Practical
Machine Learning

with

Spark

Uncover Apache Spark’s Scalable Performance with High-Quality
Algorithms Across NIp, Computer Vision and ML

DR. MANISH GUPTA

DR. INDER SINGH GUPTA
, BBk 2

Practical Machine
Learning with
Spark

Uncover Apache Spark’s Scalable
Performance with High-Quality Algorithms
Across NLP, Computer Vision and ML

Gourav Gupta
Dr. Manish Gupta
Dr. Inder Singh Gupta

www.bpbonline.com

ii
Copyright © 2022 BPB Online

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of
the publisher, except in the case of brief quotations embedded in critical articles or
reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, nor BPB Online or its
dealers and distributors, will be held liable for any damages caused or alleged to have
been caused directly or indirectly by this book.

BPB Online has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, BPB Online cannot guarantee the accuracy of this information.

Group Product Manager: Marianne Conor
Publishing Product Manager: Eva Brawn
Senior Editor: Connell

Content Development Editor: Melissa Monroe
Technical Editor: Anne Stokes

Copy Editor: Joe Austin

Language Support Editor: Justin Baldwin
Project Coordinator: Tyler Horan
Proofreader: Khloe Styles

Indexer: V. Krishnamurthy

Production Designer: Malcolm D'Souza

Marketing Coordinator: Kristen Kramer

First published: May 2022

Published by BPB Online
WeWork, 119 Marylebone Road
London NW1 5PU

UK | UAE | INDIA | SINGAPORE

ISBN 978-93-91392-086

www.bpbonline.com

iii

Dedicated to

Our Parents

iv

About the Authors

Gourav Gupta is a Data specialist having 5+ years of
experience in Big Data, Artificial Intelligence, Deep
Learning, Internet of Things and Digital Twin. Mr. Gourav
has worked on several interdisciplinary real time project
which are the conglomerations of Digital Technologies.
His expertise is on architectural optimization and
technical solutioning on Big Data, Al, Computer Vision,
and Internet of Things. He also loves to write research
article and serving as a reviewer with Springer Journal.

https://www.linkedin.com/in/gourav-g-8929a560/

Dr. Manish Gupta is a 21st century researcher, innovator,
and entrepreneur. He has completed his Ph.D. from reputed
Jawaharlal Nehru University, India. Presently, he is working
at Department of Radiology, Perelman School of Medicine,
University of Pennsylvania (UPENN), Philadelphia, USA.
Prior joined at UPENN, Dr. Gupta worked at Gwangju
Institute of Science and Technology, Gwangju, South
Korea. In addition, he is founder member and Chief
Research Advisor of digital healthcare startup (Arogya
Pandit Private Limited) at India. He has filled patent and
published several research articles in well-reputed SCI
journals and international conferences/book chapters. His
research interest is on Low-cost biosensors development,
Development and optimization of pulse sequence using
MRI, Tumor classification using Machine Learning and
Deep Learning using MRI. In addition, he is also working
on several projects related to Big Data integration with
Artificial intelligence and Internet of Things. Dr. Gupta also
loves to write poem and technical blogs.

https://www.linkedin.com/in/manish-gupta-ph-d-
9544ba60/

Professor (Dr.) Inder Singh Gupta is a seismologist,
statistician, mathematical modeler, and Data Science
expert. He has 37+ years of rich experience in Research,
Teaching, Principal Supervisor for many Govt. funded
projects along with numerous research publications
in reputed international journals and conferences.
He is also an author of many undergraduate and
postgraduate books of mathematics. Currently, he got
retired from JVMGRR(PG) College, India, and serving
as Chief Executive Officer in digital healthcare startup
(ArogyaPandit Private Limited,India (arogyapandit.
com)).

https://www.linkedin.com/in/dr-i-s-gupta-87aa2120/

vi

R/
0'0

About the Reviewers

Kiran Raja is a Faculty Member with the Department of Computer Science
at Norwegian University of Science and Technology (NTNU), Norway. He
received his PhD degree in Computer Science from the NTNU in 2016. He
was/is participating in EU projects FP7-INGRESS, H2020-SOTAMD, H2020-
iMARS, and other national projects. During his participation in SOTAMD and
iMARS projects at NTNU, he has worked on different problems in morphing
attacks from both generation and detection perspectives. He is a member of
the European Association of Biometrics (EAB) and chairs the Academic Special
Interest Group at EAB. He also advises various national agencies in Norway
on making biometric systems secure. His recent research focuses on attacks
and defenses on biometric systems using statistical pattern recognition, image
processing, and machine learning. He has authored several papers in his field
of interest and serves as a reviewer for several journals and conferences. He
also serves as program chair for the BIOSIG conference. He is also a member of
the editorial board for various journals.

Er. Nidhi Gupta has 9 years of extensive experience to perform troubleshooting
and testing of advanced analytics applications which deploy on-premise
and cloud-based architecture. Currently, she is associated with Department
of Treasury and Finance under the Australian Government as a “Senior Test
Analyst”. Where, she is leveraging disparate tools such as Selenium, Talend,
Jenkins, AWS stack, Cucumber, RestAssured, Robotic Process Automation
(RPA), Protactor, and Jmeter (Interpreter using Python, PySpark, Java,
TypeScript) for executing the manual and automated test cases. Also, she has
been responsible to landing the Machine Learning and Big Data based projects
impeccably with zero caveats.

Apart of being a technocrat, she loves to do travelling and trekking with loved
ones in her leisure time.

Shecanbereached at[nidhigupt8190@gmail.com / nidhi.gupta@arogyapandit.
com or linkedin.com/in/nidhi-gupta-957458bb]

vii

Acknowledgements

I am feeling profound happiness to be able to deliver this book to all my readers
across the globe who have been working in the domain of advanced analytics
and intelligence. In this book, I tried my best to elucidate all the indispensable
information for extending the adaptability of distributed processing towards Big
Data and Artificial Intelligence.

First and foremost, a special thanks to my mother, Mrs. Varsha Gupta, for providing
the ideal atmosphere while writing the book chapters. Also, I would like to thank
the co-authors of this book, Dr. I.S. Gupta and Dr. Manish Gupta, for their helpful
and valuable guidance. However, this book wouldn’t have been possible without
the encouragement of my brother-in-law, Er. Manish Gupta, my younger brother,
Sourav Gupta, and other family members.

Finally, I would like to thank Mr. Nrip Jain and the entire BPB team for providing
the opportunity to write this book. Also, I have no words for the reviewers, Dr.
Kiran Raja and Er. Nidhi Gupta, for improving the standard and quality of this
book. I agree that the content of this book will confound the reader with great
interest.

— Gourav Gupta

In the last two decades, we have continually witnessed tremendous growth in
digital data coming from numerous digital platforms. To handle this massive
amount of data, advanced analytics and intelligence techniques are continuously
gaining popularity among the data science community across the globe. The
present book is a sincere attempt to adorn all analytics techniques under one
umbrella for the convenience of readers.

It is my great privilege to introduce this book to data analysts and the science
community. This book potentially creates a bridge to fulfil a gap between the
academic community and corporate researchers. In no words, I can articulate my
infinite indebtedness to a loving family whose unending love always provided me
with the moral strength to materialise this book within a scheduled time frame.
I owe an enormous debt of gratitude to my co-authors for countless technical
discussions and also for their erudition.

viii

I owe an immeasurable debt to both reviewers for their active support, which
did not let me feel let-down during the finalisation of this book. I appreciate both
efforts in putting my endeavours in the right direction.

In the end, needless to say, without the active support of the entire BPB family, this
would have remained an unfulfilled dream.

— Dr. Manish Gupta

In the era of automation, it has become necessary to update and apprise the public
about the upcoming advancements using machine learning and deep learning. It
is quite difficult to achieve more precision with fewer computations without the
implementation of statistical methods and mathematical concepts while training
and testing an intelligence system.

In my 40 years of teaching and research experience, I taught and delivered numerous
international and national lectures on these statistical methods, numerical
methods, and operational research methods for solving the tedious problems in
seismology, particularly in the propagation of waves in solids theoretically. As a
co-founder and director at ArogyaPandit Private Limited, India, I help and teach
my data science team about the core and advanced mathematical functions and
calculations in Al

I also express my gratitude to my supervisor, Professor Dr. Sarva Jit Singh (former
head of the mathematics department, MDU, Rohtak India), for his blessing and
support throughout my professional life. I would like to thank my wife and family
members for their cooperation. Also, I thank the reviewers, Mrs. Nidhi Gupta and
Dr. Kiran Raja, for improving the book's contents and technical refinement. Finally,
I would also like to thank the BPB Publications for providing this opportunity.

— Dr. I.S. Gupta

ix

Preface

Since 1964, from the beginning of automation and intelligence towards machines,
the applications of machine learning (ML) have made tremendous progress during
the last two decades. But still, there is a large scope of improvement for fast and
accurate decisions. The aim of the present book is to make the readers aware of day-
to-day activities that make life smarter and cosier with the use of ML applications
using Apache Spark. Initially, there was a single processing framework used in
ML to solve the critical problems. Due to the standalone processing, the training
and testing of models usually takes more time and requires more resources. Also,
the problem becomes more complex and time-consuming for big data (high
dimension and data volume of features) in ML. Therefore, a promising in-memory
analytics layer needs to be introduced, such as Apache Spark, for handling and
training the heavy intelligence model in an optimised manner. Generally, there
are two types of distributed frameworks, like Apache Hadoop and Apache Spark.
Due to some limitations in Hadoop, most MNCs later adopted Apache Spark. This
book contains comprehensive and lucid details from scratch to production level
implementation of a distributed framework, which the readers will find useful.
Also, readers will learn to easily transition from conceptual scenarios to practical
implementation and get educated them about the various components of ML
pipelines using Apache Spark. Although a Github link is provided in this book
where the reader can try the practical stuff using those codebases.

Chapter 1 delineates the introductory phase and disparate real-time applications
of various domains of ML. Compendious discussion regarding its derived
technologies such as Neutral Network (NN) and Deep Learning (DL) in connection
with ML applications is also discussed. Beginning from the evolution of ML to its
future scope, it is also mentioned in detail for readers.

Chapter 2 deals with issues including handling, storing, and processing large
volumes of data by leveraging the Distributed Framework (DF). The installation
and configuration of Apache Spark on-premises systems, Apache Spark on cloud-
based systems, Python, DBeaver, Code Editors, and PowerBI are also deeply
discussed in this chapter.

Chapter 3 contains the various ways to read and manipulate heterogeneous
formats of data, a detailed explanation of the architecture, an optimization

interactive monitoring of Spark's job through Apache Livy. Workflow creation
through Apache Oozie and other tools for creating a unified pipeline are also
mentioned in this chapter.

Chapter 4 presents deep knowledge about various components of ML pipelines,
actions, transformations for making the unified ML pipeline using Apache Spark.
Also, this chapters explain all the SparkML methods for training and testing the
intelligence model on actual data.

Chapter 5 deals with distributed processing-based supervised learning along
with implementation. Also, the discussion on regression and classification-based
performance metrics is given to check the performance of the model.

Chapter 6 highlights the use of unsupervised learning methods for clustering of
random samples to understand hidden patterns in the data and find outliers etc.
The implementation of each learning method is given in this chapter.

Chapter 7 deals with the evolution of Natural Language Processing (NLP) and its
distributed processing using the SparkNL P library along with future scope. Also,
topic modelling, text-classification, and sentiment analysis are discussed in detail.

Chapter 8 is deeply concerned with the recommendation engine and its
distributed processing-based operation. The uses are also mentioned in relation to
recommendations regarding products, services, and information.

Chapter 9 discusses the uses of DL process to improve the performance of
computation and hence reduces the time consumption and cost reduction. In this
chapter, evolution of DL and its components explanation and advancement in DL
are also discussed.

Chapter 10 gives comprehensive details regarding the evolution of Computer
Vision (CV) and its related libraries, core components, data augmentation,
and applications. CV enhancement is also discussed, as well as their practical
implementation in real-time CV-based pipelines.

xi

Code Bundle and Coloured Images

Please follow the link to download the
Code Bundle and the Coloured Images of the book:

https://rebrand.ly/lrsgks?7

The code bundle for the book is also hosted on GitHub at
https://github.com/bpbpublications/Practical-Machine-Learning-with-Spark.
In case there's an update to the code, it will be updated on the existing GitHub
repository.

We have code bundles from our rich catalogue of books and videos available at
https://github.com/bpbpublications. Check them out!

Errata

We take immense pride in our work at BPB Publications and follow best practices
to ensure the accuracy of our content to provide with an indulging reading
experience to our subscribers. Our readers are our mirrors, and we use their inputs
to reflect and improve upon human errors, if any, that may have occurred during
the publishing processes involved. To let us maintain the quality and help us reach
out to any readers who might be having difficulties due to any unforeseen errors,
please write to us at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB
Publications’” Family.

Did you know that BPB offers eBook versions of every book published,
with PDF and ePub files available? You can upgrade to the eBook version
at www.bpbonline.com and as a print book customer, you are entitled to a
discount on the eBook copy. Get in touch with us at :

business@bpbonline.com for more details.
At www.bpbonline.com, you can also read a collection of free technical

articles, sign up for a range of free newsletters, and receive exclusive
discounts and offers on BPB books and eBooks.

xii

Piracy

If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or
website name. Please contact us at business@bpbonline.com with a link
to the material.

If you are interested in becoming an author

If there is a topic that you have expertise in, and you are interested in either
writing or contributing to a book, please visit www.bpbonline.com. We
have worked with thousands of developers and tech professionals, just like
you, to help them share their insights with the global tech community. You
can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Reviews

Please leave a review. Once you have read and used this book, why not leave
a review on the site that you purchased it from? Potential readers can then
see and use your unbiased opinion to make purchase decisions. We at BPB
can understand what you think about our products, and our authors can see
your feedback on their book. Thank you!

For more information about BPB, please visit www.bpbonline.com.

xiii

Table of Contents

1. Introduction to Machine Learning........nncnninnncnnisnncesnsesessiesssscsnens 1
INtrodUction........coiuiiiiiiiiii s 1
SEUCHUTE ... 2
ODJECHIVES ..ot 2
Evolution of Machine Learning..........c.coovueueurenieueininicueiniecrenneeereesecienenneenes 2
Fundamentals and Definition of Machine Learningccccccceuevcucueuniunes 4
Types of Machine Learning............ccoccuveeuriueuniuerniieunieeeneieneseeeeeecseneseeesenens 10
Learning of Models Based on the First Criteriaccccccoeceuecrincueinccincnnnce. 11

Supervised Learning (SL).......ccccccvveiiiniiiiiiciiiiiiiiiiccccciceecc 11
Unsupervised Learning (LSL)cccccovvvvvviiviviiiiiiiiiiiiiiicicicccccscie 13
Reinforcement Learning (RL)..........ccccoovvviiiiiiiiiieiiiieieieecicc 15
Hybrid Learning Problemn (HLP)ccccccovivviiiiiiiiiiiiiiciccicccicceas 15
Learning of Models Based on Second Criteria (Batch Mode
Learning and Online Mode Learning)............ccoccceuvuvieueininecueniicrenniccnennnans 16
Batch Learning..........ccoccvvuvueeuciiiiiiiiieiiciiicieiccscctss e 16
Online LeArNiNgGccoeeiviiieisieiciiiciiicieieicccts et s 16
Applications of Machine Learning..........c.cceeereeuerrinecieinenecuenneeerenseeenennene 16
Recommendation ENGINe.............ccccvvivveiiiciniiiiiiiiiiiciciciiiiee e 17
Financial SErUICEScoovvvvviiiviuiiiiiiciciciccicicie et 17
S0CIAL MOAIA.........coeiiiiiiccie 18
Face ReCOGMILIONc.cvvuiuiiiiiiiiiiiiiiciiicctccc s 18
HEAIEHCATE ... 18
Sentiment ANALYSIS..........ccoviviuiuiuiuiieieieieieieieetetc e 19
Video SUTVCIIIATICEc.covvviiiiiiiiiiiciciciicec e 19
Future Scope of Machine Learningcccccovveeeueurerecieinenecuenneeerenseeerenneaes 20
A New Trail of Intelligence Augmentation (IA)..........cccccvvvvvvvivvccinniiinnnas 20
Edge Computing with ML............ccccccoovviviviinniiiiiiiiicccicie e 21
Quantum Computing With ML............ccccovvvvviiiiiiiiiiiiiccccc 21
Improved COZNItIVE SETVICESccuviveiiieiciciiiiiiiisieiciciiciee e 21
RODOLICS ...ttt 22

Machine Learning in Space EXplorationcccccecvvcivciiiiciiinciiecn, 22

xiv

Self-driving Cars and Autonomous Transportation............ccccceeccevevevevnnennnen. 23

Enhanced Healthcare using Al............ccoovvieeiiiiiiiiiniciiiiiisieieccsee e, 23
CONCIUSION ..ot 23

2. Apache Spark Environment Setup and Configuration............ccvceccnennene 25

INtrOAUCHON ...t 25
SEUCEUTE ... s 26
ODJECHIVES ...ttt 26
Laconic View on Apache Sparkccceceviniceininicieinieceeiceeeecenennaes 27
Apache Spark Installation using Hortonworks SandboXcccccceuerunaee. 28

VMuware Workstation Player Installationccccceevvivciniciinciicnnns 28

ClouderaVM Installation for HDPcccccccocoiviviiiiiiiiiiiciccicieieieieii, 33
Apache Hadoop and Apache Spark Setup on Amazon
TWVED SETVICES (AWS) ..ottt ettt ettt eeaeeevesetesae st et esaeeeneeeneeane 39
AWS Account Credentials and Amazon EC2 Creation..........cccceevviiuennneee. 39

PuTTY and PuTTYgen Software for Generating a .ppk file from a .pem

and Accessing the Amazon EC2 Instance Through a Public IP Address 46
Apache Ambari Installation on Amazon EC2cccccviiiiiiniiciiniicinnnaes 50

Disabling the iptablescccveieiiviiiiinieiiiiciieecccc 50

Installation of Apache Ambari Repository and Hadoop Services

01 AMAZON EC2...oooiiiiiiiiitce e 51
Python Editors for the Spark Programming Frameworkcccccccuevuaee. 60
Sublime Editor........ccccouiiiiiiiiiiiiiiii 61
PySpark or Python Codebase Syncing from a Server to a
Local Directory and Vice Versa.........ccococociiiiiiiiiiiiiiininiiiicccncccnienns 65
Jupyter NotebooKcccooiiiiiiiiiiiicc 67
Microsoft PowerBI Installation for Data Visualizationcccccececieinnnneee 73

DBeaver Installation for Accessing the Data from the Persistence Layer ... 76

Apache Spark Installation on Google Colab.........c.cccccceurricueiriicreninicrennnaes 78
CONCIUSION ...t 78
3. Apache SParK ... ssaseses 81
INtrodUuction........coiiiiiiiiiii 81
SEUCHUTE ... 81
ODbJECHIVES ...t 82

Need of Apache SParkccoccuvciiciniciniciicnieccceeee s 82

X0

Evolution of Apache Spark ... 83
Apache Spark COMPONENLS.........c.cucuiucuiuciriieiiieicieicieecieee e eeeeaes 84
Architecture of Apache Spark..........ccccvicuiiiinicinccccccceccceaes 86
Resilient Distributed Dataset (RDD).......ccocouioiiieiiieeeeeeceeeeeeeeeeee e 87
Direct Acyclic Graph (DAG) in Sparkcccccoccceiviciininicciniieeiccieeees 87
Lazy Evaluation ..o 88
DataFrames........ccvviiiiiiiiiiiii 89
Datasetscoooviveieiiiiiieie 89
Accumulator and Broadcast............coooviiiiiiiiii 91
ACCUMULALOT ..o 91
BYOAACASE ...ttt 92
Apache Spark Optimization and its Techniques.........c.ccocccccueuriicrerninicunnnnacs 92
Memory Storage Levels: Cache and Persist..........ccocccceuviviciciniiciininicinnnaes 95
Spark SUDbMUIt ... 96
Spark MONItOTING.......c.ceviiiiiiiiiiiiicccccc e 97
Apache Livy: An Easy Interaction With a Spark Cluster Over a
REST INterfacecooucuiiiiiiiiiii e 98
JOD SChedUlINg........c.cuiiiiiiiiiccc e 99
Spark RDD Operations: Transformation and Actionccccovevviiinnnnns 102
Data Ingestion in Apache Sparkccccoveeueininicieniniceniceccercenens 137
Application of Apache Spark.........cccccccucuviiiirininiciiniiciceceees 155
CONCIUSION ...t 156
4. Apache Spark MLLib........iiiiciicitciicinseeseeessesseaeanes 157
INErOAUCHON ..ot 157
SHUCHUTE .. 158
ODbJECHIVES ..ottt 158
Spark MLIb AlgOrithms..........c.cccoiiiiiiiiiiiiiccccciccccccceceene 158
Classification CAteOTYcccevivvvivieieiciiiiiiiiiiciciiiitcieeecc s 158
Regression CAteQorycvcuevueeiiieiiiiiiiicicicieicieicccec 159
Clustering Categorycooueeeiviiiiieieiciiicieieieicceee s 159
ML Components / PIPelines...........ccccucuiucuniucuniciniciniciicicieecieesceceeceeeeceeens 160
DataFramecoovvveviiviiiiiiiiiiiiiiictee 160

THATSFOTINET ... 160

xvi

ESHIMALOT c.vvenieeieee ettt sttt 161
PIPELINE ..o 161
POATAINELET .ottt 162
CrOSSVALIAALOT .vovvevvsvieeieieesiesit ettt sttt sttt sae e sae s 162
EUVALUALOT .ottt ettt 162
Spark MLIib’s Datatypes ... 162
LOCAL VBCLOT ettt stt ettt sate s snaessaenes 163
SPATSE VECLOT ...t 163
DEHSEVECIOT .ttt ettt 163
LADCIPOINE ..ottt ettt s ettt e et entsesaaessee s 164
Dol 1 Y 11 o U SS 165
DIStrIDULEA MALTIX .oovvevveeieiesiisiieieiesesieste ettt ettt se e sseeaeens 165
Extracting, Transforming, and Selecting Featuresccccccovvniinnnnns 166
Term Frequency-Inverse Document Frequency (TF-IDF)ccccccceueue.. 167
WOTAZVEC.cuccuveeieeeieiee ettt ettt 168
COUNEVBCEOTIZET 1ovvveseesiiesitesiteit ettt ettt e st et sitesite st enteeseense s 169
FOQtUTEHASHET «...vvvevveeeesiict ettt 171
Feature TranSfOIMIETrScccociiuieeeeieieciesteceet ettt ettt ve s besaeeaeeveenas 172
TOKCIUIZOT .ottt ettt et ettt et e st e st e st e s saensaesseenseenseenseas 172
StopWOTASREMOUETccoveiieiiiiiiiiiciciciiicisicccc s 173
NG A ottt sttt et et 174
BITIATIZOT oottt ettt ettt e et e et esase st e stt e saeseenreas 175
Principal Component Analysis (PCA).......cccccoovvvmmmmeceicsseiiieiiiesinnan, 176
Polynomial EXPanSIOn.ccccceviiiiiiiiiniciiiiiiciciciccicisisecics e 177
Discrete Cosine Transform (DCT)........cccccvvvvvvciiiiiiiniiiiiiiiccecccsns 178
SEPNGINACKET ...t 179
INACXTOSIIING ..o 180
VBCEOTTIARXCT ve.vvevveeveeeesie sttt ettt sttt et stesneeneas 181
INOTIUALIZET .ottt sttt 182
SEANAATASCALLT .ottt ettt ta e 183
MUNMUAXSCALLT .ottt s e sttt se e e ese s 184
MAXADSSCALLT ..ottt sttt sttt steeneens 185
BUCKEHIZET vvvvevveeeeeet ettt ettt 186

ELementtiSEPTOAUCE c...vvvveeeeeeeeeieeeeeeeeeeeee ettt e e ve e 187

SQLTYANSOTMET ..ottt 188
VectorASSEMBIErcccciviciiiiiiiiiciiiiciicc 189
VectorSizeHINE ..ot 190
Quantile Discretizer (QD) ...vovvvveveresieieieiesesesteieieste e steeee s sneens 191

TIPULET oo 192
Feature Selectors ... 193

VeCtOrSIICET ... 193

CHISGSEIECOT ... 194
CONCIUSION ...t 195

5. Supervised Learning with Sparkiciiiniciinncinnninnniinnceneninnens 197
INtrodUuction. ..o 197
SEUCHUTE ...t 198
ODbJECHIVES ..ot 198
Definition of Supervised Learning............ccccccevvviriininniniiniiciciccennns 198

Regression and its TYPES.........cccccueueveieiiieiiviiiiiiciiicicicieesesse s 199
Regularization in Linear Regression...........ccccovieiiiiininiiiiiiiinninicicccnns 218

Least Absolute Shrinkage and Selection Operator

(Lasso Reqression)/L1 ReQUIATIZALIONc.coveeueereeieeeeisinicieiniricieiniseicee 218

Ridge Regression/L2 ReQuIArizationcccccecevecuvicinicunicisccnccnnns 224

Elastic-net Regression/L1+L2 Regularizationccccevnieennnnn. 229

Generalized Linear Regression (GLR)..........ccccccovvvviiivncciiiiiiicicciiiie, 232

Isotonic Regression/Monotonic Non-Decreasing Regression/

Equal Stretch ReGreSSIONc.cvevvivieucuciiiiiieiciciiiiteieeecct s 241
Classification and its TYPescccuvuruiiiiiiiiiiiiiiiiciccces 244
Classification and Regression Tree (CART)ccccoccceivivieicininicieiniiciiines 267

Terminology in CART ...t 267

Decision Tree (DT)......ccccovveeeuiiiiiiiiiiciciiicisieecccte s 267

Decision Tree Classification (DTC) in CARTcccovvvvvviniiicciiiin, 268

Decision Tree Regressiont (DTR)ccccvvvvvvivciciiiiiiiiiciiiiiccecccas 274

Ensemble Learning (EL)ccccovvviieieiiiiiiiiiiicicciiisieeccce s 278
Performance Metrics/Evaluation Metrics (EM)......ccooevveevevveveeceeeeeeneans 292

Classification MetTICeS..........ccccvvvcivivicuiiiiiiiiiiciciiiicieeec s 292

Regression MELTICScuevvveviiciiiiiiiiiciiiciececce s 295

Churn Prediction MOeLo oot ee e e e eeeeeeaeeas 296

X0l

CONCIUSION ...t s 298
6. Un-Supervised Learning with Apache Spark.........eiincveniinnccsnnncnnnne 299
INtroduction. ..o 299
SEUCHUTE ... 300
ODbJECHIVES ..ottt 300
CIUSEETING ...vcviiiitcc e 300
K-Means under CIUSLEYING..........ccccvveviieviiiiiiiiiiiiiiicicieieeeese s 304
Bisecting K-means Algorithimn (BKM).........ccccccccvviviinvcciiiiiiiiccccnian, 317
Gaussian Mixture Model (GMM)..........c.ccccovvviviiiiinnciiiiiiciccccsns 325
Latent Dirichlet Allocation (LDA).........ccccccovviiiiciiiiisiisicicicisisieinnn, 329
CONCIUSION ..ot 330
7. Natural Language Processing with Apache Sparkccccevevevuiccuncrennccnnne 331
INtrOdUCHONviiiiiiicc e 331
SEUCHUTE ... 332
ODJECHIVES ..ot 332
Evolution of Natural Language Processing...........cccccevuvivviiicinniniiecnninnnns 333
NLP and its TYPes....cccceeueiiiiiiiiiciciiiiccc e 334
Artificial Intelligence-Based Approach..........c.cccoccuvicinicinicnicncinicnen. 335
Deep Learning or The Neural Network Approachcccvveevevieennan, 335

A Laconic View on SparkNLP..........ccccoviiiiiniiiiiiiccciccns 336
Advantages of SparkINLP ... 337
Core Execution Blocks Of NLPcccociiiiiniiiiiiiicccceeccceenee 338
Components Of NLP........ccccoooiiiiiiiicccc s 339
Morphological ANALYSTS..........ccccvviiiiiiiiiiiiiiciiiiiciccccc e 340
Lexical ANALYSIS.........cccouvueuiuiiiiiiiiiiciiiitciceccc s 341
SYNEAX ANALYSIS.....vveviiiiiieieiciciciicec s 341
Semantic ANALYSISoovvveveveveeiiciiicieiecccee e 342
Pragmatic ANALYSIScccovvvvviiviciiiiiiiiiiciiccicccc 342
Discourse INteGrationc.cuvevevioieieiiiiiiiiiiiisiiicieiccietcececscs e 342

Comparison among Natural Language Processing (NLP), Natural
Language Understanding (NLU), and Natural Language
Generation (INLG)ooiiiiieeeeceeeeeeeeeeeee ettt eneas 343

Widely Used Libraries of NLP.........cccccocoiiiiiiiiiiiicccnccns 344

xXix

TYPes Of NLPcuiiiiiiiccicc e 344
Features in NLP........ccccooiiiiniiiiiis 347
Sentiment Analysis using Spark NLP..........ccccccoviiiiiinniiicccccces 349
Enhancement in NLPcccccviiiiiiiiiiiicciceccciececiesiceeas 356
Alternate of SParkINLP.........ccccocoiiiiiiiiiiiiiices 356
CONCIUSION ... 358
8. Recommendation Engine with Spark ...t 359
INErOAUCHON ..ot 359
SHUCHUTE .. 360
ODbJECHIVES ..ottt 360
Evolution of a Recommendation Engine...........ccccocoovvviiiiiiiiiicciiinnn, 360
Types of Recommendation Engines............ccccooiiiiiinniiiiiiniiicccns 362
Content-Based Filtering (CBF)cccccocviviviiiinciiiiiiiicicccicicicecccs 363
Collaborative Filtering (CF)ccccvviuemiiiiiinieiciiiicisieeccsseeeecs 364
Hybrid Recommendation Engines (HRES)cccccovovvvniiennsieiiiiciinnnn, 366
Information Collection Phases in REcccccocuviiinininicinininiicicecns 367
Explicit FEeADACKccoceiviviiiiiiiiiiiiiiiiciiiscisecctc 367
Implicit FEdDACKocoovvivieiiiiiiiiiiciiiiiccc 368
Hybrid FEedback ..o 368
Real-Time Pipeline of a Recommendation Engine............cccccccovviiinnnnns 368
Ant Colony Optimization in a Recommendation Engine.............c.cc.......... 369
Hidden Markov Chain Model (HMCM).......cooovviieieiieieeeeeeeeeeeeeeeeenes 370
Market Basket Algorithm (IMBA)ccceviiueininicieniecieiniecieenececieeneeeenes 370
Implementation of a Recommendation Engine............ccccccceoviiiiiniininnnns 371
Limitations of Recommender Systems..........ccccocooeuviiiiniiiiiiininicccns 373
Cold-Start ProbIemmcccccociviviiiiiciiiiiiiiiiciciciccccse 373
Applications of a Recommendation Enginecccccoovvvviiiiinnicnnnnn, 374
CONCIUSION ..o 375
9. Deep Learning with Spark ... 377
INtrodUCtion. ..o 377
SEUCHUTE ... 378
ODJECHIVES ...ttt 378

Evolution of the Neural NetWorkcoc.oovoeieeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaee e 379

CYDCTTIELICS ... 379

CONMECHOMISIL ... 380
Deep Learning (DL)........cccccceiiiiiiiiiciiiiiisiiiccccsicieeeccc s 381
Definition of Deep Learning (DL)ccccoveeueuriieueiniicienniieneinieereeneenenns 382
Neural Network and its Model Representationscccccevevvccvnuecninncans 382
Various Terminologies Used i1 DL..............ccccooovviviiiieciiiiiiiiiciciiccenns 383
Feature Engineering (FE)/Feature Selection (FS)cccccooeeuvnnccurnenccnnes 389
Filter Method (FIM)ccciieieiiiiieiiiiiiiicicceeee e 390
Generalized Method (GM)..........cccccvvuiucuiiiieniiiiiiiiiiiiiiiiiicisicccciceia 393
Wrapper Method................coeevvioiiiiiiiciiicicicecc 397
Embedded Methodcccccviviiiiiiiciiiiiiiiiciicicieeccc s 397
Different networks int DL............ccccovciiiiiiiiinniiiiiiiiiccccciciceccs 398
Different Activation FUNCHONSccovviiiiiiiiiiiiics 404
Linear Function or Identity Activation Function (IAF)........c.ccccccccovvveuenene. 404
Binary Step Activation Function (BSAF).........c.cccooviviviiiivcncicicicenna, 404
Sigmoid Activation Function/Logistic/SOft Step.........cuvovvnievninicienninn. 404
Hyperbolic Tangent Activation Function (HTAF) [Tanh AF 405
SoftSign Activation FUNCHON............cccvviviviiiiiiiiiicecccccc e 405
Swish Activation FUNCHOM...........cccccvciviiiiiiiiiiiiiciciicccccc 405
Rectified Linear Unit Activation Function (RLUAF) | ReLU /
Maximumm FUNCHON.........covoviiiiiiiiiiiicieiiicieiccictcsee i 406
Leaky Rectified Linear Unit (Leaky RELU)cccccoeovvivivvccininiiinieccaan, 406
Parametric Rectified Linear Unit Activation Function (PRLUAF) 406
Exponential Linear Unit Activation Function (ELUAF)ccccccccovvn. 407
SoftPlus Activation Function (SPAF)..........cccccvvviviiiiciiiiiiiincccnn, 407
SoftMax Activation Function (SMAF)........cccccccovvvnccioiniiecciie. 407
Scaled Exponential Linear Unit Activation Function (SELUAF)................ 408
Different Types of Loss FUNCHONScccccoiviviiiiiiiiiiiniiiicinicccs 408
Regression Loss FUNCHOMc.covviviiiiiiiiiiiiciiicicicccccc 408
Mean Square Error Loss (MSEL)[L2 LOSSccoruueeiureenieiriisirsinieniieinsisieanes 408
Root Mean Square Error Loss (RMSEL)ccccccovvvvvinicniniiciniicicicicsn, 409
Mean Absolute Error Loss (MAEL)] L1 10SSc.occmeeeeriervinveinieineereiniennee, 409
Mean Squared Logarithmic Error (MSLE)........cccccovviicininnniciinieeecn, 409

Mean Absolute Percentage Error Loss (MAPEL)/ Mean Absolute
Percentage Deviation Loss (MAPDL) ..o 409

xxi

Mean Bias Error Loss (MBEL) ... 410
Huber Loss (HL) | Smooth Mean Absolute Error LSS.........coeneeereereenieenne. 410
LOGCOSH LOSSovvviiiicicicicicistctt 410
Classification Loss FUNCHONcccoeueiiiciiiniciiiiiicieccccceeeecs 410
Hinge Loss/Multi Class SVIM LOSSccvvueereuveriinieirieiniisieisieineieineisseinsaeensen. 410
Squared Hinge Loss Function (SHLE)..........cccccccvvvviiviincniiicsiciiccicccns 411
Categorical Hinge Loss Function(CHF)cccccovvvvninnniniiniiiiniccccicnne, 411
Cross Entropy Loss (CEL)/Negative Log Likelihood............coeveveurevenirinienienn. 411
Binary Cross Entropy Loss (BCEL)cccccoviiiviiiviniciiicccicicsiescsns 411
Categorical Cross Entropy LosS (CCEL).......cccccviiiiiviciciiiiciiiniiicccces 411
Kullback Leibler Divergence Loss (KLDL)/ Relative ENtropyccvveeeuenee. 412
Sparse Categorical Cross Entropy Loss (SCCEL)......ccevivnviniiiniiiiiiccicecnne, 412
FOCAL LOSS (FL) ..ottt 412
Different OptimiZersccccoviiiiiiiiiiiiniiiiic s 412
Gradient Descent (GD)ccccvvvviiiiieiiiiiiiiiiciiiiiiicccccccic s 413
Batch Gradient Descent (BGD)........cccccooceivivciiiiiiiiiiiiiiiiicicccice 413
Stochastic Gradient Descent (SGD)/full batch gradient descent.................. 413
Mini Batch Gradient Descent (MBGD)..........ccccovvviininiiicciiiiiiccnn 413
Momentum Based Gradient Descent (MBGD)..........ccccccovvvieiciiiiiiiiiiinnnns 413
Nesterov Accelerated Gradient (NAG)cccoevvvviiiiincciiiiiiiciccccnins 413
Adaptive Gradient (Adagrad)...............ccccovvviviviiiiiiiciiiccicscccien 414
Adaptive Moment Estimation (Adam).............ccccoovvviciiiniiicccicnneiins 414
AAADEIEA ...t 414
Cloud notebooks for ML and DL...........cccccccoiiiniiniiiniiiiiiicciee 414
GOOGLE COLAD ... 414
Deep Learning Frameworks..........ccccviiiiiinininiiiiiinicccccncccns 417
TENSOTFIOW ...t 417
PYTOTCH ..o 417
KeTAS .ot 417
CAfE .o 418
MENELE ..ottt 418
CRATNET ..ot 418
DeepLearning4] ... 418
Microsoft Cognitive Toolkit (CNTK)........ccccocuiiviviiviiiiiiiiiccciiciceenn 418

Distributed DL Processing using Elephas...........ccccoeueieuininicnninccnniccnnns 419

xxii

Alternate Framework for Distributed Deep Learningccccococevuvnnnnns 425
Distributed Keras..........cccooviuiumuruiiniiieiiieieieisisisieiiiiseiiscsccnscisseeie e, 425
TensorFIOWORSPATKcocuvuvieiiieiiiiiciciciciccc s 425
BigDL oottt 426
DeepLearning pipelinescccccveucciiiiinivicciiiiiiiinisiecicisieieeeccs s 426
Z00-ANALYEICS ..ot 426

Deep Learning Operations (DLOPS).........cccceuviicininiicininiiceiiceieseeenes 426

CONCIUSION ..o 428

10. Computer Vision with Apache Spark ..., 429

INtrOAUCHON ... 429

SHUCHUT ..o 430

ODbJECHIVES ...ttt 430

Evolution of Computer Vision.........ccccooeuiiiiininiiiiiiiiiicccnccccns 430

Defining an IMage ... 431

Different Formats of Imagecccocoeiiiiiiiiiiiiiicccccccces 431

Annotation ways in CV ... 432
Bounding Boxes (BB)..........cccccccoioiiiiiiicciiiiiiiiciiiiiiceccc s 433
3D CUDOTAS ...t 433
Polygons-Based ANNOLALIONccoovvvvveieucuiiiiiiiiiiiciicicicccce 434
Lines and SPLNes............cccocovviviviciiiiiiiiiiiiiicicicccct 434
Semantic SeGMENtAtIONccvvvviveieueiciiiicieieiccetce s 435
Key-Point and Landmark...............cccooveveiiiiiiiniiiiiiiccccisccec, 436
CHICLO o 436

Computer Vision Libraries..........cccooviiiiiiiiniiiccces 437
Open-source Computer Vision Library (OpenCV)cccccevvvvvivcnnnnnnnn, 437
IIMULIIS ..o 437
SCIKIE-IMAGE ..o 437
Python-Tesseract (PYtesSArct)cccoveeucciiiiiiiniiiiiiciiiceiccsnseieeee, 438
PYTOTCHCV ..ot 438
STMPLECV .ot 438

IPSDK oottt 439
Python-Tesseract (PYtesSarct)ccovveeviiiiivieiciciiiiiiiiccciiiceeec, 439
Components of Computer ViSion...........ccccvviiiiiinininiiiiiiiiccccnes 439
Object ClaSSIfiCAtIONcvcveveveieieiiiciciiiiiccciccccee e 439
Object DetectiOncucueueeeiiiieieieiciiiicicisiccccte s 440
Object SeMENTALION.cvvvvveiiiiiciiiiiiicieicicccci s 441
Object TrACKINGcovuvviviveieieieieicieieicicit s 443
Convolution Neural Network (CNN) and its Workingccecevveevvueuceee. 443
Convolution OPeration............ccceceeveieieiisieiiiniiiiieicieeisecsises e 444
Rectified Linear Unit (RELUL).........ccccccvvvivieciiiiiiiiciciiiiicicicccccice e, 444
POOLING .o 445
FIAHENING. ..ot 445
FUIl COMNECHION ..ottt 445
SoftMax and Cross-ENtropy........cccceeceveiciiineciiiiciiccccciiceeecces 445
Timeline of the CNN Architectureccccccuviicieiniicicniicercceeenes 445
Implementation of Distributed Processing in Image Classification
using Google Colab ... 446
Flow Chart of the codebase.................c.cccvvvviiiiiiiiniiiiiiiiiciccccci, 448
OUEPUL STIPPLL ...ttt s 450
Real-time Computer Vision Pipelineccccooniiiiininniniiicccns 451
Advancement in CVc.cooiiiiiiice e 452
Generative Adversarial Network (GAN)c.cccovvvvieiviccviiiiiciccieicee, 452
Zer0-Shot Learning (ZSL)........ccccvoiviveieiciiiiiiieieiciciiicieieeccieeee e, 452
Contrastive Learning (CL)ccccccovvriiiiiiiiniciiiiiiiccccccicceccc s 453
Data Augmentation (DA) in CVc.cccceeuiieininiceieceniceeeneeeieeseeeenns 453
FLUPPING. oottt 453
COLOT SPUACE ...ttt 453
CTOPPING ottt e 453
ROFALION .o 454
NOISE TNJECHON ..o 454
Kernel Filters and Mixing Images (MI)cccccvvereennnnniiiniiiiieninnnn, 454

Random EYASINGccooveiiiiiiiiiiiiiicicicieccct e 454

xXxXiv

Adversarial Training and GAN-based DA..............ccccccovvvviviniiiinncncan, 454
Neural Style Transfer (NST)cccccvvvvciiiiiiiiiiiiiiiiiciccccic, 455
Smart Augmentation (SA) ... 455
Applications 0f CV ... 455
CONCIUSION ...ttt 455

CHAPTER 1

Introduction to
Machine
Learning

“Field of study that gives computers the capability to learn without being
explicitly programmed.”
— Arthur Samuel

Introduction

Since the last two decades, there has been an incessant enhancement towards the
vertical of Artificial Intelligence (AI) and its related sub-branches such as Machine
Learning (ML), Statistical Modelling (SM), and Deep Learning (DL). These
aforementioned technologies leverage many applications in the amelioration of
people’s life and their day-to-day needs in various domains such as bioinformatics,
radiology, agriculture, finance, astronomy, banking, healthcare, geo-informatics,
seismology, and space exploration. ML extends the core functionality to push-up the
capability of manual operations and machine to automatically learn by understanding
and observing the key historical experiences. The main objective of this book is to
educate the readers about the fundamental, advancement, and real-life applications
of ML using a distributed framework. Furthermore, this chapter gives an in-depth
knowledge about the journey of Al and the taxonomy of Al Indeed, the term Al
refers to a mimic prototype to imitate intelligent behaviors by understanding the
meaningful information, patterns, or inputs. For example, self-driving cars use the
concept of Al, especially a vision-based technology for teaching the Al model to make

2 Practical Machine Learning with Spark

insightful decisions by mimicking and understanding the intelligent behaviors or
inputs; these kinds of models are ideal examples of Al The report shared by Gartner
in 2019 depicts that the Intelligent System (IS) and its related verticals will become
a big epic-center and most decisive emerging technology in the coming years. In
future, almost every tedious problem will be resolved with the help of Al and ML.
Across the globe it becomes a subject of interest among researchers, data scientists,
data analysts, industrial experts, and academicians for mitigating the herculean
real-time problems using Al Also, this chapter shows the rigorous knowledge
about the evolution of ML, types of ML, and its emerging applications with their
futuristic scope. In addition, a compendious discussion on DL in connection with AI
applications have been embossed in this chapter.

Structure

In this chapter, we will discuss the following topics:
¢ Evolution of machine learning
¢ Fundamentals and definition of machine learning
e Types of machine learning algorithms
e Application of machine learning

o Future of machine learning

Objectives
After studying this chapter, readers will be able to:
e Learn about the history of machine learning.
¢ Get an understanding of the modern definition of machine learning.
o Grasp theknowledge of different types of machine learning and its algorithm.
e Understand the application of machine learning in various fields.

¢ Know the future scope of machine learning.

Evolution of Machine Learning

The origin of both technologies Al and ML are interconnected. Hence, for the solid
foundation of the readers, detailed history of ML and Al is presented in this section.
However, the primary objective of this book is to make the readers conversant with
the practical real-time scenario of ML with Apache Spark.

Introduction to Machine Learning 3

The term “Machine Learning’ first came into existence in 1952 after the distinguished
work by an American engineer Arthur Samuel. Starting from 1949 to late 1968, he
did the pioneering research to learn a computer by applying some instructions
into it for making a self-decision. Initially in 1950s, he developed an alpha beta
pruning program using a scoring function for measuring winning chances of two-
player games like chess, on computers with limited memory. Next, he proposed the
minimax algorithm based on the minimax strategy concept along with numerous
mechanisms named as “rotelearning” to make his program better. In 1952, Samuel
was the first to introduce the term “Machine Learning”. Thereafter, in 1957 Frank
Rosenblatt from Cornell Aeronautical Laboratory merged the Donald Hebb's
model of a brain cell with Samuel’s machine learning concept to design the first
neural network named perceptron for computers. The Perceptron algorithm was
first installed in a machine named Mark 1 perceptron based on IBM704 hardware.
It was used for image reconstruction applications and still had some limitations in
recognition of the faces patterns.

In 1960s, the new trail was introduced using multi-layers in the neural network [NN],
there by providing enhanced capability to solve complex algorithms and provide
better precision. After this multi-layer theory, many new capabilities were opened to
further improve the neural network learning through the feedforward propagation
and back propagation neural networks.

In 1967, the nearest neighbor algorithm came in existence for the basic pattern
recognition application for finding the more efficient route for traveling sales persons.
In 1970, the back propagation algorithm was developed to adjust the network with
hidden layers of neurons for minimizing errors. This algorithm was used to train
Deep Neural Network (DNN).

During the 70s and 80s, Al researchers and computer scientists worked together
on neural network research, while some of the researchers and engineers started
working in ML as a new trail. By the early 1980s, ML and AI took separate paths.
AT mainly focused on using logical and knowledge-based approaches while ML
focused on neural networks-based algorithms.

In 1990s, ML reached its peak because of availability of large data shared by the
Internet service. In 1990, Robert Schapire developed the Boosting Algorithm for ML
to minimize the bias during supervise learning with ML algorithms for boosting
weak learners. In this, a set of weak learners create a single strong learner and
is defined as classifiers that are correlated with true classification. It combines
many simple models (weak learners) to generate the result. There are many types
of boosting algorithms such as, AdaBoost, BrownBoost, LPBoost, MadaBoost,
TotalBoost, xqBoost, and LogitBoost, and AnyBoost. A detailed study on various
types of boosting algorithms have been discussed later in this chapter.

4 Practical Machine Learning with Spark

Next, in 1996, the IBM Company won the first game against the world champion
Garry Kasparov by developing “Deep Blue”, a chess-playing computer. The Deep
Blue computer used custom build Very Large-Scale Integration (VLSI) chips for
executing the Alpha-Beta algorithm. In 1997, Jurgen Schmidhuber and Sepp
Hochreiter designed the neural network model named Long Short-Term Memory
(LSTM) for speech recognition training. LSTM consists of cells, input, and output
gates and was used for eliminating the gradient problem. In 2006, Face Recognition
Algorithms were tested for 3D face scans, face images, and iris images and which
was more accurate than the earlier facial recognition algorithms.

In the same year, the Canadian computer scientist Geoffrey Hinton introduced the
term Deep Learning (DL) and developed a fast and greedy unsupervised learning
algorithm for distinguishing the text and objects in the digital images and videos.

In 2011, the deep learning artificial intelligence research team at Google also known
as “Google Brain” developed a large-scale deep learning software system named as
DistBelief for learning and categorizing the object in a similar way as a person does.
After a year, the Google X team developed ML algorithms containing 16,000 clusters
for automatically identifying the cat digital images from YouTube videos.

In 2014, the Facebook research team came up with a facial recognition system known
as DeepFace for recognizing human faces in digital images using DL. In 2015,
Microsoft developed the ML toolkit for distributed resolution ML problems across
multiple computers. In 2016, the Google DeepMind team developed AlphaGo for
solving most complex board game problems.

Next in 2017, Google released Google Brain’s second-generation system known
as the TensorFlow version 1.0.0 for a single device that can run on both Central
Processing Unit (CPU) and Graphics Processing Unit (GPU) for general purpose
computing. Recently, Google released the TensorFlow version named TensorFlow.js
version 1.0 for ML in JavaScript, TensorFlow 2.0, and TensorFlow Graphics for DL in
computer graphics in 2018 and 2019, respectively.

Fundamentals and Definition of Machine
Learning

This section focuses on creating a solid foundation of ML starting from its initial
definition to its modern definition along with basic terminologies which are
essential for grasping the fundamentals of ML. As discussed previously, ML has
been adapting and expanding its functionalities in every automation related jobs, so
the authors here have put the extra attention towards the core and rational concepts
to strengthen the core knowledge of readers on ML. Also, it is necessary to walk
through the journey of ML consisting of its importance, the traditional and modern
approaches to train a machine or a model for training, validating, and testing of the

Introduction to Machine Learning 5

dataset. This book helps the readers to update them about the real-time challenges
and their respective solutions being used in the Intelligence and Analytics-based
organizations.

Figure 1.1 depicts the branches of Artificial Intelligence such as Machine Learning,
Neural Network, and Deep Learning. In ML, it takes the help of different types of
learning concepts such as Supervised Learning (SL), Semi-Supervised Learning
(SSL), Unsupervised Learning (USL), and Reinforcement Learning (RL).

Artificial Intelligence | Machine Learning = Neural Network

Figure 1.1: Artificial Intelligence with its derived technologies

In NN, a special collection of algorithms is used for training, validating, and testing
the patterns or inputs by leveraging the ideation of artificial neurons that work a
like neurons of a human brain. For example, the conversion of voice-to-text uses
the NN as a backbone. Amazon Alexa, Apple Siri, and Google Home are usually
known as an ideal application of Smart Personal Assistants. On the flip side, the
term DL represents the conglomeration of two or more hidden layers for processing
the complex problems with high precision. Generally, DL is like NN, but the only
difference is that DL is an easy customization for the complex neural architecture and
extends the ease to handle the cumbersome model. These days, there are various DL
and NN frameworks available to get on-spot flavor of the initial analytic platform
such as Keras, Caffe, and TensorFlow.

In the following section, the reader will elicit about the basic terminologies which
are essential to understand the concepts of ML:

o Features or Attributes or Variables: These are the unique key measurable
characteristics of data to be fed into the system for training and testing a
model. For ML algorithms, these features are used as inputs or outputs.
For recognizing the face of a human being, the associated features such as
gender, age, height, lip shape, face shape, and color, so on are to be used as
the decisive attributes.

6

Practical Machine Learning with Spark

Featured Vector or Tuple: It is a group of important features which are listed
in a vector or tuple format for training a model.

Model: A specific representation learned from data using the ML algorithm.
There are three types of models in ML named as Supervised, Unsupervised,
and Reinforcement models. It consists of three important phases such as
training, validating, and testing of a model.

Dataset: A set of information collected as rows or instances. The model needs
a dataset for performing the training and testing phase; hence, the model is
unable to train without the dataset or input database.

Dimension: A subset of features used to define the property of data. The
dimension helps to provide the detailed information about the data for
better understanding.

Target (Label): It is the value to be predicted by training a model. In face
recognition and gender classification problem, the label with each set of
input would be the men and women.

Training Dataset / Validating Dataset: It is initial dataset used to train,
validate, and develop the model. Subsequently, the developed model will
then map the new data to further train the model.

Testing Dataset / Evaluation Dataset: It is the final data set used for
verification of the model. This is also called the test dataset. Some authors
also refer to it as the golden or reference dataset.

Prediction: It is a result or output of a trained model by testing on the given
inputs or patterns.

Performance Metrics: It is used to calculate the accuracy of the prediction
model using precision, recall, accuracy, and Intersection over Union (IoU).

Information: It is collection of datasets such as videos, texts, and images
which need to be used to interpretate and manipulate the training dataset for
providing some meaningful information.

Unlabeled Data: This is the raw form of the data which may consist of video
streams, audio, images, and so on in the irregular patterns or unarranged
manner.

Classifier: It helps to classify the classes of the predicted output. For example,
classification of different livestock’s such as Cows, Cats, and Horses from an
image.

Pattern: Pattern is a way to understand features of any dataset and images.
Pattern is known as a features extractor through which a similar object or
dataset can be identified.

Introduction to Machine Learning 7

¢ Class: Class is used to define the details of any grouped objects/labels. If an
image has both fruits and vegetables, it means image is classified into two
classes, one each for vegetables and fruits.

After knowing the basic terminologies of ML, readers must learn about the basic
processing flow in the traditional programming language and ML algorithms. Figure
1.2 and Figure 1.3 represent the traditional programming language approach and
Machine Language approach.

Traditional
Programming

Language
Program

Machine

Learning Program

Output

Figure 1.2: Block diagram of the working of the traditional
programming language (top) and machine learning (bottom)

In traditional programming, the reader configures the machine according to the input
and produces a desired output or result based on the logic of the algorithm. Let’s take
an assumption, if a human being instructs a computer or any other programming
machine about what to do, at that instance, readers need a programming language
that allows a machine to learn and make the action accordingly. Further, it also gives
the ability to the machine by using the algorithms for making the decision, based on
the logic or conditions.

On the other hand, in the ML approach or modern learning, the computer learns
from their behaviors and historical patterns instead of being programmed to do
a specific task. This type of learning is different from the traditional learning in
which the computer needs to do what exactly we want it to do with the help self-
learning. Most of the programs are a series of instructions that is why there is a need
to create software to bind the stringent boundary for performing a special task like
transactions in the banking domain. But in traditional learning, the readers need to
clearly define and set the limits for doing something through a machine that is, if
a person tries to withdraw money, that exceeds the balance in his account, then the

8 Practical Machine Learning with Spark

transaction is cancelled. Readers pass explicit instruction to the banking programs
thatif you see X, then do Y. On the flip side, ML is different from traditional learning.
In ML readers do not create detailed instructions; instead, they need to provide the
meaning patterns from data or inputs or key features to the computer to study the
problem and decide what it is asked to do. In this, the reader gives the capability to
the computer to adapt, evaluate, and learn which is not much different from how a
human learns.

Figure 1.2 shows the clear picture how a traditional programming language is
different from the machine learning algorithm which is depicted in Figure 1.3. The
main difference between a traditional programming language and ML algorithm is
that in the traditional programming language, an input data is fed with a program
logic which is run on the machine to produce the output. In case of the ML algorithm,
we feed the input data along with the output which runs on the machine during
training, and the machine creates its own program.

Let’s try to understand the term learning in simple language. If a machine is learning
from its past experiences with respect to some task and improves its performances
in a task with earlier experience.

The word “learning’ or ‘machine learning’ both are the same, so do not be confused.
A good learning should address the following problem statement:

e Should know the clear problem statement of what the learner should learn
and what the requirement for learning is.

e To clearly define what type of data is needed along with sources of the data.
o Define if the learner should operate on the dataset entirely.

In ML, the process of the machine learning model starts with iterating the statistical
algorithm on the training dataset. This procedure creates an ideal model which must
be best fitted for getting a more accurate result. Each and every time, ML tries to
improve the performance of the model by applying the known or refined patterns
of historical experience.

Machine learning basically deals with two types of datasets. In the first type, the
dataset is being prepared manually, that is, the input and expected output datasets
are already available and prepared. In the second type of dataset, the input data is
available, and the interest of a user is to predict the expected output. As we know, the
available input dataset, which is further classified into training and testing dataset,
needs to be derived into three phases such as training, validation, and testing.
However, there is no hard and fast rule to check what percentage of data is trained,
validated, or tested.

Let us see how machine learning works. It basically works in three phases as shown
in Figure 1.3:

Introduction to Machine Learning 9

Execution Phase

Testing Phase

&~

Figure 1.3: Workflow to develop ML model

Generally, there are three phases to be involved to create a full fledge ML pipeline
which would do training, testing, and executing. These steps are used to generate
the outcome from the testing dataset. Prior to moving towards ML phases, we must
know the best way to prepare a dataset that needs to be fed into the training and
testing phases. Generally, data scientists recommend that the dataset should be
divided into the ratio of 70:30. Training must be done on 70% of the dataset and the
rest needs to be fed into the testing phase. First, we need to understand the quality
of the dataset, and accordingly the required manipulation and cleaning steps are
applied on the dataset to make the dataset more refined and best-fit to the model.
Then, the actual process needs to be started to train the model on the 70% of the
dataset using appropriate ML algorithms. The resultant of the training phase needs
to be applied on the 30% of the dataset to test the precision and recall the trained
model. In the last phase, once we know the precision of the trained model on the
tested dataset, the model will be integrated with the ML pipeline to work as an
automatic workflow. Table 1.1 shows the main difference between Al and ML:

Difference between AI and ML

Artificial Intelligence (AI) Machine Learning (ML)

Al is a technique for enabling
any autonomous process or self-
decision system to mimic human
intelligence.

Al enhances the self-decision
feature of any system to get success
in the outcome by acquiring
knowledge and learning.

The aim of AI to improve the
success rate in a probabilistic
condition and provide the optimal
solution as an outcome.

ML is a subset of Al that includes
complex statistical techniques.

Algorithms in ML acquire
knowledge or training skills
through historical information or
pattern.

The aim of ML to get the futuristic
and predictive insights for better
decision making.

10

Practical Machine Learning with Spark

Difference between AI and ML

Artificial Intelligence (AI)

Machine Learning (ML)

Al can use mathematical logics, if-
then conditions, decision tree, ML,
and DL.

Al has a wide range of scope of
implementation and integration.

Al includes learning, reasoning,
and self-correction.

Al deals with structured,
unstructured, and semi-structured
data.

Al examples are Apple Siri, Google
Mini, Amazon Alexa, Chatbots,

ML includes statistical algorithms
and DL.

ML has a limited scope but is the
best for decision making for any
trained task.

ML includes learning and self-
correction when introducing a
new dataset.

ML can deal with structured and
semi-structured data.

ML examples are recommendation
system, Churn Prediction,

and Cognitive Robots. Google Search Algorithms, and

Facebook’s auto-friend tagging.

9. Al can be classified into three 9. ML can be classified into three
types: types:
a. Weak Al

a. Supervised learning
b. General Al

c. Strong Al

b. Unsupervised learning

c. Reinforcement learning

Table 1.1: Difference between Al and ML

Types of Machine Learning

Machine Learning has a wide domain and there are many types of ML as shown in
Figure 1.4 in the analytic world. These are classified into broad categories based on
the following criteria:

o First criteria, whether the training dataset is trained or not with human
supervision. On the basis of these criteria, ML is divided into four types,
that is, Supervised Learning (SL), Unsupervised Learning (USL), Semi-
Supervised Learning (SSL), and Reinforcement Learning (RL). Recently,
ML experts have grouped these four learning into two learning categories,
that is, Learning Problem (LP) and Hybrid Learning Problem (HLP). The
SL, USL, and RL fall under the category of Learning Problem where as HLP

Introduction to Machine Learning 11

involves SSL. SSL is further classified into Self-Supervised Learning (Self-
SL) and Multi-Instance Learning (MIL).

In second criteria the traning dataset learnt incrementally on the basis of
adhoc at ant frequency. ML is mainly divided into Online Learning (OL) and
Batch Learning (BL). Some more types of ML also fall under this criterion
which will cover in Chapter 5, “Supervised Learning with Spark” and Chapter 6,
"Unsupervised Learning with Spark”.

L]
*

Figure 1.4: Taxonomy of Machine Learning

Learning of Models Based on the First
Criteria

In the following section, readers will start with the first criteria and take an eagle look
of all types of learning. As discussed earlier, LP is classified into three main types,
that is, Supervised Learning, Unsupervised Learning, and Reinforcement Learning.

Supervised Learning (SL)

SL is used when there is a precise mapping between input-output data. In this,
the given model is trained on a labelled dataset. During the training period, the
algorithm identifies the relationship between the two variables to predict a new
outcome. This learning is task-oriented learning in which accuracy of the prediction
is more dependent on number of tasks (number of rows). If we give more tasks, the
model learns it efficiently to predict more accurate results. The most real time and
general example of supervised learning is a spam filter. It is trained with different

12 Practical Machine Learning with Spark

categories of emails along with their class (spam), and then it learns how to classify
new emails.

Supervised learning is divided into two types:
¢ Regression-based Supervised Learning (no labels defined)

e C(lassification-based Supervised Learning (defined labels)

Regression

Regression is a supervised learning where the output has a continuous value. For
example, Table 1.2 shows the dataset of real-time monitoring through a smart watch
which serves the purpose of predicting the heartbeat and number of walking steps
of a cricket player with respect to time. Here, time does not contain the discreate
value, but it is continuous in the range. In this type, smaller the error greater is the
accuracy of the regression model.

Number of waking steps Heartbeat Time
123 72 10.00 mins
150 79 10.025 mins
188 84 10.050 mins
213 90 10.072 mins
218 99 11.00 mins

Table 1.2: Real-time data received from a smart watch

Regression consists of many algorithms which can predict the result based on the
trained model, knowing the input and output patterns. In the upcoming chapters,
readers will be exposed to all ML algorithms in depth. There are many types of
regression algorithms as follows:

e Linear Regression (LR)

e Multi-Linear Regression (MLR)

e Lasso Regression

¢ Ridge Regression

e Elastic-Net Regression

e Generalized Linear Regression (GLR)

e Isotonic Regression

e Decision Tree Regression (DTR)

¢ Random Forest Regression (RFR)

e Gradient Boosting Tree Regression (GBTR)

Introduction to Machine Learning 13

Classification

In this type of supervised learning, the output is having a defined label in the discrete
value. The main task of the classification is to predict the discrete value belongs to
the class and evaluate based on accuracy. In this type of learning, it has two types
of classes such as Binary or Multi class classification. In binary classification, a
model can be able to predict either (0 or 1) or (yes or no). However, in multi class,
a model can be able to predict more than one class. For example, Gmail classifies
the email category more than one class such as social, promotion, updates, and so
on. Classification also has many algorithms for prediction which are discussed as
follows:

¢ K-Nearest Neighbor (KNN)

¢ Random Forest (RF)

¢ Gradient Boosting (GB)

e Support Vector Machine (SVM)

e Naive Bayes Classifier

e Logistic Regression

e Multilayer Perceptron Classifier (MPLC)

¢ One vs Rest Classifier / Multi-Classification Logistic Regression
e Decision Tree Classification

e Gradient Boosted Tree Classifier

Unsupervised Learning (USL)

In USL, the machine tries to learn without a supervisor or explicit agent. In this, the
training data set is unlabeled; hence, the machine is restricted to find the hidden
structure in unlabeled data by self. For example, if we have a group of live stocks
thatis, cows, dogs, cats, camels, and so on in the frame or image, which was not seen
ever by the trained model /machine. Thus, the machine will have no idea about the
feature of these individual animals and get confused while categorization. But, with
the help of USL, the categorization becomes easy and can be possible by considering
the similarities, differences, and patterns. USL is categorized into two types:

Clustering

Clustering is a technique for grouping the same set of objects or pattern in the same
group based on some key attributes and parameters from the dataset. There are many
types of clustering algorithms which are mentioned as follows. (Most of these will

14 Practical Machine Learning with Spark

be covered in the upcoming Chapter 5 ”Supervised Learning with Spark” and Chapter 6
"Unsupervised Learning with Spark” in detail.

e K-Means
e Bisecting K-means Algorithm (BKM)

Latent Dirichlet allocation (LDA)

Gaussian Mixture Model (GMM)

Table 1.3 shows the clear view between supervised and unsupervised learning:

Difference between Supervised and Unsupervised Learning

Supervised Learning (SL) Unsupervised Learning (USL)
The Supervised Learning method 1. The Unsupervised Learning
involves the training of the system method involves the training of
or machine where the input pattern the system where only the input
and target pattern (output) is pattern is known and the output
already known. is hidden/unknown.
The SL method is used to facilitate 2. The objective of USL is to find
the prediction of future instances the pattern entities such as
with the help of knowledge/ groups, clusters, dimensionality
historical pattern by loading the reduction and perform density
trained model. estimation.
Implementation of SL is easy. 3. More complex than SL.
The outcome of the SL technique is 4. The outcome of USL is moderate
more accurate and reliable. but reliable.
SL requires supervision to train the 5. USL does mnot need any
model. supervision to train a model.
SL is mainly implemented on 6. USL is mainly implemented for
offline applications. real-time analysis of data.
SL doeshave a feedback mechanism 7. USL does not have any feedback
to check whether the outcome is mechanism to check whether the
corrected or not. outcome is correct or not.
There are two types of SL: 8. There are three types of USL:
a. Regression a. Clustering
b. Classification b. Ensembling
c. Association Rule Mining

Table 1.3: Difference between Supervised and Unsupervised Learning

Introduction to Machine Learning 15

Reinforcement Learning (RL)

InRL, there is no actual supervision to be used instead, a feedback system is provided
which helps the machine to learn and make the decision on that observation. All
this decision and result has been done through the smart self-learning system or
reinforcement learning. It is more applicable with NN and a perfect example of RL
is Google’s DeepMind AlphaGo Program.

There are several types which are as follows:
e Q-Learning
e Temporal-Difference Learning (TDL)

e Deep Adversarial - Metric Learning

Hybrid Learning Problem (HLP)

As discussed earlier, HLP is classified into three main types, that is, Semi-Supervised
Learning, Self-Supervised Learning, and Multi-Instance Learning.

Semi-Supervised Learning (SSL)

As we know that the labeling of data is a lengthy and costly process, but in this
learning, we get some algorithms which will do automatic labeling over the dataset.
Google’s Photo is the best example.

Self-Supervised Learning (Self-SL)

This learning requires unlabeled data for doing the pre-processing tasks, and then
the output needs to be fed to the intelligent framework for precise analytics. Data
augmentation and image rotation in Computer Vision is an example to show the
characteristics of self-supervised learning.

Multi-Instance Learning (MIP)

In Multi-Instance Learning, the individual instances or objects are un-labeled, and
the bags of instances or objects turned into groups are labelled. Let us suppose, the
information or details of individual fruits in the image should be un-labeled but in a
group, it is named as a fruit. Another criterion to divide the types of ML is to check
whether the training dataset is learnt incrementally on the adhoc basis.

16 Practical Machine Learning with Spark

Learning of Models Based on Second
Criteria (Batch Mode Learning and Online
Mode Learning)

In this section, the readers will get to know the two indispensable learning trails to
train a model based on the incremental manner or batch manner. More details about
these learnings are as follows.

Batch Learning

In batch learning, the machine doesn’t train in an incremental manner but uses
the delta concept or batch mode approach for training an intelligence model on a
particular period. This kind of training approach is being handled by the integration
of frequency-based scheduler or trigger-based workflow system.

Online Learning

In online learning, the machine is trained incrementally by feeding it data instances
in a sequential manner. The last main criteria to bifurcate machine learning are to
check whether the training on the example dataset gives you a generalized result
for better prediction. There are two types of learning exits such as instance-based
learning and model -based learning.

Applications of Machine Learning

The concept of ML has been recognized and adopted by many entrepreneurs,
academicians, and professionals from several multi-national companies (MNCs) for
getting the key-targeted and decisive information. In this section, we will be cover
the pertinent applications of ML. By the use of ML, several organizations have been
able to enhance efficiency, optimization of framework, workflow observation, in
addition to cost reduction for solving a complex problem. Recent advancement in
the field of edge computing and highly configured processing framework such as
Graphics Processing Unit (GPUs) and TensorFlow Processing Unit has provided the
ease to integrate with a ML model. Also, due to availability of in-expensive hardware
and advanced computations, the field of Al gets more flexibility and adoptability in
any divergent domain. This advancement helps to incorporate the potential of ML in
our day-to-day scenarios. The interdisciplinary areas that leverage ML in their real-
time applications are as follows.

Introduction to Machine Learning 17

Recommendation Engine

There is no doubt about the fact that online shopping has taken over the retail market
in the past few years. Online shopping provides a great experience with a variety of
options for a given product and competitive discounts.

Arecommendation engine is an advanced application of machine learning techniques
to provide the products/items recommendation. Recommendation engines are
everywhere around us in our daily life. It is used in e-commerce, marketing, online
video recommendation and the Sales department to attract new customers. It is
a process which leverages Al to suggest or recommend the things to the user by
tracking the behavior based on the previous activities like e-shopping and viewing
video content. Several machine learning methods like supervised, semi-supervised,
unsupervised, reinforcement are used to develop these products recommendation-
based system.

Netflix is using machine learning techinque to collect its huge collection of TV
shows and movies. It analyses the streaming history and habits of its millions of
subscribers to predict what individual viewer would prefer to watch. Nowadays,
when users search or purchase a product from a website or an application, similar
or the same products are recommended to the user on their next visit. Product
recommendations are made based on the behavior of the website or application,
past purchases, items liked or wishlist, shopping cart, and past purchases. This
enhanced shopping experience is powered by ML running at the backend of the
websites. This type of system is also built with the incorporation of big data and
machine learning techniques like Collaborative Filtering, Alternate Least Square
(ALS) Algorithm, and Reverse Image Searching, Market Basket Algorithm, and ANT
theory (Recommendation Mechanism). Some popular examples of recommendation
engines are as follows:

e E-commerce sites like Amazon and Flipkart

e Book sites like Goodreads

e Movie services like IMDb and Netflix

e Hospitality sites like MakeMyTrip, Booking.com, and so on
e Retail services like StitchFix

e TFood aggregators like Zomato and Uber Eats

Financial Services

The finance industry uses Machine Learning and Deep Learning algorithms
to identify the key insights in financial data to be used as prevention from any
occurrences of fraudulent activity, keep alerting of different level of cyber threats,
and portfolio management for recommending better loan opportunity to customer.

18 Practical Machine Learning with Spark

Machine learning can be used to change the way of working of banks to improve the
customer’s experience and secure transactions through many flags as Al checkpoints
so the bank can connect with the customers at the earliest if any way-out activities
happen.

For example, if a purchase of any customer does not fit in with their money spending
pattern, then the algorithms alert the bank and put the transaction on hold.

Social Media

Social media platforms like Facebook and Twitter leverage ML algorithms and ways
to create some attractive and useful features. Platforms like Facebook monitors
and logs all the user activities like the chats, likes, and comments, types of posts,
groups, and time spent on them. The underlying ML algorithm analyses these logs
and makes recommendations on friends and page suggestions for you. This is used
for customized news feed and enhanced and personalized ads targeting. You may
be using these wonderful features without realizing that they are powered by ML
algorithms. These platforms have integrated machine learning into their computing
and decision-making framework.

Face Recognition

Face recognition and object detection can be possible by leveraging the power of
ML using Computer Vision and its related techniques. Mainly, face recognition is
implemented at international airports which recognize the identity of a person and
provide you an e-boarding pass without interaction of any manual groundcrew.
Mobile phones are also adopting this functionality for unlocking the password.
Features of this can be seen in mobile apps to detect the age and gender of the person
being photographed. Currently, this application is being used by social websites
and applications like Facebook and Instagram to recognize the friends based on the
historical patterns. Facebook’s Deep Learning Project Deep Face is responsible for
the recognition of faces and identifying the person by making the decision through
the ML model.

Healthcare

There is an increase in the demand of wearable sensors and devices to use that data
to access the health of a patient in real time. For this reason, ML is becoming a fast-
growing trend and hot topic in the healthcare domain. Wearable sensors provide
real-time patient information like overall health condition, heartbeat, blood pressure,
and other vital parameters. This collected information is beneficial to doctors and
medical experts to analyze the health condition of an individual and predict the
occurrence of any ailments on the basis of the historical trend of the patient health

Introduction to Machine Learning 19

data in the future. The technology also enhances the scope to analyze data to identify
trends that facilitate better diagnoses and treatments.

The healthcare industry is rising with the integration of ML and DL in medical
imaging, diagnosis, data collection, drug discovery, and radiology image analysis.
Several healthcare sectors are actively looking to adopt ML features to manage better
and predict the waiting times of patients in the emergency waiting rooms across
various departments of hospitals. This model is also used to define staff duties
and other planning by monitoring the details of the staff at various times of the
day, records of patients, and complete logs of department chats, and the layout of
emergency rooms. Machine learning algorithms also come to play when detecting a
disease and therapy planning. For example, KenSci assisting caregivers.

Sentiment Analysis

Sentiment analysis is a real-time machine learning application that determines the
emotion or opinion of the user. When, if someone has written a review or feedback, a
sentiment analyzer can find out the actual sense and tone of the text. This sentiment
analysis application can be used to analyze a sentiment of the document and topic-
modeling on the customer care dataset to classify the complaints based on each
product. An automatic rating system is another key decision-making application to
analyze and generate the rating from the call transcript by leveraging the concept
of Natural Language Processing (NLP). NLP is a feature of ML for analyzing and
classifying the text data for providing the sentiments, topic-modeling, and automatic
reply through chatbots.

Video Surveillance

Video surveillance is one of the advanced applications of a ML. A video clip contains
more details and information to compare documents and other unstructured sources
such as audios and images. For this reason, extracting of useful information from
a video by implementing an ML-based automated video surveillance system has
become a hot topic in the analytic market.

In the security-based application, identification of a human from the videos is an
important feature to analyze an unusual pattern or anomaly detection. The face
pattern is the most widely used parameter to recognize a person. A system with the
ability to detect and track the information about the presence of the same person in a
different frame of a video is a highly complex process. It requires advanced ML and
DL integration to get over the problems of high latency and complexity during the
process and intends the more accurate result with efficient time. The already trained
cameras using ML are used to keep an artificial vision to observe the public and
notice suspicious activities. The system will generate a flag or an alert if any way-out
activity may occur.

20 Practical Machine Learning with Spark

Future Scope of Machine Learning

This section presents the futuristic possibilities of machine learning in a real-word
application. Adaption of an intelligence intends more towards automation and self-
learning insights in the coming era. Figure 1.5 shows the key application areas for
unlocking the door of a smart word. Let’s get familiar about this one by one:

Edge
Machine
Learning

Improved
Cognitive
Services

Quantum
Computing

Scope

Self-Driving
Cars _

Figure 1.5: Futuristic application of machine learning

A New Trail of Intelligence Augmentation (IA)

The concept Intelligence Augmentation is a combination of Augment Reality and
Artificial Intelligence which is used to enhance intelligence in a machine in addition
to empower humans to work in a better and smarter way. The IA platform can gather
all types of data from many sources and geometrical coordinate understanding of an
object with Al to give human workers a complete 360-degree view of the surrounding.
The insight extracted from that data and presented to the user is actionable and more
realistic.

Introduction to Machine Learning 21

Integrating IA may reduce the chances of fatal incidents, improve the monitoring and
maintenance of industries pipeline, and provide the ease to the end user to debug
the fault occurrences in manufacturing units through Smart augmented assistance.
Amazon Augmented Al and Microsoft Al platform are the best tools to achieve IA.

Edge Computing with ML

Currently, many MNCs store heterogenous and large volume in the cloud for
processing and implementing ML algorithms. Sometimes, processing in the cloud
becomes a dangerous problem in cases when the response time is a very important
parameter for decision making.

To remove this problem of latency, many companies move from the cloud to the
edge computing. Edge Computing becomes more insightful and useful when it
integrates with AL This integration is also known as Edge ML in which the data to
be processed and deployed ML algorithms are locally on a hardware device instead
of data located in the cloud. It not only reduces the power consumption, but also
helps to process the real-time data significantly with the help of a de-centralized
processing framework.

Quantum Computing with ML

Quantum Computing (QC) is one the upcoming futuristic technologies that will
have a great potential to enhance the power of processing heavy and complex ML
models. QC uses the mechanical phenomenon of quantum such as entanglement
and superposition where it exhibits multiple states at the same time by adding
quantum systems. Here, entanglement helps to describe the correlation between the
properties of a quantum system. These quantum systems are built using advanced
quantum algorithms that process data at high speed to enhance the ability to analyze
and extract out the meaningful insights from a large dataset. Microsoft and Google
have already announced their desires to leverage the QC in future.

Improved Cognitive Services

Application of Cognitive Services are becoming more fascinating and intelligent
when we use ML. Cognitive Services have already existed in many verticals like
visual recognition, speech detection, and speech understanding in their apps using
ML. Cognitive Service is the way how the machines should behave and feel like a
human. There is a need of more precision and accuracy will be required for better
understanding. That is why ML will have great potential to overcome the existing
problems for more adoption of a cognitive service-based application in the coming
days.

22 Practical Machine Learning with Spark

Robotics

Since 1954, robotics is one of the interesting fields among the researchers and they
developed a series of robots. But in the 21st century, researchers started to put
efforts to invent self-learning robots using Al instead of programmable inputs. The
Robotics domains amalgamate multiple technologies such as Deep Neural Network,
ML, Computer Vision, Big Data, Augmented Reality, and digital twin to mimic the
human brain.

Cognitive robots execute tasks in a faster manner and reinforcement learning will
automatically self-learn the new patterns to merge with its historical experience; this
ability can increase features of robots and high urge in people’s demand. Currently,
South Korea and Japan are doing research in the advancement of the Robotics
domain.

Machine Learning in Space Exploration

The ML technology is supposed to boost up future space exploration due to its variety
of features like handling of huge data volumes, finding and observing patterns in
planet image datasets, and predicting maintenance of spaceship. The key-role of
ML in space exploration can be classified as data transmission, visual data analytics,
navigation, and rocket landing.

ML is also used as an automatic smart bridge for trans-missing, analyzing, storing,
and extracting out the meaningful information’s from the cosmos amount of
complex data that would occur due to the different rotation of the planet’s orbit. ML
provides a smart algorithm to recover the unsuccessful transmission of data packet
by leveraging Edge ML that may be permanently lost due to the overwritten with
new data or latency in the onboard memory. For example, Mars Express Al Tool
(MEXAR?2) and Italy’s Institute for Cognitive Science and Technology (ISTC-CNR)
can learn from the archive data to remove the superfluous data and pinpoint the
download schedule to optimize data packet transmission.

Adeep analysisof the planet’s data requires integration of ML-based image processing
algorithms to identify and read the right information from space images. Due to
this use case, Machine learning has become an imperative technique for solving the
mystery of the unknown universe. ML applications are also more intended towards
Space Navigation and successful landing of the rocket by self-adjusting into the
derived trajectory and motion control of satellite. The orbit adjustment, autonomous
navigation, and space station docking can be controlled using the functionality of
ML. In 2015, SpaceX Falcon 9 used a convex optimization algorithm to determine the
optimal way to land the rocket back on the earth successfully using the power of ML
and computer vision in space exploration.

Introduction to Machine Learning 23

Self-driving Cars and Autonomous
Transportation

Currently, a combination of Global Positioning System (GPS), motion sensors,
and a computational framework known as Flight Management System (FMS) is
being used to track the position of a flight. This FMS overtakes the manual efforts
into autonomous track controlling except during take-off and landing. Landers
and Rovers of Chandrayaan-II are recent examples of Autonomous Transportation
where the entire landing operation would be autonomous with no inputs from the
Earth Centre.

Enabling the FMS kind of automatic system for making the self-driving car is more
complicated and requires high computation than airplanes due to the increase in
number of cars on the road, obstacles, and limitation of tariff patterns and rules.
Many MNCs uses 5G technology and Edge ML for learning the complex patterns
through real-time cameras and sensor data and cam train, an advanced Al model as
a resultant of Self-driving car. Google Corp. has already tested 55 vehicles that have
driven over 1.3 million miles altogether leveraging ML and edge computing.

Enhanced Healthcare using Al

Al can be used to reduce the cost of hospitals and waiting time for getting the
diagnosis report. Recent Al advancement in the field of the healthcare domain has
proven that integrating Al-driven Computer Vision algorithms such as Mask RCNN,
UNet, and so on would show the promising result with minimal human effort and
less cost. Al allows the doctors and practitioners to understand the genetic diseases
using predictive models in a better way.

Radiology image analysis is one of the accoladed applications of ML which can
detect and identify the way-out patterns from the image for knowing the disease.
Also, many pharmaceutical companies adapt the concept of Al for artificial clinical
trials and centralization lake for data handling; these two features of Al will increase
the precision in trial in addition to cost cutting.

Conclusion

This chapter deals with anin-depth, lucid, and comprehensive details of Al to elicit the
readers about its advancement and scope in various fields. Furthermore, an overview
about the different types of learning, algorithms, and respective comparison tables
has been covered. In the next chapter, the author will focus on divergent approaches
to configure and install Apache Spark on cloud and on-premises frameworks such
as Python, Editors, DBeaver, PowerBI, and Hadoop frameworks.

CHAPTER 2

Apache Spark
Environment Setup
and Configuration

“Dreaming is good, but implementation is success”
— Paballo Seipei

Introduction

In this Digital and Autonomous era, all the real-time applications based on Machine
Learning all the real-time applications of Machine Learning (ML) and Deep Learning
(DL) are significantly playing an essential role in our day-to-day activities for making
the life more simple, fast, and comfortable. In spite of many advantages linked with
an autonomous-based intelligent system, there are still some complex challenges
associated with ML. These challenges include handling, persisting, and processing
of massive amount of raw data which ingests which comes from cumbersome data
pipelines such as real-time pipelines and batch-mode pipelines. Later, that needs to
be fed to an Artificial Intelligence (AI) model for futuristic and decisive insights.
Due to standalone mode of the processing framework, data processing and Al-based
analytics (training, validating, and testing) over the Big Data become too tedious and
time consuming for large computation. To overcome aforesaid challenges, several
research groups, researchers, and Multinational Corporations (MNCs) have been
trying to eliminate the standalone processing framework for analytics by introducing
the concept of distributed computing. Distributed Processing Framework (DPF) is
used to manage Big Data (Heavy Data) and apply the ML /DL model to optimize

26 Practical Machine Learning with Spark

the overall performance with time efficiency. In DPF, the data will be segmented
into small chunks and processing of those small data chunks efficiently to be done
by leveraging by leveraging the mechanism of DPF. Although, training and testing
of the ML/DL model on the large dataset will consume less time and reduce the
environment cost during the implementation.

Both Apache Hadoop and Apache Spark are the most popular and in-trend DPFs in
the market for Digital Transformation (DT). The Apache Hadoop framework is the
first DPF that was introduced by researchers at Yahoo Corp. for storing and parallel
processing of large amounts of data. But due to the few limitations of Apache
Hadoop, later on, Apache Spark was adopted more widely in all the verticals of
many industries. In this chapter, the authors will discuss various ways to set up the
ergonomic framework to get the Apache Spark environment installed for practical
implementation. Additionally, this chapter includes all the indispensable stages in
a systematic and step-by-step manner to attract the attention of the readers towards
the production-level implementation. Apache Spark can be installed and configured
through Hortonworks and Virtual Machines (VM) using on-premise and cloud
platforms such as Amazon Web Services (AWS) and Hadoop Ecosystem (HE). In
addition, Python installation and its configurations are also shown using various
Python-supporting editors such as Jupyter Notebook and Sublime Text. From a data
access and visualisation perspective, this book delivers in-depth practical knowledge
to readers about the installation of Microsoft PowerBI, DBeaver Universal Database
Connector, and Apache Spark on Google Colab.

Structure
This chapter presents comprehensive discussions on the following topics:
e Laconic view on Apache Spark
e Apache Spark installation using Hortonworks Sandbox
e Hadoop and Spark setup on AWS
e Python editors for the Spark programming framework
e Microsoft PowerBl installation for data visualization
e DBeaver installation for accessing the data from the persistence layer

¢ Installation of Apache Spark on Google Colab

Objectives
After reading this chapter, readers will be able to:

e Understand the need for Apache Spark.

Apache Spark Environment Setup and Configuration 27

¢ Install on-premise based Apache Hadoop and Apache Spark using a virtual
machine.

e Understand about the cloud instance setup using AWS.

e Install Apache Spark and Apache Hadoop on cloud using Amazon Elastic
Compute Cloud (Amazon EC2).

¢ Setup the python and PySpark environment for writing the ML /DL programs.

¢ Install Microsoft PowerBI and DBeaver to analyze and visualize the insightful
data for better understanding and scope of the business world.

¢ Install and configure Apache Spark on Google Colab.

Laconic View on Apache Spark

Apache Spark is a DPF used to handle and process massive data workload efficiently
by leveraging the concept of “In-Memory Computation”. Initially, Apache Spark
was developed in algorithms, machines, and people lab (AMP Lab) at UC Berkeley
in 2012. Using the concept of "In-Memory Computation”, Apache Spark can process
a large dataset 100 times faster as compared to other DPFs unlike Apache Hadoop.
The main objective of Apache Spark is to provide easy integration which is strongly
coupled with its key components such as Spark Machine Library (Spark MLib)
and Spark GraphX for extending the functionality towards ML. Apache Spark is
an inexpensive platform to write a program and it combines various processing
capabilities through the heterogenous query over the dataset such as an iterative
algorithm query, interactive query, streaming query, graph query, and batch query.
By applying the functionality of a unified analytic and intelligence-based architecture
in Apache Spark, the burden of maintaining and monitoring of the data processing
pipeline is alleviated.

It is highly accessible by applying the simple Application Programming Interface
(APIs) in different programming languages such as R, Java, Python, Scala, Structured
Query Language (SQL), and so on. It can also integrate with Big Data components
and run on the top of Hadoop clusters in a distributed manner. Moreover, Apache
Spark can run on clouds in spite of on-premise frameworks such as Microsoft Azure,
Databricks, Google Compute Platform (GCP), AWS, and IBM insights. Presently,
the latest version of Spark, that is, Apache Spark 3.2.0, is being implemented in the
analytics world.

28 Practical Machine Learning with Spark

Apache Spark Installation using
Hortonworks Sandbox

In 2019, another competitor company, Cloudera, merged and acquired the entire
services of Hortonworks. A virtual machine named "Hortonworks Sandbox" is being
downloaded through the official website of Cloudera to set up the Hadoop and
Spark frameworks. Hortonworks Data Platform (HDP) and Hortonworks Data Flow
(HDF) are two types of platforms available on the website of Cloudera-Hortonworks.
Generally, HDP needs to be chosen as a persistence and code execution framework,
while HDF is for creating batch and real-time data pipelines.

Hortonworks Sandbox installation and configuration require VMware Workstation
Player (VMWP) and a Docker Image (DI) of Hadoop. Although Apache Spark can
be installed and configured in a standalone mode without the need for a Hadoop
bundle, it is recommended to re-use it over the Hadoop layer. Let’s take a look at
the installation steps of Spark using VMware Workstation Player and Hortonworks
Sandbox.

VMware Workstation Player Installation
The following are the steps to install VMware Workstation Player in the system:

1. Open the following link in the browser: https://www.vmware.com/in/
products/workstation-pro/workstation-pro-evaluation.html. Download the
VMware Workstation Player (VMWP) from the official website of VMware,
as shown in Figure 2.1. This step is needed to get the VMWP for importing the
Hadoop image into it:

Workstation 16 Pro improves on the industry defining technology with
DirectX 11 and Op: 3D Accelerated s sUppOrt, a new
dark mode user in yper-V mode on

w CLI for supporting
* support for the latest

WORKSTATION

PRO™
Use the links below to start your free, fully functional 30-day trial, no

1 (i registration required

Workstation 16 Pro for Windows Workstation 16 Pro for Linux

DOWNLOAD NOW > DOWNLOAD NOW >

Figure 2.1: Home Page of VMuware to download VMWP

Apache Spark Environment Setup and Configuration 29

2. After downloading the .exe file of VMWF, go to the location in the system
where the VMWP setup is saved and double click on the executable file.
Figure 2.2 shows the preparing screen to install VMWP:

VMWARE

WORKSTATION
PRO

Figure 2.2: Preparing “VMMP” for installation.

3. The installation will start once you click on the Next, as shown in Figure 2.3:

W VMware Workstation Pro Setup o= X

| 4

Welcome to the VMware Workstation Pro

WORKSTATION sstinteclined

PRO" 1 6

The Setup Wizard will install VMware Workstation Pro on your
computer, Click Next to continue or Cancel to exit the Setup
Wizard.

Copyright 1998-2022 YMware, Inc. All rights reserved. This
product is protected by U.S. and international copyright and
intellectual property laws. VMware products are covered by
one or more patents listed at:

http: {/www.vmware.com/go/patents

Next Cancel

Figure 2.3: The welcome dialog box of VMuware Workstation Player

30 Practical Machine Learning with Spark

4. Click on the checkbox to accept the License Agreement. The Next tab will
be enabled and moved into the next installation step, as shown in Figure 2.4:

2B VMware Workstation Pro Setup - X
End-User License Agreement
Please read the following license agreement carefully.

VMWARE END USER LICENSE AGREEMENT
Last updated: 03 May 2021

THE TERMS OF THIS END USER LICENSE AGREEMENT (“EULA”) GOVERN
YOUR USE OF THE SOFTWARE, REGARDLESS OF ANY TERMS THAT MAY
APPEAR DURING THE INSTALLATION OF THE SOFTWARE.

. I accept the terms in the License Agreement

prn Bock —

Figure 2.4: The End-User License Agreement Window.

5. Figure 2.5 shows a dialog box that appears to show the location in the system
where it will be installed. Click on Next and it will move the installation step
onto the User Experience dialog box.

D VMware Workstation Pro Setu p = X
Custom Setup
Select the installation destination and any additional features.
Install to:
C:\Program Files (x86)\VMware\VMware Workstation\ Change...

[Enhanced Keyboard Driver (a reboot will be required to use this feature)
This feature requires 10MB on your host drive.

8 Add VMware Workstation console tools into system PATH

Figure 2.5: The Custom setup window for setting the installation path to VMWP

Apache Spark Environment Setup and Configuration 31

Click on the checkboxes in the dialog box and click on the Next button, as
shown in Figure 2.6:

- J7Y

Norkstation Pro Setup o X

User Experience Settings
Edit default settings that can improve your user experience.

8 Check for product updates on startup
When VMware Workstation Pro starts, check for new versions of the application
and installed software components.

. Join the VMware Customer Experience Improvement Program

VMware's Customer Experience Improvement Program
(“CEIP") provides VMware with information that enables
VMware to improve its products and services, to fix
problems, and to advise you on how best to deploy and use
our products. As part of the CEIP, VMware collects technical

Learn More

Back Cancel

Figure 2.6: The User Experience settings dialog box to enable the checkboxes

Click on the Install button, as shown in Figure 2.7. The Ready to install
VMware Workstation <VERSION> Player dialog box will start the
installation in the system.

ﬂ VMware Workstation 15 Player Setup - X

Ready to install VMware Workstation 15 Player Sa

|

Click Install to begin the installation. Click Back to review or change any of your
installation settings. Click Cancel to exit the wizard.

. Bak [sl | | Cancd |

Figure 2.7: The Ready to install VMuware Workstation 15 Player dialog box

32 Practical Machine Learning with Spark

8. Figure 2.8 shows a dialog box Installing VMware Workstation
<Version> Player that depicts the progress of the setup installation.

Usually, this installation step will take 10-15 minutes according to the system
configurations.

S8 VMware Workstation Pro Se

tup - X

Ready to install VMware Workstation Pro @

Click Install to begin the installation. Click Back to review or change any of your
installation settings. Click Cancel to exit the wizard.

Back Install Cancel

Figure 2.8: The installation progress window for VMWP

9. Once it is successfully installed in the system, click on the Finish button, as
shown in Figure 2.9(a) and open it by double clicking on the VMware icon.

M vMware Workstation Pro Setup — X

r

WORKSTATION Completed the VMware Workstation Pro Setup

™16

Wizard

Click the Finish button to exit the Setup Wizard.

Press the License button below if you want to enter a license
key now.

e

Figure 2.9 (a): The Completed the VMuware Workstation 15 Player setup Wizard window

Apache Spark Environment Setup and Configuration ™ 33

10. Once it is successfully installed in the system, the icon is created for VMware
on the Desktop as shown in Figure 2.9 (b):

Figure 2.9(b): Icon of VMuware after installation

ClouderaVM Installation for HDP

This section shows the installation steps of ClouderaVM (HDP) as follows:

1. Open the link https://docs.cloudera.com/documentation/enterprise/5-14-x/
topics/cloudera_quickstart_vm.html in the browser, as shown in Figure 2.10
and download the ClouderaVM:

= Cloudera Enterprise 5.7.x | Other versions Search Docum

> Cloudera QuickStart

View All Categories

Cloudera QuickStart VM

Cloudera QuickStart virtual machines (VMs) include everything you need to try CDH, Cloudera Manager,
Impala, and Cloudera Search.

» Cloudera Introduction
Cloudera Release Notes
¥ Cloudera QuickStart
¥ Cloudera QuickStart VM
QuickStart VM Software | (@ Note: Cloudera does not provide support for using QuickStart VMs. ‘
Versions and
Documentation
QuickStart VM
Administrative
Information

The VM uses a package-based install, which allows you to work with or without Cloudera Manager. Parcels
do not work with the VM unless you first migrate your CDH installation to use parcels. On production

systems, Cloudera recommends that you use parcels.

Cloudera Manager and CDH
QuickStart Guide | (@ Note: The QuickStart Docker Container image is no longer updated or maintained. ‘

» CDH 5 QuickStart Guide

» Cloudera Search QuickStart
Guide o
» Cloudera Installation Prerequ Isites

Upgrade * These B4-bit VMs require a 64-bit host OS and a virtualization product that can support a 64-bit guest
» Cloudera Administration kel 0S.

Figure 2.10: Home Page of Cloudera QuickStart

34 Practical Machine Learning with Spark

2. Enter the details asked by Cloudera Sign-In form for downloading the
ClouderaVM and click on Continue, as shown in Figure 2.11:

Sign in or complete our product interest form to
continue.

Why are you downloading this Product?

First Name

Business Email Company

] Yes | would like to be contacted by Cloudera for newsletters

Figure 2.11: The Sign-In page to register for installation

3. Tick the checkbox to accept the Cloudera Trial License Agreement and click
on Submit which will redirect you to the Get Started page where you need
to choose the version of ClouderaVM, as shown in Figure 2.12:

€) coowsG/Te X | k RSNAPneur X | ™M Authoringa X | () DSB2018F X | @ Pruningdec x | @ Skype X | @ Clouderacr x (@ coppatace x | 4 - X

C' @ doudera.com/downloads/cdp-data-center-trial.html

Please Read and Accept our Terms

CLOUDERA TRIAL LICENSE AGREEMENT

THIS CLOUDERA TRIAL LICENSE AGREEMENT (THE “TRIAL
AGREEMENT") IS AN AGREEMENT BETWEEN YOU OR THE COMPANY
ORENTITY ON WHOSE BEHALF YOU ARE ENTERING INTO THIS TRIAL
AGREEMENT ("LICENSEF") AND CLOUDERA, INC.ANDITS
AFFILIATES (“CLOUDERA") AND, ABSENT A SEPARATE GOVERNING
AGREEMENT IN PLACE BETWEEN LICENSEE AND CLOUDERA,
GOVERNS LICENSEE'S ACCESS TO AND USE OF THE CLOUDERA
SOFTWARE THAT THIS AGREEMENT ACCOMPANIES OR THAT IS

IDENTIFIED ON THE DOWNLOAD PAGE FROM WHICH THIS TRIAL -
‘ »

("] laccept the above Terms and acknowledge the associated product
third party notices.

httn L cloidara com fdownlaads fedn-data-cantor-trial html#

Figure 2.12: Displaying the Cloudera Trial License Agreement

Apache Spark Environment Setup and Configuration 35

4. Choose the version of ClouderaVM from the dropdown, as shown in Figure
2.13 and then click on Let’s Go! to get the link for installation:

€) Caowc x | k RSNAP x | M Author x | €) DsB20 x | @ Pruninc % | @ Skype X | @ Cloude x | @ Cloude: x | 7Zp X (@ Hoton x | 4 - X

< C @ doudera.com/downloads/hortonworks-sandbox/hdp.html ® » 0 :

C Lo U D E RA Why Cloudera Products Solutions Services & Support

Hortonworks Data _ GetStartedNow

Platform (HDP') on

VMWARE

Hortonworks Sandbox

The HDP Sandbox makes it easy to get started with Apache Hadoop,
Apache Spark, Apache Hive, Apache HBase, Druid and Data Analytics
Studio (DAS).

05:06

B O Typehere to search 0O B @ = B 8% 70 0 ¢ = ohe 7P NG o E@i
— — 1

Figure 2.13: Choose the version of Hortonworks Data Platform.

5. On the Sandbox HDP VMWare Downloads page, as shown in Figure 2.14,
there are two platforms provided by Cloudera, that is, HDP and HDF. Choose
HDP and the downloading will start once you hit on the link.

) caowe x | k RSNAF X | M Author x | €) DsB2¢ X | @ Pruninc X | @ Skype X | @ Cloude X | @ Cloude x | @@ 7Zp X @ Hotor X+ = X

L3 C @ cloudera.com/downloads/hortonworks-sandbox/hdp.html T O * e H

Thank you for choosing Hortonworks Data Platform (HDP) on Sandbox

Sandbox HDP VMWare Downloads

HDP VMWARE 3.0.1 (Latest)

Install Guide on VMware

Older versions

* 26.5
* 250
HDP on Sandbox HDF on Sandbox
@ Getting Started with HDP > @ Download HDF >
Learning the Ropes of the HDP Sandbox > Release Notes > u
Release Notes > -

Figure 2.14: The Sandbox HDP VMWare Downloads Window

36

Practical Machine Learning with Spark

6. After downloadingthe sandboximage, double click on VMware Workstation
16 Player that was already installed in the system. A dialog box pops up
from where you need to select the Import option in the Player menu. Click
on Browse to pass the path of Cloudera HDP virtual machine location, as
shown in Figure 2.15. Click on the Import button and it will start importing
the virtual machine and usually it will take 10-15 minutes.

Import Virtual Machine

Store the new Virtual Machine

Provide a name and local storage path for the new
virtual machine.

Name for the new virtual machine:

‘ HDP_2.5_vmware (2)

Storage path for the new virtual machine:

‘ C:\Users\goura\OneDrive\Documents\Virtual Mac ‘ Browse...

Help Cancel

Figure 2.15: Dialog box to import HDP sandbox

7. Figure 2.16 shows the log-in method with the following credentials into the
HDP virtual machine:

Username = root
Password = hadoop

HDP_2.5_vmware (2) - VMware Workstation 15 Player (Mon-commercial use only)

Player = v 'r_&' lrJﬁ |"J

¥4 on an xB6_64

Figure 2.16: Enter credentials to access the HDP terminal

Apache Spark Environment Setup and Configquration 37

8. In the latest version of ClouderaHDP sandbox, it incorporates the Hadoop
enabled docker to run the specific services related to Apache Spark and
other components. Readers can ensure that the docker and container are
running properly in sandbox by running the command docker ps. This
command will list out all the container images which are active in the docker,
as illustrated in Figure 2.17. Readers can also execute the specific shell script
to manually start the docker using start_sandbox.sh in the start_script
directory if the Docker goes down.

[root@sandbox ~ I

[root@sandbox ~ I

[root@sandbox ~ I

[root@sandbox “Iu s

anaconda-ks.cfy

[root@sandbox ~14 cd start_scriptss

[root@sandbox start_scriptsls Is

gen_hosts.sh post_start.sh run.sh splash.py start_sandbox.sh

[root@sandbox start_scriptslt ./start_sandbox.sh

Waiting for docker daemon to start up:

35e488a831ee sandbox “susrssbinssshd -D” 3 hours ago Up 3 hours 8.8.8.8:1800->1808 tcp, 8.8.8.8:1188->1188.tcp, B.6.8.8:12

28->1228./tcp, B.8.8.8:1988->1988.tcp, B.8.8.8:2188->2188/tcp, B8.0.8.8:2181-)ZlBl/tcp ©.0.0.8:4840->4848,tcp, 8.8.0.0:4288->4280tcp, B.8.8.8:5887->5867. tcp, B.

a 8.8: 5311 >5811/tcp, B.8.8.8:6881->6AR1 tcp, B.8.A.A:6AA3->6AR3/top, O..0.0:6ABB-6A08 tcp, B.0.8.0:6ABA->KABA tcp, B.8.8.0:618B->6188 tcp, B.8.6.H:8AAA->BAER
8.8.8.8:8085->8885 tcp, B.8.0.8:8828->8828./tcp, 8) : R 8.8:8858-)EBSB/tcp 0.8.8.8:8680->8688,tcp, 8.0.8.8:88

EZ >8882tcp, ©.8.8.8:8086->8886,tc 8.8.5:8086->8888/Lcp, B.8.8.0:889B-8A91->8890-BA91 Lop, B.8.0.:B1BB->B18B top, 0.8.0.8:8443->8443tcp, 8.8.0.8:8744->87

44/tcp 8.8.8.8:8765->8765tcp, B.8.8.8:8886->8886/tcp, B.8.B.B:88858-8889->8886-8889 /tcp, 0.8.0. , 8. : 993,/tcp, 8.8.8.8: 9888, tcp

98- >9898./tcp, B.8.8.8:9995-9996->9995-9996,tcp 9.0:10600-10001->10080-10601 /tcp, 8. cp, B.8.0.8:11888->11886 tcp, B.8.8.8:15

668->15680,tcp, B.6.8.8:16818>16818,tcp, B.6.9.A:16A3A->16830,top, B.6.0.0: 15ABA->16ABA. top, , 8.8.8.0:21888->21888,/tcp, B 8:42111-

>42111/tcp, B.8.8.0:56878->50678,tcp, B.8.8.8:58875->58875/tcp, B.8.8.0:58895->58895 tcp, B.0.8.8: 58111 50111 tcp, B.0.8.0:60000- 60008 top, 6.0.8 858 - >688

88,tcp, B.8.8.8:2222->22/tcp sandbox

sandbox

Starting mysql [Ok 1

Starting Ambari server [Ok 1

Starting Ambari agent [WARNINGS]

tput: Mo value for STERM and no -T specified

tput: No value for $TERM and no -T specified

Starting Flume

Starting Postgre SQL

Starting name node

Starting Oozie

Starting Zookeeper nodes

Starting Ranger-admin

Starting data node

Starting Ranger-usersync

Safe mode is OFF

Starting NFS portwap 1

Starting Haf's nfs

Starting Hive server 1

Starting Hiveserverz [0k

Starting Webhcat server [WARNINGS 1

~usr/hdpsZ.5.8.8-1245 hive-hcatalog/sbin/webhcat_server.sh: already running on process 2235

Starting Node manager

Starting Yarn history server 1

Starting Spark 1

Starting Mapred history server 1

Starting Zeppelin 1

Starting Resource manager 1

[root@sandbox start_scriptslt

Figure 2.17: The terminal to execute script to start services of docker

9. Figure 2.18 shows the use of the docker exec -it <container_
image><service_name> command to run any services on HDP sandbox.

38 Practical Machine Learning with Spark

Here, the docker exec-it sandbox pyspark command is executed to run
the Spark service in the terminal.

HDP_2.5_vmware (2) - VMware Workstation 15 Player (Non-commercial use only) >

Player ~ - & 0O 1S =)

with view pe

ctorSystem@172.17.0

5516283899138

Figure 2.18: The terminal to show PySpark is running properly

10. ClouderaHDP provides the ease to check the health and status of
Hadoop components through the Ambari Web Ul as shown in Figure
2.19. Configuration tuning and data access from the Hadoop Distributed
File System (HDFS) can be possible by integrating the Ambari Web UL
Credentials of the Ambari UI are different from ClouderaHDP Sandbox and
readers need to use the following username and password:

Username = maria_dev

Password = maria_dev

Not secure | 192.168.114.128:8080/#/main/dashboard/metrics

@) Ambari Sanabox G EEEE Dashboard R Aerts Admin

& HOFS Metrics | Heatmaps Config History
YA

SRR Metric Actions ~ || Last 1 hour =

© MapReduce?

Q Tez HDFS Disk Usage DataNodes Live HDFS Links Memory Usage Network Usage

@ Hive NameNode No Data Avallable No Data Avallable
Secondary NameNod
O HBase 45% 1/1 econdary NameNode

1 DataNodes
Q pig

Moro..
8 Sqoop

© o
CPU Usage Cluster Load NameNode Heap NameNode RPC NameNode CPU WIO
© ZooKeeper

e No Data Avallable No Data Avallable \
alcon
© Som o 0.50 ms
© Flume

@ Ambari Infra

@ Amba
Allas

NameNode Uptime HBase Master Heap HBase Links HBase Ave Load HBase Master Uptime

No Active Master

O Kafka 133 hr 1 Regionservers

Knox L

© Ranger Mora,_ =

Figure 2.19: Main Page of Apache Ambari Web Ul

Apache Spark Environment Setup and Configquration 39

Apache Hadoop and Apache Spark Setup
on Amazon Web Services (AWS)

In the previous section, readers got familiar about one of the ideal ways to get the on-
spot infra-framework of Apache Hadoop and Apache Spark using Cloudera HDP
sandbox. There is another approach to install Apache Spark and its related services
using Big Data on Cloud (BDC) concept. In this era of digital transformation, almost
all Big Data provider companies have been adapting the BDC model and spilling out
the Hadoop functionalities on top of the cloud. AWS, Microsoft Azure, IBM Insights,
and GCP are the most popular and trending cloud companies which provide Big
Data and Apache Spark Ecosystem as Software as a Services (SaaS) and instance-
based Operating System (OS), that is, Amazon Elastic Compute Cloud (Amazon
EC2). Moreover, by leveraging BDC can improve the performance of the overall
system and code execution, in addition to cost and time optimization. In this section,
readers will be elicited about how to get the Big Data Ecosystem on cloud using
AWS and deployment of HDP.

AWS Account Credentials and Amazon
EC2 Creation

This section illustrates the key steps to create an account in AWS for launching the
Amazon EC2 instance to install and configure the Hadoop and Spark components.
The steps to create an account in AWS are as follows:

1. Open the following link in the browser aws.amazon.com/console/. Go to
the Log Back In option to sign in to the AWS Management Console, as
shown in Figure 2.20:

<« c & * © » QO

sign In to the Console

AWS Management Console

Everything you need to access and manage the AWS cloud — in one web interface.

Log back in

Explore more from AWS

o ==
=] — sl e
SECEE-= 0 B NG R

Amazon EC2 Spot Instances AWS Storage Gateway AWS Amplify Amazon CodeGuru
Run Kubernetes, Apache Spark, and Get on-premises access to virtually Add authentication and data syncing Find code issues before they hit

Figure 2.20: Main Page of AWS Management Console

40 Practical Machine Learning with Spark

2. Click on the Root User radio button. Enter the username and password
to get into the AWS console if you have registered credentials, as shown
in Figure 2.21. Otherwise, you will have to create an account on the AWS

console:

aws

Sign in

® Root user
Account owner that performs tasks requiring
unrestricted access, Leam more

O 1AM user
User within an account that performs daily tasks.
Learn more

Root user email address

username@example.com

Create a new AWS account

Amazon FSx for
Windows File Server

s

ale anc

Figure 2.21: The Sign-In page to log-in into AWS console

3. Once you get into the AWS console, you can see the various pre-built services
of Amazon Web Services on the Services menu, as shown in Figure 2.22:

> C @ ap-scuth-1.console.aws.amazon.com/console/homelregion=ap-south-1#

aWS Services ~

Resource Groups +

i @

AWS Management Console

AWS services
Find Services
Q

¥ Recently visited services

© ecz

» All services

Build a solution

Get st th simp

Launch a virtual machine Build a web app

nd automated workfiows

Build using virtual servers

Stay connected to your AWS resources on-
the-go

=] Download the AWS Console Mobile App to your i0S
E or Android mobile device. Learn more [3

Explore AWS

RDS Read Replicas

Achieve scale and low-1 y for read-heavy
with RDS Read Replicas. Learn more [5

Amazon FSx for Windows File Server

Explore the lowest-cost file storage in the cloud for
Windows workloads. Learn more [

Figure 2.22: Displaying the AWS Management Console Page

Apache Spark Environment Setup and Configuration 41

4. Figure 2.23 shows the available services that are provided by AWS in every
nook and cranny of emerging technologies like Quantum Technology,
Blockchain, Business Intelligence, Analytics, Internet of Things, Augmented
Reality, Machine Learning, and Deep Learning. Most of the services on AWS
are spontaneous Saa$ or tailored applications for a quick deployment.

History
Consale Home

EC2

Resource Groups ~

[
@ Compute

Lightsail

Lambda

Bateh

Elastic Beanstalk

Serveriess Application Repository
AWS Qutposts

EC2 Image Builder

E Storage

53

EFS

FSx

53 Glacier
Slorage Galeway
AWS Backup

&

&

Blockchain

Amazon Managed Blockchain

Satellite
‘Ground Station

Quantum Technologies

Amazon Braket

Management & Governance
AWS Organizations
CloudWatch

AWS Auto Scaling
CloudFormation

CloudTrail

Config

Analytics
Athena
EMR
CloudSearch
Elasticsearch Service
Kinesis
QuickSight &
Data Pipeline
AWS Data Exchange
AWS Glue
AWS Lake Formation
MSK

m Security, ldentity, &
Compliance

1AM
Resource Access Manager
Cognito

Figure 2.23: Displaying the different services of AWS

2|

@

Business Applications
Alexa for Business
Amazon Chime &
‘WorknMail

Amazon Honeycode

End User Computing
‘WorkSpaces
AppStream 2.0
WorkDocs

WorkLink

Internet Of Things
loT Core

FreeRTOS

leT 1-Chick

16T Analytics

5. Go to the EC2 service which is listed in the compute category, as shown in
Figure 2.24. The next link will take you to the Launch Instance page for
launching an EC2 instance or OS-based snapshot. This Amazon EC2 instance
would act as an initial platform for deploying the HDP. Apache Spark and
Apache Hadoop Services to be rolled-out through Apache Ambari.

Services

Resource Groups ~

@ New EC2 Experience
Tell s what you think

EC2 Dashboard w
Events
Tags

Limits

¥ Instances
Instances
Instance Types
Launch Templates
Spot Requests
Savings Plans
Reserved Instances
Dedicated Hosts .

Capacity Reservations

¥ Images

AMis

Launch Instance w

Q, Filter by tags and attributes or search by keyword

Select an instance above

Figure 2.24: The Main page to launch the instance on AWS

Actions v

You do not have any running instances in this region

First time using EC27 Check out the Gelting Started Guide.

CHick the Launch Instance button 10 SIart your own senver.

Launch Instance

A o ® @

© K < Nonefound > >

42 Practical Machine Learning with Spark

6. Choose an operating system for launching an Amazon Machine Image
(AMI). Select Ubuntu Server 16.04 LTS with 64-bit (X86) internal machine,
as shown in Figure 2.25 and then click on the Next button. Here, readers can
choose any AMI according to their requirements.

L @ umbaiv aimagicw

1.ChooseAMI 2 Choose lnstanceType 3. Configure Instance 4. Add Storage 5.AddTags 6. Configure Securly Group 7. Revel
. H [of | and E:
Step 1: Choose an Amazon Machine Image (AMI) anceland Exit
Y Red Hat Enterprise Linux 8 (HVM), SSD Volume Type - ami-06a0b4e3b7eb7a300 (64-bit x86) / ami-Ocbe04a3ce796c98e (64-bit Arm) m -
Red Hat Red Hat Enterprise Linux version 8 (HVM), EBS General Purpose (SSD) Volume Type ® 64-bit (x86)
= = Root device type: ebs Virtualization type: hvm ENA Enabled: Yes. O 64-bit (Arm)
-~ SUSE Linux Enterprise Server 15 SP3 (HVM), SSD Volume Type - ami-04b21e29203aa7701 (64-bit x86) / ami-070beb7fe6e75cf04 (64-bit Arm)

SUSE Linux _ SUSE Linux Enterprise Server 15 Service Pack 3 (HVM), EBS General Purpose (SSD) Volume Type. Amazon EC2 AMI Toolspreinstalled Apache 22, MySQL 5.5, PHP 5.3, and Ruby @ 11t a6
[T 187 available 0 64-bit (Arm)
Root device type: ebs Virtualization type: hvm ENA Enabled: Yes

® Ubuntu Server 20.04 LTS (HVM), SSD Volume Type - ami-0851b76e8b1bceg0b (64-bit x86) / ami-0491e5015eb6e7agb (64-bit Arm) m
Ubuntu Server 20.04 LTS (HVM),EBS General Purpose (SSD) Volume Type. Support available from Canonical (http://www.ubuntu.com/cloud/services). © 64-bit (x86)
:
o Root device type: ebs Virtualization type: hvm ENA Enabled: Yes. O 64-bit (Arm)
[Microsoft Windows Server 2019 Base - ami-0d2aa5df6e106903e m
Windows Microsoft Windows 2019 Datacenter edition. [English]
64-bit (x86)

Root davice type:ebs Viualization type: hvm ENA Enablad: Yes

[Microsoft Windows Server 2019 Base with Containers - ami-02db3909eab4026e1 m
Windows Microsoft Windows 2019 Datacenter edition with Containers. [English]
641 020)

Root device type:ebs Vinualization type: hvm ENA Enablad: Yes

Figure 2.25: The dialog box to choose an Amazon Machine Image (AMI)

7. In the second step, choose an Instance Type and Instance Storage to
create the Amazon EC2 instance, as depicted in Figure 2.26. Skip all the further
steps if there is no need of any change in the configurations. Otherwise,
readers will need to go through each step to modify the configurations. Then,
click on the Review and Launch button for instance creation.

Services ~ Resource Groups ~

2. Choose Instance Type 3. Configure Instance 4. Add Storage 5. Add Tags &. Configure Security Group 7. Review

Step 2: Choose an Instance Type

‘Amazon EC2 provides a wide selection of instance types optimized to fit different use cases. Instances are virtual servers that can run applications. They have varying combinations of CPU, memory, storage, and =
networking capacity, and give you the flexibility to choose the appropriate mix of resources for your applications. Leam more about instance types and how they can meet your computing needs.

Filter by: All instance types ™ Current generation v Show/Hide Columns.

Currently selected: 2. micro (Variable ECUs, 1 vCPUs, 2.5 GHz, Intel Xeon Family, 1 GiS memory, EBS only)

- - - IPvé
Family - Type - VvCPUs (i) ~ Memory(GIB) -~ Instance Storage (GB) (i)~ EBS‘O""'“';“’ Available |\ orwork Performance () ~ Support ~
0] ™
5 0]
General purpose: 2.nano 1 05 EBS only - Low to Moderate Yes
s General purpose 1 1 EBS only - Low to Moderate Yes
General purpose 1 2 EBS only - Low o Moderate Yes
General purpose 12.medium 2 4 EBS only - Low lo Moderate Yes
General purpose 12 large 2 8 EBS only - Low to Moderate Yes

Cancel Previous Review and Launch Next: Configure Instance Details

Figure 2.26: The choose an Instance Type window after stepl

Apache Spark Environment Setup and Configuration 43

8. As shown in Figure 2.27, the next screen would be a Review of all the
configurations that have been chosen for the Amazon EC2 instance creation.
Recheck all configurations and go to the Key pair step.

aws

Services ~ Resource Groups v fal aimagic + Mumbai v Support v

2 Chooselnstance Type 3. Configure Instance 4.Add Storage 5.AddTags 6. Configure Security Group 7. Review

Step 7: Review Instance Launch

~ AMI Details Edit AMI

® Ubuntu Server 16.04 LTS (HVM), $SD Volume Type - ami-08e76c6a76ebf6433
[EEYY Ubuntu Server 16.04 LTS (HYM),EBS General Purpose (SSD) Volume Type. Support available from Canonical (http://www ubunty com/cloud/servicas).
LI Root Device Type ebs Virualization type: hwm

~ Instance Type Edit instance type
Instance Type ECUs vCPUs Memory (GiB) Instance Storage (GB) EBS-Optimized Available Network Performance
12.micro Variable 1 1 EBS only - Low to Moderate
~ Security Groups Edit security groups
Security group name launch-wizard-7
Description launch-wizard-7 created 2020-06-22T05:12:01.015+05:30

Figure 2.27: The Review Instance Launch window

9. Asshownin Figure 2.28, in the dialog box, select an existing key pair or create
a new key pair that will generate a Privacy Enhanced Mail (. pem) file which
consists of the key pair. Click on the check box and Launch button to create
an instance. Later, this key pair will be accountable to access the Amazon
EC2 instance through the terminal or PuTTY Software. PuTTY Software
authenticates the key pair only in the PuTTY Private Key (.ppk) format
which should be converted using PuTTYgen software. Detailed information
about PuTTY and PuTTYgenare is presented in the upcoming steps.

Select an existing key pair or create a new key pair X

A key pair consists of a public key that AWS stores, and a private key file that you store. Together, they
allow you to connect to your instance securely. For Windows AMIs, the private key file is required to
obtain the password used to log into your instance. For Linux AMIs, the private key file allows you to
securely SSH into your instance.

Note: The selected key pair will be added to the set of keys authorized for this instance. Learn more
about removing existing key pairs from a public AMI .

[Choose an existing key pair v]
Select a key pair
[getkey v]

[J1 acknowledge that | have access to the selected private key file (getkey pem), and that
without this file, | won't be able to log into my instance.

e —
Cancel Launch Instances

Figure 2.28: A dialog box to select an existing key pair or create a new key pair

44 Practical Machine Learning with Spark

10. This page will confirm that all the steps for instance creation are done and
now, AWS is incubating the instance, as shown in Figure 2.29:

Services v Resource Groups - * L\° aimagic ~ Mumbai ~ Support v

Launch Status

‘ @ Your instances are now launching ‘

The following instance launches have been initiated _ View launch log

O Getnotified of estimated charges
Create billing aleris to get an email notification when estimated charges on your AWS bill exceed an amount you define (for example, if you exceed the free usage tier).

How to connect to your instances

Your instances are launching, and it may take a few minutes until they are in the running state, when they will be ready for you to use. Usage hours on your new instances will start immediately and continue to
accrue until you stop or terminate your instances.

Click View Instances to monitor your instances' status. Once your instances are in the running state, you can connect to them from the Instances screen. Find out how to connect o your instances

~ Here are some helpful resources to get you started

= How to connect to your Linux instance - Amazon EC2: User Guide
= Learn about AWS Free Usage Tier = Amazon EC2: Discussion Forum

Figure 2.29: The window to show the status of instance

11. As shown in Figure 2.30, click on the Amazon EC2 service that will redirect
you to the cockpit page of Amazon EC2 where the instance status can be seen
and monitored. Usually, launching of the Amazon EC2 instance will take 10-
15 minutes and till that, the Status Checks will remain to be shown as
Initializing.

aws Services + Resource Groups ~ Il Mambet
@ New EC2 Experience o
Tl a5 vt s ik X Connect Actions ¥ Lo e
EC2 Dashboard Q) Filter by tags and attributes or search by keyword @ K 1to10f1
ia B Name - | Instance ID - nstanceType - Availability Zone - Instance State - Status Checks - Alarm Status | Public DNS (IPvd)
Tags

00 [weshls @uwwng E wieing N % S

Limits

4

Instances
Instances

) Instance Types
Launch Templates
Spot Requests
Savings Plans

Reserved Instances ssance [o= I BRb

Dedicated Hosts
Description Stalus Checks Monitoring Tags

wstance 0 [N puic ons oeve) [
¥ Images
AMis Instance state runming ipve Pubic > I

Capacity Reservations

Figure 2.30: The window to show the status of instance is still in initializing

Apache Spark Environment Setup and Configquration 45

12. Once the launching is done, the Status Checks will be changed to 2/2
checks in the green-colored tick, as shown in Figure 2.31. Congratulations!
Now, the user will have an Amazon EC2 instance.

Services v Resource Groups v % [A\° aimagic v Mumbai v Support +
= PEMENEAEA | connect || Actions v
e Ao s e
Q, Filter by tags and attributes or search by keyword) 101 0f1
8 Name « Instance ID - | Instance Type ~ | Availability Zone + Instance State - Status Checks +| Alarm Status | PublicDNS (IPvd) - | IPvdPubliclP ~ IPv6IPs

] I o ap-south-1a @ running © 22checks . None v I

intance: I i ovs I mme -
Description Status Checks Monitoring Tags
instance 10 [N public ons (Pv4) I
Instance state ~ running 1pva public P I
Instance type t2-micro IPGIPs -
Finding Opt-in to AWS Compute Oplimizer for recommendaticns Elastic IPs
Learn mors
pivats ons [Avallabilty zone ap-south-1a
prvate P> [NN Security groups launch-wizard-T. view inbound rules. view outbound rules

Figure 2.31: The window to show the successful launching of instance on AWS

13. As shown in Figure 2.32, go to the Security Group option on the AWS
console that would have been generated while configuring the Amazon EC2
instance for deployment. Set the following properties to allow all the ports
and IPs to this instance:

Type = All traffic, Protocol = All, Port range = All, Source =
0.0.0.0/0

a_!JS Services ~ Resource Groups ~

aimagic ~ Mumbai ~

@ New EC2 Experience .
Tell us what you think Details

EC2 Dashboard

Security group name Security group ID Description VEC ID
Events (@ launch-wizard-1 5g-0b8897e2a5¢cca5c57 (@ launch-wizard-1 created @ vpe-f539dd9e [
Tags 2020-08-17T723:54:06.142+09:30
Limits
Owner Inbound rules count Outbound rules count
¥ Instances 3 198831932194 1 Permission entry 2 Permission entries
Instances
Instance Types
Launch Templates Inbound rules Outbound rules Tags

Spot Requests
Savings Plans

Inbound rules Edit inbound rules
Reserved Instances

Dedicated Hosts o i
Type Protocol Port range Source Description - optional
Capacity Reservations

All traffic All All 0.0.0.0/0

4

Images

Figure 2.32: Displaying the Inbound rules of instance in security group

46 Practical Machine Learning with Spark

14. Similarly, the same changes need to be updated in the Outbound rules for
allowing and accessing the Amazon EC2 instance at any destination, as
shown in Figure 2.33. The Web UI of Apache Ambari should be responded
and accessed after these changes:

Type = All traffic, Protocol = All, Port range = All, Source =

0.0.0.0/0
@ NewEC2 Experience =
Tl eyt K
Security group name Security group ID Description VPCID
EC2 Dashboard new @ launch-wizard-1 (F s9-0b8897e2a5¢ca5c57 (9 launch-wizard-1 created (9 vpc-f539ddge [4
2020-08-17T23:54:06.142+09:30
Events w
Tags
- Owner Inbound rules count Outbound rules count
Umlts 7 198831932194 1 Permission entry 2 Permission entries
¥ Instances
Instances
Inbound rules Outbound rules Tags
Instance Types
Launch Templates
Spot Requests "
Outbound rules Edit outbound rules
Savings Plans
Reserved Instances Type Protocol Port range Destination Description - optional
Dedicated Hosts w
All traffic All Al 0.000/0
Capacity Reservations
Al traffic All All /0
¥ Images
AMIs

Figure 2.33: Displaying the Outbound rules of instance in security group

PuTTY and PuTTYgen Software for Generating
a .ppk file from a .pem and Accessing the
Amazon EC2 Instance Through a Public IP
Address

PuTTYgen is a key generator software for generating pairs of public and private SSH
keys. It is an extension of PuTTY software that can be used to convert a . pem file into
a .ppk extension. Similarly, PuTTY is a server accessible tool used for connecting
a third-party server and cloud instances through their respective IPs. PuTTY does
not natively support the .pem file for SSH keys. Therefore, PuTTYgen is needed to
generate a .ppk extension file by loading the .pem extension file. PuTTYgen and
PuTTY are available for multiple operating systems, including macOS, Linux. The
steps for generating .ppk file from a .pem are given below.

1. Open the link https://www.puttygen.com/ in the browser, as shown in Figure
2.34. Download PuTTYgen according to the OS platform and configurations.

Apache Spark Environment Setup and Configuration 47

PuTTYgen

Download PuTTYgen - Putty key generator

PuTTYgen Download Guide for Windows, Linux and Mac

CONTENTS PuTTYgen is a key generator tool for creating pairs of public and private SSH keys. It is one of the

components of the open-source networking client PuTTY. Although originally written for Microsoft
Puttygen aka Putty Key Generator

Windows operating system, it is now officially available for multiple operating systems including macOs,

How to use PUTTYgen?

Download PuTTYgen Linux. PuTTYgen.exe is the graphical tool on Windows OS. While on the other side, Linux OS has the only

PuttyGen on Windows command-line version could be accessible using 55H commands.

FuttyGen for Mac
PuttyGen for Linux

Figure 2.34: The page to download the cross-platform version of PuTTYgen

2. As shown in Figure 2.35, double click on PuTTYgen software that will open
a main screen. In the Load option, you need to load a .pem extension file
and select RSA type in the Parameters section. Then, choose the Save private
key option, which will display a warning about saving the key without a
passphrase. Choose Yes and then it will save a .ppk extension file in your

system.
BP Load private key: X
B PUTTY Key Generator <« v A « BPB » Chapter2 v O L Search Chapter2
File Key Conversions Help o
Key Organise ~ New folder :: > il | 0
No key. = This PC ~ Name Date modified
B 3D Objects B aimagic 17-08-2020 19:24
[Desktop
Documents
* Downloads = >
File name: | ~ ‘ ‘PuT[Y Private Key Files (*.ppk) |
| Open |V| ‘ Cancel ‘
Actions
Generate a public/private key pair
Load an existing private key file Load
Save the generated key Save public key Save private key
Parameters
Type of key to generate:
(®RsA (ODsA () ECDSA (O Ed25519 ()SSH1 (RSA)
Number of bits in a generated key: 2048

Figure 2.35: A dialog box to show the actions and parameters in PuTTY Key Generator

48 Practical Machine Learning with Spark

3. Similarly, download the PuTTY tool from putty.org, as shown in Figure 2.36:

€ > C @ puttyorg * ® »0

Download PuTTY

PUTTY is an SSH and telnet client, developed originally by Simon Tatham for the Windows platform. PUTTY is open source
software that is available with source code and is developed and supported by a group of volunteers,

You can download PuTTY here.

Below suggestions are independent of the authors of PuTTY. They are not to be seen as endorsements by the PUTTY project.

Bitvise SSH Client

Bitvise SSH Client is an SSH and SFTP client for Windows. It is developed and supported professionally by Bitvise. The SSH Client is robust, easy to
install, easy to use, and supports all features supported by PUTTY, as well as the following:

+ graphical SFTP file transfer;

+ single-click Remote Desktop tunneling;

* auto-reconnecting capability;

+ dynamic port forwarding through an integrated proxy;
* an FTP-to-SFTP protocol bridge.

Bitvise SSH Client is free to use. You can download it here.

Figure 2.36: The web page to download PuTTY software

4. After downloading the PuTTY software, double click on the PuTTY icon as
shown in Figure 2.37 (a):

PuTTY
App

Figure 2.37 (a): Icon of PuTTY Software

5. On the landing screen of PuTTY, enter the IP address, Port No and
Connection Type should be chosen as SSH mode, as shown in Figure 2.37

(b):

Apache Spark Environment Setup and Configuration 49

ER PuTTY Configuration 7 X
| Basic options for your PuTTY session |
Specify the destination you want to connect to
Host Name {or IP address) Port
l |22 |
Connection type:
ORaw OTenet ORlogn ®5SH (O Segal
Load, save or delete a stored session
Saved Sessions
I |
Default Settings I Load |
Delete

Cloze window on exit:

OAways (OMNever (® Only on clean exit

| Mot || Hep | [open || Cancel

Figure 2.37 (b): Landing screen of PuTTY Software

6. In this step, browse and load the .ppk file in the Auth option that will
establish a connection with the server, as depicted in Figure 2.38:

ER PuTTY Configuration ? X
~ | Options controling SSH authentication |
™ Display pre-authentication banner (SSH-2 only)
[[]Bypass authentication entirely (SSH-2 only)
Autthentication methods

A Attempt authentication using Pageant
[[] Attempt TIS or CryptoCard auth (SSH-1)
[Attempt "keyboard-nteractive™ auth (S5H-2)

PAuthentication parameters
[Allow agent forwarding
[J Allow attempted changes of usemame in SSH-2
Private key file for authentication:
LY
< >
| Mot || Hp | [open][Cancel |

Figure 2.38: Displaying the browser option to load the .ppk file in Auth

50 Practical Machine Learning with Spark

Apache Ambari Installation on Amazon
EC2

In this section, readers will get introduced to the final installation patch for successful
summit (Ahh...here, we meant the Hadoop and Apache Spark installation to be
done). Let us continue with the Spark installation journey using HDP and AWS.
Before installing the Ambari Repository on the top of Amazon EC2, few services and
prerequisites are required in the instance for installing the HDP impeccably. Here,
authors strongly request readers to execute the following commands in a sequential
manner, as shown in Figure 2.39.

Figure 2.39: Displaying the executed commands as required in pre-requisite

Disabling the iptables

Before installing the repository of Apache Ambari on the Amazon EC2 instance, you
need to perform pre-requisites for the successful launching of the Hadoop and Spark
framework. The few required steps along with commands are as follows:

Apache Spark Environment Setup and Configuration 51

sudo ufw disable

sudo iptables -X

sudo iptables -t nat -F

sudo iptables -t nat -X

sudo iptables -t mangle -F

sudo iptables -t mangle -X

sudo iptables -P INPUT ACCEPT
sudo iptables -P FORWARD ACCEPT
sudo iptables -P OUTPUT ACCEPT

Set up Password-less SSH

This section covers the steps to generate the public key for password-less SSH on the
Amazon EC2 instance. The important steps are as follows:

1.

Generate SSH keys (Private and Public keys) on the Ambari Server host:
ssh-keygen

Go to the . ssh directory and add the SSH Public Key, that is, id_rsa.pub to
the authorized_keys file in the Amazon EC2:

cat id_rsa.pub >> authorized_keys

You need to change the permissions on the . ssh directory and authorized_
keys file:

chmod 700 .ssh

chmod 600 .ssh/authorized_keys

Check the IP of the Amazon EC2 and access the host through the ssh
command:

Ipr
ssh root@<host address/ IP>
Check the hostname and Full Qualify Domain Name (FQDN):

hostname -- to check the hostname of Amazon EC2 instance.
hostname -f -- to check the FQDN of Amazon EC2 instance.

Installation of Apache Ambari Repository and
Hadoop Services on Amazon EC2

This section highlights the key steps to install the repository of Ambari and Hadoop
services using the UI of Ambari as follows:

52

Practical Machine Learning with Spark

4.

Enter ubuntu as a username of the Amazon EC2 instance using PuTTY for
accessing it successfully. Make sure that readers will have to log in to the
server as root and download the Ambari repository file to a directory in the
host:

wget -0 /etc/apt/sources.list.d/ambari.list http://public-repo-1.
hortonworks.com/ambari/ubuntul6/2.x/updates/2.5.2.0/ambari.list

Due to the deprecation of some version of Ambari repository, it is
recommended that you check the Ambari repository from the http link using
the following commands.

apt-key adv --recv-keys --keyserver keyserver.ubuntu.com
B9733A7A07513CAD

apt-get update

After downloading the Ambari Repository on Amazon EC2, you need to
install the Ambari bits which will also install the default PostgreSQL as the
Ambari database. As shown in Figure 2.40, the following command needs to
be used for the Ambari server:

apt-get install ambari-server

Figure 2.40: Displaying the executed commands and its systematically log

In this step, the command ambari-server setup will set up the Ambari
Server and its related necessary configurations such as Java Development
Kit (JDK). It is also recommended that you choose the default suggestion,
that is (y/n), and press enter to continue the installation, as shown in Figure
2.41:

Apache Spark Environment Setup and Configquration 53

ambari-server setup

Figure 2.41: The terminal shows the step-by-step progress of installation step

Ambeari Server is installed successfully as shown in figure 2.42:

& root - - o x

Figure 2.42: The terminal to show the successful setup of Ambari Server.

5. Once the ambari-server setup is completed successfully, run the command
ambari-server start to start the services of Ambari, and it will start
creating logs and metadata of Ambari in their respective directories. Port

54 Practical Machine Learning with Spark

8080 to be bind to Ambari which should be used to access the Ambari Ul as
shown in Figure 2.43:

ambari-server start

Figure 2.43: Displaying content of successful bind and start of Ambari server

6. Open thelinkin the browser to access the Ambari Ul through this <IP>: <PORT
NUMBER> and log in to the Ambari Web, as shown in Figure 2.44:

<« C @ Notsecure | 13.233.223.192:8080/#/login * © %0 :

Sign in
Username

Password

Figure 2.44: The home and credential page of Apache Ambari

Apache Spark Environment Setup and Configuration 55

7. Now, the readers will be on a landing page of Ambari Web. Click on Launch
Install Wizard which will redirect you to Get Started to create a Hadoop
cluster, as shown in Figure 2.45:

‘l\ Ambari

& Clusters
Welcome to Apache Ambari

No Clusters
Provision a cluster, manage who can access the cluster, and customize views for Ambari users.
Remote Clusters
Create a Cluster
e Use the Install Wizard to select services and configure your cluster

View URLs

Launch Install Wizard

A User+ Group Management
Users

Groups Manage Users + Groups Deploy Views

Manage the users and groups that can access Ambari Create view instances and grant permissions

2 i

Figure 2.45: The welcome page of Apache Ambari to launch the cluster

8. On this Get Started page, you need to give the name of the cluster that
readers want to create, and then, choose Next, as depicted in Figure 2.46:

” Ambari

CLUSTER INSTALL WIZARD

- Get Started
Select Version This wizard will walk you through the cluster installation process. First, start by naming your new cluster.
Install Options
Name your cluster Leam more
Confirm Hosts
| hadoopmaaid
Choose Services .

Assign Ma

Next —
Assign Slaves and Clients

Customize Services

lart and Test

Summary

Figure 2.46: The Get started page to assign the name to cluster

9. In the second step of the Cluster Install Wizard, you will need to select
the HDP version and method of delivery to create a cluster. A list of versions
and operating systems are shown in the dropdown option as shown in

56 Practical Machine Learning with Spark

Figure 2.47. Select the specific HDP version and OS that should meet the
requirements with the existing deployed Amazon EC2 instance.

P Ambari

CLUSTER INSTALL WIZARD

Select Version
Get Staned

Select the softwars version and method of delvery for your cluster. Using a Pubbc Repository requires Internet connectvity.

Using a Local Repository requires you have configured the software in a repository avaitable in your network.

Install Opfions
Confirm Hosts
Choose Services
HOP.25

Assign Maslers Oozie 420 =
Assign Slaves and Clients HDP-2.4 Pig 0.160
Cuslomize Services HOP-23 e Qi)

Ranger KMS 07.0
Review

Stiger 0820
Install, Start and Test

SmartSense 1422520-298
Summary ok) o

@ Use Public Repasitory

O Use Local Repository
Repositories
Provide Base URLs for the Operating Systems you are configuring

os Name Base URL +Add ~

HDP-26 hitp:ipublic-repo-1 horfonworks. comMDPfubuntu 162 x4 -

ubuntulé
Remoye

Figure 2.47: The select version page to choose software and OS version

10. As shown in Figure 2.48, this is a very crucial step in the entire installation
procedure. Enter the FQDN and id_rsa in the textboxes precisely. Then,
choose Register and Confirm to continue. It will take some time to verify
and register the host with the Amazon EC2 instance.

Select Version Registering your hosis.
Please confirm the host list and remove any hosts that you do not want to include in the cluster.

Install Options

Show: BUIRN)| Instaling (1) | Regisiering (0) | Success (0) | Eail (0)

Choose Services

[Hest Progress Status Action
Assign Masters
O ip-172-31-42-113.ap-south-1.compute. internal — Installing & Remove
Assign Slaves and Clients
Show: | 25 vl 1-1011 M & 3 M

Customize Services

Review
e [ven— |

Install, Stan and Test

Summary

Figure 2.48: The confirm hosts page to display the progress of installing host

Apache Spark Environment Setup and Configuration 57

11. Once it gets registered successfully with the host, the status will be changed
from Installing to Success, as shown in Figure 2.49. Click on Next:

Select Version Registering your hosts.
Please confirm the host list and remove any hosts that you do not want to include in the cluster.

Install Options

Show: BEIRM | Installing (0) | Registerng (0) | Success (1) | Fail ()
Choose Services

[Host Progress Status Action
Assign Maslers
0O | ip-172-31-42-113.ap-south-1.compute.internal _ Success & Remave
Assign Slaves and Clients
Show:| 25 v 1-10f1 He+N

Customize Services

Review

Please wait while the hosts are being checked for potential problems. ..
Install, Start and Test L.
...

Summary

Licensed under the Apache License, Version 2.0
See third-party tools/resources that Ambari uses and their respective authors

Figure 2.49: The confirm hosts page to show the successful registering of host

12. Figure 2.50 presents the choice of services based on the Stack chosen during
the selection of the HDP version. You may choose to install any other
available services now or can add services later after the cluster setup. The
Cluster Install wizard by default selects all the services for installation:

CLUSTER INSTALL WIZARD

Choose Services

Get Started

Select Version Choese which services you want to install on your cluster.

Install Options

Confirm Hosis [) service Version Description

Choose Services HDFS 273 ‘Apache Hadoop Distributed File System

ASHION MM [YARN + MapReduce2 273 Apache Hadoop NextGen MapReduce (YARN)

EvLsEre s B2 Tez 070 Tez is the next generation Hadoop Query Processing framework written on top of
Cuslomize Services YARN

Review Hive 1.2.1000 Data warehouse system for ad-hoc queries & analysis of large datasets and table &

Install, Start and Test storage management service

Summary [HBase 11.2 A Non-relational distributed database, plus Phoenix, a high performance SQL layer
for low latency applications.
Pig 0160 Scripting platform for analyzing large datasets
Sqoop 1486 Tool for transferring bulk data between Apache Hadoop and structured data stores

such as relational databases
I Oozie 420 System for workflow coordination and execution of Apache Hadoop jobs. This also

Figure 2.50: The choose services page to choose services to be installed on the cluster

58 Practical Machine Learning with Spark

13. Figure 2.51 shows the Assign Master page. The readers of this book
can assign the server of the components if the cluster is of multi-node. In
standalone, all the services should be run in a single machine by default.

CLUSTER INSTALL WIZARD

Assign Masters

Get Started
Select Version Assign master components to hosts you want 1o run them on.
HiveServer2 and WebHCat Server will be hosted on the same host
Install Options
Confirm Hosts i
NameNode: | ip-172-31-42-113.ap-south-1.co. v ip-172-31-42-113.ap-south-1.compute. intemal
Choose Services (990.6 MB, 1 cores)

SNameNode: | ip-172-31-42-113.ap-south-1.co. v P

App Timeline Server: | Ip-172-31-42-113.ap-50Uth-1.c0l v
Customize Services

Review ResourceManager: | ip-172-31-42-113.ap-south-1.co

g
:
]

S,
Install, Start and Test History Server. | ip-172-31-42-113.ap-south-1.co

i
i

Summary

Hive Metastore’ | ip-172-31-42-113 ap-south-1_col

<

WebHCat Server: Ip-172-31-42-113.ap-south-
1.compute.intemal #

HiveServer2: = ip-172-31-42-113.ap-south-1.col v

Figure 2.51: List of master services in the HDP cluster

14. Similarly, slaves or client components can be managed and assigned to any
host when the cluster is in multi-node, as shown in figure 2.52. Click on Next:

P\ Ambari

CLUSTER INSTALL WIZARD

Assign Slaves and Clients

Get Started
Select Version Assign slave and client components o hosts you want to run them on.
? Hosts that are assigned master components are shown with %
Install Options “Client" will install HDFS Client, YARN Client, MapReduce2 Client, Tez Client, HCat Client, Hive Client, Pig Client, ZooKeeper
Gonilim Hosts Client, Infra Solr Client, Spark Client, Spark2 Client and Siider Client

Choose Services
Host all | none all | none all | none all | none all | none al |

Assign Masters

ip=172-31-42-113.ap-south... # [DataNode [NFSGateway NodeManager [J Livy Server [J Spark Thrift Server [Liv

Customize Services

Review Show:| 25 w| 1-1001 K € 3 W
Install, Start and Test

Summary

Figure 2.52: List of client services in the HDP cluster

Apache Spark Environment Setup and Configquration 59

15. In this step, Ambari checks whether all the configurations corresponding
to each service are properly installed or not. If any changes are required,
then Ambari recommends and does the modification accordingly. Click on
Proceed Anyways to go to the next step, as shown in Figure 2.53:

Configurations

Some service configurations are not configured properly. We recommend you review and change the highlighted configuration values. Are you sure you want to proceed without correcting
configurations?

Type Service Property Description

Waming HDFS dinode_heapsize Values greater than 0.967GB are not recommended
DataNode maximum Java heap sizs

Waming Hive hive auto.convert join.noconditionaltask size 143165576 Value is greater than the
If hive.auto.convert join.noconditionaltask is off, this parameter does not take affect. However, if itis on,
and the sum of size for n-1 of the tables/partitions for @ n-way join is smaller than this size, the join is

directly converted ta a mapjinthere is no conditional task).

Waming Hive hive.tez.container size hive.tez.container.size is greater than the maximum container size specified in

varn.scheduler. maximum-allocation-mb
. ’

e AEPeY

Figure 2.53: List of configurations recommended by Apache Ambari

16. The Review step displays the assignments and components information that
is done. You need to check to make sure everything is correct and click on
Deploy, as depicted in Figure 2.54:

CLUSTER INSTALL WIZARD

Get Started Review

Select Version Please review the configuration before installation

Install Opticns

Confirm Hosts Repositories =
i DS

R ubuntu16 (HOP-UTILS-1.1.0.21)

Assign Slaves and Clients hitp:iipublic-repo-1_hortonworks comHDP-UTILS-1.1.0.2 Vreposiubuniul &

Customize Senvices Services:

HDFS
DataNode : 1 host
NameHode : ip-172-31-42-113 ap-south-1.compule.internal
NFSGateway : 0 host
SNameMNode © ip-172-31-42-113.ap-south-1.compute.intemal
YARN + MapReduce2
App Tameline Server : ip-172-31-42-113 ap-south-1.compute.internal
HodeManager - 1 host
ResourceManages : ip-172-31-42-113.ap-south-1_compute infemal
Ter
Clients : 1 host
Hive
Metastore © ip-172-31-42-113.ap-south-1.compute.internal
2 ip-172-31-42-113.ap-south-1.compute intemal
erver : Ip-172.31-42-113 ap-south-1 compule.intemal

=

Figure 2.54: Review of selected configqurations and services before cluster deployment

60 Practical Machine Learning with Spark

17. Figure 2.55 shows the progress of components during the installation.
Ambari installs, starts, and runs a simple test on each component. The overall
deployment of components will take about 30-50 minutes.

Install, Start and Test

Please wail while the selected services are instalied and started

3% overall

Sﬁon.m InProgesaz (1) | Yeaming. (0 | Sugosas (0) | Eal(d)
Host Status Message

ip-172-31-42-113 ap-south-1 compute intemal | 3% | Wailing to install Ackivity Analyzer

Install, Start and Test T

es and their respective authors

Figure 2.55: Displaying the status of installation process

18. Once the deployment gets completed, check the status of each component by
running the services at the terminal, as shown in Figure 2.56. Now, Apache
Spark and Hadoop services are ready to leverage the concept of Machine
Learning and Deep Learning. Well Done!

Figure 2.56: The terminal display running of the pyspark session

Python Editors for the Spark Programming
Framework

There are several integrated development environment software (IDEs) and code
editors which incorporate the Python language to provide the ease in code and

Apache Spark Environment Setup and Configuration 61

manage the cumbersome lengthy codes. Generally, writing a code for PySpark
usually goes lengthy and bulky; due to this, managing the code base and libraries
becomes problematic while in the time of successful run. To overcome this challenge,
many companies have created their editors and IDEs for a better understanding
of codebase than a text editor. These IDEs can be installed on the cross-platform
and less configurations environment. It usually provides features such as code base
syncing from the server location to local location and vice versa, build automation,
code linting, indentations, testing, pre-libraries aid to coder, module managing, and
debugging. In this chapter, authors focus on the two most popular Python IDEs
which needs to be used in ML and DL code base in PySpark.

Sublime Editor

Sublime editor for setting the IDEs to the Python programming language provides
the ease in coding and debugging the error. In Python or PySpark, when the code
goes too lengthy, the indentation management becomes one of the most challenging
problems. This problem can be easily handled with the help of Sublime editor and
provide the flexibility to easily sync-up PySpark codebase to be written for ML and
DL from the server to the local directory and vice versa. It is an open-source, cross-
platform, and light weighted software to extend the functionalities of indentation
management, error debugging, modules managing, and code-base sync-up. Authors
have shown step-by-step instructions to install and code-base sync-up from the
server to the local directory and vice versa:

1. Go to the link sublimetext.xom/3, as shown in Figure 2.57 and download
the software compatible to the readers’ system:

% Download - Sublime Text x + - X

<« C @ sublimetextcom/3 * © O :
Sublime Text Download Buy Support News Forum
Download

Sublime Text 3 is the current version of Sublime Text. For bleeding-edge releases, see the dev builds.

Introducing our Git client
B sublime Merge

Version: Build 3211
© OSX(10.7 or later is required)
o Windows - also available as a portable version
= Windows é4 bit - also available as a portable version

o Linuxrepos - also available as a 64 bit or 32 bit tarball

For notification about new releases,

follow @sublimehq on twitter.

Sublime Text may be downloaded and evaluated for free, however a license must be purchased for continued use. There is
currently no enforced time limit for the evaluation. OTHER DOWNLOADS

= DevBuilds
* Sublime Text 2

Changelog

3.2.2 (BUILD 3211)
1October 2019

« Mac: Added Notarization
« Fixed a performance regression when moving the caret upwardsin large files

» Fixed amemory leak
hitps://download.sublimetext.com/Sublime Text Build 3211 x64 Setup.exe. e e - =

o . 3 7 D) NG

© Type here to search o

Figure 2.57: The home page of Sublime Text to download the .exe for windows

62 Practical Machine Learning with Spark

2. As shown in Figure 2.58, double click on the .exe file of Sublime editor, the
location where it is saved in the system. A dialog box will ask you to enter
the path where it will be installed. By default, it starts the installation in C:\
Program Files\Sublime Text 3 or it can be set to a different folder:

ﬁl Setup - Sublime Text 3 - X
Select Destination Location
Where should Sublime Text 3 be installed?

Setup will install Sublime Text 3 into the following folder.

To continue, dick Next. If you would like to select a different folder, dick Browse.

C:\Program Files\Sublime Text 3 | | Browse...

Atleast 34.6 MB of free disk space is required.

[Net> | | cancel |

Figure 2.58: The dialog box for installing the Sublime Text

3. Asshown in Figure 2.59, click on the checkbox and the Next button will take
you to the installation screen:

5! Setup - Sublime Text 3

Select Additional Tasks
Which additional tasks should be performed?

Select the additional tasks you would like Setup to perform while installing Sublime Text
3, then dlick Next.

[[] Add to explorer context menu

| <Bak |[Next> | | cancel

Figure 2.59: The Select Additional Tasks dialog box

Apache Spark Environment Setup and Configquration 63

In this step, click on the install button which will start installing sublime in
the system, as shown in Figure 2.60:

5 Setup - Sublime Text 3 -

Ready to Install
Setup is now ready to begin installing Sublime Text 3 on your computer.

Click Install to continue with the installation, or dlick Back if you want to review or
change any settings.

Destination location:
C:\Program Files\Sublime Text 3

<Back Cancel

Figure 2.60: The Ready to Install dialog box during Sublime Text installation

Once the installation gets completed successfully, click on Finish and re-
check the installation by searching it in the Window Program, as shown in

Figure 2.61:

5 Setup - Sublime Text 3 -

Completing the Sublime Text 3
Setup Wizard

Setup has finished installing Sublime Text 3 on your computer.
The application may be launched by selecting the installed
shortcuts,

Click Finish to exit Setup.

Figure 2.61: The dialog box to show the successful installation of Sublime Text

Practical Machine Learning with Spark

6. Double click on the Sublime icon that will open the main screen of sublime
for setting up the environment for Python and PySpark coding, as shown in
Figure 2.62:

All Apps Documents Web More o v I
Best match
E Sublime Text 3
App
Apps .
Sublime Text 3
#¥ Sublime Text Build 3211 x64 > ADD
Setup.exe
Search the web
(m Open
£ sublim - see web resulte > i
LS Run as administrator
O Sublime Text - software > il Open file location -
L sublime text 3 download > <2 pin to Start '
L sublimation > = pin to taskbar
£ sublime text 3 download for 3 W Uninstall
windows 10 64 bit
2 subliminal >
2 sublime life >

Figure 2.62: The screen confirms the installation of Sublime Text in the system

7. Figure 2.63 shows the main landing page of Sublime Text Editor:

B untitled - Sublime Text (UNREGISTERED) - X
File Edit Selection Find View Goto Tools Project Preferences Help

3 Line 1, Column 1

O Type here to search

Figure 2.63: The home screen of Sublime Text Editor

Apache Spark Environment Setup and Configquration 65

PySpark or Python Codebase Syncing from
a Server to a Local Directory and Vice Versa

This section will help the readers to set an environment to sync up the codebase
from any cloud instance to a local directory. The reverse sync-up of codebase, that
is, the local directory to a cloud instance can be possible in Sublime editor. There is a
need to install Simple File Transfer Protocol (SFTP) in sublime through the package
control option. Let us see how to set up the sync-up configuration in a sequential
manner:

1. As shown in Figure 2.64, hover the cursor over the Preference option and
click on the Package Control:

a 0 o x
i o Tosts b &) ey

Figure 2.64: Displaying available services in Preferences option

2. In the dialog box Package Control, choose Install Package to
install the SFTP dependencies, as shown in Figure 2.65:

B« 5 x
Fie Preences Help

Package Control:
Package Control: Add Channel
Package Control: Add Repository
Package Control: Dissbie Package
Package Control: Discover Packages
Package Control: Enable Package
Package Control: Install Package
Package Control: Lt Packages
Package Control: Remove Channel

Package Control: Remave Package
Package Control: Remave Repository

Package Control: Satisfy Dependencies

T Sze:d

Figure 2.65: Displaying available services in Package Control

66 Practical Machine Learning with Spark

3. As shown in Figure 2.66, search SFTP in the textbox and click on SFTP to
install in the sublime editor:

B unitied - Sublime Text (UNREGISTERED) - &8 x
File Edit Selection Find View Goto Tools Project Preferences Help

sf'tpl

SFTP
Commercial SFTR/FTP plugin - upioad, sync, browse, remote edit, diff and ves Infegration
Install ¥1.14.7; codexns.o/produsts/sftp. for_sublime.

FileZilla SFTP Import

Syntax Highlighting for PostCSS

2 Lime 1, Column 1

Figure 2.66: Install SFTP service in Sublime Text through Install Package

4. Installation will take few seconds for SFTP. Once it is done, choose the
setup Server of SFTP/FTP in the File option, as shown in Figure 2.67.
Following are the chronological steps:

File >> SFTP/FTP >> Setup Server

B untitied - Sublime Text (UNREGISTERED) - a x
File Edit Sclection Find View Goto Tools Project Preferences Help

New File CirleH

Open File... €0

Open Folder...

Open Recent >

Reopen with Encoding >

MNew View into File

Save Curls$

Save with Encading »

Save A Ctrbe Shift=S

Save All

SFTR/FTR. > Setup Server... Ctrle Alt+R, Ctrbe Alte$

Hew Window CuteShifteN BrowseServer.. Ctils A+R, CirleAlt-B

Close Window Ctrls Shift- W Edit Server... Ctrl+ AR+R, Ctrls Al-E

Delete Server... Ctrle Alt+ R, Cirl+Alts D

Close file CtrteW

Revert File

Close All Files

Exit

Figure 2.67: The Setup Server option after clicking SETP/FTP

Apache Spark Environment Setup and Configuration 67

5. As shown in Figure 2.68, set the host, user, and remote_path for which
directory readers want to sync. This step checks the server authentication
and creates duplicate contents of the server folder in the local directory.

B untitied - - Subime Text (UNREGISTERED) - a X
File Edit Selection Find View Goto Tools Project Preferences Help

S 2 lines, 50 characters selected

Figure 2.68: The screen to show Configuration Script after previous step

Jupyter Notebook

The Jupyter Notebook is an open-source and interactive web application that
allows you to write, read, install libraries, and execute the content effectively. It is
an important Python or pySpark web application to read and visualize the machine
learning or statistical learning in a more interactive manner. Other interactive
visualization libraries such as plotly and seaborn can be easy deployed with the
help of Jupyter Notebook.

Installation of the Jupyter Notebook needs few pre-requisite requirements which are
as follows:

e Python should be installed in the system.
e Python path should be set into the windows environment.

e PIP should be installed and accessible in Python to download the Jupyter
Notebook.

Python installation on Windows OS

This section covers the steps to install and access Python on Windows OS. The
following steps are given as follows:

68 Practical Machine Learning with Spark

1. Open the link python.org/downloads/ and download the newest version
of Python for Windows operating system, as shown in Figure 2.69:

& > C @ pythonorg/downloads/ Tt @ » O

Python

e python’ .

About Downloads Documentation Community Success Stories News Events

Download Python 3.8.5

ing for Python with a different 0S? Python for

Download the latest version for Windows {‘\ Vol ¥

Figure 2.69: The home page of Python to download it

2. As shown in Figure 2.70, double click on the .exe file of Python to start the
installation process:

s Python 3.8.5 (32-bit) Setup - ®

Install Python 3.8.5 (32-bit)

Select Install Now to install Python with default settings, or choose
Customize to enable or disable features.

= Install Now
CAlUsers\psdadmin‘AppData\Local\Programs\Python\Python38a-32

Includes IDLE, pip and documentaticn
Creates shortcuts and file asseciations

=3 Customize installation
Choose location and features

python
for [4 Install launcher for all users (recommended)

W' ndows [Add Python 3.8 to PATH Cancel

Figure 2.70: The installation dialog box for Python 3.8.5

Apache Spark Environment Setup and Configuration 69

3. Tick the necessary checkboxes and click on the Install, as depicted in Figure
2.71:

2 Python 3.8.5 (32-bit) Setup — [x

Advanced Options
Install for all users
Assodiate files with Python (requires the py launcher)
[A Create shortcuts for installed applications
Add Python to environment variables
[Precompile standard library
[Download debugging symbols
[Download debug binaries (requires VS 2015 or later)

Customize install location

C:\Users\psdadmin\AppData\Local\Programs\Python\Pythot

pgthOﬂ You will require write permissions for the selected location.
for

windows | instal || cancel |

Figure 2.71: The dialog box is displaying list of options for python installation

4. Figure 2.72 displays the progress of Python installation and it takes 10-15
minutes for installation:

Ba Python 3.8.5 (32-bit) Setup - X

Setup Progress

Installing:

Python 3.8.5 Executables (32-bit)

pqthgn
windows

Figure 2.72: Displaying the installation status of Python

70 Practical Machine Learning with Spark

5. The screen setup was successful and it confirms that the installation is done
successfully. Click on Finish to close the installation window, as shown in
figure 2.73:

& Python 3.8.5 (32-bit) Setup - %

Setup was successful

Special thanks to Mark Hammond, without whose years of
freely shared Windows expertise, Python for Windows would
still be Python for DOS.

New to Python? Start with the online tutorial and
documentation.

See what's new in this release.

® Disable path length limit
Changes your machine configuration to allow programs, including Python, to
bypass the 260 character "MAX_PATH" limitation.

python

for

windows | Close

Figure 2.73: The dialog box to show successful installation of Python

PIP Installation in Python

On the shell terminal or command prompt, it is important to help the readers to
install all the required Python modules such as pandas, numpy, and sklearn. This
section illustrates the steps to install the PIP package as follows:

1. You need to set the Python path in the windows environment and check
whether Python is running or not using the Python command on the
Window Command Prompt, as shown in Figure 2.74. If you are able see the
Python version and get into the Python terminal, it means Python is properly
installed in the system.

EX Administrator: Command Prompt - python
ws [Version 10.0.1
oft Corporation. All righ eserved.

32 bit (Intel)] on win32

Figure 2.74: The dialog box shows the running session of Python

Apache Spark Environment Setup and Configquration 71

2. The PIP module will be installed using this Python get-pip.py at terminal
but before that, you need to download the get-pip.py from the link
https://bootstrap.pypa.io/. The version of PIP can also be seen using
the pip --version command, as shown in Figure in 2.75:

C:\Users\psdadmin\Desktop>python get-pip.py 4:::::3
ollecti pip
Downloading pip-2@.2.2-py2.py3-none-any.whl (
| | 1.5 MB 2
ollecting wheel
Downloading wheel-©.34.2-py2.py any.whl (26 kB)
Tnstalling collected packages: pip, el

Attempting u 11: pip
i stallation: pip 20.1.1

Figure 2.75: Displaying the executed commands at terminal

Jupyter Notebook Installation through PIP

The Jupyter Notebook provides the editor to write and execute Python and its related
modules. This section covers the steps to install and access the Jupyter Notebook on
Windows OS. The following steps are given as follows:

1. Open the link https://jupyter.org/install in the browser to get the
installation steps through conda and PIP, as shown in Figure 2.76. Use the
pip install jupyterlab in the command prompt:

—
_ Jupyter Install AboutUs Community Documentation NBViewer JupyterHub Widgets Blog

Getting started with JupyterLab

Installation

JupyterLab can be installed using conda or pip . For more detailed instructions, consult the installation guide.
conda
If you use conda , you can install it with
conda install -c conda-forge jupyterlab
pip
If you use pip, you can install it with
pip install jupyterlab

If installing using pip install --user, you must add the user-level bin directory to your pATH environment variable in order to
launch jupyter lab

Figure 2.76: The home page to show the installation step of Jupyter Notebook

72 Practical Machine Learning with Spark

2. Figure 2.77 displays the Jupyter Notebook dependencies that are being
installed in the system:

Collecting jupyterlab
Downloading jupyterlab-3.3.2-py3-none-any.whl (8.7 MB)
| I (.7 MB 4.1 MB/s
Collecting jupyterlab-server~=2.10
Downloading jupyterlab_server-2.12.@-py3-none-any.whl (53 kB)
| I | 5= kB 2.5 MB/s
Requirement already satisfied: jupyter-core in /usr/local/lib/python3.7/dist-packages (from jupyterlab) (4.9.
Requirement already satisfied: jinja2»>=2.1 in /usr/local/lib/python3.7/dist-packages (from jupyterlab) (2.11.
Requirement already satisfied: ipython in /usr/local/lib/python3.7/dist-packages (from jupyterlab) (7.24.1)
Collecting nbclassic~=0.2
Downloading nbclassic-@.3.7-py3-none-any.whl (13 kB)
Collecting tornado>=6.1.0@
Downloading tornado-6.1-cp37-cp37m-manylinux201@_x86_64.whl (428 kB)
| IR | 428 kB 79.0 MB/s
Collecting jupyter-server~=1.4
Downloading jupyter_server-1.16.8-py3-none-any.whl (343 kB)
| I | 343 kB 92.6 MB/s
Requirement already satisfied: packaging in /usr/local/lib/python3.7/dist-packages (from jupyterlab) (21.3)
Requirement already satisfied: MarkupSafe>=@.23 in /usr/local/lib/python3.7/dist-packages (from jinja2>=2.1->

Figure 2.77: Displaying the status during Jupyter Notebook installation

3. Congratulations!! The Jupyter Notebook is successfully installed in your
system! To run the notebook, run the jupyter notebook command at the
terminal which will bind 8888 as a port number with the Jupyter Notebook,
as shown in Figure 2.78:

Figure 2.78: The terminal shows the successful running of Jupyter Notebook

Apache Spark Environment Setup and Configuration 73

4. To access the Jupyter Notebook from the browser, as depicted in Figure 2.79.
Then, open the following link:

Localhost:8888/
_ Home Page - Selectorcreatean X X Untitled - Jupyter Notebook x EEE - =
C @ 127.0.0.1:8888/notebooks/Untitled.ipynb?kernel_name=python3 * @
: Jupyter Untitled Last Checkpoint: a few seconds ago (unsaved changes) A Logout
File Edt View Inset Cel Kemel Help Kemel starting, please wait._. | Trusted | # |Python3 @
B|+| x| & B 4+ % PR B C W |coe v =

In[]:

Figure 2.79: Displaying Jupyter Notebook console in the browser

Microsoft PowerBI Installation for Data
Visualization

In our day-to-day life, we make many decisions among which some go wrong
due to less understanding of business insights. Hence, it creates a hindrance for
our futuristic business growth. Therefore, in 2010, Microsoft developed a business
intelligence tool named as PowerBI which enhanced the business understanding
and acute observation by the occult power of visualization. Microsoft PowerBI is a
trending Business Intelligence tool for visualization and dashboarding to get better
insights of the business. In PowerBl, all graphs and widgets usually depict the
decisive information about the business by playing with dimension and measure of
data. Generally, it pulls all the data from disparate sources and creates a centralized
flat of data on a single platform. Mainly, the PowerBI tool is recommended in
the Exploratory data Analysis (EDA) process to understand the quality, meaning
and insights of data in Machine Learning and statistical learning. Readers must
have a Power BI account for creating the visualization and publishing the created
dashboards. PowerBI can be directly integrated with various on-premise and cloud
databases such as Google Big Query, Apache Spark, Apache Hive, Apache Impala,
Azure Blob, Amazon stacks, and SQL, and so on. In this section, authors have
mentioned the installation steps for PowerBI and utilization of this platform will be
presented in the upcoming chapters for data visualization. The step to download
and installation of PowerBI is given below.

74 Practical Machine Learning with Spark

1. Open the link https://powerbi.microsoft.com/en-us/desktop/ in the
browser, as shown in Figure 2.80 and click on Download Free:

B Microsoft | Power Bl Overview » Products -~ pricing Solutions Partners - Resources ~ Community Signin Ty free L

Go from data to insight to action with

Power Bl Desktop

Create rich, interactive reports with visual analytics at your fingertips—for free.

Download free > See download or language options »

Figure 2.80: The download page for PowerBI

2. As shown in Figure 2.81, a dialog box pops up. Then, tick on the checkbox
and click on Open Microsoft Store that will take you to the official page
of Microsoft Store:

Open Microsoft Store?

https.//powerbi.microsoft.com wants to open this application.

Always allow powerbi.microsoft.com to open links of this type in the associated app

Open Microsoft Store m

Figure 2.81: A dialog box after clicking on Download free in the previous step

3. Inthe Microsoft Store window, click on the Get option. This option will open
a dialog box which will ask the credentials for Sign-In, as shown in Figure
2.82:

Power Bl Desktop Free

Microsoft Corporation * Business > Data & analytics Get
**kk* 20 & Share :
. Add to cart

Power Bl Desktop puts visual analytics at your fingertips. With this powerful authoring tool, you
can create interactive data visualizations and reports.

Power Bl Desktop Wish lst

More
I AR CEH

Figure 2.82: The PowerBI Desktop application in Microsoft store

Apache Spark Environment Setup and Configuration 75

4. Figure 2.83 shows the Sign-In dialog-box for PowerBI:

B® Microsoft
Sign in

Email, phone, or Skype

No account? Create onel

Forget usemame

Termsofuse Privacy & cookies =++

Figure 2.83: The Sign-in dialog box

5. Once it is download and installed successfully in the system, as shown in
Figure 2.84, double click on the PowerBI icon:

Figure 2.84: PowerBI Icon

6. After double clicking on the PowerBI Icon, the landing screen of the tool
will be opened as shown in Figure 2.85. Various pre-built connectors will be
displayed while you click on the Get Data option:

file ~ Home Insert Modeling View Help
s @l hE L B[dkEd o
[y 2 la i o B RIA] 0% r
Paste Get Excel PowerBl SQL Enter Recent Transform Refresh New Text More Publish
g datav datasets Server data sourcesv | datav visual box visuals v
Clipboard Data Queries. Insert Share ~
ol Y Filters @ > Visualizations > Fields >
53 0 Search ENE KE MmN 0 search
= oo M B e
Filters on this page. MO
Q¥ a =
Add data fields here E@ERrRPE
R
Filters on all pages T
Add data fields here Vs
Add data fields here
Drill through
Cross-report
off O—
Keep all filters
on—e
paget | 4 Add dril-through fields here

Figure 2.85: Landing screen of PowerBI

76 Practical Machine Learning with Spark

DBeaver Installation for Accessing the
Data from the Persistence Layer

DBeaver is an open-source multi-platform and SQL-based universal database
management tool for developers, database administrators, analysts, and all
people who need to work with databases. DBeaver can be directly integrated with
the persistence layer like Apache Spark and Apache Hive for analyzing the data
related to ML, DL, and other business KPIs. It supports 80+ databases and provides
direct integration with them. DBeaver covers both cloud and on-premise popular
databases like MySQL, PostgreSQL, SQLite, Oracle, DB2, SQL Server, Sybase, Spark,
Big Query, MS Access, Teradata, Firebird, Apache Hive, Phoenix, Presto, and so on.
Let us see the steps to install DBeaver in the system to analyze the decisive insights
from data which is difficult through Spark and Hive terminals:

1. Open thelink dbeaver.io in the browser, as shown in Figure 2.86. Download
the compatible version and extension of the DBeaver universal software
from the community page:

€ » C @ dbeaverio * @ »0

Home About Download Sources Documentation News. Support Enterprise Edition CloudBeaver

Universal Database Tool

Free multi-platform database tool for developers,
database administrators, analysts and all people
who need to work with databases. Suppeorts all
popular databases: MySQL, PostgreSQL,
SQLite, Oracle, DB2, SQL Server, Sybase, MS
Access, Teradata, Firebird, Apache Hive,
Phoenix, Presto, etc.

Y

il iy

Download

Figure 2.86: The home page to download the DBeaver Software

2. As shown in Figure 2.87, double click on the downloaded .exe file of the
DBeaver universal software. It will open the main screen in which the
Database Navigator shows the connection history built within DBeaver
Software:

Apache Spark Environment Setup and Configuration W 77

r DBeaver 7.0.2 - <MatiaDB - localhost> Seript

File Edit Mavigate Search SOLEditor Datsbase Window Help
v # R0 5 G Commit BRslbade T 71 Auto |9 T .7 MariaDB - localhost = B<NfA> T @& i vit
T Database Navigator % Projects. % =l == | " E 7 MariaD8 - bocalhost> Saipt 3 |

[Enter a part of table name here H |

» ¥ DBeaver Sample Database {SQLite)
» - MariaDB - localhost

13
a8
£
F

o islG

v
>

1 SQL expression to filter results juse Ctrl+Space)

» “!dﬂﬂi"lﬁvﬂv

8 Project - General = B-smmp
Name DataSource No Data

* B Bockmarks Execute query with Ctrl+Enter or script with Alt+X to see results
» B ER Disgroms

» m Scripts

Figure 2.87: Landing screen of DBeaver software

3. Click on Plug Sign at the extreme left-hand side of the main menu bar. A

dialog box Connect to database pops up to show the different database
connectors. Choose any needed database and click on Next for installation,

as shown in Figure 2.88:

fg DBeaver 7.0.2 - <MariaDB - localhost> Seript
File Edit Mavigate Search SOL Editor Datsbase Window Help

w9 kw050 RIDCommi QRolbadk T 71 A
T® Database Navigator 8 Projects LA LR B |
| Enter a part of table name here

» DBeaver Sample Database (SQLite)
> - MariaDB - loealhost

7@ Connect to database

Select your database
Create new database connection. Find your database driver in the kst below.

& !Classic.

’mll

= D,
=" DB2 MysOL

MariaDB 50Lite D2 LUwW MySQL

Mszx

2 project - General 1 ® = 4 = Connection view: () Simple (&) Advanced

Name DataSource
» B2 Bookmarks
» E= ER Diagrams

Eopac

ODBC

L

Orade PostgreSOL SOLServer Apache Diill Apache Hive

o Scipts TestComedion.. | <Back Net> | fnsh | Canodl
.

Figure 2.88: Displaying the list of pre-built database connectors

78 Practical Machine Learning with Spark

Apache Spark Installation on Google Colab

Google Colab is a cloud-based notebook that provides the support of CPU, GPU, and
TPU configurations for performing all steps of analytics and intelligence operations
such as ingestion, massaging, persistence, modelling, training, validating, and
testing of ML /DL models over the data. The steps to install Apache Spark on Google
Colab are as follows:

lapt-get install openjdk-8-jdk-headless -qq > /dev/null

lwget -q https://apache.osuosl.org/spark/spark-2.4.8/spark-2.4.8-bin-
hadoop2.7.tgz

Itar xf /content/spark-2.4.8-bin-hadoop2.7.tgz

Ipip install -q findspark

import os

os.environ["JAVA_HOME"] = "/usr/lib/jvm/java-8-openjdk-amd64"
os.environ["SPARK_HOME"] = "/content/spark-2.4.8-bin-hadoop2.7"
import findspark

findspark.init()

from pyspark.sql import SparkSession

spark = SparkSession.builder.master("local[*]").getOrCreate()

Figure 2.89 shows the screenshot of all the required steps to install Spark on Google
Colab:

1 lapt-get install openjdk-8-jdk-headless -qq > /dev/null

2 lwget -q https://apache.osuosl.org/spark/spark-2.4.8/spark-2.4.8-bin-hadoop2.7.tgz
3 !tar xf /content/spark-2.4.8-bin-hadoop2.7.tgz

4 !pip install -q findspark

5 import os

6 os.environ["JAVA_HOME"] = "/usr/lib/jvm/java-8-openjdk-amd64™
7 os.environ["SPARK_HOME"] = "/content/spark-2.4.8-bin-hadoop2.7"
8 import findspark

9 findspark.init()

10 from pyspark.sql import SparkSession

11 spark = SparkSession.builder.master("local[*]").getOrCreate()

Figure 2.89: Screenshot to install Apache Spark on Colab

Conclusion

This chapter includes different ways to configure and install Apache Spark and
Apache Hadoop frameworks on both on-premises and cloud platforms for practical
implementation. In addition, different notebooks, or editors of Python such as
Sublime, Google Colab, and Jupyter are clearly elucidated step-by-step for installation

Apache Spark Environment Setup and Configuration 79

and configuration on any environment. Apart from these, authors have mentioned
installation steps for Microsoft PowerBI and DBeaver for better understanding of
features through an Exploratory Data Analysis (EDA) and insightful/ decisive
visualization on raw or processed input and output dataset. This book helps
the audience to understand the installation and configuration of all the required
components which need to be used in the implementation of distributed processing
by leveraging Apache Spark. The next chapter (Apache Spark) will act like a bridge
for creating an efficient data pipeline to ingest, process, and feed the meaningful
data as an input to the ML model from raw data.

CHAPTER 3

Apache
Spark

“Success seems to be connected with action. Successful people keep
moving. They make mistakes, but they don’t quit.”
-Conrad Hilton

Introduction

Apache Spark is a real-time and batch mode application of Machine Learning
(ML). Leveraging the concept of a distributed framework like Apache Spark will
always enhance the computation efficiency and hence, the processing speed will be
more efficient. Though, diving deep into the concept of Apache Spark gives more
theoretical clarity, but it still has a big crevasse towards implementation. So, in this
chapter, authors strive to fill-up the crevasse and help the readers to make a strong
bridge for easily transitioning from conceptual scenarios to practical implementation.
Here, authors discuss several techniques to read and manipulate with heterogenous
formats of data, detailed explanation of Spark architecture, optimization of a Spark
Job, interactive monitoring of a Spark’s job through Apache Livy, and Workflow
management through various frameworks.

Structure

This chapter presents comprehensive discussions on the following topics:

82

Practical Machine Learning with Spark

Need of Apache Spark

Detailed architecture of Apache Spark

Evolution and key components of Apache Spark

RDD, DataFrame, and datasets in Apache Spark with comparison
DAG and Lazy evaluation in Apache Spark

Accumulator and Broadcast

Memory storage level(s): cache and persist

Transformation and action of Apache Spark

Spark’s job optimization techniques

Different storage levels in Apache Spark

SQL or DataFrame-related manipulations using Apache Spark
Different ways to read the various formats of data using PySpark
Scheduling or workflow creation using Apache Oozie

Applications of Apache Spark

Objectives

After reading this chapter, readers will be able to:

Get an understanding about Apache Spark and its internal working of the
architecture

Do manipulation on any format of data using PySpark
Understand the difference between RDD, DataFrame, and datasets
Do Spark’s job tuning for optimizing the processing efficiency

Do scheduling or binding-up of the Spark jobs into one thread

Need of Apache Spark

In the era of digitalization, the volume of data generating from various digital
platforms have been continuously growing. A rapid spike in the volume of data
creates a serious challenge among world wide researchers to handle and store this
heavy data. Since 2010, several IT industries have been using an Apache MapReduce
framework for batch processing data. In addition, many organizations have started
loading more data in Apache Hadoop and wanted to run rich applications. Moreover,

Apache Spark 83

users wanted to run iterative algorithms and interactive ad-hoc queries to explore
the data that is common in ML and graph processing. Even though there are many
advantages of Apache MapReduce, there are still some gaps where MapReduce
does not perform efficiently as both multi-pass and interactive applications need
to exchange data across multiple MapReduce steps, and this can only be done by
writing it to a distributed file system, which adds substantial overhead due to data
replication and disk I/O. This overhead takes more than 90% of the running time of
ML algorithms implemented on Hadoop.

To overcome this hassle, in 2012, Apache Spark was introduced to handle and
processing the heavy data using the concept of distributed processing and in-
memory computation. Extension towards multiple language support and seamless
integration with various components make it the best choice to data dealers for
processing. Spark is an inexpensive method, in this to write a program. The user
needs to combine different processing types such as an iterative algorithm, an
interactive query, streaming, graph queries, and batch queries. Apache Spark can be
deployed and work perfectly on cloud or a on-premises cluster.

Figure 3.1 shows the different deployment frameworks to run a Spark application:

APACHE
Spark
Databricks Google AWS Microsoft Standalone Docker
Cloud Azure Cluster

Figure 3.1: Disparate deployment mode to run a Spark services

Evolution of Apache Spark

The first egg of Apache Spark was incubated in 2009 at UC Berkeley’s AMP Lab by
Matei Zaharia which later, got open sourced under a Berkeley Software Distribution
(BSD)license in 2010. This study overcomes the major glitches of Hadoop MapReduce
by providing a new storage called as Resilient Distributed Data sets (RDDs). RDDs
can be read and written up to 40x faster than Hadoop which translates directly into
faster applications and has the rich integration with various persistence objects like
Amazon Simple Storage Service (AWS S3) and Hadoop Distributed File System
(HDFS). In late 2012, it was first released with the version mentioned 0.5.1 for the
commercial purpose. After that, multiple contributors have been started to improve
this framework; hence, that releases various versions accordingly. Now, the current

84 Practical Machine Learning with Spark

version of Apache Spark, that is, 3.1.2 is released out in June 2021. The following
mentioned Table 3.1 depicts the annual-wise evolution that has been done in Apache
Spark:

Version | Original release date | Latest version | Release date
0.5 2012-06-12 0.5.1 2012-10-07
0.6 2012-10-14 0.6.2 2013-02-07
0.7 2013-02-27 0.7.3 2013-07-16
0.8 2013-09-25 0.8.1 2013-12-19
0.9 2014-02-02 0.9.2 2014-07-23
1.0 2014-05-26 1.0.2 2014-08-05
1.1 2014-09-11 1.1.1 2014-11-26
12 2014-12-18 122 2015-04-17
1.3 2015-03-13 1.3.1 2015-04-17
14 2015-06-11 14.1 2015-07-15
15 2015-09-09 152 2015-11-09
1.6 2016-01-04 1.6.3 2016-11-07
2.0 2016-07-26 2.0.2 2016-11-14
2.1 2016-12-28 213 2018-06-26
2.2 2017-07-11 223 2019-01-11
2.3 2018-02-28 2.3.4 2019-09-09

241LTS 2018-11-02 247 2020-10-12
3.0 2020-06-18 3.0.3 2021-06-23
3.1 2021-03-02 3.1.2 2021-06-01
3.2 2021-10-13 3.2.0 2021-10-13

Table 3.1: Year-wise evolution in Apache Spark

Apache Spark Components

This section introduces the components of spark that provide the ease to users to
play around the data according to their needs. Figure 3.2 presents the ecosystem
of Apache Spark containing the various components of Apache Spark which are
helpful for making the data meaningful:

Apache Spark [85

Spark
Streaming

sQL Scala

Apache Spark Core API

Figure 3.2: Apache Spark ecosystem with its core components

Spark Core

Spark Core is a home terminal in an Apache Spark package to the API which defines
RDDs task dispatching, scheduling, memory management, fault-tolerance, and
storage systems interaction.

Spark SQL

The older version, that is, SQL-on-Spark has now been replaced by Spark SQL. Spark
SQL is mainly concerned with structured data. It allows fetching data via SQL and
Hive Query Language (HQL) and supports variety of data sources like Hive tables,
Parquet, and JSON. Additionally, it allows developers to intermix SQL queries in
Python, Java, and Scala supported by RDDs.

Spark Streaming

It is an extension of the core Spark API that enables the functionality like scalable,
high throughput to the data, and provides APIs to manipulate data streams which
match the Spark core RDD APL It allows a continuous stream of data through a
high-level abstraction known as DStream.

MLIib

MLIib is an accessible machine learning library in spark that leverages a distributed
framework for training and testing a ML model. MLIib encloses various pre-built
ML algorithms, including clustering, regression, classification, and collaborative
filtering. DataFrame-based ML APIs are more comprehensible as it includes spark
Data sources, SQL DataFrame queries, Tungsten optimization, Catalyst optimization,

86 I Practical Machine Learning with Spark

and uniform APIs across languages. Also, it has a linear algebra package named as
Breeze for numerical computing and machine learning.

GraphX

GraphX is an API for graphs that requires data in the reorientations of vertexes and
edges. The main features of GraphX are clustering, classification, traversal, searching,
and pathfinding. Moreover, GraphX supports fundamental necessary operators for
computation purposes.

SparkR

R is a language that provides the ease to do statistical analysis for a given dataset.
Similarly, SparkR is a library in Spark for processing the data and performs statistical
functions on the refined data.

Architecture of Apache Spark

Figure 3.3: An architecture of Apache Spark

Figure 3.3 delineates an architecture of Apache Spark that consists of five components,
namely, Task Runner, Spark Driver, Worker Node, Executor, and Cluster Manager;
these can help to run a Spark’s application impeccably. The first and foremost step
is the execution flow initiated from the Spark Driver that calls the main program

Apache Spark 87

and generates a SparkContext. A SparkContext is a cockpit of an application which
generally consists of all the indispensable functionalities. On the other hand, the
Spark Driver has many other important Schedulers and Managers such as DAG
Scheduler, Task Scheduler, Backend Scheduler, and Block Manager. These preceding-
mentioned components are useful for translating the user-written code into a job that
executes within the cluster. Moreover, the monitoring and resource allocating can be
possible with the help of Spark Driver and SparkContext. There are two pertinent
ways to get allocated the resource within the cluster using Mesos and Yarn. When
an RDD is created, it can be fed to many worker nodes to execute the tasks assigned
by the Cluster Manager and send back the response to the Spark Context. Lastly, the
executor takes care of the responsibility to execute the tasks that reside at the worker
node.

Resilient Distributed Dataset (RDD)

RDD is a radical and rational unit of Apache Spark to distribute the collection of
objects immutably. Each and every data value in RDD is segmented into logical
partitions and the partitioned RDDs can be handled in a parallel manner across the
nodes of the cluster with the help of transformations and actions. RDDs support any
type of programming languages such as Python, Java, Scala, and R along with their
user-defined classes.

There are three paths to write a RDD: the first path to create RDDs is to take the
reference of the existing collection from the RDDs or driver program; the second
path takes the reference of an explicit dataset or persistence layer such as an external
file system, HDFS, Apache Hive, Hbase, and many more sources which offer a
Hadoop suitability, and the third path to create a RDD is by parallelizing new data
values within the spark environment.

The following details show the indispensable scenarios where we can implement
RDDs:

¢ To deal with the low cardinality transformation and actions.

e To process the un-structured format like streams of messages from the social
platform.

¢ To enhance and deal with complex functions with DataFrames and datasets
that can be either a structured or semi-structured data.

Direct Acyclic Graph (DAG) in Spark

In Apache Spark, the DAG helps to maintain the record of each operation through
the arrangement of vertices and edges of a job which is going to be submitted.

88 Practical Machine Learning with Spark

When any job is submitted using the Spark framework for processing the data, it calls
the assigned action along with its DAG graph by default and starts keeping track
of operations which need to be triggered for executing the process in a sequential
manner.

In MapReduce, readers need to keep down the steps of the MapReduce process flow
through grouping the operations and making them as a single execution graph for
each operation. But the DAG graph already tracks the records of all the operations
and it binds up the several operations in one. Thus, this depicts the key difference
between Hadoop MapReduce and Apache Spark framework. Furthermore, the
DAG draws the operational flow of any execution job and provides the ease to
rearrange the operations for emerging out the performance of execution and boosts
the efficiency.

Lazy Evaluation

The lazy evaluation executes transformation operations, until and unless an action
is triggered. In spark, it is important to have a lazy evaluation as a functionality to
execute the transformation while it is needed in the process. By leveraging it, the
users are free to organize the smaller and manageable operations. In addition, Spark
can execute the small part of your program by running an action like count().
But in MapReduce, it is not possible to test the small part of codebase to see the
intermediate outcome and it requires more time for developers to decide relevant
group operations to minimize the number of passes.

Figure 3.4 shows the various advantages to incorporate lazy evaluation in Spark
to reduce time and space complexities, enhance optimization, help to develop
better transformation manageability, and increase the speed process. The detailed
information is given as follows:

Figure 3.4: Advantages of Lazy Evaluation in Apache Spark

Apache Spark 89

Reduced Complexities

The time and space complexities can be alleviated with the help of lazy evaluation
as the action is triggered when the data is required.

Optimization

It helps to fold down the number of queries for executing a spark job. Thus, the
system works more efficiently with fewer configurations.

Develops Manageability

It decreases the number of passes on data by grouping operation. So, the users can
handle large operations without any hurdles.

Increased Speed

In this concept, users do not need to perform the entire calculation at the instance.
Due to this mechanism, it saves the communicating time between the driver and
cluster; hence, speeds up the process.

DataFrames

DataFrames is an immutable distributed collection of data which extends the
integration with Scala, Java, Python, and R to organize the data in the tabular
orientation of rows and columns. Some of the ideal examples of tabular representation
resemble with the data orientation in Relational Databases and DataFrame in
pandas. DataFrames can process large dataset impeccably with more efficiency.
There are multiple trails to create a DataFrame in Spark using the relational data
files or databases, Apache Hive tables, any other SQL or NoSQL databases, and
already created RDDs. In the updated version of Spark, the DataFrame functionality
got merged with datasets APIs for providing the unification of data processing
capabilities across libraries. With the help of this unification, developers will have
less burden to remember the various concepts.

Datasets

A dataset is a branch which is added to Spark’s family to organize the data in an
efficient manner and provide more advantages such as strong typing, lambda
functions integration and flexibility to stitch the concept of Object-Oriented
Programming (OOPs) flavors along with existing merits of SparkSQL’s optimized
execution engine. The dataset can be created from the heterogenous data sources and
serves data manipulations using transformations such as map, flat-map, filter, and
so on. The dataset supports Scala and Java programming languages except Python.
The following points highlight the need of a dataset or DataFrame:

90 Practical Machine Learning with Spark

e To provide good semantics, high-level abstractions, and domain specific
APIs.

e To handle high-level expressions, transformation functions such as filters,
aggregation, and mathematical functions.

e To provide direct integration with SQL queries to process the data and
handling of semi-structured data using lambda functions.

¢ Need of type-safety at compile time which can be achieved by leveraging the
Tungsten’s optimizer.

e Need of unification of APIs within the Spark libraries.

Table 3.2 delineates the key benchmarking comparison between RDD, DataFrame
(DF), and dataset.

Features RDD DataFrame Dataset

Definition RDDs is aread- | The representation | Itis an advanced level
only partition of data in DF is a extension of DF that
collection collection of rows can provide the type-
of data and and columns thatis | safe and flavor of OOPs
process using similar to RDBMS. concept.
In-memory
computation.

Release Version 1.0 Spark 1.3 Spark 1.6

Data Formats Structured and | Structured and semi- | Structured and un-

Handling un-structured structured data. structured data.

Data Sources API Yes, it can allow | Yes, it allows to Yes, different sources
with different process the data such as HDFS, Text file,

sources such as | from heterogenous | CSV, and RDBMS.
text file, RDBMS, | sources such as Avro,
CSV, and Excel | CSV, JSON, HDFS,

file. Hive, Impala, HBase,
and MySQL
Compile-time type Yes No Yes
safety
Optimization No Yes, it can be Yes, consists of Catalyst
achieved using optimizer.
Catalyst Optimizer.
Serialization Yes, through Yes, through Yes, through Tungsten.
Java Tungsten.

serialization.

Apache Spark 91

Lazy Evolution Yes Yes Yes
Programming Java, Scala, Java, Python, Scala, | Scala and Java.
Language Support | Python, and R and R.

languages.

Schema Projection | The Schema There isnoneed to | Auto-discovering of
projection is explicitly define the | schema is available.
being used schema because it
explicitly. has auto-discovering

functionality that can
find schema from

any source.
Aggregation Slow in simple | Too fast for doing the | Faster than RDDs and
Performance both grouping exploratory analysis | DE.
and aggregation |and performing
operation. aggregation
operation.

Table 3.2: Comparison between RDD, DataFrame, and dataset

Accumulator and Broadcast

Apache Spark has two types of shared variables, namely, Accumulator and Broadcast.
They are scattered across multiple nodes to support the read and write operations
like lookup and summation.

Detailed information on both shared variables is mentioned next.

Accumulator

It is an imperative shared variable to update data points, counting, and summing
up related operations across the executors which can be added through associative
and commutative operations. Moreover, it can be created with or without a name
in Spark. When the accumulator is created with a name, then the name of the
accumulator can be viewed in Spark’s Ul Thus, users can sequentially check and
monitor the progress of the executing stages of a job. An attribute named value
stores and returns the accumulator’s value which is usable in a driver program.

The following codebase shows an accumulator which is being executed to add the
elements of an array:

“accum = sc.accumulator(0)
accum
sc.parallelize([5, 2, 6, 4]).foreach(lambda x: accum.add(x))

accum.value”

92 Practical Machine Learning with Spark

Broadcast

It is a read-only variable that needs to be cached in all the available executors, in
spite of sharing every time with the task. Mainly, the broadcast variable can avoid
the network input/output overhead by keeping a local copy of data in each executor.
Hence, minimize the communication cost that can ameliorate the query performance
using lookup or join operations. In addition, the broadcast is preferred most when
the tasks across the multiple stages need the identical data for optimization.

The following code shows a Broadcast class within PySpark:
from pyspark import SparkContext
sc = SparkContext(“local”, “Broadcast”)

words_new = sc.broadcast([“Big Data”, “Machine learning”, “Analytics”,
“Deep Learning”, “Artificial Intelligence”])

data = words_new.value

print “Stored data -> %s” % (data)

elem = words_new.value[2]

print “Printing a particular element in RDD -> %s” % (elem)

Apache Spark Optimization and its
Techniques

The key feature of Apache Spark optimization is to provide flexibility to re-tune the
job’s configurations of spark dynamically in the run-time manner for ameliorating the
overall performance through in-memory computations. Majorly, the big crevasse in
terms of the spark optimization computations can be CPU, memory, or any resource
allocation in the cluster. However, running heavy-loaded spark jobs efficiently need
good knowledge on how a spark job’s works and several ways to optimize the jobs
for better performance characteristics. A well-tuned job’s configuration should be
used to eliminate the time-consumption in a heavy job, correct the execution engine,
and hence, improves performance time by managing the allocation of resources in
the right manner. The different approaches to optimize the Spark job is mentioned
as below:

e File Format Selection

Apache Spark adapts several formats such as Comma Separated Validation
(CSV), JavaScript Object Notation (JSON), Extensible Markup Language
(XML), PARQUET, Optimized Row Columnar (ORC), and AVRO. But
choosing of an appropriate file format of data or value can alleviate the
challenges related to cumbersome while processing the massive data and
hence, enhance the overall optimization of Spark application. In Spark, the

Apache Spark 93

parquet file with snappy compression is the most promising format which
gives high performance.

Accumulators

Readers know the benefits of an accumulator by leveraging it through
associative and commutative operations. Most of the time, accumulators can
be used as counters and it also ensures that the update on each task will
be applied once to the accumulator variables. During the transformation
operations, the coders are already known about all the updates of each task
to take care of the number of jobs which can be more than once if job stages
are re-executed in a Spark application.

Hive Bucketing Performance

The bucketing technique in hive provides a fixed number of data consisting
shelves in the form of files and the number of buckets is based on the number
that passes to the table schema script during the creation of a table by the
coder. Moreover, Hive takes the field and feeds into the hash function for
assigning the right record to the respective bucket. Bucketing becomes more
imperative when the cardinality of data is too high, needs to handle or
manipulate massive dataset, and the cardinality of the partitioning field is
low to process the records which are scattered among all buckets.

Predicate Pushdown Optimization

It is a technique to process only the indispensable data. Predicates is an
optimization technique thatis applied on the top of SparkSQL by defining the
specific filters using “where” condition. Through the explain command, the
programmer will be able to check all stages of query processing. The query is
well optimized and selects the required data only if the any query consists of
PushedFilter. This technique can reduce disk I/ O by introducing in-memory
analytics which limits the number of files and partitions. Querying on data
in buckets with predicate pushdowns produce comparatively better results
with less shuffle. If there is no PushedFilter found in the query plan, then it
is better to cast the where condition.

Zero Data Serialization/Deserialization using Apache Arrow

Apache Arrow provides the in-memory format to interact with the analytical
query engine that can alleviate the overhead for SerializationDeserialization
(SerDe) operations for shuffling data using shared memory. Arrow can
handle and process the heavy datasets across the network without the need
of any shuffling operations. In addition, it has its own file format named
as Arrow File Format that ensures zero-copy random access to data on the
disk.

94

Practical Machine Learning with Spark

Garbage Collection Tuning

In Spark, all jobs need the JVM environment to successfully execute the
program. Due to this JVM requirement, it turns out to be a problematic
Garbage Collection (GC) when we need to deal with the massive amount
of dataset for processing. To overcome this hurdle, readers need to re-tune
the GC of objects by observing and gathering the indispensable statistics by
submitting the job using Verbose. To be on a safer side, developers always
recommend to keep the GC memory less than 10% of heap memory.

Memory Management and Tuning

Shuffling and sorting are the most time-consuming operations which can
take more execution memory, whereas the cached jobs require less memory.
In Spark, the spark.memory.fraction is a standard way to check how
much of JVM heap space is being utilized by spark; by default, it usually
takes 60%. To mitigate this delay of JVM GC, it is recommended to keep the
less executor memory.

Data Locality

In Apache Spark, the data movements among disks are costly and takes more
time while computing an application. To take this concern, it is important to
perform most of the computations at the place where data resides. So, the
developers keep placing the codebase near the refined data for optimizing
the processing and enhance the overall benchmarking efficacy. The task shall
wait to be executed until the data is not available.

Using Collocated Joins

Redistribution and broadcasting of data can be possible with the help of
collocated joins. The small chunks of data generally reside into multiple
blocks of memory that are used for broadcasting. At the instance to apply
the joins on two datasets, spark first sorts the data of both datasets by keys
and then merges.

Caching in Spark

Leveraging Spark with Graphical Processing Unit (GPU) with the caching
technique is the most ideal way to optimize a Spark’s job if there is a need of
the same data multiple times. Generally, the caching technique is preferred
more in Machine Learning algorithms where the program needs the same
data repeatedly to train a model.

Executor Size

In Apache Spark, running of executors with high memory will show the
excessive delaysin the garbage collection, hence lower down the optimization
as a result. Due to this, it is recommended to have five core per executors.

Apache Spark 95

The detailed calculation to use the appropriate number of executor memory
and its related configurations are mentioned as follows:

o Number of nodes = 10, Number of cores = 16 cores per node, and
RAM = 64GB per Node

o Letus assign 5 cores per executor: --executor-cores =5

o 1 core per node to be left for Hadoop/Yarn daemons => Number of
cores available per node = 16-1 = 15

o Total available of cores in cluster = Number of nodes * number of
core available per node = 15 x 10 = 150

o Total number of available executors = (Total available of cores /
Number of cores per executor) = 150/5 = 30

o 1 executor to be left for Application Manager: --num-executors = 29
o Total number of executors per node = 30/10 = 3
o Memory per executor = 64GB/3 =21 GB

o Off heap overhead = 7% of 21GB = 3 GB. So, the executor-memory
would be =21-3 =18 GB

Thus, the recommended configurations are: 29 executors, 18 GB memory
each, and 5 cores each.

e Spark Windowing Function

A Spark window function defines a frame through which we can calculate
input rows of a table and can-do comparison operations on multiple rows in
that same data frame.

e Data Serialization

Apache Spark optimizes the movement or arrangement of data. So, analytics
can be performed better and with the optimized manner if data resides in the
right serialized format. Due to aforementioned concern, the Apache Spark
aids data serialization to manage the data formats that is required at source
or destination operations effectively. Natively, Spark has Java Serialization;
although, it can also use Kryo Serialization. In detail, Spark supports the
Kryo Serialization library (v4) that can be 10x faster than Java Serialization
and more compactness than Java.

Memory Storage Levels: Cache and Persist

The memory storage levels are useful to optimize the overall process of any spark
application. Mainly, cache and persist are two types of memory storage levels in

96 Practical Machine Learning with Spark

spark. Persist is an indispensable functionality of spark that stores the executed
intermediate RDD across the multiple nodes to get an efficient access while the readers
need it the next time. By implementing the right memory storage level, readers can
save several hours of cumbersome computation. Generally, it uses the persist and
Cache mechanism to store and re-use the data multiple times if the program needs
this. The function “RDD.cache()” will always store the data in memory, whereas
the function “RDD. persist()* can store some segments of data in the memory and
rest on the disk.

The following is detailed information about the various storage levels to persist a
RDDs in Apache Spark:

e STORAGELEVEL.MEMORY_ONLY: RDD is stored as a deserialized Java object in
the Java Virtual Machine. It does not store few partitions into a memory if the
RDDs size greater than a memory.

e STORAGELEVEL.MEMORY_AND_DISK: RDD is stored as a deserialized Java
object in the Java Virtual Machine. It stores the remaining RDDs into the disk
instead of the memory if the RDDs’ size is larger than memory.

e STORAGELEVEL.MEMORY_ONLY_SER: Here, the RDD can be stored as a
serialized object in the Java Virtual Machine.

e STORAGELEVEL.MEMORY_AND_DISK_SER: The RDD can be stored as a
serialized object in the Java Virtual Machine and disk.

e STORAGELEVEL.DISK_ONLY: The RDD can be stored only on the disk.

Spark Submit

There are two approaches for executing a PySpark program. In the first approach,
users can run or execute the PySpark code sequentially through the terminal and
the second approach extends the functionality to runtime by passing of parameters
through spark-submit. In this approach, readers can execute a . py format file which
will have the complete executable PySpark code. By running this .py script, it
processes the data; in addition, the readers can get the more option to dynamically
tune the spark job using -option while submitting the Spark Job.

Here is the syntax to submit a job of spark:
spark-submit -driver-class-path “path of class drive of jars” -jars
“path of jar file” python “file in .py format”

Additionally, the different runtime parameters can be passed with -option while
submitting a spark’s job which are mentioned below:

e class: It is a full class name of the class containing the main method of the
application.

Apache Spark 97

e conf:Ithas the property of the Spark configuration which is in the key=value
format.

e deploy-mode: Cluster and client are the two modes to run a Spark application.
In the cluster mode, the driver runs on worker hosts whereas in the client
mode, the driver runs locally as an external client. It is always recommended
to have the cluster mode for production jobs and client mode for stagging
purposes.

e driver-class-path: It includes the configuration and class-path
information. JARs added with the -jars parameter are automatically
enclosed in the class-path.

e driver-cores: It is a dynamic and runtime functionality of Spark to assign
the number of cores to be used to execute a job. By default, it requires 1 core
to launch any spark job.

e driver-memory: It is a way to assign the heap size which needs to be
allocated to the driver and the driver-memory value can also be updated
through the spark.driver.memory property.

e files: It is a comma-separated list of files to be put in the working directory
of each executor.

e jars: With the help of the jars option, the user can load additional JARs in
the class-path.

e master: It provides four ways to launch a Spark application using various
environments which are given as follows:

o local: Run Spark locally with one worker thread.

O

local[K]: Run Spark locally with K worker threads.

local [*]: Run Spark locally with as many worker threads.

O

o Yarn: Run with YARN cluster manager. The cluster location is
determined by HADOOP_CONF_DIR or YARN_CONF_DIR.

e packages: It is a comma-separated list of Maven coordinates of JARs.

e py-files: It is a comma-separated list of . py files.

Spark Monitoring

In Apache Spark, the submitted job can be monitored to provide key information
about the application which can help the coders to understand the flow and complex
steps in the entire design of DAG. To consider this functionality, every SparkContext
launches a WebUI that is redirected to port 4040. Readers can use this interface by

98 Practical Machine Learning with Spark

opening http://<driver-node>:4040inaweb browser. The beneficial information
of a running job can be gathered from Spark WebUTI that is given as follows:

e About scheduler stages and tasks.
e Details of RDDs related to their size and memory allocation.
e Environmental and configurational information.

e Knowledge about the running executors.

Apache Livy: An Easy Interaction With a
Spark Cluster Over a REST Interface

In 2017, Cloudera named a Big Data Company launched Apache Livy to solve a
problem of interface accessibility to explicitly submit and monitor the spark jobs
through Rest API(s). Thereafter, Hortonworks decided to support and merge
with Cloudera to enhance the Apache Livy adaptability and features with other
applications such as Apache NiFi, Security channel among data movements through
Kerberos, and Apache Zeppelin, etc. Basically, Apache Livy is a service that interacts
with an Apache Spark cluster over a REST interface for handling the job. Prior to
this, Spark did not have any integration with other external services to manage the
Spark job through APIs rather than the submission through a command line option
in Apache Spark. But now, Livy can easily access the terminal to submit a Spark job,
synchronous or asynchronous query retrieval, and Spark Context management by
leveraging the layer of the REST interface. Apache Livy also provides the ease in the
linkage between Apache Spark and application servers. Hence, extend the feature
of Rest APIs to call a Spark job through an interactive web or mobile application.
In addition, it also extends the capabilities of Spark for including the multi-tenancy
and security features. In the newer version of Apache Livy, it extends the scope of
integration with various tools to incorporate the inherit functionality of Apache Livy
for quickly accessing the Spark jobs and secure handling of data pipelines. It majorly
supports integration with Azure HDInsight, Jupyter Notebook, and Apache Zeppelin
to interact and access the Spark terminal. Moreover, Apache NiFi engrosses towards
the functionality of Livy for submitting the Spark job and, the LDAP authentication
through Apache Knox is now possible using Apache Livy. Features of Apache Livy
are discussed as follows:

e Ease to submit and monitoring of Spark job using the REST API(s).

e Livy supports user impersonation; it means multiple users can share the
same server.

e Share cached RDDs or Datasets across multiple jobs and clients can be
possible through Apache Livy.

e Jobs can be submitted via Java/Scala client API.

Apache Spark 99

e Livy supports security features through Kerberos authentication.

e Use an interactive notebook like Apache Zeppelin, Anaconda, and Jupyter
Notebook to access Apache Spark through Livy.

e The Livy REST API supports functionality like SparkSession, and
SparkSession with Hive enabled.

e More suitable to submit and monitor the batch mode applications to Spark.

Job Scheduling

Job Scheduling and workflow wrapping is also playing an important role in spark for
unification of analytics pipeline. In the previous sections of this chapter, authors had
covered the different ways to run a spark job or code snippets within the Hadoop
environment. These different ways also work for the standalone environment and
are also necessary for running the active instances of Apache Spark. For running a
spark, readers need to manually execute the PySpark application either through the
terminal or by submitting the .py file, which is not recommended for the production
environment. To overcome the preceding discussed concern, there is a need of a
workflow or scheduling framework to bind-up the silo’s tasks into a unified
processing pipeline. Moreover, the workflow frameworks also help to provide the
ease to monitor, schedule, trigger alerts, and trigger jobs based on data availability
and frequency. In this section, readers will know the basic definition of various
workflow tools along with the Oozie workflow in detail.

Figure 3.5 depicts various workflow and monitoring frameworks to schedule a spark

job:
| Apache
Airflow

I ekt

Figure 3.5: Various workflow frameworks for scheduling an Apache Spark application

100 Practical Machine Learning with Spark

Apache Oozie is a workflow engine that binds-up the silos tasks and executes them
in sequences of actions followed by the execution structure as Directed Acyclic
Graphs (DAGs). Each action represents an individual task of work and is strongly
integrated with the Hadoop landscape, especially as it is tight coupled with YARN.
Apache Oozie supports several Big Data tools such as MapReduce, Hive, Spark,
and Apache Sqoop to schedule the prepared workflow. In addition, Apache Oozie
provides ease and great flexibility to unify the scattered or silos jobs in a single
wrapper and makes it easier to repeat those jobs at the predefined frequency and
retry options.

There are three basic components of Oozie jobs:

e Oozie Workflow: It specifies a sequence of actions to be executed by
leveraging the concept of DAG.

¢ Oozie Coordinator: It is used to manage the scheduling of a workflow by
considering the frequency and data availability.

¢ Job Properties: It contains the vital property to run an Oozie workflow
successfully.

This section will help the reader to go through the practical implementation of
Apache Oozie for scheduling a PySpark script. Here, the authors draw a workflow
for manipulation.py through workflow.xml and job.properties. The following
is the codebase of Oozie for wrapping up the PySpark task:

workflow.xml

The workflow.xml is used to bind-up the individual tasks or actions to be executed
within a data pipeline as a single workflow. This .xml provides the flexibility to
weave the multiple actions of heterogenous tools such as Spark, Shell Script, Python,
Java, Hive, and Sqoop in a unify workflow:

<workflow-app xmlns=’uri:oozie:workflow:0.5’ name=’MLPySpark’>

<start to=’spark-node’/>

<action name=’spark-node’>

<spark xmlns="uri:oozie:spark-action:0.1”>
<job-tracker>${jobTracker}</job-tracker>
<name-node>${nameNode}</name-node>

<master>${master}</master>

<name>Python-Spark-Pi</name>

<jar>manipulation.py</jar>

</spark>

<ok to="end”/>

Apache Spark 101

<error to="fail”/>
</action>
<kill name="fail”’>

<message>Workflow failed, error message
[${wf:errorMessage(wf:lastErrorNode())}]</message>

</kill>
<end name=’end’/>

</workflow-app>

job.properties

This property file contains the configuration details, path of script, and other implicit
parameters which are passed to the workflow.xml to execute a job successfully:
nameNode=hdfs://host:8020

jobTracker=host:8050

queueName=default

examplesRoot=examples

oozie.use.system.libpath=true

oozie.wf.application.path=${nameNode}/user/${user.name}/${examplesRoot}/
apps/pyspark

master=yarn-cluster

oozie.action.sharelib.for.spark=spark2

manipulation.py

This section of code shows the PySpark program that needs to be executed and
scheduled in the Oozie workflow:

import pyspark

from pyspark.sql import SparkSession

from pyspark.sql.functions import col, 1it

from pyspark.sql.types import StructType, StructField,
StringType, IntegerType

dataframe = sqlContext.read.format(‘com.databricks.spark.csv’) \
.options(header="true’, inferschema=’true’) \

.load(‘/home /Gourav/chap3/wage_table3.csv’)

dataframe.show()

print(type(dataframe))

102 Practical Machine Learning with Spark

Alternate of Apache Oozie to Manage Tasks Workflow

Instead of Apache Oozie, there are two options for wrapping-up of tasks workflow
into a unified sequence.

Apache Airflow

Apache Airflow is an open-source workflow management platform started by
Airbnb in 2014 for managing an organization’s complex workflows. It is written
in python language, and its workflow is created using python scripts that support
to programmatically schedule their workflows and monitor them via the built-in
Airflow user interface.

Luigi

Luigi is a python package used to build complex pipelines of batch jobs. It deals with
dependency resolution, workflow management, visualization, handling failures,
command line integration, and so on. The goal of Luigi is to address all the plumbing
typically combined with long-running batch processes.

Cron Job

Cron jobs are used for scheduling tasks to run on the server. It is an automating
system maintenance or administration method for scheduling any tasks. However,
it is the same as the web application development when a web application may need
certain tasks to run periodically.

Azkaban

Azkaban is a distributed workflow manager which implements at LinkedIn to solve
the problem of Hadoop job dependencies.

Spark RDD Operations: Transformation
and Action

Apache Spark RDD operations are of two types, that is, transformations and actions.
These are used for doing the manipulation and computation operations on RDD to
obtain the desired output. A transformation is a function which obtains a new RDD
from the existing RDDs but when dealing with the actual dataset, at that point an
action is performed. When the action is triggered after the output, a new RDD is
not created like the transformation. In this section, readers will get a detailed view
of the transformation in Spark RDD along with various RDD transformations and
action operations in Spark with examples. Apache Spark RDD supports two types
of operations.

Apache Spark 103

Transformations

Spark transformation is a function that creates a new RDD from the existing one
when any transformation is applied to it. Generally, it considers the RDD as input
and produces one or more RDD as the output that will be immutable in nature.
Multiple transformations on the dataset of the same program provide an RDD
lineage, which is information about all the applied transformations and actions from
parent RDDs to the final RDD(s).

There are two types of transformations:

e Narrow Transformation: In narrow transformation, all the elements that are
required to compute the records in single partition live in the single partition
of the parent RDD; for example, map(),and filter().

e Wide Transformation: In wide transformation, all the elements that
are required to compute the records in the single partition may live in
many partitions of the parent RDD; for example, groupbyKey(), and
reducebyKey().

Let us see the various transformations in Spark RDDs sequentially to understand the
practical execution.

Map Transformation

The Spark Map function takes one element as the input and processes it according to
the custom code and returns one element at a time. The Map transforms an RDD of
length N into another RDD of length N, typically with the same number of records.

The following program shows the way to perform the map transformation in Apache
Spark:

from pyspark.sql import SQLContext

sqlContext = SQLContext(sc)

df = sqlContext.read.format(‘com.databricks.spark.csv’).
options(header="true’, inferschema=’true’).load(/home /Gourav/chap3/us-
500.csv’) # this 1is your csv file

df.show()
get_map_transform = df.select(df.columns[@]).rdd.map(lambda x: (x,1))
get _map_transform.take(10)

104 Practical Machine Learning with Spark

Figure 3.6 shows the codebase to execute the map transformation on the existing
RDD:

>>> from pyspark.sql import SQLContext
: sqlt,ontext = SQLContext (sc)
df = sqlContext.read.format('con.databricks. ﬂpa*k esv') \
.options (header="'true', inferschema='true

Load (Y 50 . s

get map transform = df.select(df.columns[0]).rdd.map(lambda x: (x,1))
>>> get map transform.take(10)
[(Row (rnqt name='James'), 1), {R-aw[first_name-‘-’.]’osephine‘] o rRu.u{tnst name='Art'), 1), (Row(first
|,P.0wttlrst_narrua::'rl"nﬁttﬂ'}l lj, (Row(first name='Simona'), 1), (Rrwlflr:.t_na.mﬁ'b{ltsue), 1), (Row(fir
0 L'Row(first__name-”"qe)}, 1), {Row[first_name=’!«.r‘.-s Ik |

Figure 3.6: Program of map transformation on existing RDD

FlatMap Transformation

FlatMap is like a map transformation because it applies a function to all elements
in an RDD. But the FlatMap flattens the results. Also, the function in FlatMap can
return a list of elements (0 or more).

The following program shows the way to perform FlatMap transformation in
Apache Spark:

get flatmap_transform = df.select(df,columns[@]).rdd.flatMap(lambda x:
(x,1))
get map_transform.take(10)

Figure 3.7 shows the codebase to execute the FlatMap transformation on the existing
RDD:

>>> get flatmap transform = df.select(df.columns[0]).rdd.flatMap(lambda x: (x,1))
>>> get _map transform.take(10)

[Row (first name=u'James'), 1, Row(first name=u'Josephine'), 1, Row(first name=u'Art'), 1, Row(first name=u'Lenna’'), 1, Row
(first _name=u'Donette’), 1]

Figure 3.7: Program of FlatMap transformation on existing RDD

Filter Transformation

The filter function helps to create a new RDD when the exact pattern or conditions
satisfy the existing RDD.

The following program shows the way to perform the filter transformation in
Apache Spark:

get _map_transform = df.select(df.columns[9]).rdd.filter(lambda x: x not
in [€856-264-4130°]).toDF()

Apache Spark 105

Union Transformation

The union function helps to generate a new RDD which will have all the numbers
presented in the existing two RDDs.

The following program shows the way to perform the union transformation on the
existing RDD in Apache Spark:

DD1 = sc.parallelize(range(1,10))

RDD2 = sc.parallelize(range(10,21))

RDD1.union(RDD2).collect()

Figure 3.8 shows the codebase to execute the union transformation on the existing
RDD:

>>> RDD1 = sc.parallelize(range(1,10))

>>> RDD2 = sc.parallelize(range (10,21))
>>> RDD1l.union(RDD2) .collect ()
(, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]

Figure 3.8: Program of Union transformation on existing RDD

Union Transformation in DataFrame

The following program shows the way to perform the union transformation on two
DataFrames in Apache Spark:

Dataframel = sqlContext.read.format(‘com.databricks.spark.csv’) \
.options(header="true’, inferschema=’true’) \

.load(‘/home /Gourav/chap3/wage_ table.csv’)

Dataframe2 = sqlContext.read.format(‘com.databricks.spark.csv’) \
.options(header="true’, inferschema=’true’) \

.load(‘/home /Gourav/chap3/wage_table2.csv’)

outcome_df = Dataframel.union(Dataframe2)

outcome_df.show()

106 Practical Machine Learning with Spark

Figure 3.9 shows the codebase to display the values of two DataFrames:

glc| Anal
Dxr . Hung| Big

Figure 3.9: Program of union transformation on existing two RDDs

Figure 3.10 shows the codebase to execute the union function on two DataFrames:

DataframeZ = sglContext.read.format ('com.databricks.spark.csv'
.options (header='true', inferschema='true') \
.load (' /home/cdhipsnet.com/Gourav/chap3/wage table

Dataframe2.s
Name |Department]| Wage | Age | Gender | Research Papers|Delivered Talks|

Enegle| Analyties| 50000000| 43|
Dr.Hung| Big Data| 60000000| 40|
S Guptal| AR| B80000000| 60|
Deamith| AI|110000000| 55|
Dr.Xiaong]| HRI|660000000| 51|

> outcome df = Dataframel.union(Dataframe2)

_df.shaw{)

~

Andrew | Analytics|150000000| 34|
Dr.Smith| ig Data| 20000000| 28|
Dr.Manish| IOT| 50000000 41|
|Dx. Anage ML | 100000000 37|
| Dr.Xing]| DL| 60000000| 40|
Dr. Eneglo| Analytics| 50000000| 43|

| Dr.Hung| Big Data| 60000000| 40|
IDE.I. AR| BODOO0000| 60|
| Dr. Deamith| AI|110000000| 55|
= . Xiaong]| 4 5 0000| 51|

o A R W=
WD dE

]

Figure 3.10: Output of Union transformation on existing two RDDs

Apache Spark 107

Union on DataFrame Through using Temporary Table View (TTV)

The following program shows the way to perform the union transformation on two
DataFrames using TTV in Apache Spark:

dfl.createOrReplaceTempView(“df1”)
dfl.createOrReplaceTempView(“df2”)
df3 = df2.union(df1)

df3.createOrReplaceTempView(“df3”)

df4 = spark.sql(“select Item_ID, Item_Name, sum(Quantity) as Quantity
from df3 group by Item_ID, Item_Name”)

df4.show(10)

Distinct Transformation

In Spark, the distinct transformation returns the distinct or unique elements from
the RDDs.

The following program shows the way to perform the distinct transformation on
two RDDs in Apache Spark:

RDD1
RDD2

sc.parallelize(range(1,13))

sc.parallelize(range(7,20))
RDD1.union(RDD2).distinct().collect()

Figure 3.11 shows the code to execute the distinct transformation on two existing
RDDs in Spark:

>>> RDD1 = sc.parallelize(range(1,13))
>>> RDD2 = sc.parallelize (range(7,20))

>>> RDD1l.union (RDD2) .distinct() .collect()
[, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,

Figure 3.11: Program of distinct transformation on existing RDD

Distinct Transformation on DataFrame

The following program shows the way to perform the distinct transformation on
two DataFrames in Apache Spark:

Dataframel = sqlContext.read.format(‘com.databricks.spark.csv’) \
.options(header="true’, inferschema=’true’) \

.load(“/home /Gourav/chap3/wage_table3.csv’)

Dataframel.show()

108 Practical Machine Learning with Spark

Distinct DF = Dataframel.distinct()
Distinct_DF.show()

Figure 3.12 shows the snapshot to display the value of DataFramel:

-+
Dr. Eneglo| Analyti oooo 71
Dr.Hungl Big Datal oo 3 141
22

29

66|

Andrew | i 0 ol 3 2 T
Dr.Smith| elelels 11|
Dr.Manish]| 17|
Dr. Rnageles]| 22
Dr.Xing|
Dr. Eneglol
Dr.Hung| Big Datal
AR |
AI|1100

[T
b o] b

dn s
(]

o

QQooQ|
Qoooal

Figure 3.12: Program to create and display the value on existing Dataframe

Figure 3.13 shows the code to execute the distinct transformation on existing
DataFrames in Spark:

>>> Distinct DF = Dataframel.distinct()

ct_DE.show()
e pmm s e e o +
| Name |Department| Wage | Age | Gender |Research Papers|Delivered Talks|
F—m— - Fm———————— Fm———————— e it Fmmmmmm Fmmmmm +
| Dr. Andrew | Analytics|150000000| 34| M| 23] 71
| Dr.Manish| IOT| 50000000 41| M| 28| 171

|Dr.I.s Guptal
| Dr. Eneglo|
| Dr.Xiaong|
|Dr. Anageles]|
| Dr.Xingl

Dr.Hung|

Deamith]|

AR| 80000000]

Analyties| 50000000]

HERI|660000000]
MI.| 100000000
DL| 60000000]|

Big Data| 60000000]|

AT|110000000]

60|
43|
51|
371
40|

M|
M|
F|
M|
F|
Fl

44|
55|
33|
41|
39|

22|

71
66|
22|
31|

Dr.sSmith| ig Datal| 20000000]
Hmmmmmm e i mmmm e s Ao mm e A m e +

Figure 3.13: Output of distinct transformation on existing Dataframe

Apache Spark 109

Figure 3.14 shows the code to execute the distinct transformation on existing
DataFrames using drop_duplicates(func):

>>> Distinct DF = Dataframel.drop duplicates()

>>> Distinct DF.show()

Fm—m———————= B Fo——————— i Fom Fm——— +
| Name |Department| Wage | Age | Gender |Research Papers|Delivered Talks|
Fm—m————————— Fm————————— Fo———————- Fo——tm————= Fmm Fm—mm +
| Dr. Andrew | Analytics|150000000| 34| 71
| Dr.Manish| IOT| 50000000] 41| 28| 171

|Dr.I.S Guptal
| Dr. Eneglo]
| Dr.Xiaong]|
|Dr. Anageles|
Dr.Xing|
Dr.Hung|
Deamith|

AR| 80000000|

Analytics| 50000000]|

HRI|660000000|
ML|100000000]
DL| 60000000]|

Big Data| 60000000]

AT|[110000000]

60|
43|
51|
371
40|

44|
55|
33|
41|
391

22|

71
66|
22|
311

Dr.Smith| Big Data| 20000000|
mmmmmmmm———- o m o 4mmmmmm—- e T it 4ommmmmmm - +

Figure 3.14: Program of drop duplicate function on existing Dataframe to remove the duplicity

Intersection Transformation

In Spark, the intersection transformation helps to create a RDD which will have the
common variables between the two RDDs.

Intersection Transformation on RDD

The following program shows the intersection transformation on two existing RDDs
in Apache Spark:

RDD1 = sc.parallelize(range(1,10))
RDD2 = sc.parallelize(range(5,15))
RDD1.intersection(RDD2).collect()
[5, 6, 7, 8, 9]

Figure 3.15 shows the code to execute the intersection transformation on existing
RDDs in Spark:

>>> RDD1 sc.parallelize (range(1,10))
>>> RDD2 sc.parallelize (range(5,15))

>>> RDD1.intersection (RDD2) .collect ()
[5, 6, 7, 8, 9]

Figure 3.15: Program of intersection transformation on existing RDD

Intersection on DataFrame

The following program shows the intersection transformation on two existing
DataFrames in Apache Spark:

110 Practical Machine Learning with Spark

Dataframel = sqlContext.read.format(‘com.databricks.spark.csv’) \
.options(header=’true’, inferschema=’true’) \

.load(“/home /Gourav/chap3/wage_table3.csv’)

Dataframe2 = sqlContext.read.format(‘com.databricks.spark.csv’) \
.options(header=’true’, inferschema=’true’) \

.load(“/home /Gourav/chap3/wage_table2.csv’)

outcome_df = Dataframel.intersect(Dataframe2)

outcome_df.show()

Figure 3.16 shows the code to execute the intersection transformation on existing
DataFrames in Spark:

Dataframel = sglContext.read.format(’'com.databricks
.options (header="trua', inferschema=‘trua’) \
.load (' fhome G oo v/ ge_tab csv')
= sglContext.read.format ('com. i .spark.csv') \
"true', inferschema='tru)
' fhome fedhiépsnet. com/Gourav/chap3/wage tablel.csv')

f = Dataframel .intarsact (Dataframa?)

Dr.Hung| Big Data| &
Dr.Xiaong| HRI| &6
|IDx.I.5 Guptal
| Dr. Deamith|
| Dr. Eneglo| Analytics| 5
e e fummesseene e e i e paiat il s i +

Figure 3.16: Program of intersection transformation on existing Dataframe

Sample Transformation

Sample transformation can take the small samples instead of execution on full data
that will return a new RDD.

Sample Transformation on RDD

The following program shows the sample transformation on existing RDDs:

get rdd = sc.parallelize([‘This’,’book’,’will’,’help’,’all’,’the’,’Big’,
’Data’,’and’,’Machine’,’Learning’,’aspirants’])

get rdd.collect()

[‘This’, €‘book’, ‘will’, ‘help’, ‘all’, ‘the’, ‘Big’, ‘Data’, ‘and’,
‘Machine’, f‘Learning’, faspirants’]

print(type(get_rdd))

Apache Spark 111

<class ‘pyspark.rdd.RDD’>

get_sampled = get_rdd.sample(False, 0.6)

get _sampled.collect()

[“book’, ‘will’, ¢‘help’, €all’, ‘Data’, ‘and’, ‘Machine’, €‘Learning’,

‘aspirants’ |

Figure 3.17 shows the code to execute the sample transformation on existing RDDs:

>>> get_rdd = sc.parallelize(['This', 'book','will’,'help','all’,'the','Big’,'Data’','and’, 'Machine’', 'Learning’, 'aspirants’]
)
>>> get_rdd@ullect()

['This', 'book', 'will', 'help', 'all', 'the', 'Big', 'Data’, 'and', 'Machine', 'Learning', 'aspirants']

>>> print(type(get_rdd))

<class 'pyspark.rdd.RDD'>

>>> get sampled = get rdd.sample(False, 0.6)

>>> get sampled.collect()

['book', 'will', 'help', 'all', 'Data', 'and', 'Machine', 'Learning', 'aspirants'l]

Figure 3.17: Program of sample transformation on existing RDD

Sample Transformation on DataFrame
The following program shows the sample transformation on the existing DataFrame:

Dataframe = sqglContext.read.format(‘com.databricks.spark.csv’) \
.options(header="true’, inferschema=’true’) \

.load(‘/home /Gourav/chap3/wage_table2.csv’)

Dataframe.show()

Dataframe_sampled = Dataframe.sample(False, 0.7)

Dataframe_sampled.show()

Figure 3.18 shows the code to execute the sample transformation on the existing
DataFrame:

rmat('com.databricks.spark.csv') \
rue') A
age_table2.csv')

o| Analytics|
Dr .Hung|
.5 Guptal
. Deamith|
Dr.Xiaong|

femmmmmmsmsmspeem—————— B e T LR

Dataframe sampled = Dataframe.sample(False, 0.7)

. Enegle| Analytics| S0(
r.Hung| Big D &
Gupta| AR
| Dr. Deamith| AI|11000

s e e e —————— e e e s s e e e - —————

Figure 3.18: Program of sample transformation on existing dataframe

112 Practical Machine Learning with Spark

GroupByKey

GroupByKey transformations work on the mechanism of key, value
pairs of RDD. The GroupByKey will group the values for each key in the original
RDD. It will create a new pair, where the original key corresponds to this collected
group of values.

The following program shows the GroupByKey transformation in Spark:

Dataframel = sqlContext.read.format(‘com.databricks.spark.csv’) \
.options(header="true’, inferschema=’true’) \

.load(“/home /Gourav/chap3/wage_table3.csv’)

Dataframel.show()

DataFramel.createOrReplaceTempView(“new_df”)

transformed DF = spark.sql(“select Department, sum(Wage) from new_ df
group by Department”)

transformed_DF.show()

Or
Dataframel.groupBy(“Department”).sum(“Wage”).show(false)

Figure 3.19 shows the code to execute the GroupByKey Transformation on the
existing DataFrame:

>>> RDD = sc.parallelize([
(vaI", 1), ("AI", 2), ("BIGDATA", 1),
("BIGDATA", 1), ("BIGDATA", 4), ("BIGDATA", 9),
("ar", 8), ("AI", 3), ("BIGDATA", 4),
... ("DL", 6), ('DL", 9), ("DL", 5)1, 3)
>z
>>> get_transformed = RDD.groupByKey ()
>>>
>>> for data_item in get_ transformed.collect():

print(data_;tem[O], [iter_;tem for iter_;tem in data_;tem[l]])

('ar', [1, 2, 8, 31)
('DL', [6, 9, 51)
('BIGDATA', [1, 1, 4, 9, 4])

Figure 3.19: Program of GroupByKey transformation

Sort Transformation

This transformation returns the sorted data according to the elements in the RDD.
The following program shows the sort transformation:

from pyspark.sql.functions import col

Dataframe = sqlContext.read.format(‘com.databricks.spark.csv’) \

Apache Spark 113

.options(header="true’, inferschema=’true’) \
.load(“/home /Gourav/chap3/wage_table2.csv’)
selected_df=Dataframe.select(“Department”).sort(“Wage”).show()

get_sorted = Dataframe.sort(col(“Age”)).show(truncate=False)

Figure 3.20 shows the code to execute the sort transformation on a DataFrame:

from pyspark.sqgl.functions import cel
Dataframe = sglContext.read.format('com.databricks.spark.csv') \
.aptians[header:'true' inferschema='true') %
Gourav/chap3/wage table2.csv')
ataframe.select ("Department") .sort("Wage") . show ()

Big Datal
AR|
AI|

Figure 3.20: Program to sort the value of dataframe by department

Figure 3.21 shows the code to sort a DataFrame by the Age column:

>>> get_sorted = Dataframe.sort(col("Age")) .show(truncate=False)

Fommmmm - e it e el o= s ittty +
|Department | Wage |Age | Gender |Research Papers|Delivered Talks|

Fo—m - e Fo——m—— - e Fo—mmmm - e bt +
|IBig Data |60000000 |40

I
|Analytics |50000000 |43 |55 I
|HRI | 66000000051 133 |

. Deamith |AI 111000000055 112 |
.I.S Gupta|AR 180000000 |60 144 I
o o i R o o +

Figure 3.21: Program to sort the value of dataframe by Age

Actions

Actions are Spark RDD operations that do not generate any new RDDs but give the
result from that respective operation. The values of action are stored to drivers or to
the external storage system.

Reduce Action

The reduce function returns the sum-up of all the values of RDD. The following
program shows the reduce action:

get_rdd = sc.parallelize(range(1,5000))
get_rdd.reduce(lambda x,y: x+y)

114 Practical Machine Learning with Spark

Figure 3.22 shows the code to execute the reduce action on a RDD:

version 2.3.2

Using Python version 2.7.5 (default, Aug 7 2019 00:51:29)
Sparksession available as 'spark'.

>>> get_rdd = sc.parallelize(range(1,5000))

>>> get _rdd.reduce(lambda x,y: x+y)

12497500

Figure 3.22: Program to reduce the RDD

Count Action

The count action will count the number of elements in RDD. The following program
shows the count action:

get _rdd = sc.parallelize(range(1,5000))

get _rdd.count()

Figure 3.23 shows the code to execute the count action on an RDD:

>>> get rdd = sc.parallelize(range(1,5000))
[>>> get_rdd.count()

Figure 3.23: Program to count the value of an RDD

Max Action

The max action will return the max number of elements in RDD. The following
program shows the max action:

get_rdd = sc.parallelize(range(1,5000))

get_rdd.max()

Figure 3.24 shows the code to execute the max action on an RDD:

>>> get_rdd = sc.parallelize(range(1,5000))
>>> get_rdd.max()
4999

Figure 3.24: Program to return the maximum value in the RDD

Apache Spark 115

Min Action

The min action will return the min number of elements in RDD. The following
program shows the min action:

get_rdd = sc.parallelize(range(1,5000))
get_rdd.min()

Figure 3.25 shows the code to execute the min action on an RDD:

>>> get_rdd = sc.parallelize(range(1,5000))

>>> get_rdd.min()
1

Figure 3.25: Program to return the minimum value in the RDD

Sum Action

The sum action will return the sum of elements in RDD. The following program
shows the sum action:

get_rdd = sc.parallelize(range(1,5000))
get_rdd.sum()
Figure 3.26 shows the code to execute the sum action on an RDD:

P>> get_rdd = sc.parallelize(range(1,5000))
P>>> get_rdd.sum()
12497500

Figure 3.26: Program to return the sum value in the RDD

SQL or DataFrame Operations in PySpark

Apache Spark supports SQL-like query capability using DF which helps to provide
the ease to non-coder and reduce the line of code for processing the data. There are
various operations can be possible on the DF to process the data without the need of
a programmer. In this section, readers will see the various operations on DF.

Creating a DataFrame using the CreateDataframe Function
The following program shows to create a DF in Spark:

import pyspark

from pyspark.sql import SparkSession

from pyspark.sql.functions import col, lit

from pyspark.sql.types import StructType, StructField,
StringType,IntegerType

116 Practical Machine Learning with Spark

spark = SparkSession.builder.appName(‘Quick Start With SQL’).
getOrCreate()

data = [(‘Andrew’,’’,’Smith’,”1991-04-01’,’M’,3000),
(“Johnson’,’Anala’,’’,’2000-05-19°,°M’,4000),
(‘Robert’,”’’,’Williams”’,’1978-09-05",’M’,4000),
(‘Maria’,’Anne’,’Jones’,’1967-12-01",’F’,4000),
(“Jen’,’Mary’,’Brown’,’1980-02-17,°F’,-1)]

3

columns = [“firstname”,”’middlename”,””lastname”,”dob”,”gender”,”salary”]
df = spark.createDataFrame(data=data, schema = columns)
df.show()

Figure 3.27 shows the execution code and output of CreateDataFrame:

>>> import pyspark
>>> from pyspark.sql import SparkSession
>>> from pyspark.sql.functions import col, lit
>>> from pyspark.sql.types import StructType, StructField, StringType,IntegerType
>>> spark = SparkSession.builder.appName('Quick Start With SQL').getOrCreate()
('Johnson','Anala’','','2000-05-19','M',4000),
("Robert’,'','Williams','1978-09-05",'M',4000),
('Maria', 'Anne','Jones','1967-12-01','F',4000),
('Jen', 'Mary', 'Brown','1980-02-17','F',-1)
1
>>> data = [('Andrew','','Smith',6'1991-04-01','M',63000),
('Johnson', 'Anala’','','2000-05-19','M',4000),
('Robert','','Williams','1978-09-05','M',4000),
('Maria','Anne’','Jones','1967-12-01','F',4000),

('Jen', 'Mary', 'Brown','1980-02-17','F',-1)
e]
>>> columns = ["firstname","middlename", "lastname", "dob","gender", "salary"]
>>> df = spark.createDataFrame (data=data, schema = columns)
>>> df.show()

+- +--- + -—-+
| firstname |middlename | lastname| dob|gender|salary|
tmmmm————- e o= e o= o= +
Andrew| Smith|1991-04-01|
Johnson| Anala| [2000-05-19] 4000]
Robert| IWilliams|1978-09-05] 4000]
Marial| Anne| Jones|1967-12-01] 4000]
Mary| Brown|1980-02-17]
t--mmm - oo -------- oo +------ +------ +

Figure 3.27: PySpark code to create a dataframe from the given inputs

To Create a DataFrame Through Excel File

The following program shows how to create a DF from excel file in a spark:
import pyspark

from pyspark.sql import SparkSession

from pyspark.sql.functions import col, lit

from pyspark.sql.types import StructType, StructField,

Apache Spark 117

StringType,IntegerType

dataframe = sqlContext.read.format(‘com.databricks.spark.csv’) \
.options(header="true’, inferschema=’true’) \

.load(“/home /Gourav/chap3/wage_table3.csv’)

dataframe.show()

print(type(dataframe))

Figure 3.28 shows the screenshot of the output and code to create a DF from an Excel
file:

import pyspark

from pyspark.sqgl import SparkSession

from pyspark.sgl.functions import col, 1lit

from pyspark.sgl.types import StructType, StructField, StringType,IntegerType

dataframe = sglContext.read.format('com.databricks.spark.csv') \
.options(header='true', inferschema='true') \
.load (' /home f@ourav/chap3/wage tableld.csv')

>>>

>>> print (type (dataframe))

<class 'pyspark.sgl.dataframe.DataFrame'>

>>> dataframe.show()

|Department |
o e e e e e e e -
[Eneglo| Analytiecs| 50000000|
[Dr.Hung| Big Data| 60000000|
|IDr.I.8 Guptal AR| 20000000]
| Dr. Deamith| AT|110000000]
[Dr.Xiaong| HRI| 660000000
| De. Andrew | Analytics|150000000]
[Dr.Smith| Big Datal 20000000|
| Dr.Manish| IOT| 50000000|
|Dr. Anageles| ML|100000000]
I Dr.Xingl DL| &0000000]
| Dr. Eneglo| Analytiecs| 50000000|
[Dr.Hung| Big Data| 60000000|
|DE.I.S Guptal AR| 80000000]
| Dr. Deamith| AI|110000000]
| Dr.Xiaong| HRTI | 660000000]|
| Dr. Andrew | Analytics|150000000]
| Dr.Smith| Big Datal 20000000|

Figure 3.28: PySpark code to create a dataframe from an Excel file

To Change the Datatype of a Single Column
The following program shows how to change the data type of a column in a DF:

dataframe.show()
dataframe.printSchema()
changed_dataframe = dataframe.withColumn(“Wage”,col(“Wage™).

118 Practical Machine Learning with Spark

cast(“string”))

changed_dataframe.printSchema()

Figure 3.29 shows the screenshot of the output and code to change the datatype of a
column:

>>> dataframe.printSchema ()

root
|-- Name : string (nullable = true)
| -- Department: string (nullable = true)
|-- Wage: integer (nullable = true)
|-- Age: integer (nullable = true)
|-- Gender: string (nullable = true)
|-- Research Papers: integer (nullable
|-- Delivered Talks: integer (nullable

true)
true)

>>> changed_dataframe = dataframe.withColumn ("Wage",col ("Wage") .cast("string"))
>>>
>>> changed_dataframe.printsahema()
root
|-- Name : string (nullable = true)
| -- Department: string (nullable = true)
|-- Wage: string (nullable = true)
Age: integer (nullable = true)
Gender: string (nullable = true)
Research Papers: integer (nullable
Delivered Talks: integer (nullable

Figure 3.29: Pyspark code to change the datatype of single column

To Change the Datatype of all the Columns to String Type
The following program shows how to change the datatype all the columns in a DF:

all_changed_datatypes=dataframe.select([col(c).cast(“string”) for c in
dataframe.columns])

Figure 3.30 shows the screenshot of the output and code to change datatypes of all
the columns:

>>> all_changed_datatypes:dataframe.select([col(c).cast(”strinq") for ¢ in dataframe.columns])

>>> all changed datatypes.show()

Hmmmmmm - +m————— - Fo—m—————- R Rt e +
Name |Department| Wage | Age | Gender |Research Papers|Delivered Talks|

o 4o pmm - o e +

| Dr. Eneglo| Analytics| 50000000| 43| M| 71

| Dr.Hung| Big Data| 60000000| 40| F| 41| 14|

|Dr.I.S Guptal AR| 80000000] 60| M| 44| 22|

| Dr. Deamithl| AT|110000000] 55| M| 12| 29|

| Dr.Xiaong| HRI|660000000| 51| F| 33| 66|

| Dr. Andrew | Analytics|150000000| 34| M| 23| 71

| Dr.smith| Big Data| 20000000] 28] M| 35] 11|

| Dr.Manish| IOT| 50000000] 41| M| 28| 17|

|Dr. Rnageles| ML |100000000] 37| M| 41| 22|

| Dr.Xing| DL| 60000000] 40| F| 39] 31

| Dr. Eneglo| Analytics| 50000000| 43| M| 55] 71

| Dr.Hung| Big Data| 60000000| 40| F| 41| 14|

|Dr.I.s Guptal AR| 80000000] 60| M| 44|

| Dr. Deamith| AT|110000000] 55| M| 12|

| Dr.Xiaong| HRI|660000000| 51| F|

| Dr. Andrew | Analytics|150000000| 34|

| Dr.smith| Big Datal 200000001 28|

+-——————————- +-————————- e e H-————mm - Attt +

Figure 3.30: Pyspark code to change the datatype of all the columns to a string datatype

Apache Spark 119

Figure 3.31 shows the screenshot of datatypes of columns:

>>> all changed datatypes.printSchema ()

Name : string (nullable = true)
Department: string (nullable = true)
Wage: string (nullable = true)

Age: string (nullable = true)
Gender: string (nullable = true)
Research Papers: string (nullable
Delivered Talks: string (nullable

Figure 3.31: Output of changed datatypes of all the columns of a dataframe

Update the Value of an Existing Column
The following program shows how to update an existing column in a DF:

updated _dataframe = dataframe.withColumn(“Wage”,col(“Wage”)*2)
updated_dataframe.show()
updated_dataframe.printSchema()

Figure 3.32 shows the screenshot of the code to update the value of an existing DF:

>>> upadted dataframe = dataframe.withColumn ("Wage", col ("Wage") *2)

>>> upadted dataframe.show()

Fommm o e o o i +
Name |Department| Wage |Age | Gender |Research Papers|Delivered Talks|

ettt o= - e ittt Fo—mm—mm—m - +

| Dr. Eneglo| Analytics| 100000000 43| M| 71

| Dr.Hung| Big Data| 120000000| 40| F| 41| 14|

IDr.I.S Guptal AR| 160000000| 60] M| 44| 22|

| Dr. Deamith| AI| 220000000| 551 M| 12| 29|

| Dr.Xiaong| HRI|1320000000] 51| F| 33| 66|

| Dr. Andrew | Analytiecs| 300000000 34| M| 23| 71

| Dr.Smith| Big Datal 40000000] 28] M| 35| 11|

| Dr.Manish| IOT| 100000000| 41| M| 28|

|IDr. Anageles| ML| 200000000| 37| M| 41|

| Dr.Xing| DL| 120000000 40] F| 39|

| Dr. Eneglo| Analytics| 100000000| 43| M| 55|

| Dr.Hung| Big Data| 120000000| 40| F| 41|

IDr.I.S Guptal AR| 160000000] M|

| Dr. Deamith| AI| 220000000| 55] M| 12|

| Dr.Xiaong| HRI|1320000000] F|

| Dr. Andrew | Analytics| 300000000]

| Dr.smith| Big Datal 40000000]|

Bt b bt e bt ey +

Figure 3.32: PySpark code to update the value of an existing column

To Create a New Column from an Existing Column

The following program shows how to create a new column from an existing DF:
new_column = dataframe.withColumn(“New Column”,col(“Age”)* 3)

120 Practical Machine Learning with Spark

new_column.printSchema()
new_column.show(10)

OR

Adding a New Column using the Constant Value using the lit function is
Mentioned as Below:

integrated_litfunc = dataframe.withColumn(“lit_column”, 1it(“200”))
integrated.show(10)

Figure 3.33 shows the screenshot of the code to add a new column in an existing DF:

>>> new_column = dataframe.withColumn("New Column",col("Age")* 3)
>>> new_column.printsahema (§]
root
|-- Name : string (nullable = true)
| -- Department: string (nullable = true)
|-- Wage: integer (nullable = true)
|-- Age: integer (nullable = true)
|-- Gender: string (nullable = true)
|-- Research Papers: integer (nullable = true)
|-- Delivered Talks: integer (nullable = true)
|-- New Column: integer (nullable = true)

>>> new_column.show(10)

F-——m———————= F-———————-= +-——————-- e Fo—mm - Fo——— - +-————————- +
| Name |Department| Wage | Age | Gender |Research Papers|Delivered Talks|New Column|
F-——————————= F-——————--= +--—————-- e Fo—mm - Fo———————— - +-————————- +
| Dr. Eneglo| Analytics| 50000000| 43| M| 71

| Dr.Hung| Big Data| 60000000 40| F| 41| 14| 1201
|De.I.5 Guptal AR| 80000000| 60| M| 44| 22| 1801
| Dr. Deamithl| AI|110000000]| 551 M| 12| 29| 1651
| Dr.Xiaong| HRI|660000000| 51| F| k]| 66| 153|
| Dr. Andrew | Analytics|150000000| 34| M| 23| 71 102]
| Dr.smith| Big Data| 20000000| 28| M| 35| 11| 84|
| Dr.Manish| IOT| 50000000] M| 123]
|IDr. Anageles| ML |1000000001 111]
| Dr.Xing| DL| 60000000|

R e it $-————m—m - e R ity e e +o—mm +
only showing top 10 rows

Figure 3.33: PySpark code to create a new column from an existing column

Registering a Temporary Table from a DF for Querying Like SQL

The following program shows how to register a temporary table from an existing DF
for querying like a SQL framework:

import pyspark

from pyspark.sql import SparkSession

from pyspark.sql.functions import col, lit

from pyspark.sql.types import StructType, StructField,
StringType,IntegerType

dataframe = sqlContext.read.format(‘com.databricks.spark.csv’) \

.options(header="true’, inferschema=’true’) \

Apache Spark 121

.load(“/home /Gourav/chap3/wage_table3.csv’)
dataframe.show(5)
dataframe.registerTempTable(“get_table”)
sqlContext.sql(“select * from get_table”).show(5)

Figure 3.34 shows the screenshot of the code and output to register a temporary table:

[

>>> dataframe = sglContext.read.format('com.databricks.spark.csv') \
.options (header="true', inferschema='true') \
.load(' /home fGourav/chap3/wage tablel.csv')

dataframe.show(5)
dataframe.registerTempTable ("get table")
sglContext.sgl ("select * from get table") .show(5)>>>

~

Dr. Eneglo| Analyties| 50000000|
| Dr.Hung| Big Datal 60000000
IDc.I.5 Guptal AR| B0000000|
| Dr. Deamith| AT|110000000]|
Dr.Xiaong| HRI|660000000|
Fm——————————— Fm————————— $m———————— e ————— pm—————————————— e ————————— +
only showing top 5 rows

»>»> dataframe.registerTempTable ("get_table")

>>> sglContext ("select * from get table").show(5)

e pmmmmmmmmee T — T e —— T e — +
Name |Department| Wage | Age | Gender |Research Papers|Delivered Talks|

Dr. Eneglo| Analytics|
| Dr.Hungl| Big Datal 60000000|
|Dx.I.5 Guptal AR| B000QO0O0O|
| br. Deamith| AT|110
Dr.Xiaong|
e e e e e i A Fm——m———— o e e e e e e e +
only showing tep 5 &

Figure 3.34: PySpark code to register a temporary table from a Dataframe

Appending the Sequence ID Column with the Existing Dataframe
using the lit() function

The following program shows how to append a sequence ID from an existing DF
using the 1it() function:

from pyspark.sql.functions import 1lit
import pyspark
from pyspark.sql import SparkSession

from pyspark.sql.functions import col, lit

122 Practical Machine Learning with Spark

from pyspark.sql.types import StructType, StructField,
StringType,IntegerType

dataframe = sqlContext.read.format(‘com.databricks.spark.csv’) \
.options(header="true’, inferschema=’true’) \

.load(“/home /Gourav/chap3/wage_table3.csv’)

dataframe_schema = dataframe.withColumn(“index”, 1it(1))
dataframe_schema.printSchema()

Figure 3.35 shows the screenshot of the code and output to append a sequence ID
from an existing DF using the 1it() function:

fpe , IntegerType

|== Departmant

|== Wage: intag (able = trua)

|== :int (Aullable = trus)
= true)
(nullable true)
(nullable trua)

= false)

Figure 3.35: PySpark code to append a sequence id column with an existing dataframe using lit() function

Appending a Sequence ID Column with an Existing DF using the
zipWithIndex() function

The following program shows how to append a sequence ID with an existing DF
using the zipWithIndex() function

schema_rdd = dataframe.rdd.zipWithIndex().map(lambda (row,rowId): (
list(row) + [rowId+1]))

indexed_df = sqglContext.createDataFrame(schema_rdd, schema=dataframe_
schema.schema)

indexed_df.printSchema()

indexed_df.show(10)

or

indexed_df.registerTempTable(“registered_table”)
sqlContext.sql(“select * from registered_table”).show(10)

Apache Spark 123

Figure 3.36 shows the screenshot of the code and output to append a sequence ID
with an existing DF using the zipWithIndex() function:

>>> schama_rdd = dataframe.rdd.zipWithIndex () .map(lambda (row,rowId): (list(row) + [rowId+1l]))
>>> indexed df = sqglContext.createDataFrame (schema rdd, schema=dataframe schema.schema)

>>> indexed df.printSchema ()

root
|-- Name : string (nullable = true)
Department: string (nullable =
Wage: integer (nullable = true)
Age: integer (nullable = true)
Gender: string (nullable = true)
Research Papers: integer (nullable
Delivered Talks: integer (nullable
false)

I-- true)
‘__
‘__
‘__
‘__
|--

index: integer (nullable =

>>> indexed df.show(10)
Fmmmmm - F———————— F———————- - Fm——mmm Fmmmmmmmm F-———- +
Name |Department| Wage |Age |Gender |Research Papers|Delivered Talks|index|

Dr. Eneglo| Analytics| 50000000]
| Dr.Hung| Big Data| 60000000]|

|Dr.I.s Guptal
| Dr. Deamith|
| Dr.Xiaongl|
| Dr. Andrew |
| Dr.Smith|
| Dr.Manish|
|Dx. Anageles|

Dr.Xing|

AR| 80000000]|
AI|110000000]
HRI|660000000|

Analytics|150000000]

Big Data| 20000000|
IOT| 50000000]|
ML|100000000]|
DL| 60000000]

e S e e o mmmm e mmmmmmm e - +
only showing top 10 rows

Figure 3.36: PySpark code to append a sequence ID column with an existing
dataframe using the zipWithIndex() function

Figure 3.37 shows the screenshot of the code and output to display the query result
using the temporary table:

Registering into a Temporary Table to Display DF Values

>>> indexed df.registerTempTable ("registered table")
>>»> sqlContext.sqgl ("select * from registered table").show(10)
+-= +
Name |Department| Wage | Age | Gender |Research Papers|Delivered Talks|index|
Fo—mm—— - Fo—m— - e e Fommmm e e bt e +
Dr. Eneglo| Analytics| 50000000]
Dr.Hung| Big Data| 60000000]|
Dr.I.S Guptal AR| 80000000]
Dr. Deamith| AI|110000000]
Dr.Xiaong| HRI|660000000]
Dr. Andrew | Analytics|150000000]|
Dr.smith| Big Data| 20000000]
Dr.Manishl| IOT| 50000000]|
Dr. Anageles| ML|100000000]
Dr.Xing]| DL| 60000000]|
+-——————————= e e e Fo—m—m - Fm—m—m - +-——=- +
only showing top 10 rows

40]
60|
551
51|
34
28|
41|
371

41|
44|
12|
33|
23|
35]
28|
41|

Figure 3.37: Displaying the output of the registered table using SQL query

124 Practical Machine Learning with Spark

Using monotonically(func) to Append an Index Column with the
Existing DF

The following program shows how to append an index column with an existing DF
using monotonically (func):

from pyspark.sql.functions import monotonically increasing_id

dataframe = sqlContext.read.format(‘com.databricks.spark.csv’) \
.options(header=’true’, inferschema=’true’) \

.load(“/home /Gourav/chap3/wage_table3.csv’)

get_dataframe =dataframe.withColumn(“index”,monotonically_increasing_id())

Figure 3.38 shows the screenshot of the code and output to append an index column
with an existing DF using the monotonically (func):

from pyspark.sqgl.functions import monotonically increasing id

text.read

get _datafram

i e e T e L e T e T

Name |Department|

Dr. Eneg
. Hundg|
Guptal
. Deamithl|

Dr.Smith| Big Datal
Dr.Manish| IoT|
|IDE. Anageles|

Figure 3.38: PySpark code to append a sequence ID column with
an existing dataframe using the monotonically() func

Rename Column Name of an Existing DF

The following program shows how to rename the column of an existing DF:
renamed_df = dataframe.withColumnRenamed(“gender”,”sex™).
show(truncate=False)

renamed_df.printSchema()

Figure 3.39 shows the screenshot of the code and output to rename the column of an
existing DF:

Apache Spark 125

>>> renamed df = dataframe.withColumnRenamed ("gender","sex") .show(truncate=False)
$———————————- +-————————= $————————- T il $m——m - +
|Department | Wage |Age | sex|Research Papers|Delivered Talks|
$m——————————- +-————————= $————————- e e Fo—— +
. Eneglo |Analytics |50000000 |43 |55 17 |
.Hung |Big Data |60000000 |40 141 114 |
.I.S Gupta|AR | 80000000 |60 | 44 122 |
. Deamith |AI 111000000055 112 129
.Xiaong | HRT | 66000000051 133 |66 |
. Andrew |Analytics |150000000] 34 123 17 |
.Smith |Big Data [20000000 |28 135 111 |
.Manish | IOT | 50000000 |41 |28 117 |
. Anageles|ML 110000000037 141 122 |
.Xing | DL | 60000000 |40 139 131 |
. Eneglo |Analytics |50000000 |43 |55 17 |
.Hung |Big Data |60000000 |40 141 114 |
.I.S GuptalAR 180000000 |60 144 122 I
. Deamith |AT 1110000000155 129 |
.Xiaong | HRT | 66000000051 |
. Andrew |Analytics |150000000|34 |
.Smith |Big Data [|20000000 |28 |
$-——————————- +-———————-= e e $-——m - +

Figure 3.39: PySpark code to rename the column name of an existing dataframe

Dropping a Column from an Existing DF
The following program shows how to drop a column in an existing DF:

dropped_column = dataframe.drop(“Wage”).show(truncate=False)
dropped_column.show()

Figure 3.40 shows the screenshot of the code and output to drop a column in an
existing DF:

>>> dropped column dataframe.drop ("Wage") .show (truncate=False)
+-——————————- +-————————- +-——t-————- +-—————————————= +-—————————————- +
|Department |Age | Gender |Research Papers|Delivered Talks|
- +-————————- +-——4-————- F-——— - +
Eneglo |Analytics |43 |M 17 I
.Hung |Big Data |40 |F |41 114
.I.5 Guptal|aAR 160 M |44 122
. Deamith |AT |55 |M 112 129
.Xiaong | HRT 151 |F 133 |66
. Andrew |Analytics |34 |M 123 17
.Smith IBig Data [28 M 135 111
.Manish | IOT 141 |M 128 117
. Anageles|ML 137 IM |41 122
.Xing IDL 140 |F 139 131
Eneglo |Analytics |43 |M 155 17 I
.Hung |Big Data |40 |F |41 114
.I.5 Guptal|aR |60 |M |44 122
. Deamith |AT |55 |M 112 129
.Xiaong | HRT 151 |F 133 |66
I
I

. Andrew |Analytics |34 123
|Big Data
e e +o——m - R e -+

Figure 3.40: PySpark code to drop a column from an existing dataframe

126 Practical Machine Learning with Spark

Select a Single Column from PySpark for Displaying the Content
of a DF

The following program shows how to display the output of a column in an existing
DF:

selected_column = dataframe.select(“Department”).show(truncate=False)

Figure 3.41 shows the screenshot of code and output to display the output of a column in an
existing DF:

dataframe.select ("Department") .show(truncate=False)

|Analytics |
IBig Data
|AR
|AT
| HRT
|Analytics
IBig Data
| IOT
| ML
| DL
|Analytics
IBig Data

|Analytics
IBig Data

Figure 3.41: PySpark code to select a particular column from a dataframe

Select all Columns of a DataFrame to Display the Content

The following program shows how to display the value of all columns in an existing
DF:

all columns =dataframe.select([col(c) for c in dataframe.columns])

all columns.show()

Figure 3.42 shows the screenshot of the code and output to display the value of all
columns in an existing DF:

Apache Spark 127

>5> all_cullu'n.ns =dataframe.select([col(c) for c in dataframe.columns])

>5> all_culu.mns. show ()

H-————— - H-————————= H-———————- e - mm - - mm - +
| Name |Department| Wage | Age | Gender |Research Papers|Delivered Talks

o e et - e et o o +
| Dr. Eneglo| Analytics| 50000000| 43| M| 55| 71
| Dr.Hung| Big Data| 60000000| 40| F| 41| 14|
IDr.I.s Guptal AR| 800000001 601 M| 44| 221
| Dr. Deamith| AT|110000000] 55| M| 12| 29|
| Dr.Xiaong| HRI|660000000]| 51| F| 33| 66|
| Dr. Andrew | Analytics|150000000| 34| M| 23| 71
| Dr.Smith| Big Datal 200000001 28| M| 351 111
| Dr.Manish| IOT| 50000000 41| M| 28| 171
|Dr. Anageles| ML|[100000000| 37| M| 41| 22|
| Dr.Xing| DL| 60000000| 40| F| 39| 31|
| Dr. Eneglo| Analytics| 50000000| 43| M| 55| 71
Dr.Hung	Big Data	60000000	40	F	41	14
IDr.I.s Guptal AR	80000000	60	M	44	22	
Dr. Deamith	AI	110000000	55	M	12	

| Dr.Xiaongl HRI| 6600000001 Fl

| Dr. Andrew | Analytics|150000000]

| Dr.sSmith| Big Data| 20000000

H-————— - H-————————= H-———————- e - mm - - mm - +

Figure 3.42: PySpark code to select all the columns from a dataframe

Select Multiple Columns from PySpark for Displaying the Content

The following program shows how to display the value of multiple columns in an
existing DF:

multiple columns = dataframe.select(“Department”,”Wage”).
show(truncate=False)

or
from pyspark.sql.functions import col

dataframe.select(col(“Department”),col(“Age”)).show()

Figure 3.43 shows the screenshot of the code and output to display the value of
multiple columns in an existing DF:

= dataframe.select("Department”,"Wage") .show(truncate=False)

|Department |Wage
o e
|Analytics |50000000
|Big Data [60000000
180000000
1110000000]
| 660000000|
|analytics |150000000]|
|Big Data 20000000 |
150000000 |
11000000001
160000000 |
|Analytics |50000000 |
|Big Data |60000000 |
|AR 180000000 |
|AT 1110000000]
|HRI 16600000001
|Analytics |150000000]
|Big Data (20000000 |
Fmmmmm o +

Figure 3.43: PySpark code to select multiple columns from a dataframe

128 Practical Machine Learning with Spark

Figure 3.44 shows the screenshot of the code and output to display the value of
multiple columns in an existing DF using the col() function.

The following program shows how to select the respective columns from the DF to
display the data using the col() function:

>>> from pyspark.sgl.functions import col

>>> dataframe.select (col ("Department") ,col ("Age")) .show()
e +-——+

|Department |Age|

- +-——+

| ABnalyties]|

| Big Datal| 40]
I AR| 60]
I AI| 55|
I HRI| 51|
| Analytics| 34|
| Big Data| 28|
I IoT| 41|
I ML |

I DL|

| Analytics]|

| Big Datal

I AR|

I AT|

I HRI|

| Analyties]|

| Big Datal|
e +--—+

Figure 3.44: PySpark code to select multiple columns from a dataframe using the col() function

Retrieving into Array using collect ()

The following program shows how to retrieve the result into an Array from the DF
using the collect function:

dataframe = sqlContext.read.format(‘com.databricks.spark.csv’) \
.options(header="true’, inferschema=’true’) \

.load(“/home /Gourav/chap3/wage_table3.csv’)

dfto_array = dataframe.collect()

print(type(dfto_array))

>> dfto_array

Figure 3.45 shows the screenshot of the code and output to retrieve the result into an
Array from the DF using the collect function:

Apache Spark 129

; Delix

reo

Figure 3.45: Output of the collect function on a dataframe

Filter () to Filter out the Data by Passing Some Conditions

The following program shows how to filter the value by passing some condition in
an existing DF:

filtered_df = dataframe.filter(dataframe.Age > 35).show(truncate=False)

OR
filtered_df = dataframe.filter(col(“Age”) > 35).show(truncate=False)

Figure 3.46 shows the screenshot of the code and output of the filter function to filter
out the value by passing some condition in an existing DF:

>>> filtered df = dataframe.filter(dataframe.Age > 35).show(truncate=False)
+-——————————- +-————————- e e e e +
|Department | Wage | Age | Gender | Research Papers|Delivered Talks|
+-——————————- +-————————- e e e e +
Eneglo |Analytics |50000000 |43 |M |55 17
.Hung IBig Data 60000000 |40 |F |41 |14
.I.5 Guptalar 180000000 |60 M |44 |22
. Deamith |AI I1110000000|55 |M 112 129
.Xiaong | ERI | 660000000|51 |F 133 |66
.Manish | IOT 150000000 |41 |M |28 117
. Anageles|ML 1100000000137 |M |41 |22
.Xing IDL | 60000000 [40 |F 139 131
Eneglo |Analytics |50000000 |43 |M |55 17
.Hung IBig Data 60000000 |40 |F |41 |14
I
I
I

.I.S GuptalAR 180000000 |60 M |44 122
. Deamith |AI 1110000000 55 112 129
.Xiaong |HRT | 660000000 51 133 |66
o e Ao Ao +

Figure 3.46: Displaying the output of the filter function on a dataframe

130 Practical Machine Learning with Spark

Figure 3.47 shows the screenshot to display the result of a DF after applying the filter
condition:

>>> fitered df = dataframe.filter(col("Age") > 35).show(truncate=False)

Fm——m———————- === Fm——————=- +-== -
|Department | Wage |Age | Gender |Research Papers|Delivered Talks|

+-—— - +-————————- - +-———————- et e +

. Eneglo |Analytics |50000000 |43
.Hung |Big Data [|60000000 |40 |41
.I.8 GuptalAR 180000000 |60 |44

I
I
I
. Deamith |AI 111000000055 112 I
.Xiaong |HRI |1 66000000051 133 I
.Manish | TOT 150000000 |41 |28 I
. Anageles|ML 1100000000 37 I
.Xing |DL | 60000000 |40 |
. Eneglo |Analytics |50000000 |43 |
.Hung |Big Data |60000000 |40 |
.I.8 GuptalAR 180000000 |60 I
. Deamith |AI 111000000055 I
.Xiaong 166000000051 I
Fmmmm———————— o ———————— Fm———————— i o e +

Figure 3.47: Displaying the output of the filter function on a dataframe using the col() function

Filter() in an Existing DF with Multiple Conditions

The following program shows how to filter the value by passing multiple conditions
in an existing DF:

multiple cond_filtered = dataframe.filter((dataframe.Wage > 35) &
(dataframe.Gender == “M”)).show(truncate=False)

Figure 3.48 shows the screenshot to display the result of a DF after applying multiple
filter conditions:

>>> multiple cond filtered = dataframe.filter((dataframe.Wage > 35) & (dataframe.Gender == "M")).show(truncate=False)
Fomm Fm——m e i e ittt o mmmm +
|Department | Wage | Age | Gender |Research Papers|Delivered Talks|
Rt i e e ittt b +
. Eneglo |Analytics |50000000 |43
.I.S Guptal|AR 180000000 |60 |44
. Deamith |AI 111000000055 112
. Andrew |Analytics |150000000]|34 123
.Smith |IBig Data 20000000 |28 135
.Manish | I0T 150000000 |41 |28
. Anageles|ML 110000000037 141
. Eneglo |Analytics |50000000 |43 155
.I.S Guptal|ar 180000000 |60 |44
. Deamith |AI 111000000055 112
. Andrew |Analytics |150000000]|34 123
|Big Data [20000000 |28
o e i e S it ittt +

Figure 3.48: Displaying the output of multiple filter operations on a dataframe using the col() function

PySpark Distinct of Multiple Columns

The following program shows how to get the distinct values in an existing DF:
dataframe = sqlContext.read.format(‘com.databricks.spark.csv’) \

Apache Spark 131

.options(header=’true’, inferschema=’true’) \

.load(“/home /Gourav/chap3/wage_table3.csv’)

dropMulDF = dataframe.dropDuplicates([“Department”,”Age”])
print(“Distinct count of department & Name : “+str(dropMulDF.count()))
dropMulDF.show(truncate=False)

Figure 3.49 shows the screenshot to display the result of a DF after applying the
distinct operation:

| IoT

Andraw |Analytics
. Anageles|ML

th |Big Data
kiaong | BRI
Deamith |AX
|IDL

|Big Data

ol e b B2
Bl i L

Figure 3.49: Displaying the output of a distinct operation on a dataframe

Count of the Total Number of Rows in an Existing DF

The following program shows how to get the count of the total number of rows in
an existing DF:

dataframe = sqlContext.read.format(‘com.databricks.spark.csv’) \
.options(header="true’, inferschema=’true’) \

.load(“/home /Gourav/chap3/wage_table3.csv’)

print(“Total count of dataframe: “+str(dataframe.count()))

Figure 3.50 shows the screenshot to display the result of a DF after the count operation:

>>> dataframe = sqlContext.read.format ('com.databricks.spark.csv')
.options (header='true', inferschema='true') \
.load (' /home/ fGourav/chap3/wage table3.csv')

>

>>> print ("Total count of dataframe: "+str(dataframe.count()))

Total count of dataframe: 17

Figure 3.50: Displaying the output of the count operation on a dataframe

132 Practical Machine Learning with Spark

GroupBy Operation in an Existing DF
The following program shows the GroupBy operation in an existing DF:

aggregated_df = dataframe.groupBy(“Department”).sum(“Age”).
show(truncate=False)

Aggregate Functions with filter and group By

dataframe.groupBy().sum(“Wage”).filter(F.col(“Wage”) >= 35).
show(truncate=False)

dataframe.groupBy(“Department”).sum(“Wage”).show(truncate=False)

Figure 3.51 shows the screenshot to display the result of a DF after the GroupBy
operation:

>>> aggregated df = dataframe.groupBy("Department").sum("Age") .show(truncate=False)
et 4o +

|Department | sum(Age) |

F-—— - +-——————-

|DL
|AT
|Analytics
|IBig Data

+
|
| T0T |
|
|
|
|
|
|

Figure 3.51: Displaying the output of the groupBy operation on a dataframe

Inner Join in Two Dataframes
The following program shows the Inner join operation in an existing DF:

dataframel = sqlContext.read.format(‘com.databricks.spark.csv’) \
.options(header="true’, inferschema=’true’) \

.load(“/home /Gourav/chap3/wage_table.csv’)

dataframe2 = sqlContext.read.format(‘com.databricks.spark.csv’) \
.options(header="true’, inferschema=’true’) \

.load(“/home /Gourav/chap3/wage_table2.csv’)

Join_DF = dataframel.join(dataframe2, on=[‘Department’], how=’inner’).

show()

Figure 3.52 shows the screenshot to display the result of a DF after the Inner join
operation:

Apache Spark 133

Figure 3.52: Displaying the output of the Inner join operation on two dataframes

Outer Join in Two DFs

The following program shows the Outer join operation in an existing DF:

dataframel = sqlContext.read.format(‘com.databricks.spark.csv’) \
.options(header=’true’, inferschema=’true’) \

.load(‘/home /Gourav/chap3/wage table.csv’)

dataframe2 = sqlContext.read.format(‘com.databricks.spark.csv’) \
.options(header=’true’, inferschema=’true’) \

.load(‘/home /Gourav/chap3/wage_table2.csv’)

Join_DF = dataframel.join(dataframe2, on=[‘Department’], how=’outer’).

show()

Figure 3.53 shows the screenshot to display the result of a DF after the Outer join
operation:

|Department|
Papers|Delivered Talks|

nullinulll null| Dr.Xiaong|660000000] 51|

I0T| Dr.Manish| 50000000] 41] 17| null| null|null|
null]| null]|

DL| Dr.Xing| 600000001 40| 31| null| null|null]
null] null]

AT| null| null|null| null| Dr. Deamith|110000000] 55|

12] 29|

Analytics| Dr. Andrew |150000000] 34| 71 Dr. Eneglo| 50000000 43|
551 71
Big Data| Dr.smith| 20000000| 28| Dr.Hung| 60000000| 40|
41| 14|
ML|Dr. Anageles|100000000] 37| 22| null| null|null]
null]
null| nullinulll null|Dr.I.S Gupta| 80000000| 60|

Figure 3.53: Displaying the output of the Outer join operation on two dataframes

134 Practical Machine Learning with Spark

Left Join in Two Dataframes
The following program shows the Left join operation in an existing DF:

dataframel = sqlContext.read.format(‘com.databricks.spark.csv’) \
.options(header="true’, inferschema=’true’) \

.load(‘/home /Gourav/chap3/wage table.csv’)

dataframe2 = sqlContext.read.format(‘com.databricks.spark.csv’) \
.options(header="true’, inferschema=’true’) \

.load(‘/home /Gourav/chap3/wage_table2.csv’)

Join_DF = dataframel.join(dataframe2, on=[‘Department’], how=’left’).show()

Figure 3.54 shows the screenshot to display the result of a DF after the Left join
operation:

>>> Join DF = dataframel.join(dataframe2, on=['Department'], how='left').show()

——————— T S e e e e
|Department|
ers|Delivered T

| Analytics| Dr. Andrew |150000000] 7|Dr. Eneglo|50000000| 43
55| 71
Big Datal Dr.smith| 20000000] 111 Dr.Hung|60000000] 40

14|

TOT| Dr.Manish| 50000000]| 17| null| null |null]|
null]|

ML|Dr. Anageles|100000000]| null| null [null|
nulll|

Dr.Xingl| 60000000] null| null|null|

Figure 3.54: Displaying the output of the left join operation on two dataframes

Right Join in two DFs
The following program shows the Right join operation in an existing DF:
dataframel = sqlContext. . (“com.databricks.spark.csv’) \
.options(header="true’, inferschema=’true’) \

(“/home /Gourav/chap3/wage_table.csv’)
dataframe2 = sqglContext. . (“com.databricks.spark.csv’) \
.options(header="true’, inferschema=’true’) \

(“/home /Gourav/chap3/wage_table2.csv’)
Join DF = dataframel.join(dataframe2, on=[‘Department’], how=’right’).show()

Figure 3.55 shows the screenshot to display the result of a DF after the Right join
operation:

Apache Spark 135

|Department|
apers|Delivered Talks|
[+ -—+- -

-- -+

Analytics|Dr. Andrew |150000000] 34| . Eneglo| 50000000]
55]

Big Data| Dr.Smith| 20000000]| 28] Dr.Hung| 60000000]

41] 14|
null| null |null]| null|Dr.I.S Gupta| 80000000|
44| 22|
null] null|nulll null| Dr. Deamith|110000000]
291
null]| null|nulll null| Dr.Xiaong| 6600000001
661

Figure 3.55: Displaying the output of right join operation on two dataframes

Cross join in Two Dataframes

The following program shows the Cross join operation in an existing DF:
dataframel = sqglContext. . (‘com.databricks.spark.csv’) \

.options(header="true’, inferschema=’true’) \

. (“/home /Gourav/chap3/wage_table.csv’)

dataframe2 = sqglContext. . (‘com.databricks.spark.csv’) \
.options(header="true’, inferschema=’true’) \

. (“/home /Gourav/chap3/wage_table2.csv’)

dataframel.crossJoin(dataframe2).show()

Figure 3.56 shows the screenshot to display the result of a DF after the cross join
operation:

>>> dataframel.crossJoin(dataframe2) .show(10)

Name |Department]| Wage | Age | Gender |Research Papers|Delivered Talksl| Name |Department| Wage | Age | Gender |Re
search Papers|Delivered Talks|
+-

. Andrew | Analytics|150000000] . Enegleo| Analytics|50000000]
55| 71

Dr.Smith| Big Data| 20000000] 11|Dr. Eneglo| Analytics|50000000]|
55| 71

Dr.Manish| IOT| 500000001 17|Dr. Eneglo| Analytiecs|50000000]
551 71

. BAnageles| ML|100000000| 22|Dr. Enegleo| Analytics|50000000]
55| 71

Dr.Xing| DL| 60000000| 31IDr. Enegle| Analytics|50000000]
55| 71

. Andrew | Analytics|150000000] 71 Dr.Hung| Big Data|60000000]|
41| 14|

Dr.Smith| Big Datal 20000000] 111 Dr.Hung| Big Datal60000000|
41| 14|

Dr.Manish| IOT| 50000000] 171 Dr.Hung| Big Data|60000000]
41| 14|

. Anageles| ML|100000000| 22| Dr.Hung| Big Datal|60000000]
41| 14|

Dr.Xing| DL| 60000000| Big Data|60000000]

41

only showing top 10 rows

Figure 3.56: Displaying the output of the cross join operation on two dataframes

136 Practical Machine Learning with Spark

User Defined Function (UDF) in PySpark

This program shows how to convert the upper word into lower word of a column
of a DF:

from pyspark.sql import SQLContext
from pyspark.sql.types import *
from pyspark.sql.functions import udf
from pyspark.sql import Row
def new_udf(x):

new_row = x.lower()

return new_row
dataframel = sqlContext.read.format(‘com.databricks.spark.csv’) \
.options(header=’true’, inferschema=’true’) \
.load(“/home /Gourav/chap3/wage_table.csv’)
updated_udf = udf(new_udf, StringType())

updated_df = dataframel.withColumn(‘Department’, updated_
udf(dataframel[‘Department’]))

Figure 3.57 shows the screenshot to display the result of a DF after applying UDF:

Figure 3.57: Displaying the output of UDF

Pivot(func) on an Existing DF
This program shows how to execute the Pivot function in an existing DF:

pivotDF = dataframe.groupBy().pivot(“Department”).sum(“Wage”)
pivotDF.show()

Apache Spark 137

Figure 3.58 shows the screenshot to display the result of a DF after the Pivot()
operation:

Name |Department| Wage |Age | Gender|Research Papers|Delivered Talks|
ittt o Fo———————— +o— == Fo e +
Dr. Eneglo	Analytics	50000000 43	55	
Dr.Hung	Big Data	60000000	40	41
IDr.I.s Guptal AR	80000000 60	44		
Dr. Deamith]	AI	110000000	551 12	
Dr.Xiaong	HRI	660000000	51	33

Dr. Andrew | Analytics|150000000| 34| 23|
Dr.Smith| Big Data| 20000000| 28] 35]
| Dr.Manish| I0T| 50000000| 41| 28]
|Dr. Anageles| ML | 100000000 37| 41|
| Dr.Xing| DL| 60000000| 40| 39]
| Dr. Enegle| Analytics| 50000000 43| 55]
| Dr.Hung| Big Data| 60000000| 40| 41|
IDr.I.S Guptal AR| 80000000]
| Dr. Deamith]| AI|110000000]
| Dr.Xiaong| HRI|660000000|
| Dr. Andrew | Analytics|150000000]
| Dr.smith| Big Datal| 20000000]
mmmm e o $m——m————— e St e mmmm e +

>>> pivotDF = dataframe.groupBy () .pivot ("Department") .sum("Wage")
>>> pivotDF.show()

AR|Analytics| Big Datal
- o= o= - +-——————— +-————————— F-——————— e +
1220000000|160000000]1400000000|160000000]60000000]1320000000]50000000]100000000]
- o= o= - +-——————— +-————————— F-——————— e +

Figure 3.58: Displaying the output of the Pivot() operation.

Data Ingestion in Apache Spark

In Apache Spark, the flexibility to read the data from disparate heterogenous sources
is the one of best features of Spark. Using the different connectors and customized
data bridges, make Spark more robust to ingest any format of data for processing. In
this section, readers will be able to get a comprehensive walk through the codebase
to read the data from different sources. Figure 3.59 shows the capability of Apache
Spark to read different types of data formats:

O Spark

= —,

Figure 3.59: Different disparate sources to be ingested through Apache Spark

138 Practical Machine Learning with Spark

Here, the readers need to install WinSCP for transferring the file from the local
system to the Hadoop cluster either on cloud or on-premises. The landing screen of
WinSCP is given to access to the server as follows.

Figure 3.60 depicts the launching screen of WinSCP to access the server or cloud:

B WinSCP Lagin

[New Site Session
File protocol:
SFTP

Host name: Port number:
[| 2

User name: Password:

Advanced... |V

Manage -

Figure 3.60: The Main Page of WinSCP to log-in into the cluster

Figure 3.61 depicts the connecting screen of the server on WinSCP:

5 My documents |+|(= « [- BHRQE| % T Gowsy (2 [- 16 Q) & | FindFiles | Fe
B New ~ £ New »
X\OneDrive - PeopleStrong\Documents\, /h
Neme Size Type Changed Name ” Size Changed Rights Ouner
e Parent directory 04-04-2022 12:36:51 b 28-03-2022 19:36:50 Wx--==-= cdh@p..
Custom Office Templ... File folder 24-12-2021 11:47:56 bitbucket-sync 17-12-2019 16:07:20 wxrwxrwx cdh@pun
Qutlook Files File folder 21-02-2022 15:42:39 chapl 23-04-202101:36:02 TWXT-XT-X. cdh@p...
& Attrition Analysis_100.. 1,564KB MicrosoftMicroso... 07-01-2022 13:49:41 decisiontreevis 23-03-202108:32:31 PWKE-XT-X cdh@p...
@0bjecliv=4dctx B8TKB Microsoft Word D... 30-12-2021 17:21:23 get_model 24-04-2021 03:04:27 TWXF-XT-X. cdh@p...
hadoop_poc 11-11-201917:28:28 TWAP-XT-X. cdh@p...
metastore_db 25-07-202119:52:10 TWXF-XT-X. cdh@p...
ml-25m 25-07-202102:42:10 TWXTWXT=X cdh@p...
module_test 14-11-2019 18:10:22 TWXT-XT-X. cdh@p...
mongodb 30-08-2020 01:37:40 TWXT=XT=X. cdh@p...
recommendation 26-07-202102:28:55 TWXT=XT=X. cdh@p...
sbt 11-08-2021 12:20:59 TWXE-XT-X cdh@p...
segmentation 14-10-2020 00:10:04 wxrwcrwx cdh@p..
sentiments 24-04-202103:48:01 TWT-XT-X cdh@p..
spark-tree-plotting-master 17-06-2019 21:41:53 xexex oot
spark-warehouse 25-07-2021 143234 WKT-XT-X cdh@p..
A 1KB 25-07-202114:28:34 Wer--r-= cdh@p...
[7] attendance module.py 2KB 17-12-2019 134910 mxewxrwx cdh@p..
[attendance_module_new.py 2KB 03-01-2020 15:58:27 mrxrx cdh@p..
| comp_w.py 3KB 15-11-201914:2531 mxrxex cdh@p..
|| connection.py OKB 04-12-2019 15:57:51 Wereet- cdh@p..
] derby.log 1KB 25-07-20211852:10 Werere= cdh@p..
 download_and_convert_ade2... 3KB 29-07-202021:01:31 mxrwwx cdh@p..
L [Happybase.py 1KB 13-11-201917:01:38 [cdh@p...

Figure 3.61: Displaying the screenshot of the connected cluster

Apache Spark 139

From Excel

Microsoft Corporation provides an application to organize the data such that the
user can perform mathematical equations, formulas, and other functions in multiple
spreadsheets. It represents the data in a tabular manner; it is possible to read the data
from Excel or the reader can read multiple excels at a time.

Code to Read an Excel file through PySpark

The following program depicts the way to read the Excel file using the PySpark
framework:

import pyspark
from pyspark.sql import SparkSession
from pyspark.sql.functions import col, lit

from pyspark.sql.types import StructType, StructField,
StringType, IntegerType

dataframe = sqlContext.read.format(‘com.databricks.spark.csv’) \
.options(header="true’, inferschema=’true’) \

.load(“/home /Gourav/chap3/wage_table3.csv’)

dataframe.show()

print(type(dataframe))

Figure 3.62 displays the content of a DF by fetching the data from an Excel file using
PySpark:

i
F|
Ml
i
Fl
Ml
i
M|
Ml
el
M|
Fl
i
M|
Fl
i

Figure 3.62: Displaying the output of a successful connection of PySpark-Excel bridge for fetching the data

140 Practical Machine Learning with Spark

From JSON

JSON means JavaScript Object Notation. It is a lightweight format for storing and
transporting data, which is represented in the key-value schema. Mostly, every web
crawling data from any of sources give you data in the JSON format such as crawling
of LinkedIn, Facebook, and Twitter. Apache Spark can read this JSON file through
PySpark.

Code to Read a JSON file Through PySpark

The following program depicts the way to read the JSON data using the PySpark
framework:

from pyspark.sql import SparkSession
from pyspark.sql import Row
spark = SparkSession.builder.appName(“JSON INTEGRATION”).getOrCreate()

df = spark.read.option(“multiline”,”true”).json(“Gourav/chap3/total-
pounds-of-food-produced-locally-96-17-json.json’)

df.show()

Figure 3.63 displays the content of a DF by fetching the data from a JSON file using
PySpark:

>>> from pyspark.sql import SparkSession

>>> from pyspark.sql import Row

>>> spark = SparkSession.builder.appName ("JSON INTEGRATION").getOrCreate()

df = spark.read.option("multiline","true").json("Gourav/chap3/total-pounds-of-food-produced-locally-96-17-json.json")

df . show()>>> df = spark.read.option("multiline","true").json("Gourav/chap3/total-pounds-of-food-preduced-locally-96-17-jso
n.json")

2020-10-21 01:22:31 WARN Utils:66 - Truncated the string representation of a plan since it was too large. This behavior c

an be adjusted by setting 'spark.debug.maxToStringFields' in SparkEnv.conf.

| [[row-geht-aud9.b. .. | [[[[1532473777, t...
e S +

Figure 3.63: Displaying the output of successful connection of PySpark-]SON bridge for fetching the data

From Parquet

Parquet is a column-oriented file format to store the data in the Hadoop ecosystem
for efficient processing and retrieving than row-based files like CSV or TSV files.
The following program depicts the way to read the Parquet file using the PySpark
framework:

from pyspark.sql import SparkSession

from pyspark.sql import Row

Apache Spark 141

spark = SparkSession.builder.appName(“PARQUET-PYSPARK BRIDGE1”).
getOrCreate()

get_parquet= spark.read.parquet(“/home /Gourav/chap3/userdatal.parquet”)
#Display content of table

get_parquet.show(10)

#Getting Datatype information of table

get_parquet.printSchema()

#Registering into a temporary table
get_parquet.registerTempTable(“parquet_table”)

#Group By transformation on country column

get_transformation = spark.sql(“SELECT country,count(1l) as count FROM
parquet_table GROUP BY country”)

#Write into the directory after the transformation
get_transformation.write.mode(‘overwrite’).parquet(“Sales.parquet”)

Figure 3.64 displays the content of a DF by fetching the data from a Parquet file using
PySpark:

Craats ()
atal . parquat™}

i i e e o i

amail |gendsr| ip address|

+ +
com|Fezale|
is.gd]
Iresalal
pg.orglFemalel 140.

Figure 3.64: Displaying the output of a successful connection of the
PySpark-Parquet file bridge for fetching the data

142 Practical Machine Learning with Spark

Figure 3.65 displays the schema of a DF:

>>> #Getting Datatype information of table
. get_parquet.printschema ()

root
|-- registration_dttm: timestamp (nullable = true
|-- id: integer (nullable = true)
|-- first name: string (nullable = true)
|-- last_Eame: string (nullable = true)
|-- email: string (nullable = true)
|-- gender: string (nullable = true)
|-- ip_address: string (nullable = true)
|-- cc: string (nullable = true)
|-- country: string (nullable = true)
|-- birthdate: string (nullable = true)
|-- salary: double (nullable = true)
|-- title: string (nullable = true)
|-- comments: string (nullable = true)

>>>
>>> #Registering into a temporary table
. get_parquet.registerTempTable ("parquet table")
>>> #Group By transformation on country column
. get_transformation = spark.sql("SELECT country,count(l) as count FROM parquet table GROUP BY country")
>>>
>>> §Write into the directory after the transformation
. get transformation.write.mode ('overwrite').parquet("Sales.parquet")

Figure 3.65: Displaying the schema of a DF

From CSV file Format

A Comma Separated Value (CSV) file is a light-weighted plain text file that contains
a list of data which is separated by commas. It is the best way for exchanging data
among different applications.

Code to Read a csv file Through PySpark

The following program depicts the way to read the CSV file using the PySpark
framework:

from pyspark.sql import SQLContext

sqlContext = SQLContext(sc)

df_csv = sqlContext.read.format(‘com.databricks.spark.csv’) \
.options(header=’"true’, inferschema=’true’) \

.load(“/home /Gourav/chap3/us-500.csv’) # this is path of csv file
df_csv.show(5)

Figure 3.66 displays the content of a DF by fetching the data from a CSV file using
PySpark:

Apache Spark 143

park.csv'

) #this is a

county|state| zip|
N W N T
LA|70116|504-
MI|48116|810

MNJ| B8014|

Figure 3.66: Displaying the output of a successful
connection of PySpark-CSV file bridge for fetching the data

From Apache Hive

Apache Hive is a data warehouse infrastructure tool to process structured data in
Hadoop. It resides on top of Hadoop to summarize Big Data and makes querying
and analyzing easy. Hive supports the SerDe functionality and SQL-based queries
called HiveQL.

The following program depicts the way to read the data from Hive using the PySpark
framework:

from pyspark.sql import SparkSession
from pyspark.sql import Row

spark = SparkSession.builder.appName(“Python Spark SQL Hive integration
example”).config(“hive.metastore.uris”, “thrift://*******:9983”),
enableHiveSupport().getOrCreate()

spark.sql(“show tables’).show()

Figure 3.67 displays the content of a DF by fetching the data from a Hive database
using PySpark:

>>> from pyspark.sql import SparkSession

>>> from pyspark.sgl import Row

>>> spark = SparkSes lder.appName ("Python Spark SQL Hive Integration example").config("hive.meta
store.uris" iy 5053") .enableHiveSupport () .getOrCreate ()

>>> spark.sql('show tables').show()
o o m—— g +

|database | tableName | isTemporary |

Figure 3.67: Displaying the output of a successful connection of PySpark-Apache Hive bridge for fetching the data

144 Practical Machine Learning with Spark

From MongoDB

MongoDB is a cross-platform document-oriented NoSQL database. MongoDB uses
JSON-like documents with optional schemas and it is developed by MongoDB
Inc. There are two pipelines to read the data from MongoDB, that is, Mongo-Hive-
PySpark integration and MongoDB-PySpark bridge. Let us discuss both ways one
by one in detail.

Reading Data from MongoDB-Hive-PySpark Integration

In MongoDB-Hive-PySpark Integration, readers need to create a collection and
document inside the MongoDB instance. After that, an external table needs to be
created at the Hive instance which will create the “JSON Serialization” bridge with
the help of loading few indispensable jars. The details of JARS need to be mentioned
in the following execution steps, and lastly, Hive-PySpark integration can read that
external table which must be mapped with MongoDB.

The following program depicts the way to read the data from MongoDB and create
integration between MongoDB-Hive using the PySpark framework:

Inserting Data into MongoDB (Through the Terminal or with the
export command)

db.get_insights.insert([

{

title: “Deep Learning”,

description: “Explainable Intelligence?”,
by: “Intelligence”,

url: “http://www.ai.com”,

likes: 100,

}s

{
title: “Big Data Analytics”,

description: “Big Data insights and all”,
by: “Big Data”,

url: “http://www.bigdata.com”,

likes: 200,

D

Apache Spark 145

Figure 3.68 displays the list of databases in MongoDB:

> show dbs;

admin 0.000GB
analyties 0.000GB
config 0.000GB

local 0.000GB
> use analytics;
switched to db analytics

Figure 3.68: Displaying the existing databases in MongoDB

Figure 3.69 displays the content of a collection in MongoDB:

> db.get_insights.insert([
{
title: "Deep Learning",
. description: "Explainable Intelligence",
. by: "Intelligence",
.. url: "http://www.ai.com",
. likes: 100,
e
{
title: "Big Data Analytics",
. description: "Big Data insights and all",
.. by: "Big Data",
.. url: "http://www.bigdata.com",
. likes: 200,

}

.o 1)

BulkWriteResult ({
"writeErrors" : [1,
"writeConcernErrors"
"nInserted" : 2,
"nUpserted" : 0,
"nMatched"
"nModified"
"nRemoved"
"upserted"”

Figure 3.69: Displaying the content of a collection in MongoDB

Through the --import command

In the Mongo database, the import utility imports the data from the Extended JSON.
The mongoimport command restores the documents from the JSON file into the
Mongo collection.

146 Practical Machine Learning with Spark

Mongo Database Import Syntax

mongoimport --host <host_name> --username <user_name> --password
<password> --db <database_name> --collection <collection_name> --file
<input_file>

Where:

e --host: This is an optional parameter that specifies the remote server Mongo
database instance.

e --username and --password: These are the optional parameters that
specify the authentication details of a user.

e --db: This specifies the database name.
e --collection: This specifies the collection name.
e --file: This specifies the path of the input file.

Figure 3.70 displays the list of collections in a database:

> show collections;
get_ insights
Jsonsample

Figure 3.70: Displaying the existing collections in a database

Hive-MongoDB Mapping through the hive External Table

In this step, readers need to create an external table in Apache Hive by taking the
exact column reference of MongoDB data. This integration will create a serialization-
deserialization property mapping for providing the access of a collection of MongoDB
through Apache Hive. The following program shows the Hive-MongoDB mapping
with the help of the Hive external table:

create external table hive_mongo (title string,
description string,

“by® string,

url string,

likes int)

stored by €‘com.mongodb.hadoop.hive.MongoStorageHandler’
with serdeproperties(‘mongo.columns.

» »

mapping’=’{“title”:”title”,”description®:”description®,”by”:”by”,

Apache Spark 147

“url”:”url”,”likes”:”1likes”}’)tblproperties(‘mongo.uri’="mongodb://
localhost:27017/analytics.get_insights’);

Figure 3.71 displays the schema of an external table:

create external table hive_mongo (title string,
description string,

by string,

url string,

likes int)

stored by 'com.mongodb.hadoop.hive.MongoStorageHandler' with serdeproperties ('mongo.columns.mapping'='{"title":"titl
e","description":"description","by":"by", "url":"url","likes":"likes"}')tblproperties('mongo.uri'='mongodb://localhost:270
17/analytics. get_insiqhts '),
OK
Time taken: 0.094 seconds

Figure 3.71: Terminal shows a created external table at the Hive terminal

Adding jars at Apache Hive

Hive-MongoDB integration needs 3 jars such as mongo-hadoop-1.5.2.jar, mongo-
hadoop-hive-1.5.2 jar, and mongo-java-driver-3.2.1jar at the hive terminal prior to
execute the program to fetch the data through the hive table.

Figure 3.72 shows the way to add multiple jars at the hive terminal:

lass path
.jazr]

lass path

Figure 3.72: Adding of indispensable jars to create a successful bridge between MongoDB-Hive

Figure 3.73 shows the way to access the MongoDB data from Hive-MongoDB
integration:

> select * from hive_monqo;
CK
20/10/08 14:41:12 WARN splitter.StandaloneMongoSplitter: WARNING: No Input Splits were calculated by the split code. Proce
eding with a *single* split. Data may be too small, try lowering 'mongo.input.split size' if this is undesirable.
20/10/08 14:41:12 INFO splitter.MongoCollectionSplitter: Created split: min=null, max= null
20/10/08 14 12 INFO input.MongoRecordReader: Read 2.0 documents from:

20/10/08 14:41:12 INFO input.MongoRecordReader: MongoInputSplit{inputURI hosts=[localhost:27017], inputURI namespace=analy
tics.get_insights, min={ }, max={ }, query={ }, sort={ }, fields={ "title" : 1 , "description" : 1 , "by" : 1 , "url" : 1
; "likes" : 1 , "_id" : 0}, 1limit=0, notimeout=false}

20/10/08 14:41:12 INFO input.MongoRecordReader: Cursor exhausted.

Deep Learning Explainable Intelligence Intelligence http://www.ai.com 100

Big Data Analytics Big Data insights and all Big Data http://www.bigdata.com 200

Time taken: 0.167 seconds, Fetched: 2 row(s)

Figure 3.73: Displaying the data accessed through the MongoDB-Hive bridge

148 Practical Machine Learning with Spark

Reading Data from MongoDB-PySpark Integration

In this approach, readers can directly fetch the data from MongoDB by passing the
MongoDB credentials as a connection string in the PySpark program. The step-by-
step implementation with the codebase is mentioned next.

Open the PySpark terminal with the --package command

Figure 3.74 shows the terminal screen of a spark session by loading a required
package:

1§ pyspark --packages org.mongodb.spark:mongo-spark-
connector 2.11:2.3.1
Python 2.7.5 {default, Aug 7 2019, 00:51:29)
[GCC 4.8.5 20150623 (Red Hat 4.8.5-39)] on linux2
Type "help", "copyright"™, "credits" or "license" for more information.
Ivy Default Cache set to: /home/cdhipsnet.com/.ivy2/cache
The jars for the packages stored in: /home/c snet.com/.ivy2/jars
loading settings :: url = jar:file:/usr/local/apache-kylin-3.0.0-alphaZ-bin-c
dhé0/spark/jars/ivy-2.4.0.jar! forg/apachea/ivy/core/settings/ivysettings.xml
org.mongodb . sparkfimongo-spark-connector 2.11 added as a dependency
resolving dependencies :: crg.apacha?spark#spark—submlt—parent—EeeadﬁbE—ETba—
444f-bT7el-4dacdTeleble ;1.0
confs: [default]
found org.mongodb.spark#imongo-spark-connector 2.11;2.3.1 in central
found org.mongodbfimongo-java-driver:;3.8.2 in central
resolution report :: resolve 286ms :: artifacts dl Sms
modules in use:
org .mongodb#mongo-java-driver;3.8.2 from central in [default]

org.mongodb . sparkfimongo-spark-connector 2.11;2.3.1 from central in [defa

modules artifacts
search|dwnlded|e number | dwnlded|

retrieving :: org.apache.spark#fspark-submit-parent-é6eeadf8b2-2Tba-444f-b7el-4d4
acdT7eleble

Figure 3.74: Open a spark session by loading a required package

Figure 3.75 shows the main terminal spark session:

To adjust logging level use sc.setLoglLevel (newlevel). For SparkR, use setLogLeve
1 (newLevel) .

2020-10-08 15:19:22 WARN Utils:66 - Service 'SparkUI' could not bind on port 40
40. Attempting port 4041.

version 2.3.2

Using Python version 2.7.5 (default, Aug 7 2019 00:51:29)
SparkSession available as 'spark'.

Figure 3.75: Main terminal of Apache Spark

Apache Spark 149

PySpark Code to Read MongoDB Data Directly through
StringConnection

The following code shows how to read the MongoDB data directly using
StringConnection in PySpark:

Spark_Initiate = SparkSession.builder.appName(‘Mongo-Spark Bridge’) \

.config(“spark.mongodb.input.uri’, ‘mongodb://127.0.0.1/analytics.get_
insights’) \

.getOrCreate()

df = spark.read.format(‘com.mongodb.spark.sql.DefaultSource’).load()
df.createOrReplaceTempView(‘get_insights?)

getDF = spark.sql(‘select * from get_insights’)

get_DF.show()

Figure 3.76 shows the successful connection with MongoDB using PySpark:

>>> Spark Initiate = SparksSession \
.builder \
.appName ('Mongo-Spark Bridge') \
.config('spark.mongodb.input.uri', 'mongedb://127.0.0.1/analytics.get_insights') \

P .getorCreate()

>>> df = spark.read.format ('com.mongodb.spark.sql.DefaultSource').load()
>>> df.createOrReplaceTempView('get_insights')

>>> getDF = spark.sql('select * from get insights')

>>> getDF.show()

_idi i title| url|
oo m—— o ommmm——————— s mmm - A ettt oo m—m oo +
| [5f7ed5a3be34468e. .. |Intelligence |Explainable Intel...|100.0] Deep Learning| http://www.ai.com|
| [Ef7ed5a3be34468e...| Big Data|Big Data insights...|200.0|Big Data Analytics|http://www.bigdat...|
Fmm Fm—m Fmmm === ittt bbbttty Fomm +

Figure 3.76: Successfully connected to MongoDB’s collection through PySpark

From AWS S3

S3 bucket is a storage space provided by Amazon Web Services. It can be easily
integrated with various analytics frameworks for storing and accessing the data.
For making the connection with s3 from the any cluster, it must require a credentials
mapping step. Once the AWS credentials get registered onto the cluster, readers will
be able to check the data and bucket details using the following command:

aws s3 1s s3://mybucket

The following codebase is used to read the data from S3 using PySpark:
Spark_Initiate = SparkSession.builder.appName(‘Mongo-Spark Bridge’) \

. (“spark.mongodb. .uri’, ‘mongodb://127.0.0.1/analytics.get_
insights’) \

150 Practical Machine Learning with Spark

.getOrCreate()

df = spark.read.format(‘com.mongodb.spark.sql.DefaultSource’).load()
df.createOrReplaceTempView(‘get_insights’)

getDF = spark.sql(‘select * from get_insights’)

get_DF.show()

Figure 3.77 shows the successful connection with AWS S3 using PySpark:

Figure 3.77: Successfully connected to AWS S3 through PySpark

Read Data from ORC

Optimized Row Columnar (Apache ORC) is an open-source column-oriented data
storage format of the Apache Hadoop ecosystem. It is like other columnar-storage
file formats available in the Hadoop ecosystem such as RCFile and Parquet. The
following codebase is used to read the data from the ORC file format using PySpark:

from pyspark.sql import SparkSession
from pyspark.sql import Row
spark = SparkSession.builder.appName(“ORC-PYSPARK BRIDGE”).getOrCreate()

read_ORC= spark.read.option(“header”,”true”).orc(“/home /Gourav/chap3/
userdatal_orc”)

#Display content of table
read_ORC.show(5)

#Getting Datatype information of table
read_ORC.printSchema()

Figure 3.78 shows the successful connection with the ORC file using PySpark:

Apache Spark 151

puERYSchapdfuserdatal_orc”)

Figure 3.78: Successfully connected to an ORC file through PySpark

From RDBMS (MariaDB)

MariaDB is an open-source software and as a relational database, it provides an
SQL interface for accessing data. The updated versions of MariaDB includes GIS
and JSON features. Nowadays, MariaDB is also known as one of the best databases
which can replace MYSQL. The following codebase is used to read the data from
RDBMS using PySpark:

Code to read data from MariaDB using PySpark

from pyspark import SparkContext

from pyspark.sql import SQLContext

sc = SparkContext(appName="MariaDB-PySpark Bridge”)

sqlContext = SQLContext(sc)

source_df = sqglContext.read.format(‘jdbc’).options(
url=’jdbc:mysql://localhost/test’,
driver=’com.mysql.jdbc.Driver’,
dbtable=’processed_data’,
user="cdh’).load()

source_df.show(3)

152 Practical Machine Learning with Spark

Figure 3.79 shows the successful connection with MariaDB using PySpark:

e et bte bbbty +--——= +——————————————= F-———————————————— +
name | count | sum| cu.rrent_date |

e e +————= +——————————————= - +
4] | 458| 0| current role| CU‘RRENT_TIMESTAMPl

5|Current role & re...| 1644| 0 |current:role | CU‘RRENT_TIMESTAMPl

6| Current Role 1| 1| 0|current_role|CU‘RRENT_TIME‘.STAMP|
+-——f———————————————————— +--—== +-——t———————————= +-——————————————— +
only showing top 3 rows

Figure 3.79: Successfully connected to MariaDB through PySpark

Submit the .py file with the —jars command
The following code shows how to submit a Spark job with jars and the . py file:
spark-submit --jars /home/cdh@psnet.com/Gourav/chap3/mysql-connector-

java-5.1.49/mysql-connector-java-5.1.49.jar mariadb-spark.py

Figure 3.80 shows how to submit a Spark job:

spark-submit --jars /home/cdhépsnet.com/Gourav/chap3/mysql-connector-java-5.1.49/mysql-
1.49.jar mariadb-spark.py |

connector-java-3

Figure 3.80: Submitting a spark job with the jars command for creating a successful connection

Reading the Data from Apache HBase

HBase is a column-oriented based NoSQL system that is like Google’s big table to
provide quick random access to a huge amount of structured data. The step-by-step
implementation with the codebase is mentioned as follows:

1. Open the given link mvnrepository.com/artifact/org.apache.hive/
hive-hbase-handler and download hive-hbase-handler.jar.

Figure 3.81 displays the snapshot of website where the reader can download
Hive-HBase Handler Jar.

Apache Spark 153

WWhrenosrory pea Aracts careg

Indexed Artifacts {26.6M) iome = org.apache.hive » hive-hbase-handler
Fomm Hive HBase Handler
i b
J
i Hive HBase Handler
E
License
- Tags [database | hadoop | apache | hbase
Popular Categories Used By 17 artifacts
d
ral C e dera L b i
Lal 16
Version Vulnerabilities Repository Usages Date
A.0.x 4.0.0-alpha-1
2.1
Jul, 2018
3.0.x May, 2018

Figure 3.81: Web Page where to download Hive-HBase Handler jar

2. Create a table and insert records into the Hbase table:
create ‘books’, €‘info’, €analytics’
put ‘books’, ‘In Search of Lost Time’, €‘info:author’, ‘Name’

put ‘books’, ‘In Search of Lost Time’, ‘info:year’, 1982’

Figure 3.82 shows the snapshot of data inserted into a HBase table:

hbase (main) :001:0> create '‘books’,

Search of Lost Time', 'info:authox'. 'Marcel Proust’
Search of Lost Time', 'info:yeaxr', '1922"
Search of Lost Time', 'analytics:views', '3298-"

'Godel, Escher, Bach', 'info:author', 'Douglas Hofstadter:'

hbase (main) o . ", "'Godel, Escher, Bach', ‘info:year’', *1979°
Took ©.0144

hbase (main) : 007 :0 > . ", 'Godel, Escher, Bach', 'analytics:views:’
Took ©.0252
hbase (main) :

Figure 3.82: Inserting records into Hbase table

154 Practical Machine Learning with Spark

3. Creating an external table in hive to access the same table through HBase-
Hive integration. Figure 3.83 shows the snapshot of a created external table
in Hive for accessing the data of HBase.

OWRELTYRS: USER

Thu O 01 05:04:21 IST 2020

UNEMNOR

v}

hdfs: '_ 18020 usar /hive /warehousa
EXTERNAL TAELE

TATE ACCURATE

T

hbase.mapred.output.outputtable books

hbasea.table.nams books

]

0

0

org.apache . hadoop.hive hbase. HBaseStorageHandler
i]

1601508861

pache . hadoop . hive . hbase . HB

:key,info:author ear ,analy

Time taken: 0 3] , Fatched: 39 rowi(s)

Figure 3.83: Created an external table in Hive for accessing the data of HBase

Code to Read the Data from Apache Hive
The following codebase is used to read the data from Apache Hive using PySpark:

from pyspark.sql import SparkSession
from pyspark.sql import Row

spark = SparkSession.builder.appName(“IMPALA INTEGRATION”).getOrCreate()
spark.sql(“show tables”).show()

Figure 3.84 shows the snapshot for accessing the PySpark code with the help of the
Hive-HBase bridge:

pyspark.sql SparkSession
pyspark.sql Row

spark = SparkSession.builder.appName () .getOrCreate ()
spark.sql() .show ()

Figure 3.84: Accessing data through a PySpark code from an external table (Hive-HBase Bridge)

Apache Spark 155

Submitting the PySpark program to fetch the data of Hbase from Hbase-Hive
integration:

spark-submit --driver-class-path /home /Gourav/chap3/hive-hbase-

handler-2.1.1.jar --jars /home /Gourav/chap3/hive-hbase-handler-
2.1.1.jar hbase-pyspark.py

Figure 3.85 shows how to submit a PySpark job:

Figure 3.85: Submit command to submit a PySpark job to fetch the data from Hbase-Hive bridge

Application of Apache Spark

In this era of digitalization, the 5Vs of Big Data will be increasing tremendously
with time. Due to increase in the generation of Big Data, there is a massive challenge
that arises in front of data engineers, data architects, and researchers to enhance
the capabilities to manage and process the complex data efficiently. Here, Apache
Spark gets the opportunity to overcome the data processing and managing issues in
addition to improve overall performance.

Batch and Real-Time Analytics

Apache Spark provides an analytical framework to process batch mode and real-
time mode data. It is an essential practice for all MNCs to manage stream or batch
analysis because the cumbersome volume of data is being processed daily. It stitches
the disparate data processing capabilities and provides ease to developers to perform
Extract, Transform, and Load over data for making it decisive and meaningful.

Machine Learning

Apache Spark can be powered as an analytics framework like components of MLlib
for performing the advanced analytics through which readers will get the futuristic
insight over the data. Normally, there is no distributed framework available for
training and testing the machine learning models. Due to this standalone mode, the
time efficiency while training and testing the model may increase; hence, degrade
the overall performance of the model. On the other hand, Apache Spark leverages
the distributed processing of data, which help to enhance time efficiency and model
performance. Most of the time, machine learning recommends Apache Spark to be
an efficient processing framework.

156 Practical Machine Learning with Spark

Interactive Analysis

Interactive analytics is one of the most imperative features of Apache Spark for
ameliorating the efficiency. MapReduce (MR) can provide both batch and SQL-
on-Hadoop processing through Apache Hive and Apache Pig. But MR is slow for
interactive analysis. On the flip side, Apache Spark is fast and efficient to deal with
complex queries. In addition, with the integration of visualization tools of Apache
Spark, data can be processed with high complexity and visualized using the import
or direct mode. In addition, Spark can be also directly connected with third-party
business intelligence tools such as MS PowerBI and Tableau for fast retrieving and
visualizing the insightful data.

Fog/Edge Computing

Apache Spark can also be utilized for centralized and decentralized computing such
as fog computing, edge computing, and Internet of Things (IoT) for analyzing the
bulky and complex data. Leveraging Spark with decentralized computing extends
the capabilities to manage and process real-time mode data for making out the
decisive analytics. Furthermore, the conglomeration of key components with Apache
Spark such as Spark Streaming, SparkSQL, a machine learning library (MLib), and a
graph analysis engine (GraphX) provides more ease and flexibility to be opted for a
fog computing solution.

Conclusion

This chapter deals with a comprehensive study of Apache Spark and various trails
for reading the data from heterogenous sources and formats. In addition, detailed
focus has been given on job optimization, Spark workflow scheduling, and exposing
of the rest API for calling the Spark application through the Apache Livy framework.
Apart from these, authors have implemented various transformations to understand
the use case of Data Frame in Spark in a better way. The next chapter will address the
readers how to climb up the Machine Leaning ladder in spark.

CHAPTER 4

Apache Spark
MLlIib

“Great minds discuss ideas; average minds discuss events; small minds
discuss people.”

— Eleanor Roosevelt

Introduction

Nowadays, Application of machine learning with Apache Spark has been
contineously increasing due to the sudden fold increase in the volume of data.
Moreover, handling, training, and finding out of decisive insights from the raw data
have been getting difficult while working on the standalone framework. Generally,
a machine learning algorithm involves several steps such as pre-processing, feature
extraction, model fitting, and evaluation metrics. Usually, a programmer creates a
unify pipeline for binding-up the multiple individual tasks but still it is resisted
to the standalone framework. Due to standalone processing, the execution time
often surpasses the memory and processing loads up to 95%; hence, there is a high
probability of high time consumption at training and testing stages. To overcome
this issue and provide an impeccable productization pipeline, many organizations
have been choosing the trail of Apache Spark and its main component, that is, Spark
MLIib (also known as MLlib) for providing the distributed framework to process and
train a model. This chapter presents an in-depth study on the different components

158 Practical Machine Learning with Spark

of ML pipelines, selections, transformations, and feature extractors for making the
unify ML pipeline using Apache Spark.

Structure
In this chapter, we will discuss the following topics:
e Introduction to Apache Spark MLIlib
e ML pipelines and its components
¢ Main algorithms in Spark MLlib
e Datatypes of Spark MLlib

e Feature extraction, transformation, and selection

Objectives
After studying this chapter, readers will be able to:
¢ Gain awareness about the distributed ML (Spark MLIlib)
¢ Get an understanding of the different components in MLlib
e Apply the knowledge of different types of ML and its algorithms
e Implement the flow of ML pipelines

Spark MLIib Algorithms

Spark MLIib consists of myriad of ML algorithms for achieving the decisive insights
that could be intended towards statistics analysis, predictive analysis, and decisive
analysis over the datasets. Some of the frequently used algorithms in ML are being
delineated as follows. A detailed study on each algorithm will be covered in Chapter
5, Supervised Learning with Apache Spark and Chapter 6, Unsupervised Learning with
Apache Spark.

Classification Category

The following points highlight the classification-based ML algorithms in Apache
Spark:

e Binomial Logistic Regression (BLR) and Multinomial Logistic Regression
(MLR)

e Decision Tree Classifier (DTC)

Apache Spark MLIib 159

¢ Random Forest Classifier (RFC)

e Gradient-Boosted Tree Classifier (GBTC)

e Multilayer Perceptron Classifier (MPC)

e Linear Support Vector Machine Classifier (LSVMC)
¢ Naive Bayes Classifier (NBC)

e Multilayer Perceptron Classifier (MPC)

¢ One-vs-Rest Classifier

e Factorization Machines Classifier (FMC)

Regression Category

The following points highlight the Regression-based ML algorithms in Apache
Spark:

e Linear Regression (LR)

e Decision Tree Regression (DTR)

¢ Random Forest Regression (RFR)

¢ Gradient-Boosted Tree Regression (GBTR)
e Survival Regression (SR)

¢ Isotonic Regression (IR)

e Lasso Regression (LR)

¢ Ridge Regression (RR)

¢ Generalized Linear Regression (GLR)

e Factorization Machines Regression (FMR)

Clustering Category

The following points highlight the clustering-based ML algorithms in Apache Spark:
¢ K-Means Clustering (KC)
e Gaussian Mixture Model (GMM)
e Latent Dirichlet Allocation (LDA)

e Alternating Least Square (ALS)

160 Practical Machine Learning with Spark

e Frequent Pattern Mining (FPP)

e Power Iteration Clustering (PIC)

ML Components/Pipelines

ML components provide high-level APIs that are strongly coupled with DataFrame
to create or re-tune ML execution pipelines. Basically, the conglomeration of these
components can wrap up multiple ML algorithms into a unify pipeline for executing
the processes simultaneously. In the early version of Spark, the Spark came with
RDD-based ML APIs which has been deprecated with Spark2.0 released by
DataFrame-based APIs. The new API is strong enough to unify the multiple tasks of
ML as the seamless ML workflow or pipeline. For example, processing of a simple
text document might be included in many stages: In the first stage, it will split the
text of each document into words. Then, the second stage helps to convert the words
of each document into a numerical feature vector. Lastly, the prediction model is to
be implemented using feature vector and labels.

The following seven main components are being used to implement a ML pipeline
concept:

e DataFrame

e Transformer

e Estimator

e DPipeline

e Parameter

e CrossValidator

e Evaluator

DataFrame

SparkML supports a wide range of data types such as DataFrame, Vectors, Text,
images, and structured data. DataFrame is one of the data types which offers the
SparkSQL wrapper to train and test a ML model in Spark. A DataFrame can be
created either implicitly or explicitly from a regular RDD.

Transformer

A transformer can add, delete, or update any existing features in the DataFrame.
Every transformer has a transform() method which gets called when the pipeline
is executed. Vector Assembler is a transformer as it takes the input DataFrame

Apache Spark MLIib 161

and returns the transformed DataFrame with a new column which is the vector
representation of all the features.

Estimator

An Estimator returns a model and the returned model transforms the DataFrame in
accordance with the parameters which are learned during the fitting learning phase.
Technically, an Estimator implements a method fit() which accepts a DataFrame
produces a model, which is a transformer. For example, a learning algorithm such
as Logistic Regression is an Estimator and calling fit () trains a Logistic Regression
Model, which is a Model and hence a Transformer.

Pipeline

Pipeline is mainly used for unification of different stages of a transformer and
estimator. In SparkML, the execution of multiple transformations through a single
call can be possible by leveraging the functionality of the pipeline component. There
is a parameter named as stages, where the name of needed transformations is
assigned according to the sequential flow of a transformer.

In the following code, there are two transformations applied on the vector datasets.
Here, the pipeline component is used to create an order wise list of specific
transformers and estimators of ML using the stages parameter and run them
sequentially. Thus, it provides the easiness and robustness workflow to handle
multiple tasks of ML.

>>from pyspark.ml import Pipeline
>>from pyspark.ml.feature import VectorIndexer, VectorAssembler
>>create_df = spark.createDataFrame([
(0, Vectors.dense([3.0, 6.0, -4.0]), 18.0),
(1, Vectors.dense([3.0, 2.0, 10.0]), 30.0)
1, [“unique_id”, “get_features”, “user_age”])

>>vector_indexer = VectorIndexer(inputCol="get_features”,
outputCol="get_result”)

>>assembler = VectorAssembler(inputCols=[“unique_id”,”’get_
features”,”get_result”], outputCol="get_output®)

>>pipeline = Pipeline(stages=[vector_indexer, assembler])
>>model = pipeline.fit(create_df).transform(create_df)

>>model.show()

162 Practical Machine Learning with Spark

Figure 4.1 shows the codebase of the Pipeline component with its output for
wrapping up two transformers in a single ML workflow:

>>> from pyspark.ml import Pipeline
>>> from pyspark.ml.feature import VectorIndexer, VectorAssembler
>>> create_df = spark.createDataFrame ([
(0, Vectors.dense([3.0, 6.0, =-4.0]), 18.0),
(1, Vectors.dense([3.0, 2.0, 10.0]), 30.0)
«++ 1, ["unique_id", "get_features", "user age"])
model.show () >>> vector_indexer = VectorIndexer (inputCol="get features", outputCol="get result")
>>> assembler = VectorAssembler(inputCols=["unique id", "get_features", "get result"], outputCol="get output")
>>> pipeline = Pipeline(stages=[vector_indexer, assembler])
>>> model = pipeline.fit(create df).transform(create df)
>>> model.show ()
4mmmmmmmm Hmmmmmmmmmm e 4mmmmmm - Hmmmmmmmmm o Hmmmmmmmm e +
|unique_id| get features|user age| get_result| get_output|

Figure 4.1: Codebase of Pipeline and its output

Parameter

It is a uniform API to specify the values to estimators and transformers by defining
a parameter named as Param. For example, splits in Bucketizer shows the feature of
a parameter.

CrossValidator

A CrossValidator cross-evaluates fitted ML models and outputs the best one by trying
to fit the underlying estimator with user-specified combinations of hyperparameters.
Model selection is performed with the CrossValidator or TrainValidationSplit
estimators.

Evaluator

It is used to calculate the performance of a trained ML model in terms of precision
and recall.

Generally, Binary Classification Evaluator and Multiclass Classification Evaluator
are being used for binary and multiclass classification. Similarly, there is one more
evaluator, that is, Regression Evaluator is being used for regression tasks.

Spark MLIlib’s Datatypes

Every dataset or value needs an identity. On these datasets, the manipulations are
taken place for performing further transformations and estimations. Generally,

Apache Spark MLIib 163

the MLIib supports four types of Datatypes such as Local Vector, Labelled Point,
Local Matrix, and Distributed Matrix. These preceding datatypes leverage two most
indispensable libraries of linear algebra operations like Breeze and JBLAS. The brief
explanation about these datatypes is mentioned next.

Local Vector

A LocalVector contains integer-typed, 0-based indices, and double-typed values.
There are two ways to use LocalVector in the MLIib such as DenseVector and
SparseVector. With the help of dense and sparse vectors, the programmer can easily
convert it into a DataFrame.

Sparse Vector

The SparseVector is implemented by two parallel arrays that is, indices and value.

Syntax of SparseVector

>>get_sparse = vector.sparse(length, index_of_non-zero_values, non-zero_
values)

DenseVector

DenseVector has the backbone of a double array which is mainly preferred when
most of the numbers are supposed to be zero.

Syntax of DenseVector

>>get_sparse = vector.dense(values)

The following code demonstrates how to create a Dense Vector in Spark MLIib:
>>from pyspark.mllib.linalg import Vectors

>>dense_vec = Vectors.dense([1,2,3,4])

>>print(type(dense_vec))

Figure 4.2 shows the codebase how to create a DenseVector and display the value of
DenseVector:

>>> from pyspark.mllib.linalg import Vectors
>>> ## To create the Dense Vector

. dense_vec = Vectors.dense([1,2,3,4])
>>> print(type(dense_vec))

<class 'pyspark.mllib.linalg.DenseVector'>
>>> dense_vec
DenseVector([1.0, 2.0, 3.0, 4.0]1)

Figure 4.2: DenseVector and its output

164 Practical Machine Learning with Spark

The following code explains how to create a Sparse Vector in Spark MLIib:
>>sparse_vec = Vectors.sparse(10, [0,1,2,4,5], [1.0,5.0,3.9,5.0,7])

>>print(type(sparse_vec))

Figure 4.3 shows the codebase how to create a SparseVector and display the value of
SparseVector:

>>> §## To create SPARSE VECTOR
. sparse vec = Vectors.sparse(10, [0,1,2,4,5], [1.0,5.0,3.0,5.0,7])
>>> print (type (sparse_vec))

<class 'pyspark.mllib.linalg.SparseVector'>
>>> sparse _vec
SparseVector (10, {0: 1.0, 1: 5.0, 2: 3.0, 4: 5.0, 5: 7.0})

Figure 4.3: Creating SparseVector and its output

The following code explains how to save a vector into an array:

>>get_array = Vectors.sparse(10, [0,1,2,4,5], [1.0,5.0,3.9,5.0,7]).
toArray()

>>get_array

Figure 4.4 shows the code how to convert an existing vector into an array:

>>> ### converting into Array
... get_array = Vectors.sparse(10, [0,1,2,4,5], [1.0,5.0,3.0,5.0,7]).toArray()
>>>

>>> get_array
array([l., 5., 3., 0., 5., 7., 0., 0., 0., 0.1)

Figure 4.4: Conversion of Vector into an array

LabelPoint

LabelPoint is a way to assign a label to each vector, either dense or sparse. Mainly,
it is implemented in the supervised learning algorithms. For example, the Binary
Classification can classify the negative and positive by assuming the label values as
0 (negative) or 1(positive). The LabelPoint has two parameters such as features and
label. The following code demonstrates how to create a LabelPoint:

>>from pyspark.mllib.regression import LabeledPoint
>>get_densevec = Vectors.dense([1,2,3,4,5])
>>get_labeled_point = LabeledPoint(2,get_densevec)
To display the Features
>>print(get_labeled_point.features)

Apache Spark MLIib 165

To display the Label
>>print(get_labeled_point.label)”

Figure 4.5 shows an illustration of the code and output of LabelPoint:

>>> from pyspark.mllib.regression import LabeledPoint
>>> get_densevec = Vectors.dense([1,2,3,4,5])

>>> get_labeled point = LabeledPoint(2,get_densevec)
>>> # To display the Features

. print(get labeled point.features)
[L.0,2.0,3.0,4.0,5.0]
>>> # To display the Label

. print(get labeled point.label)
2.0

Figure 4.5: Code and output of LabelPoint

Local Matrix

A Local Matrix has an integer-typed collection of values. It can be created through
dense and sparse vectors. In a sparse Matrix, non-zero entry values are stored in
the Compressed Sparse Column (CSC) format in the column-major order. The
following code demonstrates how to create a Local Matrix:

>>from pyspark.mllib.linalg import Matrix, Matrices

>>get_dense_matrix = Matrices.dense(2, 3, [1, 3, 5, 2, 4, 6])
>>print(get_dense_matrix.toArray())

Figure 4.6 shows an illustration of the code and output of LocalMatrix:

>>> from pyspark.mllib.linalg import Matrix, Matrices
>>> get dense matrix = Matrices.dense(2, 3, [1, 3, 5, 2, 4, 6])

>>> priEt (get_dense_matrix .toArray())
[[1. 5. 4.]
[3. 2. 6.1]

Figure 4.6: Code and output of LocalMatrix

Distributed Matrix

A distributed matrix has long-typed column indices and double-typed values. There
are four types of distributed matrices to store the values in one or more RDDs. The
name of types is as follows:

e RowMatrix

e IndexedRowMatrix

166 Practical Machine Learning with Spark

e CoordinateMatrix
e BlockMatrix

The following code demonstrates how to create a Distributed Matrix using
RowMatrix:

>>from pyspark.mllib.linalg.distributed import RowMatrix

>>rowsRDD = sc.parallelize([[11,12], [22, 33], [33, 55], [19, 18]])
>>get_distributed_mat = RowMatrix(rowsRDD)
>>print(get_distributed_mat)

>>print(type(get_distributed_mat))

>>m_rows = get_distributed_mat.numRows ()

>>m_rows

>>n_cols = get_distributed_mat.numCols()

>>n_cols”

Figure 4.7 shows an illustration of the code and output of RowMatrix:

>>> from pyspark.mllib.linalg.distributed import RowMatrix

>>> rows = sc.parallelize([[11,12], [22, 33], [33, 55], [19, 18]11)
>>> get distributed mat = RowMatrix(rows)

>>> m rows = get distributed mat.numRows ()

>>> n_cols = get distributed mat.numCols ()

>>> from pyspark.mllib.linalg.distributed import RowMatrix

>>> rowsRDD = sc.parallelize([[11,12], [22, 33], [33, 55], [19, 18]1])
>>> get distributed mat = RowMatrix (rowsRDD)

>>> print(get distributed mat)

<pyspark.mllig.linalq.disEEibuted.RowMatrix object at 0x7fd4clf510d40>
>>> print(type(qet_distributed_mat))

<class 'pyspark.mllib.linalg.distributed.RowMatrix'>

>>> m rows = get distributed mat.numRows ()

>>> m_rows

4L

>>> n_cols = get _distributed mat.numCols ()
>>> n_cols
2L

Figure 4.7: Code and output of RowMatrix

Extracting, Transforming, and Selecting
Features

In this section, the readers will walk-through the different types of feature extractors
and transformations in Spark for dealing with the several operations on the dataset.

Apache Spark MLIib 167

Term Frequency-Inverse Document Frequency
(TF-IDF)

TFIDF used in numerical analysis highlights the imperativeness of a word in a
document. Generally, it deals with a weighting factor for searching the information,
text-mining, and user modeling. In TF-IDEF, the overall value increases proportionally
to frequency of the word appears in the document. TE-IDF is one of the most
promising ways to design the text-based recommendation system.

Term-Frequency (TF)

TF is a simple way to count the number of times a word comes to a document. So, the
number of lines a term occurs in a document is called its term frequency. HashingTF
and CountVectorizer are two methods to generate the term frequency vector.

Inverse Document Frequency (IDF)

In IDF, it will eliminate the most common words from the corpus of a document
like the and a. Hence, an IDF is used to diminish the weight of terms that occur very
often and increases the weight of terms that occur rarely in the document.

In the following code, we split each element of words and create them into a
DataFrame. After that, the HashingTF is applied to scale them into a feature vector
and then, IDF is used to rescale the feature vectors for improving the performance.
The refined feature vector will be passed through a specific ML algorithm for getting
the result.

>>from pyspark.ml.feature import HashingTF
>>from pyspark.ml.feature import HashingTF, IDF, Tokenizer
>>Gen_DF = spark.createDataFrame([

(0, “DataScience,MachinelLearning,ApacheSpark,MachineLearning”.
split(“,”)),

(1, “ApacheMLlib,MachinelLearning,DataScience”.split(*,”))
], [f(id),’ fl’wor‘dsl)])

>>gen_HF = HashingTF(inputCol="words”, outputCol="features”,
numFeatures=100)

>>get_HTF = gen_HF.transform(Gen_DF)

>>idf_function = IDF(inputCol="features”, outputCol="get_idf_feature”)
>>train_model = idf_function.fit(get_HTF)

>>outcome = train_model.transform(get_HTF)

>>outcome.show(truncate=False)”

168 Practical Machine Learning with Spark

Figure 4.8 shows an illustration of the code and output of TF-IDF:

>>> from pyspark.ml.feature import HashingTF
>>> from pyspark.ml.feature import HashingTF, IDF, Tokenizer
>>> Gen_DF = spark.createDataFrame ([
(0, "DataScience,MachinelLearning,ApacheSpark,MachinelLearning".split(",")),
(1, "ApacheMLlib,MachineLearning,DataScience".split(","))
.1, ["id", "words"])
outcome = train model.transform(get HTF)
outcome.show (truncate=False)
gen_HF = HashingTF (inputCol="words", outputCol="features", numFeatures=100)
get HTF = gen_HF.transform(Gen_ DF)
idf_function = IDF(inputCol="features", outputCol="get idf feature")
train model = idf function.fit(get_HTF)

outcome = train_model .transform (get_HTF)
outcome. show (truncate=False)

|0 | [DataScience, MachineLearning, ApacheSpark, MachineLearning]| (100,[4,74,83],[2.0,1.0,1.0])|(100,[4,74,83],[0.0,0.
4054651081081644,0.0]) |

|1 | [ApacheMLlib, MachineLearning, DataScience] | (100,[4,67,83],[1.0,1.0,1.0]) | (100,[4,67,83]1,[0.0,0.
4054651081081644,0.0]) |

o

Figure 4.8: Code and output of TF-IDF

Word2Vec

Word2Vec is given by Spark MLIib which feeds sequences of words as in the form
of documents or sentences for training. That trained model maps each word to a
unique fixed-size vector. Then, it transforms each sentence or a document into a
vector using the average of words the document and is well-known Estimation to
calculate document similarity. The following program shows the implementation of
Word2Vec extractor on a dataframe:

>>from pyspark.ml.feature import Word2Vec

>>Gen_DF = spark.createDataFrame([

(0, “DataScience,MachinelLearning,ApacheSpark,MachineLearning”.
split(“,”)),

(1, “ApacheMLlib,MachineLearning,DataScience”.split(“,”))], [“id”,
“words™])

>>func_word2Vec = Word2Vec(vectorSize=3, minCount=0, inputCol="words”,
outputCol="get_result”)

>>model = func_word2Vec.fit(Gen_DF)
>>get_result = model.transform(Gen_DF)

>>get_result.show(truncate=False)

Apache Spark MLIib 169

Figure 4.9 is an illustration of the code and output of Word2Vec:

>>> from pyspark.ml.feature import Word2Vec
>>> Gen DF = spark.createDataFrame ([
(0, "DataScience,MachineLearning,ApacheSpark,MachineLearning".split(",")),
(1, "ApacheMLlib,MachineLearning,DataScience".split(","))], ["id", "words"])
get_result = model.transform(Gen DF)
get_result.show(truncate=False)>>> func_word2Vec = Word2Vec (vectorSize=3, minCount=0, inputCol="words", outputCol="get
_result")
>>> model = func_word2Vec.fit (Gen_DF)
>>> get_result = model.transform(Gen_DF)
>>> get_result.show(truncate=False)

|10 | [DataScience, MachineLearning, ApacheSpark, MachineLearning]|[0.053105657920241356,0.0015558814629912376,0.076219
9629098177] |
|1 | [ApacheMLlib, MachinelLearning, DataScience] | [0.09367418785889943,-0.012848942230145136,-0.031002
389887968697] |
e et ettt

Figure 4.9: Code and output of Word2 Vec

CountVectorizer

CountVectorizer is a function whose input is a sequence of documents or words and
generates an output as a vector of tokens. The output of the CountVectorizer extractor
has three parts, namely, Vector Length, Vector Indices, and Vector Frequencies. Also,
it will produce a sparse vector which can be passed to the other ML algorithms.

Figure 4.10 highlights the three parts of the feature vector:

s e +
|id |words Iget_features
e T e T +

10 | [DataScience, MachineLearning, ApacheSpark, MachineLearning]| (0,1,3],[2.0,1.0,1.01) |
| [ApacheMLlib, MachineLearning, DataScience] (20 ,_1_,_2] 1 [1.0,1.0,1.0]) |
e

Vector Length Vector Indices Vector Frequency
Figure 4.10: Three parts of feature Vector of a CountVectorizer output

>>from pyspark.ml.feature import CountVectorizer
>>Gen_DF = spark.createDataFrame([

(0, “DataScience,MachinelLearning,ApacheSpark,MachineLearning”.
split(“,”)),

(1, “ApacheMLlib,MachinelLearning,DataScience”.split(*,”))
], [(‘id)}, "rwor‘ds.‘)])

>>counter_vectorized = CountVectorizer(inputCol="words”, outputCol="get_

170 Practical Machine Learning with Spark

features”)
>>getmodel = counter_vectorized.fit(Gen_DF)
>>get_result = getmodel.transform(Gen_DF)

>>get_result.show(truncate=False)”
Figure 4.11 shows an illustration of the code and output of CountVectorizer:

>>> from pyspark.ml.feature import CountVectorizer

>>> Gen DF = spark.createDataFrame ([
(0, "DataScience,Machinelearning,ApacheSpark,MachineLearning".split(",")),
(1, "ApacheMLlib MachineLearning,DataScience".split(","))

.1, ["id", "words"])

>>> counter vectorized = CountVectorizer(inputCol="words", outputCol="get features")

>>> getmodel = counter vectorized.fit(Gen DF)

>>> get_result = getmodel.transform(Gen_DF)

>>> get_result.show(truncate=False)

o o e o e e tmmmmmm e +
|id |words |get_features
B e e e L Rt EE L P LR +
|0 |[DataScience, Machinelearning, ApacheSpark, Machinelearning] | (4,[0,1,3],[2.0,1.0,

|1 |[ApacheMLlib, MachinelLearning, DataScience] | (4,[0,1,2],[1.0,1.0,

B e E e P e R T PR +

Figure 4.11: Code and output of CountVectorizer

HashingTF

HashingTF generates documents or sentences into fixed size vectors; the default
dimension of vector set to 262,144. Here, it uses the hash function. that is,
MurmurHash3 for mapping to indices and term frequencies are calculated with
respect to indices.

The following code shows that the default value is always set to 262,144, and other
terms like ApacheSpark should be mapped to the respective index like 12242 with
frequency equal to 1. This mechanism needs to be applied on all the documents or
sentences in the dataframe:

>>from pyspark.ml.feature import HashingTF
>>Gen_DF = spark.createDataFrame([

(9, “DataScience,MachinelLearning,ApacheSpark,MachineLearning”.
split(“,”)),
(1, “ApacheMLlib,MachinelLearning,DataScience”.split(“,”))

]_' [(‘id)), “WOPdS”])

Apache Spark MLIib 171

>>gen_HF = HashingTF(inputCol="words”, outputCol="features®)
>>get_result = gen_HF.transform(Gen_DF)

>>get_result.show(truncate=False)

Figure 4.12 shows an illustration of the code and output of HashingTF:

>>> from pyspark.ml.feature import HashingTF

>>> Gen DF = spark.createDataFrame ([
(0, "DataScience,MachineLearning,ApacheSpark,MachineLearning".split(",")),
(1, "ApacheMLlib,MachineLearning,DataScience".split(","))

... 1, ["id", "words"])

>>> gen HF = HashingTF (inputCol="words", outputCol="features")

>>> get_result = gen_HF.transform(Gen DF)

> get_result.show(truncate=False)
et b +

|id |words |features

e e e e e +
| [DataScience, Machinelearning, ApacheSpark, Machinelearning]|(262144,[12242,206416,212735],[1.0,2.0,1.01) |
| [ApacheMLlib, Machinelearning, DataScience] | (262144,[181751,206416,212735],[1.0,1.0,1.0]) |

e et 4mmmmmm oo -

Figure 4.12: Code and output of HashingTF

FeatureHasher

FeatureHasher is a technique for rescaling the high-dimensional features into low-
dimensional features vector. Likewise, HashingTF, it also uses MurmurHash3 to
map features to indices and the numFeatures parameter intends to set a feature
range to the indices. The following code indicates to generate a column of feature
vectors using FeatureHasher:

>>from pyspark.ml.feature import FeatureHasher
>>createDF = spark.createDataFrame([
(10, “100”, True, “Data Science”),
(20, “200”, False, “Big Data”),
(30, “300”, True, “Machine Learning with Spark”),
(40, “400”, False, “Deep Learning”)
1, [“col1”, “col2”, “col3”, “cold”])

>>get_hasher = FeatureHasher(inputCols=[“coll”, “col2”, “col3”, “col4”],
outputCol="features”, numFeatures = 10)
>>get_result = get_hasher.transform(createDF)

>>get_result.show(truncate=False)

172 Practical Machine Learning with Spark

Figure 4.13 shows an illustration of the code and output of FeatureHasher:

>>> from pyspark.ml.feature import FeatureHasher
createDF = spark.createDataFrame ([
(10, "100", True, "Data Science"),
(20, "200", False, "Big Data"),
(30, "300", True, "Machine Learning with Spark"),
(40, "400", False, "Deep Learning")
. 1, ["ecoll", "col2", "col3", "col4d"])
get_hasher = FeatureHasher (inputCols=["coll", "col2", "col3", "col4"],
outputCol="features", numFeatures = 10
get_result = get_pasher.transform(createDF)
get_result.show(truncate=False)
Bt Rttt S C T B e e +
|coll|col2|col3 |col4d | features
B s e e B et T o +
| true |Data Science |(0,[0,1,2,7]1,[1.0,1.0,10.0,1.01) |
| false|Big Data |(10,[1,2,8],[2.0,20.0,1.0]) |
| true |Machine Learning with Spark| (10,[0,2,3,7],[1.0,30.0,1.0,1.0]1)|
| false|Deep Learning |(10,[2,5,7,8],[40.0,1.0,1.0,1.01) |
Fmm e e i +

Figure 4.13: Code and output of FeatureHasher

Feature Transformers

This section explains several ways to transform the features in Apache Spark which
are used while training and testing the ML-based distributed processing models.

Tokenizer

Tokenization is a mechanism which can feed the text or sentences and break them
into small individual words. It can be implemented by using the functionality of
“Tokenizer class”. Also, there is a RegexTokenizer class that makes the splitting up
of the sentences in an advanced manner based on some regular expression matches.
The following code takes the sentences through a dataframe and applies Tokenizer
for converting it into a list of tokens. Also, these sequences of tokens can be persisted
as Parquet or JSON formats. The following code indicates how to implement the
Tokenizer transformer

>>from pyspark.ml.feature import Tokenizer, RegexTokenizer
>>from pyspark.sql.functions import col, udf
>>from pyspark.sql.types import IntegerType
>>generate_df = spark.createDataFrame([
(0, “This Book Is For All The Big Data And Data Science Lovers”),

(1, “This Is Our Chapter-4 Which Has Content Related To Spark ML1lib
“Y], [“unique_id”, “generate_df”])

>>get_tokenizers = Tokenizer(inputCol="generate_df”, outputCol="get_
tokens™)

Apache Spark MLIib 173

>>get_tokenized = get_tokenizers.transform(generate_df)

#Display Outcome

>>get_tokenized.select(“generate_df”, “get_tokens”).show(truncate=False)
#Save into Parquet Format

>>get_tokenized.select(“generate_df”, “get_tokens”).write.
save(“parquetfileformat”)

#Save Outcome Into a JSON Format

>>get_tokenized.select(“generate_df”, “get_tokens”).write.

json(“JsonSave.json”)”

Figure 4.14 shows an illustration of the code and output of the Tokenizer transformer:
from pyspark.ml.feature import Tokenizer, RegexTokenizer

from pyspark.sql.functions import col, udf
from pyspark.sql.types import IntegerType

generate_df = spark.createDataFrame ([
(0, "This Book Is For All The Big Data And Data Science Lovers"),
(1, "This Is Our Chapter-4 Which Has Content Related To Spark MLlib ")], [”unique_id", "generate_df”])
get_tokenizers = Tokenizer (inputCol="generate_df", outputCol="get tokens")
get_tokenized = get_tokenizers.transform(generate df)
#Display Outcome
. get_tokenized.select("generate df", "get tokens").show(truncate=False)

__ +___
-t
Igenerate_df \get_tokens
|
e e e e ————— e e e e ——————
————
|This Book Is For All The Big Data And Data Science Lovers | [this, book, is, for, all, the, big, data, and, data,
|
|This Is Qur Chapter-4 Which Has Content Related To Spark MLlib |[this, is, our, chapter-4, which, has, content, relat
1ib] |

Figure 4.14: Code and output of Tokenizer transformer

Figure 4.15 shows an illustration of the code how to persist a list of tokens into the
Parquet or JSON format:

>>> #Save into Parquet Format
. get_tokenized.select("generate df", "get_ tokens") .write.save ("parquetfileformat")

>>> #Save Outcome Into a JSON Format
. get tokenized.select("generate_df", "get_tokens").write.json("JsonSave.json")

Figure 4.15: Code and output to save lists of tokens into Parquet or [SON format

StopWordsRemover

StopWordsRemover is used in text mining for refining the unwanted words from
the corpus in Natural Language Processing (NLP). The working mechanism of
StopWordsRemover starts from feeding-up the input as a sequence of string and

174 Practical Machine Learning with Spark

returns the meaningful words as in tokens. The following code illustrates the
conversion of sentences into sequences of tokens. Later, the StopWordsRemover class
applies on those tokens for getting the refined sequences of tokens after removing
the most common or unwanted words:

>>from pyspark.ml.feature import Tokenizer, RegexTokenizer
>>from pyspark.sql.functions import col, udf
>>from pyspark.sql.types import IntegerType
>>generate_df = spark.createDataFrame([
(0, “This Book Is For All The Big Data And Data Science Lovers”),

(1, “This Is Our Chapter-4 Which Has Content Related To Spark ML1lib
“Y], [“id”, “create_df”])

>>get_tokenizers = Tokenizer(inputCol="create_df”, outputCol="get_
tokens™)

>>get_tokenized = get_tokenizers.transform(generate_df)
>>remover = StopWordsRemover(inputCol="get_tokens”, outputCol="row”)

>>remover.transform(get_tokenized).select(“get_tokens”, “row”).
show(truncate=False)”

Figure 4.16 shows an illustration of the code and output of StopWordsRemover:

>>> from pyspark.ml.feature import Tokenizer, RegexTokenizer
>>> from pyspark.sql.functions import col, udf
>>> from pyspark.sql.types import IntegerType
>>> generate df = spark.createDataFrame ([
(0, "This Book Is For All The Big Data And Data Science Lovers"),
(1, "This Is Our Chapter-4 Which Has Content Related To Spark MLlib ")1, ["id", "create_df"])
get_tokenized = get_tokenizers.transform(generate_df)
remover = StopWordsRemover (inputCol="get tokens", outputCol="row")
remover.transform(get tokenized).select("get tokens", "row").show(truncate=False)>>> get tokenizers = Tokenizer (inputC
ol="create_ df", outputCol="get_tokens")
>>> get_tokenized = get_tokenizers.transform(generate df)
>>> remover = StopWordsRemover (inputCol="get_tokens", outputCol="row")

>>> remover.transform(get_tokenized) .select("get_tokens", "row").show(truncate=False)

| [this, book, is, for, all, the, big, data, and, data, science, lovers] | [book, big, data, data, science, lovers]
|
| [this, is, our, chapter-4, which, has, content, related, to, spark, mllib]|[chapter-4, content, related, spark, mllib

11

Figure 4.16: Code and output of StopWordsRemouver

N-Gram

An N-Gram generates a sequence of n number of words by concatenating the
consecutive words in the token. The N-Gram transforms the sequence of words as

Apache Spark MLIib 175

input and produces a sequence of n-grams as output. The parameter n is used to
determine the number of terms which to be delimited by space with the consecutive
sequence of words in each n-gram. The following code shows the example of N-Gram
with the parameter value n set to 2:

>>from pyspark.ml.feature import NGram
>>generate_df = spark.createDataFrame([

(0, [‘l’ThiSJJ ’,)Book)l, l’fISJJ’ (fFor,.l, I'(All.’), ‘l’TheJ,, f(BigJJ R l’fData,)
,”And” ,”Data” ,”Science”, “Lovers”]),

(1, [“This” ,”Is” ,”0Our”, “Chapter-4” ,”Which” ,”Has”, “Content”,
“Related”, “To”, “Spark”, “ML1ib»])], [“id”, “create_df”])

>>get_ngram = NGram(n=2, inputCol="create_df”, outputCol="get_ngram_
out”)

>>get_ngram_DataFrame = get_ngram.transform(generate_df)
>>get_ngram_DataFrame.select(“get_ngram_out”).show(truncate=False)”

Figure 4.17 shows an illustration of the code and output of N-Gram:

>>> from pyspark.ml.feature import NGram
>>> generate_df = spark.createDataFrame ([
(0, ["This" ,"Book", "Is", "For", "All", "The", "Big" , "Data" ,"And" ,"Data" ,"Science", "Lovers"]),
(1, ["This" ,"Is" ,"Our", "Chapter-4" ,"Which" ,"Has", "Content", "Related", "To", "Spark", "MLlib"])], ["id",
"create df"])
get_ngram DataFrame.select("get ngram out").show(truncate=False)>>> get ngram = NGram(n=2, inputCol="create_df", outpu
tCol="get_ngram out")
>>> get _ngram DataFrame = get ngram.transform(generate df)
>>> get _ngram DataFrame. select("get_ngram_out ") .show (truncate=False)

| [This Book, Book Is, Is For, For All, All The, The Big, Big Data, Data And, And Data, Data Science, Science Lovers]
|
| [This Is, Is Our, Our Chapter-4, Chapter-4 Which, Which Has, Has Content, Content Related, Related To, To Spark, Spar

Figure 4.17: Code and output of N-Gram

Binarizer

In Spark MLIib, the Binarization function helps to convert the numerical features to
binary form features giving a particular thresholding value. Generally, the Binarizer
class takes three parameters such as inputCol, outputCol, and threshold for
binarization. The parameter threshold helps in converting the numerical vector into
a binarized form. For example, the value will be binarized to 0.0, if the threshold
value is less than the feature value and 1.0 when the threshold value is greater
than the feature value. The following code shows an example of Binarizer with the
threshold parameter value threshold set to 3:

176 Practical Machine Learning with Spark

>>from pyspark.ml.feature import Binarizer
>>from pyspark.ml.feature import StringIndexer
>>create_df = spark.createDataFrame(

[(0, “Hello”), (1, “All”), (2, “This”), (3, “is”), (4, “a”), (5,
“new”), (6, “Day”)1,

[“unique_id”, “words”])

>>stagel_output = StringIndexer(inputCol="words”, outputCol="Conversion_
outcome™)

>>get_finalized_df = stagel_output.fit(create_df).transform(create_df)

>>binarizer_value = Binarizer(threshold=3, inputCol="Conversion_
outcome”, outputCol="get_binarized_feature®)

>>binarizedDF = binarizer_value.transform(get_finalized_df)

>>binarizedDF.show()?”

Figure 4.18 shows an illustration of the code and output of Binarizer:

>>> from pyspark.ml.feature import Binarizer
>>> from pyspark.ml.feature import StringIndexer
>>> create_df = spark.createDataFrame (
[(0, "Hello"), (1, "All"), (2, "This"), (3, "is"), (4, "a"), (5, "new"), (6, "Day")],
.. ["unique id", "words"])
get finalized df = stagel output.fit(create_df).transform(create_df)
binarizer value = Binarizer (threshold=3, inputCol="Conversion outcome", outputCol="get binarized feature")
binarizedDF = binarizer value.transform(get finalized df)
binarizedDF.show () >>> stagel output = StringIndexer (inputCol="words", outputCol="Conversion outcome"
>>> get_finalized df = stagel output.fit(create_df).transform(create df)
>>> binarizer value = Binarizer(threshold=3, inputCol="Conversion outcome", outputCol="get binarized feature")
>>> binarizedDF = binarizer value.transform(get finalized df)
>>> binarizedDF.show()

0|Hello|
1| Alll
2| This|
31 is]
4] al
5| new|

Day|

e tmmmmm pmmm oo e +

Figure 4.18: Code and output of Binarizer

Principal Component Analysis (PCA)

PCA is a technique used for doing the Exploratory Data Analysis (EDA) using the
concept of orthogonal transformation. The PCA class in Spark MLIib provides the
support to convert the higher level of dimension into lower-dimensional data by

Apache Spark MLIib 177

setting the parameter k and give the fair idea for ameliorating the futuristic analysis.
The following code shows the dimension reduction of the vector from 5-dimensional
principal components to 2-dimensional principal components:

>>from pyspark.ml.feature import PCA

>>from pyspark.ml.linalg import Vectors

>>dataset = [(Vectors.dense([2.0, 0.0, 3.0, 4.0, 5.0]),),
(Vectors.dense([4.0, 0.0, 0.0, 6.0, 7.0]),)]

>>df_created = spark.createDataFrame(dataset, [“vector_space”])

>>get_pca = PCA(k=2, inputCol="vector_space”, outputCol="PCA_Outcome™)

>>train_model = get_pca.fit(df_created)

>>model_result = train_model.transform(df_created).select(“PCA_Outcome™)

>>model_result.show(truncate=False)”

Figure 4.19 shows an illustration of the code and output of PCA:

>>> from pyspark.ml.feature import PCA
>>> from pyspark.ml.linalg import Vectors
>>> dataset = [(Vectors.dense([2.0, 0.0, 3.0, 4.0, 5.01),),
.. (Vectors.dense([4.0, 0.0, 0.0, 6.0, 7.0]),)]
>>> df created = spark.createDataFrame(dataset, ["vector_space"])
>>> get_pca = PCA(k=2, inputCol="vector_ space", outputCol="PCA Outcome")
>>> train model = get pca.fit(df_created)
2021-03-13 23:25:43 WARN BLAS:61 - Failed to load implementation from: com.github.fommil.netlib.NativeSystemBLAS
2021-03-13 23:25:43 WARN BIAS:61 - Failed to load implementation from: com.github.fommil.netlib.NativeRefBLAS
2021-03-13 23:25:43 WARN LAPACK:61 - Failed to load implementation from: com.github.fommil.netlib.NativeSystemLAPACK

2021-03-13 23:25:43 WARN LAPACK:61 - Failed to load implementation from: com.github.fommil.netlib.NativeRefLAPACK
>>> model_result = train model.transform(df created).select("PCA Outcome")
>>> model_result.show(truncate:False)

|1 [-2.836832573067901,1.7750362488286255] |
| [-7.419408268023741,1.7750362488286244] |

Figure 4.19: Code and output of PCA

Polynomial Expansion

The Polynomial Expansion expands the vector features into n-degree polynomial
space. The following code shows the expansion of the feature vector into 2-degree
polynomial space by giving the value to the parameter degree as 2. The mathematical
expression to expand 2-degree polynomial is mentioned here:
>>from pyspark.ml.feature import PolynomialExpansion
>>from pyspark.ml.linalg import Vectors
>>create_df = spark.createDataFrame([

(Vectors.dense([5.0, 7.9]),),

178 Practical Machine Learning with Spark

(Vectors.dense([3.0, 1.0]),)
1, [“indispensable_features”])

>>polyfunc = PolynomialExpansion(degree=2, inputCol="indispensable_
features”, outputCol="get_Features®”)

>>polyfuncDF = polyfunc.transform(create_df)
>>polyfuncDF.show(truncate=False)

Figure 4.20 shows an illustration of the code and output of PolynomialExpansion:

>>> from pyspark.ml.feature import PolynomialExpansion
>>> from pyspark.ml.linalg import Vectors
>>> create_df = spark.createDataFrame ([
(Vectors.dense([5.0, 7.01),),
(Vectors.dense([3.0, 1.0]),)
. 1, ["indispensable features"])
>>> polyfunc = PolynomialExpansion(degree=2, inputCol="indispensable features", outputCol="get Features")

>>> polyfuncDF = polyfunc.transform(create df)
>>> polyfuncDF.show(truncate=False)

Figure 4.20: Code and output of Polynomial Expansion

Discrete Cosine Transform (DCT)

DCT was first proposed in 1972 by Nasir Ahmed which was used for image
compression. Later, other applications were intended towards DCT such as digital
signal processing, telecommunication devices, reducing network bandwidth usage,
and spectral methods for the numerical solution of partial differential equations.
In ML, DCT is mainly used to transform the time domain into frequency domain,
where space values are length of N real-valued sequences. In Spark MLIlib, DCT-II
is used with scaling the outcome by to represent the matrix to the transfer is unitary.
The following code shows the implementation of DCT:

>>from pyspark.ml.feature import DCT

>>from pyspark.ml.linalg import Vectors

>>create_df = spark.createDataFrame([
(Vectors.dense([5.9, 7.0]),),
(Vectors.dense([3.0, 1.0]),)

1, [“indispensable_features”])

>>get_dctfunc = DCT(inverse=False, inputCol="indispensable_features®”,
outputCol="get_features”)

Apache Spark MLIib 179

>>dctDataFrame = get_dctfunc.transform(create_df)

>>dctDataFrame.select(“get_features”).show(truncate=False)”

Figure 4.21 shows an illustration of the code and output of DCT:

>>> from pyspark.ml.feature import DCT
>>> from pyspark.ml.linalg import Vectors
>>> create_df = spark.createDataFrame ([
(Vectors.dense([5.0, 7.0]),),
(Vectors.dense([3.0, 1.01),)
... 1, ["indispensable_features"])
>>> get_dctfunc = DCT (inverse=False, inputCol="indispensable features", outputCol="get features")

>>> dctDataFrame = get dctfunc.transform(create_ df)
>>> dctDataFrame.select("get_features") .show(truncate=False)

| [8.48528137423857,-1.4142135623730951] |
| [2.82842712474619,1.4142135623730951] |

Figure 4.21: Code and output of DCT

StringIndexer

StringIndexer transforms a string consisting of columns into label indices columns.
The range of indices are in between [0, number_of_Lables] and it can be
applied to all or multiple columns. It supports four “ordering functions” such as
frequencyDesc, frequencyAsc, alphabetDesc, and alphabetDesc. The user can
encode a string column into an index column based on label frequency and alphabet
counts. By default, it uses frequencyDesc for encoding the string in a label column.
The following code shows the implementation of StringIndexer for converting a
string column into a label index column:

>>from pyspark.ml.feature import StringIndexer
>create_df = spark.createDataFrame(

[(e, “Hello”), (1, “All”), (2, “This”), (3, “is”), (4, “a”), (5,
“new”), (6, “Day”)1,

[“unique_id”, “words”])

>>stagel_output = StringIndexer(inputCol="words”, outputCol="Conversion_
outcome™)

>>get_finalized = stagel_output.fit(create_df).transform(create_df)

>>get_finalized.show()

180 Practical Machine Learning with Spark

Figure 4.22 shows an illustration of the code and output of StringIndexer:

>>> from pyspark.ml.feature import StringIndexer
>>> create df = spark.createDataFrame (
[(0, "Hello"), (1, "All"), (2, "This"), (3, "is"), (4, "a"), (5, "new"), (6, "Day")1,
e ["unique id", "words"])
get_finalized.show () >>> stagel output = StringIndexer (inputCol="words", outputCol="Conversion outcome")
>>> get finalized = stagel output.fit(create df).transform(create_ df)
>>> get_finalized.show()

|unique id|words|Conversion outcome|
Hmmmmmmm e Hmmm - Fmmmmmmm e +

0|Hello|

1| All|

2| This|

3] is|

4| al

5] new|

|
|
|
|
|
I
| 6| Dayl
+-— e

Figure 4.22: Code and output of StringIndexer

IndexToString

IndexToString is recommended to use this transformation for retrieving back the
actual labels after getting the output from a trained model. The following code
shows the implementation of IndexToString:

>>from pyspark.ml.feature import StringIndexer
>>create_df = spark.createDataFrame(

[(e, “Hello”), (1, “ALl”), (2, “This”), (3, “is”), (4, “a”), (5,
“new”), (6, “Day”)1,

[“unique_id”, “words”])

>>stagel_output = StringIndexer(inputCol="words”, outputCol="Conversion_
outcome™)

>>get_finalized = stagel_output.fit(create_df).transform(create_df)

>>get_finalized.show()”

Apache Spark MLIib 181

Figure 4.23 shows an illustration of the code and output of IndexToString:

>>> from pyspark.ml.feature import IndexToString, StringIndexer

>>> create_df = spark.createDataFrame (
[(0, "Hello"), (1, "All"), (2, "This"), (3, "is"), (4, "a"), (5, "new"), (6, "Day")1,
["unique_id", "words"])

do_converter = IndexToString(inputCol="wordsIndex", outputCol="get original")

do_converted = do_converter. transform(get_indexed)

do_converted.select ("unique id", "wordsIndex", "get_original").show()>>> transform indexer = StringIndexer (inputCol="w|

ords", outputCol="wordsIndex")

>>> train model = transform indexer.fit(create df)

>>> get_indexed = train model.transform(create df)

>>> do_converter = IndexToString(inputCol="wordsIndex", outputCol="get original")

>>> do_converted = do_converter.transform(get_indexed)

>>> do_converted.select ("unique_id", "wordsIndex", "get_original").show()

Fommmmmme Fommmmmmme mmmmmm

Hello|
All|
This|
is|

al

Day|
-+

|

|

|

|

|

| . new|
|

.

Figure 4.23: Code and output of IndexToStringr

VectorIndexer

VectorIndexer maps indexes of categorical features corresponding to the datasets
of Vectors. It feeds an input column of vector type with a parameter named as
maxCategories. It can ameliorate the performance of Decision Tree and Tree
Ensembles by leveraging the concept of index categorical features. The following
code shows the implementation of VectorIndexer:

>>from pyspark.ml.feature import ChiSqSelector
>>from pyspark.ml.linalg import Vectors
>>from pyspark.ml.feature import VectorIndexer, VectorAssembler
>>create_df = spark.createDataFrame([
(0, Vectors.dense([3.0, 6.0, -4.0]), 18.0),
(1, Vectors.dense([3.0, 2.0, 10.0]), 30.0)
1, [“unique_id”, “get_features”, “user_age”])

>>vector_ind = VectorIndexer(inputCol="get_features”, outputCol="get_
result”)

>>encode = vector_ind.fit(create_df).transform(create_df)

>>encode.show()

182 Practical Machine Learning with Spark

Figure 4.24 shows an illustration of the code and output of VectorIndexer:

from pyspark.ml.feature import ChiSgSelector
from pyspark.ml.linalg import Vectors
from pyspark.ml.feature import VectorIndexer, VectorAssembler
create_df = spark.createDataFrame ([
(0, Vectors.dense([3.0, 6.0, -4.0]), 18.0),
(1, Vectors.dense([3.0, 2.0, 10.0]), 30.0)
. 1, ["unique_id", "get features", "user_age"])
vector_ind = VectorIndexer (inputCol="get_ features", outputCol="get_ result")

encode = vector_ind.fit(create_df).transform(create df)
encode. show ()
Hmmmm - tommm e +mmmmmm - Hmmmmmm e +
|unique_id| get features|user_age| get_result|

Figure 4.24: Code and output of VectorIndexer

Normalizer

The Normalizer usually is used to standardize the input dataset and ameliorate the
way of learning an algorithm. It transforms a dataset of vector rows and normalizes
each vector to have a unit norm by passing a parameter p for normalization.
By default, the value of p is 2. The following code shows the implementation of
Normalizer:

>>from pyspark.ml.feature import Normalizer

>>from pyspark.ml.linalg import Vectors

>>create_df = spark.createDataFrame([
(Vectors.dense([4.0, 2.0]),),
(Vectors.dense([3.0, 1.0]),)

1, [“indispensable_features”])

>>get_normalized = Normalizer(inputCol="indispensable_features®,
outputCol="Get_Features”, p=1.0)

>>NormDataDF = get_normalized.transform(create_df)

>>NormDataDF . show()

Apache Spark MLIib 183

Figure 4.25 shows an illustration of the code and output of Normalizer:

>>> from pyspark.ml.feature import Normalizer
>>> from pyspark.ml.linalg import Vectors
>>> create df = spark.createDataFrame ([
(Vectors.dense([4.0, 2.0]),),
(Vectors.dense([3.0, 1.0]),)
...], ["indispensable features"])
get_normalized = Normalizer(inputCol="indispensable features", outputCol="Get Features", p=1.0)
NormDataDF = get normalized.transform(create df)

NormDataDF.show () >>> get_normalized = Normalizer (inputCol="indispensable features", outputCol="Get Features", p=1.0)
>>> NormDataDF = get normalized.transform(create_df)
>>> NormDataDF.show()

pensable features| Get Features|

B GREEEEEEEEEREE R pmmmm e +
[4.0,2.0]|[0.66666666666666. ..

[3.0,1.0]1 [0.75,0.25] |

o= mmmmmmmm e oo Fommmmmmmmmmm e m e +

Figure 4.25: Code and output of Normalizer

StandardScaler

StandaredScaler provides the normalization mechanism to generate a flat feature of
a VectorRow which tends to have unit standard deviation. It keeps two parameters
named as withStd and withMean for performing the StandardScaler normalization
In addition, the StandardScalerModel function shows the computing summary
with their important statistics. In general, it returns @.0. value if dataset has zero
value. The following code shows the implementation of StandardScaler:

>>from pyspark.ml.feature import StandardScaler
>>create_df = spark.createDataFrame([
(0, Vectors.dense([3.0, 6.0, -4.0]), 18),
(1, Vectors.dense([3.0, 8.1, 10.0]), 30),
(2, Vectors.dense([0.0, 19.1, 16.0]), 60)
1, [“unique_id”, “get_features”, “user_age”])

>>get_scaler = StandardScaler(inputCol="get_features”,
outputCol="scaled_ouput”, withStd=True, withMean=False)

>>train_model = get_scaler.fit(create_df)
>>output_scaledD = train_model.transform(create_df)

>>output_scaledD.show(truncate=False)”

184 Practical Machine Learning with Spark

Figure 4.26 shows an illustration of the code and output of StandardScaler:

>>> from pyspark.ml.feature import StandardScaler
>>> create_df = spark.createDataFrame ([
(0, Vectors.dense([3.0, 6.0, =4.0]), 18),
(1, Vectors.dense([3.0, 8.1, 10.01), 30),
(2, Vectors.dense([0.0, 19.1, 16.0]), 60)
++. 1, ["unique_id", "get features", "user age"l)
>>> get_scaler = StandardScaler(inputCol="get features", outputCol="scaled ouput", withStd=True, withMean=False)
>>> train model = get_scaler.fit(create_df)
>>> output_scaledD = train model.transform(create_df)
>>> output_scaledD.show (truncate=False)
Fommmmme R R E Hommmmmmm B e e e L R +
|unique_id|get_features |user_age|scaled_ouput

| [1.7320508075688776,0.8527741529713646,-0.3897418814769785]
| [1.7320508075688776,1.1512451065113423,0.9743547036924463] |
110.0,2.714664386958844,1.558967525907914] |

Figure 4.26: Code and output of StandardScaler

MinMaxScaler

MinMaxScaler rescales each feature to a range varies between [0,1]. It transforms
the dataset by assuming the min value as 0.0 and maximum value as 1.0 by default.
Also, the transformations perform on zero values will be transformed into a nonzero
value. The following code shows the implementation of MinMaxScaler:

>>from pyspark.ml.feature import MinMaxScaler
>>from pyspark.ml.linalg import Vectors
>>create_df = spark.createDataFrame([
(0, Vectors.dense([3.0, 6.0, -4.0]),),
(1, Vectors.dense([3.0, 8.1, 10.0]),)
1, [“unique_id”, “get_features”])

>>get_scaler = MinMaxScaler(inputCol="get_features”, outputCol="feature_
outcome™)

>Train_Model = get_scaler.fit(create_df)
>>scaled_result = Train_Model.transform(create_df)

>>scaled_result.select(“get_features”, “feature_outcome”).show()

Apache Spark MLIib 185

Figure 4.27 shows an illustration of the code and output of MinMaxScaler:

>>> from pyspark.ml.feature import MinMaxScaler
>>> from pyspark.ml.linalg import Vectors
>>> create_df = spark.createDataFrame ([
(0, Vectors.dense([3.0, 6.0, -4.0]),)
(1, Vectors.dense([3.0, 8.1, 10.01),)
.. 1, ["unique id", "get_features"])
get_scaler = MinMaxScaler (inputCol="get features", outputCol="feature outcome")
Train Model = get_scaler.fit(create_df)
scaled result = Train Model.transform(create df)
scaled result.select("get_features", "feature_outcome").show()>>> get_scaler = MinMaxScaler(inputCol="get features", o
utputCol="feature_outcome")
>>> Train_Model = get_scaler.fit(create_df)
>>> scaled_result = Train_Model.transform(create_df)
>>> scaled_result.select("get_features”, "feature_outcome") .show()

’

Figure 4.27: Code and output of MinMaxScaler

MaxAbsScaler

MaxAbsScaler rescales each feature of dataset into the range of [-1,1] by dividing
through the maximum absolute value in each feature. It provides the statistics on
a dataset and trained a MaxAbsScalerModel which can transform each feature in

the preceding-mentioned range. The following code shows the implementation of
MaxAbsScaler:

>>from pyspark.ml.feature import MaxAbsScaler
>>from pyspark.ml.linalg import Vectors
>>create_df = spark.createDataFrame([
(0, Vectors.dense([3.0, 6.0, -4.0]),),
(1, Vectors.dense([3.0, 8.1, 10.0]),)
1, [“unique_id”, “get_features”])

>>get_scaler = MaxAbsScaler(inputCol="get_features”, outputCol="feature_
outcome™)

>>Train_Model = get_scaler.fit(create_df)
>>scaled_result = Train_Model.transform(create_df)

>>scaled_result.select(“get_features”, “feature_outcome”).show()”

186 Practical Machine Learning with Spark

Figure 4.28 shows an illustration of the code and output of MaxAbsScaler:

>>> from pyspark.ml.feature import MaxAbsScaler
>>> from pyspark.ml.linalg import Vectors
>>> create_df = spark.createDataFrame ([
(0, Vectors.dense([3.0, 6.0, -4.01),),
(1, Vectors.dense([3.0, 8.1, 10.0]),)
voo 1, ["unique id", "get features"])
Train Model = get_scaler.fit(create_df)
scaled_result = Train_Model .transform (create_df)
scaled_result.select("get_features“, "feature_outcome") .show () >>> get_scaler = MaxAbsScaler(inputCol="get_features", [}
utputCol="feature_outcome")
>>> Train Model = get_scaler.fit(create_df)
>>> scaled result = Train Model.transform(create_df)
>>> scaled_result.select(”get_features”, "feature_outcome") .show()
L fmm e +
get_features| feature_outcome|

.0,-4.01[1.0,0.7407407407. . .|
.1,10.011 [1.0,1.0,1.011
4o oo +

Figure 4.28: Code and output of MaxAbsScaler

Bucketizer

Bucketizer is a way for transforming a column of continuous features into a column
of feature buckets, where the buckets are specified by users. Mapping of buckets
with the continuous features are done by using a parameter named as splits,
where values in splits should be in the increasing order and ranges between [-inf,
inf] that covers all the double values. The following code shows the implementation
of Bucketizer:

>>from pyspark.ml.feature import Bucketizer
>>splits = [-float(“inf”), -0.5, 0.0, 0.5, 1.0, 2.0, float(“inf”)]

>>create_df = spark.createDataFrame([(-0.5,), (-0.3,), (0.0,),
(1.9,),(0.2,), (100.0,)], [“get_features”])

>>apply_func_bucketizer = Bucketizer(splits=splits, inputCol="get_
features”, outputCol="buckfeatures”)

>>get_data = apply_func_bucketizer.transform(create_df)

>>get_data.show()

Apache Spark MLIib 187

Figure 4.29 shows an illustration of the code and output of Bucketizer:

from pyspark.ml.feature import Bucketizer
splits = [-float("inf"), -0.5, 0.0, 0.5, 1.0, 2.0, float("inf")]
create_df = spark.createDataFrame([(-0.5,), (-0.3,), (0.0,), (1.0,),(0.2,), (100.0,)], ["get_features"])
apply func_bucketizer = Bucketizer(splits=splits, inputCol="get features", outputCol="buckfeatures")
get_data = apply func bucketizer.transform(create df)
get_data.show()

B Hmmmmmmmmmme- +

Iget_features|buckfeatures|

Hommmm o Fommmm e +

| .
| -0.3] .0
| 0.0]

| 1.0]
|

|

Figure 4.29: Code and output of Bucketizer

ElementwiseProduct

ElementwiseProduct multiplies each element of a vector by a provided vector, like
multiplication of two matrices in mathematics. The following code demonstrates
how to transform vectors using a transforming vector value:

>>from pyspark.ml.feature import ElementwiseProduct

>>from pyspark.ml.linalg import Vectors

>>create_df = spark.createDataFrame([
(Vectors.dense([5.0, 7.0, 9.9]),),
(Vectors.dense([3.0, 1.0, 6.9]),)

1, [“indispensable_features”])

>>get_transformer = ElementwiseProduct(scalingVec=Vectors.dense([0.0,
1.0, 2.0]),

inputCol="indispensable_features®,
outputCol="NewVector”)

>>get_transformer.transform(create_df).show()

188 Practical Machine Learning with Spark

Figure 4.30 shows an illustration of the code and output of ElementwiseProduct:

>>> from pyspark.ml.feature import ElementwiseProduct
>>> from pyspark.ml.linalg import Vectors
>>> create df = spark.createDataFrame ([
(Vectors.dense([5.0, 7.0, 9.01),),
(Vectors.dense([3.0, 1.0, 6.0]1),)
- 1, ["indispensable features"])
>>> get_transformer = ElementwiseProduct (scalingVec=Vectors.dense([0.0, 1.0, 2.01),
inputCol="indispensable_features", outputCol="NewVector")

>>> get_transformer.transform(create_df) .show()
oo oo mmmmmmmm o +
|indispensable features| NewVector|

Figure 4.30: Code and output of ElementwiseProduct

SQLTransformer

SQLTransformer in Spark MLIib supports SQL-like statements to perform the
transformations. It can also leverage Spark SQL built-in function and UDF for
transforming the SQL statements. The basic syntax is given as follows:

“SELECT (* or column names) FROM __ THIS ...where (conditions or
filters)”, where __ THIS _ represents the underlying table of the input
dataset.

The following code demonstrates how to perform SQLTransformer:
>>from pyspark.ml.feature import SQLTransformer
>>create_df = spark.createDataFrame([

(0, Vectors.dense([3.0, 6.0, -4.0]), 18),

(1, Vectors.dense([3.0, 8.1, 10.0]), 30),

(2, Vectors.dense([0.0, 19.1, 16.0]), 60)
1, [“unique_id”, “get_features”, “user_age”])

>>sqlTrfunc = SQLTransformer(statement="SELECT get_features from __
THIS__ where user_age <= 307)

>>sqlTrfunc.transform(create_df).show()”

Apache Spark MLIib 189

Figure 4.31 shows an illustration of the code and output of SQLTransformer:

>>> from pyspark.ml.feature import SQLTransformer
>>> create df = spark.createDataFrame ([
(0, Vectors.dense([3.0, 6.0, -4.0]), 18),
(1, Vectors.dense([3.0, 8.1, 10.0]), 30),
(2, Vectors.dense([0.0, 19.1, 16.0]), 60)
... 1, ["unique_id", "get features", "user age"])
sqlTrfunc. transform(create df).show()>>> sqlTrfunc = SQLTransformer (statement="SELECT get features from _ THIS__ where
user_age <= 30")

>>> sqlTrfunc.transform(create_df).show()

113.0,6.0,-4.0]|
113.0,8.1,10.0] |

Figure 4.31: An illustration of the code and output of SQLTransformer

VectorAssembler

VectorAssembler is a transformer that stitches the given list of columns into a
single vector feature. Mostly, this transformer is used in Logistic Regression and
Decision Tree algorithms for training them. It supports numeric, Boolean, and
vector type columns in a vector. The following code delineates how to execute
the VectorAssembler transformer for concatenating a list of columns into a single
column:

>>from pyspark.ml.linalg import Vectors
>>from pyspark.ml.feature import VectorAssembler
>>create_df = spark.createDataFrame([
(9, Vectors.dense([3.0, 6.0, -4.0]), 18),
(1, Vectors.dense([3.0, 8.1, 10.0]), 30)
1, [“unique_id”, “get_features”, “user_age”])

>>get_assembler = VectorAssembler(inputCols=[“get_features”, “user_
age”], outputCol="features”)

>>result = get_assembler.transform(create_df)

>>result.show(truncate=False)”

190 Practical Machine Learning with Spark

Figure 4.32 shows an illustration of the code and output of VectorAssembler:

from pyspark.ml.linalg import Vectors
from pyspark.ml.feature import VectorAssembler
create df = spark.createDataFrame ([
(0, Vectors.dense([3.0, 6.0, -4.0]), 18),
(1, Vectors.dense([3.0, 8.1, 10.0]1), 30)
. 1, ["unique id", "get_features", "user_age'"])
get_assembler = VectorAssembler (inputCols=["get_features", "user_age"], outputCol="features")

result = get_assembler.transform(create_df)

result.show (truncate=False)
+mmm - o - e +
| unique_idl get_features | user_age | features

,—-4.01118 . ,-4.0,18.0]1
;10.01130 . ;10.0,30.0]1

Figure 4.32: An illustration of the code and output of VectorAssembler

VectorSizeHint

VectorSizeHint is a special type of transformation which can explicitly specify the
size of vector columns for filtering out the invalid or valid VectorType by passing the

Vi

parameters such as “skip”, “optimistic”, and “error” in the handle Invalid. Here, the
parameter “error” is used to indicate an exception when it occurs, the skip is used to
cater the invalid values; hence, eliminate those vector rows from the result, and the
last “optimistic” is used when there is no need to check the validity of column values.
The following code demonstrates how to execute VectorSizeHint transformer:

>>from pyspark.ml.linalg import Vectors
>>from pyspark.ml.feature import (VectorSizeHint, VectorAssembler)
create_df = spark.createDataFrame([
(0, Vectors.dense([3.0, 6.0, -4.0]), 18),
(1, Vectors.dense([3.0, 10.0]), 30)
1, [“unique_id”, “get_features”, “user_age”])

>>get_assembler = VectorAssembler(inputCols=[“get_features”, “user_
age”], outputCol="features”)

>>Vec_Si_Hi = VectorSizeHint(
inputCol="get_features”,
handleInvalid="error”,
size=3)

>>get_dataset= Vec_Si_Hi.transform(create_df)

>>get_dataset.show(truncate=False)

Apache Spark MLIib 191

Figure 4.33 shows an illustration of the code and output of VectorSizeHint:

>>> from pyspark.ml.linalg import Vectors
>>> from pyspark.ml.feature import (VectorSizeHint, VectorAssembler)
>>> create df = spark.createDataFrame ([
(0, Vectors.dense([3.0, 6.0, -4.0]), 18),
(1, Vectors.dense([3.0, 10.0]), 30)
. 1, ["unique_id", "get features", "user_age"])
>>> get_assembler = VectorAssembler (inputCols=["get features", "user_age"], outputCol="features")
>>> Vec_Si_Hi = VectorSizeHint (
inputCol="get features",
handleInvalid="optimistic",
.. size=3)
>>> get dataset= Vec Si_Hi.transform(create df)
>>> get_dataset.show(truncate=False)
Fommm - Fmmmmmmmmm oo +ommm - +
|lunique_id|get features |user_ age|
Fommmmm o ommmmmm e Fom +
1[3.0,6.0,-4.0]|18 |
1[3.0,10.0]
Fommmmm o Fommmmmm e Fom +

Figure 4.33: Code and output of VectorSizeHint

Quantile Discretizer (QD)

QD feeds a column with the continuous values and generates a column with mapped
categorical distribution. The number of categories is set by the parameter named as
numBuckets. In QD, the NaN values can be handled with the help of handleInvalid
parameters, but it is ignored and mitigated in general QD transformation. The
following code delineates how to execute QD transformer:

>>from pyspark.ml.feature import QuantileDiscretizer

>>create_df = spark.createDataFrame([(1001, 180000.0), (1003, 190000.0),
(1004, 800000.0), (3002, 500000.0), (4871, 7000000.0)], [“employee_id”,
“salary”])

>>quant_discretizer = QuantileDiscretizer(numBuckets=3,
inputCol="salary”, outputCol="result”)

>>get_result = quant_discretizer.fit(create_df).transform(create_df)

>>get_result.show()

192 Practical Machine Learning with Spark

Figure 4.34 shows an illustration of the code and output of QD:

>>> from pyspark.ml.feature import QuantileDiscretizer

>>> create_df = spark.createDataFrame ([(1001, 180000.0), (1003, 190000.0), (1004, 800000.0), (3002, 500000.0), (4871,
7000000.0)], ["employee id", "salary"])

quant_discretizer = QuantileDiscretizer (numBuckets=3, inputCol="salary", outputCol="result")

get_result = quant discretizer.fit(create_ df).transform(create df)

get_result.show()>>> quant_discretizer = QuantileDiscretizer (numBuckets=3, inputCol="salary", outputCol="result")
>>> get_result = q'uant_discretizer.fit(create_df) .transfom(create_df)

>>> get_result.show()

| emp. yee_id | salary|result|
Fmmmmmmmmmee mmmmmm e fmmmmmm +

[1001 180000.0]
| 1003| 190000.0] 1.0
[1004| 800000.0|
[3002| 500000.0]
| 487117000000.0]
B e Hmmmmm e +

Figure 4.34: Code and output of QD

Imputer

The Imputer function aids to fill-up the missing or void values in a vector or
dataframe. Mostly, it may use mean, median, and custom value of columns in which
the void values are found. The Imputer class supports only numeric datatype, and
it treats all the null values in the columns as missing values by default. Moreover,
Imputer can replace other values than NaN by executing. Set the Missing value
(any_custom_value). The following code delineates how to execute the Imputer
transformer

>>from pyspark.ml.feature import Imputer
>>create_df = spark.createDataFrame([
(9, Vectors.dense([3.0, 6.0, -4.0]), 18.0),
(1, Vectors.dense([3.0, 8.1, 10.0]), 30.0),
(2, Vectors.dense([0.0, 19.1, 16.0]), float(“nan”))
1, [“unique_id”, “get_features”, “user_age”])
>>get_imputer = Imputer(inputCols=[“user_age”], outputCols=[“Result_a”])
>>get_model = get_imputer.fit(create_df)

>>get_model.transform(create_df).show()

Apache Spark MLIib

193

Figure 4.35 shows an illustration of the code and output of Imputer:

>>> from pyspark.ml.feature import Imputer
>>> create_df = spark.createDataFrame ([
(0, Vectors.dense([3.0, 6.0, -4.0]), 18.0),
(1, Vectors.dense([3.0, 8.1, 10.0]), 30.0),
(2, Vectors.dense([0.0, 19.1, 16.0]), float("nan"))
.1, ["uniq‘ue_id" , "get_features" , "user_age "1)
>>> get_imputer = Imputer(inputCols=["user_ age"], outputCols=["Result_a"])
>>> get model = get_imputer.fit(create_df)
>>> get_model .transform (create_df) .show ()
o omm e pommm - fmmmmmm +
lunique_id| get_features|user_age|Result_a|
Fmmm - Fomm e Fommm - Fmmmmmm +
0| [3.0,6.0,-4.0]] 18.0]
1| [3.0,8.1,10.0]1] 30.0]
2|1[0.0,19.1,16.011 NaN|
Fmmm - Fomm e - Fmmmmmm +

Figure 4.35: Code and output of Imputer

Feature Selectors

This section explains the several types of feature selectors in Apache Spark which is

used while training and testing the ML-based distributed processing models.

VectorSlicer

Vector Slicer helps to produce a sub-array as the output from the input array or
re-arrangement of columns by passing a value into the parameter indices. The
following code shows the implementation of re-arrangement of columns as a new

output:
>>from pyspark.ml.feature import VectorSlicer
>>from pyspark.ml.linalg import Vectors
>>from pyspark.sql.types import Row
>>df = spark.createDataFrame([
(0, Vectors.dense([3.0, 6.0, -4.0]),),
(1, Vectors.dense([3.0, 8.1, 10.0]),)

1, [“unique_id”, “get_features”])

>>slicer = VectorSlicer(inputCol="get_features”, outputCol="features”,

indices=[0,2,1])
>>output = slicer.transform(df)

>>output.show(truncate=False)”

194 Practical Machine Learning with Spark

Figure 4.36 shows an illustration of the code and output of VectorSlicer:

from pyspark.ml.feature import VectorSlicer
from pyspark.ml.linalg import Vectors
from pyspark.sql.types import Row
df = spark.createDataFrame ([
(0, Vectors.dense([3.0, 6.0, =4.0]),),
(1, Vectors.dense([3.0, 8.1, 10.0]),)
- 1, ["unique_id", "get features"])
slicer = VectorSlicer (inputCol="get features", outputCol="features", indices=[0,2,1])
output = slicer.transform(df)
output.show(truncate=False)
Hommmmmmem dmmmmmmmmmmmmee tmmmmmmmmmmemee +
lunique_id|get features |features

Figure 4.36: Code and output of VectorSlicer

ChiSqSelector

CSST is an abbreviation of Chi-Square Selection Test . It helps to perform selected
operations named as numTopFeatures, percentile, fpr, fdr, and few on the
labelled data. It is also used to calculate the pvalues, degreeOfFreedom, and
statistic by passing input columns to the ChiSquareTest function. The following
code shows the implementation of ChiSqSelector:

>>from pyspark.ml.feature import ChiSqSelector
>>from pyspark.ml.linalg import Vectors
>>create_df = spark.createDataFrame([
(0, Vectors.dense([3.0, 6.0, 4.0]),5.0),
(1, Vectors.dense([3.0, 8.1, 10.0]),7.0,)
1, [“unique_id”, “get_features”, “label”])
>>selector = ChiSqSelector(numTopFeatures=2, featuresCol="get_features”,
outputCol="selectedFeatures”, labelCol="label”)
>>get_result = selector.fit(create_df).transform(create_df)

>>get_result.show()”

Apache Spark MLIib 195

Figure 4.37 shows an illustration of the code and output of ChiSqSelector:

from pyspark.ml.feature import ChiSgSelector
from pyspark.ml.linalg import Vectors
create_df = spark.createDataFrame ([
(0, Vectors.dense([3.0, 6.0, 4.0]),5.0),
(1, Vectors.dense([3.0, 8.1, 10.0]1),7.0,)
. 1, ["unique_id", "get_features", "label"])
selector = ChiSgSelector (numTopFeatures=2, featuresCol="get_ features",
outputCol="selectedFeatures", labelCol="label")
get_result = selector.fit(create_df) .transform(create_df)
2021-03-21 23:01:33 WARN ChiSgSelector:66 - Param percentile will take no effect when selector type = numTopFeatures.

2021-03-21 23:01:33 WARN ChiSgSelector:66 - Param fpr will take no effect when selector type = numTopFeatures.
2021-03-21 23:01:33 WARN ChiSgSelector:66 - Param fdr will take no effect when selector type numTopFeatures.
2021-03-21 23:01:33 WARN ChiSgSelector:66 - Param fwe will take no effect when selector type numTopFeatures.
>>> get_result.show()

o o B o m e +

|unique_id| get_features|label|selectedFeatures|

0] [3.0,6.0,4.011 5.0] [6.0,4.011
11[3.0,8.1,10.011 7.0] [8.1,10.011
ommmmm - o mmmmmmmmmmm - 4mmm o mmmmmmmmm o mm e +

Figure 4.37: Code and output of ChiSqSelector

Conclusion

This chapter covers an immense adaptability of distributed processing in the
domain of ML and DL. Generally, training and testing phases consume abundance
of time and space during a model processing to get desired outputs. So, this chapter
leverages the concept of Spark MLIib and embodies textual information along
with their implementation. The next chapter will focus on the detailed studies on
Supervised learning using Spark MLIib.

CHAPTER 5

Supervised
Learning with
Spark

“Good, better, best. Never let it rest. “Till your good is better and your
better is best.”
- St. Jerome

Introduction

In this current era of digital innovation, a human being has been getting more
dependent on automation for making quick and right decisions. Due to high
adoption rate of Al in daily routines, Al becomes a lucrative asset to empower
the futuristic applications. For making the decisive automation, it observes the
features and key behaviors based on the historical experience of events. To prove
the ideology of futuristic learning as a reality, the algorithm of Supervised Learning
(SL) plays an imperative role. This chapter gives an introduction to SL on the
distributed framework. In the first chapter of this book, the basic excerpt on SL and
its related taxonomy has already been discussed. Here, the authors will discuss all
the technical aspects of SL along with their implementation. It also covers regression
and classification-based performance metrics to check the accuracy of the trained
model on the test dataset. The entire codebase has been implemented using the
Google Colab notebook with Apache Spark as a distributed framework for efficient
processing.

198

Practical Machine Learning with Spark

Structure

This chapter will cover a comprehensive study of the following topics:

The concept of SL and its variants

In-depth explanation of regression-based as well as classification-based SL
algorithms with their implementation

Advancement of trees by leveraging Classification and Regression Trees
(CART) and ensembling learning

Several evaluation metrics for calculating the precision rate of classification
and regression models

Explanation of the Churn Prediction Model and its implementation

Objectives

After reading the chapter, readers will be able to:

Understand about supervised learning and its several types

Implement classification and regression algorithms on a distributed
framework

Grasp the knowledge about different types of CART and theirimplementation
using Apache Spark

Understand how to improve trees by integrating CART and ensembling
techniques

Check the performance metrics of any classification- and regression-based
SL model

Learn the concept of the Churn prediction model and how to implement it
in the real world

Definition of Supervised Learning

SL is a subset of the ML technique to train a model from full-set data that contains
output labels (y) with respect to input labels (x) for predicting the response values.
In simple words, the output values are already given with respect to input values
in an SL-based model. Generally, there are two types of SL algorithms to deal with
continuous and discrete problems. The classification algorithm is used to solve
discrete problems and regression algorithm for continuous problems by predicting
and classifying the response values with respect to input labels. From the last series
of trailing chapters, authors assumed that the readers had already been familiar

Supervised Learning with Spark 199

about the concept of SL and Apache Spark’s libraries to perform any actions and
transformations on the dataset. These libraries are necessary for implementation of
different types of regression algorithms, classification algorithms, and ensembling
algorithms using Spark. Figure 5.1 shows the taxonomy of SL to classify the different
algorithms which are being used in real-case scenarios:

m
|
[Mnulinamial |
ctor Machin
—
W
—>-
_. [Random Forest |
MultilaverPerce Gradient Boosted
- Gradient BDOStEd

Figure 5.1: Taxonomy of different types of supervised learning

Regression and its Types

Regression is an SL-based statistical technique for forecasting the value of
continuous target variables (responses) based on the values of predictor variables.
Regression problems are generally present in bivariate and multi-variate settings.
Analysis of response values with respect to predictor variables using regression
can help the intermediate level insights for predicting the decision-making results.
In other words, it finds out the relationship between a dependent variable and an
independent variable. There are several types of regression algorithms such as linear
regression, decision tree regression, random forest regression, lasso regression, ridge
regression, elastic-net regression, isotonic regression, and gradient-boosted tree
regression which can be used to predict the target values with respect to predictor
values. The detailed explanation along with their respective codebase are as follows.

Linear Regression (LR)

LR represents alinear relationship between two variables such as dependent variables
and independent variables. It draws a decision line between the two variables and

200 Practical Machine Learning with Spark

the standard mathematical equation is as shown in Figure 5.2, where m is the slope
of a line and c is the y-intercept. If all the targeted values tend to be approaching
towards the decision line, then the model seems to be best fit. In other words, errors
should be minimum that determine how far the targeted variables reside from the
straight line. Generally, the least square method is used to find the best fit line in
the graph. The accuracy of the LR model is affected when the outliers are highly
fluctuating and, it is not recommended for big data when the outliers and non-
linearity in data is high. The distance of the actual data point from the decision line
is known as a residual error. There are two types of linear regression such as simple
linear regression (one dependent and one independent variable) and ,multiple linear
regression (one dependent and more than one independent variables).

Figure 5.2: Graphical representation of linear regression

In this section, the readers will get to know about the detailed working of the
regression algorithm with the help of a graphical representation. Figure 5.3 shows
the scattering of n number of data points in the xy-plane. The following figure shows
the LR mapping between the given data (Height and Weight) of healthy persons
living in a smart city. Here, height is taken as a feature along x-axis and weight as
a predictor along y-axis. This relationship draws a decision line that predicts the
weight of a person at a particular height.

Supervised Learning with Spark 201

Actual Observations

o |i|, . .
w e 'n‘ Predicted Observations

Figure 5.3: Graphical representation of key attributes of linear regression

The following codebase shows the implementation of LR by leveraging the
distributed framework using Google Colab:

>>%pip install pyspark==3.1.1

>>from pyspark.sql import SparkSession

>>from pyspark.sql import SQLContext

>>from pyspark.ml.feature import StringIndexer
>>from pyspark.ml.evaluation import RegressionEvaluator
>>from pyspark.ml.linalg import Vectors

>>from pyspark.ml.feature import VectorAssembler
>>from pyspark.ml.regression import LinearRegression
>>import seaborn as sns

>>import matplotlib.pyplot as plt

>>import pandas as pd

>>import numpy as np

#Creating Spark application and loading of dataset

>>spark = SparkSession.builder.appName(‘Linear Regression’).

202 Practical Machine Learning with Spark

getOrCreate()

>>load_data = spark.read.csv(‘/content/sample_data/weight-height.
csv’,inferSchema=True, header=True)

Figure 5.4 depicts the implementation of the preceding code in Google Colab. This
code initializes the required modules, creates the spark’s application, and reads the
CSV file in a dataframe:

14# Lin

2 %pip install pyspark==3.1.1

3 from pyspark.sql import SparkSession

4 from pyspark.sql import SQLContext

5 from pyspark.ml.feature import StringIndexer

6 from pyspark.ml.evaluation import RegressionEvaluator
7 from pyspark.ml.linalg import Vectors

8 from pyspark.ml.feature import VectorAssembler

9 from pyspark.ml.regression import LinearRegression

10 import seaborn as sns

11 import matplotlib.pyplot as plt
12 import pandas as pd

13 import numpy as np

14

15 #Creating Spark n and load
16 spark = SparkSession. er.appName (
17 load_data = spark.read.csv('/content/sample_data/weight-height.csv',inferSchema=True, header=True

Figure 5.4: Illustration of implemented code to initialize, create spark’s application, and read in dataframe

#To show the loaded dataframe
>>load_data.show()
#Converting into VectorFeature

>>get_assembler =
VectorAssembler(inputCols=[‘Height”’], outputCol="feature’)

>>assembled_data = get_assembler.transform(load_data)
>>assembled_data.show()

>>finalized_data = assembled_data.select(“feature”, “Weight®)

#To show the finalized dataframe

>>finalized_data.show()

#Splitting into training and testing dataset
>>training_data,testing_data = finalized_data.randomSplit([0.7,0.3])
#Calling of LinearRegression function

>>1r = LinearRegression(featuresCol="feature”, labelCol="Weight”,)

>>1r_model = 1lr.fit(training_data)

Supervised Learning with Spark 203

#Evaluating the model on testing dataset to check the residue of each
point

>>test_results = 1r_model.evaluate(testing_data)
>>test_results.residuals.show()
Figure 5.5 delineates the code in Colab to display, convert into VectorFeature, split

the dataset into the training and testing portion, call the Linear Regression function
on the training dataset, and evaluate the testing data from the trained model:

=
0

#To he lo
load_data.show()

N R ®

VectorFeature
get_assembler = VectorAssembler(inputCols=['Height'],outputCol="feature")
assembled data = get_assembler.transform(load_data)
assembled_data.show()
finalized data = assembled_data.select("feature", "Weight")

[RV T S VY]

~

#To w the finalized d
finalized data.show()

® O

2
b
2
z
2
-
2
-
2
=
2
-
2
Z
2
“
2
i
2
=
=
2
2
=

=

into training and testing dataset

training_data,testing_data = finalized_data.randomSplit([©.7,@.3])

[\¥]

> W

#Calling of LinearR ssion function
1r = LinearRegression(featuresCol="feature", labelCol="Weight",)
1r_model = lr.fit(training_data)

w w w w w
B

~ o

wow
O o

#Evaluating the model on testing dataset to check
test_results = 1lr_model.evaluate(testing_data)
40 test_results.residuals.show()

E]

Figure 5.5: Illustration to convert normal df into VectorFeature,
split the dataset, and implement the Linear Regression function

#Testing dataset on 1lr_model

>>get_prediction = 1lr_model.transform(testing_data)
>>get_prediction.show()

#Get_training_insights

>>training_data.describe().show()

>>train = training_data.select(“feature”,”Weight”).toPandas()
>>train_get_feature = train[‘feature’]

>>train_get_feature = list(train_get_feature)

>>train_get_salary = train[‘Weight’]

204 Practical Machine Learning with Spark

#Training_Prediciton Insights

get_training_prediction = 1lr_model.transform(training_data)
#converting into Spark’s df to Pandas’s df for data visualization
>>train_pred = get_training_prediction.select(“prediction®).toPandas()
>>prediction_train = train_pred[‘prediction’]

>>prediction_list = list(prediction_train)

>>print(prediction_list)

Figure 5.6 shows the snapshot of the code in Colab to transform the testing data
using the trained LR model for getting the prediction. After getting the prediction,
the dataframe is converted into pandas’s dataframe for easily plotting the decision
line of LR:

41

42 #Testing dataset on 1lr_model

43 get_prediction = lr_model.transform(testing_data)
44 get_prediction.show()

ining_ins s

data.describe().show()
48 train = training_data.select("feature","Weight").toPandas()
49 train_get_feature = train['feature']
50 train_get_feature = list(train_get_feature)

51 train_get_salary = train['Weight']
52

ts
54 get_t lr_model.transform(training_data)
55 #converti oS s df to Pandas's df for data visualization
56 train_pred get_training_prediction.select("prediction").toPandas()
57 prediction_train = train_pred['prediction’]
58 prediction_list = list(prediction_train)
59 print(prediction_list)

Figure 5.6: Illustration of transformation operation of
testing data and conversion of Spark’s df to Pandas’s data frame for visualization

#Testing Insights
>>x = testing_data.select(“feature”,”Weight”).toPandas()

>>x_get

x[‘feature’]

x[‘Weight”’]

>>y_get
#Get summary of the model
>>print(“Summary of model is here:”)

>>1r_model.summary

Supervised Learning with Spark 205

#Getting coefficients and intercept
>>print(“Coefficients: “ + str(lr_model.coefficients))

>>print(“Intercept: “ + str(lr_model.intercept))

Figure 5.7 delineates the code in Google Colab to convert the spark’s dataframe of
testing data into pandas. Also, it calculates the coefficient and intercept of the trained
LR model:

sting Ins =
testing_data.select("feature"”,"Weight").toPandas()
= x['feature']
x['Weight']

summary of the model

print("Summary of model is here:")

1r_model.summary

#Getting coefficients and intercep
print("Coefficient + str(lr_model.coefficients))
print("Intercept: " + str(lr_model.intercept))

Figure 5.7: Illustration to convert the spark’s dataframe to pandas’s dataframe and calculate the model insights

#Visualization

>>plt.scatter(list(x_get), list(y_get), color = ‘red’)
>>plt.plot(train_get_feature, prediction_list, color = ‘blue’)
>>plt.title(‘Weight vs Height (Test set)’)

>>plt.xlabel(‘Height’)

>>plt.ylabel(‘Weight’)

>>plt.show()

#Evaluation Metrics

>>eval = RegressionEvaluator(labelCol="Weight”,
predictionCol="prediction”, metricName="rmse”)

Root Mean Square Error

>>rmse = eval.evaluate(get_prediction)

>>print (“RMSE: %.3f” % rmse)

Mean Square Error

>>mse = eval.evaluate(get_prediction, {eval.metricName: “mse”})

>>print (“MSE: %.3f” % mse)

206 Practical Machine Learning with Spark

Mean Absolute Error

>>mae = eval.evaluate(get_prediction, {eval.metricName: “mae”})
>>print(“MAE: %.3f” % mae)

r2 - coefficient of determination

>>r2 = eval.evaluate(get_prediction, {eval.metricName: “r2”})
>s>print(“r2: %.3f” %r2)

Figure 5.8 illustrates the implemented code in Google Colab to plot the curve of
a straight line for LR and calculate the performance of the model using predicted
values:

1sualization

.scatter(list(x_get), list(y_get), color = 'red')
.plot(train_get_feature, prediction_list, color =
.title('Weight vs Height (Test set)')
.xlabel('Height")

.ylabel('Weight")

"blue')

o b w N

NN N N N N NN
~

O

eval.evaluate(get_prediction)
print("RMSE: %.3f" % rmse)

7 # Mean uare Error
88 mse = eval.evaluate(get_prediction, {eval.metricName: "mse"})
89 print("MSE: %.3f" % mse)

Mean
92 mae = eval.evaluate|(get_prediction, {eval.metricName: "mae"})
93 print("MAE: %.3f" % mae)

O O v
o u B
=

r2 -
2 = eval.evaluate(get_prediction, {eval.metricName: "r2"})

7 print("r2: %.3f" %r2)

O O
5]

Figure 5.8: Illustration of visualization and evaluation of the LR model

Output Snippet of the LR Model

This section contains the output snippet of the preceding executed program for
plotting the decision line of the LR model. Figure 5.9 delineates the data of dataframe
after reading the CSV:

Supervised Learning with Spark 207

Requirement already satisfied: pyspark==3.1.1 in fusr/local/lib/python3.7/dist-packages (3.1.1)
ED) frmn Vel e TR —radems (fe (e e 1) (50665

Male	73.84701702	241.8935632
Male	68.78190405	162.3104725
Male	74.11810539	212.7408556
Male	71.73@9784	220.8424703
Male	69.88179586	206.3498006
Male	67.25301569	152.2121558
Male	68.78508125	183.9278886
Male	68.34851551	167.9711105
Male	67.81894966	175.9294404
Male	63.45649398] 96764	
Male	71.19538228	186.6049256
Male	71.64880512	213.7411695
Male	64.76632913	167.1274611
Male	69.2830701	189.4461814
Male	69.24373223	186.434168
Male	67.6456197	172.1869301
Male	72.41831663	196.8285063
Male	63.97432572	172.8834702
Male	69.6400599	185.9839576
Male	e7 00485	182.426648
e e Ge========== +
only showing top 20 rows

Figure 5.9: Illustration of code to display the content of dataframe

Figure 5.10 shows the content of the dataframe after applying the VectorAssembler
transformation for generating the features that need to be fed to the model as input:

Male|73.84701702|241.8935632|[73.84701762] |
Male|68.78190405|162.3104725| [68.78190405] |
Male|74.11010539|212.74088556| [74.110108539] |
Male| 71.7309784|220.08424703| [?1-?399?84]|
Male|69.88179586 | 206 . 3498006 | [69 .88179586] |
Male|67.25301569]152.2121558| [67.253081569] |
Male|68.78508125|183.9278886| [68.78508125] |
Male|68.34851551 |167.9711105| [68.34851551] |
Male |67 .81894966 | 175. 92Q44e4| 7 .91894966] |
Male|63.45649398|156.3 3.45649398] |
Male|?1.19538228|186.b04925b|[? .19538228] |
Male|71.64080512|213.7411695| [71.640806512] |
Male|64.76632913|167.1274611| [64.76632913] |
Male| 69.2830701]|189.4461814| [69.2830701]|
Male|69.24373223| 186.434168|[69.24373223]|
Male| 67.6456197|172.1869301| [67.6456197]|
Male|72.41831663|196.8285863 | [72.41831663] |
Male|63.97432572|172.8834702 | [63.97432572] |
Male| 69.6400599]185.9839576| [69.6480599] |
Male|67.93600485| 182.426648|[67.93600485] |

only showing top 28 rows

Figure 5.10: Delineation of code to display the content after applying Vector Assembler

Practical Machine Learning with Spark

Hommmmmm—m—— - +----

| feature|

Gms============ ===
|[73.8470@17@2]|241.
| [68.78190485] | 162.
|[74.11010538] | 212.
| [71.73@9784]|226.
|[69.88179586] | 206.
| [67.253@1569]|152.
| [68.78588125]|183.
| [68.34851551]| 167
| [67.81894966] | 175.
|[63.45649398]|156.
|[71.19538228] | 186.
|[71.64080512]]213.
|[64.76632913]|167.
4461814

[69.2838701]|189

Figure 5.11 shows the content of the dataframe of the dependent variable and
independent variable. The feature and weight columns are fed to the model for
predicting the weight of the person.

——————— +
Weight |
——————— +

7488556 |
8424703
3498006 |
2121558
9278886
9711165|
9294404 |
3996764 |
6049256
7411695 |
1274611

69.24373223]| 186.434168|

|

I

| [67.6456197]|172
|[72.41831663]|196
|[63.97432572]|172
| [69.6480599]|185

.1869301|
8285063 |
.8834702|
.9839576 |

| [67.93680485]| 182.426648|

-

only showing top 26 rows

-89933285016958
814183685831
¥

Figure 5.11: Illustration of content of the dependent variable and independent variable

Figure 5.12 displays the residue error of each data point by taking the difference from
the decision line:

224354252483

8
6
S
2
=

B
2569

[

=1

9
98
82

E
5
o2
51

802687372122|
783586198634 |
868112696271 |
923725524256
19568803032 |
244619981 |
383183617]
93982014921943 |

-19.171978229635855 |
14.3208842979322975]|

3.471742835446283
-5.4157848522046805

5.180827718278222|
5.281463737619477|

only showing top 28 rows

Figure 5.12: Illustration of residual error of each data point

Supervised Learning with Spark

209

|[54.61685783]| 71.
|[55.14855736] | 88.
|[55.97919788] | 85.
|[56.06663635]|89.
|[56.67814049] | 97.
|[56.75760363]|88.
|[56.88597185]|99.
| [56.99445626] | 84.

|[57.82885744]|101.20825509 | 89.
| [57.2330564]]99.

39374874|70.
81241211|74.
41753362 |81.
57120474 |81.
26996668 | 86.
88485318|87.
87359265|88.
41424571 89.

37128426|980.
|[57.25811736]|101.7141821|91.
|[57.27014785] | 94.
|[57.31390274]| 95.1390468|91.
|[57.35309276]| 72.
|[57-.39774837]|186.5875627|92.
| [57-4722524]]|96.
|[57.481392089]]|87.
|[57.55275371]|98.
|[57.64752149]|99.
|[57.69949287]|92.

49963415 |91.
75014469 |91.

31355653 |92.
49657111 |92.
64396312 |93.
39603077 |94.
22305324 |94.

only showing top 28 rows

Figure 5.13 displays the data of predicted values from the trained LR model:

80346049234862 |
99719543254147 |
31820076983041 |
99306370314167 |
71274232574751 |
32605049262787 |
316809063380137 |
15411382269627 |
41962717447575 |
99566469119696 |
189088855358002 |
28193576681639 |
61964859850781 |
92212291963585 |
26671972067703 |
84181449455372 |
91235596220469 |
46313548972977 |
19456703238052 |
59568358971148 |

Figure 5.13: Illustration to show the data of predicted values

Figure 5.14 displays the indispensable insights of the LR model:

| count| 7109
mean	168.89520138158912
stddev	32.21429533552859
min	64.70012671

max| 269.9896985 |
+------- e EEE e +

[68.07336293169766, 72.7860185039512, 76.35770576696639, 78.79200290506913, 78.91788989018028, 79.47000519452558, 80.33040102735225, 82.08617063893826, 82.237029919
Summary of model is here:

Coefficients: [7.718146638559001]

Intercept: -350.73745717692077

Figure 5.14: Illustration of the summary of the trained LR model

210 Practical Machine Learning with Spark

Figure 5.15 shows the plotting of the decision line of the LR model using the MapPlot
library. The red dots represent the actual points and the decision line in blue color
represents the predicted points.

Weight vs Height (Test set)

250 TR

55 60 65 70 75 80
Height

Figure 5.15: Plotting of decision line of LR model

Table 5.1 shows the data related to the evaluation metrics of the trained LR model.
This is an important step that helps to determine the performance of the trained
model on the testing dataset.

Evaluation metrics Results
RMSE 11.912

MSE 141.905
MAE 9.493
R2 0.860

Table 5.1: Illustrate the evaluation metrics of the LR model

Multi-Linear Regression (MLR)

It estimates the relationship between one dependent variable and more than one
independent variables. MLR works like linear regression, the standard mathematical
equationisy =), "m, x+c+€ where (y, m, x,c) have the usual meaning, n is number
of observations, and € is the residual error. The following program depicts step
by step implementation of MLR in PySpark using Google Colab as a distributed
processing framework:

Supervised Learning with Spark 211

>>%pip install pyspark==3.1.1

>>from pyspark.sql import SparkSession

>>from pyspark.sql import SQLContext

>>from pyspark.ml.feature import VectorAssembler
>>from pyspark.ml.feature import StringIndexer
>>from pyspark.ml.evaluation import RegressionEvaluator
>>from pyspark.ml.feature import VectorIndexer
>>from pyspark.ml.linalg import Vectors

>>from pyspark.ml.regression import LinearRegression
>>import matplotlib.pyplot as plt

>>import pandas as pd

>>import numpy as np

#Loading and creation of Spark’s application

>>spark = SparkSession.builder.appName(‘MultilLinearRegression’).
getOrCreate()

>>loaded_data = spark.read.csv(¢/content/sample_data/weatherHistory.
csv’,inferSchema=True, header=True)

Figure 5.16 delineates the implemented code to initialize, create spark application,
and read CSV into the dataframe:

1 #MultiLinear R

2 %pip install pyspark==3.1.1

3 from pyspark.sql import SparkSession

4 from pyspark.sql import SQLContext

5 from pyspark.ml.feature import VectorAssembler

6 from pyspark.ml.feature import StringIndexer

7 from pyspark.ml.evaluation import RegressionEvaluator
8 from pyspark.ml.feature import VectorIndexer

9 from pyspark.ml.linalg import Vectors

16 from pyspark.ml.regression import LinearRegression
11 import matplotlib.pyplot as plt

12 import pandas as pd

13 import

n

pName('MultilLinearRegression').getOrCreate()
16 loaded_data = spark.read.csv('/content/sample_data/weatherHistory.csv',inferSchema=True, header=True}

Figure 5.16: Illustration of implemented code to initialize,
create spark application, and read a CSV into the dataframe

212 Practical Machine Learning with Spark

#To check the columns of dataframe
>>loaded_data.columns
#Converting into the single Vector
>>get_assembler = VectorAssembler(inputCols=[‘Temperature (C)’,

‘Apparent Temperature (C)~’,

‘Humidity’,

‘Wind Speed (km/h)~’,

‘Wind Bearing (degrees)’,

‘Visibility (km)~’,

‘Loud Cover’,

‘Pressure (millibars)’],outputCol="get_feature’)
>>op_assembler = get_assembler.transform(loaded_data)
>>op_assembler.show()

>>get_indexer = StringIndexer(inputCol=’Summary’, outputCol=’summary_
index’)

>>finalized_data

get_indexer.fit(op_assembler).transform(op_assembler)

>>finalized_data = finalized_data.select(“get_feature”, “summary_index”’)
>>training_data, testing_data = finalized_data.randomSplit([9.7,0.3])
#Linear Regression function on multi-variant dataset

>>1r = LinearRegression(featuresCol="get_feature”, labelCol="summary_
index”,)

>>1r_model = 1lr.fit(training_data)

Supervised Learning with Spark 213

Figure 5.17 shows the snapshot of the code in Colab to display, convert into
VectorFeature, split the dataset into the training and testing portion, and call the
linear regression function on the multi-variant featured training dataset:

o the single
get_assembler = VectorAssembler(inputCols=['Temperature (C)',
'Apparent Temperature (C)°,
"Humidity "',
'Wind Speed (km/h)’,
'Wind Bearing (degrees)’,
'Visibility (km)"',
"Loud Cover',
"Pressure (millibars)'],outputCol='get_feature')

op_assembler = get_assembler.transform(locaded_data)
op_assembler.show()

get_indexer = StringIndexer(inputCol='Summary’, outputCol='summary_index')
finalized_data = get_indexer.fit(op_assembler).transform(op_assembler)
finalized_data = finalized_data.select("get_feature™, "summary_index")
training_data, testing_data = finalized_data.randomSplit([©.7,0.3])

#Linear ion function on multi riant dataset

1r = LinearRegression(featuresCol="get_feature", labelCol="summary_index",)
1r_model = 1lr.fit(training_data)

Figure 5.17: Illustration to convert the normal df into VectorFeature,
splitting into training and testing dataset, and implementation of the Linear Regression function

#Evaluating the model on testing dataset to check the residue of each
point

>>test_results = 1r_model.evaluate(testing_data)
>>test_results.residuals.show()

#Testing dataset on 1lr_model

>>get_prediction = 1r_model.transform(testing_data)
>>get_prediction.show()

#Get_training_insights

>>training_data.describe().show()

>>train = training_data.select(“get_feature”,”summary_index”).toPandas()
>>train_get_feature = train[‘get_feature’]

>>train_get_feature = list(train_get_feature)

>>train_get_salary = train[‘summary_index’]

214 Practical Machine Learning with Spark

Figure 5.18 delineates this code that implemented to find the residue error, transform
the trained multi-variant LR on the testing data and get model insights:

#Evaluating the model testing data
test_results = 1lr_model.evaluate(testing_data)
test_results.residuals.show()

#Testing data on 1lr_m

get_prediction = lr_model.transform(testing data)
get_prediction.show()

#Get_training_insights

training_data.describe().show()

train = training_data.select("get_feature","summary_index").toPandas()
train_get_feature = train['get_feature']

train_get_feature = list(train_get_feature)

train_get salary = train['summary_index']

now

Figure 5.18: Illustration of code for finding of residue,
transformation operation on the testing dataset, and get the model insights

#Training_ Prediciton Insights

>>get_training_prediction = 1lr_model.transform(training_data)
#converting into Spark’s df to Pandas’s df for data visualization
>>train_pred = get_training_prediction.select(“prediction”).toPandas()
>>prediction_train = train_pred|[‘prediction’]

>>prediction_list = list(prediction_train)

>>print(prediction_list)

#Testing Insights

>>x = testing_data.select(“get_feature”,”summary_index”).toPandas()

>>x_get = x[‘get_feature’]

>>y_get = x[“summary_index’]

#Get summary of the model
>>print(“Summary of model is here:”’)

>>1r_model.summary

Supervised Learning with Spark 215

Figure 5.19 elucidates the implemented code is to find the residue error, transform
the trained multivariant LR on the testing data and get model insights:

#Training_Predicito ni ts

get_training_ i lr_model.transform(training_data)

] df to Pandas's df for data visualization
train_pred = get_training_prediction.select("prediction"”).toPandas()
prediction_train = train_pred['prediction’]

prediction_list = list(prediction_train)

print(prediction_list)

#converti

#Testing Ins

= testing _data.select("get_feature"”,"summary_index").toPandas()
= x['get_feature']
= x["'summary_index']

Y ‘j‘E‘ -_
print("Summary of model is here:")
1r_model. summary

Figure 5.19: Illustration of code for finding of residue, transformation
operation on testing dataset, and getting the model insights

#Getting coefficients and intercept
>>print(“Coefficients: “ + str(lr_model.coefficients))
>>print(“Intercept: “ + str(lr_model.intercept))
#Evalutaion Metrics

>>eval = RegressionEvaluator(labelCol="summary_index”,
predictionCol="prediction”, metricName="rmse”)

Root Mean Square Error

>>rmse = eval.evaluate(get_prediction)

>>print (“RMSE: %.3f” % rmse)

Mean Square Error

>>mse = eval.evaluate(get_prediction, {eval.metricName: “mse”})

>>print (“MSE: %.3f” % mse)

216 Practical Machine Learning with Spark

Figure 5.20 displays the screenshot of this implemented code to find the coefficient,
intercept, and evaluate metrics for the trained multivariant LR:

#Getting cc and inte
+ str(lr_model.coefficients))
+ str(lr_model.intercept))

print("Coefficients
print("Intercept: "

n Sq E)
rmse = eval.evaluate(get_prediction)
print("RMSE: %.3f" % rmse)

te(get_prediction, {eval.metricName: "mse"})
print("MSE: %.3f" % mse)

Figure 5.20: Illustration of code to determine the value of coefficient,
intercept, and calculate performance metrics

Mean Absolute Error

>>mae = eval.evaluate(get_prediction, {eval.metricName: “mae”})
>>print(“MAE: %.3f” % mae)

r2 - coefficient of determination

>>r2 = eval.evaluate(get_prediction, {eval.metricName: “r2”})
>ss>print(“r2: %.3f” %r2)

Figure 5.21 shows the implemented code to find the evaluation metrics for the trained
multivariant LR:

eval.evaluate(get_prediction)
print("RMSE: %.3f" % rmse)

mse = eval.evaluate(get_prediction, {eval.metricName:
print("MSE: %.3f" % mse)

lute Error

eval.evaluate(get_prediction, {eval.metricName: "mae"})
print("MAE: %.3f" % mae)

r2 -

r2 = eval
print("r2: %.3f" %r2)

Figure 5.21: Illustration of evaluation metrics

Supervised Learning with Spark 217

Output Snippet of the Multi-linear Regression Model

This section contains the output snippet of the preceding executed program for
plotting the decision line of the multi-linear regression model. Figure 5.22 displays
the data of the dataframe after reading the CSV:

2006-04-01 60 Partly Clou 9.472222222222221 75 14.1197 251.0]15.826300000000002
1y Cloudy i

2006-04-01 61 Partly Clou rz 9.355555555555 7.227777777777776 14.2646 259.0|15. 826300000000002

1y Cloudy
2006-04-01 Mostly Clou 3 9377777777777 9.377777777777778 .9284000000000003 204.0 14.9569
1y Cloudy

-.|Partly cCloudy| r 8.28888888888889 5.944444444444446| 14.1036 269.0]15.826300000000002 |

|Mostly Cloudy| rai 5555555 6.977777777777779] 6 259.0]15.826300000000002 |

| 2006-04-01 65 Partly Cloudy| rain| 9 7.11111111111141 | 5 258.0| 14.9569 |

| 2066-04-01 66 Partly Cloudy| rai | 5.522222222222221]| _95] 8 259.0] 9.982000000000001 |

|2006-04-01 67 Partly Cloudy| rai 7222222222222 | 6.527777777777778| -89] 14.1519] 260.0| 000000000001 |

12606-04-61 €8 Partly Cloudy| rain| 10.82222222222222| 10.82222222222222| .82| 11.3183| pLER| 000000000001 |

Partly Cloudy| rain| 13.77222222222222| 13.77222222222222| -72]12.525800000000002 | 279.0] 9.982000000000001 |

Partly Cloudy| rai .016666666666666 16.016666666666666| .67] 17.5651| 9. 11.2056|

| 2e@06-04-01 11 Partly Cloudy| rai .144444444444416 | 17.144444444444246| .54] 19.7869| 6. 11.4471|

|2006-04-01 12 Partly Cloudy| rai 17.800000000000004 | .55]21.944300000000002 | @] 11.270000000000001 |

| 2006-04-01 Partly Cloudy| rai | . 3332 51 20.6885| 289.0|11.270000000000001 |

|zeee. 84-01 14: Partly Cloudy| rain| 18.87777777777778| 777777777778| .47|15.375500000000002 | 262.0| 11.4471]

Partly Cloudy| rain|18 11111111115 9 _46] 10.4006 | 288.0|11.270000000000001 |

Partly Cloudy| rain| 1 88888888889 | 3888888888888 14.4095| 251.0|11.270000000000001 |

Mostly Cloudy| rain|15.550000000000002 | 5. 1.157300000000001 | 230.0| 11.4471|

Mostly Cloudy| .~ain|14.255555555555553\ .25555555555555 8.5169| 163.0| 6

- -|Mostly (loudy| rain| 5 400000000001 |

Figure 5.22: Screenshot of code to display the content of dataframe

Figure 5.23 displays the predicted data in the dataframe format after transforming
the testing dataset:

(8,[0,1,2, .. .0	3.5914438841606904
(8,[@,1,2, .. .0	3.084666803789334
(8,[0,1,2, .. 1.0	2.8548710899159372
(8,[0,1,2, .. .0	2.2677974560092875
(8,[@,1,2, .. .0	2.9718033923515975]
(8,[@,1,2 .0	2.1262085631423324
(8,[@,1,2 . .0	2.949616679531598]
(8,[0,1,2 .. .0	2.2661047483175107
(8,[@,1,2 .8	1.9685282397194152
(8,[@,1,2 .9	1.9588497134694034
(8,[0,1,2 .8	1.4993762419512554
(8,[@,1,5 .8	1.7666086218130053
(8,[0,1,5, .. .8	1.691352995643828]
(8,[0,1,5, .. .0	1.58026999708899563
{8,[2,3,5J?],[a.4.. .0	1.8819828452164284
(8,[2,3,5,7],[@.8.. .8	2.220003748773361
[-18.888888888888. . .8	2.675914230464505
[-17.777777777777 .. .0	1.937459090171913
[-17.222222222222. . .0	2.7441030825478805

6.666666666666. . .0]2.7389696196429743

only showing top 20 rows

Figure 5.23: Illustration to show the data of predicted values

218 Practical Machine Learning with Spark

Figure 5.24 shows the screenshot of the summary of the trained MLR model, and its
evaluation metrics:

5258922, 3.4665454769032484, 3.1504693334956784, 2.9901957110734774, 3.380331503533343, 2.6721850443914184, 3.379707439460451, 2.1800005)

583206,0.05322343731593432,1.08767261458151608,0.05317858293948468,, - 0.0093553318146820813 , -0. 1106098153362325,0.0, -0.0009327829529934296
2.516132914836701

Figure 5.24: Illustration of summary and evaluation metrics of the trained model

Regularization in Linear Regression

In data science, training a good performance model is one of the key steps, which
is affected by two terminologies, such as under-fitting and over-fitting. Under-fitting
refers to a situation where the error rate is maximized due to a model’s lack of training,
irrelevant selection of features, lack of selection of features, high noise in training
data, and less regularization while training a model on an actual dataset. This kind
of scenario may cause poor performance in terms of the accuracy of the model. To
be recapitulated, the variance is low, and the biasness is high in such a situation. For
example, applying a regression model to a non-linear dataset may often cause the issue
of under-fitting. On the flip side, over-fitting is another situation that arises due to over-
learning of mode and a high number of feature selections. In over-fitting, the variance
is high and the biasness is low. Such an over-fitting issue while training a model can
be mitigated by adapting the concept of regularization. Regularization is a technique
to simplify the complexity of a regression model which helps to alleviate the challenge
of overfitting by penalizing the coefficient to zero. Generally, it neglects the smaller
weights by assuming to generate un-effective changes in the model and penalizes
them towards zero, which helps to avoid the issue of overfitting on the testing part. In
SparkML, the LR function contains two important parameters to switch a ML model
between lasso regression (L1 regularization) and ridge regression (L2 regularization),
such as elasticNetParam and regParam, where elasticNetParam is denoted by a
and regParam is denoted by 1. When a LR model is trained with the a set to 1, then it
is equivalent to a Lasso model. On the flip side, if a set to 0, it is equivalent to a ridge
regression model. Regularizations are of three types, which are as follows.

Least Absolute Shrinkage and Selection
Operator (Lasso Regression)/L1 Regularization

Lasso regression is a regression technique that was introduced by Professor
Robert Tibshirani at Stanford University. Just like ridge regression As discussed

Supervised Learning with Spark 219

under next heading, it uses regularization to estimate the results and it also uses
variable selection to design the efficient and high precision equipped LR model. The
following codebase shows the implementation of lasso regression by leveraging the
distributed framework using Google Colab:

>>%pip install pyspark==3.1.1

>>from pyspark.sql import SparkSession

>>from pyspark.sql import SQLContext

>>from pyspark.ml.feature import StringIndexer
>>from pyspark.ml.evaluation import RegressionEvaluator
>>from pyspark.ml.linalg import Vectors

>>from pyspark.ml.feature import VectorAssembler
>>from pyspark.ml.regression import LinearRegression
>>import seaborn as sns

>>import matplotlib.pyplot as plt

>>import pandas as pd

>>import numpy as np

#Creating Spark application and loading of dataset

>>spark = SparkSession.builder.appName(‘Ridge Linear Regression’).
getOrCreate()

>>load_data = spark.read.csv(‘/content/sample_data/weight-height.
csv’,inferSchema=True, header=True)

#To show the loaded dataframe
>>load_data.show()
#Converting into VectorFeature

>>get_assembler =
VectorAssembler(inputCols=[‘Height”’], outputCol="feature’)

>>assembled_data = get_assembler.transform(load_data)
>>assembled_data.show()

>>finalized_data = assembled_data.select(“feature”, “Weight®)

#To show the finalized dataframe

>>finalized_data.show()

#Splitting into training and testing dataset
>>training_data,testing_data = finalized_data.randomSplit([0.7,0.3])

220 Practical Machine Learning with Spark

#Calling of LinearRegression function

>>1r = LinearRegression(featuresCol="feature”, labelCol="Weight”,
elasticNetParam=1.0,regParam=0.5,maxIter=50,solver=">normal’)

>>1r_model = 1lr.fit(training_data)

#Evaluating the model on testing dataset to check the residue of each
point

>>test_results = 1r_model.evaluate(testing_data)
>>test_results.residuals.show()

#Testing dataset on 1lr_model

>>get_prediction = 1lr_model.transform(testing_data)
>>get_prediction.show()

#Get_training_insights

>>training_data.describe().show()

>>train = training_data.select(“feature”,”Weight”).toPandas()
>>train_get_feature = train[‘feature’]

>>train_get_feature = list(train_get_feature)
>>train_get_salary = train[‘Weight’]

#Training_Prediciton Insights

>>get_training_prediction = 1lr_model.transform(training_data)
#converting into Spark’s df to Pandas’s df for data visualization
>>train_pred = get_training_prediction.select(“prediction®).toPandas()
>>prediction_train = train_pred[‘prediction’]
>>prediction_list = list(prediction_train)
>>print(prediction_list)

#Testing Insights

>>x = testing_data.select(“feature”,”Weight”).toPandas()
>>x_get = x[“feature’]

>>y_get = x[‘Weight’]

#Get summary of the model

>>print(“Summary of model is here:”)

>>1r_model.summary

#Getting coefficients and intercept

Supervised Learning with Spark 221

>>print(“Coefficients: “ + str(lr_model.coefficients))
>>print(“Intercept: “ + str(lr_model.intercept))
#Visualization

>>plt.scatter(list(x_get), list(y_get), color = ‘red’)
>>plt.plot(train_get_feature, prediction_list, color = ‘blue’)
>>plt.title(‘Weight vs Height (Test set)’)

>>plt.xlabel(‘Height’)

>>plt.ylabel(‘Weight’)

>>plt.show()

#Evalutaion Metrics

>>eval = RegressionEvaluator(labelCol="Weight”,
predictionCol="prediction”, metricName="rmse”)

Root Mean Square Error

>>rmse = eval.evaluate(get_prediction)

>>print (“RMSE: %.3f” % rmse)

Mean Square Error

>>mse = eval.evaluate(get_prediction, {eval.metricName: “mse”})
>>print(“MSE: %.3f” % mse)

Mean Absolute Error

>>mae = eval.evaluate(get_prediction, {eval.metricName: “mae”})
>>print(“MAE: %.3f” % mae)

r2 - coefficient of determination

>>r2 = eval.evaluate(get_prediction, {eval.metricName: “r2”})

>s>print(“r2: %.3f” %r2)

Output Snippet of the Lasso Regression Model

This section contains the output snippet of this program that is executed for
implementing the lasso regression algorithm on training and testing data. Figure

222

Practical Machine Learning with Spark

5.25 shows the data of the dataframe after reading a CSV and applying the

VectorAssembler transformation:

Male|73.84701702|241

Male|68.78190405 | 162.
.7408556| [74.11018539] |

Male|74.11010539|212

.8935632|[73.84701702] |

3104725| [68.78190485] |

Male| 71.7309784|220.8424703| [71.7309784]|
Male|69.88179586 | 2063498006
Male|67.25301569|152.2121558
Male | 68.78508125 |183.927888
Male|68.34851551|167.
Male|67.81894966|175.
Male|63.45649398|156.3

69.88179586] |
.25301569] |
.7850812517 |
.348515517 |
.81894966] |
.45649398] |

Male|71.19538228|186.6049256| [71.19538228] |

Male|71.64080512|213.7411695| [71.64880512] |

Male|64.76632913|167.1274611| [64.76632913] |

Male| 69.2830701|189.4461814| [69.2830701]]|

Male|69.24373223| 186.434168|[69.24373223]|

Male| 67.6456197|172.1869301| [67.6456197]]|

Male|72.41831663|196.06285063| [72.41831663] |

Male|63.97432572|172.85834702| [63.97432572] |

Male| 69.6480599|185.9839576| [69.64008599]|

Male|67.93600485| 182.426648|[67.93600485] |

only showing top 20 rows

Figure 5.25: Output screenshot to display the data of dataframe after applying Vector Assembler

Figure 5.26 displays the predicted data in the dataframe format after transforming
the lasso regression model on the testing dataset:

| feature| Weight|
e R Fommmmmmm oo +

prediction|

| [55.73973682] |108.1219685 | 88

| [55.85121382]|103.7671373|81.
| [55.97919788] | 85.41753362|82.
| [56.06663635]|89.57128474|83.
| [56.53416581] |97 .74389648 | 86.
| [56.54797498] |84 .87212365 | 86.
| [56.63041198] | 89.48048027 |87 .
| [56.94941514]|107.1718559|89.
| [56.97527896] |90.34178426 | 90.
| [57.10386947]| 93.5063159|91.

| [57.13730096] | 99.10849926|91.
| [57.16584006] |106.0058311| 91.5893460680698|

| [57.2330564]|99.37128426|92.
| [57.2701470@5] |94 .49963415 |92 .
| [57.313082352]| 93.8764374|92.
| [57.37575853]|114.1922086 | 93.
| [57.397740837]|106.5875627 | 93.
| [57.44256697] |104.4866362 |93 .
| [57.48139209]|87.49657111|93.
| [57.55350521] |108.1516882|94.
+--——- ——m e mmm—mm—m - +---

only showing top 20 rows

Figure 5.26: Illustration to display the predicted values

8048974128257 |
62548674514639 |
59543561673001 |
25815752434175|
88178895088943 |
98636471599117 |
53117900994886 |
94899787994251 |
14502738650327
11965272118681 |
37303982673774|

089879849864734 |
37991945516171 |
70489284490725 |
18037995602936
34698679324435
68674079241373 |
98100780771779|
52757437561667 |
______________ o

Supervised Learning with Spark 223

Figure 5.27 displays the summary insights, coefficient, and intercept of the trained
model:

2867, 76.29976655991766, 77.72418163537708, 80.11468 3830718886103, 8
Intercept: -341.6 5

Figure 5.27: Illustration of summary insights, coefficient, and intercept of the trained model
Figure 5.28 shows the decision line of the lasso regression model:

Weight vs Height (Test set)

250 1

[70 75 80
Height

Figure 5.28: Plotting of decision line of lasso regression model

Table 5.2 shows the data related to evaluate the metrics of the trained lasso regression

model. This is an important step which helps to determine the performance of the
trained model on testing dataset.

Evaluation metrics Results
RMSE 12.458
MSE 155.191
MAE 9.898
R2 0.846

Table 5.2: Illustrate the evaluation metrics of the Lasso Regression model

224 Practical Machine Learning with Spark

Ridge Regression/L2 Regularization

To overcome the problem of underperforming at the testing phase of LR, it adds a
penalty L2 which is equal to the square of coefficients. Generally, in LR the “residual
of sum” gets minimized, but in ridge regression a penalty is applied on coefficient
values to regularize with the tuning parameters (A). Where (A=0), the penalty has no
impact and ridge/lasso produces the same results as linear regression. The following
program depicts the step-by-step implementation of ridge regression in PySpark
using Google Colab as a distributed processing framework:

>>%pip install pyspark==3.1.1

>>from pyspark.sql import SparkSession

>>from pyspark.sql import SQLContext

>>from pyspark.ml.feature import StringIndexer
>>from pyspark.ml.evaluation import RegressionEvaluator
>>from pyspark.ml.linalg import Vectors

>>from pyspark.ml.feature import VectorAssembler
>>from pyspark.ml.regression import LinearRegression
>>import seaborn as sns

>>import matplotlib.pyplot as plt

>>import pandas as pd

>>import numpy as np

#Creating Spark application and loading of dataset

>>spark = SparkSession.builder.appName(‘Ridge Linear Regression’).
getOrCreate()

>>load_data = spark.read.csv(‘/content/sample_data/weight-height.
csv’,inferSchema=True, header=True)

#To show the loaded dataframe
>>load_data.show()
#Converting into VectorFeature

>>get_assembler =
VectorAssembler (inputCols=[‘Height’],outputCol="feature’)

>>assembled_data = get_assembler.transform(load_data)
>>assembled_data.show()
>>finalized_data = assembled_data.select(“feature”, “Weight”)

#To show the finalized dataframe

Supervised Learning with Spark 225

>>finalized_data.show()

#Splitting into training and testing dataset
>>training_data,testing_data = finalized_data.randomSplit([9.7,0.3])
#Calling of LinearRegression function

>>1r = LinearRegression(featuresCol="feature”, labelCol="Weight”,
elasticNetParam=0.0,regParam=0.5,maxIter=50,solver=">normal’)

>>1r_model = 1lr.fit(training_data)

#Evaluating the model on testing dataset to check the residue of each
point

>>test_results = 1r_model.evaluate(testing_data)
>>test_results.residuals.show()

#Testing dataset on 1lr_model

>>get_prediction = 1lr_model.transform(testing_data)
>>get_prediction.show()

#Get_training_insights

>>training_data.describe().show()

>>train = training_data.select(“feature”,”Weight”).toPandas()
>>train_get_feature = train[‘“feature’]

>>train_get_feature = list(train_get_feature)
>>train_get_salary = train[‘Weight’]

#Training_Prediciton Insights

>>get_training_prediction = 1lr_model.transform(training_data)
#converting into Spark’s df to Pandas’s df for data visualization
>>train_pred = get_training_prediction.select(“prediction®).toPandas()
>>prediction_train = train_pred[‘prediction’]
>>prediction_list = list(prediction_train)
>>print(prediction_list)

#Testing Insights

>>x = testing_data.select(“feature”,”Weight”).toPandas()
>>x_get = x[“feature’]

>>y_get = x[‘Weight’]

#Get summary of the model

226 Practical Machine Learning with Spark

>>print(“Summary of model is here:”)
>>1r_model.summary

#Getting coefficients and intercept
>>print(“Coefficients: “ + str(lr_model.coefficients))
>>print(“Intercept: “ + str(lr_model.intercept))
#Visualization

>>plt.scatter(list(x_get), list(y_get), color = ‘red’)
>>plt.plot(train_get_feature, prediction_list, color = ‘blue’)
>>plt.title(‘Weight vs Height (Test set)’)
>>plt.xlabel(‘Height’)

>>plt.ylabel(‘Weight’)

>>plt.show()

#Evalutaion Metrics

>>eval = RegressionEvaluator(labelCol="Weight”,
predictionCol="prediction”, metricName="rmse”)

Root Mean Square Error

>>rmse = eval.evaluate(get_prediction)

>>print (“RMSE: %.3f” % rmse)

Mean Square Error

>>mse = eval.evaluate(get_prediction, {eval.metricName: “mse”})
>>print(“MSE: %.3f” % mse)

Mean Absolute Error

>>mae = eval.evaluate(get_prediction, {eval.metricName: “mae”})
>>print(“MAE: %.3f” % mae)

r2 - coefficient of determination

>>r2 = eval.evaluate(get_prediction, {eval.metricName: “r2”})
>s>print(“r2: %.3f” %r2)

Output Snippet of the Ridge Regression Model

This section contains the output snippet of the preceding executed program for
plotting the decision line of ridge regression model. Figure 5.29 displays the data of
dataframe after applying the VectorAsssembler transformation:

Supervised Learning with Spark

227

Male |73.84701702|241.

Male | 68.78190405 | 162 .
Male|74.11016539|212.

8935632 | [73.84701702] |
3104725| [68.78190405] |
7498556 | [74.110105329] |

Male| 71.7309784|220.8424703| [?1-?399?54]|
Male |69 .88179586 | 206 . 3498006 | 881795861 |
Male |67 .25301569|152.2121558| .25391559]|
Male |68.78508125 | 183 .9278886| .78588125] |
Male|68.34851551 | 167.9711105 | .348515511] |
Male |67 .01894966|175.9294464| .©1894966] |

Male |63 .45649398|156.3996764 | .455649398] |
Male |71 .19538228| 186 6849256 | [71 .19538228] |
Male|71.64080512|213.7411695| [71 .640808512] |
Male |64.76632913|167.1274611| [64.76632913] |
Male| 69.2830701|189.4461814| [69.2836701]|
Male|69.24373223| 186.434168|[69.24373223]|
Male| 67.6456197|172.1869301| [67.6456197] |
Male |72.418316632|196.8285063 | [72.41831663] |
Male |63 .97432572|172_8834702| [63.97432572] |
Male| 69.6406599|185.9839576| [69.64808599] |
Male |67 .93600485| 182.426648|[67.936080485] |

Figure 5.29: Illustration of data of featureVector

Figure 5.30 displays the predicted value in the form of dataframe:

===x
973682]|108.1219685 |80 .92486621654643 |

|[56
|[56-:
|[56-44
|[56-6
I[56-

919?8b]|b

105369597 | 87.
159458027 | 99.
sbaoa]|9b.
.A8048027 | 87.

8411987 | 89

764456457 | 79.

.41753362 |82

29886913 |83 .
81525566 |84.
.27336848282831 |

64024466 | 86

17437583 |88

-739101437013639 |
69501953120641 |
18481114711996 |

67291228476369 |
.68847690068066 |

[56- ?52?8 6]|90.34178426| 90.2857371103753|
[57.082885]|1el 2025509 |90 .69166517849254 |
[57- 1125%942]| 98.7949381|91.32566719716988 |
[57-13730096] | 99.10849926|91.51326871359521 |
[57-.20794645]|99.49482376 |92 .94850202512057 |

[57.2330564]|99.37128426|92.23874328952928 |
[57-25811736]|101.7141821|92.42861322969338|
[57 1“02“52]| 93 .8764374 |92 .844608023523246 |
[57 309276] | 72.75014469 |93 .14817788775497 |
[5? ?R?EbS?]llld 1922086| 93.3199011659907 |
[57-.39774837]	106.5875627	93.4864427671123
[57.48139209]	87.49657111	94.12021552614317
[57.55275371]	98.64396312	94 .66087447250209

Figure 5.30: Illustration to show the values of prediction

228 Practical Machine Learning with Spark

Figure 5.31 displays the summary insights, coefficient, and intercept of the trained
model:

count |
mean|161.38776324383136

[69. 57824092, 72.41756815321781, 74.36369691758074, 76.4458974942466, 77.86975482984121, 80.25932213153453, 80@.38289595956371, 81.76945238714148, 83.4015638511)
Summary of model is here:

Coefficients: [7.576326691559753]

Intercept: -341.3775896333355

Figure 5.31: Illustration of summary insights, coefficient, and intercept of the trained model

Figure 5.32 depicts the graph of the decision line for the ridge regression. This
decision line explains about best fit model based on the minimum residue:

Weight vs Height (Test set)

250 A

55 60 65 70 75 B0
Height

Figure 5.32: Plotting of the decision line of the ridge regression model

Table 5.3 shows the evaluation metrics of the trained ridge regression model. This is
an important step which helps to determine the performance of the trained model
on the testing dataset.

Evaluation metrics Results
RMSE 12.436
MSE 152.654
MAE 9.914
R2 0.849

Table 5.3: Illustrate the evaluation metrics of ridge regression model

Supervised Learning with Spark 229

Elastic-net Regression/L1+L2 Regularization

Elastic-net regression is an outperformed model in terms of accuracy than ridge
and lasso regression. It combines both L1 (lasso) and L2 (ridge) regularization
that correlates the independent variables. The following codebase shows the
implementation of elastic-net regression by leveraging the distributed framework
using Google Colab:

>>%pip install pyspark==3.1.1

>>from pyspark.sql import SparkSession

>>from pyspark.sql import SQLContext

>>from pyspark.ml.feature import StringIndexer
>>from pyspark.ml.evaluation import RegressionEvaluator
>>from pyspark.ml.linalg import Vectors

>>from pyspark.ml.feature import VectorAssembler
>>from pyspark.ml.regression import LinearRegression
>>import seaborn as sns

>>import matplotlib.pyplot as plt

>>import pandas as pd

>>import numpy as np

#Creating Spark application and loading of dataset

>>spark = SparkSession.builder.appName(‘Linear Regression’).
getOrCreate()

>>load_data = spark.read.csv(‘/content/sample_data/weight-height.
csv’,inferSchema=True, header=True)

#To show the loaded dataframe
>>load_data.show()
#Converting into VectorFeature

>>get_assembler =
VectorAssembler (inputCols=[‘Height’],outputCol="feature’)

>>assembled_data = get_assembler.transform(load_data)
>>assembled_data.show()

>>finalized_data = assembled_data.select(“feature”, “Weight”)
#To show the finalized dataframe

>>finalized_data.show()

#Splitting into training and testing dataset

230 Practical Machine Learning with Spark

>>training_data,testing_data = finalized_data.randomSplit([9.7,0.3])
#Calling of LinearRegression function

>>1r = LinearRegression(featuresCol="feature”, labelCol="Weight”,
elasticNetParam=0.5,regParam=0.5,maxIter=50,solver=">normal’)

>>1r_model = 1lr.fit(training_data)

#Evaluating the model on testing dataset to check the residue of each
point

>>test_results = 1r_model.evaluate(testing_data)
>>test_results.residuals.show()

#Testing dataset on 1lr_model

>>get_prediction = 1lr_model.transform(testing_data)
>>get_prediction.show()

#Get_training_insights

>>training_data.describe().show()

>>train = training_data.select(“feature”,”Weight”).toPandas()
>>train_get_feature = train[‘“feature’]

>>train_get_feature = list(train_get_feature)
>>train_get_salary = train[‘Weight’]

#Training_Prediciton Insights

>>get_training_prediction = 1lr_model.transform(training_data)
#converting into Spark’s df to Pandas’s df for data visualization
>>train_pred = get_training_prediction.select(“prediction®).toPandas()
>>prediction_train = train_pred[‘prediction’]
>>prediction_list = list(prediction_train)
>>print(prediction_list)

#Testing Insights

>>x = testing_data.select(“feature”,”Weight”).toPandas()
>>x_get = x[“feature’]

>>y_get = x[‘Weight’]

#Get summary of the model

>>print(“Summary of model is here:”)

>>1r_model.summary

#Getting coefficients and intercept

>>print(“Coefficients: “ + str(lr_model.coefficients))

Supervised Learning with Spark 231

>>print(“Intercept: “ + str(lr_model.intercept))
#Visualization

>>plt.scatter(list(x_get), list(y_get), color = ‘red’)
>>plt.plot(train_get_feature, prediction_list, color = ‘blue’)
>>plt.title(‘Weight vs Height (Test set)’)

>>plt.xlabel(‘Height’)

>>plt.ylabel(‘Weight’)

>>plt.show()

#Evalutaion Metrics

>>eval = RegressionEvaluator(labelCol="Weight”,
predictionCol="prediction”, metricName="rmse”)

Root Mean Square Error

>>rmse = eval.evaluate(get_prediction)

>>print (“RMSE: %.3f” % rmse)

Mean Square Error

>>mse = eval.evaluate(get_prediction, {eval.metricName: “mse”})
>>print(“MSE: %.3f” % mse)

Mean Absolute Error

>>mae = eval.evaluate(get_prediction, {eval.metricName: “mae”})
>>print(“MAE: %.3f” % mae)

r2 - coefficient of determination

>>r2 = eval.evaluate(get_prediction, {eval.metricName: “r2”})
>s>print(“r2: %.3f” %r2)

Output Snippet of the Elastic-Net Regression Model

This section contains the output snippet of the preceding executed program for
implementing the elastic-net regression algorithm on training and testing data.
Figure 5.33 displays the summary insights of the trained model:

+- oo +

mean| 161.6084604400707 |
stddev|32.175104480286766 |
min| 64.70012671 |

[69.36505591515083, 77.53664633418043, 79.93781202718753, 80.60658650488568, 83.09530544070844, 83.33595120422962, 83.39018548484239, 83.4170788380631, 83.801966131
Summary of model is here:

Coefficients: [7.613100379259469]

Intercept: -343.7456250192793

Figure 5.33: Illustration of summary insights, coefficient, and intercept of the trained model

232 Practical Machine Learning with Spark

Figure 5.34 depicts the graph of the decision line for the elastic-net regression. This
decision line explains about best fit model based on the minimum residue.

Weight vs Height (Test set)
275 1 °

Height

Figure 5.34: Plotting of the decision line of the elastic-net regression model

Table 5.4 shows evaluation metrics of the trained elastic-net regression model. This
is an important step which helps to determine the performance of the trained model
on the testing dataset.

Evaluation metrics Results
RMSE 12.246

MSE 149.964
MAE 9.785
R2 0.853

Table 5.4: Illustrate the evaluation metrics of the elastic-net regression model

Generalized Linear Regression (GLR)

In 1972, the term GLR was first described by Nelder and Weduber to understand the
relationship of various distributions with Linear Regression. GLR is an upgraded
version of LR thatleverages the functionality of the exponential family of distributions
in the output stage. In SparkML, the GeneralizedLinearRegression() class

Supervised Learning with Spark 233

supports the functionality of GLR where the response variable follows several
distributions such as Poisson, Gaussian, Tweedie, Binomial, and Gamma distribution.
The following codebase explains the way to implement GLR on the distributing
framework using Spark:

>>%pip install pyspark==3.1.1

>>from pyspark.sql import SparkSession

>>from pyspark.sql import SQLContext

>>from pyspark.ml.feature import StringIndexer

>>from pyspark.ml.evaluation import RegressionEvaluator
>>from pyspark.ml.regression import GeneralizedLinearRegression
>>from pyspark.ml.linalg import Vectors

>>from pyspark.ml.feature import VectorAssembler

>>from pyspark.ml.regression import LinearRegression
>>import seaborn as sns

>>import matplotlib.pyplot as plt

>>import pandas as pd

>>import numpy as np

#Creating Spark application and loading of dataset

>>spark = SparkSession.builder.appName(‘Generalized Linear Regression’).
getOrCreate()

>>load_data = spark.read.csv(‘/content/sample_data/weight-height.
csv’,inferSchema=True, header=True)

#Converting into VectorFeature

>>get_assembler =
VectorAssembler(inputCols=[‘Height”’], outputCol="feature’)

>>assembled_data = get_assembler.transform(load_data)
>>finalized_data = assembled_data.select(“feature”, “Weight®)

>>finalized_data = finalized_data.selectExpr(“feature as features”,
“Weight as label”)

234 Practical Machine Learning with Spark

Figure 5.35 displays the implemented code is to initialize, create spark application,
and read a CSV into dataframe:

eralized Linear

install pyspar .11

pyspark.sql import SparkSession

pyspark.sql import SQLContext

pyspark.ml.feature import StringIndexer
from pyspark.ml.evaluation import RegressionEvaluator
from pyspark.ml.regression import GeneralizedlLinearRegression
from pyspark.ml.linalg import Vectors
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.regression import LinearRegression
import seaborn as sns
import matplotlib.pyplot as plt

import pandas as pd
import numpy as np

spark = SparkSession.builder.appName('Generalized Linear Regression').getOrCreate()
load_data = spark.read.csv('/content/sample_data/weight-height.csv',inferSchema=True, header=True

ctor ture
get_assembler = VectorAssembler(inputCols=['Height'],outputCol="feature')
assembled_data get_assembler.transform(load_data)
finalized_data assembled_data.select("feature”, "Weight")
finalized_data = finalized_data.selectExpr("feature as features", "Weight as label")

Figure 5.35: Screenshot of implemented code to initialize,
create spark application, and read a CSV into dataframe

#Splitting into training and testing dataset
>>training_data,testing_data = finalized_data.randomSplit([9.7,0.3])

>>glr = GeneralizedLinearRegression(family="poisson”, link="identity”,
maxIter=10, regParam=0.3)

Fit the model
>>glr_model = glr.fit(training_data)

#Evaluating the model on testing dataset to check the residue of each
point

>>test_results = glr_model.evaluate(testing_data)
>>print(test_results)

#Testing dataset on 1lr_model

>>get_prediction = glr_model.transform(testing_data)
>>get_prediction.show()

#Get_training_insights

>>train = training_data.select(“features”,”label”).toPandas()

>>train_get_feature = train[‘features’]

Supervised Learning with Spark 235

>>train_get_feature = list(train_get_feature)
>>train_get_salary = train[‘label’]
#Training_Prediciton Insights

>>get_training_prediction = glr_model.transform(training_data)

Figure 5.36 shows the way to implement GLR on training and testing dataset:

training and testing dataset
training_data,testing_data = finalized_data.randomSplit([e.7,0.3])

glr = GeneralizedLinearRegression(family="poisson”, link="identity"”, maxIter=1@,| regParam=0.3)

Fit th el
glr_model = glr.fit(training_data)

#E uating the 1 on testing dat
test_results = glr_model.evaluate(testing_data)
print(test_results)

#Testing dat on 1r
get_prediction = glr_model.transform(testing_data)
get_prediction.show()

= training_data.select("features","label").toPandas()
train_get_feature = train['features']
train_get_feature = list(train_get_feature)
train_get_salary = train['label']

#Traini

get_training_predictio glr_model.transform(training_data)

Figure 5.36: Delineation of implemented code to call GLR, fit, and transform on training and testing dataset

#Converting into Spark’s df to Pandas’s df for data visualization
>>train_pred = get_training_prediction.select(“prediction®).toPandas()
>>prediction_train = train_pred[‘prediction’]

>>prediction_list = list(prediction_train)

>>print(prediction_list)

#Testing Insights

>>x = testing_data.select(“features”,”label”).toPandas()

>>x_get = x[‘features’]

x[‘1label”’]

>>y_get
#Get summary of the model
>>print(“Summary of model is here:”)

>>glr_model.summary

236 Practical Machine Learning with Spark

Print the coefficients and intercept for generalized linear regression
model

>>print(“Coefficients: “ + str(glr_model.coefficients))

>>print(“Intercept: “ + str(glr_model.intercept))

Figure 5.37 shows the way to convert the Spark’s dataframe into Pandas’s dataframe
for plotting the decision line graph. Also, it shows the summary insights, coefficient,
and intercept of the trained model.

to k's df to Pandas's df for data visualization
train_pred = get_training_prediction.select("prediction").toPandas()
prediction_train = train_pred['prediction’]
prediction_list = list(prediction_train)
print(prediction_list)

Testing Insights

= testing_data.select("features”,"label").toPandas()
x_get = x['features']
y_get = x['label’]

#Get su ry of the model

print("Summary of model is here:")

glr_model. summary

Print the coefficients and intercept for gener
print(“"Coefficient " + str(glr_model.coefficients))
print("Intercept: " + str(glr_model.intercept))

Figure 5.37: Delineation of implemented code to convert dataframe,
get summary, coefficient, and intercept of the trained model

#Visualization

>>plt.scatter(list(x_get), list(y_get), color = ‘red’)
>>plt.plot(train_get_feature, prediction_list, color = ‘blue’)
>>plt.title(‘Weight vs Height (Test set)’)

>>plt.xlabel(‘Height’)

>>plt.ylabel(‘Weight’)

>>plt.show()

#Evalutaion Metrics

>>eval = RegressionEvaluator(labelCol="label”,
predictionCol="prediction”, metricName="rmse”)

Root Mean Square Error

>>rmse = eval.evaluate(get_prediction)

Supervised Learning with Spark 237

>>print (“RMSE: %.3f” % rmse)

Mean Square Error

>>mse = eval.evaluate(get_prediction, {eval.metricName: “mse”})
>>print(“MSE: %.3f” % mse)

Mean Absolute Error

>>mae = eval.evaluate(get_prediction, {eval.metricName: “mae”})
>>print(“MAE: %.3f” % mae)

r2 - coefficient of determination

>>r2 = eval.evaluate(get_prediction, {eval.metricName: “r2”})
>s>print(“r2: %.3f” %r2)

Figure 5.38 shows the way to visualize and get the values of evaluation metrics for

the trained model:

sualization
.scatter(list(x_get), list(y_get), color = ‘red')
.plot(train_get_feature, prediction_list, color =
.title('Weight vs Height (Test set)')
.xlabel('Height")

.ylabel('Weight")

.show()

'blue')

-
RegressionEvaluator(labelCol="1label"”, predictionCol="prediction", metricName="rmse")

ean Square Error

eval.evaluate(get_prediction)
print("RMSE: %.3f" % rmse)

= Errer
mse = eval.evaluate(get_prediction, {eval.metricName: "mse"})
print("MSE: %.3f" % mse)

Error
eval.evaluate(get_prediction, {eval.metricName: "mae"})
print("MAE: %.3f" % mae)

2 cient of dete t
r2 = eval.evaluate(get_prediction, {eval.metricName: "r2"})
print("r2: %.3f" %r2)

Figure 5.38: Illustration of implemented code for visualizing and getting the performance insight

Summarizing the model
summary = glr_model.summary

>>print(“Coefficient Standard Errors: “ + str(summary.
coefficientStandardErrors))

>>print(“T Values: “ + str(summary.tValues))

238 Practical Machine Learning with Spark

>>print(“P Values: “ + str(summary.pValues))
>>print(“Dispersion: “ + str(summary.dispersion))
>>print(“Null Deviance: “ + str(summary.nullDeviance))

>>print(“Residual Degree Of Freedom Null: “ + str(summary.
residualDegreeOfFreedomNull))

>>print(“Deviance: “ + str(summary.deviance))

>>print(“Residual Degree Of Freedom: “ + str(summary.
residualDegreeOfFreedom))

>>print(“AIC: “ + str(summary.aic))
>>print(“Deviance Residuals:)

>>summary.residuals().show()

Figure 5.39 shows the way to get the summary of the trained model:

= glr_model.summary
print("Coefficient Standard Errors: " + str(summary.coefficientStandardErrors))
print("T Values: " + str(summary.tValues))
print("P Values: " + str(summary.pValues))
print("Dispersion: " + str(summary.dispersion))
print(“"Null Deviance: " + str(summary.nullDeviance))

print("Residual Degree Of Freedom Null: " + str(summary.residualDegreeOfFreedomNull))
print("Deviance: " + str(summary.deviance))

print("Residual Degree Of Freedom: " + str(summary.residualDegreeOfFreedom))
print("AIC: " + str(summary.aic))

print(“Deviance Residuals: ")

summary .residuals().show()

Figure 5.39: Implemented code to get the summary insights for the trained model

Output Snippet of the Generalized Linear Regression Model

This section contains the output snippet of the previous program that is executed for
implementing the Generalized Linear Regression algorithm on training and testing
data. Figure 5.40 displays the predicted values in the form of the dataframe:

Supervised Learning with Spark 239

Requirement already satisfied: pyspark .1.1 in fusr/local/lib/python3.7/dist-packages (3.1.1)
Requirement already satisfied: py4; .18.9 in fusrflocal/lib/python3.7/dist-packages (from pyspark= .1) (e.10.9)
<pyspark.ml.regression.GeneralizedlLinearRegressionSummary object at @x7fbf188dbfde>

3333]|64.70012671|70.28646042003305 |
.33649241]|88.36658258| 78.3504347345563 |
6.86663635]|89.57120474| 83 .83588884564915|
.@9824578] | 104.9541004 | 84 .97336541464286 |
.54884308] | 90.84758938| 87 .45863053337047 |
6.73718347]|91.60543723|88.87368162333164 |
.75768363] | 88.88485318| 89.92701500456322 |
.82223984]|101.9799235|89.51261646537927 |
.97513323]|89.16984997| 90.66127993958795 |
.@2885744]|101.2025509|91.86490129752365 |
.19386947]| 93.5063159| 91.6284546269465 |
.25811736]|101.7141821|92.78729424195154 |
.278147085]|94.49963415|92.87767137@14583 |
.397740837]| 106.5875627 | 93 .83625948325408 |
[57.4722524]	96.31355653	94.3968563930105
[57.54826863]	96.19051124	94 .58785140102841
[57.55350521]	108. 1516882	95 . 9@649569988514
[57-.598@2972]	98.18279291	95 . 34100118989016
[57-64752149]	99.3%603077	95.71282490619984
.67518109]|125. 9418654 95.92062703701146 |
777777 fm=ssss=ss=={i=====s===========if

showing top 20 rows

Figure 5.40: Illustration to show the values of prediction

Figure 5.41 highlights the output of coefficient and intercept of the trained model:

[72.9439357566348, 74.87375654221876, 76.93850889889035, 80.71997817474539, 80.84251649094108, 81.3799451987665, 82.21745398907751, 83.17897766902666, 83.9265190814
Summary of model is here:

Coefficients: [7.512839332875686]

Intercept: .38374198666855

Figure 5.41: Illustration of summary insights, coefficient, and intercept of the trained model

Figure 542 depicts the graph of the decision line for the Generalized Linear
Regression. This decision line explains about the best fit model based on minimum
residue.

Weight vs Height (Test set)

250 1

T T T T T T

55 60 &5 70 75 80
Height

Figure 5.42: Plotting of decision line of GLR model

240 Practical Machine Learning with Spark

Table 5.5 shows evaluation metrics of the trained GLR model. This is an important
step which helps to determine the performance of the trained model on testing
dataset.

Evaluation metrics Results
RMSE 12.440

MSE 154.749
MAE 9.964
R2 0.850

Table 5.5: Illustrate the evaluation metrics of GLR model

Figure 5.43 shows the data related to various metrics of this trained model. This is an
important step which helps to determine the performance of the trained model on
testing dataset.

Coefficient Standard Errors: [@.838222261373771854, 2.5127935906873575]
T Values: [196.5566416756822, -134_2663970638271]

P Values: [€.0, 8.0]

Dispersion: 1.0

Null Deviance: 44868.891371095866

Residual Degree Of Freedom Null: 6935

Deviance: 6570.965123023585

Residual Degree Of Freedom: 6934

AIC: 54448.907949468485

Deviance Residuals:

-0.1821540238853509 |
0.42789078144054354 |
1.32094301882723 |
0.5402014369629891 |
-1.353459434945376 |
2.8209168993072997 |
2.282721296700103 |
9.2443601651861016 |
1.12990208728896 |
0.3436908986349076 |
39773479474923923 |
.5?%04?59??42R7bq|
.7376990738792282 |
.8498577895104317 |
.8912578303668359
.2772609847799255 |
.1497450692652804 |
.9250037208261929 |
.5119712566089656 |
.B697784368108776 |

Figure 5.43: Illustration to display various metrics of the trained model

Supervised Learning with Spark 241

Isotonic Regression/Monotonic Non-Decreasing
Regression/Equal Stretch Regression

The word isotonic comes from the combination of two Greek words iso and tonic,
where iso means equal or the same and tonic means stretching. The isotonic
regression is slightly different from the simple linear regression, as it generates the
monotonic non-decreasing trends among the data points. It is also called as a free
form of linear regression that is used to predict the output based on observations.
SparkML enables a “pool adjacent violators algorithm” which uses an approach
to parallelize the isotonic regression. For training an isotonic regression model,
SparkML requires three columns such as label, features, and weight. The following
codebase explains the way to implement isotonic regression on the distributing
framework using Spark:

>>%pip install pyspark==3.1.1

>>from pyspark.ml.regression import IsotonicRegression
>>from pyspark.sql import SparkSession

>>from pyspark.sql import SQLContext

>>from pyspark.ml.feature import StringIndexer

>>from pyspark.ml.feature import VectorIndexer

>>from pyspark.ml.evaluation import RegressionEvaluator
>>from pyspark.ml.linalg import Vectors

>>from pyspark.ml.feature import VectorAssembler
>>import matplotlib.pyplot as plt

>>import pandas as pd

>>import numpy as np

#Creating Spark application and loading of dataset

>>spark = SparkSession.builder.appName(‘Generalized Linear Regression’).
getOrCreate()

>>load_data = spark.read.csv(‘/content/sample_data/weight-height.
csv’,inferSchema=True, header=True)

#Converting into VectorFeature

>>get_assembler =
VectorAssembler(inputCols=[‘Height”’], outputCol="feature’)

>>assembled_data = get_assembler.transform(load_data)

>>finalized_data = assembled_data.select(“feature”, “Weight”)

242 Practical Machine Learning with Spark

>>finalized_data = finalized_data.selectExpr(“feature as features”,
“Weight as label”)

#Splitting into training and testing dataset
>>training_data,testing_data = finalized_data.randomSplit([9.7,0.3])
>>iso_reg = IsotonicRegression()

Fit the model

>>iso_model = iso_reg.fit(training_data)

#Testing dataset on 1lr_model

>>get_prediction = iso_model.transform(testing_data)
>>get_prediction.show()

#Get_training_insights

>>train = training_data.select(“features”,”label”).toPandas()
>>train_get_feature = train[‘“features’]

>>train_get_feature = list(train_get_feature)

>>train_get_salary = train[‘label’]

#Training_Prediciton Insights

>>get_training_prediction = iso_model.transform(training_data)
#converting into Spark’s df to Pandas’s df for data visualization
>>train_pred = get_training_prediction.select(“prediction®).toPandas()
>>prediction_train = train_pred[‘prediction’]

>>prediction_list = list(prediction_train)
>>print(prediction_list)

#Testing Insights

>>x = testing_data.select(“features”,”label”).toPandas()

>>x_get = x[“features’]
>>y_get = x[“label”’]
#Visualization

>>plt.scatter(list(x_get), list(y_get), color = ‘red’)
>>plt.plot(train_get_feature, prediction_list, color = ‘blue’)
>>plt.title(‘Weight vs Height (Test set)’)

>>plt.xlabel(‘Height’)

>>plt.ylabel(‘Weight’)

Supervised Learning with Spark 243

>>plt.show()
#Evalutaion Metrics

>>eval = RegressionEvaluator(labelCol="label”,
predictionCol="prediction”, metricName="rmse”)

Root Mean Square Error

>>rmse = eval.evaluate(get_prediction)

>>print (“RMSE: %.3f” % rmse)

Mean Square Error

>>mse = eval.evaluate(get_prediction, {eval.metricName: “mse”})
>>print(“MSE: %.3f” % mse)

Mean Absolute Error

>>mae = eval.evaluate(get_prediction, {eval.metricName: “mae”})
>>print(“MAE: %.3f” % mae)

r2 - coefficient of determination

>>r2 = eval.evaluate(get_prediction, {eval.metricName: “r2”})
>s>print(“r2: %.3f” %r2)

Output Snippet of the Isotonic Regression Model

This section contains the output snippet of the preceding program that is executed
for implementing the isotonic regression algorithm on training and testing data.
Figure 5.44 displays the predicted values in the form of the dataframe:

T ey el e e T e R e o e e (A0
ment already satisfied 8.9 in /usr/local/lib/python3.7/dist-packages (from pyspark==3.1.1) (9.10.9)
------- I SR -+
features| label| prediction|

89| 88
[55.85121382]	103.7671373	91.78090596338889
[56.1089021]	80.53125938	91.70090596838889
[56.53416581]	97.74389648	91.70890596338889
[56.54797498]	84.87212365	91.70090596338889
[56. 1l8 85318	91.70090596338889	
.36497833	95.9769523425	
1199.-87359265	95.9769523425	
1l8s. 9		
352]	94.26320265	
564]	99.37128426	
1	93.8764374	
1	114.1922086	97.519060007
.44520357]	89.42089489	98.690
[57.4722524]	96.31355653	98.6903203125
[57.55275371]	98.64396312	101. 28735798614227
[57.59802972]	98.18279291	101.44367847521738
[57.69949207]	92.22305324	101 . 44367847521738
[57.78681941]	106.8541166	101.44367847521738
44367847521738|
semmeseeeeep
only showing top 20 rows

[64.70012671, 71.39374874, 78.60667031, 87.60025764333333, 87.60025704333333, 87.60025704333333, 91.700905968838889, 91.70090596888889, 91.70890596888889, 91.7009059688

Figure 5.44: Illustration to show the values of prediction

244 Practical Machine Learning with Spark

Figure 5.45 depicts the graph of the decision line for the isotonic regression. This
decision line explains the best fit model based on minimum residue:

Weight vs Height (Test set)

250

Weight
tn
=

100 1

Height

Figure 5.45: Plotting of decision line of Isotonic Regression model

Table 5.6 shows the data related to evaluation metrics of the trained isotonic regression

model. This is an important step which helps to determine the performance of the
trained model on the testing dataset.

Evaluation metrics Results
RMSE 12.248
MSE 150.017
MAE 9.803
R2 0.852

Table 5.6: Illustrate the evaluation metrics of the Isotonic Regression model

Classification and its Types

Classification is used for grouping of objects based on the understanding of object
patterns with respective classes or categories. In other words, it is a special type
of classification-based supervised learning that returns the discreate outputs
(prediction) based on the actual observations. The most common example of
classification is filtering e-mails into spam or non-spam classes. Also, it is being

Supervised Learning with Spark 245

implemented for classification of image patterns or objects from the images/videos.
There are several types of classification algorithms such as logistic regression, naive
bayes, support vector machine, multilayer perceptron classifier, and one-versus-rest
classifier. The detailed explanation on each algorithm is given as follows.

Naive Bayes Classifier

It is a particular type of classification algorithm in which the class features are
independent to each other. In other words, the feature present within the class is
unrelated to the presence of other features in other classes. This approach is driven
out from the probabilistic problem based on bayes theory. It is a very promising
algorithm that works efficiently and produces high precision output, a part of other
classification algorithms. SparkML supports four model types for training the data
using the Naive Bayes theorem such as Multinomial Naive Bayes, Complement
naive bayes, Bernoulli Naive Bayes, and Gaussian Naive Bayes. Also, it extends the
intrinsic functionality to add the additive smoothing parameter by setting the value
of A. The standard mathematical formula of the naive bayes algorithm is given as
follows:

P(x|c).P(c)

P(el) = —pos

Where P(cx) is the posterior probability, P(c) is the prior probability of class, P(x | c)
is the likelihood which is the probability of the predictor given class and P(x) is the
marginal likelihood.

Explanation of Naive Bayes

This section explains the working mechanism of the naive bayes algorithm by taking
a real-world example. The entire working is divided into 4 steps which are given as
follows:

1. In Figure 5.46, there are two classes of 27 balls in which the red balls are 9 and
the rest green balls are 18. Also, these groups are distinguished based on the

246 Practical Machine Learning with Spark

different weight and size. The size and weight represent along X-axis and
Y-axis, respectively.

Y

'y

WEIGHTS

| @ ®
I ACS

~,
-~
RED BALLS (9) h.J
GREEN BALLS (18)

SIZE

Figure 5.46: Representation of two classes of data points in xy-plane

2. Figure 5.47 shows the challenge to add a new ball to the cluster of existing
balls which is unknown about color and other distinguished parameters.
Here, the new ball is represented by grey color and for finding the likelihood
of this ball between green and red classification is explained in the next step.

Y

I’y

WEIGHTS

~

0...

O

W %90
~,

> X

Figure 5.47: Adding a new ball in the existing cluster of two classes

Supervised Learning with Spark 247

3.

WEIGHTS

For that purpose, draw a circle taking new ball as a center. Inside the drawn
circle, there are two green balls and three red balls excluding the new ball as
shown in Figure 5.48. The posterior probability will be calculated by naive
bayes formula as given here.

Y

Iy

~
RED BALLS (9) hJ
GREEN BALLS (18)

SIZE

Figure 5.48: Drawing a circle by taking the center of a new ball

Posterior probability for red balls:

3
P(x|Red).P(Red) 3*

P(Red|x) =) 5

Posterior probability for green balls:

2
P(x|Green).P(Green) 5%*3; _
P() .

P(Green|x) =

248 Practical Machine Learning with Spark

4. By the comparison of posterior probability of both balls, the posterior
probability of red color is greater than the posterior probability of green
color. Thus, the color of the new ball is red as shown in Figure 5.49:

Y

r'y

o _0
O ®
o0
r

WEIGHTS

~ 00
’

SIZE

Figure 5.49: Representing the color of the new ball

The following codebase explains the way to implement the naive bayes classifier on
the distributing framework using Apache Spark:

>>%pip install pyspark==3.1.1

>>from pyspark.ml.classification import NaiveBayes
>>from pyspark.ml.evaluation import MulticlassClassificationEvaluator
>>from pyspark.sql import SparkSession

>>from pyspark.sql import SQLContext

>>from pyspark.ml.feature import StringIndexer

>>from pyspark.ml.evaluation import RegressionEvaluator
>>from pyspark.ml.linalg import Vectors

>>from pyspark.ml.feature import VectorAssembler
>>import matplotlib.pyplot as plt

>>import pandas as pd

>>import numpy as np

#Creating Spark application and loading of dataset

Supervised Learning with Spark 249

>>spark = SparkSession.builder.appName(‘Naive Bayes Regression’).
getOrCreate()

>>load_data = spark.read.csv(‘/content/sample_data/weight-height.
csv’,inferSchema=True, header=True)

#To show the loaded dataframe

>>load_data.show(5)

>>indexer = StringIndexer(inputCol=’Gender’, outputCol=’1label’)
>>load_data = indexer.fit(load_data).transform(load_data)
#Converting into VectorFeature

>>get_assembler = VectorAssembler(inputCols=[‘Height’,
‘Weight’],outputCol="features’)

>>assembled_data = get_assembler.transform(load_data)
>>assembled_data.show(5)

>>finalized_data = assembled_data.select(“features”, “label”)
#To show the finalized dataframe

>>finalized_data.show(5)

#Splitting into training and testing dataset
>>training_data,testing_data = finalized_data.randomSplit([9.7,0.3])
create the trainer and set its parameters

>>nb = NaiveBayes(smoothing=1.0, modelType="multinomial”’)

train the model

>>model = nb.fit(training_data)

select example rows to display.

>>predictions = model.transform(testing_data)
>>predictions.show(5)

compute accuracy on the test set

>>evaluator = MulticlassClassificationEvaluator(labelCol="1abel”,
predictionCol="prediction”, metricName="accuracy”)

>>accuracy = evaluator.evaluate(predictions)

>>print(“Accuracy = “ + str(accuracy))

Output Snippet of the Naive Bayes Model

This section contains the output snippet of the preceding executed program for
implementing the naive bayes classifier algorithm on training and testing data.

250 Practical Machine Learning with Spark

Figure 5.50 displays the data of the dataframe after reading the CSV and applying
the VectorAssembler transformation:

Requirement already satisfied: pyspark==3.1.1 in /usr/local/lib/python3.7/dist-packages (3.1.1)
Requirement already satisfied: py4j==0.10.9 in /usr/local/lib/python3.7/dist-packages (from pyspark==3.1.1)
4mm - dommmmm e R
|Gender| Height|
Ho----- e Fommmmmmmmo - +

Male|73.84701702|241.8935632|

|

| Male|e8.7819@485|162.3104725]
| Male|74.11010539|212.7408556|
| Male| 71.73@9784|220.0424703]
| Male|e9.88179586|206.3498006]
+--m--- Fommmmmmmm e Fommmmm +
only showing top 5 rows

|Gender| Height| features|
+--m--- Fommmmmmmm e Fommmmm LT L e e e e +
| Male|73.847e17@2|241.8935632] .0|[73.84701702,241....
| Male|e8.7819@485|162.3104725] .e|[68.78190405,162. ...
| Male|74.11018539|212.7468556] .8|[74.11018539,212....

| Male| 71.73@9784|220.0424703] .0|[71.7309784,220.0...
| Male|69.88179586|206.3498006 | .0|[69.88179586, 206
+--m--- Fommmmmmmm e Fommmmm LT L e e e e +
only showing top 5 rows

Figure 5.50: Illustration to show data of dataframe

Figure 5.51 displays the prediction value of the trained naive bayes algorithm:

.84701702,241....
.78190405,162....
.11018539,212....
.7309784,220.0...
.88179586, 206.

.33649241,88.3... 5 -97.858395331981. . . | [0.958225363511600.
.97919788,85.4... -97.459109135971. . . | [0.96916137897606.
.09824578,1e4.... -165.10368326004. . . | [0.890875382994948.
.1989021,80.53... -95.729297945571. . . | [0.97837316621365.
.15945802,90.8. .. -99.739547799493. . . | [0.95688031838454.

showing top 5 rows

Accuracy = ©.9119119119119119

Figure 5.51: Illustration to show predicted values

Supervised Learning with Spark 251

Logistic Regression

Logistic Regression is a SL-based binary classification algorithm for classifying the
classes by using the Sigmoid function. The continuous output of sigmoid function
is classified into binary classes/multiple classes by applying a specific threshold
value as shown in Figure 5.53. The output probability above that threshold should be
marked as class 1 and rest of the probability will fall in class 0. This method was first
implemented in the domain of biology in 20" century; after that implementation, this
method became popular for being a promising approach for classifying the events
in every vertical. The following equation is used to represent a logistic regression
model:

Y
lOg (m) = B() + Blyl + BZYZ + -+ BnYn

Here Y is the probability of an event to happen which readers want to predict (Y,),
where i = 1,2,3...n. are the independent variables which determine the occurrence of
an event. B is the constant term which will be the probability of the event happening
when no other factors are considered and B, where i = 1,2, 3,...,n are the regression
coefficients. There are two types of logistic regression algorithms.

e Binary Logistic Regression: This algorithm is used when the Y variable is
comprised two categories.

e Multinomial Logistic Regression: When the Y variable comprises three or
more than three categories, this logistic regression version is used.

Explanation of Logistic Regression

This section explains the working mechanism of the logistic regression algorithm by
taking a real-world example. The entire working is divided into 2 steps which are
given as follows:

1. Figure 5.52 represents binary prediction classes such as Employees who left
the Company and Employees did not leave the Company by considering two
parameters that are Experience and Probability of promotion lying along X- and
Y-axis, respectively. The dotted LR line cuts two horizontal lines at 11 (y=0)
and 12 (y=1) assuming the point1, shows 5 years and the point 12 shows 25
years of working experience. From the given figure, it is quite clear that the
left side of data points of point 1, and right side of data points of point 1, are

252 Practical Machine Learning with Spark

unable to find the prediction values because those values don’t fall between
the probability value of 0 and 1.

Probability to get the promotion

' i
.
/7

Figure 5.52: Logistic regression representation to show two parameters on xy plane

2. To overcome the problem discussed earlier, the sigmoid function is used to
find the prediction of all the outliers which were missing in the preceding
figure. By taking the mean of the probability as shown in Figure 5.53 is used
to increase the accuracy during classification. If the probability of any data
points ranges between 0 to 0.5, then the model will fall that point in class 0
and the probability above 0.5 of any data points will fall in class 1. With the
help both classes, that is, 0 and 1 classify the employee whether not left or
left the organization.

=
jo
]
3
e
5
o
=
=]
©
&
)
2
>
=
H
s
8
I
o

Feremr oy >

Figure 5.53: Sigmoid function in the logistic regression for classifying the binary classes

Supervised Learning with Spark 253

The following codebase explains the way to implement logistic regression on the
distributing framework using Spark:

>>%pip install pyspark==3.1.1

>>from pyspark.ml.classification import LogisticRegression
>>from pyspark.sql import SparkSession

>>from pyspark.sql import SQLContext

>>from pyspark.ml.feature import StringIndexer

>>from pyspark.ml.evaluation import RegressionEvaluator
>>from pyspark.ml.linalg import Vectors

>>from pyspark.ml.feature import VectorAssembler

>>from pyspark.ml.regression import LinearRegression
>>import seaborn as sns

>>import matplotlib.pyplot as plt

>>import pandas as pd

>>import numpy as np

#Creating Spark application and loading of dataset

>>spark = SparkSession.builder.appName(‘Logistic Regression’).
getOrCreate()

>>load_data = spark.read.csv(‘/content/sample_data/weight-height.
csv’,inferSchema=True, header=True)

#To show the loaded dataframe

>>load_data.show(5)

#To convert stringintovector

>>indexer = StringIndexer(inputCol=’Gender’, outputCol=’label’)
>>final_data = indexer.fit(load_data).transform(load_data)
#Converting into VectorFeature

>>get_assembler = VectorAssembler(inputCols=[‘Height’,
‘Weight’],outputCol="features’)

>>assembled_data = get_assembler.transform(final_data)
>>assembled_data.show(5)

>>finalized_data = assembled_data.select(“features”, “label”)

#To show the finalized dataframe

>>finalized_data.show(5)

#Splitting into training and testing dataset
>>training_data,testing_data = finalized_data.randomSplit([9.7,0.3])

254 Practical Machine Learning with Spark

Load training data

>>1r = LogisticRegression(maxIter=150, regParam=0.3,
elasticNetParam=0.4)

Fit the model

>>1rModel = lr.fit(training_data)

>>get_result = 1lrModel.transform(testing_data)
>>get_result.show(5)

Print the coefficients and intercept for multinomial logistic
regression

>>print(“Coefficients: \n” + str(lrModel.coefficientMatrix))
>>print(“Intercept: “ + str(lrModel.interceptVector))
>>trainingSummary = lrModel.summary

Obtain the objective per iteration

>>0bjHist = trainingSummary.objectiveHistory
>>print(“ObjHist:*)

>>for obj in ObjHist:

>> print(obj)

for multiclass, we can inspect metrics on a per-label basis
>>print(“False positive rate by label:”)

>>for i, rate in enumerate(trainingSummary.falsePositiveRateByLabel):
>> print(“label %d: %s” % (i, rate))

>>print(“True positive rate by label:”)

>>for i, rate in enumerate(trainingSummary.truePositiveRateByLabel):
>> print(*“label %d: %s” % (i, rate))

>>print(“Precision by label:*)

>>for i, prec in enumerate(trainingSummary.precisionByLabel):
>> print(“label %d: %s” % (i, prec))

>>print(“Recall by label:”)

for i, rec in enumerate(trainingSummary.recallBylLabel):

print(“label %d: %s” % (i, rec))
print(“F-measure by label:”)
for i, f in enumerate(trainingSummary.fMeasureByLabel()):
print(“label %d: %s” % (i, f))
accuracy = trainingSummary.accuracy

falsePositiveRate = trainingSummary.weightedFalsePositiveRate

Supervised Learning with Spark

255

truePositiveRate = trainingSummary.weightedTruePositiveRate
fMeasure = trainingSummary.weightedFMeasure()

precision = trainingSummary.weightedPrecision

recall = trainingSummary.weightedRecall

print(“Accuracy: %s\nFPR: %s\nTPR: %s\nF-measure: %s\nPrecision: %s\
nRecall: %s”

% (accuracy, falsePositiveRate, truePositiveRate, fMeasure,
precision, recall))

#Visualize ROC Curve

import matplotlib.pyplot as plt

plt.figure(figsize=(5,5))

plt.plot([@, 1], [0, 1], ‘r--°)

plt.plot(lrModel.summary.roc.select(“FPR’).collect(),
1rModel.summary.roc.select(‘TPR?).collect())

plt.xlabel(‘FPR’)

plt.ylabel(‘TPR’)

plt.show()

Output Snippet of the Logistic Regression Model

This section contains the output snippet of the preceding executed program for
implementing the logistic regression on training and testing data. Figure 5.54 displays
the data of the dataframe after reading the CSV and applying the VectorAssembler

transformation:

Requirement already satisfied: pyspark==3.1.1 in /usr/local/lib/python3.7/dist-packages (3.1.1)

Requirement already satisfied: py4j==0.16.9 in /usr/local/lib/python3.7/dist-packages (from pyspark==3.1.1)

|Gender | Weight|
Homm--- L e +
Male	73.84701702	241.8935632
Male	68.78190405	162.3184725
Male	74.11010539	212.7488556
Male	71.7309784	220.0424703
Male	69.88179586	206.3498606
fm===== fremss======= Gpesss==s==== +
only showing top 5 rows

|Gender |

Homm--- +---- -
Male|73.84701702|241.8935632| . .84701702,241. ...
Male|68.78196405|162.3104725 | . .78190405,162. ...
Male|74.11018539|212.7488556 | . .11810539,212. ...
Male| 71.7309784|220.8424703 | . .7389784,220.0. ..
Male|69.88179586 | 206.3498006 | . .88179586,206. . ..

only showing top 5 rows

Figure 5.54: Illustration to show the data of dataframe by reading a CSV and transforming Vector Assembler

256 Practical Machine Learning with Spark

Figure 5.55 displays the data of predicted values against each label row:

.84701702,241. ...
.78190405,162. ...
.118310539,212. ...
.7389784,220.06. ..
.88179586,206. ...

mm e e
showing top 5 rows

rawPrediction]|

_____ o o o e e e e e

.33649241,88.3... o .82293419847678...\[9.86981663573823...

.66820212,68.9... o .14388280949596...\[9.89569576257976...

.1e89021,80.53... o .91966325995482...‘[9.87269418447751...

.53416581,97.7... o .59712999199635...‘[9.83161675357542...

.54797498,84.8. .. o .82136965249695...‘[9.86973639331452...

R R EE RS B P e e it
showing top 5 rows

Figure 5.55: Illustration to value of prediction

Figure 5.56 shows the summary insights of this trained logistic regression model:

Coefficients:
DenseMatrix([[©.05095652, ©.81747578]])

Intercept: [-6.186063680590474]
objectiveHistory:
.6931469262576782
.692238180656748
.6912006345170262
.6889287549877681
.6904707973193138
.6857911637530919
.68408510751671485
.6826768370976111
.6820013898259754
.6784040708036468
.67746578410654
.6731492906725731
.6714410857756841
.6683748317921947
.66457693708370256
.6623909544006776
.6611253349159194
.6600844935252507
.6593109628258783
.6590543600591636

A0

e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
-]

Figure 5.56: Summary insight of the trained model

Supervised Learning with Spark 257

Figure 5.57 shows the evaluation metrics of this trained logistic regression model:

False positive rate by label:
label ©: ©.10376282782212887
label 1: ©.108385452469312018
True positive rate by label:
label ©: ©.8969454753@68798
label 1: ©.8962371721778791
Precision by label:

label ©: ©.8961779886046777
label 1: ©.8976©42796085766
Recall by label:

label 8: ©.8969454753868798
label 1: @©.8962371721778791
F-measure by label:

label 8: ©.8965615637038095
label 1: ©.8966205618137744
Accuracy: ©.8965919711738696
FPR: ©.10340842368911068
TPR: ©.8965916711738696
F-measure: 8.8965910837964861
Precision: ©.8965914247463967
Recall: ©.8965918711738696

Figure 5.57: Illustration of evaluation metrics of the trained logistic regression model

Figure 5.58 shows the AUC curve of the trained model. It represents the performance
of logistic regression to classify the two classes by plotting against TPR and FPR.

101 ’

0.8 | v

0.6 4 ~

TPR
.
~
~

044 o

024 P

001 ¥

0.0 02 04 06 08 10
FPR

Figure 5.58: AUC curve of the trained model

258 Practical Machine Learning with Spark

Support Vector Machine (SVM)

SVM can be used for both regression and classification problems but majorly
recommended to handle the classification problems by using the concept hyperplane
based on maximum margin. The hyperplane can be found in an N-dimensional space
for classifying the input data points in different classes. The subset of SVM is called
Support Vector Regressor (SVR) for solving the regression problems. There are four
types of SVMs such as Linear Support Vector Machine (LSVM), Quadratic Support
Vector Machine (QSVM), Radial Basis Function Kernel (RBFK), and Kernel
Support Vector Machine (KSVM) for handling the linear and non-linear problems
to separate the classes. But in this section, authors have catered two sub-types such
as LSVM and KSVM. In LSV}, it draws a linear hyperplane to classify the events
and in KSVM, it draws a non-linear hyperplane to provide the better accuracy-based
classification. SparkML support Linear SVC to support binary classification with
linear SVM which optimizes the Hinge Loss using Orthant-Wise Limited-Memory
Quasi-Newton (OWLQN) optimizer.

The following codebase explains the way to implement SVM on the distributing
framework using Spark:

>>%pip install pyspark==3.1.1

>>from pyspark.ml.classification import LinearSVC

>>from pyspark.ml.evaluation import MulticlassClassificationEvaluator
>>from pyspark.sql import SparkSession

>>from pyspark.sql import SQLContext

>>from pyspark.ml.feature import StringIndexer

>>from pyspark.ml.evaluation import RegressionEvaluator

>>from pyspark.ml.linalg import Vectors

>>from pyspark.ml.feature import VectorAssembler

>>import matplotlib.pyplot as plt

>>import pandas as pd

>>import numpy as np

#Creating Spark application and loading of dataset

>>spark = SparkSession.builder.appName(‘LSVM Regression’).getOrCreate()

>>load_data = spark.read.csv(‘/content/sample_data/weight-height.
csv’,inferSchema=True, header=True)

#To show the loaded dataframe

>>load_data.show()

>>indexer = StringIndexer(inputCol=’Gender’, outputCol="’label’)
>>load_data = indexer.fit(load_data).transform(load_data)
#Converting into VectorFeature

Supervised Learning with Spark 259

>>get_assembler = VectorAssembler(inputCols=[‘Height’,
‘Weight’],outputCol="features’)

>>assembled_data = get_assembler.transform(load_data)
>>assembled_data.show(5)

>>finalized_data = assembled_data.select(“features”, “label”)
#To show the finalized dataframe

>>finalized_data.show(5)

#Splitting into training and testing dataset
>>training_data,testing_data = finalized_data.randomSplit([9.7,0.3])
create the trainer and set its parameters

>>svmc = LinearSVC(maxIter=200, regParam=0.7)

train the model

>>svmc_model = svmc.fit(training_data)

select example rows to display.

>>predictions = svmc_model.transform(testing_data)
>>predictions.show(5)

compute accuracy on the test set

>>evaluator = MulticlassClassificationEvaluator(labelCol="1abel”,
predictionCol="prediction”, metricName="accuracy”)

>>accuracy = evaluator.evaluate(predictions)
>>print(“Accuracy = “ + str(accuracy))

Output Snippet of the SVM Model

This section contains the output snippet of the preceding executed program for
implementing the SVM on training and testing data. Figure 5.59 displays the data of
dataframe after reading the CSV:

Requirement already satisfied: pyspark==3.1.1 in /usr/local/lib/python3.7/dist-packages (3.1.1)
Requirement already sati. : py4j==6.16.9 in /usr/local/lib/python3.7/dist-packages (from pyspark==3.1.1)
e Hmmmm e - -
|Gender | Height|
e e e +

Male|73.84701702|241.8935632|

Male|68.78190405|162.3104725]|

Male|74.11010539|212.7408556 |

Male| 71.7309784|220.0424703|

Male|69.88179586 | 206 . 3498006 |

Male|67.25301569|152.2121558|

Male|68.78508125|183.9278886 |

Male|68.34851551|167.9711105|

Male|67.01894966|175.9294404 |

Male|63.45649398|156.3996764 |

Male|71.64080512|213.7411695|
Male|64.76632913|167.1274611|

Male| 69.2838701|189.4461814|
Male|69.24373223| 186.434168|
Male| 67.6456197|172.1869301|
Male|72.41831663|196.08285063 |
Male|63.97432572|172.8834702|
Male| 69.6400599|185.9839576|
Male|67.93600485| 182.426648|

|
|
|
|
|
|
|
|
|
|
| Male|71.19538228|186.6049256|
|
|
|
|
|
|
|
|
|

Figure 5.59: Illustration to show the data of created dataframe after reading a CSV

260 Practical Machine Learning with Spark

Figure 5.60 displays the feature data after applying the VectorAssembler
transformation:

+------ Fommmmm e Fo-mmmmme oo +----- Fommm oo +
|Gender| Height | Weight|label| features |
ffm===== ffe========== es=s=s======= fpm==== fe=s=s=============== +
Male|73.84701702|241.8935632| .0|[73.84701702,241. ... |

|

|

|

|

|

| Male|e8.78190405|162.3104725| .0|[68.78190405,162. ...

| Male|74.11018539|212.74€8556| .e|[74.11e10539,212. ...

| Male| 71.7309784|220.0424703| .0|[71.7309784,228.0...

| Male|69.88179586|206.3498006 | .0|[69.88179586,206. ...
+------ e o +----- e PP PP +
only showing top 5 rows

.84701702,241....
.78190405,162. ...
.11018539,212....
.7309784,2208.0...
.88179586,206....

o m e m e
showing top 5 rows

Figure 5.60: Illustration to display the data after applying the Vector Assembler transformation

Figure 5.61 displays the predicted values of the trained SVM model:

ftmc——o—o———————cco—oe dimm=oe fbmo———————o——————o——o R +
features|label| rawPrediction|prediction]|

.87372753,78.6... .0|[2.37141840295839. ..
.97919788,85.4... .0|[2.16139955415992. ..
.86663635,89.5... .0|[2.e8552320738275. . .
.16729919,77.8... .0|[2.26793140589195. . .
.54797498,84.8... .8

[[2.11973402851038. . .

showing top

Accuracy = 0.8906146728354263

Figure 5.61: Illustration to show the predicted value

Multilayer Perceptron Classifier (MLPC)

The Multilayer Perceptron Classifier is a feed-forward based NN classifier for
classifying the classes of data points by observing the labels assigned to them.
Generally, it consists of the input layer, multiple hidden layers, output layer, and few
parametric components such as weights, biases, and activation functions for making
the decision. SparkML provides the Multilayer Perceptron Classifier class to
extend the functionality of NN-based classification on the distributed processing.
In MPLC, the first parameter of the layer represents the number of features and

Supervised Learning with Spark 261

the last parameter shows the number of classes to be used for prediction. Between
the first and last layer of NN, the intermediate layers are interlinked to each other
and used to feed-forward propagation. The following codebase explains the way to
implement the multilayer perceptron classifier on the distributing framework using
Spark:

>>%pip install pyspark==3.1.1

>>from pyspark.ml.classification import MultilayerPerceptronClassifier
>>from pyspark.ml.evaluation import MulticlassClassificationEvaluator
>>from pyspark.ml.classification import GBTClassifier

>>from pyspark.sql import SparkSession

>>from pyspark.sql import SQLContext

>>from pyspark.ml.feature import VectorAssembler

>>from pyspark.ml.feature import StringIndexer

>>from pyspark.ml.feature import VectorIndexer

>>from pyspark.ml.evaluation import BinaryClassificationEvaluator

>>from pyspark.ml.evaluation import MulticlassClassificationEvaluator
>>import pandas as pd

>>import numpy as np

>>import matplotlib.pyplot as plt

>>import io

#Spark’s application and loading of dataset

>>spark = SparkSession.builder.appName(‘Gradient Boosted Tree
Classifier’).getOrCreate()

>>data = spark.read.csv(¢/content/sample_data/cancerdata.
csv’,inferSchema=True, header=True)

#Dropping the rows that contains “Null Value”

>>data = data.dropna()

#Show the c