


    i

                



    i

Practical Machine 
Learning with 

Spark
Uncover Apache Spark’s Scalable  

Performance with High-Quality Algorithms 
Across NLP, Computer Vision and ML

Gourav Gupta 
Dr. Manish Gupta 

Dr. Inder Singh Gupta

                

www.bpbonline.com



ii    

Copyright © 2022 BPB Online

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, 
or transmitted in any form or by any means, without the prior written permission of 
the publisher, except in the case of brief quotations embedded in critical articles or 
reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of 
the information presented. However, the information contained in this book is sold 
without warranty, either express or implied. Neither the author, nor BPB Online or its 
dealers and distributors, will be held liable for any damages caused or alleged to have 
been caused directly or indirectly by this book.

BPB Online has endeavored to provide trademark information about all of the 
companies and products mentioned in this book by the appropriate use of capitals. 
However, BPB Online cannot guarantee the accuracy of this information. 

Group Product Manager: Marianne Conor 
Publishing Product Manager: Eva Brawn 
Senior Editor: Connell  
Content Development Editor: Melissa Monroe
Technical Editor: Anne Stokes
Copy Editor: Joe Austin 
Language Support Editor: Justin Baldwin 
Project Coordinator: Tyler Horan
Proofreader: Khloe Styles
Indexer: V. Krishnamurthy 
Production Designer: Malcolm D'Souza
Marketing Coordinator: Kristen Kramer

First published: May 2022

Published by BPB Online
WeWork, 119 Marylebone Road
London NW1 5PU

UK | UAE | INDIA | SINGAPORE

ISBN 978-93-91392-086

www.bpbonline.com



    iii

Dedicated to

Our Parents



iv    

About the Authors

Gourav Gupta is a Data specialist having 5+ years of 
experience in Big Data, Artificial Intelligence, Deep 
Learning, Internet of Things and Digital Twin. Mr. Gourav 
has worked on several interdisciplinary real time project 
which are the conglomerations of Digital Technologies. 
His expertise is on architectural optimization and 
technical solutioning on Big Data, AI, Computer Vision, 
and Internet of Things. He also loves to write research 
article and serving as a reviewer with Springer Journal. 

https://www.linkedin.com/in/gourav-g-8929a560/

Dr. Manish Gupta is a 21st century researcher, innovator, 
and entrepreneur. He has completed his Ph.D. from reputed 
Jawaharlal Nehru University, India. Presently, he is working 
at Department of Radiology, Perelman School of Medicine, 
University of Pennsylvania (UPENN), Philadelphia, USA. 
Prior joined at UPENN, Dr. Gupta worked at Gwangju 
Institute of Science and Technology, Gwangju, South 
Korea. In addition, he is founder member and Chief 
Research Advisor of digital healthcare startup (Arogya 
Pandit Private Limited) at India. He has filled patent and 
published several research articles in well-reputed SCI 
journals and international conferences/book chapters. His 
research interest is on Low-cost biosensors development, 
Development and optimization of pulse sequence using 
MRI, Tumor classification using Machine Learning and 
Deep Learning using MRI. In addition, he is also working 
on several projects related to Big Data integration with 
Artificial intelligence and Internet of Things. Dr. Gupta also 
loves to write poem and technical blogs. 

 https://www.linkedin.com/in/manish-gupta-ph-d-
9544ba60/



    v

Professor (Dr.) Inder Singh Gupta is a seismologist, 
statistician, mathematical modeler, and Data Science 
expert. He has 37+ years of rich experience in Research, 
Teaching, Principal Supervisor for many Govt. funded 
projects along with numerous research publications 
in reputed international journals and conferences. 
He is also an author of many undergraduate and 
postgraduate books of mathematics. Currently, he got 
retired from JVMGRR(PG) College, India, and serving 
as Chief Executive Officer in digital healthcare startup 
(ArogyaPandit Private Limited,India (arogyapandit.
com)).

 https://www.linkedin.com/in/dr-i-s-gupta-87aa2120/



vi    

About the Reviewers

v	Kiran Raja is a Faculty Member with the Department of Computer Science 
at Norwegian University of Science and Technology (NTNU), Norway. He 
received his PhD degree in Computer Science from the NTNU in 2016. He 
was/is participating in EU projects FP7-INGRESS, H2020-SOTAMD, H2020-
iMARS, and other national projects. During his participation in SOTAMD and 
iMARS projects at NTNU, he has worked on different problems in morphing 
attacks from both generation and detection perspectives. He is a member of 
the European Association of Biometrics (EAB) and chairs the Academic Special 
Interest Group at EAB. He also advises various national agencies in Norway 
on making biometric systems secure. His recent research focuses on attacks 
and defenses on biometric systems using statistical pattern recognition, image 
processing, and machine learning. He has authored several papers in his field 
of interest and serves as a reviewer for several journals and conferences. He 
also serves as program chair for the BIOSIG conference. He is also a member of 
the editorial board for various journals.

v	Er. Nidhi Gupta has 9 years of extensive experience to perform troubleshooting 
and testing of advanced analytics applications which deploy on-premise 
and cloud-based architecture. Currently, she is associated with Department 
of Treasury and Finance under the Australian Government as a “Senior Test 
Analyst”. Where, she is leveraging disparate tools such as Selenium, Talend, 
Jenkins, AWS stack, Cucumber, RestAssured, Robotic Process Automation 
(RPA), Protactor, and Jmeter (Interpreter using Python, PySpark, Java, 
TypeScript) for executing the manual and automated test cases. Also, she has 
been responsible to landing the Machine Learning and Big Data based projects 
impeccably with zero caveats.

  Apart of being a technocrat, she loves to do travelling and trekking with loved 
ones in her leisure time. 

 She can be reached at [nidhigupt8190@gmail.com/nidhi.gupta@arogyapandit.
com or linkedin.com/in/nidhi-gupta-957458bb]



    vii

Acknowledgements

I am feeling profound happiness to be able to deliver this book to all my readers 
across the globe who have been working in the domain of advanced analytics 
and intelligence. In this book, I tried my best to elucidate all the indispensable 
information for extending the adaptability of distributed processing towards Big 
Data and Artificial Intelligence.

First and foremost, a special thanks to my mother, Mrs. Varsha Gupta, for providing 
the ideal atmosphere while writing the book chapters. Also, I would like to thank 
the co-authors of this book, Dr. I.S. Gupta and Dr. Manish Gupta, for their helpful 
and valuable guidance. However, this book wouldn’t have been possible without 
the encouragement of my brother-in-law, Er. Manish Gupta, my younger brother, 
Sourav Gupta, and other family members. 

Finally, I would like to thank Mr. Nrip Jain and the entire BPB team for providing 
the opportunity to write this book. Also, I have no words for the reviewers, Dr. 
Kiran Raja and Er. Nidhi Gupta, for improving the standard and quality of this 
book. I agree that the content of this book will confound the reader with great 
interest.

— Gourav Gupta

In the last two decades, we have continually witnessed tremendous growth in 
digital data coming from numerous digital platforms. To handle this massive 
amount of data, advanced analytics and intelligence techniques are continuously 
gaining popularity among the data science community across the globe. The 
present book is a sincere attempt to adorn all analytics techniques under one 
umbrella for the convenience of readers.

It is my great privilege to introduce this book to data analysts and the science 
community. This book potentially creates a bridge to fulfil a gap between the 
academic community and corporate researchers. In no words, I can articulate my 
infinite indebtedness to a loving family whose unending love always provided me 
with the moral strength to materialise this book within a scheduled time frame. 
I owe an enormous debt of gratitude to my co-authors for countless technical 
discussions and also for their erudition.



viii    

I owe an immeasurable debt to both reviewers for their active support, which 
did not let me feel let-down during the finalisation of this book. I appreciate both 
efforts in putting my endeavours in the right direction.

In the end, needless to say, without the active support of the entire BPB family, this 
would have remained an unfulfilled dream.

— Dr. Manish Gupta 

In the era of automation, it has become necessary to update and apprise the public 
about the upcoming advancements using machine learning and deep learning. It 
is quite difficult to achieve more precision with fewer computations without the 
implementation of statistical methods and mathematical concepts while training 
and testing an intelligence system.

In my 40 years of teaching and research experience, I taught and delivered numerous 
international and national lectures on these statistical methods, numerical 
methods, and operational research methods for solving the tedious problems in 
seismology, particularly in the propagation of waves in solids theoretically. As a 
co-founder and director at ArogyaPandit Private Limited, India, I help and teach 
my data science team about the core and advanced mathematical functions and 
calculations in AI.

I also express my gratitude to my supervisor, Professor Dr. Sarva Jit Singh (former 
head of the mathematics department, MDU, Rohtak India), for his blessing and 
support throughout my professional life. I would like to thank my wife and family 
members for their cooperation. Also, I thank the reviewers, Mrs. Nidhi Gupta and 
Dr. Kiran Raja, for improving the book's contents and technical refinement. Finally, 
I would also like to thank the BPB Publications for providing this opportunity.

— Dr. I.S. Gupta 

 



    ix

Preface

Since 1964, from the beginning of automation and intelligence towards machines, 
the applications of machine learning (ML) have made tremendous progress during 
the last two decades. But still, there is a large scope of improvement for fast and 
accurate decisions. The aim of the present book is to make the readers aware of day-
to-day activities that make life smarter and cosier with the use of ML applications 
using Apache Spark. Initially, there was a single processing framework used in 
ML to solve the critical problems. Due to the standalone processing, the training 
and testing of models usually takes more time and requires more resources. Also, 
the problem becomes more complex and time-consuming for big data (high 
dimension and data volume of features) in ML. Therefore, a promising in-memory 
analytics layer needs to be introduced, such as Apache Spark, for handling and 
training the heavy intelligence model in an optimised manner. Generally, there 
are two types of distributed frameworks, like Apache Hadoop and Apache Spark. 
Due to some limitations in Hadoop, most MNCs later adopted Apache Spark. This 
book contains comprehensive and lucid details from scratch to production level 
implementation of a distributed framework, which the readers will find useful. 
Also, readers will learn to easily transition from conceptual scenarios to practical 
implementation and get educated them about the various components of ML 
pipelines using Apache Spark. Although a Github link is provided in this book 
where the reader can try the practical stuff using those codebases.

Chapter 1 delineates the introductory phase and disparate real-time applications 
of various domains of ML. Compendious discussion regarding its derived 
technologies such as Neutral Network (NN) and Deep Learning (DL) in connection 
with ML applications is also discussed. Beginning from the evolution of ML to its 
future scope, it is also mentioned in detail for readers.

Chapter 2 deals with issues including handling, storing, and processing large 
volumes of data by leveraging the Distributed Framework (DF). The installation 
and configuration of Apache Spark on-premises systems, Apache Spark on cloud-
based systems, Python, DBeaver, Code Editors, and PowerBI are also deeply 
discussed in this chapter.

Chapter 3 contains the various ways to read and manipulate heterogeneous 
formats of data, a detailed explanation of the architecture, an optimization 
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interactive monitoring of Spark's job through Apache Livy. Workflow creation 
through Apache Oozie and other tools for creating a unified pipeline are also 
mentioned in this chapter.

Chapter 4 presents deep knowledge about various components of ML pipelines, 
actions, transformations for making the unified ML pipeline using Apache Spark. 
Also, this chapters explain all the SparkML methods for training and testing the 
intelligence model on actual data.

Chapter 5 deals with distributed processing-based supervised learning along 
with implementation. Also, the discussion on regression and classification-based 
performance metrics is given to check the performance of the model.

Chapter 6 highlights the use of unsupervised learning methods for clustering of 
random samples to understand hidden patterns in the data and find outliers etc. 
The implementation of each learning method is given in this chapter.

Chapter 7 deals with the evolution of Natural Language Processing (NLP) and its 
distributed processing using the SparkNL P library along with future scope. Also, 
topic modelling, text-classification, and sentiment analysis are discussed in detail.

Chapter 8 is deeply concerned with the recommendation engine and its 
distributed processing-based operation. The uses are also mentioned in relation to 
recommendations regarding products, services, and information.

Chapter 9 discusses the uses of DL process to improve the performance of 
computation and hence reduces the time consumption and cost reduction. In this 
chapter, evolution of DL and its components explanation and advancement in DL 
are also discussed. 

Chapter 10 gives comprehensive details regarding the evolution of Computer 
Vision (CV) and its related libraries, core components, data augmentation, 
and applications. CV enhancement is also discussed, as well as their practical 
implementation in real-time CV-based pipelines.
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Chapter 1
Introduction to 

Machine 
Learning

“Field of study that gives computers the capability to learn without being 
explicitly programmed.”

— Arthur Samuel

Introduction
Since the last two decades, there has been an incessant enhancement towards the 
vertical of Artificial Intelligence (AI) and its related sub-branches such as Machine 
Learning (ML), Statistical Modelling (SM), and Deep Learning (DL). These 
aforementioned technologies leverage many applications in the amelioration of 
people’s life and their day-to-day needs in various domains such as bioinformatics, 
radiology, agriculture, finance, astronomy, banking, healthcare, geo-informatics, 
seismology, and space exploration. ML extends the core functionality to push-up the 
capability of manual operations and machine to automatically learn by understanding 
and observing the key historical experiences. The main objective of this book is to 
educate the readers about the fundamental, advancement, and real-life applications 
of ML using a distributed framework. Furthermore, this chapter gives an in-depth 
knowledge about the journey of AI and the taxonomy of AI. Indeed, the term AI 
refers to a mimic prototype to imitate intelligent behaviors by understanding the 
meaningful information, patterns, or inputs. For example, self-driving cars use the 
concept of AI, especially a vision-based technology for teaching the AI model to make 
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insightful decisions by mimicking and understanding the intelligent behaviors or 
inputs; these kinds of models are ideal examples of AI. The report shared by Gartner 
in 2019 depicts that the Intelligent System (IS) and its related verticals will become 
a big epic-center and most decisive emerging technology in the coming years. In 
future, almost every tedious problem will be resolved with the help of AI and ML. 
Across the globe it becomes a subject of interest among researchers, data scientists, 
data analysts, industrial experts, and academicians for mitigating the herculean 
real-time problems using AI. Also, this chapter shows the rigorous knowledge 
about the evolution of ML, types of ML, and its emerging applications with their 
futuristic scope. In addition, a compendious discussion on DL in connection with AI 
applications have been embossed in this chapter.

Structure
In this chapter, we will discuss the following topics:

•	 Evolution of machine learning

•	 Fundamentals and definition of machine learning

•	 Types of machine learning algorithms

•	 Application of machine learning

•	 Future of machine learning

Objectives
After studying this chapter, readers will be able to:

•	 Learn about the history of machine learning.

•	 Get an understanding of the modern definition of machine learning.

•	 Grasp the knowledge of different types of machine learning and its algorithm. 

•	 Understand the application of machine learning in various fields.

•	 Know the future scope of machine learning.

Evolution of Machine Learning
The origin of both technologies AI and ML are interconnected. Hence, for the solid 
foundation of the readers, detailed history of ML and AI is presented in this section. 
However, the primary objective of this book is to make the readers conversant with 
the practical real-time scenario of ML with Apache Spark.
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The term ‘Machine Learning’ first came into existence in 1952 after the distinguished 
work by an American engineer Arthur Samuel. Starting from 1949 to late 1968, he 
did the pioneering research to learn a computer by applying some instructions 
into it for making a self-decision. Initially in 1950s, he developed an alpha beta 
pruning program using a scoring function for measuring winning chances of two-
player games like chess, on computers with limited memory. Next, he proposed the 
minimax algorithm based on the minimax strategy concept along with numerous 
mechanisms named as “rotelearning” to make his program better. In 1952, Samuel 
was the first to introduce the term “Machine Learning”. Thereafter, in 1957 Frank 
Rosenblatt from Cornell Aeronautical Laboratory merged the Donald Hebb’s 
model of a brain cell with Samuel’s machine learning concept to design the first 
neural network named perceptron for computers. The Perceptron algorithm was 
first installed in a machine named Mark 1 perceptron based on IBM704 hardware. 
It was used for image reconstruction applications and still had some limitations in 
recognition of the faces patterns.

In 1960s, the new trail was introduced using multi-layers in the neural network [NN], 
there by providing enhanced capability to solve complex algorithms and provide 
better precision. After this multi-layer theory, many new capabilities were opened to 
further improve the neural network learning through the feedforward propagation 
and back propagation neural networks.

In 1967, the nearest neighbor algorithm came in existence for the basic pattern 
recognition application for finding the more efficient route for traveling sales persons. 
In 1970, the back propagation algorithm was developed to adjust the network with 
hidden layers of neurons for minimizing errors. This algorithm was used to train 
Deep Neural Network (DNN).

During the 70s and 80s, AI researchers and computer scientists worked together 
on neural network research, while some of the researchers and engineers started 
working in ML as a new trail. By the early 1980s, ML and AI took separate paths. 
AI mainly focused on using logical and knowledge-based approaches while ML 
focused on neural networks-based algorithms.

In 1990s, ML reached its peak because of availability of large data shared by the 
Internet service. In 1990, Robert Schapire developed the Boosting Algorithm for ML 
to minimize the bias during supervise learning with ML algorithms for boosting 
weak learners. In this, a set of weak learners create a single strong learner and 
is defined as classifiers that are correlated with true classification. It combines 
many simple models (weak learners) to generate the result. There are many types 
of boosting algorithms such as, AdaBoost, BrownBoost, LPBoost, MadaBoost, 
TotalBoost, xqBoost, and LogitBoost, and AnyBoost. A detailed study on various 
types of boosting algorithms have been discussed later in this chapter. 
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Next, in 1996, the IBM Company won the first game against the world champion 
Garry Kasparov by developing “Deep Blue”, a chess-playing computer. The Deep 
Blue computer used custom build Very Large-Scale Integration (VLSI) chips for 
executing the Alpha-Beta algorithm. In 1997, Jurgen Schmidhuber and Sepp 
Hochreiter designed the neural network model named Long Short-Term Memory 
(LSTM) for speech recognition training. LSTM consists of cells, input, and output 
gates and was used for eliminating the gradient problem. In 2006, Face Recognition 
Algorithms were tested for 3D face scans, face images, and iris images and which 
was more accurate than the earlier facial recognition algorithms.

In the same year, the Canadian computer scientist Geoffrey Hinton introduced the 
term Deep Learning (DL) and developed a fast and greedy unsupervised learning 
algorithm for distinguishing the text and objects in the digital images and videos.

In 2011, the deep learning artificial intelligence research team at Google also known 
as “Google Brain” developed a large-scale deep learning software system named as 
DistBelief for learning and categorizing the object in a similar way as a person does. 
After a year, the Google X team developed ML algorithms containing 16,000 clusters 
for automatically identifying the cat digital images from YouTube videos.

In 2014, the Facebook research team came up with a facial recognition system known 
as DeepFace for recognizing human faces in digital images using DL. In 2015, 
Microsoft developed the ML toolkit for distributed resolution ML problems across 
multiple computers. In 2016, the Google DeepMind team developed AlphaGo for 
solving most complex board game problems.

Next in 2017, Google released Google Brain’s second-generation system known 
as the TensorFlow version 1.0.0 for a single device that can run on both Central 
Processing Unit (CPU) and Graphics Processing Unit (GPU) for general purpose 
computing. Recently, Google released the TensorFlow version named TensorFlow.js 
version 1.0 for ML in JavaScript, TensorFlow 2.0, and TensorFlow Graphics for DL in 
computer graphics in 2018 and 2019, respectively.

Fundamentals and Definition of Machine 
Learning
This section focuses on creating a solid foundation of ML starting from its initial 
definition to its modern definition along with basic terminologies which are 
essential for grasping the fundamentals of ML. As discussed previously, ML has 
been adapting and expanding its functionalities in every automation related jobs, so 
the authors here have put the extra attention towards the core and rational concepts 
to strengthen the core knowledge of readers on ML. Also, it is necessary to walk 
through the journey of ML consisting of its importance, the traditional and modern 
approaches to train a machine or a model for training, validating, and testing of the 
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dataset. This book helps the readers to update them about the real-time challenges 
and their respective solutions being used in the Intelligence and Analytics-based 
organizations.

Figure 1.1 depicts the branches of Artificial Intelligence such as Machine Learning, 
Neural Network, and Deep Learning. In ML, it takes the help of different types of 
learning concepts such as Supervised Learning (SL), Semi-Supervised Learning 
(SSL), Unsupervised Learning (USL), and Reinforcement Learning (RL).

Figure 1.1: Artificial Intelligence with its derived technologies

In NN, a special collection of algorithms is used for training, validating, and testing 
the patterns or inputs by leveraging the ideation of artificial neurons that work a 
like neurons of a human brain. For example, the conversion of voice-to-text uses 
the NN as a backbone. Amazon Alexa, Apple Siri, and Google Home are usually 
known as an ideal application of Smart Personal Assistants. On the flip side, the 
term DL represents the conglomeration of two or more hidden layers for processing 
the complex problems with high precision. Generally, DL is like NN, but the only 
difference is that DL is an easy customization for the complex neural architecture and 
extends the ease to handle the cumbersome model. These days, there are various DL 
and NN frameworks available to get on-spot flavor of the initial analytic platform 
such as Keras, Caffe, and TensorFlow.

In the following section, the reader will elicit about the basic terminologies which 
are essential to understand the concepts of ML:

•	 Features or Attributes or Variables: These are the unique key measurable 
characteristics of data to be fed into the system for training and testing a 
model. For ML algorithms, these features are used as inputs or outputs. 
For recognizing the face of a human being, the associated features such as 
gender, age, height, lip shape, face shape, and color, so on are to be used as 
the decisive attributes.
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•	 Featured Vector or Tuple: It is a group of important features which are listed 
in a vector or tuple format for training a model.

•	 Model: A specific representation learned from data using the ML algorithm. 
There are three types of models in ML named as Supervised, Unsupervised, 
and Reinforcement models. It consists of three important phases such as 
training, validating, and testing of a model.

•	 Dataset: A set of information collected as rows or instances. The model needs 
a dataset for performing the training and testing phase; hence, the model is 
unable to train without the dataset or input database.

•	 Dimension: A subset of features used to define the property of data. The 
dimension helps to provide the detailed information about the data for 
better understanding.

•	 Target (Label): It is the value to be predicted by training a model. In face 
recognition and gender classification problem, the label with each set of 
input would be the men and women.

•	 Training Dataset / Validating Dataset: It is initial dataset used to train, 
validate, and develop the model. Subsequently, the developed model will 
then map the new data to further train the model.

•	 Testing Dataset / Evaluation Dataset: It is the final data set used for 
verification of the model. This is also called the test dataset. Some authors 
also refer to it as the golden or reference dataset.

•	 Prediction: It is a result or output of a trained model by testing on the given 
inputs or patterns.

•	 Performance Metrics: It is used to calculate the accuracy of the prediction 
model using precision, recall, accuracy, and Intersection over Union (IoU).

•	 Information: It is collection of datasets such as videos, texts, and images 
which need to be used to interpretate and manipulate the training dataset for 
providing some meaningful information.

•	 Unlabeled Data: This is the raw form of the data which may consist of video 
streams, audio, images, and so on in the irregular patterns or unarranged 
manner.

•	 Classifier: It helps to classify the classes of the predicted output. For example, 
classification of different livestock’s such as Cows, Cats, and Horses from an 
image.

•	 Pattern: Pattern is a way to understand features of any dataset and images. 
Pattern is known as a features extractor through which a similar object or 
dataset can be identified.
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•	 Class: Class is used to define the details of any grouped objects/labels. If an 
image has both fruits and vegetables, it means image is classified into two 
classes, one each for vegetables and fruits.

After knowing the basic terminologies of ML, readers must learn about the basic 
processing flow in the traditional programming language and ML algorithms. Figure 
1.2 and Figure 1.3 represent the traditional programming language approach and 
Machine Language approach.

Figure 1.2: Block diagram of the working of the traditional  
programming language (top) and machine learning (bottom)

In traditional programming, the reader configures the machine according to the input 
and produces a desired output or result based on the logic of the algorithm. Let’s take 
an assumption, if a human being instructs a computer or any other programming 
machine about what to do, at that instance, readers need a programming language 
that allows a machine to learn and make the action accordingly. Further, it also gives 
the ability to the machine by using the algorithms for making the decision, based on 
the logic or conditions.

On the other hand, in the ML approach or modern learning, the computer learns 
from their behaviors and historical patterns instead of being programmed to do 
a specific task. This type of learning is different from the traditional learning in 
which the computer needs to do what exactly we want it to do with the help self-
learning. Most of the programs are a series of instructions that is why there is a need 
to create software to bind the stringent boundary for performing a special task like 
transactions in the banking domain. But in traditional learning, the readers need to 
clearly define and set the limits for doing something through a machine that is, if 
a person tries to withdraw money, that exceeds the balance in his account, then the 
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transaction is cancelled. Readers pass explicit instruction to the banking programs 
that if you see X, then do Y. On the flip side, ML is different from traditional learning. 
In ML readers do not create detailed instructions; instead, they need to provide the 
meaning patterns from data or inputs or key features to the computer to study the 
problem and decide what it is asked to do. In this, the reader gives the capability to 
the computer to adapt, evaluate, and learn which is not much different from how a 
human learns.

Figure 1.2 shows the clear picture how a traditional programming language is 
different from the machine learning algorithm which is depicted in Figure 1.3. The 
main difference between a traditional programming language and ML algorithm is 
that in the traditional programming language, an input data is fed with a program 
logic which is run on the machine to produce the output. In case of the ML algorithm, 
we feed the input data along with the output which runs on the machine during 
training, and the machine creates its own program.

Let’s try to understand the term learning in simple language. If a machine is learning 
from its past experiences with respect to some task and improves its performances 
in a task with earlier experience.

The word ‘learning’ or ‘machine learning’ both are the same, so do not be confused. 
A good learning should address the following problem statement:

•	 Should know the clear problem statement of what the learner should learn 
and what the requirement for learning is.

•	 To clearly define what type of data is needed  along with sources of the data.

•	 Define if the learner should operate on the dataset entirely.

In ML, the process of the machine learning model starts with iterating the statistical 
algorithm on the training dataset. This procedure creates an ideal model which must 
be best fitted for getting a more accurate result. Each and every time, ML tries to 
improve the performance of the model by applying the known or refined patterns 
of historical experience.

Machine learning basically deals with two types of datasets. In the first type, the 
dataset is being prepared manually, that is, the input and expected output datasets 
are already available and prepared. In the second type of dataset, the input data is 
available, and the interest of a user is to predict the expected output. As we know, the 
available input dataset, which is further classified into training and testing dataset, 
needs to be derived into three phases such as training, validation, and testing. 
However, there is no hard and fast rule to check what percentage of data is trained, 
validated, or tested.

Let us see how machine learning works. It basically works in three phases as shown 
in Figure 1.3:
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Figure 1.3: Workflow to develop ML model

Generally, there are three phases to be involved to create a full fledge ML pipeline 
which would do training, testing, and executing. These steps are used to generate 
the outcome from the testing dataset. Prior to moving towards ML phases, we must 
know the best way to prepare a dataset that needs to be fed into the training and 
testing phases. Generally, data scientists recommend that the dataset should be 
divided into the ratio of 70:30. Training must be done on 70% of the dataset and the 
rest needs to be fed into the testing phase. First, we need to understand the quality 
of the dataset, and accordingly the required manipulation and cleaning steps are 
applied on the dataset to make the dataset more refined and best-fit to the model. 
Then, the actual process needs to be started to train the model on the 70% of the 
dataset using appropriate ML algorithms. The resultant of the training phase needs 
to be applied on the 30% of the dataset to test the precision and recall the trained 
model. In the last phase, once we know the precision of the trained model on the 
tested dataset, the model will be integrated with the ML pipeline to work as an 
automatic workflow. Table 1.1 shows the main difference between AI and ML:

Difference between AI and ML

Artificial Intelligence (AI)                                     Machine Learning (ML)

1. AI is a technique for enabling 
any autonomous process or self-
decision system to mimic human 
intelligence.

2. AI enhances the self-decision 
feature of any system to get success 
in the outcome by acquiring 
knowledge and learning.

3. The aim of AI to improve the 
success rate in a probabilistic 
condition and provide the optimal 
solution as an outcome.

1. ML is a subset of AI that includes 
complex statistical techniques.

2. Algorithms in ML acquire 
knowledge or training skills 
through historical information or 
pattern.

3. The aim of ML to get the futuristic 
and predictive insights for better 
decision making.
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Difference between AI and ML

Artificial Intelligence (AI)                                     Machine Learning (ML)

4. AI can use mathematical logics, if-
then conditions, decision tree, ML, 
and DL.

5. AI has a wide range of scope of 
implementation and integration.

6. AI includes learning, reasoning, 
and self-correction.

7. AI deals with structured, 
unstructured, and semi-structured 
data.

8. AI examples are Apple Siri, Google 
Mini, Amazon Alexa, Chatbots, 
and Cognitive Robots.

9. AI can be classified into three 
types:

a. Weak AI

b. General AI

c. Strong AI

4. ML includes statistical algorithms 
and DL.

5. ML has a limited scope but is the 
best for decision making for any 
trained task.

6. ML includes learning and self-
correction when introducing a 
new dataset.

7. ML can deal with structured and 
semi-structured data.

8. ML examples are recommendation 
system, Churn Prediction, 
Google Search Algorithms, and 
Facebook’s auto-friend tagging.

9. ML can be classified into three 
types:

a. Supervised learning

b. Unsupervised learning

c. Reinforcement learning

Table 1.1: Difference between AI and ML

Types of Machine Learning
Machine Learning has a wide domain and there are many types of ML as shown in 
Figure 1.4 in the analytic world. These are classified into broad categories based on 
the following criteria:

•	 First criteria, whether the training dataset is trained or not with human 
supervision. On the basis of these criteria, ML is divided into four types, 
that is, Supervised Learning (SL), Unsupervised Learning (USL), Semi-
Supervised Learning (SSL), and Reinforcement Learning (RL). Recently, 
ML experts have grouped these four learning into two learning categories, 
that is, Learning Problem (LP) and Hybrid Learning Problem (HLP). The 
SL, USL, and RL fall under the category of Learning Problem where as HLP 
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involves SSL. SSL is further classified into Self-Supervised Learning (Self-
SL) and Multi-Instance Learning (MIL).

•	 In second criteria the traning dataset learnt incrementally on the basis of 
adhoc at ant frequency. ML is mainly divided into Online Learning (OL) and 
Batch Learning (BL). Some more types of ML also fall under this criterion 
which  will cover in Chapter 5, ”Supervised Learning with Spark” and Chapter 6, 
”Unsupervised Learning with Spark”.

Figure 1.4: Taxonomy of Machine Learning

Learning of Models Based on the First 
Criteria
In the following section, readers will start with the first criteria and take an eagle look 
of all types of learning. As discussed earlier, LP is classified into three main types, 
that is, Supervised Learning, Unsupervised Learning, and Reinforcement Learning.

Supervised Learning (SL)
SL is used when there is a precise mapping between input-output data. In this, 
the given model is trained on a labelled dataset. During the training period, the 
algorithm identifies the relationship between the two variables to predict a new 
outcome. This learning is task-oriented learning in which accuracy of the prediction 
is more dependent on number of tasks (number of rows). If we give more tasks, the 
model learns it efficiently to predict more accurate results. The most real time and 
general example of supervised learning is a spam filter. It is trained with different 
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categories of emails along with their class (spam), and then it learns how to classify 
new emails.

Supervised learning is divided into two types:
•	 Regression-based Supervised Learning (no labels defined) 
•	 Classification-based Supervised Learning (defined labels)

Regression
Regression is a supervised learning where the output has a continuous value. For 
example, Table 1.2 shows the dataset of real-time monitoring through a smart watch 
which serves the purpose of predicting the heartbeat and number of walking steps 
of a cricket player with respect to time. Here, time does not contain the discreate 
value, but it is continuous in the range. In this type, smaller the error greater is the 
accuracy of the regression model.

Number of waking steps   Heartbeat Time
123 72 10.00 mins
150 79 10.025 mins
188 84 10.050 mins
213 90 10.072 mins
218 99 11.00 mins

Table 1.2: Real-time data received from a smart watch

Regression consists of many algorithms which can predict the result based on the 
trained model, knowing the input and output patterns. In the upcoming chapters, 
readers will be exposed to all ML algorithms in depth. There are many types of 
regression algorithms as follows:

•	 Linear Regression (LR)
•	 Multi-Linear Regression (MLR)
•	 Lasso Regression
•	 Ridge Regression
•	 Elastic-Net Regression
•	 Generalized Linear Regression (GLR)
•	 Isotonic Regression
•	 Decision Tree Regression (DTR)
•	 Random Forest Regression (RFR)
•	 Gradient Boosting Tree Regression (GBTR)
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Classification
In this type of supervised learning, the output is having a defined label in the discrete 
value. The main task of the classification is to predict the discrete value belongs to 
the class and evaluate based on accuracy. In this type of learning, it has two types 
of classes such as Binary or Multi class classification. In binary classification, a 
model can be able to predict either (0 or 1) or (yes or no). However, in multi class, 
a model can be able to predict more than one class. For example, Gmail classifies 
the email category more than one class such as social, promotion, updates, and so 
on. Classification also has many algorithms for prediction which are discussed as 
follows:

•	 K-Nearest Neighbor (KNN)

•	 Random Forest (RF)

•	 Gradient Boosting (GB)

•	 Support Vector Machine (SVM) 

•	 Naive Bayes Classifier 

•	 Logistic Regression

•	 Multilayer Perceptron Classifier (MPLC)

•	 One vs Rest Classifier / Multi-Classification Logistic Regression

•	 Decision Tree Classification

•	 Gradient Boosted Tree Classifier

Unsupervised Learning (USL)
In USL, the machine tries to learn without a supervisor or explicit agent. In this, the 
training data set is unlabeled; hence, the machine is restricted to find the hidden 
structure in unlabeled data by self. For example, if we have a group of live stocks 
that is, cows, dogs, cats, camels, and so on in the frame or image, which was not seen 
ever by the trained model/machine. Thus, the machine will have no idea about the 
feature of these individual animals and get confused while categorization. But, with 
the help of USL, the categorization becomes easy and can be possible by considering 
the similarities, differences, and patterns. USL is categorized into two types:

Clustering
Clustering is a technique for grouping the same set of objects or pattern in the same 
group based on some key attributes and parameters from the dataset. There are many 
types of clustering algorithms which are mentioned as follows. (Most of these will 
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be covered in the upcoming Chapter 5 ”Supervised Learning with Spark” and Chapter 6 
”Unsupervised Learning with Spark” in detail.

•	 K-Means

•	 Bisecting K-means Algorithm (BKM)

•	 Latent Dirichlet allocation (LDA)

•	 Gaussian Mixture Model (GMM)

Table 1.3 shows the clear view between supervised and unsupervised learning:

Difference between Supervised and Unsupervised Learning

Supervised Learning (SL) Unsupervised Learning (USL)

1. The Supervised Learning method 
involves the training of the system 
or machine where the input pattern 
and target pattern (output) is 
already known.

2. The SL method is used to facilitate 
the prediction of future instances 
with the help of knowledge/
historical pattern by loading the 
trained model.

3. Implementation of SL is easy.

4. The outcome of the SL technique is 
more accurate and reliable.

5. SL requires supervision to train the 
model.

6. SL is mainly implemented on 
offline applications.

7. SL does have a feedback mechanism 
to check whether the outcome is 
corrected or not.

8. There are two types of SL:

a. Regression

b. Classification

1. The Unsupervised Learning 
method involves the training of 
the system where only the input 
pattern is known and the output 
is hidden/unknown.

2. The objective of USL is to find 
the pattern entities such as 
groups, clusters, dimensionality 
reduction and perform density 
estimation.

3. More complex than SL.

4. The outcome of USL is moderate 
but reliable.

5. USL does not need any 
supervision to train a model.

6. USL is mainly implemented for 
real-time analysis of data.

7. USL does not have any feedback 
mechanism to check whether the 
outcome is correct or not.

8. There are three types of USL:
a. Clustering
b. Ensembling
c. Association Rule Mining

Table 1.3: Difference between Supervised and Unsupervised Learning
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Reinforcement Learning (RL)
In RL, there is no actual supervision to be used instead, a feedback system is provided 
which helps the machine to learn and make the decision on that observation. All 
this decision and result has been done through the smart self-learning system or 
reinforcement learning. It is more applicable with NN and a perfect example of RL 
is Google’s DeepMind AlphaGo Program.

There are several types which are as follows:

•	 Q-Learning

•	 Temporal-Difference Learning (TDL)

•	 Deep Adversarial - Metric Learning

Hybrid Learning Problem (HLP)
As discussed earlier, HLP is classified into three main types, that is, Semi-Supervised 
Learning, Self-Supervised Learning, and Multi-Instance Learning.

Semi-Supervised Learning (SSL)
As we know that the labeling of data is a lengthy and costly process, but in this 
learning, we get some algorithms which will do automatic labeling over the dataset. 
Google’s Photo is the best example.

Self-Supervised Learning (Self-SL)
This learning requires unlabeled data for doing the pre-processing tasks, and then 
the output needs to be fed to the intelligent framework for precise analytics. Data 
augmentation and image rotation in Computer Vision is an example to show the 
characteristics of self-supervised learning.

Multi-Instance Learning (MIP)
In Multi-Instance Learning, the individual instances or objects are un-labeled, and 
the bags of instances or objects turned into groups are labelled. Let us suppose, the 
information or details of individual fruits in the image should be un-labeled but in a 
group, it is named as a fruit. Another criterion to divide the types of ML is to check 
whether the training dataset is learnt incrementally on the adhoc basis. 
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Learning of Models Based on Second 
Criteria (Batch Mode Learning and Online 
Mode Learning)
In this section, the readers will get to know the two indispensable learning trails to 
train a model based on the incremental manner or batch manner. More details about 
these learnings are as follows.

Batch Learning
In batch learning, the machine doesn’t train in an incremental manner but uses 
the delta concept or batch mode approach for training an intelligence model on a 
particular period. This kind of training approach is being handled by the integration 
of frequency-based scheduler or trigger-based workflow system.

Online Learning
In online learning, the machine is trained incrementally by feeding it data instances 
in a sequential manner. The last main criteria to bifurcate machine learning are to 
check whether the training on the example dataset gives you a generalized result 
for better prediction. There are two types of learning exits such as instance-based 
learning and model -based learning.

Applications of Machine Learning
The concept of ML has been recognized and adopted by many entrepreneurs, 
academicians, and professionals from several multi-national companies (MNCs) for 
getting the key-targeted and decisive information. In this section, we will be cover 
the pertinent applications of ML. By the use of ML, several organizations have been 
able to enhance efficiency, optimization of framework, workflow observation, in 
addition to cost reduction for solving a complex problem. Recent advancement in 
the field of edge computing and highly configured processing framework such as 
Graphics Processing Unit (GPUs) and TensorFlow Processing Unit has provided the 
ease to integrate with a ML model. Also, due to availability of in-expensive hardware 
and advanced computations, the field of AI gets more flexibility and adoptability in 
any divergent domain. This advancement helps to incorporate the potential of ML in 
our day-to-day scenarios. The interdisciplinary areas that leverage ML in their real-
time applications are as follows.
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Recommendation Engine
There is no doubt about the fact that online shopping has taken over the retail market 
in the past few years. Online shopping provides a great experience with a variety of 
options for a given product and competitive discounts.

A recommendation engine is an advanced application of machine learning techniques 
to provide the products/items recommendation. Recommendation engines are 
everywhere around us in our daily life. It is used in e-commerce, marketing, online 
video recommendation and the Sales department to attract new customers. It is 
a process which leverages AI to suggest or recommend the things to the user by 
tracking the behavior based on the previous activities like e-shopping and viewing 
video content. Several machine learning methods like supervised, semi-supervised, 
unsupervised, reinforcement are used to develop these products recommendation-
based system.

Netflix is using machine learning techinque to collect its huge collection of TV 
shows and movies. It analyses the streaming history and habits of its millions of 
subscribers to predict what individual viewer would prefer to watch. Nowadays, 
when users search or purchase a product from a website or an application, similar 
or the same products are recommended to the user on their next visit. Product 
recommendations are made based on the behavior of the website or application, 
past purchases, items liked or wishlist, shopping cart, and past purchases. This 
enhanced shopping experience is powered by ML running at the backend of the 
websites. This type of system is also built with the incorporation of big data and 
machine learning techniques like Collaborative Filtering, Alternate Least Square 
(ALS) Algorithm, and Reverse Image Searching, Market Basket Algorithm, and ANT 
theory (Recommendation Mechanism). Some popular examples of recommendation 
engines are as follows:

•	 E-commerce sites like Amazon and Flipkart

•	 Book sites like Goodreads

•	 Movie services like IMDb and Netflix

•	 Hospitality sites like MakeMyTrip, Booking.com, and so on

•	 Retail services like StitchFix

•	 Food aggregators like Zomato and Uber Eats

Financial Services
The finance industry uses Machine Learning and Deep Learning algorithms 
to identify the key insights in financial data to be used as prevention from any 
occurrences of fraudulent activity, keep alerting of different level of cyber threats, 
and portfolio management for recommending better loan opportunity to customer. 
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Machine learning can be used to change the way of working of banks to improve the 
customer’s experience and secure transactions through many flags as AI checkpoints 
so the bank can connect with the customers at the earliest if any way-out activities 
happen.

For example, if a purchase of any customer does not fit in with their money spending 
pattern, then the algorithms alert the bank and put the transaction on hold.

Social Media
Social media platforms like Facebook and Twitter leverage ML algorithms and ways 
to create some attractive and useful features. Platforms like Facebook monitors 
and logs all the user activities like the chats, likes, and comments, types of posts, 
groups, and time spent on them. The underlying ML algorithm analyses these logs 
and makes recommendations on friends and page suggestions for you. This is used 
for customized news feed and enhanced and personalized ads targeting. You may 
be using these wonderful features without realizing that they are powered by ML 
algorithms. These platforms have integrated machine learning into their computing 
and decision-making framework.

Face Recognition
Face recognition and object detection can be possible by leveraging the power of 
ML using Computer Vision and its related techniques. Mainly, face recognition is 
implemented at international airports which recognize the identity of a person and 
provide you an e-boarding pass without interaction of any manual groundcrew. 
Mobile phones are also adopting this functionality for unlocking the password. 
Features of this can be seen in mobile apps to detect the age and gender of the person 
being photographed. Currently, this application is being used by social websites 
and applications like Facebook and Instagram to recognize the friends based on the 
historical patterns.  Facebook’s Deep Learning Project Deep Face is responsible for 
the recognition of faces and identifying the person by making the decision through 
the ML model.

Healthcare
There is an increase in the demand of wearable sensors and devices to use that data 
to access the health of a patient in real time. For this reason, ML is becoming a fast-
growing trend and hot topic in the healthcare domain. Wearable sensors provide 
real-time patient information like overall health condition, heartbeat, blood pressure, 
and other vital parameters. This collected information is beneficial to doctors and 
medical experts to analyze the health condition of an individual and predict the 
occurrence of any ailments on the basis of the historical trend of the patient health 
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data in the future. The technology also enhances the scope to analyze data to identify 
trends that facilitate better diagnoses and treatments.

The healthcare industry is rising with the integration of ML and DL in medical 
imaging, diagnosis, data collection, drug discovery, and radiology image analysis. 
Several healthcare sectors are actively looking to adopt ML features to manage better 
and predict the waiting times of patients in the emergency waiting rooms across 
various departments of hospitals. This model is also used to define staff duties 
and other planning by monitoring the details of the staff at various times of the 
day, records of patients, and complete logs of department chats, and the layout of 
emergency rooms. Machine learning algorithms also come to play when detecting a 
disease and therapy planning. For example, KenSci assisting caregivers.

Sentiment Analysis
Sentiment analysis is a real-time machine learning application that determines the 
emotion or opinion of the user. When, if someone has written a review or feedback, a 
sentiment analyzer can find out the actual sense and tone of the text. This sentiment 
analysis application can be used to analyze a sentiment of the document and topic-
modeling on the customer care dataset to classify the complaints based on each 
product. An automatic rating system is another key decision-making application to 
analyze and generate the rating from the call transcript by leveraging the concept 
of Natural Language Processing (NLP). NLP is a feature of ML for analyzing and 
classifying the text data for providing the sentiments, topic-modeling, and automatic 
reply through chatbots.

Video Surveillance
Video surveillance is one of the advanced applications of a ML. A video clip contains 
more details and information to compare documents and other unstructured sources 
such as audios and images. For this reason, extracting of useful information from 
a video by implementing an ML-based automated video surveillance system has 
become a hot topic in the analytic market.

In the security-based application, identification of a human from the videos is an 
important feature to analyze an unusual pattern or anomaly detection. The face 
pattern is the most widely used parameter to recognize a person. A system with the 
ability to detect and track the information about the presence of the same person in a 
different frame of a video is a highly complex process. It requires advanced ML and 
DL integration to get over the problems of high latency and complexity during the 
process and intends the more accurate result with efficient time. The already trained 
cameras using ML are used to keep an artificial vision to observe the public and 
notice suspicious activities. The system will generate a flag or an alert if any way-out 
activity may occur.
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Future Scope of Machine Learning
This section presents the futuristic possibilities of machine learning in a real-word 
application. Adaption of an intelligence intends more towards automation and self-
learning insights in the coming era. Figure 1.5 shows the key application areas for 
unlocking the door of a smart word. Let’s get familiar about this one by one:

Figure 1.5: Futuristic application of machine learning

A New Trail of Intelligence Augmentation (IA)
The concept Intelligence Augmentation is a combination of Augment Reality and 
Artificial Intelligence which is used to enhance intelligence in a machine in addition 
to empower humans to work in a better and smarter way. The IA platform can gather 
all types of data from many sources and geometrical coordinate understanding of an 
object with AI to give human workers a complete 360-degree view of the surrounding. 
The insight extracted from that data and presented to the user is actionable and more 
realistic.
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Integrating IA may reduce the chances of fatal incidents, improve the monitoring and 
maintenance of industries pipeline, and provide the ease to the end user to debug 
the fault occurrences in manufacturing units through Smart augmented assistance. 
Amazon Augmented AI and Microsoft AI platform are the best tools to achieve IA.

Edge Computing with ML
Currently, many MNCs store heterogenous and large volume in the cloud for 
processing and implementing ML algorithms. Sometimes, processing in the cloud 
becomes a dangerous problem in cases when the response time is a very important 
parameter for decision making.

To remove this problem of latency, many companies move from the cloud to the 
edge computing. Edge Computing becomes more insightful and useful when it 
integrates with AI. This integration is also known as Edge ML in which the data to 
be processed and deployed ML algorithms are locally on a hardware device instead 
of data located in the cloud. It not only reduces the power consumption, but also 
helps to process the real-time data significantly with the help of a de-centralized 
processing framework.

Quantum Computing with ML
Quantum Computing (QC) is one the upcoming futuristic technologies that will 
have a great potential to enhance the power of processing heavy and complex ML 
models. QC uses the mechanical phenomenon of quantum such as entanglement 
and superposition where it exhibits multiple states at the same time by adding 
quantum systems. Here, entanglement helps to describe the correlation between the 
properties of a quantum system. These quantum systems are built using advanced 
quantum algorithms that process data at high speed to enhance the ability to analyze 
and extract out the meaningful insights from a large dataset. Microsoft and Google 
have already announced their desires to leverage the QC in future.

Improved Cognitive Services
Application of Cognitive Services are becoming more fascinating and intelligent 
when we use ML. Cognitive Services have already existed in many verticals like 
visual recognition, speech detection, and speech understanding in their apps using 
ML. Cognitive Service is the way how the machines should behave and feel like a 
human. There is a need of more precision and accuracy will be required for better 
understanding. That is why ML will have great potential to overcome the existing 
problems for more adoption of a cognitive service-based application in the coming 
days.
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Robotics
Since 1954, robotics is one of the interesting fields among the researchers and they 
developed a series of robots. But in the 21st century, researchers started to put 
efforts to invent self-learning robots using AI instead of programmable inputs. The 
Robotics domains amalgamate multiple technologies such as Deep Neural Network, 
ML, Computer Vision, Big Data, Augmented Reality, and digital twin to mimic the 
human brain.

Cognitive robots execute tasks in a faster manner and reinforcement learning will 
automatically self-learn the new patterns to merge with its historical experience; this 
ability can increase features of robots and high urge in people’s demand. Currently, 
South Korea and Japan are doing research in the advancement of the Robotics 
domain.

Machine Learning in Space Exploration
The ML technology is supposed to boost up future space exploration due to its variety 
of features like handling of huge data volumes, finding and observing patterns in 
planet image datasets, and predicting maintenance of spaceship. The key-role of 
ML in space exploration can be classified as data transmission, visual data analytics, 
navigation, and rocket landing.

ML is also used as an automatic smart bridge for trans-missing, analyzing, storing, 
and extracting out the meaningful information’s from the cosmos amount of 
complex data that would occur due to the different rotation of the planet’s orbit. ML 
provides a smart algorithm to recover the unsuccessful transmission of data packet 
by leveraging Edge ML that may be permanently lost due to the overwritten with 
new data or latency in the onboard memory. For example, Mars Express AI Tool 
(MEXAR2) and Italy’s Institute for Cognitive Science and Technology (ISTC-CNR) 
can learn from the archive data to remove the superfluous data and pinpoint the 
download schedule to optimize data packet transmission.

A deep analysis of the planet‘s data requires integration of ML-based image processing 
algorithms to identify and read the right information from space images. Due to 
this use case, Machine learning has become an imperative technique for solving the 
mystery of the unknown universe. ML applications are also more intended towards 
Space Navigation and successful landing of the rocket by self-adjusting into the 
derived trajectory and motion control of satellite. The orbit adjustment, autonomous 
navigation, and space station docking can be controlled using the functionality of 
ML. In 2015, SpaceX Falcon 9 used a convex optimization algorithm to determine the 
optimal way to land the rocket back on the earth successfully using the power of ML 
and computer vision in space exploration.
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Self-driving Cars and Autonomous 
Transportation
Currently, a combination of Global Positioning System (GPS), motion sensors, 
and a computational framework known as Flight Management System (FMS) is 
being used to track the position of a flight. This FMS overtakes the manual efforts 
into autonomous track controlling except during take-off and landing. Landers 
and Rovers of Chandrayaan-II are recent examples of Autonomous Transportation 
where the entire landing operation would be autonomous with no inputs from the 
Earth Centre.

Enabling the FMS kind of automatic system for making the self-driving car is more 
complicated and requires high computation than airplanes due to the increase in 
number of cars on the road, obstacles, and limitation of tariff patterns and rules. 
Many MNCs uses 5G technology and Edge ML for learning the complex patterns 
through real-time cameras and sensor data and cam train, an advanced AI model as 
a resultant of Self-driving car. Google Corp. has already tested 55 vehicles that have 
driven over 1.3 million miles altogether leveraging ML and edge computing.

Enhanced Healthcare using AI
AI can be used to reduce the cost of hospitals and waiting time for getting the 
diagnosis report. Recent AI advancement in the field of the healthcare domain has 
proven that integrating AI-driven Computer Vision algorithms such as Mask RCNN, 
UNet, and so on would show the promising result with minimal human effort and 
less cost. AI allows the doctors and practitioners to understand the genetic diseases 
using predictive models in a better way.

Radiology image analysis is one of the accoladed applications of ML which can 
detect and identify the way-out patterns from the image for knowing the disease. 
Also, many pharmaceutical companies adapt the concept of AI for artificial clinical 
trials and centralization lake for data handling; these two features of AI will increase 
the precision in trial in addition to cost cutting.

Conclusion
This chapter deals with an in-depth, lucid, and comprehensive details of AI to elicit the 
readers about its advancement and scope in various fields. Furthermore, an overview 
about the different types of learning, algorithms, and respective comparison tables 
has been covered. In the next chapter, the author will focus on divergent approaches 
to configure and install Apache Spark on cloud and on-premises frameworks such 
as Python, Editors, DBeaver, PowerBI, and Hadoop frameworks.



24      Practical Machine Learning with Spark



Apache Spark Environment Setup and Configuration      25

Chapter 2
Apache Spark 

Environment Setup 
and Configuration

“Dreaming is good, but implementation is success”
—Paballo Seipei

Introduction
In this Digital and Autonomous era, all the real-time applications based on Machine 
Learning all the real-time applications of Machine Learning (ML) and Deep Learning 
(DL) are significantly playing an essential role in our day-to-day activities for making 
the life more simple, fast, and comfortable. In spite of many advantages linked with 
an autonomous-based intelligent system, there are still some complex challenges 
associated with ML. These challenges include handling, persisting, and processing 
of massive amount of raw data which ingests which comes from cumbersome data 
pipelines such as real-time pipelines and batch-mode pipelines. Later, that needs to 
be fed to an Artificial Intelligence (AI) model for futuristic and decisive insights. 
Due to standalone mode of the processing framework, data processing and AI-based 
analytics (training, validating, and testing) over the Big Data become too tedious and 
time consuming for large computation. To overcome aforesaid challenges, several 
research groups, researchers, and Multinational Corporations (MNCs) have been 
trying to eliminate the standalone processing framework for analytics by introducing 
the concept of distributed computing. Distributed Processing Framework (DPF) is 
used to manage Big Data (Heavy Data) and apply the ML/DL model to optimize 
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the overall performance with time efficiency. In DPF, the data will be segmented 
into small chunks and processing of those small data chunks efficiently to be done 
by leveraging by leveraging the mechanism of DPF. Although, training and testing 
of the ML/DL model on the large dataset will consume less time and reduce the 
environment cost during the implementation.

Both Apache Hadoop and Apache Spark are the most popular and in-trend DPFs in 
the market for Digital Transformation (DT). The Apache Hadoop framework is the 
first DPF that was introduced by researchers at Yahoo Corp. for storing and parallel 
processing of large amounts of data. But due to the few limitations of Apache 
Hadoop, later on, Apache Spark was adopted more widely in all the verticals of 
many industries. In this chapter, the authors will discuss various ways to set up the 
ergonomic framework to get the Apache Spark environment installed for practical 
implementation. Additionally, this chapter includes all the indispensable stages in 
a systematic and step-by-step manner to attract the attention of the readers towards 
the production-level implementation. Apache Spark can be installed and configured 
through Hortonworks and Virtual Machines (VM) using on-premise and cloud 
platforms such as Amazon Web Services (AWS) and Hadoop Ecosystem (HE). In 
addition, Python installation and its configurations are also shown using various 
Python-supporting editors such as Jupyter Notebook and Sublime Text. From a data 
access and visualisation perspective, this book delivers in-depth practical knowledge 
to readers about the installation of Microsoft PowerBI, DBeaver Universal Database 
Connector, and Apache Spark on Google Colab.

Structure
This chapter presents comprehensive discussions on the following topics:

•	 Laconic view on Apache Spark 

•	 Apache Spark installation using Hortonworks Sandbox

•	 Hadoop and Spark setup on AWS

•	 Python editors for the Spark programming framework

•	 Microsoft PowerBI installation for data visualization

•	 DBeaver installation for accessing the data from the persistence layer

•	 Installation of Apache Spark on Google Colab

Objectives
After reading this chapter, readers will be able to:

•	 Understand the need for Apache Spark.
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•	 Install on-premise based Apache Hadoop and Apache Spark using a virtual 
machine.

•	 Understand about the cloud instance setup using AWS.

•	 Install Apache Spark and Apache Hadoop on cloud using Amazon Elastic 
Compute Cloud (Amazon EC2).

•	 Set up the python and PySpark environment for writing the ML/DL programs.

•	 Install Microsoft PowerBI and DBeaver to analyze and visualize the insightful 
data for better understanding and scope of the business world.

•	 Install and configure Apache Spark on Google Colab.

Laconic View on Apache Spark
Apache Spark is a DPF used to handle and process massive data workload efficiently 
by leveraging the concept of “In-Memory Computation”. Initially, Apache Spark 
was developed in algorithms, machines, and people lab (AMP Lab) at UC Berkeley 
in 2012. Using the concept of "In-Memory Computation", Apache Spark can process 
a large dataset 100 times faster as compared to other DPFs unlike Apache Hadoop. 
The main objective of Apache Spark is to provide easy integration which is strongly 
coupled with its key components such as Spark Machine Library (Spark MLib) 
and Spark GraphX for extending the functionality towards ML. Apache Spark is 
an inexpensive platform to write a program and it combines various processing 
capabilities through the heterogenous query over the dataset such as an iterative 
algorithm query, interactive query, streaming query, graph query, and batch query. 
By applying the functionality of a unified analytic and intelligence-based architecture 
in Apache Spark, the burden of maintaining and monitoring of the data processing 
pipeline is alleviated.

It is highly accessible by applying the simple Application Programming Interface 
(APIs) in different programming languages such as R, Java, Python, Scala, Structured 
Query Language (SQL), and so on. It can also integrate with Big Data components 
and run on the top of Hadoop clusters in a distributed manner. Moreover, Apache 
Spark can run on clouds in spite of on-premise frameworks such as Microsoft Azure, 
Databricks, Google Compute Platform (GCP), AWS, and IBM insights. Presently, 
the latest version of Spark, that is, Apache Spark 3.2.0, is being implemented in the 
analytics world.
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Apache Spark Installation using 
Hortonworks Sandbox
In 2019, another competitor company, Cloudera, merged and acquired the entire 
services of Hortonworks. A virtual machine named "Hortonworks Sandbox" is being 
downloaded through the official website of Cloudera to set up the Hadoop and 
Spark frameworks. Hortonworks Data Platform (HDP) and Hortonworks Data Flow 
(HDF) are two types of platforms available on the website of Cloudera-Hortonworks. 
Generally, HDP needs to be chosen as a persistence and code execution framework, 
while HDF is for creating batch and real-time data pipelines.

Hortonworks Sandbox installation and configuration require VMware Workstation 
Player (VMWP) and a Docker Image (DI) of Hadoop. Although Apache Spark can 
be installed and configured in a standalone mode without the need for a Hadoop 
bundle, it is recommended to re-use it over the Hadoop layer. Let’s take a look at 
the installation steps of Spark using VMware Workstation Player and Hortonworks 
Sandbox.

VMware Workstation Player Installation
The following are the steps to install VMware Workstation Player in the system:

1. Open the following link in the browser: https://www.vmware.com/in/
products/workstation-pro/workstation-pro-evaluation.html. Download the 
VMware Workstation Player (VMWP) from the official website of VMware, 
as shown in Figure 2.1. This step is needed to get the VMWP for importing the 
Hadoop image into it:

Figure 2.1: Home Page of VMware to download VMWP
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2. After downloading the .exe file of VMWP, go to the location in the system 
where the VMWP setup is saved and double click on the executable file. 
Figure 2.2 shows the preparing screen to install VMWP:

Figure 2.2:  Preparing “VMMP” for installation.

3. The installation will start once you click on the Next, as shown in Figure 2.3:

Figure 2.3: The welcome dialog box of VMware Workstation Player
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4. Click on the checkbox to accept the License Agreement. The Next tab will 
be enabled and moved into the next installation step, as shown in Figure 2.4:

Figure 2.4: The End-User License Agreement Window.

5. Figure 2.5 shows a dialog box that appears to show the location in the system 
where it will be installed. Click on Next and it will move the installation step 
onto the User Experience dialog box.

Figure 2.5: The Custom setup window for setting the installation path to VMWP
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6. Click on the checkboxes in the dialog box and click on the Next button, as 
shown in Figure 2.6:

Figure 2.6: The User Experience settings dialog box to enable the checkboxes

7. Click on the Install button, as shown in Figure 2.7. The Ready to install 
VMware Workstation <VERSION> Player dialog box will start the 
installation in the system.

Figure 2.7: The Ready to install VMware Workstation 15 Player dialog box
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8. Figure 2.8 shows a dialog box Installing VMware Workstation 
<Version> Player that depicts the progress of the setup installation. 
Usually, this installation step will take 10-15 minutes according to the system 
configurations.

Figure 2.8: The installation progress window for VMWP

9. Once it is successfully installed in the system, click on the Finish button, as 
shown in Figure 2.9(a) and open it by double clicking on the VMware icon.

Figure 2.9 (a): The Completed the VMware Workstation 15 Player setup Wizard window
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10. Once it is successfully installed in the system, the icon is created for VMware 
on the Desktop as shown in Figure 2.9 (b):

Figure 2.9(b): Icon of VMware after installation

ClouderaVM Installation for HDP
This section shows the installation steps of ClouderaVM (HDP) as follows:

1. Open the link https://docs.cloudera.com/documentation/enterprise/5-14-x/
topics/cloudera_quickstart_vm.html in the browser, as shown in Figure 2.10 
and download the ClouderaVM:

Figure 2.10: Home Page of Cloudera QuickStart
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2. Enter the details asked by Cloudera Sign-In form for downloading the 
ClouderaVM and click on Continue, as shown in Figure 2.11:

Figure 2.11: The Sign-In page to register for installation

3. Tick the checkbox to accept the Cloudera Trial License Agreement and click 
on Submit which will redirect you to the Get Started page where you need 
to choose the version of ClouderaVM, as shown in Figure 2.12:

Figure 2.12: Displaying the Cloudera Trial License Agreement
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4. Choose the version of ClouderaVM from the dropdown, as shown in Figure 
2.13 and then click on Let’s Go! to get the link for installation:

Figure 2.13: Choose the version of Hortonworks Data Platform.

5. On the Sandbox HDP VMWare Downloads page, as shown in Figure 2.14, 
there are two platforms provided by Cloudera, that is, HDP and HDF. Choose 
HDP and the downloading will start once you hit on the link.

Figure 2.14: The Sandbox HDP VMWare Downloads Window
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6. After downloading the sandbox image, double click on VMware Workstation 
16 Player that was already installed in the system. A dialog box pops up 
from where you need to select the Import option in the Player menu. Click 
on Browse to pass the path of Cloudera HDP virtual machine location, as 
shown in Figure 2.15. Click on the Import button and it will start importing 
the virtual machine and usually it will take 10-15 minutes.

Figure 2.15: Dialog box to import HDP sandbox

7. Figure 2.16 shows the log-in method with the following credentials into the 
HDP virtual machine:
Username = root
Password = hadoop

Figure 2.16: Enter credentials to access the HDP terminal
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8. In the latest version of ClouderaHDP sandbox, it incorporates the Hadoop 
enabled docker to run the specific services related to Apache Spark and 
other components. Readers can ensure that the docker and container are 
running properly in sandbox by running the command docker ps. This 
command will list out all the container images which are active in the docker, 
as illustrated in Figure 2.17. Readers can also execute the specific shell script 
to manually start the docker using start_sandbox.sh in the start_script 
directory if the Docker goes down.

Figure 2.17: The terminal to execute script to start services of docker

9. Figure 2.18 shows the use of the docker exec -it <container_
image><service_name> command to run any services on HDP sandbox. 
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Here, the docker exec-it sandbox pyspark command is executed to run 
the Spark service in the terminal.

Figure 2.18: The terminal to show PySpark is running properly

10. ClouderaHDP provides the ease to check the health and status of 
Hadoop components through the Ambari Web UI, as shown in Figure 
2.19. Configuration tuning and data access from the Hadoop Distributed 
File System (HDFS) can be possible by integrating the Ambari Web UI. 
Credentials of the Ambari UI are different from ClouderaHDP Sandbox and 
readers need to use the following username and password:
Username = maria_dev
Password = maria_dev

Figure 2.19: Main Page of Apache Ambari Web UI
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Apache Hadoop and Apache Spark Setup 
on Amazon Web Services (AWS)
In the previous section, readers got familiar about one of the ideal ways to get the on-
spot infra-framework of Apache Hadoop and Apache Spark using Cloudera HDP 
sandbox. There is another approach to install Apache Spark and its related services 
using Big Data on Cloud (BDC) concept. In this era of digital transformation, almost 
all Big Data provider companies have been adapting the BDC model and spilling out 
the Hadoop functionalities on top of the cloud. AWS, Microsoft Azure, IBM Insights, 
and GCP are the most popular and trending cloud companies which provide Big 
Data and Apache Spark Ecosystem as Software as a Services (SaaS) and instance-
based Operating System (OS), that is, Amazon Elastic Compute Cloud (Amazon 
EC2). Moreover, by leveraging BDC can improve the performance of the overall 
system and code execution, in addition to cost and time optimization. In this section, 
readers will be elicited about how to get the Big Data Ecosystem on cloud using 
AWS and deployment of HDP.

AWS Account Credentials and Amazon 
EC2 Creation
This section illustrates the key steps to create an account in AWS for launching the 
Amazon EC2 instance to install and configure the Hadoop and Spark components. 
The steps to create an account in AWS are as follows:

1. Open the following link in the browser aws.amazon.com/console/. Go to 
the Log Back In option to sign in to the AWS Management Console, as 
shown in Figure 2.20:

Figure 2.20: Main Page of AWS Management Console
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2. Click on the Root User radio button. Enter the username and password 
to get into the AWS console if you have registered credentials, as shown 
in Figure 2.21. Otherwise, you will have to create an account on the AWS 
console:

Figure 2.21: The Sign-In page to log-in into AWS console

3. Once you get into the AWS console, you can see the various pre-built services 
of Amazon Web Services on the Services menu, as shown in Figure 2.22:

Figure 2.22: Displaying the AWS Management Console Page
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4. Figure 2.23 shows the available services that are provided by AWS in every 
nook and cranny of emerging technologies like Quantum Technology, 
Blockchain, Business Intelligence, Analytics, Internet of Things, Augmented 
Reality, Machine Learning, and Deep Learning. Most of the services on AWS 
are spontaneous SaaS or tailored applications for a quick deployment.

Figure 2.23: Displaying the different services of AWS

5. Go to the EC2 service which is listed in the compute category, as shown in 
Figure 2.24. The next link will take you to the Launch Instance page for 
launching an EC2 instance or OS-based snapshot. This Amazon EC2 instance 
would act as an initial platform for deploying the HDP. Apache Spark and 
Apache Hadoop Services to be rolled-out through Apache Ambari.

Figure 2.24: The Main page to launch the instance on AWS
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6. Choose an operating system for launching an Amazon Machine Image 
(AMI). Select Ubuntu Server 16.04 LTS with 64-bit (X86) internal machine, 
as shown in Figure 2.25 and then click on the Next button. Here, readers can 
choose any AMI according to their requirements.

Figure 2.25: The dialog box to choose an Amazon Machine Image (AMI)

7. In the second step, choose an Instance Type and Instance Storage to 
create the Amazon EC2 instance, as depicted in Figure 2.26. Skip all the further 
steps if there is no need of any change in the configurations. Otherwise, 
readers will need to go through each step to modify the configurations. Then, 
click on the Review and Launch button for instance creation.

Figure 2.26: The choose an Instance Type window after step1
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8. As shown in Figure 2.27, the next screen would be a Review of all the 
configurations that have been chosen for the Amazon EC2 instance creation. 
Recheck all configurations and go to the Key pair step.

Figure 2.27: The Review Instance Launch window

 9. As shown in Figure 2.28, in the dialog box, select an existing key pair or create 
a new key pair that will generate a Privacy Enhanced Mail (.pem) file which 
consists of the key pair. Click on the check box and Launch button to create 
an instance. Later, this key pair will be accountable to access the Amazon 
EC2 instance through the terminal or PuTTY Software. PuTTY Software 
authenticates the key pair only in the PuTTY Private Key (.ppk) format 
which should be converted using PuTTYgen software. Detailed information 
about PuTTY and PuTTYgenare is presented in the upcoming steps.

Figure 2.28: A dialog box to select an existing key pair or create a new key pair
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 10. This page will confirm that all the steps for instance creation are done and 
now, AWS is incubating the instance, as shown in Figure 2.29:

Figure 2.29: The window to show the status of instance

 11. As shown in Figure 2.30, click on the Amazon EC2 service that will redirect 
you to the cockpit page of Amazon EC2 where the instance status can be seen 
and monitored. Usually, launching of the Amazon EC2 instance will take 10-
15 minutes and till that, the Status Checks will remain to be shown as 
Initializing.

Figure 2.30: The window to show the status of instance is still in initializing
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 12. Once the launching is done, the Status Checks will be changed to 2/2 
checks in the green-colored tick, as shown in Figure 2.31. Congratulations! 
Now, the user will have an Amazon EC2 instance.

Figure 2.31: The window to show the successful launching of instance on AWS

 13. As shown in Figure 2.32, go to the Security Group option on the AWS 
console that would have been generated while configuring the Amazon EC2 
instance for deployment. Set the following properties to allow all the ports 
and IPs to this instance:
Type = All traffic, Protocol = All, Port range = All, Source = 
0.0.0.0/0

Figure 2.32: Displaying the Inbound rules of instance in security group
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 14. Similarly, the same changes need to be updated in the Outbound rules for 
allowing and accessing the Amazon EC2 instance at any destination, as 
shown in Figure 2.33. The Web UI of Apache Ambari should be responded 
and accessed after these changes:
Type = All traffic, Protocol = All, Port range = All, Source = 
0.0.0.0/0

Figure 2.33: Displaying the Outbound rules of instance in security group

PuTTY and PuTTYgen Software for Generating 
a .ppk file from a .pem and Accessing the 
Amazon EC2 Instance Through a Public IP 
Address
PuTTYgen is a key generator software for generating pairs of public and private SSH 
keys. It is an extension of PuTTY software that can be used to convert a .pem file into 
a .ppk extension. Similarly, PuTTY is a server accessible tool used for connecting 
a third-party server and cloud instances through their respective IPs. PuTTY does 
not natively support the .pem file for SSH keys. Therefore, PuTTYgen is needed to 
generate a .ppk extension file by loading the .pem extension file. PuTTYgen and 
PuTTY are available for multiple operating systems, including macOS, Linux. The 
steps for generating .ppk file from a .pem are given below. 

1. Open the link https://www.puttygen.com/ in the browser, as shown in Figure 
2.34. Download PuTTYgen according to the OS platform and configurations.
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Figure 2.34: The page to download the cross-platform version of PuTTYgen

2. As shown in Figure 2.35, double click on PuTTYgen software that will open 
a main screen. In the Load option, you need to load a .pem extension file 
and select RSA type in the Parameters section. Then, choose the Save private 
key option, which will display a warning about saving the key without a 
passphrase. Choose Yes and then it will save a .ppk extension file in your 
system.

 
Figure 2.35: A dialog box to show the actions and parameters in PuTTY Key Generator
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3. Similarly, download the PuTTY tool from putty.org, as shown in Figure 2.36:

Figure 2.36: The web page to download PuTTY software

4. After downloading the PuTTY software, double click on the PuTTY icon as 
shown in Figure 2.37 (a):

Figure 2.37 (a): Icon of PuTTY Software

5. On the landing screen of PuTTY, enter the IP address, Port No and 
Connection Type should be chosen as SSH mode, as shown in Figure 2.37 
(b):
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Figure 2.37 (b): Landing screen of PuTTY Software

6. In this step, browse and load the .ppk file in the Auth option that will 
establish a connection with the server, as depicted in Figure 2.38:

Figure 2.38: Displaying the browser option to load the .ppk file in Auth
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Apache Ambari Installation on Amazon 
EC2
In this section, readers will get introduced to the final installation patch for successful 
summit (Ahh…here, we meant the Hadoop and Apache Spark installation to be 
done). Let us continue with the Spark installation journey using HDP and AWS. 
Before installing the Ambari Repository on the top of Amazon EC2, few services and 
prerequisites are required in the instance for installing the HDP impeccably. Here, 
authors strongly request readers to execute the following commands in a sequential 
manner, as shown in Figure 2.39.

Figure 2.39: Displaying the executed commands as required in pre-requisite

Disabling the iptables
Before installing the repository of Apache Ambari on the Amazon EC2 instance, you 
need to perform pre-requisites for the successful launching of the Hadoop and Spark 
framework. The few required steps along with commands are as follows:
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•	 sudo ufw disable
•	 sudo iptables -X
•	 sudo iptables -t nat -F
•	 sudo iptables -t nat -X
•	 sudo iptables -t mangle -F
•	 sudo iptables -t mangle -X
•	 sudo iptables -P INPUT ACCEPT
•	 sudo iptables -P FORWARD ACCEPT
•	 sudo iptables -P OUTPUT ACCEPT

Set up Password-less SSH
This section covers the steps to generate the public key for password-less SSH on the 
Amazon EC2 instance. The important steps are as follows:

1. Generate SSH keys (Private and Public keys) on the Ambari Server host:
 ssh-keygen

2. Go to the .ssh directory and add the SSH Public Key, that is, id_rsa.pub to 
the authorized_keys file in the Amazon EC2:

 cat id_rsa.pub >> authorized_keys

3. You need to change the permissions on the .ssh directory and authorized_
keys file:

 chmod 700 .ssh
 chmod 600 .ssh/authorized_keys

4. Check the IP of the Amazon EC2 and access the host through the ssh 
command:

 Ip r 
 ssh root@<host address/ IP>

5. Check the hostname and Full Qualify Domain Name (FQDN):
 hostname -- to check the hostname of Amazon EC2 instance.
 hostname -f -- to check the FQDN of Amazon EC2 instance.

Installation of Apache Ambari Repository and 
Hadoop Services on Amazon EC2
This section highlights the key steps to install the repository of Ambari and Hadoop 
services using the UI of Ambari as follows:
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1. Enter ubuntu as a username of the Amazon EC2 instance using PuTTY for 
accessing it successfully. Make sure that readers will have to log in to the 
server as root and download the Ambari repository file to a directory in the 
host:
wget -O /etc/apt/sources.list.d/ambari.list http://public-repo-1.
hortonworks.com/ambari/ubuntu16/2.x/updates/2.5.2.0/ambari.list

2. Due to the deprecation of some version of Ambari repository, it is 
recommended that you check the Ambari repository from the http link using 
the following  commands.
apt-key adv --recv-keys --keyserver keyserver.ubuntu.com 
B9733A7A07513CAD
apt-get update

3. After downloading the Ambari Repository on Amazon EC2, you need to 
install the Ambari bits which will also install the default PostgreSQL as the 
Ambari database. As shown in Figure 2.40, the following command needs to 
be used for the Ambari server:

 apt-get install ambari-server

Figure 2.40: Displaying the executed commands and its systematically log

4. In this step, the command ambari-server setup will set up the Ambari 
Server and its related necessary configurations such as Java Development 
Kit (JDK). It is also recommended that you choose the default suggestion, 
that is (y/n), and press enter to continue the installation, as shown in Figure 
2.41:
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 ambari-server setup

Figure 2.41: The terminal shows the step-by-step progress of installation step

Ambari Server is installed successfully as shown in figure 2.42:

Figure 2.42: The terminal to show the successful setup of Ambari Server.

5. Once the ambari-server setup is completed successfully, run the command 
ambari-server start to start the services of Ambari, and it will start 
creating logs and metadata of Ambari in their respective directories. Port 
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8080 to be bind to Ambari which should be used to access the Ambari UI, as 
shown in Figure 2.43:

 ambari-server start

                   

Figure 2.43: Displaying content of successful bind and start of Ambari server

6. Open the link in the browser to access the Ambari UI through this <IP>:<PORT 
NUMBER> and log in to the Ambari Web, as shown in Figure 2.44:

Figure 2.44: The home and credential page of Apache Ambari



Apache Spark Environment Setup and Configuration      55

7. Now, the readers will be on a landing page of Ambari Web. Click on Launch 
Install Wizard which will redirect you to Get Started to create a Hadoop 
cluster, as shown in Figure 2.45:

Figure 2.45: The welcome page of Apache Ambari to launch the cluster

8. On this Get Started page, you need to give the name of the cluster that 
readers want to create, and then, choose Next, as depicted in Figure 2.46:

Figure 2.46: The Get started page to assign the name to cluster

9. In the second step of the Cluster Install Wizard, you will need to select 
the HDP version and method of delivery to create a cluster. A list of versions 
and operating systems are shown in the dropdown option as shown in 
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Figure 2.47. Select the specific HDP version and OS that should meet the 
requirements with the existing deployed Amazon EC2 instance.

Figure 2.47: The select version page to choose software and OS version

10. As shown in Figure 2.48, this is a very crucial step in the entire installation 
procedure. Enter the FQDN and id_rsa in the textboxes precisely. Then, 
choose Register and Confirm to continue. It will take some time to verify 
and register the host with the Amazon EC2 instance.

Figure 2.48: The confirm hosts page to display the progress of installing host
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11. Once it gets registered successfully with the host, the status will be changed 
from Installing to Success, as shown in Figure 2.49. Click on Next:

Figure 2.49: The confirm hosts page to show the successful registering of host

12. Figure 2.50 presents the choice of services based on the Stack chosen during 
the selection of the HDP version. You may choose to install any other 
available services now or can add services later after the cluster setup. The 
Cluster Install wizard by default selects all the services for installation:

 
Figure 2.50: The choose services page to choose services to be installed on the cluster
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13. Figure 2.51 shows the Assign Master page. The readers of this book 
can assign the server of the components if the cluster is of multi-node. In 
standalone, all the services should be run in a single machine by default.

Figure 2.51: List of master services in the HDP cluster

14. Similarly, slaves or client components can be managed and assigned to any 
host when the cluster is in multi-node, as shown in figure 2.52. Click on Next:

Figure 2.52: List of client services in the HDP cluster
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15. In this step, Ambari checks whether all the configurations corresponding 
to each service are properly installed or not. If any changes are required, 
then Ambari recommends and does the modification accordingly. Click on 
Proceed Anyways to go to the next step, as shown in Figure 2.53:

Figure 2.53: List of configurations recommended by Apache Ambari

16. The Review step displays the assignments and components information that 
is done. You need to check to make sure everything is correct and click on 
Deploy, as depicted in Figure 2.54:

Figure 2.54: Review of selected configurations and services before cluster deployment



60      Practical Machine Learning with Spark

17. Figure 2.55 shows the progress of components during the installation. 
Ambari installs, starts, and runs a simple test on each component. The overall 
deployment of components will take about 30-50 minutes.

Figure 2.55: Displaying the status of installation process

18. Once the deployment gets completed, check the status of each component by 
running the services at the terminal, as shown in Figure 2.56. Now, Apache 
Spark and Hadoop services are ready to leverage the concept of Machine 
Learning and Deep Learning. Well Done!

Figure 2.56: The terminal display running of the pyspark session

Python Editors for the Spark Programming 
Framework
There are several integrated development environment software (IDEs) and code 
editors which incorporate the Python language to provide the ease in code and 
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manage the cumbersome lengthy codes. Generally, writing a code for PySpark 
usually goes lengthy and bulky; due to this, managing the code base and libraries 
becomes problematic while in the time of successful run. To overcome this challenge, 
many companies have created their editors and IDEs for a better understanding 
of codebase than a text editor. These IDEs can be installed on the cross-platform 
and less configurations environment. It usually provides features such as code base 
syncing from the server location to local location and vice versa, build automation, 
code linting, indentations, testing, pre-libraries aid to coder, module managing, and 
debugging. In this chapter, authors focus on the two most popular Python IDEs 
which needs to be used in ML and DL code base in PySpark.

Sublime Editor
Sublime editor for setting the IDEs to the Python programming language provides 
the ease in coding and debugging the error. In Python or PySpark, when the code 
goes too lengthy, the indentation management becomes one of the most challenging 
problems. This problem can be easily handled with the help of Sublime editor and 
provide the flexibility to easily sync-up PySpark codebase to be written for ML and 
DL from the server to the local directory and vice versa. It is an open-source, cross-
platform, and light weighted software to extend the functionalities of indentation 
management, error debugging, modules managing, and code-base sync-up. Authors 
have shown step-by-step instructions to install and code-base sync-up from the 
server to the local directory and vice versa:

1. Go to the link sublimetext.xom/3, as shown in Figure 2.57 and download 
the software compatible to the readers’ system:

Figure 2.57: The home page of Sublime Text to download the .exe for windows
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2. As shown in Figure 2.58, double click on the .exe file of Sublime editor, the 
location where it is saved in the system. A dialog box will ask you to enter 
the path where it will be installed. By default, it starts the installation in C:\
Program Files\Sublime Text 3 or it can be set to a different folder:

Figure 2.58: The dialog box for installing the Sublime Text

3. As shown in Figure 2.59, click on the checkbox and the Next button will take 
you to the installation screen:

Figure 2.59: The Select Additional Tasks dialog box
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4. In this step, click on the install button which will start installing sublime in 
the system, as shown in Figure 2.60:

Figure 2.60: The Ready to Install dialog box during Sublime Text installation

5. Once the installation gets completed successfully, click on Finish and re-
check the installation by searching it in the Window Program, as shown in 
Figure 2.61:

Figure 2.61: The dialog box to show the successful installation of Sublime Text
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6. Double click on the Sublime icon that will open the main screen of sublime 
for setting up the environment for Python and PySpark coding, as shown in 
Figure 2.62:

Figure 2.62: The screen confirms the installation of Sublime Text in the system

7. Figure 2.63 shows the main landing page of Sublime Text Editor:

Figure 2.63: The home screen of Sublime Text Editor
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PySpark or Python Codebase Syncing from 
a Server to a Local Directory and Vice Versa
This section will help the readers to set an environment to sync up the codebase 
from any cloud instance to a local directory. The reverse sync-up of codebase, that 
is, the local directory to a cloud instance can be possible in Sublime editor. There is a 
need to install Simple File Transfer Protocol (SFTP) in sublime through the package 
control option. Let us see how to set up the sync-up configuration in a sequential 
manner:

1. As shown in Figure 2.64, hover the cursor over the Preference option and 
click on the Package Control:

Figure 2.64: Displaying available services in Preferences option

 2. In the dialog box Package Control, choose Install Package to 
install the SFTP dependencies, as shown in Figure 2.65:

Figure 2.65: Displaying available services in Package Control
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 3. As shown in Figure 2.66, search SFTP in the textbox and click on SFTP to 
install in the sublime editor:

Figure 2.66: Install SFTP service in Sublime Text through Install Package 

 4. Installation will take few seconds for SFTP. Once it is done, choose the 
setup Server of SFTP/FTP in the File option, as shown in Figure 2.67. 
Following are the chronological steps:

 File >> SFTP/FTP >> Setup Server

Figure 2.67: The Setup Server option after clicking SFTP/FTP
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 5. As shown in Figure 2.68, set the host, user, and remote_path for which 
directory readers want to sync. This step checks the server authentication 
and creates duplicate contents of the server folder in the local directory.

Figure 2.68: The screen to show Configuration Script after previous step

Jupyter Notebook
The Jupyter Notebook is an open-source and interactive web application that 
allows you to write, read, install libraries, and execute the content effectively. It is 
an important Python or pySpark web application to read and visualize the machine 
learning or statistical learning in a more interactive manner. Other interactive 
visualization libraries such as plotly and seaborn can be easy deployed with the 
help of Jupyter Notebook.

Installation of the Jupyter Notebook needs few pre-requisite requirements which are 
as follows:

•	 Python should be installed in the system.

•	 Python path should be set into the windows environment.

•	 PIP should be installed and accessible in Python to download the Jupyter 
Notebook.

Python installation on Windows OS
This section covers the steps to install and access Python on Windows OS. The 
following steps are given as follows:
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1. Open the link python.org/downloads/ and download the newest version 
of Python for Windows operating system, as shown in Figure 2.69:

Figure 2.69: The home page of Python to download it

2. As shown in Figure 2.70, double click on the .exe file of Python to start the 
installation process:

Figure 2.70: The installation dialog box for Python 3.8.5
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3. Tick the necessary checkboxes and click on the Install, as depicted in Figure 
2.71:

Figure 2.71: The dialog box is displaying list of options for python installation

4. Figure 2.72 displays the progress of Python installation and it takes 10-15 
minutes for installation:

Figure 2.72: Displaying the installation status of Python
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5. The screen setup was successful and it confirms that the installation is done 
successfully. Click on Finish to close the installation window, as shown in 
figure 2.73:

Figure 2.73: The dialog box to show successful installation of Python

PIP Installation in Python
On the shell terminal or command prompt, it is important to help the readers to 
install all the required Python modules such as pandas, numpy, and sklearn. This 
section illustrates the steps to install the PIP package as follows:

1. You need to set the Python path in the windows environment and check 
whether Python is running or not using the Python command on the 
Window Command Prompt, as shown in Figure 2.74. If you are able see the 
Python version and get into the Python terminal, it means Python is properly 
installed in the system.

Figure 2.74: The dialog box shows the running session of Python
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 2. The PIP module will be installed using this Python get-pip.py at terminal 
but before that, you need to download the get-pip.py from the link 
https://bootstrap.pypa.io/. The version of PIP can also be seen using 
the pip --version command, as shown in Figure in 2.75:

Figure 2.75: Displaying the executed commands at terminal

Jupyter Notebook Installation through PIP
The Jupyter Notebook provides the editor to write and execute Python and its related 
modules. This section covers the steps to install and access the Jupyter Notebook on 
Windows OS. The following steps are given as follows:

1. Open the link https://jupyter.org/install in the browser to get the 
installation steps through conda and PIP, as shown in Figure 2.76. Use the 
pip install jupyterlab in the command prompt:

Figure 2.76: The home page to show the installation step of Jupyter Notebook
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2. Figure 2.77 displays the Jupyter Notebook dependencies that are being 
installed in the system:

Figure 2.77: Displaying the status during Jupyter Notebook installation

3. Congratulations!! The Jupyter Notebook is successfully installed in your 
system! To run the notebook, run the jupyter notebook command at the 
terminal which will bind 8888 as a port number with the Jupyter Notebook, 
as shown in Figure 2.78:

Figure 2.78: The terminal shows the successful running of Jupyter Notebook
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4. To access the Jupyter Notebook from the browser, as depicted in Figure 2.79. 
Then, open the following link:

 Localhost:8888/

Figure 2.79: Displaying Jupyter Notebook console in the browser

Microsoft PowerBI Installation for Data 
Visualization
In our day-to-day life, we make many decisions among which some go wrong 
due to less understanding of business insights. Hence, it creates a hindrance for 
our futuristic business growth. Therefore, in 2010, Microsoft developed a business 
intelligence tool named as PowerBI which enhanced the business understanding 
and acute observation by the occult power of visualization. Microsoft PowerBI is a 
trending Business Intelligence tool for visualization and dashboarding to get better 
insights of the business. In PowerBI, all graphs and widgets usually depict the 
decisive information about the business by playing with dimension and measure of 
data. Generally, it pulls all the data from disparate sources and creates a centralized 
flat of data on a single platform. Mainly, the PowerBI tool is recommended in 
the Exploratory data Analysis (EDA) process to understand the quality, meaning 
and insights of data in Machine Learning and statistical learning. Readers must 
have a Power BI account for creating the visualization and publishing the created 
dashboards. PowerBI can be directly integrated with various on-premise and cloud 
databases such as Google Big Query, Apache Spark, Apache Hive, Apache Impala, 
Azure Blob, Amazon stacks, and SQL, and so on. In this section, authors have 
mentioned the installation steps for PowerBI and utilization of this platform will be 
presented in the upcoming chapters for data visualization. The step to download 
and installation of PowerBI is given below. 
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1. Open the link https://powerbi.microsoft.com/en-us/desktop/ in the 
browser, as shown in Figure 2.80 and click on Download Free:

Figure 2.80: The download page for PowerBI

2. As shown in Figure 2.81, a dialog box pops up. Then, tick on the checkbox 
and click on Open Microsoft Store that will take you to the official page 
of Microsoft Store:

Figure 2.81: A dialog box after clicking on Download free in the previous step

3. In the Microsoft Store window, click on the Get option. This option will open 
a dialog box which will ask the credentials for Sign-In, as shown in Figure 
2.82:

Figure 2.82: The PowerBI Desktop application in Microsoft store
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4. Figure 2.83 shows the Sign-In dialog-box for PowerBI:

Figure 2.83: The Sign-in dialog box

5. Once it is download and installed successfully in the system, as shown in 
Figure 2.84, double click on the PowerBI icon:

Figure 2.84: PowerBI Icon

6. After double clicking on the PowerBI Icon, the landing screen of the tool 
will be opened as shown in Figure 2.85. Various pre-built connectors will be 
displayed while you click on the Get Data option:

Figure 2.85: Landing screen of PowerBI
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DBeaver Installation for Accessing the 
Data from the Persistence Layer
DBeaver is an open-source multi-platform and SQL-based universal database 
management tool for developers, database administrators, analysts, and all 
people who need to work with databases. DBeaver can be directly integrated with 
the persistence layer like Apache Spark and Apache Hive for analyzing the data 
related to ML, DL, and other business KPIs. It supports 80+ databases and provides 
direct integration with them. DBeaver covers both cloud and on-premise popular 
databases like MySQL, PostgreSQL, SQLite, Oracle, DB2, SQL Server, Sybase, Spark, 
Big Query, MS Access, Teradata, Firebird, Apache Hive, Phoenix, Presto, and so on. 
Let us see the steps to install DBeaver in the system to analyze the decisive insights 
from data which is difficult through Spark and Hive terminals:

1. Open the link dbeaver.io in the browser, as shown in Figure 2.86. Download 
the compatible version and extension of the DBeaver universal software 
from the community page: 

Figure 2.86: The home page to download the DBeaver Software

 2. As shown in Figure 2.87, double click on the downloaded .exe file of the 
DBeaver universal software. It will open the main screen in which the 
Database Navigator shows the connection history built within DBeaver 
Software:
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Figure 2.87: Landing screen of DBeaver software

 3. Click on Plug Sign at the extreme left-hand side of the main menu bar. A 
dialog box Connect to database pops up to show the different database 
connectors. Choose any needed database and click on Next for installation, 
as shown in Figure 2.88:

Figure 2.88: Displaying the list of pre-built database connectors
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Apache Spark Installation on Google Colab
Google Colab is a cloud-based notebook that provides the support of CPU, GPU, and 
TPU configurations for performing all steps of analytics and intelligence operations 
such as ingestion, massaging, persistence, modelling, training, validating, and 
testing of ML/DL models over the data. The steps to install Apache Spark on Google 
Colab are as follows:
!apt-get install openjdk-8-jdk-headless -qq > /dev/null
!wget -q https://apache.osuosl.org/spark/spark-2.4.8/spark-2.4.8-bin-
hadoop2.7.tgz
!tar xf /content/spark-2.4.8-bin-hadoop2.7.tgz
!pip install -q findspark
import os
os.environ["JAVA_HOME"] = "/usr/lib/jvm/java-8-openjdk-amd64"
os.environ["SPARK_HOME"] = "/content/spark-2.4.8-bin-hadoop2.7"
import findspark
findspark.init()
from pyspark.sql import SparkSession
spark = SparkSession.builder.master("local[*]").getOrCreate()

Figure 2.89 shows the screenshot of all the required steps to install Spark on Google 
Colab:

Figure 2.89: Screenshot to install Apache Spark on Colab

Conclusion
This chapter includes different ways to configure and install Apache Spark and 
Apache Hadoop frameworks on both on-premises and cloud platforms for practical 
implementation. In addition, different notebooks, or editors of Python such as 
Sublime, Google Colab, and Jupyter are clearly elucidated step-by-step for installation 
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and configuration on any environment. Apart from these, authors have mentioned 
installation steps for Microsoft PowerBI and DBeaver for better understanding of 
features through an Exploratory Data Analysis (EDA) and insightful/ decisive 
visualization on raw or processed input and output dataset. This book helps 
the audience to understand the installation and configuration of all the required 
components which need to be used in the implementation of distributed processing 
by leveraging Apache Spark. The next chapter (Apache Spark) will act like a bridge 
for creating an efficient data pipeline to ingest, process, and feed the meaningful 
data as an input to the ML model from raw data.
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Chapter 3
Apache 

Spark

“Success seems to be connected with action. Successful people keep 
moving. They make mistakes, but they don’t quit.”

-Conrad Hilton

Introduction
Apache Spark is a real-time and batch mode application of Machine Learning 
(ML). Leveraging the concept of a distributed framework like Apache Spark will 
always enhance the computation efficiency and hence, the processing speed will be 
more efficient. Though, diving deep into the concept of Apache Spark gives more 
theoretical clarity, but it still has a big crevasse towards implementation. So, in this 
chapter, authors strive to fill-up the crevasse and help the readers to make a strong 
bridge for easily transitioning from conceptual scenarios to practical implementation. 
Here, authors discuss several techniques  to read and manipulate with heterogenous 
formats of data, detailed explanation of Spark architecture, optimization of a Spark 
Job, interactive monitoring of a Spark’s job through Apache Livy, and Workflow 
management through various frameworks.

Structure
This chapter presents comprehensive discussions on the following topics:
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•	 Need of Apache Spark

•	 Detailed architecture of Apache Spark

•	 Evolution and key components of Apache Spark

•	 RDD, DataFrame, and datasets in Apache Spark with comparison

•	 DAG and Lazy evaluation in Apache Spark

•	 Accumulator and Broadcast

•	 Memory storage level(s): cache and persist

•	 Transformation and action of Apache Spark

•	 Spark’s job optimization techniques

•	 Different storage levels in Apache Spark

•	 SQL or DataFrame-related manipulations using Apache Spark

•	 Different ways to read the various formats of data using PySpark

•	 Scheduling or workflow creation using Apache Oozie

•	 Applications of Apache Spark

Objectives
After reading this chapter, readers will be able to:

•	 Get an understanding about Apache Spark and its internal working of the 
architecture

•	 Do manipulation on any format of data using PySpark

•	 Understand the difference between RDD, DataFrame, and datasets

•	 Do Spark’s job tuning for optimizing the processing efficiency

•	 Do scheduling or binding-up of the Spark jobs into one thread

Need of Apache Spark
In the era of digitalization, the volume of data generating from various digital 
platforms have been continuously growing. A rapid spike in the volume of data 
creates a serious challenge among world wide researchers to handle and store this 
heavy data. Since 2010, several IT industries have been using an Apache MapReduce 
framework for batch processing data. In addition, many organizations have started 
loading more data in Apache Hadoop and wanted to run rich applications. Moreover, 
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users wanted to run iterative algorithms and interactive ad-hoc queries to explore 
the data that is common in ML and graph processing. Even though there are many 
advantages of Apache MapReduce, there are still some gaps where MapReduce 
does not perform efficiently as both multi-pass and interactive applications need 
to exchange data across multiple MapReduce steps, and this can only be done by 
writing it to a distributed file system, which adds substantial overhead due to data 
replication and disk I/O. This overhead takes more than 90% of the running time of 
ML algorithms implemented on Hadoop.

To overcome this hassle, in 2012, Apache Spark was introduced to handle and 
processing the heavy data using the concept of distributed processing and in-
memory computation. Extension towards multiple language support and seamless 
integration with various components make it the best choice to data dealers for 
processing. Spark is an inexpensive method, in this to write a program. The user 
needs to combine different processing types such as an iterative algorithm, an 
interactive query, streaming, graph queries, and batch queries. Apache Spark can be 
deployed and work perfectly on cloud or a on-premises cluster.

Figure 3.1 shows the different deployment frameworks to run a Spark application:

Figure 3.1: Disparate deployment mode to run a Spark services

Evolution of Apache Spark
The first egg of Apache Spark was incubated in 2009 at UC Berkeley’s AMP Lab by 
Matei Zaharia which later, got open sourced under a Berkeley Software Distribution 
(BSD) license in 2010. This study overcomes the major glitches of Hadoop MapReduce 
by providing a new storage called as Resilient Distributed Data sets (RDDs). RDDs 
can be read and written up to 40x faster than Hadoop which translates directly into 
faster applications and has the rich integration with various persistence objects like 
Amazon Simple Storage Service (AWS S3) and Hadoop Distributed File System 
(HDFS). In late 2012, it was first released with the version mentioned 0.5.1 for the 
commercial purpose. After that, multiple contributors have been started to improve 
this framework; hence, that releases various versions accordingly. Now, the current 
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version of Apache Spark, that is, 3.1.2 is released out in June 2021. The following 
mentioned Table 3.1 depicts the annual-wise evolution that has been done in Apache 
Spark:

Version Original release date Latest version Release date

0.5 2012-06-12 0.5.1 2012-10-07
0.6 2012-10-14 0.6.2 2013-02-07
0.7 2013-02-27 0.7.3 2013-07-16
0.8 2013-09-25 0.8.1 2013-12-19
0.9 2014-02-02 0.9.2 2014-07-23
1.0 2014-05-26 1.0.2 2014-08-05
1.1 2014-09-11 1.1.1 2014-11-26
1.2 2014-12-18 1.2.2 2015-04-17
1.3 2015-03-13 1.3.1 2015-04-17
1.4 2015-06-11 1.4.1 2015-07-15
1.5 2015-09-09 1.5.2 2015-11-09
1.6 2016-01-04 1.6.3 2016-11-07
2.0 2016-07-26 2.0.2 2016-11-14
2.1 2016-12-28 2.1.3 2018-06-26
2.2 2017-07-11 2.2.3 2019-01-11
2.3 2018-02-28 2.3.4 2019-09-09

2.4 LTS 2018-11-02 2.4.7 2020-10-12
3.0 2020-06-18 3.0.3 2021-06-23
3.1 2021-03-02 3.1.2 2021-06-01
3.2 2021-10-13 3.2.0 2021-10-13

Table 3.1: Year-wise evolution in Apache Spark

Apache Spark Components
This section introduces the components of spark that provide the ease to users to 
play around the data according to their needs. Figure 3.2 presents the ecosystem 
of Apache Spark containing the various components of Apache Spark which are 
helpful for making the data meaningful:
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Figure 3.2: Apache Spark ecosystem with its core components

Spark Core
Spark Core is a home terminal in an Apache Spark package to the API which defines 
RDDs task dispatching, scheduling, memory management, fault-tolerance, and 
storage systems interaction.

Spark SQL
The older version, that is, SQL-on-Spark has now been replaced by Spark SQL. Spark 
SQL is mainly concerned with structured data. It allows fetching data via SQL and 
Hive Query Language (HQL) and supports variety of data sources like Hive tables, 
Parquet, and JSON. Additionally, it allows developers to intermix SQL queries in 
Python, Java, and Scala supported by RDDs.

Spark Streaming
It is an extension of the core Spark API that enables the functionality like scalable, 
high throughput to the data, and provides APIs to manipulate data streams which 
match the Spark core RDD API. It allows a continuous stream of data through a 
high-level abstraction known as DStream.

MLlib
MLlib is an accessible machine learning library in spark that leverages a distributed 
framework for training and testing a ML model. MLlib encloses various pre-built 
ML algorithms, including clustering, regression, classification, and collaborative 
filtering. DataFrame-based ML APIs are more comprehensible as it includes spark 
Data sources, SQL DataFrame queries, Tungsten optimization, Catalyst optimization, 
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and uniform APIs across languages. Also, it has a linear algebra package named as 
Breeze for numerical computing and machine learning.

GraphX
GraphX is an API for graphs that requires data in the reorientations of vertexes and 
edges. The main features of GraphX are clustering, classification, traversal, searching, 
and pathfinding. Moreover, GraphX supports fundamental necessary operators for 
computation purposes.

SparkR
R is a language that provides the ease to do statistical analysis for a given dataset. 
Similarly, SparkR is a library in Spark for processing the data and performs statistical 
functions on the refined data.

Architecture of Apache Spark

Figure 3.3: An architecture of Apache Spark

Figure 3.3 delineates an architecture of Apache Spark that consists of five components, 
namely, Task Runner, Spark Driver, Worker Node, Executor, and Cluster Manager; 
these can help to run a Spark’s application impeccably. The first and foremost step 
is the execution flow initiated from the Spark Driver that calls the main program 



Apache Spark      87

and generates a SparkContext. A SparkContext is a cockpit of an application which 
generally consists of all the indispensable functionalities. On the other hand, the 
Spark Driver has many other important Schedulers and Managers such as DAG 
Scheduler, Task Scheduler, Backend Scheduler, and Block Manager. These preceding-
mentioned components are useful for translating the user-written code into a job that 
executes within the cluster. Moreover, the monitoring and resource allocating can be 
possible with the help of Spark Driver and SparkContext. There are two pertinent 
ways to get allocated the resource within the cluster using Mesos and Yarn. When 
an RDD is created, it can be fed to many worker nodes to execute the tasks assigned 
by the Cluster Manager and send back the response to the Spark Context. Lastly, the 
executor takes care of the responsibility to execute the tasks that reside at the worker 
node.

Resilient Distributed Dataset (RDD)
RDD is a radical and rational unit of Apache Spark to distribute the collection of 
objects immutably. Each and every data value in RDD is segmented into logical 
partitions and the partitioned RDDs can be handled in a parallel manner across the 
nodes of the cluster with the help of transformations and actions. RDDs support any 
type of programming languages such as Python, Java, Scala, and R along with their 
user-defined classes.

There are three paths to write a RDD: the first path to create RDDs is to take the 
reference of the existing collection from the RDDs or driver program; the second 
path takes the reference of an explicit dataset or persistence layer such as an external 
file system, HDFS, Apache Hive, Hbase, and many more sources which offer a 
Hadoop suitability, and the third path to create a RDD is by parallelizing new data 
values within the spark environment.

The following details show the indispensable scenarios where we can implement 
RDDs:

•	 To deal with the low cardinality transformation and actions.

•	 To process the un-structured format like streams of messages from the social 
platform.

•	 To enhance and deal with complex functions with DataFrames and datasets 
that can be either a structured or semi-structured data.

Direct Acyclic Graph (DAG) in Spark
In Apache Spark, the DAG helps to maintain the record of each operation through 
the arrangement of vertices and edges of a job which is going to be submitted.
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When any job is submitted using the Spark framework for processing the data, it calls 
the assigned action along with its DAG graph by default and starts keeping track 
of operations which need to be triggered for executing the process in a sequential 
manner.

In MapReduce, readers need to keep down the steps of the MapReduce process flow 
through grouping the operations and making them as a single execution graph for 
each operation. But the DAG graph already tracks the records of all the operations 
and it binds up the several operations in one. Thus, this depicts the key difference 
between Hadoop MapReduce and Apache Spark framework. Furthermore, the 
DAG draws the operational flow of any execution job and provides the ease to 
rearrange the operations for emerging out the performance of execution and boosts 
the efficiency.

Lazy Evaluation
The lazy evaluation executes transformation operations, until and unless an action 
is triggered. In spark, it is important to have a lazy evaluation as a functionality to 
execute the transformation while it is needed in the process. By leveraging it, the 
users are free to organize the smaller and manageable operations. In addition, Spark 
can execute the small part of your program by running an action like count(). 
But in MapReduce, it is not possible to test the small part of codebase to see the 
intermediate outcome and it requires more time for developers to decide relevant 
group operations to minimize the number of passes.

Figure 3.4 shows the various advantages to incorporate lazy evaluation in Spark 
to reduce time and space complexities, enhance optimization, help to develop 
better transformation manageability, and increase the speed process. The detailed 
information is given as follows:

Figure 3.4: Advantages of Lazy Evaluation in Apache Spark
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Reduced Complexities
The time and space complexities can be alleviated with the help of lazy evaluation 
as the action is triggered when the data is required.

Optimization
It helps to fold down the number of queries for executing a spark job. Thus, the 
system works more efficiently with fewer configurations.

Develops Manageability
It decreases the number of passes on data by grouping operation. So, the users can 
handle large operations without any hurdles.

Increased Speed
In this concept, users do not need to perform the entire calculation at the instance. 
Due to this mechanism, it saves the communicating time between the driver and 
cluster; hence, speeds up the process.

DataFrames
DataFrames is an immutable distributed collection of data which extends the 
integration with Scala, Java, Python, and R to organize the data in the tabular 
orientation of rows and columns. Some of the ideal examples of tabular representation 
resemble with the data orientation in Relational Databases and DataFrame in 
pandas. DataFrames can process large dataset impeccably with more efficiency. 
There are multiple trails to create a DataFrame in Spark using the relational data 
files or databases, Apache Hive tables, any other SQL or NoSQL databases, and 
already created RDDs. In the updated version of Spark, the DataFrame functionality 
got merged with datasets APIs for providing the unification of data processing 
capabilities across libraries. With the help of this unification, developers will have 
less burden to remember the various concepts.

Datasets
A dataset is a branch which is added to Spark’s family to organize the data in an 
efficient manner and provide more advantages such as strong typing, lambda 
functions integration and flexibility to stitch the concept of Object-Oriented 
Programming (OOPs) flavors along with existing merits of SparkSQL’s optimized 
execution engine. The dataset can be created from the heterogenous data sources and 
serves data manipulations using transformations such as map, flat-map, filter, and 
so on. The dataset supports Scala and Java programming languages except Python. 
The following points highlight the need of a dataset or DataFrame:
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•	 To provide good semantics, high-level abstractions, and domain specific 
APIs.

•	 To handle high-level expressions, transformation functions such as filters, 
aggregation, and mathematical functions.

•	 To provide direct integration with SQL queries to process the data and 
handling of semi-structured data using lambda functions.

•	 Need of type-safety at compile time which can be achieved by leveraging the 
Tungsten’s optimizer.

•	 Need of unification of APIs within the Spark libraries.

Table 3.2 delineates the key benchmarking comparison between RDD, DataFrame 
(DF), and dataset.

Features RDD DataFrame Dataset
Definition RDDs is a read-

only partition 
collection 
of data and 
process using 
In-memory 
computation. 

The representation 
of data in DF is a 
collection of rows 
and columns that is 
similar to RDBMS.

It is an advanced level 
extension of DF that 
can provide the type-
safe and flavor of OOPs 
concept. 

Release Version 1.0 Spark 1.3 Spark 1.6 
Data Formats 
Handling

Structured and 
un-structured 

Structured and semi-
structured data. 

Structured and un-
structured data.

Data Sources API Yes, it can allow 
with different 
sources such as 
text file, RDBMS, 
CSV, and Excel 
file.

Yes, it allows to 
process the data 
from heterogenous 
sources such as Avro, 
CSV, JSON, HDFS, 
Hive, Impala, HBase, 
and MySQL

Yes, different sources 
such as HDFS, Text file, 
CSV, and RDBMS.

Compile-time type 
safety

Yes No Yes

Optimization No Yes, it can be 
achieved using 
Catalyst Optimizer.

Yes, consists of Catalyst 
optimizer.

Serialization Yes, through 
Java 
serialization.

Yes, through 
Tungsten.

Yes, through Tungsten.
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Lazy Evolution Yes Yes Yes
Programming 
Language Support

Java, Scala, 
Python, and R 
languages. 

Java, Python, Scala, 
and R.

Scala and Java.

Schema Projection The Schema 
projection is 
being used 
explicitly. 

There is no need to 
explicitly define the 
schema because it 
has auto-discovering 
functionality that can 
find schema from 
any source.

Auto-discovering of 
schema is available.

Aggregation 
Performance

Slow in simple 
both grouping 
and aggregation 
operation. 

Too fast for doing the 
exploratory analysis 
and performing 
aggregation 
operation.

Faster than RDDs and 
DF.

Table 3.2: Comparison between RDD, DataFrame, and dataset

Accumulator and Broadcast
Apache Spark has two types of shared variables, namely, Accumulator and Broadcast. 
They are scattered across multiple nodes to support the read and write operations 
like lookup and summation.

Detailed information on both shared variables is mentioned next.

Accumulator
It is an imperative shared variable to update data points, counting, and summing 
up related operations across the executors which can be added through associative 
and commutative operations. Moreover, it can be created with or without a name 
in Spark. When the accumulator is created with a name, then the name of the 
accumulator can be viewed in Spark’s UI. Thus, users can sequentially check and 
monitor the progress of the executing stages of a job. An attribute named value 
stores and returns the accumulator’s value which is usable in a driver program.

The following codebase shows an accumulator which is being executed to add the 
elements of an array:
“accum = sc.accumulator(0)
accum
sc.parallelize([5, 2, 6, 4]).foreach(lambda x: accum.add(x))
accum.value”
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Broadcast
It is a read-only variable that needs to be cached in all the available executors, in 
spite of sharing every time with the task. Mainly, the broadcast variable can avoid 
the network input/output overhead by keeping a local copy of data in each executor. 
Hence, minimize the communication cost that can ameliorate the query performance 
using lookup or join operations. In addition, the broadcast is preferred most when 
the tasks across the multiple stages need the identical data for optimization.

The following code shows a Broadcast class within PySpark:
from pyspark import SparkContext 
sc = SparkContext(“local”, “Broadcast”) 
words_new = sc.broadcast([“Big Data”, “Machine learning”, “Analytics”, 
“Deep Learning”, “Artificial Intelligence”]) 
data = words_new.value 
print “Stored data -> %s” % (data) 
elem = words_new.value[2] 
print “Printing a particular element in RDD -> %s” % (elem)

Apache Spark Optimization and its 
Techniques
The key feature of Apache Spark optimization is to provide flexibility to re-tune the 
job’s configurations of spark dynamically in the run-time manner for ameliorating the 
overall performance through in-memory computations. Majorly, the big crevasse in 
terms of the spark optimization computations can be CPU, memory, or any resource 
allocation in the cluster. However, running heavy-loaded spark jobs efficiently need 
good knowledge on how a spark job’s works and several ways to optimize the jobs 
for better performance characteristics. A well-tuned job’s configuration should be 
used to eliminate the time-consumption in a heavy job, correct the execution engine, 
and hence, improves performance time by managing the allocation of resources in 
the right manner. The different approaches to optimize the Spark job is mentioned 
as below:

•	 File Format Selection
Apache Spark adapts several formats such as Comma Separated Validation 
(CSV), JavaScript Object Notation (JSON), Extensible Markup Language 
(XML), PARQUET, Optimized Row Columnar (ORC), and AVRO. But 
choosing of an appropriate file format of data or value can alleviate the 
challenges related to cumbersome while processing the massive data and 
hence, enhance the overall optimization of Spark application. In Spark, the 



Apache Spark      93

parquet file with snappy compression is the most promising format which 
gives high performance.

•	 Accumulators
Readers know the benefits of an accumulator by leveraging it through 
associative and commutative operations. Most of the time, accumulators can 
be used as counters and it also ensures that the update on each task will 
be applied once to the accumulator variables. During the transformation 
operations, the coders are already known about all the updates of each task 
to take care of the number of jobs which can be more than once if job stages 
are re-executed in a Spark application.

•	 Hive Bucketing Performance
The bucketing technique in hive provides a fixed number of data consisting 
shelves in the form of files and the number of buckets is based on the number 
that passes to the table schema script during the creation of a table by the 
coder. Moreover, Hive takes the field and feeds into the hash function for 
assigning the right record to the respective bucket. Bucketing becomes more 
imperative when the cardinality of data is too high, needs to handle or 
manipulate massive dataset, and the cardinality of the partitioning field is 
low to process the records which are scattered among all buckets.

•	 Predicate Pushdown Optimization
It is a technique to process only the indispensable data. Predicates is an 
optimization technique that is applied on the top of SparkSQL by defining the 
specific filters using “where” condition. Through the explain command, the 
programmer will be able to check all stages of query processing. The query is 
well optimized and selects the required data only if the any query consists of 
PushedFilter. This technique can reduce disk I/O by introducing in-memory 
analytics which limits the number of files and partitions. Querying on data 
in buckets with predicate pushdowns produce comparatively better results 
with less shuffle. If there is no PushedFilter found in the query plan, then it 
is better to cast the where condition.

•	 Zero Data Serialization/Deserialization using Apache Arrow
Apache Arrow provides the in-memory format to interact with the analytical 
query engine that can alleviate the overhead for SerializationDeserialization 
(SerDe) operations for shuffling data using shared memory. Arrow can 
handle and process the heavy datasets across the network without the need 
of any shuffling operations. In addition, it has its own file format named 
as Arrow File Format that ensures zero-copy random access to data on the  
disk.
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•	 Garbage Collection Tuning
In Spark, all jobs need the JVM environment to successfully execute the 
program. Due to this JVM requirement, it turns out to be a problematic 
Garbage Collection (GC) when we need to deal with the massive amount 
of dataset for processing. To overcome this hurdle, readers need to re-tune 
the GC of objects by observing and gathering the indispensable statistics by 
submitting the job using Verbose. To be on a safer side, developers always 
recommend to keep the GC memory less than 10% of heap memory.

•	 Memory Management and Tuning
Shuffling and sorting are the most time-consuming operations which can 
take more execution memory, whereas the cached jobs require less memory. 
In Spark, the spark.memory.fraction is a standard way to check how 
much of JVM heap space is being utilized by spark; by default, it usually 
takes 60%. To mitigate this delay of JVM GC, it is recommended to keep the 
less executor memory.

•	 Data Locality
In Apache Spark, the data movements among disks are costly and takes more 
time while computing an application. To take this concern, it is important to 
perform most of the computations at the place where data resides. So, the 
developers keep placing the codebase near the refined data for optimizing 
the processing and enhance the overall benchmarking efficacy. The task shall 
wait to be executed until the data is not available.

•	 Using  Collocated Joins
Redistribution and broadcasting of data can be possible with the help of 
collocated joins. The small chunks of data generally reside into multiple 
blocks of memory that are used for broadcasting. At the instance to apply 
the joins on two datasets, spark first sorts the data of both datasets by keys 
and then merges.

•	 Caching in Spark
Leveraging Spark with Graphical Processing Unit (GPU) with the caching 
technique is the most ideal way to optimize a Spark’s job if there is a need of 
the same data multiple times. Generally, the caching technique is preferred 
more in Machine Learning algorithms where the program needs the same 
data repeatedly to train a model.

•	 Executor Size
In Apache Spark, running of executors with high memory will show the 
excessive delays in the garbage collection, hence lower down the optimization 
as a result. Due to this, it is recommended to have five core per executors. 
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The detailed calculation to use the appropriate number of executor memory 
and its related configurations are mentioned as follows:

o Number of nodes = 10, Number of cores = 16 cores per node, and 
RAM   = 64GB per Node

o Let us assign 5 cores per executor:  --executor-cores = 5

o 1 core per node to be left for Hadoop/Yarn daemons => Number of 
cores available per node = 16-1 = 15

o Total available of cores in cluster = Number of nodes * number of 
core available per node = 15 x 10 = 150

o Total number of available executors = (Total available of cores / 
Number of cores per executor) = 150/5 = 30

o 1 executor to be left for Application Manager: --num-executors = 29

o Total number of executors per node = 30/10 = 3

o Memory per executor = 64GB/3 = 21 GB

o Off heap overhead = 7% of 21GB = 3 GB. So, the executor-memory 
would be = 21 – 3 = 18 GB

Thus, the recommended configurations are: 29 executors, 18 GB memory 
each, and 5 cores each.

•	 Spark Windowing Function
A Spark window function defines a frame through which we can calculate 
input rows of a table and can-do comparison operations on multiple rows in 
that same data frame.

•	 Data Serialization
Apache Spark optimizes the movement or arrangement of data. So, analytics 
can be performed better and with the optimized manner if data resides in the 
right serialized format. Due to aforementioned concern, the Apache Spark 
aids data serialization to manage the data formats that is required at source 
or destination operations effectively. Natively, Spark has Java Serialization; 
although, it can also use Kryo Serialization. In detail, Spark supports the 
Kryo Serialization library (v4) that can be 10x faster than Java Serialization 
and more compactness than Java.

Memory Storage Levels: Cache and Persist
The memory storage levels are useful to optimize the overall process of any spark 
application. Mainly, cache and persist are two types of memory storage levels in 
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spark. Persist is an indispensable functionality of spark that stores the executed 
intermediate RDD across the multiple nodes to get an efficient access while the readers 
need it the next time. By implementing the right memory storage level, readers can 
save several hours of cumbersome computation. Generally, it uses the persist and 
Cache mechanism to store and re-use the data multiple times if the program needs 
this. The function “RDD.cache()” will always store the data in memory, whereas 
the function “RDD.persist()” can store some segments of data in the memory and 
rest on the disk.

The following is detailed information about the various storage levels to persist a 
RDDs in Apache Spark:

•	 STORAGELEVEL.MEMORY_ONLY: RDD is stored as a deserialized Java object in 
the Java Virtual Machine. It does not store few partitions into a memory if the 
RDDs size greater than a memory.

•	 STORAGELEVEL.MEMORY_AND_DISK: RDD is stored as a deserialized Java 
object in the Java Virtual Machine. It stores the remaining RDDs into the disk 
instead of the memory if the RDDs’ size is larger than memory. 

•	 STORAGELEVEL.MEMORY_ONLY_SER: Here, the RDD can be stored as a 
serialized object in the Java Virtual Machine.

•	 STORAGELEVEL.MEMORY_AND_DISK_SER: The RDD can be stored as a 
serialized object in the Java Virtual Machine and disk.

•	 STORAGELEVEL.DISK_ONLY: The RDD can be stored only on the disk.

Spark Submit
There are two approaches for executing a PySpark program. In the first approach, 
users can run or execute the PySpark code sequentially through the terminal and 
the second approach extends the functionality to runtime by passing of parameters 
through spark-submit. In this approach, readers can execute a .py format file which 
will have the complete executable PySpark code. By running this .py script, it 
processes the data; in addition, the readers can get the more option to dynamically 
tune the spark job using –option while submitting the Spark Job.

Here is the syntax to submit a job of spark:
spark-submit –driver-class-path “path of class drive of jars” –jars 
“path of jar file” python “file in .py format”

Additionally, the different runtime parameters can be passed with –option while 
submitting a spark’s job which are mentioned below:

•	 class: It is a full class name of the class containing the main method of the 
application.
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•	 conf: It has the property of the Spark configuration which is in the key=value 
format. 

•	 deploy-mode: Cluster and client are the two modes to run a Spark application. 
In the cluster mode, the driver runs on worker hosts whereas in the client 
mode, the driver runs locally as an external client. It is always recommended 
to have the cluster mode for production jobs and client mode for stagging 
purposes.

•	 driver-class-path: It includes the configuration and class-path 
information. JARs added with the –jars parameter are automatically 
enclosed in the class-path.

•	 driver-cores: It is a dynamic and runtime functionality of Spark to assign 
the number of cores to be used to execute a job. By default, it requires 1 core 
to launch any spark job.

•	 driver-memory: It is a way to assign the heap size which needs to be 
allocated to the driver and the driver-memory value can also be updated 
through the spark.driver.memory property.

•	 files: It is a comma-separated list of files to be put in the working directory 
of each executor.

•	 jars: With the help of the jars option, the user can load additional JARs in 
the class-path.

•	 master: It provides four ways to launch a Spark application using various 
environments which are given as follows:

o local: Run Spark locally with one worker thread.

o local[K]: Run Spark locally with K worker threads.

o local [*]: Run Spark locally with as many worker threads.

o Yarn: Run with YARN cluster manager. The cluster location is 
determined by HADOOP_CONF_DIR or YARN_CONF_DIR.

•	 packages: It is a comma-separated list of Maven coordinates of JARs.

•	 py-files: It is a comma-separated list of .py files. 

Spark Monitoring
In Apache Spark, the submitted job can be monitored to provide key information 
about the application which can help the coders to understand the flow and complex 
steps in the entire design of DAG. To consider this functionality, every SparkContext 
launches a WebUI that is redirected to port 4040. Readers can use this interface by 
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opening http://<driver-node>:4040 in a web browser. The beneficial information 
of a running job can be gathered from Spark WebUI that is given as follows:

•	 About scheduler stages and tasks.
•	 Details of RDDs related to their size and memory allocation.
•	 Environmental and configurational information.
•	 Knowledge about the running executors.

Apache Livy: An Easy Interaction With a 
Spark Cluster Over a REST Interface
In 2017, Cloudera named a Big Data Company launched Apache Livy to solve a 
problem of interface accessibility to explicitly submit and monitor the spark jobs 
through Rest API(s). Thereafter, Hortonworks decided to support and merge 
with Cloudera to enhance the Apache Livy adaptability and features with other 
applications such as Apache NiFi, Security channel among data movements through 
Kerberos, and Apache Zeppelin, etc. Basically, Apache Livy is a service that interacts 
with an Apache Spark cluster over a REST interface for handling the job. Prior to 
this, Spark did not have any integration with other external services to manage the 
Spark job through APIs rather than the submission through a command line option 
in Apache Spark. But now, Livy can easily access the terminal to submit a Spark job, 
synchronous or asynchronous query retrieval, and Spark Context management by 
leveraging the layer of the REST interface. Apache Livy also provides the ease in the 
linkage between Apache Spark and application servers. Hence, extend the feature 
of Rest APIs to call a Spark job through an interactive web or mobile application. 
In addition, it also extends the capabilities of Spark for including the multi-tenancy 
and security features. In the newer version of Apache Livy, it extends the scope of 
integration with various tools to incorporate the inherit functionality of Apache Livy 
for quickly accessing the Spark jobs and secure handling of data pipelines. It majorly 
supports integration with Azure HDInsight, Jupyter Notebook, and Apache Zeppelin 
to interact and access the Spark terminal. Moreover, Apache NiFi engrosses towards 
the functionality of Livy for submitting the Spark job and, the LDAP authentication 
through Apache Knox is now possible using Apache Livy. Features of Apache Livy 
are discussed as follows:

•	 Ease to submit and monitoring of Spark job using the REST API(s).

•	 Livy supports user impersonation; it means multiple users can share the 
same server.

•	 Share cached RDDs or Datasets across multiple jobs and clients can be 
possible through Apache Livy.

•	 Jobs can be submitted via Java/Scala client API.
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•	 Livy supports security features through Kerberos authentication.

•	 Use an interactive notebook like Apache Zeppelin, Anaconda, and Jupyter 
Notebook to access Apache Spark through Livy.

•	 The Livy REST API supports functionality like SparkSession, and 
SparkSession with Hive enabled.

•	 More suitable to submit and monitor the batch mode applications to Spark.

Job Scheduling
Job Scheduling and workflow wrapping is also playing an important role in spark for 
unification of analytics pipeline. In the previous sections of this chapter, authors had 
covered the different ways to run a spark job or code snippets within the Hadoop 
environment. These different ways also work for the standalone environment and 
are also necessary for running the active instances of Apache Spark. For running a 
spark, readers need to manually execute the PySpark application either through the 
terminal or by submitting the .py file, which is not recommended for the production 
environment. To overcome the preceding discussed concern, there is a need of a 
workflow or scheduling framework to bind-up the silo’s tasks into a unified 
processing pipeline. Moreover, the workflow frameworks also help to provide the 
ease to monitor, schedule, trigger alerts, and trigger jobs based on data availability 
and frequency. In this section, readers will know the basic definition of various 
workflow tools along with the Oozie workflow in detail.

Figure 3.5 depicts various workflow and monitoring frameworks to schedule a spark 
job:

Figure 3.5: Various workflow frameworks for scheduling an Apache Spark application
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Apache Oozie is a workflow engine that binds-up the silos tasks and executes them 
in sequences of actions followed by the execution structure as Directed Acyclic 
Graphs (DAGs). Each action represents an individual task of work and is strongly 
integrated with the Hadoop landscape, especially as it is tight coupled with YARN. 
Apache Oozie supports several Big Data tools such as MapReduce, Hive, Spark, 
and Apache Sqoop to schedule the prepared workflow. In addition, Apache Oozie 
provides ease and great flexibility to unify the scattered or silos jobs in a single 
wrapper and makes it easier to repeat those jobs at the predefined frequency and 
retry options.

There are three basic components of Oozie jobs:

•	 Oozie Workflow: It specifies a sequence of actions to be executed by 
leveraging the concept of DAG.

•	 Oozie Coordinator: It is used to manage the scheduling of a workflow by 
considering the frequency and data availability.

•	 Job Properties: It contains the vital property to run an Oozie workflow 
successfully.

This section will help the reader to go through the practical implementation of 
Apache Oozie for scheduling a PySpark script. Here, the authors draw a workflow 
for manipulation.py through workflow.xml and job.properties. The following 
is the codebase of Oozie for wrapping up the PySpark task:

workflow.xml
The workflow.xml is used to bind-up the individual tasks or actions to be executed 
within a data pipeline as a single workflow. This .xml provides the flexibility to 
weave the multiple actions of heterogenous tools such as Spark, Shell Script, Python, 
Java, Hive, and Sqoop in a unify workflow:

<workflow-app xmlns=’uri:oozie:workflow:0.5’ name=’MLPySpark’>

<start to=’spark-node’/>

<action name=’spark-node’>

<spark xmlns=”uri:oozie:spark-action:0.1”>

<job-tracker>${jobTracker}</job-tracker>

<name-node>${nameNode}</name-node>

<master>${master}</master>

<name>Python-Spark-Pi</name>

<jar>manipulation.py</jar>

</spark>

<ok to=”end”/>
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<error to=”fail”/>

</action>

<kill name=”fail”>

<message>Workflow failed, error message 
[${wf:errorMessage(wf:lastErrorNode())}]</message>

</kill>

<end name=’end’/>

</workflow-app>

job.properties
This property file contains the configuration details, path of script, and other implicit 
parameters which are passed to the workflow.xml to execute a job successfully:

nameNode=hdfs://host:8020

jobTracker=host:8050

queueName=default

examplesRoot=examples

oozie.use.system.libpath=true

oozie.wf.application.path=${nameNode}/user/${user.name}/${examplesRoot}/
apps/pyspark

master=yarn-cluster

oozie.action.sharelib.for.spark=spark2

manipulation.py
This section of code shows the PySpark program that needs to be executed and 
scheduled in the Oozie workflow:

import pyspark

from pyspark.sql import SparkSession

from pyspark.sql.functions import col, lit

from pyspark.sql.types import StructType, StructField, 
StringType,IntegerType

dataframe = sqlContext.read.format(‘com.databricks.spark.csv’) \

.options(header=’true’, inferschema=’true’) \

.load(‘/home /Gourav/chap3/wage_table3.csv’)

dataframe.show()

print(type(dataframe))
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Alternate of Apache Oozie to Manage Tasks Workflow
Instead of Apache Oozie, there are two options for wrapping-up of tasks workflow 
into a unified sequence.

Apache Airflow
Apache Airflow is an open-source workflow management platform started by 
Airbnb in 2014 for managing an organization’s complex workflows. It is written 
in python language, and its workflow is created using python scripts that support 
to programmatically schedule their workflows and monitor them via the built-in 
Airflow user interface.

Luigi
Luigi is a python package used to build complex pipelines of batch jobs. It deals with 
dependency resolution, workflow management, visualization, handling failures, 
command line integration, and so on. The goal of Luigi is to address all the plumbing 
typically combined with long-running batch processes.

Cron Job
Cron jobs are used for scheduling tasks to run on the server. It is an automating 
system maintenance or administration method for scheduling any tasks. However, 
it is the same as the web application development when a web application may need 
certain tasks to run periodically.

Azkaban
Azkaban is a distributed workflow manager which implements at LinkedIn to solve 
the problem of Hadoop job dependencies.

Spark RDD Operations: Transformation 
and Action
Apache Spark RDD operations are of two types, that is, transformations and actions. 
These are used for doing the manipulation and computation operations on RDD to 
obtain the desired output. A transformation is a function which obtains a new RDD 
from the existing RDDs but when dealing with the actual dataset, at that point an 
action is performed. When the action is triggered after the output, a new RDD is 
not created like the transformation. In this section, readers will get a detailed view 
of the transformation in Spark RDD along with various RDD transformations and 
action operations in Spark with examples. Apache Spark RDD supports two types 
of operations.
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Transformations
Spark transformation is a function that creates a new RDD from the existing one 
when any transformation is applied to it. Generally, it considers the RDD as input 
and produces one or more RDD as the output that will be immutable in nature. 
Multiple transformations on the dataset of the same program provide an RDD 
lineage, which is information about all the applied transformations and actions from 
parent RDDs to the final RDD(s). 

There are two types of transformations:

•	 Narrow Transformation: In narrow transformation, all the elements that are 
required to compute the records in single partition live in the single partition 
of the parent RDD; for example, map(),and filter().

•	 Wide Transformation: In wide transformation, all the elements that 
are required to compute the records in the single partition may live in 
many partitions of the parent RDD; for example, groupbyKey(), and 
reducebyKey().

Let us see the various transformations in Spark RDDs sequentially to understand the 
practical execution.

Map Transformation 
The Spark Map function takes one element as the input and processes it according to 
the custom code and returns one element at a time. The Map transforms an RDD of 
length N into another RDD of length N, typically with the same number of records.

The following program shows the way to perform the map transformation in Apache 
Spark:

from pyspark.sql import SQLContext

sqlContext = SQLContext(sc)

df = sqlContext.read.format(‘com.databricks.spark.csv’).
options(header=’true’, inferschema=’true’).load(‘/home /Gourav/chap3/us-
500.csv’) # this is your csv file

df.show()

get_map_transform = df.select(df.columns[0]).rdd.map(lambda x: (x,1))

get_map_transform.take(10)   
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Figure 3.6 shows the codebase to execute the map transformation on the existing 
RDD:

Figure 3.6: Program of map transformation on existing RDD

FlatMap Transformation
FlatMap is like a map transformation because it applies a function to all elements 
in an RDD. But the FlatMap flattens the results. Also, the function in FlatMap can 
return a list of elements (0 or more).

The following program shows the way to perform FlatMap transformation in 
Apache Spark:

get_flatmap_transform = df.select(df,columns[0]).rdd.flatMap(lambda x: 
(x,1))
get_map_transform.take(10)

Figure 3.7 shows the codebase to execute the FlatMap transformation on the existing 
RDD:

Figure 3.7: Program of FlatMap transformation on existing RDD

Filter Transformation
The filter function helps to create a new RDD when the exact pattern or conditions 
satisfy the existing RDD.

The following program shows the way to perform the filter transformation in 
Apache Spark:

get_map_transform = df.select(df.columns[9]).rdd.filter(lambda x: x not 
in [‘856-264-4130’]).toDF()
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Union Transformation
The union function helps to generate a new RDD which will have all the numbers 
presented in the existing two RDDs.

The following program shows the way to perform the union transformation on the 
existing RDD in Apache Spark:

DD1 = sc.parallelize(range(1,10))
RDD2 = sc.parallelize(range(10,21))
RDD1.union(RDD2).collect()

Figure 3.8 shows the codebase to execute the union transformation on the existing 
RDD:

Figure 3.8: Program of Union transformation on existing RDD

Union Transformation in DataFrame
The following program shows the way to perform the union transformation on two 
DataFrames in Apache Spark:

Dataframe1 = sqlContext.read.format(‘com.databricks.spark.csv’) \

.options(header=’true’, inferschema=’true’) \

.load(‘/home /Gourav/chap3/wage_table.csv’) 

Dataframe2 = sqlContext.read.format(‘com.databricks.spark.csv’) \

.options(header=’true’, inferschema=’true’) \

.load(‘/home /Gourav/chap3/wage_table2.csv’)

outcome_df = Dataframe1.union(Dataframe2)

outcome_df.show()
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Figure 3.9 shows the codebase to display the values of two DataFrames:

Figure 3.9: Program of union transformation on existing two RDDs

Figure 3.10 shows the codebase to execute the union function on two DataFrames:

Figure 3.10: Output of Union transformation on existing two RDDs
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Union on DataFrame Through using Temporary Table View (TTV)
The following program shows the way to perform the union transformation on two 
DataFrames using TTV in Apache Spark:

df1.createOrReplaceTempView(“df1”)

df1.createOrReplaceTempView(“df2”)

df3 = df2.union(df1)

df3.createOrReplaceTempView(“df3”)

df4 = spark.sql(“select Item_ID, Item_Name, sum(Quantity) as Quantity 
from df3 group by Item_ID, Item_Name”)

df4.show(10)

Distinct Transformation
In Spark, the distinct transformation returns the distinct or unique elements from 
the RDDs.

The following program shows the way to perform the distinct transformation on 
two RDDs in Apache Spark:

RDD1 = sc.parallelize(range(1,13))

RDD2 = sc.parallelize(range(7,20))

RDD1.union(RDD2).distinct().collect()

Figure 3.11 shows the code to execute the distinct transformation on two existing 
RDDs in Spark:

Figure 3.11: Program of distinct transformation on existing RDD

Distinct Transformation on DataFrame
The following program shows the way to perform the distinct transformation on 
two DataFrames in Apache Spark:

Dataframe1 = sqlContext.read.format(‘com.databricks.spark.csv’) \

.options(header=’true’, inferschema=’true’) \

.load(‘/home /Gourav/chap3/wage_table3.csv’)

Dataframe1.show()
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Distinct_DF = Dataframe1.distinct()

Distinct_DF.show()

Figure 3.12 shows the snapshot to display the value of DataFrame1:

Figure 3.12: Program to create and display the value on existing Dataframe

Figure 3.13 shows the code to execute the distinct transformation on existing 
DataFrames in Spark:

Figure 3.13: Output of distinct transformation on existing Dataframe
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Figure 3.14 shows the code to execute the distinct transformation on existing 
DataFrames using drop_duplicates(func):

Figure 3.14: Program of drop duplicate function on existing Dataframe to remove the duplicity

Intersection Transformation
In Spark, the intersection transformation helps to create a RDD which will have the 
common variables between the two RDDs.

Intersection Transformation on RDD
The following program shows the intersection transformation on two existing RDDs 
in Apache Spark:

RDD1 = sc.parallelize(range(1,10))

RDD2 = sc.parallelize(range(5,15))

RDD1.intersection(RDD2).collect()

[5, 6, 7, 8, 9]

Figure 3.15 shows the code to execute the intersection transformation on existing 
RDDs in Spark:

Figure 3.15: Program of intersection transformation on existing RDD

Intersection on DataFrame
The following program shows the intersection transformation on two existing 
DataFrames in Apache Spark:
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Dataframe1 = sqlContext.read.format(‘com.databricks.spark.csv’) \

.options(header=’true’, inferschema=’true’) \

.load(‘/home /Gourav/chap3/wage_table3.csv’)

Dataframe2 = sqlContext.read.format(‘com.databricks.spark.csv’) \

.options(header=’true’, inferschema=’true’) \

.load(‘/home /Gourav/chap3/wage_table2.csv’)

outcome_df = Dataframe1.intersect(Dataframe2)

outcome_df.show()

Figure 3.16 shows the code to execute the intersection transformation on existing 
DataFrames in Spark:

Figure 3.16: Program of intersection transformation on existing Dataframe

Sample Transformation
Sample transformation can take the small samples instead of execution on full data 
that will return a new RDD.

Sample Transformation on RDD
The following program shows the sample transformation on existing RDDs:

get_rdd = sc.parallelize([‘This’,’book’,’will’,’help’,’all’,’the’,’Big’,
’Data’,’and’,’Machine’,’Learning’,’aspirants’])

get_rdd.collect()

[‘This’, ‘book’, ‘will’, ‘help’, ‘all’, ‘the’, ‘Big’, ‘Data’, ‘and’, 
‘Machine’, ‘Learning’, ‘aspirants’]

print(type(get_rdd))
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<class ‘pyspark.rdd.RDD’>

get_sampled = get_rdd.sample(False, 0.6)

get_sampled.collect()

[‘book’, ‘will’, ‘help’, ‘all’, ‘Data’, ‘and’, ‘Machine’, ‘Learning’, 
‘aspirants’]

Figure 3.17 shows the code to execute the sample transformation on existing RDDs:

Figure 3.17: Program of sample transformation on existing RDD

Sample Transformation on DataFrame
The following program shows the sample transformation on the existing DataFrame:

Dataframe = sqlContext.read.format(‘com.databricks.spark.csv’) \

.options(header=’true’, inferschema=’true’) \

.load(‘/home /Gourav/chap3/wage_table2.csv’)

Dataframe.show()

Dataframe_sampled = Dataframe.sample(False, 0.7)

Dataframe_sampled.show()

Figure 3.18 shows the code to execute the sample transformation on the existing 
DataFrame:

Figure 3.18: Program of sample transformation on existing dataframe
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GroupByKey
GroupByKey transformations work on the mechanism of key, value 
pairs of RDD. The GroupByKey will group the values for each key in the original 
RDD. It will create a new pair, where the original key corresponds to this collected 
group of values.

The following program shows the GroupByKey transformation in Spark:

Dataframe1 = sqlContext.read.format(‘com.databricks.spark.csv’) \

.options(header=’true’, inferschema=’true’) \

.load(‘/home /Gourav/chap3/wage_table3.csv’)

Dataframe1.show()

DataFrame1.createOrReplaceTempView(“new_df”)

transformed_DF = spark.sql(“select Department, sum(Wage) from new_df 
group by Department”)

transformed_DF.show()

Or
Dataframe1.groupBy(“Department”).sum(“Wage”).show(false)

Figure 3.19 shows the code to execute the GroupByKey Transformation on the 
existing DataFrame:

Figure 3.19: Program of GroupByKey transformation

Sort Transformation
This transformation returns the sorted data according to the elements in the RDD. 
The following program shows the sort transformation:

from pyspark.sql.functions import col

Dataframe = sqlContext.read.format(‘com.databricks.spark.csv’) \



Apache Spark      113

.options(header=’true’, inferschema=’true’) \

.load(‘/home /Gourav/chap3/wage_table2.csv’)

selected_df=Dataframe.select(“Department”).sort(“Wage”).show()

get_sorted = Dataframe.sort(col(“Age”)).show(truncate=False)

Figure 3.20 shows the code to execute the sort transformation on a DataFrame:

Figure 3.20: Program to sort the value of dataframe by department

Figure 3.21 shows the code to sort a DataFrame by the Age column:

Figure 3.21: Program to sort the value of dataframe by Age

Actions
Actions are Spark RDD operations that do not generate any new RDDs but give the 
result from that respective operation. The values of action are stored to drivers or to 
the external storage system.

Reduce Action
The reduce function returns the sum-up of all the values of RDD. The following 
program shows the reduce action:

get_rdd = sc.parallelize(range(1,5000))
get_rdd.reduce(lambda x,y: x+y)
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Figure 3.22 shows the code to execute the reduce action on a RDD:

Figure 3.22: Program to reduce the RDD

Count Action
The count action will count the number of elements in RDD. The following program 
shows the count action:
get_rdd = sc.parallelize(range(1,5000))
get_rdd.count()

Figure 3.23 shows the code to execute the count action on an RDD:

Figure 3.23: Program to count the value of an RDD

Max Action
The max action will return the max number of elements in RDD. The following 
program shows the max action:

get_rdd = sc.parallelize(range(1,5000))
get_rdd.max()

Figure 3.24 shows the code to execute the max action on an RDD:

Figure 3.24: Program to return the maximum value in the RDD
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Min Action
The min action will return the min number of elements in RDD. The following 
program shows the min action:

get_rdd = sc.parallelize(range(1,5000))
get_rdd.min()

Figure 3.25 shows the code to execute the min action on an RDD:

Figure 3.25: Program to return the minimum value in the RDD

Sum Action
The sum action will return the sum of elements in RDD. The following program 
shows the sum action:

get_rdd = sc.parallelize(range(1,5000))
get_rdd.sum()

Figure 3.26 shows the code to execute the sum action on an RDD:

Figure 3.26: Program to return the sum value in the RDD

SQL or DataFrame Operations in PySpark
Apache Spark supports SQL-like query capability using DF which helps to provide 
the ease to non-coder and reduce the line of code for processing the data. There are 
various operations can be possible on the DF to process the data without the need of 
a programmer. In this section, readers will see the various operations on DF.

Creating a DataFrame using the CreateDataframe Function
The following program shows to create a DF in Spark:

import pyspark

from pyspark.sql import SparkSession

from pyspark.sql.functions import col, lit

from pyspark.sql.types import StructType, StructField, 
StringType,IntegerType
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spark = SparkSession.builder.appName(‘Quick Start With SQL’).
getOrCreate()

data = [(‘Andrew’,’’,’Smith’,’1991-04-01’,’M’,3000),

(‘Johnson’,’Anala’,’’,’2000-05-19’,’M’,4000),

(‘Robert’,’’,’Williams’,’1978-09-05’,’M’,4000),

(‘Maria’,’Anne’,’Jones’,’1967-12-01’,’F’,4000),

(‘Jen’,’Mary’,’Brown’,’1980-02-17’,’F’,-1)]

columns = [“firstname”,”middlename”,”lastname”,”dob”,”gender”,”salary”]

df = spark.createDataFrame(data=data, schema = columns)

df.show()

Figure 3.27 shows the execution code and output of CreateDataFrame:

Figure 3.27: PySpark code to create a dataframe from the given inputs

To Create a DataFrame Through Excel File
The following program shows how to create a DF from excel file in a spark:

import pyspark

from pyspark.sql import SparkSession

from pyspark.sql.functions import col, lit

from pyspark.sql.types import StructType, StructField, 
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StringType,IntegerType

dataframe = sqlContext.read.format(‘com.databricks.spark.csv’) \

.options(header=’true’, inferschema=’true’) \

.load(‘/home /Gourav/chap3/wage_table3.csv’)

dataframe.show()

print(type(dataframe))

Figure 3.28 shows the screenshot of the output and code to create a DF from an Excel 
file:

Figure 3.28: PySpark code to create a dataframe from an Excel file

To Change the Datatype of a Single Column
The following program shows how to change the data type of a column in a DF:

dataframe.show()
dataframe.printSchema()
changed_dataframe = dataframe.withColumn(“Wage”,col(“Wage”).
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cast(“string”))

changed_dataframe.printSchema()

Figure 3.29 shows the screenshot of the output and code to change the datatype of a 
column:

Figure 3.29: Pyspark code to change the datatype of single column

To Change the Datatype of all the Columns to String Type

The following program shows how to change the datatype all the columns in a DF:

all_changed_datatypes=dataframe.select([col(c).cast(“string”) for c in 
dataframe.columns])

Figure 3.30 shows the screenshot of the output and code to change datatypes of all 
the columns:

Figure 3.30: Pyspark code to change the datatype of all the columns to a string datatype
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Figure 3.31 shows the screenshot of datatypes of columns:

Figure 3.31: Output of changed datatypes of all the columns of a dataframe

Update the Value of an Existing Column
The following program shows how to update an existing column in a DF:

updated_dataframe = dataframe.withColumn(“Wage”,col(“Wage”)*2)
updated_dataframe.show()
updated_dataframe.printSchema()

Figure 3.32 shows the screenshot of the code to update the value of an existing DF:

Figure 3.32: PySpark code to update the value of an existing column

To Create a New Column from an Existing Column
The following program shows how to create a new column from an existing DF:
new_column = dataframe.withColumn(“New Column”,col(“Age”)* 3)
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new_column.printSchema()
new_column.show(10)

OR

Adding a New Column using the Constant Value using the lit function is 
Mentioned as Below:
integrated_litfunc = dataframe.withColumn(“lit_column”, lit(“200”))
integrated.show(10)

Figure 3.33 shows the screenshot of the code to add a new column in an existing DF:

Figure 3.33: PySpark code to create a new column from an existing column

Registering a Temporary Table from a DF for Querying Like SQL
The following program shows how to register a temporary table from an existing DF 
for querying like a SQL framework:

import pyspark
from pyspark.sql import SparkSession

from pyspark.sql.functions import col, lit

from pyspark.sql.types import StructType, StructField, 
StringType,IntegerType

dataframe = sqlContext.read.format(‘com.databricks.spark.csv’) \

.options(header=’true’, inferschema=’true’) \
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.load(‘/home /Gourav/chap3/wage_table3.csv’)

dataframe.show(5)

dataframe.registerTempTable(“get_table”)

sqlContext.sql(“select * from get_table”).show(5)

Figure 3.34 shows the screenshot of the code and output to register a temporary table:

Figure 3.34: PySpark code to register a temporary table from a Dataframe

Appending the Sequence ID Column with the Existing Dataframe 
using the lit() function
The following program shows how to append a sequence ID from an existing DF 
using the lit() function:

from pyspark.sql.functions import lit

import pyspark

from pyspark.sql import SparkSession

from pyspark.sql.functions import col, lit
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from pyspark.sql.types import StructType, StructField, 
StringType,IntegerType

dataframe = sqlContext.read.format(‘com.databricks.spark.csv’) \

.options(header=’true’, inferschema=’true’) \

.load(‘/home /Gourav/chap3/wage_table3.csv’)

dataframe_schema = dataframe.withColumn(“index”, lit(1))

dataframe_schema.printSchema()

Figure 3.35 shows the screenshot of the code and output to append a sequence ID 
from an existing DF using the lit() function:

Figure 3.35: PySpark code to append a sequence id column with an existing dataframe using lit() function

Appending a Sequence ID Column with an Existing DF using the 
zipWithIndex()  function
The following program shows how to append a sequence ID with an existing DF 
using the zipWithIndex() function:

schema_rdd = dataframe.rdd.zipWithIndex().map(lambda (row,rowId): ( 
list(row) + [rowId+1]))

indexed_df = sqlContext.createDataFrame(schema_rdd, schema=dataframe_
schema.schema)

indexed_df.printSchema()

indexed_df.show(10)

or

indexed_df.registerTempTable(“registered_table”)

sqlContext.sql(“select * from registered_table”).show(10)
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Figure 3.36 shows the screenshot of the code and output to append a sequence ID 
with an existing DF using the zipWithIndex() function:

Figure 3.36: PySpark code to append a sequence ID column with an existing  
dataframe using the zipWithIndex()  function

Figure 3.37 shows the screenshot of the code and output to display the query result 
using the temporary table:

Registering into a Temporary Table to Display DF Values

Figure 3.37: Displaying the output of the registered table using SQL query
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Using monotonically(func) to Append an Index Column with the 
Existing DF
The following program shows how to append an index column with an existing DF 
using monotonically (func):

from pyspark.sql.functions import monotonically_increasing_id
dataframe = sqlContext.read.format(‘com.databricks.spark.csv’) \
.options(header=’true’, inferschema=’true’) \
.load(‘/home /Gourav/chap3/wage_table3.csv’)
get_dataframe =dataframe.withColumn(“index”,monotonically_increasing_id())

Figure 3.38 shows the screenshot of the code and output to append an index column 
with an existing DF using the monotonically (func):

Figure 3.38: PySpark code to append a sequence ID column with  
an existing dataframe using the monotonically() func

Rename Column Name of an Existing DF
The following program shows how to rename the column of an existing DF:

renamed_df = dataframe.withColumnRenamed(“gender”,”sex”).
show(truncate=False) 

renamed_df.printSchema()

Figure 3.39 shows the screenshot of the code and output to rename the column of an 
existing DF:
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Figure 3.39: PySpark code to rename the column name of an existing dataframe

Dropping a Column from an Existing DF
The following program shows how to drop a column in an existing DF:

dropped_column = dataframe.drop(“Wage”).show(truncate=False)
dropped_column.show()

Figure 3.40 shows the screenshot of the code and output to drop a column in an 
existing DF:

Figure 3.40: PySpark code to drop a column from an existing dataframe
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Select a Single Column from PySpark for Displaying the Content 
of a DF
The following program shows how to display the output of a column in an existing 
DF:

selected_column = dataframe.select(“Department”).show(truncate=False)

Figure 3.41 shows the screenshot of code and output to display the output of a column in an 
existing DF:

Figure 3.41: PySpark code to select a particular column from a dataframe

Select all Columns of a DataFrame to Display the Content
The following program shows how to display the value of all columns in an existing 
DF:

all_columns =dataframe.select([col(c) for c in dataframe.columns])
all_columns.show()

Figure 3.42 shows the screenshot of the code and output to display the value of all 
columns in an existing DF:
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Figure 3.42: PySpark code to select all the columns from a dataframe

Select Multiple Columns from PySpark for Displaying the Content
The following program shows how to display the value of multiple columns in an 
existing DF:
multiple_columns = dataframe.select(“Department”,”Wage”).
show(truncate=False)

or

from pyspark.sql.functions import col

dataframe.select(col(“Department”),col(“Age”)).show()

Figure 3.43 shows the screenshot of the code and output to display the value of 
multiple columns in an existing DF:

Figure 3.43: PySpark code to select multiple columns from a dataframe
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Figure 3.44 shows the screenshot of the code and output to display the value of 
multiple columns in an existing DF using the col() function.

The following program shows how to select the respective columns from the DF to 
display the data using the col() function:

Figure 3.44: PySpark code to select multiple columns from a dataframe using the col() function

Retrieving into Array using collect ()
The following program shows how to retrieve the result into an Array from the DF 
using the collect function:

dataframe = sqlContext.read.format(‘com.databricks.spark.csv’) \

.options(header=’true’, inferschema=’true’) \

.load(‘/home /Gourav/chap3/wage_table3.csv’)

dfto_array = dataframe.collect()

print(type(dfto_array))

>> dfto_array

Figure 3.45 shows the screenshot of the code and output to retrieve the result into an 
Array from the DF using the collect function:
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Figure 3.45: Output of the collect function on a dataframe

Filter () to Filter out the Data by Passing Some Conditions
The following program shows how to filter the value by passing some condition in 
an existing DF:
filtered_df = dataframe.filter(dataframe.Age > 35).show(truncate=False)

OR
filtered_df = dataframe.filter(col(“Age”) > 35).show(truncate=False)

Figure 3.46 shows the screenshot of the code and output of the filter function to filter 
out the value by passing some condition in an existing DF:

Figure 3.46: Displaying the output of the filter function on a dataframe



130      Practical Machine Learning with Spark

Figure 3.47 shows the screenshot to display the result of a DF after applying the filter 
condition:

Figure 3.47: Displaying the output of the filter function on a dataframe using the col() function

Filter() in an Existing DF with Multiple Conditions
The following program shows how to filter the value by passing multiple conditions 
in an existing DF:

multiple_cond_filtered = dataframe.filter((dataframe.Wage > 35) & 
(dataframe.Gender  == “M”)).show(truncate=False)

Figure 3.48 shows the screenshot to display the result of a DF after applying multiple 
filter conditions:

Figure 3.48: Displaying the output of multiple filter operations on a dataframe using the col() function

PySpark Distinct of Multiple Columns
The following program shows how to get the distinct values in an existing DF:
dataframe = sqlContext.read.format(‘com.databricks.spark.csv’) \
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.options(header=’true’, inferschema=’true’) \

.load(‘/home /Gourav/chap3/wage_table3.csv’)

dropMulDF = dataframe.dropDuplicates([“Department”,”Age”])

print(“Distinct count of department & Name : “+str(dropMulDF.count()))

dropMulDF.show(truncate=False)

Figure 3.49 shows the screenshot to display the result of a DF after applying the 
distinct operation:

Figure 3.49: Displaying the output of a distinct operation on a dataframe

Count of the Total Number of Rows in an Existing DF
The following program shows how to get the count of the total number of rows in 
an existing DF:
dataframe = sqlContext.read.format(‘com.databricks.spark.csv’) \

.options(header=’true’, inferschema=’true’) \

.load(‘/home /Gourav/chap3/wage_table3.csv’)

print(“Total count of dataframe: “+str(dataframe.count()))

Figure 3.50 shows the screenshot to display the result of a DF after the count operation:

Figure 3.50: Displaying the output of the count operation on a dataframe
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GroupBy Operation in an Existing DF
The following program shows the GroupBy operation in an existing DF:

aggregated_df = dataframe.groupBy(“Department”).sum(“Age”).
show(truncate=False)

Aggregate Functions with filter and group By
dataframe.groupBy().sum(“Wage”).filter(F.col(“Wage”) >= 35).
show(truncate=False)
dataframe.groupBy(“Department”).sum(“Wage”).show(truncate=False)

Figure 3.51 shows the screenshot to display the result of a DF after the GroupBy 
operation:

Figure 3.51: Displaying the output of the groupBy operation on a dataframe

Inner Join in Two Dataframes
The following program shows the Inner join operation in an existing DF:

dataframe1 = sqlContext.read.format(‘com.databricks.spark.csv’) \

.options(header=’true’, inferschema=’true’) \

.load(‘/home /Gourav/chap3/wage_table.csv’)

dataframe2 = sqlContext.read.format(‘com.databricks.spark.csv’) \

.options(header=’true’, inferschema=’true’) \

.load(‘/home /Gourav/chap3/wage_table2.csv’)

Join_DF = dataframe1.join(dataframe2, on=[‘Department’], how=’inner’).
show()

Figure 3.52 shows the screenshot to display the result of a DF after the Inner join 
operation:
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Figure 3.52: Displaying the output of the Inner join operation on two dataframes

Outer Join in Two DFs
The following program shows the Outer join operation in an existing DF:

dataframe1 = sqlContext.read.format(‘com.databricks.spark.csv’) \

.options(header=’true’, inferschema=’true’) \

.load(‘/home /Gourav/chap3/wage_table.csv’)

dataframe2 = sqlContext.read.format(‘com.databricks.spark.csv’) \

.options(header=’true’, inferschema=’true’) \

.load(‘/home /Gourav/chap3/wage_table2.csv’)

Join_DF = dataframe1.join(dataframe2, on=[‘Department’], how=’outer’).
show()

Figure 3.53 shows the screenshot to display the result of a DF after the Outer join 
operation:

Figure 3.53: Displaying the output of the Outer join operation on two dataframes
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Left Join in Two Dataframes
The following program shows the Left join operation in an existing DF:

 dataframe1 = sqlContext.read.format(‘com.databricks.spark.csv’) \

.options(header=’true’, inferschema=’true’) \

.load(‘/home /Gourav/chap3/wage_table.csv’)

dataframe2 = sqlContext.read.format(‘com.databricks.spark.csv’) \

.options(header=’true’, inferschema=’true’) \

.load(‘/home /Gourav/chap3/wage_table2.csv’)

Join_DF = dataframe1.join(dataframe2, on=[‘Department’], how=’left’).show()

Figure 3.54 shows the screenshot to display the result of a DF after the Left join 
operation:

Figure 3.54: Displaying the output of the left join operation on two dataframes

Right Join in two DFs
The following program shows the Right join operation in an existing DF:

dataframe1 = sqlContext.read.format(‘com.databricks.spark.csv’) \

.options(header=’true’, inferschema=’true’) \

.load(‘/home /Gourav/chap3/wage_table.csv’)

dataframe2 = sqlContext.read.format(‘com.databricks.spark.csv’) \

.options(header=’true’, inferschema=’true’) \

.load(‘/home /Gourav/chap3/wage_table2.csv’)

Join_DF = dataframe1.join(dataframe2, on=[‘Department’], how=’right’).show()

Figure 3.55 shows the screenshot to display the result of a DF after the Right join 
operation:
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Figure 3.55: Displaying the output of right join operation on two dataframes

Cross join in Two Dataframes
The following program shows the Cross join operation in an existing DF:
dataframe1 = sqlContext.read.format(‘com.databricks.spark.csv’) \

.options(header=’true’, inferschema=’true’) \

.load(‘/home /Gourav/chap3/wage_table.csv’)

dataframe2 = sqlContext.read.format(‘com.databricks.spark.csv’) \

.options(header=’true’, inferschema=’true’) \

.load(‘/home /Gourav/chap3/wage_table2.csv’)

dataframe1.crossJoin(dataframe2).show()

Figure 3.56 shows the screenshot to display the result of a DF after the cross join 
operation:

Figure 3.56: Displaying the output of the cross join operation on two dataframes
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User Defined Function (UDF) in PySpark
This program shows how to convert the upper word into lower word of a column 
of a DF:

from pyspark.sql import SQLContext

from pyspark.sql.types import *

from pyspark.sql.functions import udf

from pyspark.sql import Row

def new_udf(x):

   new_row = x.lower()

   return new_row

dataframe1 = sqlContext.read.format(‘com.databricks.spark.csv’) \

.options(header=’true’, inferschema=’true’) \

.load(‘/home /Gourav/chap3/wage_table.csv’)

updated_udf = udf(new_udf, StringType())

updated_df = dataframe1.withColumn(‘Department’, updated_
udf(dataframe1[‘Department’]))

Figure 3.57 shows the screenshot to display the result of a DF after applying UDF:

Figure 3.57: Displaying the output of UDF

Pivot(func) on an Existing DF
This program shows how to execute the Pivot function in an existing DF:

pivotDF = dataframe.groupBy().pivot(“Department”).sum(“Wage”)
pivotDF.show()
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Figure 3.58 shows the screenshot to display the result of a DF after the Pivot() 
operation:

Figure 3.58: Displaying the output of the Pivot() operation.

Data Ingestion in Apache Spark
In Apache Spark, the flexibility to read the data from disparate heterogenous sources 
is the one of best features of Spark. Using the different connectors and customized 
data bridges, make Spark more robust to ingest any format of data for processing. In 
this section, readers will be able to get a comprehensive walk through the codebase 
to read the data from different sources. Figure 3.59 shows the capability of Apache 
Spark to read different types of data formats:

Figure 3.59: Different disparate sources to be ingested through Apache Spark
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Here, the readers need to install WinSCP for transferring the file from the local 
system to the Hadoop cluster either on cloud or on-premises. The landing screen of 
WinSCP is given to access to the server as follows.

Figure 3.60 depicts the launching screen of WinSCP to access the server or cloud:

Figure 3.60: The Main Page of WinSCP to log-in into the cluster

Figure 3.61 depicts the connecting screen of the server on WinSCP:

Figure 3.61: Displaying the screenshot of the connected cluster
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From Excel
Microsoft Corporation provides an application to organize the data such that the 
user can perform mathematical equations, formulas, and other functions in multiple 
spreadsheets. It represents the data in a tabular manner; it is possible to read the data 
from Excel or the reader can read multiple excels at a time.

Code to Read an Excel file through PySpark
The following program depicts the way to read the Excel file using the PySpark 
framework:

import pyspark

from pyspark.sql import SparkSession

from pyspark.sql.functions import col, lit

from pyspark.sql.types import StructType, StructField, 
StringType,IntegerType

dataframe = sqlContext.read.format(‘com.databricks.spark.csv’) \

.options(header=’true’, inferschema=’true’) \

.load(‘/home /Gourav/chap3/wage_table3.csv’)

dataframe.show()

print(type(dataframe))

Figure 3.62 displays the content of a DF by fetching the data from an Excel file using 
PySpark:

Figure 3.62: Displaying the output of a successful connection of PySpark-Excel bridge for fetching the data
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From JSON
JSON means JavaScript Object Notation. It is a lightweight format for storing and 
transporting data, which is represented in the key-value schema. Mostly, every web 
crawling data from any of sources give you data in the JSON format such as crawling 
of LinkedIn, Facebook, and Twitter. Apache Spark can read this JSON file through 
PySpark.

Code to Read a JSON file Through PySpark
The following program depicts the way to read the JSON data using the PySpark 
framework:

from pyspark.sql import SparkSession

from pyspark.sql import Row

spark = SparkSession.builder.appName(“JSON INTEGRATION”).getOrCreate()

df = spark.read.option(“multiline”,”true”).json(“Gourav/chap3/total-
pounds-of-food-produced-locally-96-17-json.json”)

df.show()

Figure 3.63 displays the content of a DF by fetching the data from a JSON file using 
PySpark:

Figure 3.63: Displaying the output of successful connection of PySpark-JSON bridge for fetching the data

From Parquet
Parquet is a column-oriented file format to store the data in the Hadoop ecosystem 
for efficient processing and retrieving than row-based files like CSV or TSV files. 
The following program depicts the way to read the Parquet file using the PySpark 
framework:

from pyspark.sql import SparkSession

from pyspark.sql import Row
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spark = SparkSession.builder.appName(“PARQUET-PYSPARK BRIDGE1”).
getOrCreate()

get_parquet= spark.read.parquet(“/home /Gourav/chap3/userdata1.parquet”)

#Display content of table

get_parquet.show(10)

#Getting Datatype information of table

get_parquet.printSchema()

#Registering into a temporary table

get_parquet.registerTempTable(“parquet_table”)

#Group By transformation on country column

get_transformation = spark.sql(“SELECT country,count(1) as count FROM 
parquet_table GROUP BY country”)

#Write into the directory after the transformation

get_transformation.write.mode(‘overwrite’).parquet(“Sales.parquet”)

Figure 3.64 displays the content of a DF by fetching the data from a Parquet file using 
PySpark:

Figure 3.64: Displaying the output of a successful connection of the  
PySpark-Parquet file bridge for fetching the data
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Figure 3.65 displays the schema of a DF:

Figure 3.65: Displaying the schema of a DF

From CSV file Format
A Comma Separated Value (CSV) file is a light-weighted plain text file that contains 
a list of data which is separated by commas. It is the best way for exchanging data 
among different applications.

Code to Read a csv file Through PySpark
The following program depicts the way to read the CSV file using the PySpark 
framework:

from pyspark.sql import SQLContext

sqlContext = SQLContext(sc)

df_csv = sqlContext.read.format(‘com.databricks.spark.csv’) \

.options(header=’true’, inferschema=’true’) \

.load(‘/home /Gourav/chap3/us-500.csv’) # this is path of  csv file

df_csv.show(5)

Figure 3.66 displays the content of a DF by fetching the data from a CSV file using 
PySpark:
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Figure 3.66: Displaying the output of a successful  
connection of PySpark-CSV file bridge for fetching the data

From Apache Hive
Apache Hive is a data warehouse infrastructure tool to process structured data in 
Hadoop. It resides on top of Hadoop to summarize Big Data and makes querying 
and analyzing easy. Hive supports the SerDe functionality and SQL-based queries 
called HiveQL.

The following program depicts the way to read the data from Hive using the PySpark 
framework:

from pyspark.sql import SparkSession

from pyspark.sql import Row

spark = SparkSession.builder.appName(“Python Spark SQL Hive integration 
example”).config(“hive.metastore.uris”, “thrift://*******:9083”).
enableHiveSupport().getOrCreate()

spark.sql(‘show tables’).show()

Figure 3.67 displays the content of a DF by fetching the data from a Hive database 
using PySpark:

Figure 3.67: Displaying the output of a successful connection of PySpark-Apache Hive bridge for fetching the data



144      Practical Machine Learning with Spark

From MongoDB
MongoDB is a cross-platform document-oriented NoSQL database. MongoDB uses 
JSON-like documents with optional schemas and it is developed by MongoDB 
Inc. There are two pipelines to read the data from MongoDB, that is, Mongo-Hive-
PySpark integration and MongoDB-PySpark bridge. Let us discuss both ways one 
by one in detail.

Reading Data from MongoDB-Hive-PySpark Integration
In MongoDB-Hive-PySpark Integration, readers need to create a collection and 
document inside the MongoDB instance. After that, an external table needs to be 
created at the Hive instance which will create the “JSON Serialization” bridge with 
the help of loading few indispensable jars. The details of JARS need to be mentioned 
in the following execution steps, and lastly, Hive-PySpark integration can read that 
external table which must be mapped with MongoDB.

The following program depicts the way to read the data from MongoDB and create 
integration between MongoDB-Hive using the PySpark framework:

Inserting Data into MongoDB (Through the Terminal or with the 
export command)
db.get_insights.insert([

 {

 title: “Deep Learning”,

 description: “Explainable Intelligence”,

 by: “Intelligence”,

 url: “http://www.ai.com”,

 likes: 100, 

 },

 {

 title: “Big Data Analytics”,

 description: “Big Data insights and all”,

 by: “Big Data”,

 url: “http://www.bigdata.com”,

 likes: 200,

}

])
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Figure 3.68 displays the list of databases in MongoDB:

Figure 3.68: Displaying the existing databases in MongoDB

Figure 3.69 displays the content of a collection in MongoDB:

Figure 3.69: Displaying the content of a collection in MongoDB

Through the --import command
In the Mongo database, the import utility imports the data from the Extended JSON. 
The mongoimport command restores the documents from the JSON file into the 
Mongo collection.
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Mongo Database Import Syntax
mongoimport --host <host_name> --username <user_name> --password 
<password> --db <database_name> --collection <collection_name> --file 
<input_file>

Where:

•	 --host: This is an optional parameter that specifies the remote server Mongo 
database instance.

•	 --username and --password: These are the optional parameters that 
specify the authentication details of a user.

•	 --db: This specifies the database name.

•	 --collection: This specifies the collection name.

•	 --file: This specifies the path of the input file.

Figure 3.70 displays the list of collections in a database:

Figure 3.70: Displaying the existing collections in a database

Hive-MongoDB Mapping through the hive External Table
In this step, readers need to create an external table in Apache Hive by taking the 
exact column reference of MongoDB data. This integration will create a serialization-
deserialization property mapping for providing the access of a collection of MongoDB 
through Apache Hive. The following program shows the Hive-MongoDB mapping 
with the help of the Hive external table:

create external table hive_mongo (title string, 

description string, 

`by` string, 

url string, 

likes int)

stored by ‘com.mongodb.hadoop.hive.MongoStorageHandler’ 
with serdeproperties(‘mongo.columns.
mapping’=’{“title”:”title”,”description”:”description”,”by”:”by”, 
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“url”:”url”,”likes”:”likes”}’)tblproperties(‘mongo.uri’=’mongodb://
localhost:27017/analytics.get_insights’);

Figure 3.71 displays the schema of an external table:

Figure 3.71: Terminal shows a created external table at the Hive terminal

Adding jars at Apache Hive
Hive-MongoDB integration needs 3 jars such as mongo-hadoop-1.5.2.jar, mongo-
hadoop-hive-1.5.2.jar, and mongo-java-driver-3.2.1.jar at the hive terminal prior to 
execute the program to fetch the data through the hive table.

Figure 3.72 shows the way to add multiple jars at the hive terminal:

Figure 3.72: Adding of indispensable jars to create a successful bridge between MongoDB-Hive

Figure 3.73 shows the way to access the MongoDB data from Hive-MongoDB 
integration:

Figure 3.73: Displaying the data accessed through the MongoDB-Hive bridge
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Reading Data from MongoDB-PySpark Integration
In this approach, readers can directly fetch the data from MongoDB by passing the 
MongoDB credentials as a connection string in the PySpark program. The step-by-
step implementation with the codebase is mentioned next.

Open the PySpark terminal with the --package command
Figure 3.74 shows the terminal screen of a spark session by loading a required 
package:

Figure 3.74: Open a spark session by loading a required package

Figure 3.75 shows the main terminal spark session:

Figure 3.75: Main terminal of Apache Spark
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PySpark Code to Read MongoDB Data Directly through 
StringConnection
The following code shows how to read the MongoDB data directly using 
StringConnection in PySpark:
Spark_Initiate = SparkSession.builder.appName(‘Mongo-Spark Bridge’) \

 .config(‘spark.mongodb.input.uri’, ‘mongodb://127.0.0.1/analytics.get_
insights’)  \

.getOrCreate()

df = spark.read.format(‘com.mongodb.spark.sql.DefaultSource’).load()

df.createOrReplaceTempView(‘get_insights’)

getDF = spark.sql(‘select * from get_insights’)

get_DF.show()

Figure 3.76 shows the successful connection with MongoDB using PySpark:

Figure 3.76: Successfully connected to MongoDB’s collection through PySpark

From AWS S3
S3 bucket is a storage space provided by Amazon Web Services. It can be easily 
integrated with various analytics frameworks for storing and accessing the data. 
For making the connection with s3 from the any cluster, it must require a credentials 
mapping step. Once the AWS credentials get registered onto the cluster, readers will 
be able to check the data and bucket details using the following command:

aws s3 ls s3://mybucket

The following codebase is used to read the data from S3 using PySpark:

Spark_Initiate = SparkSession.builder.appName(‘Mongo-Spark Bridge’) \

 .config(‘spark.mongodb.input.uri’, ‘mongodb://127.0.0.1/analytics.get_
insights’)  \
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.getOrCreate()

df = spark.read.format(‘com.mongodb.spark.sql.DefaultSource’).load()

df.createOrReplaceTempView(‘get_insights’)

getDF = spark.sql(‘select * from get_insights’)

get_DF.show()

Figure 3.77 shows the successful connection with AWS S3 using PySpark:

Figure 3.77: Successfully connected to AWS S3 through PySpark

Read Data from ORC
Optimized Row Columnar (Apache ORC) is an open-source column-oriented data 
storage format of the Apache Hadoop ecosystem. It is like other columnar-storage 
file formats available in the Hadoop ecosystem such as RCFile and Parquet. The 
following codebase is used to read the data from the ORC file format using PySpark:

from pyspark.sql import SparkSession

from pyspark.sql import Row

spark = SparkSession.builder.appName(“ORC-PYSPARK BRIDGE”).getOrCreate()

read_ORC= spark.read.option(“header”,”true”).orc(“/home /Gourav/chap3/
userdata1_orc”)

#Display content of table

read_ORC.show(5)

#Getting Datatype information of table

read_ORC.printSchema()

Figure 3.78 shows the successful connection with the ORC file using PySpark:



Apache Spark      151

Figure 3.78: Successfully connected to an ORC file through PySpark

From RDBMS (MariaDB)
MariaDB is an open-source software and as a relational database, it provides an 
SQL interface for accessing data. The updated versions of MariaDB includes GIS 
and JSON features. Nowadays, MariaDB is also known as one of the best databases 
which can replace MYSQL. The following codebase is used to read the data from 
RDBMS using PySpark:

Code to read data from MariaDB using PySpark

from pyspark import SparkContext

from pyspark.sql import SQLContext

sc = SparkContext(appName=”MariaDB-PySpark Bridge”)

sqlContext = SQLContext(sc)

source_df = sqlContext.read.format(‘jdbc’).options(

          url=’jdbc:mysql://localhost/test’,

          driver=’com.mysql.jdbc.Driver’,

          dbtable=’processed_data’,

          user=’cdh’).load()

source_df.show(3)
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Figure 3.79 shows the successful connection with MariaDB using PySpark:

Figure 3.79: Successfully connected to MariaDB through PySpark

Submit the .py file with the –jars command
The following code shows how to submit a Spark job with jars and the .py file:

spark-submit --jars /home/cdh@psnet.com/Gourav/chap3/mysql-connector-
java-5.1.49/mysql-connector-java-5.1.49.jar mariadb-spark.py

Figure 3.80 shows how to submit a Spark job:

Figure 3.80: Submitting a spark job with the jars command for creating a successful connection

Reading the Data from Apache HBase
HBase is a column-oriented based NoSQL system that is like Google’s big table to 
provide quick random access to a huge amount of structured data. The step-by-step 
implementation with the codebase is mentioned as follows:

1. Open the given link mvnrepository.com/artifact/org.apache.hive/
hive-hbase-handler and download hive-hbase-handler.jar.

Figure 3.81 displays the snapshot of website where the reader can download 
Hive-HBase Handler Jar.
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Figure 3.81: Web Page where to download Hive-HBase Handler jar

2. Create a table and insert records into the Hbase table:

create ‘books’, ‘info’, ‘analytics’

put ‘books’, ‘In Search of Lost Time’, ‘info:author’, ‘Name’

put ‘books’, ‘In Search of Lost Time’, ‘info:year’, ‘1982’

Figure 3.82 shows the snapshot of data inserted into a HBase table:

 

Figure 3.82: Inserting records into Hbase table
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3. Creating an external table in hive to access the same table through HBase-
Hive integration. Figure 3.83 shows the snapshot of a created external table 
in Hive for accessing the data of HBase.

Figure 3.83: Created an external table in Hive for accessing the data of HBase

Code to Read the Data from Apache Hive
The following codebase is used to read the data from Apache Hive using PySpark:

from pyspark.sql import SparkSession

from pyspark.sql import Row

spark = SparkSession.builder.appName(“IMPALA INTEGRATION”).getOrCreate()

spark.sql(“show tables”).show()

Figure 3.84 shows the snapshot for accessing the PySpark code with the help of the 
Hive-HBase bridge:

Figure 3.84: Accessing data through a PySpark code from an external table (Hive-HBase Bridge)
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Submitting the PySpark program to fetch the data of Hbase from Hbase-Hive 
integration:

spark-submit    --driver-class-path /home /Gourav/chap3/hive-hbase-
handler-2.1.1.jar --jars /home /Gourav/chap3/hive-hbase-handler-
2.1.1.jar hbase-pyspark.py

Figure 3.85 shows how to submit a PySpark job:

Figure 3.85: Submit command to submit a PySpark job to fetch the data from Hbase-Hive bridge

Application of Apache Spark
In this era of digitalization, the 5Vs of Big Data will be increasing tremendously 
with time. Due to increase in the generation of Big Data, there is a massive challenge 
that arises in front of data engineers, data architects, and researchers to enhance 
the capabilities to manage and process the complex data efficiently. Here, Apache 
Spark gets the opportunity to overcome the data processing and managing issues in 
addition to improve overall performance.

Batch and Real-Time Analytics
Apache Spark provides an analytical framework to process batch mode and real-
time mode data. It is an essential practice for all MNCs to manage stream or batch 
analysis because the cumbersome volume of data is being processed daily. It stitches 
the disparate data processing capabilities and provides ease to developers to perform 
Extract, Transform, and Load over data for making it decisive and meaningful.

Machine Learning
Apache Spark can be powered as an analytics framework like components of MLlib 
for performing the advanced analytics through which readers will get the futuristic 
insight over the data. Normally, there is no distributed framework available for 
training and testing the machine learning models. Due to this standalone mode, the 
time efficiency while training and testing the model may increase; hence, degrade 
the overall performance of the model. On the other hand, Apache Spark leverages 
the distributed processing of data, which help to enhance time efficiency and model 
performance. Most of the time, machine learning recommends Apache Spark to be 
an efficient processing framework.
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Interactive Analysis
Interactive analytics is one of the most imperative features of Apache Spark for 
ameliorating the efficiency. MapReduce (MR) can provide both batch and SQL-
on-Hadoop processing through Apache Hive and Apache Pig. But MR is slow for 
interactive analysis. On the flip side, Apache Spark is fast and efficient to deal with 
complex queries. In addition, with the integration of visualization tools of Apache 
Spark, data can be processed with high complexity and visualized using the import 
or direct mode. In addition, Spark can be also directly connected with third-party 
business intelligence tools such as MS PowerBI and Tableau for fast retrieving and 
visualizing the insightful data.

Fog/Edge Computing
Apache Spark can also be utilized for centralized and decentralized computing such 
as fog computing, edge computing, and Internet of Things (IoT) for analyzing the 
bulky and complex data. Leveraging Spark with decentralized computing extends 
the capabilities to manage and process real-time mode data for making out the 
decisive analytics. Furthermore, the conglomeration of key components with Apache 
Spark such as Spark Streaming, SparkSQL, a machine learning library (MLib), and a 
graph analysis engine (GraphX) provides more ease and flexibility to be opted for a 
fog computing solution.

Conclusion
This chapter deals with a comprehensive study of Apache Spark and various trails 
for reading the data from heterogenous sources and formats. In addition, detailed 
focus has been given on job optimization, Spark workflow scheduling, and exposing 
of the rest API for calling the Spark application through the Apache Livy framework. 
Apart from these, authors have implemented various transformations to understand 
the use case of Data Frame in Spark in a better way. The next chapter will address the 
readers how to climb up the Machine Leaning ladder in spark.
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Chapter 4
Apache Spark 

MLlib

“Great minds discuss ideas; average minds discuss events; small minds 
discuss people.” 

—Eleanor Roosevelt

Introduction
Nowadays, Application of machine learning with Apache Spark has been 
contineously increasing due to the sudden fold increase in the volume of data. 
Moreover, handling, training, and finding out of decisive insights from the raw data 
have been getting difficult while working on the standalone framework. Generally, 
a machine learning algorithm involves several steps such as pre-processing, feature 
extraction, model fitting, and evaluation metrics. Usually, a programmer creates a 
unify pipeline for binding-up the multiple individual tasks but still it is resisted 
to the standalone framework. Due to standalone processing, the execution time 
often surpasses the memory and processing loads up to 95%; hence, there is a high 
probability of high time consumption at training and testing stages. To overcome 
this issue and provide an impeccable productization pipeline, many organizations 
have been choosing the trail of Apache Spark and its main component, that is, Spark 
MLlib (also known as MLlib) for providing the distributed framework to process and 
train a model. This chapter presents an in-depth study on the different components 
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of ML pipelines, selections, transformations, and feature extractors for making the 
unify ML pipeline using Apache Spark.

Structure
In this chapter, we will discuss the following topics:

•	 Introduction to Apache Spark MLlib

•	 ML pipelines and its components

•	 Main algorithms in Spark MLlib

•	 Datatypes of Spark MLlib

•	 Feature extraction, transformation, and selection

Objectives
After studying this chapter, readers will be able to:

•	 Gain awareness about the distributed ML ( Spark MLlib)

•	 Get an understanding of the different components in MLlib

•	 Apply the knowledge of different types of ML and its algorithms

•	 Implement the flow of ML pipelines

Spark MLlib Algorithms
Spark MLlib consists of myriad of ML algorithms for achieving the decisive insights 
that could be intended towards statistics analysis, predictive analysis, and decisive 
analysis over the datasets. Some of the frequently used algorithms in ML are being 
delineated as follows. A detailed study on each algorithm will be covered in Chapter 
5, Supervised Learning with Apache Spark and Chapter 6, Unsupervised Learning with 
Apache Spark.

Classification Category
The following points highlight the classification-based ML algorithms in Apache 
Spark:

•	 Binomial Logistic Regression (BLR) and Multinomial Logistic Regression 
(MLR)

•	 Decision Tree Classifier (DTC)
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•	 Random Forest Classifier (RFC)

•	 Gradient-Boosted Tree Classifier (GBTC)

•	 Multilayer Perceptron Classifier (MPC)

•	 Linear Support Vector Machine Classifier (LSVMC)

•	 Naïve Bayes Classifier (NBC)

•	 Multilayer Perceptron Classifier (MPC)

•	 One-vs-Rest Classifier

•	 Factorization Machines Classifier (FMC)

Regression Category
The following points highlight the Regression-based ML algorithms in Apache 
Spark:

•	 Linear Regression (LR)

•	 Decision Tree Regression (DTR)

•	 Random Forest Regression (RFR)

•	 Gradient-Boosted Tree Regression (GBTR)

•	 Survival Regression (SR)

•	 Isotonic Regression (IR)

•	 Lasso Regression (LR)

•	 Ridge Regression (RR)

•	 Generalized Linear Regression (GLR)

•	 Factorization Machines Regression (FMR)

Clustering Category
The following points highlight the clustering-based ML algorithms in Apache Spark:

•	 K-Means Clustering (KC)

•	 Gaussian Mixture Model (GMM)

•	 Latent Dirichlet Allocation (LDA)

•	 Alternating Least Square (ALS)
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•	 Frequent Pattern Mining (FPP)

•	 Power Iteration Clustering (PIC)

ML Components/Pipelines
ML components provide high-level APIs that are strongly coupled with DataFrame 
to create or re-tune ML execution pipelines. Basically, the conglomeration of these 
components can wrap up multiple ML algorithms into a unify pipeline for executing 
the processes simultaneously. In the early version of Spark, the Spark came with 
RDD-based ML APIs which has been deprecated with Spark2.0 released by 
DataFrame-based APIs. The new API is strong enough to unify the multiple tasks of 
ML as the seamless ML workflow or pipeline. For example, processing of a simple 
text document might be included in many stages: In the first stage, it will split the 
text of each document into words. Then, the second stage helps to convert the words 
of each document into a numerical feature vector. Lastly, the prediction model is to 
be implemented using feature vector and labels.

The following seven main components are being used to implement a ML pipeline 
concept:

•	 DataFrame

•	 Transformer

•	 Estimator

•	 Pipeline

•	 Parameter

•	 CrossValidator

•	 Evaluator

DataFrame
SparkML supports a wide range of data types such as DataFrame, Vectors, Text, 
images, and structured data. DataFrame is one of the data types which offers the 
SparkSQL wrapper to train and test a ML model in Spark. A DataFrame can be 
created either implicitly or explicitly from a regular RDD.

Transformer
A transformer can add, delete, or update any existing features in the DataFrame. 
Every transformer has a transform() method which gets called when the pipeline 
is executed. Vector Assembler is a transformer as it takes the input DataFrame 
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and returns the transformed DataFrame with a new column which is the vector 
representation of all the features.

Estimator
An Estimator returns a model and the returned model transforms the DataFrame in 
accordance with the parameters which are learned during the fitting learning phase. 
Technically, an Estimator implements a method fit() which accepts a DataFrame 
produces a model, which is a transformer. For example, a learning algorithm such 
as Logistic Regression is an Estimator and calling fit() trains a Logistic Regression 
Model, which is a Model and hence a Transformer.

Pipeline
Pipeline is mainly used for unification of different stages of a transformer and 
estimator. In SparkML, the execution of multiple transformations through a single 
call can be possible by leveraging the functionality of the pipeline component. There 
is a parameter named as stages, where the name of needed transformations is 
assigned according to the sequential flow of a transformer.

In the following code, there are two transformations applied on the vector datasets. 
Here, the pipeline component is used to create an order wise list of specific 
transformers and estimators of ML using the stages parameter and run them 
sequentially. Thus, it provides the easiness and robustness workflow to handle 
multiple tasks of ML.

>>from pyspark.ml import Pipeline

>>from pyspark.ml.feature import VectorIndexer, VectorAssembler

>>create_df = spark.createDataFrame([

    (0, Vectors.dense([3.0, 6.0, -4.0]), 18.0),

    (1, Vectors.dense([3.0, 2.0, 10.0]), 30.0)

], [“unique_id”, “get_features”, “user_age”])

>>vector_indexer = VectorIndexer(inputCol=”get_features”, 
outputCol=”get_result”)

>>assembler = VectorAssembler(inputCols=[“unique_id”,”get_
features”,”get_result”], outputCol=”get_output”)

>>pipeline = Pipeline(stages=[vector_indexer, assembler])

>>model = pipeline.fit(create_df).transform(create_df)

>>model.show()
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Figure 4.1 shows the codebase of the Pipeline component with its output for 
wrapping up two transformers in a single ML workflow:

Figure 4.1: Codebase of Pipeline and its output

Parameter
It is a uniform API to specify the values to estimators and transformers by defining 
a parameter named as Param. For example, splits in Bucketizer shows the feature of 
a parameter.

CrossValidator
A CrossValidator cross-evaluates fitted ML models and outputs the best one by trying 
to fit the underlying estimator with user-specified combinations of hyperparameters. 
Model selection is performed with the CrossValidator or TrainValidationSplit 
estimators.

Evaluator
It is used to calculate the performance of a trained ML model in terms of precision 
and recall.

Generally, Binary Classification Evaluator and Multiclass Classification Evaluator 
are being used for binary and multiclass classification. Similarly, there is one more 
evaluator, that is, Regression Evaluator is being used for regression tasks.

Spark MLlib’s Datatypes
Every dataset or value needs an identity. On these datasets, the manipulations are 
taken place for performing further transformations and estimations. Generally, 
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the MLlib supports four types of Datatypes such as Local Vector, Labelled Point, 
Local Matrix, and Distributed Matrix. These preceding datatypes leverage two most 
indispensable libraries of linear algebra operations like Breeze and JBLAS. The brief 
explanation about these datatypes is mentioned next.

Local Vector
A LocalVector contains integer-typed, 0-based indices, and double-typed values. 
There are two ways to use LocalVector in the MLlib such as DenseVector and 
SparseVector. With the help of dense and sparse vectors, the programmer can easily 
convert it into a DataFrame.

Sparse Vector
The SparseVector is implemented by two parallel arrays that is, indices and value.

Syntax of SparseVector
>>get_sparse = vector.sparse(length, index_of_non-zero_values, non-zero_
values)

DenseVector
DenseVector has the backbone of a double array which is mainly preferred when 
most of the numbers are supposed to be zero.

Syntax of DenseVector
>>get_sparse = vector.dense(values)

The following code demonstrates how to create a Dense Vector in Spark MLlib:

>>from pyspark.mllib.linalg import Vectors

>>dense_vec = Vectors.dense([1,2,3,4])

>>print(type(dense_vec))

Figure 4.2 shows the codebase how to create a DenseVector and display the value of 
DenseVector:

Figure 4.2: DenseVector and its output
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The following code explains how to create a Sparse Vector in Spark MLlib:

>>sparse_vec = Vectors.sparse(10, [0,1,2,4,5], [1.0,5.0,3.0,5.0,7])
>>print(type(sparse_vec))

Figure 4.3 shows the codebase how to create a SparseVector and display the value of 
SparseVector:

Figure 4.3: Creating SparseVector and its output

The following code explains how to save a vector into an array:

>>get_array = Vectors.sparse(10, [0,1,2,4,5], [1.0,5.0,3.0,5.0,7]).
toArray()
>>get_array

Figure 4.4 shows the code how to convert an existing vector into an array:

Figure 4.4: Conversion of Vector into an array 

LabelPoint
LabelPoint is a way to assign a label to each vector, either dense or sparse. Mainly, 
it is implemented in the supervised learning algorithms. For example, the Binary 
Classification can classify the negative and positive by assuming the label values as 
0 (negative) or 1(positive). The LabelPoint has two parameters such as features and 
label. The following code demonstrates how to create a LabelPoint:

>>from pyspark.mllib.regression import LabeledPoint

>>get_densevec = Vectors.dense([1,2,3,4,5])

>>get_labeled_point = LabeledPoint(2,get_densevec)

# To display the Features 

>>print(get_labeled_point.features)
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# To display the Label

>>print(get_labeled_point.label)”

Figure 4.5 shows an illustration of the code and output of LabelPoint:

Figure 4.5: Code and output of LabelPoint

Local Matrix
A Local Matrix has an integer-typed collection of values. It can be created through 
dense and sparse vectors. In a sparse Matrix, non-zero entry values are stored in 
the Compressed Sparse Column (CSC) format in the column-major order. The 
following code demonstrates how to create a Local Matrix:

>>from pyspark.mllib.linalg import Matrix, Matrices
>>get_dense_matrix = Matrices.dense(2, 3, [1, 3, 5, 2, 4, 6])
>>print(get_dense_matrix.toArray())

Figure 4.6 shows an illustration  of the code and output of LocalMatrix:

Figure 4.6: Code and output of LocalMatrix

Distributed Matrix
A distributed matrix has long-typed column indices and double-typed values. There 
are four types of distributed matrices to store the values in one or more RDDs. The 
name of types is as follows:

•	 RowMatrix

•	 IndexedRowMatrix
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•	 CoordinateMatrix

•	 BlockMatrix

The following code demonstrates how to create a Distributed Matrix using 
RowMatrix:

>>from pyspark.mllib.linalg.distributed import RowMatrix

>>rowsRDD = sc.parallelize([[11,12], [22, 33], [33, 55], [19, 18]])

>>get_distributed_mat = RowMatrix(rowsRDD)

>>print(get_distributed_mat)

>>print(type(get_distributed_mat))

>>m_rows = get_distributed_mat.numRows()

>>m_rows  

>>n_cols = get_distributed_mat.numCols() 

>>n_cols”

Figure 4.7 shows an illustration of the code and output of RowMatrix:

Figure 4.7: Code and output of RowMatrix

Extracting, Transforming, and Selecting 
Features
In this section, the readers will walk-through the different types of feature extractors 
and transformations in Spark for dealing with the several operations on the dataset.
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Term Frequency-Inverse Document Frequency 
(TF-IDF)
TFIDF used in numerical analysis highlights the imperativeness of a word in a 
document. Generally, it deals with a weighting factor for searching the information, 
text-mining, and user modeling. In TF-IDF, the overall value increases proportionally 
to frequency of the word appears in the document. TF-IDF is one of the most 
promising ways to design the text-based recommendation system.

Term-Frequency (TF)
TF is a simple way to count the number of times a word comes to a document. So, the 
number of lines a term occurs in a document is called its term frequency. HashingTF 
and CountVectorizer are two methods to generate the term frequency vector.

Inverse Document Frequency (IDF)
In IDF, it will eliminate the most common words from the corpus of a document 
like the and a. Hence, an IDF is used to diminish the weight of terms that occur very 
often and increases the weight of terms that occur rarely in the document.

In the following code, we split each element of words and create them into a 
DataFrame. After that, the HashingTF is applied to scale them into a feature vector 
and then, IDF is used to rescale the feature vectors for improving the performance. 
The refined feature vector will be passed through a specific ML algorithm for getting 
the result.

>>from pyspark.ml.feature import HashingTF

>>from pyspark.ml.feature import HashingTF, IDF, Tokenizer

>>Gen_DF = spark.createDataFrame([

    (0, “DataScience,MachineLearning,ApacheSpark,MachineLearning”.
split(“,”)),

    (1, “ApacheMLlib,MachineLearning,DataScience”.split(“,”))

], [“id”, “words”])

>>gen_HF = HashingTF(inputCol=”words”, outputCol=”features”, 
numFeatures=100)

>>get_HTF = gen_HF.transform(Gen_DF)

>>idf_function = IDF(inputCol=”features”, outputCol=”get_idf_feature”)

>>train_model = idf_function.fit(get_HTF)

>>outcome = train_model.transform(get_HTF)

>>outcome.show(truncate=False)”
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Figure 4.8 shows an illustration of the code and output of TF-IDF:

Figure 4.8: Code and output of TF-IDF

Word2Vec
Word2Vec is given by Spark MLlib which feeds sequences of words as in the form 
of documents or sentences for training. That trained model maps each word to a 
unique fixed-size vector. Then, it transforms each sentence or a document into a 
vector using the average of words the document and is well-known Estimation to 
calculate document similarity. The following program shows the implementation of 
Word2Vec extractor on a dataframe:

>>from pyspark.ml.feature import Word2Vec

>>Gen_DF = spark.createDataFrame([

    (0, “DataScience,MachineLearning,ApacheSpark,MachineLearning”.
split(“,”)),

    (1, “ApacheMLlib,MachineLearning,DataScience”.split(“,”))], [“id”, 
“words”])

>>func_word2Vec = Word2Vec(vectorSize=3, minCount=0, inputCol=”words”, 
outputCol=”get_result”)

>>model = func_word2Vec.fit(Gen_DF)

>>get_result = model.transform(Gen_DF)

>>get_result.show(truncate=False)
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Figure 4.9 is an illustration of the code and output of Word2Vec:

Figure 4.9: Code and output of Word2Vec

CountVectorizer
CountVectorizer is a function whose input is a sequence of documents or words and 
generates an output as a vector of tokens. The output of the CountVectorizer extractor 
has three parts, namely, Vector Length, Vector Indices, and Vector Frequencies. Also, 
it will produce a sparse vector which can be passed to the other ML algorithms.

Figure 4.10 highlights the three parts of the feature vector:

Figure 4.10: Three parts of feature Vector of a CountVectorizer output

>>from pyspark.ml.feature import CountVectorizer

>>Gen_DF = spark.createDataFrame([

    (0, “DataScience,MachineLearning,ApacheSpark,MachineLearning”.
split(“,”)),

    (1, “ApacheMLlib,MachineLearning,DataScience”.split(“,”))

], [“id”, “words”])

>>counter_vectorized = CountVectorizer(inputCol=”words”, outputCol=”get_
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features”)

>>getmodel = counter_vectorized.fit(Gen_DF)

>>get_result = getmodel.transform(Gen_DF)

>>get_result.show(truncate=False)”

Figure 4.11 shows an illustration of the code and output of CountVectorizer:

Figure 4.11: Code and output of CountVectorizer

HashingTF
HashingTF generates documents or sentences into fixed size vectors; the default 
dimension of vector set to 262,144. Here, it uses the hash function. that is, 
MurmurHash3 for mapping to indices and term frequencies are calculated with 
respect to indices.

The following code shows that the default value is always set to 262,144, and other 
terms like ApacheSpark should be mapped to the respective index like 12242 with 
frequency equal to 1. This mechanism needs to be applied on all the documents or 
sentences in the dataframe:

>>from pyspark.ml.feature import HashingTF

>>Gen_DF = spark.createDataFrame([

    (0, “DataScience,MachineLearning,ApacheSpark,MachineLearning”.
split(“,”)),

    (1, “ApacheMLlib,MachineLearning,DataScience”.split(“,”))

], [“id”, “words”])
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>>gen_HF = HashingTF(inputCol=”words”, outputCol=”features”)

>>get_result = gen_HF.transform(Gen_DF)

>>get_result.show(truncate=False)

Figure 4.12 shows an illustration of the code and output of HashingTF:

Figure 4.12: Code and output of HashingTF

FeatureHasher
FeatureHasher is a technique for rescaling the high-dimensional features into low-
dimensional features vector. Likewise, HashingTF, it also uses MurmurHash3 to 
map features to indices and the numFeatures parameter intends to set a feature 
range to the indices. The following code indicates to generate a column of feature 
vectors using FeatureHasher:

>>from pyspark.ml.feature import FeatureHasher

>>createDF = spark.createDataFrame([

    (10, “100”, True, “Data Science”),

    (20, “200”, False, “Big Data”),

    (30, “300”, True, “Machine Learning with Spark”),

    (40, “400”, False, “Deep Learning”)

], [“col1”, “col2”, “col3”, “col4”])

>>get_hasher = FeatureHasher(inputCols=[“col1”, “col2”, “col3”, “col4”],

                       outputCol=”features”, numFeatures = 10)

>>get_result = get_hasher.transform(createDF)

>>get_result.show(truncate=False)
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Figure 4.13 shows an illustration of the code and output of FeatureHasher:

Figure 4.13: Code and output of FeatureHasher

Feature Transformers
This section explains several ways to transform the features in Apache Spark which 
are used while training and testing the ML-based distributed processing models.

Tokenizer
Tokenization is a mechanism which can feed the text or sentences and break them 
into small individual words. It can be implemented by using the functionality of 
“Tokenizer class”. Also, there is a RegexTokenizer class that makes the splitting up 
of the sentences in an advanced manner based on some regular expression matches. 
The following code takes the sentences through a dataframe and applies Tokenizer 
for converting it into a list of tokens. Also, these sequences of tokens can be persisted 
as Parquet or JSON formats. The following code indicates how to implement the 
Tokenizer transformer:

>>from pyspark.ml.feature import Tokenizer, RegexTokenizer

>>from pyspark.sql.functions import col, udf

>>from pyspark.sql.types import IntegerType

>>generate_df = spark.createDataFrame([

    (0, “This Book Is For All The Big Data And Data Science Lovers”),

    (1, “This Is Our Chapter-4 Which Has Content Related To Spark MLlib 
“)], [“unique_id”, “generate_df”])

>>get_tokenizers = Tokenizer(inputCol=”generate_df”, outputCol=”get_
tokens”)
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>>get_tokenized = get_tokenizers.transform(generate_df)

#Display Outcome

>>get_tokenized.select(“generate_df”, “get_tokens”).show(truncate=False)

#Save into Parquet Format

>>get_tokenized.select(“generate_df”, “get_tokens”).write.
save(“parquetfileformat”)

#Save Outcome Into a JSON Format

>>get_tokenized.select(“generate_df”, “get_tokens”).write.
json(“JsonSave.json”)”

Figure 4.14 shows an illustration of the code and output of the Tokenizer transformer:

Figure 4.14: Code and output of Tokenizer transformer

Figure 4.15 shows an illustration of the code how to persist a list of tokens into the 
Parquet or JSON format:

Figure 4.15: Code and output to save lists of tokens into Parquet or JSON format

StopWordsRemover
StopWordsRemover is used in text mining for refining the unwanted words from 
the corpus in Natural Language Processing (NLP). The working mechanism of 
StopWordsRemover starts from feeding-up the input as a sequence of string and 
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returns the meaningful words as in tokens. The following code illustrates the 
conversion of sentences into sequences of tokens. Later, the StopWordsRemover class 
applies on those tokens for getting the refined sequences of tokens after removing 
the most common or unwanted words:
>>from pyspark.ml.feature import Tokenizer, RegexTokenizer

>>from pyspark.sql.functions import col, udf

>>from pyspark.sql.types import IntegerType

>>generate_df = spark.createDataFrame([

    (0, “This Book Is For All The Big Data And Data Science Lovers”),

    (1, “This Is Our Chapter-4 Which Has Content Related To Spark MLlib 
“)], [“id”, “create_df”])

>>get_tokenizers = Tokenizer(inputCol=”create_df”, outputCol=”get_
tokens”)

>>get_tokenized = get_tokenizers.transform(generate_df)

>>remover = StopWordsRemover(inputCol=”get_tokens”, outputCol=”row”)

>>remover.transform(get_tokenized).select(“get_tokens”, “row”).
show(truncate=False)”

Figure 4.16 shows an illustration of the code and output of StopWordsRemover:

Figure 4.16: Code and output of StopWordsRemover

N-Gram
An N-Gram generates a sequence of n number of words by concatenating the 
consecutive words in the token. The N-Gram transforms the sequence of words as 
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input and produces a sequence of n-grams as output. The parameter n is used to 
determine the number of terms which to be delimited by space with the consecutive 
sequence of words in each n-gram. The following code shows the example of N-Gram 
with the parameter value n set to 2:

>>from pyspark.ml.feature import NGram
>>generate_df = spark.createDataFrame([
    (0, [“This” ,”Book”, “Is”, “For”, “All”, “The”, “Big” , “Data” 
,”And” ,”Data” ,”Science”, “Lovers”]),
    (1, [“This” ,”Is” ,”Our”, “Chapter-4” ,”Which” ,”Has”, “Content”, 
“Related”, “To”, “Spark”, “MLlib”])], [“id”, “create_df”])
>>get_ngram = NGram(n=2, inputCol=”create_df”, outputCol=”get_ngram_
out”)
>>get_ngram_DataFrame = get_ngram.transform(generate_df)
>>get_ngram_DataFrame.select(“get_ngram_out”).show(truncate=False)”

Figure 4.17 shows an illustration of the code and output of N-Gram:

Figure 4.17: Code and output of N-Gram

Binarizer
In Spark MLlib, the Binarization function helps to convert the numerical features to 
binary form features giving a particular thresholding value. Generally, the Binarizer 
class takes three parameters such as inputCol, outputCol, and threshold for 
binarization. The parameter threshold helps in converting the numerical vector into 
a binarized form. For example, the value will be binarized to 0.0, if the threshold 
value is less than the feature value and 1.0 when the threshold value is greater 
than the feature value. The following code shows an example of Binarizer with the 
threshold parameter value threshold set to 3:
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>>from pyspark.ml.feature import Binarizer

>>from pyspark.ml.feature import StringIndexer

>>create_df = spark.createDataFrame(

    [(0, “Hello”), (1, “All”), (2, “This”), (3, “is”), (4, “a”), (5, 
“new”), (6, “Day”)],

    [“unique_id”, “words”])

>>stage1_output = StringIndexer(inputCol=”words”, outputCol=”Conversion_
outcome”)

>>get_finalized_df = stage1_output.fit(create_df).transform(create_df)

>>binarizer_value = Binarizer(threshold=3, inputCol=”Conversion_
outcome”, outputCol=”get_binarized_feature”)

>>binarizedDF = binarizer_value.transform(get_finalized_df)

>>binarizedDF.show()”

Figure 4.18 shows an illustration of the code and output of Binarizer:

Figure 4.18: Code and output of Binarizer

Principal Component Analysis (PCA)
PCA is a technique used for doing the Exploratory Data Analysis (EDA) using the 
concept of orthogonal transformation. The PCA class in Spark MLlib provides the 
support to convert the higher level of dimension into lower-dimensional data by 
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setting the parameter k and give the fair idea for ameliorating the futuristic analysis. 
The following code shows the dimension reduction of the vector from 5-dimensional 
principal components to 2-dimensional principal components:
>>from pyspark.ml.feature import PCA

>>from pyspark.ml.linalg import Vectors

>>dataset =  [(Vectors.dense([2.0, 0.0, 3.0, 4.0, 5.0]),),

        (Vectors.dense([4.0, 0.0, 0.0, 6.0, 7.0]),)]

>>df_created = spark.createDataFrame(dataset, [“vector_space”])

>>get_pca = PCA(k=2, inputCol=”vector_space”, outputCol=”PCA_Outcome”)

>>train_model = get_pca.fit(df_created)

>>model_result = train_model.transform(df_created).select(“PCA_Outcome”)

>>model_result.show(truncate=False)”

Figure 4.19 shows an illustration of the code and output of PCA:

Figure 4.19: Code and output of PCA

Polynomial Expansion
The Polynomial Expansion expands the vector features into n-degree polynomial 
space. The following code shows the expansion of the feature vector into 2-degree 
polynomial space by giving the value to the parameter degree as 2. The mathematical 
expression to expand 2-degree polynomial is mentioned here:

>>from pyspark.ml.feature import PolynomialExpansion
>>from pyspark.ml.linalg import Vectors
>>create_df = spark.createDataFrame([
    (Vectors.dense([5.0, 7.0]),),
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    (Vectors.dense([3.0, 1.0]),)
], [“indispensable_features”])
>>polyfunc = PolynomialExpansion(degree=2, inputCol=”indispensable_
features”, outputCol=”get_Features”)
>>polyfuncDF = polyfunc.transform(create_df)
>>polyfuncDF.show(truncate=False)

Figure 4.20 shows an illustration of the code and output of PolynomialExpansion:

Figure 4.20: Code and output of PolynomialExpansion

Discrete Cosine Transform (DCT)
DCT was first proposed in 1972 by Nasir Ahmed which was used for image 
compression. Later, other applications were intended towards DCT such as digital 
signal processing, telecommunication devices, reducing network bandwidth usage, 
and spectral methods for the numerical solution of partial differential equations. 
In ML, DCT is mainly used to transform the time domain into frequency domain, 
where space values are length of N real-valued sequences. In Spark MLlib, DCT-II 
is used with scaling the outcome by to represent the matrix to the transfer is unitary. 
The following code shows the implementation of DCT:

>>from pyspark.ml.feature import DCT

>>from pyspark.ml.linalg import Vectors

>>create_df = spark.createDataFrame([

    (Vectors.dense([5.0, 7.0]),),

    (Vectors.dense([3.0, 1.0]),)

], [“indispensable_features”])

>>get_dctfunc = DCT(inverse=False, inputCol=”indispensable_features”, 
outputCol=”get_features”)
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>>dctDataFrame = get_dctfunc.transform(create_df)

>>dctDataFrame.select(“get_features”).show(truncate=False)”

Figure 4.21 shows an illustration of the code and output of DCT:

Figure 4.21: Code and output of DCT

StringIndexer
StringIndexer transforms a string consisting of columns into label indices columns. 
The range of indices are in between [0, number_of_Lables] and it can be 
applied to all or multiple columns. It supports four “ordering functions” such as 
frequencyDesc, frequencyAsc, alphabetDesc, and alphabetDesc. The user can 
encode a string column into an index column based on label frequency and alphabet 
counts. By default, it uses frequencyDesc for encoding the string in a label column. 
The following code shows the implementation of StringIndexer for converting a 
string column into a label index column:

>>from pyspark.ml.feature import StringIndexer

>create_df = spark.createDataFrame(

    [(0, “Hello”), (1, “All”), (2, “This”), (3, “is”), (4, “a”), (5, 
“new”), (6, “Day”)],

    [“unique_id”, “words”])

>>stage1_output = StringIndexer(inputCol=”words”, outputCol=”Conversion_
outcome”)

>>get_finalized = stage1_output.fit(create_df).transform(create_df)

>>get_finalized.show()



180      Practical Machine Learning with Spark

Figure 4.22 shows an illustration of the code and output of StringIndexer:

Figure 4.22: Code and output of StringIndexer

IndexToString
IndexToString is recommended to use this transformation for retrieving back the 
actual labels after getting the output from a trained model. The following code 
shows the implementation of IndexToString:

>>from pyspark.ml.feature import StringIndexer

>>create_df = spark.createDataFrame(

    [(0, “Hello”), (1, “All”), (2, “This”), (3, “is”), (4, “a”), (5, 
“new”), (6, “Day”)],

    [“unique_id”, “words”])

>>stage1_output = StringIndexer(inputCol=”words”, outputCol=”Conversion_
outcome”)

>>get_finalized = stage1_output.fit(create_df).transform(create_df)

>>get_finalized.show()”
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Figure 4.23 shows an illustration of the code and output of IndexToString:

Figure 4.23: Code and output of IndexToStringr

VectorIndexer
VectorIndexer maps indexes of categorical features corresponding to the datasets 
of Vectors. It feeds an input column of vector type with a parameter named as 
maxCategories. It can ameliorate the performance of Decision Tree and Tree 
Ensembles by leveraging the concept of index categorical features. The following 
code shows the implementation of VectorIndexer:

>>from pyspark.ml.feature import ChiSqSelector

>>from pyspark.ml.linalg import Vectors

>>from pyspark.ml.feature import VectorIndexer, VectorAssembler

>>create_df = spark.createDataFrame([

    (0, Vectors.dense([3.0, 6.0, -4.0]), 18.0),

    (1, Vectors.dense([3.0, 2.0, 10.0]), 30.0)

], [“unique_id”, “get_features”, “user_age”])

>>vector_ind = VectorIndexer(inputCol=”get_features”, outputCol=”get_
result”)

>>encode = vector_ind.fit(create_df).transform(create_df)

>>encode.show()
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Figure 4.24 shows an illustration of the code and output of VectorIndexer:

Figure 4.24: Code and output of VectorIndexer

Normalizer
The Normalizer usually is used to standardize the input dataset and ameliorate the 
way of learning an algorithm. It transforms a dataset of vector rows and normalizes 
each vector to have a unit norm by passing a parameter p for normalization. 
By default, the value of p is 2. The following code shows the implementation of 
Normalizer:

>>from pyspark.ml.feature import Normalizer

>>from pyspark.ml.linalg import Vectors

>>create_df = spark.createDataFrame([

    (Vectors.dense([4.0, 2.0]),),

    (Vectors.dense([3.0, 1.0]),)

], [“indispensable_features”])

>>get_normalized = Normalizer(inputCol=”indispensable_features”, 
outputCol=”Get_Features”, p=1.0)

>>NormDataDF = get_normalized.transform(create_df)

>>NormDataDF.show()
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Figure 4.25 shows an illustration  of the code and output of Normalizer:

Figure 4.25: Code and output of Normalizer

StandardScaler
StandaredScaler provides the normalization mechanism to generate a flat feature of 
a VectorRow which tends to have unit standard deviation. It keeps two parameters 
named as withStd and withMean for performing the StandardScaler normalization. 
In addition, the StandardScalerModel function shows the computing summary 
with their important statistics. In general, it returns 0.0. value if dataset has zero 
value. The following code shows the implementation of StandardScaler:

>>from pyspark.ml.feature import StandardScaler

>>create_df = spark.createDataFrame([

    (0, Vectors.dense([3.0, 6.0, -4.0]), 18),

    (1, Vectors.dense([3.0, 8.1, 10.0]), 30),

    (2, Vectors.dense([0.0, 19.1, 16.0]), 60)

], [“unique_id”, “get_features”, “user_age”])

>>get_scaler = StandardScaler(inputCol=”get_features”, 
outputCol=”scaled_ouput”, withStd=True, withMean=False)

>>train_model = get_scaler.fit(create_df)

>>output_scaledD = train_model.transform(create_df)

>>output_scaledD.show(truncate=False)”
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Figure 4.26 shows an illustration of the code and output of StandardScaler:

Figure 4.26: Code and output of StandardScaler

MinMaxScaler
MinMaxScaler rescales each feature to a range varies between [0,1]. It transforms 
the dataset by assuming the min value as 0.0 and maximum value as 1.0 by default. 
Also, the transformations perform on zero values will be transformed into a nonzero 
value. The following code shows the implementation of MinMaxScaler:

>>from pyspark.ml.feature import MinMaxScaler

>>from pyspark.ml.linalg import Vectors

>>create_df = spark.createDataFrame([

    (0, Vectors.dense([3.0, 6.0, -4.0]),),

    (1, Vectors.dense([3.0, 8.1, 10.0]),)

], [“unique_id”, “get_features”])

>>get_scaler = MinMaxScaler(inputCol=”get_features”, outputCol=”feature_
outcome”)

>Train_Model = get_scaler.fit(create_df)

>>scaled_result = Train_Model.transform(create_df)

>>scaled_result.select(“get_features”, “feature_outcome”).show()
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Figure 4.27 shows an illustration of the code and output of MinMaxScaler:

Figure 4.27: Code and output of MinMaxScaler

MaxAbsScaler
MaxAbsScaler rescales each feature of dataset into the range of [-1,1] by dividing 
through the maximum absolute value in each feature. It provides the statistics on 
a dataset and trained a MaxAbsScalerModel which can transform each feature in 
the preceding-mentioned range. The following code shows the implementation of 
MaxAbsScaler:

>>from pyspark.ml.feature import MaxAbsScaler

>>from pyspark.ml.linalg import Vectors

>>create_df = spark.createDataFrame([

    (0, Vectors.dense([3.0, 6.0, -4.0]),),

    (1, Vectors.dense([3.0, 8.1, 10.0]),)

], [“unique_id”, “get_features”])

>>get_scaler = MaxAbsScaler(inputCol=”get_features”, outputCol=”feature_
outcome”)

>>Train_Model = get_scaler.fit(create_df)

>>scaled_result = Train_Model.transform(create_df)

>>scaled_result.select(“get_features”, “feature_outcome”).show()”
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Figure 4.28 shows an illustration of the code and output of MaxAbsScaler:

Figure 4.28: Code and output of MaxAbsScaler

Bucketizer
Bucketizer is a way for transforming a column of continuous features into a column 
of feature buckets, where the buckets are specified by users. Mapping of buckets 
with the continuous features are done by using a parameter named as splits, 
where values in splits should be in the increasing order and ranges between [-inf, 
inf] that covers all the double values. The following code shows the implementation 
of Bucketizer:

>>from pyspark.ml.feature import Bucketizer

>>splits = [ -float(“inf”), -0.5, 0.0, 0.5, 1.0, 2.0, float(“inf”)]

>>create_df = spark.createDataFrame([(-0.5,), (-0.3,), (0.0,), 
(1.0,),(0.2,), (100.0,)], [“get_features”])

>>apply_func_bucketizer = Bucketizer(splits=splits, inputCol=”get_
features”, outputCol=”buckfeatures”)

>>get_data = apply_func_bucketizer.transform(create_df)

>>get_data.show()
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Figure 4.29 shows an illustration of the code and output of Bucketizer:

Figure 4.29: Code and output of Bucketizer

ElementwiseProduct
ElementwiseProduct multiplies each element of a vector by a provided vector, like 
multiplication of two matrices in mathematics. The following code demonstrates 
how to transform vectors using a transforming vector value:

>>from pyspark.ml.feature import ElementwiseProduct

>>from pyspark.ml.linalg import Vectors

>>create_df = spark.createDataFrame([

    (Vectors.dense([5.0, 7.0, 9.0]),),

    (Vectors.dense([3.0, 1.0, 6.0]),)

], [“indispensable_features”])

>>get_transformer = ElementwiseProduct(scalingVec=Vectors.dense([0.0, 
1.0, 2.0]),

                                 inputCol=”indispensable_features”, 
outputCol=”NewVector”)

>>get_transformer.transform(create_df).show()
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Figure 4.30 shows an illustration of the code and output of ElementwiseProduct:

Figure 4.30: Code and output of ElementwiseProduct

SQLTransformer
SQLTransformer in Spark MLlib supports SQL-like statements to perform the 
transformations. It can also leverage Spark SQL built-in function and UDF for 
transforming the SQL statements. The basic syntax is given as follows:

“SELECT (* or column names) FROM __THIS__ ...where (conditions or 
filters)”, where __THIS__ represents the underlying table of the input 
dataset.

The following code demonstrates how to perform SQLTransformer:

>>from pyspark.ml.feature import SQLTransformer

>>create_df = spark.createDataFrame([

    (0, Vectors.dense([3.0, 6.0, -4.0]), 18),

    (1, Vectors.dense([3.0, 8.1, 10.0]), 30),

    (2, Vectors.dense([0.0, 19.1, 16.0]), 60)

], [“unique_id”, “get_features”, “user_age”])

>>sqlTrfunc = SQLTransformer(statement=”SELECT get_features from __
THIS__ where user_age <= 30”)

>>sqlTrfunc.transform(create_df).show()”
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Figure 4.31 shows an illustration of the code and output of SQLTransformer:

Figure 4.31: An illustration of  the code and output of SQLTransformer

VectorAssembler
VectorAssembler is a transformer that stitches the given list of columns into a 
single vector feature. Mostly, this transformer is used in Logistic Regression and 
Decision Tree algorithms for training them. It supports numeric, Boolean, and 
vector type columns in a vector. The following code delineates how to execute 
the VectorAssembler transformer for concatenating a list of columns into a single 
column:

>>from pyspark.ml.linalg import Vectors

>>from pyspark.ml.feature import VectorAssembler

>>create_df = spark.createDataFrame([

    (0, Vectors.dense([3.0, 6.0, -4.0]), 18),

    (1, Vectors.dense([3.0, 8.1, 10.0]), 30)

], [“unique_id”, “get_features”, “user_age”])

>>get_assembler = VectorAssembler(inputCols=[“get_features”, “user_
age”], outputCol=”features”)

>>result = get_assembler.transform(create_df)

>>result.show(truncate=False)”
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Figure 4.32 shows an illustration of the code and output of VectorAssembler:

Figure 4.32: An illustration of  the code and output of VectorAssembler

VectorSizeHint
VectorSizeHint is a special type of transformation which can explicitly specify the 
size of vector columns for filtering out the invalid or valid VectorType by passing the 
parameters such as “skip”, “optimistic”, and “error” in the handle Invalid. Here, the 
parameter “error” is used to indicate an exception when it occurs, the skip is used to 
cater the invalid values; hence, eliminate those vector rows from the result, and the 
last “optimistic” is used when there is no need to check the validity of column values. 
The following code demonstrates how to execute VectorSizeHint transformer:

>>from pyspark.ml.linalg import Vectors

>>from pyspark.ml.feature import (VectorSizeHint, VectorAssembler)

create_df = spark.createDataFrame([

    (0, Vectors.dense([3.0, 6.0, -4.0]), 18),

    (1, Vectors.dense([3.0, 10.0]), 30)

], [“unique_id”, “get_features”, “user_age”])

>>get_assembler = VectorAssembler(inputCols=[“get_features”, “user_
age”], outputCol=”features”)

>>Vec_Si_Hi = VectorSizeHint(

    inputCol=”get_features”,

    handleInvalid=”error”,

    size=3)

>>get_dataset= Vec_Si_Hi.transform(create_df)

>>get_dataset.show(truncate=False)
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Figure 4.33 shows an illustration of the code and output of VectorSizeHint:

Figure 4.33: Code and output of VectorSizeHint

Quantile Discretizer (QD)
QD feeds a column with the continuous values and generates a column with mapped 
categorical distribution. The number of categories is set by the parameter named as 
numBuckets. In QD, the NaN values can be handled with the help of handleInvalid 
parameters, but it is ignored and mitigated in general QD transformation. The 
following code delineates how to execute QD transformer:

>>from pyspark.ml.feature import QuantileDiscretizer

>>create_df = spark.createDataFrame([(1001, 180000.0), (1003, 190000.0), 
(1004, 800000.0), (3002, 500000.0), (4871, 7000000.0)], [“employee_id”, 
“salary”])

>>quant_discretizer = QuantileDiscretizer(numBuckets=3, 
inputCol=”salary”, outputCol=”result”)

>>get_result = quant_discretizer.fit(create_df).transform(create_df)

>>get_result.show()
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Figure 4.34 shows an illustration of the code and output of QD:

Figure 4.34: Code and output of QD

Imputer
The Imputer function aids to fill-up the missing or void values in a vector or 
dataframe. Mostly, it may use mean, median, and custom value of columns in which 
the void values are found. The Imputer class supports only numeric datatype, and 
it treats all the null values in the columns as missing values by default. Moreover, 
Imputer can replace other values than NaN by executing. Set the Missing value 
(any_custom_value). The following code delineates how to execute the Imputer 
transformer:

>>from pyspark.ml.feature import Imputer

>>create_df = spark.createDataFrame([

    (0, Vectors.dense([3.0, 6.0, -4.0]), 18.0),

    (1, Vectors.dense([3.0, 8.1, 10.0]), 30.0),

    (2, Vectors.dense([0.0, 19.1, 16.0]), float(“nan”))

], [“unique_id”, “get_features”, “user_age”])

>>get_imputer = Imputer(inputCols=[“user_age”], outputCols=[“Result_a”])

>>get_model = get_imputer.fit(create_df)

>>get_model.transform(create_df).show()
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Figure 4.35 shows an illustration of the code and output of Imputer:

Figure 4.35: Code and output of Imputer

Feature Selectors
This section explains the several types of feature selectors in Apache Spark which is 
used while training and testing the ML-based distributed processing models.

VectorSlicer
Vector Slicer  helps to produce a sub-array as the output from the input array or 
re-arrangement of columns by passing a value into the parameter indices. The 
following code shows the implementation of re-arrangement of columns as a new 
output:

>>from pyspark.ml.feature import VectorSlicer

>>from pyspark.ml.linalg import Vectors

>>from pyspark.sql.types import Row

>>df = spark.createDataFrame([

    (0, Vectors.dense([3.0, 6.0, -4.0]),),

    (1, Vectors.dense([3.0, 8.1, 10.0]),)

], [“unique_id”, “get_features”])

>>slicer = VectorSlicer(inputCol=”get_features”, outputCol=”features”, 
indices=[0,2,1])

>>output = slicer.transform(df)

>>output.show(truncate=False)”
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Figure 4.36 shows an illustration of the code and output of VectorSlicer:

Figure 4.36: Code and output of VectorSlicer

ChiSqSelector
CSST is an abbreviation of Chi-Square Selection Test . It helps to perform selected 
operations named as numTopFeatures, percentile, fpr, fdr, and few on the 
labelled data. It is also used to calculate the pvalues, degreeOfFreedom, and 
statistic by passing input columns to the ChiSquareTest function. The following 
code shows the implementation of ChiSqSelector:

>>from pyspark.ml.feature import ChiSqSelector

>>from pyspark.ml.linalg import Vectors

>>create_df = spark.createDataFrame([

    (0, Vectors.dense([3.0, 6.0, 4.0]),5.0),

    (1, Vectors.dense([3.0, 8.1, 10.0]),7.0,)

], [“unique_id”, “get_features”, “label”])

>>selector = ChiSqSelector(numTopFeatures=2, featuresCol=”get_features”,

                         outputCol=”selectedFeatures”, labelCol=”label”)

>>get_result = selector.fit(create_df).transform(create_df)

>>get_result.show()”
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Figure 4.37 shows an illustration of the code and output of ChiSqSelector:

Figure 4.37: Code and output of ChiSqSelector

Conclusion
This chapter covers an immense adaptability of distributed processing in the 
domain of ML and DL. Generally, training and testing phases consume abundance 
of time and space during a model processing to get desired outputs. So, this chapter 
leverages the concept of Spark MLlib and embodies textual information along 
with their implementation. The next chapter will focus on the detailed studies on 
Supervised learning using Spark MLlib.



196      Practical Machine Learning with Spark



Supervised Learning with Spark      197

“Good, better, best. Never let it rest. ‘Till your good is better and your 
better is best.”

 -  St. Jerome

Introduction
In this current era of digital innovation, a human being has been getting more 
dependent on automation for making quick and right decisions. Due to high 
adoption rate of AI in daily routines, AI becomes a lucrative asset to empower 
the futuristic applications. For making the decisive automation, it observes the 
features and key behaviors based on the historical experience of events. To prove 
the ideology of futuristic learning as a reality, the algorithm of Supervised Learning 
(SL) plays an imperative role. This chapter gives an introduction to SL on the 
distributed framework. In the first chapter of this book, the basic excerpt on SL and 
its related taxonomy has already been discussed. Here, the authors will discuss all 
the technical aspects of SL along with their implementation. It also covers regression 
and classification-based performance metrics to check the accuracy of the trained 
model on the test dataset. The entire codebase has been implemented using the 
Google Colab notebook with Apache Spark as a distributed framework for efficient 
processing.

Chapter 5
Supervised 

Learning with 
Spark
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Structure
This chapter will cover a comprehensive study of the following topics:

•	 The concept of SL and its variants

•	 In-depth explanation of regression-based as well as classification-based SL 
algorithms with their implementation

•	 Advancement of trees by leveraging Classification and Regression Trees 
(CART) and ensembling learning

•	 Several evaluation metrics for calculating the precision rate of classification 
and regression models

•	 Explanation of the Churn Prediction Model and its implementation

Objectives
After reading the chapter, readers will be able to:

•	 Understand about supervised learning and its several types

•	 Implement classification and regression algorithms on a distributed 
framework

•	 Grasp the knowledge about different types of CART and their implementation 
using Apache Spark

•	 Understand how to improve trees by integrating CART and ensembling 
techniques

•	 Check the performance metrics of any classification- and regression-based 
SL model

•	 Learn the concept of the Churn prediction model and how to implement it 
in the real world

Definition of Supervised Learning
SL is a subset of the ML technique to train a model from full-set data that contains 
output labels (y) with respect to input labels (x) for predicting the response values. 
In simple words, the output values are already given with respect to input values 
in an SL-based model. Generally, there are two types of SL algorithms to deal with 
continuous and discrete problems. The classification algorithm is used to solve 
discrete problems and regression algorithm for continuous problems by predicting 
and classifying the response values with respect to input labels. From the last series 
of trailing chapters, authors assumed that the readers had already been familiar 



Supervised Learning with Spark      199

about the concept of SL and Apache Spark’s libraries to perform any actions and 
transformations on the dataset. These libraries are necessary for implementation of 
different types of regression algorithms, classification algorithms, and ensembling 
algorithms using Spark. Figure 5.1 shows the taxonomy of SL to classify the different 
algorithms which are being used in real-case scenarios:

Figure 5.1: Taxonomy of different types of supervised learning

Regression and its Types
Regression is an SL-based statistical technique for forecasting the value of 
continuous target variables (responses) based on the values of predictor variables. 
Regression problems are generally present in bivariate and multi-variate settings. 
Analysis of response values with respect to predictor variables using regression 
can help the intermediate level insights for predicting the decision-making results. 
In other words, it finds out the relationship between a dependent variable and an 
independent variable. There are several types of regression algorithms such as linear 
regression, decision tree regression, random forest regression, lasso regression, ridge 
regression, elastic-net regression, isotonic regression, and gradient-boosted tree 
regression which can be used to predict the target values with respect to predictor 
values. The detailed explanation along with their respective codebase are as follows.

Linear Regression (LR)
LR represents a linear relationship between two variables such as dependent variables 
and independent variables. It draws a decision line between the two variables and 
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the standard mathematical equation is  as shown in Figure 5.2, where m is the slope 
of a line and c is the y-intercept. If all the targeted values tend to be approaching 
towards the decision line, then the model seems to be best fit. In other words, errors 
should be minimum that determine how far the targeted variables reside from the 
straight line. Generally, the least square method is used to find the best fit line in 
the graph. The accuracy of the LR model is affected when the outliers are highly 
fluctuating and, it is not recommended for big data when the outliers and non-
linearity in data is high. The distance of the actual data point from the decision line 
is known as a residual error. There are two types of linear regression such as simple 
linear regression (one dependent and one independent variable) and ,multiple linear 
regression (one dependent and more than one independent variables).

Figure 5.2: Graphical representation of linear regression

In this section, the readers will get to know about the detailed working of the 
regression algorithm with the help of a graphical representation. Figure 5.3 shows 
the scattering of n number of data points in the xy-plane. The following figure shows 
the LR mapping between the given data (Height and Weight) of healthy persons 
living in a smart city. Here, height is taken as a feature along x-axis and weight as 
a predictor along y-axis. This relationship draws a decision line that predicts the 
weight of a person at a particular height.
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Figure 5.3: Graphical representation of key attributes of linear regression

The following codebase shows the implementation of LR by leveraging the 
distributed framework using Google Colab:

>>%pip install pyspark==3.1.1

>>from pyspark.sql import SparkSession

>>from pyspark.sql import SQLContext

>>from pyspark.ml.feature import StringIndexer

>>from pyspark.ml.evaluation import RegressionEvaluator

>>from pyspark.ml.linalg import Vectors

>>from pyspark.ml.feature import VectorAssembler

>>from pyspark.ml.regression import LinearRegression

>>import seaborn as sns

>>import matplotlib.pyplot as plt

>>import pandas as pd

>>import numpy as np

#Creating Spark application and loading of dataset

>>spark = SparkSession.builder.appName(‘Linear Regression’).
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getOrCreate()

>>load_data = spark.read.csv(‘/content/sample_data/weight-height.
csv’,inferSchema=True, header=True)

Figure 5.4 depicts the implementation of the preceding code in Google Colab. This 
code initializes the required modules, creates the spark’s application, and reads the 
CSV file in a dataframe:

Figure 5.4: Illustration of implemented code to initialize, create spark’s application, and read in dataframe

#To show the loaded dataframe

>>load_data.show()

#Converting into VectorFeature

>>get_assembler = 
VectorAssembler(inputCols=[‘Height’],outputCol=’feature’)

>>assembled_data = get_assembler.transform(load_data)

>>assembled_data.show()

>>finalized_data = assembled_data.select(“feature”, “Weight”)

#To show the finalized dataframe

>>finalized_data.show()

#Splitting into training and testing dataset

>>training_data,testing_data = finalized_data.randomSplit([0.7,0.3])

#Calling of LinearRegression function

>>lr = LinearRegression(featuresCol=”feature”, labelCol=”Weight”,)

>>lr_model = lr.fit(training_data)
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#Evaluating the model on testing dataset to check the residue of each 
point

>>test_results = lr_model.evaluate(testing_data)

>>test_results.residuals.show()

Figure 5.5 delineates the code in Colab to display, convert into VectorFeature, split 
the dataset into the training and testing portion, call the Linear Regression function 
on the training dataset, and evaluate the testing data from the trained model:

Figure 5.5: Illustration to convert normal df into VectorFeature,  
split the dataset, and implement the Linear Regression function

#Testing dataset on lr_model

>>get_prediction = lr_model.transform(testing_data)

>>get_prediction.show()

#Get_training_insights

>>training_data.describe().show()

>>train = training_data.select(“feature”,”Weight”).toPandas()

>>train_get_feature = train[‘feature’]

>>train_get_feature = list(train_get_feature)

>>train_get_salary = train[‘Weight’]
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#Training_Prediciton Insights

get_training_prediction = lr_model.transform(training_data)

#converting into Spark’s df to Pandas’s df for data visualization

>>train_pred = get_training_prediction.select(“prediction”).toPandas()

>>prediction_train = train_pred[‘prediction’]

>>prediction_list = list(prediction_train)

>>print(prediction_list)

Figure 5.6 shows the snapshot of the code in Colab to transform the testing data 
using the trained LR model for getting the prediction. After getting the prediction, 
the dataframe is converted into pandas’s dataframe for easily plotting the decision 
line of LR:

Figure 5.6: Illustration of transformation operation of  
testing data and conversion of Spark’s df to Pandas’s data frame for visualization

#Testing Insights

>>x = testing_data.select(“feature”,”Weight”).toPandas()

>>x_get = x[‘feature’]

>>y_get = x[‘Weight’]

#Get summary of the model

>>print(“Summary of model is here:”)

>>lr_model.summary
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#Getting coefficients and intercept

>>print(“Coefficients: “ + str(lr_model.coefficients))

>>print(“Intercept: “ + str(lr_model.intercept))

Figure 5.7 delineates the code in Google Colab to convert the spark’s dataframe of 
testing data into pandas. Also, it calculates the coefficient and intercept of the trained 
LR model:

Figure 5.7: Illustration to convert the spark’s dataframe to pandas’s dataframe and calculate the model insights

#Visualization

>>plt.scatter(list(x_get), list(y_get), color = ‘red’)

>>plt.plot(train_get_feature, prediction_list, color = ‘blue’)

>>plt.title(‘Weight vs Height (Test set)’)

>>plt.xlabel(‘Height’)

>>plt.ylabel(‘Weight’)

>>plt.show()

#Evaluation Metrics

>>eval = RegressionEvaluator(labelCol=”Weight”, 
predictionCol=”prediction”, metricName=”rmse”)

# Root Mean Square Error

>>rmse = eval.evaluate(get_prediction)

>>print(“RMSE: %.3f” % rmse)

# Mean Square Error

>>mse = eval.evaluate(get_prediction, {eval.metricName: “mse”})

>>print(“MSE: %.3f” % mse)
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# Mean Absolute Error

>>mae = eval.evaluate(get_prediction, {eval.metricName: “mae”})

>>print(“MAE: %.3f” % mae)

# r2 - coefficient of determination

>>r2 = eval.evaluate(get_prediction, {eval.metricName: “r2”})

>>print(“r2: %.3f” %r2)

Figure 5.8 illustrates the implemented code in Google Colab to plot the curve of 
a straight line for LR and calculate the performance of the model using predicted 
values:

Figure 5.8: Illustration of visualization and evaluation of the LR model

Output Snippet of the LR Model
This section contains the output snippet of the preceding executed program for 
plotting the decision line of the LR model. Figure 5.9 delineates the data of dataframe 
after reading the CSV:
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Figure 5.9: Illustration of code to display the content of dataframe

Figure 5.10 shows the content of the dataframe after applying the VectorAssembler 
transformation for generating the features that need to be fed to the model as input:

Figure 5.10: Delineation of code to display the content after applying VectorAssembler
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Figure 5.11 shows the content of the dataframe of the dependent variable and 
independent variable. The feature and weight columns are fed to the model for 
predicting the weight of the person.

Figure 5.11: Illustration of content of the dependent variable and independent variable

Figure 5.12 displays the residue error of each data point by taking the difference from 
the decision line:

Figure 5.12: Illustration of residual error of each data point
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Figure 5.13 displays the data of predicted values from the trained LR model:

Figure 5.13: Illustration to show the data of predicted values

Figure 5.14 displays the indispensable insights of the LR model:

Figure 5.14: Illustration of the summary of the trained LR model
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Figure 5.15 shows the plotting of the decision line of the LR model using the MapPlot 
library. The red dots represent the actual points and the decision line in blue color 
represents the predicted points.

Figure 5.15: Plotting of decision line of LR model

Table 5.1 shows the data related to the evaluation metrics of the trained LR model. 
This is an important step that helps to determine the performance of the trained 
model on the testing dataset.

Evaluation metrics Results
RMSE 11.912
MSE 141.905
MAE 9.493

R2 0.860

Table 5.1: Illustrate the evaluation metrics of the LR model

Multi-Linear Regression (MLR)
It estimates the relationship between one dependent variable and more than one 
independent variables. MLR works like linear regression, the standard mathematical 
equation is y = ∑i=1

n mi xi+ c +∈, where (y, mi, xi c) have the usual meaning, n is number 
of observations, and ∈ is the residual error. The following program depicts step 
by step implementation of MLR in PySpark using Google Colab as a distributed 
processing framework:
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>>%pip install pyspark==3.1.1

>>from pyspark.sql import SparkSession

>>from pyspark.sql import SQLContext

>>from pyspark.ml.feature import VectorAssembler

>>from pyspark.ml.feature import StringIndexer

>>from pyspark.ml.evaluation import RegressionEvaluator

>>from pyspark.ml.feature import VectorIndexer

>>from pyspark.ml.linalg import Vectors

>>from pyspark.ml.regression import LinearRegression

>>import matplotlib.pyplot as plt

>>import pandas as pd

>>import numpy as np

#Loading and creation of Spark’s application

>>spark = SparkSession.builder.appName(‘MultiLinearRegression’).
getOrCreate()

>>loaded_data = spark.read.csv(‘/content/sample_data/weatherHistory.
csv’,inferSchema=True, header=True)

Figure 5.16 delineates the implemented code to initialize, create spark application, 
and read CSV into the dataframe:

Figure 5.16: Illustration of implemented code to initialize,  
create spark application, and read a CSV into the dataframe



212      Practical Machine Learning with Spark

#To check the columns of dataframe

>>loaded_data.columns

#Converting into the single Vector

>>get_assembler = VectorAssembler(inputCols=[‘Temperature (C)’,

 ‘Apparent Temperature (C)’,

 ‘Humidity’,

 ‘Wind Speed (km/h)’,

 ‘Wind Bearing (degrees)’,

 ‘Visibility (km)’,

 ‘Loud Cover’,

 ‘Pressure (millibars)’],outputCol=’get_feature’)

>>op_assembler = get_assembler.transform(loaded_data)

>>op_assembler.show()

>>get_indexer = StringIndexer(inputCol=’Summary’, outputCol=’summary_
index’)

>>finalized_data = get_indexer.fit(op_assembler).transform(op_assembler)

>>finalized_data = finalized_data.select(“get_feature”, “summary_index”)

>>training_data, testing_data = finalized_data.randomSplit([0.7,0.3])

#Linear Regression function on multi-variant dataset

>>lr = LinearRegression(featuresCol=”get_feature”, labelCol=”summary_
index”,)

>>lr_model = lr.fit(training_data)
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Figure 5.17 shows the snapshot of the code in Colab to display, convert into 
VectorFeature, split the dataset into the training and testing portion, and call the 
linear regression function on the multi-variant featured training dataset:

Figure 5.17: Illustration to convert the normal df into VectorFeature,  
splitting into training and testing dataset, and implementation of the Linear Regression function

#Evaluating the model on testing dataset to check the residue of each 
point

>>test_results = lr_model.evaluate(testing_data)

>>test_results.residuals.show()

#Testing dataset on lr_model

>>get_prediction = lr_model.transform(testing_data)

>>get_prediction.show()

#Get_training_insights

>>training_data.describe().show()

>>train = training_data.select(“get_feature”,”summary_index”).toPandas()

>>train_get_feature = train[‘get_feature’]

>>train_get_feature = list(train_get_feature)

>>train_get_salary = train[‘summary_index’]
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Figure 5.18 delineates this code that implemented to find the residue error, transform 
the trained multi-variant LR on the testing data and get model insights:

Figure 5.18: Illustration of code for finding of residue,  
transformation operation on the testing dataset, and get the model insights

#Training_Prediciton Insights

>>get_training_prediction = lr_model.transform(training_data)

#converting into Spark’s df to Pandas’s df for data visualization

>>train_pred = get_training_prediction.select(“prediction”).toPandas()

>>prediction_train = train_pred[‘prediction’]

>>prediction_list = list(prediction_train)

>>print(prediction_list)

#Testing Insights

>>x = testing_data.select(“get_feature”,”summary_index”).toPandas()

>>x_get = x[‘get_feature’]

>>y_get = x[‘summary_index’]

#Get summary of the model

>>print(“Summary of model is here:”)

>>lr_model.summary
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Figure 5.19 elucidates the implemented code is to find the residue error, transform 
the trained multivariant LR on the testing data and get model insights:

Figure 5.19: Illustration of code for finding of residue, transformation  
operation on testing dataset, and getting the model insights

#Getting coefficients and intercept

>>print(“Coefficients: “ + str(lr_model.coefficients))

>>print(“Intercept: “ + str(lr_model.intercept))

#Evalutaion Metrics

>>eval = RegressionEvaluator(labelCol=”summary_index”, 
predictionCol=”prediction”, metricName=”rmse”)

# Root Mean Square Error

>>rmse = eval.evaluate(get_prediction)

>>print(“RMSE: %.3f” % rmse)

# Mean Square Error

>>mse = eval.evaluate(get_prediction, {eval.metricName: “mse”})

>>print(“MSE: %.3f” % mse)
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Figure 5.20 displays the screenshot of this implemented code to find the coefficient, 
intercept, and evaluate metrics for the trained multivariant LR:

Figure 5.20: Illustration of code to determine the value of coefficient,  
intercept, and calculate performance metrics

# Mean Absolute Error

>>mae = eval.evaluate(get_prediction, {eval.metricName: “mae”})

>>print(“MAE: %.3f” % mae)

# r2 - coefficient of determination

>>r2 = eval.evaluate(get_prediction, {eval.metricName: “r2”})

>>print(“r2: %.3f” %r2)

Figure 5.21 shows the implemented code to find the evaluation metrics for the trained 
multivariant LR:

Figure 5.21: Illustration of evaluation metrics
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Output Snippet of the Multi-linear Regression Model
This section contains the output snippet of the preceding executed program for 
plotting the decision line of the multi-linear regression model. Figure 5.22 displays 
the data of the dataframe after reading the CSV:

Figure 5.22: Screenshot of code to display the content of dataframe

Figure 5.23 displays the predicted data in the dataframe format after transforming 
the testing dataset:

Figure 5.23: Illustration to show the data of predicted values
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Figure 5.24 shows the screenshot of the summary of the trained MLR model, and its 
evaluation metrics:

Figure 5.24: Illustration of summary and evaluation metrics of the trained model

Regularization in Linear Regression
In data science, training a good performance model is one of the key steps, which 
is affected by two terminologies, such as under-fitting and over-fitting. Under-fitting 
refers to a situation where the error rate is maximized due to a model’s lack of training, 
irrelevant selection of features, lack of selection of features, high noise in training 
data, and less regularization while training a model on an actual dataset. This kind 
of scenario may cause poor performance in terms of the accuracy of the model. To 
be recapitulated, the variance is low, and the biasness is high in such a situation. For 
example, applying a regression model to a non-linear dataset may often cause the issue 
of under-fitting. On the flip side, over-fitting is another situation that arises due to over-
learning of mode and a high number of feature selections. In over-fitting, the variance 
is high and the biasness is low. Such an over-fitting issue while training a model can 
be mitigated by adapting the concept of regularization. Regularization is a technique 
to simplify the complexity of a regression model which helps to alleviate the challenge 
of overfitting by penalizing the coefficient to zero. Generally, it neglects the smaller 
weights by assuming to generate un-effective changes in the model and penalizes 
them towards zero, which helps to avoid the issue of overfitting on the testing part. In 
SparkML, the LR function contains two important parameters to switch a ML model 
between lasso regression (L1 regularization) and ridge regression (L2 regularization), 
such as elasticNetParam and regParam, where elasticNetParam is denoted by α 
and regParam is denoted by 𝜆. When a LR model is trained with the α set to 1, then it 
is equivalent to a Lasso model. On the flip side, if α set to 0, it is equivalent to a ridge 
regression model. Regularizations are of three types, which are as follows.

Least Absolute Shrinkage and Selection 
Operator (Lasso Regression)/L1 Regularization
Lasso regression is a regression technique that was introduced by Professor 
Robert Tibshirani at Stanford University. Just like ridge regression As discussed 
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under next heading, it uses regularization to estimate the results and it also uses 
variable selection to design the efficient and high precision equipped LR model. The 
following codebase shows the implementation of lasso regression by leveraging the 
distributed framework using Google Colab:

>>%pip install pyspark==3.1.1

>>from pyspark.sql import SparkSession

>>from pyspark.sql import SQLContext

>>from pyspark.ml.feature import StringIndexer

>>from pyspark.ml.evaluation import RegressionEvaluator

>>from pyspark.ml.linalg import Vectors

>>from pyspark.ml.feature import VectorAssembler

>>from pyspark.ml.regression import LinearRegression

>>import seaborn as sns

>>import matplotlib.pyplot as plt

>>import pandas as pd

>>import numpy as np

#Creating Spark application and loading of dataset

>>spark = SparkSession.builder.appName(‘Ridge Linear Regression’).
getOrCreate()

>>load_data = spark.read.csv(‘/content/sample_data/weight-height.
csv’,inferSchema=True, header=True)

#To show the loaded dataframe

>>load_data.show()

#Converting into VectorFeature

>>get_assembler = 
VectorAssembler(inputCols=[‘Height’],outputCol=’feature’)

>>assembled_data = get_assembler.transform(load_data)

>>assembled_data.show()

>>finalized_data = assembled_data.select(“feature”, “Weight”)

#To show the finalized dataframe

>>finalized_data.show()

#Splitting into training and testing dataset

>>training_data,testing_data = finalized_data.randomSplit([0.7,0.3])
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#Calling of LinearRegression function

>>lr = LinearRegression(featuresCol=”feature”, labelCol=”Weight”, 
elasticNetParam=1.0,regParam=0.5,maxIter=50,solver=’normal’  )

>>lr_model = lr.fit(training_data)

#Evaluating the model on testing dataset to check the residue of each 
point

>>test_results = lr_model.evaluate(testing_data)

>>test_results.residuals.show()

#Testing dataset on lr_model

>>get_prediction = lr_model.transform(testing_data)

>>get_prediction.show()

#Get_training_insights

>>training_data.describe().show()

>>train = training_data.select(“feature”,”Weight”).toPandas()

>>train_get_feature = train[‘feature’]

>>train_get_feature = list(train_get_feature)

>>train_get_salary = train[‘Weight’]

#Training_Prediciton Insights

>>get_training_prediction = lr_model.transform(training_data)

#converting into Spark’s df to Pandas’s df for data visualization

>>train_pred = get_training_prediction.select(“prediction”).toPandas()

>>prediction_train = train_pred[‘prediction’]

>>prediction_list = list(prediction_train)

>>print(prediction_list)

#Testing Insights

>>x = testing_data.select(“feature”,”Weight”).toPandas()

>>x_get = x[‘feature’]

>>y_get = x[‘Weight’]

#Get summary of the model

>>print(“Summary of model is here:”)

>>lr_model.summary

#Getting coefficients and intercept
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>>print(“Coefficients: “ + str(lr_model.coefficients))

>>print(“Intercept: “ + str(lr_model.intercept))

#Visualization

>>plt.scatter(list(x_get), list(y_get), color = ‘red’)

>>plt.plot(train_get_feature, prediction_list, color = ‘blue’)

>>plt.title(‘Weight vs Height (Test set)’)

>>plt.xlabel(‘Height’)

>>plt.ylabel(‘Weight’)

>>plt.show()

#Evalutaion Metrics

>>eval = RegressionEvaluator(labelCol=”Weight”, 
predictionCol=”prediction”, metricName=”rmse”)

# Root Mean Square Error

>>rmse = eval.evaluate(get_prediction)

>>print(“RMSE: %.3f” % rmse)

# Mean Square Error

>>mse = eval.evaluate(get_prediction, {eval.metricName: “mse”})

>>print(“MSE: %.3f” % mse)

# Mean Absolute Error

>>mae = eval.evaluate(get_prediction, {eval.metricName: “mae”})

>>print(“MAE: %.3f” % mae)

# r2 - coefficient of determination

>>r2 = eval.evaluate(get_prediction, {eval.metricName: “r2”})

>>print(“r2: %.3f” %r2)

Output Snippet of the Lasso Regression Model
This section contains the output snippet of this program that is executed for 
implementing the lasso regression algorithm on training and testing data. Figure 
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5.25 shows the data of the dataframe after reading a CSV and applying the 
VectorAssembler transformation:

Figure 5.25: Output screenshot to display the data of dataframe after applying VectorAssembler

Figure 5.26 displays the predicted data in the dataframe format after transforming 
the lasso regression model on the testing dataset:

Figure 5.26: Illustration to display the predicted values
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Figure 5.27 displays the summary insights, coefficient, and intercept of the trained 
model:

Figure 5.27: Illustration of summary insights, coefficient, and intercept of the trained model

Figure 5.28 shows the decision line of the lasso regression model:

Figure 5.28: Plotting of decision line of lasso regression model

Table 5.2 shows the data related to evaluate the metrics of the trained lasso regression 
model. This is an important step which helps to determine the performance of the 
trained model on testing dataset.

Evaluation metrics Results
RMSE 12.458
MSE 155.191
MAE 9.898

R2 0.846

Table 5.2: Illustrate the evaluation metrics of the Lasso Regression model
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Ridge Regression/L2 Regularization
To overcome the problem of underperforming at the testing phase of LR, it adds a 
penalty L2 which is equal to the square of coefficients. Generally, in LR the “residual 
of sum” gets minimized, but in ridge regression a penalty is applied on coefficient 
values to regularize with the tuning parameters (λ). Where (λ=0), the penalty has no 
impact and ridge/lasso produces the same results as linear regression. The following 
program depicts the step-by-step implementation of ridge regression in PySpark 
using Google Colab as a distributed processing framework:

>>%pip install pyspark==3.1.1

>>from pyspark.sql import SparkSession

>>from pyspark.sql import SQLContext

>>from pyspark.ml.feature import StringIndexer

>>from pyspark.ml.evaluation import RegressionEvaluator

>>from pyspark.ml.linalg import Vectors

>>from pyspark.ml.feature import VectorAssembler

>>from pyspark.ml.regression import LinearRegression

>>import seaborn as sns

>>import matplotlib.pyplot as plt

>>import pandas as pd

>>import numpy as np

#Creating Spark application and loading of dataset

>>spark = SparkSession.builder.appName(‘Ridge Linear Regression’).
getOrCreate()

>>load_data = spark.read.csv(‘/content/sample_data/weight-height.
csv’,inferSchema=True, header=True)

#To show the loaded dataframe

>>load_data.show()

#Converting into VectorFeature

>>get_assembler = 
VectorAssembler(inputCols=[‘Height’],outputCol=’feature’)

>>assembled_data = get_assembler.transform(load_data)

>>assembled_data.show()

>>finalized_data = assembled_data.select(“feature”, “Weight”)

#To show the finalized dataframe
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>>finalized_data.show()

#Splitting into training and testing dataset

>>training_data,testing_data = finalized_data.randomSplit([0.7,0.3])

#Calling of LinearRegression function

>>lr = LinearRegression(featuresCol=”feature”, labelCol=”Weight”, 
elasticNetParam=0.0,regParam=0.5,maxIter=50,solver=’normal’  )

>>lr_model = lr.fit(training_data)

#Evaluating the model on testing dataset to check the residue of each 
point

>>test_results = lr_model.evaluate(testing_data)

>>test_results.residuals.show()

#Testing dataset on lr_model

>>get_prediction = lr_model.transform(testing_data)

>>get_prediction.show()

#Get_training_insights

>>training_data.describe().show()

>>train = training_data.select(“feature”,”Weight”).toPandas()

>>train_get_feature = train[‘feature’]

>>train_get_feature = list(train_get_feature)

>>train_get_salary = train[‘Weight’]

#Training_Prediciton Insights

>>get_training_prediction = lr_model.transform(training_data)

#converting into Spark’s df to Pandas’s df for data visualization

>>train_pred = get_training_prediction.select(“prediction”).toPandas()

>>prediction_train = train_pred[‘prediction’]

>>prediction_list = list(prediction_train)

>>print(prediction_list)

#Testing Insights

>>x = testing_data.select(“feature”,”Weight”).toPandas()

>>x_get = x[‘feature’]

>>y_get = x[‘Weight’]

#Get summary of the model
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>>print(“Summary of model is here:”)

>>lr_model.summary

#Getting coefficients and intercept

>>print(“Coefficients: “ + str(lr_model.coefficients))

>>print(“Intercept: “ + str(lr_model.intercept))

#Visualization

>>plt.scatter(list(x_get), list(y_get), color = ‘red’)

>>plt.plot(train_get_feature, prediction_list, color = ‘blue’)

>>plt.title(‘Weight vs Height (Test set)’)

>>plt.xlabel(‘Height’)

>>plt.ylabel(‘Weight’)

>>plt.show()

#Evalutaion Metrics

>>eval = RegressionEvaluator(labelCol=”Weight”, 
predictionCol=”prediction”, metricName=”rmse”)

# Root Mean Square Error

>>rmse = eval.evaluate(get_prediction)

>>print(“RMSE: %.3f” % rmse)

# Mean Square Error

>>mse = eval.evaluate(get_prediction, {eval.metricName: “mse”})

>>print(“MSE: %.3f” % mse)

# Mean Absolute Error

>>mae = eval.evaluate(get_prediction, {eval.metricName: “mae”})

>>print(“MAE: %.3f” % mae)

# r2 - coefficient of determination

>>r2 = eval.evaluate(get_prediction, {eval.metricName: “r2”})

>>print(“r2: %.3f” %r2)

Output Snippet of the Ridge Regression Model
This section contains the output snippet of the preceding executed program for 
plotting the decision line of ridge regression model. Figure 5.29 displays the data of 
dataframe after applying the VectorAsssembler transformation:
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Figure 5.29: Illustration of data of featureVector

Figure 5.30 displays the predicted value in the form of dataframe:

Figure 5.30: Illustration to show the values of prediction
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Figure 5.31 displays the summary insights, coefficient, and intercept of the trained 
model:

Figure 5.31: Illustration of summary insights, coefficient, and intercept of the trained model

Figure 5.32 depicts the graph of the decision line for the ridge regression. This 
decision line explains about best fit model based on the minimum residue:

Figure 5.32: Plotting of the decision line of the ridge regression model

Table 5.3 shows the evaluation metrics of the trained ridge regression model. This is 
an important step which helps to determine the performance of the trained model 
on the testing dataset.

Evaluation metrics Results
RMSE 12.436
MSE 152.654
MAE 9.914

R2 0.849

Table 5.3: Illustrate the evaluation metrics of ridge regression model
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Elastic-net Regression/L1+L2 Regularization
Elastic-net regression is an outperformed model in terms of accuracy than ridge 
and lasso regression. It combines both L1 (lasso) and L2 (ridge) regularization 
that correlates the independent variables. The following codebase shows the 
implementation of elastic-net regression by leveraging the distributed framework 
using Google Colab:

>>%pip install pyspark==3.1.1

>>from pyspark.sql import SparkSession

>>from pyspark.sql import SQLContext

>>from pyspark.ml.feature import StringIndexer

>>from pyspark.ml.evaluation import RegressionEvaluator

>>from pyspark.ml.linalg import Vectors

>>from pyspark.ml.feature import VectorAssembler

>>from pyspark.ml.regression import LinearRegression

>>import seaborn as sns

>>import matplotlib.pyplot as plt

>>import pandas as pd

>>import numpy as np

#Creating Spark application and loading of dataset

>>spark = SparkSession.builder.appName(‘Linear Regression’).
getOrCreate()

>>load_data = spark.read.csv(‘/content/sample_data/weight-height.
csv’,inferSchema=True, header=True)

#To show the loaded dataframe

>>load_data.show()

#Converting into VectorFeature

>>get_assembler = 
VectorAssembler(inputCols=[‘Height’],outputCol=’feature’)

>>assembled_data = get_assembler.transform(load_data)

>>assembled_data.show()

>>finalized_data = assembled_data.select(“feature”, “Weight”)

#To show the finalized dataframe

>>finalized_data.show()

#Splitting into training and testing dataset
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>>training_data,testing_data = finalized_data.randomSplit([0.7,0.3])

#Calling of LinearRegression function

>>lr = LinearRegression(featuresCol=”feature”, labelCol=”Weight”, 
elasticNetParam=0.5,regParam=0.5,maxIter=50,solver=’normal’  )

>>lr_model = lr.fit(training_data)

#Evaluating the model on testing dataset to check the residue of each 
point

>>test_results = lr_model.evaluate(testing_data)

>>test_results.residuals.show()

#Testing dataset on lr_model

>>get_prediction = lr_model.transform(testing_data)

>>get_prediction.show()

#Get_training_insights

>>training_data.describe().show()

>>train = training_data.select(“feature”,”Weight”).toPandas()

>>train_get_feature = train[‘feature’]

>>train_get_feature = list(train_get_feature)

>>train_get_salary = train[‘Weight’]

#Training_Prediciton Insights

>>get_training_prediction = lr_model.transform(training_data)

#converting into Spark’s df to Pandas’s df for data visualization

>>train_pred = get_training_prediction.select(“prediction”).toPandas()

>>prediction_train = train_pred[‘prediction’]

>>prediction_list = list(prediction_train)

>>print(prediction_list)

#Testing Insights

>>x = testing_data.select(“feature”,”Weight”).toPandas()

>>x_get = x[‘feature’]

>>y_get = x[‘Weight’]

#Get summary of the model

>>print(“Summary of model is here:”)

>>lr_model.summary

#Getting coefficients and intercept

>>print(“Coefficients: “ + str(lr_model.coefficients))



Supervised Learning with Spark      231

>>print(“Intercept: “ + str(lr_model.intercept))

#Visualization

>>plt.scatter(list(x_get), list(y_get), color = ‘red’)

>>plt.plot(train_get_feature, prediction_list, color = ‘blue’)

>>plt.title(‘Weight vs Height (Test set)’)

>>plt.xlabel(‘Height’)

>>plt.ylabel(‘Weight’)

>>plt.show()

#Evalutaion Metrics

>>eval = RegressionEvaluator(labelCol=”Weight”, 
predictionCol=”prediction”, metricName=”rmse”)

# Root Mean Square Error

>>rmse = eval.evaluate(get_prediction)

>>print(“RMSE: %.3f” % rmse)

# Mean Square Error

>>mse = eval.evaluate(get_prediction, {eval.metricName: “mse”})

>>print(“MSE: %.3f” % mse)

# Mean Absolute Error

>>mae = eval.evaluate(get_prediction, {eval.metricName: “mae”})

>>print(“MAE: %.3f” % mae)

# r2 - coefficient of determination

>>r2 = eval.evaluate(get_prediction, {eval.metricName: “r2”})

>>print(“r2: %.3f” %r2)

Output Snippet of the Elastic-Net Regression Model
This section contains the output snippet of the preceding executed program for 
implementing the elastic-net regression algorithm on training and testing data. 
Figure 5.33 displays the summary insights of the trained model:

Figure 5.33: Illustration of summary insights, coefficient, and intercept of the trained model
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Figure 5.34 depicts the graph of the decision line for the elastic-net regression. This 
decision line explains about best fit model based on the minimum residue.

Figure 5.34: Plotting of the decision line of the elastic-net regression model

Table 5.4 shows evaluation metrics of the trained elastic-net regression model. This 
is an important step which helps to determine the performance of the trained model 
on the testing dataset.

Evaluation metrics Results
RMSE 12.246
MSE 149.964
MAE 9.785

R2 0.853

Table 5.4: Illustrate the evaluation metrics of the elastic-net regression model

Generalized Linear Regression (GLR)
In 1972, the term GLR was first described by Nelder and Weduber to understand the 
relationship of various distributions with Linear Regression. GLR is an upgraded 
version of LR that leverages the functionality of the exponential family of distributions 
in the output stage. In SparkML, the GeneralizedLinearRegression() class 
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supports the functionality of GLR where the response variable follows several 
distributions such as Poisson, Gaussian, Tweedie, Binomial, and Gamma distribution. 
The following codebase explains the way to implement GLR on the distributing 
framework using Spark:

>>%pip install pyspark==3.1.1

>>from pyspark.sql import SparkSession

>>from pyspark.sql import SQLContext

>>from pyspark.ml.feature import StringIndexer

>>from pyspark.ml.evaluation import RegressionEvaluator

>>from pyspark.ml.regression import GeneralizedLinearRegression

>>from pyspark.ml.linalg import Vectors

>>from pyspark.ml.feature import VectorAssembler

>>from pyspark.ml.regression import LinearRegression

>>import seaborn as sns

>>import matplotlib.pyplot as plt

>>import pandas as pd

>>import numpy as np

#Creating Spark application and loading of dataset

>>spark = SparkSession.builder.appName(‘Generalized Linear Regression’).
getOrCreate()

>>load_data = spark.read.csv(‘/content/sample_data/weight-height.
csv’,inferSchema=True, header=True)

#Converting into VectorFeature

>>get_assembler = 
VectorAssembler(inputCols=[‘Height’],outputCol=’feature’)

>>assembled_data = get_assembler.transform(load_data)

>>finalized_data = assembled_data.select(“feature”, “Weight”)

>>finalized_data = finalized_data.selectExpr(“feature as features”, 
“Weight as label”)
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Figure 5.35 displays the implemented code is to initialize, create spark application, 
and read a CSV into dataframe:

Figure 5.35: Screenshot of implemented code to initialize,  
create spark application, and read a CSV into dataframe

#Splitting into training and testing dataset

>>training_data,testing_data = finalized_data.randomSplit([0.7,0.3])

>>glr = GeneralizedLinearRegression(family=”poisson”, link=”identity”, 
maxIter=10, regParam=0.3)

# Fit the model

>>glr_model = glr.fit(training_data)

#Evaluating the model on testing dataset to check the residue of each 
point

>>test_results = glr_model.evaluate(testing_data)

>>print(test_results)

#Testing dataset on lr_model

>>get_prediction = glr_model.transform(testing_data)

>>get_prediction.show()

#Get_training_insights

>>train = training_data.select(“features”,”label”).toPandas()

>>train_get_feature = train[‘features’]
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>>train_get_feature = list(train_get_feature)

>>train_get_salary = train[‘label’]

#Training_Prediciton Insights

>>get_training_prediction = glr_model.transform(training_data)

Figure 5.36 shows the way to implement GLR on training and testing dataset:

Figure 5.36: Delineation of implemented code to call GLR, fit, and transform on training and testing dataset

#Converting into Spark’s df to Pandas’s df for data visualization

>>train_pred = get_training_prediction.select(“prediction”).toPandas()

>>prediction_train = train_pred[‘prediction’]

>>prediction_list = list(prediction_train)

>>print(prediction_list)

#Testing Insights

>>x = testing_data.select(“features”,”label”).toPandas()

>>x_get = x[‘features’]

>>y_get = x[‘label’]

#Get summary of the model

>>print(“Summary of model is here:”)

>>glr_model.summary
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# Print the coefficients and intercept for generalized linear regression 
model

>>print(“Coefficients: “ + str(glr_model.coefficients))

>>print(“Intercept: “ + str(glr_model.intercept))

Figure 5.37 shows the way to convert the Spark’s dataframe into Pandas’s dataframe 
for plotting the decision line graph. Also, it shows the summary insights, coefficient, 
and intercept of the trained model.

Figure 5.37: Delineation of implemented code to convert dataframe,  
get summary, coefficient, and intercept of the trained model

#Visualization

>>plt.scatter(list(x_get), list(y_get), color = ‘red’)

>>plt.plot(train_get_feature, prediction_list, color = ‘blue’)

>>plt.title(‘Weight vs Height (Test set)’)

>>plt.xlabel(‘Height’)

>>plt.ylabel(‘Weight’)

>>plt.show()

#Evalutaion Metrics

>>eval = RegressionEvaluator(labelCol=”label”, 
predictionCol=”prediction”, metricName=”rmse”)

# Root Mean Square Error

>>rmse = eval.evaluate(get_prediction)
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>>print(“RMSE: %.3f” % rmse)

# Mean Square Error

>>mse = eval.evaluate(get_prediction, {eval.metricName: “mse”})

>>print(“MSE: %.3f” % mse)

# Mean Absolute Error

>>mae = eval.evaluate(get_prediction, {eval.metricName: “mae”})

>>print(“MAE: %.3f” % mae)

# r2 - coefficient of determination

>>r2 = eval.evaluate(get_prediction, {eval.metricName: “r2”})

>>print(“r2: %.3f” %r2)

Figure 5.38 shows the way to visualize and get the values of evaluation metrics for 
the trained model:

Figure 5.38: Illustration of implemented code for visualizing and getting the performance insight

# Summarizing the model 

summary = glr_model.summary

>>print(“Coefficient Standard Errors: “ + str(summary.
coefficientStandardErrors))

>>print(“T Values: “ + str(summary.tValues))
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>>print(“P Values: “ + str(summary.pValues))

>>print(“Dispersion: “ + str(summary.dispersion))

>>print(“Null Deviance: “ + str(summary.nullDeviance))

>>print(“Residual Degree Of Freedom Null: “ + str(summary.
residualDegreeOfFreedomNull))

>>print(“Deviance: “ + str(summary.deviance))

>>print(“Residual Degree Of Freedom: “ + str(summary.
residualDegreeOfFreedom))

>>print(“AIC: “ + str(summary.aic))

>>print(“Deviance Residuals: “)

>>summary.residuals().show()

Figure 5.39 shows the way to get the summary of the trained model:

Figure 5.39: Implemented code to get the summary insights for the trained model

Output Snippet of the Generalized Linear Regression Model

This section contains the output snippet of the previous program that is executed for 
implementing the Generalized Linear Regression algorithm on training and testing 
data. Figure 5.40 displays the predicted values in the form of the dataframe:
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Figure 5.40: Illustration to show the values of prediction

Figure 5.41 highlights the output of coefficient and intercept of the trained model:

Figure 5.41: Illustration of summary insights, coefficient, and intercept of the trained model

Figure 5.42 depicts the graph of the decision line for the Generalized Linear 
Regression. This decision line explains about the best fit model based on minimum 
residue.

Figure 5.42: Plotting of decision line of GLR model
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Table 5.5 shows evaluation metrics of the trained GLR model. This is an important 
step which helps to determine the performance of the trained model on testing 
dataset.

Evaluation metrics Results
RMSE 12.440
MSE 154.749
MAE 9.964

R2 0.850

Table 5.5: Illustrate the evaluation metrics of GLR model

Figure 5.43 shows the data related to various metrics of this trained model. This is an 
important step which helps to determine the performance of the trained model on 
testing dataset.

Figure 5.43: Illustration to display various metrics of the trained model
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Isotonic Regression/Monotonic Non-Decreasing 
Regression/Equal Stretch Regression
The word isotonic comes from the combination of two Greek words iso and tonic, 
where iso means equal or the same and tonic means stretching. The isotonic 
regression is slightly different from the simple linear regression, as it generates the 
monotonic non-decreasing trends among the data points. It is also called as a free 
form of linear regression that is used to predict the output based on observations. 
SparkML enables a “pool adjacent violators algorithm” which uses an approach 
to parallelize the isotonic regression. For training an isotonic regression model, 
SparkML requires three columns such as label, features, and weight. The following 
codebase explains the way to implement isotonic regression on the distributing 
framework using Spark:

>>%pip install pyspark==3.1.1

>>from pyspark.ml.regression import IsotonicRegression

>>from pyspark.sql import SparkSession

>>from pyspark.sql import SQLContext

>>from pyspark.ml.feature import StringIndexer

>>from pyspark.ml.feature import VectorIndexer

>>from pyspark.ml.evaluation import RegressionEvaluator

>>from pyspark.ml.linalg import Vectors

>>from pyspark.ml.feature import VectorAssembler

>>import matplotlib.pyplot as plt

>>import pandas as pd

>>import numpy as np

#Creating Spark application and loading of dataset

>>spark = SparkSession.builder.appName(‘Generalized Linear Regression’).
getOrCreate()

>>load_data = spark.read.csv(‘/content/sample_data/weight-height.
csv’,inferSchema=True, header=True)

#Converting into VectorFeature

>>get_assembler = 
VectorAssembler(inputCols=[‘Height’],outputCol=’feature’)

>>assembled_data = get_assembler.transform(load_data)

>>finalized_data = assembled_data.select(“feature”, “Weight”)
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>>finalized_data = finalized_data.selectExpr(“feature as features”, 
“Weight as label”)

#Splitting into training and testing dataset

>>training_data,testing_data = finalized_data.randomSplit([0.7,0.3])

>>iso_reg = IsotonicRegression()

# Fit the model

>>iso_model = iso_reg.fit(training_data)

#Testing dataset on lr_model

>>get_prediction = iso_model.transform(testing_data)

>>get_prediction.show()

#Get_training_insights

>>train = training_data.select(“features”,”label”).toPandas()

>>train_get_feature = train[‘features’]

>>train_get_feature = list(train_get_feature)

>>train_get_salary = train[‘label’]

#Training_Prediciton Insights

>>get_training_prediction = iso_model.transform(training_data)

#converting into Spark’s df to Pandas’s df for data visualization

>>train_pred = get_training_prediction.select(“prediction”).toPandas()

>>prediction_train = train_pred[‘prediction’]

>>prediction_list = list(prediction_train)

>>print(prediction_list)

#Testing Insights

>>x = testing_data.select(“features”,”label”).toPandas()

>>x_get = x[‘features’]

>>y_get = x[‘label’]

#Visualization

>>plt.scatter(list(x_get), list(y_get), color = ‘red’)

>>plt.plot(train_get_feature, prediction_list, color = ‘blue’)

>>plt.title(‘Weight vs Height (Test set)’)

>>plt.xlabel(‘Height’)

>>plt.ylabel(‘Weight’)
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>>plt.show()

#Evalutaion Metrics

>>eval = RegressionEvaluator(labelCol=”label”, 
predictionCol=”prediction”, metricName=”rmse”)

# Root Mean Square Error

>>rmse = eval.evaluate(get_prediction)

>>print(“RMSE: %.3f” % rmse)

# Mean Square Error

>>mse = eval.evaluate(get_prediction, {eval.metricName: “mse”})

>>print(“MSE: %.3f” % mse)

# Mean Absolute Error

>>mae = eval.evaluate(get_prediction, {eval.metricName: “mae”})

>>print(“MAE: %.3f” % mae)

# r2 - coefficient of determination

>>r2 = eval.evaluate(get_prediction, {eval.metricName: “r2”})

>>print(“r2: %.3f” %r2)

Output Snippet of the Isotonic Regression Model
This section contains the output snippet of the preceding program that is executed 
for implementing the isotonic regression algorithm on training and testing data. 
Figure 5.44 displays the predicted values in the form of the dataframe:

Figure 5.44: Illustration to show the values of prediction
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Figure 5.45 depicts the graph of the decision line for the isotonic regression. This 
decision line explains the best fit model based on minimum residue:

Figure 5.45: Plotting of decision line of Isotonic Regression model

Table 5.6 shows the data related to evaluation metrics of the trained isotonic regression 
model. This is an important step which helps to determine the performance of the 
trained model on the testing dataset.

Evaluation metrics Results
RMSE 12.248
MSE 150.017
MAE 9.803

R2 0.852

Table 5.6: Illustrate the evaluation metrics of the Isotonic Regression model

Classification and its Types
Classification is used for grouping of objects based on the understanding of object 
patterns with respective classes or categories. In other words, it is a special type 
of classification-based supervised learning that returns the discreate outputs 
(prediction) based on the actual observations. The most common example of 
classification is filtering e-mails into spam or non-spam classes. Also, it is being 
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implemented for classification of image patterns or objects from the images/videos. 
There are several types of classification algorithms such as logistic regression, naïve 
bayes, support vector machine, multilayer perceptron classifier, and one-versus-rest 
classifier. The detailed explanation on each algorithm is given as follows.

Naive Bayes Classifier
It is a particular type of classification algorithm in which the class features are 
independent to each other. In other words, the feature present within the class is 
unrelated to the presence of other features in other classes. This approach is driven 
out from the probabilistic problem based on bayes theory. It is a very promising 
algorithm that works efficiently and produces high precision output, a part of other 
classification algorithms. SparkML supports four model types for training the data 
using the Naïve Bayes theorem such as Multinomial Naive Bayes, Complement 
naive bayes, Bernoulli Naive Bayes, and Gaussian Naive Bayes. Also, it extends the 
intrinsic functionality to add the additive smoothing parameter by setting the value 
of λ. The standard mathematical formula of the naïve bayes algorithm is given as 
follows:

Where P(c|x) is the posterior probability, P(c) is the prior probability of class, P(x|c) 
is the likelihood which is the probability of the predictor given class and P(x) is the 
marginal likelihood.

Explanation of Naïve Bayes
This section explains the working mechanism of the naïve bayes algorithm by taking 
a real-world example. The entire working is divided into 4 steps which are given as 
follows:

1. In Figure 5.46, there are two classes of 27 balls in which the red balls are 9 and 
the rest green balls are 18. Also, these groups are distinguished based on the 
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different weight and size. The size and weight represent along X-axis and 
Y-axis, respectively.

Figure 5.46: Representation of two classes of data points in xy-plane

2. Figure 5.47 shows the challenge to add a new ball to the cluster of existing 
balls which is unknown about color and other distinguished parameters. 
Here, the new ball is represented by grey color and for finding the likelihood 
of this ball between green and red classification is explained in the next step.

Figure 5.47: Adding a new ball in the existing cluster of two classes
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3. For that purpose, draw a circle taking new ball as a center. Inside the drawn 
circle, there are two green balls and three red balls excluding the new ball as 
shown in Figure 5.48. The posterior probability will be calculated by naïve 
bayes formula as given here.

Figure 5.48: Drawing a circle by taking the center of a new ball

Posterior probability for red balls:

Posterior probability for green balls:
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4. By the comparison of posterior probability of both balls, the posterior 
probability of red color is greater than the posterior probability of green 
color. Thus, the color of the new ball is red as shown in Figure 5.49:

Figure 5.49: Representing the color of the new ball

The following codebase explains the way to implement the naïve bayes classifier on 
the distributing framework using Apache Spark:

>>%pip install pyspark==3.1.1

>>from pyspark.ml.classification import NaiveBayes

>>from pyspark.ml.evaluation import MulticlassClassificationEvaluator

>>from pyspark.sql import SparkSession

>>from pyspark.sql import SQLContext

>>from pyspark.ml.feature import StringIndexer

>>from pyspark.ml.evaluation import RegressionEvaluator

>>from pyspark.ml.linalg import Vectors

>>from pyspark.ml.feature import VectorAssembler

>>import matplotlib.pyplot as plt

>>import pandas as pd

>>import numpy as np

#Creating Spark application and loading of dataset
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>>spark = SparkSession.builder.appName(‘Naive Bayes Regression’).
getOrCreate()

>>load_data = spark.read.csv(‘/content/sample_data/weight-height.
csv’,inferSchema=True, header=True)

#To show the loaded dataframe

>>load_data.show(5)

>>indexer = StringIndexer(inputCol=’Gender’, outputCol=’label’)

>>load_data = indexer.fit(load_data).transform(load_data)

#Converting into VectorFeature

>>get_assembler = VectorAssembler(inputCols=[‘Height’, 
‘Weight’],outputCol=’features’)

>>assembled_data = get_assembler.transform(load_data)

>>assembled_data.show(5)

>>finalized_data = assembled_data.select(“features”, “label”)

#To show the finalized dataframe

>>finalized_data.show(5)

#Splitting into training and testing dataset

>>training_data,testing_data = finalized_data.randomSplit([0.7,0.3])

# create the trainer and set its parameters

>>nb = NaiveBayes(smoothing=1.0, modelType=”multinomial”)

# train the model

>>model = nb.fit(training_data)

# select example rows to display.

>>predictions = model.transform(testing_data)

>>predictions.show(5)

# compute accuracy on the test set

>>evaluator = MulticlassClassificationEvaluator(labelCol=”label”, 
predictionCol=”prediction”, metricName=”accuracy”)

>>accuracy = evaluator.evaluate(predictions)

>>print(“Accuracy  = “ + str(accuracy))

Output Snippet of the Naïve Bayes Model
This section contains the output snippet of the preceding executed program for 
implementing the naïve bayes classifier algorithm on training and testing data. 
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Figure 5.50 displays the data of the dataframe after reading the CSV and applying 
the VectorAssembler transformation:

Figure 5.50: Illustration to show data of dataframe

Figure 5.51 displays the prediction value of the trained naïve bayes algorithm:

Figure 5.51: Illustration to show predicted values



Supervised Learning with Spark      251

Logistic Regression
Logistic Regression is a SL-based binary classification algorithm for classifying the 
classes by using the Sigmoid function. The continuous output of sigmoid function 
is classified into binary classes/multiple classes by applying a specific threshold 
value as shown in Figure 5.53. The output probability above that threshold should be 
marked as class 1 and rest of the probability will fall in class 0. This method was first 
implemented in the domain of biology in 20th century; after that implementation, this 
method became popular for being a promising approach for classifying the events 
in every vertical. The following equation is used to represent a logistic regression 
model:

Here Y is the probability of an event to happen which readers want to predict (Yi ), 
where i = 1,2,3...n. are the independent variables which determine the occurrence of 
an event. B0 is the constant term which will be the probability of the event happening 
when no other factors are considered and Bi where i = 1,2, 3,…,n are the regression 
coefficients. There are two types of logistic regression algorithms.

•	 Binary Logistic Regression: This algorithm is used when the Y variable is 
comprised two categories.

•	 Multinomial Logistic Regression: When the Y variable comprises three or 
more than three categories, this logistic regression version is used.

Explanation of Logistic Regression
This section explains the working mechanism of the logistic regression algorithm by 
taking a real-world example. The entire working is divided into 2 steps which are 
given as follows:

1. Figure 5.52 represents binary prediction classes such as Employees who left 
the Company and Employees did not leave the Company by considering two 
parameters that are Experience and Probability of promotion lying along X- and 
Y-axis, respectively. The dotted LR line cuts two horizontal lines at 11 (y=0) 
and 12 (y=1) assuming the point l1   shows 5 years and the point 12 shows 25 
years of working experience. From the given figure, it is quite clear that the 
left side of data points of point l1 and right side of data points of point l2 are 
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unable to find the prediction values because those values don’t fall between 
the probability value of 0 and 1.

Figure 5.52: Logistic regression representation to show two parameters on xy plane

2. To overcome the problem discussed earlier, the sigmoid function is used to 
find the prediction of all the outliers which were missing in the preceding 
figure. By taking the mean of the probability as shown in Figure 5.53 is used 
to increase the accuracy during classification. If the probability of any data 
points ranges between 0 to 0.5, then the model will fall that point in class 0 
and the probability above 0.5 of any data points will fall in class 1. With the 
help both classes, that is, 0 and 1 classify the employee whether not left or 
left the organization.

Figure 5.53: Sigmoid function in the logistic regression for classifying the binary classes
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The following codebase explains the way to implement logistic regression on the 
distributing framework using Spark:

>>%pip install pyspark==3.1.1

>>from pyspark.ml.classification import LogisticRegression

>>from pyspark.sql import SparkSession

>>from pyspark.sql import SQLContext

>>from pyspark.ml.feature import StringIndexer

>>from pyspark.ml.evaluation import RegressionEvaluator

>>from pyspark.ml.linalg import Vectors

>>from pyspark.ml.feature import VectorAssembler

>>from pyspark.ml.regression import LinearRegression

>>import seaborn as sns

>>import matplotlib.pyplot as plt

>>import pandas as pd

>>import numpy as np

#Creating Spark application and loading of dataset

>>spark = SparkSession.builder.appName(‘Logistic Regression’).
getOrCreate()

>>load_data = spark.read.csv(‘/content/sample_data/weight-height.
csv’,inferSchema=True, header=True)

#To show the loaded dataframe

>>load_data.show(5)

#To convert stringintovector

>>indexer = StringIndexer(inputCol=’Gender’, outputCol=’label’)

>>final_data = indexer.fit(load_data).transform(load_data)

#Converting into VectorFeature

>>get_assembler = VectorAssembler(inputCols=[‘Height’, 
‘Weight’],outputCol=’features’)

>>assembled_data = get_assembler.transform(final_data)

>>assembled_data.show(5)

>>finalized_data = assembled_data.select(“features”, “label”)

#To show the finalized dataframe

>>finalized_data.show(5)

#Splitting into training and testing dataset

>>training_data,testing_data = finalized_data.randomSplit([0.7,0.3])
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# Load training data

>>lr = LogisticRegression(maxIter=150, regParam=0.3, 
elasticNetParam=0.4)

# Fit the model

>>lrModel = lr.fit(training_data)

>>get_result = lrModel.transform(testing_data)

>>get_result.show(5)

# Print the coefficients and intercept for multinomial logistic 
regression

>>print(“Coefficients: \n” + str(lrModel.coefficientMatrix))

>>print(“Intercept: “ + str(lrModel.interceptVector))

>>trainingSummary = lrModel.summary

# Obtain the objective per iteration

>>ObjHist = trainingSummary.objectiveHistory

>>print(“ObjHist:”)

>>for obj in ObjHist:

>>    print(obj)

# for multiclass, we can inspect metrics on a per-label basis

>>print(“False positive rate by label:”)

>>for i, rate in enumerate(trainingSummary.falsePositiveRateByLabel):

>>    print(“label %d: %s” % (i, rate))

>>print(“True positive rate by label:”)

>>for i, rate in enumerate(trainingSummary.truePositiveRateByLabel):

 >>   print(“label %d: %s” % (i, rate))

>>print(“Precision by label:”)

>>for i, prec in enumerate(trainingSummary.precisionByLabel):

>>    print(“label %d: %s” % (i, prec))

>>print(“Recall by label:”)

for i, rec in enumerate(trainingSummary.recallByLabel):

    print(“label %d: %s” % (i, rec))

print(“F-measure by label:”)

for i, f in enumerate(trainingSummary.fMeasureByLabel()):

    print(“label %d: %s” % (i, f))

accuracy = trainingSummary.accuracy

falsePositiveRate = trainingSummary.weightedFalsePositiveRate
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truePositiveRate = trainingSummary.weightedTruePositiveRate

fMeasure = trainingSummary.weightedFMeasure()

precision = trainingSummary.weightedPrecision

recall = trainingSummary.weightedRecall

print(“Accuracy: %s\nFPR: %s\nTPR: %s\nF-measure: %s\nPrecision: %s\
nRecall: %s”

      % (accuracy, falsePositiveRate, truePositiveRate, fMeasure, 
precision, recall))

#Visualize ROC Curve

import matplotlib.pyplot as plt

plt.figure(figsize=(5,5))

plt.plot([0, 1], [0, 1], ‘r--’)

plt.plot(lrModel.summary.roc.select(‘FPR’).collect(),

         lrModel.summary.roc.select(‘TPR’).collect())

plt.xlabel(‘FPR’)

plt.ylabel(‘TPR’)

plt.show()

Output Snippet of the Logistic Regression Model

This section contains the output snippet of the preceding executed program for 
implementing the logistic regression on training and testing data. Figure 5.54 displays 
the data of the dataframe after reading the CSV and applying the VectorAssembler 
transformation:

Figure 5.54: Illustration to show the data of dataframe by reading a CSV and transforming VectorAssembler
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Figure 5.55 displays the data of predicted values against each label row:

Figure 5.55: Illustration to value of prediction

Figure 5.56 shows the summary insights of this trained logistic regression model:

Figure 5.56: Summary insight of the trained model
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Figure 5.57 shows the evaluation metrics of this trained logistic regression model:

Figure 5.57: Illustration of evaluation metrics of the trained logistic regression model

Figure 5.58 shows the AUC curve of the trained model. It represents the performance 
of logistic regression to classify the two classes by plotting against TPR and FPR.

Figure 5.58: AUC curve of the trained model
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Support Vector Machine (SVM)
SVM can be used for both regression and classification problems but majorly 
recommended to handle the classification problems by using the concept hyperplane 
based on maximum margin. The hyperplane can be found in an N-dimensional space 
for classifying the input data points in different classes. The subset of SVM is called 
Support Vector Regressor (SVR) for solving the regression problems. There are four 
types of SVMs such as Linear Support Vector Machine (LSVM), Quadratic Support 
Vector Machine (QSVM), Radial Basis Function Kernel (RBFK), and Kernel 
Support Vector Machine (KSVM) for handling the linear and non-linear problems 
to separate the classes. But in this section, authors have catered two sub-types such 
as LSVM and KSVM. In LSVM, it draws a linear hyperplane to classify the events 
and in KSVM, it draws a non-linear hyperplane to provide the better accuracy-based 
classification. SparkML support Linear SVC to support binary classification with 
linear SVM which optimizes the Hinge Loss using Orthant-Wise Limited-Memory 
Quasi-Newton (OWLQN) optimizer.

The following codebase explains the way to implement SVM on the distributing 
framework using Spark:

>>%pip install pyspark==3.1.1
>>from pyspark.ml.classification import LinearSVC
>>from pyspark.ml.evaluation import MulticlassClassificationEvaluator
>>from pyspark.sql import SparkSession
>>from pyspark.sql import SQLContext
>>from pyspark.ml.feature import StringIndexer
>>from pyspark.ml.evaluation import RegressionEvaluator
>>from pyspark.ml.linalg import Vectors
>>from pyspark.ml.feature import VectorAssembler
>>import matplotlib.pyplot as plt
>>import pandas as pd
>>import numpy as np
#Creating Spark application and loading of dataset
>>spark = SparkSession.builder.appName(‘LSVM Regression’).getOrCreate()
>>load_data = spark.read.csv(‘/content/sample_data/weight-height.
csv’,inferSchema=True, header=True)
#To show the loaded dataframe
>>load_data.show()
>>indexer = StringIndexer(inputCol=’Gender’, outputCol=’label’)
>>load_data = indexer.fit(load_data).transform(load_data)
#Converting into VectorFeature
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>>get_assembler = VectorAssembler(inputCols=[‘Height’, 
‘Weight’],outputCol=’features’)
>>assembled_data = get_assembler.transform(load_data)
>>assembled_data.show(5)
>>finalized_data = assembled_data.select(“features”, “label”)
#To show the finalized dataframe
>>finalized_data.show(5)
#Splitting into training and testing dataset
>>training_data,testing_data = finalized_data.randomSplit([0.7,0.3])
# create the trainer and set its parameters
>>svmc = LinearSVC(maxIter=200, regParam=0.7)
# train the model
>>svmc_model = svmc.fit(training_data)
# select example rows to display.
>>predictions = svmc_model.transform(testing_data)
>>predictions.show(5)
# compute accuracy on the test set
>>evaluator = MulticlassClassificationEvaluator(labelCol=”label”, 
predictionCol=”prediction”, metricName=”accuracy”)
>>accuracy = evaluator.evaluate(predictions)
>>print(“Accuracy  = “ + str(accuracy))

Output Snippet of the SVM Model
This section contains the output snippet of the preceding executed program for 
implementing the SVM on training and testing data. Figure 5.59 displays the data of 
dataframe after reading the CSV:

Figure 5.59: Illustration to show the data of created dataframe after reading a CSV
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Figure 5.60 displays the feature data after applying the VectorAssembler 
transformation:

Figure 5.60: Illustration to display the data after applying the VectorAssembler transformation

Figure 5.61 displays the predicted values of the trained SVM model:

Figure 5.61: Illustration to show the predicted value

Multilayer Perceptron Classifier (MLPC)
The Multilayer Perceptron Classifier is a feed-forward based NN classifier for 
classifying the classes of data points by observing the labels assigned to them. 
Generally, it consists of the input layer, multiple hidden layers, output layer, and few 
parametric components such as weights, biases, and activation functions for making 
the decision. SparkML provides the Multilayer Perceptron Classifier class to 
extend the functionality of NN-based classification on the distributed processing. 
In MPLC, the first parameter of the layer represents the number of features and 



Supervised Learning with Spark      261

the last parameter shows the number of classes to be used for prediction. Between 
the first and last layer of NN, the intermediate layers are interlinked to each other 
and used to feed-forward propagation. The following codebase explains the way to 
implement the multilayer perceptron classifier on the distributing framework using 
Spark:

>>%pip install pyspark==3.1.1

>>from pyspark.ml.classification import MultilayerPerceptronClassifier

>>from pyspark.ml.evaluation import MulticlassClassificationEvaluator

>>from pyspark.ml.classification import GBTClassifier

>>from pyspark.sql import SparkSession

>>from pyspark.sql import SQLContext

>>from pyspark.ml.feature import VectorAssembler

>>from pyspark.ml.feature import StringIndexer

>>from pyspark.ml.feature import VectorIndexer

>>from pyspark.ml.evaluation import BinaryClassificationEvaluator

>>from pyspark.ml.evaluation import MulticlassClassificationEvaluator

>>import pandas as pd

>>import numpy as np

>>import matplotlib.pyplot as plt

>>import io

#Spark’s application and loading of dataset

>>spark = SparkSession.builder.appName(‘Gradient Boosted Tree 
Classifier’).getOrCreate()

>>data = spark.read.csv(‘/content/sample_data/cancerdata.
csv’,inferSchema=True, header=True)

#Dropping the rows that contains “Null Value”

>>data = data.dropna()

#Show the columns of dataframe

>>data.columns

#Converting the datatype into double or int

>>converteddata = data.selectExpr(“cast(age as int) age”,

    “cast(education as int) education”,

    “cast(currentSmoker as double) currentSmoker”,

    “cast(TenYearCHD as double) TenYearCHD”,
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 “cast(male as int) gender”,

 “cast(cigsPerDay as double) cigsPerDay”,

 “cast(BPMeds as double) BPMeds”,

 “cast(prevalentStroke as double) prevalentStroke”,

 “cast(prevalentHyp as double) prevalentHyp”,

 “cast(diabetes as double) diabetes”,

 “cast(totChol as double) totChol”,

 “cast(sysBP as double) sysBP”,

 “cast(diaBP as double) diaBP”,

 “cast(BMI as double) BMI”,

 “cast(eartrate as double) eartrate”,

 “cast(glucose as double) glucose”)

#Key features selection and converting into vectors

>>converteddata.dropna()

>>assembler = VectorAssembler(inputCols=[‘age’, ‘education’, 
‘currentSmoker’, ‘gender’,’glucose’,’diabetes’],outputCol=’features’)

>>get_output = assembler.transform(converteddata)

>>get_output.printSchema()

>>finalized_data = get_output.select(“features”, “TenYearCHD”)

>>finalized_data = finalized_data.selectExpr(“features”, “TenYearCHD as 
label”)

>>training_data, testing_data = finalized_data.randomSplit([0.7,0.3])

#The input represents the number of features to be used for training a 
model

# Last element in layers represents the number of classes to be used for 
output

# Between first and last elements of layers must be for intermediate 
processing

>>trainer = MultilayerPerceptronClassifier(maxIter=150, layers=[6, 5 , 4, 
6, 4, 2], blockSize=64, seed=50)

# training and testing of the model

>>model = trainer.fit(training_data)

>>result = model.transform(testing_data)

>>result.show(5)
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#Evaluation

>>predictionAndLabels = result.select(“prediction”, “label”)

>>evaluator = MulticlassClassificationEvaluator(metricName=”accuracy”)

>>print(“Test set accuracy = “ + str(evaluator.
evaluate(predictionAndLabels)))

Output Snippet of the MLPC Model
This section contains the output snippet of this program that is executed for 
implementing the MLPC on training and testing data. Figure 5.62 displays the data 
of the dataframe after reading the CSV:

Figure 5.62: Illustration to show the schema of dataframe after reading the CSV

Figure 5.63 displays the data of predicted values against each label row:

Figure 5.63: Illustration to show the predicted values

One versus Rest Classifier/Multi-classification Logistic Regression
One versus rest classifier is also known as multi-classification logistic regression. As 
the name suggests that this classification algorithm is used to classify the multi-class 
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labels from the categorical datasets. It is similar to the logistic regression, but this is 
capable to classify more than two classes of different labels. For distinguishing the n 
multiple classes, it trains a binary classification-based model for each of the n classes 
by assuming one class as the positive category and all the other classes as negative 
category. For instance, if the input dataset has four types of labels to classify the 
classes, then one vs rest classifier algorithm trains four binary classification models 
by applying the several combinations of positive and negative classes. This algorithm 
considers one class as positive and the other three classes as negative and performs 
the same for each combination. After training the four models, the prediction is made 
by considering the best confident model. The following codebase explains the way 
to implement one versus rest classifier on the distributing framework using Spark:

>>%pip install pyspark==3.1.1

>>from pyspark.ml.classification import LogisticRegression, OneVsRest

>>from pyspark.ml.evaluation import MulticlassClassificationEvaluator

>>from pyspark.sql import SparkSession

>>from pyspark.sql import SQLContext

>>from pyspark.ml.feature import VectorAssembler

#Spark’s application and loading of dataset

>>spark = SparkSession.builder.appName(‘Gradient Boosted Tree 
Classifier’).getOrCreate()

>>data = spark.read.csv(‘/content/sample_data/cancerdata.
csv’,inferSchema=True, header=True)

#Dropping the rows that contains “Null Value”

>>data = data.dropna()

#Show the columns of dataframe

>>data.columns

#Converting the datatype into double or int

>>converteddata = data.selectExpr(“cast(age as int) age”,

    “cast(education as int) education”,

    “cast(currentSmoker as double) currentSmoker”,

    “cast(TenYearCHD as double) TenYearCHD”,

 “cast(male as int) gender”,

 “cast(cigsPerDay as double) cigsPerDay”,

 “cast(BPMeds as double) BPMeds”,

 “cast(prevalentStroke as double) prevalentStroke”,
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 “cast(prevalentHyp as double) prevalentHyp”,

 “cast(diabetes as double) diabetes”,

 “cast(totChol as double) totChol”,

 “cast(sysBP as double) sysBP”,

 “cast(diaBP as double) diaBP”,

 “cast(BMI as double) BMI”,

 “cast(heartRate as double) heartRate”,

 “cast(glucose as double) glucose”)

#Key features selection and converting into vectors

>>converteddata.dropna()

>>assembler = VectorAssembler(inputCols=[‘age’, ‘education’, 
‘currentSmoker’, ‘gender’,’glucose’,’diabetes’],outputCol=’features’)

>>get_output = assembler.transform(converteddata)

>>get_output.printSchema()

>>finalized_data = get_output.select(“features”, “TenYearCHD”)

>>finalized_data = finalized_data.selectExpr(“features”, “TenYearCHD as 
label”)

>>training_data, testing_data = finalized_data.randomSplit([0.7,0.3])

# Initializing the classifier base

>>lr_base = LogisticRegression(maxIter=100, tol=1E-6, fitIntercept=True, 
elasticNetParam=0.6)

# Initializing the One Vs Rest Classifier

>>ovr_base = OneVsRest(classifier=lr_base,featuresCol=’features’, 
labelCol=’label’)

>>print(type(ovr_base))

# train the multiclass model.

>>trained_model_ovr = ovr.fit(training_data)

# tranforming operation on testing dataset

>>get_predictions = trained_model_ovr.transform(testing_data)

>>get_data = get_predictions.select(“features”,”label”, “prediction”)

>>get_data.show(5)

# Evaluating the model

>>evaluator = MulticlassClassificationEvaluator(metricName=”accuracy”)



266      Practical Machine Learning with Spark

# Accuracy calculation on testing dataset

>>accuracy = evaluator.evaluate(get_predictions)

>>print(“Test Error = %g”,(accuracy))

Output Snippet of the One versus Rest Classifier Model
This section contains the output snippet of the preceding executed program for 
implementing the one versus rest classifier on training and testing data. Figure 5.64 
displays the schema of the dataframe after reading the CSV:

Figure 5.64: Illustration to show the schema of dataframe after reading the CSV

Figure 5.65 displays the data of predicted values against each label row and error of 
this model:

Figure 5.65: Illustration to show the predicted values and test error
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Classification and Regression Tree (CART)
The statistician Leo Breiman filled the big crevasse in the integration of statistics 
and computer interface. He suggested the decision tree and other improved version 
of decision trees which are being implemented on classification and regression 
problems. This concept provided the foundation stone to develop other imperative 
algorithms in the series of trees like bagged decision, random forest, and boosted 
decision tree. The CART model works on the mechanism of binary tree. In which, 
each root node represents a single input value (x) and the leaf nodes of the tree 
contain an output variable(y) that should be used for prediction.

Terminology in CART
Generally, there are seven indispensable terminologies which are being used for 
designing and implementing the CART such as root node, splitting mechanism, leaf 
or terminal node, pruning, branch or sub-tree, parent, and child node. The deep dive 
explanation on these terminologies is given as follows:

•	 Root Node: The decision tree starts with the first node.

•	 Splitting: It is a division process to split the parent node into child nodes 
using the Gini Impurity mechanism. Gini Impurity is a splitting approach 
which is usually used in decision tree for optimal splitting of nodes from the 
root. 

•	 Leaf/Terminal Node: The last node which can’t be split further.

•	 Pruning: It is an optimization technique to alleviate the complexity of the DT 
by eliminating extra sub-nodes to curtail the issue of overfitting. Hence, this 
step can boost the performance of the DT in terms of accuracy. 

•	 Branch/Sub-tree: The subsection of parent node is called branch or sub-tree.

•	 Parent Node: A node that can be divided into further nodes.

•	 Child Node: The sub-nodes from the parent node.

Decision Tree (DT)
Basically, the DT is a binary and non-parametric approach in supervised learning. 
DT can be implemented as classification and regression trees by leveraging the 
concept of Gini Impurity during the splitting process of the dataset into further sub-
trees. There are so many algorithms for creating the decision tree such as Iterative 
Dichotomiser 3 (ID3), C4.5, Classification And Regression Tree (CART), Chi-Square 
Automatic Interaction Detector (CHAID), and Multivariate Adaptive Regression 
Splines (MARS).
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Decision Tree Classification (DTC) in CART
DTC is used predict the label of each class based on their classification score and 
returns the discreate output. The splitting of the dataset into the decision tree 
can be possible by leveraging the several splitting criteria such as Gini Impurity 
(GI), Entropy, and Misclassification Error (ME). The splitting of DT is based on 
Information Gain (IG), that is, the difference of the parent node’s impurity and 
impurities of the sum of the child nodes. Therefore, the IG is large if the impurity 
of child nodes is less. The following code shows the implementation of DTC on the 
distributed framework using Google Colab:

>>%pip install pyspark==3.1.1

>>from pyspark.ml.classification import RandomForestClassifier

>>from spark_tree_plotting import plot_tree 

>>from pyspark.sql import SparkSession

>>from pyspark.sql import SQLContext

>>from pyspark.ml.feature import VectorAssembler

>>from pyspark.ml.feature import StringIndexer

>>from pyspark.ml.regression import DecisionTreeRegressor

>>from pyspark.ml.feature import VectorIndexer

>>from pyspark.ml.evaluation import RegressionEvaluator

>>from pyspark.ml.classification import DecisionTreeClassifier

>>from pyspark.ml.evaluation import BinaryClassificationEvaluator

>>from pyspark.ml.evaluation import MulticlassClassificationEvaluator

>>from spark_tree_plotting import plot_tree

>>from spark_tree_plotting import export_graphviz

>>from PIL import Image

>>import pandas as pd

>>import numpy as np

>>import matplotlib.pyplot as plt

>>import io

Figure 5.66 depicts the implementation of the previous code in Google Colab to 
initialize the required SparkML modules:
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Figure 5.66: Illustration to show the way to initialize all the important SparkML modules

#Spark’s application and loading of dataset
>>spark = SparkSession.builder.appName(‘trees’).getOrCreate()
>>data = spark.read.csv(‘/content/sample_data/cancerdata.
csv’,inferSchema=True, header=True)
#Dropping the rows that contains “Null Value”
>>data = data.dropna()
#Show the columns of dataframe
>>data.columns
#Converting the datatype into double or int
>>converteddata = data.selectExpr(“cast(age as int) age”,
    “cast(education as int) education”,
    “cast(currentSmoker as double) currentSmoker”,
    “cast(TenYearCHD as double) TenYearCHD”,
 “cast(male as int) gender”,
 “cast(cigsPerDay as double) cigsPerDay”,
 “cast(BPMeds as double) BPMeds”,
 “cast(prevalentStroke as double) prevalentStroke”,
 “cast(prevalentHyp as double) prevalentHyp”,
 “cast(diabetes as double) diabetes”,
 “cast(totChol as double) totChol”,
 “cast(sysBP as double) sysBP”,
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 “cast(diaBP as double) diaBP”,
 “cast(BMI as double) BMI”,
 “cast(eartrate as double) eartrate”,
 “cast(glucose as double) glucose”)
#Key features selection and converting into vectors
>>converteddata.dropna()
>>assembler = VectorAssembler(inputCols=[‘age’, ‘education’, 
‘currentSmoker’, ‘gender’,’glucose’,’diabetes’],outputCol=’get_feature’)
>>get_output = assembler.transform(converteddata)
>>get_output.printSchema()
>>finalized_data = get_output.select(“get_feature”, “TenYearCHD”)
>>training_data, testing_data = finalized_data.randomSplit([0.7,0.3])
>>dtc = DecisionTreeClassifier(labelCol=”TenYearCHD”, featuresCol=”get_
feature”)
>>dtc_model = dtc.fit(training_data)
>>dtc_preds = dtc_model.transform(testing_data)
>>dtc_preds.show()

Figure 5.67 depicts the implementation of the preceding code in Google Colab to 
create the application, read a CSV into dataframe, and convert into datatype into a 
vector format as a feature:

Figure 5.67: Illustration to show create the spark application and  
convert the datatype into VectorFeature
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Figure 5.68 depicts the implementation of this code in Google Colab to train and test 
the DTC model:

Figure 5.68: Illustration to show the training and testing of the model

#evaluation Matrix

>>evaluator = MulticlassClassificationEvaluator(labelCol=”TenYearCHD”, 
predictionCol=”prediction”, metricName=”accuracy”)

>>accuracy = evaluator.evaluate(dtc_preds)

>>print(“Accuracy:”, accuracy)

#Get summary of model and tree structure

>>treeModel = dtc_model

>>print(treeModel)

>>print(dtc_model.toDebugString)

# Visualising the graph 

>>dec_tree = plot_tree(dtc_model, featureNames = [‘age’, ‘education’, 
‘currentSmoker’, ‘gender’,’glucose’,’diabetes’], classNames=[0,1], filled 
= True)

>>image = Image.open(io.BytesIO(dec_tree))

>>path_for_image = “/content/output”

>>image_name = path_for_image + “_” + “.png”

>>image.save(image_name)
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Figure 5.69 depicts the implementation of this code in Google Colab to evaluate the 
trained model:

Figure 5.69: Illustration to show the evaluation of this trained DTC model

Output Snippet of the DTC Model

This section contains the output snippet of this program that is executed for 
implementing the DTC on the training and testing data. Figure 5.70 displays the 
schema of the dataframe after reading the CSV:

Figure 5.70: Illustration to show the schema of dataframe after reading the CSV
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Figure 5.71 displays the data of predicted values against each label row:

Figure 5.71: Illustration to show the predicted values

Figure 5.72 displays key summaries of the trained DTC model:

Figure 5.72: Illustration to summary of the trained DTC model
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Figure 5.73 displays the tree diagram of the trained DTC model for classifying the 
data points:

Figure 5.73: The tree diagram of the trained DTC model

Decision Tree Regression (DTR)
DTR is used to predict the labels for the target dataset and returns the continuous 
output. The splitting of the dataset into the decision tree regression can be possible 
by leveraging the several splitting criteria such as least squares and least absolute 
deviations. The following code shows the implementation of DTR on the distributed 
framework using Google Colab:

>>%pip install pyspark==3.1.1

>>from pyspark.ml.regression import DecisionTreeRegressor

>>from pyspark.sql import SparkSession

>>from pyspark.sql import SQLContext

>>from pyspark.ml.feature import StringIndexer

>>from pyspark.ml.linalg import Vectors

>>from pyspark.ml.regression import GBTRegressor

>>from pyspark.ml.feature import VectorIndexer

>>from pyspark.ml.evaluation import RegressionEvaluator

>>from pyspark.ml.feature import VectorAssembler

>>import matplotlib.pyplot as plt
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>>import pandas as pd

>>import numpy as np

#Creating Spark application and loading of dataset

>>spark = SparkSession.builder.appName(‘Linear Regression’).
getOrCreate()

>>load_data = spark.read.csv(‘/content/sample_data/weight-height.
csv’,inferSchema=True, header=True)

#To show the loaded dataframe

>>load_data.show()

#Converting into VectorFeature

>>get_assembler = 
VectorAssembler(inputCols=[‘Weight’],outputCol=’features’)

>>assembled_data = get_assembler.transform(load_data)

>>assembled_data.show()

>>finalized_data = assembled_data.selectExpr(“features”, “Height as 
label”)

>>finalized_data = finalized_data.select(“features”, “label”)

#To show the finalized dataframe

>>finalized_data.show()

>>training_data,testing_data = finalized_data.randomSplit([0.7,0.3])

>>dtr = DecisionTreeRegressor(featuresCol=”features”, maxDepth=30)

# train the model

>>dtr_model = dtr.fit(training_data)

# select example rows to display.

>>predictions = dtr_model.transform(testing_data)

>>predictions.show(100)

# compute accuracy on the test set

>>evaluator = RegressionEvaluator(labelCol=”label”, 
predictionCol=”prediction”, metricName=”rmse”)

>>rmse = evaluator.evaluate(predictions)

>>print(“RMSE= %g” % rmse)
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Output Snippet of the DTR Model
This section contains the output snippet of this executed program for implementing 
the DTR on the training and testing data. Figure 5.74 displays the schema of the 
dataframe after reading the CSV:

Figure 5.74: Illustration to show the schema of the dataframe after reading the CSV

Figure 5.75 displays the data of the created dataframe after applying the 
VectorAssembler transformation. This step is used to generate the feature in the 
Vector format for training the DTR model:

Figure 5.75: Illustration to display the data after transformation
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Figure 5.76 displays the feature and label data that can be used for training the DTR 
model:

Figure 5.76: Illustration of  feature and label

Figure 5.77 displays the predicted values of the trained model after applying the test 
data:

Figure 5.77: Outcome screenshot to display the predicted values
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Figure 5.78 displays the RMSE value of the trained model:

 
Figure 5.78: Illustration to show the RMSE value

Ensemble Learning (EL)
Ensemble Learning or EL is an advanced method to enhance the prediction accuracy 
of the ML model by combining the average outputs from several ML algorithms. In 
other words, it provides the robustness and high stability to the ML model that gets 
the capability to be applied on any testing dataset with better precision. Generally, 
there are two approaches through which a ML model can use the functionality of EL 
during live production such as bootstrap aggregation (bagging) and boosting. These 
two ways are usually used to decrease issue of variance and decrease the pain of 
overfitting. Figure 5.79 shows the working of EL by considering three important steps 
which are explained as follows. In step 1, the full-set dataset is divided into different 
subsets and fed into different model such as D1.Model1, D2.Model2, D3.Model3, 
D4.Model4, and D5.Model5. This splitting process takes place by leveraging the 
concept of bootstrapping. In step 2, the outcome/result of different models get 
aggregated by taking the average of all the outputs and then in step 3, it generates 
the prediction for each class.

Figure 5.79: Flow diagram of ensembling learning in ML
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Bootstrap Aggregation (Bagging)
Bagging is a method to adopt the concept of EL which helps to reduce the high 
variance issue that can be seen in DT. In bagging, the subset of the dataset is fed 
to the multiple decision tree; this data splitting step is known as bootstrap.  After 
generating the prediction from each trained DT, the voting classifier can be applied 
for taking the majority decision. In other words, it is used to aggregate the multiple 
result into a single result based on majority known as aggregation. Random Forest 
works on the mechanism of bagging which helps to eradicate the issue of DT like 
high computation, overfitting, and high variance.

Random Forest Tree (RFT)
Random Forest Tree is an improved version to mitigate the challenges of DT and 
boost the overall performance of the ML model. As the name suggests, a RFT is 
amalgamation of several DTs that follows the internal procedure of bagging technique 
for better prediction. While training of RFT, all the trees are run in parallel without 
having any weights interaction with each other. Also, it is an effective approach to 
estimate the dodge/missing data for making the similar regularity in large portion of 
the dataset. The spark.ml extends the RFT functionality for implementing the binary 
and multiclass classification and regression. With massive dataset, the RFT doesn’t 
work well in terms of computation, hence it becomes a challenge while deploying 
at production environment. Generally, RFT is of two types such as Random Forest 
Classifier (RFC) and Random Forest Regression (RFR).

Internal Working of Random Forest
Figure 5.80 shows how a random forest does work to make the more accurate 
prediction than the decision tree. In random forest, the test data is split into small 
data chunks such as D1, D2,…, DN and then fed to the several DTs by using the 
concept of bootstrapping. The bootstrapping process makes the parallel training of 
multiple DTs without any dependency to each other. Once all the DTs are trained, 
the concept of voting classifier needs to be applied to get the aggregated output 
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from the several DTs. This aggregation step helps to predict the value using the 
mechanism of random forest.

Figure 5.80: Flow diagram of random forest in ML

Random Forest Classifier
This section contains the codebase to implement the random forest classifier on 
training and testing data using Apache Spark. The distributed processing is being 
applied on the CPU hardware configuration by using Google:

>>%pip install pyspark==3.1.1

>>from pyspark.ml.classification import RandomForestClassifier

>>from pyspark.sql import SparkSession

>>from pyspark.sql import SQLContext

>>from pyspark.ml.feature import VectorAssembler

>>from pyspark.ml.feature import StringIndexer

>>from pyspark.ml.regression import DecisionTreeRegressor

>>from pyspark.ml.feature import VectorIndexer

>>from pyspark.ml.evaluation import RegressionEvaluator

>>from pyspark.ml.classification import DecisionTreeClassifier

>>from pyspark.ml.evaluation import BinaryClassificationEvaluator
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>>from pyspark.ml.evaluation import MulticlassClassificationEvaluator

>>import pandas as pd

>>import numpy as np

>>import matplotlib.pyplot as plt

>>import io

#Spark’s application and loading of dataset

>>spark = SparkSession.builder.appName(‘trees’).getOrCreate()

>>data = spark.read.csv(‘/content/sample_data/cancerdata.
csv’,inferSchema=True, header=True)

#Dropping the rows that contains “Null Value”

>>data = data.dropna()

#Show the columns of dataframe

>>data.columns

#Converting the datatype into double or int

>>converteddata = data.selectExpr(“cast(age as int) age”,

    “cast(education as int) education”,

    “cast(currentSmoker as double) currentSmoker”,

    “cast(TenYearCHD as double) TenYearCHD”,

 “cast(male as int) gender”,

 “cast(cigsPerDay as double) cigsPerDay”,

 “cast(BPMeds as double) BPMeds”,

 “cast(prevalentStroke as double) prevalentStroke”,

 “cast(prevalentHyp as double) prevalentHyp”,

 “cast(diabetes as double) diabetes”,

 “cast(totChol as double) totChol”,

 “cast(sysBP as double) sysBP”,

 “cast(diaBP as double) diaBP”,

 “cast(BMI as double) BMI”,

 “cast(heartRate as double) heartRate”,

 “cast(glucose as double) glucose”)

#Key features selection and converting into vectors

>>converteddata.dropna()
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>>assembler = VectorAssembler(inputCols=[‘age’, ‘education’, 
‘currentSmoker’, ‘gender’,’glucose’,’diabetes’],outputCol=’get_feature’)

>>get_output = assembler.transform(converteddata)

>>get_output.printSchema()

>>finalized_data = get_output.select(“get_feature”, “TenYearCHD”)

>>training_data, testing_data = finalized_data.randomSplit([0.7,0.3])

>>rfc = RandomForestClassifier(labelCol=”TenYearCHD”, featuresCol=”get_
feature”, numTrees=100, seed=50)

>>rfc_model = rfc.fit(training_data)

>>rfc_preds = rfc_model.transform(testing_data)

>>rfc_preds.show(5)

#evaluation Matrix

>>evaluator = MulticlassClassificationEvaluator(labelCol=”TenYearCHD”, 
predictionCol=”prediction”, metricName=”accuracy”)

>>accuracy = evaluator.evaluate(rfc_preds)

>>print(“Accuracy:”, accuracy)

#Get summary of model and tree structure

>>treeModel = rfc_model

>>print(treeModel)

>>print(rfc_model.toDebugString)

Output Snippet of the RFC Model

Figure 5.81 depicts the schema of data after reading the CSV in the dataframe:

Figure 5.81: Illustration to show the schema of dataframe



Supervised Learning with Spark      283

Figure 5.82 depicts the predicted values and accuracy of the trained model:

Figure 5.82: Illustration to show predicted values and accuracy of the model

Random Forest Regression (RFR)
This section contains the codebase to implement random forest regression on training 
and testing data using Apache Spark. The distributed processing is being applied on 
the CPU hardware configuration by using Google:

>>%pip install pyspark==3.1.1

>>from pyspark.ml.regression import RandomForestRegressor

>>from pyspark.sql import SparkSession

>>from pyspark.sql import SQLContext

>>from pyspark.ml.feature import StringIndexer

>>from pyspark.ml.linalg import Vectors

>>from pyspark.ml.regression import GBTRegressor

>>from pyspark.ml.feature import VectorIndexer

>>from pyspark.ml.evaluation import RegressionEvaluator

>>from pyspark.ml.feature import VectorAssembler

>>import matplotlib.pyplot as plt

>>import pandas as pd

>>import numpy as np

#Creating Spark application and loading of dataset
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>>spark = SparkSession.builder.appName(‘Linear Regression’).
getOrCreate()

>>load_data = spark.read.csv(‘/content/sample_data/weight-height.
csv’,inferSchema=True, header=True)

#To show the loaded dataframe

>>load_data.show()

#Converting into VectorFeature

>>get_assembler = 
VectorAssembler(inputCols=[‘Weight’],outputCol=’features’)

>>assembled_data = get_assembler.transform(load_data)

>>assembled_data.show()

>>finalized_data = assembled_data.selectExpr(“features”, “Height as 
label”)

>>finalized_data = finalized_data.select(“features”, “label”)

#To show the finalized dataframe

>>finalized_data.show()

#Splitting into training and testing dataset

>>training_data,testing_data = finalized_data.randomSplit([0.7,0.3])

>>rfr = RandomForestRegressor(featuresCol=”features”, 
maxDepth=30,numTrees=200)

# train the model

>>rfr_model = rfr.fit(training_data)

# select example rows to display.

>>predictions = rfr_model.transform(testing_data)

>>predictions.show(100)

# compute accuracy on the test set

>>evaluator = RegressionEvaluator(labelCol=”label”, 
predictionCol=”prediction”, metricName=”rmse”)

>>rmse = evaluator.evaluate(predictions)

>>print(“Root Mean Squared Error (RMSE) = %g” % rmse)

Output Snippet of the RFR Model
This section contains the output snippet of the preceding executed program for 
implementing the RFR on the training and testing data. Figure 5.83 displays the data 
of the dataframe after reading the CSV and transforming into the VectorFeactures:
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Figure 5.83: Illustration to show data of dataframe

Figure 5.84 depicts the predicted values and accuracy of the trained model:

Figure 5.84: Illustration  to show predicted values and accuracy of the model
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Boosting
The boosting algorithms work on the ideation of strengthening the individual 
learners by applying the weighted averages among the several models. As the name 
suggests, it is a smart way to make a strong learner from a weak one by sharing 
the weights from one model to other models. Gradient-Boosted Trees (GBTs) are 
regression methods that consist of ensembles of decision trees. These iteratively 
train decision trees to minimize a loss function. GBTs handle categorical features 
which is extended to the multiclass classification setting which do not require feature 
scaling. In SparkML, it adapts the functionality of GBTs for binary classification and 
regression by calling the GBTRegressor and GBTClassifier. GradientBoostedTree 
(GBT) gives the prediction error ten times lower than boosting or RF. Light GBM is 
almost 7 times faster than GBT on large datasets.

Gradient Boosted Tree Classifier (GBTC)
This section contains the codebase to implement GBTC on the training and testing 
data using Apache Spark. The distributed processing is being applied on the CPU 
hardware configuration by using Google:

>>%pip install pyspark==3.1.1

>>from pyspark.ml.classification import GBTClassifier

>>from pyspark.sql import SparkSession

>>from pyspark.sql import SQLContext

>>from pyspark.ml.feature import VectorAssembler

>>from pyspark.ml.feature import StringIndexer

>>from pyspark.ml.feature import VectorIndexer

>>from pyspark.ml.evaluation import BinaryClassificationEvaluator

>>from pyspark.ml.evaluation import MulticlassClassificationEvaluator

>>import pandas as pd

>>import numpy as np

>>import matplotlib.pyplot as plt

>>import io

#Spark’s application and loading of dataset

>>spark = SparkSession.builder.appName(‘Gradient Boosted Tree 
Classifier’).getOrCreate()

>>data = spark.read.csv(‘/content/sample_data/cancerdata.
csv’,inferSchema=True, header=True)

#Dropping the rows that contains “Null Value”
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>>data = data.dropna()

#Show the columns of dataframe

>>data.columns

#Converting the datatype into double or int

>>converteddata = data.selectExpr(“cast(age as int) age”,

    “cast(education as int) education”,

    “cast(currentSmoker as double) currentSmoker”,

    “cast(TenYearCHD as double) TenYearCHD”,

 “cast(male as int) gender”,

 “cast(cigsPerDay as double) cigsPerDay”,

 “cast(BPMeds as double) BPMeds”,

 “cast(prevalentStroke as double) prevalentStroke”,

 “cast(prevalentHyp as double) prevalentHyp”,

 “cast(diabetes as double) diabetes”,

 “cast(totChol as double) totChol”,

 “cast(sysBP as double) sysBP”,

 “cast(diaBP as double) diaBP”,

 “cast(BMI as double) BMI”,

 “cast(heartRate as double) heartRate”,

 “cast(glucose as double) glucose”)

#Key features selection and converting into vectors

>>converteddata.dropna()

>>assembler = VectorAssembler(inputCols=[‘age’, ‘education’, 
‘currentSmoker’, ‘gender’,’glucose’,’diabetes’],outputCol=’get_feature’)

>>get_output = assembler.transform(converteddata)

>>get_output.printSchema()

>>finalized_data = get_output.select(“get_feature”, “TenYearCHD”)

>>training_data, testing_data = finalized_data.randomSplit([0.7,0.3])

>>gbtc = GBTClassifier(labelCol=”TenYearCHD”, featuresCol=”get_feature”)

>>gbtc_model = gbtc.fit(training_data)

>>gbtc_preds = gbtc_model.transform(testing_data)

>>gbtc_preds.show(5)
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#evaluation Matrix

>>evaluator = MulticlassClassificationEvaluator(labelCol=”TenYearCHD”, 
predictionCol=”prediction”, metricName=”accuracy”)

>>accuracy = evaluator.evaluate(gbtc_preds)

>>print(“Accuracy:”, accuracy)

#Get summary of model and tree structure

>>treeModel = gbtc_model

>>print(treeModel)

>>print(gbtc_model.toDebugString)

Output Snippet of the GBTC Model
This section contains the output snippet of the previous program that is executed 
for implementing the GBTC on training and testing data. Figure 5.85 displays the 
schema of the dataframe after reading the CSV:

Figure 5.85: Illustration to show schema of dataframe
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Figure 5.86 depicts the predicted values and accuracy of the trained model:

Figure 5.86: Illustration to show predicted values with accuracy of the model

Gradient Boosting Tree Regression (GBTR)
This section contains the codebase to implement GBTR on training and testing 
data using Apache Spark. The distributed processing is being applied on the CPU 
hardware configuration by using Google:

>>%pip install pyspark==3.1.1

>>from pyspark.ml.classification import LinearSVC

>>from pyspark.ml.evaluation import MulticlassClassificationEvaluator

>>from pyspark.sql import SparkSession

>>from pyspark.sql import SQLContext

>>from pyspark.ml.feature import StringIndexer

>>from pyspark.ml.evaluation import RegressionEvaluator

>>from pyspark.ml.linalg import Vectors

>>from pyspark.ml.regression import DecisionTreeRegressor

>>from pyspark.ml.regression import GBTRegressor

>>from pyspark.ml.feature import VectorIndexer

>>from pyspark.ml.evaluation import RegressionEvaluator

>>from pyspark.ml.feature import VectorAssembler

>>import matplotlib.pyplot as plt

>>import pandas as pd

>>import numpy as np
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#Creating Spark application and loading of dataset

>>spark = SparkSession.builder.appName(‘Gradient Boosted Tree 
Regression’).getOrCreate()

>>load_data = spark.read.csv(‘/content/sample_data/weight-height.
csv’,inferSchema=True, header=True)

#To show the loaded dataframe

>>load_data.show(5)

>>indexer = StringIndexer(inputCol=’Gender’, outputCol=’label’)

>>load_data = indexer.fit(load_data).transform(load_data)

#Converting into VectorFeature

>>get_assembler = VectorAssembler(inputCols=[‘Height’, 
‘Weight’],outputCol=’features’)

>>assembled_data = get_assembler.transform(load_data)

>>assembled_data.show(5)

>>finalized_data = assembled_data.select(“features”, “label”)

#To show the finalized dataframe

>>finalized_data.show(5)

#Splitting into training and testing dataset

>>training_data,testing_data = finalized_data.randomSplit([0.7,0.3])

>>dtr = GBTRegressor(featuresCol=”features”, maxDepth=15, 
seed=40,labelCol=”label”,stepSize=0.7)

# train the model

>>dtr_model = dtr.fit(training_data)

# select example rows to display.

>>predictions = dtr_model.transform(testing_data)

>>predictions.show(5)

# compute accuracy on the test set

>>evaluator = RegressionEvaluator(labelCol=”label”, 
predictionCol=”prediction”, metricName=”rmse”)

>>rmse = evaluator.evaluate(predictions)

>>print(“Root Mean Squared Error (RMSE) = %g” % rmse)
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Output Snippet of the GBTR Model
This section contains the output snippet of the preceding executed program for 
implementing the GBTR on training and testing data. Figure 5.87 displays the data 
of the dataframe after reading the CSV and transforming into the VectorFeatures:

Figure 5.87: Illustration to show data of SparkDF after reading a CSV

Figure 5.88 displays the predicted values of the trained model against each label:

Figure 5.88: Illustration to show the predicted values of the dataframe
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Figure 5.89 displays the RMSE value of the trained model:

Figure 5.89: Illustration to show the RMSE value

Performance Metrics/Evaluation Metrics (EM)
Once the model is trained, it is necessary to check the effectiveness of that model on the 
testing dataset. The effectiveness on the trained model can be tested by implementing 
several performances or evaluation metrices based on classification and regression 
algorithms. EM is an evaluation phase to monitor and measure the accuracy of the 
trained model on the unseen dataset or testing dataset. In classification metrices, 
it consists of several performance metrics such as Confusion Matrix, F1-Score, 
Area Under the Receiver Operating Characteristics (AUROC), Log-Loss, Recall, 
Precision, Sensitivity, and Specificity. On the other hand, Regression metrices consist 
of Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared 
Error (RMSE), and R-Squared (R2). Mostly, the ML model without evaluation may 
cause the issue biasness in term of accuracy. So, it is recommended to evaluate the 
performance of a model prior to the production level deployment.

Classification Metrices
Presently, the problems based on classification algorithms are most engrossing 
research domains to the world’s researchers for enhancing the applicability of 
intelligence-based automation and overall performance of a system for better 
decision making such as production-level or industrial-level deployment in speech 
recognition, face recognition, face detection, text classification, and sentimental 
analysis. Here, the metrics predict a discreate target value for each class. For 
evaluating the performance of the model, it provides several approaches to check 
how well a model will work on the unseen dataset. The classification metrics are 
frequently used in the ML model such as SVM, Logistic Regression, Decision Tree 
Classifier, Random Forest Classifier, Gradient-Boost Tree Classifier, and so on. The 
detailed explanation about the classification metrics is as follows.

Confusion Matrix (CM)
CM is a matrix representation between the number of classes of actual labels and the 
number of classes of predicted labels. The order of the matrix must always be 2 x 2, as 
it is used to evaluate the performance of a binary classification model. Furthermore, 
it has four dimensions that can be used for evaluating the accuracy, such as True 
Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN). 



Supervised Learning with Spark      293

Figure 5.96 represents more in-depth details about these dimensions:

Figure 5.90: Taxonomy of different types of Supervised Learning

•	 True Positive (TP): This represents the case when the actual label and 
predicted label both are true (1,1).

•	 True Negative (TN): This represents the case when the actual label is false (0) 
and predicted label is false (0). 

•	 False Positive (FP): This represents the case when the actual label is false (0) 
and predicted label is true (1).

•	 False Negative (FN): This represents the case when the actual label is true (1) 
and predicted label is false (0).

Accuracy
Accuracy is defined as the ratio of number of correct observations/predictions to 
total observations/predictions. It has no unit and doesn’t work well on unbalanced 
classes. The accuracy metric is calculated using the confusion matrix with the help 
of the following formula:

Precision
Precision is an updated version of accuracy metric which works well when the class 
distribution is unbalanced. For example, retrieving of correct documents generated 
by any ML models. Universally, it is ratio of True Prediction (TP) and total true 
predictions (TP + FP) as:

A
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True Positive Rate (TPRs) / Recall/ Sensitivity/ Hit-Rate
Recall is defined as the ratio of TPs to the total number of true values (TP + FN). 
In other words, it returns the number of true events by using any ML models. The 
mathematical formula is given here:

Specificity
Specificity is just opposite of recall metric that defines the total number of TNs 
generated by any ML models. The mathematic formula is given as follows:

Moreover, False Positive Rate (FPR)/fallout can be derived from specificity metric 
as:

FPR = 1- Specificity

F1 score
F1-Score is the harmonic mean of precision and recall values. If the F1-score of 
any model intends towards 1, then the model is a good classifier. But the F1-Score 
intends towards 0, then the model is not a good classifier. The formula for F1-Score 
is as follows:

Area Under the Curve - Receiver Operating Characteristics Curve 
(AUC-ROC)/Area Under the Receiver Operating Characteristics 
(AUROC)
It is the most promising way to measure the performance of any classification model in 
ML, at various thresholds. In AUROC, the term ROC represents the probability curve 
and AUC represents the degree of separability of any model. The amalgamation of 
AUC-ROC extends the functionality to distinguish the classes more accurately along 
with area under the curve. The accuracy/performance factor of a model depends on 

P

R

S
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the value of AUC. The higher the value of AUC, the higher the rate of precision of  
a model. This curve is plotted between TPR and FPR, taking TPR along Y-axis and 
FPR along X-axis. The area under the curve is known as AUC-ROC.

Regression Metrics
The classification metrics are used to evaluate the performance of any ML model 
based on discreate output, but Regression metrics works on continuous output for 
measuring the performance of the model. There are several methods to calculate the 
metric (distance) of outliers/residue to the intercept line such as Mean Absolute 
Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and 
R-Squared (R2) error.

Mean Squared Error (MSE)
MSE is used to calculate the mean of the squared difference between the ground-
truth values and the predicted values. The mathematical formula is:

Where   represents ground-truth value,  represents predicted value, and n is number 
of observations. MSE is a differentiable function, hence it optimizes the model 
precisely than others. Lower the value of MSE means the model will predict the 
values with more accuracy. Where yi, y ̂i, and n have usual meaning.

Mean Absolute Error (MAE)
MAE is a non-differentiable metric for measuring the performance of any regression 
model. It is the mean of the absolute difference between the ground-truth values and 
the predicted values. The mathematical formula is:

Root Mean Squared Error (RMSE)
It is a square root of the mean of the squared difference between the ground-truth 
values and the predicted values of the regression model. The mathematical formula is:
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R-Squared/Coefficient of Determination
It is the most common metric to measure the performance of the model by taking 
the ratio of the variance for a dependent variable and independent variable. The 
mathematical formula is:

Where yi, y ̂i, n have usual meaning and y  ̅ represents mean of the ground-truth  
values.

Churn Prediction Model
The churn prediction model is also known as the attrition prediction model that 
helps the organization about the percentage of employees that may leave during 
a particular time of period. This is a binary classification problem in which the 
output either be 0 or 1. This type of people analytics supports the organization to 
maintain the ideal strength in the office. Also, it provides the insight about when 
the senior management will leave the organization, through that the impact could 
be minimum. For training an attrition model, it is important to understand key 
behaviors of the customer, based on that the key features are to be fed as input. 
Mainly, the classification trees are most recommended to understand the key features 
and calculating the probability when the employee will leave the organization. 
The following code shows the implementation churn prediction model using the 
decision tree:

%pip install pyspark==3.1.1

>>from pyspark.sql import SparkSession

>>from pyspark.sql import SQLContext

>>from pyspark.ml.feature import VectorAssembler

>>from pyspark.ml.feature import StringIndexer

>>from pyspark.ml import Pipeline

>>from pyspark.ml.regression import DecisionTreeRegressor

>>from pyspark.ml.feature import VectorIndexer

>>from pyspark.ml.evaluation import RegressionEvaluator

>>from pyspark.ml.classification import DecisionTreeClassifier

>>from pyspark.ml.evaluation import BinaryClassificationEvaluator

>>from pyspark.ml.evaluation import MulticlassClassificationEvaluator

>>import matplotlib.pyplot as plt
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>>import pandas as pd

#Creating Spark’s application and loading of dataset

>>spark = SparkSession.builder.appName(‘trees’).getOrCreate()

>>get_data = spark.read.csv(‘/content/sample_data/Churn_Modelling.
csv’,inferSchema=True, header=True)

#To check the name of columns of dataframe

>>get_data.columns

#Converting the features into vector space features

>>get_assembler = VectorAssembler(inputCols=[

 ‘CreditScore’,

 ‘Age’,

 ‘Tenure’,

 ‘Balance’,

 ‘NumOfProducts’,

 ‘HasCrCard’,

 ‘IsActiveMember’,

 ‘EstimatedSalary’],outputCol=’get_feature’)

>>assembled_data = get_assembler.transform(get_data)

>>assembled_data.show()

>>finalized_data = assembled_data.select(“get_feature”, “Exited”)

>>training_data, testing_data = finalized_data.randomSplit([0.7,0.3])

#Calling DecisionClassifier class for training the model

>>dtc = DecisionTreeClassifier(labelCol=”Exited”, featuresCol=”get_
feature”)

>>dtc_model = dtc.fit(training_data)

>>dtc_preds = dtc_model.transform(testing_data)

>>dtc_preds.show()

#Evaluation

>>evaluator = MulticlassClassificationEvaluator(labelCol=”Exited”, 
predictionCol=”prediction”, metricName=”accuracy”)

>>accuracy = evaluator.evaluate(dtc_preds)

>>print(“Accuracy of the model on testing dataset:”,accuracy)
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#Summary of the model

>>get_tree_summary = dtc_model

>>print(get_tree_summary)

Output Snippet of the Churn Prediction Model
This section contains the output snippet of the preceding executed program for 
implementing the churn prediction model on training and testing data. Figure 5.91 
illustrates the predicted values to show who is having the high probability to leave 
the company:

Figure 5.91: Illustration of predicted output with accuracy of the model

Conclusion
This chapter presents the intuitive understanding about the several supervised 
learning algorithms with their implementation on the Google Colab framework 
using Apache Spark. The three types of branches in SL provide the flexibility to deal 
with continuous and non-continuous (discrete) response values. Also, it explains the 
concept of ensemble learning algorithms to improve the overall performance of the 
model. In the next chapter, we will cover the NLP and its imperative features.
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Chapter 6
Un-Supervised 
Learning with 
Apache Spark

“A mathematician, like a painter or a poet, is a maker of patterns. If his 
patterns are more permanent than theirs, it is because they are made with 
ideas.”

— G. H. Hardy 

Introduction
Unsupervised Learning (USL) techniques are commonly used approaches that 
are accepted in various applications such as classification of images, knowing 
hidden patterns in the data, finding outliers/anomalies, segmentation of images, 
recommendation, and natural language processing problems. USL provides the ease 
of implementing various algorithms on the unlabeled data to predict the actual label 
of the data as an outcome. This chapter presents comprehensive details about the 
different types of identical grouping mechanism like the clustering technique. This 
technique is being used for easily distributing of similar item from the random heap 
of items along with implementation code base. All the implementations are executed 
on the distributed framework of Google Colab with Graphic Processing Unit (GPU) 
as a hardware configuration.
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Structure
In this chapter, we will discuss the following topics:

•	 Introduction to clustering and its types

•	 Detailed explanation about K-means and its implementation

•	 Detailed explanation about bisecting K-means (BKM) and its implementation

•	 Explanation of Gaussian Mixture Model (GMM) and its implementation

•	 Laconic view on Latent Dirichlet Allocation (LDA)

Objectives
After studying this chapter, readers will be able to:

•	 Understand the basics of clustering and types of clustering

•	 Implement the distributed processing of K-means, BKM, GMM using Spark

•	 Understand the concept of LDA

Clustering
Clustering is an unsupervised ML method of dividing and identifying large datasets 
into small groups of data points known as clusters on the basis of certain criteria; 
for instance, similarity. Mathematically, the grouping of data points is such that 
the distance between data points within the cluster is minimal. In other words, the 
cluster is a region where the density of the similar data points is high. It depends on 
the type of algorithms employed to decide how the cluster will be created and does 
not concern the outcomes. Generally, there two types of clustering such as hard and 
soft clustering. In hard clustering, each data points belong to dis-joint clusters or a 
single cluster, whereas in the soft clustering, it belongs to more clusters. K-means is 
an example of hard clustering and weighted k-means is ideal for soft clustering. The 
brief explanation on the types of clustering is given below:

•	 Partitioning Clustering (PC)
It is an iterative algorithm to minimize the specific objective function for 
clustering the given data till an optimal partition is achieved. PC is mostly 
used to create clusters and through this user can specify the number of 
clusters to be created for the clustering method. These algorithms fall into 
three categories.



Un-Supervised Learning with Apache Spark      301

•	 Density-Based Clustering (DBC)
The clusters are created on the density basis of the data points. The region 
where the data points are very few known as sparse regions or outlier or 
space anomalies. Dimension orientation of DBC is of any type. The Density 
Based on Spatial Clustering Applications with Noise (DBSCAN), Ordering 
Points to Identity Clustering Structure (OPTICS), and Hierarchical Density 
Based Spatial Clustering of Applications with Noise (HDBSCAN) are the 
examples of DBC.

In DBSCAN, users can select two parameters such as distance and minimum 
points for clustering the data sets. The distance shows how close data 
points can be taken as neighbors. However, it cannot form clusters from 
heterogeneous density data. OPTICS is a revised form of DBSCAN to avoid 
preceding drawbacks. In OPTICS, users can take two more parameters 
such as core distance and reachability. HDBSCAN is an extended version 
of the DBSCAN technology by converting it to a hierarchical clustering  
algorithm.

•	 Hierarchical Clustering (HC)
HC is an algorithm of cluster analysis which shows how to build a high 
hierarchy of cluster, that is, a tree type structure. It starts by assuming average 
data point as a separate cluster. It can be performed with either a distance 
metric or raw data. There are two types of HC such as agglomerative (bottom-
up approach) and divisive (top-down approach). In the agglomerative 
approach, initially each point of the dataset acts as one cluster and then, 
it groups the cluster one by one. The hierarchy of the cluster is known as 
dendrogram of the tree structure. In this divisive approach, the process 
starts with total data points as one big cluster and divides them to create 
furthermore clusters. The term distance metrics such as such as Minkowski 
Distance, Manhattan Distance, Euclidean Distance, Cosine Distance, Jaccard 
Distance, and Hamming Distance of the clusters can be used to calculate 
the distance of one test observation from all the observations of the training 
dataset for finding the nearest k neighbors within the cluster. It is a recurring 
process that happens for each and every test observation to find the similarity 
in the data. Also, the various linkages (single linkage, complete linkage, 
average linkage, and centroid linkage) are a recurring process which apply 
in every test observation. HC is deterministic and gives a local solution. The 
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in-depth details on different types of linkage in HC is explained as:

	Single Linkage: In Single Linkage, the calculated minimum distance 
between two points of the two clusters is the distance between two 
clusters.

Figure 6.1: Illustration of Single Linkage in HC

	Complete Linkage: In Complete Linkage, the calculated maximum 
distance between two points of the two clusters is the distance 
between two clusters.

Figure 6.2: Illustration of Complete Linkage in HC
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	Average Linkage: In Average Linkage, the calculated average 
distance between of all the points of the two clusters is the distance 
between two clusters.

Figure 6.3: Illustration of Average Linkage in HC

	Centroid Linkage: In Centroid Linkage, the calculated distance 
between two centroids of the two clusters, calculate the distance 
between two clusters.

Figure 6.4: Illustration of Centroid Linkage in HC

•	 Fuzzy Clustering (FC)

In FC, one data point can belong to more than one cluster; it gives the outcome 
as the probability of the data points belonging to the each of the cluster. One 
of the algorithms used in FC is Fuzzy C-means clustering like the K-Means 
clustering except parameters like fuzzifier and membership values.
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K-Means under Clustering
K-means is a clustering method based on unsupervised learning used to identify 
clusters of similar data points in an unlabeled dataset by passing only one input 
vector. K-means method partitions the whole dataset into k-cluster based on distance 
metric; for example, Euclidean distance. In K-means, choosing of the right number 
of cluster k is the main step. This can be taken care by using the concept of elbow 
method, silhouette score, and so on. It is non-deterministic due to the random  
choice of initial centroid. In other words, it is an algorithm that tries to minimize the 
sum of the distance of the point in the cluster with their centroid. Generally, it fails 
when the data contains the outlier, having very far data points from the centroid. It 
also suffers from the local minima convergence problem, and which is taken care 
in BKM by considering the global minima concept. Also, it cannot identify non-
spherical, different size and density of the cluster. Most of the time, the hierarchy 
clustering becomes fast when k is small. The flow of the K-means algorithm is given 
as follows.

Flow of K-Means
Figure 6.5 shows the step-by-step inner mechanism of K-means with n number of 
data points to identify the clusters of a similar one. In the first step, the user assigns 
the number of k to be used for the clustering number. Then, the next step needs to 
select the random k points in the n number of data points for assigning the centroids. 
In the third step, the data points needs to be assigned to the closest centroid and then, 
again compute the new centroid by considering the mean density of data points. In 
the last step, the whole process is iterated again and again until all the data points 
get assigned to the closest centroid.

Figure 6.5: Flow procedure of internal working of k-means
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In this section, the reader will get to know the detailed working of the K-means 
algorithm through the graphical concept. The graphical representation of K-means 
is highlighted as follows. Figure 6.6 shows the scattering of n number of data points 
in X-Y plane. Here, we assume n =10:

 
Figure 6.6: Random sampling of n number of data points in X-Y plane

Figure 6.7 shows the assigning of k=2 for clustering the given data points in X-Y 
plane:

 
Figure 6.7: Assigning of k number of centroids for clustering



306      Practical Machine Learning with Spark

Figure 6.8 shows the computing of the perpendicular distance between the two 
centroids and assigning of data points to the closest centroid in X-Y plane:

Figure 6.8: Computing and assigning of data points closest to each centroid.

Figure 6.9 shows the re-computing of centroids space by considering the mean of the 
data points, then re-compute the perpendicular distance between the two centroids 
and assigning of data points to the closet centroid in X-Y plane. This step will be 
iterated until all the data points to be assigned to the closest centroids.

 
Figure 6.9: Re-computing and re-assigning of data points closest to each centroid
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Figure 6.10 shows a full clustered stage where the data points are separated into k=2 
clusters:

Figure 6.10: Full clustered stage to distribute two classes of data points

Figure 6.11 shows two spherical-shaped clusters (k=2) for distinguishing the two 
classes among n number of data points:

Figure 6.11: Two spherical shaped clusters, k=2.
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The following code base shows the implementation of the elbow method for getting 
the ideal number of k value in clustering of data points using the PySpark framework 
of Google Colab. The code illustrates the way to perform the K-means algorithm 
on the dataset of customers who visited the mall for the shopping purpose. This 
algorithm helps to identify the key insights of customer datapoint and generate the 
different clusters on basis of their similarities. The age, income, and spending score 
of customers are taken as the features that to be fed as an input to the K-means 
model:
!pip install pyspark==2.1.2

import pyspark

conf = pyspark.SparkConf()

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

from pyspark.sql import SparkSession

from pyspark.ml.feature import StandardScaler

from pyspark.ml.clustering import KMeans,KMeansModel,KMeansSummary

from pyspark.ml.linalg import Vectors

from pyspark.ml.feature import VectorAssembler

import pylab as pl

import pandas as pd

import numpy as np

#Create a Spark application

spark = SparkSession.builder.appName(‘KMeans Implementation’).
getOrCreate()

#Reading of dataset

df = spark.read.format(‘com.databricks.spark.csv’).
options(header=’true’, inferschema=’true’).load(‘/content/sample_data/
Mall_Customers.csv’)

#Columns in dataframe

print(df.columns)

#Show dataframe

df.show()
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Figure 6.12 depicts the implementation of the preceding code in Google Colab. The 
preceding code initializes the required modules, creates the spark’s application, and 
reads the CSV file in a data frame:

Figure 6.12: Implemented code to initialize, create spark application, and read in dataframe

#Applying VectorAssembler

assembler = VectorAssembler(inputCols = [“Age”,”Annual_
Income”,”SpendingScore”], outputCol = “features”)

output = assembler.transform(df)

output.show(5)

#Applying StandardScaler

scaler = StandardScaler(inputCol=”features”, outputCol=”scaledFeatures”)

scaler_model = scaler.fit(output)

final_data = scaler_model.transform(output)

final_data.show(5)

#Elbow Curve for getting the preferred number of K.

cost_function = np.zeros(10)

for k in range(2,10):

kmeans = KMeans().setK(k).setSeed(1).setFeaturesCol(‘scaledFeatures’)

model = kmeans.fit(final_data)

cost_function[k] = model.computeCost(final_data)
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Figure 6.13 depicts the implementation of the preceding code to apply VectorAssembler 
and Standard Scaler transformations. After that, the cost function is calculated from 
the fitted model to get the Elbow curve which recommends the ideal number of k 
values for clustering the K-means:

Figure 6.13: Code to apply VectorAssembler, StandardScaler, and cost function for drawing the elbow curve

# Plot the cost

df_cost_func = pd.DataFrame(cost_function[2:])

df_cost_func.columns = [“cost”]

add_col = [2,3,4,5,6,7,8,9]

df_cost_func.insert(0, ‘cluster’, add_col)

#Ploting Curve

pl.plot(df_cost_func.cluster, df_cost_func.cost)

pl.xlabel(‘Number of Clusters’)

pl.ylabel(‘Score’)

pl.title(‘Elbow Curve’)

pl.show()”
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Figure 6.14 depicts the implementation of the preceding code to plot the elbow  
curve:

Figure 6.14: Code to plot elbow curve

Output of codebase
This section contains the output of the preceding executed program for plotting the 
elbow curve. Figure 6.15 depicts the read data from the CSV file as in the data frame:

Figure 6.15: Code to display the content of data frame
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Figure 6.16 depicts the output of the data frame after applying VectorAssembler and 
StandardScaler transformations:

Figure 6.16: Screenshot of code to display dataframe after applying  
VectorAssembler and StandardScale transformations

Figure 6.17 depicts the elbow curve for choosing the ideal number of k value:

Figure 6.17: Code to draw an elbow curve

The preceding elbow curve helps the reader to choose the ideal number of k value to 
cluster down the data points with more accuracy. The following program will give 
an idea how to implement the K-means algorithm on the distributed framework 
using Google Colab:
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!pip install pyspark==2.1.2

import pyspark

conf = pyspark.SparkConf()

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

from pyspark.sql import SparkSession

from pyspark.ml.feature import StandardScaler

from pyspark.ml.clustering import KMeans,KMeansModel,KMeansSummary

from pyspark.ml.linalg import Vectors

from pyspark.ml.feature import VectorAssembler

import seaborn as sns

from mpl_toolkits.mplot3d import Axes3D

spark = SparkSession.builder.appName(‘KMeans’).getOrCreate()

df = spark.read.format(‘com.databricks.spark.csv’).
options(header=’true’, inferschema=’true’).load(‘/content/sample_data/
Mall_Customers.csv’)

assembler = VectorAssembler(inputCols = [“Age”, “Annual_
Income”,”SpendingScore”], outputCol = “features”)

output = assembler.transform(df)

output.show(5)

Figure 6.18 depicts the implementation to initialize the required modules, creates the 
spark’s application, reads the CSV file in a data frame, and applies VectorAssembler 
on the data frame:

Figure 6.18: Code initializing modules and reading of csv file into data frame
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The following code shows the implementation to apply StandardScaler, K-means, 
Set Sum of Squared Errors (SSSE), centre of centroids, and conversion of spark’s 
data frame into pandas’s data frame for plotting 3D scattering plot:
scaler = StandardScaler(inputCol=”features”, outputCol=”scaledFeatures”)
scaler_model = scaler.fit(output)
print(scaler_model)
final_data = scaler_model.transform(output)
final_data.show(5)
#Clustering
KMeans = KMeans(featuresCol=”scaledFeatures”, k=4, 
predictionCol=”prediction”)
model = KMeans.fit(final_data)
cost = model.computeCost(final_data)
print(“Within Set Sum of Squared Errors = “,cost)
centers = model.clusterCenters()
print(“Computing Cluster Centers”)
for center in centers:
print(center)
model = model.transform(final_data)
model.show(5)
#Converting into Pandas
model = model.toPandas()

Figure 6.19 depicts the implementation of this code for implementing StandardScaler, 
K-means, Sum of Squared Error (SSE), centroids centre, and conversion of spark’s 
data frame into pandas’s data frame:

Figure 6.19: Code for training a K-means model
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The following code shows the implementation to draw a 3D scattering plot of 
K-means clusters:
#Scatter Plot 

sc_plt = plt.figure(figsize=(17,12)).gca(projection=’3d’)

sc_plt.scatter(model.Age,model.SpendingScore, model.Annual_Income, 
c=model.prediction)

sc_plt.set_xlabel(‘x’)

sc_plt.set_ylabel(‘y’)

sc_plt.set_zlabel(‘z’)

plt.show()

Figure 6.20 depicts the executed code for drawing a 3D scattering plot of K-means 
clustering:

Figure 6.20: Code to draw a 3D scatter plot for K-means

Output of Codebase
This section contains the output of the preceding executed program for implementing 
the K-means algorithm on a data frame and plotting of the 3D scatter graph of the 
result to show the datapoints grouped into clusters. Figure 6.21 depicts the output of 
the data frame after applying VectorAssembler and StandardScaler transformations:

Figure 6.21: Code to display output of data frame after applying transformations
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Figure 6.22 shows the SSSE, three centers of centroids, and output of K-means model 
on the testing dataset:

Figure 6.22: Prediction output of K-means

Figure 6.23 shows the plotting of the 3D scatter graph for showing the datapoints 
based on its prediction values that is generated by K-means:

 
Figure 6.23: Output to draw an 3D scatter for K-means
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Bisecting K-means Algorithm (BKM)
It is a modified version of K-means to overcome the limitation of the K-means 
algorithm. For entropy measurement, it is better than K-means. In BKM, first 
initialize the K centroids randomly and by other methods like elbow curve, and so 
on. The process in BKM starts with one cluster considering all the random points 
into one. After that, it uses a K-means on the dataset to bisect the cluster into two 
clusters in each iteration. Perform the bisecting process for a fixed number of trails 
and at last, choose the best cluster with minimum SSSE.

Flow of BKM
Figure 6.24 shows the step-by-step inner mechanism of BKM with n number of data 
points to identify the clusters of similar data points. In the first step, the user considers 
all the random datapoints as a whole cluster. In the next step, this algorithm bisects 
the single cluster into two clusters as k=2. Then, the SSSE is to be computed which 
helps further classifying of datapoints where the SSSE is maximum. In the last step, 
the whole process is iterated again and again until the desirable k value would be 
achieved:

Figure 6.24: Flow procedure of internal working of BKM
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In this section, the reader will get to know the detailed working of the BKM algorithm 
through the graphical concept. The graphical representation of BKM is highlighted 
as follows. Figure 6.25 shows the scattering of n numbers of data points in X-Y plane 
and then, considering all the datapoints as one cluster:

 
Figure 6.25: Random number of datapoints and consideration them as one cluster

Figure 6.26 shows the bisecting of the cluster using K-means for achieving the 
desirable number of k value, here k =3:

 
Figure 6.26: Bisecting of cluster into two parts, k=2
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Figure 6.27 shows the splitting of one into two clusters and further it will be separated 
on the basis of computed SSSE:

Figure 6.27: Splitting of one cluster into two clusters

Figure 6.28 shows the further splitting of the cluster based of the computed SSSE. It 
will split the cluster into further which has the maximum computed SSSE:

Figure 6.28: Further splitting of cluster using computed maximum SSSE
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 Figure 6.29 shows the three clusters which are classified into a specific number of k 
value that is, k=3:

 
Figure 6.29: Final clustering step, where k=3 is achieved

The following code shows the implementation of bisecting the K-means algorithm 
to classify the datapoints into the same group clusters. The first part of code is 
used to install and import the indispensable modules or packages. Then, the data 
which is read in the form of spark’s data frame is fed to the VectorAssembler and 
StandardScaler transformations.

!pip install pyspark==2.1.2

import pyspark

conf = pyspark.SparkConf()

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

from pyspark.sql import SparkSession

from pyspark.ml.feature import StandardScaler

from pyspark.ml.clustering import KMeans,KMeansModel,KMeansSummary

from pyspark.ml.linalg import Vectors

from pyspark.ml.feature import VectorAssembler

import seaborn as sns

from mpl_toolkits.mplot3d import Axes3D

from pyspark.ml.clustering import BisectingKMeans



Un-Supervised Learning with Apache Spark      321

spark = SparkSession.builder.appName(‘KMeans’).getOrCreate()

df = spark.read.format(‘com.databricks.spark.csv’).
options(header=’true’, inferschema=’true’).load(‘/content/sample_data/
Mall_Customers.csv’)

assembler = VectorAssembler(inputCols = [“Age”, “Annual_
Income”,”SpendingScore”], outputCol = “features”)

output = assembler.transform(df)

output.show(5)

scaler = StandardScaler(inputCol=”features”, outputCol=”scaledFeatures”)

scaler_model = scaler.fit(output)

print(scaler_model)

final_data = scaler_model.transform(output)

final_data.show(5)

Figure 6.30 shows the executed code for applying multiple operations such as 
package installation, modules initialization, reading of CSV into dataframe, and 
transformations:

Figure 6.30: Executed code for reading and implementing transformations on dataframe

The following part of the code is used to apply the bisecting algorithm, computation 
of SSSE, and conversion of spark’s data frame to pandas’s data frame:

#Clustering

bkm = BisectingKMeans().setK(4).setSeed(1)

model = bkm.fit(final_data)
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cost = model.computeCost(final_data)

print(“Within Set Sum of Squared Errors = “,cost)

centers = model.clusterCenters()

print(“Computing Cluster Centers”)

for center in centers:

    print(center)

model = model.transform(final_data)

model.show(5)

#Converting into Pandas

model = model.toPandas()

Figure 6.31 shows the executed code for BKM, computation of SSSE, computation of 
centroids centers, and conversion of spark’s data frame into the Python version of 
the data frame for plotting the 3D scattering graph:

Figure 6.31: Executed code for implementing BKM

The last part of the code shows the way to draw a 3D scatter plot for displaying the 
clustering result of BKM in the graphical mode:
#Scatter Plot

 

sc_plt = plt.figure(figsize=(17,12)).gca(projection=’3d’)

sc_plt.scatter(model.Age,model.SpendingScore, model.Annual_Income, 
c=model.prediction)

sc_plt.set_xlabel(‘x’)

sc_plt.set_ylabel(‘y’)
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sc_plt.set_zlabel(‘z’)

plt.show()

Figure 6.32 shows the executed code for plotting the 3D scattering graph:

Figure 6.32: Code to plot a 3D scatter graph

Output of Codebase
This section contains the output of the preceding executed program for implementing 
BKM on a data frame and plotting of the 3D scatter graph of the result to show the 
same datapoints grouped together into clusters. Figure 6.33 depicts the output of the 
data frame after applying VectorAssembler and StandardScaler transformations:

 
Figure 6.33: Data frame after applying VectorAssembler and StandardScaler
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Figure 6.34 depicts the output of SSSE, cluster centers, and prediction data frame 
after applying BKM:

 
Figure 6.34: Prediction output of BKM

Figure 6.35 shows the plotting of the 3D scatter graph for showing the datapoints 
based on its prediction values that is generated by BKM:

Figure 6.35: Illustration of code to draw an 3D scatter for BKM
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Gaussian Mixture Model (GMM)
There are some limitations of the K-means algorithm such as non-accountability 
for variance, no scope for non-spherical clusters, and failure to handle soft 
classification related problems. To overcome the earlier mentioned hurdles, a GMM 
is recommended to handle both types of clustering such as soft clustering and hard 
clustering for the unlabeled dataset. Moreover, it performs much better than any 
other cluster method on oblong and overlapping clusters, especially in Statistical 
Modelling (SM) or Probabilistic Model (PM) from the normal distribution. The 
PM leverages the codes of statistics to examine or test the data for providing the idea 
about the uncertainty in predictions. Generally, the GMM known as a probabilistic 
model to deal the problems related to the soft clustering approach for distributing 
the n number of datapoints in different clusters by leveraging their Gaussian 
distribution. Also, Gaussian Mixture implements Expectation-Maximization (EM) 
algorithm for fitting a mixture-of-Gaussian models. The number of clusters among 
the datapoints can be assessed by drawing confidence ellipsoids for multivariate 
models and compute the Bayesian Information Criterion. EM is a technique to 
determine the mean and variance values for each Gaussian distribution when the 
total data are not available. The missing variables are known as latent variables. In 
GMM, each point belongs to cluster of as given data it depends on its probability. 
(For computing in the binary system, probability values can be taken as 0 and 1). 
Using a fix probability  below and above, respectively. In unsupervised learning, 
readers will need to assume the number of clusters first. Then, the readers can find 
optimum values for latent variables using existing data by EM. Those values will 
help to determine the model parameters. Based on these parameters, the reader can 
go back and update the values of the latent variables. This process is repeated to 
maximize the function.

The following code shows the implementation of the GMM algorithm to classify the 
datapoints into the same group together into specific clusters. The first part of the 
code is used to install and import the indispensable modules or packages. Then, the 
data which is read in the form of spark’s data frame is fed to the VectorAssembler 
and StandardScaler transformations.

!pip install pyspark==2.1.2

import pyspark

conf = pyspark.SparkConf()

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

from pyspark.sql import SparkSession

from pyspark.ml.feature import StandardScaler

from pyspark.ml.clustering import KMeans,KMeansModel,KMeansSummary
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from pyspark.ml.linalg import Vectors

from pyspark.ml.feature import VectorAssembler

from pyspark.ml.clustering import GaussianMixture

>>import seaborn as sns

from mpl_toolkits.mplot3d import Axes3D

spark = SparkSession.builder.appName(‘KMeans’).getOrCreate()

df = spark.read.format(‘com.databricks.spark.csv’).
options(header=’true’, inferschema=’true’).load(‘/content/sample_data/
Mall_Customers.csv’)

assembler = VectorAssembler(inputCols = [“Age”, “Annual_
Income”,”SpendingScore”], outputCol = “features”)

output = assembler.transform(df)

output.show(5)

Figure 6.36 shows the executed code for applying multiple operations such as 
package installation, modules initialization, reading of CSV into data frame, and 
transformations:

Figure 6.36: Executed code for reading and implementing transformations on data frame

The following part of the code is used to apply the StandardScaler transformation, 
GMM, and conversion of the data frame from spark version to pandas’s version for 
plotting the 3D scatter graph:

scaler = StandardScaler(inputCol=”features”, outputCol=”scaledFeatures”)

scaler_model = scaler.fit(output)

print(scaler_model)

final_data = scaler_model.transform(output)
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final_data.show(5)

#Clustering

gmm = GaussianMixture().setK(4).setSeed(538009335)

model = gmm.fit(final_data)

model = model.transform(final_data)

model.show(5)

#Converting into Pandas

model = model.toPandas()

#Scatter Plot 

sc_plt = plt.figure(figsize=(17,12)).gca(projection=’3d’)

sc_plt.scatter(model.Age,model.SpendingScore, model.Annual_Income, 
c=model.prediction)

sc_plt.set_xlabel(‘x’)

sc_plt.set_ylabel(‘y’)

sc_plt.set_zlabel(‘z’)

plt.show()

Figure 6.37 shows the executed code to apply StandardScaler, GMM, and 3D Scatter 
plot:

Figure 6.37: Executed code for applying GMM and 3D scatter plot
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This section contains the output of the preceding executed program for implementing 
GMM on a data frame and plotting of the 3D scatter graph of the result to show the 
same datapoints grouped together into clusters. Figure 6.38 depicts the output of the 
data frame after applying VectorAssembler and StandardScaler transformations:

Figure 6.38: The output of data frame after applying VectorAssembler and StandardScaler

Figure 6.39 depicts the output of the prediction data frame after applying GMM:

Figure 6.39: The output of GMM as a data frame
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Figure 6.40 shows the plotting of the 3D scatter graph for showing the datapoints 
based on its prediction values that is generated by GM:

Figure 6.40: Code to draw an 3D scatter for GMM

Latent Dirichlet Allocation (LDA)
LDA is an unsupervised learning-based classification for performing the topic 
modeling. Topic Modeling is a well-known method to classify the words in a stack of 
a document and assign the topic to give the flexibility to see the often-used insights 
such as top n topics in a document, importance of each word in a document, and 
classification of a sentence or a document based on its intent of the content. It works 
on the mechanism of soft clustering, where a document can belong to more than 
one topic. In the general words, LDA is a statistical method to be used to search the 
hidden pattern behavior or intent in a collection of texts. The detailed implementation 
of LDA is shown in “Natural Language Processing with Apache Spark” chapter. In 
the market of Natural Language Processing (NLP), there are several algorithms to 
perform the topic modeling:
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•	 Latent Semantic Analysis (LSA)

•	 Probabilistic Latent Semantic Analysis (PLSA)

Conclusion
Unsupervised learning is the way to classify and cluster the similar characteristics by 
analyzing the hidden or unseen patterns from the unlabeled data by using various 
mathematical methods such as K-means, BKM, LDA, and GMM. Mainly, it enhances 
the ease to handle a massive dataset which is having unlabeled information into a 
similar group, or a similar cluster. This chapter helps the reader to understand the 
concept of distributed unsupervised learning and its code base for implementation in 
a better way. As we know, the distributed flavor within a ML or DL related problems, 
it helps to train and test the model with less time. The next chapter will focus on the 
detailed studies on how to design a distributed Natural Language Processing.
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Chapter 7
Natural Language 

Processing with 
Apache Spark

“Every language is a world. Without translation, we would inhabit 
parishes bordering on silence.”

— George Steiner

Introduction
In the present era, we can see a rapid increase in the volume of digital data in 
every vertical such as social media, e-news, e-magazine, e-translation, e-banking, 
e-marketing, and e-shopping. In 2020, due to the tremendous jolt of COVID-19 
pandemic, the volume of e-content has been making a long leap and that will 
remain and continue in the coming years.  The term Natural Language Processing 
(NLP) has been introduced as a new branch of AI and DL to analyze this massive 
volume of multi-lingual textual content and convert them into a meaningful insight. 
By adopting the features of NLP, it provides the ease and extends the feasibility 
to understand complex languages as a human mind does. This chapter presents a 
comprehensive summary about the evolution of NLP and distributed processing 
in NLP using the SparkNLP library. Main components, features, embeddings, 
various standalone NLP libraries, and emerging applications with future scope are 
also mentioned in this chapter. In addition, the implementation of topic modeling, 
text-classification, and sentimental analysis have been duly presented in a simple 
manner for the better understanding of the readers. Moreover, a laconic discussion 
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on alternate distributed framework and advanced enhancement has been given in 
this chapter.

Structure
In this chapter, we will discuss the following topics:

•	 Introduction and evolution of NLP

•	 SparkNLP and its relevance

•	 Components and features of NLP

•	 Various embeddings techniques in NLP

•	 Most often used NLP libraries

•	 Topic modeling and text classification

•	 Sentimental analysis

•	 Comparison between NLP, NLU, and NLG

•	 Alternate framework to deal with distributed NLP

•	 Future enhancement in NLP

•	 Applications of NLP

Objectives
After studying this chapter, readers will be able to:

•	 Gain awareness about the legacy of NLP

•	 Understand the distributed processing of SparkNLP and its core features

•	 Grasp the knowledge of different components and embeddings of NLP

•	 Have awareness about most often used NLP libraries

•	 Understand the concept of topic modeling, text classification, and sentimental 
analysis with their codebase

•	 Know the future scope and key applications of NLP

•	 Grasp the knowledge about another distributed framework for NLP
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Evolution of Natural Language Processing
In 1950, the term NLP first came into existence when Alan Turing, an AI pioneer 
published a research paper entitled Machine and Intelligence. In his published paper, 
he discussed a test for a machine, in which he claimed that if a machine can be part of 
a conversation using a teleprinter, then it can also be taught how to imitate a human. 
In addition, he also mentioned that repeated patterns would allow a machine to 
learn like the same, after which it could be considered capable of thinking.

Thereafter in 1954, the Georgetown University and IBM were the first who had 
successfully translated six Russian language sentences into English language. They 
showed for the first time the possibility of NLP in the real world. However, NLP 
had not fully matured till the late 1980s when the first statistical machine translation 
system (translations generated through a statistical model) was developed.

In the same decade, the Chomsky and other researchers had worked on the formal 
language theory and generative syntax. In mid 1960s, an early natural language 
processing computer program (ELIZA) took the center stage of that decade which 
was developed at the MIT Artificial Intelligence Laboratory by Joseph Weizenbaum 
to elucidate the superficiality of communication between humans and machines. It 
revealed that communication with machines did not involve contextualizing events 
and only followed a script. ELIZA also paved the way for today’s chatbots (also 
known as chatterbots).

After that, 1970s was the decade of creating structured real-world information into 
computer-understandable data. In this decade, several programs improved on the 
available technology. Notable progress had been noticed at the start of the year 1972 
that had included PARRY chatbot or simply PARRY developed by Professor Kenneth 
Colby at Stanford University. An ELIZA was developed to speak as a doctor while 
PARRY was developed to simulate a patient with Schizophrenia.

The 1980s were the historical decade in the field of NLP, when machine learning 
algorithms were used for language processing. There was a surge in computational 
power and the gradual simplification of linguistics.

In 1983, Racter, a tongue-in-cheek chatbot was created by mindscape. It was 
developed by William Chamberlain and Thomas Ettera and used to generate 
English language prose at random. The program of this chatbot was written in 
complied BASIC language having 64K of RAM. After a year, in 1984 an interactive 
version of Racter was developed by Inrac Corporation for Apple II computer, IBM 
PC computer, and Amiga. Thereafter, in 1984 a British programmer Rollo carpenter 
created a Jabberwacky chatbot. It was aimed to simulate a human conversation in 
an entertaining way.
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In 1990, several researchers had spilled out their legs towards probabilistic and 
data-driven approach to deal with complex languages. In 2000, a large amount of 
spoken and textual data became available for testing and implementation purpose 
for enhancing the capabilities of  NLP. 

Currently, the 21st century is an era of automatic feature learning and deep neural 
network-style machine learning. These include word embeddings to capture 
semantics and higher-level questions and answers for giving birth to Neural 
Machine Translation (NMT). It uses an artificial neural network to predict a 
sequence of words, modeling an entire sentence in a single integrated model. This 
advancement has opened the door for some latest important applications such as 
intelligent keyboards and email response suggestions to speech-enabled assistance 
by machines.

NLP and its Types
NLP is a branch of AI that makes machines capable of understanding, interpreting, 
and manipulating human-speaking languages like English, Hindi, and so on, 
into meaningful languages or compatible embeddings. It is a process in which 
machines decode human languages and teach the model according to the decoded 
instructions.  For example, Google Voice Search (Speech Recognition), sentiment 
analysis, and search engines (online hotel and flight booking apps), question 
answering, paraphrasing, or summarizing, natural language business intelligence, 
language modeling, disambiguation, and social website feeds. Traditionally, the text 
mining-related work was entirely based on rules and patterns through programming 
languages like Prolog. Later, it was incorporated with ML, DL, and statistical-based 
models. Typically, NLP is divided into three levels such as low-level, mid-level, 
and high-level. The low-level text functions adapts the rudimentary processes 
steps to make the text format which is understandable to system like conversion 
of unstructured data into structured data. This level consists of various processing 
steps such as tokenization, Part-of-speech tagging, chunking, sentence boundaries, 
and syntax analysis. In mid-level, it involves extracting the meaningful content that 
can be further used in other insights such as entities, themes, topics, summaries, and 
intentions. The last level is used for deep analysis of text for making the decisive 
insight like sentimental analysis.

Due to increase in the demand, we need to have an advanced AI system which 
can facilitate the functionality of NLP for enhancing the machine tendency to 
read, understand, and interpret the content. The input for NLP may be structured, 
un-structured, and semi-structured data that can be extracted from social media, 
raw documents, News APIs, journal papers, and magazines. There are two ways 
to achieve or cater the functionality of NLP in any system. Firstly, the researchers 
started with the condition or rule based approach; later, they upgraded to machine 
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learning and deep learning-based approach for NLP. Let us discuss both approaches 
one by one.

Artificial Intelligence-Based Approach
In AI-based approach, the NLP pipeline leverages the components of ML algorithms 
and conceptualization of Data Science such as supervised, un-supervised, and 
Exploratory Data Analysis (EDA). Figure 7.1 depicts the NLP workflow of the AI/
ML-based model in which the entire process is segmented into three phases. In the 
first phase, the documentation or rows of sentences are read as an input and then 
fed to the second phase for pre-processing the content into numerical values which 
is understandable to the machine. In the third phase, the features pass through the 
ML pipeline, which trains a model for predicting the outcome while applying on the 
testing dataset.

Figure 7.1: ML workflow to train an NLP model

Deep Learning or The Neural Network Approach
DL or NN-based approach provides the ease to train efficient NLP models for big data, 
integrates faster configuration at the processing time using Graphical Processing 
Unit (GPU)/Tensor Processing Unit (TPU), reusing the pre-trained weights to new 
problems using Transfer Learning (TL), better regularization, and optimization 
methods. In DL, the automatic recursive self-learning of features can be done 
from the source inputs and intermediate weighted layers, which is a big difference 
between the ML-based NLP pipeline and DL-based NLP pipeline. However, feature 
learning and extracting are easy to adapt and fast to grasp; leveraging that user can 
improve the model accuracy and get easiness when deploying the same. Currently, 
there are several models based out of NN such as Window-based NN, Long-Short-
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Term-Memory Model (LSTM), Recurrent Neural Network (RNN), Graph Neural 
Network (GNN) and Convolutional Neural Network (CNN). Figure 7.2 shows the 
workflow of the DL-based NLP model; the phases incorporated in this workflow are 
like the ones in the ML-based workflow. Only, the ML phase is replaced by the DL 
mechanism which includes activation functions, hidden layers, output layer, input 
layer, optimizer, loss functions, regularizations, and many more components.

Figure 7.2: DL workflow to train an NLP model

A Laconic View on SparkNLP
Currently, there are myriad of open-source libraries such as scikit-learn, Gensim, 
Vader, SpaCy, Blob, AllenNLP, NLTK, StanfordNLP, Hugging Face, Rasa NLU, 
and FastText which empower NLP to create a robust pipeline. But these preceding 
outlined libraries are designed to run on standalone mode, instead of a distributed 
pattern. Hence, these are outperformed with small datasets and take more time 
when dealing with complex or cumbersome datasets. However, Spark MLlib has 
strived to become a reason to fulfil the need of distributed processing in NLP by 
clinching the most of ML models like Linear Regression, Logistic Regression, SVM, 
Random Forest, K-means, and LDA. But still, it has some flaws like no integration 
with DL and NN; hence, it is not entirely recommended for NLP use cases.

Due to preceding limitations, a research team from John Snow Labs in USA has 
developed a distributed NLP library named as SparkNLP. It is an advanced 
layer which floats over a distributed framework using Spark ML. It provides the 
ease and flexibility to simple, robust, relevance, and tailor-based NLP pipelines 
to train and test the model in a distributed manner. Generally, it caters about 
1100+ pretrained pipelines and models in more than 192+ languages. It also extends 
their functionality towards NN and DL by adopting various advanced NN models 
such as BERT, XLNet, ELMO, ALBERT, and Universal Sentence Encoder. SparkNLP 
performs all the indispensable features like other libraries do, including tokenization, 
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word segmentation, part-of-speech tagging, named entity recognition, dependency 
parsing, spell checking, multi-class text classification, multi-class sentiment analysis, 
machine translation, summarization, and question answering.

Advantages of SparkNLP
SparkNLP has many advantages other than other standalone and distributed 
frameworks. Few key strengths of SparkNLP is listed down with detailed explanation:

•	 An unify wrapper to meet all the NLP requirements

SparkNLP provides a unify library for providing the high-precision, high-
availability and scalability by integrating the various components of NLP 
such as sentence detection, tokenization, stemming, lemmatization, part-
of-speech tagger, bag-of-words, text matcher, data matcher, spell checker, 
chunking, pre-trained models, reinforcement in models, transfer learning in 
models, and sentimental analysis.

Thus, it can act as a bridge among the different component’s named 
mountains to easy walk through the journey of NLP with no hassle. Mainly, 
SparkNLP consists of all the indispensable steps, including loading of 
training data, various transformations, NLP annotators, building features, 
training, evaluating, and testing of models with hyperparameter tuning.

•	 Provide ease and more precision by leveraging DL, NN, and Transfer 
Learning (TL)

Due to the big enhancements in the field of DL, there is an option of using a 
pre-trained model by taking the key features of a source dataset and employ 
it for different sources of the dataset through the concept of TL. Generally, 
the transfer learning and DL approaches are used to improve the accuracy 
in the result and create a robust model with high scalability. It is quite 
challenging to get a high accuracy in NLP when training a model on a small 
dataset. With the help of transfer learning, a user can handle this challenge 
by transferring the extracted features to learn or fine-tune a new model for 
task at hand. Thus, SparkNLP provides a good solution which can connect 
all the dots in a single pipeline and provide the ease to the user to run the 
model effectively on a production framework. There are several open-source 
pre -trained models such as ELMo, BERT, RoBERTa, ALBERT, XLNet, Ernie, 
ULMFiT, OpenAI transformer, which are all open-source, which adopt the 
advantages of the transfer learning concept. Through the aforesaid models, 
the user can easily deploy, train, evaluate, and test the modes on any custom 
datasets.
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•	 Full-fledged distributed in-memory processing framework

The SparkNLP library runs on top of the Apache Spark framework to 
provide the taste of distributed processing in NLP. We are familiar with 
the advantages of SparkML regarding the heterogenous ML algorithms to 
deal with different problem sets. But due to less integration scope of DL and 
NN in SparkML, we cannot say it is a full-fledged remedy for handling all 
kinds of operations of NLP. To overcome this hassle, SparkNLP is being run 
as a refinement layer that is integrated with Spark for providing all-in-one 
kinds of solutions of NLP in an effective manner by using the distributed 
framework.

Core Execution Blocks of NLP
SparkNLP introduces NLP annotators that merge within this framework and its 
algorithms are meant to predict in parallel. Now, let us start by explaining each 
component in detail as shown in Figure 7.3:

Figure 7.3: Core Execution Blocks of NLP

Annotators
As we discussed estimators or transformations in chapter: Apache Spark MLlib the 
annotators also perform the same operation in SparkNLP. It can be applied directly 
to a dataframe or transform a dataframe to produce a new dataframe with respective 
predictions.
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An annotator returns the following given values:

Annotation (annotatorType, begin, end, result, meta-data, embeddings) when apply 
on the DataFrame. There are several annotators which are being used in SparkNLP 
such as BigTextMatcher, Chunk2Doc, ChunkEmbeddings, ChunkTokenizer, Chunker, 
ClassifierDL, ContextSpellChecker, DateMatcher, DependencyParser, Doc2Chunk, 
Doc2Vec, DocumentAssembler, DocumentNormalizer, EntityRuler, EmbeddingsFinisher, 
Finisher, GraphExtraction, GraphFinisher, LanguageDetectorDL, Lemmatizer, 
MultiClassifierDL, MultiDateMatcher, NGramGenerator, NerConverter, NerCrf, 
NerDL, NerOverwriter, Normalizer, NorvigSweeting Spellchecker, POSTagger (part of 
speech tagger), RecursiveTokenizer, RegexMatcher, RegexTokenizer, SentenceDetector, 
SentenceDetectorDL, SentenceEmbeddings, SentimentDL, SentimentDetector, Stemmer, 
StopWordsCleaner, SymmetricDelete Spellchecker, TextMatcher, Token2Chunk, 
TokenAssembler, Tokenizer, TypedDependencyParser, ViveknSentiment, 
WordEmbeddings, Word2Vec, WordSegmenter, YakeKeywordExtraction.

There are two types of annotators in SparkNLP named as AnnotatorApproach and 
AnnotatorModel. In AnnotatorApproach, the annotator applies on a DataFrame and 
produces a model like an Estimator. On the flip side, when the annotator applies 
on DataFrame and that produces another DataFrame like Transformer is known 
as AnnotatorModel. In addition, the AnnotatorModel should be recognized by a 
Model suffix.

Pre-Trained Models
In SparkNLP, there are several pre-trained State-Of-The-Art (SOTA) models that 
leverage the concept of transfer learning for applying these models on any custom 
dataset. With the help of pre-trained models, users do not need to worry about the 
training of a model from scratch because it provides the feasibility to transfer the 
pre-trained weights while training a model. In addition, pre-trained models can also 
save a lot of time and provide better accuracy; thus, it has become a crucial role in 
SparkNLP.

Pipeline
As we are already familiar about the uses of pipeline in the previous chapter, similarly, 
we can create an unify pipeline for performing different tasks of NLP. By using the 
method of pipeline, the user can stitch SparkNLP annotators and transformers tasks 
in one wrapper.

Components of NLP
Generally, in NLP, there are five main components which are given as follows:

•	 Morphological analysis
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•	 Lexical analysis

•	 Syntactic analysis

•	 Semantic analysis

•	 Discourse integration

•	 Pragmatic analysis

Figure 7.4 shows the stepwise explanation of each component to understand the 
intend of any documents or sentences in NLP:

 
Figure 7.4: Core components of NLP

Morphological Analysis
It is a linguistic study of words with respect to its structures and formations in any 
sentences or documents. The most prominent part of morphological analysis is to 
find each meaningful detail within the words named as morpheme.
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Figure 7.5: morphemes of word undesirable

For example, the word ‘undesirable’ contains three morphemes as shown in the 
preceding Figure 7.5 (“un”: prefix, “desire”: stem, and “able”: suffix) having specific 
meaning such as: the prefix un refers to not being, the suffix able refers to a state of 
ability to do something, and the desire refers to stem. Bound morphemes are known 
as affixes: a combination of prefixes and suffixes which don’t consider it as a word.

Generally, it is used to retrieve the information or to do some query from any 
document needing a stemmed word for matching it with morphological analysis 
variants.  For example, desire is a singular word, and it can be used to extract out the 
matching information from the document having the word or information but in the 
plural form or others like desires and undesirable. It is mainly used to increase the 
recall and precision terms.

Lexical Analysis
Lexical analysis is a study of words with respect to their expressions and Part-
of-Speech (POS). Here, POS provides the unit level information of each word, 
including its grammatical observations. It elucidates the process of analyzing and 
identifying the description of the structure of words which often can improve the 
precision while searching for any similar words or sentences through a query.

Syntax Analysis
The output of the part-of-speech tagging of lexical analysis step is passed to the 
syntax analysis process which converts the group of words into more related word 
phrases. Generally, it involves processing of individual words using the grammatical 
structure of sentences that refers to the sentence’s formation principles and rules. It is 
a powerful step to extract out the meaningful phrases which can give more detailed 
information when to compare to the individual group of words from a document.
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The process of the information retrieval from any document can improve the precision 
in extracting out the more related sentences to the similar parsed information by 
leveraging the concept of syntactical phrasing of more identical words.

Semantic Analysis
Semantic analysis is a process to assign the meaning to the output of the syntactic 
step. Generally, it takes the linear sequences of words and shows the meaning of 
words when associated with each other.  This analysis step only briefs the actual 
meaning from the given sentences or context.

For example, the sentence “Water is Odorless, so it has good smell.” would be 
rejected by Semantic analysis due to the word ‘odorless’ because smell does not 
make any sense.

Pragmatic Analysis
It analyses the way of delivery of dialogues to understand the content and impact 
of contextual dimension what is being communicated in a better way. Pragmatic 
analysis interprets the actual meaning from what was said during the conversation 
and in what context.

In the recommendation system or sentimental analysis, it plays a vital role in sending 
back the right or related response of the queried or asked questions by understanding 
the historical chat conversations and other social contents. Nowadays, it is being 
effectively implemented in conversation AI system.

For example, the sentence Give a glass of water will be interpreted either as a request 
or an order to the user.

Discourse Integration
Discourse integration is a process to analyze the flavor or sense of the context. It 
creates a bi-directional relationship with the dependent sentences in a document 
which helps to know the user about dependencies of each sentence with other 
sentences within a document. The following Anaphora Resolution shows an example 
of dependency relationship with illustrations.
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Comparison among Natural Language 
Processing (NLP), Natural Language 
Understanding (NLU), and Natural 
Language Generation (NLG)
The NLG and NLU are the branches of NLP as shown in Figure 7.6. We know 
that NLG produces meaningful sentences in Natural Language (NL) and NLU is 
responsible to understand the machine language to take the decision.

Figure 7.6: Branches of NLP

Table 7.1 Explains the key differences between NLU, NLG, and NLP:

NLU NLG NLP
It is a narrow concept 
which deals only for text 
understanding. 

It is a narrow concept 
which generates a human-
like text response. 

NLP is a wider concept 
which is a combination of 
NLU and NLG.

It is a branch of NLP. It is a branch of NLP. It is a root concept for 
handling the textual-related 
problems by using AI.

It helps to correct the 
grammatical errors in 
spoken and written text. 

It generates relevant 
responses and text 
which will be human- 
understandable.

It takes the overall decision 
related to textual content 
and perform the actions 
according using the NLP 
system. 

It feeds data of any formats 
and converts them into a 
structured format.

It generates and writes only 
the structured data.

It can convert unstructured 
data to structured data.

Table 7.1: Explains the key differences between NLU, NLG, and NLP
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Widely Used Libraries of NLP
Recently, the hot-balloon of NLP has been continuously lifting-up by leveraging the 
concept of AI and DL. It attracts worldwide researchers to build more open-source 
NLP libraries for dealing with complex multi-lingual languages. The following 
timeline Figure 7.7 shows the year-wise popular NLP libraries that have been 
implemented in various verticals:

Figure 7.7: Timeline to show most often used libraries of NLP

Types of NLP
In this section, the authors will touch upon different types of learning through which 
a user can train an NLP model. Generally, the supervised and unsupervised learning 
are most commonly used learning ways to train an NLP pipeline. The applications 
rely on spam detection, sentiment analysis, intent classification, multi-label, and 
multi-class text classification are waded in the category of supervised learning. On 
the other side, the topic modeling and keyword extraction-related applications fall 
in the category of un-supervised learning. Topic modeling and text classification 
both are the most important and famous applications of SL and USL. The detailed 
explanation with implementation code for the same is mentioned as follows.

Text Classification
It helps to assign labels to a text for evaluating the meaning of each word in a sentence 
by using the concept of supervised learning techniques. In text classification, each 
word needs to be labeled with some values or weights through the reference of pre-
defined corpus of words and the trained model will be used to classify and identify 
the sentiments.

Topic Modeling
In NLP, the topic modeling is a process to discover the hidden patterns of words 
in a document or sentence. Let us take an example of a bunch of books, where the 
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users want to categorize the books according to their intent without the need to 
read them. To handle this challenge, an unsupervised learning approach named as 
Latent Dirichlet Allocation (LDA) can be used to extract and analyze the nascent 
information from the text. Although, the Probabilistic Latent Semantic Analysis 
(PLSA) and Latent Semantic Analysis (LSA) are also used to implement topic 
modeling in NLP. Through this approach, the user can classify the category of 
different books and easily sort out the bookshelves accordingly. The following code 
base shows the implementation of LDA on a sample dataset:

>>from pyspark.ml import Pipeline

>>from pyspark.ml.feature import StopWordsRemover, CountVectorizer, IDF

>>from pyspark.ml.clustering import LDA

>>from pyspark.sql.functions import col, lit, concat, regexp_replace

>>from pyspark.sql.utils import AnalysisException

>>from pyspark.ml.feature import Tokenizer, RegexTokenizer

>>from pyspark.sql.functions import col, udf

>>from pyspark.sql.types import IntegerType

>>from pyspark.ml.clustering import LDA

>>from pyspark.ml.feature import StopWordsRemover

>>from pyspark.ml.feature import Normalizer

>>from pyspark.ml.linalg import Vectors

>>dataset = spark.read.format(‘com.databricks.spark.csv’) \

.options(header=’true’, inferschema=’true’) \

.load(‘/home/cdh@psnet.com/Gourav/chap3/abcnews-date-text.csv’)

>>get_tokenizers = Tokenizer(inputCol=”headline_text”, outputCol=”get_
tokens”)

>>get_tokenized = get_tokenizers.transform(dataset)

>>remover = StopWordsRemover(inputCol=”get_tokens”, outputCol=”row”)

>>get_remover = remover.transform(get_tokenized)

>>counter_vectorized = CountVectorizer(inputCol=”row”, outputCol=”get_
features”)

>>getmodel = counter_vectorized.fit(get_remover)

>>get_result = getmodel.transform(get_remover)

>>idf_function = IDF(inputCol=”get_features”, outputCol=”get_idf_
features”)

>>train_model = idf_function.fit(get_result)
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>>outcome = train_model.transform(get_result)

>>training,test = outcome.randomSplit([0.7,0.3])

>>lda = LDA(featuresCol=’get_idf_features’, k=10, maxIter=10)

>>model = lda.fit(training)

>>transformed = model.transform(test)

>>transformed.show(truncate=False)

# Describe topics.

>>topics = model.describeTopics(10)

>>print(“The topics described by their top-weighted terms:”)

>>topics.show(truncate=False)

# Shows the result

>>transformed = model.transform(test)

>>transformed.show(truncate=False)

Figure 7.8 shows the screenshot of code and output of DataFrame after reading a file:

Figure 7.8: Importing needed modules for implementing LDA and output of DataFrame
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Figure 7.9 shows the screenshot of code to pre-process the DataFrame using different 
features of NLP:

Figure 7.9: Pre-processing steps of NLP on DataFrame

Figure 7.10 shows the screenshot of code to train a LDA on training dataset:

Figure 7.10: Training a LDA model on training dataset

Figure 7.11 shows the output to show the topicDistribution of each word with their 
weights:

Figure 7.11: Output to show the topicDistribution with their weights

Features in NLP
There are various features that have been provided by SparkNLP which are as 
follows:

•	 Tokenization.
•	 Word segmentation
•	 Stop words removal.
•	 Normalizer
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•	 Stemmer

•	 Lemmatizer

•	 NGrams

•	 Regex matching

•	 Text matching

•	 Chunking

•	 Date matcher

•	 POS tagging

•	 Sentence detector using DL

•	 Dependency parsing

•	 Sentiment detection

•	 Spell checker using ML and DL

•	 Word embeddings

•	 BERT embeddings

•	 ELMO embeddings

•	 Universal sentence encoder

•	 BERT sentence embeddings

•	 Sentence embeddings

•	 Chunk embeddings

•	 Neural machine translation

•	 Text-to-text transfer transformer

•	 Unsupervised keywords extraction

•	 Language detection and identification

•	 Multi-class text classification

•	 Multi-label text classification

•	 Multi-class sentiment analysis

•	 Named entity recognition
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Sentiment Analysis using Spark NLP
Sentimental analysis on the textual content is one of the most widely used techniques 
in the industry. It generates a sentiment score which helps to rate the customer 
surveys, reviews, customer calls after speech-to-text conversion, feedback, and intent 
of social media. It scales the range of rating on three categories such as positive, 
neutral, and negative with their respective numerical values. The sentimental 
analysis task can be achieved by using supervised as well as unsupervised learning. 
Often, Naïve Bayes in supervised and lexicon-based sentimental in un-supervised 
learning are being implemented in many applications. The following code base 
shows the implementation of sentimental analysis using Naïve Bayes and logistic 
regression on a sample dataset:

>>from pyspark.sql import SparkSession

>>from pyspark.ml import Pipeline

>>from pyspark.ml.feature import StopWordsRemover, CountVectorizer, IDF, 
StringIndexer

>>from pyspark.ml.clustering import LDA

>>from pyspark.sql.functions import col, lit, concat, regexp_replace

>>from pyspark.sql.utils import AnalysisException

>>from pyspark.ml.feature import Tokenizer, RegexTokenizer

>>from pyspark.sql.functions import col, udf

>>from pyspark.sql.types import IntegerType

>>from pyspark.ml.clustering import LDA

>>from pyspark.ml.feature import StopWordsRemover

>>from pyspark.ml.feature import Normalizer

>>from pyspark.ml.linalg import Vectors

>>from pyspark.ml.feature import VectorAssembler

>>from pyspark.ml.classification import NaiveBayes

>>from pyspark.ml import Pipeline

>>from pyspark.sql.functions import length

#Read data from a CSV

>>spark = SparkSession.builder.appName(‘nlp’).getOrCreate()

dataset = spark.read.format(‘com.databricks.spark.csv’) \

.options(header=’true’, inferschema=’true’) \

.load(‘/home/cdh@psnet.com/Gourav/chap3/Review.csv’)
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#DataRefining

>>dataset_refined = dataset.withColumn(‘Liked’, dataset.Liked.
cast(‘integer’))

>>dataset_refined =  dataset_refined.selectExpr(“Review as review”, “Liked 
as label”)

>>data_length = dataset_refined.withColumn(‘length’, length(dataset_
refined[‘review’]))

>>tokenizer = Tokenizer(inputCol=’review’, outputCol=(‘token_text’))

>>stop_remove = StopWordsRemover(inputCol=’token_text’, outputCol=’stop_
token’)

>>count_vec = CountVectorizer(inputCol=’stop_
token’,outputCol=’CountVect’)

>>idf = IDF(inputCol=’CountVect’,outputCol=’features’)

>>data_prepare = Pipeline(stages=[tokenizer, stop_remove, count_
vec,idf])

>>cleaner = data_prepare.fit(dataset_refined)

>>clean_data = cleaner.transform(dataset_refined)

>>clean_data = clean_data.select(‘label’,’features’,’review’).dropna()

>>training,test = clean_data.randomSplit([0.7,0.3])

>>training = training.dropna()

>>get_naive = NaiveBayes()

>>model = get_naive.fit(training)

>>test_results = model.transform(test)

>>test_results.show()

>>test_results.select(‘label’,’review’,’prediction’).write.csv(‘/home/
cdh@psnet.com/Gourav/sentiments/’)

The following code is used to evaluate the performance of a trained model on a 
testing dataset:

>>from pyspark.ml.evaluation import MulticlassClassificationEvaluator
>>get_eval= MulticlassClassificationEvaluator()
>>get_eval = get_eval.evaluate(test_results)
>>print(get_eval)
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The following code is used to show the implementation of logistic regression for 
predicting the sentiments of sentences. This code will be stitched after splitting the 
training and testing dataset in the preceding code:

>>from pyspark.ml.classification import LogisticRegression

>>my_model = LogisticRegression()

>>fitted_lg = my_model.fit(training)

>>log_summary = fitted_lg.summary

>>log_summary.predictions.show()

>>predictions = fitted_lg.evaluate(test)

>>my_eval = BinaryClassificationEvaluator()

>>test_result = my_eval.evaluate(predictions.predictions)

>>test_result

Figure 7.12 shows the screenshot to launch a SparkNLP terminal in Spark through 
–package option:

Figure 7.12: Launching of SparkNLP terminal
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Figure 7.13 shows the screenshot to import the important modules to take care of the 
operations of NLP:

Figure 7.13: Importing important modules for NLP operations

Figure 7.14 shows the screenshot of the output after reading the input file:

Figure 7.14: Output of dataset
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Figure 7.15 shows the screenshot of the code for showing the steps applied for pre-
processing a DataFrame:

Figure 7.15: Pre-processing steps for performing an NLP model

Figure 7.16 shows the screenshot of the code to show how to initialize the multiple 
stages of pre-processing steps in the pipeline:

Figure 7.16: Stages defined in an NLP pipeline
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Figure 7.17 shows the screenshot of the code to show the implementation of the 
Naïve Bayes algorithm on the feature set and the output of a model while applying 
it on the testing dataset:

Figure 7.17: Implementation of Naïve Bayes and output of a model on test data

Figure 7.18 shows the screenshot of the code to evaluate the performance of a model:

Figure 7.18: Implementation of the evaluation function on test result
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Logistic Regression
Figure 7.19 shows the implementation of logistic regression for predicting the 
sentiments of sentences:

Figure 7.19: Implementation of logistic regression and its predicted values

Figure 7.20 shows the implementation to check the accuracy of a model using 
BinaryClassificationEvaluator:

Figure 7.20: Implementation of evaluation function on test result
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Figure 7.21 shows the dashboard on sentiments which is crafted using PowerBI to 
perform a deep dive analysis on the predicted and actual numbers of sentiments 
from the raw dataset. This dashboard helps to narrate a story about the data and 
informative quick walk over each trend on the predicted result:

Figure 7.21: Dashboard for detail analysis on data

Enhancement in NLP
For enhancing the ability of NLP, several universities and research groups have been 
working on integration of novel concepts like few-shot learning, zero-shot learning, 
and meta-learning. In these approaches, the pre-trained models can learn or train 
a new model about NLP by incorporating prior knowledge. Mainly, it deals with 
such problems where the raw dataset is small, and the users want to apply the DL-
based model for NLP on the custom datasets. With the help of few-shot learning, 
the user can learn the new tasks taking the prior knowledge on a label. In zero-
shot learning, it can achieve the functionality of NLP with high precision by parsing 
the known and unknown classes about the text. Currently, these are active research 
topics within the NLP domain.

Alternate of SparkNLP
HiveMall is an alternate and scalable ML library that runs on Apache Hive/Pig/
Spark for getting the functionality of NLP. It executes the different ML algorithms 
through User Define Function (UDF) by calling these algorithms on SparkSQL, 
HiveUDF, and Pig. It has a wide variety of algorithms such as regression, classification, 



Natural Language Processing with Apache Spark      357

recommendation, anomaly detection, k-nearest neighbor, and feature engineering 
for ML which the user can use for NLP and other problem sets. Figure 7.22 shows 
the features of HiveMall to perform distributed NLP and other ML functionalities:

Figure 7.22: Features of Apache HiveMall

Applications of NLP
There are several following applications in different fields where NLP is advantageous:

•	 Part of speech tagging in a document or sentences.

•	 Sentimental analysis to find the emotions from any document or text.

•	 To understand the machine language to convert it into meaningful translation.

•	 Automatic question and answering through advanced chatbots.

•	 Automatic extraction of text or words from a document or sentence through 
a desired query.

•	 Automatic summarization of lengthy documents like Journal’s research 
paper.
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•	 Name-entity recognition from a document.

•	 Semantic role labeling.

•	 Word relationship or similar sentences detector from a document.

•	 Classifying the various documents by considering the content or intent.

•	 Identifying the fake news from social media or others e-news sources.

•	 Finding and extracting the text from a document.

•	 Spell check and auto-correction of words in a document.

•	 Detecting unwanted content from the documents or comments.

•	 Evaluating and detecting the sentence grammar of a text document.

•	 Splitting and cleaning of text in a document.

•	 Detecting toxic and sarcastic language from a document.

•	 Detecting the specific language from a document.

•	 Simplifying the multi-lingual documents into a unify language.

•	 Converting PDF into a text formatted document.

•	 Target-based advertisement by understanding the content and emotion of a 
user.

•	 E-mail filtering based on different category of words tagging.

•	 Voice assistant and detection.

•	 Text refinement applications

Conclusion
Use of NLP in different domains and applications show the importance and wide 
scope for understanding the behavior and intent of any content. NLP can reduce 
the burden of expensive manpower and chances of human/manual errors when 
to deal with the text analytics. To cover all the details of the NLP trail, this chapter 
delivers the knowledge to the readers about the need of NLP and components of 
NLP with detailed history. It also includes different libraries of NLP, DL and ML-
based approaches for NLP, future enhancement, and alternate of SparkNLP. The code 
implementation for topic modeling and sentimental analysis are also mentioned 
in this chapter. In the next chapter, we will focus on the detailed study on how to 
design a distributed recommendation system.
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Chapter 8
Recommendation 

Engine with 
Spark

“Any sufficiently advanced technology is equivalent to magic.”
 - Arthur C. Clarke

Introduction
A Recommendation Engine (RE) is an advanced system that gives the  
recommendations of products, services, and information that a user might wish to 
know from a system based on analysis of data like a user’s interest, behavior, and 
browsing history. RE always strives to know more about the items or services using 
digital information such as history of search, user profile through their suggestions, 
and the information such as information about user’s past activities, ratings, reviews, 
age, gender, or other meaningful key features. Generally, the working mechanism of 
the RE is based on the principle of finding the meaningful patterns in the consumer 
behavior data such as the devices to be accessed, clicks on a link, locations, and 
dates, which can be collected implicitly or explicitly. A recommendation engine 
can significantly boost revenues and other essential metrics. This chapter presents 
a comprehensive detail about the evolution of RE, different types, information 
collection phases, various techniques, limitations, and key applications along with 
their implementation codebase. The codebase is executed on a distributed framework 
using Apache Spark with the CPU as a hardware configuration.
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Structure
In this chapter, we will discuss the following topics:

•	 Evolution of a recommendation engine

•	 Types of recommendation engines

•	 Approaches to collect information from various phases

•	 Real-time pipeline of a recommendation engine

•	 Different approaches to design a recommendation engine

•	 Limitations of a recommendation engine

•	 Applications of a recommendation engine

•	 Implementation of a recommendation engine on a distributed framework

Objectives
After studying this chapter, readers will be able to:

•	 Learn about the history of a recommendation engine

•	 Get an understanding about the different types of recommendation engines

•	 Grasp the knowledge of various phases to collect information

•	 Get an understanding to manage real-time pipeline

•	 Gain knowledge to design a recommendation engine

•	 Know the limitations of a recommendation engine

•	 Understand the application of a recommendation engine in various fields

Evolution of a Recommendation Engine
Ideation of this recommendation concept can be seen in small creatures like ants. 
As the ants use a genetically indulged marker for other ants through which they 
all follow on a particular path that is left behind by the leading ant. Those followed 
steps for finding of food by ants adapt the concept of recommendation to other 
ants (https://www.sciencedirect.com/science/article/pii/S0304397505003798). After 
the colonization evolution of civilization, the concept recommendations fulfil the 
purpose of a decision-making process to choose something better and beneficial to 
their lifestyles. They started taking opinions from their beloved family members 
and friends for making the right choice among different options. But this process 
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becomes challenging while the volume of generated data is growing at a high 
exponential rate. Due to this reason, it becomes a tedious task to the user to analyze 
the heavy data and extract out the accurate recommendation of products or items to 
a user. Moreover, users will have to spend more time for making the right decision 
or choices regarding the product recommendation based on the historical eternal 
behavior of a user. To overcome these hurdles, several researchers and research 
groups have been working to develop a recommendation baseline which can predict 
the best items that can be recommended to the end user.

In our daily routine, many times the human being faces dilemma in making a decision. 
With the advancement of a computing process in the statistics or observation-based 
systems, all the unnoticeable and noticeable decisions started to get observed. 
Initially, the ideation seed of the recommendation system was planted in 1960 by 
a team of researchers at the University of Cornwall. They designed a model which 
automatically indexed the contents of documents for finding the similarities between 
the two documents. This implementation helped to incubate the concept of the text 
mining process in the data world.

In the mid-1970s, researchers from the Duke University categorized the content 
based on the newsgroups and subgroups. This recommendation engine helped 
users to share the relevant textual content to each other based on their interest of 
categorized groups.

In 1979, the computer librarian Grundy implemented the concept of RE by taking 
interviews of several users and based on their preferences for suggesting the books 
to the users for reading. This solution had put the foundation stone towards the 
concept of RE and motivated other researchers to enhance the adaptivity of RE in 
the universal domain.

The architecture for a large-scale information system was developed in 1985 by 
D.K. Gifford. Moving further, Prof. Pollock proposed a rule-based message filtering 
system in 1988. In 1990, another scientist named Lutz developed a smart system for 
filtering the mail based on an intelligent document processing support.

In the late 1990s, the content-based filtering RE had picked a rise to divide the retrieval 
of information. In 1992, the Xerox Palo Alto Research Centre developed the first 
fully automated collaborative filtering based RE named Tapestry1 as the first head 
into the existence of the RE series. The main inspiration of that development was to 
handle the growing volume of emails and then, classifying them based on genuine 
and spam emails. This system used to move the emails into the spam category if the 
content of the email seemed to be unwanted or irrelevant.

In 1994, GroupLens developed the first recommendation system based on users’ 
rating to make automated recommendations for the articles if the user had already 
evaluated some articles in the system. In the same year, the students of Standford 
University developed a combined solution by integrating the methodology of 
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collaborative and content-based filtering techniques named as Fab. They have 
suggested a hybrid model to overcome the challenge of both content-based filtering 
and collaborative-based filtering. The model incorporated two phases: it gathered 
the content for a particular topic, especially on the financial domain, and then 
analyzed the highly likely items related to a user. At last, the meaningful contents 
were recommended to a user to read. In 1997, MovieLens named recommendation 
system was used to recommend the most preference-able movie to a user based on 
the rating.

In 1998, John S. Breese had done an empirical analysis of predictive algorithms for 
collaborative filtering. This system evaluated user-based collaborative filtering to 
recommend the products to a user. In 1999, Thomas Hofmann proposed Probabilistic 
Latent Semantic Analysis (PLSA) and applied this method on collaborative 
filtering. In the same year, the Music Genome project was used to understand the 
music and accordingly, the system started to capture the similar music with the help 
of its properties.

In early 2000s, CineMatch was being used the best RE for suggesting the sales 
for an online movie. In 2006, the Netflix Award’s challenge gave an effective and 
outperform recommender algorithm which was 10% better than the CineMatch. 
Soon RE became more popular and plays an imperative role when it gets linked with 
the Internet sites such as Amazon, Pandora, Netflix, Matrimonial sites, LinkedIn, 
Facebook, Instagram, Snapchat, YouTube, Yahoo, and News applications, and so on. 
RE doesn’t travel the journey alone, but it leverages AI, DL, Big Data, and Human-
computer interaction to make the journey trail more insightful and decision making.

RE has evolved right from suggesting a simple row of items to suggesting a 
cumbersome volume of content with a snap of fingers by stitching the existing 
conventional system with the advanced intelligent system. During 2017 to 2021, the 
integration of chatbots with RE leverage the concept of voice enablement and NLP 
for accessing the system information through the voice and text pattern.

Types of Recommendation Engines
A recommendation engine deals with the behavior of customers based on the 
previous trends and historical search observation of purchased items. The accuracy 
of the recommendation model is dependent on how well a system analyzes the 
meaningful and decision-making information based on the customer journey. There 
are six techniques such as content-based filtering, collaborative filtering, hybrid 
filtering, knowledge-based, demographic based, and community-based techniques 
to design a high throughput and efficiency of RE. Figure 8.1 shows the hierarchy 
diagram to design the recommendation engine:
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Figure 8.1: Hierarchy diagram to show the different ways to design Recommendation System

Content-Based Filtering (CBF)
Content-Based Filtering works on the mechanism to observe the historical journey 
and interaction observations of a single user. On the other hand, it predicts the next 
most recommended item or likelihood action based on the behavior of a targeted 
user. In CBF, it collects the meaningful preference information from a targeted user 
and the accuracy criteria of a model increases when more information is provided 
by the user. Thus, all the needful recommendations are made from the decisive 
metadata which is gathered from the user by observing the patterns of choices, 
behaviors, comments, views, likes, and historical search journeys. This kind of 
recommendation approach may give an accurate recommendation for a targeted 
user, but it does not work fine if the item has no keywords in common with any item 
the user has rated; hence, the item will never be recommended.

In this approach, the recommendation system checks the similarity between products 
based on its context or description. The user’s previous history is considered to find 
similar products the user may like. For example, if a user likes music such as ‘happy 
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category’, then the system might recommend other songs that are related to the 
‘happy category’ as mentioned in Figure 8.2:

Figure 8.2: Graphical representation to design a CBF-based RE

The working of CBF needs two vectors such as the “user vector” which contains the 
user’s metadata and the “item vector” which shows the information related to the 
product. The item vector contains the main features to be used to recommend a user 
based on the historical observation. The cosine similarity method is an ideal way to 
calculate the similarity matrix between the user vector and item vector. Generally, CBF 
is the best technique when web pages, publications, documentations, and news need 
to be recommended. CBF uses different types of models such as Term Frequency/ 
Inverse Document Frequency (TF/IDF), Statistical Methods, Probabilistic Methods 
(Naïve Bayes Classifier, Support Vector Machine, and Decision Trees), and NN to 
classify and analyze the documents for generating meaningful recommendations.

Collaborative Filtering (CF)
Collaborative Filtering is a technique used in RE to predict the similar interest 
from many users, preferences, and test information. CF is a domain-independent 
recommendation technique which is a complementary approach in CBF. This 
technique forms (n)x(m) number of matrices of n users and m items with their 
calculated similarities formulation. If any user matches with the interest towards 
any item, then the similarity would be increased for those cases. But the similarity 
score will be decreased if the user does not match with the interested item. In that 
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scenario, CF will recommend the item to the user based on the others positively 
rated by users in their (n)x(m) matrices. The technique of collaborative filtering can 
be divided into two categories: memory-based and model-based. The key concept in 
collaborative filtering methods is collaborativeness, that is, it leverages other user’s 
ratings. Using this technique, the system might guess either the targeted user like 
sad or classical songs based on the taste or ratings given by the other users. CF is a 
time-consuming algorithm because it involves complex calculations to predict the 
similarity score of each user. Figure 8.3 shows the graphical representation to design 
a CF-based RE:

Figure 8.3: Graphical representation to design a CF based RE

For example, if user A likes classical, hip-pop, and romantic songs and user B likes 
hip-hop, classical, and rock category of songs. The like lists of both of the users are 
having almost similar categories of songs, based on their interest and with the help 
of a collaborative matrix, the system can easily recommend that the user A should 
like rock songs.

Memory-Based Collaborative Filtering Techniques (MBCFT)
The memory-based collaborative filtering technique is a way to combine and 
understand the rating and preferences of the users to suggest the most recommended 
item by taking the help of neighborhood weights. There are two types of Memory-
based collaborative filtering techniques such as user-based and item-based technique.
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In user-based collaborative filtering, it makes a matrix of similar users and averages 
of their ratings of the target item by users. It calculates the similarity between the 
users by comparing their ratings on the same item for predicting the rating for an 
item by the active/target user based on their similar taste.

In item-based collaborative filtering, it creates a matrix of similar items and averages 
of the target user’s ratings of those items. It contains the computed predictions by 
observing the similarities between the items and users. Cosine similarity and Pearson 
correlation coefficient are the best similarity metrics to calculate the similarities 
between the two vectors and two variates.

Model-Based Technique (MBT)
The model-based technique improves the existing features of collaborative filtering 
by leveraging the ML-based probabilistic modeling such as decision trees, latent-
factor models, and NNs as classification. This model uses the previous ratings of 
the users to learn an existing system to enhance the overall performance of CBF. 
It recommends the set of items or services to produce the recommendations using 
neighborhood-based recommender techniques. There are other algorithms being 
used to increase the efficiency of a model such as Singular Value Decomposition 
(SVD), Matrix Completion Technique (MCT), Latent Semantic Methods (LSMs), 
Regression, ANN, Bayesian Classifier and Clustering. Usually, it analyses the user-
item matrix to iron out the relations among the different items or services for finding 
a list of top-N recommendations. This type of model is used to resolve the issue of 
sparsity problems that come while processing a RE.

Knowledge-Based Recommender Engines (KBREs)
It is an improved version of the content-based filtering technique which can handle 
the major issues caused by the cold start problem. In CBF, the system gets confused 
when it faces a cold start related situation; hence, the system generates a wrong 
recommendation for a user. But in knowledge-based RE, a user can explicitly state 
their preferences through a series of requirements, rather than using the history of 
ratings of the user.

Hybrid Recommendation Engines (HREs)
A hybrid recommendation engine can be built by combining several models based 
on their weighted averages. This system helps to enhance the accuracy factor when 
it recommends the items or services other than monolithic models. Netflix is the best 
example of a hybrid system which leverages the conglomeration of both CF and 
CBF. Comparing, viewing, and searching the observations of similar users fall in the 
category of CF and suggesting songs that the user has rated highly falls in CBF.
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Demographic-Based Engines (DBEs)
A demographic-based engine makes the recommendation based on the demography 
of a user. The basic idea of this type of system is to understand the behavior of a 
user in each region. Often, it has been observed that recommendation of the users 
is different when the demography or region gets changed. For example, Walmart’s 
recommends the item on their website according to the region.

Community-Based Engines (CBEs)
A community-based engine recommends the services to a user related to the best 
option based on preferences of friends and specific community of the user. So, the 
recommendation must be made using the similarity with the user’s preferences like 
friends and society. Social media and professional sites such as Facebook, Instagram, 
and LinkedIn use a similar system to suggest adding someone in your profile. 
Relatively, this system has more accuracy for a particular user if looking out within 
a community.

Information Collection Phases in RE
A recommendation engine deals with a collection of users’ summaries such as 
meaningful user’s attributes, behaviors, intents, and contents of the user’s activity 
to create a well-defined profile for predicting tasks. Without having the well-defined 
information or details of a user, it cannot work well for predicting an accurate 
outcome. There are various ways to accumulate the user information’s intrinsically 
or explicitly within the RE. Generally, the accuracy of a RE depends on the quality 
and quantity of information which needs to be gathered from the users. It includes 
three types of feedback such as implicit feedback, explicit feedback, and hybrid 
feedback  to collect the information and become an indispensable input for the 
system. For example, tracking the activity of the user in any e-commerce portal 
gives us a great idea and approach to collect the behavior and historical journey 
of their search items. Mainly, it tracks and analyses the cognitive skills, interests, 
search items, items buying history, and personal details of a user. The precision of a 
model can be enhanced by adapting more meaningful information and leveraging of 
new DL approaches such as self-learning or reinforcement learning. The deep dive 
explanation about the three feedbacks is mentioned as follows.

Explicit Feedback
The information collected from the rating or some external reviewing framework 
through a user comes in the category of explicit feedback. This reviewing or rating 
interface enhances the performance and accuracy of a system. If the model has more 
number of ratings by the user, the system generates more accurate results in terms 
of recommendation. The only drawback of this approach is that it requires a manual 
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entry from the user; hence, it becomes a boring and time-consuming task. But still it 
has been considered as a more accurate and relevant approach to get the collected 
information from the user. Like SurveyMonkey, it provides the prompt, accurate, 
and decision-based results to the clients. Moreover, it extends the transparency at a 
higher level for achieving the high through-put and perceiving a higher quality in 
the recommendation process, which helps to build a great faith on the user to follow 
the decision of any recommendation system.

Implicit Feedback
In implicit feedback, it monitors the journey plan of purchases and trails where the 
users click to visit or see the items on the portal or site, then feed that data into 
the RE for better accuracy. This monitoring mechanism automatically grasps the 
indispensable information of a user such as history of purchases, click navigations, 
organic or inorganic time spend, site visited through which browsers, direct or indirect 
following of links, tracking the trail of e-mails, and monitoring all the activities on 
the site. On the other hand, it has more bias-ness as compared to explicit feedback, 
so there is a chance of getting unwanted or meaningless information of the user. To 
overcome this issue, self-learning and advanced DL will be used to compare every 
walk-through of a user with their previous result; hence, mark a scoring system for 
a high precision.

Hybrid Feedback
Hybrid feedback is a combination of both implicit and explicit feedback to overcome 
the challenges that persist in the feedbacks discussed earlier; hence, it enhances the 
overall performance of the system.

Real-Time Pipeline of a Recommendation 
Engine
Figure 8.4 highlights the real-time architecture to design a production-level pipeline 
for implementing a RE. The following architecture is separated into five layers, 
in which the first layer contains the several data sources such as the batch data 
source and streaming data source for providing the raw information to a system. 
The second layer is used to refine the data, capture the heterogenous data, and 
data standardization/profiling which needs to be fed to the persistence layer. The 
third layer provides the flexibility to persist the data as in on-premises framework, 
NoSQL databases, HDFS, and cloud-based framework such as AWS, AZURE, and 
GCP. The fourth layer must be used for indexing, processing, and retrieving of 
information to sync-up with recommendation components such as NLP, and other 
recommendation algorithms. The final layer is used to display the dashboards 
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based on the data coming up from the system for recommendation. It will be used to 
provide insightful and meaningful interactive visualization using which a user can 
take the decision in a pinch. The overall framework can be deployed on a container 
of docker and Continuous Integration/Continuous Development (CI/CD) that 
needs to be implemented through the integration of GitHub and Jenkins/Bamboo. 
Each module of program or tasks needs to be stitched together in a single workflow 
using Airflow, Oozie, Azkaban, and Apache NiFi, and so on.

Figure 8.4: Architectural flow to design a real-time pipeline for recommendation engine

Ant Colony Optimization in a 
Recommendation Engine
In a tedious optimization problem of a recommendation engine, the Ant Colony 
Optimization (ACO) method is used to find an approximate solution for designing 
an efficient backbone-based recommendation engine. ACO is a group of heuristic 
optimization algorithms which are based on the ant food seeking theory. In ACO, 
a set of software mimic like an artificial ant needs to be given the various tasks to 
search a good solution. ACO uses the concept of a graph theory for finding the best 
path. In the graph, the edges represent paths and weights of an edge represent the 
disposed pheromone (disposable genetic liquid). Using these optimization findings, 
we can find the best path on a weighted graph. The artificial ants build solutions by 
moving on the graph using a pheromone that works on updating the mechanism; 
each ant tries to find the shortest way in the path. The recommendation system 
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based on the Ant Colony theory (AntSRec) developed a semantic relativeness in 
ontology to improve the electronic commerce producers. The main components of 
ACO include graphs, nodes, distance between nodes, pheromones, and the selection 
functions. In the AntSRec algorithm, it designs a graph representation, in which each 
node indicates a product, and each node has a unique identity. The weight of the 
edge represents a similarity of products in which the state changes from 0 and 1.

Hidden Markov Chain Model (HMCM)
In the early 1970s, the Russian mathematician Andrey Andreyevich Markov 
developed a statistical model named “Hidden Markov Chain Model”. The model 
can determine the observable events based on few internal factors which are difficult 
to observe directly. The first implementation of this model was in speech recognition 
and later it was adapted in several domains such as weather forecasting, avalanche 
forecasting, optical character recognition, computational biology, and so on. In 
HMCM, the observed event is denoted by a `symbol’ and the invisible factor within 
the observation named as a state. Generally, it has two stochastic processes such as 
an invisible process based on hidden states and a visible process based on observable 
symbols. The hidden states incorporate a markov chain along with the probability 
distribution of the observed symbol depend on the underlying state, that is why 
it is also known as a doubly embedded stochastic process. Due to the wide range 
of application of HMCM in various verticals, the researchers started to leverage 
this algorithm towards the recommendation engine, especially for the collaborative 
filtering technique. Often, it takes unobserved user preference as an HMCM sequence 
and observe the static pattern of items based on users for recommending the best 
suitable option in terms of item.

Market Basket Algorithm (MBA)
In the phase of digital transitioning from the conventional techniques, the 
recommendation system has a myriad of applications that can uplift the standard 
and financial aspects like business too. Market Basket Algorithm (MBA) is one of 
the core applications that has been observed on the basis of its futile behavior to 
betterment the people’s life. This analysis helps to demystify the relationship or 
association among the items at retailer shops to buy a product by the customer. 
On the flip side, it is a technique to create a relationship network based on the 
combination of products which must be in high possibility to be bought by the 
customer. The Beer-diapers case study is the best example to understand the need 
of MBA in the daily transaction; this study was analyzed at Walmart to find out that 
the customers who are buying the diapers will also buy the beers on Friday night. 
So, this study helped a 35% increase when the showroom arranges the beer stall near 
the diaper stall. It uses an association rule to simplify the transaction data and strives 
to form a rule to be discovered in transaction data based on all items bought by 
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customers in a single purchase. This rule operates on the support of several hundred 
transactions and statistical significance and datasets often contain millions and 
billions of transactions. It has three main rules incorporated within the algorithm 
such as support, confidence, and lift. Mainly, it is used in retail, telecommunication, 
banks, insurance, and medical, and so on.

Implementation of a Recommendation 
Engine
The following code base shows the implementation of a recommendation engine 
using the distributed DL with Apache Spark. This recommends the movies to the 
user based on the rating and interest:

>>from pyspark.sql import SparkSession

>>spark = SparkSession.builder.appName(“recommendation”).getOrCreate()

>>from pyspark.ml.recommendation import ALS

>>from pyspark.ml.evaluation import RegressionEvaluator

>>from pyspark.ml.feature import StringIndexer

>>dataset = spark.read.format(‘com.databricks.spark.csv’) \

.options(header=’true’, inferschema=’true’) \

.load(‘/home/cdh@psnet.com/Gourav/ml-25m/ratings.csv’)

>>dataset_refined = dataset.withColumn(‘rating’, dataset.rating.
cast(‘integer’)).dropna()

>>training, testing = dataset_refined.randomSplit([0.7,0.3])

>>als = ALS(maxIter=10,regParam=0.05,userCol=’userId’,itemCol=’movieId’, 
ratingCol=’rating’)

>>model = als.fit(training)

>>predictions = model.transform(training).show()

>>predictions = model.transform(training)

#validation of the model

>>test_prediction = model.transform(testing).show()

>>test_prediction = model.transform(testing)

#saving the result

>>test_prediction.select(‘userId’,’movieId’, ‘rating’, ‘prediction’).
write.csv(‘/home/cdh@psnet.com/Gourav/recommendation/’)

>>evaluator = RegressionEvaluator(metricName=’rmse’, labelCol=’rating’, 
predictionCol=’prediction’)

>>rmse = evaluator.evaluate(test_prediction)
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Implemented Code
Figure 8.5 shows the screenshot of the implementation code of a recommendation 
engine on the sublime editor using Apache Spark:

Figure 8.5: Screenshot to implement a recommendation engine code on sublime using Apache Spark.

Dashboard
Figure 8.6 depicts the insightful graphical representation of predictions for making 
the quick and meaningful decision making. The dashboard is crafted by leveraging 
the functionality of Microsoft PowerBI:

Figure 8.6: Screenshot of the PowerBI dashboard on the predicted output from the implementation of RE
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Limitations of Recommender Systems
Since 1970s, the great enhancement has been done by several researchers or research 
groups to ameliorate the overall performance of the recommendation engine. 
Moreover, the application scope for the RE is getting wider as it has plethora of 
advantages to improve the daily needs of humans and machines. But still it has 
a scope to the researchers to overcome the challenges while implementing a 
recommendation engine. This problem usually can be seen in a collaborative 
filtering-based recommendation system; hence, there is a great scope to researchers 
to overcome these challenges. Some of the major challenges are as follows.

Cold-Start Problem
It is an ambiguous situation for the recommendation engine to make the decision 
when the user is a new or a new item is added in the system for the first time. 
There are two types of cold start problems in the RE such as the new user cold start 
problem and new item cold start problems. In both the problems, the predicting 
accuracy becomes quite low corresponding to the new user or new items as the 
system has very less informative details related to the new added items or users.

Sparsity
In a collaborative filtering-based recommendation engine, the sparsity or scattering 
is one of the major challenges which affect the overall performance of the system. 
This problem mainly occurs due to negligence of the user when the application asks 
for the rating or high varying ratings by the user. Due to preceding mentioned issues, 
it creates irregularity in the recommendation matrix which degrades the predicting 
accuracy and raises the dilemma situation at the time of prediction.

Scalability
Most of the recommendation engines work perfectly when the volume of data is 
small. But the performance of a system retrogrades when it starts dealing with 
big data. This cumbersome task is a new research scope for the researcher for 
ameliorating the performance and precision of the system.

Privacy Protection
Data and system privacy is another imperative aspect to create a secured 
recommendation engine. Nowadays, the RE works for all the users who want to get 
the recommendation around any perspectives. But there is a great need for the RE to 
be worked or predicted the items based on the row-level security, i.e., authentication 
and key agreement (aka) user-based security. This proposed implementation can 
provide the recommendation information for that specific user who wants to get the 
recommendation from the system.
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Model Obsolete
This is another kind of problem when the system is not upgraded and the user 
receives similar recommendation based on past behavior. Due to this issue, the 
model gets obsolete and does not make sense to get insightful suggestion from the 
system.

Shilling Attacks
Shilling attacks are of two types such as push attacks and nuke attack through 
which the fraudulent profile gives the false rating to demolish the accuracy of the 
system. Attackers can affect the system performance by dodging the information 
of the system using attacks related to probe, random, average, popular, segment, 
sentiment, sampling, and perfect knowledge, and so on.

Applications of a Recommendation Engine
•	 Movie Recommendation: It helps the user to suggest the movie based on the 

rating and his/her historical analysis of watched movies.

•	 Song Recommendation: This system recommends and shuffles the songs 
playlist by observing the past watched/listened list of songs in the format 
of audio or video. Also, several recommendation systems shuffle the song 
playlist by observing the weather and mood of the user.

•	 Human Resource (HR) Recommendation: Many several recommendation 
systems are being used to recommend the HR-related information to the 
employee by leveraging the power of chatbots.

•	 Weather Forecast and Avalanche Forecast: It can be used to predict the rainy, 
sunny, and cold days by incorporating the statistical-based RS.

•	 Jewelry Selection: It also recommends the user to suggest the jewelry based 
on their choices and requirements.

•	 Product Recommendation: This can be used to modernize engine capabilities 
for relevant product and service offerings which can generate incremental 
revenue.

•	 Dynamic Price Optimization of Product: Offers/Promo codes can be 
released on the basis of advanced analytics to maintain the sales.

•	 Call Distribution and Rating Recommendation: With help of topic 
modeling classifiers and NLP, system would be capable to automatically 
recommend the call classification and set the rating based on product and 
customer satisfaction.
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Conclusion
This chapter shows the several techniques to alleviate the issue to handle the 
cumbersome volume of information while recommending the services or items. The 
chapter covers the basic to advance levels of information to design different types 
of recommendation engines by leveraging the concept of distributed computing for 
efficient execution. Also, the readers will gain knowledge of history, applications, 
and major limitations of a recommendation engine. Usually, it opens a wide range 
of applicability towards several domains to enhance the automation and overall 
performance to retrieve decisive information. In the next chapter, readers will learn 
about the concept of deep learning and its implementation using Google Colab.
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Chapter 9
Deep 

Learning with 
Spark

“Learning always occurs in a context of taking action, and they value 
engagement and experience as the most effective strategies for deep 
learning.”

— Richard DuFour

Introduction
Since the last decade, the application of DL has become an engrossing point for 
all the researchers across the world. Because of this dominancy of DL towards the 
AI community, all the MNCs have started to adopt this emerging technology by 
leveraging the standalone AI wrappers such as TensorFlow, Keras, PyTorch, and 
MxNet. But the working with the standalone DL framework remains an ideal one 
until and unless, when not to deal with heavy data and heavy batch size. To overcome 
these challenges, users need to increase the system configurations, or train the model 
with smaller batch sizes. Moreover, incorporating the flavor of distribution in the DL 
process helps to improve the performance of computation and ultimately, reduces 
the time consumption and cost reduction. From the trailing series of chapters, 
authors have already discussed the basic concept and developed the history of DL 
in brief. In this chapter, the readers will walk-through the green meadows of basic 
DL and get started to do acclimatization using distributed DL to climb the mountain 
of advanced DL for seeing the better views. This chapter consists of basic, evolution, 
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detailed components explanation, methods of feature selection, and advancement in 
DL by leveraging Spark along with its implementation.

Structure
 In this chapter, we will discuss the following topics:

•	 Introduction and evolution of NN

•	 Methodologies and terminologies in NN

•	 Different methods of feature selection in ML/DL

•	 Different architectures of NN

•	 Different activation functions in NN

•	 Different types of loss functions in NN

•	 Different types of optimizers in NN

•	 Working with cloud notebooks for ML and DL

•	 Several standalone DL frameworks and distributed DL frameworks

•	 Understanding the concept of DLOps in a robust pipeline

•	 Implementation of distributed DL on Google Colab using Elephas

Objectives
After studying this chapter, readers will be able to:

•	 Gain awareness about the legacy of NN

•	 Understand the distributed processing of DL and its core terminologies

•	 Have in-depth knowledge about the different methods of Feature Selection

•	 Grasp the knowledge about several architectures in NN

•	 Comprehend the knowledge of different optimizers, activation functions, 
and loss functions in NN

•	 Gain awareness about the most often used standalone DL frameworks

•	 Understand the concept of DLOps and cloud notebooks

•	 Implement the distributed DL frame with code base
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Evolution of the Neural Network
Recently, the application of DL has spilled out in every industry and business 
domains. The timeline of DL is divided into three excerpts of machine intelligence 
advancement. These three excerpts are: I) Cybernetics (1940–1960), II) Connectionism 
(1980-1999), and Deep Learning (DL) (2000 onwards). In this section, authors will try 
to explain the evolutions of DL by highlighting the advancement done with time.

Cybernetics
The first ideation in Cybernetics towards DL began from the concept of biological 
learning which mimics the working behavior of a human brain. In 1943, the 
collaborated work of Warren McCulloch (neuroscientist) and Walter Pitts (logician) 
created a mathematical model based on NN. They used a linear model that takes 
various inputs , for each input the model consists of some weights , and the output 
is  . This model results in binary formats like false and true based on the respective 
weights and inputs in the NN.

In 1947, Alan Turning a British mathematician materialized the possibility of ML 
and forwarded it further to propose a machine hinting at genetic algorithms. In 1952, 
Arthur Samuel, known as the father of ML because of his big contribution in the 
early stage of ML, coded the first computer learning program to play the game of 
checkers. In 1957, Rosenblatt, a psychologist, designed an electrical machine, that 
is, the Perceptron model that intended the work on automatic learning of weights. 
After that, Frank built Perceptron for image recognition that helped to plant a seed 
of DL. In 1959, David H. Hubel (a Nobel Laureate) and Torsten Wiesel discovered 
simple cells which were complex in the primary visual cortex. These biological 
observations inspired other NNs to extend the functionality of DL.

In 1960, Kelley, a professor of aerospace and ocean engineering at Virginia, published 
Gradient Theory of Optimal Flight Paths. The idea behind this study was to control 
the behavior of systems with inputs and to observe how the behavior changed by 
feedback. In 1960, ADALINE (Adaptive Linear Neuron or later Adaptive Linear 
Element), a physical device was developed by Professor Bernard Windrow and 
his student Ted Hoff at Stanford University that implemented artificial neural 
network that used memistors based on a bias and a summation function. Generally, 
the learning function of ADALINE is identical to stochastic gradient descent used 
in LR. In 1960, another study was noted by Henry J. Kelley towards a continuous 
backpropagation model. In 1962, Stuart Dreyfus came up with a research on chain 
rule. The utilization of back propagation existed in the early 1960s but was a mystery 
in implementation until 1985.
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Connectionism
The era of connectionism was based on cognitive sciences where the mathematical 
model intended a decision by observing the sense or behavior of any model. But 
these kinds of cumbersome codes needed an ergonomic framework or method to 
implement the program to decide the best fit features. Thus, to fulfil the concern of 
implementation, the concept of Artificial Neural Network (ANN) was introduced. 
The main idea of ANNs was to fabricate an intelligent network of individual units 
that can be programmed to interact with each layer for predicting the value and at 
the same time, it also introduced the concept of hidden layers.

During the back to back enhancement in the era of connectionism, several models 
such as Long Short Term Memory (LSTM) and backpropagation for training a 
complex NN that became a key step in the enhancement ladder of DL. In 1965, A. 
G. Ivakhnenko and V. G. Lapa used models with polynomial activation functions to 
analyze them statistically. They also developed a Group Method of Data Handling 
(GMDH) to define a computer-based mathematical modeling of multi-parametric 
datasets that help to feature the fully automatic structural and parameter-based 
optimization of models. He used the deep feedforward multilayer perceptron by 
integrating the statistical methods at each layer of network to find the best ideal 
features and pass them forward to the next layer in the network. In 1971, he 
demonstrated the learning mechanism named Alpha on 8-layer deep network with 
the help of GMDH.

In 1970, Seppo Linnainmaa developed a backpropagation-based FORTRAN 
programming mechanism to check the error in the model for re-training the network 
to get more precision, but it could not be applied till 1985. In 1979, Kunihiko 
Fukushima used the CNN architecture for the first time, including multiple pooling 
and convolution layers. Also, he developed ANN named as Neocognitron which 
consists of a multi-layered and hierarchical design. In 1982, Hopfield created Hopfield 
Networks that served as a content addressable memory system and became a tool 
for DL.

In 1985, Terry Sejnowski created NETtalk to pronounce English words in the 
same way a child does and improved it over time by converting text to speech. In 
1986, D. Rumelhart, G. Hinton and R.J. Williams focused more on the research of 
backpropagation and showed how to improve the existing NN for shape recognition 
and word prediction. Moving further, in 1989, Yann LeCun explained the first 
practical demonstration combining CNN to read hand-written digits at Bell Lab. In 
the same year, Watkins introduced the concept of Q-learning which improved the 
feasibility of reinforcement learning in machines. It was possible to learn optimal 
control directly from the transition probabilities of the Markov decision process.

 In 1993, Cortes and Vapnik designed a standard model of Support Vector Machines 
(SVMs) for recognizing and mapping similar data and presented in 1995. It can 
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be used in text categorization, handwritten character recognition and image 
classification. In 1977, Schmidhuber and Hochreiter proposed two frameworks such 
as Recurrent Neural Network (RNN) Framework and Long Short-Term Memory 
(LSTM) for improving the efficacy of RNN by mitigating the long-term dependency 
problem. On the flip side, LSTM networks were improved to remember the long-
lasting information of any error passing to its last layer which would be required in 
the process of backpropagation.

In 1998, LeCun developed a stochastic gradient descent algorithm which was a 
successful approach when it was combined with the backpropagation algorithm in 
DL. In 1999s, the DL computation framework was fueled-up by adopting the speed 
of GPU processing. GPU powered became a lucrative herb to cure any intermittent 
or slowness-related computation ailments while processing of any DL models.

Deep Learning (DL)
In the beginning of 2000s, the tremendous leap waves in the DL ocean were seen to 
enhance the utility of DL in various fields. G. Hinton used the Greedy layer-wise 
training to train Deep Belief Networks (DBN) and Boltzmann Machines is one of 
the simplest implementation of DBN.

In 2009, Professor F. F. Li at Stanford University launched ImageNet which had 
massive free database of images with their labeling details for training a cumbersome 
model of DL. This approach helped to improve the accuracy of a model. As we know 
that accuracy of any ML/DL-based model, somehow is directly proportional to its 
databases. More labeled images can extract exact information in terms of features 
of any object within the image; hence, it is used as an emergence activity in DL. 
Currently, ImageNet has more than 14 million (14,197,122) labeled images available 
to the research community.

In 2011, Alex Krizhevsky developed a CNN-based AlexNet which had five 
convolutional followed by three fully connected layers using rectified linear units.  
In 2012, Google Brain released the results of the cat experiment which revealed the 
challenges of unsupervised learning. Prior, DL worked efficiently when the training 
datasets was supervised (images with labels). From that year onwards, unsupervised 
learning became a new hot topic to researchers in the field of DL.

In 2014, a new model came which was named DeepFace that used the complex NN 
to identify the human faces with 97.35% of precision. Parallelly, a research team 
led by Ian Goodfellow introduced Generative Adversarial Network (GAN) for 
handling the previous challenges of unsupervised learning. It works by pixel by 
pixel mapping of images and manipulates them accordingly.

In 2016, a competition was started among GPU fabricating MNCs to boost up the 
computation speed of ML/DL by leveraging the concept of GPU. For example, 
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Microsoft’s NN software, that is, XC50 supercomputers started to provide 1,000 
Nvidia Tesla P100 graphic processing units to increase the speed of computation 
and perform any DL tasks on data in a single click of pinch. After 2017, more 
enhancements have been recorded to speed up the intelligence and computation in 
DL for getting more accurate results with less time.

Definition of Deep Learning (DL)
DL is a subset of AI which is used to teach a machine in such a manner that it mimics 
like a human mind. DL deals with the concept of NN. There are several models 
that come under the hood of DL such as ANN, Autoencoder, RNN, GAN, and 
CNN. Nowadays, CNN has become the most promising and often implemented 
algorithms to analyze the wide range of images in terms of classification, localization, 
segmentation, video, and audio analysis. The term ‘convolution’ in CNN is derived 
from a mathematical function of convolution which is a special kind of linear 
operation where two functions are multiplied to produce a third function which 
expresses how the shape of one function is modified by others.

Neural Network and its Model Representations
Neural network is a branch of AI to mimic the behavior of a human brain and take the 
decision which must be based on intelligence through their internal computations. 
Generally, it consists of the input layer, multiple hidden layers, output layer, and few 
parametric components which we will discuss in the next section.

Figure 9.1: Model representations of NN

Figure 9.1 delineates the model presentation of NN. In the first step, it includes the 
execution of NN which receives the input data in the form of features. Then, the 
model will start learning these features to make a prediction. Error is a difference 
between the prediction value and label value. This error is calculated using the loss 
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function. After calculating the loss function, the model uses an optimizer which will 
penalize the value of the loss function which means to find out the minimum value 
of the loss function. The optimizer function is used to compute the new weights 
with a new error and feed it to NN. The cycle continues until this error becomes 
minimum.

Various Terminologies Used in DL
Underfitting
Underfitting is a one of the core terminologies to check the model performance using 
a statistical observation. It refers to training a model which shows poor performance 
on the training data as well as on the testing data. Generally, it happens due to limited 
capacity of the network or limited features as the input to the network or explicit 
noises in the network related to data. This problem can be eliminated by testing of 
different architectures of DL or increasing the epochs during the training of a model 
or increasing the hidden layers or removing the noise from the input data.

Furthermore, selecting the number of hidden layers is an important step while 
designing a DL model. Although, the model with a few neural nodes along with 
other noises in the network, generally gives low accuracy and poor predictive 
insights.

Overfitting
Overfitting is a phenomenon when the network tries to learn exuberance details than 
needed from the training data along with noises, which results in a poor performance 
on the testing data. Mostly, the graph plotted between the error and iteration helps 
to depict the clear view about how a NN overfits on the training data. In overfitting, 
the error on the test data is inversely proportional to the error on the training data.

Many researchers observed that the main reason behind the overfitting of network 
when the training dataset is small for training a model. Due to overabundance 
learning of features from a small chunk of training data, the network fails to 
memorize the general trend in the data. There are several ways to overcome this 
problem which are given as follows:

•	 Decrease the Network Complexity

We can decrease the network complexity by eliminating the few layers or 
decreasing the proportion of neurons that causes downhill the number of 
parameters within the network. This approach can help to minimize the 
chances of overfitting.
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•	 Data Augmentation
It is a well-known image technique to avoid the pain of overfitting through 
which the user can increase the size of the training dataset by leveraging 
the concept of data augmentation. It performs different manipulations over 
the image to generate more fabricated number of images through rotation, 
horizontal flipping, vertical flipping, color spacing conversion, and intensity 
manipulations.

•	 Weight Regularization
It alleviates the issue of overfitting by adding a constraint to the loss function. 
There are two types of weight regularizations such as L1 and L2, in which 
L1 adds the sum of absolute values of the weights in the network as the 
weight penalty. On the other hand, L2 adds the squared values of weights as 
the weight penalty. With these regularizations, the optimization algorithm 
can be used to minimize the loss function in addition to minimize the error 
between the predicted value and actual value.

•	 Dropouts
It is a way to deactivate a certain number of neurons at a layer prior to the 
training. Usually, it reduces overfitting problems like image classification, 
image segmentation, and word embedding.

Hidden Layers
It is an intermediate layer that lies between the input layer and output layer of any 
neural network. It acts as a bridge where neurons take a set of weighted inputs and 
generate an output using an activation function. In NN, the number of hidden layers 
may depend on the complexity of a model.

Weights and Bias
These are the learnable parameters which create an interlinking between each 
neuron of a layer to each neuron of the next layer in ANN. In the transmission of 
inputs among neurons, the weights must be applied to the inputs along with the 
biases as shown in Figure 9.2:

Figure 9.2: Flow of transmission of neurons
y = ∑(weight * input)  +  bias
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In other words, weights are responsible to control the signal between two neurons 
for deciding the influence of the input on the output. Biases act as an additional 
input in the next layer that will always have the value of 1. The preceding equation 
shows the flow of inputs from one layer to the next layer enclosing weights and 
biases in between.

Activation Function
The activation function also known as the transfer function or decisive function 
which decides the active state of a neuron. Mainly, it introduces non-linearity 
transformation in the output of a neuron. It helps to control how well a model learns 
the training dataset by selecting the specific activation function in the hidden layer. 
In the output layer, the selection of the activation function will also show the type of 
classifications in the model.

In the other words, the working mechanism of neurons in NN is dependent on weight, 
bias, and their respective activation function. With the help of backpropagation, 
we can update the weights and biases of neurons for minimizing the error in the 
network by passing the error update using the activation function. 

Figure 9.3 shows the working codebase to cater an activation function in NN using 
Keras:

Figure 9.3: Codebase for activation function in NN

Loss Function
The loss function is a special kind of function that calculates the error in the neural 
network. In NN, an error occurs when the difference is recorded between the actual 
observation and predicted observation. There are several loss functions in the 
umbrella of NN, which we will discuss in detail in the section of loss function. 
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Figure 9.4 shows the working codebase to cater a loss function in NN using Keras:

Figure 9.4: Codebase for loss function in NN

Optimizer/Optimization
Optimization is the process of minimizing the losses by changing the indispensable 
attributes in the NN such as weights and learning rate. Further in this chapter, 
readers will walk through the several optimizers of NN to the reduce errors. Figure 
9.5 shows the working codebase to cater an optimizer in NN using Keras:

Figure 9.5: Codebase for loss function in NN
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Forward Propagation
Forward propagation is the process to generate an output within the NN in a single 
forward direction. In forward propagation, the error minimization between the 
estimated output and actual output is not possible through updating the biases and 
weights. Hence, it produces high rate of biasness on the testing dataset.

Back Propagation
Back propagation is a bi-directional process for updating the biases and weights in 
NN which propagates back into previous layers and updates the new minimized 
error to all layers in the forward direction. Gradient Descent is one of the most used 
statistical formulae to perform a backpropagation.

Epochs
One complete rotation of forward propagation and backpropagation is known as 
Epochs. Figure 9.6 shows the working codebase to cater an epoch in NN using Keras:

Figure 9.6: Codebase for epochs in NN
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Learning Rate
The learning rate controls how quickly or slowly a NN model learns a problem. 
In simple words, it shows the rate to complete one rotation of backpropagation 
and forward propagation in NN. Figure 9.7 shows the working codebase to cater a 
learning rate in NN using Keras:

Figure 9.7: Codebase for learning rate in NN

Metrics
It is used to analyze the performance of a DL model. There are various categories of 
metrics in NNs; few categories are given as follows:

•	 Accuracy Metrics

•	 Probabilistic Metrics

•	 Regression Metrics

•	 Classification Metrics Based on True or False and Positive or Negative

•	 Image Segmentation Metrics

•	 Hinge Metrics
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Figure 9.8 shows the working codebase to cater a metric in NN using Keras:

Figure 9.8: Codebase for metrics in NN

Feature Engineering (FE)/Feature Selection 
(FS)
For implementing the intelligence-based applications, the performance and 
overall efficiency of the model are directly proportional to the quality of the input 
dataset. In the digital era, the volume of data increases rapidly, which creates a 
major problem in choosing decisive features and transforming the raw data into 
meaningful information while training a ML/DL model. Whatever data feeds into 
the model as an input, the quality of output would be determined according to the 
selection of independent features like Garbage In, Garbage Out. Generally, the term 
Feature Engineering or Feature Selection improves the precision rate and overall 
performance by transforming the raw data into key or core features with several 
other data handling approaches, such as data profiling, handling missing values, 
and so on. Therefore, FS is used to clean up noisy and irrelevant data and find the 
important features which are compatible for training and testing of ML algorithms. 
Mainly, there are four methods are being used to perform FS such as generalized 
method, filter method, wrapper method, and embedded method as shown in Figure 
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9.9. In-depth explanations of the various methods for performing feature engineering 
are as follows:

Figure 9.9: Different approaches to perform feature selection

Filter Method (FM)
In FM, features are selected based on statistical measurements such as Information 
Gain (IG), chi-square test, fisher score, correlation coefficient, and variance threshold. 
It is free from the algorithms of ML or DL and requires less computational time 
than other approaches or methods. The methods for performing FM are followed as 
follows.

Information Gain (IG)
Before explaining the term IG, readers should know about two terms such as 
entropy and surprise. Entropy quantifies the information in an event and a random 
variable based on probability. Events having equal probability have a large entropy. 
In terms of the surprise of an event, low-probability events are more surprising as 
they have a large amount of information. Hence, events that are equally likely to be 
more surprising and have large entropy. So, IG is used to measure the reduction in 
entropy or surprise caused by spilling a dataset based on a given value of a random 
variable. Therefore, IG is a useful tool in ML or DL and is used for techniques such 
as feature selection, fitting classification, and tree-based algorithms.

Chi-Square Test
It is a statistical method used for feature selection with categorical data based on 
testing relationship between the features. The mathematical formula for chi-square 
is:
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where is the observed value of ith variable and  is expected values of ith variable. It 
is used to test independence of two events such as observed value (O) and expected 
value (E). In independent features, O and E both are nearly equal and the value of  is 
very small, near to zero. If the value of is higher than hypothesis, it is rejected.

Z-Test
It is again a statistical method to find out whether two sample means are the same or 
different for known variance. Mathematical formula for z-test is:

Where z is z-test,  is sample mean (average),  is mean, and s is the standard deviation.

T-Test
It is like a z-test but can only be used when population (> sample) standard deviation 
is not known. It is used to estimate the population means for hypothesis testing of 
population mean. Its mathematical formula is:

Where t is student t-test, m is mean,  is theoretical value of mean, s is standard 
deviation, and n is number of variables in the dataset. This test gives whether the 
difference between the means of two groups which is due to chance or reliable.

P-Test or Probability Value
It is used as the statistical approach for checking the significance of the observed 
result or test static by using the hypothesis test. The value of P is used to accept 
or reject the hypothesis. Mathematically, the p-values are calculated using integral 
calculus.

Analysis of Variance (ANOVA)
This test is used for linear or non-linear models. It is parametric statistical hypothesis 
test for determining whether the means from two or more sample data. In other 
words, ANOVA is used to find the significance of experimental results.

Analysis of Covariance (ANCOVA)
It is an advance form of ANOVA. It can be used for both categorical and a metric 
independent variable. This test is the mid-point between ANOVA and regression 
analysis. It is used to compare one variable in two or more population. It is used for 
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only linear models. Here, co-variant is used instead of means; it means it is used for 
analysis of co-variance.

Fisher Score
It is a statical method widely used for supervised features selection because of its 
good performance. Here, ranks of the variables are found in a descending order for 
selecting the variables independently. The mathematical formula for calculating the 
score is:

Where  is the mean of the ith feature in jth class,  is variance of ith feature in jth class,  
is number of instances in the jth feature, and  is mean of the ith feature.

Variance Threshold
In this method, readers can remove all features that the variance does not meet some 
threshold. It removes features that have the same value in all samples. Features with 
a higher variance contain more useful information. Here, readers do not consider 
the relationship between features and target variables which is the drawbacks of 
this method.

Karl Pearson’s Coefficient of Correlation (KPCC)
It measures the statistical linear relationship of two continuous variables. It also 
gives the knowledge of magnitude as well as direction of the relationship between 
bivariate. Its mathematical formula is:

Where r is Karl Pearson’s coefficient of correlation,  mean of the variable x,  mean 
of the y variable. It is based on raw data. In other words, KPCC calculates the effect 
of change in one variable when the other variable changes. Its numerical value lies 
between +1 and -1. In Karl Pearson’s, both variables should be normally distributed, 
the relation should be linear between two variables, and the data should be equally 
distributed about the regression line. It is mostly used with real data but can be 
challenging when working with categorical data.

Spearman’s Rank Correlation Coefficient (SRCC)
It is based on ranked values for each variable and non-linear parameter test which is 
used to measure the degree of association between two variables. The mathematical 
formula for Spearman rank correlation is:
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Where  is spearman’s rank correlation coefficient,  is difference between the two 
ranks of each observation, and n is number of observations. It is a non-parametric 
correlation statistical method that measures the degree of association between two 
variables, in which variables should be monotonically related.

Kendall Rank Correlation
It is a non-parametric test that measures the strength of dependence between two 
variables. The mathematical formula is:

where  is number of concordant,  is number of discordant, and n is number of sample 
size. Concordant means ordered in the same way and discordant means ordered 
differently.

Generalized Method (GM)
This method is used to remove the irregularities and noise from the raw dataset 
and converts them into meaningful dataset which can be fed into the model for 
training. GM compatibles the input dataset according to the ML/DL algorithms, 
which improves the accuracy rate and optimizes the overall computation of the 
model during training. The most common methods are given as follows.

Binning
Binning is a technique to fit the data value according to their range into the bin. 
It is recommended to generate the continuous values into the categorical values. 
This type of approach optimizes computational efficiency, enhances robustness, and 
avoids overfitting kind of situation. Figure 9.10 shows the splitting of price of item 
values based on the range brackets or bin table:

Figure 9.10: Assigning of data values into bin based on ranges
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Imputation
Imputation is a technique to handle the issues of missing values in records. Most 
of the ML frameworks drop those rows which are having blank or missing values. 
This type of dropping mechanism increases the performance of the model. But 
sometimes, this technique doesn’t apply in such cases where the percentage of 
missing values are more than 75%. For the mitigating challenge, imputation becomes 
most recommended to handle the situation.

The steps to achieve “Imputation” are follows as:

•	 Filling with NA if the datatype of the missing value column is a string and 0 
when the datatype is numeric.

•	 Replacing the missing values with the mean and median in the entire column.

•	 Replacing the missing values with the maximum occurred value in a column 
is a good option for handling categorical columns.

Figure 9.11 shows the example to handle missing values by replacing them with NA:

Figure 9.11: Illustration to handle missing values in raw dataset

Feature Split or Regex Operation
The regex operation or the feature Split is a string extracting technique using the split 
method or passing the regex to deal with raw data within a column and convert it into 
an insightful feature. These extracted values in the column will help to enhance the 
performance of the ML/DL method. The best use case of this approach is extracting 
the date, year, or any other numeric details from the free-text column. Figure 9.12 
depicts the splitting value by applying SplitFunction in the addition column of the 
table:
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Figure 9.12: Illustration of applying split function on raw data for extracting out indispensable details

Grouping Operation
Group operation is a way to aggregate the values of columns by leveraging the 
concept of the Pivot function that is like Microsoft Excel. Generally, there are two 
approaches to group the detail data into a group snapshot format such as categorical 
column grouping and numerical column grouping. Figure 9.13 shows the categorical 
grouping operation on raw table which is having three columns such as Employee 
ID, Department, and Interview_taken by the department. By applying Grouping 
Operation, it generates a flat-based pivot data:

Figure 9.13: Illustration of grouping operation on raw dataset

Scaling
In many problems, the numerical features of the dataset have a different range, like 
tenure of service and wages. In such types of datasets, it becomes a challenging task 
to compare two or more features in the respective ranges. One of the promising 
approaches to resolve this issue is the scaling technique. Generally, there are two 
approaches that have been mitigating the changes, such as normalization and 
standardization. Figure 9.14 illustrates the scaling function which is applied to the 
Salary Hike column:

Figure 9.14: Illustration of a scaling function on raw dataset
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Extracting Date
In a raw dataset, the Date column can be stored in many ways or formats, which 
confuses the ML/DL algorithms while reading the date column. Most of the time, 
the date format comes with character sentences or invalid syntax. In particular, 
in a seasonal-based time series analysis, the extracting date approach is used to 
enhance the overall accuracy of the model if the date column is not read-able by 
ML/DL algorithms. Figure 9.15 shows the extraction of dates from the raw data and 
their conversion into standard date formats in the addition column for making the 
compatible date syntax for training an ML model:

Figure 9.15: Illustration of extracting date from the string column

One-hot Encoding
It is a technique to generate an insightful embedding by converting the label or string 
value into numeric values for making the raw data read-able by ML/DL algorithms. 
It is implemented by the label encoder and the one-hot encoder. Figure 9.16 depicts 
the tabular data having two columns, such as Employee ID and Department. This 
type of data is not compatible for feeding into the ML model. Due to this concern, 
the reader needs to apply any of the encoding techniques to convert the string value 
of the column into a categorical value, which can be used as an embedding to the 
model.

Figure 9.16: Illustration of applying an encoding operation for converting labels into a numeric dataset
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Handling Outlier or Outlier Detection
Outlier detection is a method to detect the outlier from the random dataset and 
fix them with the help of different approaches such as standard deviation and 
percentiles.

Wrapper Method
The wrapper method depends on the classifier. The best subset of features is selected 
based on the results of the classifier. These methods are more expensive than the 
filter method but are more accurate than the filter method. The most commonly used 
techniques are as follows.

Forward Selection
The reader starts with a null model (having no features) and then, fitting the model 
with each individual features one at a time and selecting the minimum p-value of 
the feature. After that, again fit a model with two features (keep one feature from 
earlier selected while fitting a model at very first time and second all other features 
from remaining list of features). Repeat this process until a set of selected features 
with p-value of individual features which is less than the significance level. It is an 
iterative method.

Backward Elimination
In backward elimination, the reader starts with all the features and removes the least 
significant feature at each iteration, which improves the performance of the model. 
The reader can repeat until no improvement is observed on the removal of features. 
It is a process of selecting the most significant and relevant features from a vast set 
of features in the data set.

Recursive Feature Elimination
It is an optimization algorithm which aims to find the best performing feature subset. 
At each iteration, best or worst performing features are chosen and keep aside. The 
next iteration will start with left features. After this, ranks are given the features 
based on the order of their elimination.

Embedded Method
It is the combination of filter and wrapper methods. It is implemented by algorithms 
that have their own build in the feature selection method. There are two main 
examples of this method such as LASSO and RIDGE regression which penalize the 
function to reduce overfitting.
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Different networks in DL
Several neural networks are being used and applied for designing the decision-based 
intelligence model for ameliorating the precision and computational performance of 
a model. Some of key neural networks are explained next.

Perceptron Neural Network (PNN)
Perceptron Neural Network is an oldest and never be going outdated NN architecture. 
It is also known as the dense layer which is commonly seen in the designing phase of 
any model from scratch. PNN is developed in 1957 by Frank Rosenbalt (1928-1971) 
to detect features or intelligence insights about the business in the input data. It has 
a neuron parameter which is a combination of biases and a set of weighted sums.  β 
represents the activation function that takes the input vector X to produce a binary 
values Y as output. There are two types of PNN such as a single layer PNN and 
multi-layer PNN.

Single Layer Perceptron Neural Network (SL-PNN)

Figure 9.17: Overview of a Single layer PNN architecture

Generally, the SL-PNN adapts a supervised learning of binary classifiers, and 
the process begins by multiplication of inputs and their weights. Then, all the 
multiplication set of inputs and their weights get added, hence create a weighted 
sum. After this, the weighted sum plus bias is fed to the activation function to get 
the output from a neuron. By presence of this binary classification property in PNN, 
the model is capable to decide which input falls to which specific class as shown in 
Figure 9.17. The curious role is played by the activation function which classifies the 
classes in terms of values such as (0,1) or (-1,1).
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Multi-Layer Perceptron Neural Network (ML-PNN)
ML-PNN is the first seed towards the journey of designing of a complex DL model. It 
composes of multiple perceptrons to deal with non-linearity capabilities within NN. 
An ML-PNN consists of multiple layers called Hidden layers that are sandwiched 
between the input layer and the output layer. Figure 9.18 depicts the architecture 
overview of ML-PNN:

Figure 9.18: Overview of ML- PNN architecture

The first layer is started from the input layer, then passes to the hidden layer, and 
lastly feeds to the output layer to get the result. This model trains on a set of input-
output layers and learns the correlation between them. To minimize the error that 
occurred due to the difference of predicted values and ground truth values, a special 
process named back-propagation can be used. ML-PNN consists of two types of 
passes such as forward ward pass and backward pass. In the forward pass, the 
flow moves from the input layer to the hidden layer and then passes to the output 
layer. On the other hand, backward pass facilities backpropagation and some other 
chain rules to minimize the error. Backpropagation uses decent gradient-based 
optimization to alleviate the error in the NN.

Deep Belief Network (DBN)
DBN firstly came in 2007 by a joint work of Larochelle, Erhan, Courville, Bergstra, 
and Bengio. It provides a joint probability distribution over input data and labels as 
a probabilistic generative model. Generally, DBNs are composed of unsupervised 
networks like Restricted Boltzmann Machines (RBMs) in which each of them is 
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restricted to a single visible layer and an invisible layer (hidden layer). In DBN, the 
hidden layer of each sub-network is the visible layer to the next layer:

Figure 9.19: Overview of the DBN architecture

The process of performing RBN training is known as Gibb’s sampling where a vector 
is presenting to the visible units that intended forwarding the values to the hidden 
units within the network. Likewise, the reverse engineering helps to reconstruct 
the original input from the visible unit inputs. It is a single-layer network where 
each layer of DBN acts like a bi-conditional layer, in which it serves as the hidden 
layer to the nodes that come before it, and as the visible layer to the nodes that 
come after except the first and last layer.  The top layer of RBMs might always be 
configured with a SoftMax layer to classify the result as shown in Figure 9.19. This 
type of network is mainly used in recognizing, clustering, and generating images, 
video, and motion-captured datasets.
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Generative Adversarial Network (GAN)
GAN is a generative model that creates new data instances which resemble the 
training dataset. The best use case of GANs is DeepFake. DeepFake is a technique to 
create a fabricated or fake image that seems to be realistic as well and can identify 
the pristine images from the bulk of mixed datasets. Generative modeling uses 
CNN to learn from the pattern in input datasets and generates output images 
which resemble the original images but still the bona-fide ones. The image-to-image 
translation technique in GANs helps to convert images from winter to summer, day 
to night, and DeepFake generation:

Figure 9.20: Overview of the GAN architecture

There are two NNs available in the architecture such as generator and discriminator. 
The generator is used to generate plausible or realistic data from the original datasets. 
On the other side, discrimination is used to distinguish the fake data from the bundle 
of raw images. Figure 9.20 explains the working of GANs architecture. In which, the 
generator generates the fabricated images, and then passes to the Discriminator as 
an input to classify fake and pristine images.

Recurrent Neural Network (RNN)
It is an extension of feedforward NNs in which the RNN uses their internal state 
(memory) to process variable length sequences of inputs. RNN remembers the 
historical values and its decisions are influenced by what it has learnt from the past.  
Still, RNN has been gaining popularity in the field of ML/DL since 1980s because 
of its internal memory. RNN is also known as a recurrent network as it performs the 
similar kind of task for every element of a sequence, where the output is dependent 
on the previous result. It uses recognition of speech, time-series based forecasting, 
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recognition of handwritten documents, composition of music, and sentimental 
analysis of textual content.

Figure 9.21: Overview of the RNN architecture

In feedforward, the flow of transition of information is linear that starts from the 
input layers, further feeds to the hidden layer, and last ends at the output layer. But 
RNN uses a recurrent mechanism because of its memory; the output is dependent 
on the current input and previous information of the computed layer as shown in 
Figure 9.21. The computation becomes slow in RNN as the training part is needed 
more time due to its complex architecture. There are four types of RNN which are 
given as follows:

•	 One to one RNN

•	 One to many RNN

•	 Many to one RNN

•	 Many to many RNN

Graph Neural Network (GNN)
Graph Neural Network brings the power of NNs within the data structure that 
comprises nodes and edges. There are two types of graphics in the concept of graph 
theory such as directed and undirected graphs. In GNN, it passes the message 
between the nodes or neurons of graphs. In recent, ground-breaking study on 
different variants of neural graphs such as Graph Convolutional Network (GCN), 
Graph Attention Network (GAT), and Graph Recurrent Network (GRN). There are 
several approaches to apply to the node-level, edge-level, and graph-level prediction 
task. Figure 9.22 depicts the transition of a simple graph into a GNN by applying the 
characteristics of NN:
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Figure 9.22: Overview of the GNN architecture

Convolutional Neural Network (CNN)

Figure 9.23: Overview of CNN architecture

CNN consists of multi-layer NNs for incorporating the recognition and analysis of 
visual patterns from the pixel of images. It uses a convolutional process to apply on 
two functions that generate a new function from them as shown in Figure 9.23. The 
detail overview about CNN will be discussed in the next chapter Computer Vision 
with Deep Learning. It has several layers which perform the working of convolution 
in NN; few of them are given as follows:

•	 Convolutional Layer

•	 Pooling Layer
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•	 Fully Connected Layer

•	 Dropout

•	 Activation Functions

Different Activation Functions
The activation function is a mathematical equation that consists of conditional 
gates which decides whether a neuron should be activated or not; accordingly, the 
output of a neuron passes to the next layer. Moreover, it also helps to normalize the 
output of any input in the range such as (1, -1) or (0, 1). There are various activation 
functions in NN for reducing the computation time and decisiveness to a neuron for 
its activation.

Linear Function or Identity Activation Function 
(IAF)
IAF is a linear function which is similar to the mathematical equation of a straight 
line as:

y = f(x)  = ax

Due to the linearity nature in the equation, the activation function of the last layer 
becomes the activation function of the first layer. The derivative of the linear function 
is constant. Hence, it is not used in the backpropagation process of NN. Its range 
varies between ().

Binary Step Activation Function (BSAF)
BSAF is a linear binary step function whose mathematical equation is:

Its range is {0, 1} and the derivative of BSAF is always zero. Hence, it is not suitable 
for the backpropagation process in NN. It has two output values that is 0 and 1, 
therefore, it is known as a binary step activation function.

Sigmoid Activation Function/Logistic/Soft Step
It is a S-shaped curved non-linear activation function which is often used in NN. Its 
mathematical equation is:

f(x)  =  1⁄1 +  e-x
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Where, x is weighted sum and range of this function is (0, 1). Its derivative is:

f'(x)  = e-x ⁄ (1+ e-x)2

Hyperbolic Tangent Activation Function 
(HTAF) / Tanh AF
HTAF is a monotonic non-linear function like a sigmoid function, but it is symmetrical 
about the origin. Its range is (-1, 1) and defined as:

f(x)=tanh(x)

f'(x) = sech2 (x)

The graph of a derivative is also symmetric about y-axis and the sign of value is not 
the same from the layer to the next layer as [-1, 1]. Its convergence is slow:

SoftSign Activation Function
It is an alternative of the Tanh function which is mainly used in regression and 
DNN problems. The SoftSign converges polynomial, although Tanh converges 
exponentially and is defined as:

f(x)  =  x⁄(1+) |x|

And its derivative is:

f'(x)  = 1 ⁄ (1+|x|2

Its range is (- 1, 1).

Swish Activation Function
It is an alternate function of ReLU which is developed by Google and shows better 
computation performance than any other linear Unit function. Its range is () and its 
mathematical equation is:

 f(x)  =  x⁄ 1 +  e-x

And its derivative is:
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Rectified Linear Unit Activation Function 
(RLUAF) / ReLU / Maximum Function
ReLU is an improved version of a non-linear activation function whose mathematical 
equation is:

f(x)  = max (0 ,x )

And its derivative is:

At the negative side of the graph, the derivative value is zero. So, there are high 
chances to get the dead neurons which are not activated due to gradient’s zero while 
in the backpropagation process. Its range is [0, ∞).

Leaky Rectified Linear Unit (Leaky ReLU)
Leaky ReLU is an extended version of ReLU to mitigate the issue of zero’s gradient 
at the negative side of the axis. Its mathematical equation is:

And its derivative is:

Its range is (-∞, ∞).

Parametric Rectified Linear Unit Activation 
Function (PRLUAF)
PRLUAF is another way to deal with the problem of the gradient’s becoming zero at 
the negative axis. Its mathematical expression is:

And its derivative is:
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. It introduces the extra negative slope in the curve of PRLUAF to solve the issue of 
the zero gradient at the negative axis. Its range is (-∞, ∞).

Exponential Linear Unit Activation Function 
(ELUAF)
ELUAF introduces the log curve at the negative side of the axis to overcome the 
problem of the zero gradient of ReLU. Its mathematical equation is:

And its derivative is:

Where, its range is [-a, ∞).

SoftPlus Activation Function (SPAF)
SPAF is another way to deal with the problem of the gradient zero at the negative 
axis to overcome from dead neurons. It is used in the NN. Its mathematical equation 
is:

f(x)  =  log (1+ex)

And its derivative is:

f'(x)  =  1 ⁄ 1 +  e-x

Its range is (0, ∞)

SoftMax Activation Function (SMAF)
SMAF deals with multiclass classification problems in which the SoftMax function 
itself is a combination of multiple sigmoid functions. This function gives the 
probability of the output point to a particular class. Hence, the sum of all class 
probability is always equal to 1. Its mathematical equation is:
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Scaled Exponential Linear Unit Activation 
Function (SELUAF)
SELUAF is a scaled version of ReLU in which the output of ReLU is multiplied by 
some pre-defined scale for vanishing the issue of the gradient problem:

And its derivative is:

Different Types of Loss Functions
As already discussed about the loss function in the preceding section, it is one of 
the core components of NN while designing a new model from scratch. It is a way 
to evaluate how well a model is performing on a given set of data. Generally, it 
calculates the error produced when comparing the real value to a predicted value. 
By applying the specific optimization function with respect to the error which is 
calculated through the loss function can help to reduce the error in the NN.

Basically, there are two types of loss functions such as the regression loss function 
and classification loss function depending on the type of learning task. In the 
classification loss function, it predicts the output from a set of finite categorical 
values. On the other side, the regression loss function predicts a continuous value. 
In this section, readers will elicit about the several loss functions based on two 
categories which are given next.

Regression Loss Function
Mean Square Error Loss (MSEL)/ L2 Loss
MSEL is a mean of squared difference between predicted and actual observations. It 
measures only the average magnitude of errors without take care of direction.

In MSEL, if the difference between predicted and actual observations is large, the 
model will penalize it as we are computing the squared difference.

Where, n denotes the total number of observations  denotes the actual observation 
and  denotes the predicted observations. Also, MSE is recommended for calculating 
the gradients.
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Root Mean Square Error Loss (RMSEL)
RMSEL is the square root of the MSEL. Its mathematical formula is:

Where i denotes variable, n denotes total number of observations,  denotes actual 
observations and  denotes predicted observations.

Mean Absolute Error Loss (MAEL)/ L1 loss
MAEL measures the average of the absolute difference between the actual and 
predicted observations when the outlier is more, then this MAEL is best suited for 
error predication. Its mathematical formula is:

Mean Squared Logarithmic Error (MSLE)
It is the mean of square differences of logarithmic values of actual and predicted 
values. It helps to reduce the difference between the actual and predicted variables 
which is possessed in MSEL.

The preceding function is not defined if . To handle this issue, adding 1 in the actual 
values and predicted values in the formula of MSLE.

Mean Absolute Percentage Error Loss (MAPEL)/ 
Mean Absolute Percentage Deviation Loss (MAPDL)
It measures the prediction accuracy of a forecasting method in statistics. It usually 
expresses the accuracy as a ratio defined by the formula:

Where i, n, and y ̂i have usual meanings.
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Mean Bias Error Loss (MBEL)
MBEL measures the average of the difference between the actual and predicted 
observations for determining the positive bias or negative bias of a model. Its 
mathematical formula is:

Where i, n,  and y ̂i have usual meaning.

Huber Loss (HL) / Smooth Mean Absolute Error Loss
It is a less sensitive version of a squared error loss function towards the outlier and 
mainly used to solve the problems related to regression. Moreover, Huber loss is 
a conglomeration of MSEL and MAEL. If the difference is small between actual 
observations and predicted observation, then the Huber loss function is non-linear 
otherwise it would be linear. Its mathematical formula is:

Where i denotes variable, n denotes total number of observations,  denotes actual 
observations,  denotes predicted observations, and  denotes the point where the 
function transition from non-linear to linear.

LogCosh Loss
LogCosh is a sum of logarithmic of the hyperbolic cosine of the difference of predicted 
and actual values, which is much smoother than MSEL. Its mathematical formula is:

Where i, n,  have usual meaning.

Classification Loss Function
Hinge Loss/Multi Class SVM Loss
It is a convex function for maximum margin classification generally for SVM.



Deep Learning with Spark      411

The mathematical formula of hinge loss is:
Hinge Loss = max (0,1 - y î.yi)

Where  denotes the actual observations and  denotes predicted observations.

Squared Hinge Loss Function (SHLF)
It is a square of the output of the hinge’s max() function to get a smooth curve of 
error. In this loss, the larger errors are penalized more significantly than with the 
normal hinge loss function. Moreover, the smaller errors are punished slighter.

Where i, n,  yi, and y ̂i have usual meaning.

Categorical Hinge Loss Function(CHF)
The traditional and square hinge loss functions do not accommodate on multi-class 
binary classification. This problem is overcome by introducing an upgraded version 
of a function in the lobby of the hinge function that is CHF.

Cross Entropy Loss (CEL)/Negative Log Likelihood
The CEL is a classification loss continuous function to evaluate the performance of 
a model. In CEL, if the predicted values are equal to the actual value of a model, 
then cross entropy becomes zero; hence, it is a perfect outcome. Whenever the cross-
entropy increases, then the predicted values diverge to actual values. To reduce the 
loss value of cross entropy, the specific optimization function to be implemented is 
to get the cross entropy which tends to be zero.

CEL = -(yi  log (y ̂i)  + (1-yi)  log (1-y ̂i))

Where i, n,  yi, and y ̂i have usual meaning. 

Binary Cross Entropy Loss (BCEL)
BCEL is an advanced version of cross-entropy to classify two target classes either 0 or 
1. In NN, the sigmoid function is used to achieve this kind of prediction. BCEL also 
known as sigmoid cross-entropy loss which an amalgamation of sigmoid activation 
and a cross-entropy loss.

Categorical Cross Entropy Loss (CCEL)
CCEL is a loss function that is used in multi-class classification tasks. It is like a 
BCEL, the only difference it deals with many classes.
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Where i,  yi, and y ̂i have usual meaning.

Kullback Leibler Divergence Loss (KLDL)/ Relative 
Entropy
KLDL is a method to calculate how one probability distribution is far away from a 
true probability distribution. Mainly, it is being used in autoencoder to study the 
dense feature representation. The mathematical expression is:

Where is a KL(p||q) is a KLDL between two distributions p and q. x is a random 
variable.

Sparse Categorical Cross Entropy Loss (SCCEL)
There is a similar loss function represents in SCCEL and CCEL. In CCEL, the classes 
are encoded using one-hot encoder like [1,0,0] and [0,1,0] for two classes. But, in 
SCCEL the integers are used instead of one-hot encoder like [1] and [2] for two 
classes. However, it depends on the way to read the inputs in the model, according 
to readers can use the losses. In addition, it is the best approach for labeling the 
classes with less need of computation and memory.

Focal Loss (FL)
FL is a revised version of CEL provided by Facebook that alleviates the problem of 
imbalance classes by assigning extra weighs to hard (background with noises) and 
easy (background with objects) misclassified examples.

Focal Loss = -∑i yi  (1-yi )γ ln yi

Different Optimizers
The readers are already familiar with the concept and role of optimizer in NN. 
Generally, it is used to minimize the error by putting the value of the optimizer in the 
backpropagation process. Here, in this section, readers will elicit about the different 
type of optimization methods which are being utilized in NN.
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Gradient Descent (GD)
GD is a convex function-based optimization algorithm to deal with the parameters 
of NN to minimize a given function to its local minima. In a simple word, GD is an 
optimization algorithm that finds the minimum of loss function for improving the 
NN performance in terms of accuracy. For finding the minima of the loss function, it 
moves opposite of the slope and increases from the given point by step by step until 
the tangent is parallel to the initial point.

Batch Gradient Descent (BGD)
In BGD, all the training data is taken as a single step and then, we need to take the 
mean of gradients of all the training datasets to find the parameters. Also, it is used 
for smooth curves and converges directly to minima.

Stochastic Gradient Descent (SGD)/full batch 
gradient descent
SGD is one of the best techniques for training a DNN. In each iteration, SGD only 
performs one parameter update on a mini batch of training datasets. It is simple and 
has proved to be efficient for tasks on large datasets. It is the improved version of BGD.

Mini Batch Gradient Descent (MBGD)
MBGD is a special type of GD algorithm that splits the training data set into small 
batches to calculate the model error and update model coefficients. It is the most 
common implementation of GD used in the field of DL. It is a balance between SGD 
and the efficiency of BGD.

Momentum Based Gradient Descent (MBGD)
MBGD is an extension of SGD to provide the fast process. GD with momentum is a 
way to accelerate the gradient vectors in the right directions, thus leading to faster 
converging.

Nesterov Accelerated Gradient (NAG)
In 1983, Yurii Nesterov introduced a new concept named as NAG which is an 
extension of SGD. This concept has been sidetracked since 2013, when the research 
group started training NN with SGD. In NAG, the evaluation of the gradient is 
computed after the current velocity is applied and it can be added a correction factor 
to the momentum. Moreover, the Nesterov momentum is a simple and small change 
to the standard momentum.
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Adaptive Gradient (Adagrad)
It performs gradient-based updates using the history of gradients. The adaptive 
learning rate method is an optimization of gradient decent method with the goal 
of minimizing the objective function and the parameters of the network. There are 
several versions of these algorithms such as momentum and NAG.

Adaptive Moment Estimation (Adam)
It is also a stochastic optimization and an adaptive learning rate optimization 
algorithm that utilizes both momentum and scaling. Adam is best suited for non-
stationary objectives dealing with problems that has high noise and spare gradients. 
Adam does not converge where rarely encountered large gradient information 
quickly dies out to the short memory problem of exponential moving average.

AdaDelta
AdaDelta is an extension of Adagrad that alleviates the monotonically decreasing 
learning rate. It restricts the window of accumulated past gradient to a fixed size 
window. ADAM computes adaptive learning rate for each parameter; hence, 
exponentially decaying average of the past gradients like momentum. It also allows 
the adaptive techniques for hyperparameter tunning.

Cloud Notebooks for ML and DL
Generally, the notebook is used to easily manage and write the code base of DL or 
others in an interactive manner. It runs on all the platforms and supports several 
languages to provide an editor for programming. There are two ways to install 
and work on notebooks such as on-premises and cloud-based. But the cloud-based 
notebooks provide the ease access and share functionality of code base. In this 
section, readers will walk through the Google Colab notebook.

Google Colab
Google Colab is an open-source Jupyter notebook environment that runs on cloud 
servers of Google. It provides the option to choose a processing unit within the Colab 
environment such as CPUs, GPUs, and TPUs. With the help of Colab, a user can 
get better environment to develop DL applications using popular libraries such as 
PyTorch, TensorFlow, Keras, and OpenCV. Colab supports only Python 2.7 and 3.6 
which helps to improve the programming skills on Python for initiating notebooks, 
uploading datasets implicitly or explicitly of Google environment, mounting of 
Google Drive.
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Figure 9.24 shows the screenshot how to open a new notebook in Google Colab for 
DL:

Figure 9.24: Home page to open a new notebook

Figure 9.25 shows the screenshot how to choose hardware configurations in Google 
Colab:

Figure 9.25: The way to toggling with hardware configurations in Google Colab
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Figure 9.26 shows the screenshot how to install modules in Python using Google 
Colab:

Figure 9.26: Illustration to  install modules of python in Google Colab

Figure 9.27 shows the screenshot how to import modules in Python using Google 
Colab:

Figure 9.27: Illustration to import modules of python in Google Colab
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Deep Learning Frameworks
TensorFlow
It is an open-source numerical computation library for performing ML and DL-
related tasks such as training and testing of a model. It was developed by the 
Google Brain Team at Google Research Lab on ML and DL. The first version that is 
1.0 came in February 2017. TensorFlow is a cross platform for a framework that runs 
on different flavors of processing units such as GPU, CPU, and TPU. It has a web 
application named as TensorBoard for inspecting, visualizing, and understanding 
the TensorFlow runs and graphs. Also, it can help the researchers to monitor 
the model loss, accordingly they re-tune the hyperparameter of DL for better 
precision. TensorFlow can bind with any other open-source notebook for interactive 
visualization and better representation.

It is an end-to-end open-source platform for ML and DL to provide ease to build 
complex model, create a robust pipeline for ML/DL production, and to integrate with 
various open-source notebooks like Jupyter. The internal working of TensorFlow is 
based on movements of data flows of graphs through which data can be transitioned 
from one graph to other graph or nodes. Then, each data node within the graph 
represents a mathematical operation and edges between two nodes represent 
multi-dimensional data array or tensor data. TensorFlow has various bindings with 
different programming languages such as Python, C#, Java, C, and .Net.

PyTorch
PyTorch is a Python-based framework developed by Facebook for DL and scientific 
computing. With the help of this framework, researchers, and data scientists have 
got great flexibility and better efficiency in designing and hyperparameter tuning of 
neural models.  It can run on cross platform and adapting different processing units 
such as GPU and CPU.

Keras
Keras is an open-source NN wrapper built on top of TensorFlow to provide an 
ergonomic framework to easily develop and deploy the production level ML and 
DL model from the scratch. It was developed by a Google Engineer named François 
Chollet for extending the ease to define a neural model by writing the small piece 
of code. It is a cross platform and cross-language neural library which leverages the 
computation of CPU, GPU, and TPU for defining and processing the multiple layers 
while designing a complex NN model. Keras models can run directly on browser, 
iOS, Android, and edge devices.
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Caffe
Caffe is a DLwrapper that allows various language compatibility like C, C++, 
Python, and MATLAB. This DL framework is developed by Berkeley AI Research 
(BAIR) and by innovative minds of community contributors. It incorporates a pre-
trained deep net repository Caffe Model named as Zoo for speeding up the process 
to deploy any CNN.  Caffe is recommended to do visual recognition using DNN.

MxNet
It is a highly efficient DL framework to support Long Short-Term Memory (LTSM), 
RNN and CNN architecture for handling the real-world complex problems with 
good precision. It understands the ML and DL codes written on Python, R, C++, and 
Julia. This DL framework can be scaled-up to handle the complex and cumbersome 
computation for execution an entire phase of a model. This DL framework has the 
capability to recognize image, audio, video, human speech, and human handwriting 
by leveraging the applications of NN.

Chainer
Chainer is a Python native DL framework to help the coders or modelers to simply 
re-tune the parameters of model during run-time impeccably.  It supports a myriad 
of GPUs for working on core applications of DL such as speech recognition, text 
analysis, and machine translation.

DeepLearning4J
DeepLearning4J is a Java-based DL wrapper to extend the actionable functionalities, 
such as parallel training, distributed framework, adapts the microservices 
architecture and directly integrates with big data landscape, especially Spark and 
Hadoop-MapReduce. It also supports the Scala language in developing of models, 
which are relatively faster than other Python frameworks like Caffe. The native DL 
libraries in DeepLearing4J make it robust and a simple framework to import the 
imperative neural architecture such as RBM, DBN, CNN, RNN, and LTSM.

Microsoft Cognitive Toolkit (CNTK)
CNTK is an open-source DL framework to perform efficient CNNs. It supports a 
myriad of interfaces such as Python, C++, and the command line interface. This 
framework is mainly known for implementing Reinforcement Learning (RL) or 
Generative Adversarial Networks (GANs) models on the image, speech, and text-
based data.
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Distributed DL Processing using Elephas
As the readers are already familiar with different DL/ML frameworks that provide 
the standalone mode to train and test a model. With the ease to integrate the processing 
unit migrating from Central Processing Unit (CPU) to Solid State Drives (SSD) or 
Graphical Processing Unit (GPU) or Tensor Processing Unit (TPU), through that 
the researchers can boost the model execution performance with cost reduction. 
Leveraging of the preceding-mentioned advanced processing units help the users to 
adapt the shipment in a day approach, which means someone can train and test a DL 
model in a day. Prior, it was a lengthy approach where users needed to go through a 
long waiting period due to the slowness of CPU. Moreover, the advanced processing 
units improve the overall efficiency to easily deal with cumbersome amount of data 
impeccably while in training and testing phase; previously that was a big challenge 
in CPU. Due to this tremendous merit of these advanced processing units, many 
researcher groups started engrossing towards its further enhancement. But still these 
frameworks are side-tracked from enigmatic benefits of distributed processing. To 
consider this challenge, the lack of flavour of distributed framework, a team leading 
by Max Pumperla developed a distributed framework named as Elephas that runs 
on top of Apache Spark.

Elephas is a promising distributed DL framework which stitches the core 
functionalities of two different frameworks named as Keras and Apache Spark for 
running a model on massive datasets. Moving further deep in Elephas, it is a class 
of data-parallel algorithms of Keras that execute with the help of Spark ecosystems.

Training and testing part of Keras is initialized on the driver of Spark, and then 
starts serializing and shipping of data to workers with model parameters. In the 
next step, the Spark workers started deserializing the model and train the small 
blocks of data, then send the gradients back to the driver. At driver of Apache Spark, 
the master model starts getting updated by an optimizer which takes the gradients 
either synchronously or asynchronously. Elephas has a model named as SparkModel 
which helps to initialize the distributed framework by passing the compiled model 
of Keras. The following code base shows the implementation of linear regression 
using the distributed DL using Elephas on Google Colab:

>>import pandas as pd 

>>from tensorflow import keras

>>from tensorflow.keras import layers

>>import pyspark

>>from pyspark import SparkContext, SparkConf

>>from elephas.utils.rdd_utils import to_simple_rdd

>>from sklearn.metrics import confusion_matrix
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>>from elephas.spark_model import SparkModel

>>from elephas.utils.rdd_utils import to_simple_rdd

>>from sklearn.model_selection import train_test_split

>>import elephas

>>import pyspark

>>import tensorflow as tf

>>import keras

>>from keras import layers

>>from keras.models import Sequential

>>from keras.layers import Dense, Activation

>>from keras.optimizers import SGD

>>import numpy as np

>>import matplotlib.pyplot as plt

>>import pandas as pd

>>conf =  SparkConf().setAppName(‘distributed-framework-Elephas’).
setMaster(‘local[9]’)

>>sc = SparkContext(conf=conf)

>>dataset = pd.read_csv(‘/content/drive/MyDrive/Salary_Data.csv’)

>>X = dataset.iloc[:, :-1].values

print(X)

>>y = dataset.iloc[:, -1].values

print(y)

# Splitting the dataset into the Training set and Test set

>>X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 
1/4, random_state = 0)

>>model = keras.Sequential()

>>model.add(layers.Dense(128, activation=”relu”, input_dim=1))#, input_
dim=1))

>>model.add(layers.Dense(128, activation=”relu”))

>>model.add(layers.Dense(128, activation=”relu”))

>>model.add(layers.Dense(64, activation=”relu”))

>>model.add(layers.Dense(64, activation=”relu”))

>>model.add(layers.Dense(32, activation=”relu”))
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>>model.add(layers.Dense(32, activation=”relu”))

>>model.add(layers.Dense(1))

>>model.compile(optimizer=”adam”, loss=”mse”, metrics=[“mae”])

>>model.sumarry()

>>rdd = to_simple_rdd(sc, X_train, y_train)

>>spark_model = SparkModel(model, frequency=’epoch’, 
mode=’asynchronous’)

>>spark_model.fit(rdd, epochs=20, batch_size=32, verbose=0, validation_
split=0.1)

>>spark_model.save(‘/content/drive/MyDrive/’)

>>predictions = spark_model.predict(X_test)

>>score = spark_model.master_network.evaluate(X_test, y_test, verbose=2)

print(‘Test accuracy: ‘, score[1]/1000)

Figure 9.28 shows the screenshot how to install Keras, TensorFlow, and Elephas 
using Google Colab:

Figure 9.28: Illustration to install TensorFlow, Keras, and Elephas in Google Colab
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Figure 9.29 shows the screenshot of initializing the required modules in Python on 
Google Colab:

Figure 9.29: Illustration to import indispensable modules in Google Colab

Figure 9.30 shows the screenshot to read the inputs from the csv file and initializing 
the NN:

Figure 9.30: Illustration  to read the input and initializing neural network
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Figure 9.31 shows the screenshot to display the values of the csv file to be used in the 
training phase:

Figure 9.31: Illustration to display the read datasets from the csv

Figure 9.32 shows the screenshot to display the summary of a neural network:

Figure 9.32: Illustration to display the summary of NN
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Figure 9.33 shows the screenshot to display the distributed flavour of DL using 
Elephas in Google Colab:

Figure 9.33: Illustration of a distributed mode of DL using Google Colab

Figure 9.34 shows the screenshot to display the accuracy of a model using Elephas:

Figure 9.34: Illustration to show the accuracy of a model

Figure 9.35 shows the way how to mount a Google Drive in Colab for direct reading 
of dataset into the codebase:
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Figure 9.35: Illustration to depict how to mount Google Drive in Colab

Alternate Framework for Distributed Deep 
Learning
Distributed Keras
Distributed Keras is a distributed DL framework-built on top of Apache Spark and 
Keras. This framework is designed in such a way where the distributed optimizer 
is implemented using the approach of data parallel methods. It supports several 
distributed optimization algorithms such as ADAG, Dynamic SGD, Asynchronous 
Elastic Averaging SGD (AEASGD), Asynchronous Elastic Averaging, Momentum 
SGD (AEAMSGD), and Downpour SGD.

TensorFlowOnSpark
TensorFlowOnSpark was developed by Yahoo to bring a flavour of distributed 
DL by leveraging Hadoop clusters. It supports all TensorFlow functionalities such 
as synchronous/asynchronous training, model/data parallelism, inferencing, 
and TensorBoard. With the access of all the dependencies of TensorFlow with 
in this wrapper, so it can migrate existing Tensorflow written programs into 
TensorFlowOnSpark’s compatible. Reading of input datasets or features are done 
through Spark and pulled by TensorFlow. It can be easily deployed either on-
premises or cloud with CPUs or GPUs.
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BigDL
BigDL is a distributed DL library for Apache Spark to introduce the parallelism or 
distributed processing while designing a DL model from scratch. It feeds the data 
from disparate heterogenous data sources such as HDFS, HBase, Hive, Parquet and 
executes a neural network by using the pre-trained DL models of caffe or Torch. It 
also provides a great ease to customize the DL module or functionalities by stitching 
new codebase using Spark program. BigDL is highly recommended to use the high-
level APIs provided by Analytics Zoo.

DeepLearning Pipelines
It is introduced by Databricks which supports Keras and TensorFlow backend with 
the integration of Apache Spark MLlib pipeline for scaling out on a distributed 
framework using the Hadoop environment. It also includes the special package for 
tuning hyperparameters and transfer learning in NN.

Zoo-Analytics
Analytics Zoo is an open-source high level API for implementing the big data 
AI framework for scaling end-to-end AI to distributed big data. It has several 
integrations with Python-based libraries for performing the distributed DL such as 
Orca (TensorFlow, PyTorch, and Spark), RayOnSpark (Spark based ML/DL), BigDL 
Extensions (Keras based DL with big data clusters), and Zouwu (AutoML).

Deep Learning Operations (DLOps)
Deep Learning operations is a way to emulate a plethora of individual capabilities of 
manpower or team efforts to build a robust DL solution such as data scientists, data 
engineers, data architect, platform engineers, cloud experts, administration, and IT 
operations in a single workflow. DLOps facilitates the deployment of a DL model 
either through on-premises, semi-cloud, and Software as a Service (SaaS) based. 
With the help of DLOps, any team can transition a DL model from an initial phase 
to the production phase on the very same with minimum cost. It also minimizes the 
challenges of faults in the DL pipeline and finding of root cause is so easy, thus can 
be tackled effectively. Mainly, its integration with DevOps supports the Continuous 
Integration (CI), Continuous Development (CD), and releasing ML/DL models 
into the production phase with minimum error.
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Figure 9.36: Overview of flow of DLOps for making a robust pipeline

Figure 9.36 delineates a simple workflow of DLOps that capture the inputs and feeds 
to others for making a robust DL pipeline. First and foremost, the cloud notebook 
takes the data and codebase by leveraging AWS S3 and GitHub. When any changes 
or amendments in the module happen, then Jenkins comes in the picture to monitor 
the changes and does the required actions on top of the docker image. After this 
phase, Jenkins pushes the updated docker into the Amazon Web Services - Elastic 
MapReduce (AWS EMR) or Amazon Web Services - Elastic Compute Cluster 
(AWS EC2) where the DL model is configured and deployed. Once, the model starts 
executing the training step and the output after the testing phase stores back into 
AWS S3 in a specific bucket. At last, the BI tool integrates to pump-up data from the 
bucket and creates insightful dashboards for better understanding.

There is a myriad of benefits to enhance the overall performance of a DL which are 
given as follows:

•	 It reduces data preprocessing and profiling time.

•	 It works on a policy of shipment in a day; it means the DL model is always 
on ready-to-go mode and single day deliverable offering can be possible.

•	 Provides a more secured and robust DL pipeline.

•	 Easy integration of Business Intelligence (BI) tool with the model’s result 
for better visualization and understanding.
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•	 Fully automatic and self-heal architecture to make the DL process impeccable.

•	 It can accelerate the validation process and testing phase.

•	 Ease in monitoring and re-training of DL.

•	 It supports disparate heterogenous of data sources and on-fly conversion of 
data formats for making the data compatible to a DL model.

Conclusion
In this chapter, all the readers would have deep dived into the knowledge about 
the journey of DL and familiarized themselves about the plethora of applications 
in DL. Authors have put a great strive to collect all the pertinent details from 
the basic DL to advance DL. This chapter also contains a detailed explanation 
on various indispensable topics such as loss functions for both regression and 
classification, activation functions, optimizers, different architecture, standalone DL 
frameworks, cloud notebooks, DLOps, distributed frameworks for DL along with 
their implementation. The next chapter will focus on the detailed studies on how 
to design a DL model for segmentation, classification, detection, localization, and 
image manipulations in the domain of computer vision.
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Chapter 10
Computer 

Vision with 
Apache Spark

“Every language is a world. Without translation, we would inhabit 
parishes bordering on silence.”

— George Steiner

Introduction
Due to the rapid leap in the adaptability and volume of multimodal content in 
various domains such as healthcare, banking, security, space, military, retail, 
manufacturing, education, and many more, images and videos have become a 
core part of the lives of human beings. Even though many countries also strive 
to implement digital systems to increase automation, many automation systems 
in the verticals of vision can read the information from the images and videos to 
convert into machine readable format for performing a particular task. Some 
applications of automatic vision-based systems are face recognition, segmentation, 
Optical Character Recognition (OCR) reading, classification, fraudulent detection, 
object localization, object tracking, object labeling, and realistic art graphics. This 
chapter presents comprehensive details about the evolution of Computer Vision 
(CV) and its pertinent vision-based libraries in main core components, annotations, 
data augmentation, and image formats. In addition, the application of CV is also 
mentioned in this chapter. The working mechanism and its timeline have been duly 
presented in a simple manner for a better understanding of the readers. This chapter 
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also includes a practical implementation and a concise view of building a real-time 
CV-based pipeline.

Structure
In this chapter, we will discuss the following topics:

•	 Introduction and evolution of CV

•	 Image and types/formats of image

•	 Various CV annotations and libraries

•	 Definition of core components of CV

•	 CNN and its working mechanism

•	 Timeline of NN-based CNN

•	 Data augmentation and its ways

•	 Futuristic advancement in CV

•	 Real-time production level CV pipeline

•	 Applications of CV

Objectives
After studying this chapter, readers will be able to:

•	 Gain awareness about the legacy of CV

•	 Grasp the knowledge about the image and its different formats

•	 Grasp the knowledge of different components of CV

•	 Understand the concept of data augmentation, CNN, and annotations of CV

•	 Understand the distributed processing of image classification problem using 
a CNN-based model

•	 Gain awareness about the timelines of CV

•	 Know the future scope and key applications of CV

Evolution of Computer Vision
The computer vision technique was first developed in 1950s by Larry Roberts; that 
research mainly concerned with recognition tasks and dealt with two dimensional 
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images. In 1960, many researchers started to use this concept for robotic vision for 
measuring the distance. In mid 1970s, research groups started this idea to deal with 
time sequences of images and the first course on computer vision at MIT’s Artificial 
Intelligence Lab. From 1980 onwards, this concept emerged and started integration 
with Artificial Neural Network and the first Single Neural Network Algorithm was 
developed by Eigenface in 1987 and used by Turk et al. in face classification. In 1990, 
researchers showed great interest for detecting the human faces using statistical 
techniques. Paul Viola and Michael Jones introduced the first real time face detection 
framework in 2001. Since then many researchers have been trying to improve the 
computer efficiency like haar cascading, integral images, feature extractors (SIFT, 
SURF, ORB, and so on), and adapting adaboost, and so on. After 2005, the deep 
learning concept was integrated with computer vision for object classification, object 
labeling, semantic segmentation, instant segmentation, object localization, and object 
tracking. Initially, the CV concept was much before 2010 but it started to be easily 
applicable after 2010 because of cheaper hardware. In 2014, the new concept, that 
is, Generative Adversarial Network (GAN) was introduced by Ian Good fellow. 
Recently, many research labs are set up to work on new concepts of computer vision 
like encoders-decoders of images, reinforcement in CV, transfer learning (meta-
learning, few-shot learning, and zero-shot learning), and contrastive learning.

Defining an Image
An image or a video frame is a combination of multiple pixels. A pixel is the smallest 
and core unit for generating a digital image. There are three ways to represent an 
image such as Black & White (B/W), Colored Space, and Spectral. The B/W image 
refers to a 2-D array to represent an image and the pixel value ranges between 0-255. 
Where 0 represents dark black, 255 as white, and between 1-254 shows the range 
of grayscale. In addition, the B/W image consists of only one channel along with 
height and width as attributes. On the other hand, the colored space image consists 
of three channels for representing red, green, and blue color in the image. It uses a 
3-D array to represent an image. In a spectral image, a technique in which multiple 
bands of electromagnetic spectrums are used. It gives spectroscopic information and 
imaging information.

Different Formats of Image
In CV, there are several formats of images that can be processed by the vision-based 
libraries such as OpenCV, Pillow, Samples, and so on. This section helps the readers 
to understand the various formats of images which are given next.

Joint Photographic Experts Group (JPEG)
The JPEG file format is generated by efforts of two groups such as Joint Photographic 
Experts Group and ISO/IEC group. The JPEG2000 format is recommended as the 
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best file format for compressing the size of the image by degrading the resolution 
quality, and the extension of JPEG image is .jpg.

Graphics Interchange Format (GIF)
The GIF uses 2D raster data type and encoded in binary. GIF files generally have the 
.gif extension. The upgraded version of GIF is GIF89a which is an animated GIF 
image. It is one of the best moving and animation images which can be applied on 
any page or framework by the viewer.

Portable Network Graphics (PNG)
PNG is an improved version of the GIF file format for image compression. The 
compressed images are in lossless manner which restores all the image details and 
information. PNG uses .png extension for viewing the image.

Scalable Vector Graphics (SVG)
SVG defines vector-based graphics for the web in the XML format. This format is 
recommended by the W3C in which all attributes and elements can be animated 
on any screen resolution such as web browser, mobile view, and tablet view. The 
extension of SVG is .svg.

Tag Image File Format (TIFF)
TIFF is a file format which is mainly used in the printing and scanning of images. 
It extends the functionality to store the large raster graphics with different image 
depths. The extension of TIFF is .tiff or .tif.

Digital Imaging and Communications in Medicine (DICOM)
DICOM is a well-recognized international standard format for medical images 
and its related information. It exchanges the clinical and medical data without any 
loss in the quality while intervention. The main verticals where this format play 
a vital role in storing and exchanging the clinical-based confidential information 
such as radiology, cardiology imaging, X-ray, Computed Tomography Scanner 
(CTS), Magnetic Resonance Imaging (MRI), Ultrasound, and Ophthalmology. 
This file format is recognized and accoladed by the International Organization for 
Standardization as the ISO 12052 standards.

Annotation ways in CV
The need of Annotation Techniques (AT) in image processing has been rapidly 
increasing due to plethora of applications of AI and DL. This technique is being used 
to label different types of images or video frames for understanding their behaviors 
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and features. Generally, the well annotated/labeled-based image database is 
relatively more accurate while training a DL model. In other words, it is a technique 
to label or classify the image using text, color, and other annotation tools. Basically, 
this annotation labels the object or feature from the image and stores into some other 
file formats for using that metadata in the training phase.

Bounding Boxes (BB)
A bounding box is frequently used in AT for labeling the image dataset in CV. 
Usually, these are the rectangular boxes to define the location of the target object in 
the image or video frame. The BB uses (x, y) coordinates of the rectangular corners 
such as top-left (x_min, y_max), top-right (x_max, y_max), bottom-left (x_min, y_min) 
and, bottom-right (x_max, y_min). It is generally used to label the object for detection 
and localization tasks. In addition, there are types of BB techniques such as two-
dimensional (2-D) or three-dimensional (3-D). Figure 10.1 shows the BB annotation 
to label the face and half part of the body:

Figure 10.1: Rectangular Box to represent the BB annotation

3D Cuboids
It is very similar to BB, but the only difference is that it considers the depth of the 
target object also. This type of annotation technique is used to distinguish the key 
features like volume and position in a three-dimensional space. In addition, this type 
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of annotation overcomes the issue of project orientation and includes the background 
pixels that sometimes affect the performance of the model while training.

Polygons-Based Annotation
Polygons-based annotation tool is used to label the irregular object in the image like 
an eye and a mouth in the face. It draws a polygon by following the path between 
the two points. Figure 10.2 shows the labeling of an irregular object like a face by 
connecting the two dots until it doesn’t create a closed loop:

Figure 10.2: Labeling of irregular object using polygon annotation

Lines and Splines
As the name suggests, it labels the straight lines, straight strips, and the straight 
boundaries by leveraging the lines and splines-based annotation technique. Mainly, 
it is used in autonomous driving to annotate the roads and sidewalks-related image 
database for recognizing the straight pattern from the image. Figure 10.3 depicts the 
labeling of a straight lane on the road using the LabelMe annotation tool:
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Figure 10.3: Labeling of boundaries and white strip on the roads using line and splines annotation

Semantic Segmentation
In semantic segmentation-based annotation, each pixel in an image is assigned to a 
single class. This annotation technique is used to get the high accuracy in classification 
and segmentation of the object by distinguishing the different colors for each class in 
an image. The outcome of this annotation technique uses the concept of masking for 
each class and this technique is mainly recommended for segmentation annotation 
such as semantic segmentation, instance segmentation, panoptic segmentation. In 
Figure 10.4, the segmentation annotation shows the different colors to pixels for each 
class and draws a mask around the object:

                                                 10.4 (a)                                                     10.4 (b)
Figure 10.4 (a): Original image without annotation, and  

Figure 10.4 (b): Labeling of semantic segmentation annotation to classify the different classes.
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Key-Point and Landmark
It is used to describe and plot the main characteristics of an object in an image. 
Mainly, it is used to create the facial landmarks for observing the emotional, age, 
sex, expressions, and other facial features of the person. Also, it can be used for 
the alignment of any object, especially the body movements of the person. Figure 
10.5 shows the facial landmark of the person by using the landmark annotation 
technique:

Figure 10.5: Landmark annotation for plotting the key facial features of the person

Circle
This type of annotation technique is used to label the circular objects from the images 
or videos. Figure 10.6 depicts the circle annotation to label the internal seed part of 
a sunflower:

Figure 10.6: Circular annotation for labeling the seed portion of a sunflower
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Computer Vision Libraries
In this digital innovation era, the demand of CV-based libraries have been 
rapidly increasing day by day with the involvement of multidisciplinary verticals 
such as security, facial detection, space exploration, manufacturing, banking, 
retail, augmentation intelligence, and so on. The CV-based libraries are used for 
understanding and analyzing the meaningful patterns or features of an object in 
the images or video frames. Due to the high adoption rate of CV, it becomes an 
interesting and novel research topic among the research groups and MNCs to 
enhance the functionalities of vision-related libraries. These libraries are used for 
reading, manipulating, feature extracting, and processing of image metrics for 
further transformation over the images and video frames. Most of the libraries are 
supported by Python language because of its robustness and quick integration with 
the Linux flavor. There are several computer vision libraries and some of the main 
libraries are explained in the upcoming sections.

Open-source Computer Vision Library (OpenCV)
It is an open source-based vision library which provides a wide range of different 
image processing functions. In 2000, Intel Corporation released the first version of 
this library having several mathematical-based image algorithms to perform different 
kinds of tasks such as facial detection, facial recognition, object localization, object 
tracking, OCR, reading of heterogeneous formats of images, camera calibration, 3D 
reconstruction, and other image manipulation functions. OpenCV is an independent 
library which supports different operating systems such as Windows, Android, 
Mac OS, and Linux. Also, it provides the multiple language interfaces to build the 
codebase such as C++, Java Python, and MATLAB.

Imutils
It is a CV-based library that includes the functionality of OpenCV and other basic 
image processing functions like rotation, flipping, resizing, translation, colour 
spacing, detecting edges, dealing with .mat formats, and skeletonization, and so on.

Note: The OpenCV is installed using the pip install opencv-python command 
on the Linux terminal. The Imutils is installed using the pip install imutils 
command on the Linux terminal.

Scikit-Image
It is one of most popular and open-source computer vision libraries for performing 
the different operations using the inbuilt collection of algorithms.
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Note: The Scikit-image is installed using the “pip install scikit-image” command 
on the Linux terminal.

Python-Tesseract (Pytessarct)
It is an OCR-based tool written on the Python language for recognizing and ex-
tracting out the important features from the textual information contained images. 
It uses the Google’s Tesseract-OCR Engine as a backend for recognizing the text in 
an image. Mainly, it is used to parse the textual and tabular information from the 
marksheet, resume, and other textual documents. It helps to create a unified auto-
matic OCR pipeline to recognize the textual information and store into the database 
for further analysis. It also supports Pillow and Leptonica imaging libraries for easy 
reading and manipulating of image operations. 

PyTorchCV
It is a PyTorch-based framework for providing the number of image processing 
libraries and algorithms. It extends the capability to handle multiple operations such 
as image classification, segmentation, detection, localization, and pose estimation. 
Also, consists of many inbuilt CNN-based implemented models like AlexNet, 
ResNet, ResNeXt, PyramidNet, SparseNet, DRN-C/DRN-D for quick deployment 
and configuration of training and testing part of the model.

Note: The PyTorchCV is installed using the pip install pytorchcv command on 
the Linux terminal.

SimpleCV
It is another vision-based library which is written in Python for accessing and 
building the CV applications. It provides the flexibility to apply these CV libraries 
on image and stream videos as well. It is used to perform any image processing-
related functions such as manipulation, extraction, translation, and conversion. 
Also, it supports multiple OS like Mac, Windows, and Linux.

Note: The SimpleCV is installed using the pip install SimpleCV command on 
the Linux terminal.

BoofCV
It is an open-source library which is built specially for the need of stream-line 
based video analysis pipeline in CV. It performs different CV functions such as 
feature detection, tracking, camera calibration, fisher-eye effect, pixels-based object 
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extraction, extraction of features from 2D and 3D geometry. The BoofCV is installed 
using the pip install PyBoof command on the Linux terminal.

Note: The SimpleCV is installed using the pip install SimpleCV command on 
the Linux terminal

IPSDK
It is an image processing library written in C++ and Python. This library extends the 
flexibility to leverage different types of image processing features for analysis the 
image matrix. It automatically allocates the processor and memory with CPU while 
processing an image.

Python-Tesseract (Pytessarct)
It is an OCR-based tool written on Python language for recognizing and extracting 
out the important features from the textual information contained images. It uses the 
Google’s Tesseract-OCR Engine as a backend for recognizing the text in an image. 
Mainly, it is used to parse the textual and tabular information from the marksheet, 
resume, and other textual documents. It helps to create a unified automatic OCR 
pipeline to recognize the textual information and store into the database for further 
analysis.  It also supports Pillow and Leptonica imaging libraries for easy reading 
and manipulating of image operations.

Note: The Pytessarct is installed using the pip install pytesseract command on 
the Linux terminal.

Components of Computer Vision
The CV has a variety of applications in the field of image processing. Mainly, there 
are four components in CV such as classification, detection, segmentation, and 
tracking of objects which are highlighted by many research groups and industry 
experts. This section highlights the aforesaid components in detail.

Object Classification
Classification is one of the core techniques in the field of image processing to classify 
or predict the objects or classes in the images or video frames. This technique extracts 
out the key features from the real image and travels cross the pixels of the target 
image stride by stride to check the same pattern of extracted feature appears or not 
appears on the target images. When the feature matches on the target image, then 
this classification algorithm generates a label of the class or category on the images. 
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Generally, there are two types of classification in computer vision such as single 
label classification and multi-label classification. Figure 10.7 shows the classification 
of objects in city using the concept of a CNN-based vision classification model:

Figure 10.7: Multi-label city objects classification using object classification technique

Single Label Classification
In Single Label classification, the model is capable to classify a single object or 
identify from the image or video frame. To be recapitulated, the classification model 
predicts one class in an image. For example, a cat in an image.

Multi-label Classification
In multi-label classification, the model is capable of classifying multiple objects or 
items from an image. To be more in-depth, if any image contains two or more than 
two objects, and the classification model also predicts two or more objects in an 
image, For example, a cat and dog classification in an image.

Object Detection
Object detection is a technique to detect objects in an image or video frames. It is like 
a classification technique, but the only difference is the bounding box. The object 
detection technique creates a rectangular bounding box around the object with the 
respective label. The bounding box concept helps to determine the localization of an 
object in the image or video frames. There are four coordinates of the bounding box 
such as  and  Figure 10.8 shows the detection of persons using the concept of a CNN-
based vision detection model. The object detection algorithm can be possible using 
deep learning and machine learning techniques.
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Figure 10.8: Single label-based detection using CNN-based detection technique

Object Segmentation
Segmentation is a technique to group together attributes of the same class to generate 
a mask of the objects. This technique helps to generate different mask segments based 
on the characteristics of the object. It assigns the same labels to pixels which fall under 
the same class. The segmentation technique is mainly used in the clinical purpose 
for tumor classification, anomalies detection in the body, recognizing the tissue, and 
iris pattern. It has a variety of applications such as ailment detection or classification, 
robotics, 'Robotic Process Automation (RPA), autonomous vehicles, security images. 
There are three types of segmentation techniques which are explained in detail in the 
upcoming sections.

Semantic Segmentation
In semantic segmentation, all the pixels belonging to a specific class are assigned by 
the same color. This is an example of semantic segmentation. There are prior works 
using classical ML but in 2012, AlexNet had put the foundation stone towards the 
semantic-based segmentation using deep neural network. Later, many other CNN 
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architectures successfully implemented the concept of semantic segmentation with 
high precision. Figure 10.9 shows the semantic segmentation of oranges and leaves 
in which the same color is assigned to the pixels that falls under the same classes. 
For example, the class oranges would always be masked with white color and leaves 
in red color.

                                                    (a)                                                                     (b)
Figure 10.9: (a): Original image without annotation; (b) Semantic segmentation of orange tree

Instance Segmentation
In instance segmentation, it assigns different colors for different objects of the same 
class. Figure 10.10 shows the instance segmentation of many kites in which different 
colors are assigned to the pixels that fall under the same classes. For example, the 
class Person would always be masked with different colors:

Figure 10.10: Instance Segmentation of different kites
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Panoptic Segmentation
It is a mixture of semantic and instance segmentation in which the training-set is 
labeled for both background (semantic) and object (instance). The pattern recognition 
on the planet surface (solar planets are in the foreground and cosmic environment in 
background) is one of the best real-world examples of Panoptic segmentation.

Object Tracking
The main goal of object tracking is to capture the feature of an object and track that 
object with respect to time. The tracking between each video frame is performed by 
comparing the captured feature of an object from the previous frame with the next 
video frame to be captured feature of the object. Livestock and football monitoring 
is the best example of object tracking. Generally, it consumes a lot of memory and 
core utilization because it needs to store the previous frame object information when 
comparing with the next frame object information. There are two approaches to 
track the object movement in the video frames such as tracking with object detection 
and tracking without object detection. Figure 10.11 shows the tracking of livestock 
walking on pastureland using different tracking algorithms:

Figure 10.11: Tracking of livestock using a CNN-based model

Convolution Neural Network (CNN) and 
its Working
Convoluted Network is one of the pertinent NN for dealing with the image, video, 
and text dataset to understand the various patterns or features. The extracted 
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information collected from images using CNN is used to classify, recognize, mask 
segment, localize, and label the object in the image. Usually, it uses the concept of 
the mathematical convoluted theory that helps to extract the key features from the 
image and feed into the ANN for leveraging the mechanism of NN. Convolutional 
Neural Network uses a mathematical concept (convolution function is a product 
of elements of an image array and kernel matrix). Basically, it consists of six steps 
written in Figure 10.12 to generate a prediction in the CNN. The shifting of pixels 
over the input matrix is based on the value of stride. If the value of stride is 1, 
then the pixel would be moving over the input matrix by skipping one pixel. The 
first layer of CNN is a core building block and performs most of the cumbersome 
computation for extracting out the meaningful features from the image dataset. The 
image or its related data is convoluted by applying the filters or kernels which slides 
over the raw image for generating the feature map. Figure 10.12 depicts the working 
overview of CNN on the input image set:

Figure 10.12: Simplified overview of CNN

Convolution Operation
Convolution step is a product of input matrix and feature detector for generating a 
feature map. The Feature Map (FM) is used to extract out the indispensable attributes 
from the input image. The feature detector is also known as kernel or filter. Any N* 
M size of matrix of filters or kernels slide over the actual image according to the 
stride input. This step generates N number of FMs and the training step is used to 
check which FM is important for processing and having maximum features.

Rectified Linear Unit (ReLu)
The second layer named as the activation layer applies the Rectified Linear Unit 
(ReLu) function to increase non-linearity in the CNN while training the model.
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Pooling
The pooling layer is also known as the down sampling layer which involves the 
method to down sample the features. Generally, a pooling layer uses 2 * 2 max-
filter with a stride of 2. The filter may return MAX, MIN, and MEAN values within 
the batch or region according to pooling types. The filter follows the pattern of a 
sliding window over the feature map by skipping the width and height using the 
stride value. The three types of pooling operations such as max pooling (when the 
maximum pixel value is selected), min pooling (when the minimum pixel value is 
selected), and average/mean pooling (when the average value is selected).

Flattening
It is used to convert the entire pooled feature map matrix into a single column matrix 
which is then fed to the NN for further training.

Full Connection
The last layer combines the features together and NN mechanism to create a CNN 
model for making the decision on the image dataset. After that, it leverages the 
activation function such as SoftMax or sigmoid to classify the output.

SoftMax and Cross-Entropy
Leveraging SoftMax after the fully connected layer helps to convert the probabilistic-
based accuracy into the classes such as 0 and 1. This step is used to strictly classify 
the objects based on their probability.

Timeline of the CNN Architecture
Currently, the hot-balloon of computer vision has been consistently lifting-up by 
leveraging the concept of AI and DL. It attracts worldwide researchers to build more 
neural networks for enhancing the grasp of CV in other domains. The following 
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timeline Figure 10.13 shows the annual-wise most popular CNN architectures that 
have been implementing for extracting the features from the image precisely:

Figure 10.13: Legacy timeline of CNN

Implementation of Distributed Processing 
in Image Classification using Google Colab
This section shows the implementation of a CNN model for classifying the images 
of database named as Fashion-MNIST which are downloaded from https://github.
com/zalandoresearch/fashion-mnist. The example Table 10.1 shows label-wise 
description of 10 classes of fashion clothes. Fashion-MNIST is a dataset of Zalando’s 
article images having 60,000 image samples in the training set and 10,000 image 
samples in the testing set. The size of the image-set is 28×28 in grayscale space and 
size should remain identical for training and testing splits.

Label Description
0 T-Shirt/top
1 Trouser
2 Pullover
3 Dress
4 Coat
5 Sandal
6 Shirt
7 Sneaker
8 Bag
9 Ankle Boot

Table 10.1: Label-wise description of Fashion-MNIST classes
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The following code base shows the implementation of CNN to train and test a 
classification-based vision model for analyzing the Fashion-MNIST using distributed 
DL of Elephas-Keras on Google Colab:

>>%pip install elephas==0.4.3

>>%pip install tensorflow==1.14.0

>>%pip install keras==2.2.0

>>import matplotlib.pyplot as plt

>>from keras.models import Sequential

>>from keras.layers import Dense, Conv2D, Dropout, Flatten, MaxPooling2D

>>from elephas.spark_model import SparkModel

>>from elephas.utils.rdd_utils import to_simple_rdd

>>from pyspark import SparkContext, SparkConf

>>from keras.utils import np_utils

>>import keras

>>import cv2

>>from google.colab.patches import cv2_imshow

>>from keras import optimizers

>>from pyspark.sql.functions import rand

>>from pyspark.mllib.evaluation import MulticlassMetrics

>>from elephas.ml_model import ElephasEstimator

>>from keras.datasets import fashion_mnist

>>from tensorflow.keras.utils import to_categorical

>>conf = SparkConf().setAppName(‘distributed-framework-Elephas’).
setMaster(‘local’)

>>sc = SparkContext(conf=conf)

>>(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()

>>x_train = x_train.reshape(x_train.shape[0], 28, 28, 1)

>>x_test = x_test.reshape(x_test.shape[0], 28, 28, 1)

>>x_train = x_train.astype(‘float32’)/255

>>x_test = x_test.astype(‘float32’)/255

>>y_train = keras.utils.to_categorical(y_train, 10)
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>>y_test = keras.utils.to_categorical(y_test, 10)

>>model = Sequential()

>>model.add(Conv2D(28, kernel_size=(3,3), input_shape= (28,28,1), 
name=”convlayer1”))

>>model.add(MaxPooling2D(pool_size=(2, 2)))

>>model.add(Conv2D(28, kernel_size=(3,3), name=”convlayer2”))

>>model.add(MaxPooling2D(pool_size=(2, 2)))

>>model.add(Flatten())

>>model.add(Dense(128, activation=”relu”,name=’fclayer1’))

>>model.add(Dropout(0.2))

>>model.add(Dense(10,activation=’softmax’, name=”output”))

>>model.compile(optimizer=’adam’, loss=”categorical_crossentropy”, 
metrics=[‘accuracy’])

>>_create_rdd = to_simple_rdd(sc, x_train, y_train)

>>spark_model = SparkModel(model, frequency=”epoch”, 
mode=”asynchronous”)

>>spark_model.fit(_create_rdd, epochs=10, batch_size=128, 
verbose=1,validation_split=0.3)

>>model.layers

>>post_image_index = 100

>>for index, get_image_id in enumerate(range(100)):

   plt.imshow(x_test[get_image_id].reshape(28, 28),cmap=’viridis’)

    pred = spark_model.predict(x_test[get_image_id].reshape(1, 28, 
28, 1))

   get_pred = str(pred.argmax())

>>get_prediction = spark_model.master_network.evaluate(x_test, y_test, 
verbose=2)

>>print(get_prediction[1]*100)

Flow Chart of the Codebase
Figure 10.14 shows the screenshot of the code executed to install and import the 
required modules and libraries of Apache Spark, Elephas, Tensorflow, Keras, and 
OpenCV. Also, it executes the command to initialize the SparkContext and Spark 
Application:
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Figure 10.14: Illustration for importing and initializing the required libraries

Figure 10.15 shows the screenshot of the code to design the CNN-based architecture 
to classify the object. Also, it contains detailed information about each model layer 
and calling of Elephas function on the training dataset for distributed processing.

Figure 10.15: Image shows the designing, training, and compiling of model

Figure 10.16 shows an image to show the predicted output on the test dataset:

Figure 10.16: Illustration to show the code to get the predicted output
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Figure 10.17 shows an image to show the code to get the accuracy of the model:

Figure 10.17: Illustration to show the code to get the accuracy of the model

Output Snippet
This section contains the output snippet of the preceding executed program for 
showing the output of classification-based CNN model. Figure 10.18 displays the 
detailed information about the designing of CNN model:

Figure 10.18: Illustrations the detailed information of model

Figure 10.19 displays output of the model on the testing dataset:

Figure 10.19: Predicted output of the model on test dataset
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Figure 10.20 shows the accuracy of the model on the full-set image:

Figure 10.20: Illustration to show the accuracy of this classification model

Real-Time Computer Vision Pipeline
From aforesaid detailed discussion in the chapter about the theoretical concept on 
CV and its key components for designing a CNN-based model is well represented 
for the readers. Still, there is a big lacuna how to bind-up all the conceptualized 
concepts into a real time production level CV-based pipeline. Therefore, this section 
helps to understand how to design an optimized architecture by leveraging the 
concept of big data, internet of things, and computer vision.

Figure 10.21: Model representations of NN

Figure 10.21 depicts the six phases such as data collection, data ingestion, DL and 
Intelligence layer, data processing layer, data persistence layer, and visualization 
layer. In the step phase, the data can be collected from disparate vision-based devices 
like CCTV, mobile camera, DSLR, digital camera, and so on. The image data from 
the various devices can be gathered by configuring the Raspberry Pi or Arduino kit. 
These electronic kits are used to run the services of MiNiFi, MQTT protocol, and 
OpenCV to collect, light-image process, and transfer the image data from Raspberry 
Pi to other large, configured clusters. Although, the integration of Raspberry provides 
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the flavor of edge or fog computing as it can manage decentralized manipulation 
before transferring into the large cluster. In the second phase, the several data bus 
components to be used for reading the image data from raspberry over the new 
cluster and create the data pipeline workflow. In the third phase, the DL and CV 
libraries to be used to train and test the image data which further feeds the outcome 
into the data processing layer. The fourth layer acts like an accountant which marks 
the important data from the pipeline and persist over the storage layer for archival 
analysis. The fifth layer helps to get the Insight, Hindsight, and foresight on the 
image data which is being captured by data pipeline. At last, the visualization layer 
is used to graphical representation of the outcome if needed.

Advancement in CV
The adoption rate of CV in the various verticals confirms the strong capability to 
integrate with the several applications for better mankind. Many research groups 
have been consistently working in the domain of CV and its futuristic amelioration. 
The key research topic for spilling up the feature stream of CV application are 
explained in detail in the upcoming section.

Generative Adversarial Network (GAN)
GAN is a generative model that creates new data instances which resemble to the 
training dataset. The best use case of GANs is DeepFake. DeepFake is a technique to 
create a fabricated or fake image that seems to be realistic as well and can identify 
the pristine images from the bulk of mixed datasets. Generative modeling uses CNN 
to learn from the pattern in the input datasets and generates output images which 
resemble to original images but still the bona-fide ones. Generally, it uses the concept 
of pixel-to-pixel translation and mapping between the two images. The image-
to-image translation technique in GANs helps to convert images from winter to 
summer, day to night, and DeepFake generation. There are two types of generative 
models named as Explicit density models and Implicit density models.

Zero-Shot Learning (ZSL)
Most of supervised-based DL models work with high performance and accuracy 
if the training data is perfectly labeled and available in large collection. So, the 
performance for classifying and segmenting of any image model is directly 
proportional to the availability of the labeled training data. That’s why the term zero-
shot learning has picked a great interest among the several researchers to overcome 
the aforesaid challenge. The zero-shot learning works on the mechanism of seen and 
unseen classes of the objects and uses the model unseen classes of the image while 
training the recognition or classification models. Zero-shot learning consists of three 
classes such as seen classes (image-set is labeled during the training phase), unseen 
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class (the labeled image-set is not present during the training phase), and auxiliary 
information (when the description is given for both seen and unseen classes during 
training phase).

Contrastive Learning (CL)
CL is a learning in which the models are trained by learning the general features 
of the image database without having the labels of them. This technique doesn’t 
require any annotation workload for classifying and labeling the key feature or 
object from the image. The best example of this type of learning is observation of a 
new-born baby.

Data Augmentation (DA) in CV
DA is a technique to generate the artificial fabricated images from the small database 
of real images to expand the quantity of images for training a CNN model efficiently.  
This method is mainly used to overcome the challenge of underfitting and enhance 
the precision in the testing phase. Most of the computer vision libraries like Keras 
use the inbuilt functionality to augment the dataset by applying various techniques. 
Generally, there are several effective methods to provide the augmentation 
transformation on the original dataset. This section explains various augmentation 
techniques.

Flipping
It is a technique to flip the real image dataset into horizontal or vertical direction for 
generating the digital fabricated images. Generally, the horizontal axis flipping is 
mostly used than vertical axis flipping.

Color Space
Digital image is a third order tensor having height, width, and color channels as 
attributes in the image. Changing the intensity of an image, variation in the brightness, 
and color conversion from HSV to RGB, YCbCr to RGB, and HSV to YCbCr, and so 
on are the best methods to perform the data augmentation. Also, converting into 
grayscale space from any color space always generates single channel in which the 
value range varies between 0-255 in B/W.

Cropping
Random cropping is also one of the best techniques to generate high batch of data 
from the small database of images.
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Rotation
It incorporates the rotation of image right or left on any axis between 1 and 359. 
The acute rotation between the range of 1 and 20 or − 1 to − 20 is used to recognition 
digits and text from the image. On the other side, if the rotation degree increases, the 
label of the data is no longer preserved post-transformation.

Noise Injection
It is the way to inject the matrix of random noise or values with the help of variety of 
frequency distributions such as Gaussian distribution. Adding noise to images can 
help the CNN to generate new images for performing the DA.

Kernel Filters and Mixing Images (MI)
It is a technique in CV for sharpening and blurring of images by sliding the filters 
size of n x n matrix over the original image to generate a new image. Gaussian filters 
and pyramidal filters are the best ways to perform DA. Similarly, MI is another 
method to perform DA by blending the images together by averaging their pixel 
values for generating the new image set.

Random Erasing
It works on the mechanism of dropout regularization by randomly selecting an s × r 
patch of an image and feed into the masking translation with either 0s, 255s, mean 
pixel values, or random values. This type of DA prevents overfitting by altering the 
input space. By eliminating the certain patches from the input, the model is turned to 
find the descriptive characteristics. This DA technique also overcomes the challenge-
related to occlusion.

Adversarial Training and GAN-based DA
Adversarial training is a deliberation technique to inject the adversarial attacks and 
other adversarial noise to perform the DA. Basically, it is a framework in which 
the two or more networks with contrasting/similar objectives encoded in their loss 
functions for generating the fabricated image-set. Sometimes, the experiments of 
injections of adversarial attacks in the image-set increase the resolution of image. 
Similarly, Generative modeling or GAN is a new method to perform the DA on the 
image-set by generating the artificial images which have the similar behavior and 
characteristics to the original image-set.
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Neural Style Transfer (NST)
Neural Style Transfer is used to manipulate the representation of images created 
in CNNs for achieving the requirement of data augmentation. It manipulates the 
sequential representations across a CNN in such a way that the patterns or textures of 
one image are transferred to another image while preserving its original information 
or characteristic of image.

Smart Augmentation (SA)
The working of SA is like the implementation mechanism of the NA technique. 
SA is like meta-learning augmentation that uses the concept of two networks such 
as network-X and network-Y. The first network takes two or more than two input 
images map into a new image to train network-Y. It considers the error rate in the 
second network and then backpropagates to update the first network. In addition, 
one more loss function is introduced into the first network to ensure that its outputs 
are similar to others within the class.

Applications of CV
•	 Predictive learning in the automobile and chip manufacturing for early 

detecting fault or flaws while fabricating.

•	 Smart HealthCare to detect the early anomalies and tumors in the human 
being by analyzing the radiologist image.

•	 Smart cameras for security purpose which helps to analyze the real stream 
frame of the video.

•	 Smart agriculture and livestock detection.

•	 E-inventory management to improve the supply chain.

•	 Smart high-resolution cameras for detecting the patterns of the universe in 
the space domain.

•	 Traffic management and vehicle detection.

•	 Integration with augment reality or mixed reality opens the new verticals 
toward augmented CV.

Conclusion
The CV has already spilled out the functionality in several domains because of its 
wide range of extendibility into heterogeneous applications. Basically, it acts like 
an artificial intelligence equipped brain for sensing the intent and behavior of the 
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image. To consider the advantages and futuristic scope of CV, this chapter elicits 
the readers about the evolution of CV and components of CV with detailed history. 
Also, it includes different libraries, annotation techniques, and data augmentation 
of CV. In addition, this chapter presents the CNN workflow, timeline of vision-
based neural networks, and future enhancement of CV. The code implementation 
for classifying the object by leveraging distributed NN processing is also mentioned 
in this chapter.



Index      457

Index

Symbols
3D cuboid  433
.ppk file

generating from .pem, PuTTY and  
PuTTYgen used  46, 47

A
accumulator  91
actions, Spark RDD operations

count action  114
max action  114
min action  115
reduce action  113, 114
sum action  115

activation function  385, 404
activation functions, in NN

Binary Step Activation Function  
(BSAF)  404

Exponential Linear Unit Activation  
Function (ELUAF)  407

Hyperbolic Tangent Activation  
Function (HTAF)  405

Identity Activation Function (IAF)  404
Leaky ReLU  406
Parametric Rectified Linear Unit  

Activation Function (PRLUAF)  
406

Rectified Linear Unit Activation  
Function (RLUAF)  406

Scaled Exponential Linear Unit  
Activation Function (SELUAF)  
408

Sigmoid Activation Function  404
SoftMax Activation Function (SMAF)  

407
SoftPlus Activation Function (SPAF  

407
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SoftSign Activation Function  405
Swish Activation Function  405

AdaDelta  414
Adaptive Gradient (Adagrad)  414
Adaptive Moment Estimation  

(Adam)  414
advancement, in CV

contrastive learning (CL)  453
Generative Adversarial Network  

(GAN)  452
zero-shot learning (ZSL)  452

AI-based approach, NLP  335
Alternate Least Square (ALS)  

Algorithm  17
Amazon EC2 instance

accessing, through public IP  
address  46, 47

creating  42-46
Amazon Elastic Compute Cloud  

(Amazon EC2)  39
Amazon Simple Storage Service  

(AWS S3)  83, 149
Analytics Zoo  426
Annotation Techniques (AT),  

in CV  432, 433
3D cuboid  433
bounding box  433
circle annotation  436
landmark annotation  436
lines and splines-based  

annotation  434
polygons-based annotation  434
semantic segmentation-based  

annotation  435
Ant Colony Optimization  

(ACO) method  369
Apache Airflow  102

Apache Ambari, on Amazon EC2
Hadoop services, installing  51-60
installation  50
iptables, disabling  50, 51
password-less SSH, setting up  51
repository, installing  51-60

Apache Hadoop  26
setting up, on AWS  39

Apache Hive  143
jars, adding  147

Apache Livy  98
features  98

Apache Oozie  100
Apache Spark  26, 81

accumulator  91
architecture  86, 87
broadcast  91, 92
components  84
DAG  87, 88
Data Ingestion  137
evolution  83, 84
feature selectors  193
feature transformers  172
installing, on Google Colab  78
laconic view  27
monitoring  97, 98
need for  82, 83
optimization  92
setting up, on AWS  39

Apache Spark installation, with  
Hortonworks Sandbox

ClouderaVM installation,  
for HDP  33-38

performing  28
VMware Workstation Player  

installation  28-33
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Apache Spark optimization techniques
accumulators  93
caching in Spark  94
collocated joins, using  94
data locality  94
data serialization  95
executor size  94, 95
file format selection  92
Garbage Collection tuning  94
Hive bucketing performance  93
memory management tuning  94
Predicate Pushdown optimization  93
Spark window function  95
Zero Data Deserialization, with  

Apache Arrow  93
Zero Data Serialization, with  

Apache Arrow  93
application, of Apache Spark  155

batch and real-time analytics  155
fog/edge computing  156
interactive analysis  156
Machine Learning  155

Application Programming Interface  
(APIs)  27

applications, of Machine Learning  16
face recognition  18
financial services  17, 18
healthcare  18, 19
recommendation engine  17
sentiment analysis  19
social media  18
video surveillance  19

architecture, Apache Spark
Cluster Manager  86
Executor  86
Spark Driver  86

Task Runner  86
Worker Node  86

Area Under the Receiver Operating  
Characteristics (AUROC)  292

Artificial Intelligence (AI)  1
versus Machine Learning (ML)  9, 10

Asynchronous Elastic Averaging,  
Momentum SGD  425

Asynchronous Elastic Averaging  
SGD (AEASGD)  425

attributes  5
attrition prediction model  296
AWS Account

creating  39-42
AWS EC2  427
AWS EMR  427
Azkaban  102

B
back propagation  387
Batch Gradient Descent (BGD)  413
Batch Learning (BL)  11, 16
BigDL  426
Binarizer  175, 176
Binary Step Activation Function  

(BSAF)  404
Bisecting K-means Algorithm  

(BKM)  317
flow  317- 324

BoofCV  438
boosting algorithms  286
Bootstrap Aggregation (Bagging)  279
bounding box (BB)  433
branch node  267
broadcast  92
Bucketizer  186, 187
Business Intelligence (BI) tool  427
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C
cache  95
Caffe  418
Central Processing Unit (CPU)  4
Chainer  418
challenges, RE

cold-start problem  373
model obsolete  374
privacy protection  373
scalability  373
shilling attacks  374
sparsity  373

child node  267
ChiSqSelector

implementation  194, 195
Chi-Square Automatic Interaction  

Detector (CHAID)  267
Chi-Square Selection Test  194
churn prediction model  296

output snippet  298
class  7
Classification and Regression Tree  

(CART)  267
Decision Tree Classification  

(DTC)  268-272
Decision Tree (DT)  267
Decision Tree Regression (DTR)  274
Ensemble Learning (EL)  278
terminologies  267

classification-based CNN model
implementing  446-450

classification-based ML  
algorithms  158, 244, 245

Logistic Regression  251
Naive Bayes Classifier  245

classification-based supervised learning  
13

algorithms  13
classification loss function

Binary Cross Entropy Loss (BCEL)  411
Categorical Cross Entropy Loss  

(CCEL)  411
Categorical Hinge Loss Function 

(CHF)  411
Cross Entropy Loss (CEL)  411
Focal Loss (FL)  412
Hinge Loss  410
Kullback Leibler Divergence Loss  

(KLDL)  412
Multi Class SVM Loss  410
Sparse Categorical Cross Entropy  

Loss (SCCEL)  412
Squared Hinge Loss Function (SHLF)  

411
classification metrics  292

accuracy  293
AUC-ROC  294
AUROC  294
confusion matrix (CM)  292, 293
F1-score  294
precision  293
recall  294
specificity  294

classifier  6
ClouderaVM (HDP) installation  33-38
cloud notebooks, for ML and DL

Google Colab  414
clustering  300

Density-Based Clustering (DBC)  301
Fuzzy Clustering (FC)  303
Hierarchical Clustering (HC)  301
K-means clustering  304
Partitioning Clustering (PC)  300

clustering-based ML algorithms  159
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CNN architecture
timeline  445, 446

CNTK  418
cold-start problem, RE  373
Collaborative Filtering (CF)  364, 365
Comma Separated Validation  92
Comma Separated Value (CSV) file  142
Community-Based Engines (CBEs)  367
components, Apache Spark

GraphX  86
MLlib  85
Spark Core  85
SparkR  86
Spark SQL  85
Spark Streaming  85

components, Computer Vision
object classification  439
object detection  440
object segmentation  441
object tracking  443

components, NLP  339, 340
discourse integration  342
lexical analysis  341
morphological analysis  340, 341
pragmatic analysis  342
Semantic analysis  342
syntax analysis  341

Compressed Sparse Column  
(CSC) format  165

Computed Tomography Scanner (CTS)  
432

Computer Vision (CV)
advancement  452
Annotation Techniques (AT)  432
applications  455
Data Augmentation (DA)  453

evolution  430, 431
real-time Computer Vision  

pipeline  451, 452
Computer Vision libraries  437

BoofCV  438
Imutils  437
IPSDK  439
OpenCV  437
Python-Tesseract (Pytessarct)  438, 439
PyTorchCV  438
Scikit-Image  437
SimpleCV  438

connectionism  380
Content-Based Filtering (CBF)  363

working  364
Continuous Development (CD)  426
Continuous Integration (CI)  426
Convolution Neural Network  

(CNN)  403, 443
convolution operation  444
cross-entropy, leveraging  445
flattening  445
full connection  445
pooling layer  445
Rectified Linear Unit (ReLu)  444
SoftMax, leveraging  445
working  444

Core Execution Blocks of NLP  338
annotators  338, 339
pipeline  339
pre-trained models  339

CountVectorizer  169, 170
cron jobs  102
CrossValidator  162
Cybernetics  379
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D
Data Augmentation (DA), in CV  453

adversarial training  454
color space  453
cropping  453
flipping  453
GAN-based DA  454
kernel filters  454
mixing images (MI)  454
Neural Style Transfer (NST)  455
noise injection  454
random erasing  454
rotation  454
Smart Augmentation (SA)  455

DataFrames  89, 160
Data Ingestion, in Apache Spark  137, 

138
CSV file, reading through PySpark  142
data, inserting into MongoDB  144, 145
data, inserting into MongoDB with  

import command  145
data, reading from Apache Hive  154, 

155
data, reading from MongoDB-Hive- 

PySpark Integration  144
data, reading from MongoDB-PySpark 

Integration  148
data, reading from ORC  150
Excel file, reading with PySpark  139
from Apache HBase  152-154
from Apache Hive  143
from AWS S3  149, 150
from CSV file format  142
from Excel  139
from JSON  140
from MongoDB  144
from Parquet  140-142

from RDBMS  151
Hive-MongoDB mapping, through  

Hive external table  146, 147
jars, adding Apache Hive  147
JSON file, reading through PySpark  

140
MongoDB data, reading directly  

through StringConnection  149
.py file, submitting with  

jars command  152
PySpark terminal, opening with  

package command  148
dataset  6, 89

need for  89, 90
versus DataFrame  90
versus RDD  90

DBeaver  76
installing, for accessing data from  

persistence layer  76, 77
Decision Tree Classification (DTC)  268

implementing  270, 271
output snippet  272, 273
tree diagram  274

Decision Tree (DT)  267
Decision Tree Regression (DTR)  274

implementation  274
output snippet  276-278

Deep Belief Network (DBN)  381, 399, 
400

DeepLearning4J  418
Deep Learning (DL)  1, 4, 381, 382

activation function  385
back propagation  387
Epochs  387
forward propagation  387
hidden layers  384
learning rate  388
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loss function  385, 386
metrics  388, 389
optimization  386
overfitting  383
underfitting  383
weights and bias  384, 385

Deep Learning frameworks
Caffe  418
Chainer  418
CNTK  418
DeepLearning4J  418
Keras  417
MxNet  418
PyTorch  417
TensorFlow  417

Deep Learning Operations  
(DLOps)  426

benefits  427, 428
workflow  427

DeepLearning Pipelines  426
Deep Neural Network (DNN)  3
Demographic-Based Engines (DBEs)  

367
DenseVector  163

creating  163
syntax  163

Density-Based Clustering (DBC)  301
DICOM  432
dimension  6
Direct Acyclic Graph (DAG), in  

Spark  87, 88
Directed Acyclic Graphs (DAGs)  100
discourse integration  342
Discrete Cosine Transform (DCT)  178, 

179
distributed DL

alternate framework  425
processing, with Elephas  419-424

distributed Keras  425
distributed matrices

creating  166
types  165, 166

distributed processing
implementing in image classification,  

Google Colab used  446-450
Distributed Processing Framework  

(DPF)  25
DL or NN-based approach, NLP  335, 

336
down sampling layer  445
DStream  85

E
Edge Computing

with ML  21
elastic-net regression  229

output snippet  231, 232
ElementwiseProduct  187, 188
Elephas  419

using, for distributed DL  419-424
embedded method  397
Ensemble Learning (EL)  278

Bootstrap Aggregation (Bagging)  279
flow diagram  278
Random Forest Classifier  280
Random Forest Regression (RFR)  283
Random Forest Tree (RFT)  279

Epochs  387
Estimator  161
evaluation dataset  6
evaluation metrics (EM)  292
Evaluator  162
Expectation-Maximization (EM)  325
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Exploratory Data Analysis (EDA)  176, 
335

Exponential Linear Unit Activation  
Function (ELUAF)  407

Extensible Markup Language (XML)  92

F
face recognition  18
featured vector  6
Feature Engineering (FE)  389

embedded method  397
Filter Method (FM)  390
Generalized Method (GM)  393
performing  390
wrapper method  397

FeatureHasher  171, 172
Feature Map (FM)  444
features  5
Feature Selection (FS)  389
feature selectors  193

ChiSqSelector  194, 195
VectorSlicer  193, 194

feature transformers  172
Binarizer  175, 176
Bucketizer  186, 187
Discrete Cosine Transform  

(DCT)  178, 179
ElementwiseProduct  187, 188
Imputer  192, 193
IndexToString  180, 181
MaxAbsScaler  185
MinMaxScaler  184, 185
N-Gram  174, 175
Normalizer  182, 183
Polynomial Expansion  177, 178
Principal Component Analysis  

(PCA)  176, 177

Quantile Discretizer (QD)  191, 192
SQLTransformer  188, 189
StandardScaler  183, 184
StopWordsRemover  173, 174
StringIndexer  179, 180
Tokenizer  172, 173
VectorAssembler  189, 190
VectorIndexer  181, 182
VectorSizeHint  190, 191

Filter Method (FM)  390
analysis of covariance (ANCOVA)  391
analysis of variance (ANOVA)  391
Chi-Square Test  390
fisher score  392
Information Gain (IG)  390
Karl Pearson’s Coefficient of 

Correlation (KPCC)  392
Kendall Rank Correlation  393
p-test  391
Spearman’s Rank Correlation  

Coefficient (SRCC)  392
t-test  391
variance threshold  392
z-test  391

financial services  17, 18
Flight Management System (FMS)  23
forward propagation  387
future scope, Machine Learning (ML)  20

Autonomous Transportation  23
Edge Computing, with ML  21
enhanced healthcare, AI used  23
Improved Cognitive Services  21
Intelligence Augmentation (IA)  20, 21
ML, in space exploration  22
Quantum Computing, with ML  21
robotics  22
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self-driving car  23
Fuzzy Clustering (FC)  303

G
Garbage Collection (GC)  94
Gaussian Mixture Model  

(GMM)  325-329
Generalized Linear Regression  

(GLR)  232
implementing  233-237
output snippet  238-240

Generalized Method (GM)  393
binning  393
date extraction  396
feature split  394
group operation  395
imputation  394
one-hot encoding  396
outlier detection  397
regex operation  394
scaling  395

Generative Adversarial Network  
(GAN)  381, 401

Gini Impurity  267, 268
Global Positioning System (GPS)  23
Google Colab  78, 414

Apache Spark installation  78
working with  415, 416

Google Compute Platform (GCP)  27
Gradient Boosted Tree Classifier (GBTC)

implementing  286
output snippet  288

Gradient-Boosted Trees (GBTs)  286
Gradient Boosting Tree Regression 

(GBTR)
implementing  289
output snippet  291

Gradient Descent (GD)  413
Graph Attention Network (GAT)  402
Graph Convolutional Network (GCN)  

402
Graphical Processing Unit (GPU)  94, 

335
Graphics Interchange Format (GIF)  432
Graphics Processing Unit (GPU)  4
Graph Neural Network (GNN)  402
Graph Recurrent Network (GRN)  402
GraphX  86
Group Method of Data Handling  

(GMDH)  380

H
Hadoop Distributed File System  

(HDFS)  83
HashingTF  170, 171
HBase  152
healthcare industry  18, 19
hidden layers  384
Hidden Markov Chain Model  

(HMCM)  370
Hierarchical Clustering (HC)  301

linkage, types  302
HiveMall  356, 357
Hive-MongoDB mapping

through Hive external table  146, 147
Hive Query Language (HQL)  85
Hybrid Learning Problem (HLP)  10, 15

Multi-Instance Learning (MIP)  15
Self-Supervised Learning (Self-SL)  15
Semi-Supervised Learning (SSL)  15

Hybrid Recommendation Engines  
(HREs)  366

Hyperbolic Tangent Activation Function 
(HTAF)  405
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I
Identity Activation Function (IAF)  404
image

defining  431
image formats  431

DICOM  432
Graphics Interchange Format  

(GIF)  432
Joint Photographic Experts Group  

(JPEG)  431
Portable Network Graphics  

(PNG)  432
Scalable Vector Graphics  

(SVG)  432
Tag Image File Format (TIFF)  432

Improved Cognitive Services  21
Imputer  192, 193
Imutils  437
IndexToString  180, 181
information  6
information collection phases, RE  367

explicit feedback  367, 368
hybrid feedback  368
implicit feedback  368

Information Gain (IG)  268
In-Memory Computation  27
instance segmentation  442
Intelligence Augmentation (IA)  20
Intelligent System (IS)  2
Internet of Things (IoT)  156
Inverse Document Frequency  

(IDF)  167
IPSDK  439
isotonic regression

implementing  241
output snippet  243, 244

J
JavaScript Object Notation  

(JSON)  92, 140
Job Scheduling  99, 100
JPEG file format  431
Jupyter Notebook  67

installation, through PIP  71-73
pre-requisites  67

K
Keras  417
K-means clustering  304

code, for plotting 3D scattering  
plot  314-316

code for plotting elbow curve  311-313
flow  304-311

Knowledge-Based Recommender 
Engines (KBREs)  366

L
L1+L2 Regularization  229
LabelPoint  164, 165
Lasso Regression/L1 Regularization  

218
Lasso Regression model

output snippet  221-223
Latent Dirichlet Allocation (LDA)  329
lazy evaluation  88

advantages  88
increased speed  89
manageability  89
optimization  89
reduced complexities  89

leaf node  267
Leaky ReLU  406
Learning Problem (LP)  10
learning rate  388
lexical analysis  341
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Linear Regression (LR)  199
graphical representation  200, 201
Multi-Linear Regression  

(MLR)  210-216
regularization  218

linkage in HC
Average Linkage  303
Centroid Linkage  303
Complete Linkage  302
Single Linkage  302

Local Matrix  165
LocalVector  163
Logistic Regression  251

Binary Logistic Regression  251
implementing  253
Multinomial Logistic Regression  251
output snippet  255-257
working  251, 252

Long Short-Term Memory (LSTM)  4
loss function  385, 408

classification loss function  410
regression loss function  408

LR model
decision line, plotting  210
indispensable insights  209
output snippet  206-208

Luigi  102

M
Machine Learning (ML)  1

applications  16
batch learning  16
definitions  5
evolution  2, 3
execution phase  9
fundamentals  4
future scope  20

Hybrid Learning Problem (HLP)  15
in space exploration  22
online learning  16
process flow  7, 8
Reinforcement Learning (RL)  10
Semi-Supervised Learning (SSL)  10
Supervised Learning (SL)  10
terminologies  5
testing phase  9
training phase  9
types  10
Unsupervised Learning (USL)  10
working  8

Magnetic Resonance Imaging  
(MRI)  432

MapReduce (MR)  156
MariaDB  151
Market Basket Algorithm (MBA)  370
MaxAbsScaler  185, 186
Mean Absolute Error (MAE)  292
Mean Squared Error (MSE)  292
Memory-Based Collaborative Filtering  

Techniques (MBCFT)  365, 366
memory storage levels  95

cache  95
persist  95, 96

metrics  388
Microsoft PowerBI installation

for data visualization  73-75
Mini Batch Gradient Descent (MBGD)  

413
MinMaxScaler  184, 185
Misclassification Error (ME)  268
ML components  160

CrossValidator  162
DataFrame  160
Estimator  161
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Evaluator  162
parameter  162
Pipeline  161, 162
transformer  160

MLlib  85
ML pipeline  160
model  6
Model-Based Technique (MBT)  366
Momentum Based Gradient Descent 

(MBGD)  413
Mongo Database import syntax  146
MongoDB  144
MongoDB-Hive-PySpark Integration  

144
mongoimport command  145
morphological analysis  340, 341
multi-classification logistic regression  

263
Multi-Instance Learning (MIL)  11
Multilayer Perceptron Classifier  

(MLPC)  260, 261
output snippet  263

Multi-Layer Perceptron Neural  
Network (ML-PNN)  399

Multi-Linear Regression  
(MLR)  210-216

Multi-linear Regression Model
output snippet  217, 218

multiple transformations  103
Multivariate Adaptive Regression  

Splines (MARS)  267
MxNet  418

N
Naive Bayes Classifier  245

working  245-250
narrow transformation  103

Natural Language Processing (NLP)  19, 
331

AI-based approach  335
comparison, with NLU and NLG  344
DL or NN-based approach  335
evolution  333, 334
popular libraries  343
types  334, 344

Nesterov Accelerated Gradient (NAG)  
413

Neural Machine Translation (NMT  334
Neural Network  5

evolution  379
model representations  382, 383

Neural Networks, in DL  398
Convolutional Neural Network  

(CNN)  403
Deep Belief Network (DBN)  399, 400
Generative Adversarial Network  

(GAN)  401
Graph Neural Network (GNN)  402
Perceptron Neural Network (PNN)  

398
Recurrent Neural Network  

(RNN)  401, 402
N-Gram  174, 175
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text classification  344
topic modeling  344-347

Normalizer  182, 183

O
object classification  439, 440

multi-label classification  440
single label classification  440

object detection  440
Object-Oriented Programming  

(OOPs)  89
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object segmentation  441
instance segmentation  442
Panoptic segmentation  443
semantic segmentation  441, 442

object tracking  443
one versus rest classifier  263

implementing  264
output snippet  266

online learning  16
Online Learning (OL)  11
Oozie, for scheduling PySpark

alternative  102
job.properties  101
manipulation.py  101
workflow.xml  100

Oozie jobs
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Job Properties  100
Oozie Coordinator  100
Oozie Workflow  100

OpenCV  437
Operating System (OS)  39
optimization  386
Optimized Row Columnar  

(ORC)  92, 150
optimizers  412

AdaDelta  414
Adaptive Gradient (Adagrad)  414
Adaptive Moment Estimation  

(Adam)  414
Batch Gradient Descent (BGD)  413
full batch gradient descent  413
Gradient Descent (GD)  413
Mini Batch Gradient Descent  

(MBGD)  413
Momentum Based Gradient  

Descent (MBGD)  413

Nesterov Accelerated Gradient (NAG)  
413

Stochastic Gradient Descent (SGD)  
413

Orthant-Wise Limited-Memory  
Quasi-Newton (OWLQN)  258

overfitting  383, 384

P
Panoptic segmentation  443
parameter  162
Parametric Rectified Linear Unit  

Activation Function (PRLUAF)  
406

parent node  267
Parquet  140
PARQUET  92
Partitioning Clustering (PC)  300
Part-of-Speech (POS)  341
pattern  6
Perceptron Neural Network (PNN)  398

ML-PNN  399
SL-PNN  398

performance metrics  6, 292
persist  96
Pipeline  161, 162
Polynomial Expansion  177, 178
Portable Network Graphics (PNG)  432
pragmatic analysis  342
prediction  6
Principal Component Analysis  

(PCA)  176, 177
Probabilistic Latent Semantic  

Analysis (PLSA)  362
Probabilistic Model (PM)  325
pruning  267
PuTTY  46

installing  48
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landing screen  49
PuTTYgen  46

installing  47
URL  46

Python
installation, on Windows OS  67-70
PIP installation  70, 71

Python editors, for Spark Programming 
Framework  60, 61

Python-Tesseract (Pytessarct)  438
PyTorch  417
PyTorchCV  438

Q
Quantile Discretizer (QD)  191, 192
Quantum Computing (QC)

with ML  21

R
Random Forest Classifier

implementing  280
output snippet  282

Random Forest Regression (RFR)
implementing  283
output snippet  284, 285

Random Forest Tree (RFT)  279
working  279, 280

Recommendation Engine (RE)  17, 359
Ant Colony Optimization  

(ACO)  369, 370
applications  374
Collaborative Filtering (CF)  364, 365
Community-Based Engines (CBEs)  

367
Content-Based Filtering (CBF)  363, 364
Demographic-Based Engines  

(DBEs)  367
evolution  360-362

Hybrid Recommendation Engines  
(HREs)  366

implementation  371, 372
information collection phases  367
Knowledge-Based Recommender  

Engines (KBREs)  366
limitations  373
Memory-Based Collaborative Filtering 

Techniques (MBCFT)  365, 366
Model-Based Technique (MBT)  366
real-time pipeline  368, 369
types  362

Recurrent Neural Network  
(RNN)  381, 401, 402

regression  199
Linear Regression (LR)  199-206

regression algorithms  199
Regression-based ML algorithms  159
regression-based supervised learning  12

algorithms  12
regression loss function

Huber Loss (HL)  410
L1 Loss  409
L2 Loss  408
LogCosh  410
Mean Absolute Error Loss (MAEL)  

409
Mean Absolute Percentage Deviation  

Loss (MAPDL)  409
Mean Absolute Percentage Error Loss 

(MAPEL)  409
Mean Bias Error Loss (MBEL)  410
Mean Squared Logarithmic Error  

(MSLE)  409
Mean Square Error Loss (MSEL)  408
Root Mean Square Error Loss  

(RMSEL)  409
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Smooth Mean Absolute Error Loss  410
regression metrics  295

coefficient of determination  296
Mean Absolute Error (MAE)  295
Mean Squared Error (MSE)  295
Root Mean Squared Error (RMSE)  295
R-Squared  296

regularization, in Linear Regression  218
elastic-net regression  229
Generalized Linear Regression  

(GLR)  232
isotonic regression  241
L1+L2 Regularization  229
Lasso Regression  218, 219
Ridge Regression  224

Reinforcement Learning (RL)  5, 15, 418
ReLU  406
Resilient Distributed Dataset (RDD)  83, 

87
paths, writing  87
scenarios, for implementation  87

Restricted Boltzmann Machines  
(RBMs)  399

Ridge Regression/L2 Regularization  
224

Ridge Regression model
output snippet  226-228

robotics  22
Root Mean Squared Error (RMSE)  292
root node  267
R-Squared  292

S
Scalable Vector Graphics (SVG)  432
Scaled Exponential Linear Unit  

Activation Function (SELUAF)  
408

Scikit-Image  437
Self-Supervised Learning (Self-SL)  11
Semantic analysis  342
semantic segmentation  441, 442
Semi-Supervised Learning (SSL)  5
sentiment analysis  19
Sigmoid Activation Function  404
SimpleCV  438
Simple File Transfer Protocol  

(SFTP)  65
Single Layer Perceptron Neural  

Network (SL-PNN)  398
Singular Value Decomposition  

(SVD)  366
Smart Augmentation (SA)  455
social media  18
SoftMax Activation Function (SMAF)  

407
SoftPlus Activation Function (SPAF)  407
SoftSign Activation Function  405
Software as a Services (SaaS)  39
SparkContext  87
Spark Core  85
Spark MLlib  157
Spark MLlib algorithms  158

Classification category  158, 159
Clustering category  159
Regression category  159

Spark MLlib’s datatypes  162, 163
DenseVector  163
distributed matrix  165
LabelPoint  164
Local Matrix  165
LocalVector  163
SparseVector  163

SparkNLP
advantages  337, 338



472      Practical Machine Learning with Spark

alternative  356
applications  357, 358
components  339
Core Execution Blocks  338
enhancement  356
features  347
laconic view  336, 337
logistic regression, implementing  355, 

356
sentimental analysis  349-354

SparkR  86
Spark RDD operations  102

actions  113
output  102
SQL or DataFrame operations,  

in PySpark  115
transformations  102

Spark SQL  85
Spark Streaming  85
Spark Submit  96

runtime parameters  96, 97
Spark transformation  103
SparseVector  163

creating  164
splitting  267
SQL or DataFrame operations, in 

PySpark
aggregate functions with filter and  

GroupBy  132
all columns from PySpark, selecting to 

display DF content  126
Array, retrieving into with collect()  

128
column, creating from existing  

column  119, 120
count of total number of rows,  

obtaining  131

Cross join operation  135
DataFrame, creating through  

Excel file  116, 117
DataFrame, creating with  

CreateDataFrame function  115, 
116

datatype of all columns, changing  
to string type  118, 119

datatype of single column,  
changing  117, 118

distinct values of multiple columns,  
obtaining  130, 131

existing DF column, dropping  125
existing DF column, renaming  124
GroupBy operation  132
index column appending with existing 

DF, monotonically(func) used  124
Inner join operation  132
Left join operation  134
multiple columns from PySpark, 

selecting to display DF content  
127, 128

Outer join operation  133
Pivot function, executing  136, 137
Right join operation  134
sequence ID column appending  

with existing DF,  
lit() function used  121, 122

sequence ID column appending  
with existing DF, zipWithIndex() 
function used  122, 123

single column from PySpark, selecting 
to display DF content  126

temporary table, registering to display 
DF values  123

temporary table registration from DF, 
for querying like SQL  120, 121
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User Defined Function (UDF), in  
PySpark  136

value filtering, by passing multiple  
condition  130

value filtering, by passing  
some condition  129

value of existing column, updating  
119

SQLTransformer  188, 189
StandardScaler  183, 184
State-Of-The-Art (SOTA) models  339
Statistical Modelling (SM)  1, 325
Stochastic Gradient Descent (SGD)  413
StopWordsRemover  173, 174
StringIndexer  179, 180
Structured Query Language (SQL)  27
Sublime editor  61

home screen  64
installing  61-63

sub-tree  267
Supervised Learning (SL)  5, 11, 198, 199

classification  13
regression  12, 199
versus Unsupervised Learning (USL)  

14
Support Vector Machine (SVM)  258

implementing  258
Kernel Support Vector Machine  

(KSVM)  258
Linear Support Vector Machine  

(LSVM)  258
output snippet  259, 260
Quadratic Support Vector  

Machine (QSVM)  258
Radial Basis Function Kernel  

(RBFK)  258
Support Vector Regressor (SVR)  258

Swish Activation Function  405
sync-up configuration, of codebase

reverse  65-67
setting up  65-67

syntax analysis  341

T
Tag Image File Format (TIFF)  432
target (label)  6
TensorFlow  417
TensorFlowOnSpark  425
Tensor Processing Unit (TPU)  335
Term Frequency-Inverse Document  

Frequency (TF-IDF)  167
output  168

Term-Frequency (TF)  167
terminal node  267
testing dataset  6
Tokenizer  172, 173
traditional programming

process flow  7, 8
training dataset  6
transfer function  385
Transfer Learning (TL)  335
transformation  102
transformations, in Spark RDDs

distinct transformation  107
distinct transformation, on  

DataFrame  107-109
filter transformation  104
FlatMap transformation  104
GroupByKey transformations  112
intersection transformation  109
intersection transformation,  

on RDD  109, 110
map transformation  103, 104
narrow transformation  103
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sample transformation  110
sample transformation, on  

DataFrame  111
sample transformation, on  

RDD  110, 111
sort transformations  112, 113
union transformation  105
union transformation, in  

DataFrame  105, 106
union transformation on DataFrame,  

TTV used  107
wide transformation  103

transformer  160
tuple  6

U
underfitting  383
unlabeled data  6
Unsupervised Learning (USL)  5, 13

clustering  13, 300
techniques  299

V
validating dataset  6
variables  5
VectorAssembler  189, 190
VectorIndexer  181, 182
VectorSizeHint  190, 191
VectorSlicer  193, 194
video surveillance  19
VMware Workstation Player

installing  28-33

W
wide transformation  103
Word2Vec  168

implementation  168, 169
wrapper method  397

backward elimination  397
forward selection  397
recursive feature elimination  397
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