
34 val_loader = DataLoader(dataset=val_dataset, batch_size=16)
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Model Configuration

 1 torch.manual_seed(13)
 2 model_cnn1 = nn.Sequential()
 3 
 4 # Featurizer
 5 # Block 1: 1@10x10 -> n_channels@8x8 -> n_channels@4x4
 6 n_channels = 1
 7 model_cnn1.add_module('conv1', nn.Conv2d(
 8    in_channels=1, out_channels=n_channels, kernel_size=3
 9 ))
10 model_cnn1.add_module('relu1', nn.ReLU())
11 model_cnn1.add_module('maxp1', nn.MaxPool2d(kernel_size=2))
12 # Flattening: n_channels _ 4 _ 4
13 model_cnn1.add_module('flatten', nn.Flatten())
14 
15 # Classification
16 # Hidden Layer
17 model_cnn1.add_module('fc1',
18   nn.Linear(in_features=n_channels*4*4, out_features=10)
19 )
20 model_cnn1.add_module('relu2', nn.ReLU())
21 # Output Layer
22 model_cnn1.add_module('fc2',
23   nn.Linear(in_features=10, out_features=3)
24 )
25 
26 lr = 0.1
27 multi_loss_fn = nn.CrossEntropyLoss(reduction='mean')
28 optimizer_cnn1 = optim.SGD(model_cnn1.parameters(), lr=lr)

Model Training

1 sbs_cnn1 = StepByStep(model_cnn1, multi_loss_fn, optimizer_cnn1)
2 sbs_cnn1.set_loaders(train_loader, val_loader)
3 sbs_cnn1.train(20)

Visualizing Filters

fig_filters = sbs_cnn1.visualize_filters('conv1', cmap='gray')
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Capturing Outputs

featurizer_layers = ['conv1', 'relu1', 'maxp1', 'flatten']
classifier_layers = ['fc1', 'relu2', 'fc2']

sbs_cnn1.attach_hooks(
  layers_to_hook=featurizer_layers + classifier_layers
)

images_batch, labels_batch = iter(val_loader).next()
logits = sbs_cnn1.predict(images_batch)
predicted = np.argmax(logits, 1)

sbs_cnn1.remove_hooks()

Visualizing Feature Maps

with plt.style.context('seaborn-white'):
    fig_maps1 = sbs_cnn1.visualize_outputs(featurizer_layers)
    fig_maps2 = sbs_cnn1.visualize_outputs(
                  classifier_layers, y=labels_batch, yhat=predicted
                )

Evaluating Accuracy

StepByStep.loader_apply(sbs_cnn1.val_loader, sbs_cnn1.correct)

Output

tensor([[59, 67],
        [55, 62],
        [71, 71]])
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Recap

In this chapter, we’ve introduced convolutions and related concepts and built a

convolutional neural network to tackle a multiclass classification problem. This is

what we’ve covered:

• understanding the role of a kernel / filter in a convolution

• understanding the role of a stride and its impact on the shape of the output

• realizing that there are as many filters as combinations of input and output

channels

• using padding to preserve the shape of the output

• using pooling to shrink the shape of the output

• assembling convolution, activation function, and pooling into a typical

convolutional block

• using a sequence of convolutional blocks to pre-process images, converting

them into features

• (re)building Yann LeCun’s LeNet-5

• generating a dataset of 1,000 images for a multiclass classification problem

• understanding how a softmax function transforms logits into probabilities

• understanding the difference between PyTorch’s negative log-likelihood and

cross-entropy losses

• highlighting the importance of choosing the correct combination of last layer

and loss function (again)

• using the loss function to handle imbalanced datasets

• building our own convolutional neural network, with a featurizer made of a

typical convolutional block, followed by a traditional classifier with a single

hidden layer

• visualizing the learned filters

• understanding and using (forward) hooks to capture the outputs of

intermediate layers of our model

• removing the hooks after they served their purpose so as to not harm the

model speed

• using the captured outputs to visualize feature maps and understanding how
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the filters learned by the model produce the features that will feed the

classifier part

• computing accuracy for a multiclass classification problem

• creating a static method to apply a function to all the mini-batches in a data

loader

Congratulations: You took one big step toward being able to tackle many

computer vision problems. This chapter introduced the fundamental concepts

related to (almost) all things convolutional. We still need to add some more tricks to

our arsenal, so we can make our models even more powerful. In the next chapter,

we’ll learn about convolutions over multiple channels, using dropout layers to

regularize a model, finding a learning rate, and the inner workings of optimizers.

[88] https://github.com/dvgodoy/PyTorchStepByStep/blob/master/Chapter05.ipynb

[89] https://colab.research.google.com/github/dvgodoy/PyTorchStepByStep/blob/master/Chapter05.ipynb

[90] https://en.wikipedia.org/wiki/Convolution

[91] https://en.wikipedia.org/wiki/Kernel_(image_processing)

[92] https://bit.ly/3sJ7Nn7

[93] https://realpython.com/primer-on-python-decorators/
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Chapter 6
Rock, Paper, Scissors

Spoilers

In this chapter, we will:

• standardize an image dataset

• train a model to predict rock, paper, scissors poses from hand images

• use dropout layers to regularize the model

• learn how to find a learning rate to train the model

• understand how the Adam optimizer uses adaptive learning rates

• capture gradients and parameters to visualize their evolution during training

• understand how momentum and Nesterov momentum work

• use schedulers to implement learning rate changes during training

Jupyter Notebook

The Jupyter notebook corresponding to Chapter 6[94] is part of the official Deep

Learning with PyTorch Step-by-Step repository on GitHub. You can also run it

directly in Google Colab[95].

If you’re using a local installation, open your terminal or Anaconda prompt and

navigate to the PyTorchStepByStep folder you cloned from GitHub. Then, activate

the pytorchbook environment and run jupyter notebook:

$ conda activate pytorchbook

(pytorchbook)$ jupyter notebook

If you’re using Jupyter’s default settings, this link should open Chapter 6’s

notebook. If not, just click on Chapter06.ipynb in your Jupyter’s home page.

Imports

For the sake of organization, all libraries needed throughout the code used in any
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given chapter are imported at its very beginning. For this chapter, we’ll need the

following imports:

import numpy as np
from PIL import Image
from copy import deepcopy

import torch
import torch.optim as optim
import torch.nn as nn
import torch.nn.functional as F

from torch.utils.data import DataLoader, TensorDataset, random_split
from torchvision.transforms import Compose, ToTensor, Normalize, \
ToPILImage, Resize
from torchvision.datasets import ImageFolder
from torch.optim.lr_scheduler import StepLR, ReduceLROnPlateau, \
MultiStepLR, CyclicLR, LambdaLR

from stepbystep.v2 import StepByStep
from data_generation.rps import download_rps

Rock, Paper, Scissors…



…Lizard, Spock! The "extended" version of the game was

displayed in the "The Lizard-Spock Expansion" episode of The Big

Bang Theory series, and was developed by Sam Kass and Karen

Bryla. To learn more about the extended version, visit Sam Kass'

page[96] about the game.

Trivia aside, I guess you’re probably a bit bored with the image dataset we’ve been

using so far, right? Well, at least, it wasn’t MNIST! But it is time to use a different

dataset: Rock Paper Scissors (unfortunately, no lizard or Spock).
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Rock Paper Scissors Dataset



This dataset was created by Laurence Moroney

(lmoroney@gmail.com / laurencemoroney.com) and can be found

on his site: Rock Paper Scissors Dataset.[97]

The dataset is licensed as Creative Commons (CC BY 2.0). No

changes were made to the dataset.

The dataset contains 2,892 images of diverse hands in the typical rock, paper, and

scissors poses against a white background. This is a synthetic dataset as well since

the images were generated using CGI techniques. Each image is 300x300 pixels in

size and has four channels (RGBA).



RGBA stands for Red-Green-Blue-Alpha, which is the traditional

RGB color model together with an alpha channel indicating how

opaque each pixel is. Don’t mind the alpha channel, it will be

removed later.

The training set (2,520 images) can be downloaded here[98] and the test set (372

images) can be downloaded here.[99] In the notebook, the datasets will be

downloaded and extracted to rps and rps-test-set folders, respectively.

Here are some examples of its images, one for each pose.

Figure 6.1 - Rock, paper, scissors

There are three classes once again, so we can use what we learned in Chapter 5.
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Data Preparation

The data preparation step will be a bit more demanding this time since we’ll be

standardizing the images (for real this time—no min-max scaling anymore!).

Besides, we can use the ImageFolder dataset now.

ImageFolder

This is not a dataset itself, but a generic dataset that you can use with your own

images provided that they are properly organized into sub-folders, with each sub-

folder named after a class and containing the corresponding images.

The Rock Paper Scissors dataset is organized like that: Inside the rps folder of the

training set, there are three sub-folders named after the three classes (rock, paper,

and scissors).

rps/paper/paper01-000.png
rps/paper/paper01-001.png

rps/rock/rock01-000.png
rps/rock/rock01-001.png

rps/scissors/scissors01-000.png
rps/scissors/scissors01-001.png

The dataset is also perfectly balanced, with each sub-folder containing 840 images

of its particular class.

The ImageFolder dataset requires only the root folder, which is the rps folder in

our case. But it can take another four optional arguments:

• transform: You know that one already; it tells the dataset which

transformations should be applied to each image, like the data augmentation

transformations we’ve seen in previous chapters.

• target_transform: So far, our targets have always been integers, so this

argument wouldn’t make sense; it starts making sense if your target is also an

image (for instance, in a segmentation task).

• loader: A function that loads an image from a given path, in case you’re using

weird or atypical formats that cannot be handled by PIL.
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• is_valid_file: A function that checks if a file is corrupted or not.

Let’s create a dataset then:

Temporary Dataset

1 temp_transform = Compose([Resize(28), ToTensor()])
2 temp_dataset = ImageFolder(root='rps', transform=temp_transform)

We’re using only the transform optional argument here, and keeping

transformations to a minimum. First, images are resized to 28x28 pixels (and

automatically transformed to the RGB color model by the PIL loader, thus losing

the alpha channel), and then are converted to PyTorch tensors. Smaller images will

make our models faster to train, and more "CPU-friendly." Let’s take the first image

of the dataset and check its shape and corresponding label:

temp_dataset[0][0].shape, temp_dataset[0][1]

Output

(torch.Size([3, 28, 28]), 0)

Perfect!

 "Wait, where is the standardization you promised?"

Standardization

To standardize data points, we need to learn their mean and standard deviation

first. What’s the mean pixel value of our rock paper scissors images? And standard

deviation? To compute these, we need to load the data. The good thing is, we have

a (temporary) dataset with the resized images already! We’re only missing a data

loader.

Temporary DataLoader

1 temp_loader = DataLoader(temp_dataset, batch_size=16)

No need to bother with shuffling, as this is not the data loader we’ll use to train the
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model anyway. We’ll use it to compute statistics only. By the way, we need

statistics for each channel, as required by the Normalize() transform.

So, let’s build a function that takes a mini-batch (images and labels) and computes

the mean pixel value and standard deviation per channel of each image, adding up

the results for all images. Better yet, let’s make it a method of our StepByStep class

too.

StepByStep Method

@staticmethod
def statistics_per_channel(images, labels):
    # NCHW
    n_samples, n_channels, n_height, n_weight = images.size()
    # Flatten HW into a single dimension
    flatten_per_channel = images.reshape(n_samples, n_channels, -1)

    # Computes statistics of each image per channel
    # Average pixel value per channel
    # (n_samples, n_channels)
    means = flatten_per_channel.mean(axis=2)
    # Standard deviation of pixel values per channel
    # (n_samples, n_channels)
    stds = flatten_per_channel.std(axis=2)

    # Adds up statistics of all images in a mini-batch
    # (1, n_channels)
    sum_means = means.sum(axis=0)
    sum_stds = stds.sum(axis=0)
    # Makes a tensor of shape (1, n_channels)
    # with the number of samples in the mini-batch
    n_samples = torch.tensor([n_samples]*n_channels).float()

    # Stack the three tensors on top of one another
    # (3, n_channels)
    return torch.stack([n_samples, sum_means, sum_stds], axis=0)

setattr(StepByStep, 'statistics_per_channel',
statistics_per_channel)
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first_images, first_labels = next(iter(temp_loader))
StepByStep.statistics_per_channel(first_images, first_labels)

Output

tensor([[16.0000, 16.0000, 16.0000],
        [13.8748, 13.3048, 13.1962],
        [ 3.0507,  3.8268,  3.9754]])

Applying it to the first mini-batch of images, we get the results above: Each column

represents a channel, and the rows are the number of data points, the sum of mean

values, and the sum of standard deviations, respectively.

We can leverage the loader_apply() method we created in the last chapter to get

the sums for the whole dataset:

results = StepByStep.loader_apply(temp_loader,
    StepByStep.statistics_per_channel)
results

Output

tensor([[2520.0000, 2520.0000, 2520.0000],
        [2142.5359, 2070.0811, 2045.1442],
        [ 526.3024,  633.0677,  669.9554]])

So, we can compute the average mean value (that sounds weird, I know) and the

average standard deviation, per channel. Better yet, let’s make it a method that

takes a data loader and returns an instance of the Normalize() transform,

statistics and all:
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StepByStep Method

@staticmethod
def make_normalizer(loader):
    total_samples, total_means, total_stds = \
      StepByStep.loader_apply(
          loader,
          StepByStep.statistics_per_channel
      )
    norm_mean = total_means / total_samples
    norm_std = total_stds / total_samples
    return Normalize(mean=norm_mean, std=norm_std)

setattr(StepByStep, 'make_normalizer', make_normalizer)


IMPORTANT: Always use the training set to compute statistics

for standardization!

Now, we can use this method to create a transformation that standardizes our

dataset:

Creating Normalizer Transform

1 normalizer = StepByStep.make_normalizer(temp_loader)
2 normalizer

Output

Normalize(mean=tensor([0.8502, 0.8215, 0.8116]),
          std=tensor([0.2089, 0.2512, 0.2659]))

Remember that PyTorch converts the pixel values into the [0, 1] range. The

average mean value of a pixel for the red (first) channel is 0.8502, while its average

standard deviation is 0.2089.


In the next chapter, we’ll use pre-computed statistics to

standardize the inputs when using a pre-trained model.
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The Real Datasets

It’s time to build our real datasets using the Normalize() transform with the

statistics we learned from the (temporary) training set. The data preparation step

looks like this:

Data Preparation

 1 composer = Compose([Resize(28),
 2                     ToTensor(),
 3                     normalizer])
 4 
 5 train_data = ImageFolder(root='rps', transform=composer)
 6 val_data = ImageFolder(root='rps-test-set', transform=composer)
 7 
 8 # Builds a loader of each set
 9 train_loader = DataLoader(
10     train_data, batch_size=16, shuffle=True
11 )
12 val_loader = DataLoader(val_data, batch_size=16)

Even though the second part of the dataset was named rps-test-set by its author,

we’ll be using it as our validation dataset. Since each dataset, both training and

validation, corresponds to a different folder, there is no need to split anything.

Next, we use both datasets to create the corresponding data loaders, remembering

to shuffle the training set.

Let’s take a peek at some images from the real training set.

Figure 6.2 - Training set (normalized)
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 "What’s wrong with the colors?"

There is nothing wrong with the colors, it is just the effect of the standardization

of the pixel values. Now that we have colored images, we can take a step back into

the convolution world and see how it handles…

Three-Channel Convolutions

Before, there was a single-channel image and a single-channel filter. Or many

filters, but each of them still having a single channel. Now, there is a three-channel

image and a three-channel filter. Or many filters, but each of them still having

three channels.

 Every filter has as many channels as the image it is convolving.

Convolving a three-channel filter over a three-channel image still produces a

single value, as depicted in the figure below.

Figure 6.3 - Convolution with multiple channels

We can think of it as performing three convolutions, each corresponding to the

element-wise multiplication of the matching region / channel and filter / channel,

resulting in three values, one for each channel. Adding up the results for each

channel produces the expected single value. The figure below should illustrate it

better.
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Figure 6.4 - Convolution over each channel

We can also look at it in code if you prefer:

regions = np.array([[[[5, 0, 8],
                      [1, 9, 5],
                      [6, 0, 2]],
                     [[0, 5, 4],
                      [8, 1, 9],
                      [4, 8, 1]],
                     [[4, 2, 0],
                      [6, 3, 0],
                      [5, 2, 8]]]])
regions.shape

Output

(1, 3, 3, 3)
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three_channel_filter = np.array([[[[0, 3, 0],
                                   [1, 0, 1],
                                   [2, 1, 0]],
                                  [[2, 1, 0],
                                   [0, 3, 1],
                                   [1, -1, 0]],
                                  [[0, 1, 3],
                                   [-1, -2, 0],
                                   [2, 0, 1]]]])
three_channel_filter.shape

Output

(1, 3, 3, 3)

result = F.conv2d(torch.as_tensor(regions),
                  torch.as_tensor(three_channel_filter))
result, result.shape

Output

(tensor([[[[39]]]]), torch.Size([1, 1, 1, 1]))

 "What if I have two filters?"

Glad you asked! The figure below illustrates the fact that every filter has as many

channels as the image being convolved.
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Figure 6.5 - Two filters over three channels

If you have two filters, and the input image has three channels, each filter has

three channels as well, and the output has two channels.

 The convolution produces as many channels as there are filters.

OK, it is time to develop a…

Fancier Model

Let’s leave the Sequential model aside for now and build a model class again. This

time, our constructor method will take two arguments: n_filters and p. We’ll use

n_filters as the number of output channels for both convolutional blocks of our

model (yes, there are two now!). And, as you can see from the code below, we’ll use

p as the probability of dropout.

 "Dropout? What is that?"

 Hold on tight, we’ll get to it in the next section.
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Fancier Model (Constructor)

class CNN2(nn.Module):
    def __init__(self, n_filters, p=0.0):
        super(CNN2, self).__init__()
        self.n_filters = n_filters
        self.p = p
        # Creates the convolution layers
        self.conv1 = nn.Conv2d(
            in_channels=3,
            out_channels=n_filters,
            kernel_size=3
        )
        self.conv2 = nn.Conv2d(
            in_channels=n_filters,
            out_channels=n_filters,
            kernel_size=3
        )
        # Creates the linear layers
        # Where does this 5 * 5 come from?! Check it below
        self.fc1 = nn.Linear(n_filters * 5 * 5, 50)
        self.fc2 = nn.Linear(50, 3)
        # Creates dropout layers
        self.drop = nn.Dropout(self.p)

There are two convolutional layers, and two linear layers, fc1 (the hidden layer)

and fc2 (the output layer).

 "Where are the layers for activation functions and max pooling?"

Well, the max pooling layer doesn’t learn anything, so we can use its functional

form: F.max_pool2d(). The same goes for the chosen activation function: F.relu().


If you choose the parametric ReLU (PReLU), you shouldn’t use

the functional form since it needs to learn the coefficient of

leakage (the slope of the negative part).

On the one hand, you keep the model’s attributes to a minimum. On the other hand,

you don’t have layers to hook anymore, so you cannot capture the output of

activation functions and max pooling operations anymore.
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Let’s create our two convolutional blocks in a method aptly named featurizer:

Fancier Model (Featurizer)

    def featurizer(self, x):
        # First convolutional block
        # 3@28x28 -> n_filters@26x26 -> n_filters@13x13
        x = self.conv1(x)
        x = F.relu(x)
        x = F.max_pool2d(x, kernel_size=2)
        # Second convolutional block
        # n_filters@13x13 -> n_filters@11x11 -> n_filters@5x5
        x = self.conv2(x)
        x = F.relu(x)
        x = F.max_pool2d(x, kernel_size=2)
        # Input dimension (n_filters@5x5)
        # Output dimension (n_filters * 5 * 5)
        x = nn.Flatten()(x)
        return x

This structure, where an argument x is both input and output of every operation in

a sequence, is fairly common. The featurizer produces a feature tensor of size

n_filters times 25.

The next step is to build the classifier using the linear layers, one as a hidden layer,

the other as the output layer. But there is more to it: There is a dropout layer

before each linear layer, and it will drop values with a probability p (the second

argument of our constructor method):
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Fancier Model (Classifier)

    def classifier(self, x):
        # Classifier
        # Hidden Layer
        # Input dimension (n_feature * 5 * 5)
        # Output dimension (50)
        if self.p > 0:
            x = self.drop(x)
        x = self.fc1(x)
        x = F.relu(x)
        # Output Layer
        # Input dimension (50)
        # Output dimension (3)
        if self.p > 0:
            x = self.drop(x)
        x = self.fc2(x)
        return x

 "How does dropout work?"

We’ll dive deeper into it in the next section, but we need to finish our model class

first. What’s left to be done? The implementation of the forward() method:

Fancier Model (Forward)

    def forward(self, x):
        x = self.featurizer(x)
        x = self.classifier(x)
        return x

It takes the inputs (a mini-batch of images, in this case), runs them through the

featurizer first, and then runs the produced features through the classifier, which

produces three logits, one for each class.

Dropout

Dropout is an important piece of deep learning models. It is used as a regularizer;

that is, it tries to prevent overfitting by forcing the model to find more than one

way to achieve the target.
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The general idea behind regularization is that, if left unchecked, a model will try to

find the "easy way out" (can you blame it?!) to achieve the target. What does it

mean? It means it may end up relying on a handful of features because these

features were found to be more relevant in the training set. Maybe they are, maybe

they aren’t—it could very well be a statistical fluke, who knows, right?

To make the model more robust, some of the features are randomly denied to it, so

it has to achieve the target in a different way. It makes training harder, but it

should result in better generalization; that is, the model should perform better

when handling unseen data (like the data points in the validation set).

The whole thing looks a lot like the randomization of features used in random

forests to perform the splits. Each tree, or even better, each split has access to a

subset of features only.


"How does this, "feature randomization", work in a deep learning

model?"

To illustrate it, let’s build a sequential model with a single nn.Dropout layer:

dropping_model = nn.Sequential(nn.Dropout(p=0.5))


"Why do I need a model for this? Can’t I use the functional form

F.dropout() instead?"

Yes, a functional dropout would go just fine here, but I wanted to illustrate another

point too, so please bear with me. Let’s also create some neatly spaced points to

make it easier to understand the effect of dropout.

spaced_points = torch.linspace(.1, 1.1, 11)
spaced_points

Output

tensor([0.1000, 0.2000, 0.3000, 0.4000, 0.5000, 0.6000, 0.7000,
        0.8000, 0.9000, 1.0000, 1.1000])

Next, let’s use these points as inputs of our amazingly simple model:
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torch.manual_seed(44)

dropping_model.train()
output_train = dropping_model(spaced_points)
output_train

Output

tensor([0.0000, 0.4000, 0.0000, 0.8000, 0.0000, 1.2000, 1.4000,
        1.6000, 1.8000, 0.0000, 2.2000])

There are many things to notice here:

• The model is in train mode (very important, hold on to this!).

• Since this model does not have any weights, it becomes clear that dropout

drops inputs, not weights.

• It dropped four elements only!

• The remaining elements have different values now!

 "What’s going on here?"

First, dropping is probabilistic, so each input had a 50% chance of being dropped.

In our tiny example, by chance, only four out of ten were actually dropped (hold on

to this thought too!).

Figure 6.6 - Applying dropout

Second, the remaining elements need to be proportionally adjusted by a factor of

1/p. In our example, that’s a factor of two.
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output_train / spaced_points

Output

tensor([0., 2., 0., 2., 0., 2., 2., 2., 2., 0., 2.])

 "Why?"

This adjustment has the purpose of preserving (or at least trying to) the overall

level of the outputs in the particular layer that’s "suffering" the dropout. So, let’s

imagine that these inputs (after dropping) will feed a linear layer and, for

educational purposes, that all their weights are equal to one (and bias equals zero).

As you already know, a linear layer will multiply these weights by the (dropped)

inputs and sum them up:

F.linear(output_train, weight=torch.ones(11), bias=torch.tensor(0))

Output

tensor(9.4000)

The sum is 9.4. It would have been half of this (4.7) without the adjusting factor.


"OK, so what? Why do I need to preserve the level of the outputs

anyway?"

Because there is no dropping in evaluation mode! We’ve talked about it briefly in

the past—the dropout is random in nature, so it would produce slightly (or maybe

not so slightly) different predictions for the same inputs. You don’t want that,

that’s bad business. So, let’s set our model to eval mode (and that’s why I chose to

make it a model instead of using functional dropout) and see what happens there:

dropping_model.eval()
output_eval = dropping_model(spaced_points)
output_eval

434 | Chapter 6: Rock, Paper, Scissors



Output

tensor([0.1000, 0.2000, 0.3000, 0.4000, 0.5000, 0.6000, 0.7000,
        0.8000, 0.9000, 1.0000, 1.1000])

Pretty boring, right? This isn’t doing anything!


Finally, an actual difference in behavior between train and eval
modes! It was long overdue!

The inputs are just passing through. What’s the implication of this? Well, that

linear layer that receives these values is still multiplying them by the weights and

summing them up:

F.linear(output_eval, weight=torch.ones(11), bias=torch.tensor(0))

Output

tensor(6.6000)

This is the sum of all inputs (because all the weights were set to one and no input

was dropped). If there was no adjusting factor, the outputs in evaluation and

training modes would be substantially different, simply because there would be

more terms to add up in evaluation mode.


"I am still not convinced … without adjusting the output would be

4.7, which is closer to 6.6 than the adjusted 9.4 … what is up?"

This happened because dropping is probabilistic, and only four out of ten elements

were actually dropped (that was the thought I asked you to hold on to). The factor

adjusts for the average number of dropped elements. We set the probability to

50% so, on average, five elements will be dropped. By the way, if you change the

seed to 45 and re-run the code, it will actually drop half of the inputs, and the

adjusted output will be 6.4 instead of 9.4.

Instead of setting a different random seed and manually checking which value it

produces, let’s generate 1,000 scenarios and compute the sum of the adjusted

dropped outputs to get their distribution:
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torch.manual_seed(17)
p = 0.5
distrib_outputs = torch.tensor([
  F.linear(F.dropout(spaced_points, p=p),
           weight=torch.ones(11), bias=torch.tensor(0))
  for _ in range(1000)
])

Figure 6.7 - Distribution of outputs

The figure above shows us that, for that set of inputs, the output of our simple

linear layer with dropout will not be exactly 6.6 anymore, but something between

0 and 12. The mean value for all scenarios is quite close to 6.6, though.



Dropout not only drops some inputs but, due to its probabilistic

nature, produces a distribution of outputs.

In other words, the model needs to learn how to handle a

distribution of values that is centered at the value the output

would have if there was no dropout.

Moreover, the choice of the dropout probability determines how spread out the

outputs will be.
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Figure 6.8 - Output distribution for dropout probabilities

On the left, if there is barely any dropout (p=0.10), the sum of adjusted outputs is

tightly distributed around the mean value. For more typical dropout probabilities

(like 30% or 50%), the distribution may take some more extreme values.

If we go to extremes, like a dropout probability of 90%, the distribution gets a bit

degenerated, I would say—it is pretty much all over the place (and it has a lot of

scenarios where everything gets dropped, hence the tall bar at zero).



The variance of the distribution of outputs grows with the

dropout probability.

A higher dropout probability makes it harder for your model to

learn—that’s what regularization does.

 "Can I use dropout with the convolutional layers?"

Two-Dimensional Dropout

Yes, you can, but not that dropout. There is a specific dropout to be used with

convolutional layers: nn.Dropout2d. Its dropout procedure is a bit different,

though: Instead of dropping individual inputs (which would be pixel values in a

given channel), it drops entire channels / filters. So, if a convolutional layer

produces ten filters, a two-dimensional dropout with a probability of 50% would

drop five filters (on average), while the remaining filters would have all their pixel

values left untouched.

 "Why does it drop entire channels instead of dropping pixels?"

Randomly dropping pixels doesn’t do much for regularization because adjacent

pixels are strongly correlated; that is, they have quite similar values. You can think

of it this way: If there are some dead pixels randomly spread in an image, the
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missing pixels can probably be easily filled with the values of the adjacent pixels.

On the other hand, if a full channel is dropped (in an RGB image), the color changes

(good luck figuring out the values for the missing channel!).

The figure below illustrates the effect of both regular and two-dimensional

dropout procedures on an image of our dataset.

Figure 6.9 - Dropping channels with nn.Dropout2d

Sure, in deeper layers, there is no correspondence between channel and color

anymore, but each channel still encodes some feature. By randomly dropping some

channels, two-dimensional dropout achieves the desired regularization.

Now, let’s make it a bit harder for our model to learn by setting its dropout

probability to 30% and observing how it fares…

Model Configuration

The configuration part is short and straightforward: We create a model, a loss

function, and an optimizer.

The model will be an instance of our CNN2 class with five filters and a dropout

probability of 30%. Our dataset has three classes, so we’re using

nn.CrossEntropyLoss() (which will take the three logits produced by our model).

Optimizer

Regarding the optimizer, let’s ditch the SGD optimizer and use Adam for a change.

Stochastic gradient descent is simple and straightforward, as we’ve learned in

Chapter 0, but it is also slow. So far, the training speed of SGD has not been an issue

because our problems were quite simple. But, as our models grow a bit more

complex, we can benefit from choosing a different optimizer.
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Adaptive moment estimation (Adam) uses adaptive learning

rates, computing a learning rate for each parameter. Yes, you

read it right: Each parameter has a learning rate to call its own!

If you dig into the state_dict() of an Adam optimizer, you’ll find

tensors shaped like the parameters of every layer in your model

that Adam will use to compute the corresponding learning rates.

True story!

Adam is known to achieve good results fast and is likely a safe choice of optimizer.

We’ll get back to its inner workings in a later section.

Learning Rate

Another thing we need to keep in mind is that 0.1 won’t cut it as a learning rate

anymore. Remember what happens when the learning rate is too high? The loss

doesn’t go down or, even worse, goes up! We need to go lower, much lower, than

that. For this example, let’s use 3e-4, the "Karpathy’s Constant."[100] Even though it

was meant as a joke, it still is in the right order of magnitude, so let’s give it a try.

Model Configuration

1 torch.manual_seed(13)
2 model_cnn2 = CNN2(n_feature=5, p=0.3)
3 multi_loss_fn = nn.CrossEntropyLoss(reduction='mean')
4 optimizer_cnn2 = optim.Adam(model_cnn2.parameters(), lr=3e-4)

We have everything in place to start the…

Model Training

Once again, we use our StepByStep class to handle model training for us.

Model Training

1 sbs_cnn2 = StepByStep(model_cnn2, multi_loss_fn, optimizer_cnn2)
2 sbs_cnn2.set_loaders(train_loader, val_loader)
3 sbs_cnn2.train(10)

You should expect training to take a while since this model is more complex than
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previous ones (6,823 parameters against 213 parameters for the last chapter’s

model). After it finishes, the computed losses should look like this:

fig = sbs_cnn2.plot_losses()

Figure 6.10 - Losses

Accuracy

We can also check the model’s accuracy for each class:

StepByStep.loader_apply(val_loader, sbs_cnn2.correct)

Output

tensor([[ 92, 124],
        [106, 124],
        [115, 124]])

The model got 313 out of 372 right. That’s 84.1% accuracy on the validation

set—not bad!

Regularizing Effect

Dropout layers are used for regularizing; that is, they should reduce overfitting

and improve generalization. Or so they say :-)

Let’s (empirically) verify this claim by training a model identical in every way BUT the

dropout, and compare its losses and accuracy to the original model.
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torch.manual_seed(13)
# Model Configuration
model_cnn2_nodrop = CNN2(n_feature=5, p=0.0)
multi_loss_fn = nn.CrossEntropyLoss(reduction='mean')
optimizer_cnn2_nodrop = optim.Adam(
    model_cnn2_nodrop.parameters(), lr=3e-4
)
# Model Training
sbs_cnn2_nodrop = StepByStep(
    model_cnn2_nodrop, multi_loss_fn, optimizer_cnn2_nodrop
)
sbs_cnn2_nodrop.set_loaders(train_loader, val_loader)
sbs_cnn2_nodrop.train(10)

Then, we can plot the losses of the model above (no dropout) together with the

losses from our previous model (30% dropout):

Figure 6.11 - Losses (with and without regularization)

This is actually a very nice depiction of the regularizing effect of using dropout:

• Training loss is higher with dropout—after all, dropout makes training harder.

• Validation loss is lower with dropout—it means that the model is generalizing

better and achieving a better performance on unseen data, which is the whole

point of using a regularization method like dropout.

We can also observe this effect by looking at the accuracy for both sets and
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models. First, the no dropout model, which is expected to overfit to the training

data:

print(StepByStep.loader_apply(
          train_loader, sbs_cnn2_nodrop.correct).sum(axis=0),
      StepByStep.loader_apply(
          val_loader, sbs_cnn2_nodrop.correct).sum(axis=0))

Output

tensor([2518, 2520]) tensor([293, 372])

That’s 99.92% accuracy on the training set! And 78.76% on the validation set—it

smells like overfitting!

Then, let’s look at the regularized version of the model:

print(StepByStep.loader_apply(
          train_loader, sbs_cnn2.correct).sum(axis=0),
      StepByStep.loader_apply(
          val_loader, sbs_cnn2.correct).sum(axis=0))

Output

tensor([2504, 2520]) tensor([313, 372])

That’s 99.36% accuracy on the training set—still quite high! But we got 84.13% on

the validation set now—a narrower gap between training and validation accuracy

is always a good sign. You can also try different probabilities of dropout and

observe how much better (or worse!) the results get.

Visualizing Filters

There are two convolutional layers in this model, so let’s visualize them! For the

first one, conv1, we get:

model_cnn2.conv1.weight.shape
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Output

torch.Size([5, 3, 3, 3])

Its shape indicates it produced five filters for each one of the three input channels

(15 filters in total), and each filter is 3x3 pixels.

fig = sbs_cnn2.visualize_filters('conv1')

Figure 6.12 - Visualizing filters for conv1 layer

For the second convolutional layer, conv2, we get:

model_cnn2.conv2.weight.shape
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Output

torch.Size([5, 5, 3, 3])

Its shape indicates it produced five filters for each one of the five input channels

(25 filters in total), and each filter is 3x3 pixels.

fig = sbs_cnn2.visualize_filters('conv2')

Figure 6.13 - Visualizing filters for conv2 layer

Learning Rates

It is time to have "the talk." It cannot be postponed any longer—we need to talk

about choosing a learning rate! It is no secret that the learning rate is the most

important hyper-parameter of all—it drives the update of the parameters; that is,

it drives how fast a model learns (hence, learning rate).
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Choosing a learning rate that works well for a given model (and dataset) is a

difficult task, one mostly done by trial-and-error since there is no analytical way of

finding the optimal learning rate. One thing we can say for sure is that it should be

less than 1.0, and it is likely higher than 1e-6.

 "Well, that doesn’t help much…"

Indeed, it doesn’t. So, let’s discuss how we can make it a bit more specific.

In previous chapters, we used 0.1 as the learning rate, which is kind of high but

worked well for really simple problems. As models grow more complex, though,

that value is definitely too high, and one order of magnitude lower (0.01) is a better

starting point.

 "What if it is still too high and the loss doesn’t go down?"

That’s a real possibility, and one possible way of handling this is to perform a grid

search, trying multiple learning rates over a few epochs each and comparing the

evolution of the losses. This is expensive, computationally speaking, since you need

to train the model multiple times, but it may still be feasible if your model is not too

large.

 "How do I choose values for the grid search?"

It is common to reduce the learning rate by a factor of 3 or a factor of 10. So, your

learning rate values could very well be [0.1, 0.03, 0.01, 3e-3, 1e-3, 3e-4, 1e-4] (using

a factor of 3) or [0.1, 0.01, 1e-3, 1e-4, 1e-5] (using a factor of 10). In general, if you

plot the learning rates against their corresponding losses, this is what you can

expect:

• If the learning rate is too low, the model doesn’t learn much, and the loss

remains high.

• If the learning rate is too high, the model doesn’t converge to a solution, and

the loss gets higher.

• In between those two extremes, the loss should be lower, hinting at the right

order of magnitude for the learning rate.
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Finding LR

As it turns out, you don’t have to grid search the learning rate like that. In 2017,

Leslie N. Smith published "Cyclical Learning Rates for Training Neural Networks"
[101] in which he outlines a procedure to quickly find an appropriate range for the

initial learning rate (more on the cyclical part of his paper later!). This technique is

called LR Range Test, and it is quite a simple solution to help you get a first

estimate for the appropriate learning rate.

The general idea is pretty much the same as the grid search: It tries multiple

learning rates and logs the corresponding losses. But here comes the difference: It

evaluates the loss over a single mini-batch, and then changes the learning rate

before moving on to the next mini-batch.

This is computationally cheap (it is performing ONE training step only for each

candidate) and can be performed inside the same training loop.


"Wait a minute! Wouldn’t the results be affected by the previous

training steps performed using different learning rates?"

Well, technically, yes. But this is not such a big deal: First, we’re looking for a

ballpark estimate of the learning rate, not a precise value; second, these updates

will barely nudge the model from its initial state. It is easier to live with this

difference than to reset the model every single time.

First, we need to define the boundaries for the test (start_lr and end_lr) and the

number of iterations (num_iter) to move from one to the other. On top of that, we

can choose to change how to make the increments: linearly or exponentially. Let’s

build a higher-order function that takes all those arguments and returns another

function, one that returns the multiplying factor given the current iteration

number:
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Higher-Order Learning Rate Function Builder

 1 def make_lr_fn(start_lr, end_lr, num_iter, step_mode='exp'):
 2     if step_mode == 'linear':
 3         factor = (end_lr / start_lr - 1) / num_iter
 4         def lr_fn(iteration):
 5             return 1 + iteration * factor
 6     else:
 7         factor = (np.log(end_lr) - np.log(start_lr)) / num_iter
 8         def lr_fn(iteration):
 9             return np.exp(factor)**iteration
10     return lr_fn

Now, let’s try it out: Say we’d like to try ten different learning rates between 0.01

and 0.1, and the increments should be exponential:

start_lr = 0.01
end_lr = 0.1
num_iter = 10
lr_fn = make_lr_fn(start_lr, end_lr, num_iter, step_mode='exp')

There is a factor of 10 between the two rates. If we apply this function to a

sequence of iteration numbers, from 0 to 10, that’s what we get:

lr_fn(np.arange(num_iter + 1))

Output

array([ 1.        ,  1.25892541,  1.58489319,  1.99526231,
        2.51188643,  3.16227766,  3.98107171,  5.01187234,
        6.30957344,  7.94328235, 10.        ])

If we multiply these values by the initial learning rate, we’ll get an array of learning

rates ranging from 0.01 to 0.1 as expected:

start_lr * lr_fn(np.arange(num_iter + 1))
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Output

array([0.01      , 0.01258925, 0.01584893, 0.01995262,
       0.02511886, 0.03162278, 0.03981072, 0.05011872,
       0.06309573, 0.07943282, 0.1       ])

 "Cool, but how do I change the learning rate of an optimizer?"

Glad you asked! It turns out, we can assign a scheduler to an optimizer, such that it

updates the learning rate as it goes. We’re going to dive deeper into learning rate

schedulers in a couple of sections. For now, it suffices to know that we can make it

follow a sequence of values like the one above using a scheduler that takes a

custom function. Coincidence? I think not! That’s what we’ll be using lr_fn() for:

dummy_model = CNN2(n_feature=5, p=0.3)
dummy_optimizer = optim.Adam(dummy_model.parameters(), lr=start_lr)
dummy_scheduler = LambdaLR(dummy_optimizer, lr_lambda=lr_fn)

The LambdaLR scheduler takes an optimizer and a custom function as arguments

and modifies the learning rate of that optimizer accordingly. To make it happen,

though, we need to call the scheduler’s step() method, but only after calling the

optimizer’s own step() method:

dummy_optimizer.step()
dummy_scheduler.step()

After one step, the learning rate should have been updated to match the second

value in our array (0.01258925). Let’s double-check it using the scheduler’s

get_last_lr() method:

dummy_scheduler.get_last_lr()[0]

Output

0.012589254117941673
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Perfect! Now let’s build the actual range test. This is what we’re going to do:

• Since we’ll be updating both model and optimizer, we need to store their initial

states so they can be restored in the end.

• Create both custom function and corresponding scheduler, just like in the

snippets above.

• (Re)implement a training loop over mini-batches, so we can log the learning

rate and loss at every step.

• Restore model and optimizer states.

Moreover, since we’re using a single mini-batch to evaluate the loss, the resulting

values will likely jump up and down a lot. So, it is better to smooth the curve using

an exponentially weighted moving average (EWMA) (we’ll talk about EWMAs in

much more detail in the next section) to more easily identify the trend in the values.

This is what the method looks like:

StepByStep Method

def lr_range_test(self, data_loader, end_lr, num_iter=100,
                  step_mode='exp', alpha=0.05, ax=None):
    # The test updates both model and optimizer, so we need to
    #  store their initial states to restore them in the end
    previous_states = {
        'model': deepcopy(self.model.state_dict()),
        'optimizer': deepcopy(self.optimizer.state_dict())
    }
    # Retrieves the learning rate set in the optimizer
    start_lr = self.optimizer.state_dict()['param_groups'][0]['lr']

    # Builds a custom function and corresponding scheduler
    lr_fn = make_lr_fn(start_lr, end_lr, num_iter)
    scheduler = LambdaLR(self.optimizer, lr_lambda=lr_fn)

    # Variables for tracking results and iterations
    tracking = {'loss': [], 'lr': []}
    iteration = 0

    # If there are more iterations than mini-batches in the data
    # loader, it will have to loop over it more than once
    while (iteration < num_iter):
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        # That's the typical mini-batch inner loop
        for x_batch, y_batch in data_loader:
            x_batch = x_batch.to(self.device)
            y_batch = y_batch.to(self.device)
            # Step 1
            yhat = self.model(x_batch)
            # Step 2
            loss = self.loss_fn(yhat, y_batch)
            # Step 3
            loss.backward()

            # Here we keep track of the losses (smoothed)
            # and the learning rates
            tracking['lr'].append(scheduler.get_last_lr()[0])
            if iteration == 0:
                tracking['loss'].append(loss.item())
            else:
                prev_loss = tracking['loss'][-1]
                smoothed_loss = (alpha * loss.item() +
                                (1-alpha) * prev_loss)
                tracking['loss'].append(smoothed_loss)
            iteration += 1
            # Number of iterations reached
            if iteration == num_iter:
                break

            # Step 4
            self.optimizer.step()
            scheduler.step()
            self.optimizer.zero_grad()

    # Restores the original states
    self.optimizer.load_state_dict(previous_states['optimizer'])
    self.model.load_state_dict(previous_states['model'])

    if ax is None:
        fig, ax = plt.subplots(1, 1, figsize=(6, 4))
    else:
        fig = ax.get_figure()
    ax.plot(tracking['lr'], tracking['loss'])
    if step_mode == 'exp':
        ax.set_xscale('log')
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    ax.set_xlabel('Learning Rate')
    ax.set_ylabel('Loss')
    fig.tight_layout()
    return tracking, fig

setattr(StepByStep, 'lr_range_test', lr_range_test)

Since the technique is supposed to be applied on an untrained model, we create a

new model (and optimizer) here:

Model Configuration

1 torch.manual_seed(13)
2 new_model = CNN2(n_feature=5, p=0.3)
3 multi_loss_fn = nn.CrossEntropyLoss(reduction='mean')
4 new_optimizer = optim.Adam(new_model.parameters(), lr=3e-4)

Next, we create an instance of StepByStep and call the new method using the

training data loader, the upper range for the learning rate (end_lr), and how many

iterations we’d like it to try:

Learning Rate Range Test

1 sbs_new = StepByStep(new_model, multi_loss_fn, new_optimizer)
2 tracking, fig = sbs_new.lr_range_test(
3     train_loader, end_lr=1e-1, num_iter=100)

Figure 6.14 - Learning rate finder

There we go: a "U"-shaped curve. Apparently, the Karpathy Constant (3e-4) is too

low for our model. The descending part of the curve is the region we should aim

for: something around 0.01.
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This means we could have used a higher learning rate, like 0.005, to train our

model. But this also means we need to recreate the optimizer and update it in

sbs_new. First, let’s create a method for setting its optimizer:

StepByStep Method

def set_optimizer(self, optimizer):
    self.optimizer = optimizer

setattr(StepByStep, 'set_optimizer', set_optimizer)

Then, we create and set the new optimizer and train the model as usual:

Updating LR and Model Training

1 new_optimizer = optim.Adam(new_model.parameters(), lr=0.005)
2 sbs_new.set_optimizer(new_optimizer)
3 sbs_new.set_loaders(train_loader, val_loader)
4 sbs_new.train(10)

If you try it out, you’ll find that the training loss actually goes down a bit faster (and

that the model might be overfitting).



DISCLAIMER: The learning rate finder is surely not magic!

Sometimes you’ll not get the "U"-shaped curve: Maybe the initial

learning rate (as defined in your optimizer) is too high already, or

maybe the end_lr is too low. Even if you do, it does not

necessarily mean the mid-point of the descending part will give

you the fastest learning rate for your model.


"OK, if I manage to choose a good learning rate from the start, am I

done with it?"

Sorry, but NO! Well, it depends; it might be fine for simpler (but real, not toy)

problems. The issue here is, for larger models, the loss surface (remember that,

from Chapter 0?) becomes very messy, and a learning rate that works well at the

start of model training may be too high for a later stage of model training. It means

that the learning rate needs to change or adapt.
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LRFinder

The function we’ve implemented above is fairly basic. For an implementation

with more bells and whistles, check this Python package: torch_lr_finder.
[102] I am illustrating its usage here, which is quite similar to what we’ve done

above, but please refer to the documentation for more details.

!pip install --quiet torch-lr-finder
from torch_lr_finder import LRFinder

Instead of calling a function directly, we need to create an instance of

LRFinder first, using the typical model configuration objects (model,

optimizer, loss function, and the device). Then, we can take the range_test()
method for a spin, providing familiar arguments to it: a data loader, the upper

range for the learning rate, and the number of iterations. The reset()
method restores the original states of both model and optimizer.

torch.manual_seed(11)
new_model = CNN2(n_feature=5, p=0.3)
multi_loss_fn = nn.CrossEntropyLoss(reduction='mean')
new_optimizer = optim.Adam(new_model.parameters(), lr=3e-4)
device = 'cuda' if torch.cuda.is_available() else 'cpu'

lr_finder = LRFinder(
    new_model, new_optimizer, multi_loss_fn, device=device
)
lr_finder.range_test(train_loader, end_lr=1e-1, num_iter=100)
lr_finder.plot(log_lr=True)
lr_finder.reset()
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Not quite a "U" shape, but we still can tell that something in the ballpark of

1e-2 is a good starting point.

Adaptive Learning Rate

That’s what the Adam optimizer is actually doing for us—it starts with the learning

rate provided as an argument, but it adapts the learning rate(s) as it goes, tweaking

it in a different way for each parameter in the model. Or does it?

Truth to be told, Adam does not adapt the learning rate—it really adapts the

gradients. But, since the parameter update is given by the multiplication of both

terms, the learning rate and the gradient, this is a distinction without a difference.

Adam combines the characteristics of two other optimizers: SGD (with momentum)

and RMSProp. Like the former, it uses a moving average of gradients instead of

gradients themselves (that’s the first moment, in statistics jargon); like the latter, it

scales the gradients using a moving average of squared gradients (that’s the

second moment, or uncentered variance, in statistics jargon).

But this is not a simple average. It is a moving average. And it is not any moving

average. It is an exponentially weighted moving average (EWMA).

Before diving into EWMAs, though, we need to briefly go over simple moving

averages.

Moving Average (MA)

To compute the moving average of a given feature x over a certain number of

periods, we just have to average the values observed over that many time steps

(from an initial value observed periods-1 steps ago all the way up to the current

value):

Equation 6.1 - Simple moving average

But, instead of averaging the values themselves, let’s compute the average age of

the values. The current value has an age equals one unit of time while the oldest
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value in our moving average has an age equals periods units of time, so the average

age is given by the formula below:

Equation 6.2 - Average age of a moving average

For a five-period moving average, the average age of its values is three units of

time.

 "Why do we care about the average age of the values?"

This may seem a bit silly in the context of a simple moving average, sure. But, as

you’ll see in the next sub-section, an EWMA does not use the number of periods

directly in its formula: We’ll have to rely on the average age of its values to

estimate its (equivalent) number of periods.

 "Why use an EWMA then?"

EWMA

An EWMA is more practical to compute than a traditional moving average because

it has only two inputs: The value of EWMA in the previous step and the current

value of the variable being averaged. There are two ways of representing its

formula, using alpha or beta:

Equation 6.3 - EWMA

The first alternative, using alpha as the weight of the current value, is most

common in other fields, like finance. But, for some reason, the beta alternative is

the one commonly found when the Adam optimizer is discussed.
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Let’s take the first alternative and expand the equation a bit:

Equation 6.4 - EWMA - expanded edition

The first element is taken at face value, but all the remaining elements are

discounted based on their corresponding lags.

 "What is a lag?"

It is simply the distance, in units of time, from the current value. So, the value of

feature x one time unit in the past is the value of feature x at lag one.

After working out the expression above, we end up with an expression where each

term has an exponent depending on the corresponding number of lags. We can use

this information to make a sum out of it:

Equation 6.5 - EWMA - lag-based

In the expression above, T is the total number of observed values. So, an EWMA

takes every value into account, no matter how far in the past it is. But, due to the

weight (the discount factor), the older a value gets, the less it contributes to the

sum.


Higher values of alpha correspond to rapidly shrinking weights;

that is, older values barely make a difference.

Let’s see how the weights are distributed over the lags for two averages, an EWMA

with alpha equals one-third and a simple five-period moving average.
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Figure 6.15 - Distribution of weights over lags

See the difference? In a simple moving average every value has the same weight;

that is, they contribute equally to the average. But, in an EWMA, more recent

values have larger weights than older ones.

It may not seem like it, but the two averages above have something in common.

The average age of their values is approximately the same. Cool, right?

So, if the average age of the values in a five-period moving average is three, we

should arrive at (approximately) the same value for the age of the values in the

EWMA above. Let’s understand why this is so. Maybe you haven’t noticed it yet,

but a lag of zero corresponds to an age of one unit of time, a lag of one

corresponds to an age of two units of time, and so on. We can use this information

to compute the average age of the values in an EWMA:

Equation 6.6 - Average age of an EWMA

As the total number of observed values (T) grows, the average age approaches the

inverse of alpha. No, I am not demonstrating this here. Yes, I am showing you a

snippet of code that "proves" it numerically :-)
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You may go bananas with the value of T trying in vain to approach infinity, but 20

periods is more than enough to make a point:

alpha = 1/3; T = 20
t = np.arange(1, T + 1)
age = alpha * sum((1 - alpha)**(t - 1) * t)
age

Output

2.9930832408241015

That’s three-ish enough, right? If you’re not convinced, try using 93 periods (or

more).

Now that we know how to compute the average age of an EWMA given its alpha,

we can figure out which (simple) moving average has the same average age:

Equation 6.7 - Alpha vs. periods

There we go, an easy and straightforward relationship between the value of alpha
and the number of periods of a moving average. Guess what happens if you plug

the value one-third for alpha? You get the corresponding number of periods: five.

An EWMA using an alpha equal to one-third corresponds to a five-period moving

average.

It also works the other way around: If we’d like to compute the EWMA equivalent

to a 19-period moving average, the corresponding alpha would be 0.1. And, if we’re

using the EWMA’s formula based on beta, that would be 0.9. Similarly, to compute

the EWMA equivalent to a 1999-period moving average, alpha and beta would be

0.001 and 0.999, respectively.

These choices are not random at all: It turns out, Adam uses these two values for

its betas (one for the moving average of gradients, the other for the moving

average of squared gradients).

458 | Chapter 6: Rock, Paper, Scissors



In code, the implementation of the alpha version of EWMA looks like this:

def EWMA(past_value, current_value, alpha):
    return (1- alpha) * past_value + alpha * current_value

For computing it over a series of values, given a period, we can define a function

like this:

def calc_ewma(values, period):
    alpha = 2 / (period + 1)
    result = []
    for v in values:
        try:
            prev_value = result[-1]
        except IndexError:
            prev_value = 0

        new_value = EWMA(prev_value, v, alpha)
        result.append(new_value)
    return np.array(result)

In the try..except block, you can see that, if there is no previous value for the

EWMA (as in the very first step), it assumes a previous value of zero.

The way the EWMA is constructed has its issues—since it does not need to keep

track of all the values inside its period, in its first steps, the "average" will be way

off (or biased). For an alpha=0.1 (corresponding to the 19-periods average), the

very first "average" will be exactly the first value divided by ten.

To address this issue, we can compute the bias-corrected EWMA:

Equation 6.8 - Bias-corrected EWMA

The beta in the formula above is the same as before: 1 - alpha. In code, we can

implement the correction factor like this:
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def correction(averaged_value, beta, steps):
    return averaged_value / (1 - (beta ** steps))

For computing the corrected EWMA over a series of values, we can use a function

like this:

def calc_corrected_ewma(values, period):
    ewma = calc_ewma(values, period)

    alpha = 2 / (period + 1)
    beta = 1 - alpha

    result = []
    for step, v in enumerate(ewma):
        adj_value = correction(v, beta, step + 1)
        result.append(adj_value)

    return np.array(result)

Let’s apply both EWMAs, together with a regular moving average, to a sequence of

temperature values to illustrate the differences:

temperatures = np.array([5, 11, 15, 6, 5, 3, 3, 0, 0, 3, 4, 2, 1,
    -1, -2, 2, 2, -2, -1, -1, 3, 4, -1, 2, 6, 4, 9, 11, 9, -2])

ma_vs_ewma(temperatures, periods=19)

Figure 6.16 - Moving average vs EWMA
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As expected, the EWMA without correction (red dashed line) is way off at the

beginning, while the regular moving average (black dashed line) tracks the actual

values much closer. The corrected EWMA, though, does a very good job tracking

the actual values from the very beginning. Sure enough, after 19 days, the two

EWMAs are barely distinguishable.

EWMA Meets Gradients

Who cares about temperatures, anyway? Let’s apply the EWMAs to our gradients,

Adam-style!

For each parameter, we compute two EWMAs: one for its gradients, the other for

the square of its gradients. Next, we use both values to compute the adapted

gradient for that parameter:

Equation 6.9 - Adapted gradient

There they are: Adam’s beta1 and beta2 parameters! Its default values, 0.9 and

0.999, correspond to averages of 19 and 1999 periods, respectively.

So, it is a short-term average for smoothing the gradients, and a very long-term

average for scaling the gradients. The epsilon value in the denominator (usually

1e-8) is there only to prevent numerical issues.

Once the adapted gradient is computed, it replaces the actual gradient in the

parameter update:

Equation 6.10 - Parameter update

Clearly, the learning rate (the Greek letter eta) is left untouched!

Moreover, as a result of the scaling, the adapted gradient is likely to be inside the [-

3, 3] range most of the time (this is akin to the standardization procedure but

without subtracting the mean).
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Adam

So, choosing the Adam optimizer is an easy and straightforward way to tackle your

learning rate needs. Let’s take a closer look at PyTorch’s Adam optimizer and its

arguments:

• params: model’s parameters

• lr: learning rate, default value 1e-3

• betas: tuple containing beta1 and beta2 for the EWMAs

• eps: the epsilon (1e-8) value in the denominator

The four arguments above should be clear by now. But there are two others we

haven’t talked about yet:

• weight_decay: L2 penalty

• amsgrad: if the AMSGrad variant should be used

The first argument, weight decay, introduces a regularization term (L2 penalty) to

the model’s weights. As with every regularization procedure, it aims to prevent

overfitting by penalizing weights with large values. The term weight decay comes

from the fact that the regularization actually increases the gradients by adding the

weight value multiplied by the weight decay argument.

 "If it increases the gradients, how come it is called weight decay?"

In the parameter update, the gradient is multiplied by the learning rate and

subtracted from the weight’s previous value. So, in effect, adding a penalty to the

value of the gradients makes the weights smaller. The smaller the weights, the

smaller the penalty, thus making further reductions even smaller—in other words,

the weights are decaying.

The second argument, amsgrad, makes the optimizer compatible with a variant of

the same name. In a nutshell, it modifies the formula used to compute adapted

gradients, ditching the bias correction and using the peak value of the EWMA of

squared gradients instead.

For now, we’re sticking with the first four, well-known to us, arguments:
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optimizer = optim.Adam(model.parameters(), lr=0.1,
                       betas=(0.9, 0.999), eps=1e-8)

Visualizing Adapted Gradients

Now, I’d like to give you the chance to visualize the gradients, the EWMAs, and the

resulting adapted gradients. To make it easier, let’s bring back our simple linear

regression problem from Part I of this book and, somewhat nostalgically, perform

the training loop so that we can log the gradients.



From now on and until the end of the "Learning Rates" section,

we’ll be ONLY using the simple linear regression dataset to

illustrate the effects of different parameters on the minimization

of the loss. We’ll get back to the Rock Paper Scissors dataset in the

"Putting It All Together" section.

First, we generate the data points again and run the typical data preparation step

(building dataset, splitting it, and building data loaders):

Data Generation & Preparation

%run -i data_generation/simple_linear_regression.py
%run -i data_preparation/v2.py

Then, we go over the model configuration and change the optimizer from SGD to

Adam:

Model Configuration

1 torch.manual_seed(42)
2 model = nn.Sequential()
3 model.add_module('linear', nn.Linear(1, 1))
4 optimizer = optim.Adam(model.parameters(), lr=0.1)
5 loss_fn = nn.MSELoss(reduction='mean')

We would be ready to use the StepByStep class to train our model if it weren’t for a

minor detail: We still do not have a way of logging gradients. So, let’s tackle this

issue by adding yet another method to our class: capture_gradients(). Like the

attach_hooks() method, it will take a list of layers that should be monitored for
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their gradient values.

For each monitored layer, it will go over its parameters, and, for those that require

gradients, it will create a logging function (log_fn()) and register a hook for it in

the tensor corresponding to the parameter.

The logging function simply appends the gradients to a list in the dictionary entry

corresponding to the layer and parameter names. The dictionary itself, _gradients,

is an attribute of the class (which will be created inside the constructor method, but

we’re setting it manually using setattr for now). The code looks like this:

StepByStep Method

setattr(StepByStep, '_gradients', {})

def capture_gradients(self, layers_to_hook):
    if not isinstance(layers_to_hook, list):
        layers_to_hook = [layers_to_hook]

    modules = list(self.model.named_modules())
    self._gradients = {}

    def make_log_fn(name, parm_id):
        def log_fn(grad):
            self._gradients[name][parm_id].append(grad.tolist())
            return None
        return log_fn

    for name, layer in self.model.named_modules():
        if name in layers_to_hook:
            self._gradients.update({name: {}})
            for parm_id, p in layer.named_parameters():
                if p.requires_grad:
                    self._gradients[name].update({parm_id: []})
                    log_fn = make_log_fn(name, parm_id)
                    self.handles[f'{name}.{parm_id}.grad'] = \
                        p.register_hook(log_fn)
    return

setattr(StepByStep, 'capture_gradients', capture_gradients)
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IMPORTANT: The logging function must return None, otherwise

the gradients will be modified, assuming the returned value.

The register_hook() method registers a backward hook to a

tensor for a given parameter. The hook function takes a

gradient as input and returns either a modified gradient or None.

The hook function will be called every time a gradient with

respect to that tensor is computed.

Since we’re using this function for logging purposes, we should

leave the gradients alone and return None.


"Isn’t there a register_backward_hook() method? Why aren’t we

using it?"

That’s a fair question. At the time of writing, this method still has an unsolved issue,

so we’re following the recommendation of using register_hook() for individual

tensors instead.

Now, we can use the new method to log gradients for the linear layer of our model,

never forgetting to remove the hooks after training:

Model Training

1 sbs_adam = StepByStep(model, loss_fn, optimizer)
2 sbs_adam.set_loaders(train_loader)
3 sbs_adam.capture_gradients('linear')
4 sbs_adam.train(10)
5 sbs_adam.remove_hooks()

By the time training is finished, we’ll have collected two series of 50 gradients each

(each epoch has five mini-batches), each series corresponding to a parameter of

linear (weight and bias), both of them stored in the _gradients attribute of our

StepByStep instance.
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We can use these values to compute the EWMAs and the adapted gradients

actually used by Adam to update the parameters. Let’s do it for the weight
parameter:

gradients = np.array(
  sbs_adam._gradients['linear']['weight']
).squeeze()

corrected_gradients = calc_corrected_ewma(gradients, 19)
corrected_sq_gradients = calc_corrected_ewma(
  np.power(gradients, 2), 1999
)
adapted_gradients = (corrected_gradients /
  (np.sqrt(corrected_sq_gradients) + 1e-8))

Figure 6.17 - Computing adapted gradients using EWMAs

On the left plot, we see that the bias-corrected EWMA of gradients (in red) is

smoothing the gradients. In the center, the bias-corrected EWMA of squared

gradients is used for scaling the smoothed gradients. On the right, both EWMAs

are combined to compute the adapted gradients.

Under the hood, Adam keeps two values for each parameter, exp_avg and

exp_avg_sq, representing the (uncorrected) EWMAs for gradients and squared

gradients, respectively. We can take a peek at this using the optimizer’s

state_dict():

optimizer.state_dict()
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Output

{'state': {140601337662512: {'step': 50,
   'exp_avg': tensor([[-0.0089]], device='cuda:0'),
   'exp_avg_sq': tensor([[0.0032]], device='cuda:0')},
  140601337661632: {'step': 50,
   'exp_avg': tensor([0.0295], device='cuda:0'),
   'exp_avg_sq': tensor([0.0096], device='cuda:0')}},
 'param_groups': [{'lr': 0.1,
   'betas': (0.9, 0.999),
   'eps': 1e-08,
   'weight_decay': 0,
   'amsgrad': False,
   'params': [140601337662512, 140601337661632]}

Inside the dictionary’s state key, it contains two other dictionaries (with weird

numeric keys) representing the different parameters of the model. In our example,

the first dictionary (140614347109072) corresponds to the weight parameter.

Since we’ve logged all the gradients, we should be able to use our calc_ewma()
function to replicate the values contained in the dictionary:

(calc_ewma(gradients, 19)[-1],
calc_ewma(np.power(gradients, 2), 1999)[-1])

Output

(-0.008938403644834258, 0.0031747136253540394)

Taking the last values of our two uncorrected EWMAs, we matched the state of

the optimizer (exp_avg and exp_avg_sq). Cool!

 "OK, cool, but how is it better than SGD in practice?"

Fair enough! We’ve been discussing how different the parameter update is, but

now it is time to show how it affects model training. Let’s bring back the loss

surface we’ve computed for this linear regression (way back in Chapter 0) and

visualize the path taken by each optimizer to bring both parameters (closer) to

their optimal values. That would be great, but we’re missing another minor detail:

We also do not have a way of logging the evolution of parameters. Guess what
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we’re gonna do about that? Create another method, of course!

The new method, aptly named capture_parameters(), works in a way similar to

capture_gradients(). It keeps a dictionary (parameters) as an attribute of the class

and registers forward hooks to the layers we’d like to log the parameters for. The

logging function simply loops over the parameters of a given layer and appends

their values to the corresponding entry in the dictionary. The registering itself is

handled by a method we developed earlier: attach_hooks(). The code looks like

this:

StepByStep Method

setattr(StepByStep, '_parameters', {})

def capture_parameters(self, layers_to_hook):
    if not isinstance(layers_to_hook, list):
        layers_to_hook = [layers_to_hook]

    modules = list(self.model.named_modules())
    layer_names = {layer: name for name, layer in modules}

    self._parameters = {}

    for name, layer in modules:
        if name in layers_to_hook:
            self._parameters.update({name: {}})
            for parm_id, p in layer.named_parameters():
                self._parameters[name].update({parm_id: []})

    def fw_hook_fn(layer, inputs, outputs):
        name = layer_names[layer]
        for parm_id, parameter in layer.named_parameters():
            self._parameters[name][parm_id].append(
                parameter.tolist()
            )

    self.attach_hooks(layers_to_hook, fw_hook_fn)
    return

setattr(StepByStep, 'capture_parameters', capture_parameters)

What’s next? We need to create two instances of StepByStep, each using a
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different optimizer, set them to capture parameters, and train them for ten epochs.

The captured parameters (bias and weight) will draw the following paths (the red

dot represents their optimal values).

Figure 6.18 - Paths taken by SGD and Adam

On the left plot, we have the typical well-behaved (and slow) path taken by simple

gradient descent. You can see it is wiggling a bit due to the noise introduced by

using mini-batches. On the right plot, we see the effect of using the exponentially

weighted moving averages: On the one hand, it is smoother and moves faster; on

the other hand, it overshoots and has to change course back and forth as it

approaches the target. It is adapting to the loss surface, if you will.


If you like the idea of visualizing (and animating) the paths of

optimizers, make sure to check out Louis Tiao’s tutorial[103] on the

subject.

Talking about losses, we can also compare the trajectories of training and

validation losses for each optimizer.
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Figure 6.19 - Losses (SGD and Adam)

Remember, the losses are computed at the end of each epoch by averaging the

losses of the mini-batches. On the left plot, even if SGD wiggles a bit, we can see

that every epoch shows a lower loss than the previous one. On the right plot, the

overshooting becomes clearly visible as an increase in the training loss. But it is

also clear that Adam achieves a lower loss because it got closer to the optimal

value (the red dot in the previous plot).



In real problems, where it is virtually impossible to plot the loss

surface, we can look at the losses as an "executive summary" of

what’s going on. Training losses will sometimes go up before they

go down again, and this is expected.

Stochastic Gradient Descent (SGD)

Adaptive learning rates are cool, indeed, but good old stochastic gradient descent

(SGD) also has a couple of tricks up its sleeve. Let’s take a closer look at PyTorch’s

SGD optimizer and its arguments:

• params: model’s parameters

• lr: learning rate

• weight_decay: L2 penalty

The three arguments above are already known. But there are three new

arguments:

• momentum: momentum factor, SGD’s own beta argument, is the topic of the next

section
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• dampening: dampening factor for momentum

• nesterov: enables Nesterov momentum, which is a smarter version of the

regular momentum, and also has its own section

That’s the perfect moment to dive deeper into momentum (sorry, I really cannot miss

a pun!).

Momentum

One of SGD’s tricks is called momentum. At first sight, it looks very much like using

an EWMA for gradients, but it isn’t. Let’s compare EWMA’s beta formulation with

momentum’s:

Equation 6.11 - Momentum vs EWMA

See the difference? It does not average the gradients; it runs a cumulative sum of

"discounted" gradients. In other words, all past gradients contribute to the sum,

but they are "discounted" more and more as they grow older. The "discount" is

driven by the beta parameter. We can also write the formula for momentum like

this:

Equation 6.12 - Compounding momentum

The disadvantage of this second formula is that it requires the full history of

gradients, while the previous one depends only on the gradient’s current value and

momentum’s latest value.

 "What about the dampening factor?"
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The dampening factor is a way to, well, dampen the effect of the latest gradient.

Instead of having its full value added, the latest gradient gets its contribution to

momentum reduced by the dampening factor. So, if the dampening factor is 0.3,

only 70% of the latest gradient gets added to momentum. Its formula is given by:

Equation 6.13 - Momentum with dampening factor


If the dampening factor equals the momentum factor (beta), it

becomes a true EWMA!

Similar to Adam, SGD with momentum keeps the value of momentum for each

parameter. The beta parameter is stored there as well (momentum). We can take a

peek at it using the optimizer’s state_dict():

{'state': {139863047119488: {'momentum_buffer': tensor([[-
0.0053]])},
  139863047119168: {'momentum_buffer': tensor([-0.1568])}},
 'param_groups': [{'lr': 0.1,
   'momentum': 0.9,
   'dampening': 0,
   'weight_decay': 0,
   'nesterov': False,
   'params': [139863047119488, 139863047119168]}]}

Even though old gradients slowly fade away, contributing less and less to the sum,

very recent gradients are taken almost at their face value (assuming a typical

value of 0.9 for beta and no dampening). This means that, given a sequence of all

positive (or all negative) gradients, their sum, that is, the momentum, is going up

really fast (in absolute value). A large momentum gets translated into a large

update since momentum replaces gradients in the parameter update:

Equation 6.14 - Parameter update

This behavior can be easily visualized in the path taken by SGD with momentum.
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Figure 6.20 - Paths taken by SGD (with and without momentum)

Like the Adam optimizer, SGD with momentum moves faster and overshoots. But

it does seem to get carried away with it, so much so that it gets past the target and

has to backtrack to approach it from a different direction.

The analogy for the momentum update is that of a ball rolling down a hill: It picks

up so much speed that it ends up climbing the opposite side of the valley, only to

roll back down again with a little bit less speed, doing this back and forth over and

over again until eventually reaching the bottom.

 "Isn’t Adam better than this already?"

Yes and no. Adam indeed converges more quickly to a minimum, but not

necessarily a good one. In a simple linear regression, there is a global minimum

corresponding to the optimal value of the parameters. This is not the case in deep

learning models: There are many minima (plural of minimum), and some are better

than others (corresponding to lower losses). So, Adam will find one of these minima

and move there fast, perhaps overlooking better alternatives in the neighborhood.

Momentum may seem a bit sloppy at first, but it may be combined with a learning

rate scheduler (more on that shortly!) to better explore the loss surface in hopes

of finding a better-quality minimum than Adam does.


Both alternatives, Adam and SGD with momentum (especially

when combined with a learning rate scheduler), are commonly

used.
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But, if a ball running downhill seems a bit too out of control for your taste, maybe

you’ll like its variant better…

Nesterov

The Nesterov accelerated gradient (NAG), or Nesterov for short, is a clever variant

of SGD with momentum. Let’s say we’re computing momentum for two

consecutive steps (t and t+1):

Equation 6.15 - Nesterov momentum

In the current step (t), we use the current gradient (t) and the momentum from the

previous step (t-1) to compute the current momentum. So far, nothing new.

In the next step (t+1), we’ll use the next gradient (t+1) and the momentum we’ve

just computed for the current step (t) to compute the next momentum. Again,

nothing new.

What if I ask you to compute momentum one step ahead?

 "Can you tell me momentum at step t+1 while you’re still at step t?"

"Of course I can’t, I do not know the gradient at step t+1!" you say, puzzled at my

bizarre question. Fair enough. So I ask you yet another question:

 "What’s your best guess for the gradient at step t+1?"

I hope you answered, "The gradient at step t." If you do not know the future value of

a variable, the naive estimate is its current value. So, let’s go with it, Nesterov-style!

In a nutshell, what NAG does is try to compute momentum one step ahead since it

is only missing one value and has a good (naive) guess for it. It is as if it were

computing momentum between two steps:
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Equation 6.16 - Looking ahead

Once Nesterov’s momentum is computed, it replaces the gradient in the

parameter update, just like regular momentum does:

Equation 6.17 - Parameter update

But, Nesterov actually uses momentum, so we can expand its expression like this:

Equation 6.18 - Parameter update (expanded)


"Why did you do this? What’s the purpose of making the formula more

complicated?"

You’ll understand why in a minute :-)

Flavors of SGD

Let’s compare the three flavors of SGD, vanilla (regular), momentum, and Nesterov,

when it comes to the way they perform the parameter update:

Equation 6.19 - Flavors of parameter update

That’s why I expanded Nesterov’s expression in the last section: It is easier to

compare the updates this way! First, there is regular SGD, which uses the gradient

and nothing else. Then, there is momentum, which uses a "discounted" sum of past
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gradients (the momentum). Finally, there is Nesterov, which combines both (with a

small tweak).

How different are the updates? Let’s check it out! The plots below show the update

term (before multiplying it by the learning rate) for the weight parameter of our

linear regression.

Figure 6.21 - Update terms corresponding to SGD flavors

Does the shape of the update term for SGD with momentum ring a bell? The

oscillating pattern was already depicted in the path taken by SGD with momentum

while optimizing the two parameters: When it overshoots, it has to reverse

direction, and by repeatedly doing that, these oscillations are produced.

Nesterov momentum seems to do a better job: The look-ahead has the effect of

dampening the oscillations (please do not confuse this effect with the actual

dampening argument). Sure, the idea is to look ahead to avoid going too far, but

could you have told me the difference between the two plots beforehand? Me

neither! Well, I am assuming you replied "no" to this question, and that’s why I

thought it was a good idea to illustrate the patterns above.


"How come the black lines are different in these plots? Isn’t the

underlying gradient supposed to be the same?"

The gradient is indeed computed the same way in all three flavors, but since the

update terms are different, the gradients are computed at different locations of

the loss surface. This becomes clear when we look at the paths taken by each of the

flavors.
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Figure 6.22 - Path taken by each SGD flavor

Take the third point in the lower-left part of the black line, for instance: Its location

is quite different in each of the plots and thus so are the corresponding gradients.

The two plots on the left are already known to us. The new plot in town is the one

to the right. The dampening of the oscillations is abundantly clear, but Nesterov’s

momentum still gets past its target and has to backtrack a little to approach it

from the opposite direction. And let me remind you that this is one of the easiest

loss surfaces of all!

Talking about losses, let’s take a peek at their trajectories.

Figure 6.23 - Losses for each SGD flavor

The plot on the left is there just for comparison; it is the same as before. The one on

the right is quite straightforward too, depicting the fact that Nesterov’s

momentum quickly found its way to a lower loss and slowly approached the

optimal value.

The plot in the middle is a bit more intriguing: Even though regular momentum

produced a path with wild swings over the loss surface (each black dot

corresponds to a mini-batch), its loss trajectory oscillates less than Adam’s does.

This is an artifact of this simple linear regression problem (namely, the bowl-

shaped loss surface), and should not be taken as representative of typical behavior.
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If you’re not convinced by momentum, either regular or Nesterov, let’s add

something else to the mix…

Learning Rate Schedulers

It is also possible to schedule the changes in the learning rate as training goes,

instead of adapting the gradients. Say you’d like to reduce the learning rate by one

order of magnitude (that is, multiplying it by 0.1) every T epochs, such that training

is faster at the beginning and slows down after a while to try avoiding convergence

problems.


That’s what a learning rate scheduler does: It updates the

learning rate of the optimizer.

So, it should be no surprise that one of the scheduler’s arguments is the optimizer

itself. The learning rate set for the optimizer will be the initial learning rate of the

scheduler. As an example, let’s take the simplest of the schedulers: StepLR, which

simply multiplies the learning rate by a factor gamma every step_size epochs.

In the code below, we create a dummy optimizer, which is "updating" some fake

parameter with an initial learning rate of 0.01. The dummy scheduler, an instance

of StepLR, will multiply that learning rate by 0.1 every two epochs.

dummy_optimizer = optim.SGD([nn.Parameter(torch.randn(1))], lr=0.01)
dummy_scheduler = StepLR(dummy_optimizer, step_size=2, gamma=0.1)

The scheduler has a step() method just like the optimizer.


You should call the scheduler’s step() method after calling the

optimizer’s step() method.

Inside the training loop, it will look like this:
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for epoch in range(4):
    # training loop code goes here

    print(dummy_scheduler.get_last_lr())
    # First call optimizer's step
    dummy_optimizer.step()
    # Then call scheduler's step
    dummy_scheduler.step()

    dummy_optimizer.zero_grad()

Output

[0.01]
[0.01]
[0.001]
[0.001]

As expected, it kept the initial learning rate for two epochs and then multiplied it by

0.1, resulting in a learning rate of 0.001 for another two epochs. In a nutshell, that’s

how a learning rate scheduler works.

 "Does every scheduler shrink the learning rate?"

Not really, no. It used to be standard procedure to shrink the learning rate as you

train the model, but this idea was then challenged by cyclical learning rates (that’s

the "cyclical" part of Leslie N. Smith’s paper!). There are many different flavors of

scheduling, as you can see. And many of them are available in PyTorch.

We’re dividing schedulers into three groups: schedulers that update the learning

rate every T epochs (even if T=1), like in the example above; the scheduler that

only updates the learning rate when the validation loss seems to be stuck; and

schedulers that update the learning rate after every mini-batch.

Epoch Schedulers

These schedulers will have their step() method called at the end of every epoch.

But each scheduler has its own rules for updating the learning rate.
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• StepLR: It multiplies the learning rate by a factor gamma every step_size epochs.

• MultiStepLR: It multiplies the learning rate by a factor gamma at the epochs

indicated in the list of milestones.

• ExponentialLR: It multiplies the learning rate by a factor gamma every epoch, no

exceptions.

• LambdaLR: It takes your own customized function that should take the epoch as

an argument and returns the corresponding multiplicative factor (with respect

to the initial learning rate).

• CosineAnnealingLR: It uses a technique called cosine annealing to update the

learning rate, but we’re not delving into details here.

We can use LambdaLR to mimic the behavior of the StepLR scheduler defined above:

dummy_optimizer = optim.SGD([nn.Parameter(torch.randn(1))], lr=0.01)
dummy_scheduler = LambdaLR(
    dummy_optimizer, lr_lambda=lambda epoch: 0.1 ** (epoch//2)
)
# The scheduler above is equivalent to this one
# dummy_scheduler = StepLR(dummy_optimizer, step_size=2, gamma=0.1)

Figure 6.24 - Evolution of learning rate (epoch scheduler)

Validation Loss Scheduler

The ReduceLROnPlateau scheduler should also have its step() method called at the

end of every epoch, but it has its own group here because it does not follow a

predefined schedule. Ironic, right?

The step() method takes the validation loss as an argument, and the scheduler can

be configured to tolerate a lack of improvement in the loss (to a threshold, of
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course) up to a given number of epochs (the aptly named patience argument).

After the scheduler runs out of patience, it updates the learning rate, multiplying it

by the factor argument (for the schedulers listed in the last section, this factor was

named gamma).

To illustrate its behavior, let’s assume the validation loss remains at the same value

(whatever that is) for 12 epochs in a row. What would our scheduler do?

dummy_optimizer = optim.SGD([nn.Parameter(torch.randn(1))], lr=0.01)
dummy_scheduler = ReduceLROnPlateau(
    dummy_optimizer, patience=4, factor=0.1
)

Figure 6.25 - Evolution of learning rate (validation loss scheduler)

Its patience is four epochs, so after four epochs observing the same loss, it is

hanging by a thread. Then comes the fifth epoch with no change: "That’s it, the

learning rate must go down," you can almost hear it saying :-) So, in the sixth epoch,

the optimizer is already using the newly updated learning rate. If nothing changes

for four more epochs, it goes down again, as shown in the figure above.
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Schedulers in StepByStep — Part I

If we want to incorporate learning rate schedulers into our training loop, we need

to make some changes to our StepByStep class. Since schedulers are definitely

optional, we need to add a method to allow the user to set a scheduler (similar to

what we did with TensorBoard integration). Moreover, we need to define some

attributes: one for the scheduler itself, and a boolean variable to distinguish

whether it is an epoch or a mini-batch scheduler.

StepByStep Method

setattr(StepByStep, 'scheduler', None)
setattr(StepByStep, 'is_batch_lr_scheduler', False)

def set_lr_scheduler(self, scheduler):
    # Makes sure the scheduler in the argument is assigned to the
    # optimizer we're using in this class
    if scheduler.optimizer == self.optimizer:
        self.scheduler = scheduler
        if (isinstance(scheduler, optim.lr_scheduler.CyclicLR) or
            isinstance(scheduler, optim.lr_scheduler.OneCycleLR) or
            isinstance(scheduler,
                optim.lr_scheduler.CosineAnnealingWarmRestarts)):
            self.is_batch_lr_scheduler = True
        else:
            self.is_batch_lr_scheduler = False

setattr(StepByStep, 'set_lr_scheduler', set_lr_scheduler)
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Next, we create a protected method that invokes the step() method of the

scheduler and appends the current learning rate to an attribute, so we can keep

track of its evolution.

StepByStep Method

setattr(StepByStep, 'learning_rates', [])

def _epoch_schedulers(self, val_loss):
    if self.scheduler:
        if not self.is_batch_lr_scheduler:
            if isinstance(self.scheduler,
                  torch.optim.lr_scheduler.ReduceLROnPlateau):
                self.scheduler.step(val_loss)
            else:
                self.scheduler.step()

            current_lr = list(map(
              lambda d: d['lr'],
              self.scheduler.optimizer.state_dict()['param_groups']
            ))
            self.learning_rates.append(current_lr)

setattr(StepByStep, '_epoch_schedulers', _epoch_schedulers)
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And then we modify the train() method to include a call to the protected method

defined above. It should come after the validation inner loop.

StepByStep Method

def train(self, n_epochs, seed=42):
    # To ensure reproducibility of the training process
    self.set_seed(seed)

    for epoch in range(n_epochs):
        # Keeps track of the number of epochs
        # by updating the corresponding attribute
        self.total_epochs += 1
        # inner loop
        # Performs training using mini-batches
        loss = self._mini_batch(validation=False)
        self.losses.append(loss)
        # VALIDATION
        # no gradients in validation!
        with torch.no_grad():
            # Performs evaluation using mini-batches
            val_loss = self._mini_batch(validation=True)
            self.val_losses.append(val_loss)

        self._epoch_schedulers(val_loss)   ①

        # If a SummaryWriter has been set...
        if self.writer:
            scalars = {'training': loss}
            if val_loss is not None:
                scalars.update({'validation': val_loss})
            # Records both losses for each epoch under tag "loss"
            self.writer.add_scalars(main_tag='loss',
                                    tag_scalar_dict=scalars,
                                    global_step=epoch)
    if self.writer:
        # Closes the writer
        self.writer.close()

setattr(StepByStep, 'train', train)

① Calls the learning rate scheduler at the end of every epoch
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Mini-Batch Schedulers

These schedulers have their step() method called at the end of every mini-batch.

They are all cyclical schedulers.

• CyclicLR: This cycles between base_lr and max_lr (so it disregards the initial

learning rate set in the optimizer), using step_size_up updates to go from the

base to the max learning rate, and step_size_down updates to go back. This

behavior corresponds to mode=triangular. Additionally, it is possible to shrink

the amplitude using different modes: triangular2 will halve the amplitude

after each cycle, while exp_range will exponentially shrink the amplitude using

gamma as base and the number of the cycle as the exponent.


A typical choice of value for max_lr is the learning rate found

using the LR Range Test.

• OneCycleLR: This uses a method called annealing to update the learning rate

from its initial value up to a defined maximum learning rate (max_lr) and then

down to a much lower learning rate over a total_steps number of updates,

thus performing a single cycle.

• CosineAnnealingWarmRestarts: This uses cosine annealing[104] to update the

learning rate, but we’re not delving into details here, except to say that this

particular scheduler requires the epoch number (including the fractional part

corresponding to the number of mini-batches over the length of the data

loader) as an argument of its step() method.

Let’s try CyclicLR in different modes for a range of learning rates between 1e-4

and 1e-3, two steps in each direction.

dummy_parm = [nn.Parameter(torch.randn(1))]
dummy_optimizer = optim.SGD(dummy_parm, lr=0.01)

dummy_scheduler1 = CyclicLR(dummy_optimizer, base_lr=1e-4,
  max_lr=1e-3, step_size_up=2, mode='triangular')
dummy_scheduler2 = CyclicLR(dummy_optimizer, base_lr=1e-4,
  max_lr=1e-3, step_size_up=2, mode='triangular2')
dummy_scheduler3 = CyclicLR(dummy_optimizer, base_lr=1e-4,
  max_lr=1e-3, step_size_up=2, mode='exp_range', gamma=np.sqrt(.5))
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Figure 6.26 - Evolution of learning rate (cyclical scheduler)

By the way, two steps means it would complete a full cycle every four mini-batch

updates—that’s completely unreasonable, and is only used here to illustrate the

behavior.



In practice, a cycle should encompass between two and ten

epochs (according to Leslie N. Smith’s paper), so you need to

figure out how many mini-batches your training set contains

(that’s the length of the data loader) and multiply it by the

desired number of epochs in a cycle to get the total number of

steps in a cycle.

In our example, the train loader has 158 mini-batches, so if we want the learning

rate to cycle over five epochs, the full cycle should have 790 steps, and thus

step_size_up should be half that value (395).
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Schedulers in StepByStep — Part II

We need to make some more changes to handle mini-batch schedulers. Similar to

"Part I" above, we need to create a protected method that handles the step()
method of this group of schedulers.

StepByStep Method

def _mini_batch_schedulers(self, frac_epoch):
    if self.scheduler:
        if self.is_batch_lr_scheduler:
            if isinstance(self.scheduler,
              torch.optim.lr_scheduler.CosineAnnealingWarmRestarts):
                self.scheduler.step(self.total_epochs + frac_epoch)
            else:
                self.scheduler.step()

            current_lr = list(
              map(lambda d: d['lr'],
                  self.scheduler.optimizer.state_dict()\
                  ['param_groups'])
            )
            self.learning_rates.append(current_lr)

setattr(StepByStep, '_mini_batch_schedulers',
        _mini_batch_schedulers)
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And then we must modify the mini_batch() method to include a call to the

protected method defined above. It should be called at the end of the loop, but only

during training.

StepByStep Method

def _mini_batch(self, validation=False):
    # The mini-batch can be used with both loaders
    # The argument `validation` defines which loader and
    # corresponding step function are going to be used
    if validation:
        data_loader = self.val_loader
        step_fn = self.val_step_fn
    else:
        data_loader = self.train_loader
        step_fn = self.train_step_fn

    if data_loader is None:
        return None
    n_batches = len(data_loader)
    # Once the data loader and step function are defined;
    # this is the same mini-batch loop we had before
    mini_batch_losses = []
    for i, (x_batch, y_batch) in enumerate(data_loader):
        x_batch = x_batch.to(self.device)
        y_batch = y_batch.to(self.device)

        mini_batch_loss = step_fn(x_batch, y_batch)
        mini_batch_losses.append(mini_batch_loss)

        if not validation:                             ①
            self._mini_batch_schedulers(i / n_batches) ②

    loss = np.mean(mini_batch_losses)
    return loss

setattr(StepByStep, '_mini_batch', _mini_batch)

① Only during training!

② Calls the learning rate scheduler at the end of every mini-batch update
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Scheduler Paths

Before trying out a couple of schedulers, let’s run an LR Range Test on our model:

device = 'cuda' if torch.cuda.is_available() else 'cpu'
torch.manual_seed(42)
model = nn.Sequential()
model.add_module('linear', nn.Linear(1, 1))
loss_fn = nn.MSELoss(reduction='mean')

optimizer = optim.SGD(
  model.parameters(), lr=1e-3, momentum=0.9, nesterov=False
)
tracking = lr_range_test(model, loss_fn, optimizer, device,
                         train_loader, end_lr=1, num_iter=100)

We’re starting really low (lr=1e-3) and testing all the way up to 1.0 (end_lr) using

exponential increments. The results suggest a learning rate somewhere between

0.01 and 0.1 (corresponding to the center of the descending part of the curve). We

know for a fact that a learning rate of 0.1 works. A more conservative choice of

value would be 0.025, for instance, since it is a midpoint in the descending part of

the curve.

Figure 6.27 - Learning rate finder
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Let’s be bold! First, we define the optimizer with our choice for initial learning rate

(0.1):

optimizer = optim.SGD(
    model.parameters(), lr=0.1, momentum=0.9, nesterov=False
)

Then, we pick a scheduler to bring the learning rate all the way down to 0.025. If we

choose a step scheduler, we can cut the learning rate in half (gamma=0.5) every four

epochs. If we choose a cyclical scheduler, we can oscillate the learning rate between

the two extremes every four epochs (20 mini-batches: 10 up, 10 down).

step_scheduler = StepLR(optimizer, step_size=4, gamma=0.5)
cyclic_scheduler = CyclicLR(
    optimizer, base_lr=0.025, max_lr=0.1,
    step_size_up=10, mode='triangular2'
)
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After applying each scheduler to SGD with momentum, and to SGD with

Nesterov’s momentum, we obtain the following paths:

Figure 6.28 - Paths taken by SGD combining momentum and scheduler

Adding a scheduler to the mix seems to have helped the optimizer to achieve a

more stable path toward the minimum.



The general idea behind using a scheduler is to allow the

optimizer to alternate between exploring the loss surface (high

learning rate phase) and targeting a minimum (low learning rate

phase).

What is the impact of the scheduler on loss trajectories? Let’s check it out!
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Figure 6.29 - Losses for SGD combining momentum and scheduler

It is definitely harder to tell the difference between curves in the same row, except

for the combination of Nesterov’s momentum and cyclical scheduler, which

produced a smoother reduction in the training loss.

Adaptive vs Cycling

Although adaptive learning rates are considered competitors of cyclical learning rates,

this does not prevent you from combining them and cycling learning rates while

using Adam. While Adam adapts the gradients using its EWMAs, the cycling policy

modifies the learning rate itself, so they can work together indeed.

There is much more to learn about in the topic of learning rates: This section is

meant to be only a short introduction to the topic.

Putting It All Together

In this chapter, we were all over the place: data preparation, model configuration,

and model training—a little bit of everything. Starting with a brand-new dataset,

Rock Paper Scissors, we built a method for standardizing the images (for real this

time) using a temporary data loader. Next, we developed a fancier model that

included dropout layers for regularization. Then, we turned our focus to the

training part, diving deeper into learning rates, optimizers, and schedulers. We

implemented many methods: for finding a learning rate, for capturing gradients

and parameters, and for updating the learning rate using a scheduler.
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Data Preparation

 1 # Loads temporary dataset to build normalizer
 2 temp_transform = Compose([Resize(28), ToTensor()])
 3 temp_dataset = ImageFolder(root='rps', transform=temp_transform)
 4 temp_loader = DataLoader(temp_dataset, batch_size=16)
 5 normalizer = StepByStep.make_normalizer(temp_loader)
 6 
 7 # Builds transformation, datasets, and data loaders
 8 composer = Compose([Resize(28),
 9                     ToTensor(),
10                     normalizer])
11 
12 train_data = ImageFolder(root='rps', transform=composer)
13 val_data = ImageFolder(root='rps-test-set', transform=composer)
14 # Builds a loader of each set
15 train_loader = DataLoader(
16     train_data, batch_size=16, shuffle=True
17 )
18 val_loader = DataLoader(val_data, batch_size=16)

In the model configuration part, we can use SGD with Nesterov’s momentum and a

higher dropout probability to increase regularization:

Model Configuration

1 torch.manual_seed(13)
2 model_cnn3 = CNN2(n_feature=5, p=0.5)
3 multi_loss_fn = nn.CrossEntropyLoss(reduction='mean')
4 optimizer_cnn3 = optim.SGD(
5     model_cnn3.parameters(), lr=1e-3, momentum=0.9, nesterov=True
6 )

Before the actual training, we can run an LR Range Test:

Learning Rate Range Test

1 sbs_cnn3 = StepByStep(model_cnn3, multi_loss_fn, optimizer_cnn3)
2 tracking, fig = sbs_cnn3.lr_range_test(
3     train_loader, end_lr=2e-1, num_iter=100
4 )
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Figure 6.30 - Learning rate finder

The test suggests a learning rate around 0.01, so we recreate the optimizer and set

it in our StepByStep instance.

We can also use the suggested learning rate as the upper range of a cyclical

scheduler. For its step size, we can use the length of the data loader, so the learning

rate goes all the way up in one epoch, and all the way down in the next—a two-

epoch cycle.

Updating Learning Rate

 1 optimizer_cnn3 = optim.SGD(
 2     model_cnn3.parameters(), lr=0.03, momentum=0.9, nesterov=True
 3 )
 4 sbs_cnn3.set_optimizer(optimizer_cnn3)
 5 
 6 scheduler = CyclicLR(
 7     optimizer_cnn3, base_lr=1e-3, max_lr=0.01,
 8     step_size_up=len(train_loader), mode='triangular2'
 9 )
10 sbs_cnn3.set_lr_scheduler(scheduler)

After doing this, it is training as usual:

Model Training

1 sbs_cnn3.set_loaders(train_loader, val_loader)
2 sbs_cnn3.train(10)

fig = sbs_cnn3.plot_losses()
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Figure 6.31 - Losses

Evaluation

print(StepByStep.loader_apply(
          train_loader, sbs_cnn3.correct).sum(axis=0),
      StepByStep.loader_apply(
          val_loader, sbs_cnn3.correct).sum(axis=0))

Output

tensor([2511, 2520]) tensor([336, 372])

Looking good! Lower losses, 99.64% training accuracy, and 90.32% validation

accuracy.

Recap

In this chapter, we’ve introduced dropout layers for regularization and focused on

the inner workings of different optimizers and the role of the learning rate in the

process. This is what we’ve covered:

• computing channel statistics using a temporary data loader to build a

Normalize() transform

• using Normalize() to standardize an image dataset

• understanding how convolutions over multiple channels work

• building a fancier model with two typical convolutional blocks and dropout

layers
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• understanding how the dropout probability generates a distribution of

outputs

• observing the effect of train and eval modes in dropout layers

• visualizing the regularizing effect of dropout layers

• using the learning rate range test to find an interval of learning rate candidates

• computing bias-corrected exponentially weighted moving averages of both

gradients and squared gradients to implement adaptive learning rates like the

Adam optimizer

• capturing gradients using register_hook() on tensors of learnable parameters

• capturing parameters using the previously implemented attach_hooks()
method

• visualizing the path taken by different optimizers for updating parameters

• understanding how momentum is computed and its effect on the parameter

update

• (re)discovering the clever look-ahead trick implemented by Nesterov’s

momentum

• learning about different types of schedulers: epoch, validation loss, and mini-

batch

• including learning rate schedulers in the training loop

• visualizing the impact of a scheduler on the path taken for updating

parameters

Congratulations! You have just learned about the tools commonly used for training

deep learning models: adaptive learning rates, momentum, and learning rate

schedulers. Far from being an exhaustive lesson on this topic, this chapter has

given you a good understanding of the basic building blocks. You have also learned

how dropout can be used to reduce overfitting and, consequently, improve

generalization.

In the next chapter, we’ll learn about transfer learning to leverage the power of

pre-trained models, and we’ll go over some key components of popular

architectures, like 1x1 convolutions, batch normalization layers, and residual

connections.

[94] https://github.com/dvgodoy/PyTorchStepByStep/blob/master/Chapter06.ipynb

[95] https://colab.research.google.com/github/dvgodoy/PyTorchStepByStep/blob/master/Chapter06.ipynb
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[96] http://www.samkass.com/theories/RPSSL.html

[97] https://bit.ly/3F6qp88

[98] https://storage.googleapis.com/laurencemoroney-blog.appspot.com/rps.zip

[99] https://storage.googleapis.com/laurencemoroney-blog.appspot.com/rps-test-set.zip

[100] https://twitter.com/karpathy/status/801621764144971776

[101] https://arxiv.org/abs/1506.01186

[102] https://pypi.org/project/torch-lr-finder/

[103] http://louistiao.me/notes/visualizing-and-animating-optimization-algorithms-with-matplotlib/

[104] https://paperswithcode.com/method/cosine-annealing
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Chapter 7
Transfer Learning

Spoilers

In this chapter, we will:

• learn about ImageNet and popular models like AlexNet, VGG, Inception, and

ResNet

• use transfer learning to classify images from the Rock Paper Scissors dataset

• load pre-trained models for fine-tuning and feature extraction

• understand the role of auxiliary classifiers in very deep architectures

• use 1x1 convolutions as a dimension-reduction layer

• build an inception module

• understand how batch normalization impacts model training in many ways

• understand the purpose of residual (skip) connections and build a residual

block

Jupyter Notebook

The Jupyter notebook corresponding to Chapter 7[105] is part of the official Deep

Learning with PyTorch Step-by-Step repository on GitHub. You can also run it

directly in Google Colab[106].

If you’re using a local installation, open your terminal or Anaconda prompt and

navigate to the PyTorchStepByStep folder you cloned from GitHub. Then, activate

the pytorchbook environment and run jupyter notebook:

$ conda activate pytorchbook

(pytorchbook)$ jupyter notebook

If you’re using Jupyter’s default settings, this link should open Chapter 7’s

notebook. If not, just click on Chapter07.ipynb in your Jupyter’s home page.
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Imports

For the sake of organization, all libraries needed throughout the code used in any

given chapter are imported at its very beginning. For this chapter, we’ll need the

following imports:

import numpy as np
from PIL import Image

import torch
import torch.optim as optim
import torch.nn as nn
import torch.nn.functional as F

from torch.utils.data import DataLoader, Dataset, random_split, \
    TensorDataset
from torchvision.transforms import Compose, ToTensor, Normalize, \
    Resize, ToPILImage, CenterCrop, RandomResizedCrop
from torchvision.datasets import ImageFolder
from torchvision.models import alexnet, resnet18, inception_v3
from torchvision.models.alexnet import model_urls
from torchvision.models.utils import load_state_dict_from_url

from stepbystep.v3 import StepByStep

Transfer Learning

In the previous chapter, I called a model fancier just because it had not one, but

two convolutional blocks, and dropout layers as well. Truth be told, this is far from

fancy—really fancy models have tens of convolutional blocks and other neat

architectural tricks that make them really powerful. They have many million

parameters and require not only humongous amounts of data but also thousands

of (expensive) GPU hours for training.

I don’t know about you, but I have neither! So, what’s left to do? Transfer learning

to the rescue!

The idea is quite simple. First, some big tech company, which has access to virtually

infinite amounts of data and computing power, develops and trains a huge model

for their own purpose. Next, once it is trained, its architecture and the
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corresponding trained weights (the pre-trained model) are released. Finally,

everyone else can use these weights as a starting point and fine-tune them

further for a different (but similar) purpose.

That’s transfer learning in a nutshell. It all started with computer vision models

and…

ImageNet

ImageNet is an image database organized according to the WordNet[107]

hierarchy (currently only the nouns), in which each node of the hierarchy is

depicted by hundreds and thousands of images. Currently we have an

average of over five hundred images per node. We hope ImageNet will

become a useful resource for researchers, educators, students and all of you

who share our passion for pictures.

Source: ImageNet[108]

ImageNet is a comprehensive database of images spanning 27 high-level

categories, more than 20,000 sub-categories, and more than 14 million images

(check its statistics here.[109]) The images themselves cannot be downloaded from

its website, because ImageNet does not own the copyright of these images. It does

provide the URLs for all images, though.

As you can probably guess, classifying these images was a monumental task in the

early 2010s. No wonder they created a challenge…

ImageNet Large Scale Visual Recognition
Challenge (ILSVRC)

The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) evaluates

algorithms for object detection and image classification at large scale.

Source: ILSVRC[110]

The ILSVRC ran for eight years, from 2010 to 2017. Many architectures we take

for granted today were developed to tackle this challenge: AlexNet, VGG,

Inception, ResNet, and more. We’re focusing on the years of 2012, 2014, and 2015

only.

500 | Chapter 7: Transfer Learning

http://wordnet.princeton.edu
http://www.image-net.org/
http://image-net.org/about-stats
http://www.image-net.org/challenges/LSVRC/


ILSVRC-2012

The 2012 edition[111] of the ILSVRC is probably the most popular of them all. Its

winner, the architecture dubbed AlexNet, represented a milestone for image

classification, sharply reducing classification error. The training data had 1.2

million images belonging to 1,000 categories (it is actually a subset of the ImageNet

dataset).

AlexNet (SuperVision Team)

This architecture was developed by the SuperVision team, composed of Alex

Krizhevsky, Ilya Sutskever, and Geoffrey Hinton from the University of Toronto

(now you know why it’s called AlexNet). Here is their model’s description:

Our model is a large, deep convolutional neural network trained on raw RGB

pixel values. The neural network, which has 60 million parameters and

650,000 neurons, consists of five convolutional layers, some of which are

followed by max pooling layers, and three globally-connected layers with a

final 1000-way softmax. It was trained on two NVIDIA GPUs for about a

week. To make training faster, we used non-saturating neurons and a very

efficient GPU implementation of convolutional nets. To reduce overfitting in

the globally-connected layers we employed hidden-unit "dropout", a

recently-developed regularization method that proved to be very effective.

Source: Results (ILSVRC2012)[112]

You should be able to recognize all the elements in the description: five typical

convolutional blocks (convolution, activation function, and max pooling)

corresponding to the "featurizer" part of the model, three hidden (linear) layers

combined with dropout layers corresponding to the "classifier" part of the model,

and the softmax output layer typical of multiclass classification problems.

It is pretty much the fancier model from Chapter 6 but on steroids! We’ll be using

AlexNet to demonstrate how to use a pre-trained model. If you’re interested in

learning more about AlexNet, the paper is called "ImageNet Classification with

Deep Convolutional Neural Networks."[113]

ILSVRC-2014

The 2014 edition[114] gave rise to two now household names when it comes to

architectures for computer vision problems: VGG and Inception. The training data
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had 1.2 million images belonging to 1,000 categories, just like the 2012 edition.

VGG

The architecture developed by Karen Simonyan and Andrew Zisserman from the

Oxford Vision Geometry Group (VGG) is pretty much an even larger or, better yet,

deeper model than AlexNet (and now you know the origin of yet another

architecture name). Their goal is made crystal clear in their model’s description:

…we explore the effect of the convolutional network (ConvNet) depth on its

accuracy.

Source: Results (ILSVRC2014)[115]

VGG models are massive, so we’re not paying much attention to them here. If you

want to learn more about it, its paper is called "Very Deep Convolutional Networks

for Large-Scale Image Recognition."[116]

Inception (GoogLeNet Team)

The Inception architecture is probably the one with the best meme of all: "We need

to go deeper." The authors, Christian Szegedy, et al., like the VGG team, wanted to

train a deeper model. But they came up with a clever way of doing it (highlights are

mine):

Additional dimension reduction layers based on embedding learning

intuition allow us to increase both the depth and the width of the network

significantly without incurring significant computational overhead.

Source: Results (ILSVRC2014)[117]

If you want to learn more about it, the paper is called "Going Deeper with

Convolutions."[118]

 "What are these dimension-reduction layers?"

No worries, we’ll get back to it in the "Inception Modules" section.

ILSVRC-2015

The 2015 edition[119] popularized residual connections in its aptly named

architecture: Res(idual) Net(work). The training data used in the competition
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remained unchanged.

ResNet (MSRA Team)

The trick developed by Kaiming He, et al. was to add residual connections, or

shortcuts, to a very deep architecture.

We train neural networks with depth of over 150 layers. We propose a "deep

residual learning" framework that eases the optimization and convergence of

extremely deep networks.

Source: Results (ILSVRC2015)[120]

In a nutshell, it allows the network to more easily learn the identity function. We’ll

get back to it in the "Residual Connections" section later in this chapter. If you want

to learn more about it, the paper is called "Deep Residual Learning for Image

Recognition."[121]



By the way, Kaiming He also has an initialization scheme named

after him—sometimes referred to as "He initialization," sometimes

referred to as "Kaiming initialization"—and we’ll learn about those

in the next chapter.

Imagenette

If you are looking for a smaller, more manageable dataset that’s ImageNet-

like, Imagenette is for you! Developed by Jeremy Howard from fast.ai, it is a

subset of ten easily classified classes from ImageNet.

You can find it here: https://github.com/fastai/imagenette.

Comparing Architectures

Now that you’re familiar with some of the popular architectures (many of which are

readily available as Torchvision models), let’s compare their performance (Top-1

accuracy %), number of operations in a single forward pass (billions), and sizes (in

millions of parameters). The figure below is very illustrative in this sense.
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Figure 7.1 - Comparing architectures (size proportional to number of parameters)

Source: Data for accuracy and GFLOPs estimates obtained from this report[122]; number

of parameters (proportional to the size of the circles) obtained from Torchvision’s models.

For a more detailed analysis, see Canziani, A., Culurciello, E., Paszke, A. "An Analysis of

Deep Neural Network Models for Practical Applications"[123] (2017).

See how massive the VGG models are, both in size and in the number of operations

required to deliver a single prediction? On the other hand, check out Inception-V3

and ResNet-50's positions in the plot: They would give more bang for your buck.

The former has a slightly higher performance, and the latter is slightly faster.


These are the models you’re likely using for transfer learning:

Inception and ResNet.

On the bottom left, there is AlexNet. It was miles ahead of anything else in 2012,

but it is not competitive at all anymore.


"If AlexNet is not competitive, why are you using it to illustrate

transfer learning?"

A fair point indeed. The reason is, its architectural elements are already familiar to

you, thus making it easier for me to explain how we’re modifying it to fit our

purposes.
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Transfer Learning in Practice

In Chapter 6, we created our own model to classify images in the Rock Paper Scissors

dataset. We’ll use the same dataset here, but, instead of creating another model,

we’ll take AlexNet for a spin!

It all starts with loading a pre-trained model, which can be easily done using

Torchvision’s library of models. There, we find AlexNet, a PyTorch model that

implements the architecture designed by Alex Krizhevsky et al., and alexnet, a

helper function that creates an instance of AlexNet and, optionally, downloads and

loads its pre-trained weights.

Pre-Trained Model

We’ll start by creating an instance of AlexNet without loading its pre-trained

weights just yet:

Loading AlexNet Architecture

1 alex = alexnet(pretrained=False)
2 print(alex)

Transfer Learning in Practice | 505

https://pytorch.org/vision/stable/models.html
https://bit.ly/2RSf6w4


Output

AlexNet(
  (features): Sequential(
    (0): Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding
=(2, 2))
    (1): ReLU(inplace=True)
    (2): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1,
ceil_mode=False)
    (3): Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding
=(2, 2))
    (4): ReLU(inplace=True)
    (5): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1,
ceil_mode=False)
    (6): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1),
padding=(1, 1))
    (7): ReLU(inplace=True)
    (8): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1),
padding=(1, 1))
    (9): ReLU(inplace=True)
    (10): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1),
padding=(1, 1))
    (11): ReLU(inplace=True)
    (12): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1,
ceil_mode=False)
  )
  (avgpool): AdaptiveAvgPool2d(output_size=(6, 6))
  (classifier): Sequential(
    (0): Dropout(p=0.5, inplace=False)
    (1): Linear(in_features=9216, out_features=4096, bias=True)
    (2): ReLU(inplace=True)
    (3): Dropout(p=0.5, inplace=False)
    (4): Linear(in_features=4096, out_features=4096, bias=True)
    (5): ReLU(inplace=True)
    (6): Linear(in_features=4096, out_features=1000, bias=True)
  )
)

AlexNet’s architecture has three main elements: features, avgpool, and

classifier. The first and last are nested sequential models. The featurizer contains

five typical convolutional blocks, and the classifier has two hidden layers using 50%
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dropout. You’re already familiar with all of this, except for the element in the

middle.

Adaptive Pooling

The element in the middle, AdaptiveAvgPool2d (F.adaptive_avg_pool2d() in its

functional form), is a special kind of pooling: Instead of requiring the kernel size

(and stride), it requires the desired output size. In other words, whatever the

image size it gets as input, it will return a tensor with the desired size.

 "What’s so special about this?"

It gives you the freedom to use images of different sizes as inputs! We’ve seen that

convolutions and traditional max pooling, in general, shrink the image’s dimensions.

But the classifier part of the model expects an input of a determined size. That

means that the input image has to be of a determined size such that, at the end of

the shrinkage process, it matches what the classifier part is expecting. The

adaptive pooling, however, guarantees the output size, so it can easily match the

classifier expectations regarding input size.

Let’s say we have two dummy tensors representing feature maps produced by the

featurizer part of the model. The feature maps have different dimensions (32x32

and 12x12). Applying adaptive pooling to both of them ensures that both outputs

have the same dimensions (6x6):

result1 = F.adaptive_avg_pool2d(
    torch.randn(16, 32, 32), output_size=(6, 6)
)
result2 = F.adaptive_avg_pool2d(
    torch.randn(16, 12, 12), output_size=(6, 6)
)
result1.shape, result2.shape

Output

(torch.Size([16, 6, 6]), torch.Size([16, 6, 6]))

Cool, right? We have the architecture already, but our model is untrained (it still

has random weights). Let’s fix that by…
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Loading Weights

First things first: To load the weights into our model, we need to retrieve them.

Sure, an easy way of retrieving them would be to set the argument

pretrained=True while creating the model. But you can also download the weights

from a given URL, which gives you the flexibility to use pre-trained weights from

wherever you want!

PyTorch offers the load_state_dict_from_url() method: It will retrieve the

weights from the specified URL and, optionally, save them to a specified folder

(model_dir argument).

 "Great, but what’s the URL for AlexNet’s weights?"

You can get the URL from the model_urls variable in

torchvision.models.alexnet:

URL for AlexNet’s Pre-trained Weights

1 url = model_urls['alexnet']
2 url

Output

'https://download.pytorch.org/models/alexnet-owt-4df8aa71.pth'

Of course, it doesn’t make any sense to do this manually for models in PyTorch’s

library. But, assuming you’re using pre-trained weights from a third party, you’d be

able to load them like this:

Loading Pre-trained Weights

1 state_dict = load_state_dict_from_url(
2     url, model_dir='pretrained', progress=True
3 )
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Output

Downloading: "https://download.pytorch.org/models/alexnet-owt-
4df8aa71.pth" to ./pretrained/alexnet-owt-4df8aa71.pth

From now on, it works as if we had saved a model to disk. To load the model’s state

dictionary, we can use its load_state_dict() method:

Loading Model

1 alex.load_state_dict(state_dict)

Output

<All keys matched successfully>

There we go! We have a fully trained AlexNet to play with! Now what?

Model Freezing

In most cases, you don’t want to continue training the whole model. I mean, in

theory, you could pick it up where it was left off by the original authors and resume

training using your own dataset. That’s a lot of work, and you’d need a lot of data to

make any kind of meaningful progress. There must be a better way! Of course,

there is: We can freeze the model.


Freezing the model means it won’t learn anymore; that is, its

parameters / weights will not be updated anymore.

What best characterizes a tensor representing a learnable parameter? It requires

gradients. So, if we’d like to make them stop learning anything, we need to change

exactly that:

Helper Function #6 — Model freezing

1 def freeze_model(model):
2     for parameter in model.parameters():
3         parameter.requires_grad = False
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freeze_model(alex)

The function above loops over all parameters of a given model and freezes them.


"If the model is frozen, how I am supposed to train it for my own

purpose?"

Excellent question! We have to unfreeze a small part of the model or, better yet,

replace a small part of the model. We’ll be replacing the…

Top of the Model

The "top" of the model is loosely defined as the last layer(s) of the model, usually

belonging to its classifier part. The featurizer part is usually left untouched since

we’re trying to leverage the model’s ability to generate features for us. Let’s

inspect AlexNet’s classifier once again:

print(alex.classifier)

Output

Sequential(
  (0): Dropout(p=0.5, inplace=False)
  (1): Linear(in_features=9216, out_features=4096, bias=True)
  (2): ReLU(inplace=True)
  (3): Dropout(p=0.5, inplace=False)
  (4): Linear(in_features=4096, out_features=4096, bias=True)
  (5): ReLU(inplace=True)
  (6): Linear(in_features=4096, out_features=1000, bias=True)
)

It has two hidden layers and one output layer. The output layer produces 1,000

logits, one for each class in the ILSVRC challenge. But, unless you are playing with

the dataset used for the challenge, you’d have your own classes to compute logits

for.

In our Rock Paper Scissors dataset, we have three classes. So, we need to replace the

output layer accordingly:
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Replacing the "Top" of the Model

1 alex.classifier[6] = nn.Linear(4096, 3)

The following diagram may help you visualize what’s happening.

Figure 7.2 - AlexNet

Source: Generated using Alexander Lenail’s NN-SVG[124] and adapted by the author.

Notice that the number of input features remains the same, since it still takes the

output from the hidden layer that precedes it. The new output layer requires

gradients by default, but we can double-check it:

for name, param in alex.named_parameters():
    if param.requires_grad == True:
        print(name)

Output

classifier.6.weight
classifier.6.bias

Great, the only layer that will be learning anything is our brand new output layer

(classifier.6), the "top" of the model.

 "What about unfreezing some of the hidden layers?"
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That’s also a possibility; in this case, it is like resuming training for the hidden

layers, while learning from scratch for the output layer. You’d probably have to

have more data to pull this off, though.


"Could I have changed the whole classifier instead of just the output

layer?"

Sure thing! It would be possible to have a different architecture for the classifier

part, as long as it takes the 9,216 input features produced by the first part of

AlexNet, and outputs as many logits as necessary for the task at hand. In this case,

the whole classifier would be learning from scratch, and you’d need even more

data to pull it off.


The more layers you unfreeze or replace, the more data you’ll

need to fine-tune the model.

We’re sticking with the simplest approach here; that is, replacing the output layer

only.



Technically speaking, we’re only fine-tuning a model if we do not

freeze pre-trained weights; that is, the whole model will be

(slightly) updated. Since we are freezing everything but the last

layer, we are actually using the pre-trained model for feature

extraction only.

 "What if I use a different model? Which layer should I replace then?"

The table below covers some of the most common models you may use for transfer

learning. It lists the expected size of the input images, the classifier layer to be

replaced, and the appropriate replacement, given the number of classes for the

task at hand (three in our case):

Model Size Classifier Layer(s) Replacement Layer(s)

AlexNet 224 model.classifier[6] nn.Linear(4096,num_classes)

VGG 224 model.classifier[6] nn.Linear(4096,num_classes)

InceptionV3 299 model.fc nn.Linear(2048,num_classes)

model.AuxLogits.fc nn.Linear(768,num_classes)
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Model Size Classifier Layer(s) Replacement Layer(s)

ResNet 224 model.fc nn.Linear(512,num_classes)

DenseNet 224 model.classifier nn.Linear(1024,num_classes)

SqueezeNet 224 model.classifier[1] nn.Conv2d(512,num_classes,
kernel_size=1,stride=1)

 "Why there are two layers for the InceptionV3 model?"

The Inception model is a special case because it has auxiliary classifiers. We’ll

discuss them later in this chapter.

Model Configuration

What’s missing in the model configuration? A loss function and an optimizer. A

multiclass classification problem, when the model produces logits, requires

nn.CrossEntropyLoss() as the loss function. For the optimizer, let’s use Adam with

the "Karpathy Constant" (3e-4) as its learning rate.

Model Configuration

1 torch.manual_seed(17)
2 multi_loss_fn = nn.CrossEntropyLoss(reduction='mean')
3 optimizer_alex = optim.Adam(alex.parameters(), lr=3e-4)

Cool, the model configuration is taken care of, so we can turn our attention to the…

Data Preparation

This step is quite similar to what we did in the previous chapter (we’re still using

the Rock Paper Scissors dataset), except for one key difference: We will use

different parameters for standardizing the images.


"So we’re not computing statistics for the images in our dataset

anymore?"

Nope!

 "Why not?"
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Since we’re using a pre-trained model, we need to use the standardization

parameters used to train the original model. In other words, we need to use the

statistics of the original dataset used to train that model. For AlexNet (and pretty

much every computer vision pre-trained model), these statistics were computed on

the ILSVRC dataset.

You can find these values in PyTorch’s documentation for pre-trained models.

ImageNet Statistics

All pre-trained models expect input images normalized in the same way, i.e.,

mini-batches of three-channel RGB images of shape (3 x H x W), where H and

W are expected to be at least 224. The images have to be normalized using

mean = [0.485, 0.456, 0.406] and std = [0.229, 0.224, 0.225]. You

can use the following transform:

normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                 std=[0.229, 0.224, 0.225])

So, the data preparation step for the Rock Paper Scissors dataset looks like this now:

Data Preparation

 1 normalizer = Normalize(mean=[0.485, 0.456, 0.406],
 2                        std=[0.229, 0.224, 0.225])
 3 
 4 composer = Compose([Resize(256),
 5                     CenterCrop(224),
 6                     ToTensor(),
 7                     normalizer])
 8 
 9 train_data = ImageFolder(root='rps', transform=composer)
10 val_data = ImageFolder(root='rps-test-set', transform=composer)
11 # Builds a loader of each set
12 train_loader = DataLoader(
13   train_data, batch_size=16, shuffle=True
14 )
15 val_loader = DataLoader(val_data, batch_size=16)
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Model Training

We have everything set to train the "top" layer of our modified version of AlexNet:

Model Training

1 sbs_alex = StepByStep(alex, multi_loss_fn, optimizer_alex)
2 sbs_alex.set_loaders(train_loader, val_loader)
3 sbs_alex.train(1)

You probably noticed it took several seconds (and a lot more if you’re running on a

CPU) to run the code above, even though it is training for one single epoch.


"How come? Most of the model is frozen; there is only one measly

layer to train…"

You’re right, there is only one measly layer to compute gradients for and to update

parameters for, but the forward pass still uses the whole model. So, every single

image (out of 2,520 in our training set) will have its features computed using more

than 61 million parameters! No wonder it is taking some time! By the way, only

12,291 parameters are trainable.

If you’re thinking "there must be a better way…," you’re absolutely right—that’s the

topic of the next section.

But, first, let’s see how effective transfer learning is by evaluating our model after

having trained it over one epoch only:

StepByStep.loader_apply(val_loader, sbs_alex.correct)

Output

tensor([[111, 124],
        [124, 124],
        [124, 124]])

That’s 96.51% accuracy in the validation set (it is 99.33% for the training set, in

case you’re wondering). Even if it is taking some time to train, these results are

pretty good!
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Generating a Dataset of Features

We’ve just realized that most of the time it takes to train the last layer of our

model over one single epoch was spent in the forward pass. Now, imagine if we

wanted to train it over ten epochs: Not only would the model spend most of its

time performing the forward pass, but, even worse, it would perform the same

operations ten times over.



Since all layers but the last are frozen, the output of the second-

to-last layer is always the same.

That’s assuming you’re not doing data augmentation, of course.

That’s a huge waste of your time, energy, and money (if you’re paying for cloud

computing).

 "What can we do about it?"

Well, since the frozen layers are simply generating features that will be the input

of the trainable layers, why not treat the frozen layers as such? We could do it in

four easy steps:

• Keep only the frozen layers in the model.

• Run the whole dataset through it and collect its outputs as a dataset of

features.

• Train a separate model (that corresponds to the "top" of the original model)

using the dataset of features.

• Attach the trained model to the top of the frozen layers.

This way, we’re effectively splitting the feature extraction and actual training

phases, thus avoiding the overhead of generating features over and over again for

every single forward pass.

To keep only the frozen layers, we need to get rid of the "top" of the original model.

But, since we also want to attach our new layer to the whole model after training,

it is a better idea to simply replace the "top" layer with an identity layer instead of

removing it entirely:
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"Removing" the Top Layer

1 alex.classifier[6] = nn.Identity()
2 print(alex.classifier)

Output

Sequential(
  (0): Dropout(p=0.5, inplace=False)
  (1): Linear(in_features=9216, out_features=4096, bias=True)
  (2): ReLU(inplace=True)
  (3): Dropout(p=0.5, inplace=False)
  (4): Linear(in_features=4096, out_features=4096, bias=True)
  (5): ReLU(inplace=True)
  (6): Identity()
)

This way, the last effective layer is still classifier.5, which will produce the

features we’re interested in. We have a feature extractor in our hands now! Let’s

use it to pre-process our dataset.

The function below loops over the mini-batches from a data loader, sends them

through our feature extractor model, combines the outputs with the corresponding

labels, and returns a TensorDataset:
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Helper Function #7

 1 def preprocessed_dataset(model, loader, device=None):
 2     if device is None:
 3         device = next(model.parameters()).device
 4     features = None
 5     labels = None
 6 
 7     for i, (x, y) in enumerate(loader):
 8         model.eval()
 9         output = model(x.to(device))
10         if i == 0:
11             features = output.detach().cpu()
12             labels = y.cpu()
13         else:
14             features = torch.cat(
15                 [features, output.detach().cpu()])
16             labels = torch.cat([labels, y.cpu()])
17 
18     dataset = TensorDataset(features, labels)
19     return dataset

We can use it to pre-process our datasets:

Data Preparation (1)

1 train_preproc = preprocessed_dataset(alex, train_loader)
2 val_preproc = preprocessed_dataset(alex, val_loader)

There we go—we have TensorDatasets containing tensors for features generated

by AlexNet for each and every image, as well as for the corresponding labels.



IMPORTANT: This pre-processing step assumes no data

augmentation. If you want to perform data augmentation, you

will need to train the "top" of the model while it is still attached to

the rest of the model since the features produced by the frozen

layers will be slightly different every time due to the

augmentation itself.

We can also save these tensors to disk:
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torch.save(train_preproc.tensors, 'rps_preproc.pth')
torch.save(val_preproc.tensors, 'rps_val_preproc.pth')

This way, they can be used to build datasets later:

x, y = torch.load('rps_preproc.pth')
train_preproc = TensorDataset(x, y)
val_preproc = TensorDataset(*torch.load('rps_val_preproc.pth'))

The last step of data preparation, as usual, is the creation of the data loader:

Data Preparation (2)

1 train_preproc_loader = DataLoader(
2     train_preproc, batch_size=16, shuffle=True
3 )
4 val_preproc_loader = DataLoader(val_preproc, batch_size=16)

Bye-bye, costly and repetitive forward passes! We can now focus on training our…

Top Model

The model has only one layer, which matches the one we used in the "Top of the

Model" subsection. The rest of the model configuration part remains unchanged:

Model Configuration — Top Model

1 torch.manual_seed(17)
2 top_model = nn.Sequential(nn.Linear(4096, 3))
3 multi_loss_fn = nn.CrossEntropyLoss(reduction='mean')
4 optimizer_top = optim.Adam(top_model.parameters(), lr=3e-4)

Next, we create another StepByStep instance to train the model above using the

pre-processed dataset. Since it is a tiny model, we can afford to train it over ten

epochs, instead of only one:
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Model Training — Top Model

1 sbs_top = StepByStep(top_model, multi_loss_fn, optimizer_top)
2 sbs_top.set_loaders(train_preproc_loader, val_preproc_loader)
3 sbs_top.train(10)

See? That was blazing fast!

Now we can attach the trained model to the top of the full (frozen) model:

Replacing the Top Layer

1 sbs_alex.model.classifier[6] = top_model
2 print(sbs_alex.model.classifier)

Output

Sequential(
  (0): Dropout(p=0.5, inplace=False)
  (1): Linear(in_features=9216, out_features=4096, bias=True)
  (2): ReLU(inplace=True)
  (3): Dropout(p=0.5, inplace=False)
  (4): Linear(in_features=4096, out_features=4096, bias=True)
  (5): ReLU(inplace=True)
  (6): Sequential(
    (0): Linear(in_features=4096, out_features=3, bias=True)
  )
)

The sixth element of the classifier part corresponds to our small trained model.

Let’s see how it performs on the validation set.


We’re using the full model again, so we should use the original

dataset instead of the pre-processed one.

StepByStep.loader_apply(val_loader, sbs_alex.correct)
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Output

tensor([[109, 124],
        [124, 124],
        [124, 124]])

It is almost the same result as before. The model is probably overfitting, but it

doesn’t matter because the purpose of this exercise was to show you how to use

transfer learning and how you can pre-process your dataset to speed up model

training.

AlexNet was fun to work with, but it is time to move on. In the next sections, we’ll

focus on new architectural elements that are part of the Inception and ResNet

models.

Auxiliary Classifiers (Side-Heads)

The first version of the Inception model (depicted in the figure below) introduced

auxiliary classifiers; that is, side-heads attached to intermediate parts of the

model that would also try to perform classification, independently from the typical

main classifier at the very end of the network.

Figure 7.3 - Inception model: simplified diagram

The cross-entropy loss was also computed independently for each of the three

classifiers and added together to the total loss (although auxiliary losses were

multiplied by a factor of 0.3). The auxiliary classifiers (and losses) were used during

training time only. During the evaluation phase, only the logits produced by the

main classifier were considered.

The technique was originally developed to mitigate the vanishing gradients

problem (more on that in the next chapter), but it was later found that the auxiliary

classifiers were more likely to have a regularizer effect instead.[125]
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The third version of the Inception model (inception_v3), available as a pre-trained

model in PyTorch, has only one auxiliary classifier instead of two, but we still need

to make some adjustments if we’re using this model for transfer learning.

First, we load the pre-trained model, freeze its layers, and replace the layers for

both main and auxiliary classifiers:

Loading Pre-trained Inception V3 and Replacing Top Layers

1 model = inception_v3(pretrained=True)
2 freeze_model(model)
3 
4 torch.manual_seed(42)
5 model.AuxLogits.fc = nn.Linear(768, 3)
6 model.fc = nn.Linear(2048, 3)

Unfortunately, we cannot use the standard cross-entropy loss because the

Inception model outputs two tensors, one for each classifier (although it is possible

to force it to return only the main classifier by setting its aux_logits argument to

False). But we can create a simple function that can handle multiple outputs,

compute the corresponding losses, and return their total:

Helper Function #8 — Inception Loss with Side-Heads

 1 def inception_loss(outputs, labels):
 2     try:
 3         main, aux = outputs
 4     except ValueError:
 5         main = outputs
 6         aux = None
 7         loss_aux = 0
 8 
 9     multi_loss_fn = nn.CrossEntropyLoss(reduction='mean')
10     loss_main = multi_loss_fn(main, labels)
11     if aux is not None:
12         loss_aux = multi_loss_fn(aux, labels)
13     return loss_main + 0.4 * loss_aux

The auxiliary loss, in this case, is multiplied by a factor of 0.4 before being added to

the main loss. Now, we’re only missing an optimizer:
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Model Configuration

1 optimizer_model = optim.Adam(model.parameters(), lr=3e-4)
2 sbs_incep = StepByStep(model, inception_loss, optimizer_model)

 "Wait, aren’t we pre-processing the dataset this time?"

Unfortunately, no. The preprocessed_dataset() function cannot handle multiple

outputs. Instead of making the process convoluted in order to handle the

peculiarities of the Inception model, I am sticking with the simpler (yet slower) way

of training the last layer while it is still attached to the rest of the model.

The Inception model is also different from the others in its expected input size: 299

instead of 224. So, we need to recreate the data loaders accordingly:

Data Preparation

 1 normalizer = Normalize(mean=[0.485, 0.456, 0.406],
 2                        std=[0.229, 0.224, 0.225])
 3 
 4 composer = Compose([Resize(299),
 5                     ToTensor(),
 6                     normalizer])
 7 
 8 train_data = ImageFolder(root='rps', transform=composer)
 9 val_data = ImageFolder(root='rps-test-set', transform=composer)
10 # Builds a loader of each set
11 train_loader = DataLoader(
12   train_data, batch_size=16, shuffle=True)
13 val_loader = DataLoader(val_data, batch_size=16)

We’re ready, so let’s train our model for a single epoch and evaluate the result:

Model Training

1 sbs_incep.set_loaders(train_loader, val_loader)
2 sbs_incep.train(1)

StepByStep.loader_apply(val_loader, sbs_incep.correct)
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Output

tensor([[108, 124],
        [116, 124],
        [108, 124]])

It achieved an accuracy of 89.25% on the validation set. Not bad!

There is more to the Inception model than auxiliary classifiers, though. Let’s check

out some of its other architectural elements.

1x1 Convolutions

This particular architectural element is not exactly new, but it is a somewhat special

case of an already known element. So far, the smallest kernel used in a

convolutional layer had a size of three-by-three. These kernels performed an

element-wise multiplication, and then they added up the resulting elements to

produce a single value for each region to which they were applied. So far, nothing

new.

The idea of a kernel of size one-by-one is somewhat counterintuitive at first. For a

single channel, this kernel is only scaling the values of its input and nothing else.

That seems hardly useful.

But everything changes if you have multiple channels! Remember the three-

channel convolutions from Chapter 6? A filter has as many channels as its input.

This means that each channel will be scaled independently and the results will be

added up, resulting in one channel as output (per filter).


A 1x1 convolution can be used to reduce the number of

channels; that is, it may work as a dimension-reduction layer.

An image is worth a thousand words, so let’s visualize this.
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Figure 7.4 - 1x1 convolution

The input is an RGB image, and there are two filters; each filter has three 1x1

kernels, one for each channel of the input. What are these filters actually doing?

Let’s check it out!

Figure 7.5 - 1x1 convolution

Maybe it is even more clear if it is presented as a formula:

Equation 7.1 - Filter arithmetic



A filter using a 1x1 convolution corresponds to a weighted

average of the input channels.

In other words, a 1x1 convolution is a linear combination of the

input channels, computed pixel by pixel.

There is another way to get a linear combination of the inputs: a linear layer, also
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referred to as a fully connected layer. Performing a 1x1 convolution is akin to

applying a linear layer to each individual pixel over its channels.


This is the reason why a 1x1 convolution is said to be equivalent

to a fully connected (linear) layer.

In the example above, each of the two filters produces a different linear

combination of the RGB channels. Does this ring any bells? In Chapter 6, we saw

that grayscale images can be computed using a linear combination of the red,

green, and blue channels of colored images. So, we can convert an image to

grayscale using a 1x1 convolution!

scissors = Image.open('rps/scissors/scissors01-001.png')
image = ToTensor()(scissors)[:3, :, :].view(1, 3, 300, 300)

weights = torch.tensor([0.2126, 0.7152, 0.0722]).view(1, 3, 1, 1)
convolved = F.conv2d(input=image, weight=weights)

converted = ToPILImage()(convolved[0])
grayscale = scissors.convert('L')

Figure 7.6 - Convolution vs conversion

See? They are the same … or are they? If you have a really sharp eye, maybe you are

able to notice a subtle difference between the two shades of gray. It doesn’t have

anything to do with the use of convolutions, though—it turns out, PIL uses slightly

different weights for converting RGB into grayscale.
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The weights used by PIL are 0.299 for red, 0.587 for blue, and

0.114 for green, the "ITU-R 601-2 luma transform." Our weights

were different because we used the colorimetric conversion to

grayscale. If you want to learn more about it, check Wikipedia’s

article on Grayscale.[126]

You can think of converting colored images to grayscale as reducing the

dimensions of the image, since the size of the output is one-third of the input size

(one instead of three channels). This translates into having three times fewer

parameters in the layer that is receiving it as its own input, and it allows the

networks to grow deeper (and wider).


"We need to go deeper."

Dom Cobb

Inception Modules

Memes aside, let’s talk about the Inception module. There are many versions of it, as

it has evolved over time, but we’re focusing on the first two only: the regular

version and the one with dimension-reduction layers. Both versions are depicted

in the figure below.

Figure 7.7 - Inception modules

In the regular version, the 1x1 convolution is not used as a dimension-reduction

layer. Each of the convolution branches produces a given number of channels, and

the max pooling branch produces as many channels as it receives as input. In the

end, all channels are stacked (concatenated) together.
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"Honestly, I am a bit confused with channels and filters … are they

the same or not?! How about kernels?"

This is a bit confusing indeed—let’s try to organize our thoughts about filters,

kernels, and channels.

This is what we have seen so far:

1. Every filter has as many channels as the image it is convolving (input).

2. Each channel of the filter / kernel is a small square matrix (that is being

convolved over the corresponding input channel).

3. A convolution produces as many channels as there are filters (output).

For example, we may have an RGB image as input (three channels) and use two

filters (each having three channels of its own to match the input (1)) to produce

two channels as output (3).

But things can get very messy if we start using "filter" to designate other things:

• Each channel of a filter / kernel is often referred to as a "filter" itself.

• Each channel of the output produced by convolving the filter over the input

image is often referred to as a "filter" too.

In the example, we would then have six "filters" (instead of two filters with three

channels each), and we would produce two "filters" as output (instead of two

channels). This is confusing!

We’re avoiding these messy definitions here, so we’re using channel

concatenation (or even better, stacking) instead of the confusing "filter

concatenation."

Having cleared that up, we can return to the Inception module itself. As we’ve seen,

the regular version simply stacks the output channels of convolutions with

different filter / kernel sizes. What about the other version?

It also does that, but the Inception module with dimension-reduction layers uses

1x1 convolutions to:

• reduce the number of input channels for both 3x3 and 5x5 convolution

branches; and
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• reduce the number of output channels for the max pooling branch.

The 3x3 and 5x5 convolution branches may still output many channels (one for

each filter), but each filter is convolving a reduced number of input channels.

You can think of the RGB-to-grayscale conversion: Instead of using three-channel

convolutions (as in Chapter 6) for colored images, it would use a single-channel

filter (as in Chapter 5) for grayscale (dimension-reduced) images. For a 3x3 filter /

kernel, it means using nine parameters instead of twenty-seven. We can definitely

go deeper!
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Let’s see what the Inception module looks like in code:

class Inception(nn.Module):
    def __init__(self, in_channels):
        super(Inception, self).__init__()
        # in_channels@HxW -> 2@HxW
        self.branch1x1_1 = nn.Conv2d(in_channels,2,kernel_size=1)
        # in_channels@HxW -> 2@HxW -> 3@HxW
        self.branch5x5_1 = nn.Conv2d(in_channels,2,kernel_size=1) ①
        self.branch5x5_2 = nn.Conv2d(2, 3, kernel_size=5, padding=2)
        # in_channels@HxW -> 2@HxW -> 3@HxW
        self.branch3x3_1 = nn.Conv2d(in_channels,2,kernel_size=1) ①
        self.branch3x3_2 = nn.Conv2d(2, 3, kernel_size=3, padding=1)
        # in_channels@HxW -> in_channels@HxW -> 1@HxW
        self.branch_pool_1 = nn.AvgPool2d(
            kernel_size=3, stride=1, padding=1
        )
        self.branch_pool_2 = nn.Conv2d(                           ①
            in_channels, 2, kernel_size=1
        )

    def forward(self, x):
        # Produces 2 channels
        branch1x1 = self.branch1x1_1(x)
        # Produces 3 channels
        branch5x5 = self.branch5x5_1(x)                           ①
        branch5x5 = self.branch5x5_2(branch5x5)
        # Produces 3 channels
        branch3x3 = self.branch3x3_1(x)                           ①
        branch3x3 = self.branch3x3_2(branch3x3)
        # Produces 2 channels
        branch_pool = self.branch_pool_1(x)
        branch_pool = self.branch_pool_2(branch_pool)             ①
        # Concatenates all channels together (10)
        outputs = torch.cat([branch1x1, branch5x5,
                             branch3x3, branch_pool], 1)          ②
        return outputs

① Dimension reduction with 1x1 convolution

② Stacking / concatenating channels
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The constructor method defines the seven elements used by four branches (you

can identify each of them in Figure 7.7). In this example, I’ve configured all 1x1

convolutions to produce two channels each, but it is not required that they all have

the same number of output channels. The same applies to both 3x3 and 5x5

convolution branches: Although I’ve configured them both to produce the same

number of channels (three) each, this is not a requirement.



It is required, though, that all branches produce outputs with

matching height and width. This means that the padding must be

adjusted according to the kernel size in order to output the

correct dimensions.

The forward method feeds the input x to each of the four branches, and then it uses

torch.cat() to concatenate the resulting channels along the corresponding

dimension (according to PyTorch’s NCHW shape convention). This concatenation

would fail if the height and width of the outputs did not match across the different

branches.

What if we run our example image (scissors, in the color version) through the

Inception module?

inception = Inception(in_channels=3)
output = inception(image)
output.shape

Output

torch.Size([1, 10, 300, 300])

There we go: The output has the expected ten channels.

As you can see, the idea behind the Inception module is actually quite simple. Later

versions had slightly different architectures (like switching the 5x5 convolution by

two 3x3 convolutions in a row), but the overall structure remains. There is one

more thing, though.

If you check Inception’s code in PyTorch, you’ll find that it does not use nn.Conv2d
directly, but rather something called BasicConv2d (reproduced below):
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class BasicConv2d(nn.Module):
    def __init__(self, in_channels, out_channels, **kwargs):
        super(BasicConv2d, self).__init__()
        self.conv = nn.Conv2d(
            in_channels, out_channels, bias=False, **kwargs
        )
        self.bn = nn.BatchNorm2d(out_channels, eps=0.001)

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        return F.relu(x, inplace=True)

Sure, its main component is still nn.Conv2d, but it also applies a ReLU activation

function to the final output. More important, though, it calls nn.BatchNorm2d
between the two.

 "What is that?"

That is…

Batch Normalization



The batch normalization layer is a very important component of

many modern architectures. Although its inner workings are not

exactly complex (you’ll see that in the following paragraphs), its

impact on model training certainly is complex. From its

placement (before or after an activation function) to the way its

behavior is impacted by the mini-batch size, I try to briefly

address the main discussion points in asides along the main text.

This is meant to bring you up to speed on this topic, but is by no

means a comprehensive take on it.

We briefly talked in Chapter 4 about the need for normalization layers in order to

prevent (or mitigate) an issue commonly called "internal covariate shift," which is

just fancy for having different distributions of activation values in different layers.

In general, we would like to have all layers produce activation values with similar

distributions, ideally with zero mean and unit standard deviation.
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Does it sound familiar? That’s what we did with our features way back in Chapter 0,

we standardized them. Now, batch normalization will be doing something very

similar to that, but with some important differences:

• Instead of standardizing features—that is, the inputs to the model as a

whole—batch normalization standardizes the activation values of a

layer—that is, the inputs to the following layer—so that they have zero mean

and unit standard deviation.

• Instead of computing statistics (mean and standard deviation) for the whole

training set, batch normalization computes statistics for each mini-batch.

• Batch normalization may perform an optional affine transformation to the

standardized output; that is, scaling it and adding a constant to it (in this case,

both scaling factor and constant are parameters learned by the model).

Before or After

There is a very common question regarding batch normalization:

"Should I place the batch norm layer before or after the activation function?"

From what I said above—that batch normalization standardizes the

activation values of a layer—the only logical conclusion is that the batch

normalization layer should come AFTER the activation function. It makes

sense, right? Placing an activation function after normalizing would

completely modify the inputs to the next layer and defeat the purpose of the

batch normalization.

Or would it?

Some people argue that it is OK to place the batch normalization layer

BEFORE the activation function. In fact, if you look at the Inception module,

it is exactly like that. On the one hand, the outputs aren’t going to have zero

mean and unit standard deviation (a ReLU would chop the negative values

off, for instance). On the other hand, the same thing should happen in every

layer using batch normalization placed like that, so distributions would still

be similar across the different layers.

So, there is no easy answer to this question, after all.
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For a mini-batch of n data points, given one particular feature x, batch

normalization will first compute the statistics for that mini-batch:

Equation 7.2 - Mean and standard deviation

Then, it will use these statistics to standardize each data point in the mini-batch:

Equation 7.3 - Standardization

So far, this is pretty much the same as the standardization of features, except for

the epsilon term that has been added to the denominator to make it numerically

stable (its typical value is 1e-5).



Since the batch normalization layer is meant to produce a zero

mean output, it makes the bias in the layer that precedes it

totally redundant. It would be a waste of computation to learn a

bias that will be immediately removed by the following layer.

So, it is best practice to set bias=False in the preceding layer

(you can check it out in the code for BasicConv2d in the previous

section).

The actual difference is the optional affine transformation at the end:

Equation 7.4 - Batch normalization

If you choose not to perform an affine transformation, parameters b and w will be

automatically set to zero and one, respectively. Although I’ve chosen the familiar b
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and w to represent these parameters, so it becomes even more clear there is

nothing special to this transformation, you’ll find them represented as beta and

gamma, respectively, in the literature. Moreover, the terms may appear in a

different order, like this:

Equation 7.5 - Batch normalization with affine transformation

We’re now leaving the affine transformation aside and focusing on a different

aspect of batch normalization: that it does not only compute statistics for each

mini-batch, but also keeps track of…

Running Statistics

Since batch normalization computes statistics on mini-batches, and mini-batches

contain a small number of points, these statistics are likely to fluctuate a lot. The

smaller the mini-batches, the more the statistics will fluctuate. But, more

important, which statistics should it use for unseen data (like the data points in the

validation set)?

During the evaluation phase (or when the model is already trained and deployed),

there are no mini-batches. It is perfectly natural to feed the model a single input to

get its prediction. Clearly, there are no statistics for a single data point: It is its own

mean, and the variance is zero. How can you standardize that? You can’t! So, I

repeat the question:


"Which statistics should the model use when applying batch

normalization to unseen data?"

What about keeping track of running statistics (that is, moving averages of the

statistics)? It is a good way of smoothing the fluctuations. Besides, every data point

will have a chance to contribute to the statistics. That’s what batch normalization

does.

Let’s see it in action using code—we’ll use a dummy dataset with 200 random data

points and two features:
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torch.manual_seed(23)
dummy_points = torch.randn((200, 2)) + torch.rand((200, 2)) * 2
dummy_labels = torch.randint(2, (200, 1))
dummy_dataset = TensorDataset(dummy_points, dummy_labels)
dummy_loader = DataLoader(
    dummy_dataset, batch_size=64, shuffle=True
)

Affine Transformations and the Internal Covariate Shift
(ICS)

If batch normalization was developed to mitigate the ICS (remember, ICS is

just fancy for having different distributions of activation values in different

layers) by producing outputs with zero mean and unit standard deviation,

how can an affine transformation possibly fit into this?

Well, in theory, it can’t—if the normalization layer can learn any affine

transformation, its outputs can have any mean and any standard deviation.

So much for producing similar distributions across different layers to

mitigate the internal covariate shift! Nonetheless, the batch normalization

layer in PyTorch performs an affine transformation by default.

If you look at the Inception module, it uses PyTorch’s default. So, its batch

norm layer not only performs an affine transformation but also is placed

before the activation function. Clearly, this isn’t mitigating ICS at all! But it is

still successfully used in many model architectures, like Inception. How

come?

Truth be told, mitigating the ICS was the original motivation behind batch

normalization, but it was later found that this technique actually improves

model training for a different reason.[127] That’s a plot twist!

It all boils down to making the loss surface smoother. We’ve actually already

seen the effect of using standardization on the loss surface in Chapter 0: It

became more bowl-shaped, thus making it easier for gradient descent to find

the minimum. Can you imagine that in a thousand-dimension feature space?

No?! Me neither! But hold on to this thought because we’ll get back to it in

the "Residual Connections" section.
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A mini-batch of size 64 is small enough to have fluctuating statistics and large

enough for plotting decent histograms.

Let’s fetch three mini-batches and plot histograms corresponding to each feature

in the first mini-batch:

iterator = iter(dummy_loader)
batch1 = next(iterator)
batch2 = next(iterator)
batch3 = next(iterator)

Batch Normalization, Mini-Batch Size, and
Regularization

It is said that batch normalization enforces a lower limit on mini-batch size.

The problem is the natural fluctuation of the statistics. As mentioned above,

the smaller the mini-batches, the more the statistics will fluctuate. If they are

too small, their statistics may significantly diverge from the overall

statistics for the whole training set, thus impacting negatively the training

of the model.

There is also the possibility of using batch renormalization (yes, that’s a

thing!) for those cases where it’s impossible to have larger mini-batches (due

to hardware constraints, for example) to prevent the issue above. This

technique is beyond the scope of this book, though.

The flip side is that the fluctuation of the statistics is actually injecting

randomness into the training process, thus having a regularizing effect and

impacting positively the training of the model.

In Chapter 6, we discussed another regularization procedure: dropout. Its

way of injecting randomness was zeroing some of the inputs, such that its

output would also vary slightly, or fluctuate.

Since both batch normalization and dropout layers have a regularizing effect,

combining both layers may actually harm the model performance.
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Figure 7.8 - Before batch normalization

mean1, var1 = batch1[0].mean(axis=0), batch1[0].var(axis=0)
mean1, var1

Output

(tensor([0.8443, 0.8810]), tensor([1.0726, 1.0774]))

These features can surely benefit from some standardization. We’ll use

nn.BatchNorm1d to accomplish it:

batch_normalizer = nn.BatchNorm1d(
    num_features=2, affine=False, momentum=None
)
batch_normalizer.state_dict()

Output

OrderedDict([('running_mean', tensor([0., 0.])),
             ('running_var', tensor([1., 1.])),
             ('num_batches_tracked', tensor(0))])

The num_features argument should match the dimension of the inputs. To keep

matters simple, we won’t be using the affine transformation (affine=False), or

the momentum (more on that later in this section).

The state_dict() of the batch normalizer tells us the initial values for both running

mean and variance, as well as the number of batches it has already used to compute

the running statistics. Let’s see what happens to them after we normalize our first

mini-batch:
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normed1 = batch_normalizer(batch1[0])
batch_normalizer.state_dict()

Output

OrderedDict([('running_mean', tensor([0.8443, 0.8810])),
             ('running_var', tensor([1.0726, 1.0774])),
             ('num_batches_tracked', tensor(1))])

Great, it matches the statistics we computed before. The resulting values should be

standardized by now, right? Let’s double-check it:

normed1.mean(axis=0), normed1.var(axis=0)

Output

(tensor([ 3.3528e-08, -9.3132e-09]), tensor([1.0159, 1.0159]))

 "This looks a bit off … shouldn’t the variance be exactly one?"

Yes, and no. I confess I find this a bit annoying too—the running variance is

unbiased, but the actual standardization of the data points of a mini-batch uses a

biased variance.

 "What’s the difference between the two?"

The difference lies in the denominator only:

Equation 7.6 - Biased variance
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This was actually implemented like that by design. We’re not discussing the

reasoning here, but, if you’d like to double-check the variance of the standardized

mini-batch, you can use the following:

normed1.var(axis=0, unbiased=False)

Output

tensor([1.0000, 1.0000])

That’s more like it! We can also plot the histograms again to more easily visualize

the effect of batch normalization.

Figure 7.9 - After batch normalization

Even though batch normalization achieved an output with zero mean and unit

standard deviation, the overall distribution of the output is still mostly determined

by the distribution of the inputs.

 Batch normalization won’t turn it into a normal distribution.

If we feed the second mini-batch to the batch normalizer, it will update its running

statistics accordingly:

normed2 = batch_normalizer(batch2[0])
batch_normalizer.state_dict()
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Output

OrderedDict([('running_mean', tensor([0.9070, 1.0931])),
             ('running_var', tensor([1.2592, 0.9192])),
             ('num_batches_tracked', tensor(2))])

Both running mean and running variance are simple averages over the mini-

batches:

mean2, var2 = batch2[0].mean(axis=0), batch2[0].var(axis=0)
running_mean, running_var = (mean1 + mean2) / 2, (var1 + var2) / 2
running_mean, running_var

Output

(tensor([0.9070, 1.0931]), tensor([1.2592, 0.9192]))

Now, let’s pretend we have finished training (even though we don’t have an actual

model), and we’re using the third mini-batch for evaluation.

Evaluation Phase

Just like dropout, batch normalization exhibits different behaviors depending on

the mode: train or eval. We’ve already seen what it does during the training

phase. We’ve also realized that it doesn’t make sense to compute statistics for any

data that isn’t training data.

So, in the evaluation phase, it will use the running statistics computed during

training to standardize the new data (the third mini-batch, in our small example):

batch_normalizer.eval()
normed3 = batch_normalizer(batch3[0])
normed3.mean(axis=0), normed3.var(axis=0, unbiased=False)

Output

(tensor([ 0.1590, -0.0970]), tensor([1.0134, 1.4166]))
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 "Is it a bit off again?"

Actually, no—since it is standardizing unseen data using statistics computed on

training data, the results above are expected. The mean will be around zero and

the standard deviation will be around one.

Momentum

There is an alternative way of computing running statistics: Instead of using a

simple average, it uses an exponentially weighted moving average (EWMA) of the

statistics.

The naming convention, though, is very unfortunate: The alpha parameter of the

EWMA was named momentum, adding to the confusion. There is even a note in

PyTorch’s documentation warning about this:

"This momentum argument is different from one used in optimizer classes and the

conventional notion of momentum."[128]


The bottom line is: Ignore the confusing naming convention and

think of the "momentum" argument as the alpha parameter of a

regular EWMA.

The documentation also uses x to refer to a particular statistic when introducing

the mathematical formula of "momentum," which does not help at all.

So, to make it abundantly clear what is being computed, I present the formulas

below:

Equation 7.7 - Running statistic

Let’s try it out in practice:

batch_normalizer_mom = nn.BatchNorm1d(
    num_features=2, affine=False, momentum=0.1
)
batch_normalizer_mom.state_dict()
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Output

OrderedDict([('running_mean', tensor([0., 0.])),
             ('running_var', tensor([1., 1.])),
             ('num_batches_tracked', tensor(0))])

Initial values are zero and one, respectively, for running mean and running

variance. These will be the running statistics at time t-1. What happens if we run

the first mini-batch through it?

normed1_mom = batch_normalizer_mom(batch1[0])
batch_normalizer_mom.state_dict()

Output

OrderedDict([('running_mean', tensor([0.0844, 0.0881])),
             ('running_var', tensor([1.0073, 1.0077])),
             ('num_batches_tracked', tensor(1))])

The running statistics barely budged after the mini-batch statistics were multiplied

by the "momentum" argument. We can easily verify the results for the running

means:

running_mean = torch.zeros((1, 2))
running_mean = 0.1 * batch1[0].mean(axis=0) + \
               (1 - 0.1) * running_mean
running_mean

Output

tensor([[0.0844, 0.0881]])


"Very well, but we have only used nn.BatchNorm1d so far, and the

Inception module actually used nn.BatchNorm2d…"

Glad you brought that up!
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BatchNorm2d

The difference between the one-dimension and the two-dimension batch

normalization is actually quite simple: The former standardizes features (columns),

while the latter standardizes channels (pixels).

This is easier to see in code:

torch.manual_seed(39)
dummy_images = torch.rand((200, 3, 10, 10))
dummy_labels = torch.randint(2, (200, 1))
dummy_dataset = TensorDataset(dummy_images, dummy_labels)
dummy_loader = DataLoader(
    dummy_dataset, batch_size=64, shuffle=True
)

iterator = iter(dummy_loader)
batch1 = next(iterator)
batch1[0].shape

Output

torch.Size([64, 3, 10, 10])

The code above creates a dummy dataset of 200 colored (three-channel) images of

size 10x10 pixels and then retrieves the first mini-batch. The mini-batch has the

expected NCHW shape.

The batch normalization is done over the C dimension, so it will compute statistics

using the remaining dimensions—N, H, and W (axis=[0, 2, 3])—representing all

pixels of a given channel from every image in the mini-batch.

The nn.BatchNorm2d layer has the same arguments as its one-dimension

counterpart, but its num_features argument must match the number of channels

of the input instead:
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batch_normalizer = nn.BatchNorm2d(
    num_features=3, affine=False, momentum=None
)
normed1 = batch_normalizer(batch1[0])
print(normed1.mean(axis=[0, 2, 3]),
      normed1.var(axis=[0, 2, 3], unbiased=False))

Output

(tensor([ 2.3171e-08,  3.4217e-08, -2.9616e-09]),
 tensor([0.9999, 0.9999, 0.9999]))

As expected, each channel in the output has its pixel values with zero mean and

unit standard deviation.

Other Normalizations

Batch normalization is certainly the most popular kind of normalization, but it’s not

the only one. If you check PyTorch’s documentation on normalization layers, you’ll

see many alternatives, like nn.SyncBatchNorm, for instance. But, just like the batch

renormalization technique, they are beyond the scope of this book.

Small Summary

This was probably the most challenging section in this book so far. It goes over a lot

of information while only scratching the surface of this topic. So, I am organizing a

small summary of the main points we’ve addressed:

• During training time, batch normalization computes statistics (mean and

variance) for each individual mini-batch and uses these statistics to produce

standardized outputs.

• The fluctuations in the statistics from one mini-batch to the next introduce

randomness into the process and thus have a regularizing effect.

• Due to the regularizing effect of batch normalization, it may not work well if

combined with other regularization techniques (like dropout).

• During evaluation time, batch normalization uses a (smoothed) average of the

statistics computed during training.

Batch Normalization | 545

https://bit.ly/31H1qWR
https://pytorch.org/docs/stable/generated/torch.nn.SyncBatchNorm.html


• Its original motivation was to address the so-called internal covariate shift by

producing similar distributions across different layers, but it was later found

that it actually improves model training by making the loss surface smoother.

• The batch normalization may be placed either before or after the activation

function; there is no "right" or "wrong" way.

• The layer preceding the batch normalization layer should have its bias=False
set to avoid useless computation.

• Even though batch normalization works for a different reason than initially

thought, addressing the internal covariate shift may still bring benefits, like

solving the vanishing gradients problem, one of the topics of the next chapter.

So, we’ve learned that batch normalization speeds up training by making the loss

surface smoother. It turns out, there is yet another technique that works along

these lines…

Residual Connections

The idea of a residual connection is quite simple, actually: After passing the input

through a layer and activation function, the input itself is added to the result.

That’s it! Simple, elegant, and effective.

 "Why would I want to add the input to the result?"

Learning the Identity

Neural networks and their nonlinearities (activation functions) are great! We’ve

seen in the "Bonus" chapter how models manage to twist and turn the feature

space to the point where classes can be separated by a straight line in the

activated feature space. But nonlinearities are both a blessing and a curse: They

make it extremely hard for a model to learn the identity function.

To illustrate this, let’s start with a dummy dataset containing 100 random data

points with a single feature. But this feature isn’t simply a feature—it is also the

label. Data preparation is fairly straightforward:
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torch.manual_seed(23)
dummy_points = torch.randn((100, 1))
dummy_dataset = TensorDataset(dummy_points, dummy_points)
dummy_loader = DataLoader(
    dummy_dataset, batch_size=16, shuffle=True
)

If we were using a simple linear model, that would be a no-brainer, right? The

model would just keep the input as it is (multiplying it by one—the weight—and

adding zero to it—the bias). But what happens if we introduce a nonlinearity? Let’s

configure the model and train it to see what happens:

class Dummy(nn.Module):
    def __init__(self):
        super(Dummy, self).__init__()
        self.linear = nn.Linear(1, 1)
        self.activation = nn.ReLU()

    def forward(self, x):
        out = self.linear(x)
        out = self.activation(out)
        return out

torch.manual_seed(555)
dummy_model = Dummy()
dummy_loss_fn = nn.MSELoss()
dummy_optimizer = optim.SGD(dummy_model.parameters(), lr=0.1)

dummy_sbs = StepByStep(dummy_model, dummy_loss_fn, dummy_optimizer)
dummy_sbs.set_loaders(dummy_loader)
dummy_sbs.train(200)

If we compare the actual labels with the model’s predictions, we’ll see that it failed

to learn the identity function:
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np.concatenate([dummy_points[:5].numpy(),
                dummy_sbs.predict(dummy_points)[:5]], axis=1)

Output

array([[-0.9012059 ,  0.        ],
       [ 0.56559485,  0.56559485],
       [-0.48822638,  0.        ],
       [ 0.75069577,  0.75069577],
       [ 0.58925384,  0.58925384], dtype=float32)

No surprises here, right? Since the ReLU can only return positive values, it will

never be able to produce the points with negative values.

 "Wait, that doesn’t look right … where is the output layer?"

OK, you caught me! I suppressed the output layer on purpose to make a point here.

Please bear with me a little bit longer while I add a residual connection to the

model:

class DummyResidual(nn.Module):
    def __init__(self):
        super(DummyResidual, self).__init__()
        self.linear = nn.Linear(1, 1)
        self.activation = nn.ReLU()

    def forward(self, x):
        identity = x               ①
        out = self.linear(x)
        out = self.activation(out)
        out = out + identity       ①
        return out

① Adding the output to the result

Guess what happens if we replace the Dummy model with the DummyResidual model

and retrain it?
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np.concatenate([dummy_points[:5].numpy(),
                dummy_sbs.predict(dummy_points)[:5]], axis=1)

Output

array([[-0.9012059 , -0.9012059 ],
       [ 0.56559485,  0.56559485],
       [-0.48822638, -0.48822638],
       [ 0.75069577,  0.75069577],
       [ 0.58925384,  0.58925384]], dtype=float32)

It looks like the model actually learned the identity function … or did it? Let’s

check its parameters:

dummy_model.state_dict()

Output

OrderedDict([('linear.weight', tensor([[0.1488]], device='cuda:0')),
             ('linear.bias', tensor([-0.3326], device='cuda:0'))])

For an input value equal to zero, the output of the linear layer will be -0.3326,

which, in turn, will be chopped off by the ReLU activation. Now I have a question

for you:

 "Which input values produce outputs greater than zero?"

The answer: Input values above 2.2352 (=0.3326/0.1488) will produce positive

outputs, which, in turn, will pass through the ReLU activation. But I have another

question for you:

 "Guess what is the highest input value in our dataset?"
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Close enough! I am assuming you answered 2.2352, but it is just a little bit less than

that:

dummy_points.max()

Output

tensor(2.2347)

 "So what? Does it actually mean anything?"

It means the model learned to stay out of the way of the inputs! Now that the

model has the ability to use the raw inputs directly, its linear layer learned to

produce only negative values, so its nonlinearity (ReLU) produces only zeros. Cool,

right?

The Power of Shortcuts



The residual connection works as a shortcut, enabling the model

to skip the nonlinearities when it pays off to do so (if it yields a

lower loss). For this reason, residual connections are also known

as skip connections.

 "I’m still not convinced … what’s the big deal about this?"

The big deal is, these shortcuts make the loss surface smoother, so gradient

descent has an easier job finding a minimum. Don’t take my word for it—go and

check the beautiful loss landscape visualizations produced by Li et al. in their paper

"Visualizing the Loss Landscape of Neural Nets."[129]

Awesome, right? These are projections of a multi-dimensional loss surface for the

ResNet model, with and without skip connections. Guess which one is easier to

train? :-)


If you’re curious to see more landscapes like these, make sure to

check their website: "Visualizing the Loss Landscape of Neural

Nets."[130]
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Another advantage of these shortcuts is that they provide a

shorter path for the gradients to travel back to the initial layers,

thus preventing the vanishing gradients problem.

Residual Blocks

We’re finally ready to tackle the main component of the ResNet model (the top

performer of ILSVRC-2015), the residual block.

Figure 7.10 - Residual block

The residual block isn’t so different from our own DummyResidual model, except for

the fact that the residual block has two consecutive weight layers and a ReLU

activation at the end. Moreover, it may have more than two consecutive weight

layers, and the weight layers do not necessarily need to be linear.

For image classification, it makes much more sense to use convolutional instead of

linear layers, right? Right! And why not throw some batch normalization layers in

the mix? Sure! The residual block looks like this now:

Residual Connections | 551



class ResidualBlock(nn.Module):
    def __init__(self, in_channels, out_channels, stride=1):
        super(ResidualBlock, self).__init__()
        self.conv1 = nn.Conv2d(
            in_channels, out_channels,
            kernel_size=3, padding=1, stride=stride,
            bias=False
        )
        self.bn1 = nn.BatchNorm2d(out_channels)
        self.relu = nn.ReLU(inplace=True)

        self.conv2 = nn.Conv2d(
            out_channels, out_channels,
            kernel_size=3, padding=1,
            bias=False
        )
        self.bn2 = nn.BatchNorm2d(out_channels)

        self.downsample = None
        if out_channels != in_channels:
            self.downsample = nn.Conv2d(
                in_channels, out_channels,
                kernel_size=1, stride=stride
            )

    def forward(self, x):
        identity = x
        # First "weight layer" + activation
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
        # Second "weight layer"
        out = self.conv2(out)
        out = self.bn2(out)
        # What is that?!
        if self.downsample is not None:
            identity = self.downsample(identity)
        # Adding inputs before activation
        out = out + identity
        out = self.relu(out)

        return out
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It should be pretty clear, except for one small detail: It may be necessary to

downsample the input.

 "Why is that?"

To add up two images, they must have the same dimensions—not only the height

and the width, but also the number of channels (adding up is not the same as

stacking up channels!). That poses a problem for the residual block, since the

number of output channels of the last convolutional layer may be different than

the number of channels in the input.

If only there were an operation that took the original input and generated an

output with a different number of channels—do you know any?

 "What about a convolutional layer?"

Bingo! We can use yet another convolutional layer to produce an input (now

modified) that has a matching number of channels so it can be added to the main

output.

 "But then it is not the original input anymore, is it?"

Not really, no, because it will be modified by the downsampling convolutional layer.

But, even though it goes somewhat against the idea of learning the identity

function, the usefulness of a shortcut still stands.
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Finally, to illustrate the effect of the skip connection on an image, I’ve passed one of

the images from the Rock Paper Scissors dataset through a randomly initialized

residual block (three channels in and out, no downsampling), with and without a

skip connection. These are the results.

Figure 7.11 - Skip connection in action

On the one hand (that’s a good pun, c’mon!), if there are no skip connections, some

information may be lost, like the different shades on the back of the hand. On the

other hand (sorry!), skip connections may help to preserve that information.

That’s the general idea behind the ResNet model. Of course, the whole

architecture is more complex than that, involving stacking many different residual

blocks and adding some more bells and whistles to the mix. We’re not going into

any more details here, but the pre-trained models can easily be used for transfer

learning, just like we did with the AlexNet model.

Putting It All Together

In this chapter, we’ve gone through the necessary steps to use transfer learning

with pre-trained models for computer vision tasks: using ImageNet statistics for

pre-processing the inputs, freezing layers (or not), replacing the "top" layer, and

optionally speeding up training by generating features and training the "top" of

the model independently.
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Data Preparation

 1 # ImageNet statistics
 2 normalizer = Normalize(mean=[0.485, 0.456, 0.406],
 3                        std=[0.229, 0.224, 0.225])
 4 
 5 composer = Compose([Resize(256),
 6                     CenterCrop(224),
 7                     ToTensor(),
 8                     normalizer])
 9 
10 train_data = ImageFolder(root='rps', transform=composer)
11 val_data = ImageFolder(root='rps-test-set', transform=composer)
12 
13 # Builds a loader of each set
14 train_loader = DataLoader(
15   train_data, batch_size=16, shuffle=True
16 )
17 val_loader = DataLoader(val_data, batch_size=16)

This time, we’ll use the smallest version of the ResNet model (resnet18) and either

fine-tune it or use it as a feature extractor only.

Fine-Tuning

Model Configuration (1)

1 model = resnet18(pretrained=True)
2 torch.manual_seed(42)
3 model.fc = nn.Linear(512, 3)

There is no freezing since fine-tuning entails the training of all the weights, not only

those from the "top" layer.

Model Configuration (2)

1 multi_loss_fn = nn.CrossEntropyLoss(reduction='mean')
2 optimizer_model = optim.Adam(model.parameters(), lr=3e-4)
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Model Training

1 sbs_transfer = StepByStep(model, multi_loss_fn, optimizer_model)
2 sbs_transfer.set_loaders(train_loader, val_loader)
3 sbs_transfer.train(1)

Let’s see what the model can accomplish after training for a single epoch:

Evaluation

StepByStep.loader_apply(val_loader, sbs_transfer.correct)

Output

tensor([[124, 124],
        [124, 124],
        [124, 124]])

Perfect score!

If we had frozen the layers in the model above, it would have been a case of

feature extraction suitable for data augmentation since we would be training the

"top" layer while it was still attached to the rest of the model.

Feature Extraction

In the model that follows, we’re modifying the model (replacing the "top" layer

with an identity layer) to generate a dataset of features first and then using it to

train the real "top" layer independently.

Model Configuration (1)

1 device = 'cuda' if torch.cuda.is_available() else 'cpu'
2 model = resnet18(pretrained=True).to(device)
3 model.fc = nn.Identity()
4 freeze_model(model)
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Data Preparation — Preprocessing

1 train_preproc = preprocessed_dataset(model, train_loader)
2 val_preproc = preprocessed_dataset(model, val_loader)
3 train_preproc_loader = DataLoader(
4     train_preproc, batch_size=16, shuffle=True
5 )
6 val_preproc_loader = DataLoader(val_preproc, batch_size=16)

Once the dataset of features and its corresponding loaders are ready, we only need

to create a model corresponding to the "top" layer and train it in the usual way:

Model Configuration — Top Model

1 torch.manual_seed(42)
2 top_model = nn.Sequential(nn.Linear(512, 3))
3 multi_loss_fn = nn.CrossEntropyLoss(reduction='mean')
4 optimizer_top = optim.Adam(top_model.parameters(), lr=3e-4)

Model Training — Top Model

1 sbs_top = StepByStep(top_model, multi_loss_fn, optimizer_top)
2 sbs_top.set_loaders(train_preproc_loader, val_preproc_loader)
3 sbs_top.train(10)

We surely can evaluate the model now, as it is using the same data loaders

(containing pre-processed features):

Evaluation — Top Model

StepByStep.loader_apply(val_preproc_loader, sbs_top.correct)

Output

tensor([[ 98, 124],
        [124, 124],
        [104, 124]])

But, if we want to try it out on the original dataset (containing the images), we
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need to reattach the "top" layer:

Replacing Top Layer

1 model.fc = top_model
2 sbs_temp = StepByStep(model, None, None)

We can still create a separate instance of StepByStep for the full model so as to be

able to call its predict() or correct() methods (in this case, both loss function and

optimizers are set to None since we won’t be training the model anymore):

Evaluation

StepByStep.loader_apply(val_loader, sbs_temp.correct)

Output

tensor([[ 98, 124],
        [124, 124],
        [104, 124]])

We got the same results, as expected.

Recap

In this chapter, we’ve learned about the ImageNet Large Scale Visual Recognition

Challenge (ILSVRC) and the many model architectures developed to tackle it

(AlexNet, VGG, Inception, and ResNet). We used their pre-trained weights to

perform transfer learning and either fine-tune or extract features for our own

classification task. Moreover, we took a quick tour of the inner workings of many

architectural elements built into these models. This is what we’ve covered:

• learning about transfer learning

• learning about ImageNet, ILSVRC, and the most popular architectures

developed to tackle it

• comparing the size, speed, and performance of these architectures

• loading the AlexNet model

• loading the model’s pre-trained weights
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• freezing the layers of the model

• replacing the "top" layer of the model

• understanding the difference between fine-tuning and feature extraction

• using ImageNet statistics to pre-process the images

• generating a dataset of features using the frozen model

• training an independent model and attaching it to the original model

• understanding the role of auxiliary classifiers in very deep architectures

• building a loss function that handles auxiliary classifiers too

• training the "top" layer of an Inception V3 model

• using 1x1 convolutions as a dimension-reduction layer

• building an Inception module

• understanding what a batch normalization layer does

• discussing where to place the batch normalization layer, before or after an

activation function

• understanding the impact of mini-batch size on batch normalization statistics

• understanding the regularizer effect of batch normalization

• observing the effect of train and eval modes in batch normalization layers

• understanding what a residual / skip connection is

• understanding the effect of skip connections on the loss surface

• building a residual block

• fine-tuning and extracting features using a ResNet18 model

Congratulations! You have just finished the fourth and final chapter of Part II (not

counting the "Extra" chapter)! You are now familiar with the most important tools

and techniques for handling computer vision problems. Although there will always

be a lot to learn, since the field is very dynamic and new techniques are being

constantly developed, I believe that having a good grasp of how these building

blocks work will make it easier for you to further explore and keep learning on

your own.

In the next part, we’ll shift our focus to sequences and a whole new class of models:

Recurrent neural networks and their variants.
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Extra Chapter
Vanishing and Exploding Gradients

Spoilers

In this chapter, we will:

• tackle the vanishing gradients problem using initialization schemes

• understand the effect of batch normalization on the vanishing gradients

• tackle the exploding gradients problem using gradient clipping

• clip gradients in different ways—element-wise, using its norm, and using hooks

• understand the difference between clipping gradients after or during

backpropagation

Jupyter Notebook

The Jupyter notebook corresponding to Chapter Extra[131] is part of the official

Deep Learning with PyTorch Step-by-Step repository on GitHub. You can also run it

directly in Google Colab[132].

If you’re using a local installation, open your terminal or Anaconda prompt and

navigate to the PyTorchStepByStep folder you cloned from GitHub. Then, activate

the pytorchbook environment and run jupyter notebook:

$ conda activate pytorchbook

(pytorchbook)$ jupyter notebook

If you’re using Jupyter’s default settings, this link should open Chapter Extra’s

notebook. If not, just click on ChapterExtra.ipynb in your Jupyter’s home page.

Imports

For the sake of organization, all libraries needed throughout the code used in any

given chapter are imported at its very beginning. For this chapter, we’ll need the

following imports:
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import torch
import torch.optim as optim
import torch.nn as nn
from sklearn.datasets import make_regression

from torch.utils.data import DataLoader, TensorDataset
from stepbystep.v3 import StepByStep

from data_generation.ball import load_data

Vanishing and Exploding Gradients

In this extra chapter, we’re discussing gradients once again. The gradients, together

with the learning rate, are what makes the model tick, or better yet, learn. We

discussed both of these topics in quite some detail in Chapter 6, but we always

assumed that the gradients were well behaved, as long as our learning rate was

sensible. Unfortunately, this is not necessarily true, and sometimes the gradients

may go awry: They can either vanish or explode. Either way, we need to rein them

in, so let’s see how we can accomplish that.

Vanishing Gradients

Do you remember how we tell PyTorch to compute gradients for us? It starts with

the loss value, followed by a call to the backward() method, which works its way

back up to the first layer. That’s backpropagation in a nutshell. It works fine for

models with a few hidden layers, but as models grow deeper, the gradients

computed for the weights in the initial layers become smaller and smaller. That’s

the so-called vanishing gradients problem, and it has always been a major obstacle

for training deeper models.

 "Why is it so bad?"

If gradients vanish—that is, if they are close to zero—updating the weights will

barely change them. In other words, the model is not learning anything; it gets

stuck.

 "Why does it happen?"

We can blame it on the (in)famous "internal covariate shift." But, instead of

562 | Extra Chapter: Vanishing and Exploding Gradients



discussing it, let me illustrate it.

Ball Dataset and Block Model

Let’s use a dataset of 1,000 random points drawn from a ten-dimensional ball (this

seems fancier than it actually is; you can think of it as a dataset with 1,000 points

with ten features each) such that each feature has zero mean and unit standard

deviation. In this dataset, points situated within half of the radius of the ball are

labeled as negative cases, while the remaining points are labeled positive cases. It is a

familiar binary classification task.

Data Generation

1 X, y = load_data(n_points=1000, n_dims=10)

Next, we can use these data points to create a dataset and a data loader (no mini-

batches this time):

Data Preparation

1 ball_dataset = TensorDataset(
2     torch.as_tensor(X).float(), torch.as_tensor(y).float()
3 )
4 ball_loader = DataLoader(ball_dataset, batch_size=len(X))

The data preparation part is done. What about the model configuration? To

illustrate the vanishing gradients problem, we need a deeper model than the ones

we’ve built so far. Let’s call it the "block" model: It is a block of several hidden

layers (and activation functions) stacked together, every layer containing the same

number of hidden units (neurons).

Instead of building the model manually, I’ve created a function, build_model(), that

allows us to configure a model like that. Its main arguments are the number of

features, the number of layers, the number of hidden units per layer, the activation

function to be placed after each hidden layer, and if it should add a batch

normalization layer after every activation function or not:
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Model Configuration (1)

1 torch.manual_seed(11)
2 n_features = X.shape[1]
3 n_layers = 5
4 hidden_units = 100
5 activation_fn = nn.ReLU
6 model = build_model(
7     n_features, n_layers, hidden_units,
8     activation_fn, use_bn=False
9 )

Let’s check the model out:

print(model)

Output

Sequential(
  (h1): Linear(in_features=10, out_features=100, bias=True)
  (a1): ReLU()
  (h2): Linear(in_features=100, out_features=100, bias=True)
  (a2): ReLU()
  (h3): Linear(in_features=100, out_features=100, bias=True)
  (a3): ReLU()
  (h4): Linear(in_features=100, out_features=100, bias=True)
  (a4): ReLU()
  (h5): Linear(in_features=100, out_features=100, bias=True)
  (a5): ReLU()
  (o): Linear(in_features=100, out_features=1, bias=True)
)

Exactly as expected! The layers are labeled sequentially, from one up to the

number of layers, and have prefixes according to their roles: h for linear layers, a for

activation functions, bn for batch normalization layers, and o for the last (output)

layer.

We’re only missing a loss function and an optimizer, and then we’re done with the

model configuration part too:
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Model Configuration (2)

1 loss_fn = nn.BCEWithLogitsLoss()
2 optimizer = optim.SGD(model.parameters(), lr=1e-2)

Weights, Activations, and Gradients

To visualize what’s happening with the weights, the activation values, and the

gradients, we need to capture these values first. Luckily, we already have the

appropriate methods for these tasks: capture_parameters(), attach_hooks(), and

capture_gradients(), respectively. We only need to create an instance of our

StepByStep class, configure these methods to capture these values for the

corresponding layers, and train it for a single epoch:

Model Training

1 hidden_layers = [f'h{i}' for i in range(1, n_layers + 1)]
2 activation_layers = [f'a{i}' for i in range(1, n_layers + 1)]
3 
4 sbs = StepByStep(model, loss_fn, optimizer)
5 sbs.set_loaders(ball_loader)
6 sbs.capture_parameters(hidden_layers)
7 sbs.capture_gradients(hidden_layers)
8 sbs.attach_hooks(activation_layers)
9 sbs.train(1)

Since we’re not using mini-batches this time, training the model for one epoch will

use all data points to

• perform one forward pass, thus capturing the initial weights and generating

activation values; and

• perform one backward pass, thus computing the gradients.

To make matters even easier, I’ve also created a function, get_plot_data(), that

takes a data loader and a model as arguments and returns the captured values

after training it for a single epoch. This way, you can experiment with different

models too!
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parms, gradients, activations = get_plot_data(
    train_loader=ball_loader, model=model
)

Figure E.1 - Vanishing gradients

On the left-most plot, we can see that the initial weights in each layer are uniformly

distributed, but the first hidden layer has a much wider range. This is a

consequence of the default initialization scheme used by PyTorch’s linear layer, but

we’re not delving into these details here.

The activation values are clearly shrinking as data moves from one layer to the

next. Conversely, the gradients are larger in the last layer, and shrink as the

gradient descent algorithm works its way back to the first layer. That’s a simple and

straightforward example of vanishing gradients.



Gradients can also be exploding instead of vanishing. In this case,

activation values grow larger and larger as data moves from one

layer to the next, and gradients are smaller in the last layer,

growing as we move back up to the first layer.

This phenomenon is less common, though, and can be more easily

handled using a technique called gradient clipping that simply

caps the absolute value of the gradients. We’ll get back to that

later.

 "How can we prevent the vanishing gradients problem?"

If we manage to get the distribution of activation values similar across all layers,

we may have a shot at it. But, to achieve that, we need to tweak the variance of the
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weights. If done properly, the initial distribution of the weights may lead to a more

consistent distribution of activation values across layers.


If you haven’t noticed already, keeping similar distributions of

activation values across all layers is exactly what batch

normalization was doing.

So, if you’re using batch normalization, vanishing gradients are likely not an issue.

But, before batch normalization layers became a thing, there was another way of

tackling the problem, which is the topic of the next section.

Initialization Schemes

An initialization scheme is a clever way of tweaking the initial distribution of the

weights. It is all about choosing the best standard deviation to use for drawing

random weights from a normal or uniform distribution. In this section, we’ll briefly

discuss two of the most traditional schemes, Xavier (Glorot) and Kaiming (He), and

how to manually initialize weights in PyTorch. For a more detailed explanation of

the inner workings of these initialization schemes, please check my post: "Hyper-

parameters in Action! Part II — Weight Initializers."[133]

The Xavier (Glorot) initialization scheme was developed by Xavier Glorot and

Yoshua Bengio and is meant to be used with the hyperbolic-tangent (TanH)

activation function. It is referred to as either Xavier or Glorot initialization,

depending on the context. In PyTorch, it is available as both

nn.init.xavier_uniform() and nn.init.xavier_normal().

The Kaiming (He) initialization scheme was developed by Kaiming He (yes, the

same guy from the ResNet architecture) et al. and is meant to be used with the

rectified linear unit (ReLU) activation function. It is referred to as either Kaiming

or He initialization, depending on the context. In PyTorch, it is available as both

nn.init.kaiming_uniform() and nn.init.kaiming_normal().

 "Should I use uniform or normal distribution?"

It shouldn’t make much of a difference, but using the uniform distribution usually

delivers slightly better results than the alternative.

 "Do I have to manually initialize the weights?"
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Not necessarily, no. If you’re using transfer learning, for instance, this is pretty

much not an issue because most of the model would be already trained, and a bad

initialization of the trainable part should have little to no impact on model training.

Besides, as we’ll see in a short while, using batch normalization layers makes your

model much more forgiving when it comes to a bad initialization of the weights.

 "What about PyTorch’s defaults? Can’t I simply trust them?"

Trust, but verify. Each PyTorch layer has its own default initialization of the

weights in the reset_parameters() method. For instance, the nn.Linear layer is

initialized using the Kaiming (He) scheme drawn from a uniform distribution:

# nn.Linear.reset_parameters()
def reset_parameters(self) -> None:
    init.kaiming_uniform_(self.weight, a=math.sqrt(5))
    if self.bias is not None:
        fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight)
        bound = 1 / math.sqrt(fan_in)
        init.uniform_(self.bias, -bound, bound)

Moreover, it also initializes the biases based on the "fan-in," which is simply the

number of units in the preceding layer.



IMPORTANT: Every default initialization has its own

assumptions, and in this particular case it is assumed (in the

reset_parameters() method) that the nn.Linear layer will be

followed by a leaky ReLU (the default value for the nonlinearity
argument in the Kaiming initialization) with a negative slope

equal to the square root of five (the “a” argument in the Kaiming

initialization).

If your model does not follow these assumptions, you may run into problems. For

instance, our model used a regular ReLU instead of a leaky one, so the default

initialization scheme was off and we ended up with vanishing gradients.

 "How am I supposed to know that?"

Unfortunately, there is no easy way around it. You may inspect a layer’s

reset_parameters() method and figure out its assumptions from the code (like we
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just did), or, if you are training a deeper model from scratch, it is probably best to

initialize the layers manually so you have total control over the process.



Don’t worry too much about initialization schemes just now! This

is a somewhat advanced topic already, but I thought it was worth

introducing it after going over batch normalization. As I

mentioned before, you’re likely using transfer learning with

deeper models anyway.


"What if I really want to try initializing the weights myself—how can I

do it?"

Let’s go over a simple example. Let’s say you’d like to initialize all linear layers using

the Kaiming uniform scheme with the proper nonlinearity function for the weights

and setting all the biases to zeros. You’ll have to build a function that takes a layer

as its argument:

Weight Initialization

1 def weights_init(m):
2     if isinstance(m, nn.Linear):
3         nn.init.kaiming_uniform_(m.weight, nonlinearity='relu')
4         if m.bias is not None:
5             nn.init.zeros_(m.bias)

The function may set both weight and bias attributes of the layer passed as the

argument. Notice that both methods from nn.init used to initialize the attributes

have an underscore at the end, so they are making changes in-place.

To actually apply the initialization scheme to your model, simply call the apply()
method of your model, and it will recursively apply the initialization function to all

its internal layers:

Model Configuration (3)

1 with torch.no_grad():
2     model.apply(weights_init)

You should also use the no_grad() context manager while initializing / modifying

the weights and biases of your model.
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To illustrate the effect of a proper initialization, I’ve plotted activation values and

gradients for three different configurations of the "block" model: sigmoid

activation with normal initialization, TanH activation with Xavier uniform

initialization, and ReLU activation with Kaiming uniform initialization.

Figure E.2 - The effect of initializations

Well, using a sigmoid function as an activation function in deep models is just

hopeless. But, for the other two, it should be clear that the correct initialization of

the weights resulted in more-stable distributions of activation values and

gradients across all the layers.

Even though initialization schemes are definitely a clever approach to the vanishing

gradients problem, their usefulness vanishes (pun intended!) when batch

normalization layers are added to the model.

Batch Normalization

Since batch normalization layers are supposed to produce similar distributions of

activation values (and gradients) across the layers, we have to ask ourselves:

 "Can we get away with a bad initialization?"

Yes, we can! Let’s compare activation values and gradients for yet another three

different configurations of the "block" model: ReLU activation and normal

initialization, ReLU activation and Kaiming uniform initialization, and ReLU

activation and normal initialization followed by batch normalization layer.
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Figure E.3 - The effect of batch normalization

The left-most plot shows us the result of a bad initialization scheme: vanished

gradients. The center plot shows us the result of a proper initialization scheme.

Finally, the right-most plot shows us that batch normalization can indeed

compensate for a bad initialization.

Not all bad gradients vanish, though—some bad gradients explode!

Exploding Gradients

The root of the problem is the same: deeper and deeper models. If the model has a

couple of layers only, one large gradient won’t do any harm. But, if there are many

layers, the gradients may end up growing uncontrollably. That’s the so-called

exploding gradients problem, and it’s fairly easy to spot: Just look for NaN values in

the loss. If that’s the case, it means that the gradients grew so large that they cannot

be properly represented anymore.

 "Why does it happen?"

There may be a compounding effect (think of raising a relatively small number (e.g.,

1.5) to a large power (e.g., 20)), especially in recurrent neural networks (the topic

of Chapter 8), since the same weights are used repeatedly along a sequence. But,

there are other reasons as well: The learning rate may be too high, or the target

variable (in a regression problem) may have a large range of values. Let me

illustrate it.

Data Generation & Preparation

Let’s use Scikit-Learn’s make_regression() to generate a dataset of 1,000 points

with ten features each, and a little bit of noise:
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Data Generation & Preparation

 1 X_reg, y_reg = make_regression(
 2     n_samples=1000, n_features=10, noise=0.1, random_state=42
 3 )
 4 X_reg = torch.as_tensor(X_reg).float()
 5 y_reg = torch.as_tensor(y_reg).float().view(-1, 1)
 6 
 7 dataset = TensorDataset(X_reg, y_reg)
 8 train_loader = DataLoader(
 9     dataset=dataset, batch_size=32, shuffle=True
10 )

Even though we cannot plot a ten-dimensional regression, we can still visualize the

distribution of both features and target values.

Figure E.4 - Distributions of feature and target values

It’s all good and fine with our feature values since they are inside a typical

standardized range (-3, 3). The target values, though, are on a very different scale,

from -400 to 400. If the target variable represents a monetary value, for example,

these ranges are fairly common. Sure, we could standardize the target value as well,

but that would ruin the example of exploding gradients!

Model Configuration & Training

We can build a fairly simple model to tackle this regression problem: a network

with one hidden layer with 15 units, a ReLU as activation function, and an output

layer.
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Model Configuration

1 torch.manual_seed(11)
2 model = nn.Sequential()
3 model.add_module('fc1', nn.Linear(10, 15))
4 model.add_module('act', nn.ReLU())
5 model.add_module('fc2', nn.Linear(15, 1))
6 optimizer = optim.SGD(model.parameters(), lr=0.01)
7 loss_fn = nn.MSELoss()

Before training it, let’s set our instance of the StepByStep class to capture the

gradients for the weights in the hidden layer (fc1):

Model Training

1 sbs_reg = StepByStep(model, loss_fn, optimizer)
2 sbs_reg.set_loaders(train_loader)
3 sbs_reg.capture_gradients(['fc1'])
4 sbs_reg.train(2)

It turns out, two epochs are already enough to get exploding gradients. Yay! Well,

maybe not "yay," but you know what I mean, right?

Let’s look at the losses:

sbs_reg.losses

Output

[16985.014358520508, nan]

Bingo! There is the NaN value we were looking for. The phenomenon is not called

exploding losses, but exploding gradients, so let’s look for NaNs there too. Since there

are 150 weights in the hidden layer, and 32 mini-batches per epoch (resulting in 64

gradient computations over two epochs), it’s easier to look at the average gradient

used for updating the parameters:
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grads = np.array(sbs_reg._gradients['fc1']['weight'])
print(grads.mean(axis=(1, 2)))

Output

[ 1.58988627e+00 -2.41313894e+00  1.61042006e+00  4.27530414e+00
  2.00876453e+01 -5.46269826e+01  4.76936617e+01 -6.68976169e+01
  4.89202255e+00 -5.48839445e+00 -8.80165010e+00  2.42120121e+01
 -1.95470126e+01 -5.61713082e+00  4.16399702e+01  2.09703794e-01
  9.78054642e+00  8.47080885e+00 -4.37233462e+01 -1.22754592e+01
 -1.05804357e+01  6.17669332e+00 -3.27032627e+00  3.43037068e+01
  6.90878444e+00  1.15130024e+01  8.64732616e+00 -3.04457552e+01
 -3.79791490e+01  1.57137556e+01  1.43945687e+01  8.90063342e-01
 -3.60141261e-01  9.18566430e+00 -7.91019879e+00  1.92959307e+00
 -6.55456380e+00 -1.66785977e+00 -4.13915831e+01  2.03403218e+01
 -5.39869087e+02 -2.33201361e+09  3.74779743e+26             nan
             nan             nan             nan             nan
             nan             nan             nan             nan
             nan             nan             nan             nan
             nan             nan             nan             nan
             nan             nan             nan             nan]

The first NaN shows up at the 44th update, but the explosion started at the 41st

update: The average gradient goes from hundreds (1e+02) to billions (1e+09) in

one step, to gazillions (1e+26) or whatever this is called in the next, to a full-blown

NaN.

 "How do we fix it?"

On the one hand, we could standardize the target value or try a lower learning rate

(like 0.001). On the other hand, we could simply clip the gradients.

Gradient Clipping

Gradient clipping is quite simple: You pick a value and clip gradients higher (in

absolute terms) than the value you picked. That’s it. Actually, there is one more

small detail: You can pick a value for each and every gradient or a value for the

norm of all gradients. To illustrate both mechanisms, let’s randomly generate some

parameters:
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torch.manual_seed(42)
parm = nn.Parameter(torch.randn(2, 1))
fake_grads = torch.tensor([[2.5], [.8]])

We’re also generating the fake gradients above so we can manually set them as if

they were the computed gradients of our random parameters. We’ll use these

gradients to illustrate two different ways of clipping them.

Value Clipping

This is the most straightforward way: It clips gradients element-wise so they stay

inside the [-clip_value, +clip_value] range. We can use PyTorch’s

nn.utils.clip_grad_value_() to clip gradients in-place:

parm.grad = fake_grads.clone()
#Gradient Value Clipping
nn.utils.clip_grad_value_(parm, clip_value=1.0)
parm.grad.view(-1,)

Output

tensor([1.0000, 0.8000])

The first gradient got clipped, the other one kept its original value. It doesn’t get any

simpler than that.

Now, pause for a moment and think of the gradients above as the steps gradient

descent is taking along two different dimensions to navigate the loss surface

toward (some) minimum value. What happens if we clip some of these steps? We’re

actually changing directions on its path toward the minimum. Figure E.5 illustrates

both vectors, original and clipped.

By clipping values, we’re modifying the gradients in such a way that, not only is the

step smaller, but it is in a different direction. Is this a problem? No, not necessarily.

Can we avoid changing directions? Yes, we can, that’s what norm clipping is good

for.
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Figure E.5 - Gradients: before and after clipping by value

Backward Hooks

As we saw in Chapter 6, the register_hook() method registers a backward

hook to a tensor for a given parameter. The hook function takes a gradient

as input and may return a modified, or clipped, gradient. The hook function

will be called every time a gradient with respect to that tensor is computed;

meaning, it can clip gradients during backpropagation, unlike the other

methods.

The code below attaches hooks to all parameters of the model, thus

performing gradient clipping on the fly:

def clip_backprop(model, clip_value):
    handles = []
    for p in model.parameters():
        if p.requires_grad:
            func = lambda grad: torch.clamp(grad,
                                            -clip_value,
                                            clip_value)
            handle = p.register_hook(func)
            handles.append(handle)
    return handles

Do not forget that you should remove the hooks using handle.remove()
after you’re done with them.

Norm Clipping (or Gradient Scaling)

While value clipping was an element-wise operation, norm clipping computes the

norm for all gradients together as if they were concatenated into a single vector. If
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(and only if) the norm exceeds the clipping value, the gradients are scaled down to

match the desired norm; otherwise they keep their values. We can use PyTorch’s

nn.utils.clip_grad_norm_() to scale gradients in-place:

parm.grad = fake_grads.clone()
# Gradient Norm Clipping
nn.utils.clip_grad_norm_(parm, max_norm=1.0, norm_type=2)
fake_grads.norm(), parm.grad.view(-1,), parm.grad.norm()

Output

(tensor(2.6249), tensor([0.9524, 0.3048]), tensor(1.0000))

The norm of our fake gradients was 2.6249, and we’re clipping the norm at 1.0, so

the gradients get scaled by a factor of 0.3810.

Clipping the norm preserves the direction of the gradient vector.

Figure E.6 - Gradients: before and after clipping by norm

 "A couple of questions … first, which one is better?"

On the one hand, norm clipping maintains the balance between the updates of all

parameters since it’s only scaling the norm and preserving the direction. On the

other hand, value clipping is faster, and the fact that it slightly changes the direction

of the gradient vector does not seem to have any harmful impact on performance.

So, you’re probably OK using value clipping.

 "Second, which clip value should I use?"

That’s trickier to answer—the clip value is a hyper-parameter that can be fine-tuned

like any other. You can start with a value like ten, and work your way down if the
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gradients keep exploding.

 "Finally, how do I actually do it in practice?"

Glad you asked! We’re creating some more methods in our StepByStep class to

handle both kinds of clipping, and modifying the _make_train_step_fn() method

to account for them. Gradient clipping must happen after gradients are computed

(loss.backward()) and before updating the parameters (optimizer.step()):

StepByStep Method

setattr(StepByStep, 'clipping', None)

def set_clip_grad_value(self, clip_value):
    self.clipping = lambda: nn.utils.clip_grad_value_(
        self.model.parameters(), clip_value=clip_value
    )

def set_clip_grad_norm(self, max_norm, norm_type=2):
    self.clipping = lambda: nn.utils.clip_grad_norm_(
        self.model.parameters(), max_norm, norm_type
    )

def remove_clip(self):
    self.clipping = None

def _make_train_step_fn(self):
    # This method does not need ARGS... it can refer to
    # the attributes: self.model, self.loss_fn, and self.optimizer

    # Builds function that performs a step in the train loop
    def perform_train_step_fn(x, y):
        # Sets model to TRAIN mode
        self.model.train()

        # Step 1 - Computes model's predicted output - forward pass
        yhat = self.model(x)
        # Step 2 - Computes the loss
        loss = self.loss_fn(yhat, y)
        # Step 3 - Computes gradients
        loss.backward()
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        if callable(self.clipping):       ①
            self.clipping()               ①

        # Step 4 - Updates parameters
        self.optimizer.step()
        self.optimizer.zero_grad()

        # Returns the loss
        return loss.item()

    # Returns the function that will be called inside the train loop
    return perform_train_step_fn

setattr(StepByStep, 'set_clip_grad_value', set_clip_grad_value)
setattr(StepByStep, 'set_clip_grad_norm', set_clip_grad_norm)
setattr(StepByStep, 'remove_clip', remove_clip)
setattr(StepByStep, '_make_train_step_fn', _make_train_step_fn)

① Gradient clipping after computing gradients and before updating parameters

The gradient clipping methods above work just fine for most models, but they are

of little use for recurrent neural networks (we’ll discuss them in Chapter 8), which

require gradients to be clipped during backpropagation. Fortunately, we can use

the backward hooks code to accomplish that:
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StepByStep Method

def set_clip_backprop(self, clip_value):
    if self.clipping is None:
        self.clipping = []
    for p in self.model.parameters():
        if p.requires_grad:
          func = lambda grad: torch.clamp(grad,
                                          -clip_value,
                                          clip_value)
          handle = p.register_hook(func)
          self.clipping.append(handle)

def remove_clip(self):
    if isinstance(self.clipping, list):
        for handle in self.clipping:
            handle.remove()
    self.clipping = None

setattr(StepByStep, 'set_clip_backprop', set_clip_backprop)
setattr(StepByStep, 'remove_clip', remove_clip)

The method above will attach hooks to all parameters of the model and perform

gradient clipping on the fly. We also adjusted the remove_clip() method to remove

any handles associated with the hooks.

Model Configuration & Training

Let’s use the method below to initialize the weights so we can reset the

parameters of our model that had its gradients exploded:

Weight Initialization

1 def weights_init(m):
2     if isinstance(m, nn.Linear):
3         nn.init.kaiming_uniform_(m.weight, nonlinearity='relu')
4         if m.bias is not None:
5             nn.init.zeros_(m.bias)
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Moreover, let’s use a ten times higher learning rate; after all, we’re in full control of

the gradients now:

Model Configuration

1 torch.manual_seed(42)
2 with torch.no_grad():
3     model.apply(weights_init)
4 
5 optimizer = optim.SGD(model.parameters(), lr=0.1)

Before training it, let’s use set_clip_grad_value() to make sure no gradients are

ever above 1.0:

Model Training

1 sbs_reg_clip = StepByStep(model, loss_fn, optimizer)
2 sbs_reg_clip.set_loaders(train_loader)
3 sbs_reg_clip.set_clip_grad_value(1.0)
4 sbs_reg_clip.capture_gradients(['fc1'])
5 sbs_reg_clip.train(10)
6 sbs_reg_clip.remove_clip()
7 sbs_reg_clip.remove_hooks()

fig = sbs_reg_clip.plot_losses()

No more exploding gradients, it seems. The loss is being minimized even after

choosing a much higher learning rate to train the model.
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Figure E.7 - Losses—clipping by value

What about taking a look at the average gradients once again (there are 320

updates now, so we’re looking at the extremes only):

avg_grad = np.array(
    sbs_reg_clip._gradients['fc1']['weight']).mean(axis=(1, 2)
)
avg_grad.min(), avg_grad.max()

Output

(-24.69288555463155, 14.385948762893676)


"How come these (absolute) values are much larger than our clipping

value?"

These are the computed gradients; that is, before clipping. Left unchecked, these

gradients would have caused large updates, which, in turn, would have resulted in

even larger gradients, and so on and so forth. Explosion, basically. But these values

were all clipped before being used in the parameter update, so all went well with

the model training.

It is possible to take a more aggressive approach and clip the gradients at the origin

using the backward hooks we discussed before.
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Clipping with Hooks

First, we reset the parameters once again:

Model Configuration

1 torch.manual_seed(42)
2 with torch.no_grad():
3     model.apply(weights_init)

Next, we use set_clip_backprop() to clip the gradients during backpropagation

using hooks:

Model Training

1 sbs_reg_clip_hook = StepByStep(model, loss_fn, optimizer)
2 sbs_reg_clip_hook.set_loaders(train_loader)
3 sbs_reg_clip_hook.set_clip_backprop(1.0)
4 sbs_reg_clip_hook.capture_gradients(['fc1'])
5 sbs_reg_clip_hook.train(10)
6 sbs_reg_clip_hook.remove_clip()
7 sbs_reg_clip_hook.remove_hooks()

fig = sbs_reg_clip_hook.plot_losses()

Figure E.8 - Losses—clipping by value with hooks

The loss is, once again, well behaved. At first sight, there doesn’t seem to be any

difference…
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Or is there? Let’s compare the distributions of the computed gradients over the

whole training loop for both methods.

Figure E.9 - Distributions of gradients during training

Well, that’s a big difference! On the left plot, the gradients were computed as usual

and only clipped before the parameter update to prevent the compounding effect

that led to the explosion of the gradients. On the right plot, no gradients are ever

above the clip value (in absolute terms).

Keep in mind that, even though the choice of clipping method does not seem to

have an impact on the overall loss of our simple model, this won’t hold true for

recurrent neural networks, and you should use hooks for clipping gradients in

that case.

Recap

This extra chapter was much shorter than the others, and its purpose was to

illustrate some simple techniques to take back control of gradients gone wild.

Therefore, we’re skipping the "Putting It All Together" section this time. We used

two simple datasets, together with two simple models, to show the signs of both

vanishing and exploding gradients. The former issue was addressed with different

initialization schemes and, optionally, batch normalization, while the latter was

addressed by clipping the gradients in different ways. This is what we’ve covered:

• visualizing the vanishing gradients problem in deeper models

• using a function to initialize the weights of a model

• visualizing the effect of initialization schemes on the gradients

• realizing that batch normalization can compensate for bad initializations

• understanding the exploding gradients problem

• using gradient clipping to address the exploding gradients problem
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• visualizing the difference between value clipping and norm clipping

• using backward hooks to perform gradient clipping during backpropagation

• visualizing the difference between clipping after and during backpropagation

After this small detour into gradient land, that’s the end of Part II, for real this time.

[131] https://github.com/dvgodoy/PyTorchStepByStep/blob/master/ChapterExtra.ipynb

[132] https://colab.research.google.com/github/dvgodoy/PyTorchStepByStep/blob/master/ChapterExtra.ipynb

[133] https://bit.ly/3eCfJ4h
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Part III
Sequences
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Chapter 8
Sequences

Spoilers

In this chapter, we will:

• learn about the characteristics of sequential data and generate our own

• understand the inner workings of recurrent layers

• build and train models to perform classification of sequences

• understand the importance of the hidden state as the representation of a

sequence

• visualize the journey of a hidden state from beginning to end of a sequence

• pre-process variable-length sequences using padding and packing techniques,

as well as the collate function

• learn how 1D convolutions can be used on sequential data

Jupyter Notebook

The Jupyter notebook corresponding to Chapter 8[134] is part of the official Deep

Learning with PyTorch Step-by-Step repository on GitHub. You can also run it

directly in Google Colab[135].

If you’re using a local installation, open your terminal or Anaconda prompt and

navigate to the PyTorchStepByStep folder you cloned from GitHub. Then, activate

the pytorchbook environment and run jupyter notebook:

$ conda activate pytorchbook

(pytorchbook)$ jupyter notebook

If you’re using Jupyter’s default settings, this link should open Chapter 8’s

notebook. If not, just click on Chapter08.ipynb in your Jupyter’s home page.
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Imports

For the sake of organization, all libraries needed throughout the code used in any

given chapter are imported at its very beginning. For this chapter, we’ll need the

following imports:

import numpy as np

import torch
import torch.optim as optim
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader, Dataset, random_split, \
    TensorDataset
from torch.nn.utils import rnn as rnn_utils

from data_generation.square_sequences import generate_sequences
from stepbystep.v4 import StepByStep

Sequences

In this third part of the book, we’ll dive into a new kind of input: sequences! So far,

each data point has been considered in and of itself; that is, each data point has had

a label to call its own. An image of a hand was classified as "rock," "paper," or

"scissors" based on its pixel values alone, without paying any attention to other

images' pixel values. This won’t be the case anymore.

In sequence problems, an ordered sequence of data points shares a single

label—emphasis on being ordered.

 "Why is ordered so important?"

If the data points aren’t ordered, even if they share a single label, they are not a

sequence, but rather a collection of data points.

Let’s think of a slightly contrived example: greyscale images with shuffled pixels.

Each pixel has a single value, but a pixel alone doesn’t have a label. It is the

collection of shuffled pixels, the shuffled image, that has a label: a duck, a dog, or a

cat (labeled before shuffling the pixels, of course).

588 | Chapter 8: Sequences



Before shuffling, the pixels were ordered; that is, they had an underlying two-

dimensional structure. This structure can be exploited by the convolutional neural

networks: The kernel moving around the image looks at a pixel in the center and all

its neighbors in both dimensions, height and width.

If the underlying structure has a single dimension, though, that’s a sequence. This

particular structure can be exploited by recurrent neural networks and their many

variants, as well as by 1D convolutional neural networks, which constitute the

subject of this chapter.

There are two main types of sequence problems: time series and natural language

processing (NLP). We’ll start by generating a synthetic dataset and then use it to

illustrate the inner workings of recurrent neural networks, encoder-decoder

models, attention mechanisms, and even Transformers! Only then will we get to

the natural language processing part.

I chose to follow this sequence of topics because I find it much easier to develop

intuition (and to produce meaningful visualizations) while working with a two-

dimensional dataset, as opposed to 100-dimensional word embeddings.

Data Generation

Our data points are two-dimensional, so they can be visualized as an image, and

ordered, so they are a sequence. We’ll be drawing squares! Each square, as

depicted in the figure below, has four corners (duh!), with each corner assigned a

letter and a color. The bottom-left corner is A and gray, the bottom-right one is D

and red, and so on.

Figure 8.1 - Our colored square

The coordinates (x0, x1) of the four corners are our data points. The "perfect" square

has the coordinates depicted in the figure above: A=(-1, -1), B=(-1, 1), C=(1, 1),

and D=(1,-1). Sure enough, we’ll generate a dataset full of noisy squares, each
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having its corners around these perfect coordinates.

Now, we need to give each sequence of data points (corners) a label. Assuming you

can draw a square starting at any corner, and draw it without lifting your pencil at

any time, you can choose to draw it clockwise or counterclockwise. These are our

labels.

Figure 8.2 - Drawing directions

Since there are four corners to start from, and there are two directions to follow,

there are effectively eight possible sequences.

Figure 8.3 - Possible sequences of corners

Our task is to classify the sequence of corners: Is it drawn in a clockwise

direction? A familiar binary classification problem!

Let’s generate 128 random noisy squares:

Data Generation

1 points, directions = generate_sequences(n=128, seed=13)
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And then let’s visualize the first ten squares:

fig = plot_data(points, directions)

Figure 8.4 - Sequence dataset

The corners show the order in which they were drawn. In the first square, the

drawing started at the top-right corner (corresponding to the blue C corner) and

followed a clockwise direction (corresponding to the CDAB sequence).



In the next chapter, we’ll use the first two corners to predict the

other two, so the model will need to learn not only the direction

but also the coordinates. We’ll build a sequence-to-sequence

model that uses one sequence to predict another.

For now, we’re sticking to classifying the direction, given all four data points of a

given square. But, first, we need to introduce…

Recurrent Neural Networks (RNNs)

Recurrent neural networks are perfectly suited for sequence problems since they

take advantage of the underlying structure of the data, namely, the order of the

data points. We’ll see in great detail how the data points, sequentially presented to

a recurrent neural network, modify the RNN’s internal (hidden) state, which will

ultimately be a representation of the full sequence.


SPOILER ALERT: Recurrent neural networks are all about

producing a hidden state that best represents a sequence.
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 "But what is a hidden state anyway?"

Excellent question! A hidden state is simply a vector. The size of the vector is up to

you. Really. You need to specify the number of hidden dimensions, which means

specifying the size of the vector that represents a hidden state. Let’s create a two-

dimensional hidden state just for kicks:

hidden_state = torch.zeros(2)
hidden_state

Output

tensor([0., 0.])

That’s actually a fine example of an initial hidden state, as we’ll see shortly. But,

before diving deep into the journey of a hidden state through an RNN, let’s take a

look at its top-level representation:

Figure 8.5 - Top-level representation of an RNN

If you’ve ever seen figures representing RNNs, you’ve probably bumped into one of

the two versions depicted above: "unrolled" or not. Let’s start with the unrolled

one: It shows a sequence of two data points being fed to an RNN. We can describe

the flow of information inside an RNN in five easy steps:

1. There is an initial hidden state (hi) that represents the state of the empty

sequence and is usually initialized with zeros (like the one we created above).

2. An RNN cell takes two inputs: the hidden state representing the state of the
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sequence so far, and a data point from the sequence (like the coordinates of

one of the corners from a given square).

3. The two inputs are used to produce a new hidden state (h0 for the first data

point), representing the updated state of the sequence now that a new point

was presented to it.

4. The new hidden state is both the output of the current step and one of the

inputs of the next step.

5. If there is yet another data point in the sequence, it goes back to Step #2; if

not, the last hidden state (h1 in the figure above) is also the final hidden state (

hf) of the whole RNN.

Since the final hidden state is a representation of the full sequence, that’s what

we’re going to use as features for our classifier.



In a way, that’s not so different from the way we used CNNs:

There, we’d run the pixels through multiple convolutional blocks

(convolutional layer + activation + pooling) and flatten them into

a vector at the end to use as features for a classifier.

Here, we run a sequence of data points through RNN cells and

use the final hidden state (also a vector) as features for a

classifier.

There is a fundamental difference between CNNs and RNNs, though: While there

are several different convolutional layers, each learning its own filters, the RNN

cell is one and the same. In this sense, the "unrolled" representation is misleading: It

definitely looks like each input is being fed to a different RNN cell, but that’s not the

case.



There is only one cell, which will learn a particular set of weights

and biases, and which will transform the inputs exactly the same

way in every step of the sequence. Don’t worry if this doesn’t

completely make sense to you just yet; I promise it will become

more clear soon, especially in the "Journey of a Hidden State"

section.
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RNN Cell

Let’s take a look at some of the internals of an RNN cell:

Figure 8.6 - Internals of an RNN cell

On the left, we have a single RNN cell. It has three main components:

• A linear layer to transform the hidden state (in blue)

• A linear layer to transform the data point from the sequence (in red)

• An activation function, usually the hyperbolic tangent (TanH), which is applied

to the sum of both transformed inputs

We can also represent them as equations:

Equation 8.1 - RNN

I chose to split the equation into smaller colored parts to highlight the fact that

these are simple linear layers producing both a transformed hidden state (th) and a

transformed data point (tx). The updated hidden (ht) state is both the output of this

particular cell and one of the inputs of the "next" cell.

But there is no other cell, really; it is just the same cell over and over again, as

depicted on the right side of the figure above. So, in the second step of the

sequence, the updated hidden state will run through the very same linear layer the

initial hidden state ran through. The same goes for the second data point.
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Considering this, the not "unrolled" ("rolled" doesn’t sound right!) representation is

a better characterization of the internal structure of an RNN.

Let’s dive deeper into the internals of an RNN cell and look at it at the neuron level:

Figure 8.7 - RNN cell at neuron level

Since one can choose the number of hidden dimensions, I chose two dimensions,

simply because I want to be able to easily visualize the results. Hence, two blue

neurons are transforming the hidden state.



The number of red neurons transforming the data point will

necessarily be the same as the chosen number of hidden

dimensions since both transformed outputs need to be added

together. But this doesn’t mean the data points must have the

same number of dimensions.

Coincidentally, our data points have two coordinates, but even if

we had 25 dimensions, these 25 features would still be mapped

into two dimensions by the two red neurons.

The only operation left is the activation function, most likely the hyperbolic

tangent, which will produce the updated hidden state.

 "Why hyperbolic tangent? Isn’t ReLU a better activation function?"

The hyperbolic tangent has a "competitive advantage" here since it maps the feature

space to clearly defined boundaries: the interval (-1, 1). This guarantees that, at
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every step of the sequence, the hidden state is always within these boundaries.

Given that we have only one linear layer with which to transform the hidden

state, regardless of which step of the sequence it is being used in, it is definitely

convenient to have its values within a predictable range. We’ll get back to this in

the "Journey of a Hidden State" section.

Now, let’s see how an RNN cell works in code. We’ll create one using PyTorch’s

own nn.RNNCell and disassemble it into its components to manually reproduce all

the steps involved in updating the hidden state. To create a cell, we need to tell it

the input_size (number of features in our data points) and the hidden_size (the

size of the vector representing the hidden state). It is also possible to tell it not to

add biases, and to use a ReLU instead of TanH, but we’re sticking to the defaults.

n_features = 2
hidden_dim = 2

torch.manual_seed(19)
rnn_cell = nn.RNNCell(input_size=n_features, hidden_size=hidden_dim)
rnn_state = rnn_cell.state_dict()
rnn_state

Output

OrderedDict([('weight_ih', tensor([[ 0.6627, -0.4245],
                      [ 0.5373,  0.2294]])),
             ('weight_hh', tensor([[-0.4015, -0.5385],
                      [-0.1956, -0.6835]])),
             ('bias_ih', tensor([0.4954, 0.6533])),
             ('bias_hh', tensor([-0.3565, -0.2904]))])

The weight_ih and bias_ih (i stands for inputs—the data) tensors correspond to

the red neurons in Figure 8.7. The weight_hh and bias_hh (h stands for hidden)

tensors, to the blue neurons. We can use these weights to create two linear layers:
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linear_input = nn.Linear(n_features, hidden_dim)
linear_hidden = nn.Linear(hidden_dim, hidden_dim)

with torch.no_grad():
    linear_input.weight = nn.Parameter(rnn_state['weight_ih'])
    linear_input.bias = nn.Parameter(rnn_state['bias_ih'])
    linear_hidden.weight = nn.Parameter(rnn_state['weight_hh'])
    linear_hidden.bias = nn.Parameter(rnn_state['bias_hh'])

Now, let’s work our way through the mechanics of the RNN cell! It all starts with

the initial hidden state representing the empty sequence:

initial_hidden = torch.zeros(1, hidden_dim)
initial_hidden

Output

tensor([[0., 0.]])

Then, we use the two blue neurons, the linear_hidden layer, to transform the

hidden state:

th = linear_hidden(initial_hidden)
th

Output

tensor([[-0.3565, -0.2904]], grad_fn=<AddmmBackward>)

Cool! Now, let’s take look at a sequence of data points from our dataset:

X = torch.as_tensor(points[0]).float()
X
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Output

tensor([[ 1.0349,  0.9661],
        [ 0.8055, -0.9169],
        [-0.8251, -0.9499],
        [-0.8670,  0.9342]])

As expected, four data points, two coordinates each. The first data point, [1.0349,

0.9661], corresponding to the top-right corner of the square, is going to be

transformed by the linear_input layers (the two red neurons):

tx = linear_input(X[0:1])
tx

Output

tensor([[0.7712, 1.4310]], grad_fn=<AddmmBackward>)

There we go: We got both tx and th. Let’s add them together:

adding = th + tx
adding

Output

tensor([[0.4146, 1.1405]], grad_fn=<AddBackward0>)

The effect of adding tx is similar to the effect of adding the bias: It is effectively

translating the transformed hidden state to the right (by 0.7712) and up (by

1.4310).

Finally, the hyperbolic tangent activation function "compresses" the feature space

back into the (-1, 1) interval:

torch.tanh(adding)
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Output

tensor([[0.3924, 0.8146]], grad_fn=<TanhBackward>)

That’s the updated hidden state!

Now, let’s take a quick sanity check, feeding the same input to the original RNN

cell:

rnn_cell(X[0:1])

Output

tensor([[0.3924, 0.8146]], grad_fn=<TanhBackward>)

Great, the values match.

We can also visualize this sequence of operations, assuming that every hidden

space "lives" in a feature space delimited by the boundaries given by the hyperbolic

tangent. So, the initial hidden state (0, 0) sits at the center of this feature space,

depicted in the left-most plot in the figure below:

Figure 8.8 - Evolution of the hidden state

The transformed hidden state (the output of linear_hidden()) is depicted in the

second plot: It went through an affine transformation. The point in the center

corresponds to th. In the third plot, we can see the effect of adding tx (the output of

linear_input()): The whole feature space was translated to the right and up. And

then, in the right most plot, the hyperbolic tangent works its magic and brings the

whole feature space back to the (-1, 1) range. That was the first step in the journey

of a hidden state. We’ll do it once again, using the full sequence, after training a

model.
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I guess it is time to feed the full sequence to the RNN cell, right? You may be

tempted to do it like this:

# WRONG!
rnn_cell(X)

Output

tensor([[ 0.3924,  0.8146],
        [ 0.7864,  0.5266],
        [-0.0047, -0.2897],
        [-0.6817,  0.1109]], grad_fn=<TanhBackward>)

This is wrong! Remember, the RNN cell has two inputs: one hidden state and one

data point.

 "Where is the hidden state then?"

That’s exactly the problem! If not provided, it defaults to the zeros corresponding

to the initial hidden state. So, the call above is not processing four steps of a

sequence, but rather processing the first step of what it is assuming to be four

sequences.

To effectively use the RNN cell in a sequence, we need to loop over the data points

and provide the updated hidden state at each step:

hidden = torch.zeros(1, hidden_dim)
for i in range(X.shape[0]):
    out = rnn_cell(X[i:i+1], hidden)
    print(out)
    hidden = out

Output

tensor([[0.3924, 0.8146]], grad_fn=<TanhBackward>)
tensor([[ 0.4347, -0.0481]], grad_fn=<TanhBackward>)
tensor([[-0.1521, -0.3367]], grad_fn=<TanhBackward>)
tensor([[-0.5297,  0.3551]], grad_fn=<TanhBackward>)
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Now we’re talking! The last hidden state, (-0.5297, 0.3551), is the representation of

the full sequence.

Figure 8.9 depicts what the loop above looks like at the neuron level. In it, you can

easily see what I call "the journey of a hidden state": It is transformed, translated

(adding the input), and activated many times over. Moreover, you can also see that

the data points are independently transformed—the model will learn the best way

to transform them. We’ll get back to this after training a model.

At this point, you may be thinking:


"Looping over the data points in a sequence?! That looks like a lot of

work!"

And you’re absolutely right! Instead of an RNN cell, we can use a full-fledged…

RNN Layer

The nn.RNN layer takes care of the hidden state handling for us, no matter how long

the input sequence is. This is the layer we’ll actually be using in the model. We’ve

been through the inner workings of its cells, but the full-fledged RNN offers many

more options (stacked and / or bidirectional layers, for instance) and one tricky

thing regarding the shapes of inputs and outputs (yes, shapes are a kinda recurrent

problem—pun intended!).

Recurrent Neural Networks (RNNs) | 601

https://pytorch.org/docs/stable/generated/torch.nn.RNN.html


Figure 8.9 - Multiple cells in sequence
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Let’s take a look at the RNN’s arguments:

• input_size: It is the number of features in each data point of the sequence.

• hidden_size: It is the number of hidden dimensions you want to use.

• bias: Just like any other layer, it includes the bias in the equations.

• nonlinearity: By default, it uses the hyperbolic tangent, but you can change it

to ReLU if you want.

The four arguments above are exactly the same as those in the RNN cell. So, we can

easily create a full-fledged RNN like that:

n_features = 2
hidden_dim = 2

torch.manual_seed(19)
rnn = nn.RNN(input_size=n_features, hidden_size=hidden_dim)
rnn.state_dict()

Output

OrderedDict([('weight_ih_l0', tensor([[ 0.6627, -0.4245],
                      [ 0.5373,  0.2294]])),
             ('weight_hh_l0', tensor([[-0.4015, -0.5385],
                      [-0.1956, -0.6835]])),
             ('bias_ih_l0', tensor([0.4954, 0.6533])),
             ('bias_hh_l0', tensor([-0.3565, -0.2904]))])

Since the seed is exactly the same, you’ll notice that the weights and biases have

exactly the same values as our former RNN cell. The only difference is in the

parameters' names: Now they all have an _l0 suffix to indicate they belong to the

first "layer."

 "What do you mean by layer? Isn’t the RNN itself a layer?"

Yes, the RNN itself can be a layer in our model. But it may have its own internal

layers! You can configure those with the following four extra arguments:

• num_layers: The RNN we’ve been using so far has one layer (the default value),
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but if you use more than one, you’ll be creating a stacked RNN, which we’ll see

in its own section.

• bidirectional: So far, our RNNs have been handling sequences in the left-to-

right direction (the default), but if you set this argument to True, you’ll be

creating a bidirectional RNN, which we’ll also see in its own section.

• dropout: This introduces an RNN’s own dropout layer between its internal

layers, so it only makes sense if you’re using a stacked RNN.

And I saved the best (actually, the worst) for last:

• batch_first: The documentation says, "if True, then the input and output tensors

are provided as (batch, seq, feature)," which makes you think that you only need

to set it to True and it will turn everything into your nice and familiar tensors

where different batches are concatenated together as its first dimension—and

you’d be sorely mistaken.

 "Why? What’s wrong with that?"

The problem is, you need to read the documentation very literally: Only the input

and output tensors are going to be batch first; the hidden state will never be batch

first. This behavior may bring complications you need to be aware of.

Shapes

Before going through an example, let’s take a look at the expected inputs and

outputs of our RNN:

• Inputs:

◦ The input tensor containing the sequence you want to run through the

RNN:

▪ The default shape is sequence-first; that is, (sequence length, batch

size, number of features), which we’re abbreviating to (L, N, F).

▪ But if you choose batch_first, it will flip the first two dimensions, and

then it will expect an (N, L, F) shape, which is what you’re likely getting

from a data loader.

▪ By the way, the input can also be a packed sequence—we’ll get back to

that in a later section.
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◦ The initial hidden state, which defaults to zeros if not provided:

▪ A simple RNN will have a hidden state tensor with shape (1, N, H).

▪ A stacked RNN (more on that in the next section) will have a hidden

state tensor with shape (number of stacked layers, N, H).

▪ A bidirectional RNN (more on that later) will have a hidden state tensor

with shape (2*number of stacked layers, N, H).

• Outputs:

◦ The output tensor contains the hidden states corresponding to the outputs

of its RNN cells for all steps in the sequence:

▪ A simple RNN will have an output tensor with shape (L, N, H).

▪ A bidirectional RNN (more on that later) will have an output tensor with

shape (L, N, 2*H).

▪ If you choose batch_first, it will flip the first two dimensions and then

produce outputs with shape (N, L, H).

◦ The final hidden state corresponding to the representation of the full

sequence and its shape follows the same rules as the initial hidden state.

Let’s illustrate the differences between shapes by creating a "batch" containing

three sequences, each having four data points (corners), with each data point

having two coordinates. Its shape is (3, 4, 2), and it is an example of a batch-first

tensor (N, L, F), like a mini-batch you’d get from a data loader:

batch = torch.as_tensor(points[:3]).float()
batch.shape

Output

torch.Size([3, 4, 2])

Since RNNs use sequence-first by default, we could explicitly change the shape of

the batch using permute() to flip the first two dimensions:

permuted_batch = batch.permute(1, 0, 2)
permuted_batch.shape
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Output

torch.Size([4, 3, 2])

Now the data is in an "RNN-friendly" shape, and we can run it through a regular

RNN to get two sequence-first tensors back:

torch.manual_seed(19)
rnn = nn.RNN(input_size=n_features, hidden_size=hidden_dim)
out, final_hidden = rnn(permuted_batch)
out.shape, final_hidden.shape

Output

(torch.Size([4, 3, 2]), torch.Size([1, 3, 2]))



For simple RNNs, the last element of the output IS the final

hidden state!

(out[-1] == final_hidden).all()

Output

tensor(True)

Once we’re done with the RNN, we can turn the data back to our familiar batch-

first shape:

batch_hidden = final_hidden.permute(1, 0, 2)
batch.shape

Output

torch.Size([3, 1, 2])

That seems like a lot of work, though. Alternatively, we could set the RNN’s
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batch_first argument to True so we can use the batch above without any

modifications:

torch.manual_seed(19)
rnn_batch_first = nn.RNN(input_size=n_features,
                         hidden_size=hidden_dim,
                         batch_first=True)
out, final_hidden = rnn_batch_first(batch)
out.shape, final_hidden.shape

Output

(torch.Size([3, 4, 2]), torch.Size([1, 3, 2]))

But then you get these two distinct shapes as a result: batch-first (N, L, H) for the

output and sequence-first (1, N, H) for the final hidden state.

On the one hand, this can lead to confusion. On the other hand, most of the time we

won’t be handling the hidden state, and we’ll handle the batch-first output instead.

So, we can stick with batch-first for now and, when it comes the time we have to

handle the hidden state, I will highlight the difference in shapes once again.



In a nutshell, the RNN’s default behavior is to handle tensors

having the shape (L, N, H) for hidden states and (L, N, F) for

sequences of data points. Datasets and data loaders, unless

customized otherwise, will produce data points in the shape (N, L,

F).

To address this difference, we’ll be using the batch_first
argument to turn both inputs and outputs into this familiar

batch-first shape.

Stacked RNN

First, take one RNN and feed it a sequence of data points. Next, take another RNN

and feed it the sequence of outputs produced by the first RNN. There you go—you

have a stacked RNN where each of the RNNs is considered a "layer" of the stacked

one. The figure below depicts a stacked RNN with two "layers."
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Figure 8.10 - Stacked RNN with two layers

 "Two layers only? It doesn’t seem much…"

It may not seem like it, but a two-layer stacked RNN is already computationally

expensive, since not only does one cell depend on the previous one, but also one

"layer" depends on the other.

Each "layer" starts with its own initial hidden state and produces its own final

hidden state. The output of the stacked RNN—that is, the hidden states at each

step of the sequence—are the hidden states of the top-most layer.

Let’s create a stacked RNN with two layers:

torch.manual_seed(19)
rnn_stacked = nn.RNN(input_size=2, hidden_size=2,
                     num_layers=2, batch_first=True)
state = rnn_stacked.state_dict()
state
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Output

OrderedDict([('weight_ih_l0', tensor([[ 0.6627, -0.4245],
                      [ 0.5373,  0.2294]])),
             ('weight_hh_l0', tensor([[-0.4015, -0.5385],
                      [-0.1956, -0.6835]])),
             ('bias_ih_l0', tensor([0.4954, 0.6533])),
             ('bias_hh_l0', tensor([-0.3565, -0.2904])),
             ('weight_ih_l1', tensor([[-0.6701, -0.5811],
                      [-0.0170, -0.5856]])),
             ('weight_hh_l1', tensor([[ 0.1159, -0.6978],
                      [ 0.3241, -0.0983]])),
             ('bias_ih_l1', tensor([-0.3163, -0.2153])),
             ('bias_hh_l1', tensor([ 0.0722, -0.3242]))])

From the RNN’s state dictionary, we can see it has two groups of weights and

biases, one for each layer, with each layer indicated by its corresponding suffix (_l0
and _l1).

Now, let’s create two simple RNNs and use the weights and biases above to set

their weights accordingly. Each RNN will behave as one of the layers of the stacked

one:

rnn_layer0 = nn.RNN(input_size=2, hidden_size=2, batch_first=True)
rnn_layer1 = nn.RNN(input_size=2, hidden_size=2, batch_first=True)

rnn_layer0.load_state_dict(dict(list(state.items())[:4]))
rnn_layer1.load_state_dict(dict([(k[:-1]+'0', v)
                                 for k, v in
                                 list(state.items())[4:]]))

Output

<All keys matched successfully>

Now, let’s make a batch containing one sequence from our synthetic dataset (thus

having shape (N=1, L=4, F=2)):
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x = torch.as_tensor(points[0:1]).float()

The RNN representing the first layer takes the sequence of data points as usual:

out0, h0 = rnn_layer0(x)

It produces the expected two outputs: a sequence of hidden states (out0) and the

final hidden state (h0) for this layer.

Next, it uses the sequence of hidden states as inputs for the next layer:

out1, h1 = rnn_layer1(out0)

The second layer produces the expected two outputs again: another sequence of

hidden states (out1) and the final hidden state (h1) for this layer.

The overall output of the stacked RNN must have two elements as well:

• A sequence of hidden states, produced by the last layer (out1).

• The concatenation of final hidden states of all layers.

out1, torch.cat([h0, h1])

Output

(tensor([[[-0.7533, -0.7711],
          [-0.0566, -0.5960],
          [ 0.4324, -0.2908],
          [ 0.1563, -0.5152]]], grad_fn=<TransposeBackward1>),
 tensor([[[-0.5297,  0.3551]],

         [[ 0.1563, -0.5152]]], grad_fn=<CatBackward>))

Done! We’ve replicated the inner workings of a stacked RNN using two simple

RNNs. You can double-check the results by feeding the sequence of data points to

the actual stacked RNN itself:
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out, hidden = rnn_stacked(x)
out, hidden

And you’ll get exactly the same results.



For stacked RNNs, the last element of the output is the final

hidden state of the LAST LAYER! But, since we’re using a

batch_first layer, we need to permute the hidden state’s

dimensions to batch-first as well:

(out[:, -1] == hidden.permute(1, 0, 2)[:, -1]).all()

Output

tensor(True)

Bidirectional RNN

First, take one RNN and feed it a sequence of data points. Next, take another RNN

and feed it the sequence of data points in reversed order. There you go—you’ve

got a bidirectional RNN where each of the RNNs is considered a "direction." The

figure below depicts a bidirectional RNN.

Figure 8.11 - Bidirectional RNN
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Each "layer" starts with its own initial hidden state and produces its own final

hidden state. But, unlike the stacked version, it keeps both sequences of hidden

states produced at each step. Moreover, it also reverses the sequence of hidden

states produced by the reverse layer to make both sequences match (h0 with h0r, h1

with h1r, and so on).

 "Why would you need a bidirectional RNN?"

The reverse layer allows the network to look at "future" information in a given

sequence, thus better describing the context in which the elements of the

sequence exist. This is particularly important in natural language processing tasks,

where the role of a given word sometimes may only be ascertained by the word

that follows it. These relationships would never be captured by a unidirectional

RNN.

Let’s create a bidirectional RNN:

torch.manual_seed(19)
rnn_bidirect = nn.RNN(input_size=2, hidden_size=2,
                      bidirectional=True, batch_first=True)
state = rnn_bidirect.state_dict()
state

Output

OrderedDict([('weight_ih_l0', tensor([[ 0.6627, -0.4245],
                      [ 0.5373,  0.2294]])),
             ('weight_hh_l0', tensor([[-0.4015, -0.5385],
                      [-0.1956, -0.6835]])),
             ('bias_ih_l0', tensor([0.4954, 0.6533])),
             ('bias_hh_l0', tensor([-0.3565, -0.2904])),
             ('weight_ih_l0_reverse', tensor([[-0.6701, -0.5811],
                      [-0.0170, -0.5856]])),
             ('weight_hh_l0_reverse', tensor([[ 0.1159, -0.6978],
                      [ 0.3241, -0.0983]])),
             ('bias_ih_l0_reverse', tensor([-0.3163, -0.2153])),
             ('bias_hh_l0_reverse', tensor([ 0.0722, -0.3242]))])

From its state dictionary, we can see it has two groups of weights and biases, one

for each layer, with each layer indicated by its corresponding suffix (_l0 and
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_l0_reverse).

Once again, let’s create two simple RNNs, and then use the weights and biases

above to set their weights accordingly. Each RNN will behave as one of the layers

from the bidirectional one:

rnn_forward = nn.RNN(input_size=2, hidden_size=2, batch_first=True)
rnn_reverse = nn.RNN(input_size=2, hidden_size=2, batch_first=True)

rnn_forward.load_state_dict(dict(list(state.items())[:4]))
rnn_reverse.load_state_dict(dict([(k[:-8], v)
                                  for k, v in
                                  list(state.items())[4:]]))

Output

<All keys matched successfully>

We’ll be using the same single-sequence batch from before, but we also need it in

reverse. We can use PyTorch’s flip() to reverse the dimension corresponding to

the sequence (L):

x_rev = torch.flip(x, dims=[1]) #N, L, F
x_rev

Output

tensor([[[-0.8670,  0.9342],
         [-0.8251, -0.9499],
         [ 0.8055, -0.9169],
         [ 1.0349,  0.9661]]])

Since there is no dependency between the two layers, we just need to feed each

layer its corresponding sequence (regular and reversed) and remember to reverse

back the sequence of hidden states.
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out, h = rnn_forward(x)
out_rev, h_rev = rnn_reverse(x_rev)
out_rev_back = torch.flip(out_rev, dims=[1])

The overall output of the bidirectional RNN must have two elements as well:

• A concatenation side-by-side of both sequences of hidden states (out and

out_rev_back).

• The concatenation of the final hidden states of both layers.

torch.cat([out, out_rev_back], dim=2), torch.cat([h, h_rev])

Output

(tensor([[[ 0.3924,  0.8146, -0.9355, -0.8353],
          [ 0.4347, -0.0481, -0.1766,  0.2596],
          [-0.1521, -0.3367,  0.8829,  0.0425],
          [-0.5297,  0.3551, -0.2032, -0.7901]]], grad_fn
=<CatBackward>),
 tensor([[[-0.5297,  0.3551]],

         [[-0.9355, -0.8353]]], grad_fn=<CatBackward>))

Done! We’ve replicated the inner workings of a bidirectional RNN using two simple

RNNs. You can double-check the results by feeding the sequence of data points to

the actual bidirectional RNN:

out, hidden = rnn_bidirect(x)

And, once again, you’ll get the very same results.
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For bidirectional RNNs, the last element of the output ISN’T the

final hidden state! Once again, since we’re using a batch_first
layer, we need to permute the hidden state’s dimensions to batch-

first as well:

out[:, -1] == hidden.permute(1, 0, 2).view(1, -1)

Output

tensor([[ True,  True, False, False]])

Bidirectional RNNs are different because the final hidden state

corresponds to the last element in the sequence for the forward

layer and to the first element in the sequence for the reverse

layer. The output, on the other hand, is aligned to sequence,

hence the difference.

Square Model

It is finally time to build a model to classify the direction in which the square was

drawn: clockwise or counterclockwise. Let’s put into practice what we’ve learned

so far and use a simple RNN to obtain the final hidden state that represents the

full sequence and use it to train a classifier layer, which is, once again, the same as

a logistic regression.


"There can be only one … hidden state."

Connor MacLeod

Data Generation

If you hadn’t noticed yet, we only have a training set. But, since our data is synthetic

anyway, let’s simply generate new data, which, by definition, wasn’t seen by the

model and therefore qualifies as validation or test data (just make sure to pick a

different seed for the generation):
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Data Generation

1 test_points, test_directions = generate_sequences(seed=19)

Data Preparation

There is nothing special about it: typical data preparation using a tensor dataset

and data loaders that will yield batches of sequences with shape (N=16, L=4,
F=2).

Data Preparation

 1 train_data = TensorDataset(
 2     torch.as_tensor(points).float(),
 3     torch.as_tensor(directions).view(-1, 1).float()
 4 )
 5 test_data = TensorDataset(
 6     torch.as_tensor(test_points).float(),
 7     torch.as_tensor(test_directions).view(-1, 1).float()
 8 )
 9 train_loader = DataLoader(
10     train_data, batch_size=16, shuffle=True
11 )
12 test_loader = DataLoader(test_data, batch_size=16)

Model Configuration

The main structure behind the SquareModel is fairly simple: a simple RNN layer

followed by a linear layer that works as a classifier producing logits. Then, in the

forward() method, the linear layer takes the last output of the recurrent layer as

its input.
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Model Configuration

 1 class SquareModel(nn.Module):
 2     def __init__(self, n_features, hidden_dim, n_outputs):
 3         super(SquareModel, self).__init__()
 4         self.hidden_dim = hidden_dim
 5         self.n_features = n_features
 6         self.n_outputs = n_outputs
 7         self.hidden = None
 8         # Simple RNN
 9         self.basic_rnn = nn.RNN(self.n_features,
10                                 self.hidden_dim,
11                                 batch_first=True)
12         # Classifier to produce as many logits as outputs
13         self.classifier = nn.Linear(self.hidden_dim,
14                                     self.n_outputs)
15 
16     def forward(self, X):
17         # X is batch first (N, L, F)
18         # output is (N, L, H)
19         # final hidden state is (1, N, H)
20         batch_first_output, self.hidden = self.basic_rnn(X)
21 
22         # only last item in sequence (N, 1, H)
23         last_output = batch_first_output[:, -1]
24         # classifier will output (N, 1, n_outputs)
25         out = self.classifier(last_output)
26 
27         # final output is (N, n_outputs)
28         return out.view(-1, self.n_outputs)


"Why are we taking the last output instead of the final hidden state?

Aren’t they the same?"

They are the same in most cases, yes, but they are different if you’re using

bidirectional RNNs. By using the last output, we’re ensuring that the code will

work for all sorts of RNNs: simple, stacked, and bidirectional. Besides, we want to

avoid handling the hidden state anyway, because it’s always in sequence-first shape.
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In the next chapter, we’ll be using the full output, that is, the full

sequence of hidden states, for encoder-decoder models.

Next, we create an instance of the model, the corresponding loss function for a

binary classification problem, and an optimizer:

Model Configuration

1 torch.manual_seed(21)
2 model = SquareModel(n_features=2, hidden_dim=2, n_outputs=1)
3 loss = nn.BCEWithLogitsLoss()
4 optimizer = optim.Adam(model.parameters(), lr=0.01)

Model Training

Then, we train our SquareModel over 100 epochs, as usual, visualize the losses, and

evaluate its accuracy on the test data:

Model Training

1 sbs_rnn = StepByStep(model, loss, optimizer)
2 sbs_rnn.set_loaders(train_loader, test_loader)
3 sbs_rnn.train(100)

fig = sbs_rnn.plot_losses()

Figure 8.12 - Losses—SquareModel
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StepByStep.loader_apply(test_loader, sbs_rnn.correct)

Output

tensor([[50, 53],
        [75, 75]])

Our simple model hit 97.65% accuracy on the test data. Very good, but, then again,

this is a toy dataset.

Now, for the fun part :-)

Visualizing the Model

In this section, we’re going to thoroughly explore how the model managed to

successfully classify the sequences. We’ll see the following:

• How the model transforms the inputs.

• How the classifier separates the final hidden states.

• What the sequence of hidden states looks like.

• The journey of a hidden state through every transformation, translation, and

activation.

Buckle up!

Transformed Inputs

While the hidden state is sequentially transformed, we’ve already seen (in Figure

8.9) that the data points are independently transformed; that is, every data point

(corner) goes through the same affine transformation. This means we can simply

use the parameters weights_ih_l0 and bias_ih_l0 learned by our model to see

what’s happening to the inputs (data points) before they are added up to the

transformed hidden state:

state = model.basic_rnn.state_dict()
state['weight_ih_l0'], state['bias_ih_l0']
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Output

(tensor([[-0.5873, -2.5140],
         [-1.6189, -0.4233]], device='cuda:0'),
 tensor([0.8272, 0.9219], device='cuda:0'))

 "What does it look like?"

Let’s visualize the transformed "perfect" square.

Figure 8.13 - Transformed inputs (corners)

Our SquareModel learned that it needs to scale, shear, flip, and translate the inputs

(corners) at every step before adding each of them to the transformed hidden

state.

Hidden States

Remember, there are eight possible sequences (Figure 8.3) since it is possible to

start at any of the four corners, and move in either direction. Each corner was

assigned a color (as in the figure above), and since clockwise is the positive class, it

is represented by a "+" sign.

If we use the "perfect" square as input to our trained model, that’s what the final

hidden states look like for each of the eight sequences.

620 | Chapter 8: Sequences



Figure 8.14 - Final hidden states for eight sequences of the "perfect" square

For clockwise movement, the final hidden states are situated in the upper-left

region, while counterclockwise movement brings the final hidden states to the

lower-right corner. The decision boundary, as expected from a logistic regression,

is a straight line. The point closest to the decision boundary—that is, the one the

model is less confident about—corresponds to the sequence starting at the B corner

(green) and moving clockwise (+).

 "What about the other hidden states for the actual sequences?"

Let’s visualize them as well. In the figure below, clockwise sequences are

represented by blue points and counterclockwise sequences, by red points.

Figure 8.15 - Sequence of hidden states

We can see that the model already achieves some separation after "seeing" two data

points (corners), corresponding to "Hidden State #1." After "seeing" the third

corner, most of the sequences are already correctly classified, and, after observing
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all corners, it gets every noisy square right.


"Can we pick one sequence and observe its hidden state from its

initial to its final values?"

Sure we can!

The Journey of a Hidden State

Let’s use the ABCD sequence of the "perfect" square for this. The initial hidden

state is (0, 0) by default, and it is colored black. Every time a new data point (corner)

is going to be used in the computation, the affected hidden state is colored

accordingly (gray, green, blue, and red, in order).

The figure below tracks the progress of the hidden state over every operation

performed inside the RNN.

The first column has the hidden state that’s an input for the RNN cell at a given

step; the second column has the transformed hidden state; the third, the

translated hidden state (by adding the transformed input); and the last, the

activated hidden state.

There are four rows, one for each data point (corner) in our sequence. The initial

hidden state of each row is the activated state of the previous row, so it starts at

the initial hidden state of the whole sequence (0, 0) and, after processing the gray,

green, blue, and red corners, ends at the final hidden state, the red dot close to (-1,

1) in the last plot.
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Figure 8.16 - Transforming the hidden state

If we connect all the hidden states' positions throughout the whole sequence and

color the path following the assigned colors for each corner, we get to visualize

everything in a single plot in the end.
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Figure 8.17 - The path of the hidden state

The red square at the center shows the [-1, 1] bound given by the hyperbolic-

tangent activation. Every hidden state (the last point of a given color [corner]) will

be inside or at the edge of the red square. The final position is depicted by a star.

Can We Do Better?

There are a couple of questions I’d like to raise:

• What if the previous hidden state contains more information than the newly

computed one?

• What if the data point adds more information than the previous hidden state

had?
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Since the RNN cell has both of them (th and tx) on the same footing and simply adds

them up, there is no way to address the two questions above. To do so, we would

need something different, like…

Gated Recurrent Units (GRUs)

Gated recurrent units, or GRUs for short, provide the answer to those two

questions! Let’s see how they do it by tackling one problem at a time. What if,

instead of simply computing a new hidden state and going with it, we tried a

weighted average of both hidden states, old and new?

Equation 8.2 - Weighted average of old and new hidden states

The new parameter z controls how much weight the GRU should give to the old

hidden state. OK, the first question has been addressed, and we can recover the

typical RNN behavior simply by setting z to zero.

Now, what if, instead of computing the new hidden state by simply adding up th and

tx, we tried scaling th first?

Equation 8.3 - Scaling the old hidden state

The new parameter r controls how much we keep from the old hidden state

before adding the transformed input. For low values of r, the relative importance

of the data point is increased, thus addressing the second question. Moreover, we

can recover the typical RNN behavior simply by setting r to one. The new hidden

state is called candidate hidden state (n).

Next, we can combine these two changes into a single expression:

Equation 8.4 - Hidden state, the GRU way

And we’ve (re)invented the gated recurrent unit cell on our own :-)
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By the way, the two new parameters r and z are called

gates—respectively, reset and update gates. Both of them must

produce values between zero and one, thus allowing only a

fraction of the original values to go through.

Every gate produces a vector of values (each value between zero

and one) with a size corresponding to the number of hidden

dimensions. For two hidden dimensions, a gate may have values

like [0.52, 0.87] for example.

Since gates produce vectors, operations involving them are

element-wise multiplications.

GRU Cell

If we place both expressions next to one another, we can more easily see that the

RNN is a special case of the GRU (for r=1 and z=0):

Equation 8.5 - RNN vs GRU

 "OK, I see it; but where do r and z come from?"

Well, this is a deep learning book, so the only right answer to "Where does

something come from" is, a neural network! Just kidding … or am I? Actually, we’ll

train both gates using a structure that is pretty much an RNN cell, except for the

fact that it uses a sigmoid activation function:

Equation 8.6 - Gates (r and z) and candidate hidden state (n)
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Every gate worthy of its name will use a sigmoid activation

function to produce gate-compatible values between zero and

one.

Moreover, since all components of a GRU (n, r, and z) share a similar structure, it

should be no surprise that its corresponding transformations (th and tx) are also

similarly computed:

Equation 8.7 - Transformations of a GRU

See? They all follow the same logic! Actually, let’s literally see how all these

components are connected in the following diagram.
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Figure 8.18 - Internals of a GRU cell

The gates are following the same color convention I used in the equations: red for

the reset gate (r) and blue for the update gate (z). The path of the (new) candidate

hidden state (n) is drawn in black and joins the (old) hidden state (h), drawn in gray,

to produce the actual new hidden state (h').

To really understand the flow of information inside the GRU cell, I suggest you try

these exercises:

• First, learn to look past (or literally ignore) the internals of the gates: both r and

z are simply values between zero and one (for each hidden dimension).

• Pretend r=1; can you see that the resulting n is equivalent to the output of a

simple RNN?

• Keep r=1, and now pretend z=0; can you see that the new hidden state h' is

equivalent to the output of a simple RNN?

• Now pretend z=1; can you see that the new hidden state h' is simply a copy of

the old hidden state (in other words, the data [x] does not have any effect)?

• If you decrease r all the way to zero, the resulting n is less and less influenced

by the old hidden state.

• If you decrease z all the way to zero, the new hidden state h' is closer and

closer to n.
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• For r=0 and z=0, the cell becomes equivalent to a linear layer followed by a

TanH activation function (in other words, the old hidden state [h] does not have

any effect).

Now, let’s see how a GRU cell works in code. We’ll create one using PyTorch’s own

nn.GRUCell and disassemble it into its components to manually reproduce all the

steps involved in updating the hidden state. To create a cell, we need to tell it the

input_size (number of features in our data points) and the hidden_size (the size of

the vector representing the hidden state), exactly the same as in the RNN cell. The

nonlinearity is fixed, though, as the hyperbolic tangent.

n_features = 2
hidden_dim = 2

torch.manual_seed(17)
gru_cell = nn.GRUCell(input_size=n_features, hidden_size=hidden_dim)
gru_state = gru_cell.state_dict()
gru_state

Output

OrderedDict([('weight_ih', tensor([[-0.0930,  0.0497],
                                   [ 0.4670, -0.5319],
                                   [-0.6656,  0.0699],
                                   [-0.1662,  0.0654],
                                   [-0.0449, -0.6828],
                                   [-0.6769, -0.1889]])),
             ('weight_hh', tensor([[-0.4167, -0.4352],
                                   [-0.2060, -0.3989],
                                   [-0.7070, -0.5083],
                                   [ 0.1418,  0.0930],
                                   [-0.5729, -0.5700],
                                   [-0.1818, -0.6691]])),
             ('bias_ih',
              tensor([-0.4316,  0.4019,  0.1222, -0.4647, -0.5578,
0.4493])),
             ('bias_hh',
              tensor([-0.6800,  0.4422, -0.3559, -0.0279,  0.6553,
0.2918]))])
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 "Wait! There is something definitely weird with these shapes…"

Yeah, you’re right! Instead of returning separate weights for each of the GRU cell’s

components (r, z, and n), the state_dict() returns the concatenated weights and

biases.

Wx, bx = gru_state['weight_ih'], gru_state['bias_ih']
Wh, bh = gru_state['weight_hh'], gru_state['bias_hh']

print(Wx.shape, Wh.shape)
print(bx.shape, bh.shape)

Output

torch.Size([6, 2]) torch.Size([6, 2])
torch.Size([6]) torch.Size([6])

The shape is (3*hidden_dim, n_features) for weight_ih, (3*hidden_dim,

hidden_dim) for weight_hh, and simply (3*hidden_dim) for both biases.

For Wx and bx in the state dictionary above, we can split the values like this:

Equation 8.8 - Splitting tensors into their r, z, and n components
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In code, we can use split() to get tensors for each of the components:

Wxr, Wxz, Wxn = Wx.split(hidden_dim, dim=0)
bxr, bxz, bxn = bx.split(hidden_dim, dim=0)

Whr, Whz, Whn = Wh.split(hidden_dim, dim=0)
bhr, bhz, bhn = bh.split(hidden_dim, dim=0)

Wxr, bxr

Output

(tensor([[-0.0930,  0.0497],
         [ 0.4670, -0.5319]]), tensor([-0.4316,  0.4019]))

Next, let’s use the weights and biases to create the corresponding linear layers:

def linear_layers(Wx, bx, Wh, bh):
    hidden_dim, n_features = Wx.size()
    lin_input = nn.Linear(n_features, hidden_dim)
    lin_input.load_state_dict({'weight': Wx, 'bias': bx})
    lin_hidden = nn.Linear(hidden_dim, hidden_dim)
    lin_hidden.load_state_dict({'weight': Wh, 'bias': bh})
    return lin_hidden, lin_input

# reset gate - red
r_hidden, r_input = linear_layers(Wxr, bxr, Whr, bhr)
# update gate - blue
z_hidden, z_input = linear_layers(Wxz, bxz, Whz, bhz)
# candidate state - black
n_hidden, n_input = linear_layers(Wxn, bxn, Whn, bhn)
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Then, let’s use these layers to create functions that replicate both gates (r and z)

and the candidate hidden state (n):

def reset_gate(h, x):
    thr = r_hidden(h)
    txr = r_input(x)
    r = torch.sigmoid(thr + txr)
    return r  # red

def update_gate(h, x):
    thz = z_hidden(h)
    txz = z_input(x)
    z = torch.sigmoid(thz + txz)
    return z  # blue

def candidate_n(h, x, r):
    thn = n_hidden(h)
    txn = n_input(x)
    n = torch.tanh(r * thn + txn)
    return n  # black

Cool—all the transformations and activations are handled by the functions above.

This means we can replicate the mechanics of a GRU cell at its component level (r, z,

and n). We also need an initial hidden state and the first data point (corner) of a

sequence:

initial_hidden = torch.zeros(1, hidden_dim)
X = torch.as_tensor(points[0]).float()
first_corner = X[0:1]

We use both values to get the output from the reset gate (r):

r = reset_gate(initial_hidden, first_corner)
r

Output

tensor([[0.2387, 0.6928]], grad_fn=<SigmoidBackward>)
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Let’s pause for a moment here. First, the reset gate returns a tensor of size two

because we have two hidden dimensions. Second, the two values may be different

(duh, I know!). What does it mean?



The reset gate may scale each hidden dimension independently.

It can completely suppress the values from one of the hidden

dimensions while letting the other pass unchallenged. In

geometrical terms, this means that the hidden space may shrink

in one direction while stretching in the other. We’ll visualize it

shortly in the journey of a (gated) hidden state.

The reset gate is an input for the candidate hidden state (n):

n = candidate_n(initial_hidden, first_corner, r)
n

Output

tensor([[-0.8032, -0.2275]], grad_fn=<TanhBackward>)

That would be the end of it, and that would be the new hidden state if it wasn’t for

the update gate (z):

z = update_gate(initial_hidden, first_corner)
z

Output

tensor([[0.2984, 0.3540]], grad_fn=<SigmoidBackward>)

Another short pause here—the update gate is telling us to keep 29.84% of the first

and 35.40% of the second dimensions of the initial hidden state. The remaining

70.16% and 64.6%, respectively, are coming from the candidate hidden state (n).

So, the new hidden state (h_prime) is computed accordingly:
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h_prime = n*(1-z) + initial_hidden*z
h_prime

Output

tensor([[-0.5635, -0.1470]], grad_fn=<AddBackward0>)

Now, let’s take a quick sanity check, feeding the same input to the original GRU

cell:

gru_cell(first_corner)

Output

tensor([[-0.5635, -0.1470]], grad_fn=<AddBackward0>)

Perfect match!

But, then again, you’re likely not inclined to loop over the sequence yourself while

using a GRU cell, right? You probably want to use a full-fledged…

GRU Layer

The nn.GRU layer takes care of the hidden state handling for us, no matter how long

the input sequence is. We’ve been through this once with the RNN layer. The

arguments, inputs, and outputs are almost exactly the same for both of them,

except for one small difference: You cannot choose a different activation function

anymore. That’s it.

And yes, you can create stacked GRUs and bidirectional GRUs as well. The logic

doesn’t change a bit—the only difference is that you’ll be using a fancier GRU cell

instead of the basic RNN cell.

So, let’s go straight to creating a model using a gated recurring unit.
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Square Model II — The Quickening

This model is pretty much the same as the original "Square Model," except for one

difference: Its recurrent neural network is not a plain RNN anymore, but a GRU.

Everything else stays exactly the same.

Model Configuration

 1 class SquareModelGRU(nn.Module):
 2     def __init__(self, n_features, hidden_dim, n_outputs):
 3         super(SquareModelGRU, self).__init__()
 4         self.hidden_dim = hidden_dim
 5         self.n_features = n_features
 6         self.n_outputs = n_outputs
 7         self.hidden = None
 8         # Simple GRU
 9         self.basic_rnn = nn.GRU(self.n_features,
10                                 self.hidden_dim,
11                                 batch_first=True)          ①
12         # Classifier to produce as many logits as outputs
13         self.classifier = nn.Linear(self.hidden_dim,
14                                     self.n_outputs)
15 
16     def forward(self, X):
17         # X is batch first (N, L, F)
18         # output is (N, L, H)
19         # final hidden state is (1, N, H)
20         batch_first_output, self.hidden = self.basic_rnn(X)
21 
22         # only last item in sequence (N, 1, H)
23         last_output = batch_first_output[:, -1]
24         # classifier will output (N, 1, n_outputs)
25         out = self.classifier(last_output)
26 
27         # final output is (N, n_outputs)
28         return out.view(-1, self.n_outputs)

① The ONLY change in the code: from nn.RNN to nn.GRU

We’ll be using the same data loaders again, so we’re going directly to the model

configuration and training.
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Model Configuration & Training

Model Configuration

1 torch.manual_seed(21)
2 model = SquareModelGRU(n_features=2, hidden_dim=2, n_outputs=1)
3 loss = nn.BCEWithLogitsLoss()
4 optimizer = optim.Adam(model.parameters(), lr=0.01)

Model Training

1 sbs_gru = StepByStep(model, loss, optimizer)
2 sbs_gru.set_loaders(train_loader, test_loader)
3 sbs_gru.train(100)

fig = sbs_gru.plot_losses()

Figure 8.19 - Losses—SquareModelGRU

Cool—the loss decreased much quicker now, and all it takes is switching from RNN

to GRU.


"The sensation you feel is the quickening."

Ramirez

StepByStep.loader_apply(test_loader, sbs_gru.correct)
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Output

tensor([[53, 53],
        [75, 75]])

That’s 100% accuracy! Let’s try to visualize the effect of the GRU architecture on

the classification of the hidden states.

Visualizing the Model

Hidden States

Once again, if we use the "perfect" square as the input to our newly trained model,

we get the following final hidden states for each of the eight sequences (plotted

sided-by-side with the previous model for easier comparison):

Figure 8.20 - Final hidden states for eight sequences of the "perfect" square

The GRU model achieves a better separation of the sequences than its RNN

counterpart. What about the actual sequences?
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Figure 8.21 - Sequence of hidden states

Like the RNN, the GRU achieves increasingly better separation as it sees more data

points. It is interesting to notice that there are four distinct groups of sequences,

each corresponding to a starting corner.

The Journey of a Gated Hidden State

Once again, we’re going to track the journey of a hidden state using the ABCD

sequence of the "perfect" square. The initial hidden state is (0, 0) by default, and it

is colored black. Every time a new data point (corner) is going to be used in the

computation, the affected hidden state is colored accordingly (gray, green, blue,

and red, in order).

Figure 8.22 tracks the progress of the hidden state over every operation

performed inside the GRU.

The first column has the hidden state that’s an input for the GRU cell at a given

step; the third, sixth, and last columns correspond to the new operations

performed by the GRU. The third column shows the gated hidden state; the sixth,

the gated (candidate) hidden state; and the last, the weighted average of old and

candidate hidden states.
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Figure 8.22 - Transforming the hidden state
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I’d like to draw your attention to the third column in particular: It clearly shows the

effect of a gate, the reset gate in this case, over the feature space. Since a gate has

a distinct value for each dimension, each dimension will shrink differently (it can

only shrink because values are always between zero and one). In the third row, for

example, the first dimension gets multiplied by 0.70, while the second dimension

gets multiplied by only 0.05, making the resulting feature space really small.

Can We Do Better?

The gated recurrent unit is definitely an improvement over the regular RNN, but

there are a couple of points I’d like to raise:

• Using the reset gate inside the hyperbolic tangent seems "weird" (not a

scientific argument at all, I know).

• The best thing about the hidden state is that it is bounded by the hyperbolic

tangent—it guarantees the next cell will get the hidden state in the same range.

• The worst thing about the hidden state is that it is bounded by the hyperbolic

tangent—it constrains the values the hidden state can take and, along with

them, the corresponding gradients.

• Since we cannot have the cake and eat it too when it comes to the hidden state

being bounded, what is preventing us from using two hidden states in the

same cell?

Yes, let’s try that—two hidden states are surely better than one, right?



By the way—I know that GRUs were invented a long time AFTER

the development of LSTMs, but I’ve decided to present them in

order of increasing complexity. Please don’t take the "story" I’m

telling too literally—it is just a way to facilitate learning.

Long Short-Term Memory (LSTM)

Long short-term memory, or LSTM for short, uses two states instead of one.

Besides the regular hidden state (h), which is bounded by the hyperbolic tangent,

as usual, it introduces a second cell state (c) as well, which is unbounded.

So, let’s work through the points raised in the last section. First, let’s keep it simple

and use a regular RNN to generate a candidate hidden state (g):
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Equation 8.9 - LSTM—candidate hidden state

Then, let’s turn our attention to the cell state (c). What about computing the new

cell state (c') using a weighted sum of the old cell state and the candidate hidden

state (g)?

Equation 8.10 - LSTM—new cell state

 "What about i and f? What are they?"

They are gates, of course: the input (i) gate and the forget (f) gate. Now, we’re only

missing the new hidden state (h'). If the cell state is unbounded, what about making

it bounded again?

Equation 8.11 - LSTM—new hidden state

Can you guess what that o is? It is yet another gate, the output (o) gate.


The cell state corresponds to the long-term memory, while the

hidden state corresponds to the short-term memory.

That’s it; we’ve (re)invented the long short-term memory cell on our own!

LSTM Cell

If we place the three expressions next to each another, we can more easily see the

differences between them:
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Equation 8.12 - RNN vs GRU vs LSTM

They are not that different, to be honest. Sure, the complexity is growing a bit, but it

all boils down to finding different ways of adding up hidden states, both old and

new, using gates.

The gates themselves always follow the same structure:

Equation 8.13 - LSTM’s gates

And the transformations used inside the gates and cells also follow the same

structure:

Equation 8.14 - Gates' internal transformations
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Now, let’s visualize the internals of the LSTM cell.

Figure 8.23 - Internals of an LSTM cell

The gates follow the same color convention I used in the equations: red for the

forget gate (f), blue for the output gate (o), and green for the input gate (i). The

path of the (new) candidate hidden state (g) is drawn in black and joins the (old)

cell state (c), drawn in gray, to produce both the new cell state (c') and the actual

new hidden state (h').

To really understand the flow of information inside the LSTM cell, I suggest you try

these exercises:

• First, learn to look past (or literally ignore) the internals of the gates: o, f, and i

are simply values between zero and one (for each dimension).

• Pretend i=1 and f=0—can you see that the new cell state c' is equivalent to the

output of a simple RNN?
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• Pretend i=0 and f=1—can you see that the new cell state c' is simply a copy of

the old cell state (in other words, the data [x] does not have any effect)?

• If you decrease o all the way to zero, the new hidden state h' is going to be zero

as well.

There is yet another important difference between the two states, hidden and cell:

The cell state is computed using two multiplications and one addition only. No

hyperbolic tangent!

 "So what? What’s wrong with the TanH?"

There is nothing wrong with it, but its gradients get very small very fast (as we’ve

seen in Chapter 4). This can result in a problem of vanishing gradients for longer

sequences. But the cell state does not suffer from this issue: It is like a "highway for

gradients," if you will :-) We’re not getting into details about gradient computation

in LSTMs, though.

Now, let’s see how an LSTM cell works in code. We’ll create one using PyTorch’s

own nn.LSTMCell and disassemble it into its components to manually reproduce all

the steps involved in updating the hidden state. To create a cell, we need to tell it

the input_size (number of features in our data points) and the hidden_size (the

size of the vector representing the hidden state), exactly the same as in the other

two cells. The nonlinearity is, once again, fixed as the hyperbolic tangent.

n_features = 2
hidden_dim = 2

torch.manual_seed(17)
lstm_cell = nn.LSTMCell(input_size=n_features,
                        hidden_size=hidden_dim)
lstm_state = lstm_cell.state_dict()
lstm_state
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Output

OrderedDict([('weight_ih', tensor([[-0.0930,  0.0497],
                                   [ 0.4670, -0.5319],
                                   [-0.6656,  0.0699],
                                   [-0.1662,  0.0654],
                                   [-0.0449, -0.6828],
                                   [-0.6769, -0.1889],
                                   [-0.4167, -0.4352],
                                   [-0.2060, -0.3989]])),
             ('weight_hh', tensor([[-0.7070, -0.5083],
                                   [ 0.1418,  0.0930],
                                   [-0.5729, -0.5700],
                                   [-0.1818, -0.6691],
                                   [-0.4316,  0.4019],
                                   [ 0.1222, -0.4647],
                                   [-0.5578,  0.4493],
                                   [-0.6800,  0.4422]])),
             ('bias_ih',
              tensor([-0.3559, -0.0279,  0.6553,  0.2918,  0.4007,
0.3262, -0.0778, -0.3002])),
             ('bias_hh',
              tensor([-0.3991, -0.3200,  0.3483, -0.2604, -0.1582,
0.5558,  0.5761, -0.3919]))])

Guess what? We get the same weird shapes again, but this time there are four

components instead of three. You already know the drill: Split the weights and

biases using split() and create linear layers using the linear_layers() function.
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Wx, bx = lstm_state['weight_ih'], lstm_state['bias_ih']
Wh, bh = lstm_state['weight_hh'], lstm_state['bias_hh']

# Split weights and biases for data points
Wxi, Wxf, Wxg, Wxo = Wx.split(hidden_dim, dim=0)
bxi, bxf, bxg, bxo = bx.split(hidden_dim, dim=0)
# Split weights and biases for hidden state
Whi, Whf, Whg, Who = Wh.split(hidden_dim, dim=0)
bhi, bhf, bhg, bho = bh.split(hidden_dim, dim=0)

# Creates linear layers for the components
# input gate - green
i_hidden, i_input = linear_layers(Wxi, bxi, Whi, bhi)
# forget gate - red
f_hidden, f_input = linear_layers(Wxf, bxf, Whf, bhf)
 # output gate - blue
o_hidden, o_input = linear_layers(Wxo, bxo, Who, bho)


"Wait! Isn’t there a component missing? You mentioned four of them;

where are the linear layers for g?"

Good catch! It turns out we don’t need linear layers for g because it is an RNN cell

on its own! We can simply use load_state_dict() to create the corresponding cell:

g_cell = nn.RNNCell(n_features, hidden_dim) # black
g_cell.load_state_dict({'weight_ih': Wxg, 'bias_ih': bxg,
                        'weight_hh': Whg, 'bias_hh': bhg})

Output

<All keys matched successfully>

That was easy, right? Since the other components are gates, we need to create

functions for them:
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def forget_gate(h, x):
    thf = f_hidden(h)
    txf = f_input(x)
    f = torch.sigmoid(thf + txf)
    return f  # red

def output_gate(h, x):
    tho = o_hidden(h)
    txo = o_input(x)
    o = torch.sigmoid(tho + txo)
    return o  # blue

def input_gate(h, x):
    thi = i_hidden(h)
    txi = i_input(x)
    i = torch.sigmoid(thi + txi)
    return i  # green

It is all set—we can replicate the mechanics of an LSTM cell at its component level (

f, o, i, and g) now. We also need an initial hidden state, an initial cell state, and the

first data point (corner) of a sequence:

initial_hidden = torch.zeros(1, hidden_dim)
initial_cell = torch.zeros(1, hidden_dim)

X = torch.as_tensor(points[0]).float()
first_corner = X[0:1]

Then, we start by computing the gated input using both the RNN cell (g) and its

corresponding gate (i):

g = g_cell(first_corner)
i = input_gate(initial_hidden, first_corner)
gated_input = g * i
gated_input
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Output

tensor([[-0.1340, -0.0004]], grad_fn=<MulBackward0>)

Next, we compute the gated cell state using the old cell state (c) and its

corresponding gate, the forget (f) gate:

f = forget_gate(initial_hidden, first_corner)
gated_cell = initial_cell * f
gated_cell

Output

tensor([[0., 0.]], grad_fn=<MulBackward0>)

Well, that’s kinda boring—since the old cell state is the initial cell state for the first

data point in a sequence, gated or not, it will be a bunch of zeros.

The new, updated cell state (c') is simply the sum of both the gated input and the

gated cell state:

c_prime = gated_cell + gated_input
c_prime

Output

tensor([[-0.1340, -0.0004]], grad_fn=<AddBackward0>)

The only thing missing is "converting" the cell state to a new hidden state (h') using

the hyperbolic tangent and the output (o) gate:

o = output_gate(initial_hidden, first_corner)
h_prime = o * torch.tanh(c_prime)
h_prime
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Output

tensor([[-5.4936e-02, -8.3816e-05]], grad_fn=<MulBackward0>)

The LSTM cell must return both states, hidden and cell, in that order, as a tuple:

(h_prime, c_prime)

Output

(tensor([[-5.4936e-02, -8.3816e-05]], grad_fn=<MulBackward0>),
 tensor([[-0.1340, -0.0004]], grad_fn=<AddBackward0>))

That’s it! Wasn’t that bad, right? The formulation of the LSTM may seem scary at

first sight, especially if you bump into a huge sequence of equations using all

weights and biases at once, but it doesn’t have to be that way.

Finally, let’s take a quick sanity check, feeding the same input to the original LSTM

cell:

lstm_cell(first_corner)

Output

(tensor([[-5.4936e-02, -8.3816e-05]], grad_fn=<MulBackward0>),
 tensor([[-0.1340, -0.0004]], grad_fn=<AddBackward0>))

And we’re done with cells. I guess you know what comes next…

LSTM Layer

The nn.LSTM layer takes care of the hidden and cell states handling for us, no

matter how long the input sequence is. We’ve been through this once with the RNN

layer and then again with the GRU layer. The arguments, inputs, and outputs of the

LSTM are almost exactly the same as those for the GRU, except for the fact that, as

you already know, LSTMs return two states (hidden and cell) with the same shape

instead of one. By the way, you can create stacked LSTMs and bidirectional LSTMs

too.
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So, let’s go straight to creating a model using a long short-term memory.

Square Model III — The Sorcerer

This model is pretty much the same as the original "Square Model," except for two

differences: Its recurrent neural network is not a plain RNN anymore, but an LSTM,

and it produces two states as output instead of one. Everything else stays exactly

the same.

Model Configuration

 1 class SquareModelLSTM(nn.Module):
 2     def __init__(self, n_features, hidden_dim, n_outputs):
 3         super(SquareModelLSTM, self).__init__()
 4         self.hidden_dim = hidden_dim
 5         self.n_features = n_features
 6         self.n_outputs = n_outputs
 7         self.hidden = None
 8         self.cell = None                                      ②
 9         # Simple LSTM
10         self.basic_rnn = nn.LSTM(self.n_features,
11                                  self.hidden_dim,
12                                  batch_first=True)            ①
13         # Classifier to produce as many logits as outputs
14         self.classifier = nn.Linear(self.hidden_dim,
15                                     self.n_outputs)
16 
17     def forward(self, X):
18         # X is batch first (N, L, F)
19         # output is (N, L, H)
20         # final hidden state is (1, N, H)
21         # final cell state is (1, N, H)
22         batch_first_output, (self.hidden, self.cell) = \
23                                             self.basic_rnn(X) ②
24 
25         # only last item in sequence (N, 1, H)
26         last_output = batch_first_output[:, -1]
27         # classifier will output (N, 1, n_outputs)
28         out = self.classifier(last_output)
29         # final output is (N, n_outputs)
30         return out.view(-1, self.n_outputs)
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① First change: from RNN to LSTM

② Second change: including the cell state as output

Model Configuration & Training

Model Configuration

1 torch.manual_seed(21)
2 model = SquareModelLSTM(n_features=2, hidden_dim=2, n_outputs=1)
3 loss = nn.BCEWithLogitsLoss()
4 optimizer = optim.Adam(model.parameters(), lr=0.01)

Model Training

1 sbs_lstm = StepByStep(model, loss, optimizer)
2 sbs_lstm.set_loaders(train_loader, test_loader)
3 sbs_lstm.train(100)

fig = sbs_lstm.plot_losses()

Figure 8.24 - Losses—SquareModelLSTM

StepByStep.loader_apply(test_loader, sbs_lstm.correct)
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Output

tensor([[53, 53],
        [75, 75]])

And that’s 100% accuracy again!

Visualizing the Hidden States

Once again, if we use the "perfect" square as the input to our latest trained model,

we get the following final hidden states for each of the eight sequences (plotted

side-by-side with the previous models for easier comparison):

Figure 8.25 - Final hidden states for eight sequences of the "perfect" square

The LSTM model achieves a difference that’s not necessarily better than the GRU.

What about the actual sequences?

Figure 8.26 - Sequence of hidden states
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Like the GRU, the LSTM presents four distinct groups of sequences corresponding

to the different starting corners. Moreover, it is able to classify most sequences

correctly after seeing only three points.

Variable-Length Sequences

So far, we’ve been working with full, regular sequences of four data points each,

and that’s nice. But what do you do if you get variable-length sequences, like the

ones below:

x0 = points[0]      # 4 data points
x1 = points[1][2:]  # 2 data points
x2 = points[2][1:]  # 3 data points

x0.shape, x1.shape, x2.shape

Output

((4, 2), (2, 2), (3, 2))

The answer: You pad them!

 "Could you please remind me again what padding is?"

Sure! Padding means stuffing with zeros. We’ve seen padding in Chapter 5 already:

We used it to stuff an image with zeros around it in order to preserve its original

size after being convolved.
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Padding in Computer Vision

Padding an image simply means adding zeros around it. An image is worth a

thousand words in this case.

By adding columns and rows of zeros around it, we expand the input image

such that the gray region starts centered in the actual top-left corner of the

input image. This simple trick can be used to preserve the original size of the

image.

Padding

Now, we’ll stuff sequences with zeros so they all have matching sizes. Simple

enough, right?

 "OK, it is simple, but why are we doing it?"

We need to pad the sequences because we cannot create a tensor out of a list of

elements with different sizes:

all_seqs = [s0, s1, s2]
torch.as_tensor(all_seqs)
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Output

-----------------------------------------------------------------
ValueError                      Traceback (most recent call last)
<ipython-input-154-9b17f363443c> in <module>
----> 1 torch.as_tensor([x0, x1, x2])

ValueError: expected sequence of length 4 at dim 1 (got 2)

We can use PyTorch’s nn.utils.rnn.pad_sequence() to perform the padding for

us. It takes as arguments a list of sequences, a padding value (default is zero), and

the option to make the result batch-first. Let’s give it a try:

seq_tensors = [torch.as_tensor(seq).float() for seq in all_seqs]
padded = rnn_utils.pad_sequence(seq_tensors, batch_first=True)
padded

Output

tensor([[[ 1.0349,  0.9661],
         [ 0.8055, -0.9169],
         [-0.8251, -0.9499],
         [-0.8670,  0.9342]],

        [[-1.0911,  0.9254],
         [-1.0771, -1.0414],
         [ 0.0000,  0.0000],
         [ 0.0000,  0.0000]],

        [[-1.1247, -0.9683],
         [ 0.8182, -0.9944],
         [ 1.0081,  0.7680],
         [ 0.0000,  0.0000]]])

Both the second and the third sequences were shorter than the first, so they got

padded accordingly to match the length of the longest sequence.
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Now we can proceed as usual and feed the padded sequences to an RNN and look

at the results:

torch.manual_seed(11)
rnn = nn.RNN(2, 2, batch_first=True)

output_padded, hidden_padded = rnn(padded)
output_padded

Output

tensor([[[-0.6388,  0.8505],
         [-0.4215,  0.8979],
         [ 0.3792,  0.3432],
         [ 0.3161, -0.1675]],

        [[ 0.2911, -0.1811],
         [ 0.3051,  0.7055],
         [ 0.0052,  0.5819],
         [-0.0642,  0.6012]],

        [[ 0.3385,  0.5927],
         [-0.3875,  0.9422],
         [-0.4832,  0.6595],
         [-0.1007,  0.5349]]], grad_fn=<PermuteBackward>)

Since the sequences were padded to four data points each, we got four hidden

states for each sequence as output.


"How come the hidden states for the padded points are different

from the hidden state of the last real data point?"

Even though each padded point is just a bunch of zeros, it doesn’t mean it won’t

change the hidden state. The hidden state itself gets transformed, and, even if the

padded point is full of zeros, its corresponding transformation may include a bias

term that gets added nonetheless. This isn’t necessarily a problem, but, if you don’t

like padded points modifying your hidden state, you can prevent that by packing

the sequence instead.
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Before moving on to packed sequences, though, let’s just check the (permuted,

batch-first) final hidden state:

hidden_padded.permute(1, 0, 2)

Output

tensor([[[ 0.3161, -0.1675]],

        [[-0.0642,  0.6012]],

        [[-0.1007,  0.5349]]], grad_fn=<PermuteBackward>)

Packing

Packing works like a concatenation of sequences: Instead of padding them to have

equal-length elements, it lines the sequences up, one after the other, and keeps

track of the lengths, so it knows the indices corresponding to the start of each

sequence.

Let’s work through an example using PyTorch’s nn.utils.rnn.pack_sequence().

First, it takes a list of tensors as input. If your list is not sorted by decreasing

sequence length, you’ll need to set its enforce_sorted argument to False.


Sorting the sequences by their lengths is only necessary if you’re

planning on exporting your model using the ONNX format,

which allows you to import the model in different frameworks.

packed = rnn_utils.pack_sequence(seq_tensors, enforce_sorted=False)
packed
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Output

PackedSequence(data=tensor([[ 1.0349,  0.9661],
        [-1.1247, -0.9683],
        [-1.0911,  0.9254],
        [ 0.8055, -0.9169],
        [ 0.8182, -0.9944],
        [-1.0771, -1.0414],
        [-0.8251, -0.9499],
        [ 1.0081,  0.7680],
        [-0.8670,  0.9342]]), batch_sizes=tensor([3, 3, 2, 1]),
sorted_indices=tensor([0, 2, 1]), unsorted_indices=tensor([0, 2,
1]))

The output is a bit cryptic, to say the least. Let’s decipher it, piece by piece, starting

with the unsorted_indices_tensor. Even though we didn’t sort the list ourselves,

PyTorch did it internally, and it found that the longest sequence is the first (four

data points, index 0), followed by the third (three data points, index 2), and then by

the shortest one (two data points, index 1).

Once the sequences are listed in order of decreasing length, like in Figure 8.27, the

number of sequences that are at least t steps long (corresponding to the number

of columns in the figure below) is given by the batch_sizes attribute:

Figure 8.27 - Packing sequences

For example, the batch_size for the third column is two because two sequences

have at least three data points. Then, it goes through the data points in the same
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column-wise fashion, from top to bottom, and from left to right, to assign the data

points to the corresponding indices in the data tensor.

Finally, it uses these indices to assemble the data tensor:

Figure 8.28 - Packed data points

Thus, to retrieve the values of the original sequences, we need to slice the data
tensor accordingly. For example, we can retrieve the first sequence from the data
tensor by reading the values from its corresponding indices: 0, 3, 6, and 8.

(packed.data[[0, 3, 6, 8]] == seq_tensors[0]).all()

Output

tensor(True)

Once the sequence is properly packed, we can feed it directly to an RNN:

output_packed, hidden_packed = rnn(packed)
output_packed, hidden_packed
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Output

(PackedSequence(data=tensor([[-0.6388,  0.8505],
         [ 0.3385,  0.5927],
         [ 0.2911, -0.1811],
         [-0.4215,  0.8979],
         [-0.3875,  0.9422],
         [ 0.3051,  0.7055],
         [ 0.3792,  0.3432],
         [-0.4832,  0.6595],
         [ 0.3161, -0.1675]], grad_fn=<CatBackward>), batch_sizes
=tensor([3, 3, 2, 1]), sorted_indices=tensor([0, 2, 1]),
unsorted_indices=tensor([0, 2, 1])),
 tensor([[[ 0.3161, -0.1675],
          [ 0.3051,  0.7055],
          [-0.4832,  0.6595]]], grad_fn=<IndexSelectBackward>))


If the input is packed, the output tensor is packed too, but the

hidden state is not.

Let’s compare both final hidden states, from padded and packed sequences:

hidden_packed == hidden_padded

Output

tensor([[[ True,  True],
         [False, False],
         [False, False]]])

From three sequences, only one matches. Well, this shouldn’t be a surprise; after

all, we’re packing sequences to avoid updating the hidden state with padded

inputs.

 "Cool, so I can use the permuted hidden state, right?"

Well, it depends:

• Yes, if you’re using networks that are not bidirectional—the final hidden state
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does match the last output.

• No, if you’re using a bidirectional network—you’re only getting the properly

aligned hidden states in the last output, so you’ll need to unpack it.

To unpack the actual sequence of hidden states for the shortest sequence, for

example, we could get the corresponding indices from the data tensor in the packed

output:

output_packed.data[[2, 5]] # x1 sequence

Output

tensor([[ 0.2911, -0.1811],
        [ 0.3051,  0.7055]], grad_fn=<IndexBackward>)

But that would be extremely annoying so, no, you don’t have to.

Unpacking (to padded)

You can unpack a sequence using PyTorch’s

nn.utils.rnn.pad_packed_sequence(). The name does not help, I know; I would

rather call it unpack_sequence_to_padded() instead. Anyway, we can use it to

transform our packed output into a regular, yet padded, output:

output_unpacked, seq_sizes = \
    rnn_utils.pad_packed_sequence(output_packed, batch_first=True)
output_unpacked, seq_sizes
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Output

(tensor([[[-0.6388,  0.8505],
          [-0.4215,  0.8979],
          [ 0.3792,  0.3432],
          [ 0.3161, -0.1675]],

         [[ 0.2911, -0.1811],
          [ 0.3051,  0.7055],
          [ 0.0000,  0.0000],
          [ 0.0000,  0.0000]],

         [[ 0.3385,  0.5927],
          [-0.3875,  0.9422],
          [-0.4832,  0.6595],
          [ 0.0000,  0.0000]]], grad_fn=<IndexSelectBackward>),
 tensor([4, 2, 3]))

It returns both the padded sequences and the original sizes, which will be useful as

well.

 "Problem solved then? Can I take the last output now?"

Almost there—if you were to take the last output in the same way we did before,

you’d still get some padded zeros back:

output_unpacked[:, -1]

Output

tensor([[ 0.3161, -0.1675],
        [ 0.0000,  0.0000],
        [ 0.0000,  0.0000]], grad_fn=<SelectBackward>)
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So, to actually get the last output, we need to use some fancy indexing and the

information about original sizes returned by pad_packed_sequence():

seq_idx = torch.arange(seq_sizes.size(0))
output_unpacked[seq_idx, seq_sizes-1]

Output

tensor([[ 0.3161, -0.1675],
        [ 0.3051,  0.7055],
        [-0.4832,  0.6595]], grad_fn=<IndexBackward>)

And we finally have the last output for each packed sequence, even if we’re using a

bidirectional network.

Packing (from padded)

You can also convert an already padded sequence into a packed sequence using

PyTorch’s nn.utils.rnn.pack_padded_sequence(). Since the sequence is already

padded, though, we need to compute the original sizes ourselves:

len_seqs = [len(seq) for seq in all_seqs]
len_seqs

Output

[4, 2, 3]

And then pass them as an argument:

packed = rnn_utils.pack_padded_sequence(padded, len_seqs,
                                        enforce_sorted=False,
                                        batch_first=True)
packed
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Output

PackedSequence(data=tensor([[ 1.0349,  0.9661],
        [-1.1247, -0.9683],
        [-1.0911,  0.9254],
        [ 0.8055, -0.9169],
        [ 0.8182, -0.9944],
        [-1.0771, -1.0414],
        [-0.8251, -0.9499],
        [ 1.0081,  0.7680],
        [-0.8670,  0.9342]]), batch_sizes=tensor([3, 3, 2, 1]),
sorted_indices=tensor([0, 2, 1]), unsorted_indices=tensor([0, 2,
1]))

Variable-Length Dataset

Let’s create a dataset with variable-length sequences and train a model using it:

Data Generation

1 var_points, var_directions = generate_sequences(variable_len=True)
2 var_points[:2]

Output

[array([[ 1.12636495,  1.1570899 ],
        [ 0.87384513, -1.00750892],
        [-0.9149893 , -1.09150317],
        [-1.0867348 ,  1.07731667]]),
 array([[ 0.92250954, -0.89887678],
        [ 1.0941646 ,  0.92300589]])]

Data Preparation

We simply cannot use a TensorDataset, because we cannot create a tensor out of a

list of elements with different sizes.

So, we must build a custom dataset that makes a tensor out of each sequence and,

when prompted for a given item, returns the corresponding tensor and associated

label:
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Data Preparation

 1 class CustomDataset(Dataset):
 2     def __init__(self, x, y):
 3         self.x = [torch.as_tensor(s).float() for s in x]
 4         self.y = torch.as_tensor(y).float().view(-1, 1)
 5 
 6     def __getitem__(self, index):
 7         return (self.x[index], self.y[index])
 8 
 9     def __len__(self):
10         return len(self.x)
11 
12 train_var_data = CustomDataset(var_points, var_directions)

But this is not enough; if we create a data loader for our custom dataset and try to

retrieve a mini-batch out of it, it will raise an error:

train_var_loader = DataLoader(
    train_var_data, batch_size=16, shuffle=True
)
next(iter(train_var_loader))

Output

-----------------------------------------------------------------
RuntimeError                    Traceback (most recent call last)
<ipython-input-34-596b8081f8d1> in <module>
      1 train_var_loader = DataLoader(train_var_data, batch_size=16,
shuffle=True)
----> 2 next(iter(train_var_loader))
...
RuntimeError: stack expects each tensor to be equal size, but got [
3, 2] at entry 0 and [4, 2] at entry 2

It turns out, the data loader is trying to stack() together the sequences, which, as

we know, have different sizes and thus cannot be stacked together.

We could simply pad all the sequences and move on with a TensorDataset and

regular data loader. But, in that case, the final hidden states would be affected by
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the padded data points, as we’ve already discussed.

We can do better than that: We can pack our mini-batches using a collate function.

Collate Function

The collate function takes a list of tuples (sampled from a dataset using its

__getitem__()) and collates them into a batch that’s being returned by the data

loader. It gives you the ability to manipulate the sampled data points in any way

you want to make them into a mini-batch.

In our case, we’d like to get all sequences (the first item in every tuple) and pack

them. Besides, we can get all labels (the second item in every tuple) and make them

into a tensor that’s in the correct shape for our binary classification task:

Data Preparation

1 def pack_collate(batch):
2     X = [item[0] for item in batch]
3     y = [item[1] for item in batch]
4     X_pack = rnn_utils.pack_sequence(X, enforce_sorted=False)
5 
6     return X_pack, torch.as_tensor(y).view(-1, 1)

Let’s see the function in action by creating a dummy batch of two elements and

applying the function to it:

# list of tuples returned by the dataset
dummy_batch = [train_var_data[0], train_var_data[1]]
dummy_x, dummy_y = pack_collate(dummy_batch)
dummy_x
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Output

PackedSequence(data=tensor([[ 1.1264,  1.1571],
        [ 0.9225, -0.8989],
        [ 0.8738, -1.0075],
        [ 1.0942,  0.9230],
        [-0.9150, -1.0915],
        [-1.0867,  1.0773]]), batch_sizes=tensor([2, 2, 1, 1]),
sorted_indices=tensor([0, 1]), unsorted_indices=tensor([0, 1]))

Two sequences of different sizes go in, one packed sequence comes out. Now we

can create a data loader that uses our collate function:

Data Preparation

1 train_var_loader = DataLoader(train_var_data,
2                               batch_size=16,
3                               shuffle=True,
4                               collate_fn=pack_collate)
5 x_batch, y_batch = next(iter(train_var_loader))

And now every batch coming out of our data loader has a packed sequence.

 "Do I have to change the model too?"

Square Model IV — Packed

There are some changes we need to make to the model. Let’s illustrate them by

creating a model that uses a bidirectional LSTM and expects packed sequences as

inputs.

First, since X is a packed sequence now, it means that the output is packed, and

therefore we need to unpack it to a padded output.

Once it is unpacked, we can get the last output by using the fancier indexing (from

a couple of pages ago) to get the last (actual) element of the padded sequences.

Moreover, using a bidirectional LSTM means that the output for each sequence has

an (N, 1, 2*H) shape.
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Model Configuration

 1 class SquareModelPacked(nn.Module):
 2     def __init__(self, n_features, hidden_dim, n_outputs):
 3         super(SquareModelPacked, self).__init__()
 4         self.hidden_dim = hidden_dim
 5         self.n_features = n_features
 6         self.n_outputs = n_outputs
 7         self.hidden = None
 8         self.cell = None
 9         # Simple LSTM
10         self.basic_rnn = nn.LSTM(self.n_features,
11                                  self.hidden_dim,
12                                  bidirectional=True)
13         # Classifier to produce as many logits as outputs
14         self.classifier = nn.Linear(2 * self.hidden_dim,
15                                     self.n_outputs)           ③
16 
17     def forward(self, X):
18         # X is a PACKED sequence now
19         # final hidden state is (2, N, H) - bidirectional
20         # final cell state is (2, N, H) - bidirectional
21         rnn_out, (self.hidden, self.cell) = self.basic_rnn(X)
22         # unpack the output (N, L, 2*H)
23         batch_first_output, seq_sizes = \
24             rnn_utils.pad_packed_sequence(rnn_out,
25                                           batch_first=True)   ①
26 
27         # only last item in sequence (N, 1, 2*H)
28         seq_idx = torch.arange(seq_sizes.size(0))
29         last_output = batch_first_output[seq_idx, seq_sizes-1]②
30         # classifier will output (N, 1, n_outputs)
31         out = self.classifier(last_output)
32 
33         # final output is (N, n_outputs)
34         return out.view(-1, self.n_outputs)

① Unpacking the output

② Fancy indexing to retrieve the last output of a padded sequence

③ Two hidden states are concatenated side-by-side in a bidirectional network

668 | Chapter 8: Sequences



Model Configuration & Training

We can use our data loader that outputs packed sequences (train_var_loader) to

feed our SquareModelPacked model and train it in the usual way:

Model Configuration

1 torch.manual_seed(21)
2 model = SquareModelPacked(n_features=2, hidden_dim=2, n_outputs=1)
3 loss = nn.BCEWithLogitsLoss()
4 optimizer = optim.Adam(model.parameters(), lr=0.01)

Model Training

1 sbs_packed = StepByStep(model, loss, optimizer)
2 sbs_packed.set_loaders(train_var_loader)
3 sbs_packed.train(100)

fig = sbs_packed.plot_losses()

Figure 8.29 - Losses—SquareModelPacked

StepByStep.loader_apply(train_var_loader, sbs_packed.correct)
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Output

tensor([[66, 66],
        [62, 62]])

1D Convolutions

In Chapter 5, we learned about convolutions, their kernels and filters, and how to

perform a convolution by repeatedly applying a filter to a moving region over the

image. Those were 2D convolutions, though, meaning that the filter was moving in

two dimensions, both along the width (left to right), and the height (top to bottom)

of the image.

Guess what 1D convolutions do? They move the filter in one dimension, from left

to right. The filter works like a moving window, performing a weighted sum of the

values in the region it has moved over. Let’s use a sequence of temperature values

over thirteen days as an example:

temperatures = np.array([5, 11, 15, 6, 5, 3, 3, 0, 0, 3, 4, 2, 1])

Figure 8.30 - Moving window over series of temperatures

Then, let’s use a window (filter) of size five, like in the figure above. In its first step,

the window is over days one to five. In the next step, since it can only move to the

right, it will be over days two to six. By the way, the size of our movement to the

right is, once again, known as the stride.

Now, let’s assign the same value (0.2) for every weight in our filter and use

PyTorch’s F.conv1d() to convolve the filter with our sequence (don’t mind the

shape just yet; we’ll get back to it in the next section):
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size = 5
weight = torch.ones(size) * 0.2
F.conv1d(torch.as_tensor(temperatures).float().view(1, 1, -1),
         weight=weight.view(1, 1, -1))

Output

tensor([[[8.4000, 8.0000, 6.4000, 3.4000, 2.2000,
          1.8000, 2.0000, 1.8000, 2.0000]]])

Does it look familiar? That’s a moving average, just like those we used in Chapter 6.

 "Does it mean every 1D convolution is a moving average?"

Well, kinda … in the functional form above, we had to provide the weights, but, as

expected, the corresponding module (nn.Conv1d) will learn the weights itself. Since

there is no requirement that the weights must add up to one, it won’t be a moving

average but rather a moving weighted sum.

Moreover, it is very unlikely we’ll use it over a single feature like in the example

above. Things get more interesting as we include more features to be convolved

with the filter, which brings us to the next topic…

Shapes

The shapes topic, one more time, I know—unfortunately, there is no escape from it.

In Chapter 4 we discussed the NCHW shape for images:

• N stands for the Number of images (in a mini-batch, for instance)

• C stands for the number of Channels (or filters) in each image

• H stands for each image’s Height

• W stands for each image’s Width

For sequences, the shape should be NCL:

• N stands for the Number of sequences (in a mini-batch, for instance)

• C stands for the number of Channels (or filters) in each element of the

sequence
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• L stands for the Length of each sequence

 "Wait, where is the number of features in it?"

Good point! Since 1D convolutions only move along the sequence, each feature is

considered an input channel. So, you can think of the shape as NFL or N(C/F)L if

you like.

 "Really?! Yet another shape for input sequences?"

Unfortunately, yes. But I’ve built this small table to help you wrap your head

around the different shape conventions while working with sequences as inputs:

Shape Use Case

Batch-first N, L, F Typical shape; RNNs with batch_first=True

RNN-friendly L, N, F Default for RNNs (batch_first=False)

Sequence-last N, F, L Default for 1D convolutions

Having (hopefully) cleared that up, let’s use permute to get our sequences in the

appropriate shape:

seqs = torch.as_tensor(points).float() # N, L, F
seqs_length_last = seqs.permute(0, 2, 1)
seqs_length_last.shape # N, F=C, L

Output

torch.Size([128, 2, 4])

Multiple Features or Channels

Our sequences of corners have two coordinates; that is, two features. These will

be considered (input) channels as far as the 1D convolution is concerned, so we

create the convolutional layer accordingly:
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torch.manual_seed(17)
conv_seq = nn.Conv1d(in_channels=2, out_channels=1,
                     kernel_size=2, bias=False)
conv_seq.weight, conv_seq.weight.shape

Output

(Parameter containing:
 tensor([[[-0.0658,  0.0351],
          [ 0.3302, -0.3761]]], requires_grad=True),
torch.Size([1, 2, 2]))

We’re using only one output channel, so there is only one filter, which will produce

one output value for each region the window moves over. Since the kernel size is

two, each window will move over two corners. Any two corners make an edge of

the square, so there will be one output for each edge. This information will be

useful for visualizing what the model is actually doing.

Since each channel (feature) will be multiplied, element-wise, by its corresponding

weights in the filter, and all values for all channels are added up to produce a

single value anyway, I’ve chosen to represent the sequence (and the filter) as if it

were two-dimensional in the figure below:

Figure 8.31 - Applying filter over a sequence

Our first sequence corresponds to corners CBAD and, for the first region (in gray,

corresponding to the CB edge), it results in an output of 0.6241. Let’s use our

convolutional layer to get all outputs:

conv_seq(seqs_length_last[0:1])
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Output

tensor([[[ 0.6241, -0.0274, -0.6412]]], grad_fn=<SqueezeBackward1>)

The resulting shape is given by the formula below, where l is the length of the

sequence, f is the filter size, p is the padding, and s is the stride:

Equation 8.15 - Resulting shape

If any of the resulting dimensions are not an integer, they must be rounded down.

Dilation

There is yet another operation that can be used with convolutions in any number of

dimensions, but that we haven’t discussed yet: dilation. The general idea is quite

simple: Instead of a contiguous kernel, it uses a dilated kernel. A dilation of size

two, for instance, means that the kernel uses every other element (be it a pixel or a

feature value in a sequence).

 "Why would I want to do that?"

In a nutshell, the idea is to capture long-term properties of a sequence (like

seasonality in a time series, for example) or to integrate information from different

scales in an image (local and global context). We’re not delving deeper than

explaining the mechanism itself, though.

In our example, a kernel of size two (so it goes over two values in the sequence)

with a dilation of two (so it skips every other value in the sequence) works like

this:
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Figure 8.32 - Applying dilated filter over a sequence

The first dilated region (in gray) is given by the first and third values (corners C and

A), which, when convolved with the filter, will output a value of 0.58. Then, the next

dilated region will be given by the second and fourth values (corners B and D).

Now, the convolutional layer has a dilation argument as well:

torch.manual_seed(17)
conv_dilated = nn.Conv1d(in_channels=2, out_channels=1,
                         kernel_size=2, dilation=2, bias=False)
conv_dilated.weight, conv_dilated.weight.shape

Output

(Parameter containing:
 tensor([[[-0.0658,  0.0351],
          [ 0.3302, -0.3761]]], requires_grad=True),
torch.Size([1, 2, 2]))

If we run our sequence through it, we get the same output as depicted in the figure

above.

conv_dilated(seqs_length_last[0:1])

Output

tensor([[[ 0.5793, -0.7376]]], grad_fn=<SqueezeBackward1>)

This output is smaller than the previous one because the dilation affects the shape
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of the output according to the formula below (d stands for dilation size):

Equation 8.16 - Resulting shape with dilation

If any of the resulting dimensions are not an integer, they must be rounded down.

Data Preparation

The data preparation step is very much like that of the previous models except for

the fact that we need to permute the dimensions to comply with 1D convolutions'

"sequence-last" (NFL) shape:

Data Preparation

 1 train_data = TensorDataset(
 2     torch.as_tensor(points).float().permute(0, 2, 1),
 3     torch.as_tensor(directions).view(-1, 1).float()
 4 )
 5 test_data = TensorDataset(
 6     torch.as_tensor(test_points).float().permute(0, 2, 1),
 7     torch.as_tensor(test_directions).view(-1, 1).float()
 8 )
 9 train_loader = DataLoader(
10     train_data, batch_size=16, shuffle=True
11 )
12 test_loader = DataLoader(test_data, batch_size=16)

Model Configuration & Training

The model is quite simple: a single nn.Conv1d layer followed by an activation

function (ReLU), a flattening layer (which is only squeezing the channel dimension

out), and a linear layer to combine the outputs (three values for each sequence, as

shown in Figure 8.31) into logits for our binary classification.
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Model Configuration

 1 torch.manual_seed(21)
 2 model = nn.Sequential()
 3 model.add_module('conv1d', nn.Conv1d(in_channels=2,
 4                                      out_channels=1,
 5                                      kernel_size=2))
 6 model.add_module('relu', nn.ReLU())
 7 model.add_module('flatten', nn.Flatten())
 8 model.add_module('output', nn.Linear(3, 1))
 9 
10 loss = nn.BCEWithLogitsLoss()
11 optimizer = optim.Adam(model.parameters(), lr=0.01)

Model Training

1 sbs_conv1 = StepByStep(model, loss, optimizer)
2 sbs_conv1.set_loaders(train_loader, test_loader)
3 sbs_conv1.train(100)

fig = sbs_conv1.plot_losses()

Figure 8.33 - Losses—the edge model

StepByStep.loader_apply(test_loader, sbs_conv1.correct)
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Output

tensor([[53, 53],
        [75, 75]])

Once again, the model’s accuracy is perfect. Maybe you’ve noticed it was much

faster to train too. How come this simple model performed so well? Let’s try to

figure out what it did under the hood…

Visualizing the Model

The key component of our model is the nn.Conv1d layer, so let’s take a look at its

state_dict():

model.conv1d.state_dict()

Output

OrderedDict([('weight', tensor([[[-0.2186,  2.3289],
                       [-2.3765, -0.1814]]], device='cuda:0')),
             ('bias', tensor([-0.5457], device='cuda:0'))])

Then, let’s see what this filter is doing by feeding it a "perfect" square starting at

corner A and going counterclockwise (sequence ADCB):

Figure 8.34 - Applying filter over the "perfect" square

The figure above shows us the element-wise multiplication and result for the first

region, corresponding to the AD edge of our square (without including the bias

value from the convolutional layer). The outputs on the right are the "edge features."
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We can actually find an expression to compute them as a weighted sum of the

coordinates for both the first (x1st) and the second (x2nd) corners included in the

region being convolved:

Equation 8.17 - Equation for "edge feature"

From the expression above, and given that the coordinates' values are close to one

(in absolute value), the only way for the edge feature to have a positive value is for

x1st
1 and x2nd

0 to be approximately -1 and 1, respectively. This is the case for two

edges only, AD and DC:

Equation 8.18 - Detected edges

Every other edge will return a negative value and thus be clipped at zero by the

ReLU activation function. Our model learned to choose two edges with the same

direction to perform the classification.

 "Why two edges? Shouldn’t a single edge suffice?"

It should if our sequences actually had four edges … but they don’t. We do have

four corners, but we can only build three edges out of it because we’re missing the

edge connecting the last and the first corners. So, any model that relies on a single

edge will likely fail in those cases where that particular edge is the missing one.

Thus, the model needs to correctly classify at least two edges.

Putting It All Together

In this chapter, we’ve used different recurrent neural networks, plain-vanilla

RNNs, GRUs, and LSTMs, to produce a hidden state representing each sequence

that can be used for sequence classification. We used both fixed- and variable-

length sequences, padding or packing them with the help of a collate function, and

built models that ensured the right shape of the data.

Fixed-Length Dataset

For fixed-length sequences, the data preparation was as usual:
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Data Generation & Preparation

1 points, directions = generate_sequences(n=128, seed=13)
2 train_data = TensorDataset(
3     torch.as_tensor(points).float(),
4     torch.as_tensor(directions).view(-1, 1).float()
5 )
6 train_loader = DataLoader(
7     train_data, batch_size=16, shuffle=True
8 )

Variable-Length Dataset

For variable-length sequences, though, we built a custom dataset and a collate

function to pack the sequences:

Data Generation

1 var_points, var_directions = generate_sequences(variable_len=True)

Data Preparation

 1 class CustomDataset(Dataset):
 2     def __init__(self, x, y):
 3         self.x = [torch.as_tensor(s).float() for s in x]
 4         self.y = torch.as_tensor(y).float().view(-1, 1)
 5 
 6     def __getitem__(self, index):
 7         return (self.x[index], self.y[index])
 8 
 9     def __len__(self):
10         return len(self.x)
11 
12 train_var_data = CustomDataset(var_points, var_directions)
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Data Preparation

 1 def pack_collate(batch):
 2     X = [item[0] for item in batch]
 3     y = [item[1] for item in batch]
 4     X_pack = rnn_utils.pack_sequence(X, enforce_sorted=False)
 5 
 6     return X_pack, torch.as_tensor(y).view(-1, 1)
 7 
 8 train_var_loader = DataLoader(train_var_data,
 9                               batch_size=16,
10                               shuffle=True,
11                               collate_fn=pack_collate)

There Can Be Only ONE … Model

We’ve developed many models throughout this chapter, depending both on the

type of recurrent layer that was used (RNN, GRU, or LSTM) and on the type of

sequence (packed or not). The model below, though, is able to handle different

configurations:

• Its rnn_layer argument allows you to use whichever recurrent layer you

prefer.

• The **kwargs argument allows you to further configure the recurrent layer

(using num_layers and bidirectional arguments, for example).

• The output dimension of the recurrent layer is automatically computed to

build a matching linear layer.

• If the input is a packed sequence, it handles the unpacking and fancy indexing

to retrieve the actual last hidden state.

Model Configuration

 1 class SquareModelOne(nn.Module):
 2     def __init__(self, n_features, hidden_dim, n_outputs,
 3                  rnn_layer=nn.LSTM, **kwargs):
 4         super(SquareModelOne, self).__init__()
 5         self.hidden_dim = hidden_dim
 6         self.n_features = n_features
 7         self.n_outputs = n_outputs
 8         self.hidden = None
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 9         self.cell = None
10         self.basic_rnn = rnn_layer(self.n_features,
11                                    self.hidden_dim,
12                                    batch_first=True, **kwargs)
13         output_dim = (self.basic_rnn.bidirectional + 1) * \
14                      self.hidden_dim
15         # Classifier to produce as many logits as outputs
16         self.classifier = nn.Linear(output_dim, self.n_outputs)
17 
18     def forward(self, X):
19         is_packed = isinstance(X, nn.utils.rnn.PackedSequence)
20         # X is a PACKED sequence, there is no need to permute
21 
22         rnn_out, self.hidden = self.basic_rnn(X)
23         if isinstance(self.basic_rnn, nn.LSTM):
24             self.hidden, self.cell = self.hidden
25 
26         if is_packed:
27             # unpack the output
28             batch_first_output, seq_sizes = \
29                 rnn_utils.pad_packed_sequence(rnn_out,
30                                               batch_first=True)
31             seq_slice = torch.arange(seq_sizes.size(0))
32         else:
33             batch_first_output = rnn_out
34             seq_sizes = 0 # so it is -1 as the last output
35             seq_slice = slice(None, None, None) # same as ':'
36 
37         # only last item in sequence (N, 1, H)
38         last_output = batch_first_output[seq_slice, seq_sizes-1]
39 
40         # classifier will output (N, 1, n_outputs)
41         out = self.classifier(last_output)
42 
43         # final output is (N, n_outputs)
44         return out.view(-1, self.n_outputs)

Model Configuration & Training

The model below uses a bidirectional LSTM and already achieves a 100% accuracy

on the training set. Feel free to experiment with different recurrent layers, the

number of layers, single or bidirectional, as well as with switching between fixed-
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and variable-length sequences.

Model Configuration

1 torch.manual_seed(21)
2 model = SquareModelOne(n_features=2, hidden_dim=2, n_outputs=1,
3                        rnn_layer=nn.LSTM, num_layers=1,
4                        bidirectional=True)
5 loss = nn.BCEWithLogitsLoss()
6 optimizer = optim.Adam(model.parameters(), lr=0.01)

Model Training

1 sbs_one = StepByStep(model, loss, optimizer)
2 #sbs_one.set_loaders(train_loader)
3 sbs_one.set_loaders(train_var_loader)
4 sbs_one.train(100)

#StepByStep.loader_apply(train_loader, sbs_one.correct)
StepByStep.loader_apply(train_var_loader, sbs_one.correct)

Output

tensor([[66, 66],
        [62, 62]])

Recap

In this chapter, we’ve learned about sequential data and how to use recurrent

neural networks to perform a classification task. We followed the journey of a

hidden state through all the transformations happening inside of different

recurrent layers: RNN, GRU, and LSTM. We learned the difference between

padding and packing variable-length sequences, and how to build a data loader for

packed sequences. We also brought back convolutions, using the one-dimensional

version to process sequential data as well. This is what we’ve covered:

• understanding the importance of order in sequential data

• generating a synthetic two-dimensional dataset so we can visualize what’s
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happening "under the hood" of our models

• learning what a hidden state is

• understanding how a hidden state is modified by a data point inside an RNN

cell

• disassembling an RNN cell into its components: two linear layers and an

activation function

• understanding the reasoning behind using hyperbolic tangent as the activation

function of choice in RNNs

• learning that data points are independently transformed while the hidden

state is sequentially transformed

• using an RNN layer to automatically handle hidden state inputs and outputs

without having to loop over a sequence

• discussing the issue with the shape of the data and the difference between

typical batch-first (N, L, F) and sequence-first (L, N, F) shapes

• figuring that stacked RNNs and bidirectional RNNs are simply different ways

of composing two or more simple RNNs and concatenating their outputs

• training a square model to classify our sequences into clockwise or

counterclockwise directions

• visualizing the transformed inputs and the decision boundary separating the

final hidden states

• visualizing the journey of a hidden state through each and every

transformation happening inside an RNN layer

• adding gates to the RNN cell and turning it into a gated recurrent unit cell

• learning that gates are simply vectors of values between zero and one, one

value for each dimension of the hidden state

• disassembling a GRU cell into its components to better understand its internal

mechanics

• visualizing the effect of using a gate on the hidden state

• adding another state and more gates to the RNN cell, making it a long short-

term memory cell

• disassembling an LSTM cell into its many components to better understand its

internal mechanics
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• generating variable-length sequences

• understanding the issues with having tensors of different sizes and using

padding to make all sequences equal in length

• packing sequences as an alternative to padding, and understanding the way

the data is organized in a packed sequence

• using a collate function to make a data loader yield a mini-batch of your own

assembling

• learning about 1D convolutions and how they can be used with sequential data

• discussing the shape (N, C, L) expected by these convolutions

• understanding that features are considered channels in these convolutions

• learning about dilated convolutions

• visualizing how a convolutional model learned to classify sequences based on

the edges of the square

Congratulations! You took your first step (quite a long one, I might add, so give

yourself a pat on the back for it!) toward building models using sequential data.

You’re now familiar with the inner workings of recurrent layers, and you learned

the importance of the hidden state as the representation of a sequence.

Moreover, you got the tools to put your sequences in shape (I had to make this

pun!).

In the next chapter, we’ll build on all of this (especially the hidden state part) and

develop models to generate sequences. These models use an encoder-decoder

architecture, and we can add all sorts of bells and whistles to it, like attention

mechanisms, positional encoding, and much more!

[134] https://github.com/dvgodoy/PyTorchStepByStep/blob/master/Chapter08.ipynb

[135] https://colab.research.google.com/github/dvgodoy/PyTorchStepByStep/blob/master/Chapter08.ipynb
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Chapter 9 — Part I
Sequence-to-Sequence

Spoilers

In the first half of this chapter, we will:

• learn about the encoder-decoder architecture

• build and train models to predict a target sequence from a source sequence

• understand the attention mechanism and its components ("keys," "values," and

"queries")

• build a multi-headed attention mechanism

Jupyter Notebook

The Jupyter notebook corresponding to Chapter 9[136] is part of the official Deep

Learning with PyTorch Step-by-Step repository on GitHub. You can also run it

directly in Google Colab[137].

If you’re using a local installation, open your terminal or Anaconda prompt and

navigate to the PyTorchStepByStep folder you cloned from GitHub. Then, activate

the pytorchbook environment and run jupyter notebook:

$ conda activate pytorchbook

(pytorchbook)$ jupyter notebook

If you’re using Jupyter’s default settings, this link should open Chapter 9’s

notebook. If not, just click on Chapter09.ipynb in your Jupyter’s home page.

Imports

For the sake of organization, all libraries needed throughout the code used in any

given chapter are imported at its very beginning. For this chapter, we’ll need the

following imports:
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import copy
import numpy as np

import torch
import torch.optim as optim
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader, Dataset, random_split, \
    TensorDataset

from data_generation.square_sequences import generate_sequences
from stepbystep.v4 import StepByStep

Sequence-to-Sequence

Sequence-to-sequence problems are more complex than those we handled in the

last chapter. There are two sequences now: the source and the target. We use the

former to predict the latter, and they may even have different lengths.

A typical example of a sequence-to-sequence problem is translation: A sentence

goes in (a sequence of words in English), and another sentence comes out (a

sequence of words in French). This problem can be tackled using an encoder-

decoder architecture, first described in the "Sequence to Sequence Learning with

Neural Networks"[138] paper by Sutskever, I., et al.

Translating languages is an obviously difficult task, so we’re falling back to a much

simpler problem to illustrate how the encoder-decoder architecture works.

Data Generation

We’ll keep drawing the same squares as before, but this time we’ll draw the first

two corners ourselves (the source sequence) and ask our model to predict the

next two corners (the target sequence). As with every sequence-related problem,

the order is important, so it is not enough to get the corners' coordinates right;

they should follow the same direction (clockwise or counterclockwise).
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Figure 9.1 - Drawing first two corners, starting at A and moving toward either D or B

Since there are four corners to start from and two directions to follow, there are

effectively eight possible sequences (solid colors indicate the corners in the source

sequence, semi-transparent colors, the target sequence).

Figure 9.2 - Possible sequences of corners

Since the desired output of our model is a sequence of coordinates (x0, x1), we’re

dealing with a regression problem now. Therefore, we’ll be using a typical mean

squared error loss to compare the predicted and actual coordinates for the two

points in the target sequence.

Let’s generate 256 random noisy squares:

Data Generation

1 points, directions = generate_sequences(n=256, seed=13)

And then let’s visualize the first five squares:

fig = plot_data(points, directions, n_rows=1)
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Figure 9.3 - Sequence dataset

The corners show the order in which they were drawn. In the first square, the

drawing started at the top-right corner (corresponding to the blue C corner) and

followed a clockwise direction (corresponding to the CDAB sequence). The source

sequence for that square would include corners C and D (1 and 2), while the target

sequence would include corners A and B (3 and 4), in that order.

In order to output a sequence we need a more complex architecture; we need an…

Encoder-Decoder Architecture

The encoder-decoder is a combination of two models: the encoder and the

decoder.

Encoder


The encoder’s goal is to generate a representation of the source

sequence; that is, to encode it.

 "Wait, we’ve done that already, right?"

Absolutely! That’s what the recurrent layers did: They generated a final hidden

state that was a representation of the input sequence. Now you know why I

insisted so much on this idea and repeated it over and over again in Chapter 8 :-)
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The figure below should look familiar: It is a typical recurrent neural network that

we’re using to encode the source sequence.

Figure 9.4 - Encoder

The encoder model is a slim version of our models from Chapter 8: It simply

returns a sequence of hidden states.

Encoder

 1 class Encoder(nn.Module):
 2     def __init__(self, n_features, hidden_dim):
 3         super().__init__()
 4         self.hidden_dim = hidden_dim
 5         self.n_features = n_features
 6         self.hidden = None
 7         self.basic_rnn = nn.GRU(self.n_features,
 8                                 self.hidden_dim,
 9                                 batch_first=True)
10 
11     def forward(self, X):
12         rnn_out, self.hidden = self.basic_rnn(X)
13 
14         return rnn_out # N, L, F

 "Don’t we need only the final hidden state?"

That’s correct. We’ll be using the final hidden state only … for now.


In the "Attention" section, we’ll be using all hidden states, and

that’s why we’re implementing the encoder like this.

Let’s go over a simple example of encoding: We start with a sequence of
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coordinates of a "perfect" square and split it into source and target sequences:

full_seq = (torch.tensor([[-1, -1], [-1, 1], [1, 1], [1, -1]])
            .float()
            .view(1, 4, 2))
source_seq = full_seq[:, :2] # first two corners
target_seq = full_seq[:, 2:] # last two corners

Now, let’s encode the source sequence and take the final hidden state:

torch.manual_seed(21)
encoder = Encoder(n_features=2, hidden_dim=2)
hidden_seq = encoder(source_seq) # output is N, L, F
hidden_final = hidden_seq[:, -1:]   # takes last hidden state
hidden_final

Output

tensor([[[ 0.3105, -0.5263]]], grad_fn=<SliceBackward>)

Of course, the model is untrained, so the final hidden state above is totally random.

In a trained model, however, the final hidden state will encode information about

the source sequence. In Chapter 8, we used it to classify the direction in which the

square was drawn, so it is safe to say that the final hidden state encoded the

drawing direction (clockwise or counterclockwise).

Pretty straightforward, right? Now, let’s go over the…

Decoder


The decoder’s goal is to generate the target sequence from an

initial representation; that is, to decode it.

Sounds like a perfect match, doesn’t it? Encode the source sequence, get its

representation (final hidden state), and feed it to the decoder so it generates the

target sequence.

 "How does the decoder transform a hidden state into a sequence?"
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We can use recurrent layers for that as well.

Figure 9.5 - Decoder

Let’s analyze the figure above:

• In the first step, the initial hidden state is the encoder’s final hidden state (hf,

in blue).

• The first cell will output a new hidden state (h2): That’s both the output of that

cell and one of the inputs of the next cell, as we’ve already seen in Chapter 8.

• Before, we’d only run the final hidden state through a linear layer to produce the

logits, but now we’ll run the output of every cell through a linear layer (wTh) to

convert each hidden state into predicted coordinates (x2).

• The predicted coordinates are then used as one of the inputs of the second

step (x2).

 "Great, but we’re missing one input in the first step, right?"

That’s right! The first cell takes both an initial hidden state (hf, in blue, the

encoder’s output) and a first data point (x1, in red).
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Let’s pretend for a moment that the encoder’s final hidden state

(hf) encoded the direction of the drawing. The decoder receives

that information and, starting at its first data point (x1), follows

the encoded direction to predict the coordinates of the next

corner.

Of course, this is just a gross simplification for the sake of

developing intuition. The encoded information is more complex

than that.

In our case, the decoder’s first data point is actually the last data point in the

source sequence because the target sequence is not a new sequence, but the

continuation of the source sequence.

This is not always the case. In some natural language processing tasks, like

translation, where the target sequence is a new sequence, the first data point is

some "special" token that indicates the start of that new sequence.



There is another small, yet fundamental difference between the

encoder and the decoder: Since the decoder uses the prediction

of one step as input to the next, we’ll have to manually loop over

the generation of the target sequence.

This also means we need to keep track of the hidden state from

one step to the next, using the hidden state of one step as input

to the next.

But, instead of making the hidden state both an input and an

output of the forward() method, we can easily (and quite

elegantly, I might add) handle this by making the hidden state an

attribute of our decoder model.
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The decoder model is actually quite similar to the models we developed in Chapter

8:

Decoder

 1 class Decoder(nn.Module):
 2     def __init__(self, n_features, hidden_dim):
 3         super().__init__()
 4         self.hidden_dim = hidden_dim
 5         self.n_features = n_features
 6         self.hidden = None
 7         self.basic_rnn = nn.GRU(self.n_features,
 8                                 self.hidden_dim,
 9                                 batch_first=True)
10         self.regression = nn.Linear(self.hidden_dim,
11                                     self.n_features)
12 
13     def init_hidden(self, hidden_seq):
14         # We only need the final hidden state
15         hidden_final = hidden_seq[:, -1:] # N, 1, H
16         # But we need to make it sequence-first
17         self.hidden = hidden_final.permute(1, 0, 2) # 1, N, H  ①
18 
19     def forward(self, X):
20         # X is N, 1, F
21         batch_first_output, self.hidden = \
22                                 self.basic_rnn(X, self.hidden) ②
23 
24         last_output = batch_first_output[:, -1:]
25         out = self.regression(last_output)
26 
27         # N, 1, F
28         return out.view(-1, 1, self.n_features)                ③

① Initializing decoder’s hidden state using encoder’s final hidden state.

② The recurrent layer both uses and updates the hidden state.

③ The output has the same shape as the input (N, 1, F).

Let’s go over the differences:

• Since the initial hidden state has to come from the encoder, we need a method
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to initialize the hidden state and set the corresponding attribute—the

encoder’s output is batch-first though, and the hidden state must always be

sequence-first, so we permute its first two dimensions.

• The hidden state attribute is used both as an input and as an output of the

recurrent layer.

• The shape of the output must match the shape of the input, namely, a

sequence of length one.

• The forward() method will be called multiple times as we loop over the

generation of the target sequence.

The whole thing is better understood with a hands-on example in code, so it’s time

to try some decoding to generate a target sequence:

torch.manual_seed(21)
decoder = Decoder(n_features=2, hidden_dim=2)

# Initial hidden state will be encoder's final hidden state
decoder.init_hidden(hidden_seq)
# Initial data point is the last element of source sequence
inputs = source_seq[:, -1:]

target_len = 2
for i in range(target_len):
    print(f'Hidden: {decoder.hidden}')
    out = decoder(inputs)   # Predicts coordinates
    print(f'Output: {out}\n')
    # Predicted coordinates are next step's inputs
    inputs = out

Output

Hidden: tensor([[[ 0.3105, -0.5263]]], grad_fn=<SliceBackward>)
Output: tensor([[[-0.2339,  0.4702]]], grad_fn=<ViewBackward>)

Hidden: tensor([[[ 0.3913, -0.6853]]], grad_fn=<StackBackward>)
Output: tensor([[[-0.0226,  0.4628]]], grad_fn=<ViewBackward>)

We created a loop to generate a target sequence of length two, using the

predictions of one step as inputs to the next. The hidden state, however, was
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entirely handled by the model itself using its hidden_state attribute.

There is one problem with the approach above, though—an untrained model will

make really bad predictions, and these predictions will still be used as inputs for

subsequent steps. This makes model training unnecessarily hard because the

prediction error in one step is caused by both the (untrained) model and the

prediction error in the previous step.

 "Can’t we use the actual target sequence instead?"

Sure we can! This technique is called teacher forcing.

Teacher Forcing

The reasoning is simple: Ignore the predictions and use the real data from the

target sequence instead. In code, we only need to change the last line:

# Initial hidden state will be encoder's final hidden state
decoder.init_hidden(hidden_seq)
# Initial data point is the last element of source sequence
inputs = source_seq[:, -1:]

target_len = 2
for i in range(target_len):
    print(f'Hidden: {decoder.hidden}')
    out = decoder(inputs) # Predicts coordinates
    print(f'Output: {out}\n')
    # Completely ignores the predictions and uses real data instead
    inputs = target_seq[:, i:i+1]      ①

① Inputs to the next step are not predictions anymore.

Output

Hidden: tensor([[[ 0.3105, -0.5263]]], grad_fn=<SliceBackward>)
Output: tensor([[[-0.2339,  0.4702]]], grad_fn=<ViewBackward>)

Hidden: tensor([[[ 0.3913, -0.6853]]], grad_fn=<StackBackward>)
Output: tensor([[[0.2265, 0.4529]]], grad_fn=<ViewBackward>)

Now, a bad prediction can only be traced to the model itself, and any bad
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predictions in previous steps have no effect whatsoever.


"This is great for training time, sure—but what about testing time,

when the target sequence is unknown?"

At testing time, there is no escape from using only the model’s own predictions

from previous steps.

The problem is, a model trained using teacher forcing will minimize the loss given

the correct inputs at every step of the target sequence. But, since this will never

be the case at testing time, the model is likely to perform poorly when using its

own predictions as inputs.

 "What can we do about it?"

When in doubt, flip a coin. Literally. During training, sometimes the model will use

teacher forcing, and sometimes it will use its own predictions. So we occasionally

help the model by providing an actual input, but we still force it to be robust

enough to generate and use its own inputs. In code, we just have to add an if

statement and draw a random number:

# Initial hidden state will be encoder's final hidden state
decoder.init_hidden(hidden_seq)
# Initial data point is the last element of source sequence
inputs = source_seq[:, -1:]

teacher_forcing_prob = 0.5
target_len = 2
for i in range(target_len):
    print(f'Hidden: {decoder.hidden}')
    out = decoder(inputs)
    print(f'Output: {out}\n')
    # If it is teacher forcing
    if torch.rand(1) <= teacher_forcing_prob:
        # Takes the actual element
        inputs = target_seq[:, i:i+1]
    else:
        # Otherwise uses the last predicted output
        inputs = out
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Output

Hidden: tensor([[[ 0.3105, -0.5263]]], grad_fn=<SliceBackward>)
Output: tensor([[[-0.2339,  0.4702]]], grad_fn=<ViewBackward>)

Hidden: tensor([[[ 0.3913, -0.6853]]], grad_fn=<StackBackward>)
Output: tensor([[[0.2265, 0.4529]]], grad_fn=<ViewBackward>)

You may set teacher_forcing_prob to 1.0 or 0.0 to replicate either of the two

outputs we generated before.

Now it is time to put the two of them together…

Encoder + Decoder

The figure below illustrates the flow of information from encoder to decoder.

Figure 9.6 - Encoder + decoder

Let’s go over it once again:

• The encoder receives the source sequence (x0 and x1, in red) and generates the

representation of the source sequence, its final hidden state (hf, in blue).

• The decoder receives the hidden state from the encoder (hf, in blue), together

with the last known element of the sequence (x1, in red), to output a hidden

state (h2, in green) that is converted into the first set of predicted coordinates

(x2, in green) using a linear layer (wTh, in green).

• In the next iteration of the loop, the model randomly uses the predicted (x2, in

green) or the actual (x2, in red) set of coordinates as one of its inputs to output
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the second set of predicted coordinates (x3), thus achieving the target length.

• The final output of the encoder + decoder model is the full sequence of

predicted coordinates: [x2, x3].

We can assemble the bits and pieces we’ve developed so far into a model that,

given the encoder and decoder models, implements a forward() method that splits

the input into the source and target sequences, loops over the generation of the

target sequence, and implements teacher forcing in training mode.

The model below is mostly about handling the boilerplate necessary to integrate

both encoder and decoder:

Encoder + Decoder

 1 class EncoderDecoder(nn.Module):
 2     def __init__(self, encoder, decoder,
 3                  input_len, target_len,
 4                  teacher_forcing_prob=0.5):
 5         super().__init__()
 6         self.encoder = encoder
 7         self.decoder = decoder
 8         self.input_len = input_len
 9         self.target_len = target_len
10         self.teacher_forcing_prob = teacher_forcing_prob
11         self.outputs = None
12 
13     def init_outputs(self, batch_size):
14         device = next(self.parameters()).device
15         # N, L (target), F
16         self.outputs = torch.zeros(batch_size,
17                               self.target_len,
18                               self.encoder.n_features).to(device)
19 
20     def store_output(self, i, out):
21         # Stores the output
22         self.outputs[:, i:i+1, :] = out
23 
24     def forward(self, X):
25         # splits the data in source and target sequences
26         # the target seq will be empty in testing mode
27         # N, L, F
28         source_seq = X[:, :self.input_len, :]
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29         target_seq = X[:, self.input_len:, :]
30         self.init_outputs(X.shape[0])
31 
32         # Encoder expected N, L, F
33         hidden_seq = self.encoder(source_seq)
34         # Output is N, L, H
35         self.decoder.init_hidden(hidden_seq)
36 
37         # The last input of the encoder is also
38         # the first input of the decoder
39         dec_inputs = source_seq[:, -1:, :]
40 
41         # Generates as many outputs as the target length
42         for i in range(self.target_len):
43             # Output of decoder is N, 1, F
44             out = self.decoder(dec_inputs)
45             self.store_output(i, out)
46 
47             prob = self.teacher_forcing_prob
48             # In evaluation / test the target sequence is
49             # unknown, so we cannot use teacher forcing
50             if not self.training:
51                 prob = 0
52 
53             # If it is teacher forcing
54             if torch.rand(1) <= prob:
55                 # Takes the actual element
56                 dec_inputs = target_seq[:, i:i+1, :]
57             else:
58                 # Otherwise uses the last predicted output
59                 dec_inputs = out
60 
61         return self.outputs

The only real additions are the init_outputs() method, which creates a tensor for

storing the generated target sequence, and the store_output() method, which

actually stores the output produced by the decoder.
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Let’s create an instance of the model above using the other two we already

created:

encdec = EncoderDecoder(encoder, decoder,
                        input_len=2, target_len=2,
                        teacher_forcing_prob=0.5)

In training mode, the model expects the full sequence so it can randomly use

teacher forcing:

encdec.train()
encdec(full_seq)

Output

tensor([[[-0.2339,  0.4702],
         [ 0.2265,  0.4529]]], grad_fn=<CopySlices>)

In evaluation / test mode, though, it only needs the source sequence as input:

encdec.eval()
encdec(source_seq)

Output

tensor([[[-0.2339,  0.4702],
         [-0.0226,  0.4628]]], grad_fn=<CopySlices>)

Let’s use this knowledge to build our training and test sets.

Data Preparation

For the training set, we need the full sequences as features (X) to use teacher

forcing, and the target sequences as labels (y) so we can compute the mean

squared error loss:
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Data Generation — Train

1 points, directions = generate_sequences(n=256, seed=13)
2 full_train = torch.as_tensor(points).float()
3 target_train = full_train[:, 2:]

For the test set, though, we only need the source sequences as features (X) and the

target sequences as labels (y):

Data Generation — Test

1 test_points, test_directions = generate_sequences(seed=19)
2 full_test = torch.as_tensor(test_points).float()
3 source_test = full_test[:, :2]
4 target_test = full_test[:, 2:]

These are all simple tensors, so we can use TensorDatasets and simple data

loaders:

Data Preparation

1 train_data = TensorDataset(full_train, target_train)
2 test_data = TensorDataset(source_test, target_test)
3 generator = torch.Generator()
4 train_loader = DataLoader(train_data, batch_size=16,
5                           shuffle=True, generator=generator)
6 test_loader = DataLoader(test_data, batch_size=16)



In version 1.7, PyTorch introduced a modification to the random

sampler in the DataLoader that’s responsible for shuffling the

data. In order to ensure reproducibility, we need to assign a

Generator to the DataLoader (we did something similar in

Chapter 4 when we used other samplers). Luckily, our StepByStep
class already sets a seed to the generator, if there is one, in its

set_seed() method, so you don’t need to worry about that.

By the way, we didn’t use the directions to build the datasets this time.

We have everything we need to train our first sequence-to-sequence model now!

702 | Chapter 9 — Part I: Sequence-to-Sequence

https://pytorch.org/docs/master/generated/torch.Generator.html


Model Configuration & Training

The model configuration is very straightforward: We create both encoder and

decoder models, use them as arguments to the large EncoderDecoder model that

handles the boilerplate, and create a loss and an optimizer as usual.

Model Configuration

1 torch.manual_seed(23)
2 encoder = Encoder(n_features=2, hidden_dim=2)
3 decoder = Decoder(n_features=2, hidden_dim=2)
4 model = EncoderDecoder(encoder, decoder,
5                        input_len=2, target_len=2,
6                        teacher_forcing_prob=0.5)
7 loss = nn.MSELoss()
8 optimizer = optim.Adam(model.parameters(), lr=0.01)

Next, we use the StepByStep class to train the model:

Model Training

1 sbs_seq = StepByStep(model, loss, optimizer)
2 sbs_seq.set_loaders(train_loader, test_loader)
3 sbs_seq.train(100)

fig = sbs_seq.plot_losses()

Figure 9.7 - Losses—encoder + decoder
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It is hard to tell how badly our model is performing by looking at the loss only, if

we’re dealing with a "regression" problem like this. It is much better to visualize the

predictions.

Visualizing Predictions

Let’s plot the predicted coordinates and connect them using dashed lines, while

using solid lines to connect the actual coordinates. The first ten sequences of the

test set look like this:

fig = sequence_pred(sbs_seq, full_test, test_directions)

Figure 9.8 - Predictions

The results are, at the same time, very good and very bad. In half of the sequences,

the predicted coordinates are quite close to the actual ones. But, in the other half,

the predicted coordinates are overlapping with each other and close to the

midpoint between the actual coordinates.

Can We Do Better?

The encoder-decoder architecture is really interesting, but it has a bottleneck: The

whole source sequence gets to be represented by a single hidden state, the final

hidden state of the encoder part. Even for a very short source sequence like ours,

it’s quite a big ask to have the decoder generate the target sequence with so little

information.

 "Can we make the decoder use more information?"
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Sure, we can!

Attention

Here is a (not so) crazy idea: What if the decoder could choose one (or more) of the

encoder’s hidden states to use instead of being forced to stick with only the final

one? That would surely give it more flexibility to use the hidden state that’s more

useful at a given step of the target-sequence generation.

Let’s illustrate it with a simple, non-numerical example: translating from English to

French using Google Translate. The original sentence is, "the European economic

zone," and its French translation is, "la zone économique européenne."

Now, let’s compare their first words: "La," in French, obviously corresponds to "the"

in English. My question to you is:


"Could Google (or any translator) have translated "the" to "la" without

any other information?"

The answer is: No. The English language has only one definite article—"the"—while

French (and many other languages) have many definite articles. It means that "the"

may be translated in many different ways, and it is only possible to determine the

correct (translated) article after finding the noun it refers to. The noun, in this case,

is zone, and it is the last word in the English sentence. Coincidentally, its translation

is also zone, and it is a singular feminine noun in French, thus making "la" the

correct translation of "the" in this case.

 "So what? What does this have to do with hidden states?"

Well, if we consider the English sentence a (source) sequence of words, the French

sentence is a (target) sequence of words. Assuming we can map each word to a

numeric vector, we can use an encoder to encode the words in English, each word

corresponding to a hidden state.

We know that the decoder’s role is to generate the translated words, right? Then,

if the decoder is allowed to choose which hidden states from the encoder it will

use to generate each output, it means it can choose which English words it will use

to generate each translated word.

We have already seen that, in order to translate "the" to "la," the translator (that
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would be the decoder) needs to know the corresponding noun too, so it is

reasonable to assume that the decoder would choose the first and last encoded

hidden states (corresponding to "the" and "zone" in the English sentence) to

generate the first translated word.


In other words, we can say that the decoder is paying attention

to different elements in the source sequence. That’s the famous

attention mechanism in a nutshell.

Now, try to answer this question:


"Which English word(s) is the decoder paying attention to in order to

generate the second French word ("zone")?"

It is reasonable to assume it is paying attention only to the last English word; that is,

"zone." The remaining English words shouldn’t play a role in this particular piece of

the translation.

Let’s take it one step further and build a matrix with English words (the source

sequence) as columns and French words (the target sequence) as rows. The entries

in this matrix represent our guesses of how much attention the decoder is paying

to each English word in order to generate a given French word.

Figure 9.9 - Attention for translation

The numbers above are completely made-up, by the way. Since the translated "la" is
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based on "the" and "zone," I’ve just guessed that a translator (the decoder) could

have assigned 80% of its attention to the definite article and the remaining 20% of

its attention to the corresponding noun to determine its gender. These weights, or

alphas, are the attention scores.


The more relevant to the decoder a hidden state from the

encoder is, the higher the score.


"OK, I get what the attention scores represent, but how does the

decoder actually use them?"

If you haven’t noticed yet, the attention scores actually add up to one, so they will

be used to compute a weighted average of the encoder’s hidden states.

We’ll work this out in more detail, but, first, it helps to keep it short and simple. So

we’re translating two words only, from "the zone" in English to "la zone" in French.

Then, we can use the encoder-decoder architecture from the previous section.

Figure 9.10 - Encoder-Decoder for translation



In the translation example above, the source and target

sequences are independent, so the first input of the decoder isn’t

the last element of the source sequence anymore, but rather the

special token that indicates the start of a new sequence.

The main difference is, instead of generating predictions solely based on its own
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hidden states, the decoder will recruit the attention mechanism to help it decide

which parts of the source sequence it must pay attention to.

In our made-up example, the attention mechanism informed the decoder it should

pay 80% of its attention to the encoder’s hidden state corresponding to the word

"the," and the remaining 20% to the word "zone." The diagram below illustrates this.

Figure 9.11 - Paying attention to words

"Values"

From now on, we’ll be referring to the encoder’s hidden states (or their affine

transformations) as "values" (V). The resulting multiplication of a "value" by its

corresponding attention score is called an alignment vector. And, as you can see in

the diagram, the sum of all alignment vectors (that is, the weighted average of the

hidden states) is called a context vector.

Equation 9.1 - Context vector

 "OK, but where do the attention scores come from?"

"Keys" and "Queries"

The attention scores are based on matching each hidden state of the decoder (h2)

to every hidden state of the encoder (h0 and h1). Some of them will be good

matches (high attention scores) while some others will be poor matches (low

attention scores).
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Figure 9.12 - Matching a query to the keys


The encoder’s hidden states are called "keys" (K), while the

decoder’s hidden state is called a "query" (Q).


"Wait a minute! I thought the encoder’s hidden states were called

"values" (V)."

You’re absolutely right. The encoder’s hidden states are used as both "keys" (K)

and "values" (V). Later on, we’ll apply affine transformations to the hidden states,

one for the "keys," another for the "values," so they will actually have different

values.

 "Where do these names come from, anyway?"

Well, the general idea is that the encoder works like a key-value store, as if it were

some sort of database, and then the decoder queries it. The attention mechanism

looks the query up in its keys (the matching part) and returns its values. Honestly,

I don’t think this idea helps much, because the mechanism doesn’t return a single

original value, but rather a weighted average of all of them. But this naming

convention is used everywhere, so you need to know it.

 "Why is 'the' a better match than 'zone' in this case?"

Fair enough. These are made-up values, and their sole purpose is to illustrate the

attention mechanism. If it helps, consider that sentences are more likely to start

with "the" than "zone," so the former is likely a better match to the special <start>
token.

 "OK, I will play along."

Thanks! Even though we haven’t actually discussed how to match a given "query"

(Q) to the "keys" (K), we can update our diagram to include them.
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Figure 9.13 - Computing the context vector

The "query" (Q) is matched to both "keys" (K) to compute the attention scores (s)

used to compute the context vector, which is simply the weighted average of the

"values" (V).

Computing the Context Vector

Let’s go over a simple example in code using our own sequence-to-sequence

problem, and the "perfect" square as input:

full_seq = (torch.tensor([[-1, -1], [-1, 1], [1, 1], [1, -1]])
            .float()
            .view(1, 4, 2))
source_seq = full_seq[:, :2]
target_seq = full_seq[:, 2:]

The source sequence is the input of the encoder, and the hidden states it outputs

are going to be both "values" (V) and "keys" (K):

torch.manual_seed(21)
encoder = Encoder(n_features=2, hidden_dim=2)
hidden_seq = encoder(source_seq)

values = hidden_seq # N, L, H
values
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Output

tensor([[[ 0.0832, -0.0356],
         [ 0.3105, -0.5263]]], grad_fn=<PermuteBackward>)

keys = hidden_seq # N, L, H
keys

Output

tensor([[[ 0.0832, -0.0356],
         [ 0.3105, -0.5263]]], grad_fn=<PermuteBackward>)

The encoder-decoder dynamics stay exactly the same: We still use the encoder’s

final hidden state as the decoder’s initial hidden state (even though we’re sending

the whole sequence to the decoder, it still uses the last hidden state only), and we

still use the last element of the source sequence as input to the first step of the

decoder:

torch.manual_seed(21)
decoder = Decoder(n_features=2, hidden_dim=2)
decoder.init_hidden(hidden_seq)

inputs = source_seq[:, -1:]
out = decoder(inputs)

The first "query" (Q) is the decoder’s hidden state (remember, hidden states are

always sequence-first, so we’re permuting it to batch-first):

query = decoder.hidden.permute(1, 0, 2)  # N, 1, H
query

Output

tensor([[[ 0.3913, -0.6853]]], grad_fn=<PermuteBackward>)
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OK, we have the "keys" and a "query," so let’s pretend we can compute attention

scores (alphas) using them:

def calc_alphas(ks, q):
    N, L, H = ks.size()
    alphas = torch.ones(N, 1, L).float() * 1/L
    return alphas

alphas = calc_alphas(keys, query)
alphas

Output

tensor([[[0.5000, 0.5000]]])

We had to make sure alphas had the right shape (N, 1, L) so that, when multiplied

by the "values" with shape (N, L, H), it will result in a weighted sum of the

alignment vectors with shape (N, 1, H). We can use batch matrix multiplication

(torch.bmm()) for that:

Equation 9.2 - Shapes for batch matrix multiplication

In other words, we can simply ignore the first dimension, and PyTorch will go over

all the elements in the mini-batch for us:

# N, 1, L x N, L, H -> 1, L x L, H -> 1, H
context_vector = torch.bmm(alphas, values)
context_vector

Output

tensor([[[ 0.1968, -0.2809]]], grad_fn=<BmmBackward0>)


"Why are you spending so much time on matrix multiplication, of all

things?"

Although it seems a fairly basic topic, getting the shapes and dimensions right is of
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utmost importance for the correct implementation of an algorithm or technique.

Sometimes, using the wrong dimensions in an operation may not raise an explicit

error, but it will damage the model’s ability to learn nonetheless. For that reason, I

believe it is worth it to spend some time going over it in full detail.

Once the context vector is ready, we can concatenate it to the "query" (the

decoder’s hidden state) and use it as the input for the linear layer that actually

generates the predicted coordinates:

concatenated = torch.cat([context_vector, query], axis=-1)
concatenated

Output

tensor([[[ 0.1968, -0.2809,  0.3913, -0.6853]]], grad_fn
=<CatBackward>)

The diagram below illustrates the whole thing: encoder, decoder, and attention

mechanism.

Figure 9.14 - Encoder + decoder + attention
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"The attention mechanism looks different—there are affine

transformations (wTh) for both 'keys' and 'queries' now."

Yes, the scoring method will use the transformed "keys" and "queries" to compute

the attention scores, so I’ve included them in the diagram above. By the way, this is

a good moment to summarize the information in a table:

Keys (K) Queries (Q) Values (V)

Source Encoder Decoder Encoder

Affine Transformation Yes Yes Not yet

Purpose Scoring Scoring Alignment

Vector

 "I guess now it is time to see how the scoring method works, right?"

Absolutely! Let’s understand how the scoring method transforms a good match

between a "query" and a "key" into an attention score.

Scoring Method

A "key" (K) is a hidden state from the encoder. A "query" (Q) is a hidden state from

the decoder. Both of them are vectors with the same number of dimensions; that is,

the number of hidden dimensions of the underlying recurrent neural networks.


The scoring method needs to determine if two vectors are a

good match or not, or, phrased differently, it needs to determine

if two vectors are similar or not.

 "How do we compute the similarity between two vectors?"

Well, that’s actually easy: Cosine similarity to the rescue! If two vectors are

pointing in the same direction, their cosine similarity is a perfect one. If they are

orthogonal (that is, if there is a right angle between them), their cosine similarity is

zero. If they are pointing in opposite directions, their cosine similarity is minus

one.
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Its formula is:

Equation 9.3 - Cosine similarity

Unfortunately, cosine similarity does not consider the norm (size) of the vectors,

only its direction (the sizes of the vectors are in the denominator in the formula

above).

 "What if we scale the similarity by the norms of both vectors?"

Perfect! Let’s do that:

Equation 9.4 - Scaled cosine similarity

The two terms next to the cosine are the norms of the "query" (Q) and "key" (K)

vectors, and the term on the right is actually the dot product between the two

vectors:

Equation 9.5 - Cosine similarity vs dot product



The dot product is equal to the cosine similarity scaled by the

norms of the vectors. In other words, the dot product is:

• higher if both "key" (K) and "query" (Q) vectors are aligned

(small angle and high cosine value).

• proportional to the norm (size) of the "query" vector (Q).

• proportional to the norm (size) of the "key" vector (K).
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The dot product is one of the most common ways to compute

alignment (and attention) scores, but it is not the only one. For

more information on different mechanisms, and on attention in

general, please refer to Lilian Weng’s amazing blog post[139] on the

subject.

To compute the dot products all at once, we can use PyTorch’s batch matrix

multiplication (torch.bmm()) again. We have to transpose the "keys" matrix,

though, by permuting the last two dimensions:

# N, 1, H x N, H, L -> N, 1, L
products = torch.bmm(query, keys.permute(0, 2, 1))
products

Output

tensor([[[0.0569, 0.4821]]], grad_fn=<BmmBackward0>)


"But these values do not add up to one—they cannot be attention

scores, right?"

You’re absolutely right—these are alignment scores.

Attention Scores

To transform alignment scores into attention scores, we can use the softmax

function:

alphas = F.softmax(products, dim=-1)
alphas

Output

tensor([[[0.3953, 0.6047]]], grad_fn=<SoftmaxBackward>)

That’s more like it—they’re adding up to one! The attention scores above mean that

the first hidden state contributes to roughly 40% of the context vector while the
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second hidden state contributes to the remaining 60% of the context vector.

We can also update our calc_alphas() function to actually compute them:

def calc_alphas(ks, q):
    # N, 1, H x N, H, L -> N, 1, L
    products = torch.bmm(q, ks.permute(0, 2, 1))
    alphas = F.softmax(products, dim=-1)
    return alphas

Scaled Dot Product

So far, we’ve used simple dot products between a "query" and each of the "keys."

But, given that the dot product between two vectors is the sum of the elements

after an element-wise multiplication of both vectors, guess what happens as the

vectors grow to a larger number of dimensions? The variance gets larger as well.

So, we need to (somewhat) standardize it by scaling the dot product by the inverse

of its standard deviation:

Equation 9.6 - Scaled dot product

dims = query.size(-1)
scaled_products = products / np.sqrt(dims)
scaled_products

Output

tensor([[[0.0403, 0.3409]]], grad_fn=<DivBackward0>)
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Visualizing the Context Vector

Let’s start by creating one dummy "query" and three dummy "keys":

q = torch.tensor([.55, .95]).view(1, 1, 2) # N, 1, H
k = torch.tensor([[.65, .2],
                  [.85, -.4],
                  [-.95, -.75]]).view(1, 3, 2) # N, L, H

Then, let’s visualize them as vectors, together with their norms and the

cosines of the angles between each "key" and the "query."

We can use the values in the figure above to compute the dot product

between each "key" and the "query":

Equation 9.7 - Dot products

# N, 1, H x N, H, L -> N, 1, L
prod = torch.bmm(q, k.permute(0, 2, 1))
prod
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Output

tensor([[[ 0.5475,  0.0875, -1.2350]]])

Even though the first "key" (K0) is the smallest in size, it is the most well-

aligned to the "query," and, overall, is the "key" with the largest dot product.

This means that the decoder would pay the most attention to this particular

key. Makes sense, right?

Applying the softmax to these values gives us the following attention scores:

scores = F.softmax(prod, dim=-1)
scores

Output

tensor([[[0.5557, 0.3508, 0.0935]]])

Unsurprisingly, the first key got the largest weight. Let’s use these weights to

compute the context vector:

Equation 9.8 - Computing the context vector

v = k
context = torch.bmm(scores, v)
context

Output

tensor([[[ 0.5706, -0.0993]]])

Better yet, let’s visualize the context vector.
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Since the context vector is a weighted sum of the values (or keys, since

we’re not applying any affine transformations yet), it is only logical that its

location is somewhere between the other vectors.

 "Why do we need to scale the dot product?"

If we don’t, the distribution of attention scores will get too skewed because the

softmax function is actually affected by the scale of its inputs:

dummy_product = torch.tensor([4.0, 1.0])
(F.softmax(dummy_product, dim=-1),
 F.softmax(100*dummy_product, dim=-1))

Output

(tensor([0.9526, 0.0474]), tensor([1., 0.]))

See? As the scale of the dot products grows larger, the resulting distribution of the

softmax gets more and more skewed.

In our case, there isn’t much difference because our vectors have only two

dimensions:
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alphas = F.softmax(scaled_products, dim=-1)
alphas

Output

tensor([[[0.4254, 0.5746]]], grad_fn=<SoftmaxBackward>)

The computation of the context vectors using scaled dot product is usually

depicted like this:

Figure 9.15 - Scaled dot-product attention

If you prefer to see it in code, it looks like this:

def calc_alphas(ks, q):
    dims = q.size(-1)
    # N, 1, H x N, H, L -> N, 1, L
    products = torch.bmm(q, ks.permute(0, 2, 1))
    scaled_products = products / np.sqrt(dims)
    alphas = F.softmax(scaled_products, dim=-1)
    return alphas
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Dot Product’s Standard Deviation

You probably noticed that the square root of the number of dimensions as

the standard deviation simply appeared out of thin air. We’re not proving it

or anything, but we can try to simulate a ton of dot products to see what

happens, right?

n_dims = 10
vector1 = torch.randn(10000, 1, n_dims)
vector2 = torch.randn(10000, 1, n_dims).permute(0, 2, 1)
torch.bmm(vector1, vector2).squeeze().var()

Output

tensor(9.8681)

Even though the values in hidden states coming out of both encoder and

decoder are bounded to (-1, 1) by the hyperbolic tangent, remember that

we’re likely performing an affine transformation on them to produce both

"keys" and "query." This means that the simulation above, where values are

drawn from a normal distribution, is not as far-fetched as it may seem at first

sight.

If you try different values for the number of dimensions, you’ll see that, on

average, the variance equals the number of dimensions. So, the standard

deviation is given by the square root of the number of dimensions:

Equation 9.9 - Standard deviation of the dot product

alphas = calc_alphas(keys, query)
# N, 1, L x N, L, H -> 1, L x L, H -> 1, H
context_vector = torch.bmm(alphas, values)
context_vector
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Output

tensor([[[ 0.2138, -0.3175]]], grad_fn=<BmmBackward0>)

 "The mask is still missing in the code—what is that about?"

We’ll get back to it soon enough in the section after the next one. Hold that

thought!

Now we need to organize it all by building a class to handle the attention

mechanism.

Attention Mechanism

The complete attention mechanism is depicted in the figure below.

Figure 9.16 - Attention mechanism



For some cool animations of the attention mechanism, make sure

to check out these great posts: Jay Alammar’s "Visualizing a

Neural Machine Translation Model"[140] and Raimi Karim’s "Attn:

Illustrated Attention."[141]

In our sequence-to-sequence problem, both features and hidden states are two-
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dimensional. We could have chosen any number of hidden dimensions, but using

two hidden dimensions allowed us to more easily visualize diagrams and plots.

More often than not, this won’t be the case, and the number of hidden dimensions

will be different than the number of features (the input dimensions). Currently,

this change in dimensionality is performed by the recurrent layers.



The self-attention mechanism (our next topic) does not use

recurrent layers anymore, so we’ll have to tackle this change in

dimensionality differently. Luckily, the affine transformations

we’re applying to "keys," "queries," and "values" (soon) can also

be used to change the dimensionality from the number of input

to the number of hidden dimensions. Therefore, we’re including

an input_dim argument in our Attention class to handle this.

The corresponding code, neatly organized into a model, looks like this:
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Attention Mechanism

 1 class Attention(nn.Module):
 2     def __init__(self, hidden_dim, input_dim=None,
 3                  proj_values=False):
 4         super().__init__()
 5         self.d_k = hidden_dim
 6         self.input_dim = hidden_dim if input_dim is None \
 7                          else input_dim
 8         self.proj_values = proj_values
 9         # Affine transformations for Q, K, and V
10         self.linear_query = nn.Linear(self.input_dim, hidden_dim)
11         self.linear_key = nn.Linear(self.input_dim, hidden_dim)
12         self.linear_value = nn.Linear(self.input_dim, hidden_dim)
13         self.alphas = None
14 
15     def init_keys(self, keys):
16         self.keys = keys
17         self.proj_keys = self.linear_key(self.keys)
18         self.values = self.linear_value(self.keys) \
19                       if self.proj_values else self.keys
20 
21     def score_function(self, query):
22         proj_query = self.linear_query(query)
23         # scaled dot product
24         # N, 1, H x N, H, L -> N, 1, L
25         dot_products = torch.bmm(proj_query,
26                                  self.proj_keys.permute(0, 2, 1))
27         scores =  dot_products / np.sqrt(self.d_k)
28         return scores
29 
30     def forward(self, query, mask=None):
31         # Query is batch-first N, 1, H
32         scores = self.score_function(query) # N, 1, L   ①
33         if mask is not None:
34             scores = scores.masked_fill(mask == 0, -1e9)
35         alphas = F.softmax(scores, dim=-1) # N, 1, L    ②
36         self.alphas = alphas.detach()
37 
38         # N, 1, L x N, L, H -> N, 1, H
39         context = torch.bmm(alphas, self.values)        ③
40         return context
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① First step: Alignment scores (scaled dot product)

② Second step: Attention scores (alphas)

③ Third step: Context vector

Let’s go over each of the methods:

• In the constructor method, there are the following:

◦ three linear layers corresponding to the affine transformations for "keys"

and "query" (and for the future transformation of "values" too)

◦ one attribute for the number of hidden dimensions (to scale the dot

product)

◦ a placeholder for the attention scores (alphas)

• There is an init_keys() method to receive a batch-first sequence of hidden

states from the encoder.

◦ These are computed once at the beginning and will be used over and over

again with every new "query" that is presented to the attention

mechanism.

◦ Therefore, it is better to initialize "keys" and "values" once than to pass

them as arguments to the forward() method every time.

• The score_function() is simply the scaled dot product, but using an affine

transformation on the "query" this time.

• The forward() method takes a batch-first hidden state as "query" and

performs the three steps of the attention mechanism:

◦ Using "keys" and "query" to compute alignment scores

◦ Using alignment scores to compute attention scores (alphas)

◦ Using "values" and attention scores to generate the context vector

 "There is that unexplained mask again!"

I’m on it!

Source Mask

The mask can be used to, well, mask some of the "values" to force the attention

mechanism to ignore them.
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 "Why would I want to force it to do that?"

Padding comes to mind—you likely don’t want to pay attention to stuffed data

points in a sequence, right? Let’s try out an example. Pretend we have a source

sequence with one real and one padded data point, and that it went through an

encoder to generate the corresponding "keys":

source_seq = torch.tensor([[[-1., 1.], [0., 0.]]])
# pretend there's an encoder here...
keys = torch.tensor([[[-.38, .44], [.85, -.05]]])
query = torch.tensor([[[-1., 1.]]])


The source mask should be False for every padded data point,

and its shape should be (N, 1, L), where L is the length of the

source sequence.

source_mask = (source_seq != 0).all(axis=2).unsqueeze(1)
source_mask # N, 1, L

Output

tensor([[[ True, False]]])

The mask will make the attention score equal to zero for the padded data points.

If we use the "keys" we’ve just made up to initialize an instance of the attention

mechanism and call it using the source mask above, we’ll see the following result:

torch.manual_seed(11)
attnh = Attention(2)
attnh.init_keys(keys)
context = attnh(query, mask=source_mask)
attnh.alphas

Output

tensor([[[1., 0.]]])
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The attention score of the second data point, as expected, was set to zero, leaving

the whole attention on the first data point.

Decoder

We also need to make some small adjustments to the decoder:

Decoder + Attention

 1 class DecoderAttn(nn.Module):
 2     def __init__(self, n_features, hidden_dim):
 3         super().__init__()
 4         self.hidden_dim = hidden_dim
 5         self.n_features = n_features
 6         self.hidden = None
 7         self.basic_rnn = nn.GRU(self.n_features,
 8                                 self.hidden_dim,
 9                                 batch_first=True)
10         self.attn = Attention(self.hidden_dim)             ①
11         self.regression = nn.Linear(2 * self.hidden_dim,
12                                     self.n_features)       ①
13 
14     def init_hidden(self, hidden_seq):
15         # the output of the encoder is N, L, H
16         # and init_keys expects batch-first as well
17         self.attn.init_keys(hidden_seq)                    ②
18         hidden_final = hidden_seq[:, -1:]
19         self.hidden = hidden_final.permute(1, 0, 2) # L, N, H
20 
21     def forward(self, X, mask=None):
22         # X is N, 1, F
23         batch_first_output, self.hidden = \
24                                 self.basic_rnn(X, self.hidden)
25         query = batch_first_output[:, -1:]
26         # Attention
27         context = self.attn(query, mask=mask)             ③
28         concatenated = torch.cat([context, query],
29                                  axis=-1)                 ③
30         out = self.regression(concatenated)
31 
32         # N, 1, F
33         return out.view(-1, 1, self.n_features)
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① Sets attention module and adjusts input dimensions of the regression layer

② Sets the "keys" (and "values") for the attention module

③ Feeds the "query" to the attention mechanism and concatenates it to the

context vector

Let’s go over a simple example in code, using the updated decoder and attention

classes:

full_seq = (torch.tensor([[-1, -1], [-1, 1], [1, 1], [1, -1]])
            .float()
            .view(1, 4, 2))
source_seq = full_seq[:, :2]
target_seq = full_seq[:, 2:]

torch.manual_seed(21)
encoder = Encoder(n_features=2, hidden_dim=2)
decoder_attn = DecoderAttn(n_features=2, hidden_dim=2)

# Generates hidden states (keys and values)
hidden_seq = encoder(source_seq)
decoder_attn.init_hidden(hidden_seq)

# Target sequence generation
inputs = source_seq[:, -1:]
target_len = 2
for i in range(target_len):
    out = decoder_attn(inputs)
    print(f'Output: {out}')
    inputs = out

Output

Output: tensor([[[-0.3555, -0.1220]]], grad_fn=<ViewBackward>)
Output: tensor([[[-0.2641, -0.2521]]], grad_fn=<ViewBackward>)

The code above does the bare minimum to generate a target sequence using the

attention mechanism. To actually train a model using teacher forcing, we need to

put the two (or three) classes together…
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Encoder + Decoder + Attention

The integration of encoder, decoder, and the attention mechanism, when applied

to our sequence-to-sequence problem, is depicted in the figure below (that’s the

same figure from the "Computing the Context Vector" section).

Figure 9.17 - Encoder + decoder + attention

Take time to visualize the flow of information:

• First, the data points in the source sequence (in red) feed the encoder (in blue)

and generate "keys" (K) and "values" (V) for the attention mechanism (in

black).

• Next, each input of the decoder (in green) generates one "query" (Q) at a time

to produce a context vector (in black).

• Finally, the context vector gets concatenated to the decoder’s current hidden

state (in green) and transformed to predicted coordinates (in green) by the

output layer (in green).

Our former EncoderDecoder class works seamlessly with an instance of

DecoderAttn:
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encdec = EncoderDecoder(encoder, decoder_attn,
                        input_len=2, target_len=2,
                        teacher_forcing_prob=0.0)
encdec(full_seq)

Output

tensor([[[-0.3555, -0.1220],
         [-0.2641, -0.2521]]], grad_fn=<CopySlices>)

We could use it to train a model already, but we would miss something interesting:

visualizing the attention scores. To visualize them, we need to store them first.

The easiest way to do so is to create a new class that inherits from EncoderDecoder
and then override the init_outputs() and store_outputs() methods:

Encoder + Decoder + Attention

 1 class EncoderDecoderAttn(EncoderDecoder):
 2     def __init__(self, encoder, decoder, input_len, target_len,
 3                  teacher_forcing_prob=0.5):
 4         super().__init__(encoder, decoder, input_len, target_len,
 5                          teacher_forcing_prob)
 6         self.alphas = None
 7 
 8     def init_outputs(self, batch_size):
 9         device = next(self.parameters()).device
10         # N, L (target), F
11         self.outputs = torch.zeros(batch_size,
12                               self.target_len,
13                               self.encoder.n_features).to(device)
14         # N, L (target), L (source)
15         self.alphas = torch.zeros(batch_size,
16                                   self.target_len,
17                                   self.input_len).to(device)
18 
19     def store_output(self, i, out):
20         # Stores the output
21         self.outputs[:, i:i+1, :] = out
22         self.alphas[:, i:i+1, :] = self.decoder.attn.alphas
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The attention scores are stored in the alphas attribute of the attention model,

which, in turn, is the decoder’s attn attribute. For each step in the target sequence

generation, the corresponding scores are copied to the alphas attribute of the

EncoderDecoderAttn model (line 22).



IMPORTANT: Pay attention (pun very much intended!) to the

shape of the alphas attribute: (N, Ltarget, Lsource). For each one out

of N sequences in a mini-batch, there is a matrix, where each

"query" (Q) coming from the target sequence (a row in this

matrix) has as many attention scores as there are "keys" (K) in

the source sequence (the columns in this matrix).



We’ll visualize these matrices shortly. Moreover, a proper

understanding of how attention scores are organized in the

alphas attribute will make it much easier to understand the next

section: "Self-Attention."

Model Configuration & Training

We just have to replace the original classes for both decoder and model with their

attention counterparts, and we’re good to go:

Model Configuration

1 torch.manual_seed(17)
2 encoder = Encoder(n_features=2, hidden_dim=2)
3 decoder_attn = DecoderAttn(n_features=2, hidden_dim=2)
4 model = EncoderDecoderAttn(encoder, decoder_attn,
5                            input_len=2, target_len=2,
6                            teacher_forcing_prob=0.5)
7 loss = nn.MSELoss()
8 optimizer = optim.Adam(model.parameters(), lr=0.01)

Model Training

1 sbs_seq_attn = StepByStep(model, loss, optimizer)
2 sbs_seq_attn.set_loaders(train_loader, test_loader)
3 sbs_seq_attn.train(100)
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fig = sbs_seq_attn.plot_losses()

Figure 9.18 - Losses—encoder + decoder + attention

The loss is one order of magnitude lower than the previous, distracted (without

attention?!), model. That looks promising!

Visualizing Predictions

Let’s plot the predicted coordinates and connect them using dashed lines, while

using solid lines to connect the actual coordinates, just like before:

fig = sequence_pred(sbs_seq_attn, full_test, test_directions)

Figure 9.19 - Predicting the last two corners

Much, much better! No overlapping corners, no, sir! The new model is definitely

paying attention :-)
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Visualizing Attention

Let’s look at what the model is paying attention to by checking what’s stored in the

alphas attribute. The scores will be different for each source sequence, so let’s try

making predictions for the very first one:

inputs = full_train[:1, :2]
out = sbs_seq_attn.predict(inputs)
sbs_seq_attn.model.alphas

Output

tensor([[[0.8196, 0.1804],
         [0.7316, 0.2684]]], device='cuda:0')

 "How do I interpret these attention scores?"

The columns represent the elements in the source sequence, and the rows, the

elements in the target sequence:

Equation 9.10 - Attention score matrix

The attention scores we get tell us that the model mostly paid attention to the first

data point of the source sequence. This is not going to be the case for every

sequence, though. Let’s check what the model is paying attention to for the first ten

sequences in the training set.
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Figure 9.20 - Attention scores

See? For the second sequence, it mostly paid attention to either the first data point

(for predicting point #3) or the second data point (for predicting point #4). The

model picks and chooses what it’s going to look at depending on the inputs. How

amazing is that?

Do you know what’s even better than one attention mechanism?

Multi-Headed Attention

There is no reason to stick with only one attention mechanism: We can use several

attention mechanisms at once, each referred to as an attention head.

Each attention head will output its own context vector, and they will all get

concatenated together and combined using a linear layer. In the end, the multi-

headed attention mechanism will still output a single context vector.
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Figure 9.21 illustrates the flow of information for two attention heads.

Figure 9.21 - Multi-headed attention mechanism

The very same hidden states from both encoder ("keys" and "values") and decoder

("query") will feed all attention heads. At first, you may think that the attention

heads will end up being redundant (and this may indeed be the case at times), but,

thanks to the affine transformations of both "keys" (K) and "queries" (Q), and

"values" (V) too, it is more likely that each attention head will learn a distinct

pattern. Cool, right?

 "Why are we transforming the 'values' now?"

The multi-headed attention mechanism is commonly used together with self-

attention (the next topic), and, as you’ll shortly see, the hidden states will be

replaced by the raw data points. For that reason, we throw yet another

transformation into the mix to give the model a chance to transform the data points

(which has been the role played by the recurrent layer so far).
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Wide vs Narrow Attention

This mechanism is known as wide attention: Each attention head gets the

full hidden state and produces a context vector of the same size. This is

totally fine if the number of hidden dimensions is small.

For a larger number of dimensions, though, each attention head will get a

chunk of the affine transformation of the hidden state to work with. This is

a detail of utmost importance: It is not a chunk of the original hidden state,

but of its transformation. For example, say there are 512 dimensions in the

hidden state and we’d like to use eight attention heads: Each attention head

would work with a chunk of 64 dimensions only. This mechanism is known as

narrow attention, and we’ll get back to it in the next chapter.

 "Which one should I use?"

On the one hand, wide attention will likely yield better models compared to

using narrow attention on the same number of dimensions. On the other

hand, narrow attention makes it possible to use more dimensions, which

may improve the quality of the model as well. It’s hard to tell you which one

is best overall, but I can tell you that state-of-the-art large Transformer

models use narrow attention. In our much simpler and smaller model,

though, we’re sticking with wide attention.

The multi-headed attention mechanism is usually depicted like this:

Figure 9.22 - Multi-headed attention mechanism
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The code for the multi-headed attention mechanism looks like this:

Multi-Headed Attention Mechanism

 1 class MultiHeadAttention(nn.Module):
 2     def __init__(self, n_heads, d_model,
 3                  input_dim=None, proj_values=True):
 4         super().__init__()
 5         self.linear_out = nn.Linear(n_heads * d_model, d_model)
 6         self.attn_heads = nn.ModuleList(
 7             [Attention(d_model,
 8                        input_dim=input_dim,
 9                        proj_values=proj_values)
10              for _ in range(n_heads)]
11         )
12 
13     def init_keys(self, key):
14         for attn in self.attn_heads:
15             attn.init_keys(key)
16 
17     @property
18     def alphas(self):
19         # Shape: n_heads, N, 1, L (source)
20         return torch.stack(
21             [attn.alphas for attn in self.attn_heads], dim=0
22         )
23 
24     def output_function(self, contexts):
25         # N, 1, n_heads * D
26         concatenated = torch.cat(contexts, axis=-1)
27         # Linear transf. to go back to original dimension
28         out = self.linear_out(concatenated) # N, 1, D
29         return out
30 
31     def forward(self, query, mask=None):
32         contexts = [attn(query, mask=mask)
33                     for attn in self.attn_heads]
34         out = self.output_function(contexts)
35         return out

It is pretty much a list of attention mechanisms with an extra linear layer on top.

But it is not any list; it is a special list—it is an nn.ModuleList.
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 "What’s so special about it?"

Even though PyTorch recursively looks for models (and layers) listed as attributes

to get a comprehensive list of all parameters, it does not look for models inside

Python lists. Therefore, the only way to have a list of models (or layers) is to use

the appropriate nn.ModuleList, which you can still index and loop over just like

with any other regular list.

This chapter is so long that I’ve split it into two parts, so you can take a break now

and let the attention mechanism sink in before moving on to its sibling, the self-

attention mechanism.

TO BE CONTINUED…

[136] https://github.com/dvgodoy/PyTorchStepByStep/blob/master/Chapter09.ipynb

[137] https://colab.research.google.com/github/dvgodoy/PyTorchStepByStep/blob/master/Chapter09.ipynb

[138] https://papers.nips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html

[139] https://bit.ly/3aEf81k

[140] http://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-

attention/

[141] https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3
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Chapter 9 — Part II
Sequence-to-Sequence

Spoilers

In the second half of this chapter, we will:

• use self-attention mechanisms to replace recurrent layers in both the encoder

and the decoder

• understand the importance of the target mask to avoid data leakage

• learn how to use positional encoding

Self-Attention

Here is a radical notion: What if we replaced the recurrent layer with an attention

mechanism?

That’s the main proposition of the famous "Attention Is All You Need"[142] paper by

Vaswani, A., et al. It introduced the Transformer architecture, based on a self-

attention mechanism, that was soon going to completely dominate the NLP

landscape.


"I pity the fool using recurrent layers."

Mr. T

The recurrent layer in the encoder took the source sequence in and, one by one,

generated hidden states. But we don’t have to generate hidden states like that. We

can use another, separate, attention mechanism to replace the encoder (and, wait

for it, the decoder too!).



These separate attention mechanisms are called self-attention

mechanisms since all of their inputs—"keys," "values," and

"query"—are internal to either an encoder or a decoder.

The attention mechanism we discussed in the previous section,

where "keys" and "values" come from the encoder, but the

"query" comes from the decoder, is going to be referred to as

cross-attention from now on.
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Once again, the affine transformations we’re applying to "keys,"

"queries," and "values" may also be used to change the

dimensionality from the number of input dimensions to the

number of hidden dimensions (this transformation was formerly

performed by the recurrent layer).

Let’s start with the encoder.

Encoder

The figure below depicts an encoder using self-attention: The source sequence (in

red) works as "keys" (K), "values" (V), and "queries (Q)" as well. Did you notice I

mentioned, "queries," plural, instead of "query"?



In the encoder, each data point is a "query" (the red arrow

entering the self-attention mechanism from the side), and thus

produces its own context vector using alignment vectors for

every data point in the source sequence, including itself. This

means it is possible for a data point to generate a context vector

that is only paying attention to itself.

Figure 9.23 - Encoder with self-attention (simplified)

As the diagram above illustrates, each context vector produced by the self-

attention mechanism goes through a feed-forward network to generate a "hidden

state" as output. We can dive deeper into the inner workings of the self-attention

mechanism.
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Figure 9.24 - Encoder with self-attention

Let’s focus on the self-attention mechanism on the left, used to generate the

"hidden state" (h00, h01) corresponding to the first data point in the source

sequence (x00, x01), and see how it works in great detail:

• The transformed coordinates of the first data point are used as "query" (Q).

• This "query" (Q) will be paired, independently, with each of the two "keys" (K),

one of them being a different transformation of the same coordinates (x00, x01),

the other being a transformation of the second data point (x10, x11).

• The pairing above will result in two attention scores (alphas, s0 and s1) that,

multiplied by their corresponding "values" (V), are added up to become the

context vector:

Equation 9.11 - Context vector for first input (x0)

• Next, the context vector goes through the feed-forward network, and the first

"hidden state" is born!
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Next, we shift our focus to the self-attention mechanism on the right:

• It is the second data point's turn to be the "query" (Q), being paired with both

"keys" (K), generating attention scores and a context vector, resulting in the

second "hidden state":

Equation 9.12 - Context vector for second input (x1)



As you probably already noticed, the context vector (and thus

the "hidden state") associated with a data point is basically a

function of the corresponding "query" (Q), and everything else

("keys" (K), "values" (V), and the parameters of the self-attention

mechanism) is held constant for all queries.

Therefore, we can simplify a bit our previous diagram and depict only one self-

attention mechanism, assuming it will be fed a different "query" (Q) every time.

Figure 9.25 - Encoder with self-attention
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The alphas are the attention scores, and they are organized as follows in the

alphas attribute (as we’ve already seen in the "Visualizing Attention" section):

Equation 9.13 - Attention scores

For the encoder, the shape of the alphas attribute is given by (N, Lsource, Lsource) since

it is looking at itself.



Even though I’ve described the process as if it were sequential,

these operations can be parallelized to generate all "hidden

states" at once, which is much more efficient than using a

recurrent layer that is sequential in nature.

We can also use an even more simplified diagram of the encoder that abstracts the

nitty-gritty details of the self-attention mechanism.

Figure 9.26 - Encoder with self-attention (diagram)

The code for our encoder with self-attention is actually quite simple since most of

the moving parts are inside the attention heads:

744 | Chapter 9 — Part II: Sequence-to-Sequence



Encoder + Self-Attention

 1 class EncoderSelfAttn(nn.Module):
 2     def __init__(self, n_heads, d_model,
 3                  ff_units, n_features=None):
 4         super().__init__()
 5         self.n_heads = n_heads
 6         self.d_model = d_model
 7         self.ff_units = ff_units
 8         self.n_features = n_features
 9         self.self_attn_heads = \
10             MultiHeadAttention(n_heads,
11                                d_model,
12                                input_dim=n_features)
13         self.ffn = nn.Sequential(
14             nn.Linear(d_model, ff_units),
15             nn.ReLU(),
16             nn.Linear(ff_units, d_model),
17         )
18 
19     def forward(self, query, mask=None):
20         self.self_attn_heads.init_keys(query)
21         att = self.self_attn_heads(query, mask)
22         out = self.ffn(att)
23         return out

Remember that the "query" in the forward() method actually gets the data points

from the source sequence. These data points will be transformed into different

"keys," "values," and "queries" inside each of the attention heads. The output of

the attention heads is a context vector (att) that goes through a feed-forward

network to produce a "hidden state."


By the way, now that we’ve gotten rid of the recurrent layer, we’ll

be talking about model dimensions (d_model) instead of hidden

dimensions (hidden_dim). You still get to choose it, though.

The mask argument should receive the source mask; that is, the mask we use to

ignore padded data points in our source sequence.
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Let’s create an encoder and feed it a source sequence:

torch.manual_seed(11)
encself = EncoderSelfAttn(n_heads=3, d_model=2,
                          ff_units=10, n_features=2)
query = source_seq
encoder_states = encself(query)
encoder_states

Output

tensor([[[-0.0498,  0.2193],
         [-0.0642,  0.2258]]], grad_fn=<AddBackward0>)

It produced a sequence of states that will be the input of the (cross-)attention

mechanism used by the decoder. Business as usual.

Cross-Attention

The cross-attention was the first mechanism we discussed: The decoder provided

a "query" (Q), which served not only as input but also got concatenated to the

resulting context vector. That won’t be the case anymore! Instead of

concatenation, the context vector will go through a feed-forward network in the

decoder to generate the predicted coordinates.

The figure below illustrates the current state of the architecture: self-attention as

encoder, cross-attention on top of it, and the modifications to the decoder.
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Figure 9.27 - Encoder with self- and cross-attentions

If you’re wondering why we removed the concatenation part, here comes the

answer: We’re using self-attention as a decoder too.
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Decoder

There is one main difference (in the code) between the encoder and the

decoder—the latter includes a cross-attention mechanism, as you can see below:

Decoder + Self-Attention

 1 class DecoderSelfAttn(nn.Module):
 2     def __init__(self, n_heads, d_model,
 3                  ff_units, n_features=None):
 4         super().__init__()
 5         self.n_heads = n_heads
 6         self.d_model = d_model
 7         self.ff_units = ff_units
 8         self.n_features = d_model if n_features is None \
 9                           else n_features
10         self.self_attn_heads = \
11             MultiHeadAttention(n_heads, d_model,
12                                input_dim=self.n_features)
13         self.cross_attn_heads = \                          ①
14             MultiHeadAttention(n_heads, d_model)
15         self.ffn = nn.Sequential(
16             nn.Linear(d_model, ff_units),
17             nn.ReLU(),
18             nn.Linear(ff_units, self.n_features))
19 
20     def init_keys(self, states):                           ①
21         self.cross_attn_heads.init_keys(states)
22 
23     def forward(self, query, source_mask=None, target_mask=None):
24         self.self_attn_heads.init_keys(query)
25         att1 = self.self_attn_heads(query, target_mask)
26         att2 = self.cross_attn_heads(att1, source_mask)    ①
27         out = self.ffn(att2)
28         return out

① Including cross-attention
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The figure below depicts the self-attention part of a decoder.

Figure 9.28 - Decoder with self-attention (simplified)

Once again, we can dive deeper into the inner workings of the self-attention

mechanism.

Figure 9.29 - Decoder with self-attention

There is one small difference in the self-attention architecture between encoder

and decoder: The feed-forward network in the decoder sits atop the cross-attention

mechanism (not depicted in the figure above) instead of the self-attention

mechanism. The feed-forward network also maps the decoder’s output from the

dimensionality of the model (d_model) back to the number of features, thus

yielding predictions.
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We can also use a simplified diagram for the decoder (Figure 9.29, although

depicting a single attention head, corresponds to the "Masked Multi-Headed Self-

Attention" box below).

Figure 9.30 - Decoder with self- and cross-attentions (diagram)

The decoder’s first input (x10, x11) is the last known element of the source

sequence, as usual. The source mask is the same mask used to ignore padded data

points in the encoder.

 "What about the target mask?"

We’ll get to that shortly. First, we need to discuss the subsequent inputs.

Subsequent Inputs and Teacher Forcing

In our problem, the first two data points are the source sequence, while the last two

are the target sequence. Now, let’s define the shifted target sequence, which

includes the last known element of the source sequence and all elements in the

target sequence but the last one.

Figure 9.31 - Shifted target sequence
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shifted_seq = torch.cat([source_seq[:, -1:],
                         target_seq[:, :-1]], dim=1)

The shifted target sequence was already used (even though we didn’t have a name

for it) when we discussed teacher forcing. There, at every step (after the first one), it

randomly chose as the input to the subsequent step either an actual element from

that sequence or a prediction. It worked very well with recurrent layers that were

sequential in nature. But this isn’t the case anymore.



One of the advantages of self-attention over recurrent layers is

that operations can be parallelized. No need to do anything

sequentially anymore, teacher forcing included. This means we’re

using the whole shifted target sequence at once as the "query"

argument of the decoder.

That’s very nice and cool, sure, but it raises one big problem involving the…

Attention Scores

To understand what the problem is, let’s look at the context vector that will result

in the first "hidden state" produced by the decoder, which, in turn, will lead to the

first prediction:

Equation 9.14 - Context vector for the first target

 "What’s the problem with it?"

The problem is that it is using a "key" (K2) and a "value" (V2) that are

transformations of the data point it is trying to predict.


In other words, the model is being allowed to cheat by peeking

into the future because we’re giving it all data points in the

target sequence except the very last one.

If we look at the context vector corresponding to the last prediction, it should be
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clear that the model simply cannot cheat (there’s no K3 or V3):

Equation 9.15 - Context vector for the second target

We can also check it quickly by looking at the subscript indices: As long as the

indices of the "values" are lower than the index of the context vector, there is no

cheating. By the way, it is even easier to check what’s happening if we use the

alphas matrix:

Equation 9.16 - Decoder’s attention scores

For the decoder, the shape of the alphas attribute is given by (N, Ltarget, Ltarget) since

it is looking at itself. Any alphas above the diagonal are, literally, cheating codes.

We need to force the self-attention mechanism to ignore them. If only there was a

way to do it…

 "What about those masks we discussed earlier?"

You’re absolutely right! They are perfect for this case.

Target Mask (Training)

The purpose of the target mask is to zero attention scores for "future" data

points. In our example, that’s the alphas matrix we’re aiming for:
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Equation 9.17 - Decoder’s (masked) attention scores



Therefore we need a mask that flags every element above the

diagonal as invalid, as we did with the padded data points in the

source mask. The shape of the target mask, though, must match

the shape of the alphas attribute: (1, Ltarget, Ltarget).

We can create a function to generate the mask for us:

Subsequent Mask

1 def subsequent_mask(size):
2     attn_shape = (1, size, size)
3     subsequent_mask = (
4         1 - torch.triu(torch.ones(attn_shape), diagonal=1)
5     ).bool()
6     return subsequent_mask

subsequent_mask(2) # 1, L, L

Output

tensor([[[ True, False],
         [ True,  True]]])

Perfect! The element above the diagonal is indeed set to False.



We must use this mask while querying the decoder to prevent it

from cheating. You can choose to use an additional mask to

"hide" more data from the decoder if you wish, but the

subsequent mask is a necessity with the self-attention decoder.
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Let’s see it in practice:

torch.manual_seed(13)
decself = DecoderSelfAttn(n_heads=3, d_model=2,
                          ff_units=10, n_features=2)
decself.init_keys(encoder_states)

query = shifted_seq
out = decself(query, target_mask=subsequent_mask(2))

decself.self_attn_heads.alphas

Output

tensor([[[[1.0000, 0.0000],
          [0.4011, 0.5989]]],

        [[[1.0000, 0.0000],
          [0.4264, 0.5736]]],

        [[[1.0000, 0.0000],
          [0.6304, 0.3696]]]])

There we go, no cheating :)

Target Mask (Evaluation/Prediction)

The only difference between training and evaluation, concerning the target mask,

is that we’ll use larger masks as we go. The very first mask is actually trivial since

there are no elements above the diagonal:

Equation 9.18 - Decoder’s (masked) attention scores for the first target
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At evaluation / prediction time we only have the source sequence, and, in our

example, we use its last element as input for the decoder:

inputs = source_seq[:, -1:]
trg_masks = subsequent_mask(1)
out = decself(inputs, trg_masks)
out

Output

tensor([[[0.4132, 0.3728]]], grad_fn=<AddBackward0>)

The mask is not actually masking anything in this case, and we get a prediction for

the coordinates of x2 as expected. Previously, this prediction would have been used

as the next input, but things are a bit different now.


The self-attention decoder expects the full sequence as "query,"

so we concatenate the prediction to the previous "query."

inputs = torch.cat([inputs, out[:, -1:, :]], dim=-2)
inputs

Output

tensor([[[-1.0000,  1.0000],
         [ 0.4132,  0.3728]]], grad_fn=<CatBackward>)

Now there are two data points for querying the decoder, so we adjust the mask

accordingly:

Equation 9.19 - Decoder’s (masked) attention scores for the second target
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The mask guarantees that the predicted x2 (in the first step)

won’t change the predicted x2 (in the second step), because

predictions are made based on past data points only.

trg_masks = subsequent_mask(2)
out = decself(inputs, trg_masks)
out

Output

tensor([[[0.4137, 0.3727],
         [0.4132, 0.3728]]], grad_fn=<AddBackward0>)

These are the predicted coordinates of both x2 and x3. They are very close to each

other, but that’s just because we’re using an untrained model to illustrate the

mechanics of using target masks for prediction. The last prediction is, once again,

concatenated to the previous "query."

inputs = torch.cat([inputs, out[:, -1:, :]], dim=-2)
inputs

Output

tensor([[[-1.0000,  1.0000],
         [ 0.4132,  0.3728],
         [ 0.4132,  0.3728]]], grad_fn=<CatBackward>)

But, since we’re actually done with the predictions (the desired target sequence has

a length of two), we simply exclude the first data point in the query (the one coming

from the source sequence), and are left with the predicted target sequence:

inputs[:, 1:]
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Output

tensor([[[0.4132, 0.3728],
         [0.4132, 0.3728]]], grad_fn=<SliceBackward>)

Greedy Decoding vs Beam Search

This is called greedy decoding because each prediction is deemed final. "No

backsies": Once it’s done, it’s really done, and you just move along to the next

prediction and never look back. In the context of our sequence-to-sequence

problem, a regression, it wouldn’t make much sense to do otherwise anyway.

But that may not be the case for other types of sequence-to-sequence

problems. In machine translation, for example, the decoder outputs

probabilities for the next word in the sentence at each step. The greedy

approach would simply take the word with the highest probability and move

on to the next.

However, since each prediction is an input to the next step, taking the top

word at every step is not necessarily the winning approach (translating

from one language to another is not exactly "linear"). It is probably wiser to

keep a handful of candidates at every step and try their combinations to

choose the best one: That’s called beam search. We’re not delving into its

details here, but you can find more information in Jason Brownlee’s "How to

Implement a Beam Search Decoder for Natural Language Processing."[143]
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Encoder + Decoder + Self-Attention

Let’s join the encoder and the decoder together again, each using self-attention to

compute their corresponding "hidden states," and the decoder using cross-

attention to make predictions. The full picture looks like this (including the need

for masking one of the inputs to avoid cheating).

Figure 9.32 - Encoder + decoder + attention (simplified)


For some cool animations of the self-attention mechanism, make

sure to check out Raimi Karim’s "Illustrated: Self-Attention."[144]

But, if you prefer an even more simplified diagram, here it is:
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Figure 9.33 - Encoder + decoder + attention (diagram)

The corresponding code for the architecture above looks like this:

Encoder + Decoder + Self-Attention

 1 class EncoderDecoderSelfAttn(nn.Module):
 2     def __init__(self, encoder, decoder, input_len, target_len):
 3         super().__init__()
 4         self.encoder = encoder
 5         self.decoder = decoder
 6         self.input_len = input_len
 7         self.target_len = target_len
 8         self.trg_masks = self.subsequent_mask(self.target_len)
 9 
10     @staticmethod
11     def subsequent_mask(size):
12         attn_shape = (1, size, size)
13         subsequent_mask = (
14             1 - torch.triu(torch.ones(attn_shape), diagonal=1)
15         ).bool()
16         return subsequent_mask
17 
18     def encode(self, source_seq, source_mask):
19         # Encodes the source sequence and uses the result
20         # to initialize the decoder
21         encoder_states = self.encoder(source_seq, source_mask)
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22         self.decoder.init_keys(encoder_states)
23 
24     def decode(self, shifted_target_seq,
25                source_mask=None, target_mask=None):
26         # Decodes / generates a sequence using the shifted
27         # (masked) target sequence - used in TRAIN mode
28         outputs = self.decoder(shifted_target_seq,
29                                source_mask=source_mask,
30                                target_mask=target_mask)
31         return outputs
32 
33     def predict(self, source_seq, source_mask):
34         # Decodes / generates a sequence using one input
35         # at a time - used in EVAL mode
36         inputs = source_seq[:, -1:]
37         for i in range(self.target_len):
38             out = self.decode(inputs,
39                               source_mask,
40                               self.trg_masks[:, :i+1, :i+1])
41             out = torch.cat([inputs, out[:, -1:, :]], dim=-2)
42             inputs = out.detach()
43         outputs = inputs[:, 1:, :]
44         return outputs
45 
46     def forward(self, X, source_mask=None):
47         # Sends the mask to the same device as the inputs
48         self.trg_masks = self.trg_masks.type_as(X).bool()
49         # Slices the input to get source sequence
50         source_seq = X[:, :self.input_len, :]
51         # Encodes source sequence AND initializes decoder
52         self.encode(source_seq, source_mask)
53         if self.training:
54             # Slices the input to get the shifted target seq
55             shifted_target_seq = X[:, self.input_len-1:-1, :]
56             # Decodes using the mask to prevent cheating
57             outputs = self.decode(shifted_target_seq,
58                                   source_mask,
59                                   self.trg_masks)
60         else:
61             # Decodes using its own predictions
62             outputs = self.predict(source_seq, source_mask)
63 

760 | Chapter 9 — Part II: Sequence-to-Sequence



64         return outputs

The encoder-decoder class has more methods now to better organize the several

steps formerly performed inside the forward() method. Let’s take a look at them:

• encode(): It takes the source sequence and mask and encodes it into a

sequence of states that is immediately used to initialize the "keys" (and

"values") in the decoder.

• decode(): It takes the shifted target sequence and both source and target

masks to generate a target sequence—it is used for training only!

• predict(): It takes the source sequence and the source mask, and uses a

subset of the target mask to actually predict an unknown target sequence—it

is used for evaluation / prediction only!

• forward(): It splits the input into the source and shifted target sequences (if

available), encodes the source sequence, and calls either decode() or

predict() according to the model’s mode (train or eval).

Moreover, the subsequent_mask() becomes a static method, as the mask is being

generated in the constructor and is sent to the same device as the inputs using

tensor.type_as(). The last part is critical: We need to make sure that the mask is in

the same device as the inputs (and the model, of course).
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Model Configuration & Training

Once again, we create both encoder and decoder models and use them as

arguments in the large EncoderDecoderSelfAttn model that handles the

boilerplate, and we’re good to go:

Model Configuration

1 torch.manual_seed(23)
2 encself = EncoderSelfAttn(n_heads=3, d_model=2,
3                           ff_units=10, n_features=2)
4 decself = DecoderSelfAttn(n_heads=3, d_model=2,
5                           ff_units=10, n_features=2)
6 model = EncoderDecoderSelfAttn(encself, decself,
7                                input_len=2, target_len=2)
8 loss = nn.MSELoss()
9 optimizer = optim.Adam(model.parameters(), lr=0.01)

Model Training

1 sbs_seq_selfattn = StepByStep(model, loss, optimizer)
2 sbs_seq_selfattn.set_loaders(train_loader, test_loader)
3 sbs_seq_selfattn.train(100)

fig = sbs_seq_selfattn.plot_losses()



Even though we did our best to ensure the reproducibility of the

results, you may still find some differences in the loss curves (and,

consequently, in the attention scores as well). PyTorch’s

documentation about reproducibility states the following:

"Completely reproducible results are not guaranteed across

PyTorch releases, individual commits, or different platforms.

Furthermore, results may not be reproducible between CPU and

GPU executions, even when using identical seeds."
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Figure 9.34 - Losses—encoder + decoder + self-attention

The losses are worse now—the model using cross-attention only was performing

better than that. What about the predictions?

Visualizing Predictions

Let’s plot the predicted coordinates and connect them using dashed lines, while

using solid lines to connect the actual coordinates, just like before:

fig = sequence_pred(sbs_seq_selfattn, full_test, test_directions)

Figure 9.35 - Predictions—encoder + decoder + self-attention

Well, that’s a bit disappointing; the triangles made a comeback!
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To be completely honest with you, it is perfectly feasible to

achieve a much better loss (and no triangles) using the model

above with a small tweak; namely, trying a different seed. But I

decided to keep the model above for the sake of highlighting the

importance of our next topic: positional information.


"What happened here? Wasn’t self-attention the best invention since

sliced bread?"

Self-attention is great, indeed, but it is missing one fundamental piece of

information that the recurrent layers had: the order of the data points. As we

know, the order is of utmost importance in sequence problems, but for the self-

attention mechanism there is no order to the data points in the source sequence.

 "I don’t get it—why did it lose the order?"

Sequential No More

Let’s compare two encoders, one using recurrent neural networks (left), the other,

self-attention (right).

Figure 9.36 - RNN vs self-attention

The recurrent neural network ensured that the output at each step was fed to the

next, depicted by the h0 going from one cell to the next. Now, compare it to the

encoder using self-attention: Every step is independent of the others. If you flip the

order of the data points in the source sequence, the encoder will output the

"hidden states" in a different order, but it won’t change their values.

That’s exactly what makes it highly parallelizable, and it is both a blessing and a
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curse. On the one hand, it makes computation very efficient; on the other hand, it is

throwing away valuable information.

 "Can we fix it?"

Definitely! Instead of using a model designed to encode the order of the inputs (like

the recurrent neural networks), let’s encode the positional information ourselves

and add it to the inputs.

Positional Encoding (PE)

We need to find a way to inform the model about the position of every data point

such that it knows the order of the data points. In other words, we need to

generate a unique value for each position in the input.

Let’s put our simple sequence-to-sequence problem aside for a while and imagine

we have a sequence of four data points instead. The first idea that comes to mind is

to use the index of the position itself, right? Let’s just use zero, one, two, and three,

done! Maybe it wouldn’t be so bad for a short sequence like this, but what about a

sequence of, say, one thousand data points? The positional encoding of the last

data point would be 999. We shouldn’t be using unbounded values like that as inputs

for a neural network.

 "What about 'normalizing' the indices?"

Sure, we can try that and divide the indices by the length of our sequence (four).

Figure 9.37 - "Normalizing" over the length

Unfortunately, that didn’t solve the problem—a longer sequence will still generate

values larger than one.

Figure 9.38 - "Normalizing" over a (shorter) length
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 "What about 'normalizing' each sequence by its own length?"

It solves that problem, but it raises another one; namely, the same position gets

different encoding values depending on the length of the sequence.

Figure 9.39 - "Normalizing" over different lengths

Ideally, the positional encoding should remain constant for a given position,

regardless of the length of the sequence.

 "What if we take the module first, and then 'normalize' it?"

Well, that indeed solves the two problems above, but the values aren’t unique

anymore.

Figure 9.40 - "Normalizing" over a module of the length

 "OK, I give up! How do we handle this?"

Let’s think outside the box for a moment; no one said we must use only one vector,

right? Let’s build three vectors instead, using three hypothetical sequence lengths

(four, five, and seven).

Figure 9.41 - Combining results for different modules

The positional encoding above is unique up to the 140th position and we can easily

extend that by adding more vectors.
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 "Are we done now? Is this good enough?"

Sorry, but no, not yet. Our solution still has one problem, and it boils down to

computing distances between two encoded positions. Let’s take position number

three and its two neighbors, positions number two and four. Obviously, the

distance between position three and each of its closest neighbors is one. Now, let’s

see what happens if we compute distance using the positional encoding.

Figure 9.42 - Inconsistent distances

The distance between positions three and two (given by the norm of the difference

vector) is not equal to the distance between positions three and four. That may

seem a bit too abstract, but using an encoding with inconsistent distances would

make it much harder for the model to make sense out of the encoded positions.

This inconsistency arises from the fact that our encoding is resetting to zero every

time the module kicks in. The distance between positions three and four got much

larger because, at position four, the first vector goes back to zero. We need some

other function that has a smoother cycle.

 "What if we actually use a cycle, I mean, a circle?"

Perfect! First, we take our encodings and multiply them by 360.

Figure 9.43 - From "normalized" module to degrees

Now, each value corresponds to a number of degrees that we can use to move

along a circle. The figure below shows a red arrow rotated by the corresponding

number of degrees for each position and base in the table above.
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Figure 9.44 - Representing degrees on a circle

Moreover, the circles above show the sine and cosine values corresponding to the

coordinates of the tip of each red arrow (assuming a circle with a radius of one).


The sine and cosine values, that is, the coordinates of the red

arrow, are the actual positional encoding of a given position.

We can simply read the sine and cosine values, from top to bottom, to build the

encodings for each position.

Figure 9.45 - Representing degrees using sine and cosine

There were three vectors, thus generating six coordinates or dimensions (three

sines and three cosines).

Next, let’s use these encodings to calculate the distances, which should be

consistent now!
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Figure 9.46 - Consistent distances

Awesome, isn’t it? The encoded distance between any two positions T steps apart

is constant now. In our encoding, the distance between any two positions one step

apart will always be 2.03.

 "Great! But how do I choose the 'bases' for the encoding?"

It turns out, you don’t have to. As the first vector, simply move along the circle as

many radians as the index of the position (one radian is approximately 57.3

degrees). Then, for each new vector added to the encoding, move along the circle

with exponentially slower angular speeds. For example, in the second vector, we

would move only one-tenth of a radian (approximately 5.73 degrees) for each new

position. In the third vector, we would move only one-hundredth of a radian, and

so on and so forth. Figure 9.47 depicts the red arrow moving at increasingly slower

angular speeds.
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Figure 9.47 - Positional encoding represented as circles
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A Note on Encoded Distances

Let’s recap what we’ve already seen:

• The encoded distance is defined by the Euclidean distance between two

vectors, or, in other words, it is the norm (size) of the difference

between two encoding vectors.

• The encoded distance between positions zero and two (T=2) should be

exactly the same as the encoded distance between positions one and

three, two and four, and so on.

In other words, the encoded distance between any two positions T steps

apart remains constant. Let’s illustrate this by computing the encoded

distances among the first five positions (by the way, we’re using the

encoding with eight dimensions now):

distances = np.zeros((5, 5))
for i, v1 in enumerate(encoding[:5]):
   for j, v2 in enumerate(encoding[:5]):
        distances[i, j] = np.linalg.norm(v1 - v2)

The resulting matrix is full of pretty diagonals, each diagonal containing a

constant value for the encoded distance corresponding to positions T steps

apart.

For example, for positions next to each other (T=1), our encoded distance is

always 0.96. That’s an amazing property of this encoding scheme.
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"Great, but there is something weird—position four should have

a larger distance than position three to position zero, right?"

Not necessarily, no. The distance does not need to always increase. It is OK

for the distance between positions zero and four (1.86) to be less than the

distance between positions zero and three (2.02), as long as the diagonals

hold.



For a more detailed discussion about using sines and cosines

for positional encoding, check Amirhossein Kazemnejad’s

great post on the subject: "Transformer Architecture: The

Positional Encoding."[145]

Since we’re using four different angular speeds, the positional encoding depicted

in Figure 9.47 has eight dimensions. Notice that the red arrow barely moves in the

last two rows.

In practice, we’ll choose the number of dimensions first, and then compute the

corresponding speeds. For example, for encoding with eight dimensions, like

Figure 9.47, there are four angular speeds:

Equation 9.20 - Angular speeds

The positional encoding is given by the two formulas below:

Equation 9.21 - Positional encoding
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Let’s see it in code:

max_len = 10
d_model = 8
position = torch.arange(0, max_len).float().unsqueeze(1)
angular_speed = torch.exp(
  torch.arange(0, d_model, 2).float() * (-np.log(10000.0) / d_model)
)
encoding = torch.zeros(max_len, d_model)
encoding[:, 0::2] = torch.sin(angular_speed * position)
encoding[:, 1::2] = torch.cos(angular_speed * position)

As you can see, each position is multiplied by several different angular speeds, and

the resulting coordinates (given by the sine and cosine) compose the actual

encoding. Now, instead of plotting the circles, we can directly plot all sine values

(the even dimensions of the encoding) and all cosine values (the odd dimensions of

the encoding) instead.

Figure 9.48 - Positional encoding as a heatmap

The plots on the bottom show the color-coded encoding, ranging from minus one

(dark blue) to zero (green), all the way to one (yellow). I chose to plot them with the

positions on the horizontal axis so you can more easily associate them with the

corresponding curves on the top. In most blog posts, however, you’ll find the

transposed version; that is, with dimensions on the horizontal axis.
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Let’s put both sine and cosine values together and look at the first four positions:

np.round(encoding[0:4], 4)  # first four positions

Output

tensor([[ 0.0000,  1.0000,  0.0000,  1.0000,  0.0000,  1.0000,
0.0000,  1.0000],
        [ 0.8415,  0.5403,  0.0998,  0.9950,  0.0100,  1.0000,
0.0010,  1.0000],
        [ 0.9093, -0.4161,  0.1987,  0.9801,  0.0200,  0.9998,
0.0020,  1.0000],
        [ 0.1411, -0.9900,  0.2955,  0.9553,  0.0300,  0.9996,
0.0030,  1.0000]])

Each line above represents the encoding values for each of its eight dimensions.

The first position will always have alternated zeros and ones (the sine and cosine

of zero, respectively).
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Let’s put it all together into a class:

Positional Encoding (PE)

 1 class PositionalEncoding(nn.Module):
 2     def __init__(self, max_len, d_model):
 3         super().__init__()
 4         self.d_model = d_model
 5         pe = torch.zeros(max_len, d_model)
 6         position = torch.arange(0, max_len).float().unsqueeze(1)
 7         angular_speed = torch.exp(
 8             torch.arange(0, d_model, 2).float() *
 9             (-np.log(10000.0) / d_model)
10         )
11         # even dimensions
12         pe[:, 0::2] = torch.sin(position * angular_speed)
13         # odd dimensions
14         pe[:, 1::2] = torch.cos(position * angular_speed)
15         self.register_buffer('pe', pe.unsqueeze(0))
16 
17     def forward(self, x):
18         # x is N, L, D
19         # pe is 1, maxlen, D
20         scaled_x = x * np.sqrt(self.d_model)
21         encoded = scaled_x + self.pe[:, :x.size(1), :]
22         return encoded

There are a couple of things about this class I’d like to highlight:

• In the constructor, it uses register_buffer() to define an attribute of the

module.

• In the forward() method, it is scaling the input before adding the positional

encoding.

The register_buffer() method is used to define an attribute that is part of the

module’s state, yet is not a parameter. The positional encoding is a good example:

Its values are computed according to the dimension and length used by the model,

and even though these values are going to be used during training, they shouldn’t be

updated by gradient descent.

Another example of a registered buffer is the running_mean attribute of the batch
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normalization layer. It is used during training, and it is even modified during training

(unlike positional encoding), but it isn’t updated by gradient descent.

Let’s create an instance of the positional encoding class and check its parameters()
and state_dict():

posenc = PositionalEncoding(2, 2)
list(posenc.parameters()), posenc.state_dict()

Output

([], OrderedDict([('pe', tensor([[[0.0000, 1.0000],
                        [0.8415, 0.5403]]]))]))

The registered buffer can be accessed just like any other attribute:

posenc.pe

Output

tensor([[[0.0000, 1.0000],
         [0.8415, 0.5403]]])

Now, let’s see what happens if we add the positional encoding to a source

sequence:

source_seq # 1, L, D

Output

tensor([[[-1., -1.],
         [-1.,  1.]]])

source_seq + posenc.pe
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Output

tensor([[[-1.0000,  0.0000],
         [-0.1585,  1.5403]]])

 "What am I looking at?"

It turns out, the original coordinates were somewhat crowded-out by the addition of

the positional encoding (especially the first row). This may happen if the data

points have values roughly in the same range as the positional encoding.

Unfortunately, this is fairly common: Both standardized inputs and word

embeddings (we’ll get back to them in Chapter 11) are likely to have most of their

values inside the [-1, 1] range of the positional encoding.

 "How can we handle it then?"

That’s what the scaling in the forward() method is for: It’s as if we were "reversing

the standardization" of the inputs (using a standard deviation equal to the square

root of their dimensionality) to retrieve the hypothetical "raw" inputs.

Equation 9.22 - "Reversing" the standardization



By the way, previously, we scaled the dot product using the

inverse of the square root of its dimensionality, which was its

standard deviation.

Even though this is not the same thing, the analogy might help

you remember that the inputs are also scaled by the square root

of their number of dimensions before the positional encoding

gets added to them.

In our example, the dimensionality is two (coordinates), so the inputs are going to

be scaled by the square root of two:

posenc(source_seq)
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Output

tensor([[[-1.4142, -0.4142],
         [-0.5727,  1.9545]]])

The results above (after the encoding) illustrate the effect of scaling the inputs: It

seems to have lessened the crowding-out effect of the positional encoding. For

inputs with many dimensions, the effect will be much more pronounced: A 300-

dimension embedding will have a scaling factor around 17, for example.

 "Wait, isn’t this bad for the model?"

Left unchecked, yes, it could be bad for the model. That’s why we’ll pull off yet

another normalization trick: layer normalization. We’ll discuss it in detail in the

next chapter.

For now, scaling the coordinates by the square root of two isn’t going to be an issue,

so we can move on and integrate positional encoding into our model.

Encoder + Decoder + PE

The new encoder and decoder classes are just wrapping their self-attention

counterparts by assigning the latter to be the layer attribute of the former, and

encoding the inputs prior to calling the corresponding layer:

Encoder with Positional Encoding

 1 class EncoderPe(nn.Module):
 2     def __init__(self, n_heads, d_model, ff_units,
 3                  n_features=None, max_len=100):
 4         super().__init__()
 5         pe_dim = d_model if n_features is None else n_features
 6         self.pe = PositionalEncoding(max_len, pe_dim)
 7         self.layer = EncoderSelfAttn(n_heads, d_model,
 8                                      ff_units, n_features)
 9 
10     def forward(self, query, mask=None):
11         query_pe = self.pe(query)
12         out = self.layer(query_pe, mask)
13         return out

778 | Chapter 9 — Part II: Sequence-to-Sequence



Decoder with Positional Encoding

 1 class DecoderPe(nn.Module):
 2     def __init__(self, n_heads, d_model, ff_units,
 3                  n_features=None, max_len=100):
 4         super().__init__()
 5         pe_dim = d_model if n_features is None else n_features
 6         self.pe = PositionalEncoding(max_len, pe_dim)
 7         self.layer = DecoderSelfAttn(n_heads, d_model,
 8                                      ff_units, n_features)
 9 
10     def init_keys(self, states):
11         self.layer.init_keys(states)
12 
13     def forward(self, query, source_mask=None, target_mask=None):
14         query_pe = self.pe(query)
15         out = self.layer(query_pe, source_mask, target_mask)
16         return out


"Why are we calling the self-attention encoder (and decoder) a layer

now? It’s a bit confusing…"

You’re right, it may be a bit confusing, indeed. Unfortunately, naming conventions

aren’t so great in our field. A layer is (loosely) used here as a building block of a

larger model. It may look a bit silly; after all, there is only one layer (apart from the

encoding). Why even bother making it a "layer," right?


In the next chapter, we’ll use multiple layers (of attention

mechanisms) to build the famous Transformer.
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Model Configuration & Training

Since we haven’t changed the large encoder-decoder model, we only need to

update its arguments (encoder and decoder) to use the new positional encoding-

powered classes:

Model Configuration

1 torch.manual_seed(43)
2 encpe = EncoderPe(n_heads=3, d_model=2, ff_units=10, n_features=2)
3 decpe = DecoderPe(n_heads=3, d_model=2, ff_units=10, n_features=2)
4 
5 model = EncoderDecoderSelfAttn(encpe, decpe,
6                                input_len=2, target_len=2)
7 loss = nn.MSELoss()
8 optimizer = optim.Adam(model.parameters(), lr=0.01)

Model Training

1 sbs_seq_selfattnpe = StepByStep(model, loss, optimizer)
2 sbs_seq_selfattnpe.set_loaders(train_loader, test_loader)
3 sbs_seq_selfattnpe.train(100)

fig = sbs_seq_selfattnpe.plot_losses()

Figure 9.49 - Losses—using positional encoding

Good, the loss broke below 10-1 once again.
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Visualizing Predictions

Let’s plot the predicted coordinates and connect them using dashed lines, while

using solid lines to connect the actual coordinates, just like before:

fig = sequence_pred(sbs_seq_selfattnpe, full_test, test_directions)

Figure 9.50 - Predicting the last two corners

Awesome, it looks like positional encoding is working well indeed—the predicted

coordinates are quite close to the actual ones for the most part.
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Visualizing Attention

Now, let’s check what the model is paying attention to for the first two sequences

in the training set. Unlike last time, though, there are three heads and three

attention mechanisms to visualize now.

We’re starting with the three heads of the self-attention mechanism of the

encoder. There are two data points in our source sequence, so each attention head

has a two-by-two matrix of attention scores.

Figure 9.51 - Encoder’s self-attention scores for its three heads

It seems that, in Attention Head #3, each data point is dividing its attention

between itself and the other data point. In the other attention heads, though, the

data points are paying attention to a single data point, either itself or the other one.

Of course, these are just two data points used for visualization: The attention

scores are different for each source sequence.
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Next, we’re moving on to the three heads of the self-attention mechanism of the

decoder. There are two data points in our target sequence as well, but do not

forget that there’s a target mask to prevent cheating.

Figure 9.52 - Decoder’s self-attention scores for its three heads

The top-right value of every matrix is zero thanks to the target mask: Point #3 (first

row) is not allowed to pay attention to its (supposedly unknown, at training time)

own value (second column); it can pay attention to point #2 only (first column).

On the other hand, point #4 may pay attention to either one of its predecessors.

From the matrices above, it seems to pay attention almost exclusively to one of the

two points depending on which head and sequence are being considered.
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Then, there is the cross-attention mechanism, the first one we discussed.

Figure 9.53 - Cross-attention scores for its three heads

There is a lot of variation in the matrices above: In the third head of the first

sequence, for example, points #3 and #4 pay attention to point #1 only while the

first head pays attention to to alternate points; in the second sequence, though, it’s

the second head that pays attention to alternate points.

Putting It All Together

In this chapter, we used the same dataset of colored squares, but this time we

focused on predicting the coordinates of the last two corners (target sequence)

given the coordinates of the first two corners (source sequence). In the beginning,

we used familiar recurrent neural networks to build an encoder-decoder

architecture. Then, we progressively built on top of it by using (cross-)attention,

self-attention, and positional encoding.

Data Preparation

The training set has the full sequences as features, while the test set has only the

source sequences as features:
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Data Generation & Preparation

 1 # Training set
 2 points, directions = generate_sequences(n=256, seed=13)
 3 full_train = torch.as_tensor(points).float()
 4 target_train = full_train[:, 2:]
 5 train_data = TensorDataset(full_train, target_train)
 6 generator = torch.Generator()
 7 train_loader = DataLoader(train_data, batch_size=16,
 8                           shuffle=True, generator=generator)
 9 # Validation / Test Set
10 test_points, test_directions = generate_sequences(seed=19)
11 full_test = torch.as_tensor(test_points).float()
12 source_test = full_test[:, :2]
13 target_test = full_test[:, 2:]
14 test_data = TensorDataset(source_test, target_test)
15 test_loader = DataLoader(test_data, batch_size=16)

Model Assembly

During this chapter, we used the usual bottom-up approach for building ever more

complex models. Now, we’re revisiting the current stage of development in a top-

down approach, starting from the encoder-decoder architecture:

Model Configuration

 1 class EncoderDecoderSelfAttn(nn.Module):
 2     def __init__(self, encoder, decoder, input_len, target_len):
 3         super().__init__()
 4         self.encoder = encoder
 5         self.decoder = decoder
 6         self.input_len = input_len
 7         self.target_len = target_len
 8         self.trg_masks = self.subsequent_mask(self.target_len)
 9 
10     @staticmethod
11     def subsequent_mask(size):
12         attn_shape = (1, size, size)
13         subsequent_mask = (
14             1 - torch.triu(torch.ones(attn_shape), diagonal=1)
15         ).bool()
16         return subsequent_mask
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17 
18     def encode(self, source_seq, source_mask):
19         # Encodes the source sequence and uses the result
20         # to initialize the decoder
21         encoder_states = self.encoder(source_seq, source_mask)
22         self.decoder.init_keys(encoder_states)
23 
24     def decode(self, shifted_target_seq,
25                source_mask=None, target_mask=None):
26         # Decodes / generates a sequence using the shifted
27         # (masked) target sequence - used in TRAIN mode
28         outputs = self.decoder(shifted_target_seq,
29                                source_mask=source_mask,
30                                target_mask=target_mask)
31         return outputs
32 
33     def predict(self, source_seq, source_mask):
34         # Decodes / generates a sequence using one input
35         # at a time - used in EVAL mode
36         inputs = source_seq[:, -1:]
37         for i in range(self.target_len):
38             out = self.decode(inputs,
39                               source_mask,
40                               self.trg_masks[:, :i+1, :i+1])
41             out = torch.cat([inputs, out[:, -1:, :]], dim=-2)
42             inputs = out.detach()
43         outputs = inputs[:, 1:, :]
44         return outputs
45 
46     def forward(self, X, source_mask=None):
47         # Sends the mask to the same device as the inputs
48         self.trg_masks = self.trg_masks.type_as(X).bool()
49         # Slices the input to get source sequence
50         source_seq = X[:, :self.input_len, :]
51         # Encodes source sequence AND initializes decoder
52         self.encode(source_seq, source_mask)
53         if self.training:
54             # Slices the input to get the shifted target seq
55             shifted_target_seq = X[:, self.input_len-1:-1, :]
56             # Decodes using the mask to prevent cheating
57             outputs = self.decode(shifted_target_seq,
58                                   source_mask,
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59                                   self.trg_masks)
60         else:
61             # Decodes using its own predictions
62             outputs = self.predict(source_seq, source_mask)
63 
64         return outputs

Encoder + Decoder + Positional Encoding

In the second level, we’ll find both the encoder and the decoder using positional

encoding to prepare the inputs before calling the "layer" that implements the

corresponding self-attention mechanism.


In the next chapter, we’ll modify this code to include multiple

"layers" of self-attention.

Model Configuration

 1 class PositionalEncoding(nn.Module):
 2     def __init__(self, max_len, d_model):
 3         super().__init__()
 4         self.d_model = d_model
 5         pe = torch.zeros(max_len, d_model)
 6         position = torch.arange(0, max_len).float().unsqueeze(1)
 7         angular_speed = torch.exp(
 8             torch.arange(0, d_model, 2).float() *
 9             (-np.log(10000.0) / d_model)
10         )
11         # even dimensions
12         pe[:, 0::2] = torch.sin(position * angular_speed)
13         # odd dimensions
14         pe[:, 1::2] = torch.cos(position * angular_speed)
15         self.register_buffer('pe', pe.unsqueeze(0))
16 
17     def forward(self, x):
18         # x is N, L, D
19         # pe is 1, maxlen, D
20         scaled_x = x * np.sqrt(self.d_model)
21         encoded = scaled_x + self.pe[:, :x.size(1), :]
22         return encoded
23 
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24 class EncoderPe(nn.Module):
25     def __init__(self, n_heads, d_model, ff_units,
26                  n_features=None, max_len=100):
27         super().__init__()
28         pe_dim = d_model if n_features is None else n_features
29         self.pe = PositionalEncoding(max_len, pe_dim)
30         self.layer = EncoderSelfAttn(n_heads, d_model,
31                                      ff_units, n_features)
32 
33     def forward(self, query, mask=None):
34         query_pe = self.pe(query)
35         out = self.layer(query_pe, mask)
36         return out
37 
38 class DecoderPe(nn.Module):
39     def __init__(self, n_heads, d_model, ff_units,
40                  n_features=None, max_len=100):
41         super().__init__()
42         pe_dim = d_model if n_features is None else n_features
43         self.pe = PositionalEncoding(max_len, pe_dim)
44         self.layer = DecoderSelfAttn(n_heads, d_model,
45                                      ff_units, n_features)
46 
47     def init_keys(self, states):
48         self.layer.init_keys(states)
49 
50     def forward(self, query, source_mask=None, target_mask=None):
51         query_pe = self.pe(query)
52         out = self.layer(query_pe, source_mask, target_mask)
53         return out

Self-Attention "Layers"

At first, both classes below were full-fledged encoder and decoder. Now, they’ve

been "downgraded" to mere "layers" of the soon-to-be-larger encoder and decoder

above. The encoder layer has a single self-attention mechanism, and the decoder

layer has both a self-attention and a cross-attention mechanism.


In the next chapter, we’ll add a lot of bells and whistles to this

part. Wait for it!
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Model Configuration

 1 class EncoderSelfAttn(nn.Module):
 2     def __init__(self, n_heads, d_model,
 3                  ff_units, n_features=None):
 4         super().__init__()
 5         self.n_heads = n_heads
 6         self.d_model = d_model
 7         self.ff_units = ff_units
 8         self.n_features = n_features
 9         self.self_attn_heads = \
10             MultiHeadAttention(n_heads,
11                                d_model,
12                                input_dim=n_features)
13         self.ffn = nn.Sequential(
14             nn.Linear(d_model, ff_units),
15             nn.ReLU(),
16             nn.Linear(ff_units, d_model),
17         )
18 
19     def forward(self, query, mask=None):
20         self.self_attn_heads.init_keys(query)
21         att = self.self_attn_heads(query, mask)
22         out = self.ffn(att)
23         return out
24 
25 class DecoderSelfAttn(nn.Module):
26     def __init__(self, n_heads, d_model,
27                  ff_units, n_features=None):
28         super().__init__()
29         self.n_heads = n_heads
30         self.d_model = d_model
31         self.ff_units = ff_units
32         self.n_features = d_model if n_features is None \
33                           else n_features
34         self.self_attn_heads = \
35             MultiHeadAttention(n_heads,
36                                d_model,
37                                input_dim=self.n_features)
38         self.cross_attn_heads = \
39             MultiHeadAttention(n_heads, d_model)
40         self.ffn = nn.Sequential(
41             nn.Linear(d_model, ff_units),
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42             nn.ReLU(),
43             nn.Linear(ff_units, self.n_features),
44         )
45 
46     def init_keys(self, states):
47         self.cross_attn_heads.init_keys(states)
48 
49     def forward(self, query, source_mask=None, target_mask=None):
50         self.self_attn_heads.init_keys(query)
51         att1 = self.self_attn_heads(query, target_mask)
52         att2 = self.cross_attn_heads(att1, source_mask)
53         out = self.ffn(att2)
54         return out

Attention Heads

Both self-attention and cross-attention mechanisms are implemented using wide

multi-headed attention; that is, a straightforward concatenation of the results of

several basic attention mechanisms followed by a linear projection to get the

original context vector dimensions back.


In the next chapter, we’ll develop a narrow multi-headed

attention mechanism.

Model Configuration

 1 class MultiHeadAttention(nn.Module):
 2     def __init__(self, n_heads, d_model,
 3                   input_dim=None, proj_values=True):
 4         super().__init__()
 5         self.linear_out = nn.Linear(n_heads * d_model, d_model)
 6         self.attn_heads = nn.ModuleList(
 7             [Attention(d_model,
 8                        input_dim=input_dim,
 9                        proj_values=proj_values)
10              for _ in range(n_heads)]
11         )
12 
13     def init_keys(self, key):
14         for attn in self.attn_heads:
15             attn.init_keys(key)
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16 
17     @property
18     def alphas(self):
19         # Shape: n_heads, N, 1, L (source)
20         return torch.stack(
21             [attn.alphas for attn in self.attn_heads], dim=0
22         )
23 
24     def output_function(self, contexts):
25         # N, 1, n_heads * D
26         concatenated = torch.cat(contexts, axis=-1)
27         out = self.linear_out(concatenated) # N, 1, D
28         return out
29 
30     def forward(self, query, mask=None):
31         contexts = [attn(query, mask=mask)
32                     for attn in self.attn_heads]
33         out = self.output_function(contexts)
34         return out
35 
36 class Attention(nn.Module):
37     def __init__(self, hidden_dim,
38                  input_dim=None, proj_values=False):
39         super().__init__()
40         self.d_k = hidden_dim
41         self.input_dim = hidden_dim if input_dim is None \
42                          else input_dim
43         self.proj_values = proj_values
44         self.linear_query = nn.Linear(self.input_dim, hidden_dim)
45         self.linear_key = nn.Linear(self.input_dim, hidden_dim)
46         self.linear_value = nn.Linear(self.input_dim, hidden_dim)
47         self.alphas = None
48 
49     def init_keys(self, keys):
50         self.keys = keys
51         self.proj_keys = self.linear_key(self.keys)
52         self.values = self.linear_value(self.keys) \
53                       if self.proj_values else self.keys
54 
55     def score_function(self, query):
56         proj_query = self.linear_query(query)
57         # scaled dot product
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58         # N, 1, H x N, H, L -> N, 1, L
59         dot_products = torch.bmm(proj_query,
60                                  self.proj_keys.permute(0, 2, 1))
61         scores =  dot_products / np.sqrt(self.d_k)
62         return scores
63 
64     def forward(self, query, mask=None):
65         # Query is batch-first N, 1, H
66         scores = self.score_function(query) # N, 1, L
67         if mask is not None:
68             scores = scores.masked_fill(mask == 0, -1e9)
69         alphas = F.softmax(scores, dim=-1) # N, 1, L
70         self.alphas = alphas.detach()
71 
72         # N, 1, L x N, L, H -> N, 1, H
73         context = torch.bmm(alphas, self.values)
74         return context

Model Configuration & Training

Model Configuration

1 torch.manual_seed(43)
2 encpe = EncoderPe(n_heads=3, d_model=2, ff_units=10, n_features=2)
3 decpe = DecoderPe(n_heads=3, d_model=2, ff_units=10, n_features=2)
4 model = EncoderDecoderSelfAttn(encpe, decpe,
5                                input_len=2, target_len=2)
6 loss = nn.MSELoss()
7 optimizer = optim.Adam(model.parameters(), lr=0.01)

Model Training

1 sbs_seq_selfattnpe = StepByStep(model, loss, optimizer)
2 sbs_seq_selfattnpe.set_loaders(train_loader, test_loader)
3 sbs_seq_selfattnpe.train(100)

sbs_seq_selfattnpe.losses[-1], sbs_seq_selfattnpe.val_losses[-1]
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Output

(0.016193246061448008, 0.034184777294285595)

Recap

In this chapter, we’ve introduced sequence-to-sequence problems and the

encoder-decoder architecture. At first, we used recurrent neural networks to

encode a source sequence so that its representation (hidden state) could be used

to generate the target sequence. Then, we improved the architecture by using a

(cross-)attention mechanism that allowed the decoder to use the full sequence of

hidden states produced by the encoder. Next, we replaced the recurrent neural

networks with self-attention mechanisms, which, although more efficient, cause

the loss of information regarding the order of the inputs. Finally, the addition of

positional encoding allowed us to account for the order of the inputs once again.

This is what we’ve covered:

• generating a synthetic dataset of source and target sequences

• understanding the purpose of the encoder-decoder architecture

• using the encoder to generate a representation of the source sequence

• using encoder’s final hidden state as the decoder’s initial hidden state

• using the decoder to generate the target sequence

• using teacher forcing to help the decoder during training

• combining both encoder and decoder into a single encoder-decoder model

• understanding the limitations of using a single hidden state to encode the

source sequence

• defining the sequence of (transformed) hidden states from the encoder as

"values" (V)

• defining the sequence of (transformed) hidden states from the encoder as

"keys" (K)

• defining (transformed) hidden states produced by the decoder as "queries" (Q)

• computing similarities (alignment scores) between a given "query" and all the

"keys" using scaled dot-product

• visualizing the geometric interpretation of the dot-product
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• scaling the dot-product according to the number of dimensions to keep its

variance constant

• using softmax to transform similarities into attention scores (alphas)

• computing a context vector as an average of "values" (V) weighted by the

corresponding attention scores

• concatenating the context vector to the decoder’s hidden state and running it

through a linear layer to get predictions

• building a class for the attention mechanism

• ignoring padded data points in the source sequence using a mask

• visualizing the attention scores

• combining multiple attention heads into a multi-headed (wide) attention

mechanism

• learning the difference between wide and narrow attention

• using nn.ModuleList to add a list of layers as a model attribute

• replacing the recurrent layers with (self-)attention mechanisms; after all,

attention is all you need

• understanding that, in self-attention mechanisms, each data point will be used

to generate a "value" (V), a "key" (K), and a "query" (Q), but they will still have

distinct values because of the different affine transformations

• building an encoder using a self-attention mechanism and a simple feed-

forward network

• realizing that self-attention scores are a square matrix since every "hidden

state" is a weighted average of all elements in the input sequence

• reusing the attention mechanism as a cross-attention mechanism, such that

the decoder still has access to the full sequence from the encoder

• understanding that self-attention mechanisms leak future data, thus allowing

the decoder to cheat

• using a target mask to prevent the decoder from paying attention to "future"

elements of the sequence

• building a decoder using a (masked) self-attention mechanism, a cross-

attention mechanism, and a simple feed-forward network

• understanding that self-attention mechanisms cannot account for the
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sequential order of the data

• figuring out that attention is not enough and that we also need positional

encoding to incorporate sequential order back into the model

• using alternating sines and cosines of different frequencies as positional

encoding

• learning that combining sines and cosines yields interesting properties, such as

keeping constant the encoded distance between any two positions T steps

apart

• using register_buffer() to add an attribute that should be part of the

module’s state without being a parameter

• visualizing self- and cross-attention scores

Congratulations! That was definitely an intense chapter. The attention mechanism

in its different forms—single-head, multi-headed, self-attention, and cross-

attention—is very flexible and built on top of fairly simple concepts, but the whole

thing is definitely not that easy to grasp. Maybe you feel a bit overwhelmed by the

huge amount of information and details involved in it, but don’t worry. I guess

everyone does feel like that at first; I know I did. It gets better with time!

The good thing is, you have already learned most of the techniques that make up

the famous Transformer architecture: attention mechanisms, masks, and

positional encoding. There are still a few things left to learn about it, like layer

normalization, and we’ll cover them all in the next chapter.

Transform and roll out!

[142] https://arxiv.org/abs/1706.03762

[143] https://machinelearningmastery.com/beam-search-decoder-natural-language-processing/

[144] https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

[145] https://kazemnejad.com/blog/transformer_architecture_positional_encoding/
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Chapter 10
Transform and Roll Out

Spoilers

In this chapter, we will:

• modify the multi-headed attention mechanism to use narrow attention

• use layer normalization to standardize individual data points

• stack "layers" together to build Transformer encoders and decoders

• add layer normalization, dropout, and residual connections to each "sub-

layer" operation

• learn the difference between norm-last and norm-first "sub-layers"

• train a Transformer to predict a target sequence from a source sequence

• build and train a Vision Transformer to perform image classification

Jupyter Notebook

The Jupyter notebook corresponding to Chapter 10[146] is part of the official Deep

Learning with PyTorch Step-by-Step repository on GitHub. You can also run it

directly in Google Colab[147].

If you’re using a local installation, open your terminal or Anaconda prompt and

navigate to the PyTorchStepByStep folder you cloned from GitHub. Then, activate

the pytorchbook environment and run jupyter notebook:

$ conda activate pytorchbook

(pytorchbook)$ jupyter notebook

If you’re using Jupyter’s default settings, this link should open Chapter 10’s

notebook. If not, just click on Chapter10.ipynb in your Jupyter’s home page.

Imports

For the sake of organization, all libraries needed throughout the code used in any

given chapter are imported at its very beginning. For this chapter, we’ll need the
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following imports:

import copy
import numpy as np

import torch
import torch.optim as optim
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader, Dataset, random_split, \
    TensorDataset
from torchvision.transforms import Compose, Normalize, Pad

from data_generation.square_sequences import generate_sequences
from data_generation.image_classification import generate_dataset
from helpers import index_splitter, make_balanced_sampler
from stepbystep.v4 import StepByStep
# These are the classes we built in Chapter 9
from seq2seq import PositionalEncoding, subsequent_mask, \
    EncoderDecoderSelfAttn

Transform and Roll Out

We’re actually quite close to developing our own version of the famous

Transformer model. The encoder-decoder architecture with positional encoding

is missing only a few details to effectively "transform and roll out" :-)

 "What’s missing?"

First, we need to revisit the multi-headed attention mechanism to make it less

computationally expensive by using narrow attention. Then, we’ll learn about a

new kind of normalization: layer normalization. Finally, we’ll add some more bells

and whistles: dropout, residual connections, and more "layers" (like the encoder

and decoder "layers" from the last chapter).

Narrow Attention

In the last chapter, we used full attention heads to build a multi-headed attention

and we called it wide attention. Although this mechanism works well, it gets

prohibitively expensive as the number of dimensions grows. That’s when the
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narrow attention comes in: Each attention head will get a chunk of the

transformed data points (projections) to work with.

Chunking


This is a detail of utmost importance: The attention heads do not

use chunks of the original data points, but rather those of their

projections.

 "Why?"

To understand why, let’s take an example of an affine transformation, one that

generates "values" (v0) from the first data point (x0).

Figure 10.1 - Narrow attention

The transformation above takes a single data point of four dimensions (features)

and turns it into a "value" (also with four dimensions) that’s going to be used in the

attention mechanism.

At first sight, it may look like we’ll get the same result whether we split the inputs

into chunks or we split the projections into chunks. But that’s definitely not the case.

So, let’s zoom in and look at the individual weights inside that transformation.
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Figure 10.2 - Chunking: the wrong and the right way

On the left, the correct approach: It computes the projections first and chunks

them later. It is clear that each value in the projection (from v00 to v03) is a linear

combination  of all features in the data point.



Since each head is working with a subset of the projected

dimensions, these projected dimensions may end up

representing different aspects of the underlying data. For

natural language processing tasks, for example, some attention

heads may correspond to linguistic notions of syntax and

coherence. A particular head may attend to the direct objects of

verbs, while another head may attend to objects of prepositions,

and so on.[148]

Now, compare it to the wrong approach, on the right: By chunking it first, each

value in the projection is a linear combination of a subset of the features only.

 "Why is it so bad?"

First, it is a simpler model (the wrong approach has only eight weights while the

correct one has sixteen), so its learning capacity is limited. Second, since each head

can only look at a subset of the features, they simply cannot learn about long-

range dependencies in the inputs.

Now, let’s use a source sequence of length two as input, with each data point

having four features like the chunking example above, to illustrate our new self-

attention mechanism.
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Figure 10.3 - Self-(narrow)attention mechanism

The flow of information goes like this:

• Both data points (x0 and x1) go through distinct affine transformations to

generate the corresponding "values" (v0 and v1) and "keys" (k0 and k1), which

we’ll be calling projections.

• Both data points also go through another affine transformation to generate

the corresponding "queries" (q0 and q1), but we’ll be focusing on only the first

query (q0) now.

• Each projection has the same number of dimensions as the inputs (four).

• Instead of simply using the projections, as former attention heads did, this

attention head uses only a chunk of the projections to compute the context

vector.

• Since projections have four dimensions, let’s split them into two chunks—blue

(left) and green (right)—of two dimensions each.

• The first attention head uses only blue chunks to compute its context vector,

which, like the projections, has only two dimensions.

• The second attention head (not depicted in the figure above) uses the green
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chunks to compute the other half of the context vector, which, in the end, has

the desired dimension.

• Like the former multi-headed attention mechanism, the context vector goes

through a feed-forward network to generate the "hidden states" (only the first

one is depicted in the figure above).

It looks complicated, I know, but it really isn’t that bad. Maybe it helps to see it in

code.

Multi-Headed Attention

The new multi-headed attention class is more than a combination of both the

Attention and MultiHeadedAttention classes from the previous chapter: It

implements the chunking of the projections and introduces dropout for attention

scores.

Multi-Headed Attention

 1 class MultiHeadedAttention(nn.Module):
 2     def __init__(self, n_heads, d_model, dropout=0.1):
 3         super(MultiHeadedAttention, self).__init__()
 4         self.n_heads = n_heads
 5         self.d_model = d_model
 6         self.d_k = int(d_model / n_heads)                      ①
 7         self.linear_query = nn.Linear(d_model, d_model)
 8         self.linear_key = nn.Linear(d_model, d_model)
 9         self.linear_value = nn.Linear(d_model, d_model)
10         self.linear_out = nn.Linear(d_model, d_model)
11         self.dropout = nn.Dropout(p=dropout)                   ④
12         self.alphas = None
13 
14     def make_chunks(self, x):                                  ①
15         batch_size, seq_len = x.size(0), x.size(1)
16         # N, L, D -> N, L, n_heads * d_k
17         x = x.view(batch_size, seq_len, self.n_heads, self.d_k)
18         # N, n_heads, L, d_k
19         x = x.transpose(1, 2)
20         return x
21 
22     def init_keys(self, key):
23         # N, n_heads, L, d_k
24         self.proj_key = self.make_chunks(self.linear_key(key)) ①
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25         self.proj_value = \
26                 self.make_chunks(self.linear_value(key))       ①
27 
28     def score_function(self, query):
29         # Scaled dot product
30         proj_query = self.make_chunks(self.linear_query(query))①
31         # N, n_heads, L, d_k x N, n_heads, d_k, L ->
32         # N, n_heads, L, L
33         dot_products = torch.matmul(                           ②
34             proj_query, self.proj_key.transpose(-2, -1)
35         )
36         scores =  dot_products / np.sqrt(self.d_k)
37         return scores
38 
39     def attn(self, query, mask=None):                          ③
40         # Query is batch-first: N, L, D
41         # Score function will generate scores for each head
42         scores = self.score_function(query) # N, n_heads, L, L
43         if mask is not None:
44             scores = scores.masked_fill(mask == 0, -1e9)
45         alphas = F.softmax(scores, dim=-1) # N, n_heads, L, L
46 
47         alphas = self.dropout(alphas)                          ④
48         self.alphas = alphas.detach()
49 
50         # N, n_heads, L, L x N, n_heads, L, d_k ->
51         # N, n_heads, L, d_k
52         context = torch.matmul(alphas, self.proj_value)        ②
53         return context
54 
55     def output_function(self, contexts):
56         # N, L, D
57         out = self.linear_out(contexts) # N, L, D
58         return out
59 
60     def forward(self, query, mask=None):
61         if mask is not None:
62             # N, 1, L, L - every head uses the same mask
63             mask = mask.unsqueeze(1)
64 
65         # N, n_heads, L, d_k
66         context = self.attn(query, mask=mask)
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67         # N, L, n_heads, d_k
68         context = context.transpose(1, 2).contiguous()         ⑤
69         # N, L, n_heads * d_k = N, L, d_model
70         context = context.view(query.size(0), -1, self.d_model)⑤
71         # N, L, d_model
72         out = self.output_function(context)
73         return out

① Chunking the projections

② Using torch.matmul() instead of torch.bmm()

③ Former forward() method of Attention class

④ Dropout for the attention scores

⑤ "Concatenating" the context vectors

Let’s go over its methods:

• make_chunks(): It takes a tensor of shape (N, L, D) and splits its last dimension

in two, resulting in a (N, L, n_heads, d_k) shape where d_k is the size of the

chunk (d_k = D / n_heads).

• init_keys(): It makes projections for "keys" and "values," and chunks them.

• score_function(): It chunks the projected "queries" and computes the scaled

dot product (it uses torch.matmul() as a replacement for torch.bmm() because

there is one extra dimension due to chunking; see the aside below for more

details).

• attn(): It corresponds to the forward() method of the former Attention class,

and it computes the attention scores (alphas) and the chunks of the context

vector.

◦ It uses dropout on the attention scores for regularization: Dropping an

attention score (zeroing it) means that the corresponding element in the

sequence will be ignored.

• output_function(): It simply runs the contexts through the feed-forward

network since the concatenation of the contexts is going to happen in the

forward() method now.

• forward(): It calls the attn() method and reorganizes the dimensions of the

result to "concatenate" the chunks of the context vector.
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◦ If a mask is provided—(N, 1, L) shape for the source mask (in the encoder) or

(N, L, L) shape for the target mask (in the decoder)—it unsqueezes a new

dimension after the first one to accommodate the multiple heads since

every head should use the same mask.

torch.bmm() vs torch.matmul()

In the last chapter, we used torch.bmm() to perform batch matrix

multiplication. It was the right tool for the task at hand since we had two

three-dimensional tensors (for example, computing the context vector using

alphas and "values"):

Equation 10.1 - Batch matrix multiplication using torch.bmm()

Unfortunately, torch.bmm() cannot handle tensors with more dimensions

than that. Since we have a four-dimensional tensor after chunking, we need

something more powerful: torch.matmul(). It is a more generic operation

that, depending on its inputs, behaves like torch.dot(), torch.mm(), or

torch.bmm().

If we’re using torch.matmul() to multiply alphas and "values" again, while

using multiple heads and chunking, it looks like this:

Equation 10.2 - Batch matrix multiplication using torch.matmul()

It is quite similar to batch matrix multiplication, but you’re free to have as

many extra dimensions as you want: It still looks at the last two dimensions

only.

We can generate some dummy points corresponding to a mini-batch of 16

sequences (N), each sequence having two data points (L), each data point having

four features (F):
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dummy_points = torch.randn(16, 2, 4) # N, L, F
mha = MultiHeadedAttention(n_heads=2, d_model=4, dropout=0.0)
mha.init_keys(dummy_points)
out = mha(dummy_points) # N, L, D
out.shape

Output

torch.Size([16, 2, 4])

Since we’re using the data points as "keys," "values," and "queries," this is a self-

attention mechanism.

The figure below depicts a multi-headed attention mechanism with its two heads,

blue (left) and green (right), and the first data point being used as a "query" to

generate the first "hidden state" (h0).

Figure 10.4 - Self-(narrow)attention mechanism (both heads)

To help you out (especially if you’re seeing it in black and white), I’ve labeled the
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arrows with their corresponding role (V, K, or Q) followed by a subscript indicating

both the index of the data point being used (zero or one) and which head is using it

(left or right).

If you find the figure above too confusing, don’t sweat it; I’ve included it for the

sake of completion since Figure 10.3 depicted only the first head. The important

thing to remember here is: "Multi-headed attention chunks the projections, not the

inputs."

Let’s move on to the next topic…
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Stacking Encoders and Decoders

Let’s make our encoder-decoder architecture deeper by stacking two encoders on

top of one another, and then do the same with two decoders. It looks like this.

Figure 10.5 - Stacking encoders and decoders

The output of one encoder feeds the next, and the last encoder outputs states as

usual. These states will feed the cross-attention mechanism of all stacked

decoders. The output of one decoder feeds the next, and the last decoder outputs

predictions as usual.

The former encoder is now a so-called "layer", and a stack of "layers" composes

the new, deeper encoder. The same holds true for the decoder. Moreover, each

operation (multi-headed self- and cross-attention mechanisms, and feed-forward
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networks) inside a "layer" is now a "sub-layer."

The figure above represents an encoder-decoder architecture with two "layers"

each. But we’re not stopping there: We’re stacking six "layers"! It would be

somewhat hard to draw a diagram for it, so we’re simplifying it a bit.

Figure 10.6 - Stacked "layers"

On the one hand, we could simply draw both stacks of "layers" and abstract away

their inner operations. That’s the diagram (a) in the figure above. On the other

hand, since all "layers" are identical, we can keep representing the inner

operations and just hint at the stack by adding "Nx "Layers"" next to it. That’s

diagram (b) in the figure above, and it will be our representation of choice from now

on.

By the way, that’s exactly how a Transformer is built!

 "Cool! Is this a Transformer already then?"

Not yet, no. We need to work further on the "sub-layers" to transform (ahem!) the

architecture above into a real Transformer.

Wrapping "Sub-Layers"

As our model grows deeper, with many stacked "layers," we’re going to run into

familiar issues, like the vanishing gradients problem. In computer vision models,

this issue was successfully addressed by the addition of other components, like

batch normalization and residual connections. Moreover, we know that …
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"… with great depth comes great complexity …"

Peter Parker

…and, along with that, overfitting.

But we also know that dropout works pretty well as a regularizer, so we can throw

that in the mix as well.


"How are we adding normalization, residual connections, and dropout

to our model?"

We’ll wrap each and every "sub-layer" with them! Cool, right? But that brings up

another question: How to wrap them? It turns out, we can wrap a "sub-layer" in one

of two ways: norm-last or norm-first.

Figure 10.7 - "Sub-Layers"—norm-last vs norm-first

The norm-last wrapper follows the "Attention Is All you Need"[149] paper to the

letter:

"We employ a residual connection around each of the two sub-layers, followed by

layer normalization. That is, the output of each sub-layer is

LayerNorm(x+Sublayer(x)), where Sublayer(x) is the function implemented by

the sub-layer itself."

The norm-first wrapper follows the "sub-layer" implementation described in "The

Annotated Transformer,"[150] which explicitly places norm first as opposed to last
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for the sake of code simplicity.

Let’s turn the diagrams above into equations:

Equation 10.3 - Outputs—norm-first vs norm-last

The equations are almost the same, except for the fact that the norm-last wrapper

(from "Attention Is All You Need") normalizes the outputs and the norm-first

wrapper (from "The Annotated Transformer") normalizes the inputs. That’s a

small, yet important, difference.

 "Why?"

If you’re using positional encoding, you want to normalize your inputs, so norm-

first is more convenient.

 "What about the outputs?"

We’ll normalize the final outputs; that is, the output of the last "layer" (which is

the output of its last, not normalized, "sub-layer"). Any intermediate output is

simply the input of the subsequent "sub-layer," and each "sub-layer" normalizes its

own inputs.


There is another important difference that will be discussed in the

next section.

From now on, we’re sticking with norm-first, thus normalizing the inputs:

Equation 10.4 - Outputs—norm-first

By wrapping each and every "sub-layer" inside both encoder "layers" and decoder

"layers," we’ll arrive at the desired Transformer architecture.

Let’s start with the…
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Transformer Encoder

We’ll be representing the encoder using "stacked" layers in detail (like Figure 10.6

(b)); that is, showing the internal wrapped "sub-layers" (the dashed rectangles).

Figure 10.8 - Transformer encoder—norm-last vs norm-first

On the left, the encoder uses a norm-last wrapper, and its output (the encoder’s

states) is given by:

Equation 10.5 - Encoder’s output: norm-last
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On the right, the encoder uses a norm-first wrapper, and its output (the encoder’s

states) is given by:

Equation 10.6 - Encoder’s output: norm-first

The norm-first wrapper allows the inputs to flow unimpeded (the inputs aren’t

normalized) all the way to the top while adding the results of each "sub-layer" along

the way (the last normalization of norm-first happens outside of the "sub-layers," so

it’s not included in the equation).

 "Which one is best?"

There is no straight answer to this question. It actually reminds me of the

discussions about placing the batch normalization layer before or after the

activation function. Now, once again, there is no "right" and "wrong," and the order

of the different components is not etched in stone.

In PyTorch, the encoder "layer" is implemented as

nn.TransformerEncoderLayer, and its constructor method expects the

following arguments (d_model, nhead, dim_feedforward, and dropout) and an

optional activation function for the feed-forward network, similar to our

own EncoderLayer. Its forward() method, though, has three arguments:

• src: the source sequence; that’s the query argument in our class


IMPORTANT: PyTorch’s Transformer layers use

sequence-first shapes for their inputs (L, N, F), and there is

no batch-first option.

• src_key_padding_mask: the mask for padded data points; that’s the mask
argument in our class

• src_mask: This mask is used to purposefully hide some of the inputs in

the source sequence—we’re not doing that, so our class doesn’t have a

corresponding argument—a technique that can be used for training

language models (more on that in Chapter 11).
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Let’s see it in code, starting with the "layer," and all its wrapped "sub-layers":

Encoder "Layer"

 1 class EncoderLayer(nn.Module):
 2     def __init__(self, n_heads, d_model, ff_units, dropout=0.1):
 3         super().__init__()
 4         self.n_heads = n_heads
 5         self.d_model = d_model
 6         self.ff_units = ff_units
 7         self.self_attn_heads = \
 8             MultiHeadedAttention(n_heads, d_model, dropout)
 9         self.ffn = nn.Sequential(
10             nn.Linear(d_model, ff_units),
11             nn.ReLU(),
12             nn.Dropout(dropout),
13             nn.Linear(ff_units, d_model),
14         )
15 
16         self.norm1 = nn.LayerNorm(d_model)  ①
17         self.norm2 = nn.LayerNorm(d_model)  ①
18         self.drop1 = nn.Dropout(dropout)
19         self.drop2 = nn.Dropout(dropout)
20 
21     def forward(self, query, mask=None):
22         # Sublayer #0
23         # Norm
24         norm_query = self.norm1(query)
25         # Multi-headed Attention
26         self.self_attn_heads.init_keys(norm_query)
27         states = self.self_attn_heads(norm_query, mask)
28         # Add
29         att = query + self.drop1(states)
30 
31         # Sublayer #1
32         # Norm
33         norm_att = self.norm2(att)
34         # Feed Forward
35         out = self.ffn(norm_att)
36         # Add
37         out = att + self.drop2(out)
38         return out
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① What is that?

Its constructor takes four arguments:

• n_heads: the number of attention heads in the self-attention mechanism

• d_model: the number of (projected) features, that is, the dimensionality of the

model (remember, this number will be split among the attention heads, so it

must be a multiple of the number of heads)

• ff_units: the number of units in the hidden layer of the feed-forward network

• dropout: the probability of dropping out inputs

The forward() method takes a "query" and a source mask (to ignore padded data

points) as usual.

 "What is that nn.LayerNorm?"

It is one teeny-tiny detail I haven’t mentioned before: Transformers do not use batch

normalization, but rather layer normalization.

 "What’s the difference?"

Short answer: Batch normalization normalizes features, while layer normalization

normalizes data points. Long answer: There is a whole section on it; we’ll get back to

it soon enough.

Now we can stack a bunch of "layers" like that to build an actual encoder

(EncoderTransf). Its constructor takes an instance of an EncoderLayer, the number

of "layers" we’d like to stack on top of one another, and a max length of the source

sequence that’s going to be used for the positional encoding.

We’re using deepcopy() to make sure we create real copies of the encoder layer,

and nn.ModuleList to make sure PyTorch can find the "layers" inside the list. Our

default for the number of "layers" is only one, but the original Transformer uses six.

The forward() method is quite straightforward (I was actually missing making

puns): It adds positional encoding to the "query," loops over the "layers," and

normalizes the outputs in the end. The final outputs are, as usual, the states of the

encoder that will feed the cross-attention mechanism of every "layer" of the

decoder.
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Transformer Encoder

 1 class EncoderTransf(nn.Module):
 2     def __init__(self, encoder_layer, n_layers=1, max_len=100):
 3         super().__init__()
 4         self.d_model = encoder_layer.d_model
 5         self.pe = PositionalEncoding(max_len, self.d_model)
 6         self.norm = nn.LayerNorm(self.d_model)
 7         self.layers = nn.ModuleList([copy.deepcopy(encoder_layer)
 8                                      for _ in range(n_layers)])
 9 
10     def forward(self, query, mask=None):
11         # Positional Encoding
12         x = self.pe(query)
13         for layer in self.layers:
14             x = layer(x, mask)
15         # Norm
16         return self.norm(x)

In PyTorch, the encoder is implemented as nn.TransformerEncoder, and its

constructor method expects similar arguments: encoder_layer, num_layers,

and an optional normalization layer to normalize (or not) the outputs.

enclayer = nn.TransformerEncoderLayer(
    d_model=6, nhead=3, dim_feedforward=20
)
enctransf = nn.TransformerEncoder(
    enclayer, num_layers=1, norm=nn.LayerNorm
)

Therefore, it behaves a bit differently than ours, since it does not (at the time

of writing) implement positional encoding for the inputs, and it does not

normalize the outputs by default.
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Transformer Decoder

We’ll be representing the decoder using "stacked" layers in detail (like Figure 10.6

(b)); that is, showing the internal wrapped "sub-layers" (the dashed rectangles).

Figure 10.9 - Transformer decoder—norm-last vs norm-first

The small arrow on the left represents the states produced by the encoder, which

will be used as inputs for "keys" and "values" of the (cross-)multi-headed attention

mechanism in each "layer."

Moreover, there is one final linear layer responsible for projecting the decoder’s

output back to the original number of dimensions (corner’s coordinates, in our

case). This linear layer is not included in our decoder’s class, though: It will be part
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of the encoder-decoder (or Transformer) class.

Let’s see it in code, starting with the "layer" and all its wrapped "sub-layers." By the

way, the code below is remarkably similar to that of the EncoderLayer, except for

the fact that it has a third "sub-layer" (cross-attention) in between the other two.

Decoder "Layer"

 1 class DecoderLayer(nn.Module):
 2     def __init__(self, n_heads, d_model, ff_units, dropout=0.1):
 3         super().__init__()
 4         self.n_heads = n_heads
 5         self.d_model = d_model
 6         self.ff_units = ff_units
 7         self.self_attn_heads = \
 8             MultiHeadedAttention(n_heads, d_model, dropout)
 9         self.cross_attn_heads = \
10             MultiHeadedAttention(n_heads, d_model, dropout)
11         self.ffn = nn.Sequential(
12             nn.Linear(d_model, ff_units),
13             nn.ReLU(),
14             nn.Dropout(dropout),
15             nn.Linear(ff_units, d_model),
16         )
17 
18         self.norm1 = nn.LayerNorm(d_model)
19         self.norm2 = nn.LayerNorm(d_model)
20         self.norm3 = nn.LayerNorm(d_model)
21         self.drop1 = nn.Dropout(dropout)
22         self.drop2 = nn.Dropout(dropout)
23         self.drop3 = nn.Dropout(dropout)
24 
25     def init_keys(self, states):
26         self.cross_attn_heads.init_keys(states)
27 
28     def forward(self, query, source_mask=None, target_mask=None):
29         # Sublayer #0
30         # Norm
31         norm_query = self.norm1(query)
32         # Masked Multi-head Attention
33         self.self_attn_heads.init_keys(norm_query)
34         states = self.self_attn_heads(norm_query, target_mask)
35         # Add
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36         att1 = query + self.drop1(states)
37 
38         # Sublayer #1
39         # Norm
40         norm_att1 = self.norm2(att1)
41         # Multi-head Attention
42         encoder_states = self.cross_attn_heads(norm_att1,
43                                                source_mask)
44         # Add
45         att2 = att1 + self.drop2(encoder_states)
46 
47         # Sublayer #2
48         # Norm
49         norm_att2 = self.norm3(att2)
50         # Feed Forward
51         out = self.ffn(norm_att2)
52         # Add
53         out = att2 + self.drop3(out)
54         return out

The constructor method of the decoder "layer" takes the same arguments as the

encoder "layer" does. The forward() method takes three arguments: the "query,"

the source mask that’s going to be used to ignore padded data points in the source

sequence during cross-attention, and the target mask used to avoid cheating by

peeking into the future.
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In PyTorch, the decoder "layer" is implemented as

nn.TransformerDecoderLayer, and its constructor method expects the

following arguments (d_model, nhead, dim_feedforward, and dropout) and an

optional activation function for the feed-forward network.

Its forward() method, though, has six arguments. Three of them are

equivalent to those arguments in our own forward() method:

• tgt: the target sequence; that’s the query argument in our class

(required)


IMPORTANT: PyTorch’s Transformer layers use

sequence-first shapes for their inputs (L, N, F), and there is

no batch-first option.

• memory_key_padding_mask: the mask for padded data points in the

source sequence; that’s the source_mask argument in our class

(optional), and the same as the src_key_padding_mask of

nn.TransformerEncoderLayer

• tgt_mask: the mask used to avoid cheating; that’s the target_mask
argument in our class (although quite important, this argument is still

considered optional)

Then, there is the other required argument, which corresponds to the

states argument of the init_keys() method in our own class:

• memory: the encoded states of the source sequence as returned by the

encoder

The remaining two arguments do not exist in our own class:

• memory_mask: This mask is used to purposefully hide some of the

encoded states used by the decoder.

• tgt_key_padding_mask: This mask is used for padded data points in the

target sequence.
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Now we can stack a bunch of "layers" like that to build an actual decoder:

Transformer Decoder

 1 class DecoderTransf(nn.Module):
 2     def __init__(self, decoder_layer, n_layers=1, max_len=100):
 3         super(DecoderTransf, self).__init__()
 4         self.d_model = decoder_layer.d_model
 5         self.pe = PositionalEncoding(max_len, self.d_model)
 6         self.norm = nn.LayerNorm(self.d_model)
 7         self.layers = nn.ModuleList([copy.deepcopy(decoder_layer)
 8                                      for _ in range(n_layers)])
 9 
10     def init_keys(self, states):
11         for layer in self.layers:
12             layer.init_keys(states)
13 
14     def forward(self, query, source_mask=None, target_mask=None):
15         # Positional Encoding
16         x = self.pe(query)
17         for layer in self.layers:
18             x = layer(x, source_mask, target_mask)
19         # Norm
20         return self.norm(x)

Its constructor takes an instance of a DecoderLayer, the number of "layers" we’d

like to stack on top of one another, and a max length of the source sequence that’s

going to be used for the positional encoding. Once again, we’re using deepcopy()
and nn.ModuleList to create multiple "layers".

820 | Chapter 10: Transform and Roll Out



In PyTorch, the decoder is implemented as nn.TransformerDecoder, and its

constructor method expects similar arguments: decoder_layer, num_layers,

and an optional normalization layer to normalize (or not) the outputs.

declayer = nn.TransformerDecoderLayer(
    d_model=6, nhead=3, dim_feedforward=20
)
dectransf = nn.TransformerDecoder(
    declayer, num_layers=1, norm=nn.LayerNorm
)

PyTorch’s decoder also behaves a bit differently than ours, since it does not

(at the time of writing) implement positional encoding for the inputs, and it

does not normalize the outputs by default.

Before putting the encoder and the decoder together, we still have to make a short

pit-stop and address that teeny-tiny detail…

Layer Normalization

Layer normalization was introduced by Jimmy Lei Ba, Jamie Ryan Kiros, and

Geoffrey E. Hinton in their 2016 paper "Layer Normalization,"[151] but it only got

really popular after being used in the hugely successful Transformer architecture.

They say: "…we transpose batch normalization into layer normalization by computing

the mean and variance used for normalization from all of the summed inputs to the

neurons in a layer on a single training case" (the highlight is mine).


Simply put: Layer normalization standardizes individual data

points, not features.

This is completely different than the standardizations we’ve performed so far.

Before, each feature, either in the whole training set (using Scikit-learn’s

StandardScaler way back in Chapter 0), or in a mini-batch (using batch norm in

Chapter 7), was standardized to have zero mean and unit standard deviation. In a

tabular dataset, we standardized the columns.
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Layer normalization, in a tabular dataset, standardizes the rows.

Each data point will have the average of its features equal zero,

and the standard deviation of its features will equal one.

Let’s assume we have a mini-batch of three sequences (N=3), each sequence having

a length of two (L=2), each data point having four features (D=4), and, to illustrate

the importance of layer normalization, let’s add positional encoding to it too:

d_model = 4
seq_len = 2
n_points = 3

torch.manual_seed(34)
data = torch.randn(n_points, seq_len, d_model)
pe = PositionalEncoding(seq_len, d_model)
inputs = pe(data)
inputs

Output

tensor([[[-3.8049,  1.9899, -1.7325,  2.1359],
         [ 1.7854,  0.8155,  0.1116, -1.7420]],

        [[-2.4273,  1.3559,  2.8615,  2.0084],
         [-1.0353, -1.2766, -2.2082, -0.6952]],

        [[-0.8044,  1.9707,  3.3704,  2.0587],
         [ 4.2256,  6.9575,  1.4770,  2.0762]]])

It should be straightforward to identify the different dimensions, N (three vertical

groups), L (two rows in each group), and D (four columns), in the tensor above.

There are six data points in total, and their value range is mostly the result of the

addition of positional encoding.

Well, layer normalization standardizes individual data points, the rows in the

tensor above, so we need to compute statistics over the corresponding dimension

(D). Let’s start with the means:
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Equation 10.7 - Data points' means over features (D)

inputs_mean = inputs.mean(axis=2).unsqueeze(2)
inputs_mean

Output

tensor([[[-0.3529],
         [ 0.2426]],

        [[ 0.9496],
         [-1.3038]],

        [[ 1.6489],
         [ 3.6841]]])

As expected, six mean values, one for each data point. The unsqueeze() is there to

preserve the original dimensionality, thus making the result a tensor of (N, L, 1)

shape.

Next, we compute the biased standard deviations over the same dimension (D):

Equation 10.8 - Data points' standard deviations over features (D)

inputs_var = inputs.var(axis=2, unbiased=False).unsqueeze(2)
inputs_var
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Output

tensor([[[6.3756],
         [1.6661]],

        [[4.0862],
         [0.3153]],

        [[2.3135],
         [4.6163]]])

No surprises here.

The actual standardization is then computed using the mean, biased standard

deviation, and a tiny epsilon to guarantee numerical stability:

Equation 10.9 - Layer normalization

(inputs - inputs_mean)/torch.sqrt(inputs_var+1e-5)

Output

tensor([[[-1.3671,  0.9279, -0.5464,  0.9857],
         [ 1.1953,  0.4438, -0.1015, -1.5376]],

        [[-1.6706,  0.2010,  0.9458,  0.5238],
         [ 0.4782,  0.0485, -1.6106,  1.0839]],

        [[-1.6129,  0.2116,  1.1318,  0.2695],
         [ 0.2520,  1.5236, -1.0272, -0.7484]]])

The values above are layer normalized. It is possible to achieve the very same

results by using PyTorch’s own nn.LayerNorm, of course:
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layer_norm = nn.LayerNorm(d_model)
normalized = layer_norm(inputs)

normalized[0][0].mean(), normalized[0][0].std(unbiased=False)

Output

(tensor(-1.4901e-08, grad_fn=<MeanBackward0>),
 tensor(1.0000, grad_fn=<StdBackward0>))

Zero mean and unit standard deviation, as expected.

 "Why do they have a grad_fn attribute?"

Like batch normalization, layer normalization can learn affine transformations. Yes,

plural: Each feature has its own affine transformation. Since we’re using layer

normalization on d_model, and its dimensionality is four, there will be four weights

and four biases in the state_dict():

layer_norm.state_dict()

Output

OrderedDict([('weight', tensor([1., 1., 1., 1.])),
             ('bias', tensor([0., 0., 0., 0.]))])

The weights and biases are used to scale and translate, respectively, the

standardized values:

Equation 10.10 - Layer normalization (with affine transformation)

In PyTorch’s documentation, though, you’ll find gamma and beta instead:

Equation 10.11 - Layer Normalization (with affine transformation)
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Batch and layer normalization look quite similar to one another, but there are some

important differences between them that we need to point out.

Batch vs Layer

Although both normalizations compute statistics, namely, mean and biased

standard deviation, to standardize the inputs, only batch norm needs to keep track

of running statistics.


Moreover, since layer normalization considers data points

individually, it exhibits the same behavior whether the model is

in training or in evaluation mode.

To illustrate the difference between the two types of normalization, let’s generate

yet another dummy example (again adding positional encoding to it):

torch.manual_seed(23)
dummy_points = torch.randn(4, 1, 256)
dummy_pe = PositionalEncoding(1, 256)
dummy_enc = dummy_pe(dummy_points)
dummy_enc

Output

tensor([[[-14.4193,  10.0495,  -7.8116, ..., -18.0732,  -3.9566]],

        [[  2.6628,  -3.5462, -23.6461, ..., -18.4375, -37.4197]],

        [[-24.6397,  -1.9127, -16.4244, ..., -26.0550, -14.0706]],

        [[ 13.7988,  21.4612,  10.4125, ..., -17.0188,   3.9237]]])

There are four sequences, so let’s pretend there are two mini-batches of two

sequences each (N=2). Each sequence has a length of one (L=1 is not quite a

sequence, I know), and their sole data points have 256 features (D=256). The figure

below illustrates the difference between applying batch norm (over features /

columns) and layer norm (over data points / rows).
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Figure 10.10 - Layer norm vs batch norm

In Chapter 7 we learned that the size of the mini-batch strongly impacts the

running statistics of the batch normalization. We also learned that batch norm’s

oscillating statistics may introduce a regularizing effect.

None of this happens with layer normalization: It steadily delivers data points with

zero mean and unit standard deviation regardless of our choice of mini-batch size

or anything else. Let’s see it in action!

First, we’re visualizing the distribution of the positionally-encoded features that

we generated.

Figure 10.11 - Distribution of feature values

The actual range is much larger than that (like -50 to 50), and the variance is

approximately the same as the dimensionality (256) as a result of the addition of

positional encoding. Let’s apply layer normalization to it:

layer_normalizer = nn.LayerNorm(256)
dummy_normed = layer_normalizer(dummy_enc)
dummy_normed
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Output

tensor([[[-0.9210,  0.5911, -0.5127,  ..., -1.1467, -0.2744]],

        [[ 0.1399, -0.2607, -1.5574,  ..., -1.2214, -2.4460]],

        [[-1.5755, -0.1191, -1.0491,  ..., -1.6662, -0.8982]],

        [[ 0.8643,  1.3324,  0.6575,  ..., -1.0183,  0.2611]]],
       grad_fn=<NativeLayerNormBackward>)

Then, we’re visualizing both distributions, original and standardized.

Figure 10.12 - Distribution of layer-normalized feature values

Each data point has its feature values distributed with zero mean and unit

standard deviation. Beautiful!

Our Seq2Seq Problem

So far, I’ve been using dummy examples to illustrate how layer normalization

works. Let’s go back to our sequence-to-sequence problem, where the source

sequence had two data points, each data point representing the coordinates of

two corners. As usual, we’re adding positional encoding to it:

pe = PositionalEncoding(max_len=2, d_model=2)

source_seq = torch.tensor([[[ 1.0349,  0.9661],
                            [ 0.8055, -0.9169]]])
source_seq_enc = pe(source_seq)
source_seq_enc
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Output

tensor([[[ 1.4636,  2.3663],
         [ 1.9806, -0.7564]]])

Next, we normalize it:

norm = nn.LayerNorm(2)
norm(source_seq_enc)

Output

tensor([[[-1.0000,  1.0000],
         [ 1.0000, -1.0000]]], grad_fn=<NativeLayerNormBackward>)

 "Wait, what happened here?"

That’s what happens when one tries to normalize two features only: They become

either minus one or one. Even worse, it will be the same for every data point. These

values won’t get us anywhere, that’s for sure.

We need to do better, we need…

Projections or Embeddings


Sometimes projections and embeddings are used

interchangeably. Here, though, we’re sticking with embeddings

for categorical values and projections for numerical values.

In Chapter 11, we’ll be using embeddings to get a numerical representation (a

vector) for a given word or token. Since words or tokens are categorical values,

the embedding layer works like a large lookup table: It will look up a given word or

token in its keys and return the corresponding tensor. But, since we’re dealing with

coordinates, that is, numerical values, we are using projections instead. A simple

linear layer is all that it takes to project our pair of coordinates into a higher-

dimensional feature space:
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torch.manual_seed(11)
proj_dim = 6
linear_proj = nn.Linear(2, proj_dim)
pe = PositionalEncoding(2, proj_dim)
source_seq_proj = linear_proj(source_seq)
source_seq_proj_enc = pe(source_seq_proj)
source_seq_proj_enc

Output

tensor([[[-2.0934,  1.5040,  1.8742,  0.0628,  0.3034,  2.0190],
         [-0.8853,  2.8213,  0.5911,  2.4193, -2.5230,  0.3599]]],
       grad_fn=<AddBackward0>)

See? Now each data point in our source sequence has six features (the projected

dimensions), and they are positionally-encoded too. Sure, this particular projection

is totally random, but that won’t be the case once we add the corresponding linear

layer to our model. It will learn a meaningful projection that, after being

positionally-encoded, will be normalized:

norm = nn.LayerNorm(proj_dim)
norm(source_seq_proj_enc)

Output

tensor([[[-1.9061,  0.6287,  0.8896, -0.3868, -0.2172,  0.9917],
         [-0.7362,  1.2864,  0.0694,  1.0670, -1.6299, -0.0568]]],
       grad_fn=<NativeLayerNormBackward>)

Problem solved! Finally, we have everything we need to build a full-blown

Transformer!



In Chapter 9, we used affine transformations inside the attention

heads to map from input dimensions to hidden (or model)

dimensions. Now, this change in dimensionality is being

performed using projections directly on the input sequences

before they are passed to the encoder and the decoder.
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The Transformer

Let’s start with the diagram, which is nothing more than an encoder and a decoder

side-by-side (we’re sticking with norm-first "sub-layer" wrappers).

Figure 10.13 - The Transformer (norm-first)

The Transformer still is an encoder-decoder architecture like the one we

developed in the previous chapter, so it should be no surprise that we can actually

use our former EncoderDecoderSelfAttn class as a parent class and add two extra

components to it:

• A projection layer to map our original features (n_features) to the

dimensionality of both encoder and decoder (d_model).
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• A final linear layer to map the decoder’s outputs back to the original feature

space (the coordinates we’re trying to predict).

We also need to make some small modifications to the encode() and decode()
methods to account for the components above:

Transformer Encoder-Decoder

 1 class EncoderDecoderTransf(EncoderDecoderSelfAttn):
 2     def __init__(self, encoder, decoder,
 3                  input_len, target_len, n_features):
 4         super(EncoderDecoderTransf, self).__init__(
 5             encoder, decoder, input_len, target_len
 6         )
 7         self.n_features = n_features
 8         self.proj = nn.Linear(n_features, encoder.d_model)     ①
 9         self.linear = nn.Linear(encoder.d_model, n_features)   ②
10 
11     def encode(self, source_seq, source_mask=None):
12         # Projection
13         source_proj = self.proj(source_seq)                    ①
14         encoder_states = self.encoder(source_proj, source_mask)
15         self.decoder.init_keys(encoder_states)
16 
17     def decode(self, shifted_target_seq,
18                source_mask=None, target_mask=None):
19         # Projection
20         target_proj = self.proj(shifted_target_seq)            ①
21         outputs = self.decoder(target_proj,
22                                source_mask=source_mask,
23                                target_mask=target_mask)
24         # Linear
25         outputs = self.linear(outputs)                         ②
26         return outputs

① Projecting features to model dimensionality

② Final linear transformation from model to feature space

Let’s briefly review the model’s methods:

• encode(): It takes the source sequence and mask and encodes its projection

into a sequence of states that is immediately used to initialize the "keys" (and
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"values") in the decoder.

• decode(): It takes the shifted target sequence and uses its projection together

with both source and target masks to generate a target sequence that goes

through the last linear layer to be transformed back to the feature space—it is

used for training only!

The parent class is reproduced below for your convenience:

Encoder + Decoder + Self-Attention

 1 class EncoderDecoderSelfAttn(nn.Module):
 2     def __init__(self, encoder, decoder, input_len, target_len):
 3         super().__init__()
 4         self.encoder = encoder
 5         self.decoder = decoder
 6         self.input_len = input_len
 7         self.target_len = target_len
 8         self.trg_masks = self.subsequent_mask(self.target_len)
 9 
10     @staticmethod
11     def subsequent_mask(size):
12         attn_shape = (1, size, size)
13         subsequent_mask = (
14             1 - torch.triu(torch.ones(attn_shape), diagonal=1)
15         ).bool()
16         return subsequent_mask
17 
18     def encode(self, source_seq, source_mask):
19         # Encodes the source sequence and uses the result
20         # to initialize the decoder
21         encoder_states = self.encoder(source_seq, source_mask)
22         self.decoder.init_keys(encoder_states)
23 
24     def decode(self, shifted_target_seq,
25                source_mask=None, target_mask=None):
26         # Decodes/generates a sequence using the shifted (masked)
27         # target sequence - used in TRAIN mode
28         outputs = self.decoder(shifted_target_seq,
29                                source_mask=source_mask,
30                                target_mask=target_mask)
31         return outputs
32 
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33     def predict(self, source_seq, source_mask):
34         # Decodes/generates a sequence using one input
35         # at a time - used in EVAL mode
36         inputs = source_seq[:, -1:]
37         for i in range(self.target_len):
38             out = self.decode(inputs,
39                               source_mask,
40                               self.trg_masks[:, :i+1, :i+1])
41             out = torch.cat([inputs, out[:, -1:, :]], dim=-2)
42             inputs = out.detach()
43         outputs = inputs[:, 1:, :]
44         return outputs
45 
46     def forward(self, X, source_mask=None):
47         # Sends the mask to the same device as the inputs
48         self.trg_masks = self.trg_masks.type_as(X).bool()
49         # Slices the input to get source sequence
50         source_seq = X[:, :self.input_len, :]
51         # Encodes source sequence AND initializes decoder
52         self.encode(source_seq, source_mask)
53         if self.training:
54             # Slices the input to get the shifted target seq
55             shifted_target_seq = X[:, self.input_len-1:-1, :]
56             # Decodes using the mask to prevent cheating
57             outputs = self.decode(shifted_target_seq,
58                                   source_mask,
59                                   self.trg_masks)
60         else:
61             # Decodes using its own predictions
62             outputs = self.predict(source_seq, source_mask)
63 
64         return outputs

Since the Transformer is an encoder-decoder architecture, we can use it in a

sequence-to-sequence problem. Well, we already have one of those, right? Let’s

reuse Chapter 9’s "Data Preparation" code.

Data Preparation

We’ll keep drawing the first two corners of the squares ourselves, the source

sequence, and ask our model to predict the next two corners, the target sequence,

as in Chapter 9.
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Data Preparation

 1 # Generating training data
 2 points, directions = generate_sequences(n=256, seed=13)
 3 full_train = torch.as_tensor(points).float()
 4 target_train = full_train[:, 2:]
 5 # Generating test data
 6 test_points, test_directions = generate_sequences(seed=19)
 7 full_test = torch.as_tensor(test_points).float()
 8 source_test = full_test[:, :2]
 9 target_test = full_test[:, 2:]
10 # Datasets and data loaders
11 train_data = TensorDataset(full_train, target_train)
12 test_data = TensorDataset(source_test, target_test)
13 
14 generator = torch.Generator()
15 train_loader = DataLoader(train_data, batch_size=16,
16                           shuffle=True, generator=generator)
17 test_loader = DataLoader(test_data, batch_size=16)

fig = plot_data(points, directions, n_rows=1)

Figure 10.14 - Seq2Seq dataset

The corners show the order in which they were drawn. In the first square, the

drawing started at the top-right corner and followed a clockwise direction. The

source sequence for that square would include corners on the right edge (1 and 2),

while the target sequence would include corners on the left edge (3 and 4), in that

order.

Model Configuration & Training

Let’s train our Transformer! We start by creating the corresponding "layers" for

both encoder and decoder, and use them both as arguments of the

EncoderDecoderTransf class:
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Model Configuration

 1 torch.manual_seed(42)
 2 # Layers
 3 enclayer = EncoderLayer(n_heads=3, d_model=6,
 4                         ff_units=10, dropout=0.1)
 5 declayer = DecoderLayer(n_heads=3, d_model=6,
 6                         ff_units=10, dropout=0.1)
 7 # Encoder and Decoder
 8 enctransf = EncoderTransf(enclayer, n_layers=2)
 9 dectransf = DecoderTransf(declayer, n_layers=2)
10 # Transformer
11 model_transf = EncoderDecoderTransf(
12     enctransf, dectransf, input_len=2, target_len=2, n_features=2
13 )
14 loss = nn.MSELoss()
15 optimizer = torch.optim.Adam(model_transf.parameters(), lr=0.01)

The original Transformer model was initialized using Glorot / Xavier uniform

distribution, so we’re sticking with it:

Weight Initialization

1 for p in model_transf.parameters():
2     if p.dim() > 1:
3         nn.init.xavier_uniform_(p)

Next, we use the StepByStep class to train the model as usual:

Model Training

1 sbs_seq_transf = StepByStep(model_transf, loss, optimizer)
2 sbs_seq_transf.set_loaders(train_loader, test_loader)
3 sbs_seq_transf.train(50)

fig = sbs_seq_transf.plot_losses()
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Figure 10.15 - Losses—Transformer model

 "Why is the validation loss so much better than the training loss?"

This phenomenon may happen for a variety of reasons, from having an easier

validation set to being a "side effect" of regularization (e.g., dropout) in our current

model. The regularization makes it harder for the model to learn or, in other words,

it yields higher losses. In our Transformer model, there are many dropout layers,

so it gets increasingly more difficult for the model to learn.

Let’s observe this effect by using the same mini-batch to compute the loss using

the trained model in both train and eval modes:

torch.manual_seed(11)
x, y = next(iter(train_loader))
device = sbs_seq_transf.device
# Training
model_transf.train()
loss(model_transf(x.to(device)), y.to(device))

Output

tensor(0.0158, device='cuda:0', grad_fn=<MseLossBackward>)

# Validation
model_transf.eval()
loss(model_transf(x.to(device)), y.to(device))
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Output

tensor(0.0091, device='cuda:0')

See the difference? The loss is roughly two times larger in training mode. You can

also set dropout to zero and retrain the model to verify that both loss curves get

much closer to each other (by the way, the overall loss level gets better without

dropout, but that’s just because our sequence-to-sequence problem is actually

quite simple).

Visualizing Predictions

Let’s plot the predicted coordinates and connect them using dashed lines, while

using solid lines to connect the actual coordinates, just like before:

fig = sequence_pred(sbs_seq_transf, full_test, test_directions)

Figure 10.16 - Predictions

Looking good, right?

The PyTorch Transformer

So far we’ve been using our own classes to build encoder and decoder "layers" and

assemble them all into a Transformer. We don’t have to do it like that, though.

PyTorch implements a full-fledged Transformer class of its own: nn.Transformer.

There are some differences between PyTorch’s implementation and our own:
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• First, and most important, PyTorch implements norm-last "sub-layer"

wrappers, normalizing the output of each "sub-layer."

Figure 10.17 - "Sub-Layer"—norm-last vs norm-first

• It does not implement positional encoding, the final linear layer, or the

projection layer, so we have to handle those ourselves.

Let’s take a look at its constructor and forward() methods. The constructor

expects many arguments because PyTorch’s Transformer actually builds both

encoder and decoder by itself:

• d_model: the number of (projected) features, that is, the dimensionality of the

model (remember, this number will be split among the attention heads, so it

must be a multiple of the number of heads; its default value is 512)

• nhead: the number of attention heads in each attention mechanism (default is

eight, so each attention head gets 64 out of the 512 dimensions)

• num_encoder_layers: the number of "layers" in the encoder (the Transformer

uses six layers by default)

• num_decoder_layers: the number of "layers" in the decoder (the Transformer

uses six layers by default)

• dim_feedforward: the number of units in the hidden layer of the feed-forward

network (default is 2048)

• dropout: the probability of dropping out inputs (default is 0.1)

• activation: the activation function to be used in the feed-forward network
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(ReLU by default)



It is also possible to use a custom encoder or decoder by setting

the corresponding arguments: custom_encoder and

custom_decoder. But don’t forget that the PyTorch Transformer

expects sequence-first inputs.

The forward() method expects both sequences, source and target, and all sorts of

(optional) masks.


IMPORTANT: PyTorch’s Transformer uses sequence-first

shapes for its inputs (L, N, F), and there is no batch-first option.

There are masks for padded data points:

• src_key_padding_mask: the mask for padded data points in the source

sequence

• memory_key_padding_mask: It’s also a mask for padded data points in the

source sequence and should be, in most cases, the same as

src_key_padding_mask.

• tgt_key_padding_mask: This mask is used for padded data points in the target

sequence.

And there are masks to purposefully hide some of the inputs:

• src_mask: It hides inputs in the source sequence, this can be used for training

language models (more on that in Chapter 11).

• tgt_mask: That’s the mask used to avoid cheating (although quite important,

this argument is still considered optional).

◦ The Transformer has a method named

generate_square_subsequent_mask() that generates the appropriate mask

given the size (length) of the sequence.

• memory_mask: It hides encoded states used by the decoder.

Also, notice that there is no memory argument anymore: The encoded states are

handled internally by the Transformer and fed directly to the decoder part.

In our own code, we’ll be replacing the two former methods, encode() and
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decode(), with a single one, encode_decode(), that calls the Transformer itself and

runs its output through the last linear layer to transform it into coordinates. Since

the Transformer expects and outputs sequence-first shapes, there is some back-

and-forth permuting as well.

def encode_decode(self, source, target,
                  source_mask=None, target_mask=None):
    # Projections
    # PyTorch Transformer expects L, N, F
    src = self.preprocess(source).permute(1, 0, 2)
    tgt = self.preprocess(target).permute(1, 0, 2)

    out = self.transf(src, tgt,
                      src_key_padding_mask=source_mask,
                      tgt_mask=target_mask)

    # Linear
    # Back to N, L, D
    out = out.permute(1, 0, 2)
    out = self.linear(out) # N, L, F
    return out

By the way, we’re keeping the masks to a minimum for the sake of simplicity: Only

src_key_padding_mask and tgt_mask are used.

Moreover, we’re implementing a preprocess() method that takes an input

sequence and

• projects the original features into the model dimensionality;

• adds positional encoding and

• (layer) normalizes the result (remember that PyTorch’s implementation does

not normalize the inputs, so we have to do it ourselves).

The full code looks like this:

Transformer

 1 class TransformerModel(nn.Module):
 2     def __init__(self, transformer,
 3                  input_len, target_len, n_features):
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 4         super().__init__()
 5         self.transf = transformer
 6         self.input_len = input_len
 7         self.target_len = target_len
 8         self.trg_masks = \
 9             self.transf.generate_square_subsequent_mask(
10                 self.target_len
11             )
12         self.n_features = n_features
13         self.proj = nn.Linear(n_features, self.transf.d_model) ①
14         self.linear = nn.Linear(self.transf.d_model,           ②
15                                 n_features)
16 
17         max_len = max(self.input_len, self.target_len)
18         self.pe = PositionalEncoding(max_len,
19                                      self.transf.d_model)      ③
20         self.norm = nn.LayerNorm(self.transf.d_model)          ③
21 
22     def preprocess(self, seq):
23         seq_proj = self.proj(seq)                              ①
24         seq_enc = self.pe(seq_proj)                            ③
25         return self.norm(seq_enc)                              ③
26 
27     def encode_decode(self, source, target,
28                       source_mask=None, target_mask=None):
29         # Projections
30         # PyTorch Transformer expects L, N, F
31         src = self.preprocess(source).permute(1, 0, 2)         ③
32         tgt = self.preprocess(target).permute(1, 0, 2)         ③
33 
34         out = self.transf(src, tgt,
35                           src_key_padding_mask=source_mask,
36                           tgt_mask=target_mask)
37 
38         # Linear
39         # Back to N, L, D
40         out = out.permute(1, 0, 2)
41         out = self.linear(out) # N, L, F                       ②
42         return out
43 
44     def predict(self, source_seq, source_mask=None):
45         inputs = source_seq[:, -1:]
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46         for i in range(self.target_len):
47             out = self.encode_decode(
48                 source_seq, inputs,
49                 source_mask=source_mask,
50                 target_mask=self.trg_masks[:i+1, :i+1]
51             )
52             out = torch.cat([inputs, out[:, -1:, :]], dim=-2)
53             inputs = out.detach()
54         outputs = out[:, 1:, :]
55         return outputs
56 
57     def forward(self, X, source_mask=None):
58         self.trg_masks = self.trg_masks.type_as(X)
59         source_seq = X[:, :self.input_len, :]
60 
61         if self.training:
62             shifted_target_seq = X[:, self.input_len-1:-1, :]
63             outputs = self.encode_decode(
64                 source_seq, shifted_target_seq,
65                 source_mask=source_mask,
66                 target_mask=self.trg_masks
67             )
68         else:
69             outputs = self.predict(source_seq, source_mask)
70 
71         return outputs

① Projecting features to model dimensionality

② Final linear transformation from model to feature space

③ Adding positional encoding and normalizing inputs

Its constructor takes an instance of the nn.Transformer class followed by the

typical sequence lengths and the number of features (so it can map the predicted

sequence back to our feature space; that is, to coordinates). Both predict() and

forward() methods are roughly the same, but they call the encode_decode()
method now.
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Model Configuration & Training

Let’s train PyTorch’s Transformer! We start by creating an instance of it to use as

an argument of our TransformerModel class, followed by the same initialization

scheme as before, and the typical training procedure:

Model Configuration

 1 torch.manual_seed(42)
 2 transformer = nn.Transformer(d_model=6,
 3                              nhead=3,
 4                              num_encoder_layers=1,
 5                              num_decoder_layers=1,
 6                              dim_feedforward=20,
 7                              dropout=0.1)
 8 model_transformer = TransformerModel(transformer, input_len=2,
 9                                      target_len=2, n_features=2)
10 loss = nn.MSELoss()
11 optimizer = torch.optim.Adam(model_transformer.parameters(),
12                              lr=0.01)

Weight Initialization

1 for p in model_transformer.parameters():
2     if p.dim() > 1:
3         nn.init.xavier_uniform_(p)

Model Training

1 sbs_seq_transformer = StepByStep(
2     model_transformer, loss, optimizer
3 )
4 sbs_seq_transformer.set_loaders(train_loader, test_loader)
5 sbs_seq_transformer.train(50)

fig = sbs_seq_transformer.plot_losses()
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Figure 10.18 - Losses - PyTorch’s Transformer

Once again, the validation loss is significantly lower than the training loss. No

surprises here since it is roughly the same model.

Visualizing Predictions

Let’s plot the predicted coordinates and connect them using dashed lines, while

using solid lines to connect the actual coordinates, just like before.

Figure 10.19 - Predictions

Once again, looking good, right?
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Vision Transformer

The Transformer architecture is fairly flexible, and, although it was devised to

handle NLP tasks in the first place, it is already starting to spread to different areas,

including computer vision. Let’s take a look at one of the latest developments in the

field: the Vision Transformer (ViT). It was introduced by Dosovitskiy, A., et al. in

their paper "An Image is Worth 16x16 Words: Transformers for Image Recognition

at Scale."[152]

 "Cool, but I thought the Transformer handled sequences, not images."

That’s a fair point. The answer is deceptively simple: Let’s break an image into a

sequence of patches.

Data Generation & Preparation

First, let’s bring back our multiclass classification problem from Chapter 5. We’re

generating a synthetic dataset of images that are going to have either a diagonal or

a parallel line, and labeling them according to the table below:

Line Label/Class Index

Parallel (Horizontal OR Vertical) 0

Diagonal, Tilted to the Right 1

Diagonal, Tilted to the Left 2

Data Generation

1 images, labels = generate_dataset(img_size=12, n_images=1000,
2                                   binary=False, seed=17)

Each image, like the example below, is 12x12 pixels in size and has a single channel:

img = torch.as_tensor(images[2]).unsqueeze(0).float()/255.

846 | Chapter 10: Transform and Roll Out

https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929


Figure 10.20 - Sample image—label "2"


"But this is a classification problem, not a sequence-to-sequence

one—why are we using a Transformer then?"

Well, we’re not using the full Transformer architecture, only its encoder. In Chapter

8, we used recurrent neural networks to generate a final hidden state that we used

as the input for classification. Similarly, the encoder generates a sequence of

"hidden states" (the memory, in Transformer lingo), and we’re using one "hidden

state" as the input for classification again.

 "Which one? The last 'hidden state'?"

No, not the last one, but a special one. We’ll prepend a special classifier token

[CLS] to our sequence and use its corresponding "hidden state" as input to a

classifier. The figure below illustrates the idea.

Figure 10.21 - Hidden states and the special classifier token [CLS]

But I’m jumping the gun here—we’ll get back to that in the "Special Classifier Token"

section.
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The data preparation step is exactly the same one we used in Chapter 5:

Data Preparation

 1 class TransformedTensorDataset(Dataset):
 2     def __init__(self, x, y, transform=None):
 3         self.x = x
 4         self.y = y
 5         self.transform = transform
 6 
 7     def __getitem__(self, index):
 8         x = self.x[index]
 9         if self.transform:
10             x = self.transform(x)
11 
12         return x, self.y[index]
13 
14     def __len__(self):
15         return len(self.x)
16 
17 # Builds tensors from numpy arrays BEFORE split
18 # Modifies the scale of pixel values from [0, 255] to [0, 1]
19 x_tensor = torch.as_tensor(images / 255).float()
20 y_tensor = torch.as_tensor(labels).long()
21 
22 # Uses index_splitter to generate indices for training and
23 # validation sets
24 train_idx, val_idx = index_splitter(len(x_tensor), [80, 20])
25 # Uses indices to perform the split
26 x_train_tensor = x_tensor[train_idx]
27 y_train_tensor = y_tensor[train_idx]
28 x_val_tensor = x_tensor[val_idx]
29 y_val_tensor = y_tensor[val_idx]
30 
31 # We're not doing any data augmentation now
32 train_composer = Compose([Normalize(mean=(.5,), std=(.5,))])
33 val_composer = Compose([Normalize(mean=(.5,), std=(.5,))])
34 
35 # Uses custom dataset to apply composed transforms to each set
36 train_dataset = TransformedTensorDataset(
37     x_train_tensor, y_train_tensor, transform=train_composer)
38 val_dataset = TransformedTensorDataset(
39     x_val_tensor, y_val_tensor, transform=val_composer)
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40 
41 # Builds a weighted random sampler to handle imbalanced classes
42 sampler = make_balanced_sampler(y_train_tensor)
43 
44 # Uses sampler in the training set to get a balanced data loader
45 train_loader = DataLoader(
46     dataset=train_dataset, batch_size=16, sampler=sampler)
47 val_loader = DataLoader(dataset=val_dataset, batch_size=16)

Patches

There are different ways of breaking up an image into patches. The most

straightforward one is simply rearranging the pixels, so let’s start with that one.

Rearranging

Tensorflow has a utility function called tf.image.extract_patches() that does the

job, and we’re implementing a simplified version of this function in PyTorch with

tensor.unfold() (using only a kernel size and a stride, but no padding or anything

else):

# Adapted from https://discuss.pytorch.org/t/tf-extract-image-
# patches-in-pytorch/43837
def extract_image_patches(x, kernel_size, stride=1):
    # Extract patches
    patches = x.unfold(2, kernel_size, stride)
    patches = patches.unfold(3, kernel_size, stride)
    patches = patches.permute(0, 2, 3, 1, 4, 5).contiguous()

    return patches.view(n, patches.shape[1], patches.shape[2], -1)

It works as if we were applying a convolution to the image. Each patch is actually a

receptive field (the region the filter is moving over to convolve), but, instead of

convolving the region, we’re just taking it as it is. The kernel size is the patch size,

and the number of patches depends on the stride—the smaller the stride, the more

patches. If the stride matches the kernel size, we’re effectively breaking up the

image into non-overlapping patches, so let’s do that:
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kernel_size = 4
patches = extract_image_patches(
    img, kernel_size, stride=kernel_size
)
patches.shape

Output

torch.Size([1, 3, 3, 16])

Since kernel size is four, each patch has 16 pixels, and there are nine patches in

total. Even though each patch is a tensor of 16 elements, if we plot them as if they

were four-by-four images instead, it would look like this.

Figure 10.22 - Sample image—split into patches

It is very easy to see how the image was broken up in the figure above. In reality,

though, the Transformer needs a sequence of flattened patches. Let’s reshape

them:

seq_patches = patches.view(-1, patches.size(-1))

850 | Chapter 10: Transform and Roll Out



Figure 10.23 - Sample image—split into a sequence of flattened patches

That’s more like it: Each image is turned into a sequence of length nine, each

element in the sequence having 16 features (pixel values in this case).

Embeddings

If each patch is like a receptive field, and we even talked about kernel size and

stride, why not go full convolution then? That’s how the Visual Transformer (ViT)

actually implemented patch embeddings:

Patch Embeddings

 1 # Adapted from https://amaarora.github.io/2021/01/18/ViT.html
 2 class PatchEmbed(nn.Module):
 3     def __init__(self, img_size=224, patch_size=16,
 4                  in_channels=3, embed_dim=768, dilation=1):
 5         super().__init__()
 6         num_patches = (img_size // patch_size) * \
 7                       (img_size // patch_size)
 8         self.img_size = img_size
 9         self.patch_size = patch_size
10         self.num_patches = num_patches
11         self.proj = nn.Conv2d(in_channels,
12                               embed_dim,
13                               kernel_size=patch_size,
14                               stride=patch_size)
15 
16     def forward(self, x):
17         x = self.proj(x).flatten(2).transpose(1, 2)
18         return x
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The patch embedding is not the original receptive field anymore, but rather the

convolved receptive field. After convolving the image, given a kernel size and a

stride, the patches get flattened, so we end up with the same sequence of nine

patches:

torch.manual_seed(13)
patch_embed = PatchEmbed(
    img.size(-1), kernel_size, 1, kernel_size**2
)
embedded = patch_embed(img)
embedded.shape

Output

torch.Size([1, 9, 16])

Figure 10.24 - Sample image—split into a sequence of patch embeddings

But the patches are linear projections of the original pixel values now. We’re

projecting each 16-pixel patch into a 16-dimensional feature space—we’re not

changing the number of dimensions, but using different linear combinations of the

original dimensions.



The original image had 144 pixels and was split into nine patches

of 16 pixels each. Each patch embedding still has 16 dimensions,

so, overall, each image is still represented by 144 values. This is

by no means a coincidence: The idea behind this choice of values

is to preserve the dimensionality of the inputs.
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Einops

"There is more than one way to skin a cat," as the saying goes, and so there is

more than one way to rearrange the pixels into sequences. An alternative

approach uses a package called einops.[153] It is very minimalistic (maybe

even a bit too much) and allows you to express complex rearrangements in a

couple lines of code. It may take a while to get the hang of how it works,

though.

We’re not using it here, but, if you’re interested, this is the einops equivalent

of the extract_image_patches() function above:

# Adapted from https://github.com/lucidrains/vit-pytorch/blob/
# main/vit_pytorch/vit_pytorch.py
# !pip install einops
from einops import rearrange
patches = rearrange(padded_img,
                    'b c (h p1) (w p2) -> b (h w) (p1 p2 c)',
                    p1 = kernel_size, p2 = kernel_size)

Special Classifier Token

In Chapter 8, the final hidden state represented the full sequence. This approach had

its shortcomings (the attention mechanism was developed to compensate for

them), but it leveraged the fact that there was an underlying sequential structure

to the data.

This is not quite the same for images, though. The sequence of patches is a clever

way of making the data suitable for the encoder, sure, but it does not necessarily

reflect a sequential structure; after all, we end up with two different sequences

depending on which direction we choose to go over the patches: row-wise or

column-wise.


"Can’t we use the full sequence of 'hidden states' then? Or maybe

average them?"

It is definitely possible to use the average of the "hidden states" produced by the

encoder as input for the classifier.
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But it is also common to use a special classifier token [CLS], especially in NLP tasks

(as we’ll see in Chapter 11). The idea is quite simple and elegant: Add the same

token to the beginning of every sequence. This special token has an embedding as

well, and it will be learned by the model like any other parameter.



The first "hidden state" produced by the encoder, the output

corresponding to the added special token, plays the role of

overall representation of the image—just like the final hidden

state represented the overall sequence in recurrent neural

networks.

Remember that the Transformer encoder uses self-attention and

that every token can pay attention to every other token in the

sequence. Therefore, the special classifier token can actually

learn which tokens (patches, in our case) it needs to pay

attention to in order to correctly classify the sequence.

Let’s illustrate the addition of the [CLS] token by taking two images from our

dataset.

Figure 10.25 - Two images

Next, we get their corresponding patch embeddings:

embeddeds = patch_embed(imgs)

Our images were transformed into sequences of nine patch embeddings of size 16

each, so they can be represented like this (the features are on the horizontal axis

now).
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Figure 10.26 - Two patch embeddings

The patch embeddings are obviously different for each image, but the embedding

corresponding to the special classifier token that’s prepended to the patch

embeddings is always the same.

Figure 10.27 - Two patch embeddings + [CLS] embedding

 "How do we do that?"

It’s actually simple: We need to define a parameter in our model (using

nn.Parameter) to represent this special embedding and concatenate it at the

beginning of every sequence of embeddings. Let’s start by creating the parameter

itself (it will be an attribute of our model later):

cls_token = nn.Parameter(torch.zeros(1, 1, 16))
cls_token
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Output

Parameter containing:
tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0.]]], requires_grad=True)

It is just a vector full of zeros. That’s it. But, since it is a parameter, its values will be

updated as the model gets trained. Then, let’s fetch a mini-batch of images and get

their patch embeddings:

images, labels = next(iter(train_loader))
images.shape # N, C, H, W

Output

torch.Size([16, 1, 12, 12])

embed = patch_embed(images)
embed.shape # N, L, D

Output

torch.Size([16, 9, 16])

There are 16 images, each represented by a sequence of nine patches with 16

dimensions each. The special embedding should be the same for all 16 images, so

we use tensor.expand() to replicate it along the batch dimension before

concatenation:

cls_tokens = cls_token.expand(embed.size(0), -1, -1)
embed_cls = torch.cat((cls_tokens, embed), dim=1)
embed_cls.shape # N, L+1, D

Output

torch.Size([16, 10, 16])
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Now each sequence has ten elements, and we have everything we need to build

our model.

The Model

The main part of the model is the Transformer encoder, which, coincidentally, is

implemented by normalizing the inputs (norm-first), like our own EncoderLayer
and EncoderTransf classes (and unlike PyTorch’s default implementation).

The encoder outputs a sequence of "hidden states" (memory), the first of which is

used as input to a classifier ("MLP Head"), as briefly discussed in the previous

section. So, the model is all about pre-processing the inputs, our images, using a

series of transformations:

• computing a sequence of patch embeddings

• prepending the same special classifier token [CLS] embedding to every

sequence

• adding position embedding (or, in our case, position encoding implemented in

our encoder)

The figure below illustrates the architecture.

Figure 10.28 - The Vision Transformer (ViT)

Let’s see it in code!
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Vision Transformer

 1 class ViT(nn.Module):
 2     def __init__(self, encoder, img_size,
 3                  in_channels, patch_size, n_outputs):
 4         super().__init__()
 5         self.d_model = encoder.d_model
 6         self.n_outputs = n_outputs
 7         self.encoder = encoder
 8         self.mlp = nn.Linear(encoder.d_model, n_outputs)
 9 
10         self.embed = PatchEmbed(img_size, patch_size,
11                                 in_channels, encoder.d_model)
12         self.cls_token = nn.Parameter(
13             torch.zeros(1, 1, encoder.d_model)
14         )
15 
16     def preprocess(self, X):
17         # Patch embeddings
18         # N, L, F -> N, L, D
19         src = self.embed(X)
20         # Special classifier token
21         # 1, 1, D -> N, 1, D
22         cls_tokens = self.cls_token.expand(X.size(0), -1, -1)
23         # Concatenates CLS tokens -> N, 1 + L, D
24         src = torch.cat((cls_tokens, src), dim=1)
25         return src
26 
27     def encode(self, source):
28         # Encoder generates "hidden states"
29         states = self.encoder(source)
30         # Gets state from first token: CLS
31         cls_state = states[:, 0]  # N, 1, D
32         return cls_state
33 
34     def forward(self, X):
35         src = self.preprocess(X)
36         # Featurizer
37         cls_state = self.encode(src)
38         # Classifier
39         out = self.mlp(cls_state) # N, 1, outputs
40         return out
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It takes an instance of a Transformer encoder and a series of image-related

arguments (size, number of channels, and patch / kernel size), in addition to the

desired number of outputs (logits), which corresponds to the number of existing

classes.

The forward() method takes a mini-batch of images, pre-processes them, encodes

them (featurizer), and outputs logits (classifier). It is not that different from our

typical image classifier from Chapter 5. It even uses convolutions!



For more details on the original Vision Transformer, make sure to

check this amazing post[154] by Aman Arora and Dr. Habib

Bukhari.

You can also check out Phil Wang’s implementation here.[155]

Model Configuration & Training

Let’s train our Vision Transformer! You know the drill:

Model Configuration

1 torch.manual_seed(17)
2 layer = EncoderLayer(n_heads=2, d_model=16, ff_units=20)
3 encoder = EncoderTransf(layer, n_layers=1)
4 model_vit = ViT(encoder, img_size=12,
5                 in_channels=1, patch_size=4, n_outputs=3)
6 multi_loss_fn = nn.CrossEntropyLoss()
7 optimizer_vit = optim.Adam(model_vit.parameters(), lr=1e-3)

Model Training

1 sbs_vit = StepByStep(model_vit, multi_loss_fn, optimizer_vit)
2 sbs_vit.set_loaders(train_loader, val_loader)
3 sbs_vit.train(20)

fig = sbs_vit.plot_losses()
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Figure 10.29 - Losses—Vision Transformer

Validation losses are lower than training losses—"thank you", dropout!

Once the model is trained, we can check the embeddings of our special classifier

token:

model_vit.cls_token

Output

Parameter containing:
tensor([[[ 0.0557, -0.0345,  0.0126, -0.0300,  0.0335, -0.0422,
0.0479, -0.0248,  0.0128, -0.0605,  0.0061, -0.0178,  0.0921,
-0.0384, 0.0424, -0.0423]]], device='cuda:0', requires_grad=True)

Finally, let’s see how accurate the Vision Transformer is:

StepByStep.loader_apply(sbs_vit.val_loader, sbs_vit.correct)

Output

tensor([[76, 76],
        [65, 65],
        [59, 59]])

Nailed it!
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Putting It All Together

In this chapter, we used the dataset of colored squares to, once again, predict the

coordinates of the last two corners (target sequence) given the coordinates of the

first two corners (source sequence). We built on top of our self-attention-based

encoder-decoder architecture, turning the former encoder and decoder classes

into "layers" and wrapping up its internal operations with "sub-layers" to add layer

normalization, dropout, and residual connections to each operation.

Data Preparation

The training set has the full sequences as features, while the test set has only the

source sequences as features:

Data Preparation

 1 # Training set
 2 points, directions = generate_sequences(n=256, seed=13)
 3 full_train = torch.as_tensor(points).float()
 4 target_train = full_train[:, 2:]
 5 train_data = TensorDataset(full_train, target_train)
 6 generator = torch.Generator()
 7 train_loader = DataLoader(train_data, batch_size=16,
 8                           shuffle=True, generator=generator)
 9 # Validation/Test Set
10 test_points, test_directions = generate_sequences(seed=19)
11 full_test = torch.as_tensor(test_points).float()
12 source_test = full_test[:, :2]
13 target_test = full_test[:, 2:]
14 test_data = TensorDataset(source_test, target_test)
15 test_loader = DataLoader(test_data, batch_size=16)

Model Assembly

Once again, we used the bottom-up approach to increasingly extend our encoder-

decoder architecture. Now, we’re revisiting the Transformer in a top-down

approach, starting from the encoder-decoder module (1). In its encode() and

decode() methods, it makes a call to an instance of the encoder (2), followed by a

call to an instance of the decoder (3). We’ll be representing the two called modules

(2 and 3) as boxes inside the box corresponding to the caller module (1).
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If we follow the complete sequence of calls, this is the resulting diagram for the

Transformer architecture.

Figure 10.30 - The Transformer

Now, let’s revisit the code of the represented modules. They’re numbered

accordingly, and so are the corresponding calls to them.
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1. Encoder-Decoder

The encoder-decoder architecture was actually extended from the one developed

in the previous chapter (EncoderDecoderSelfAttn), which handled training and

prediction using greedy decoding. There are no changes here, except for the

omission of both encode() and decode() methods, which are going to be

overridden anyway:

Encoder + Decoder + Self-Attention

 1 class EncoderDecoderSelfAttn(nn.Module):
 2     def __init__(self, encoder, decoder, input_len, target_len):
 3         super().__init__()
 4         self.encoder = encoder
 5         self.decoder = decoder
 6         self.input_len = input_len
 7         self.target_len = target_len
 8         self.trg_masks = self.subsequent_mask(self.target_len)
 9 
10     @staticmethod
11     def subsequent_mask(size):
12         attn_shape = (1, size, size)
13         subsequent_mask = (
14             1 - torch.triu(torch.ones(attn_shape), diagonal=1)
15         ).bool()
16         return subsequent_mask
17 
18     def predict(self, source_seq, source_mask):
19         # Decodes/generates a sequence using one input
20         # at a time - used in EVAL mode
21         inputs = source_seq[:, -1:]
22         for i in range(self.target_len):
23             out = self.decode(inputs,
24                               source_mask,
25                               self.trg_masks[:, :i+1, :i+1])
26             out = torch.cat([inputs, out[:, -1:, :]], dim=-2)
27             inputs = out.detach()
28         outputs = inputs[:, 1:, :]
29         return outputs
30 
31     def forward(self, X, source_mask=None):
32         # Sends the mask to the same device as the inputs
33         self.trg_masks = self.trg_masks.type_as(X).bool()
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34         # Slices the input to get source sequence
35         source_seq = X[:, :self.input_len, :]
36         # Encodes source sequence AND initializes decoder
37         self.encode(source_seq, source_mask)
38         if self.training:
39             # Slices the input to get the shifted target seq
40             shifted_target_seq = X[:, self.input_len-1:-1, :]
41             # Decodes using the mask to prevent cheating
42             outputs = self.decode(shifted_target_seq,
43                                   source_mask,
44                                   self.trg_masks)
45         else:
46             # Decodes using its own predictions
47             outputs = self.predict(source_seq, source_mask)
48 
49         return outputs
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This is the actual encoder-decoder Transformer, which re-implements both

encode() and decode() methods to include the input projections and the last linear

layer of the decoder. Notice the numbered calls to the encoder (2) and decoder

(3):

Transformer Encoder-Decoder

 1 class EncoderDecoderTransf(EncoderDecoderSelfAttn):
 2     def __init__(self, encoder, decoder,
 3                  input_len, target_len, n_features):
 4         super(EncoderDecoderTransf, self).__init__(
 5             encoder, decoder, input_len, target_len
 6         )
 7         self.n_features = n_features
 8         self.proj = nn.Linear(n_features, encoder.d_model)
 9         self.linear = nn.Linear(encoder.d_model, n_features)
10 
11     def encode(self, source_seq, source_mask=None):
12         # Projection
13         source_proj = self.proj(source_seq)
14         encoder_states = self.encoder(source_proj, source_mask)①
15         self.decoder.init_keys(encoder_states)
16 
17     def decode(self, shifted_target_seq,
18                source_mask=None, target_mask=None):
19         # Projection
20         target_proj = self.proj(shifted_target_seq)
21         outputs = self.decoder(target_proj,                    ②
22                                source_mask=source_mask,
23                                target_mask=target_mask)
24         # Linear
25         outputs = self.linear(outputs)
26         return outputs

① Calls Encoder (2)

② Calls Decoder (3)
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2. Encoder

The Transformer encoder has a list of stacked encoder "layers" (5) (remember that

our "layers" are norm-first). It also adds positional encoding (4) to the inputs and

normalizes the outputs at the end:

Transformer Encoder

 1 class EncoderTransf(nn.Module):
 2     def __init__(self, encoder_layer, n_layers=1, max_len=100):
 3         super().__init__()
 4         self.d_model = encoder_layer.d_model
 5         self.pe = PositionalEncoding(max_len, self.d_model)
 6         self.norm = nn.LayerNorm(self.d_model)
 7         self.layers = nn.ModuleList([copy.deepcopy(encoder_layer)
 8                                      for _ in range(n_layers)])
 9 
10     def forward(self, query, mask=None):
11         # Positional Encoding
12         x = self.pe(query)        ①
13         for layer in self.layers:
14             x = layer(x, mask)    ②
15         # Norm
16         return self.norm(x)

① Calls Positional Encoding (4)

② Calls Encoder "Layer" (5) multiple times
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3. Decoder

The Transformer decoder has a list of stacked decoder "layers" (6) (remember that

our "layers" are norm-first). It also adds positional encoding (4) to the inputs and

normalizes the outputs at the end:

Transformer Decoder

 1 class DecoderTransf(nn.Module):
 2     def __init__(self, decoder_layer, n_layers=1, max_len=100):
 3         super(DecoderTransf, self).__init__()
 4         self.d_model = decoder_layer.d_model
 5         self.pe = PositionalEncoding(max_len, self.d_model)
 6         self.norm = nn.LayerNorm(self.d_model)
 7         self.layers = nn.ModuleList([copy.deepcopy(decoder_layer)
 8                                      for _ in range(n_layers)])
 9 
10     def init_keys(self, states):
11         for layer in self.layers:
12             layer.init_keys(states)
13 
14     def forward(self, query, source_mask=None, target_mask=None):
15         # Positional Encoding
16         x = self.pe(query)                          ①
17         for layer in self.layers:
18             x = layer(x, source_mask, target_mask)  ②
19         # Norm
20         return self.norm(x)

① Calls Positional Encoding (4)

② Calls Decoder "Layer" (6) multiple times
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4. Positional Encoding

We haven’t changed the positional encoding module; it is here for the sake of

completion only:

Positional Encoding

 1 class PositionalEncoding(nn.Module):
 2     def __init__(self, max_len, d_model):
 3         super().__init__()
 4         self.d_model = d_model
 5         pe = torch.zeros(max_len, d_model)
 6         position = torch.arange(0, max_len).float().unsqueeze(1)
 7         angular_speed = torch.exp(
 8             torch.arange(0, d_model, 2).float() *
 9             (-np.log(10000.0) / d_model)
10         )
11         # even dimensions
12         pe[:, 0::2] = torch.sin(position * angular_speed)
13         # odd dimensions
14         pe[:, 1::2] = torch.cos(position * angular_speed)
15         self.register_buffer('pe', pe.unsqueeze(0))
16 
17     def forward(self, x):
18         # x is N, L, D
19         # pe is 1, maxlen, D
20         scaled_x = x * np.sqrt(self.d_model)
21         encoded = scaled_x + self.pe[:, :x.size(1), :]
22         return encoded
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5. Encoder "Layer"

The encoder "layer" implements a list of two "sub-layers" (7), which are going to be

called with their corresponding operations:

Encoder "Layer"

 1 class EncoderLayer(nn.Module):
 2     def __init__(self, n_heads, d_model, ff_units, dropout=0.1):
 3         super().__init__()
 4         self.n_heads = n_heads
 5         self.d_model = d_model
 6         self.ff_units = ff_units
 7         self.self_attn_heads = \
 8             MultiHeadedAttention(n_heads, d_model, dropout)
 9         self.ffn = nn.Sequential(
10             nn.Linear(d_model, ff_units),
11             nn.ReLU(),
12             nn.Dropout(dropout),
13             nn.Linear(ff_units, d_model),
14         )
15         self.sublayers = nn.ModuleList(
16             [SubLayerWrapper(d_model, dropout) for _ in range(2)]
17         )
18 
19     def forward(self, query, mask=None):
20         # SubLayer 0 - Self-Attention
21         att = self.sublayers[0](query,                         ①
22                                 sublayer=self.self_attn_heads,
23                                 is_self_attn=True,
24                                 mask=mask)
25         # SubLayer 1 - FFN
26         out = self.sublayers[1](att, sublayer=self.ffn)        ①
27         return out

① Calls "Sub-Layer" wrapper (7) twice (self-attention and feed-forward network)

 "Wait, I don’t remember this SubLayerWrapper module…"

Good catch! It is indeed brand new! We’re defining it shortly (it’s number seven,

hang in there!).
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6. Decoder "Layer"

The decoder "layer" implements a list of three "sub-layers" (7), which are going to

be called with their corresponding operations:

Decoder "Layer"

 1 class DecoderLayer(nn.Module):
 2     def __init__(self, n_heads, d_model, ff_units, dropout=0.1):
 3         super().__init__()
 4         self.n_heads = n_heads
 5         self.d_model = d_model
 6         self.ff_units = ff_units
 7         self.self_attn_heads = \
 8             MultiHeadedAttention(n_heads, d_model, dropout)
 9         self.cross_attn_heads = \
10             MultiHeadedAttention(n_heads, d_model, dropout)
11         self.ffn = nn.Sequential(nn.Linear(d_model, ff_units),
12                                  nn.ReLU(),
13                                  nn.Dropout(dropout),
14                                  nn.Linear(ff_units, d_model))
15         self.sublayers = nn.ModuleList(
16             [SubLayerWrapper(d_model, dropout) for _ in range(3)]
17         )
18 
19     def init_keys(self, states):
20         self.cross_attn_heads.init_keys(states)
21 
22     def forward(self, query, source_mask=None, target_mask=None):
23         # SubLayer 0 - Masked Self-Attention
24         att1 = self.sublayers[0](query, mask=target_mask,      ①
25                                  sublayer=self.self_attn_heads,
26                                  is_self_attn=True)
27         # SubLayer 1 - Cross-Attention
28         att2 = self.sublayers[1](att1, mask=source_mask,       ①
29                                  sublayer=self.cross_attn_heads)
30         # SubLayer 2 - FFN
31         out = self.sublayers[2](att2, sublayer=self.ffn)       ①
32         return out

① Calls "Sub-Layer" wrapper (7) three times (self-attention, cross-attention, and

feed-forward network)
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7. "Sub-Layer" Wrapper

The "sub-layer" wrapper implements the norm-first approach to wrapping "sub-

layers."

Figure 10.31 - "Sub-Layer" wrapper—norm-first

It normalizes the inputs, calls the "sub-layer" itself (passed as argument), applies

dropout, and adds the residual connection at the end:

Sub-Layer Wrapper

 1 class SubLayerWrapper(nn.Module):
 2     def __init__(self, d_model, dropout):
 3         super().__init__()
 4         self.norm = nn.LayerNorm(d_model)
 5         self.drop = nn.Dropout(dropout)
 6 
 7     def forward(self, x, sublayer, is_self_attn=False, **kwargs):
 8         norm_x = self.norm(x)
 9         if is_self_attn:
10             sublayer.init_keys(norm_x)
11         out = x + self.drop(sublayer(norm_x, **kwargs))        ①
12         return out

① Calls Multi-Headed Attention (8) (and the feed-forward network as well,

depending on the sublayer argument)

To make it more clear how this module was used to replace most of the code in the
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forward() method of the encoder and decoder "layers," here is a before-after

comparison of the first "sub-layer" (self-attention) of the encoder "layer":

# Before
def forward(self, query, mask=None):
    # query and mask go in
    norm_query = self.norm1(query)
    self.self_attn_heads.init_keys(norm_query)
    # the sub-layer is the self-attention
    states = self.self_attn_heads(norm_query, mask)
    att = query + self.drop1(states)
    # att comes out
    ...

# After
def forward(self, query, mask=None):
    # query and mask go in
    # the sub-layer is the self-attention
    # norm, drop, and residual are inside the wrapper
    att = self.sublayers[0](query,
                            sublayer=self.self_attn_heads,
                            is_self_attn=True,
                            mask=mask)
    # att comes out
    ...
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8. Multi-Headed Attention

The multi-headed attention mechanism below replicates the implemented narrow

attention described at the start of this chapter, chunking the projections of "keys"

(K), "values" (V), and "queries" (Q) to make the size of the model more manageable:

Multi-Headed Attention

 1 class MultiHeadedAttention(nn.Module):
 2     def __init__(self, n_heads, d_model, dropout=0.1):
 3         super(MultiHeadedAttention, self).__init__()
 4         self.n_heads = n_heads
 5         self.d_model = d_model
 6         self.d_k = int(d_model / n_heads)
 7         self.linear_query = nn.Linear(d_model, d_model)
 8         self.linear_key = nn.Linear(d_model, d_model)
 9         self.linear_value = nn.Linear(d_model, d_model)
10         self.linear_out = nn.Linear(d_model, d_model)
11         self.dropout = nn.Dropout(p=dropout)
12         self.alphas = None
13 
14     def make_chunks(self, x):
15         batch_size, seq_len = x.size(0), x.size(1)
16         # N, L, D -> N, L, n_heads * d_k
17         x = x.view(batch_size, seq_len, self.n_heads, self.d_k)
18         # N, n_heads, L, d_k
19         x = x.transpose(1, 2)
20         return x
21 
22     def init_keys(self, key):
23         # N, n_heads, L, d_k
24         self.proj_key = self.make_chunks(self.linear_key(key))
25         self.proj_value = \
26             self.make_chunks(self.linear_value(key))
27 
28     def score_function(self, query):
29         # scaled dot product
30         # N, n_heads, L, d_k x # N, n_heads, d_k, L
31         # -> N, n_heads, L, L
32         proj_query = self.make_chunks(self.linear_query(query))
33         dot_products = torch.matmul(
34             proj_query, self.proj_key.transpose(-2, -1)
35         )
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36         scores =  dot_products / np.sqrt(self.d_k)
37         return scores
38 
39     def attn(self, query, mask=None):
40         # Query is batch-first: N, L, D
41         # Score function will generate scores for each head
42         scores = self.score_function(query) # N, n_heads, L, L
43         if mask is not None:
44             scores = scores.masked_fill(mask == 0, -1e9)
45         alphas = F.softmax(scores, dim=-1) # N, n_heads, L, L
46         alphas = self.dropout(alphas)
47         self.alphas = alphas.detach()
48 
49         # N, n_heads, L, L x N, n_heads, L, d_k
50         # -> N, n_heads, L, d_k
51         context = torch.matmul(alphas, self.proj_value)
52         return context
53 
54     def output_function(self, contexts):
55         # N, L, D
56         out = self.linear_out(contexts) # N, L, D
57         return out
58 
59     def forward(self, query, mask=None):
60         if mask is not None:
61             # N, 1, L, L - every head uses the same mask
62             mask = mask.unsqueeze(1)
63 
64         # N, n_heads, L, d_k
65         context = self.attn(query, mask=mask)
66         # N, L, n_heads, d_k
67         context = context.transpose(1, 2).contiguous()
68         # N, L, n_heads * d_k = N, L, d_model
69         context = context.view(query.size(0), -1, self.d_model)
70         # N, L, d_model
71         out = self.output_function(context)
72         return out
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Model Configuration & Training

Model Configuration

 1 torch.manual_seed(42)
 2 # Layers
 3 enclayer = EncoderLayer(n_heads=3, d_model=6,
 4                         ff_units=10, dropout=0.1)
 5 declayer = DecoderLayer(n_heads=3, d_model=6,
 6                         ff_units=10, dropout=0.1)
 7 # Encoder and Decoder
 8 enctransf = EncoderTransf(enclayer, n_layers=2)
 9 dectransf = DecoderTransf(declayer, n_layers=2)
10 # Transformer
11 model_transf = EncoderDecoderTransf(enctransf,
12                                     dectransf,
13                                     input_len=2,
14                                     target_len=2,
15                                     n_features=2)
16 loss = nn.MSELoss()
17 optimizer = torch.optim.Adam(model_transf.parameters(), lr=0.01)

Weight Initialization

1 for p in model_transf.parameters():
2     if p.dim() > 1:
3         nn.init.xavier_uniform_(p)

Model Training

1 sbs_seq_transf = StepByStep(model_transf, loss, optimizer)
2 sbs_seq_transf.set_loaders(train_loader, test_loader)
3 sbs_seq_transf.train(50)

sbs_seq_transf.losses[-1], sbs_seq_transf.val_losses[-1]

Output

(0.019648547226097435, 0.011462601833045483)
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Recap

In this chapter, we’ve extended the encoder-decoder architecture and transformed

it into a Transformer (the last pun of the chapter; I couldn’t resist it!). First, we

modified the multi-headed attention mechanism to use narrow attention. Then,

we introduced layer normalization and the need to change the dimensionality of

the inputs using either projections or embeddings. Next, we used our former

encoder and decoder as "layers" that could be stacked to form the new Transformer

encoder and decoder. That made our model much deeper, thus raising the need for

wrapping the internal operations (self-, cross-attention, and feed-forward

network, now called "sub-layers") of each "layer" with a combination of layer

normalization, dropout, and residual connection. This is what we’ve covered:

• using narrow attention in the multi-headed attention mechanism

• chunking the projections of the inputs to implement narrow attention

• learning that chunking projections allows different heads to focus on, literally,

different dimensions of the inputs

• standardizing individual data points using layer normalization

• using layer normalization to standardize positionally-encoded inputs

• changing the dimensionality of the inputs using projections (embeddings)

• defining an encoder "layer" that uses two "sub-layers": a self-attention

mechanism and a feed-forward network

• stacking encoder "layers" to build a Transformer encoder

• wrapping "sub-layer" operations with a combination of layer normalization,

dropout, and residual connection

• learning the difference between norm-last and norm-first "sub-layers"

• understanding that norm-first "sub-layers" allow the inputs to flow

unimpeded all the way to the top through the residual connections

• defining a decoder "layer" that uses three "sub-layers": a masked self-

attention mechanism, a cross-attention mechanism, and a feed-forward

network

• stacking decoder "layers" to build a Transformer decoder

• combining both encoder and decoder into a full-blown, norm-first Transformer

architecture
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• training the Transformer to tackle our sequence-to-sequence problem

• understanding that the validation loss may be much lower than the training

loss due to regularizing effect of dropout

• training another model using PyTorch’s (norm-last) Transformer class

• using the Vision Transformer architecture to tackle an image classification

problem

• splitting an image into flattened patches by either rearranging or embedding

them

• adding a special classifier token to the embeddings

• using the encoder’s output corresponding to the special classifier token as

features for the classifier

Congratulations! You’ve just assembled and trained your first Transformer (and

even a cutting-edge Vision Transformer!): This is no small feat. Now you know what

"layers" and "sub-layers" stand for and how they’re brought together to build a

Transformer. Keep in mind, though, that you may find slightly different

implementations around. It may be either norm-first or norm-last or maybe yet

another customization. The details may be different, but the overall concept

remains: It is all about stacking attention-based "layers."


"Hey, what about BERT? Shouldn’t we use Transformers to tackle NLP

problems?"

I was actually waiting for this question: Yes, we should, and we will, in the next

chapter. As you have seen, it is already hard enough to understand the Transformer

even when it’s used to tackle such a simple sequence-to-sequence problem as ours.

Trying to train a model to handle a more complex natural language processing

problem would only make it even harder.

In the next chapter, we’ll start with some NLP concepts and techniques like tokens,

tokenization, word embeddings, and language models, and work our way up to

contextual word embeddings, GPT-2, and BERT. We’ll be using several Python

packages, including the famous HuggingFace :-)

[146] https://github.com/dvgodoy/PyTorchStepByStep/blob/master/Chapter10.ipynb

[147] https://colab.research.google.com/github/dvgodoy/PyTorchStepByStep/blob/master/Chapter10.ipynb

[148] https://arxiv.org/abs/1906.04341

[149] https://arxiv.org/abs/1706.03762
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[150] http://nlp.seas.harvard.edu/2018/04/03/attention

[151] https://arxiv.org/abs/1607.06450

[152] https://arxiv.org/abs/2010.11929

[153] https://github.com/arogozhnikov/einops

[154] https://amaarora.github.io/2021/01/18/ViT.html

[155] https://github.com/lucidrains/vit-pytorch
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Chapter 11
Down the Yellow Brick Rabbit Hole

Spoilers

In this chapter, we will:

• learn about many useful packages for natural language processing (NLP):

NLTK, Gensim, flair, and HuggingFace

• build our own dataset from scratch using HuggingFace’s Dataset

• use different tokenizers on our dataset

• learn and load word embeddings using Word2Vec and GloVe

• train many models using embeddings in different ways

• use ELMo and BERT to retrieve contextual word embeddings

• use HuggingFace’s Trainer to fine-tune BERT

• fine-tune GPT-2 and use it in a pipeline to generate text

Jupyter Notebook

The Jupyter notebook corresponding to Chapter 11[156] is part of the official Deep

Learning with PyTorch Step-by-Step repository on GitHub. You can also run it

directly in Google Colab[157].

If you’re using a local installation, open your terminal or Anaconda prompt and

navigate to the PyTorchStepByStep folder you cloned from GitHub. Then, activate

the pytorchbook environment and run jupyter notebook:

$ conda activate pytorchbook

(pytorchbook)$ jupyter notebook

If you’re using Jupyter’s default settings, this link should open Chapter 11’s

notebook. If not, just click on Chapter11.ipynb in your Jupyter’s home page.
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Additional Setup

This is a special chapter when it comes to its setup: We won’t be using only PyTorch

but rather a handful of other packages as well, including the de facto standard for

NLP tasks—HuggingFace.

Before proceeding, make sure you have all of them installed by running the

commands below:

!pip install gensim==3.8.3
!pip install allennlp==0.9.0
!pip install flair==0.8.0.post1 # uses PyTorch 1.7.1
!pip install torchvision==0.8.2
# HuggingFace
!pip install transformers==4.5.1
!pip install datasets==1.6.0


Some packages, like flair, may have strict dependencies and

eventually require the downgrading of some other packages in

your environment, even PyTorch itself.



The versions above were used to generate the outputs presented

in this chapter, but you can use newer versions if you want

(except for the allennlp package since this specific version is

required by flair for retrieving ELMo embeddings).

Imports

For the sake of organization, all libraries needed throughout the code used in any

given chapter are imported at its very beginning. For this chapter, we’ll need the

following imports:

import os
import json
import errno
import requests
import numpy as np
from copy import deepcopy
from operator import itemgetter
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import torch
import torch.optim as optim
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader, Dataset, random_split, \
    TensorDataset

from data_generation.nlp import ALICE_URL, WIZARD_URL, download_text
from stepbystep.v4 import StepByStep
# These are the classes we built in Chapters 9 and 10
from seq2seq import *

import nltk
from nltk.tokenize import sent_tokenize

import gensim
from gensim import corpora, downloader
from gensim.parsing.preprocessing import *
from gensim.utils import simple_preprocess
from gensim.models import Word2Vec

from flair.data import Sentence
from flair.embeddings import ELMoEmbeddings, WordEmbeddings, \
    TransformerWordEmbeddings, TransformerDocumentEmbeddings

from datasets import load_dataset, Split
from transformers import (
    DataCollatorForLanguageModeling,
    BertModel, BertTokenizer, BertForSequenceClassification,
    DistilBertModel, DistilBertTokenizer,
    DistilBertForSequenceClassification,
    AutoModelForSequenceClassification,
    AutoModel, AutoTokenizer, AutoModelForCausalLM,
    Trainer, TrainingArguments, pipeline, TextClassificationPipeline
)
from transformers.pipelines import SUPPORTED_TASKS
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"Down the Yellow Brick Rabbit Hole"

Where does the phrase in the title come from? On the one hand, if it were "down

the rabbit hole," one could guess Alice’s Adventures in Wonderland. On the other

hand, if it were "the yellow brick road," one could guess The Wonderful Wizard of Oz.

But it is neither (or maybe it is both?). What if, instead of trying to guess it

ourselves, we trained a model to classify sentences? This is a book about deep

learning, after all :-)

Training models on text data is what natural language processing (NLP) is all about.

The whole field is enormous, and we’ll be only scratching the surface of it in this

chapter. We’ll start with the most obvious question: "how do you convert text data

into numerical data?", we’ll end up using a pre-trained model—our famous Muppet

friend, BERT—to classify sentences.

Building a Dataset

There are many freely available datasets for NLP. The texts are usually already

nicely organized into sentences that you can easily feed to a pre-trained model like

BERT. Isn’t it awesome? Well, yeah, but…

 "But what?"

But the texts you’ll find in the real world are not nicely organized into sentences.

You have to organize them yourself.

So, we’ll start our NLP journey by following the steps of Alice and Dorothy, from

Alice’s Adventures in Wonderland[158] by Lewis Carroll and The Wonderful Wizard of Oz
[159] by L. Frank Baum.


Both texts are freely available at the Oxford Text Archive (OTA)
[160] under an Attribution-NonCommercial-ShareAlike 3.0

Unported (CC BY-NC-SA 3.0) license.
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Figure 11.1 - Left: "Alice and the Baby Pig" illustration by John Tenniel, from "Alice’s Adventures in

Wonderland" (1865). Right: "Dorothy meets the Cowardly Lion" illustration by W. W. Denslow,

from "The Wonderful Wizard of Oz" (1900).

The direct links to both texts are alice28-1476.txt[161] (we’re naming it ALICE_URL)

and wizoz10-1740.txt[162] (we’re naming it WIZARD_URL). You can download both of

them to a local folder using the helper function download_text() (included in

data_generation.nlp):

Data Loading

1 localfolder = 'texts'
2 download_text(ALICE_URL, localfolder)
3 download_text(WIZARD_URL, localfolder)

If you open these files in a text editor, you’ll see that there is a lot of information at

the beginning (and some at the end) that has been added to the original text of the

books for legal reasons. We need to remove these additions to the original texts:

Downloading Books

1 fname1 = os.path.join(localfolder, 'alice28-1476.txt')
2 with open(fname1, 'r') as f:
3     alice = ''.join(f.readlines()[104:3704])
4 fname2 = os.path.join(localfolder, 'wizoz10-1740.txt')
5 with open(fname2, 'r') as f:
6     wizard = ''.join(f.readlines()[310:5100])
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The actual texts of the books are contained between lines 105 and 3703

(remember Python’s zero-based indexing) and 309 and 5099, respectively.

Moreover, we’re joining all the lines together into a single large string of text for

each book because we’re going to organize the resulting texts into sentences, and

in a regular book there are line breaks mid-sentence all over.

We definitely do not want to do that manually every time, right? Although it would

be more difficult to automatically remove any additions to the original text, we can

partially automate the removal of the extra lines by setting the real start and end

lines of each text in a configuration file (lines.cfg):

Configuration File

1 text_cfg = """fname,start,end
2 alice28-1476.txt,104,3704
3 wizoz10-1740.txt,310,5100"""
4 bytes_written = open(
5     os.path.join(localfolder, 'lines.cfg'), 'w'
6 ).write(text_cfg)

Your local folder (texts) should have three files now: alice28-1476.txt, lines.cfg,

and wizoz10-1740.txt. Now, it is time to perform…

Sentence Tokenization


A token is a piece of a text, and to tokenize a text means to split

it into pieces; that is, into a list of tokens.

 "What kind of pieces are we talking about here?"

The most common kind of piece is a word. So, tokenizing a text usually means to

split it into words using the white space as a separator:

sentence = "I'm following the white rabbit"
tokens = sentence.split(' ')
tokens
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Output

["I'm", 'following', 'the', 'white', 'rabbit']

 "What about 'I’m'? Isn’t it two words?"

Yes, and no. Not helpful, right? As usual, it depends—word contractions like that

are fairly common, and maybe you want to keep them as single tokens. But it is also

possible to have the token itself split into its two basic components, "I" and "am,"

such that the sentence above has six tokens instead of five. For now, we’re only

interested in sentence tokenization, which, as you probably already guessed,

means to split a text into its sentences.



We’ll get back to the topic of tokenization at word (and subword)

levels later.

For a brief introduction to the topic, check the "Tokenization"[163]

section of the Introduction to Information Retrieval[164] book by

Christopher D. Manning, Prabhakar Raghavan, and Hinrich

Schütze, Cambridge University Press (2008).

We’re using NLTK’s sent_tokenize() method to accomplish this instead of trying

to devise the splitting rules ourselves (NLTK is the natural language toolKit library

and is one of the most traditional tools for handling NLP tasks):

import nltk
from nltk.tokenize import sent_tokenize
nltk.download('punkt')
corpus_alice = sent_tokenize(alice)
corpus_wizard = sent_tokenize(wizard)
len(corpus_alice), len(corpus_wizard)

Output

(1612, 2240)

There are 1,612 sentences in Alice’s Adventures in Wonderland and 2,240 sentences

in The Wonderful Wizard of Oz.
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 "What is this punkt?"

That’s the Punkt Sentence Tokenizer, and its pre-trained model (for the English

language) is included in the NLTK package.

 "And what is a corpus?"

A corpus is a structured set of documents. But there is quite a lot of wiggle room in

this definition: One can define a document as a sentence, a paragraph, or even a

whole book. In our case, the document is a sentence, so each book is actually a set

of sentences, and thus each book may be considered a corpus. The plural of corpus

is actually corpora (yay, Latin!), so we do have a corpora.

Let’s check one sentence from the first corpus of text:

corpus_alice[2]

Output

'There was nothing so VERY remarkable in that; nor did Alice\nthink
it so VERY much out of the way to hear the Rabbit say to\nitself,
`Oh dear!'

Notice that it still includes the line breaks (\n) from the original text. The sentence

tokenizer only handles the sentence splitting; it does not clean up the line breaks.

Let’s check one sentence from the second corpus of text:

corpus_wizard[30]

Output

'"There\'s a cyclone coming, Em," he called to his wife.'

No line breaks here, but notice the quotation marks (") in the text.

 "Why do we care about line breaks and quotation marks anyway?"
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Our dataset is going to be a collection of CSV files, one file for each book, with each

CSV file containing one sentence per line.

Therefore, we need to:

• clean the line breaks to make sure each sentence is on one line only;

• define an appropriate quote char to "wrap" the sentence such that the original

commas and semicolons in the original text do not get misinterpreted as

separation chars of the CSV file; and

• add a second column to the CSV file (the first one is the sentence itself) to

identify the original source of the sentence since we’ll be concatenating, and

shuffling the sentences before training a model on our corpora.

The sentence above should end up looking like this:

\"There's a cyclone coming, Em," he called to his wife.\,wizoz10
-1740.txt

The escape character "\" is a good choice for quote char because it is not present in

any of the books (we would probably have to choose something else if our books of

choice were about coding).

The function below does the grunt work of cleaning, splitting, and saving the

sentences to a CSV file for us:

Method to Generate CSV of Sentences

 1 def sentence_tokenize(source, quote_char='\\', sep_char=',',
 2                       include_header=True, include_source=True,
 3                       extensions=('txt'), **kwargs):
 4     nltk.download('punkt')
 5     # If source is a folder, goes through all files inside it
 6     # that match the desired extensions ('txt' by default)
 7     if os.path.isdir(source):
 8         filenames = [f for f in os.listdir(source)
 9                   if os.path.isfile(os.path.join(source, f))
10                   and os.path.splitext(f)[1][1:] in extensions]
11     elif isinstance(source, str):
12         filenames = [source]
13 
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14     # If there is a configuration file, builds a dictionary with
15     # the corresponding start and end lines of each text file
16     config_file = os.path.join(source, 'lines.cfg')
17     config = {}
18     if os.path.exists(config_file):
19         with open(config_file, 'r') as f:
20             rows = f.readlines()
21 
22         for r in rows[1:]:
23             fname, start, end = r.strip().split(',')
24             config.update({fname: (int(start), int(end))})
25 
26     new_fnames = []
27     # For each file of text
28     for fname in filenames:
29         # If there's a start and end line for that file, use it
30         try:
31             start, end = config[fname]
32         except KeyError:
33             start = None
34             end = None
35 
36         # Opens the file, slices the configures lines (if any)
37         # cleans line breaks and uses the sentence tokenizer
38         with open(os.path.join(source, fname), 'r') as f:
39             contents = (
40                 ''.join(f.readlines()[slice(start, end, None)])
41                 .replace('\n', ' ').replace('\r', '')
42             )
43         corpus = sent_tokenize(contents, **kwargs)
44 
45         # Builds a CSV file containing tokenized sentences
46         base = os.path.splitext(fname)[0]
47         new_fname = f'{base}.sent.csv'
48         new_fname = os.path.join(source, new_fname)
49         with open(new_fname, 'w') as f:
50             # Header of the file
51             if include_header:
52                 if include_source:
53                     f.write('sentence,source\n')
54                 else:
55                     f.write('sentence\n')

Building a Dataset | 889



56             # Writes one line for each sentence
57             for sentence in corpus:
58                 if include_source:
59                     f.write(f'{quote_char}{sentence}{quote_char}\
60                               {sep_char}{fname}\n')
61                 else:
62                     f.write(f'{quote_char}{sentence}\
63                               {quote_char}\n')
64         new_fnames.append(new_fname)
65 
66     # Returns list of the newly generated CSV files
67     return sorted(new_fnames)

It takes a source folder (or a single file) and goes through the files with the right

extensions (only .txt by default), removing lines based on the lines.cfg file (if

any), applying the sentence tokenizer to each file, and generating the

corresponding CSV files of sentences using the configured quote_char and

sep_char. It may also use include_header and include_source in the CSV file.

The CSV files are named after the corresponding text files by dropping the original

extension and appending .sent.csv to it. Let’s see it in action:

Generating Dataset of Sentences

1 new_fnames = sentence_tokenize(localfolder)
2 new_fnames

Output

['texts/alice28-1476.sent.csv', 'texts/wizoz10-1740.sent.csv']

Each CSV file contains the sentences of a book, and we’ll use both of them to build

our own dataset.
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Sentence Tokenization in spaCy

By the way, NLTK is not the only option for sentence tokenization: It is also

possible to use spaCy's sentencizer for this task. The snippet below shows an

example of a spaCy pipeline:

# conda install -c conda-forge spacy
# python -m spacy download en_core_web_sm
import spacy
nlp = spacy.blank("en")
nlp.add_pipe(nlp.create_pipe("sentencizer"))
sentences = []
for doc in nlp.pipe(corpus_alice):
    sentences.extend(sent.text for sent in doc.sents)
len(sentences), sentences[2]

Output

(1615, 'There was nothing so VERY remarkable in that; nor did
Alice\nthink it so VERY much out of the way to hear the Rabbit
say to\nitself, `Oh dear!')

Since spaCy uses a different model for tokenizing sentences, it is no surprise

that it found a slightly different number of sentences in the text.

HuggingFace’s Dataset

We’ll be using HuggingFace’s datasets instead of regular PyTorch ones.

 "Why?"

First, we’ll be using HuggingFace’s pre-trained models (like BERT) later on, so it is

only logical to use their implementation of datasets as well. Second, there are many

datasets already available in their library, so it makes sense to get used to handling

text data using their implementation of datasets.
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Even though we’re using HuggingFace’s Dataset class to build our

own dataset, we’re only using a fraction of its capabilities. For a

more detailed view of what it has to offer, make sure to check its

extensive documentation:

• Quick Tour[165]

• What’s in the Dataset Object[166]

• Loading a Dataset[167]

And, for a complete list of every dataset available, check the

HuggingFace Hub.[168]

Loading a Dataset

We can use HF’s (I will abbreviate HuggingFace as HF from now on)

load_dataset() to load from local files:

Data Preparation

1 from datasets import load_dataset, Split
2 dataset = load_dataset(path='csv',
3                        data_files=new_fnames,
4                        quotechar='\\',
5                        split=Split.TRAIN)

The name of the first argument (path) may be a bit misleading—it is actually the

path to the dataset processing script, not the actual files. To load CSV files, we

simply use HF’s csv as in the example above. The list of actual files containing the

text (sentences, in our case) must be provided in the data_files argument. The

split argument is used to designate which split the dataset represents

(Split.TRAIN, Split.VALIDATION, or Split.TEST).

Moreover, the CSV script offers more options to control parsing and reading of the

CSV files, like quotechar, delimiter, column_names, skip_rows, and quoting. For

more details, please check the documentation on loading CSV files.

It is also possible to load data from JSON files, text files, Python dictionaries, and

Pandas dataframes.
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Attributes

The Dataset has many attributes, like features, num_columns, and shape:

dataset.features, dataset.num_columns, dataset.shape

Output

({'sentence': Value(dtype='string', id=None),
  'source': Value(dtype='string', id=None)},
 2,
 (3852, 2))

Our dataset has two columns, sentence and source, and there are 3,852 sentences

in it.

It can be indexed like a list:

dataset[2]

Output

{'sentence': 'There was nothing so VERY remarkable in that; nor did
Alice think it so VERY much out of the way to hear the Rabbit say to
itself, `Oh dear!',
 'source': 'alice28-1476.txt'}

That’s the third sentence in our dataset, and it is from Alice’s Adventures in

Wonderland.

And its columns can be accessed as a dictionary too:

dataset['source'][:3]

Output

['alice28-1476.txt', 'alice28-1476.txt', 'alice28-1476.txt']
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The first few sentences all come from Alice’s Adventures in Wonderland because we

haven’t shuffled the dataset yet.

Methods

The Dataset also has many methods, like unique(), map(), filter(), shuffle(),

and train_test_split() (for a comprehensive list of operations, check HF’s

"Processing data in a Dataset."[169])

We can easily check the unique sources:

dataset.unique('source')

Output

['alice28-1476.txt', 'wizoz10-1740.txt']

We can use map() to create new columns by using a function that returns a

dictionary with the new column as key:

Data Preparation

1 def is_alice_label(row):
2     is_alice = int(row['source'] == 'alice28-1476.txt')
3     return {'labels': is_alice}
4 
5 dataset = dataset.map(is_alice_label)

Each element in the dataset is a row corresponding to a dictionary ({'sentence':
..., 'source': ...}, in our case), so the function has access to all columns in a

given row. Our is_alice_label() function tests the source column and creates a

labels column. There is no need to return the original columns since this is

automatically handled by the dataset.

If we retrieve the third sentence from our dataset once again, the new column will

already be there:

dataset[2]
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Output

{'labels': 1,
 'sentence': 'There was nothing so VERY remarkable in that; nor did
Alice think it so VERY much out of the way to hear the Rabbit say to
itself, `Oh dear!',
 'source': 'alice28-1476.txt'}

Now that the labels are in place, we can finally shuffle the dataset and split it into

training and test sets:

Data Preparation

1 shuffled_dataset = dataset.shuffle(seed=42)
2 split_dataset = shuffled_dataset.train_test_split(test_size=0.2)
3 split_dataset

Output

DatasetDict({
    train: Dataset({
        features: ['sentence', 'source'],
        num_rows: 3081
    })
    test: Dataset({
        features: ['sentence', 'source'],
        num_rows: 771
    })
})

The splits are actually a dataset dictionary, so you may want to retrieve the actual

datasets from it:

Data Preparation

1 train_dataset = split_dataset['train']
2 test_dataset = split_dataset['test']

Done! We have two—training and test—randomly shuffled datasets.
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Word Tokenization

The naïve word tokenization, as we’ve already seen, simply splits a sentence into

words using the white space as a separator:

sentence = "I'm following the white rabbit"
tokens = sentence.split(' ')
tokens

Output

["I'm", 'following', 'the', 'white', 'rabbit']

But, as we’ve also seen, there are issues with the naïve approach (how to handle

contractions, for example). Let’s try using Gensim,[170] a popular library for topic

modeling, which offers some out-of-the-box tools for performing word

tokenization:

from gensim.parsing.preprocessing import *
preprocess_string(sentence)

Output

['follow', 'white', 'rabbit']

 "That doesn’t look right … some words are simply gone!"

Welcome to the world of tokenization :-) It turns out, Gensim’s

preprocess_string() applies many filters by default, namely:

• strip_tags() (for removing HTML-like tags between brackets)

• strip_punctuation()

• strip_multiple_whitespaces()

• strip_numeric()

The filters above are pretty straightforward, and they are used to remove typical
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elements from the text. But preprocess_string() also includes the following

filters:

• strip_short(): It discards any word less than three characters long.

• remove_stopwords(): It discards any word that is considered a stop word (like

"the," "but," "then," and so on).

• stem_text(): It modifies words by stemming them; that is, reducing them to a

common base form (from "following" to its base "follow," for example).



For a brief introduction to stemming (and the related

lemmatization) procedures, please check the "Stemming and

lemmatization"[171] section of the Introduction to Information

Retrieval[172] book by Christopher D. Manning, Prabhakar

Raghavan, and Hinrich Schütze, Cambridge University Press

(2008).

We won’t be removing stop words or performing stemming here. Since our goal is

to use HF’s pre-trained BERT model, we’ll also use its corresponding pre-trained

tokenizer.

So, let’s use the first four filters only (and make everything lowercase too):

filters = [lambda x: x.lower(),
           strip_tags,
           strip_punctuation,
           strip_multiple_whitespaces, strip_numeric]
preprocess_string(sentence, filters=filters)

Output

['i', 'm', 'following', 'the', 'white', 'rabbit']
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Another option is to use Gensim’s simple_preprocess(), which converts the text

into a list of lowercase tokens, discarding tokens that are either too short (less than

three characters) or too long (more than fifteen characters):

from gensim.utils import simple_preprocess
tokens = simple_preprocess(sentence)
tokens

Output

['following', 'the', 'white', 'rabbit']


"Why are we using Gensim? Can’t we use NLTK to perform word

tokenization?"

Fair enough. NLTK can be used to tokenize words as well, but Gensim cannot be

used to tokenize sentences. Besides, since Gensim has many other interesting tools

for building vocabularies, bag-of-words (BoW) models, and Word2Vec models (we’ll

get to that soon), it makes sense to introduce it as soon as possible.
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Data Augmentation

Let’s briefly address the topic of augmentation for text data. Although we’re

not actually including it in our pipeline here, it’s worth knowing about some

possibilities and techniques regarding data augmentation.

The most basic technique is called word dropout, and, as you probably

guessed, it simply randomly replaces words with some other random word

or a special [UNK] token (word) that indicates a non-existing word.

It is also possible to replace words with their synonyms, so the meaning of

the text is preserved. One can use WordNet,[173] a lexical database for the

English language, to look up synonyms. Finding synonyms is not so easy, and

this approach is limited to the English language.

To circumvent the limitations of the synonyms approach, it is also possible to

replace words with similar words, numerically speaking. We haven’t yet

talked about word embeddings—numerical representations of words—but

they can be used to identify words that may have a similar meaning. For now,

it suffices to say that there are packages that perform data augmentation on

text data using embeddings, like TextAttack.[174]

Let’s try augmenting Richard P. Feynman, as an example:

# !pip install textattack
from textattack.augmentation import EmbeddingAugmenter
augmenter = EmbeddingAugmenter()
feynman = 'What I cannot create, I do not understand.'

for i in range(4):
    print(augmenter.augment(feynman))

Output

['What I cannot create, I do not fathom.']
['What I cannot create, I do not understood.']
['What I notable create, I do not understand.']
['What I significant create, I do not understand.']
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Some are OK, some are changing the tense, some are simply weird. No one

said data augmentation was easy, right?

Vocabulary


The vocabulary is a list of unique words that appear in the text

corpora.

To build our own vocabulary, we need to tokenize our training set first:

sentences = train_dataset['sentence']
tokens = [simple_preprocess(sent) for sent in sentences]
tokens[0]

Output

['and', 'so', 'far', 'as', 'they', 'knew', 'they', 'were', 'quite',
'right']

The tokens variable is a list of lists of words, each (inner) list containing all the

words (tokens) in a sentence. These tokens can then be used to build a vocabulary

using Gensim’s corpora.Dictionary:

from gensim import corpora
dictionary = corpora.Dictionary(tokens)
print(dictionary)

Output

Dictionary(3704 unique tokens: ['and', 'as', 'far', 'knew', 'quite'
]...)
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The corpora’s dictionary is not a typical Python dictionary. It has some specific (and

useful) attributes:

dictionary.num_docs

Output

3081

The num_docs attribute tells us how many documents were processed (sentences, in

our case), and it corresponds to the length of the (outer) list of tokens.

dictionary.num_pos

Output

50802

The num_pos attribute tells us how many tokens (words) were processed over all

documents (sentences).

dictionary.token2id

Output

{'and': 0,
 'as': 1,
 'far': 2,
 'knew': 3,
 'quite': 4,
 ...

The token2id attribute is a (Python) dictionary containing the unique words found

in the text corpora, and a unique ID sequentially assigned to the words.

The keys of the token2id dictionary are the actual vocabulary of our corpora:
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vocab = list(dictionary.token2id.keys())
vocab[:5]

Output

['and', 'as', 'far', 'knew', 'quite']

The cfs attribute stands for collection frequencies and tells us how many times a

given token appears in the text corpora:

dictionary.cfs

Output

{0: 2024,
 6: 362,
 2: 29,
 1: 473,
 7: 443,
 ...

The token corresponding to the ID zero ("and") appeared 2,024 times across all

sentences. But, in how many distinct documents (sentences) did it appear? That’s

what the dfs attribute, which stands for document frequencies, tells us:

dictionary.dfs

Output

{0: 1306,
 6: 351,
 2: 27,
 1: 338,
 7: 342,
 ...

The token corresponding to the ID zero ("and") appeared in 1,306 sentences.
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Finally, if we want to convert a list of tokens into a list of their corresponding

indices in the vocabulary, we can use the doc2idx() method:

sentence = 'follow the white rabbit'
new_tokens = simple_preprocess(sentence)
ids = dictionary.doc2idx(new_tokens)
print(new_tokens)
print(ids)

Output

['follow', 'the', 'white', 'rabbit']
[1482, 20, 497, 333]

The problem is, however large we make the vocabulary, there will always be a new

word that’s not in there.

 "What do we do with words that aren’t in the vocabulary?"

If the word isn’t in the vocabulary, it is an unknown word, and it is going to be

replaced by the corresponding special token: [UNK]. This means we need to add

[UNK] to the vocabulary. Luckily, Gensim’s Dictionary has a

patch_with_special_tokens() method that makes it very easy to patch our

vocabulary:

special_tokens = {'[PAD]': 0, '[UNK]': 1}
dictionary.patch_with_special_tokens(special_tokens)

Besides, since we’re at it, let’s add yet another special token: [PAD]. At some point,

we’ll have to pad our sequences (like we did in Chapter 8), so it will be useful to

have a token ready for it.

What if, instead of adding more tokens to the vocabulary, we try removing words

from it? Maybe we’d like to remove rare words (aardvark always comes to my mind)

to get a smaller vocabulary, or maybe we’d like to remove bad words (profanity)

from it.
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Gensim’s dictionary has a couple of methods that we can use for this:

• filter_extremes(): Keeps the first keep_n most frequent words only (it is also

possible to keep words that appear in at least no_below documents or to

remove words that appear in more than no_above fraction of documents).

• filter_tokens(): Removes tokens from a list of bad_ids (doc2idx() can be

used to get a list of the corresponding IDs of the bad words) or keeps only the

tokens from a list of good_ids.


"What if I want to remove words that appear less than X times in all

documents?"

That’s not directly supported by Gensim’s Dictionary, but we can use its cfs
attribute to find those tokens with low frequency and then filter them out using

filter_tokens():

Method to Find Rare Tokens

1 def get_rare_ids(dictionary, min_freq):
2     rare_ids = [t[0] for t in dictionary.cfs.items()
3                 if t[1] < min_freq]
4     return rare_ids
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Once we’re happy with the size and scope of a vocabulary, we can save it to disk as

a plain text file, one token (word) per line. The helper function below takes a list of

sentences, generates the corresponding vocabulary, and saves it to a file named

vocab.txt:

Method to Build a Vocabulary from a Dataset of Sentences

 1 def make_vocab(sentences, folder=None, special_tokens=None,
 2                vocab_size=None, min_freq=None):
 3     if folder is not None:
 4         if not os.path.exists(folder):
 5             os.mkdir(folder)
 6 
 7     # tokenizes the sentences and creates a Dictionary
 8     tokens = [simple_preprocess(sent) for sent in sentences]
 9     dictionary = corpora.Dictionary(tokens)
10     # keeps only the most frequent words (vocab size)
11     if vocab_size is not None:
12         dictionary.filter_extremes(keep_n=vocab_size)
13     # removes rare words (in case the vocab size still
14     # includes words with low frequency)
15     if min_freq is not None:
16         rare_tokens = get_rare_ids(dictionary, min_freq)
17         dictionary.filter_tokens(bad_ids=rare_tokens)
18     # gets the whole list of tokens and frequencies
19     items = dictionary.cfs.items()
20     # sorts the tokens in descending order
21     words = [dictionary[t[0]]
22              for t in sorted(dictionary.cfs.items(),
23                              key=lambda t: -t[1])]
24     # prepends special tokens, if any
25     if special_tokens is not None:
26         to_add = []
27         for special_token in special_tokens:
28             if special_token not in words:
29                 to_add.append(special_token)
30         words = to_add + words
31 
32     with open(os.path.join(folder, 'vocab.txt'), 'w') as f:
33         for word in words:
34             f.write(f'{word}\n')
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We can take the sentences from our training set, add special tokens to the

vocabulary, filter out any words appearing only once, and save the vocabulary file

to the our_vocab folder:

make_vocab(train_dataset['sentence'],
           'our_vocab/',
           special_tokens=['[PAD]', '[UNK]'],
           min_freq=2)

And now we can use this vocabulary file with a tokenizer.

 "But I thought we were already using tokenizers … aren’t we?"

Yes, we are. First, we used a sentence tokenizer to split the texts into sentences.

Then, we used a word tokenizer to split each sentence into words. But there is yet

another tokenizer…

HuggingFace’s Tokenizer

Since we’re using HF’s datasets, it is only logical that we use HF’s tokenizers as

well, right? Besides, in order to use a pre-trained BERT model, we need to use the

model’s corresponding pre-trained tokenizer.

 "Why?"

Just like pre-trained computer vision models require that the input images are

standardized using ImageNet statistics, pre-trained language models like BERT

require that the inputs are properly tokenized. The tokenization used in BERT is

different than the simple word tokenization we’ve just discussed. We’ll get back to

that in due time, but let’s stick with the simple tokenization for now.

So, before loading a pre-trained tokenizer, let’s create our own tokenizer using our

own vocabulary. HuggingFace’s tokenizers also expect a sentence as input, and

they also proceed to perform some sort of word tokenization. But, instead of simply

returning the tokens themselves, these tokenizers return the indices in the

vocabulary corresponding to the tokens, and lots of additional information. It’s

like Gensim’s doc2idx(), but on steroids! Let’s see it in action!

We’ll be using the BertTokenizer class to create a tokenizer based on our own

vocabulary:
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from transformers import BertTokenizer
tokenizer = BertTokenizer('our_vocab/vocab.txt')



The purpose of this is to illustrate how the tokenizer works using

simple word tokenization only! The (pre-trained) tokenizer you’ll

use for real with a (pre-trained) BERT model does not need a

vocabulary.



The tokenizer class is very rich and offers a plethora of methods

and arguments. We’re just using some basic methods that barely

scratch the surface. For more details, please refer to

HuggingFace’s documentation on the tokenizer[175] and

BertTokenizer[176] classes.

Then, let’s tokenize a new sentence using its tokenize() method:

new_sentence = 'follow the white rabbit neo'
new_tokens = tokenizer.tokenize(new_sentence)
new_tokens

Output

['follow', 'the', 'white', 'rabbit', '[UNK]']

Since Neo (from The Matrix) isn’t part of the original Alice’s Adventures in

Wonderland, it couldn’t possibly be in our vocabulary, and thus it is treated as an

unknown word with its corresponding special token.


"There is nothing new here—wasn’t it supposed to return indices and

more?"

Wait for it… First, we actually can get the indices (the token IDs) using the

convert_tokens_to_ids() method:

new_ids = tokenizer.convert_tokens_to_ids(new_tokens)
new_ids
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Output

[1219, 5, 229, 200, 1]

 "OK, fine, but that doesn’t seem very practical."

You’re absolutely right. We can use the encode() method to perform two steps at

once:

new_ids = tokenizer.encode(new_sentence)
new_ids

Output

[3, 1219, 5, 229, 200, 1, 2]

There we go, from sentence to token IDs in one call!


"Nice try! There are more IDs than tokens in this output! Something

must be wrong…"

Yes, there are more IDs than tokens. No, there’s nothing wrong; it’s actually meant

to be like that. These extra tokens are special tokens too. We could look them up in

the vocabulary using their indices (three and two), but it’s nicer to use the

tokenizer’s convert_ids_to_tokens() method:

tokenizer.convert_ids_to_tokens(new_ids)

Output

['[CLS]', 'follow', 'the', 'white', 'rabbit', '[UNK]', '[SEP]']

The tokenizer not only appended a special separation token ([SEP]) to the output,

but also prepended a special classifier token ([CLS]) to it. We’ve already added a

classifier token to the inputs of a Vision Transformer to use its corresponding output

in a classification task. We can do the same here to classify text using BERT.
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 "What about the separation token?"

This special token is used to, well, separate inputs into two distinct sentences. Yes,

it is possible to feed BERT with two sentences at once, and this kind of input is used

for the next sentence prediction task. We won’t be using that in our example, but

we’ll get back to it while discussing how BERT is trained.

We can actually get rid of the special tokens if we’re not using them:

tokenizer.encode(new_sentence, add_special_tokens=False)

Output

[1219, 5, 229, 200, 1]

 "OK, but where is the promised additional information?"

That’s easy enough—we can simply call the tokenizer itself instead of a particular

method and it will produce an enriched output:

tokenizer(new_sentence,
          add_special_tokens=False,
          return_tensors='pt')

Output

{'input_ids': tensor([[1219,    5,  229,  200,    1]]),
 'token_type_ids': tensor([[0, 0, 0, 0, 0]]),
 'attention_mask': tensor([[1, 1, 1, 1, 1]])}

By default, the outputs are lists, but we used the return_tensors argument to get

PyTorch tensors instead (pt stands for PyTorch). There are three outputs in the

dictionary: input_ids, token_type_ids, and attention_mask.

The first one, input_ids, is the familiar list of token IDs. They are the most

fundamental input, and sometimes the only one, required by the model.
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The second output, token_type_ids, works as a sentence index, and it only makes

sense if the input has more than one sentence (and the special separation tokens

between them). For example:

sentence1 = 'follow the white rabbit neo'
sentence2 = 'no one can be told what the matrix is'
tokenizer(sentence1, sentence2)

Output

{'input_ids': [3, 1219, 5, 229, 200, 1, 2, 51, 42, 78, 32, 307, 41,
5, 1, 30, 2], 'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1]}

Although the tokenizer received two sentences as arguments, it considered them a

single input, thus producing a single sequence of IDs. Let’s convert the IDs back to

tokens and inspect the result:

print(
    tokenizer.convert_ids_to_tokens(joined_sentences['input_ids'])
)

Output

['[CLS]', 'follow', 'the', 'white', 'rabbit', '[UNK]', '[SEP]',
'no', 'one', 'can', 'be', 'told', 'what', 'the', '[UNK]', 'is',
'[SEP]']

The two sentences were concatenated together with a special separation token

([SEP]) at the end of each one.
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The last output, attention_mask, works as the source mask we used in the

Transformer encoder and indicates the padded positions. In a batch of sentences,

for example, we may pad the sequences to get them all with the same length:

separate_sentences = tokenizer([sentence1, sentence2], padding=True)
separate_sentences

Output

{'input_ids': [[3, 1219, 5, 229, 200, 1, 2, 0, 0, 0, 0], [3, 51, 42,
78, 32, 307, 41, 5, 1, 30, 2]], 'token_type_ids': [[0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],
'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0], [1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1]]}

The tokenizer received a list of two sentences, and it took them as two

independent inputs, thus producing two sequences of IDs. Moreover, since the

padding argument was True, it padded the shortest sequence (five tokens) to match

the longest one (nine tokens). Let’s convert the IDs back to tokens again:

print(
    tokenizer.convert_ids_to_tokens(
        separate_sentences['input_ids'][0]
    )
)
print(separate_sentences['attention_mask'][0])

Output

['[CLS]', 'follow', 'the', 'white', 'rabbit', '[UNK]', '[SEP]',
'[PAD]', '[PAD]', '[PAD]', '[PAD]']
[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0]

Each padded element in the sequence has a corresponding zero in the attention

mask.


"Then how can I have a batch where each input has two separate

sentences?"
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Excellent question! It’s actually easy: Simply use two batches, one containing the

first sentence of each pair, the other containing the second sentence of each pair:

first_sentences = [sentence1, 'another first sentence']
second_sentences = [sentence2, 'a second sentence here']
batch_of_pairs = tokenizer(first_sentences, second_sentences)
first_input = tokenizer.convert_ids_to_tokens(
                    batch_of_pairs['input_ids'][0]
              )
second_input = tokenizer.convert_ids_to_tokens(
                    batch_of_pairs['input_ids'][1]
               )
print(first_input)
print(second_input)

Output

['[CLS]', 'follow', 'the', 'white', 'rabbit', '[UNK]', '[SEP]',
'no', 'one', 'can', 'be', 'told', 'what', 'the', '[UNK]', 'is',
'[SEP]']
['[CLS]', 'another', 'first', 'sentence', '[SEP]', '[UNK]',
'second', 'sentence', 'here', '[SEP]']

The batch above has only two inputs, and each input has two sentences.

Finally, let’s apply our tokenizer to our dataset of sentences, padding them and

returning PyTorch tensors:

tokenized_dataset = tokenizer(dataset['sentence'],
                              padding=True,
                              return_tensors='pt',
                              max_length=50,
                              truncation=True)
tokenized_dataset['input_ids']
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Output

tensor([[  3,  27,   1,  ...,   0,   0,   0],
        [  3,  24,  10,  ...,   0,   0,   0],
        [  3,  49,  12,  ...,   0,   0,   0],
        ...,
        [  3,   1,   6,  ...,   0,   0,   0],
        [  3,   6, 132,  ...,   0,   0,   0],
        [  3,   1,   1,  ...,   0,   0,   0]])

Since our books may have some really long sentences, we can use both max_length
and truncation arguments to ensure that sentences longer than 50 tokens get

truncated, and those shorter than that, padded.



For more details on padding and truncation, please check the

awesomely named "Everything you always wanted to know

about padding and truncation"[177] section of HuggingFace’s

documentation.


"Are we done? Can we feed the input_ids to BERT and watch the

magic happen?"

Well, yeah, we could—but wouldn’t you prefer to peek behind the curtain instead?

I thought so :-)

Behind the curtain, BERT is actually using vectors to represent the words. The

token IDs we’ll be sending it are simply the indices of an enormous lookup table.

That lookup table has a very nice name: Word Embeddings.

Each row of the lookup table corresponds to a different token, and each row is

represented by a vector. The size of the vectors is the dimensionality of the

embedding.

 "How do we build these vectors?"

That’s the million-dollar question! We can either build them or learn them.
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Before Word Embeddings

Before getting to the actual word embeddings, let’s start with the basics and build

some simple vectors…

One-Hot Encoding (OHE)

The idea behind OHE is quite simple: Each unique token (word) is represented by a

vector full of zeros except for one position, which corresponds to the token’s

index. As vectors go, it doesn’t get any simpler than that.

Let’s see it in action using only five tokens—"and," "as," "far," "knew," and "

quite"—and generate one-hot encoding representations for them.

Figure 11.2 - One-hot encoding—vocabulary of five words

The figure above would be the OHE representations of these five tokens if there

were only five tokens in total. But there are 3,704 unique tokens in our text

corpora (not counting the added special tokens), so the OHE actually looks like this:

Figure 11.3 - One-hot encoding—our full vocabulary

That’s quite a large and sparse (that’s fancy for way more zeros than non-zeros)
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vector, right? And our vocabulary is not even that large! If we were to use a typical

English vocabulary, we would need vectors of 100,000 dimensions. Clearly, this

isn’t very practical. Nonetheless, the sparse vectors produced by the one-hot

encoding are the basis of a fairly basic NLP model: the bag-of-words (BoW).

Bag-of-Words (BoW)

The bag-of-words model is literally a bag of words: It simply sums up the

corresponding OHE vectors, completely disregarding any underlying structure or

relationships between the words. The resulting vector has only the counts of the

words appearing in the text.

We don’t have to do the counting manually, though, since Gensim’s Dictionary has

a doc2bow() method that does the job for us:

sentence = 'the white rabbit is a rabbit'
bow_tokens = simple_preprocess(sentence)
bow_tokens

Output

['the', 'white', 'rabbit', 'is', 'rabbit']

bow = dictionary.doc2bow(bow_tokens)
bow

Output

[(20, 1), (69, 1), (333, 2), (497, 1)]

The word "rabbit" appears twice in the sentence, so its index (333) shows the

corresponding count (2). Also, notice that the fifth word in the original sentence ("

a") did not qualify as a valid token, because it was filtered out by the

simple_preprocess() function for being too short.

The BoW model is obviously very limited since it represents the frequencies of

each word in a piece of text and nothing else. Moreover, representing words using

one-hot-encoded vectors also presents severe limitations: Not only do the vectors
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become more and more sparse (that is, have more zeros in them) as the vocabulary

grows, but also every word is orthogonal to all the other words.

 "What do you mean by one word being orthogonal to the others?"

Remember the cosine similarity from Chapter 9? Two vectors are said to be

orthogonal to each other if there is a right angle between them, corresponding to a

similarity of zero. So, if we use one-hot-encoded vectors to represent words, we’re

basically saying that no two words are similar to each other. This is obviously

wrong (take synonyms, for example).

 "How can we get better vectors to represent words then?"

Well, we can try to explore the structure and the relationship between words in a

given sentence. That’s the role of…

Language Models

A language model (LM) is a model that estimates the probability of a token or

sequence of tokens. We’ve been using token and word somewhat interchangeably,

but a token can be a single character or a sub-word too. In other words, a language

model will predict the tokens more likely to fill in a blank.

Now, pretend you’re a language model and fill in the blank in the following

sentence.

Figure 11.4 - What’s the next word?

You probably filled the blank in with the word "you."

Figure 11.5 - Filling in the [BLANK]

What about this sentence?

Figure 11.6 - What’s the next word?
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Maybe you filled this blank in with "too," or maybe you chose a different word like

"here" or "now," depending on what you assumed to be preceding the first word.

Figure 11.7 - Many options for filling in the [BLANK]

That’s easy, right? How did you do it, though? How do you know that "you" should

follow "nice to meet"? You’ve probably read and said "nice to meet you" thousands of

times. But have you ever read or said: "Nice to meet aardvark"? Me neither!

What about the second sentence? It’s not that obvious anymore, but I bet you can

still rule out "to meet you aardvark" (or at least admit that’s very unlikely to be the

case).

It turns out, we have a language model in our heads too, and it’s straightforward to

guess which words are good choices to fill in the blanks using sequences that are

familiar to us.
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N-grams

The structure, in the examples above, is composed of three words and a blank: a

four-gram. If we were using two words and blank, that would be a trigram, and, for a

given number of words (n-1) followed by a blank, an n-gram.

Figure 11.8 - N-grams

N-gram models are based on pure statistics: They fill in the blanks using the most

common sequence that matches the words preceding the blank (that’s called the

context). On the one hand, larger values of n (longer sequences of words) may yield

better predictions; on the other hand, they may yield no predictions since a

particular sequence of words may have never been observed. In the latter case, one

can always fall back to a shorter n-gram and try again (that’s called a stupid back-off,

by the way).


For a more detailed explanation of n-gram models, please check

the "N-gram Language Models"[178] section of Lena Voita’s

amazing "NLP Course | For You."[179]

These models are simple, but they are somewhat limited because they can only

look back.

 "Can we look ahead too?"

Sure, we can!
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Continuous Bag-of-Words (CBoW)

In these models, the context is given by the surrounding words, both before and

after the blank. That way, it becomes much easier to predict the word that best

fills in the blank. Let’s say we’re trying to fill in the following blank:

Figure 11.9 - Filling the [BLANK] at the end

That’s what a trigram model would have to work with. It doesn’t look good—the

possibilities are endless. Now, consider the same sentence, this time containing the

words that follow the blank.

Figure 11.10 - Filling the [BLANK] in the center

Well, that’s easy: The blank is "dog."

 "Cool, but what does the bag-of-words have to do with it?"

It is a bag-of-words because it sums up (or averages) the vectors of the context

words ("the," "small," "is," and "barking") and uses it to predict the central word.

 "Why is it continuous? What does it even mean?"

It means the vectors are not one-hot-encoded anymore and have continuous values

instead. The vector of continuous values that represents a given word is a called

word embedding.

Word Embeddings

 "How do we find the values that best represent each word?"

We need to train a model to learn them. This model is called…

Word2Vec

Word2Vec was proposed by Mikolov, T. et al. in their 2013 paper, "Efficient

Estimation of Word Representations in Vector Space,"[180] and it included two
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model architectures: continuous bag-of-words (CBoW) and skip-gram (SG). We’re

focusing on the former.

In the CBoW architecture, the target is the central word. In other words, we’re

dealing with a multiclass classification problem where the number of classes is

given by the size of the vocabulary (any word in the vocabulary can be the central

word). And we’ll be using the context words, better yet, their corresponding

embeddings (vectors), as inputs.

Figure 11.11 - Target and context words


"Wait, how come we’re using the embeddings as inputs? That’s what

we’re trying to learn in the first place!"

Exactly! The embeddings are also parameters of the model, and, as such, they are

randomly initialized as well. As training progresses, their weights are being

updated by gradient descent like any other parameter, and, in the end, we’ll have

embeddings for each word in the vocabulary.

For each pair of context words and corresponding target, the model will average

the embeddings of the context words and feed the result to a linear layer that will

compute one logit for each word in the vocabulary. That’s it! Let’s check the

corresponding code:

class CBOW(nn.Module):
    def __init__(self, vocab_size, embedding_size):
        super().__init__()
        self.embedding = nn.Embedding(vocab_size, embedding_size)
        self.linear = nn.Linear(embedding_size, vocab_size)

    def forward(self, X):
        embeddings = self.embedding(X)
        bow = embeddings.mean(dim=1)
        logits = self.linear(bow)
        return logits
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That’s a fairly simple model, right? If our vocabulary had only five words ("the,"

"small," "is," "barking," and "dog"), we could try to represent each word with an

embedding of three dimensions. Let’s create a dummy model to inspect its

(randomly initialized) embeddings:

torch.manual_seed(42)
dummy_cbow = CBOW(vocab_size=5, embedding_size=3)
dummy_cbow.embedding.state_dict()

Output

OrderedDict([('weight', tensor([[ 0.3367,  0.1288,  0.2345],
                      [ 0.2303, -1.1229, -0.1863],
                      [ 2.2082, -0.6380,  0.4617],
                      [ 0.2674,  0.5349,  0.8094],
                      [ 1.1103, -1.6898, -0.9890]]))])

Figure 11.12 - Word embeddings

As depicted in the figure above, PyTorch’s nn.Embedding layer is a large lookup

table. It may be randomly initialized given the size of the vocabulary

(num_embeddings) and the number of dimensions (embedding_dim). To actually

retrieve the values, we need to call the embedding layer with a list of token

indices, and it will return the corresponding rows of the table.

For example, we can retrieve the embeddings for the tokens "is" and "barking" using

their corresponding indices (two and three):

# tokens: ['is', 'barking']
dummy_cbow.embedding(torch.as_tensor([2, 3]))
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Output

tensor([[ 2.2082, -0.6380,  0.4617],
        [ 0.2674,  0.5349,  0.8094]], grad_fn=<EmbeddingBackward>)



That’s why the main job of the tokenizer is to transform a

sentence into a list of token IDs. That list is used as an input to

the embedding layer, and from then on, the tokens are

represented by dense vectors.

 "How do you choose the number of dimensions?"

It is commonplace to use between 50 and 300 dimensions for word embeddings,

but some embeddings may be as large as 3,000 dimensions. That may look like a lot

but, compared to one-hot-encoded vectors, it is a bargain! The vocabulary of our

tiny dataset would already require more than 3,000 dimensions if it were one-hot-

encoded.

In our former example, "dog" was the central word and the other four words were

the context words:

tiny_vocab = ['the', 'small', 'is', 'barking', 'dog']
context_words = ['the', 'small', 'is', 'barking']
target_words = ['dog']

Now, let’s pretend that we tokenized the words and got their corresponding

indices:

batch_context = torch.as_tensor([[0, 1, 2, 3]]).long()
batch_target = torch.as_tensor([4]).long()

In its very first training step, the model would compute the continuous bag-of-

words for the inputs by averaging the corresponding embeddings.
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Figure 11.13 - Continuous bag-of-words

cbow_features = dummy_cbow.embedding(batch_context).mean(dim=1)
cbow_features

Output

tensor([[ 0.7606, -0.2743,  0.3298]], grad_fn=<MeanBackward1>)

The bag-of-words has three dimensions, which are the features used to compute

the logits for our multiclass classification problem.

Figure 11.14 - Logits

logits = dummy_cbow.linear(cbow_features)
logits

Output

tensor([[ 0.3542,  0.6937, -0.2028, -0.5873,  0.2099]],
       grad_fn=<AddmmBackward>)
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The largest logit corresponds to the word "small" (class index one), so that would be

the predicted central word: "The small small is barking." The prediction is obviously

wrong, but, then again, that’s still a randomly initialized model. Given a large

enough dataset of context and target words, we could train the CBOW model above

using an nn.CrossEntropyLoss() to learn actual word embeddings.



The Word2Vec model may also be trained using the skip-gram

approach instead of continuous bag-of-words. The skip-gram

uses the central word to predict the surrounding words, thus

being a multi-label multiclass classification problem. In our

simple example, the input would be the central word "dog," and

the model would try to predict the four context words ("the,"

"small," "is," and "barking") at once.



We’re not diving any deeper into the inner workings of the

Word2Vec model, but you can check Jay Alammar’s "The

Illustrated Word2Vec"[181] and Lilian Weng’s "Learning Word

Embedding,"[182] amazing posts on the subject.

If you’re interested in training a Word2Vec model yourself,

follow Jason Brownlee’s great tutorial: "How to Develop Word

Embeddings in Python with Gensim."[183]

So far, it looks like we’re learning word embeddings just for the sake of getting

more compact (denser) representations than one-hot encoding can offer for each

word. But word embeddings are more than that.

What Is an Embedding Anyway?

An embedding is a representation of an entity (a word, in our case), and each of its

dimensions can be seen as an attribute or feature.

Let’s forget about words for a moment and talk about restaurants instead. We can

rate restaurants over many different dimensions, like food, price, and service, for

example.
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Figure 11.15 - Reviewing restaurants

Clearly, restaurants #1 and #3 have good food and service but are expensive, and

restaurants #2 and #4 are cheap but either the food or the service is bad. It’s fair to

say that restaurants #1 and #3 are similar to each other, and that they are both

very different from restaurants #2 and #4, which, in turn, are somewhat similar to

each other as well.


"What about the cuisine? We can’t properly compare restaurants

without that information!"

I agree with you, so let’s just pretend that all of them are pizza places :-)

Although it’s fairly obvious to spot the similarities and differences among the

restaurants in the table above, it wouldn’t be so easy to spot them if there were

dozens of dimensions to compare. Besides, it would be very hard to objectively

measure the similarity between any two restaurants using categorical scales like

that.

 "What if we use continuous scales instead?"

Perfect! Let’s do that and assign values in the range [-1, 1], from very bad (-1) to

very good (1), or from very expensive (-1) to very cheap (1).

Figure 11.16 - Restaurant "embeddings"

 These values are like "restaurant embeddings" :-)
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Well, they’re not quite embeddings, but at least we can use cosine similarity to find

out how similar to each other two restaurants are:

ratings = torch.as_tensor([[.7, -.4, .7],
                           [.3, .7, -.5],
                           [.9, -.55, .8],
                           [-.3, .8, .34]]).float()
sims = torch.zeros(4, 4)
for i in range(4):
    for j in range(4):
        sims[i, j] = F.cosine_similarity(ratings[i],
                                         ratings[j],
                                         dim=0)
sims

Output

tensor([[ 1.0000, -0.4318,  0.9976, -0.2974],
        [-0.4318,  1.0000, -0.4270,  0.3581],
        [ 0.9976, -0.4270,  1.0000, -0.3598],
        [-0.2974,  0.3581, -0.3598,  1.0000]])

As expected, restaurants #1 and #3 are remarkably similar (0.9976), and

restaurants #2 and #4 are somewhat similar (0.3581). Restaurant #1 is quite

different from restaurants #2 and #4 (-0.4318 and -0.2974, respectively), and so is

restaurant #3 (-0.4270 and -0.3598, respectively).

Although we can compute the cosine similarity between two restaurants now, the

values in the table above are not real embeddings. It was only an example that

illustrates well the concept of embedding dimensions as attributes.



Unfortunately, the dimensions of the word embeddings learned

by the Word2Vec model do not have clear-cut meanings like

that.

On the bright side, though, it is possible to do arithmetic with

word embeddings!

 "Say what?"
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You got that right—arithmetic—really! Maybe you’ve seen this "equation"

somewhere else already:

KING - MAN + WOMAN = QUEEN

Awesome, right? We’ll try this "equation" out shortly, hang in there!

Pre-trained Word2Vec

Word2Vec is a simple model but it still requires a sizable amount of text data to

learn meaningful embeddings. Luckily for us, someone else had already done the

hard work of training these models, and we can use Gensim’s downloader to choose

from a variety of pre-trained word embeddings.


For a detailed list of the available models (embeddings), please

check Gensim-data’s repository[184] on GitHub.

 "Why so many embeddings? How are they different from each other?"

Good question! It turns out, using different text corpora to train a Word2Vec

model produces different embeddings. On the one hand, this shouldn’t be a

surprise; after all, these are different datasets and it’s expected that they will

produce different results. On the other hand, if these datasets all contain

sentences in the same language (English, for example), how come the embeddings

are different?

The embeddings will be influenced by the kind of language used in the text: The

phrasing and wording used in novels are different from those used in news articles

and radically different from those used on Twitter, for example.


"Choose your word embeddings wisely."

Grail Knight

Moreover, not every word embedding is learned using a Word2Vec model

architecture. There are many different ways of learning word embeddings, one of

them being…
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Global Vectors (GloVe)

The Global Vectors model was proposed by Pennington, J. et al. in their 2014 paper

"GloVe: Global Vectors for Word Representation."[185] It combines the skip-gram

model with co-occurrence statistics at the global level (hence the name). We’re

not diving into its inner workings here, but if you’re interested in knowing more

about it, check its official website: https://nlp.stanford.edu/projects/glove/.

The pre-trained GloVe embeddings come in many sizes and shapes: Dimensions

vary between 25 and 300, and vocabularies vary between 400,000 and 2,200,000

words. Let’s use Gensim’s downloader to retrieve the smallest one: glove-wiki-
gigaword-50. It was trained on Wikipedia 2014 and Gigawords 5, it contains

400,000 words in its vocabulary, and its embeddings have 50 dimensions.

Downloading Pre-trained Word Embeddings

1 from gensim import downloader
2 glove = downloader.load('glove-wiki-gigaword-50')
3 len(glove.vocab)

Output

400000

Let’s check the embeddings for "alice" (the vocabulary is uncased):

glove['alice']

Output

array([ 0.16386,  0.57795, -0.59197, -0.32446,  0.29762,  0.85151,
       -0.76695, -0.20733,  0.21491, -0.51587, -0.17517,  0.94459,
        0.12705, -0.33031,  0.75951,  0.44449,  0.16553, -0.19235,
        0.06553, -0.12394,  0.61446,  0.89784,  0.17413,  0.41149,
        1.191  , -0.39461, -0.459  ,  0.02216, -0.50843, -0.44464,
        0.68721, -0.7167 ,  0.20835, -0.23437,  0.02604, -0.47993,
        0.31873, -0.29135,  0.50273, -0.55144, -0.06669,  0.43873,
       -0.24293, -1.0247 ,  0.02937,  0.06849,  0.25451, -1.9663 ,
        0.26673,  0.88486], dtype=float32)
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There we go, 50 dimensions! It’s time to try the famous "equation": KING - MAN +

WOMAN = QUEEN. We’re calling the result a "synthetic queen":

synthetic_queen = glove['king'] - glove['man'] + glove['woman']

These are the corresponding embeddings:

fig = plot_word_vectors(
    glove, ['king', 'man', 'woman', 'synthetic', 'queen'],
    other={'synthetic': synthetic_queen}
)

Figure 11.17 - Synthetic queen

How similar is the "synthetic queen" to the actual "queen," you ask. It’s hard to tell

by looking at the vectors above alone, but Gensim’s word vectors have a

similar_by_vector() method that computes cosine similarity between a given

vector and the whole vocabulary and returns the top N most similar words:

glove.similar_by_vector(synthetic_queen, topn=5)

Output

[('king', 0.8859835863113403),
 ('queen', 0.8609581589698792),
 ('daughter', 0.7684512138366699),
 ('prince', 0.7640699148178101),
 ('throne', 0.7634971141815186)]

 "The most similar word to the 'synthetic queen' is … king?"

Yes. It’s not always the case, but it’s fairly common to find out that, after performing
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word embedding arithmetic, the word most similar to the result is the original

word itself. For this reason, it’s usual to exclude the original word from the

similarity results. In this case, the most similar word to the "synthetic queen" is,

indeed, the actual "queen."

 "OK, cool, but how does this arithmetic work?"

The general idea is that the embeddings learned to encode abstract dimensions,

like "gender," "royalty," "genealogy," or "profession." None of these abstract

dimensions corresponds to a single numerical dimension, though.

In its large 50-dimensional feature space, the model learned to place "man" as far

apart from "woman" as "king" is from "queen" (roughly approximating the gender

difference between the two). Similarly, the model learned to place "king" as far

apart from "man" as "queen" is from "woman" (roughly approximating the difference

of being a royal). The figure below depicts a hypothetical projection in two

dimensions for easier visualization:

Figure 11.18 - Projection of embeddings

From the figure above, it should be relatively clear that both arrows pointing up

(blue) are approximately the same size, thus resulting in the equation below:
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Equation 11.1 - Embedding arithmetic

This arithmetic is cool and all, but you won’t actually be using it much; the whole

point was to show you that the word embeddings indeed capture the relationship

between different words. We can use them to train other models, though.

Using Word Embeddings

It seems easy enough: Get the text corpora tokenized, look the tokens up in the

table of pre-trained word embeddings, and then use the embeddings as inputs of

another model. But, what if the vocabulary of your corpora is not quite properly

represented in the embeddings? Even worse, what if the preprocessing steps you

used resulted in a lot of tokens that do not exist in the embeddings?


"Choose your word embeddings wisely."

Grail Knight

Vocabulary Coverage

Once again, the Grail Knight has a point—the chosen word embeddings must

provide good vocabulary coverage. First and foremost, most of the usual

preprocessing steps do not apply when you’re using pre-trained word embeddings

like GloVe: no lemmatization, no stemming, no stop-word removal. These steps

would likely end up producing a lot of [UNK] tokens.

Second, even without those preprocessing steps, maybe the words used in the

given text corpora are simply not a good match for a particular pre-trained set of

word embeddings.

Let’s see how good a match the glove-wiki-gigaword-50 embeddings are to our

own vocabulary. Our vocabulary has 3,706 words (3,704 from our text corpora

plus the padding and unknown special tokens):

vocab = list(dictionary.token2id.keys())
len(vocab)
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Output

3706

Let’s see how many words of our own vocabulary are unknown to the

embeddings:

unknown_words = sorted(
    list(set(vocab).difference(set(glove.vocab)))
)
print(len(unknown_words))
print(unknown_words[:5])

Output

44
['[PAD]', '[UNK]', 'arrum', 'barrowful', 'beauti']

There are only 44 unknown words: the two special tokens, and some other weird

words like "arrum" and "barrowful." It looks good, right? It means that there are

3,662 matches out of 3,706 words, hinting at 98.81% coverage. But it is actually

better than that.

If we look at how often the unknown words show up in our text corpora, we’ll have

a precise measure of how many tokens will be unknown to the embeddings. To

actually get the total count we need to get the IDs of the unknown words first, and

then look at their frequencies in the corpora:

unknown_ids = [dictionary.token2id[w]
               for w in unknown_words
               if w not in ['[PAD]', '[UNK]']]
unknown_count = np.sum([dictionary.cfs[idx]
                        for idx in unknown_ids])
unknown_count, dictionary.num_pos

Output

(82, 50802)
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Only 82 out of 50,802 words in the text corpora cannot be matched to the

vocabulary of the word embeddings. That’s an impressive 99.84% coverage!

The helper function below can be used to compute the vocabulary coverage given

a Gensim’s Dictionary and pre-trained embeddings:

Method for Vocabulary Coverage

 1 def vocab_coverage(gensim_dict, pretrained_wv,
 2                    special_tokens=('[PAD]', '[UNK]')):
 3     vocab = list(gensim_dict.token2id.keys())
 4     unknown_words = sorted(
 5         list(set(vocab).difference(set(pretrained_wv.vocab)))
 6     )
 7     unknown_ids = [gensim_dict.token2id[w]
 8                    for w in unknown_words
 9                    if w not in special_tokens]
10     unknown_count = np.sum([gensim_dict.cfs[idx]
11                             for idx in unknown_ids])
12     cov = 1 - unknown_count / gensim_dict.num_pos
13     return cov

vocab_coverage(dictionary, glove)

Output

0.9983858903192788
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Tokenizer

Once we’re happy with the vocabulary coverage of our pre-trained embeddings,

we can save the vocabulary of the embeddings to disk as a plain-text file, so we

can use it with the HF’s tokenizer:

Method to Save a Vocabulary from Pre-trained Embeddings

 1 def make_vocab_from_wv(wv, folder=None, special_tokens=None):
 2     if folder is not None:
 3         if not os.path.exists(folder):
 4             os.mkdir(folder)
 5 
 6     words = wv.index2word
 7     if special_tokens is not None:
 8         to_add = []
 9         for special_token in special_tokens:
10             if special_token not in words:
11                 to_add.append(special_token)
12         words = to_add + words
13 
14     with open(os.path.join(folder, 'vocab.txt'), 'w') as f:
15         for word in words:
16             f.write(f'{word}\n')

Saving GloVe’s Vocabulary to a File

1 make_vocab_from_wv(glove,
2                    'glove_vocab/',
3                    special_tokens=['[PAD]', '[UNK]'])

We’ll be using the BertTokenizer class once again to create a tokenizer based on

GloVe’s vocabulary:

Creating a Tokenizer using GloVe

1 glove_tokenizer = BertTokenizer('glove_vocab/vocab.txt')


One more time: The (pre-trained) tokenizer you’ll use for real

with a (pre-trained) BERT model does not need a vocabulary.
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Now we can use its encode() method to get the indices for the tokens in a

sentence:

glove_tokenizer.encode('alice followed the white rabbit',
                        add_special_tokens=False)

Output

[7101, 930, 2, 300, 12427]

These are the indices we’ll use to retrieve the corresponding word embeddings.

There is one small detail we need to take care of first, though…

Special Tokens' Embeddings

Our vocabulary has 400,002 tokens now, but the original pre-trained word

embeddings has only 400,000 entries:

len(glove_tokenizer.vocab), len(glove.vectors)

Output

(400002, 400000)

The difference is due to the two special tokens, [PAD] and [UNK], that were

prepended to the vocabulary when we saved it to disk. Therefore, we need to

prepend their corresponding embeddings too.

 "How would I know the embeddings for these tokens?"
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That’s actually easy; these embeddings are just 50-dimensional vectors of zeros,

and we concatenate them to the GloVe’s pre-trained embeddings, making sure that

the special embeddings come first:

Adding Embeddings for the Special Tokens

1 special_embeddings = np.zeros((2, glove.vector_size))
2 extended_embeddings = np.concatenate(
3     [special_embeddings, glove.vectors], axis=0
4 )
5 extended_embeddings.shape

Output

(400002, 50)

Now, if we encode "alice" to get its corresponding index, and use that index to

retrieve the corresponding values from our extended embeddings, they should

match the original GloVe embeddings:

alice_idx = glove_tokenizer.encode(
    'alice', add_special_tokens=False
)
np.all(full_embeddings[alice_idx] == glove['alice'])

Output

True

OK, it looks like we’re set! Let’s put these embeddings to good use and finally train

a model in PyTorch!

936 | Chapter 11: Down the Yellow Brick Rabbit Hole



Model I — GloVE + Classifier

Data Preparation

It all starts with the data preparation step. As we already know, we need to tokenize

the sentences to get their corresponding sequences of token IDs. The sentences

(and the labels) can be easily retrieved from HF’s dataset, like a dictionary:

Data Preparation

1 train_sentences = train_dataset['sentence']
2 train_labels = train_dataset['labels']
3 
4 test_sentences = test_dataset['sentence']
5 test_labels = test_dataset['labels']

Next, we use our glove_tokenizer() to tokenize the sentences, making sure that

we pad and truncate them so they all end up with 60 tokens (like we did in the

"HuggingFace’s Tokenizer" section). We only need the inputs_ids to fetch their

corresponding embeddings later on:

Data Preparation — Tokenizing

 1 train_ids = glove_tokenizer(train_sentences,
 2                             truncation=True,
 3                             padding=True,
 4                             max_length=60,
 5                             add_special_tokens=False,
 6                             return_tensors='pt')['input_ids']
 7 train_labels = torch.as_tensor(train_labels).float().view(-1, 1)
 8 
 9 test_ids = glove_tokenizer(test_sentences,
10                            truncation=True,
11                            padding=True,
12                            max_length=60,
13                            add_special_tokens=False,
14                            return_tensors='pt')['input_ids']
15 test_labels = torch.as_tensor(test_labels).float().view(-1, 1)
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Both sequences of token IDs and labels are regular PyTorch tensors now, so we can

use the familiar TensorDataset:

Data Preparation

1 train_tensor_dataset = TensorDataset(train_ids, train_labels)
2 generator = torch.Generator()
3 train_loader = DataLoader(
4     train_tensor_dataset, batch_size=32,
5     shuffle=True, generator=generator
6 )
7 test_tensor_dataset = TensorDataset(test_ids, test_labels)
8 test_loader = DataLoader(test_tensor_dataset, batch_size=32)


"Hold on! Why are we going back to TensorDataset instead of using

HF’s Dataset?"

Well, even though HF’s Dataset was extremely useful to load and manipulate all

the files from our text corpora, and it will surely work seamlessly with HF’s pre-

trained models, it’s not ideal to work with our regular, pure PyTorch training

routine.

 "Why not?"

It boils down to the fact that, while a TensorDataset returns a typical (features,

label) tuple, the HF’s Dataset always returns a dictionary. So, instead of jumping

through hoops to accommodate this difference in their outputs, it’s easier to fall

back to the familiar TensorDataset for now.

We already have token IDs and labels. But we also have to load the pre-trained

embeddings that match the IDs produced by the tokenizer.
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Pre-trained PyTorch Embeddings

The embedding layer in PyTorch, nn.Embedding, can be either trained like any

other layer or loaded using its from_pretrained() method. Let’s load the extended

version of the pre-trained GloVe embeddings:

extended_embeddings = torch.as_tensor(extended_embeddings).float()
torch_embeddings = nn.Embedding.from_pretrained(extended_embeddings)


By default, the embeddings are frozen; that is, they won’t be

updated during model training. You can change this behavior by

setting the freeze argument to False, though.

Then, let’s take the first mini-batch of tokenized sentences and their labels:

token_ids, labels = next(iter(train_loader))
token_ids

Output

tensor([[  36,   63,    1,  ...,    0,    0,    0],
        [ 934,   16,   14,  ...,    0,    0,    0],
        [  57,  311,    8,  ...,  140,    3,   83],
        ...,
        [7101,   59, 1536,  ...,    0,    0,    0],
        [  43,   59, 1995,  ...,    0,    0,    0],
        [ 102,   41,  210,  ...,  685,    3,    7]])

There are 32 sentences of 60 tokens each. We can use this batch of token IDs to

retrieve their corresponding embeddings:

token_embeddings = torch_embeddings(token_ids)
token_embeddings.shape

Output

torch.Size([32, 60, 50])
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Since each embedding has 50 dimensions, the resulting tensor has the shape

above: 32 sentences, 60 tokens each, 50 dimensions for each token.

Let’s make it a bit simpler and average the embeddings corresponding to all tokens

in a sentence:

token_embeddings.mean(dim=1)

Output

tensor([[ 0.0665, -0.0071, -0.0534,  ..., -0.0202, -0.1432],
        [ 0.0514,  0.0495,  0.0083,  ...,  0.0162,  0.0687],
        ...,
        [ 0.0516,  0.1091,  0.0917,  ...,  0.0037,  0.0553],
        [ 0.1972,  0.1069, -0.2049,  ..., -0.1026, -0.3731]])

Now each sentence is represented by an average embedding of its tokens. That’s a

bag-of-words or, better yet, a bag-of-embeddings. Each tensor is a numerical

representation of a sentence, and we can use it as features for a classification

algorithm.



By the way, for training simple models using bag-of-embeddings

as inputs, it is better to use PyTorch’s nn.EmbeddingBag instead.

The outcome is exactly the same as the one above, but it is faster:

boe_mean = nn.EmbeddingBag.from_pretrained(
    extended_embeddings, mode='mean'
)
boe_mean(token_ids)

Besides, we don’t have to take the mean manually anymore, and

therefore we can use it in a simple Sequential model.
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Model Configuration & Training

Let’s build a Sequential model to classify our sentences according to their source

(Alice’s Adventures in Wonderland or The Wonderful Wizard of Oz) using PyTorch’s

nn.EmbeddingBag:

Model Configuration

 1 extended_embeddings = torch.as_tensor(
 2     extended_embeddings
 3 ).float()
 4 boe_mean = nn.EmbeddingBag.from_pretrained(
 5     extended_embeddings, mode='mean'
 6 )
 7 torch.manual_seed(41)
 8 model = nn.Sequential(
 9     # Embeddings
10     boe_mean,
11     # Classifier
12     nn.Linear(boe_mean.embedding_dim, 128),
13     nn.ReLU(),
14     nn.Linear(128, 1)
15 )
16 loss_fn = nn.BCEWithLogitsLoss()
17 optimizer = optim.Adam(model.parameters(), lr=0.01)

The model is quite simple and straightforward: The bag-of-embeddings generates a

batch of average embeddings (each sentence is represented by a tensor of

embedding_dim dimensions), and those embeddings work as features for the

classifier part of the model.

We can train the model in the usual way:

Model Training

1 sbs_emb = StepByStep(model, loss_fn, optimizer)
2 sbs_emb.set_loaders(train_loader, test_loader)
3 sbs_emb.train(20)

fig = sbs_emb.plot_losses()
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Figure 11.19 - Losses—bag-of-embeddings (BoE)

StepByStep.loader_apply(test_loader, sbs_emb.correct)

Output

tensor([[380, 440],
        [311, 331]])

That’s 89.62% accuracy on the test set. Not bad, not bad at all!


"OK, but I don’t want to use a Sequential model, I want to use a

Transformer!"

I hear you.

Model II — GloVe + Transformer

We’ll use a Transformer encoder as a classifier again, just like we did in the "Vision

Transformer" section in Chapter 10. The model is pretty much the same except that

we’re using pre-trained word embeddings instead of patch embeddings:

Model Configuration

 1 class TransfClassifier(nn.Module):
 2     def __init__(self, embedding_layer, encoder, n_outputs):
 3         super().__init__()
 4         self.d_model = encoder.d_model
 5         self.n_outputs = n_outputs
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 6         self.encoder = encoder
 7         self.mlp = nn.Linear(self.d_model, n_outputs)
 8 
 9         self.embed = embedding_layer                 ①
10         self.cls_token = nn.Parameter(
11             torch.zeros(1, 1, self.d_model)
12         )
13 
14     def preprocess(self, X):
15         # N, L -> N, L, D
16         src = self.embed(X)
17         # Special classifier token
18         # 1, 1, D -> N, 1, D
19         cls_tokens = self.cls_token.expand(X.size(0), -1, -1)
20         # Concatenates CLS tokens -> N, 1 + L, D
21         src = torch.cat((cls_tokens, src), dim=1)
22         return src
23 
24     def encode(self, source, source_mask=None):
25         # Encoder generates "hidden states"
26         states = self.encoder(source, source_mask)   ②
27         # Gets state from first token: CLS
28         cls_state = states[:, 0]  # N, 1, D
29         return cls_state
30 
31     @staticmethod
32     def source_mask(X):                              ②
33         cls_mask = torch.ones(X.size(0), 1).type_as(X)
34         pad_mask = torch.cat((cls_mask, X > 0), dim=1).bool()
35         return pad_mask.unsqueeze(1)
36 
37     def forward(self, X):
38         src = self.preprocess(X)
39         # Featurizer
40         cls_state = self.encode(src,
41                                 self.source_mask(X)) ②
42         # Classifier
43         out = self.mlp(cls_state) # N, 1, outputs
44         return out

① The embedding layer is an argument now.

② The encoder receives a source mask to flag the padded (and classification)
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tokens.

Our model takes an instance of a Transformer encoder, a layer of pre-trained

embeddings (not an nn.EmbeddingBag anymore!), and the desired number of

outputs (logits) corresponding to the number of existing classes.

The forward() method takes a mini-batch of tokenized sentences, pre-processes

them, encodes them (featurizer), and outputs logits (classifier). It really works just

like the Vision Transformer from Chapter 10, but now it takes a sequence of words

(tokens) instead of image patches.

Let’s create an instance of our model and train it in the usual way:

Model Configuration

 1 torch.manual_seed(33)
 2 # Loads the pre-trained GloVe embeddings into an embedding layer
 3 torch_embeddings = nn.Embedding.from_pretrained(
 4     extended_embeddings
 5 )
 6 # Creates a Transformer Encoder
 7 layer = EncoderLayer(n_heads=2,
 8                      d_model=torch_embeddings.embedding_dim,
 9                      ff_units=128)
10 encoder = EncoderTransf(layer, n_layers=1)
11 # Uses both layers above to build our model
12 model = TransfClassifier(torch_embeddings, encoder, n_outputs=1)
13 loss_fn = nn.BCEWithLogitsLoss()
14 optimizer = optim.Adam(model.parameters(), lr=1e-4)

Model Training

1 sbs_transf = StepByStep(model, loss_fn, optimizer)
2 sbs_transf.set_loaders(train_loader, test_loader)
3 sbs_transf.train(10)

fig = sbs_transf.plot_losses()
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Figure 11.20 - Losses—Transformer + GloVe embeddings

Looks like our model started overfitting really quickly since the validation loss

barely improves, if at all, after the third epoch. Let’s check its accuracy on the

validation (test) set:

StepByStep.loader_apply(test_loader, sbs_transf.correct)

Output

tensor([[410, 440],
        [300, 331]])

That’s 92.09% accuracy. Well, that’s good, but not so much better than the simple

bag-of-embeddings model as you might expect from a mighty Transformer, right?

Let’s see what our model is actually paying attention to.

Visualizing Attention

Instead of using sentences from the validation (test) set, let’s come up with brand

new, totally made-up sentences of our own:

sentences = ['The white rabbit and Alice ran away',
             'The lion met Dorothy on the road']
inputs = glove_tokenizer(sentences, add_special_tokens=False,
                         return_tensors='pt')['input_ids']
inputs
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Output

tensor([[    2,   300, 12427,     7,  7101,  1423,   422],
        [    2,  6659,   811, 11238,    15,     2,   588]],
        device='cuda:0')

Yes, both sentences have the same number of tokens, for our convenience. Even

though they’re made-up sentences, I wonder what our model will say about their

source being either Alice’s Adventures in Wonderland (positive class) or The

Wonderful Wizard of Oz (negative class):

sbs_transf.model.eval()
out = sbs_transf.model(inputs)
# our model outputs logits, so we turn them into probs
torch.sigmoid(out)

Output

tensor([[0.9888],
        [0.0101]], device='cuda:0', grad_fn=<SigmoidBackward>)

The model really thinks that only the first sentence comes from Alice’s Adventures in

Wonderland. To really understand why that is, we need to dig into its attention

scores. The code below retrieves the attention scores for the first (and only) layer

of our Transformer encoder:

alphas = (sbs_transf.model
          .encoder
          .layers[0]
          .self_attn_heads
          .alphas)
alphas[:, :, 0, :].squeeze()
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Output

tensor([[[2.6334e-01, 6.9912e-02, 1.6958e-01, 1.6574e-01,
          1.1365e-01, 1.3449e-01, 6.6508e-02, 1.6772e-02],
         [2.7878e-05, 2.5806e-03, 2.9353e-03, 1.3467e-01,
          1.7490e-03, 8.5641e-01, 7.3843e-04, 8.8371e-04]],

        [[6.8102e-02, 1.8080e-02, 1.0238e-01, 6.1889e-02,
          6.2652e-01, 1.0388e-02, 1.6588e-02, 9.6055e-02],
         [2.2783e-04, 2.1089e-02, 3.4972e-01, 2.3252e-02,
          5.2879e-01, 3.5840e-02, 2.5432e-02, 1.5650e-02]]],
        device='cuda:0')


"Why are we slicing the third dimension? What is the third dimension

again?"

In the multi-headed self-attention mechanism, the scores have the following shape:

(N, n_heads, L, L). We have two sentences (N=2), two attention heads (n_heads=2),

and our sequence has eight tokens (L=8).

 "I’m sorry, but our sequences have seven tokens, not eight."

Yes, that’s true. But don’t forget about the special classifier token that was

prepended to the sequence of embeddings. That’s also the reason why we’re slicing

the third dimension: That zero index means we’re looking at the attention scores

of the special classifier token. Since we’re using the output corresponding to that

token to classify the sentences, it’s only logical to check what it’s paying attention

to, right? Moreover, the first value in each attention score tensor above

represents how much attention the special classifier token is paying to itself.

So, what is the model paying attention to then? Let’s see!

Figure 11.21 - Attention scores

Clearly, the model learned that "white rabbit" and "Alice" are strong signs that a

given sentence belongs to Alice’s Adventures in Wonderland. Conversely, if there is a
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"lion" or "Dorothy" in the sentence, it’s likely from The Wonderful Wizard of Oz.

Cool, right? Looks like word embeddings are the best invention since sliced bread!

That would indeed be the case if only actual languages were straightforward and

organized—unfortunately, they are nothing like that.

Let me show you two sentences from Alice’s Adventures in Wonderland (the

highlights are mine):

• "The Hatter was the first to break the silence. `What day of the month is it?' he said,

turning to Alice: he had taken his watch out of his pocket, and was looking at it

uneasily, shaking it every now and then, and holding it to his ear."

• "Alice thought this a very curious thing, and she went nearer to watch them, and just

as she came up to them she heard one of them say, `Look out now, Five! Don’t go

splashing paint over me like that!"

In the first sentence, the word "watch" is a noun and it refers to the object the

Hatter had taken out of his pocket. In the second sentence, "watch" is a verb and it

refers to what Alice is doing. Clearly, two very different meanings for the same

word.

But, if we look the "watch" token up in our vocabulary, we’ll always retrieve the

same values from the word embeddings, regardless of the actual meaning of the

word in a sentence.

Can we do better? Of course!

Contextual Word Embeddings

If a single token is not enough, why not take the whole sentence, right? Instead of

taking a word by itself, we can take its context too in order to compute the vector

that best represents a word. That was the whole point of word embeddings:

finding numerical representation for words (or tokens).

 "That’s great, but it seems impractical."

You’re absolutely right! Trying to build a lookup table for every possible

combination of word and context is probably not such a great idea—that’s why

contextual word embeddings won’t come from a lookup table but from the

outputs of a model instead.
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I want to introduce you to…

ELMo

Born in 2018, ELMo is able to understand that words may have different meanings

in different contexts. If you feed it a sentence, it will give you back embeddings for

each of the words while taking the full context into account.

Embeddings from Language Models (ELMo, for short) was introduced by Peters, M.

et al. in their paper "Deep contextualized word representations"[186] (2018). The

model is a two-layer bidirectional LSTM encoder using 4,096 dimensions in its cell

states and was trained on a really large corpus containing 5.5 billion words.

Moreover, ELMo’s representations are character-based, so it can easily handle

unknown (out-of-vocabulary) words.



You can find more details about its implementation, as well as its

pre-trained weights, at AllenNLP’s ELMo[187] site. You can also

check the "ELMo"[188] section of Lilian Weng’s great post,

"Generalized Language Models."[189]

 "Cool, are we loading a pre-trained model then?"

Well, we could, but ELMo embeddings can be conveniently retrieved using yet

another library: flair.[190] flair is an NLP framework built on top of PyTorch that

offers a text embedding library that provides word embeddings and document

embeddings for popular Muppets, oops, models like ELMo and BERT, as well as

classical word embeddings like GloVe.

Let’s use the two sentences containing the word "watch" to illustrate how to use

flair to get contextual word embeddings:
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watch1 = """
The Hatter was the first to break the silence. `What day of the
month is it?' he said, turning to Alice: he had taken his watch out
of his pocket, and was looking at it uneasily, shaking it every now
and then, and holding it to his ear.
"""

watch2 = """
Alice thought this a very curious thing, and she went nearer to
watch them, and just as she came up to them she heard one of them
say, `Look out now, Five!  Don't go splashing paint over me like
that!
"""

sentences = [watch1, watch2]

In flair, every sentence is a Sentence object that’s easily created using the

corresponding text:

from flair.data import Sentence
flair_sentences = [Sentence(s) for s in sentences]
flair_sentences[0]

Output

Sentence: "The Hatter was the first to break the silence . ` What
day of the month is it ? ' he said , turning to Alice : he had taken
his watch out of his pocket , and was looking at it uneasily ,
shaking it every now and then , and holding it to his ear ."   [
Tokens: 58]

Our first sentence has 58 tokens. We can use either the get_token() method or

the tokens attribute to retrieve a given token:

flair_sentences[0].get_token(32)
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Output

Token: 32 watch

The get_token() method assumes indexing starts at one, while the tokens
attribute has the typical zero-based indexing:

flair_sentences[0].tokens[31]

Output

Token: 32 watch


To learn more about the Sentence object in flair, please check

"Tutorial 1: NLP Base Types."[191]

Then, we can use these Sentence objects to retrieve contextual word embeddings.

But, first, we need to actually load ELMo using ELMoEmbeddings:

from flair.embeddings import ELMoEmbeddings
elmo = ELMoEmbeddings()

elmo.embed(flair_sentences)

Output

[Sentence: "The Hatter was the first to break the silence . ` What
day of the month is it ? ' he said , turning to Alice : he had taken
his watch out of his pocket , and was looking at it uneasily ,
shaking it every now and then , and holding it to his ear ."   [
Tokens: 58],
 Sentence: "Alice thought this a very curious thing , and she went
nearer to watch them , and just as she came up to them she heard one
of them say , ` Look out now , Five ! Do n't go splashing paint over
me like that !"   [ Tokens: 48]]
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There we go! Every token has its own embedding attribute now. Let’s check the

embeddings for the word "watch" in both sentences:

token_watch1 = flair_sentences[0].tokens[31]
token_watch2 = flair_sentences[1].tokens[13]
token_watch1, token_watch2

Output

(Token: 32 watch, Token: 14 watch)

token_watch1.embedding, token_watch2.embedding

Output

(tensor([-0.5047, -0.4183, ..., -0.2228,  0.7794], device='cuda:0'),
 tensor([-0.5047, -0.4183, ...,  0.8352, -0.5018], device='cuda:0'))

ELMo embeddings are large: There are 3,072 dimensions. The first two values of

both embeddings are the same but the last two are not. That’s a good start—the

same word was assigned two different vectors depending on the context it was

found in.

If we’d like to find out how similar they are to each other, we can use cosine

similarity:

similarity = nn.CosineSimilarity(dim=0, eps=1e-6)
similarity(token_watch1.embedding, token_watch2.embedding)

tensor(0.5949, device='cuda:0')

Even though the first 1,024 values are identical, it turns out that the two words are

not so similar after all. Contextual word embeddings for the win :-)

To get word embeddings for all tokens in a sentence, we can simply stack them up:
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Helper Function to Retrieve Embeddings

1 def get_embeddings(embeddings, sentence):
2     sent = Sentence(sentence)
3     embeddings.embed(sent)
4     return torch.stack(
5         [token.embedding for token in sent.tokens]
6     ).float()

get_embeddings(elmo, watch1)

Output

tensor([[-0.3288,  0.2022, -0.5940,  ...,  1.0606,  0.2637],
        [-0.7142,  0.4210, -0.9504,  ..., -0.6684,  1.7245],
        [ 0.2981, -0.0738, -0.1319,  ...,  1.1165,  0.6453],
        ...,
        [ 0.0475,  0.2325, -0.2013,  ..., -0.5294, -0.8543],
        [ 0.1599,  0.6898,  0.2946,  ...,  0.9584,  1.0337],
        [-0.8872, -0.2004, -1.0601,  ..., -0.0841,  0.0618]],
       device='cuda:0')

The returned tensor has 58 embeddings of 3,072 dimensions each.


For more details on ELMo embeddings, please check "ELMo

Embeddings"[192] and "Tutorial 4: List of All Word Embeddings."
[193]
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Where do ELMo embeddings come from?

The embeddings from ELMo are a combination of classical word

embeddings and hidden states from the two-layer bidirectional LSTMs.

Since both embeddings and hidden states have 512 dimensions each, it

follows that, in each direction, there is one 512-dimension embedding and

two 512-dimension hidden states (one for each layer). That’s 1,536

dimensions in each direction, and 3,072 dimensions in total.

Figure 11.22 - ELMo’s two-layer bidirectional LSTMs

The word embeddings are actually duplicated since both LSTMs use the

same inputs. From the 3,072 dimensions, the first two chunks of 512

dimensions are actually identical.

Figure 11.23 - ELMo embeddings

token_watch1.embedding[0], token_watch1.embedding[512]
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Output

(tensor(-0.5047, device='cuda:0'), tensor(-0.5047, device
='cuda:0'))

Since the classical word embeddings are context-independent, it also means that

both uses of "watch" have exactly the same values in their first 1,024

dimensions:

(token_watch1.embedding[:1024] ==
 token_watch2.embedding[:1024]).all()

Output

tensor(True, device='cuda:0')

Contextual Word Embeddings | 955



GloVe

GloVe embeddings are not contextual, as you already know, but they can

also be easily retrieved using WordEmbeddings from flair:

from flair.embeddings import WordEmbeddings
glove_embedding = WordEmbeddings('glove')

Now, let’s retrieve the word embeddings for our sentences, but first, and this

is very important, we need to create new Sentence objects for them:

new_flair_sentences = [Sentence(s) for s in sentences]
glove_embedding.embed(new_flair_sentences)

Output

[Sentence: "The Hatter was the first to break the silence . `
What day of the month is it ? ' he said , turning to Alice :
he had taken his watch out of his pocket , and was looking at
it uneasily , shaking it every now and then , and holding it
to his ear ."   [ Tokens: 58],
Sentence: "Alice thought this a very curious thing , and she
went nearer to watch them , and just as she came up to them
she heard one of them say , ` Look out now , Five ! Do n't go
splashing paint over me like that !"   [ Tokens: 48]]



Never reuse a Sentence object to retrieve different word

embeddings! The embedding attribute may be partially

overwritten (depending on the number of dimensions), and

you may end up with mixed embeddings (e.g., 3,072

dimensions from ELMo, but the first 100 values are

overwritten by GloVe embeddings).

Since GloVe is not contextual, the word "watch" will have the same

embedding regardless of which sentence you retrieve it from:
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torch.all(new_flair_sentences[0].tokens[31].embedding ==
          new_flair_sentences[1].tokens[13].embedding)

Output

tensor(True, device='cuda:0')


For more details on classical word embeddings, please check

"Tutorial 3: Word Embeddings"[194] and "Classic Word

Embeddings."[195]

BERT

The general idea, introduced by ELMo, of obtaining contextual word embeddings

using a language model still holds true for BERT. While ELMo is only a Muppet,

BERT is both Muppet and Transformer (such a bizarre sentence to write!).

BERT, which stands for Bidirectional Encoder Representations from Transformers,

is a model based on a Transformer encoder. We’ll skip more details about its

architecture for now (don’t worry, BERT has a full section of its own) and use it to

get contextual word embeddings only (just like we did with ELMo).

First, we need to load BERT in flair using TransformerWordEmbeddings:

from flair.embeddings import TransformerWordEmbeddings
bert = TransformerWordEmbeddings('bert-base-uncased', layers='-1')


By the way, flair uses HuggingFace models under the hood, so

you can load any pre-trained model[196] to generate embeddings

for you.

In the example above, we’re using the traditional bert-base-uncased to generate

contextual word embeddings using BERT’s last layer (-1).

Next, we can use the same get_embeddings() function to get the stacked
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embeddings for every token in a sentence:

embed1 = get_embeddings(bert, watch1)
embed2 = get_embeddings(bert, watch2)
embed2

Output

tensor([[ 0.6554, -0.3799, -0.2842,  ...,  0.8865,  0.4760],
        [-0.1459, -0.0204, -0.0615,  ...,  0.5052,  0.3324],
        [-0.0436, -0.0401, -0.0135,  ...,  0.5231,  0.9067],
        ...,
        [-0.2582,  0.6933,  0.2688,  ...,  0.0772,  0.2187],
        [-0.1868,  0.6398, -0.8127,  ...,  0.2793,  0.1880],
        [-0.1021,  0.5222, -0.7142,  ...,  0.0600, -0.1419]])

Then, let’s compare the embeddings for the word "watch" in both sentences once

again:

bert_watch1 = embed1[31]
bert_watch2 = embed2[13]
print(bert_watch1, bert_watch2)

Output

(tensor([ 8.5760e-01,  3.5888e-01, -3.7825e-01, -8.3564e-01,
          ...,
          2.0768e-01,  1.1880e-01,  4.1445e-01]),
 tensor([-9.8449e-02,  1.4698e+00,  2.8573e-01, -3.9569e-01,
          ...,
          3.1746e-01, -2.8264e-01, -2.1325e-01]))

Well, they look more different from one another now. But are they, really?

similarity = nn.CosineSimilarity(dim=0, eps=1e-6)
similarity(bert_watch1, bert_watch2)
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Output

tensor(0.3504, device='cuda:0')

Indeed, they have an even lower similarity now.


For more details on Transformer word embeddings, please check

"Transformer Embeddings."[197]

In the "Pre-trained PyTorch Embeddings" section we averaged (classical) word

embeddings to get a single vector for each sentence. We could do the same thing

using contextual word embeddings instead. But we don’t have to, because we can

use…

Document Embeddings

We can use pre-trained models to generate embeddings for whole documents

instead of for single words, thus eliminating the need to average word embeddings.

In our case, a document is a sentence:

documents = [Sentence(watch1), Sentence(watch2)]

To actually get the embeddings, we use TransformerDocumentEmbeddings in the

same way as in the other examples:

from flair.embeddings import TransformerDocumentEmbeddings
bert_doc = TransformerDocumentEmbeddings('bert-base-uncased')
bert_doc.embed(documents)
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Output

[Sentence: "The Hatter was the first to break the silence . ` What
day of the month is it ? ' he said , turning to Alice : he had taken
his watch out of his pocket , and was looking at it uneasily ,
shaking it every now and then , and holding it to his ear ."   [
Tokens: 58],
 Sentence: "Alice thought this a very curious thing , and she went
nearer to watch them , and just as she came up to them she heard one
of them say , ` Look out now , Five ! Do n't go splashing paint over
me like that !"   [ Tokens: 48]]

Now, each document (a Sentence object) will have its own overall embedding:

documents[0].embedding

Output

tensor([-6.4245e-02,  3.5365e-01, -2.4962e-01, -5.3912e-01,
        -1.9917e-01, -2.7712e-01,  1.6942e-01,  1.0867e-01,
        ...
         7.4661e-02, -3.4777e-01,  1.5740e-01,  3.4407e-01,
        -5.0272e-01,  1.7432e-01,  7.9398e-01,  7.3562e-01],
       device='cuda:0',
       grad_fn=<CatBackward>)

Notice that the individual tokens don’t get their own embeddings anymore:

documents[0].tokens[31].embedding

Output

tensor([], device='cuda:0')
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We can leverage this fact to slightly modify the get_embeddings() function so it

works with both word and document embeddings:

Helper Function to Retrieve Embeddings

1 def get_embeddings(embeddings, sentence):
2     sent = Sentence(sentence)
3     embeddings.embed(sent)
4     if len(sent.embedding):
5         return sent.embedding.float()
6     else:
7         return torch.stack(
8             [token.embedding for token in sent.tokens]
9         ).float()

get_embeddings(bert_doc, watch1)

Output

tensor([-6.4245e-02,  3.5365e-01, -2.4962e-01, -5.3912e-01,
        -1.9917e-01, -2.7712e-01,  1.6942e-01,  1.0867e-01,
        ...
         7.4661e-02, -3.4777e-01,  1.5740e-01,  3.4407e-01,
        -5.0272e-01,  1.7432e-01,  7.9398e-01,  7.3562e-01],
       device='cuda:0',
       grad_fn=<CatBackward>)


For more details on document embeddings, please check

"Tutorial 5: Document Embeddings."[198]

We can revisit the Sequential model from the "Word Embeddings" section and

modify it to use contextual word embeddings instead. But, first, we need to change

the datasets a bit as well.
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Model III — Preprocessed Embeddings

Data Preparation

Before, the features were a sequence of token IDs, which were used to look

embeddings up in the embedding layer and return the corresponding bag-of-

embeddings (that was a document embedding too, although less sophisticated).

Now, we’re outsourcing these steps to BERT and getting document embeddings

directly from it. It turns out, using a pre-trained BERT model to retrieve document

embeddings is a preprocessing step in this setup. Consequently, our model is going

to be nothing other than a simple classifier.


"Let the preprocessing begin!"

Maximus Decimus Meridius

The idea is to use get_embeddings() for each and every sentence in our datasets in

order to retrieve their corresponding document embeddings. HuggingFace’s

dataset allows us to easily do that by using its map() method to generate a new

column:

Data Preparation

1 train_dataset_doc = train_dataset.map(
2     lambda row: {'embeddings': get_embeddings(bert_doc,
3                                               row['sentence'])}
4 )
5 test_dataset_doc = test_dataset.map(
6     lambda row: {'embeddings': get_embeddings(bert_doc,
7                                               row['sentence'])}
8 )

Moreover, we need the embeddings to be returned as PyTorch tensors:

Data Preparation

1 train_dataset_doc.set_format(type='torch',
2                              columns=['embeddings', 'labels'])
3 test_dataset_doc.set_format(type='torch',
4                             columns=['embeddings', 'labels'])
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We can easily get the embeddings for all sentences in our dataset now:

train_dataset_doc['embeddings']

Output

tensor([[-0.2932,  0.2595, -0.1252,  ...,  0.2998,  0.1157],
        [ 0.4934,  0.0129, -0.1991,  ...,  0.6320,  0.7036],
        [-0.6256, -0.3536, -0.4682,  ...,  0.2467,  0.6108],
        ...,
        [-0.5786,  0.0274, -0.1081,  ...,  0.0329,  0.9563],
        [ 0.1244,  0.3181,  0.0352,  ...,  0.6648,  0.9231],
        [ 0.2124,  0.6195, -0.2281,  ...,  0.4346,  0.6358]],
       dtype=torch.float64)

Next, we build the datasets the usual way:

Data Preparation

 1 train_dataset_doc = TensorDataset(
 2     train_dataset_doc['embeddings'].float(),
 3     train_dataset_doc['labels'].view(-1, 1).float())
 4 generator = torch.Generator()
 5 train_loader = DataLoader(
 6     train_dataset_doc, batch_size=32,
 7     shuffle=True, generator=generator
 8 )
 9 test_dataset_doc = TensorDataset(
10     test_dataset_doc['embeddings'].float(),
11     test_dataset_doc['labels'].view(-1, 1).float())
12 test_loader = DataLoader(
13     test_dataset_doc, batch_size=32, shuffle=True)
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Model Configuration & Training

We’re using pretty much the same Sequential model as before, except that it

doesn’t have an embedding layer anymore, and we’re using only three hidden units

instead of 128:

Model Configuration

1 torch.manual_seed(41)
2 model = nn.Sequential(
3     # Classifier
4     nn.Linear(bert_doc.embedding_length, 3),
5     nn.ReLU(),
6     nn.Linear(3, 1)
7 )
8 loss_fn = nn.BCEWithLogitsLoss()
9 optimizer = optim.Adam(model.parameters(), lr=1e-3)

 "Isn’t that too few? Three?! Really?"

Really! It isn’t too few—if you try using 128 like in the previous model, it will

immediately overfit over a single epoch. Given the embedding length (768), the

model gets overparameterized (a situation where there are many more

parameters than data points), and it ends up memorizing the training set.

This is a simple feed-forward classifier with a single hidden layer. It doesn’t get

much simpler than that!

Model Training

1 sbs_doc_emb = StepByStep(model, loss_fn, optimizer)
2 sbs_doc_emb.set_loaders(train_loader, test_loader)
3 sbs_doc_emb.train(20)

fig = sbs_doc_emb.plot_losses()
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Figure 11.24 - Losses—simple classifier with BERT embeddings

OK, it’s still not overfitting, but can it deliver good predictions? You betcha!

StepByStep.loader_apply(test_loader, sbs_doc_emb.correct)

Output

tensor([[424, 440],
        [310, 331]])

That’s 95.20% accuracy on the validation (test) set! Quite impressive for a model

with only three hidden units, I might say.

Now, imagine what can be accomplished if we fine-tune the actual BERT model

instead! Right? Right?

BERT

BERT, which stands for Bidirectional Encoder Representations from Transformers,

is a model based on a Transformer encoder. It was introduced by Devlin, J. et al. in

their paper "BERT: Pre-training of Deep Bidirectional Transformers for Language

Understanding"[199] (2019).

The original BERT model was trained on two huge corpora: BookCorpus[200]

(composed of 800M words in 11,038 unpublished books) and English Wikipedia[201]

(2.5B words). It has twelve "layers" (the original Transformer had only six), twelve

attention heads, and 768 hidden dimensions, totaling 110 million parameters.
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If that’s too large for your GPU, though, don’t worry: There are many different

versions of BERT for all tastes and budgets, and you can find them in Google

Research’s BERT repository.[202]


You can also check BERT’s documentation[203] and model card,[204]

available at HuggingFace, for a quick overview of the model and

its training procedure.



For a general overview of BERT, please check Jay Alammar’s

excellent posts on the topic: "The Illustrated BERT, ELMo, and co.

(How NLP Cracked Transfer Learning)"[205] and "A Visual Guide to

Using BERT for the First Time."[206]

AutoModel

If you want to quickly try different models without having to import their

corresponding classes, you can use HuggingFace’s AutoModel instead:

from transformers import AutoModel
auto_model = AutoModel.from_pretrained('bert-base-uncased')
print(auto_model.__class__)

Output

<class 'transformers.modeling_bert.BertModel'>

As you can see, it infers the correct model class based on the name of the

model you’re loading, e.g., bert-base-uncased.

Let’s create our first BERT model by loading the pre-trained weights for bert-
base-uncased:

from transformers import BertModel
bert_model = BertModel.from_pretrained('bert-base-uncased')
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We can inspect the pre-trained model’s configuration:

bert_model.config

Output

BertConfig {
  "architectures": [
    "BertForMaskedLM"
  ],
  "attention_probs_dropout_prob": 0.1,
  "gradient_checkpointing": false,
  "hidden_act": "gelu",
  "hidden_dropout_prob": 0.1,
  "hidden_size": 768,
  "initializer_range": 0.02,
  "intermediate_size": 3072,
  "layer_norm_eps": 1e-12,
  "max_position_embeddings": 512,
  "model_type": "bert",
  "num_attention_heads": 12,
  "num_hidden_layers": 12,
  "pad_token_id": 0,
  "type_vocab_size": 2,
  "vocab_size": 30522
}

Some of the items are easily recognizable: hidden_size (768),

num_attention_heads (12), and num_hidden_layer (12). Some of the items will be

discussed soon: vocab_size (30,522) and max_position_embeddings (512, the

maximum sequence length). There are additional parameters used for training, like

dropout probabilities and the architecture used.

Our model needs inputs, and those require…
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Tokenization



Tokenization is a pre-processing step, and, since we’ll be using a

pre-trained BERT model, we need to use the same tokenizer that

was used during pre-training. For each pre-trained model

available in HuggingFace there is an accompanying pre-trained

tokenizer as well.

Let’s create our first real BERT tokenizer (instead of the fake ones we create to

handle our own vocabulary):

from transformers import BertTokenizer
bert_tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
len(bert_tokenizer.vocab)

Output

30522

It seems BERT’s vocabulary has only 30,522 tokens.

 "Isn’t that too few?"

It would be if it weren’t for the fact that the tokens are not (only) words, but may

also be word pieces.

 "What is a 'word piece?'"

It literally is a piece of a word. This is better understood with an example: Let’s say

that a particular word—"inexplicably"—is not so frequently used, thus not making it

to the vocabulary. Before, we used the special unknown token to cover for words

that were absent from our vocabulary. But that approach is less than ideal: Every

time a word is replaced by an [UNK] token, some information gets lost. We surely

can do better than that.

So, what if we disassemble an unknown word into its components (the word

pieces)? Our formerly unknown word, "inexplicably," can be disassembled into five

word pieces: inexplicably = in + ##ex + ##pl + ##ica + ##bly.
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Every word piece is prefixed with ## to indicate that it does not

stand on its own as a word.

Given enough word pieces in a vocabulary, it will be able to represent every

unknown word using a concatenation of word pieces. Problem solved! That’s what

BERT’s pre-trained tokenizer does.



For more details on the WordPiece tokenizer, as well as other

sub-word tokenizers like Byte-Pair Encoding (BPE) and

SentencePiece, please check HuggingFace’s "Summary of the

Tokenizers"[207] and Cathal Horan’s great post "Tokenizers: How

machines read"[208] on FloydHub.

Let’s tokenize a pair of sentences using BERT’s WordPiece tokenizer:

sentence1 = 'Alice is inexplicably following the white rabbit'
sentence2 = 'Follow the white rabbit, Neo'
tokens = bert_tokenizer(sentence1, sentence2, return_tensors='pt')
tokens

Output

{'input_ids': tensor([[  101,  5650,  2003,  1999, 10288, 24759,
5555,  6321,  2206,  1996, 2317, 10442,   102,  3582,  1996,  2317,
10442,  1010,  9253,   102]]),
 'token_type_ids': tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 1, 1, 1]]),
 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1]])}

Notice that, since there are two sentences, the token_type_ids have two distinct

values (zero and one) that work as the sentence index corresponding to the

sentence each token belongs to. Hold this thought, because we’re using this

information in the next section.
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To actually see the word pieces, it’s easier to convert the input IDs back into

tokens:

print(bert_tokenizer.convert_ids_to_tokens(tokens['input_ids'][0]))

Output

['[CLS]', 'alice', 'is', 'in', '##ex', '##pl', '##ica', '##bly',
'following', 'the', 'white', 'rabbit', '[SEP]', 'follow', 'the',
'white', 'rabbit', ',', 'neo', '[SEP]']

There it is: "inexplicably" got disassembled into its word pieces, the separator token

[SEP] got inserted between the two sentences (and at the end as well), and there is

a classifier token [CLS] at the start.

AutoTokenizer

If you want to quickly try different tokenizers without having to import their

corresponding classes, you can use HuggingFace’s AutoTokenizer instead:

from transformers import AutoTokenizer
auto_tokenizer = AutoTokenizer.from_pretrained(
    'bert-base-uncased'
)
print(auto_tokenizer.__class__)

Output

<class 'transformers.tokenization_bert.BertTokenizer'>

As you can see, it infers the correct model class based on the name of the

model you’re loading, e.g., bert-base-uncased.

Input Embeddings

Once the sentences are tokenized, we can use their tokens' IDs to look up the

corresponding embeddings as usual. These are the word / token embeddings. So
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far, our models used these embeddings (or a bag of them) as their only input.

But BERT, being a Transformer encoder, also needs positional information. In

Chapter 9 we used positional encoding, but BERT uses position embeddings

instead.

 "What’s the difference between encoding and embedding?"

While the position encoding we used in the past had fixed values for each position,

the position embeddings are learned by the model (like any other embedding

layer). The number of entries in this lookup table is given by the maximum length

of the sequence.

And there is more! BERT also adds a third embedding, namely, segment

embedding, which is a position embedding at the sentence level (since inputs may

have either one or two sentences). That’s what the token_type_ids produced by

the tokenizer are good for: They work as a sentence index for each token.

Figure 11.25 - BERT’s input embeddings

Talking (or writing) is cheap, though, so let’s take a look under BERT’s hood:

input_embeddings = bert_model.embeddings

Output

BertEmbeddings(
  (word_embeddings): Embedding(30522, 768, padding_idx=0)
  (position_embeddings): Embedding(512, 768)
  (token_type_embeddings): Embedding(2, 768)
  (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
  (dropout): Dropout(p=0.1, inplace=False)
)
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The three embeddings are there: word, position, and segment (named

token_type_embeddings). Let’s go over each of them:

token_embeddings = input_embeddings.word_embeddings
token_embeddings

Output

Embedding(30522, 768, padding_idx=0)

The word / token embedding layer has 30,522 entries, the size of BERT’s

vocabulary, and it has 768 hidden dimensions. As usual, embeddings will be

returned by each token ID in the input:

input_token_emb = token_embeddings(tokens['input_ids'])
input_token_emb

Output

tensor([[[ 1.3630e-02, -2.6490e-02, ..., 7.1340e-03,  1.5147e-02],
         ...,
         [-1.4521e-02, -9.9615e-03, ..., 4.6379e-03, -1.5378e-03]]],
       grad_fn=<EmbeddingBackward>)

Since each input may have up to 512 tokens, the position embedding layer has

exactly that number of entries:

position_embeddings = input_embeddings.position_embeddings
position_embeddings

Output

Embedding(512, 768)

Each sequentially numbered position, up to the total length of the input, will return

its corresponding embedding:
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position_ids = torch.arange(512).expand((1, -1))
position_ids

Output

tensor([[  0,   1,   2,   3,   4,   5,   6,   7,   8,   9,
         ...
         504, 505, 506, 507, 508, 509, 510, 511]])

seq_length = tokens['input_ids'].size(1)
input_pos_emb = position_embeddings(position_ids[:, :seq_length])
input_pos_emb

Output

tensor([[[ 1.7505e-02, -2.5631e-02, ...,  1.5441e-02],
         ...,
         [-3.4622e-04, -8.3709e-04, ..., -5.7741e-04]]],
       grad_fn=<EmbeddingBackward>)

Then, since there can only be either one or two sentences in the input, the segment

embedding layer has only two entries:

segment_embeddings = input_embeddings.token_type_embeddings
segment_embeddings

Output

Embedding(2, 768)

For these embeddings, BERT will use the token_type_ids returned by the

tokenizer:

input_seg_emb = segment_embeddings(tokens['token_type_ids'])
input_seg_emb
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Output

tensor([[[ 0.0004,  0.0110,  0.0037,  ..., -0.0034, -0.0086],
         [ 0.0004,  0.0110,  0.0037,  ..., -0.0034, -0.0086],
         [ 0.0004,  0.0110,  0.0037,  ..., -0.0034, -0.0086],
         ...,
         [ 0.0011, -0.0030, -0.0032,  ..., -0.0052, -0.0112],
         [ 0.0011, -0.0030, -0.0032,  ..., -0.0052, -0.0112],
         [ 0.0011, -0.0030, -0.0032,  ..., -0.0052, -0.0112]]],
       grad_fn=<EmbeddingBackward>)

Since the first tokens, up to and including the first separator, belong to the first

sentence, they will all have the same (first) segment embedding values. The tokens

after the first separator, up to and including the last token, will have the same

(second) segment embedding values.

Finally, BERT adds up all three embeddings (token, position, and segment):

input_emb = input_token_emb + input_pos_emb + input_seg_emb
input_emb

Output

tensor([[[ 0.0316, -0.0411, -0.0564,  ...,  0.0044,  0.0219],
         [-0.0615, -0.0750, -0.0107,  ...,  0.0482, -0.0277],
         [-0.0469, -0.0156, -0.0336,  ...,  0.0135,  0.0109],
         ...,
         [-0.0081, -0.0051, -0.0172,  ..., -0.0103,  0.0083],
         [-0.0425, -0.0756, -0.0414,  ..., -0.0180, -0.0060],
         [-0.0138, -0.0138, -0.0194,  ..., -0.0011, -0.0133]]],
       grad_fn=<AddBackward0>)

It will still layer normalize the embeddings and apply dropout to them, but that’s

it—these are the inputs BERT uses.

Now, let’s take a look at its…
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Pre-training Tasks

Masked Language Model (MLM)

BERT is said to be an autoencoding model because it is a Transformer encoder and

because it was trained to "reconstruct" sentences from corrupted inputs (it does

not reconstruct the entire input but predicts the corrected words instead). That’s

the masked language model (MLM) pre-training task.

In the "Language Model" section we saw that the goal of a language model is to

estimate the probability of a token or a sequence of tokens or, simply put, to

predict the tokens more likely to fill in a blank. That looks like a perfect task for a

Transformer decoder, right?

 "But BERT is an encoder…"

Well, yeah, but who said the blank must be at the end? In the continuous bag-of-

words (CBoW) model, the blank was the word in the center, and the remaining

words were the context. In a way, that’s what the MLM task is doing: It is randomly

choosing words to be masked as blanks in a sentence. BERT then tries to predict

the correct words that fill in the blanks.

Actually, it’s a bit more structured than that:

• 80% of the time, it masks 15% of the tokens at random: "Alice followed the

[MASK] rabbit."

• 10% of the time, it replaces 15% of the tokens with some other random word:

"Alice followed the watch rabbit."

• The remaining 10% of the time, the tokens are unchanged: "Alice followed the

white rabbit."

The target is the original sentence: "Alice followed the white rabbit." This way, the

model effectively learns to reconstruct the original sentence from corrupted inputs

(containing missing—masked—or randomly replaced words).


This is the perfect use case (besides padding) for the source mask

argument of the Transformer encoder.
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Figure 11.26 - Pre-training task—masked language model (MLM)

Also, notice that BERT computes logits for the randomly masked inputs only. The

remaining inputs are not even considered for computing the loss.

 "OK, but how can we randomly replace tokens like that?"

One alternative, similar to the way we do data augmentation for images, would be

to implement a custom dataset that performs the replacements on the fly in the

__getitem__() method. There is a better alternative, though: using a collate

function or, better yet, a data collator. There’s a data collator that performs the

replacement procedure prescribed by BERT: DataCollatorForLanguageModeling.

Let’s see an example of it in action, starting with an input sentence:

sentence = 'Alice is inexplicably following the white rabbit'
tokens = bert_tokenizer(sentence)
tokens['input_ids']

Output

[101, 5650, 2003, 1999, 10288, 24759, 5555, 6321, 2206, 1996, 2317,
10442, 102]
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Then, let’s create an instance of the data collator and apply it to our mini-batch of

one:

from transformers import DataCollatorForLanguageModeling
torch.manual_seed(41)
data_collator = DataCollatorForLanguageModeling(
    tokenizer=bert_tokenizer, mlm_probability=0.15
)
mlm_tokens = data_collator([tokens])
mlm_tokens

Output

{'input_ids': tensor([[  101,  5650,  2003,  1999, 10288, 24759,
103,  6321,  2206,  1996, 2317, 10442,   102]]),
 'labels': tensor([[-100, -100, -100, -100, -100, -100, 5555, -100,
-100, -100, -100, -100, -100]])}

If you look closely, you’ll see that the seventh token (5555 in the original input)

was replaced by some other token (103). Moreover, the labels contain the

replaced tokens in their original positions (and -100 everywhere else to indicate

these tokens are irrelevant for computing the loss). It’s actually easier to visualize

the difference if we convert the IDs back to tokens:

print(bert_tokenizer.convert_ids_to_tokens(tokens['input_ids']))
print(bert_tokenizer.convert_ids_to_tokens(
    mlm_tokens['input_ids'][0]
))

Output

['[CLS]', 'alice', 'is', 'in', '##ex', '##pl', '##ica', '##bly',
'following', 'the', 'white', 'rabbit', '[SEP]']
['[CLS]', 'alice', 'is', 'in', '##ex', '##pl', '[MASK]', '##bly',
'following', 'the', 'white', 'rabbit', '[SEP]']

See? The seventh token (##ica) got masked!
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We’re not using collators in our example, but they can be used

together with HuggingFace’s Trainer (more on that in the "Fine-

Tuning with HuggingFace" section) if you’re into training some

BERT from scratch on the MLM task.

But that’s not the only thing that BERT is trained to do…

Next Sentence Prediction (NSP)

The second pre-training task is a binary classification task: BERT was trained to

predict if a second sentence is actually the next sentence in the original text or

not. The purpose of this task is to give BERT the ability to understand the

relationship between sentences, which can be useful for some of the tasks BERT

can be fine-tuned for, like question answering.

So, BERT takes two sentences as inputs (with the special separator token [SEP]
between them):

• 50% of the time, the second sentence is indeed the next sentence (the positive

class).

• 50% of the time, the second sentence is a randomly chosen one (the negative

class).

This task uses the special classifier token [CLS], taking the values of the

corresponding final hidden state as features for a classifier. For example, let’s take

two sentences and tokenize them:

sentence1 = 'alice follows the white rabbit'
sentence2 = 'follow the white rabbit neo'
bert_tokenizer(sentence1, sentence2, return_tensors='pt')

Output

{'input_ids': tensor([[  101,  5650,  4076,  1996,  2317, 10442,
102,  3582,  1996,  2317, 10442,  9253,   102]]),
 'token_type_ids': tensor([[0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
1]]),
 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1]])}
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If these two sentences were the input of the NSP task, that’s what BERT’s inputs

and outputs would look like.

Figure 11.27 - Pre-training task—next sentence prediction (NSP)

The final hidden state is actually further processed by a pooler (composed of a linear

layer and a hyperbolic tangent activation function) before being fed to the classifier

(FFN, feed-forward network, in the figure above):

bert_model.pooler

Output

BertPooler(
  (dense): Linear(in_features=768, out_features=768, bias=True)
  (activation): Tanh()
)

Outputs

We’ve seen the many embeddings BERT uses as inputs, but we’re more interested

in its outputs, like the contextual word embeddings, right?


By the way, BERT’s outputs are always batch-first; that is, their

shape is (mini-batch size, sequence length, hidden_dimensions).
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Let’s retrieve the embeddings for the words in the first sentence of our training set:

sentence = train_dataset[0]['sentence']
sentence

Output

'And, so far as they knew, they were quite right.'

First, we need to tokenize it:

tokens = bert_tokenizer(sentence,
                        padding='max_length',
                        max_length=30,
                        truncation=True,
                        return_tensors="pt")
tokens

Output

{'input_ids': tensor([[ 101, 1998, 1010, 2061, 2521, 2004, 2027,
2354, 1010, 2027, 2020, 3243, 2157, 1012,  102,    0,    0,    0,
0,    0,    0,    0,    0,    0, 0,    0,    0,    0,    0,    0]]),
 'token_type_ids': tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]),
 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])}

The tokenizer is padding the sentence up to the maximum length (only 30 in this

example to more easily visualize the outputs), and this is reflected on the

attention_mask as well. We’ll use both input_ids and attention_mask as inputs to

our BERT model (the token_type_ids are irrelevant here because there is only one

sentence).
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The BERT model may take many other arguments, and we’re using three of them to

get richer outputs:

bert_model.eval()
out = bert_model(input_ids=tokens['input_ids'],
                 attention_mask=tokens['attention_mask'],
                 output_attentions=True,
                 output_hidden_states=True,
                 return_dict=True)
out.keys()

Output

odict_keys(['last_hidden_state', 'pooler_output', 'hidden_states',
'attentions'])

Let’s see what’s inside each of these four outputs:

• last_hidden_state is returned by default and is the most important output of

all: It contains the final hidden states for each and every token in the input,

which can be used as contextual word embeddings.

Figure 11.28 - Word embeddings from BERT’s last layer


Don’t forget that the first token is the special classifier token

[CLS] and that there may be padding ([PAD]) and separator

([SEP]) tokens as well!
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last_hidden_batch = out['last_hidden_state']
last_hidden_sentence = last_hidden_batch[0]
# Removes hidden states for [PAD] tokens using the mask
mask = tokens['attention_mask'].squeeze().bool()
embeddings = last_hidden_sentence[mask]
# Removes embeddings for the first [CLS] and last [SEP] tokens
embeddings[1:-1]

Output

tensor([[ 0.0100,  0.8575, -0.5429,  ...,  0.4241, -0.2035],
        [-0.3705,  1.1001,  0.3326,  ...,  0.0656, -0.5644],
        [-0.2947,  0.5797,  0.1997,  ..., -0.3062,  0.6690],
        ...,
        [ 0.0691,  0.7393,  0.0552,  ..., -0.4896, -0.4832],
        [-0.1566,  0.6177,  0.1536,  ...,  0.0904, -0.4917],
        [ 0.7511,  0.3110, -0.3116,  ..., -0.1740, -0.2337]],
       grad_fn=<SliceBackward>)

The flair library is doing exactly that under its hood! We can use our

get_embeddings() function to get embeddings for our sentence using the wrapper

for BERT from flair:

get_embeddings(bert_flair, sentence)

Output

tensor([[ 0.0100,  0.8575, -0.5429,  ...,  0.4241, -0.2035],
        [-0.3705,  1.1001,  0.3326,  ...,  0.0656, -0.5644],
        [-0.2947,  0.5797,  0.1997,  ..., -0.3062,  0.6690],
        ...,
        [ 0.0691,  0.7393,  0.0552,  ..., -0.4896, -0.4832],
        [-0.1566,  0.6177,  0.1536,  ...,  0.0904, -0.4917],
        [ 0.7511,  0.3110, -0.3116,  ..., -0.1740, -0.2337]],
       device='cuda:0')

Perfect match!
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The contextual word embeddings are the hidden states

produced by the encoder "layers" of the Transformer. They can

either come from the last layer only, like in the example above, or

from a concatenation of hidden states produced by several out of

the twelve layers in the model.

• hidden_states returns hidden states for every "layer" in BERT’s encoder

architecture, including the last one (returned as last_hidden_state), and the

input embeddings as well:

print(len(out['hidden_states']))
print(out['hidden_states'][0].shape)

Output

13
torch.Size([1, 30, 768])

The first one corresponds to the input embeddings:

(out['hidden_states'][0] ==
 bert_model.embeddings(tokens['input_ids'])).all()

Output

tensor(True)

And the last one is redundant:

(out['hidden_states'][-1] == out['last_hidden_state']).all()

Output

tensor(True)

• pooler_output is returned by default and, as was already mentioned, it’s the
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output of the pooler given the last hidden state as its input:

(out['pooler_output'] ==
 bert_model.pooler(out['last_hidden_state'])).all()

Output

tensor(True)

• attentions returns the self-attention scores for each attention head in each

"layer" of BERT’s encoder:

print(len(out['attentions']))
print(out['attentions'][0].shape)

Output

12
torch.Size([1, 12, 30, 30])

The returned tuple has twelve elements, one for each "layer," and each element

has a tensor containing the scores for the sentences in the mini-batch (only one in

our case). Those scores include each of BERT’s twelve self-attention heads, with

each head indicating how much attention each of the thirty tokens is paying to all

thirty tokens in the input. Are you still with me? That’s 129,600 attention scores in

total! No, I’m not even trying to visualize that :-)

Model IV — Classifying Using BERT

We’ll use a Transformer encoder as a classifier once again (like in "Model II"), but it

will be much easier now because BERT will be our encoder, and it already handles

the special classifier token by itself:
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Model Configuration

 1 class BERTClassifier(nn.Module):
 2     def __init__(self, bert_model, ff_units,
 3                  n_outputs, dropout=0.3):
 4         super().__init__()
 5         self.d_model = bert_model.config.dim
 6         self.n_outputs = n_outputs
 7         self.encoder = bert_model
 8         self.mlp = nn.Sequential(
 9             nn.Linear(self.d_model, ff_units),
10             nn.ReLU(),
11             nn.Dropout(dropout),
12             nn.Linear(ff_units, n_outputs)
13         )
14 
15     def encode(self, source, source_mask=None):
16         states = self.encoder(
17             input_ids=source, attention_mask=source_mask)[0]
18         cls_state = states[:, 0]
19         return cls_state
20 
21     def forward(self, X):
22         source_mask = (X > 0)
23         # Featurizer
24         cls_state = self.encode(X, source_mask)
25         # Classifier
26         out = self.mlp(cls_state)
27         return out

Both encode() and forward() methods are roughly the same as before, but the

classifier (mlp) has both hidden and dropout layers now.

Our model takes an instance of a pre-trained BERT model, the number of units in

the hidden layer of the classifier, and the desired number of outputs (logits)

corresponding to the number of existing classes. The forward() method takes a

mini-batch of token IDs, encodes them using BERT (featurizer), and outputs logits

(classifier).


"Why does the model compute the source mask itself instead of using

the output from the tokenizer?"
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Good catch! I know that’s less than ideal, but our StepByStep class can only take a

single mini-batch of inputs, and no additional information like the attention masks.

Of course, we could modify our class to handle that, but HuggingFace has its own

trainer (more on that soon!), so there’s no point in doing so.

This is actually the last time we’ll use the StepByStep class since it requires too

many adjustments to the inputs to work well with HuggingFace’s tokenizers and

models.

Data Preparation

To turn the sentences in our datasets into mini-batches of token IDs and labels for

a binary classification task, we can create a helper function that takes an HF’s

Dataset, the names of the fields corresponding to the sentences and labels, and a

tokenizer and builds a TensorDataset out of them:

From HF’s Dataset to Tokenized TensorDataset

1 def tokenize_dataset(hf_dataset, sentence_field,
2                      label_field, tokenizer, **kwargs):
3     sentences = hf_dataset[sentence_field]
4     token_ids = tokenizer(
5         sentences, return_tensors='pt', **kwargs
6     )['input_ids']
7     labels = torch.as_tensor(hf_dataset[label_field])
8     dataset = TensorDataset(token_ids, labels)
9     return dataset

First, we create a tokenizer and define the parameters we’ll use while tokenizing

the sentences:

Data Preparation

1 auto_tokenizer = AutoTokenizer.from_pretrained(
2     'distilbert-base-uncased'
3 )
4 tokenizer_kwargs = dict(truncation=True,
5                         padding=True,
6                         max_length=30,
7                         add_special_tokens=True)
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 "Which BERT is that? DistilBERT?!"

DistilBERT is a smaller, faster, cheaper, and lighter version of BERT, introduced by

Sahn, V. et al. in their paper "DistilBERT, a distilled version of BERT: smaller, faster,

cheaper and lighter."[209] We’re not going into any details about it here, but we’re

using this version because it’s also friendlier for fine-tuning in low-end GPUs.

We need to change the labels to float as well so they will be compatible with the

nn.BCEWithLogitsLoss() we’ll be using:

Data Preparation

 1 train_dataset_float = train_dataset.map(
 2     lambda row: {'labels': [float(row['labels'])]}
 3 )
 4 test_dataset_float = test_dataset.map(
 5     lambda row: {'labels': [float(row['labels'])]}
 6 )
 7 
 8 train_tensor_dataset = tokenize_dataset(train_dataset_float,
 9                                         'sentence',
10                                         'labels',
11                                         auto_tokenizer,
12                                         **tokenizer_kwargs)
13 test_tensor_dataset = tokenize_dataset(test_dataset_float,
14                                        'sentence',
15                                        'labels',
16                                        auto_tokenizer,
17                                        **tokenizer_kwargs)
18 generator = torch.Generator()
19 train_loader = DataLoader(
20     train_tensor_dataset, batch_size=4,
21     shuffle=True, generator=generator
22 )
23 test_loader = DataLoader(test_tensor_dataset, batch_size=8)

 "Batch size FOUR?!"

Yes, four! DistilBERT is still kinda large, so we’re using a very small batch size such

that it will fit a low-end GPU with 6 GB RAM. If you have more powerful hardware

at your disposal, by all means, try larger batch sizes :-)
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Model Configuration & Training

Let’s create an instance of our model using DistilBERT and train it in the usual way:

Model Configuration

1 torch.manual_seed(41)
2 bert_model = AutoModel.from_pretrained("distilbert-base-uncased")
3 model = BERTClassifier(bert_model, 128, n_outputs=1)
4 loss_fn = nn.BCEWithLogitsLoss()
5 optimizer = optim.Adam(model.parameters(), lr=1e-5)

Model Training

1 sbs_bert = StepByStep(model, loss_fn, optimizer)
2 sbs_bert.set_loaders(train_loader, test_loader)
3 sbs_bert.train(1)

You probably noticed that it takes quite some time to train for a single epoch; but,

then again, there are more than 66 million parameters to update:

sbs_bert.count_parameters()

Output

66461441

Let’s check the accuracy of our model:

StepByStep.loader_apply(test_loader, sbs_bert.correct)

Output

tensor([[424, 440],
        [317, 331]])

That’s 96.11% accuracy on the validation set—nice! Of course, our dataset is tiny

and the model is huge, but still!
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Well, you probably don’t want to go through all this trouble—adjusting the datasets

and writing a model class—to fine-tune a BERT model, right?

Say no more!

Fine-Tuning with HuggingFace

What if I told you that there is a BERT model for every task, and you just need to

fine-tune it? Cool, isn’t it? Then, what if I told you that you can use a trainer to do

most of the fine-tuning work for you? Amazing, right? The HuggingFace library is

that good, really!

There are BERT models available for many different tasks:

• Pre-training tasks:

◦ Masked language model (BertForMaskedLM)

◦ Next sentence prediction (BertForNextSentencePrediction)

• Typical tasks (also available as AutoModel):

◦ Sequence classification (BertForSequenceClassification)

◦ Token classification (BertForTokenClassification)

◦ Question answering (BertForQuestionAnswering)

• BERT (and family) specific:

◦ Multiple choice (BertForMultipleChoice)

We’re sticking with the sequence classification task using DistilBERT instead of

regular BERT so as to make the fine-tuning faster.

Sequence Classification (or Regression)

Let’s load the pre-trained model using its corresponding class:
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Model Configuration

1 from transformers import DistilBertForSequenceClassification
2 torch.manual_seed(42)
3 bert_cls = DistilBertForSequenceClassification.from_pretrained(
4     'distilbert-base-uncased', num_labels=2
5 )

It comes with a warning:

Output

You should probably TRAIN this model on a down-stream task to be
able to use it for predictions and inference.

It makes sense!

Since ours is a binary classification task, the num_labels argument is two, which

happens to be the default value. Unfortunately, at the time of writing, the

documentation is not as explicit as it should be in this case. There is no mention of

num_labels as a possible argument of the model, and it’s only referred to in the

documentation of the forward() method of

DistilBertForSequenceClassification (highlights are mine):

• labels (torch.LongTensor of shape (batch_size,), optional) – Labels for

computing the sequence classification / regression loss. Indices should be in [0,
..., config.num_labels - 1]. If config.num_labels == 1 a regression loss is

computed (Mean-Square loss), If config.num_labels > 1 a classification loss

is computed (Cross-Entropy).

Some of the returning values of the forward() method also include references to

the num_labels argument:

• loss (torch.FloatTensor of shape (1,), optional, returned when labels is

provided) – Classification (or regression if config.num_labels==1) loss.

• logits (torch.FloatTensor of shape (batch_size, config.num_labels)) –

Classification (or regression if config.num_labels==1) scores (before SoftMax).

That’s right! DistilBertForSequenceClassification (or any other

ForSequenceClassification model) can be used for regression too as long as you
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set num_labels=1 as argument.



If you want to learn more about the arguments the pre-trained

models may take, please check the documentation on

configuration: PretrainedConfig.[210]

To learn more about the outputs of several pre-trained models,

please check the documentation on model outputs.[211]

The ForSequenceClassification models add a single linear layer (classifier) on top

of the pooled output from the underlying base model to produce the logits
output.

More AutoModels

If you want to quickly try different fine-tuning models without having to import

their corresponding classes, you can use HuggingFace’s AutoModel
corresponding to a fine-tuning task:

from transformers import AutoModelForSequenceClassification
auto_cls = AutoModelForSequenceClassification.from_pretrained(
    'distilbert-base-uncased', num_labels=2
)
print(auto_cls.__class__)

Output

<class 'transformers.modeling_distilbert
.DistilBertForSequenceClassification'>

As you can see, it infers the correct model class based on the name of the

model you’re loading, e.g., distilbert-base-uncased.

 

We already have a model, let’s look at our dataset…

Fine-Tuning with HuggingFace | 991

https://huggingface.co/transformers/main_classes/configuration.html
https://huggingface.co/transformers/main_classes/output.html


Tokenized Dataset

The training and test datasets are HF’s Datasets, and, finally, we’ll keep them like

that instead of building TensorDatasets out of them. We still have to tokenize

them, though:

Data Preparation

1 auto_tokenizer = AutoTokenizer.from_pretrained(
2     'distilbert-base-uncased'
3 )
4 def tokenize(row):
5     return auto_tokenizer(row['sentence'],
6                           truncation=True,
7                           padding='max_length',
8                           max_length=30)

We load a pre-trained tokenizer and build a simple function that takes one row

from the dataset and tokenizes it. So far, so good, right?


IMPORTANT: The pre-trained tokenizer and pre-trained model

must have matching architectures—in our case, both are pre-

trained on distilbert-base-uncased.

Next, we use the map() method of HF’s Dataset to create new columns by using

our tokenize() function:

Data Preparation

1 tokenized_train_dataset = train_dataset.map(
2     tokenize, batched=True
3 )
4 tokenized_test_dataset = test_dataset.map(tokenize, batched=True)

The batched argument speeds up the tokenization, but the tokenizer must return

lists instead of tensors (notice the missing return_tensors='pt' in the call to

auto_tokenizer):

print(tokenized_train_dataset[0])
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Output

{'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
 'input_ids': [101, 1998, 1010, 2061, 2521, 2004, 2027, 2354, 1010,
2027, 2020, 3243, 2157, 1012, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0],
 'labels': 0,
 'sentence': 'And, so far as they knew, they were quite right.',
 'source': 'wizoz10-1740.txt'}

See? Regular Python lists, not PyTorch tensors. It created new columns

(attention_mask and input_ids) and kept the old ones (labels, sentence, and

source).

But we don’t need all these columns for training; we need only the first three. So,

let’s tidy it up by using the set_format() method of Dataset:

Data Preparation

1 tokenized_train_dataset.set_format(
2     type='torch',
3     columns=['input_ids', 'attention_mask', 'labels']
4 )
5 tokenized_test_dataset.set_format(
6     type='torch',
7     columns=['input_ids', 'attention_mask', 'labels']
8 )

Not only are we specifying the columns we’re actually interested in, but we’re also

telling it to return PyTorch tensors:

tokenized_train_dataset[0]
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Output

{'attention_mask': tensor([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]),
 'input_ids': tensor([ 101, 1998, 1010, 2061, 2521, 2004, 2027,
2354, 1010, 2027, 2020, 3243, 2157, 1012,  102,    0,    0,    0,
0,    0,    0,    0,    0,    0, 0,    0,    0,    0,    0,    0]),
 'labels': tensor(0)}

Much better! We’re done with our datasets and can move on to the…

Trainer

Even though every pre-trained model on HuggingFace can be fine-tuned in native

PyTorch, as we did in the previous section, the library offers an easy-to-use

interface for training and evaluation: Trainer.

As expected, it takes a model and a training dataset as required arguments, and

that’s it:

from transformers import Trainer
trainer = Trainer(model=bert_cls,
                  train_dataset=tokenized_train_dataset)

We only need to call the train() method, and our model will be trained! YES, this

train() method actually trains the model! Thank you, HuggingFace :-)


"Awesome! But … does it train for how many epochs? Which

optimizer and learning rate does it use for training?"

We can find it all out by looking at its TrainingArguments:

trainer.args
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Output

TrainingArguments(output_dir=tmp_trainer, overwrite_output_dir=
False, do_train=False, do_eval=None, do_predict=False,
evaluation_strategy=IntervalStrategy.NO, prediction_loss_only=False,
per_device_train_batch_size=8, per_device_eval_batch_size=8,
gradient_accumulation_steps=1, eval_accumulation_steps=None,
learning_rate=5e-05, weight_decay=0.0, adam_beta1=0.9,
adam_beta2=0.999, adam_epsilon=1e-08, max_grad_norm=1.0,
num_train_epochs=3.0, max_steps=-1, lr_scheduler_type=SchedulerType
.LINEAR, warmup_ratio=0.0, warmup_steps=0, logging_dir=runs/Apr21_20
-33-20_MONSTER, logging_strategy=IntervalStrategy.STEPS,
logging_first_step=False, logging_steps=500, save_strategy
=IntervalStrategy.STEPS, save_steps=500, save_total_limit=None,
no_cuda=False, seed=42, fp16=False, fp16_opt_level=O1, fp16_backend
=auto, fp16_full_eval=False, local_rank=-1, tpu_num_cores=None,
tpu_metrics_debug=False, debug=False, dataloader_drop_last=False,
eval_steps=500, dataloader_num_workers=0, past_index=-1, run_name
=tmp_trainer, disable_tqdm=False, remove_unused_columns=True,
label_names=None, load_best_model_at_end=False,
metric_for_best_model=None, greater_is_better=None,
ignore_data_skip=False, sharded_ddp=[], deepspeed=None,
label_smoothing_factor=0.0, adafactor=False, group_by_length=False,
length_column_name=length, report_to=['tensorboard'],
ddp_find_unused_parameters=None, dataloader_pin_memory=True,
skip_memory_metrics=False, _n_gpu=1, mp_parameters=)

The Trainer creates an instance of TrainingArguments by itself, and the values

above are the arguments' default values. There is the learning_rate=5e-05, and

the num_train_epochs=3.0, and many, many others. The optimizer used, even

though it’s not listed above, is the AdamW, a variation of Adam.

We can create an instance of TrainingArguments ourselves to get at least a bit of

control over the training process. The only required argument is the output_dir, but

we’ll specify some other arguments as well:
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Training Arguments

 1 from transformers import TrainingArguments
 2 training_args = TrainingArguments(
 3     output_dir='output',
 4     num_train_epochs=1,
 5     per_device_train_batch_size=1,
 6     per_device_eval_batch_size=8,
 7     evaluation_strategy='steps',
 8     eval_steps=300,
 9     logging_steps=300,
10     gradient_accumulation_steps=8,
11 )

 "Batch size ONE?! You gotta be kidding me!"

Well, I would, if it were not for the gradient_accumulation_steps argument. That’s

how we can make the mini-batch size larger even if we’re using a low-end GPU

that is capable of handling only one data point at a time.

The Trainer can accumulate the gradients computed at every training step (which

is taking only one data point), and, after eight steps, it uses the accumulated

gradients to update the parameters. For all intents and purposes, it is as if the

mini-batch had size eight. Awesome, right?

Moreover, let’s set the logging_steps to three hundred, so it prints the training

losses every three hundred mini-batches (and it counts the mini-batches as having

size eight due to the gradient accumulation).

 "What about validation losses?"

The evaluation_strategy argument allows you to run an evaluation after every

eval_steps steps (if set to steps like in the example above) or after every epoch (if

set to epoch).

 "Can I get it to print accuracy or other metrics too?"

Sure, you can! But, first, you need to define a function that takes an instance of

EvalPrediction (returned by the internal validation loop), computes the desired

metrics, and returns a dictionary:
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Method for Computing Accuracy

1 def compute_metrics(eval_pred):
2     predictions = eval_pred.predictions
3     labels = eval_pred.label_ids
4     predictions = np.argmax(predictions, axis=1)
5     return {"accuracy": (predictions == labels).mean()}

We can use a simple function like the one above to compute accuracy and pass it as

the compute_metrics argument of the Trainer along with the remaining

TrainingArguments and datasets:

Model Training

1 trainer = Trainer(model=bert_cls,
2                   args=training_args,
3                   train_dataset=tokenized_train_dataset,
4                   eval_dataset=tokenized_test_dataset,
5                   compute_metrics=compute_metrics)

There we go—we’re 100% ready to call the glorious train() method:

Model Training

1 trainer.train()

Output

Step Training Loss Validation Loss Accuracy  ...
 300      0.194600        0.159694 0.953307  ...

TrainOutput(global_step=385, training_loss=0.17661244776341822,
metrics={'train_runtime': 80.0324, 'train_samples_per_second':
4.811, 'total_flos': 37119857544000.0, 'epoch': 1.0,
'init_mem_cpu_alloc_delta': 0, 'init_mem_gpu_alloc_delta': 0,
'init_mem_cpu_peaked_delta': 0, 'init_mem_gpu_peaked_delta': 0,
'train_mem_cpu_alloc_delta': 5025792, 'train_mem_gpu_alloc_delta':
806599168, 'train_mem_cpu_peaked_delta': 0,
'train_mem_gpu_peaked_delta': 96468992})
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It’s printing the training and validation losses, and the validation accuracy, every

three hundred mini-batches as configured. To check the final validation figures,

though, we need to call the evaluate() method, which, guess what, actually runs a

validation loop! Thank you, HuggingFace :-)

trainer.evaluate()

Output

{'eval_loss': 0.142591193318367,
 'eval_accuracy': 0.9610894941634242,
 'eval_runtime': 1.6634,
 'eval_samples_per_second': 463.51,
 'epoch': 1.0,
 'eval_mem_cpu_alloc_delta': 0,
 'eval_mem_gpu_alloc_delta': 0,
 'eval_mem_cpu_peaked_delta': 0,
 'eval_mem_gpu_peaked_delta': 8132096}

That’s 96.11% accuracy on the validation set after one epoch, roughly the same as

our own implementation ("Model IV"). Nice!

Once the model is trained, we can save it to disk using the save_model() method

from Trainer:

trainer.save_model('bert_alice_vs_wizard')
os.listdir('bert_alice_vs_wizard')

Output

['training_args.bin', 'config.json', 'pytorch_model.bin']

It creates a folder with the provided name, and it stores the trained model

(pytorch_model.bin) along with its configuration (config.json) and training

arguments (training_args.bin).

Later on, we can easily load the trained model using the from_pretrained()
method from the corresponding AutoModel:
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loaded_model = (AutoModelForSequenceClassification
                .from_pretrained('bert_alice_vs_wizard'))
loaded_model.device

Output

device(type='cpu')

The model is loaded to the CPU by default, but we can send it to a different device

in the usual PyTorch way:

device = 'cuda' if torch.cuda.is_available() else 'cpu'
loaded_model.to(device)
loaded_model.device

Output

device(type='cuda', index=0)

Predictions

We can finally answer the most important question of all: Where does the

sentence in the title, "Down the Yellow Brick Rabbit Hole," come from? Let’s ask

BERT:

sentence = 'Down the yellow brick rabbit hole'
tokens = auto_tokenizer(sentence, return_tensors='pt')
tokens

Output

{'input_ids': tensor([[  101,  2091,  1996,  3756,  5318, 10442,
4920,   102]]),
 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1]])}

After tokenizing the sentence, we need to make sure the tensors are in the same

device as the model.
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 "Do I need to send each tensor to a device, really?"

Not really, no. It turns out, the output of the tokenizer isn’t just a dictionary, but

also an instance of BatchEncoding, and we can easily call its to() method to send

the tensors to the same device as the model:

print(type(tokens))
tokens.to(loaded_model.device)

Output

<class 'transformers.tokenization_utils_base.BatchEncoding'>
{'input_ids': tensor([[  101,  2091,  1996,  3756,  5318, 10442,
4920,   102]], device='cuda:0'),
 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1]], device
='cuda:0')}

That was easy, right?

Let’s call the model using these inputs!

Even though the model is loaded in evaluation mode by default, it is always a good

idea to explicitly set the model to evaluation mode using the PyTorch model’s

eval() method during evaluation or test phases:

loaded_model.eval()
logits = loaded_model(input_ids=tokens['input_ids'],
                      attention_mask=tokens['attention_mask'])
logits

Output

SequenceClassifierOutput(loss=None, logits=tensor([[ 2.7745, -
2.5539]], device='cuda:0', grad_fn=<AddmmBackward>), hidden_states
=None, attentions=None)

The largest logit corresponds to the predicted class as usual:
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logits.logits.argmax(dim=1)

Output

tensor([0], device='cuda:0')

BERT has spoken: The sentence "Down the Yellow Brick Rabbit Hole" is more likely

coming from The Wonderful Wizard of Oz (the negative class of our binary

classification task).

Don’t you think that’s a lot of work to get predictions for a single sentence? I mean,

tokenizing, sending it to the device, feeding the inputs to the model, getting the

largest logit—that’s a lot, right? I think so, too.

Pipelines

Pipelines can handle all these steps for us, we just have to choose the appropriate

one. There are many different pipelines, one for each task, like the

TextClassificationPipeline and the TextGenerationPipeline. Let’s use the

former to run our tokenizer and trained model at once:

from transformers import TextClassificationPipeline
device_index = (loaded_model.device.index
                if loaded_model.device.type != 'cpu'
                else -1)
classifier = TextClassificationPipeline(model=loaded_model,
                                        tokenizer=auto_tokenizer,
                                        device=device_index)

Every pipeline takes at least two required arguments: a model and a tokenizer. We

can also send it straight to the same device as our model, but we would need to use

the device index instead (-1 if it’s on a CPU, 0 if it’s on the first or only GPU, 1 if it’s

on the second one, and so on).

Now we can make predictions using the original sentences:

classifier(['Down the Yellow Brick Rabbit Hole', 'Alice rules!'])
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Output

[{'label': 'LABEL_0', 'score': 0.9951714277267456},
 {'label': 'LABEL_1', 'score': 0.9985325336456299}]

The model seems pretty confident that the first sentence is from The Wonderful

Wizard of Oz (negative class) and that the second sentence is from Alice’s

Adventures in Wonderland (positive class).

We can make the output a bit more intuitive, though, by setting proper labels for

each of the classes using the id2label attribute of our model’s configuration:

loaded_model.config.id2label = {0: 'Wizard', 1: 'Alice'}

Let’s try it again:

classifier(['Down the Yellow Brick Rabbit Hole', 'Alice rules!'])

Output

[{'label': 'Wizard', 'score': 0.9951714277267456},
 {'label': 'Alice', 'score': 0.9985325336456299}]

That’s much better!

More Pipelines

It’s also possible to use pre-trained pipelines for typical tasks like sentiment

analysis without having to fine-tune your own model:

from transformers import pipeline
sentiment = pipeline('sentiment-analysis')

That’s it! The task defines which pipeline is used. For sentiment analysis, the

pipeline above loads a TextClassificationPipeline like ours, but one that’s pre-

trained to perform that task.
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For a complete list of available tasks, please check HuggingFace’s

pipeline[212] documentation.

Let’s run the first sentence of our training set through the sentiment analysis

pipeline:

sentence = train_dataset[0]['sentence']
print(sentence)
print(sentiment(sentence))

Output

And, so far as they knew, they were quite right.
[{'label': 'POSITIVE', 'score': 0.9998356699943542}]

Positive, indeed!

If you’re curious about which model is being used under the hood, you can check

the SUPPORTED_TASKS dictionary. For sentiment analysis, it uses the distilbert-
base-uncased-finetuned-sst-2-english model:

from transformers.pipelines import SUPPORTED_TASKS
SUPPORTED_TASKS['sentiment-analysis']

Output

{'impl': transformers.pipelines.text_classification
.TextClassificationPipeline,
 'tf': None,
 'pt': types.AutoModelForSequenceClassification,
 'default': {'model': {'pt': 'distilbert-base-uncased-finetuned-sst-
2-english',
   'tf': 'distilbert-base-uncased-finetuned-sst-2-english'}}}

 "What about text generation?"
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SUPPORTED_TASKS['text-generation']

Output

{'impl': transformers.pipelines.text_generation
.TextGenerationPipeline,
 'tf': None,
 'pt': types.AutoModelForCausalLM,
 'default': {'model': {'pt': 'gpt2', 'tf': 'gpt2'}}}

That’s the famous GPT-2 model, which we’ll discuss briefly in the next, and last,

section of this chapter.

GPT-2

The Generative Pretrained Transformer 2, introduced by Radford, A. et al. in their

paper "Language Models are Unsupervised Multitask Learners"[213] (2018), made

headlines with its impressive ability to generate text of high quality in a variety of

contexts. Just like BERT, it is a language model; that is, it is trained to fill in the

blanks in sentences. But, while BERT was trained to fill in the blanks in the middle

of sentences (thus correcting corrupted inputs), GPT-2 was trained to fill in blanks

at the end of sentences, effectively predicting the next word in a given sentence.

Predicting the next element in a sequence is exactly what a Transformer decoder

does, so it should be no surprise that GPT-2 is actually a Transformer decoder.

It was trained on more than 40 GB of Internet text spread over 8 million web pages.

Its largest version has 48 "layers" (the original Transformer had only six), twelve

attention heads, and 1,600 hidden dimensions, totaling 1.5 billion parameters,

and it was released in November 2019.[214]

 "Don’t train this at home!"

On the other end of the scale, the smallest version has only twelve "layers," twelve

attention heads, and 768 hidden dimensions, totaling 117 million parameters (the

smallest GPT-2 is still a bit larger than the original BERT!). This is the version

automatically loaded in the TextGenerationPipeline.

You can find the models and the corresponding code in Open AI’s GPT-2 repository
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[215]. For a demo of GPT-2’s capabilities, please check AllenNLP’s Language

Modeling Demo,[216] which uses GPT-2’s medium model (345 million parameters).


You can also check GPT-2’s documentation[217] and model card,[

218] available at HuggingFace, for a quick overview of the model

and its training procedure.



For a general overview of GPT-2, see this great post by Jay

Alammar: "The Illustrated GPT-2 (Visualizing Transformer

Language Models)."[219]

To learn more details about GPT-2’s architecture, please check

"The Annotated GPT-2"[220] by Aman Arora.

There is also Andrej Karpathy’s minimalistic implementation of

GPT, minGPT,[221] if you feel like trying to train a GPT model from

scratch.

Let’s load the GPT-2-based text generation pipeline:

text_generator = pipeline("text-generation")

Then, let’s use the first two paragraphs from Alice’s Adventures in Wonderland as

our base text:

base_text = """
Alice was beginning to get very tired of sitting by her sister on
the bank, and of having nothing to do:  once or twice she had peeped
into the book her sister was reading, but it had no pictures or
conversations in it, `and what is the use of a book,'thought Alice
`without pictures or conversation?' So she was considering in her
own mind (as well as she could, for the hot day made her feel very
sleepy and stupid), whether the pleasure of making a daisy-chain
would be worth the trouble of getting up and picking the daisies,
when suddenly a White Rabbit with pink eyes ran close by her.
"""

The generator will produce a text of size max_length, including the base text, so this

value has to be larger than the length of the base text. By default, the model in the
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text generation pipeline has its do_sample argument set to True to generate words

using beam search instead of greedy decoding:

text_generator.model.config.task_specific_params

Output

{'text-generation': {'do_sample': True, 'max_length': 50}}

result = text_generator(base_text, max_length=250)
print(result[0]['generated_text'])

Output

...
Alice stared at the familiar looking man in red, in a white dress,
and smiled shyly.

She saw the cat on the grass and sat down with it gently and
eagerly, with her arms up.

There was a faint, long, dark stench, the cat had its tail held at
the end by a large furry, white fur over it.

Alice glanced at it.

It was a cat, but a White Rabbit was very good at drawing this,
thinking over its many attributes, and making sure that no reds
appeared

I’ve removed the base text from the output above, so that’s generated text only.

Looks decent, right? I tried it several times, and the generated text is usually

consistent, even though it digresses some times and, on occasion, generates some

really weird pieces of text.

 "What is this beam search? That sounds oddly familiar."

That’s true, we briefly discussed beam search (and its alternative, greedy decoding)
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in Chapter 9, and I reproduce it below for your convenience:

"…greedy decoding because each prediction is deemed final. "No backsies":

Once it’s done, it’s really done, you just move along to the next prediction and

never look back. In the context of our sequence-to-sequence problem, a

regression, it wouldn’t make much sense to do otherwise anyway.

But that may not be the case for other types of sequence-to-sequence

problems. In machine translation, for example, the decoder outputs

probabilities for the next word in the sentence at each step. The greedy

approach would simply take the word with the highest probability and move

on to the next.

However, since each prediction is an input to the next step, taking the top

word at every step is not necessarily the winning approach (translating from

one language to another is not exactly "linear"). It is probably wiser to keep a

handful of candidates at every step and try their combinations to choose the

best one: That’s called beam search…"

By the way, if you try using greedy decoding instead (setting do_sample=False), the

generated text simply and annoyingly repeats the same text over and over again:

'What is the use of a daisy-chain?'
'I don't know,' said Alice, 'but I think it is a good idea.'

'What is the use of a daisy-chain?'
'I don't know,' said Alice, 'but I think it is a good idea.'



For more details on the different arguments that can be used for

text generation, including a more detailed explanation of both

greedy decoding and beam search, please check HuggingFace’s

blog post "How to generate text: Using different decoding

methods for language generation with Transformers"[222] by

Patrick von Platen.


"Wait a minute! Aren’t we fine-tuning GPT-2 so it can write text in a

given style?"

I thought you would never ask… Yes, we are. It’s the final example, and we’re

GPT-2 | 1007

https://huggingface.co/blog/how-to-generate
https://huggingface.co/blog/how-to-generate


covering it in the next section.

Putting It All Together

In this chapter, we built a dataset using two books and explored many

preprocessing steps and techniques: sentence and word tokenization, word

embeddings, and much more. We used HuggingFace’s Dataset and pre-trained

tokenizers extensively for the data preparation step, and leveraged the power of

pre-trained models like BERT to classify sequences (sentences) according to their

source. We also used HuggingFace’s Trainer and pipeline classes to easily train

models and deliver predictions, respectively.

Data Preparation

In order to capture the style of Lewis Carroll’s Alice’s Adventures in Wonderland, we

need to use a dataset containing sentences from that book alone, instead of our

previous dataset that included The Wonderful Wizard of Oz as well.

Data Preparation

1 dataset = load_dataset(path='csv',
2                        data_files=['texts/alice28-1476.sent.csv'],
3                        quotechar='\\', split=Split.TRAIN)
4 
5 shuffled_dataset = dataset.shuffle(seed=42)
6 split_dataset = shuffled_dataset.train_test_split(test_size=0.2,
7                                                   seed=42)
8 train_dataset = split_dataset['train']
9 test_dataset = split_dataset['test']

Next, we tokenize the dataset using GPT-2's pre-trained tokenizer. There are some

differences from BERT, though:

• First, GPT-2 uses Byte-Pair Encoding (BPE) instead of WordPiece for

tokenization.

• Second, we’re not padding the sentences, since we’re trying to generate text

and it wouldn’t make much sense to predict the next word after a bunch of

padded elements.

• Third, we’re removing the original columns (source and sentence) such that

only the output of the tokenizer (input_ids and attention_mask) remains.
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Data Preparation

 1 auto_tokenizer = AutoTokenizer.from_pretrained('gpt2')
 2 def tokenize(row):
 3     return auto_tokenizer(row['sentence'])
 4 
 5 tokenized_train_dataset = train_dataset.map(
 6     tokenize, remove_columns=['source', 'sentence'], batched=True
 7 )
 8 tokenized_test_dataset = test_dataset.map(
 9     tokenize, remove_columns=['source', 'sentence'], batched=True
10 )

Maybe you’ve already realized that, without padding, the sentences have varied

lengths:

list(map(len, tokenized_train_dataset[0:6]['input_ids']))

Output

[9, 28, 20, 9, 34, 29]

These are the first six sentences, and their lengths range from nine to thirty-four

tokens.


"Can’t we just pack the sequences using

rnn_utils.pack_sequence() like in Chapter 8?"

You get the gist of it: The general idea is to "pack" sequences together, indeed, but

in a different way!

"Packed" Dataset

The "packing" is actually simpler now; it is simply concatenating the inputs together

and then chunking them into blocks.
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Figure 11.29 - Grouping sentences into blocks

The function below was adapted from HuggingFace’s language modeling fine-

tuning script run_clm.py,[223] and it "packs" the inputs together:

Method for Grouping Sentences into Blocks

 1 # Adapted from https://github.com/huggingface/transformers/blob/
 2 # master/examples/pytorch/language-modeling/run_clm.py
 3 def group_texts(examples, block_size=128):
 4     # Concatenate all texts.
 5     concatenated_examples = {k: sum(examples[k], [])
 6                              for k in examples.keys()}
 7     total_length = len(
 8         concatenated_examples[list(examples.keys())[0]]
 9     )
10     # We drop the small remainder, we could add padding
11     # if the model supported it instead of this drop, you
12     # can customize this part to your needs.
13     total_length = (total_length // block_size) * block_size
14     # Split by chunks of max_len.
15     result = {
16         k: [t[i : i + block_size]
17             for i in range(0, total_length, block_size)]
18         for k, t in concatenated_examples.items()
19     }
20     result["labels"] = result["input_ids"].copy()
21     return result

We can apply the function above to our datasets in the usual way and then set their

output formats to PyTorch tensors:
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Data Preparation

1 lm_train_dataset = tokenized_train_dataset.map(
2     group_texts, batched=True
3 )
4 lm_test_dataset = tokenized_test_dataset.map(
5     group_texts, batched=True
6 )
7 lm_train_dataset.set_format(type='torch')
8 lm_test_dataset.set_format(type='torch')

Now, the first data point actually contains the first 128 tokens of our dataset (the

first five sentences and almost all tokens from the sixth):

print(lm_train_dataset[0]['input_ids'])

Output

tensor([   63,  2437,   466,   345,   760,   314,  1101,  8805,
         8348,   464,  2677,  3114,  7296,  6819,   379,   262,
         2635, 25498,    11,   508,   531,   287,   257,  1877,
         3809,    11,  4600,  7120, 25788,  1276,  3272,    12,
         1069,  9862, 12680,  4973,  2637,  1537,   611,   314,
         1101,   407,   262,   976,    11,   262,  1306,  1808,
          318,    11,  5338,   287,   262,   995,   716,   314,
           30,   464,   360,   579,  1076,  6364,  4721,   465,
         2951,    13,    63,  1026,   373,   881, 21289,   272,
          353,   379,  1363,  4032,  1807,  3595, 14862,    11,
         4600, 12518,   530,  2492,   470,  1464,  3957,  4025,
          290,  4833,    11,   290,   852,  6149,   546,   416,
        10693,   290, 33043,    13,  1870, 14862,   373,   523,
          881, 24776,   326,   673,  4966,   572,   379,  1752,
          287,   262,  4571,   340,  6235,   284,    11,  1231,
         2111,   284,  4727,   262,  7457,   340,   550,   925])

Consequently, the datasets get smaller, since they do not contain sentences

anymore but sequences of 128 tokens instead:
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len(lm_train_dataset), len(lm_test_dataset)

Output

(239, 56)

The dataset is ready! We can move on to the…

Model Configuration & Training

GPT-2 is a model for causal language modeling, and that’s the AutoModel we use to

load it:

Model Configuration

1 from transformers import AutoModelForCausalLM
2 model = AutoModelForCausalLM.from_pretrained('gpt2')
3 print(model.__class__)

Output

<class 'transformers.modeling_gpt2.GPT2LMHeadModel'>



GPT-2’s tokenizer does not include a special padding token by

default, but you may add it if needed. If you do add any tokens to

the vocabulary, though, you also need to let the model know it

using resize_token_embeddings():

model.resize_token_embeddings(len(auto_tokenizer))

Output

Embedding(50257, 768)

In our example, it doesn’t make a difference, but it’s a good idea

to add the line above to the code anyway to be on the safe side.
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The training arguments are roughly the same ones we used to train BERT, but there

is an additional one: prediction_loss_only=True. Since GPT-2 is a generative

model, we won’t be running any additional metrics during training or validation,

and there’s no need for anything but the loss.

Model Training

 1 training_args = TrainingArguments(
 2     output_dir='output',
 3     num_train_epochs=1,
 4     per_device_train_batch_size=1,
 5     per_device_eval_batch_size=8,
 6     evaluation_strategy='steps',
 7     eval_steps=50,
 8     logging_steps=50,
 9     gradient_accumulation_steps=4,
10     prediction_loss_only=True,
11 )
12 
13 trainer = Trainer(model=model,
14                   args=training_args,
15                   train_dataset=lm_train_dataset,
16                   eval_dataset=lm_test_dataset)

After configuring the Trainer, we call its train() method and then its evaluate()
method:

Model Training

1 trainer.train()
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Output

Step Training Loss Validation Loss  ...
  50      3.587500        3.327199  ...

TrainOutput(global_step=59, training_loss=3.5507330167091498,
metrics={'train_runtime': 22.6958, 'train_samples_per_second': 2.6,
'total_flos': 22554466320384.0, 'epoch': 0.99,
'init_mem_cpu_alloc_delta': 1316954112, 'init_mem_gpu_alloc_delta':
511148032, 'init_mem_cpu_peaked_delta': 465375232,
'init_mem_gpu_peaked_delta': 0, 'train_mem_cpu_alloc_delta':
13103104, 'train_mem_gpu_alloc_delta': 1499219456,
'train_mem_cpu_peaked_delta': 0, 'train_mem_gpu_peaked_delta':
730768896})

trainer.evaluate()

Output

{'eval_loss': 3.320632219314575,
 'eval_runtime': 0.9266,
 'eval_samples_per_second': 60.438,
 'epoch': 0.99,
 'eval_mem_cpu_alloc_delta': 151552,
 'eval_mem_gpu_alloc_delta': 0,
 'eval_mem_cpu_peaked_delta': 0,
 'eval_mem_gpu_peaked_delta': 730768896}

There we go: GPT-2 was fine-tuned on Alice’s Adventures in Wonderland for one

epoch.

How good is it at being Lewis Carroll now? Let’s check it out!

Generating Text

The GPT-2 model has a generate() method with plenty of options for generating

text (e.g., greedy decoding, beam search, and more). We won’t be delving into these

details but going the easy way instead: assigning our fine-tuned model and pre-

trained tokenizer to a pipeline and using most of its default values.

1014 | Chapter 11: Down the Yellow Brick Rabbit Hole



device_index = (model.device.index
                if model.device.type != 'cpu'
                else -1)
gpt2_gen = pipeline('text-generation',
                    model=model,
                    tokenizer=auto_tokenizer,
                    device=device_index)

The only parameter we may have to change is, once again, the max_length:

result = gpt2_gen(base_text, max_length=250)
print(result[0]['generated_text'])

Output

Alice was beginning to get very tired of sitting by her sister on
the bank, and of having nothing to do: once or twice she had peeped
into the book her sister was reading, but it had no pictures or
conversations in it, `and what is the use of a book,'thought Alice
`without pictures or conversation?' So she was considering in her
own mind (as well as she could, for the hot day made her feel very
sleepy and stupid), whether the pleasure of making a daisy-chain
would be worth the trouble of getting up and picking the daisies,
when suddenly a White Rabbit with pink eyes ran close by her.

The rabbit was running away quite as quickly as it had jumped to her
feet.She had nothing of the kind, and, as she made it up to Alice,
was beginning to look at the door carefully in one thought.`It's
very curious,'after having been warned,`that I should be talking to
Alice!'`It's not,'she went on, `it wasn't even a cat,' so very very
quietly indeed.'In that instant he began to cry out aloud.Alice
began to sob out, 'I am not to cry out!'`What

This time, I’ve kept the whole thing, the base and the generated text. I tried it out

several times and, in my humble opinion, the output looks more "Alice-y" now.

What do you think?
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Recap

In this chapter, we took a deep dive into the natural language processing world. We

built our own dataset from scratch using two books, Alice’s Adventures in

Wonderland and The Wonderful Wizard of Oz, and performed sentence and word

tokenization. Then, we built a vocabulary and used it with a tokenizer to generate

the primary input of our models: sequences of token IDs. Next, we created

numerical representations for our tokens, starting with a basic one-hot encoding

and working our way to using word embeddings to train a model for classifying the

source of a sentence. We also learned about the limitations of classical

embeddings, and the need for contextual word embeddings produced by language

models like ELMo and BERT. We got to know our Muppet friend in detail: input

embeddings, pre-training tasks, and hidden states (the actual embeddings). We

leveraged the HuggingFace library to fine-tune a pre-trained model using a

Trainer and to deliver predictions using a pipeline. Lastly, we used the famous

GPT-2 model to generate text that, hopefully, looks like it was written by Lewis

Carroll. This is what we’ve covered:

• using NLTK to perform sentence tokenization on our text corpora

• converting each book into a CSV file containing one sentence per line

• building a dataset using HuggingFace’s Dataset to load the CSV files

• creating new columns in the dataset using map()

• learning about data augmentation for text data

• using Gensim to perform word tokenization

• building a vocabulary and using it to get a token ID for each word

• adding special tokens to the vocabulary, like [UNK] and [PAD]

• loading our own vocabulary into HuggingFace’s tokenizer

• understanding the output of a tokenizer: input_ids, token_type_ids, and

attention_mask

• using the tokenizer to tokenize two sentences as a single input

• creating numerical representations for each token, starting with one-hot

encoding

• learning about the simplicity and limitations of the bag-of-words (BoW)

approach
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• learning that a language model is used to estimate the probability of a token,

pretty much like filling in the blanks in a sentence

• understanding the general idea behind the Word2Vec model and its common

implementation, the CBoW (continuous bag-of-words)

• learning that word embeddings are basically a lookup table to retrieve the

vector corresponding to a given token

• using pre-trained embeddings like GloVe to perform embedding arithmetic

• loading GloVe embeddings and using them to train a simple classifier

• using a Transformer encoder together with GloVe embeddings to classify

sentences

• understanding the importance of contextual word embeddings to distinguish

between different meanings for the same word

• using flair to retrieve contextual word embeddings from ELMo

• getting an overview of ELMo’s architecture and its hidden states (the

embeddings)

• using flair to preprocess sentences into BERT embeddings and train a

classifier

• learning about WordPiece tokenization used by BERT

• computing BERT’s input embeddings using token, position, and segment

embeddings

• understanding BERT’s pre-training tasks: masked language model (MLM) and

next sentence prediction (NSP)

• exploring the different outputs from BERT: hidden states, pooler output, and

attentions

• training a classifier using pre-trained BERT as a layer

• fine-tuning BERT using HuggingFace’s models for sequence classification

• remembering to always use matching pre-trained model and tokenizer

• exploring and using the Trainer class to fine-tune large models using gradient

accumulation

• combining tokenizer and model into a pipeline to easily deliver predictions

• loading pre-trained pipelines to perform typical tasks, like sentiment analysis
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• learning about the famous GPT-2 model and fine-tuning it to generate text like

Lewis Carroll :-)

Congratulations! You survived an intense crash course on (almost) all things NLP,

from basic sentence tokenization using NLTK all the way up to sequence

classification using BERT and causal language modeling using GPT-2. You’re now

equipped to handle text data and train or fine-tune models using HuggingFace.

In the next chapter, we’ll … oh, wait, there is no next chapter. We’ve actually

finished our long journey!

Thank You!

I really hope you enjoyed reading and learning about all these topics as much as I

enjoyed writing (and learning, too!) about them.

If you have any suggestions, or if you find any errors, please don’t hesitate to

contact me through GitHub, Twitter, or LinkedIn.

I’m looking forward to hearing back from you!

Daniel Voigt Godoy, December 5, 2021


"You’re still here? It’s over. Go home!"

Ferris Bueller

Sorry, but I had to end with a silly joke :-)
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