

 i

 i

Practical Machine
Learning with

Spark
Uncover Apache Spark’s Scalable

Performance with High-Quality Algorithms
Across NLP, Computer Vision and ML

Gourav Gupta
Dr. Manish Gupta

Dr. Inder Singh Gupta

www.bpbonline.com

ii

Copyright © 2022 BPB Online

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of
the publisher, except in the case of brief quotations embedded in critical articles or
reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, nor BPB Online or its
dealers and distributors, will be held liable for any damages caused or alleged to have
been caused directly or indirectly by this book.

BPB Online has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, BPB Online cannot guarantee the accuracy of this information.

Group Product Manager: Marianne Conor
Publishing Product Manager: Eva Brawn
Senior Editor: Connell
Content Development Editor: Melissa Monroe
Technical Editor: Anne Stokes
Copy Editor: Joe Austin
Language Support Editor: Justin Baldwin
Project Coordinator: Tyler Horan
Proofreader: Khloe Styles
Indexer: V. Krishnamurthy
Production Designer: Malcolm D'Souza
Marketing Coordinator: Kristen Kramer

First published: May 2022

Published by BPB Online
WeWork, 119 Marylebone Road
London NW1 5PU

UK | UAE | INDIA | SINGAPORE

ISBN 978-93-91392-086

www.bpbonline.com

 iii

Dedicated to

Our Parents

iv

About the Authors

Gourav Gupta is a Data specialist having 5+ years of
experience in Big Data, Artificial Intelligence, Deep
Learning, Internet of Things and Digital Twin. Mr. Gourav
has worked on several interdisciplinary real time project
which are the conglomerations of Digital Technologies.
His expertise is on architectural optimization and
technical solutioning on Big Data, AI, Computer Vision,
and Internet of Things. He also loves to write research
article and serving as a reviewer with Springer Journal.

https://www.linkedin.com/in/gourav-g-8929a560/

Dr. Manish Gupta is a 21st century researcher, innovator,
and entrepreneur. He has completed his Ph.D. from reputed
Jawaharlal Nehru University, India. Presently, he is working
at Department of Radiology, Perelman School of Medicine,
University of Pennsylvania (UPENN), Philadelphia, USA.
Prior joined at UPENN, Dr. Gupta worked at Gwangju
Institute of Science and Technology, Gwangju, South
Korea. In addition, he is founder member and Chief
Research Advisor of digital healthcare startup (Arogya
Pandit Private Limited) at India. He has filled patent and
published several research articles in well-reputed SCI
journals and international conferences/book chapters. His
research interest is on Low-cost biosensors development,
Development and optimization of pulse sequence using
MRI, Tumor classification using Machine Learning and
Deep Learning using MRI. In addition, he is also working
on several projects related to Big Data integration with
Artificial intelligence and Internet of Things. Dr. Gupta also
loves to write poem and technical blogs.

 https://www.linkedin.com/in/manish-gupta-ph-d-
9544ba60/

 v

Professor (Dr.) Inder Singh Gupta is a seismologist,
statistician, mathematical modeler, and Data Science
expert. He has 37+ years of rich experience in Research,
Teaching, Principal Supervisor for many Govt. funded
projects along with numerous research publications
in reputed international journals and conferences.
He is also an author of many undergraduate and
postgraduate books of mathematics. Currently, he got
retired from JVMGRR(PG) College, India, and serving
as Chief Executive Officer in digital healthcare startup
(ArogyaPandit Private Limited,India (arogyapandit.
com)).

 https://www.linkedin.com/in/dr-i-s-gupta-87aa2120/

vi

About the Reviewers

v	Kiran Raja is a Faculty Member with the Department of Computer Science
at Norwegian University of Science and Technology (NTNU), Norway. He
received his PhD degree in Computer Science from the NTNU in 2016. He
was/is participating in EU projects FP7-INGRESS, H2020-SOTAMD, H2020-
iMARS, and other national projects. During his participation in SOTAMD and
iMARS projects at NTNU, he has worked on different problems in morphing
attacks from both generation and detection perspectives. He is a member of
the European Association of Biometrics (EAB) and chairs the Academic Special
Interest Group at EAB. He also advises various national agencies in Norway
on making biometric systems secure. His recent research focuses on attacks
and defenses on biometric systems using statistical pattern recognition, image
processing, and machine learning. He has authored several papers in his field
of interest and serves as a reviewer for several journals and conferences. He
also serves as program chair for the BIOSIG conference. He is also a member of
the editorial board for various journals.

v	Er. Nidhi Gupta has 9 years of extensive experience to perform troubleshooting
and testing of advanced analytics applications which deploy on-premise
and cloud-based architecture. Currently, she is associated with Department
of Treasury and Finance under the Australian Government as a “Senior Test
Analyst”. Where, she is leveraging disparate tools such as Selenium, Talend,
Jenkins, AWS stack, Cucumber, RestAssured, Robotic Process Automation
(RPA), Protactor, and Jmeter (Interpreter using Python, PySpark, Java,
TypeScript) for executing the manual and automated test cases. Also, she has
been responsible to landing the Machine Learning and Big Data based projects
impeccably with zero caveats.

 Apart of being a technocrat, she loves to do travelling and trekking with loved
ones in her leisure time.

 She can be reached at [nidhigupt8190@gmail.com/nidhi.gupta@arogyapandit.
com or linkedin.com/in/nidhi-gupta-957458bb]

 vii

Acknowledgements

I am feeling profound happiness to be able to deliver this book to all my readers
across the globe who have been working in the domain of advanced analytics
and intelligence. In this book, I tried my best to elucidate all the indispensable
information for extending the adaptability of distributed processing towards Big
Data and Artificial Intelligence.

First and foremost, a special thanks to my mother, Mrs. Varsha Gupta, for providing
the ideal atmosphere while writing the book chapters. Also, I would like to thank
the co-authors of this book, Dr. I.S. Gupta and Dr. Manish Gupta, for their helpful
and valuable guidance. However, this book wouldn’t have been possible without
the encouragement of my brother-in-law, Er. Manish Gupta, my younger brother,
Sourav Gupta, and other family members.

Finally, I would like to thank Mr. Nrip Jain and the entire BPB team for providing
the opportunity to write this book. Also, I have no words for the reviewers, Dr.
Kiran Raja and Er. Nidhi Gupta, for improving the standard and quality of this
book. I agree that the content of this book will confound the reader with great
interest.

— Gourav Gupta

In the last two decades, we have continually witnessed tremendous growth in
digital data coming from numerous digital platforms. To handle this massive
amount of data, advanced analytics and intelligence techniques are continuously
gaining popularity among the data science community across the globe. The
present book is a sincere attempt to adorn all analytics techniques under one
umbrella for the convenience of readers.

It is my great privilege to introduce this book to data analysts and the science
community. This book potentially creates a bridge to fulfil a gap between the
academic community and corporate researchers. In no words, I can articulate my
infinite indebtedness to a loving family whose unending love always provided me
with the moral strength to materialise this book within a scheduled time frame.
I owe an enormous debt of gratitude to my co-authors for countless technical
discussions and also for their erudition.

viii

I owe an immeasurable debt to both reviewers for their active support, which
did not let me feel let-down during the finalisation of this book. I appreciate both
efforts in putting my endeavours in the right direction.

In the end, needless to say, without the active support of the entire BPB family, this
would have remained an unfulfilled dream.

— Dr. Manish Gupta

In the era of automation, it has become necessary to update and apprise the public
about the upcoming advancements using machine learning and deep learning. It
is quite difficult to achieve more precision with fewer computations without the
implementation of statistical methods and mathematical concepts while training
and testing an intelligence system.

In my 40 years of teaching and research experience, I taught and delivered numerous
international and national lectures on these statistical methods, numerical
methods, and operational research methods for solving the tedious problems in
seismology, particularly in the propagation of waves in solids theoretically. As a
co-founder and director at ArogyaPandit Private Limited, India, I help and teach
my data science team about the core and advanced mathematical functions and
calculations in AI.

I also express my gratitude to my supervisor, Professor Dr. Sarva Jit Singh (former
head of the mathematics department, MDU, Rohtak India), for his blessing and
support throughout my professional life. I would like to thank my wife and family
members for their cooperation. Also, I thank the reviewers, Mrs. Nidhi Gupta and
Dr. Kiran Raja, for improving the book's contents and technical refinement. Finally,
I would also like to thank the BPB Publications for providing this opportunity.

— Dr. I.S. Gupta

 ix

Preface

Since 1964, from the beginning of automation and intelligence towards machines,
the applications of machine learning (ML) have made tremendous progress during
the last two decades. But still, there is a large scope of improvement for fast and
accurate decisions. The aim of the present book is to make the readers aware of day-
to-day activities that make life smarter and cosier with the use of ML applications
using Apache Spark. Initially, there was a single processing framework used in
ML to solve the critical problems. Due to the standalone processing, the training
and testing of models usually takes more time and requires more resources. Also,
the problem becomes more complex and time-consuming for big data (high
dimension and data volume of features) in ML. Therefore, a promising in-memory
analytics layer needs to be introduced, such as Apache Spark, for handling and
training the heavy intelligence model in an optimised manner. Generally, there
are two types of distributed frameworks, like Apache Hadoop and Apache Spark.
Due to some limitations in Hadoop, most MNCs later adopted Apache Spark. This
book contains comprehensive and lucid details from scratch to production level
implementation of a distributed framework, which the readers will find useful.
Also, readers will learn to easily transition from conceptual scenarios to practical
implementation and get educated them about the various components of ML
pipelines using Apache Spark. Although a Github link is provided in this book
where the reader can try the practical stuff using those codebases.

Chapter 1 delineates the introductory phase and disparate real-time applications
of various domains of ML. Compendious discussion regarding its derived
technologies such as Neutral Network (NN) and Deep Learning (DL) in connection
with ML applications is also discussed. Beginning from the evolution of ML to its
future scope, it is also mentioned in detail for readers.

Chapter 2 deals with issues including handling, storing, and processing large
volumes of data by leveraging the Distributed Framework (DF). The installation
and configuration of Apache Spark on-premises systems, Apache Spark on cloud-
based systems, Python, DBeaver, Code Editors, and PowerBI are also deeply
discussed in this chapter.

Chapter 3 contains the various ways to read and manipulate heterogeneous
formats of data, a detailed explanation of the architecture, an optimization

x

interactive monitoring of Spark's job through Apache Livy. Workflow creation
through Apache Oozie and other tools for creating a unified pipeline are also
mentioned in this chapter.

Chapter 4 presents deep knowledge about various components of ML pipelines,
actions, transformations for making the unified ML pipeline using Apache Spark.
Also, this chapters explain all the SparkML methods for training and testing the
intelligence model on actual data.

Chapter 5 deals with distributed processing-based supervised learning along
with implementation. Also, the discussion on regression and classification-based
performance metrics is given to check the performance of the model.

Chapter 6 highlights the use of unsupervised learning methods for clustering of
random samples to understand hidden patterns in the data and find outliers etc.
The implementation of each learning method is given in this chapter.

Chapter 7 deals with the evolution of Natural Language Processing (NLP) and its
distributed processing using the SparkNL P library along with future scope. Also,
topic modelling, text-classification, and sentiment analysis are discussed in detail.

Chapter 8 is deeply concerned with the recommendation engine and its
distributed processing-based operation. The uses are also mentioned in relation to
recommendations regarding products, services, and information.

Chapter 9 discusses the uses of DL process to improve the performance of
computation and hence reduces the time consumption and cost reduction. In this
chapter, evolution of DL and its components explanation and advancement in DL
are also discussed.

Chapter 10 gives comprehensive details regarding the evolution of Computer
Vision (CV) and its related libraries, core components, data augmentation,
and applications. CV enhancement is also discussed, as well as their practical
implementation in real-time CV-based pipelines.

 xi

Code Bundle and Coloured Images
Please follow the link to download the

Code Bundle and the Coloured Images of the book:

https://rebrand.ly/lrsgks7

The code bundle for the book is also hosted on GitHub at
https://github.com/bpbpublications/Practical-Machine-Learning-with-Spark.
In case there's an update to the code, it will be updated on the existing GitHub
repository.
We have code bundles from our rich catalogue of books and videos available at
https://github.com/bpbpublications. Check them out!

Errata
We take immense pride in our work at BPB Publications and follow best practices
to ensure the accuracy of our content to provide with an indulging reading
experience to our subscribers. Our readers are our mirrors, and we use their inputs
to reflect and improve upon human errors, if any, that may have occurred during
the publishing processes involved. To let us maintain the quality and help us reach
out to any readers who might be having difficulties due to any unforeseen errors,
please write to us at :
errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB
Publications’ Family.

Did you know that BPB offers eBook versions of every book published,
with PDF and ePub files available? You can upgrade to the eBook version
at www.bpbonline.com and as a print book customer, you are entitled to a
discount on the eBook copy. Get in touch with us at :
business@bpbonline.com for more details.

At www.bpbonline.com, you can also read a collection of free technical
articles, sign up for a range of free newsletters, and receive exclusive
discounts and offers on BPB books and eBooks.

xii

Piracy
If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or
website name. Please contact us at business@bpbonline.com with a link
to the material.

If you are interested in becoming an author
If there is a topic that you have expertise in, and you are interested in either
writing or contributing to a book, please visit www.bpbonline.com. We
have worked with thousands of developers and tech professionals, just like
you, to help them share their insights with the global tech community. You
can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Reviews
Please leave a review. Once you have read and used this book, why not leave
a review on the site that you purchased it from? Potential readers can then
see and use your unbiased opinion to make purchase decisions. We at BPB
can understand what you think about our products, and our authors can see
your feedback on their book. Thank you!

For more information about BPB, please visit www.bpbonline.com.

 xiii

Table of Contents

 1. Introduction to Machine Learning ... 1
 Introduction .. 1
 Structure .. 2
 Objectives .. 2
 Evolution of Machine Learning ... 2
 Fundamentals and Definition of Machine Learning .. 4
 Types of Machine Learning .. 10
 Learning of Models Based on the First Criteria .. 11
 Supervised Learning (SL) .. 11
 Unsupervised Learning (USL) .. 13
 Reinforcement Learning (RL) .. 15
 Hybrid Learning Problem (HLP) .. 15
 Learning of Models Based on Second Criteria (Batch Mode
 Learning and Online Mode Learning) .. 16
 Batch Learning ... 16
 Online Learning .. 16
 Applications of Machine Learning .. 16
 Recommendation Engine ... 17
 Financial Services .. 17
 Social Media ... 18
 Face Recognition .. 18
 Healthcare .. 18
 Sentiment Analysis .. 19
 Video Surveillance ... 19
 Future Scope of Machine Learning ... 20
 A New Trail of Intelligence Augmentation (IA).. 20
 Edge Computing with ML ... 21
 Quantum Computing with ML ... 21
 Improved Cognitive Services ... 21
 Robotics .. 22
 Machine Learning in Space Exploration ... 22

xiv

 Self-driving Cars and Autonomous Transportation .. 23
 Enhanced Healthcare using AI .. 23
 Conclusion .. 23

	 2.	 Apache	Spark	Environment	Setup	and	Configuration 25
 Introduction .. 25
 Structure .. 26
 Objectives .. 26
 Laconic View on Apache Spark ... 27
 Apache Spark Installation using Hortonworks Sandbox 28
 VMware Workstation Player Installation ... 28
 ClouderaVM Installation for HDP ... 33
 Apache Hadoop and Apache Spark Setup on Amazon
 Web Services (AWS) .. 39
 AWS Account Credentials and Amazon EC2 Creation 39
	 PuTTY	and	PuTTYgen	Software	for	Generating	a	.ppk	file	from	a	.pem	
 and Accessing the Amazon EC2 Instance Through a Public IP Address 46
 Apache Ambari Installation on Amazon EC2 ... 50
 Disabling the iptables .. 50
 Installation of Apache Ambari Repository and Hadoop Services
 on Amazon EC2 ... 51
 Python Editors for the Spark Programming Framework 60
 Sublime Editor.. 61
 PySpark or Python Codebase Syncing from a Server to a
 Local Directory and Vice Versa .. 65
 Jupyter Notebook .. 67
 Microsoft PowerBI Installation for Data Visualization 73
 DBeaver Installation for Accessing the Data from the Persistence Layer ... 76
 Apache Spark Installation on Google Colab .. 78
 Conclusion .. 78

 3. Apache Spark ... 81
 Introduction .. 81
 Structure .. 81
 Objectives .. 82
 Need of Apache Spark .. 82

 xv

 Evolution of Apache Spark .. 83
 Apache Spark Components .. 84
 Architecture of Apache Spark .. 86
 Resilient Distributed Dataset (RDD) ... 87
 Direct Acyclic Graph (DAG) in Spark .. 87
 Lazy Evaluation ... 88
 DataFrames ... 89
 Datasets ... 89
 Accumulator and Broadcast ... 91
 Accumulator .. 91
 Broadcast .. 92
 Apache Spark Optimization and its Techniques ... 92
 Memory Storage Levels: Cache and Persist ... 95
 Spark Submit .. 96
 Spark Monitoring ... 97
 Apache Livy: An Easy Interaction With a Spark Cluster Over a
 REST Interface .. 98
 Job Scheduling .. 99
 Spark RDD Operations: Transformation and Action 102
 Data Ingestion in Apache Spark .. 137
 Application of Apache Spark ... 155
 Conclusion .. 156

 4. Apache Spark MLlib ... 157
 Introduction .. 157
 Structure .. 158
 Objectives .. 158
 Spark MLlib Algorithms ... 158
	 Classification	Category .. 158
 Regression Category .. 159
 Clustering Category .. 159
 ML Components/Pipelines .. 160
 DataFrame ... 160
 Transformer .. 160

xvi

 Estimator ... 161
 Pipeline .. 161
 Parameter ... 162
 CrossValidator ... 162
 Evaluator ... 162
 Spark MLlib’s Datatypes .. 162
 Local Vector .. 163
 Sparse Vector ... 163
 DenseVector ... 163
 LabelPoint .. 164
 Local Matrix .. 165
 Distributed Matrix .. 165
 Extracting, Transforming, and Selecting Features .. 166
 Term Frequency-Inverse Document Frequency (TF-IDF) 167
 Word2Vec ... 168
 CountVectorizer ... 169
 FeatureHasher .. 171
 Feature Transformers .. 172
 Tokenizer .. 172
 StopWordsRemover ... 173
 N-Gram .. 174
 Binarizer .. 175
 Principal Component Analysis (PCA) .. 176
 Polynomial Expansion ... 177
 Discrete Cosine Transform (DCT) ... 178
 StringIndexer ... 179
 IndexToString .. 180
 VectorIndexer ... 181
 Normalizer ... 182
 StandardScaler ... 183
 MinMaxScaler ... 184
 MaxAbsScaler .. 185
 Bucketizer .. 186
 ElementwiseProduct .. 187

 xvii

 SQLTransformer .. 188
 VectorAssembler .. 189
 VectorSizeHint ... 190
 Quantile Discretizer (QD) .. 191
 Imputer .. 192
 Feature Selectors .. 193
 VectorSlicer .. 193
 ChiSqSelector ... 194
 Conclusion .. 195

 5. Supervised Learning with Spark ... 197
 Introduction .. 197
 Structure .. 198
 Objectives .. 198
 Definition of Supervised Learning .. 198
 Regression and its Types .. 199
 Regularization in Linear Regression ... 218
 Least Absolute Shrinkage and Selection Operator
 (Lasso Regression)/L1 Regularization ... 218
 Ridge Regression/L2 Regularization ... 224
 Elastic-net Regression/L1+L2 Regularization .. 229
 Generalized Linear Regression (GLR) ... 232
 Isotonic Regression/Monotonic Non-Decreasing Regression/
 Equal Stretch Regression ... 241
 Classification and its Types .. 244
 Classification and Regression Tree (CART) ... 267
 Terminology in CART ... 267
 Decision Tree (DT) ... 267
	 Decision	Tree	Classification	(DTC)	in	CART ... 268
 Decision Tree Regression (DTR) ... 274
 Ensemble Learning (EL) .. 278
 Performance Metrics/Evaluation Metrics (EM) .. 292
	 Classification	Metrices ... 292
 Regression Metrics .. 295
 Churn Prediction Model ... 296

xviii

 Conclusion .. 298

 6. Un-Supervised Learning with Apache Spark .. 299
 Introduction .. 299
 Structure .. 300
 Objectives .. 300
 Clustering.. 300
 K-Means under Clustering .. 304
 Bisecting K-means Algorithm (BKM) ... 317
 Gaussian Mixture Model (GMM)... 325
 Latent Dirichlet Allocation (LDA) .. 329
 Conclusion .. 330

 7. Natural Language Processing with Apache Spark ... 331
 Introduction .. 331
 Structure .. 332
 Objectives .. 332
 Evolution of Natural Language Processing ... 333
 NLP and its Types .. 334
 Artificial Intelligence-Based Approach... 335
 Deep Learning or The Neural Network Approach .. 335
 A Laconic View on SparkNLP .. 336
 Advantages of SparkNLP ... 337
 Core Execution Blocks of NLP ... 338
 Components of NLP .. 339
 Morphological Analysis ... 340
 Lexical Analysis ... 341
 Syntax Analysis ... 341
 Semantic Analysis ... 342
 Pragmatic Analysis ... 342
 Discourse Integration .. 342
 Comparison among Natural Language Processing (NLP), Natural
 Language Understanding (NLU), and Natural Language
 Generation (NLG) .. 343
 Widely Used Libraries of NLP ... 344

 xix

 Types of NLP .. 344
 Features in NLP .. 347
 Sentiment Analysis using Spark NLP ... 349
 Enhancement in NLP .. 356
 Alternate of SparkNLP .. 356
 Conclusion .. 358

 8. Recommendation Engine with Spark ... 359
 Introduction .. 359
 Structure .. 360
 Objectives .. 360
 Evolution of a Recommendation Engine.. 360
 Types of Recommendation Engines .. 362
 Content-Based Filtering (CBF) ... 363
 Collaborative Filtering (CF) .. 364
 Hybrid Recommendation Engines (HREs) ... 366
 Information Collection Phases in RE .. 367
 Explicit Feedback ... 367
 Implicit Feedback ... 368
 Hybrid Feedback .. 368
 Real-Time Pipeline of a Recommendation Engine .. 368
 Ant Colony Optimization in a Recommendation Engine 369
 Hidden Markov Chain Model (HMCM) .. 370
 Market Basket Algorithm (MBA) .. 370
 Implementation of a Recommendation Engine... 371
 Limitations of Recommender Systems ... 373
 Cold-Start Problem .. 373
 Applications of a Recommendation Engine .. 374
 Conclusion .. 375

 9. Deep Learning with Spark .. 377
 Introduction .. 377
 Structure .. 378
 Objectives .. 378
 Evolution of the Neural Network ... 379

xx

 Cybernetics .. 379
 Connectionism ... 380
 Deep Learning (DL) ... 381
 Definition of Deep Learning (DL) ... 382
 Neural Network and its Model Representations ... 382
 Various Terminologies Used in DL .. 383
 Feature Engineering (FE)/Feature Selection (FS) ... 389
 Filter Method (FM) ... 390
 Generalized Method (GM) ... 393
 Wrapper Method .. 397
 Embedded Method ... 397
	 Different	networks	in	DL ... 398
 Different Activation Functions .. 404
 Linear Function or Identity Activation Function (IAF) 404
 Binary Step Activation Function (BSAF) ... 404
 Sigmoid Activation Function/Logistic/Soft Step... 404
 Hyperbolic Tangent Activation Function (HTAF) / Tanh AF 405
 SoftSign Activation Function.. 405
 Swish Activation Function .. 405
	 Rectified	Linear	Unit	Activation	Function	(RLUAF)	/	ReLU	/	
 Maximum Function ... 406
	 Leaky	Rectified	Linear	Unit	(Leaky	ReLU) ... 406
	 Parametric	Rectified	Linear	Unit	Activation	Function	(PRLUAF) 406
 Exponential Linear Unit Activation Function (ELUAF) 407
 SoftPlus Activation Function (SPAF) ... 407
 SoftMax Activation Function (SMAF) ... 407
 Scaled Exponential Linear Unit Activation Function (SELUAF) 408
 Different Types of Loss Functions ... 408
 Regression Loss Function .. 408
 Mean Square Error Loss (MSEL)/ L2 Loss ... 408
 Root Mean Square Error Loss (RMSEL) .. 409
 Mean Absolute Error Loss (MAEL)/ L1 loss .. 409
 Mean Squared Logarithmic Error (MSLE) ... 409
 Mean Absolute Percentage Error Loss (MAPEL)/ Mean Absolute
 Percentage Deviation Loss (MAPDL) .. 409

 xxi

 Mean Bias Error Loss (MBEL) ... 410
 Huber Loss (HL) / Smooth Mean Absolute Error Loss 410
 LogCosh Loss ... 410
	 Classification	Loss	Function .. 410
 Hinge Loss/Multi Class SVM Loss .. 410
 Squared Hinge Loss Function (SHLF) .. 411
 Categorical Hinge Loss Function(CHF) ... 411
 Cross Entropy Loss (CEL)/Negative Log Likelihood... 411
 Binary Cross Entropy Loss (BCEL) .. 411
 Categorical Cross Entropy Loss (CCEL) ... 411
 Kullback Leibler Divergence Loss (KLDL)/ Relative Entropy 412
 Sparse Categorical Cross Entropy Loss (SCCEL) ... 412
 Focal Loss (FL) .. 412
 Different Optimizers ... 412
 Gradient Descent (GD) ... 413
 Batch Gradient Descent (BGD) ... 413
 Stochastic Gradient Descent (SGD)/full batch gradient descent 413
 Mini Batch Gradient Descent (MBGD) .. 413
 Momentum Based Gradient Descent (MBGD) ... 413
 Nesterov Accelerated Gradient (NAG) ... 413
 Adaptive Gradient (Adagrad) .. 414
 Adaptive Moment Estimation (Adam) .. 414
 AdaDelta .. 414
 Cloud notebooks for ML and DL... 414
 Google Colab .. 414
 Deep Learning Frameworks ... 417
 TensorFlow ... 417
 PyTorch .. 417
 Keras .. 417
	 Caffe ... 418
 MxNet .. 418
 Chainer ... 418
 DeepLearning4J ... 418
 Microsoft Cognitive Toolkit (CNTK) ... 418
 Distributed DL Processing using Elephas .. 419

xxii

 Alternate Framework for Distributed Deep Learning 425
 Distributed Keras ... 425
 TensorFlowOnSpark .. 425
 BigDL ... 426
 DeepLearning pipelines ... 426
 Zoo-analytics ... 426
 Deep Learning Operations (DLOps) ... 426
 Conclusion .. 428

 10. Computer Vision with Apache Spark ... 429
 Introduction .. 429
 Structure .. 430
 Objectives .. 430
 Evolution of Computer Vision ... 430
 Defining an Image ... 431
 Different Formats of Image .. 431
 Annotation ways in CV .. 432
 Bounding Boxes (BB) ... 433
 3D cuboids ... 433
 Polygons-Based Annotation .. 434
 Lines and Splines ... 434
 Semantic Segmentation ... 435
 Key-Point and Landmark ... 436
 Circle .. 436
 Computer Vision Libraries ... 437
 Open-source Computer Vision Library (OpenCV) 437
 Imutils .. 437
 Scikit-Image ... 437
 Python-Tesseract (Pytessarct) ... 438
 PyTorchCV ... 438
 SimpleCV ... 438
 BoofCV ... 438

 xxiii

 IPSDK .. 439
 Python-Tesseract (Pytessarct) ... 439
 Components of Computer Vision .. 439
	 Object	Classification .. 439
 Object Detection .. 440
 Object Segmentation .. 441
 Object Tracking .. 443
 Convolution Neural Network (CNN) and its Working 443
 Convolution Operation .. 444
	 Rectified	Linear	Unit	(ReLu) ... 444
 Pooling ... 445
 Flattening ... 445
 Full Connection ... 445
 SoftMax and Cross-Entropy .. 445
 Timeline of the CNN Architecture .. 445
 Implementation of Distributed Processing in Image Classification
 using Google Colab ... 446
 Flow Chart of the codebase ... 448
 Output Snippet .. 450
 Real-time Computer Vision Pipeline .. 451
 Advancement in CV .. 452
 Generative Adversarial Network (GAN) .. 452
 Zero-Shot Learning (ZSL) ... 452
 Contrastive Learning (CL) .. 453
 Data Augmentation (DA) in CV .. 453
 Flipping .. 453
 Color Space .. 453

 Cropping .. 453
 Rotation ... 454
 Noise Injection ... 454
 Kernel Filters and Mixing Images (MI) .. 454
 Random Erasing .. 454

xxiv

 Adversarial Training and GAN-based DA .. 454
 Neural Style Transfer (NST) ... 455
 Smart Augmentation (SA) .. 455
 Applications of CV .. 455
 Conclusion .. 455

 Index ...457-474

Introduction to Machine Learning 1

Chapter 1
Introduction to

Machine
Learning

“Field of study that gives computers the capability to learn without being
explicitly programmed.”

— Arthur Samuel

Introduction
Since the last two decades, there has been an incessant enhancement towards the
vertical of Artificial Intelligence (AI) and its related sub-branches such as Machine
Learning (ML), Statistical Modelling (SM), and Deep Learning (DL). These
aforementioned technologies leverage many applications in the amelioration of
people’s life and their day-to-day needs in various domains such as bioinformatics,
radiology, agriculture, finance, astronomy, banking, healthcare, geo-informatics,
seismology, and space exploration. ML extends the core functionality to push-up the
capability of manual operations and machine to automatically learn by understanding
and observing the key historical experiences. The main objective of this book is to
educate the readers about the fundamental, advancement, and real-life applications
of ML using a distributed framework. Furthermore, this chapter gives an in-depth
knowledge about the journey of AI and the taxonomy of AI. Indeed, the term AI
refers to a mimic prototype to imitate intelligent behaviors by understanding the
meaningful information, patterns, or inputs. For example, self-driving cars use the
concept of AI, especially a vision-based technology for teaching the AI model to make

2 Practical Machine Learning with Spark

insightful decisions by mimicking and understanding the intelligent behaviors or
inputs; these kinds of models are ideal examples of AI. The report shared by Gartner
in 2019 depicts that the Intelligent System (IS) and its related verticals will become
a big epic-center and most decisive emerging technology in the coming years. In
future, almost every tedious problem will be resolved with the help of AI and ML.
Across the globe it becomes a subject of interest among researchers, data scientists,
data analysts, industrial experts, and academicians for mitigating the herculean
real-time problems using AI. Also, this chapter shows the rigorous knowledge
about the evolution of ML, types of ML, and its emerging applications with their
futuristic scope. In addition, a compendious discussion on DL in connection with AI
applications have been embossed in this chapter.

Structure
In this chapter, we will discuss the following topics:

•	 Evolution of machine learning

•	 Fundamentals and definition of machine learning

•	 Types of machine learning algorithms

•	 Application of machine learning

•	 Future of machine learning

Objectives
After studying this chapter, readers will be able to:

•	 Learn about the history of machine learning.

•	 Get an understanding of the modern definition of machine learning.

•	 Grasp the knowledge of different types of machine learning and its algorithm.

•	 Understand the application of machine learning in various fields.

•	 Know the future scope of machine learning.

Evolution of Machine Learning
The origin of both technologies AI and ML are interconnected. Hence, for the solid
foundation of the readers, detailed history of ML and AI is presented in this section.
However, the primary objective of this book is to make the readers conversant with
the practical real-time scenario of ML with Apache Spark.

Introduction to Machine Learning 3

The term ‘Machine Learning’ first came into existence in 1952 after the distinguished
work by an American engineer Arthur Samuel. Starting from 1949 to late 1968, he
did the pioneering research to learn a computer by applying some instructions
into it for making a self-decision. Initially in 1950s, he developed an alpha beta
pruning program using a scoring function for measuring winning chances of two-
player games like chess, on computers with limited memory. Next, he proposed the
minimax algorithm based on the minimax strategy concept along with numerous
mechanisms named as “rotelearning” to make his program better. In 1952, Samuel
was the first to introduce the term “Machine Learning”. Thereafter, in 1957 Frank
Rosenblatt from Cornell Aeronautical Laboratory merged the Donald Hebb’s
model of a brain cell with Samuel’s machine learning concept to design the first
neural network named perceptron for computers. The Perceptron algorithm was
first installed in a machine named Mark 1 perceptron based on IBM704 hardware.
It was used for image reconstruction applications and still had some limitations in
recognition of the faces patterns.

In 1960s, the new trail was introduced using multi-layers in the neural network [NN],
there by providing enhanced capability to solve complex algorithms and provide
better precision. After this multi-layer theory, many new capabilities were opened to
further improve the neural network learning through the feedforward propagation
and back propagation neural networks.

In 1967, the nearest neighbor algorithm came in existence for the basic pattern
recognition application for finding the more efficient route for traveling sales persons.
In 1970, the back propagation algorithm was developed to adjust the network with
hidden layers of neurons for minimizing errors. This algorithm was used to train
Deep Neural Network (DNN).

During the 70s and 80s, AI researchers and computer scientists worked together
on neural network research, while some of the researchers and engineers started
working in ML as a new trail. By the early 1980s, ML and AI took separate paths.
AI mainly focused on using logical and knowledge-based approaches while ML
focused on neural networks-based algorithms.

In 1990s, ML reached its peak because of availability of large data shared by the
Internet service. In 1990, Robert Schapire developed the Boosting Algorithm for ML
to minimize the bias during supervise learning with ML algorithms for boosting
weak learners. In this, a set of weak learners create a single strong learner and
is defined as classifiers that are correlated with true classification. It combines
many simple models (weak learners) to generate the result. There are many types
of boosting algorithms such as, AdaBoost, BrownBoost, LPBoost, MadaBoost,
TotalBoost, xqBoost, and LogitBoost, and AnyBoost. A detailed study on various
types of boosting algorithms have been discussed later in this chapter.

4 Practical Machine Learning with Spark

Next, in 1996, the IBM Company won the first game against the world champion
Garry Kasparov by developing “Deep Blue”, a chess-playing computer. The Deep
Blue computer used custom build Very Large-Scale Integration (VLSI) chips for
executing the Alpha-Beta algorithm. In 1997, Jurgen Schmidhuber and Sepp
Hochreiter designed the neural network model named Long Short-Term Memory
(LSTM) for speech recognition training. LSTM consists of cells, input, and output
gates and was used for eliminating the gradient problem. In 2006, Face Recognition
Algorithms were tested for 3D face scans, face images, and iris images and which
was more accurate than the earlier facial recognition algorithms.

In the same year, the Canadian computer scientist Geoffrey Hinton introduced the
term Deep Learning (DL) and developed a fast and greedy unsupervised learning
algorithm for distinguishing the text and objects in the digital images and videos.

In 2011, the deep learning artificial intelligence research team at Google also known
as “Google Brain” developed a large-scale deep learning software system named as
DistBelief for learning and categorizing the object in a similar way as a person does.
After a year, the Google X team developed ML algorithms containing 16,000 clusters
for automatically identifying the cat digital images from YouTube videos.

In 2014, the Facebook research team came up with a facial recognition system known
as DeepFace for recognizing human faces in digital images using DL. In 2015,
Microsoft developed the ML toolkit for distributed resolution ML problems across
multiple computers. In 2016, the Google DeepMind team developed AlphaGo for
solving most complex board game problems.

Next in 2017, Google released Google Brain’s second-generation system known
as the TensorFlow version 1.0.0 for a single device that can run on both Central
Processing Unit (CPU) and Graphics Processing Unit (GPU) for general purpose
computing. Recently, Google released the TensorFlow version named TensorFlow.js
version 1.0 for ML in JavaScript, TensorFlow 2.0, and TensorFlow Graphics for DL in
computer graphics in 2018 and 2019, respectively.

Fundamentals and Definition of Machine
Learning
This section focuses on creating a solid foundation of ML starting from its initial
definition to its modern definition along with basic terminologies which are
essential for grasping the fundamentals of ML. As discussed previously, ML has
been adapting and expanding its functionalities in every automation related jobs, so
the authors here have put the extra attention towards the core and rational concepts
to strengthen the core knowledge of readers on ML. Also, it is necessary to walk
through the journey of ML consisting of its importance, the traditional and modern
approaches to train a machine or a model for training, validating, and testing of the

Introduction to Machine Learning 5

dataset. This book helps the readers to update them about the real-time challenges
and their respective solutions being used in the Intelligence and Analytics-based
organizations.

Figure 1.1 depicts the branches of Artificial Intelligence such as Machine Learning,
Neural Network, and Deep Learning. In ML, it takes the help of different types of
learning concepts such as Supervised Learning (SL), Semi-Supervised Learning
(SSL), Unsupervised Learning (USL), and Reinforcement Learning (RL).

Figure 1.1: Artificial Intelligence with its derived technologies

In NN, a special collection of algorithms is used for training, validating, and testing
the patterns or inputs by leveraging the ideation of artificial neurons that work a
like neurons of a human brain. For example, the conversion of voice-to-text uses
the NN as a backbone. Amazon Alexa, Apple Siri, and Google Home are usually
known as an ideal application of Smart Personal Assistants. On the flip side, the
term DL represents the conglomeration of two or more hidden layers for processing
the complex problems with high precision. Generally, DL is like NN, but the only
difference is that DL is an easy customization for the complex neural architecture and
extends the ease to handle the cumbersome model. These days, there are various DL
and NN frameworks available to get on-spot flavor of the initial analytic platform
such as Keras, Caffe, and TensorFlow.

In the following section, the reader will elicit about the basic terminologies which
are essential to understand the concepts of ML:

•	 Features or Attributes or Variables: These are the unique key measurable
characteristics of data to be fed into the system for training and testing a
model. For ML algorithms, these features are used as inputs or outputs.
For recognizing the face of a human being, the associated features such as
gender, age, height, lip shape, face shape, and color, so on are to be used as
the decisive attributes.

6 Practical Machine Learning with Spark

•	 Featured Vector or Tuple: It is a group of important features which are listed
in a vector or tuple format for training a model.

•	 Model: A specific representation learned from data using the ML algorithm.
There are three types of models in ML named as Supervised, Unsupervised,
and Reinforcement models. It consists of three important phases such as
training, validating, and testing of a model.

•	 Dataset: A set of information collected as rows or instances. The model needs
a dataset for performing the training and testing phase; hence, the model is
unable to train without the dataset or input database.

•	 Dimension: A subset of features used to define the property of data. The
dimension helps to provide the detailed information about the data for
better understanding.

•	 Target (Label): It is the value to be predicted by training a model. In face
recognition and gender classification problem, the label with each set of
input would be the men and women.

•	 Training Dataset / Validating Dataset: It is initial dataset used to train,
validate, and develop the model. Subsequently, the developed model will
then map the new data to further train the model.

•	 Testing Dataset / Evaluation Dataset: It is the final data set used for
verification of the model. This is also called the test dataset. Some authors
also refer to it as the golden or reference dataset.

•	 Prediction: It is a result or output of a trained model by testing on the given
inputs or patterns.

•	 Performance Metrics: It is used to calculate the accuracy of the prediction
model using precision, recall, accuracy, and Intersection over Union (IoU).

•	 Information: It is collection of datasets such as videos, texts, and images
which need to be used to interpretate and manipulate the training dataset for
providing some meaningful information.

•	 Unlabeled Data: This is the raw form of the data which may consist of video
streams, audio, images, and so on in the irregular patterns or unarranged
manner.

•	 Classifier: It helps to classify the classes of the predicted output. For example,
classification of different livestock’s such as Cows, Cats, and Horses from an
image.

•	 Pattern: Pattern is a way to understand features of any dataset and images.
Pattern is known as a features extractor through which a similar object or
dataset can be identified.

Introduction to Machine Learning 7

•	 Class: Class is used to define the details of any grouped objects/labels. If an
image has both fruits and vegetables, it means image is classified into two
classes, one each for vegetables and fruits.

After knowing the basic terminologies of ML, readers must learn about the basic
processing flow in the traditional programming language and ML algorithms. Figure
1.2 and Figure 1.3 represent the traditional programming language approach and
Machine Language approach.

Figure 1.2: Block diagram of the working of the traditional
programming language (top) and machine learning (bottom)

In traditional programming, the reader configures the machine according to the input
and produces a desired output or result based on the logic of the algorithm. Let’s take
an assumption, if a human being instructs a computer or any other programming
machine about what to do, at that instance, readers need a programming language
that allows a machine to learn and make the action accordingly. Further, it also gives
the ability to the machine by using the algorithms for making the decision, based on
the logic or conditions.

On the other hand, in the ML approach or modern learning, the computer learns
from their behaviors and historical patterns instead of being programmed to do
a specific task. This type of learning is different from the traditional learning in
which the computer needs to do what exactly we want it to do with the help self-
learning. Most of the programs are a series of instructions that is why there is a need
to create software to bind the stringent boundary for performing a special task like
transactions in the banking domain. But in traditional learning, the readers need to
clearly define and set the limits for doing something through a machine that is, if
a person tries to withdraw money, that exceeds the balance in his account, then the

8 Practical Machine Learning with Spark

transaction is cancelled. Readers pass explicit instruction to the banking programs
that if you see X, then do Y. On the flip side, ML is different from traditional learning.
In ML readers do not create detailed instructions; instead, they need to provide the
meaning patterns from data or inputs or key features to the computer to study the
problem and decide what it is asked to do. In this, the reader gives the capability to
the computer to adapt, evaluate, and learn which is not much different from how a
human learns.

Figure 1.2 shows the clear picture how a traditional programming language is
different from the machine learning algorithm which is depicted in Figure 1.3. The
main difference between a traditional programming language and ML algorithm is
that in the traditional programming language, an input data is fed with a program
logic which is run on the machine to produce the output. In case of the ML algorithm,
we feed the input data along with the output which runs on the machine during
training, and the machine creates its own program.

Let’s try to understand the term learning in simple language. If a machine is learning
from its past experiences with respect to some task and improves its performances
in a task with earlier experience.

The word ‘learning’ or ‘machine learning’ both are the same, so do not be confused.
A good learning should address the following problem statement:

•	 Should know the clear problem statement of what the learner should learn
and what the requirement for learning is.

•	 To clearly define what type of data is needed along with sources of the data.

•	 Define if the learner should operate on the dataset entirely.

In ML, the process of the machine learning model starts with iterating the statistical
algorithm on the training dataset. This procedure creates an ideal model which must
be best fitted for getting a more accurate result. Each and every time, ML tries to
improve the performance of the model by applying the known or refined patterns
of historical experience.

Machine learning basically deals with two types of datasets. In the first type, the
dataset is being prepared manually, that is, the input and expected output datasets
are already available and prepared. In the second type of dataset, the input data is
available, and the interest of a user is to predict the expected output. As we know, the
available input dataset, which is further classified into training and testing dataset,
needs to be derived into three phases such as training, validation, and testing.
However, there is no hard and fast rule to check what percentage of data is trained,
validated, or tested.

Let us see how machine learning works. It basically works in three phases as shown
in Figure 1.3:

Introduction to Machine Learning 9

Figure 1.3: Workflow to develop ML model

Generally, there are three phases to be involved to create a full fledge ML pipeline
which would do training, testing, and executing. These steps are used to generate
the outcome from the testing dataset. Prior to moving towards ML phases, we must
know the best way to prepare a dataset that needs to be fed into the training and
testing phases. Generally, data scientists recommend that the dataset should be
divided into the ratio of 70:30. Training must be done on 70% of the dataset and the
rest needs to be fed into the testing phase. First, we need to understand the quality
of the dataset, and accordingly the required manipulation and cleaning steps are
applied on the dataset to make the dataset more refined and best-fit to the model.
Then, the actual process needs to be started to train the model on the 70% of the
dataset using appropriate ML algorithms. The resultant of the training phase needs
to be applied on the 30% of the dataset to test the precision and recall the trained
model. In the last phase, once we know the precision of the trained model on the
tested dataset, the model will be integrated with the ML pipeline to work as an
automatic workflow. Table 1.1 shows the main difference between AI and ML:

Difference between AI and ML

Artificial Intelligence (AI) Machine Learning (ML)

1. AI is a technique for enabling
any autonomous process or self-
decision system to mimic human
intelligence.

2. AI enhances the self-decision
feature of any system to get success
in the outcome by acquiring
knowledge and learning.

3. The aim of AI to improve the
success rate in a probabilistic
condition and provide the optimal
solution as an outcome.

1. ML is a subset of AI that includes
complex statistical techniques.

2. Algorithms in ML acquire
knowledge or training skills
through historical information or
pattern.

3. The aim of ML to get the futuristic
and predictive insights for better
decision making.

10 Practical Machine Learning with Spark

Difference between AI and ML

Artificial Intelligence (AI) Machine Learning (ML)

4. AI can use mathematical logics, if-
then conditions, decision tree, ML,
and DL.

5. AI has a wide range of scope of
implementation and integration.

6. AI includes learning, reasoning,
and self-correction.

7. AI deals with structured,
unstructured, and semi-structured
data.

8. AI examples are Apple Siri, Google
Mini, Amazon Alexa, Chatbots,
and Cognitive Robots.

9. AI can be classified into three
types:

a. Weak AI

b. General AI

c. Strong AI

4. ML includes statistical algorithms
and DL.

5. ML has a limited scope but is the
best for decision making for any
trained task.

6. ML includes learning and self-
correction when introducing a
new dataset.

7. ML can deal with structured and
semi-structured data.

8. ML examples are recommendation
system, Churn Prediction,
Google Search Algorithms, and
Facebook’s auto-friend tagging.

9. ML can be classified into three
types:

a. Supervised learning

b. Unsupervised learning

c. Reinforcement learning

Table 1.1: Difference between AI and ML

Types of Machine Learning
Machine Learning has a wide domain and there are many types of ML as shown in
Figure 1.4 in the analytic world. These are classified into broad categories based on
the following criteria:

•	 First criteria, whether the training dataset is trained or not with human
supervision. On the basis of these criteria, ML is divided into four types,
that is, Supervised Learning (SL), Unsupervised Learning (USL), Semi-
Supervised Learning (SSL), and Reinforcement Learning (RL). Recently,
ML experts have grouped these four learning into two learning categories,
that is, Learning Problem (LP) and Hybrid Learning Problem (HLP). The
SL, USL, and RL fall under the category of Learning Problem where as HLP

Introduction to Machine Learning 11

involves SSL. SSL is further classified into Self-Supervised Learning (Self-
SL) and Multi-Instance Learning (MIL).

•	 In second criteria the traning dataset learnt incrementally on the basis of
adhoc at ant frequency. ML is mainly divided into Online Learning (OL) and
Batch Learning (BL). Some more types of ML also fall under this criterion
which will cover in Chapter 5, ”Supervised Learning with Spark” and Chapter 6,
”Unsupervised Learning with Spark”.

Figure 1.4: Taxonomy of Machine Learning

Learning of Models Based on the First
Criteria
In the following section, readers will start with the first criteria and take an eagle look
of all types of learning. As discussed earlier, LP is classified into three main types,
that is, Supervised Learning, Unsupervised Learning, and Reinforcement Learning.

Supervised Learning (SL)
SL is used when there is a precise mapping between input-output data. In this,
the given model is trained on a labelled dataset. During the training period, the
algorithm identifies the relationship between the two variables to predict a new
outcome. This learning is task-oriented learning in which accuracy of the prediction
is more dependent on number of tasks (number of rows). If we give more tasks, the
model learns it efficiently to predict more accurate results. The most real time and
general example of supervised learning is a spam filter. It is trained with different

12 Practical Machine Learning with Spark

categories of emails along with their class (spam), and then it learns how to classify
new emails.

Supervised learning is divided into two types:
•	 Regression-based Supervised Learning (no labels defined)
•	 Classification-based Supervised Learning (defined labels)

Regression
Regression is a supervised learning where the output has a continuous value. For
example, Table 1.2 shows the dataset of real-time monitoring through a smart watch
which serves the purpose of predicting the heartbeat and number of walking steps
of a cricket player with respect to time. Here, time does not contain the discreate
value, but it is continuous in the range. In this type, smaller the error greater is the
accuracy of the regression model.

Number of waking steps Heartbeat Time
123 72 10.00 mins
150 79 10.025 mins
188 84 10.050 mins
213 90 10.072 mins
218 99 11.00 mins

Table 1.2: Real-time data received from a smart watch

Regression consists of many algorithms which can predict the result based on the
trained model, knowing the input and output patterns. In the upcoming chapters,
readers will be exposed to all ML algorithms in depth. There are many types of
regression algorithms as follows:

•	 Linear Regression (LR)
•	 Multi-Linear Regression (MLR)
•	 Lasso Regression
•	 Ridge Regression
•	 Elastic-Net Regression
•	 Generalized Linear Regression (GLR)
•	 Isotonic Regression
•	 Decision Tree Regression (DTR)
•	 Random Forest Regression (RFR)
•	 Gradient Boosting Tree Regression (GBTR)

Introduction to Machine Learning 13

Classification
In this type of supervised learning, the output is having a defined label in the discrete
value. The main task of the classification is to predict the discrete value belongs to
the class and evaluate based on accuracy. In this type of learning, it has two types
of classes such as Binary or Multi class classification. In binary classification, a
model can be able to predict either (0 or 1) or (yes or no). However, in multi class,
a model can be able to predict more than one class. For example, Gmail classifies
the email category more than one class such as social, promotion, updates, and so
on. Classification also has many algorithms for prediction which are discussed as
follows:

•	 K-Nearest Neighbor (KNN)

•	 Random Forest (RF)

•	 Gradient Boosting (GB)

•	 Support Vector Machine (SVM)

•	 Naive Bayes Classifier

•	 Logistic Regression

•	 Multilayer Perceptron Classifier (MPLC)

•	 One vs Rest Classifier / Multi-Classification Logistic Regression

•	 Decision Tree Classification

•	 Gradient Boosted Tree Classifier

Unsupervised Learning (USL)
In USL, the machine tries to learn without a supervisor or explicit agent. In this, the
training data set is unlabeled; hence, the machine is restricted to find the hidden
structure in unlabeled data by self. For example, if we have a group of live stocks
that is, cows, dogs, cats, camels, and so on in the frame or image, which was not seen
ever by the trained model/machine. Thus, the machine will have no idea about the
feature of these individual animals and get confused while categorization. But, with
the help of USL, the categorization becomes easy and can be possible by considering
the similarities, differences, and patterns. USL is categorized into two types:

Clustering
Clustering is a technique for grouping the same set of objects or pattern in the same
group based on some key attributes and parameters from the dataset. There are many
types of clustering algorithms which are mentioned as follows. (Most of these will

14 Practical Machine Learning with Spark

be covered in the upcoming Chapter 5 ”Supervised Learning with Spark” and Chapter 6
”Unsupervised Learning with Spark” in detail.

•	 K-Means

•	 Bisecting K-means Algorithm (BKM)

•	 Latent Dirichlet allocation (LDA)

•	 Gaussian Mixture Model (GMM)

Table 1.3 shows the clear view between supervised and unsupervised learning:

Difference between Supervised and Unsupervised Learning

Supervised Learning (SL) Unsupervised Learning (USL)

1. The Supervised Learning method
involves the training of the system
or machine where the input pattern
and target pattern (output) is
already known.

2. The SL method is used to facilitate
the prediction of future instances
with the help of knowledge/
historical pattern by loading the
trained model.

3. Implementation of SL is easy.

4. The outcome of the SL technique is
more accurate and reliable.

5. SL requires supervision to train the
model.

6. SL is mainly implemented on
offline applications.

7. SL does have a feedback mechanism
to check whether the outcome is
corrected or not.

8. There are two types of SL:

a. Regression

b. Classification

1. The Unsupervised Learning
method involves the training of
the system where only the input
pattern is known and the output
is hidden/unknown.

2. The objective of USL is to find
the pattern entities such as
groups, clusters, dimensionality
reduction and perform density
estimation.

3. More complex than SL.

4. The outcome of USL is moderate
but reliable.

5. USL does not need any
supervision to train a model.

6. USL is mainly implemented for
real-time analysis of data.

7. USL does not have any feedback
mechanism to check whether the
outcome is correct or not.

8. There are three types of USL:
a. Clustering
b. Ensembling
c. Association Rule Mining

Table 1.3: Difference between Supervised and Unsupervised Learning

Introduction to Machine Learning 15

Reinforcement Learning (RL)
In RL, there is no actual supervision to be used instead, a feedback system is provided
which helps the machine to learn and make the decision on that observation. All
this decision and result has been done through the smart self-learning system or
reinforcement learning. It is more applicable with NN and a perfect example of RL
is Google’s DeepMind AlphaGo Program.

There are several types which are as follows:

•	 Q-Learning

•	 Temporal-Difference Learning (TDL)

•	 Deep Adversarial - Metric Learning

Hybrid Learning Problem (HLP)
As discussed earlier, HLP is classified into three main types, that is, Semi-Supervised
Learning, Self-Supervised Learning, and Multi-Instance Learning.

Semi-Supervised Learning (SSL)
As we know that the labeling of data is a lengthy and costly process, but in this
learning, we get some algorithms which will do automatic labeling over the dataset.
Google’s Photo is the best example.

Self-Supervised Learning (Self-SL)
This learning requires unlabeled data for doing the pre-processing tasks, and then
the output needs to be fed to the intelligent framework for precise analytics. Data
augmentation and image rotation in Computer Vision is an example to show the
characteristics of self-supervised learning.

Multi-Instance Learning (MIP)
In Multi-Instance Learning, the individual instances or objects are un-labeled, and
the bags of instances or objects turned into groups are labelled. Let us suppose, the
information or details of individual fruits in the image should be un-labeled but in a
group, it is named as a fruit. Another criterion to divide the types of ML is to check
whether the training dataset is learnt incrementally on the adhoc basis.

16 Practical Machine Learning with Spark

Learning of Models Based on Second
Criteria (Batch Mode Learning and Online
Mode Learning)
In this section, the readers will get to know the two indispensable learning trails to
train a model based on the incremental manner or batch manner. More details about
these learnings are as follows.

Batch Learning
In batch learning, the machine doesn’t train in an incremental manner but uses
the delta concept or batch mode approach for training an intelligence model on a
particular period. This kind of training approach is being handled by the integration
of frequency-based scheduler or trigger-based workflow system.

Online Learning
In online learning, the machine is trained incrementally by feeding it data instances
in a sequential manner. The last main criteria to bifurcate machine learning are to
check whether the training on the example dataset gives you a generalized result
for better prediction. There are two types of learning exits such as instance-based
learning and model -based learning.

Applications of Machine Learning
The concept of ML has been recognized and adopted by many entrepreneurs,
academicians, and professionals from several multi-national companies (MNCs) for
getting the key-targeted and decisive information. In this section, we will be cover
the pertinent applications of ML. By the use of ML, several organizations have been
able to enhance efficiency, optimization of framework, workflow observation, in
addition to cost reduction for solving a complex problem. Recent advancement in
the field of edge computing and highly configured processing framework such as
Graphics Processing Unit (GPUs) and TensorFlow Processing Unit has provided the
ease to integrate with a ML model. Also, due to availability of in-expensive hardware
and advanced computations, the field of AI gets more flexibility and adoptability in
any divergent domain. This advancement helps to incorporate the potential of ML in
our day-to-day scenarios. The interdisciplinary areas that leverage ML in their real-
time applications are as follows.

Introduction to Machine Learning 17

Recommendation Engine
There is no doubt about the fact that online shopping has taken over the retail market
in the past few years. Online shopping provides a great experience with a variety of
options for a given product and competitive discounts.

A recommendation engine is an advanced application of machine learning techniques
to provide the products/items recommendation. Recommendation engines are
everywhere around us in our daily life. It is used in e-commerce, marketing, online
video recommendation and the Sales department to attract new customers. It is
a process which leverages AI to suggest or recommend the things to the user by
tracking the behavior based on the previous activities like e-shopping and viewing
video content. Several machine learning methods like supervised, semi-supervised,
unsupervised, reinforcement are used to develop these products recommendation-
based system.

Netflix is using machine learning techinque to collect its huge collection of TV
shows and movies. It analyses the streaming history and habits of its millions of
subscribers to predict what individual viewer would prefer to watch. Nowadays,
when users search or purchase a product from a website or an application, similar
or the same products are recommended to the user on their next visit. Product
recommendations are made based on the behavior of the website or application,
past purchases, items liked or wishlist, shopping cart, and past purchases. This
enhanced shopping experience is powered by ML running at the backend of the
websites. This type of system is also built with the incorporation of big data and
machine learning techniques like Collaborative Filtering, Alternate Least Square
(ALS) Algorithm, and Reverse Image Searching, Market Basket Algorithm, and ANT
theory (Recommendation Mechanism). Some popular examples of recommendation
engines are as follows:

•	 E-commerce sites like Amazon and Flipkart

•	 Book sites like Goodreads

•	 Movie services like IMDb and Netflix

•	 Hospitality sites like MakeMyTrip, Booking.com, and so on

•	 Retail services like StitchFix

•	 Food aggregators like Zomato and Uber Eats

Financial Services
The finance industry uses Machine Learning and Deep Learning algorithms
to identify the key insights in financial data to be used as prevention from any
occurrences of fraudulent activity, keep alerting of different level of cyber threats,
and portfolio management for recommending better loan opportunity to customer.

18 Practical Machine Learning with Spark

Machine learning can be used to change the way of working of banks to improve the
customer’s experience and secure transactions through many flags as AI checkpoints
so the bank can connect with the customers at the earliest if any way-out activities
happen.

For example, if a purchase of any customer does not fit in with their money spending
pattern, then the algorithms alert the bank and put the transaction on hold.

Social Media
Social media platforms like Facebook and Twitter leverage ML algorithms and ways
to create some attractive and useful features. Platforms like Facebook monitors
and logs all the user activities like the chats, likes, and comments, types of posts,
groups, and time spent on them. The underlying ML algorithm analyses these logs
and makes recommendations on friends and page suggestions for you. This is used
for customized news feed and enhanced and personalized ads targeting. You may
be using these wonderful features without realizing that they are powered by ML
algorithms. These platforms have integrated machine learning into their computing
and decision-making framework.

Face Recognition
Face recognition and object detection can be possible by leveraging the power of
ML using Computer Vision and its related techniques. Mainly, face recognition is
implemented at international airports which recognize the identity of a person and
provide you an e-boarding pass without interaction of any manual groundcrew.
Mobile phones are also adopting this functionality for unlocking the password.
Features of this can be seen in mobile apps to detect the age and gender of the person
being photographed. Currently, this application is being used by social websites
and applications like Facebook and Instagram to recognize the friends based on the
historical patterns. Facebook’s Deep Learning Project Deep Face is responsible for
the recognition of faces and identifying the person by making the decision through
the ML model.

Healthcare
There is an increase in the demand of wearable sensors and devices to use that data
to access the health of a patient in real time. For this reason, ML is becoming a fast-
growing trend and hot topic in the healthcare domain. Wearable sensors provide
real-time patient information like overall health condition, heartbeat, blood pressure,
and other vital parameters. This collected information is beneficial to doctors and
medical experts to analyze the health condition of an individual and predict the
occurrence of any ailments on the basis of the historical trend of the patient health

Introduction to Machine Learning 19

data in the future. The technology also enhances the scope to analyze data to identify
trends that facilitate better diagnoses and treatments.

The healthcare industry is rising with the integration of ML and DL in medical
imaging, diagnosis, data collection, drug discovery, and radiology image analysis.
Several healthcare sectors are actively looking to adopt ML features to manage better
and predict the waiting times of patients in the emergency waiting rooms across
various departments of hospitals. This model is also used to define staff duties
and other planning by monitoring the details of the staff at various times of the
day, records of patients, and complete logs of department chats, and the layout of
emergency rooms. Machine learning algorithms also come to play when detecting a
disease and therapy planning. For example, KenSci assisting caregivers.

Sentiment Analysis
Sentiment analysis is a real-time machine learning application that determines the
emotion or opinion of the user. When, if someone has written a review or feedback, a
sentiment analyzer can find out the actual sense and tone of the text. This sentiment
analysis application can be used to analyze a sentiment of the document and topic-
modeling on the customer care dataset to classify the complaints based on each
product. An automatic rating system is another key decision-making application to
analyze and generate the rating from the call transcript by leveraging the concept
of Natural Language Processing (NLP). NLP is a feature of ML for analyzing and
classifying the text data for providing the sentiments, topic-modeling, and automatic
reply through chatbots.

Video Surveillance
Video surveillance is one of the advanced applications of a ML. A video clip contains
more details and information to compare documents and other unstructured sources
such as audios and images. For this reason, extracting of useful information from
a video by implementing an ML-based automated video surveillance system has
become a hot topic in the analytic market.

In the security-based application, identification of a human from the videos is an
important feature to analyze an unusual pattern or anomaly detection. The face
pattern is the most widely used parameter to recognize a person. A system with the
ability to detect and track the information about the presence of the same person in a
different frame of a video is a highly complex process. It requires advanced ML and
DL integration to get over the problems of high latency and complexity during the
process and intends the more accurate result with efficient time. The already trained
cameras using ML are used to keep an artificial vision to observe the public and
notice suspicious activities. The system will generate a flag or an alert if any way-out
activity may occur.

20 Practical Machine Learning with Spark

Future Scope of Machine Learning
This section presents the futuristic possibilities of machine learning in a real-word
application. Adaption of an intelligence intends more towards automation and self-
learning insights in the coming era. Figure 1.5 shows the key application areas for
unlocking the door of a smart word. Let’s get familiar about this one by one:

Figure 1.5: Futuristic application of machine learning

A New Trail of Intelligence Augmentation (IA)
The concept Intelligence Augmentation is a combination of Augment Reality and
Artificial Intelligence which is used to enhance intelligence in a machine in addition
to empower humans to work in a better and smarter way. The IA platform can gather
all types of data from many sources and geometrical coordinate understanding of an
object with AI to give human workers a complete 360-degree view of the surrounding.
The insight extracted from that data and presented to the user is actionable and more
realistic.

Introduction to Machine Learning 21

Integrating IA may reduce the chances of fatal incidents, improve the monitoring and
maintenance of industries pipeline, and provide the ease to the end user to debug
the fault occurrences in manufacturing units through Smart augmented assistance.
Amazon Augmented AI and Microsoft AI platform are the best tools to achieve IA.

Edge Computing with ML
Currently, many MNCs store heterogenous and large volume in the cloud for
processing and implementing ML algorithms. Sometimes, processing in the cloud
becomes a dangerous problem in cases when the response time is a very important
parameter for decision making.

To remove this problem of latency, many companies move from the cloud to the
edge computing. Edge Computing becomes more insightful and useful when it
integrates with AI. This integration is also known as Edge ML in which the data to
be processed and deployed ML algorithms are locally on a hardware device instead
of data located in the cloud. It not only reduces the power consumption, but also
helps to process the real-time data significantly with the help of a de-centralized
processing framework.

Quantum Computing with ML
Quantum Computing (QC) is one the upcoming futuristic technologies that will
have a great potential to enhance the power of processing heavy and complex ML
models. QC uses the mechanical phenomenon of quantum such as entanglement
and superposition where it exhibits multiple states at the same time by adding
quantum systems. Here, entanglement helps to describe the correlation between the
properties of a quantum system. These quantum systems are built using advanced
quantum algorithms that process data at high speed to enhance the ability to analyze
and extract out the meaningful insights from a large dataset. Microsoft and Google
have already announced their desires to leverage the QC in future.

Improved Cognitive Services
Application of Cognitive Services are becoming more fascinating and intelligent
when we use ML. Cognitive Services have already existed in many verticals like
visual recognition, speech detection, and speech understanding in their apps using
ML. Cognitive Service is the way how the machines should behave and feel like a
human. There is a need of more precision and accuracy will be required for better
understanding. That is why ML will have great potential to overcome the existing
problems for more adoption of a cognitive service-based application in the coming
days.

22 Practical Machine Learning with Spark

Robotics
Since 1954, robotics is one of the interesting fields among the researchers and they
developed a series of robots. But in the 21st century, researchers started to put
efforts to invent self-learning robots using AI instead of programmable inputs. The
Robotics domains amalgamate multiple technologies such as Deep Neural Network,
ML, Computer Vision, Big Data, Augmented Reality, and digital twin to mimic the
human brain.

Cognitive robots execute tasks in a faster manner and reinforcement learning will
automatically self-learn the new patterns to merge with its historical experience; this
ability can increase features of robots and high urge in people’s demand. Currently,
South Korea and Japan are doing research in the advancement of the Robotics
domain.

Machine Learning in Space Exploration
The ML technology is supposed to boost up future space exploration due to its variety
of features like handling of huge data volumes, finding and observing patterns in
planet image datasets, and predicting maintenance of spaceship. The key-role of
ML in space exploration can be classified as data transmission, visual data analytics,
navigation, and rocket landing.

ML is also used as an automatic smart bridge for trans-missing, analyzing, storing,
and extracting out the meaningful information’s from the cosmos amount of
complex data that would occur due to the different rotation of the planet’s orbit. ML
provides a smart algorithm to recover the unsuccessful transmission of data packet
by leveraging Edge ML that may be permanently lost due to the overwritten with
new data or latency in the onboard memory. For example, Mars Express AI Tool
(MEXAR2) and Italy’s Institute for Cognitive Science and Technology (ISTC-CNR)
can learn from the archive data to remove the superfluous data and pinpoint the
download schedule to optimize data packet transmission.

A deep analysis of the planet‘s data requires integration of ML-based image processing
algorithms to identify and read the right information from space images. Due to
this use case, Machine learning has become an imperative technique for solving the
mystery of the unknown universe. ML applications are also more intended towards
Space Navigation and successful landing of the rocket by self-adjusting into the
derived trajectory and motion control of satellite. The orbit adjustment, autonomous
navigation, and space station docking can be controlled using the functionality of
ML. In 2015, SpaceX Falcon 9 used a convex optimization algorithm to determine the
optimal way to land the rocket back on the earth successfully using the power of ML
and computer vision in space exploration.

Introduction to Machine Learning 23

Self-driving Cars and Autonomous
Transportation
Currently, a combination of Global Positioning System (GPS), motion sensors,
and a computational framework known as Flight Management System (FMS) is
being used to track the position of a flight. This FMS overtakes the manual efforts
into autonomous track controlling except during take-off and landing. Landers
and Rovers of Chandrayaan-II are recent examples of Autonomous Transportation
where the entire landing operation would be autonomous with no inputs from the
Earth Centre.

Enabling the FMS kind of automatic system for making the self-driving car is more
complicated and requires high computation than airplanes due to the increase in
number of cars on the road, obstacles, and limitation of tariff patterns and rules.
Many MNCs uses 5G technology and Edge ML for learning the complex patterns
through real-time cameras and sensor data and cam train, an advanced AI model as
a resultant of Self-driving car. Google Corp. has already tested 55 vehicles that have
driven over 1.3 million miles altogether leveraging ML and edge computing.

Enhanced Healthcare using AI
AI can be used to reduce the cost of hospitals and waiting time for getting the
diagnosis report. Recent AI advancement in the field of the healthcare domain has
proven that integrating AI-driven Computer Vision algorithms such as Mask RCNN,
UNet, and so on would show the promising result with minimal human effort and
less cost. AI allows the doctors and practitioners to understand the genetic diseases
using predictive models in a better way.

Radiology image analysis is one of the accoladed applications of ML which can
detect and identify the way-out patterns from the image for knowing the disease.
Also, many pharmaceutical companies adapt the concept of AI for artificial clinical
trials and centralization lake for data handling; these two features of AI will increase
the precision in trial in addition to cost cutting.

Conclusion
This chapter deals with an in-depth, lucid, and comprehensive details of AI to elicit the
readers about its advancement and scope in various fields. Furthermore, an overview
about the different types of learning, algorithms, and respective comparison tables
has been covered. In the next chapter, the author will focus on divergent approaches
to configure and install Apache Spark on cloud and on-premises frameworks such
as Python, Editors, DBeaver, PowerBI, and Hadoop frameworks.

24 Practical Machine Learning with Spark

Apache Spark Environment Setup and Configuration 25

Chapter 2
Apache Spark

Environment Setup
and Configuration

“Dreaming is good, but implementation is success”
—Paballo Seipei

Introduction
In this Digital and Autonomous era, all the real-time applications based on Machine
Learning all the real-time applications of Machine Learning (ML) and Deep Learning
(DL) are significantly playing an essential role in our day-to-day activities for making
the life more simple, fast, and comfortable. In spite of many advantages linked with
an autonomous-based intelligent system, there are still some complex challenges
associated with ML. These challenges include handling, persisting, and processing
of massive amount of raw data which ingests which comes from cumbersome data
pipelines such as real-time pipelines and batch-mode pipelines. Later, that needs to
be fed to an Artificial Intelligence (AI) model for futuristic and decisive insights.
Due to standalone mode of the processing framework, data processing and AI-based
analytics (training, validating, and testing) over the Big Data become too tedious and
time consuming for large computation. To overcome aforesaid challenges, several
research groups, researchers, and Multinational Corporations (MNCs) have been
trying to eliminate the standalone processing framework for analytics by introducing
the concept of distributed computing. Distributed Processing Framework (DPF) is
used to manage Big Data (Heavy Data) and apply the ML/DL model to optimize

26 Practical Machine Learning with Spark

the overall performance with time efficiency. In DPF, the data will be segmented
into small chunks and processing of those small data chunks efficiently to be done
by leveraging by leveraging the mechanism of DPF. Although, training and testing
of the ML/DL model on the large dataset will consume less time and reduce the
environment cost during the implementation.

Both Apache Hadoop and Apache Spark are the most popular and in-trend DPFs in
the market for Digital Transformation (DT). The Apache Hadoop framework is the
first DPF that was introduced by researchers at Yahoo Corp. for storing and parallel
processing of large amounts of data. But due to the few limitations of Apache
Hadoop, later on, Apache Spark was adopted more widely in all the verticals of
many industries. In this chapter, the authors will discuss various ways to set up the
ergonomic framework to get the Apache Spark environment installed for practical
implementation. Additionally, this chapter includes all the indispensable stages in
a systematic and step-by-step manner to attract the attention of the readers towards
the production-level implementation. Apache Spark can be installed and configured
through Hortonworks and Virtual Machines (VM) using on-premise and cloud
platforms such as Amazon Web Services (AWS) and Hadoop Ecosystem (HE). In
addition, Python installation and its configurations are also shown using various
Python-supporting editors such as Jupyter Notebook and Sublime Text. From a data
access and visualisation perspective, this book delivers in-depth practical knowledge
to readers about the installation of Microsoft PowerBI, DBeaver Universal Database
Connector, and Apache Spark on Google Colab.

Structure
This chapter presents comprehensive discussions on the following topics:

•	 Laconic view on Apache Spark

•	 Apache Spark installation using Hortonworks Sandbox

•	 Hadoop and Spark setup on AWS

•	 Python editors for the Spark programming framework

•	 Microsoft PowerBI installation for data visualization

•	 DBeaver installation for accessing the data from the persistence layer

•	 Installation of Apache Spark on Google Colab

Objectives
After reading this chapter, readers will be able to:

•	 Understand the need for Apache Spark.

Apache Spark Environment Setup and Configuration 27

•	 Install on-premise based Apache Hadoop and Apache Spark using a virtual
machine.

•	 Understand about the cloud instance setup using AWS.

•	 Install Apache Spark and Apache Hadoop on cloud using Amazon Elastic
Compute Cloud (Amazon EC2).

•	 Set up the python and PySpark environment for writing the ML/DL programs.

•	 Install Microsoft PowerBI and DBeaver to analyze and visualize the insightful
data for better understanding and scope of the business world.

•	 Install and configure Apache Spark on Google Colab.

Laconic View on Apache Spark
Apache Spark is a DPF used to handle and process massive data workload efficiently
by leveraging the concept of “In-Memory Computation”. Initially, Apache Spark
was developed in algorithms, machines, and people lab (AMP Lab) at UC Berkeley
in 2012. Using the concept of "In-Memory Computation", Apache Spark can process
a large dataset 100 times faster as compared to other DPFs unlike Apache Hadoop.
The main objective of Apache Spark is to provide easy integration which is strongly
coupled with its key components such as Spark Machine Library (Spark MLib)
and Spark GraphX for extending the functionality towards ML. Apache Spark is
an inexpensive platform to write a program and it combines various processing
capabilities through the heterogenous query over the dataset such as an iterative
algorithm query, interactive query, streaming query, graph query, and batch query.
By applying the functionality of a unified analytic and intelligence-based architecture
in Apache Spark, the burden of maintaining and monitoring of the data processing
pipeline is alleviated.

It is highly accessible by applying the simple Application Programming Interface
(APIs) in different programming languages such as R, Java, Python, Scala, Structured
Query Language (SQL), and so on. It can also integrate with Big Data components
and run on the top of Hadoop clusters in a distributed manner. Moreover, Apache
Spark can run on clouds in spite of on-premise frameworks such as Microsoft Azure,
Databricks, Google Compute Platform (GCP), AWS, and IBM insights. Presently,
the latest version of Spark, that is, Apache Spark 3.2.0, is being implemented in the
analytics world.

28 Practical Machine Learning with Spark

Apache Spark Installation using
Hortonworks Sandbox
In 2019, another competitor company, Cloudera, merged and acquired the entire
services of Hortonworks. A virtual machine named "Hortonworks Sandbox" is being
downloaded through the official website of Cloudera to set up the Hadoop and
Spark frameworks. Hortonworks Data Platform (HDP) and Hortonworks Data Flow
(HDF) are two types of platforms available on the website of Cloudera-Hortonworks.
Generally, HDP needs to be chosen as a persistence and code execution framework,
while HDF is for creating batch and real-time data pipelines.

Hortonworks Sandbox installation and configuration require VMware Workstation
Player (VMWP) and a Docker Image (DI) of Hadoop. Although Apache Spark can
be installed and configured in a standalone mode without the need for a Hadoop
bundle, it is recommended to re-use it over the Hadoop layer. Let’s take a look at
the installation steps of Spark using VMware Workstation Player and Hortonworks
Sandbox.

VMware Workstation Player Installation
The following are the steps to install VMware Workstation Player in the system:

1. Open the following link in the browser: https://www.vmware.com/in/
products/workstation-pro/workstation-pro-evaluation.html. Download the
VMware Workstation Player (VMWP) from the official website of VMware,
as shown in Figure 2.1. This step is needed to get the VMWP for importing the
Hadoop image into it:

Figure 2.1: Home Page of VMware to download VMWP

Apache Spark Environment Setup and Configuration 29

2. After downloading the .exe file of VMWP, go to the location in the system
where the VMWP setup is saved and double click on the executable file.
Figure 2.2 shows the preparing screen to install VMWP:

Figure 2.2: Preparing “VMMP” for installation.

3. The installation will start once you click on the Next, as shown in Figure 2.3:

Figure 2.3: The welcome dialog box of VMware Workstation Player

30 Practical Machine Learning with Spark

4. Click on the checkbox to accept the License Agreement. The Next tab will
be enabled and moved into the next installation step, as shown in Figure 2.4:

Figure 2.4: The End-User License Agreement Window.

5. Figure 2.5 shows a dialog box that appears to show the location in the system
where it will be installed. Click on Next and it will move the installation step
onto the User Experience dialog box.

Figure 2.5: The Custom setup window for setting the installation path to VMWP

Apache Spark Environment Setup and Configuration 31

6. Click on the checkboxes in the dialog box and click on the Next button, as
shown in Figure 2.6:

Figure 2.6: The User Experience settings dialog box to enable the checkboxes

7. Click on the Install button, as shown in Figure 2.7. The Ready to install
VMware Workstation <VERSION> Player dialog box will start the
installation in the system.

Figure 2.7: The Ready to install VMware Workstation 15 Player dialog box

32 Practical Machine Learning with Spark

8. Figure 2.8 shows a dialog box Installing VMware Workstation
<Version> Player that depicts the progress of the setup installation.
Usually, this installation step will take 10-15 minutes according to the system
configurations.

Figure 2.8: The installation progress window for VMWP

9. Once it is successfully installed in the system, click on the Finish button, as
shown in Figure 2.9(a) and open it by double clicking on the VMware icon.

Figure 2.9 (a): The Completed the VMware Workstation 15 Player setup Wizard window

Apache Spark Environment Setup and Configuration 33

10. Once it is successfully installed in the system, the icon is created for VMware
on the Desktop as shown in Figure 2.9 (b):

Figure 2.9(b): Icon of VMware after installation

ClouderaVM Installation for HDP
This section shows the installation steps of ClouderaVM (HDP) as follows:

1. Open the link https://docs.cloudera.com/documentation/enterprise/5-14-x/
topics/cloudera_quickstart_vm.html in the browser, as shown in Figure 2.10
and download the ClouderaVM:

Figure 2.10: Home Page of Cloudera QuickStart

34 Practical Machine Learning with Spark

2. Enter the details asked by Cloudera Sign-In form for downloading the
ClouderaVM and click on Continue, as shown in Figure 2.11:

Figure 2.11: The Sign-In page to register for installation

3. Tick the checkbox to accept the Cloudera Trial License Agreement and click
on Submit which will redirect you to the Get Started page where you need
to choose the version of ClouderaVM, as shown in Figure 2.12:

Figure 2.12: Displaying the Cloudera Trial License Agreement

Apache Spark Environment Setup and Configuration 35

4. Choose the version of ClouderaVM from the dropdown, as shown in Figure
2.13 and then click on Let’s Go! to get the link for installation:

Figure 2.13: Choose the version of Hortonworks Data Platform.

5. On the Sandbox HDP VMWare Downloads page, as shown in Figure 2.14,
there are two platforms provided by Cloudera, that is, HDP and HDF. Choose
HDP and the downloading will start once you hit on the link.

Figure 2.14: The Sandbox HDP VMWare Downloads Window

36 Practical Machine Learning with Spark

6. After downloading the sandbox image, double click on VMware Workstation
16 Player that was already installed in the system. A dialog box pops up
from where you need to select the Import option in the Player menu. Click
on Browse to pass the path of Cloudera HDP virtual machine location, as
shown in Figure 2.15. Click on the Import button and it will start importing
the virtual machine and usually it will take 10-15 minutes.

Figure 2.15: Dialog box to import HDP sandbox

7. Figure 2.16 shows the log-in method with the following credentials into the
HDP virtual machine:
Username = root
Password = hadoop

Figure 2.16: Enter credentials to access the HDP terminal

Apache Spark Environment Setup and Configuration 37

8. In the latest version of ClouderaHDP sandbox, it incorporates the Hadoop
enabled docker to run the specific services related to Apache Spark and
other components. Readers can ensure that the docker and container are
running properly in sandbox by running the command docker ps. This
command will list out all the container images which are active in the docker,
as illustrated in Figure 2.17. Readers can also execute the specific shell script
to manually start the docker using start_sandbox.sh in the start_script
directory if the Docker goes down.

Figure 2.17: The terminal to execute script to start services of docker

9. Figure 2.18 shows the use of the docker exec -it <container_
image><service_name> command to run any services on HDP sandbox.

38 Practical Machine Learning with Spark

Here, the docker exec-it sandbox pyspark command is executed to run
the Spark service in the terminal.

Figure 2.18: The terminal to show PySpark is running properly

10. ClouderaHDP provides the ease to check the health and status of
Hadoop components through the Ambari Web UI, as shown in Figure
2.19. Configuration tuning and data access from the Hadoop Distributed
File System (HDFS) can be possible by integrating the Ambari Web UI.
Credentials of the Ambari UI are different from ClouderaHDP Sandbox and
readers need to use the following username and password:
Username = maria_dev
Password = maria_dev

Figure 2.19: Main Page of Apache Ambari Web UI

Apache Spark Environment Setup and Configuration 39

Apache Hadoop and Apache Spark Setup
on Amazon Web Services (AWS)
In the previous section, readers got familiar about one of the ideal ways to get the on-
spot infra-framework of Apache Hadoop and Apache Spark using Cloudera HDP
sandbox. There is another approach to install Apache Spark and its related services
using Big Data on Cloud (BDC) concept. In this era of digital transformation, almost
all Big Data provider companies have been adapting the BDC model and spilling out
the Hadoop functionalities on top of the cloud. AWS, Microsoft Azure, IBM Insights,
and GCP are the most popular and trending cloud companies which provide Big
Data and Apache Spark Ecosystem as Software as a Services (SaaS) and instance-
based Operating System (OS), that is, Amazon Elastic Compute Cloud (Amazon
EC2). Moreover, by leveraging BDC can improve the performance of the overall
system and code execution, in addition to cost and time optimization. In this section,
readers will be elicited about how to get the Big Data Ecosystem on cloud using
AWS and deployment of HDP.

AWS Account Credentials and Amazon
EC2 Creation
This section illustrates the key steps to create an account in AWS for launching the
Amazon EC2 instance to install and configure the Hadoop and Spark components.
The steps to create an account in AWS are as follows:

1. Open the following link in the browser aws.amazon.com/console/. Go to
the Log Back In option to sign in to the AWS Management Console, as
shown in Figure 2.20:

Figure 2.20: Main Page of AWS Management Console

40 Practical Machine Learning with Spark

2. Click on the Root User radio button. Enter the username and password
to get into the AWS console if you have registered credentials, as shown
in Figure 2.21. Otherwise, you will have to create an account on the AWS
console:

Figure 2.21: The Sign-In page to log-in into AWS console

3. Once you get into the AWS console, you can see the various pre-built services
of Amazon Web Services on the Services menu, as shown in Figure 2.22:

Figure 2.22: Displaying the AWS Management Console Page

Apache Spark Environment Setup and Configuration 41

4. Figure 2.23 shows the available services that are provided by AWS in every
nook and cranny of emerging technologies like Quantum Technology,
Blockchain, Business Intelligence, Analytics, Internet of Things, Augmented
Reality, Machine Learning, and Deep Learning. Most of the services on AWS
are spontaneous SaaS or tailored applications for a quick deployment.

Figure 2.23: Displaying the different services of AWS

5. Go to the EC2 service which is listed in the compute category, as shown in
Figure 2.24. The next link will take you to the Launch Instance page for
launching an EC2 instance or OS-based snapshot. This Amazon EC2 instance
would act as an initial platform for deploying the HDP. Apache Spark and
Apache Hadoop Services to be rolled-out through Apache Ambari.

Figure 2.24: The Main page to launch the instance on AWS

42 Practical Machine Learning with Spark

6. Choose an operating system for launching an Amazon Machine Image
(AMI). Select Ubuntu Server 16.04 LTS with 64-bit (X86) internal machine,
as shown in Figure 2.25 and then click on the Next button. Here, readers can
choose any AMI according to their requirements.

Figure 2.25: The dialog box to choose an Amazon Machine Image (AMI)

7. In the second step, choose an Instance Type and Instance Storage to
create the Amazon EC2 instance, as depicted in Figure 2.26. Skip all the further
steps if there is no need of any change in the configurations. Otherwise,
readers will need to go through each step to modify the configurations. Then,
click on the Review and Launch button for instance creation.

Figure 2.26: The choose an Instance Type window after step1

Apache Spark Environment Setup and Configuration 43

8. As shown in Figure 2.27, the next screen would be a Review of all the
configurations that have been chosen for the Amazon EC2 instance creation.
Recheck all configurations and go to the Key pair step.

Figure 2.27: The Review Instance Launch window

 9. As shown in Figure 2.28, in the dialog box, select an existing key pair or create
a new key pair that will generate a Privacy Enhanced Mail (.pem) file which
consists of the key pair. Click on the check box and Launch button to create
an instance. Later, this key pair will be accountable to access the Amazon
EC2 instance through the terminal or PuTTY Software. PuTTY Software
authenticates the key pair only in the PuTTY Private Key (.ppk) format
which should be converted using PuTTYgen software. Detailed information
about PuTTY and PuTTYgenare is presented in the upcoming steps.

Figure 2.28: A dialog box to select an existing key pair or create a new key pair

44 Practical Machine Learning with Spark

 10. This page will confirm that all the steps for instance creation are done and
now, AWS is incubating the instance, as shown in Figure 2.29:

Figure 2.29: The window to show the status of instance

 11. As shown in Figure 2.30, click on the Amazon EC2 service that will redirect
you to the cockpit page of Amazon EC2 where the instance status can be seen
and monitored. Usually, launching of the Amazon EC2 instance will take 10-
15 minutes and till that, the Status Checks will remain to be shown as
Initializing.

Figure 2.30: The window to show the status of instance is still in initializing

Apache Spark Environment Setup and Configuration 45

 12. Once the launching is done, the Status Checks will be changed to 2/2
checks in the green-colored tick, as shown in Figure 2.31. Congratulations!
Now, the user will have an Amazon EC2 instance.

Figure 2.31: The window to show the successful launching of instance on AWS

 13. As shown in Figure 2.32, go to the Security Group option on the AWS
console that would have been generated while configuring the Amazon EC2
instance for deployment. Set the following properties to allow all the ports
and IPs to this instance:
Type = All traffic, Protocol = All, Port range = All, Source =
0.0.0.0/0

Figure 2.32: Displaying the Inbound rules of instance in security group

46 Practical Machine Learning with Spark

 14. Similarly, the same changes need to be updated in the Outbound rules for
allowing and accessing the Amazon EC2 instance at any destination, as
shown in Figure 2.33. The Web UI of Apache Ambari should be responded
and accessed after these changes:
Type = All traffic, Protocol = All, Port range = All, Source =
0.0.0.0/0

Figure 2.33: Displaying the Outbound rules of instance in security group

PuTTY and PuTTYgen Software for Generating
a .ppk file from a .pem and Accessing the
Amazon EC2 Instance Through a Public IP
Address
PuTTYgen is a key generator software for generating pairs of public and private SSH
keys. It is an extension of PuTTY software that can be used to convert a .pem file into
a .ppk extension. Similarly, PuTTY is a server accessible tool used for connecting
a third-party server and cloud instances through their respective IPs. PuTTY does
not natively support the .pem file for SSH keys. Therefore, PuTTYgen is needed to
generate a .ppk extension file by loading the .pem extension file. PuTTYgen and
PuTTY are available for multiple operating systems, including macOS, Linux. The
steps for generating .ppk file from a .pem are given below.

1. Open the link https://www.puttygen.com/ in the browser, as shown in Figure
2.34. Download PuTTYgen according to the OS platform and configurations.

Apache Spark Environment Setup and Configuration 47

Figure 2.34: The page to download the cross-platform version of PuTTYgen

2. As shown in Figure 2.35, double click on PuTTYgen software that will open
a main screen. In the Load option, you need to load a .pem extension file
and select RSA type in the Parameters section. Then, choose the Save private
key option, which will display a warning about saving the key without a
passphrase. Choose Yes and then it will save a .ppk extension file in your
system.

Figure 2.35: A dialog box to show the actions and parameters in PuTTY Key Generator

48 Practical Machine Learning with Spark

3. Similarly, download the PuTTY tool from putty.org, as shown in Figure 2.36:

Figure 2.36: The web page to download PuTTY software

4. After downloading the PuTTY software, double click on the PuTTY icon as
shown in Figure 2.37 (a):

Figure 2.37 (a): Icon of PuTTY Software

5. On the landing screen of PuTTY, enter the IP address, Port No and
Connection Type should be chosen as SSH mode, as shown in Figure 2.37
(b):

Apache Spark Environment Setup and Configuration 49

Figure 2.37 (b): Landing screen of PuTTY Software

6. In this step, browse and load the .ppk file in the Auth option that will
establish a connection with the server, as depicted in Figure 2.38:

Figure 2.38: Displaying the browser option to load the .ppk file in Auth

50 Practical Machine Learning with Spark

Apache Ambari Installation on Amazon
EC2
In this section, readers will get introduced to the final installation patch for successful
summit (Ahh…here, we meant the Hadoop and Apache Spark installation to be
done). Let us continue with the Spark installation journey using HDP and AWS.
Before installing the Ambari Repository on the top of Amazon EC2, few services and
prerequisites are required in the instance for installing the HDP impeccably. Here,
authors strongly request readers to execute the following commands in a sequential
manner, as shown in Figure 2.39.

Figure 2.39: Displaying the executed commands as required in pre-requisite

Disabling the iptables
Before installing the repository of Apache Ambari on the Amazon EC2 instance, you
need to perform pre-requisites for the successful launching of the Hadoop and Spark
framework. The few required steps along with commands are as follows:

Apache Spark Environment Setup and Configuration 51

•	 sudo ufw disable
•	 sudo iptables -X
•	 sudo iptables -t nat -F
•	 sudo iptables -t nat -X
•	 sudo iptables -t mangle -F
•	 sudo iptables -t mangle -X
•	 sudo iptables -P INPUT ACCEPT
•	 sudo iptables -P FORWARD ACCEPT
•	 sudo iptables -P OUTPUT ACCEPT

Set up Password-less SSH
This section covers the steps to generate the public key for password-less SSH on the
Amazon EC2 instance. The important steps are as follows:

1. Generate SSH keys (Private and Public keys) on the Ambari Server host:
 ssh-keygen

2. Go to the .ssh directory and add the SSH Public Key, that is, id_rsa.pub to
the authorized_keys file in the Amazon EC2:

 cat id_rsa.pub >> authorized_keys

3. You need to change the permissions on the .ssh directory and authorized_
keys file:

 chmod 700 .ssh
 chmod 600 .ssh/authorized_keys

4. Check the IP of the Amazon EC2 and access the host through the ssh
command:

 Ip r
 ssh root@<host address/ IP>

5. Check the hostname and Full Qualify Domain Name (FQDN):
 hostname -- to check the hostname of Amazon EC2 instance.
 hostname -f -- to check the FQDN of Amazon EC2 instance.

Installation of Apache Ambari Repository and
Hadoop Services on Amazon EC2
This section highlights the key steps to install the repository of Ambari and Hadoop
services using the UI of Ambari as follows:

52 Practical Machine Learning with Spark

1. Enter ubuntu as a username of the Amazon EC2 instance using PuTTY for
accessing it successfully. Make sure that readers will have to log in to the
server as root and download the Ambari repository file to a directory in the
host:
wget -O /etc/apt/sources.list.d/ambari.list http://public-repo-1.
hortonworks.com/ambari/ubuntu16/2.x/updates/2.5.2.0/ambari.list

2. Due to the deprecation of some version of Ambari repository, it is
recommended that you check the Ambari repository from the http link using
the following commands.
apt-key adv --recv-keys --keyserver keyserver.ubuntu.com
B9733A7A07513CAD
apt-get update

3. After downloading the Ambari Repository on Amazon EC2, you need to
install the Ambari bits which will also install the default PostgreSQL as the
Ambari database. As shown in Figure 2.40, the following command needs to
be used for the Ambari server:

 apt-get install ambari-server

Figure 2.40: Displaying the executed commands and its systematically log

4. In this step, the command ambari-server setup will set up the Ambari
Server and its related necessary configurations such as Java Development
Kit (JDK). It is also recommended that you choose the default suggestion,
that is (y/n), and press enter to continue the installation, as shown in Figure
2.41:

Apache Spark Environment Setup and Configuration 53

 ambari-server setup

Figure 2.41: The terminal shows the step-by-step progress of installation step

Ambari Server is installed successfully as shown in figure 2.42:

Figure 2.42: The terminal to show the successful setup of Ambari Server.

5. Once the ambari-server setup is completed successfully, run the command
ambari-server start to start the services of Ambari, and it will start
creating logs and metadata of Ambari in their respective directories. Port

54 Practical Machine Learning with Spark

8080 to be bind to Ambari which should be used to access the Ambari UI, as
shown in Figure 2.43:

 ambari-server start

Figure 2.43: Displaying content of successful bind and start of Ambari server

6. Open the link in the browser to access the Ambari UI through this <IP>:<PORT
NUMBER> and log in to the Ambari Web, as shown in Figure 2.44:

Figure 2.44: The home and credential page of Apache Ambari

Apache Spark Environment Setup and Configuration 55

7. Now, the readers will be on a landing page of Ambari Web. Click on Launch
Install Wizard which will redirect you to Get Started to create a Hadoop
cluster, as shown in Figure 2.45:

Figure 2.45: The welcome page of Apache Ambari to launch the cluster

8. On this Get Started page, you need to give the name of the cluster that
readers want to create, and then, choose Next, as depicted in Figure 2.46:

Figure 2.46: The Get started page to assign the name to cluster

9. In the second step of the Cluster Install Wizard, you will need to select
the HDP version and method of delivery to create a cluster. A list of versions
and operating systems are shown in the dropdown option as shown in

56 Practical Machine Learning with Spark

Figure 2.47. Select the specific HDP version and OS that should meet the
requirements with the existing deployed Amazon EC2 instance.

Figure 2.47: The select version page to choose software and OS version

10. As shown in Figure 2.48, this is a very crucial step in the entire installation
procedure. Enter the FQDN and id_rsa in the textboxes precisely. Then,
choose Register and Confirm to continue. It will take some time to verify
and register the host with the Amazon EC2 instance.

Figure 2.48: The confirm hosts page to display the progress of installing host

Apache Spark Environment Setup and Configuration 57

11. Once it gets registered successfully with the host, the status will be changed
from Installing to Success, as shown in Figure 2.49. Click on Next:

Figure 2.49: The confirm hosts page to show the successful registering of host

12. Figure 2.50 presents the choice of services based on the Stack chosen during
the selection of the HDP version. You may choose to install any other
available services now or can add services later after the cluster setup. The
Cluster Install wizard by default selects all the services for installation:

Figure 2.50: The choose services page to choose services to be installed on the cluster

58 Practical Machine Learning with Spark

13. Figure 2.51 shows the Assign Master page. The readers of this book
can assign the server of the components if the cluster is of multi-node. In
standalone, all the services should be run in a single machine by default.

Figure 2.51: List of master services in the HDP cluster

14. Similarly, slaves or client components can be managed and assigned to any
host when the cluster is in multi-node, as shown in figure 2.52. Click on Next:

Figure 2.52: List of client services in the HDP cluster

Apache Spark Environment Setup and Configuration 59

15. In this step, Ambari checks whether all the configurations corresponding
to each service are properly installed or not. If any changes are required,
then Ambari recommends and does the modification accordingly. Click on
Proceed Anyways to go to the next step, as shown in Figure 2.53:

Figure 2.53: List of configurations recommended by Apache Ambari

16. The Review step displays the assignments and components information that
is done. You need to check to make sure everything is correct and click on
Deploy, as depicted in Figure 2.54:

Figure 2.54: Review of selected configurations and services before cluster deployment

60 Practical Machine Learning with Spark

17. Figure 2.55 shows the progress of components during the installation.
Ambari installs, starts, and runs a simple test on each component. The overall
deployment of components will take about 30-50 minutes.

Figure 2.55: Displaying the status of installation process

18. Once the deployment gets completed, check the status of each component by
running the services at the terminal, as shown in Figure 2.56. Now, Apache
Spark and Hadoop services are ready to leverage the concept of Machine
Learning and Deep Learning. Well Done!

Figure 2.56: The terminal display running of the pyspark session

Python Editors for the Spark Programming
Framework
There are several integrated development environment software (IDEs) and code
editors which incorporate the Python language to provide the ease in code and

Apache Spark Environment Setup and Configuration 61

manage the cumbersome lengthy codes. Generally, writing a code for PySpark
usually goes lengthy and bulky; due to this, managing the code base and libraries
becomes problematic while in the time of successful run. To overcome this challenge,
many companies have created their editors and IDEs for a better understanding
of codebase than a text editor. These IDEs can be installed on the cross-platform
and less configurations environment. It usually provides features such as code base
syncing from the server location to local location and vice versa, build automation,
code linting, indentations, testing, pre-libraries aid to coder, module managing, and
debugging. In this chapter, authors focus on the two most popular Python IDEs
which needs to be used in ML and DL code base in PySpark.

Sublime Editor
Sublime editor for setting the IDEs to the Python programming language provides
the ease in coding and debugging the error. In Python or PySpark, when the code
goes too lengthy, the indentation management becomes one of the most challenging
problems. This problem can be easily handled with the help of Sublime editor and
provide the flexibility to easily sync-up PySpark codebase to be written for ML and
DL from the server to the local directory and vice versa. It is an open-source, cross-
platform, and light weighted software to extend the functionalities of indentation
management, error debugging, modules managing, and code-base sync-up. Authors
have shown step-by-step instructions to install and code-base sync-up from the
server to the local directory and vice versa:

1. Go to the link sublimetext.xom/3, as shown in Figure 2.57 and download
the software compatible to the readers’ system:

Figure 2.57: The home page of Sublime Text to download the .exe for windows

62 Practical Machine Learning with Spark

2. As shown in Figure 2.58, double click on the .exe file of Sublime editor, the
location where it is saved in the system. A dialog box will ask you to enter
the path where it will be installed. By default, it starts the installation in C:\
Program Files\Sublime Text 3 or it can be set to a different folder:

Figure 2.58: The dialog box for installing the Sublime Text

3. As shown in Figure 2.59, click on the checkbox and the Next button will take
you to the installation screen:

Figure 2.59: The Select Additional Tasks dialog box

Apache Spark Environment Setup and Configuration 63

4. In this step, click on the install button which will start installing sublime in
the system, as shown in Figure 2.60:

Figure 2.60: The Ready to Install dialog box during Sublime Text installation

5. Once the installation gets completed successfully, click on Finish and re-
check the installation by searching it in the Window Program, as shown in
Figure 2.61:

Figure 2.61: The dialog box to show the successful installation of Sublime Text

64 Practical Machine Learning with Spark

6. Double click on the Sublime icon that will open the main screen of sublime
for setting up the environment for Python and PySpark coding, as shown in
Figure 2.62:

Figure 2.62: The screen confirms the installation of Sublime Text in the system

7. Figure 2.63 shows the main landing page of Sublime Text Editor:

Figure 2.63: The home screen of Sublime Text Editor

Apache Spark Environment Setup and Configuration 65

PySpark or Python Codebase Syncing from
a Server to a Local Directory and Vice Versa
This section will help the readers to set an environment to sync up the codebase
from any cloud instance to a local directory. The reverse sync-up of codebase, that
is, the local directory to a cloud instance can be possible in Sublime editor. There is a
need to install Simple File Transfer Protocol (SFTP) in sublime through the package
control option. Let us see how to set up the sync-up configuration in a sequential
manner:

1. As shown in Figure 2.64, hover the cursor over the Preference option and
click on the Package Control:

Figure 2.64: Displaying available services in Preferences option

 2. In the dialog box Package Control, choose Install Package to
install the SFTP dependencies, as shown in Figure 2.65:

Figure 2.65: Displaying available services in Package Control

66 Practical Machine Learning with Spark

 3. As shown in Figure 2.66, search SFTP in the textbox and click on SFTP to
install in the sublime editor:

Figure 2.66: Install SFTP service in Sublime Text through Install Package

 4. Installation will take few seconds for SFTP. Once it is done, choose the
setup Server of SFTP/FTP in the File option, as shown in Figure 2.67.
Following are the chronological steps:

 File >> SFTP/FTP >> Setup Server

Figure 2.67: The Setup Server option after clicking SFTP/FTP

Apache Spark Environment Setup and Configuration 67

 5. As shown in Figure 2.68, set the host, user, and remote_path for which
directory readers want to sync. This step checks the server authentication
and creates duplicate contents of the server folder in the local directory.

Figure 2.68: The screen to show Configuration Script after previous step

Jupyter Notebook
The Jupyter Notebook is an open-source and interactive web application that
allows you to write, read, install libraries, and execute the content effectively. It is
an important Python or pySpark web application to read and visualize the machine
learning or statistical learning in a more interactive manner. Other interactive
visualization libraries such as plotly and seaborn can be easy deployed with the
help of Jupyter Notebook.

Installation of the Jupyter Notebook needs few pre-requisite requirements which are
as follows:

•	 Python should be installed in the system.

•	 Python path should be set into the windows environment.

•	 PIP should be installed and accessible in Python to download the Jupyter
Notebook.

Python installation on Windows OS
This section covers the steps to install and access Python on Windows OS. The
following steps are given as follows:

68 Practical Machine Learning with Spark

1. Open the link python.org/downloads/ and download the newest version
of Python for Windows operating system, as shown in Figure 2.69:

Figure 2.69: The home page of Python to download it

2. As shown in Figure 2.70, double click on the .exe file of Python to start the
installation process:

Figure 2.70: The installation dialog box for Python 3.8.5

Apache Spark Environment Setup and Configuration 69

3. Tick the necessary checkboxes and click on the Install, as depicted in Figure
2.71:

Figure 2.71: The dialog box is displaying list of options for python installation

4. Figure 2.72 displays the progress of Python installation and it takes 10-15
minutes for installation:

Figure 2.72: Displaying the installation status of Python

70 Practical Machine Learning with Spark

5. The screen setup was successful and it confirms that the installation is done
successfully. Click on Finish to close the installation window, as shown in
figure 2.73:

Figure 2.73: The dialog box to show successful installation of Python

PIP Installation in Python
On the shell terminal or command prompt, it is important to help the readers to
install all the required Python modules such as pandas, numpy, and sklearn. This
section illustrates the steps to install the PIP package as follows:

1. You need to set the Python path in the windows environment and check
whether Python is running or not using the Python command on the
Window Command Prompt, as shown in Figure 2.74. If you are able see the
Python version and get into the Python terminal, it means Python is properly
installed in the system.

Figure 2.74: The dialog box shows the running session of Python

Apache Spark Environment Setup and Configuration 71

 2. The PIP module will be installed using this Python get-pip.py at terminal
but before that, you need to download the get-pip.py from the link
https://bootstrap.pypa.io/. The version of PIP can also be seen using
the pip --version command, as shown in Figure in 2.75:

Figure 2.75: Displaying the executed commands at terminal

Jupyter Notebook Installation through PIP
The Jupyter Notebook provides the editor to write and execute Python and its related
modules. This section covers the steps to install and access the Jupyter Notebook on
Windows OS. The following steps are given as follows:

1. Open the link https://jupyter.org/install in the browser to get the
installation steps through conda and PIP, as shown in Figure 2.76. Use the
pip install jupyterlab in the command prompt:

Figure 2.76: The home page to show the installation step of Jupyter Notebook

72 Practical Machine Learning with Spark

2. Figure 2.77 displays the Jupyter Notebook dependencies that are being
installed in the system:

Figure 2.77: Displaying the status during Jupyter Notebook installation

3. Congratulations!! The Jupyter Notebook is successfully installed in your
system! To run the notebook, run the jupyter notebook command at the
terminal which will bind 8888 as a port number with the Jupyter Notebook,
as shown in Figure 2.78:

Figure 2.78: The terminal shows the successful running of Jupyter Notebook

Apache Spark Environment Setup and Configuration 73

4. To access the Jupyter Notebook from the browser, as depicted in Figure 2.79.
Then, open the following link:

 Localhost:8888/

Figure 2.79: Displaying Jupyter Notebook console in the browser

Microsoft PowerBI Installation for Data
Visualization
In our day-to-day life, we make many decisions among which some go wrong
due to less understanding of business insights. Hence, it creates a hindrance for
our futuristic business growth. Therefore, in 2010, Microsoft developed a business
intelligence tool named as PowerBI which enhanced the business understanding
and acute observation by the occult power of visualization. Microsoft PowerBI is a
trending Business Intelligence tool for visualization and dashboarding to get better
insights of the business. In PowerBI, all graphs and widgets usually depict the
decisive information about the business by playing with dimension and measure of
data. Generally, it pulls all the data from disparate sources and creates a centralized
flat of data on a single platform. Mainly, the PowerBI tool is recommended in
the Exploratory data Analysis (EDA) process to understand the quality, meaning
and insights of data in Machine Learning and statistical learning. Readers must
have a Power BI account for creating the visualization and publishing the created
dashboards. PowerBI can be directly integrated with various on-premise and cloud
databases such as Google Big Query, Apache Spark, Apache Hive, Apache Impala,
Azure Blob, Amazon stacks, and SQL, and so on. In this section, authors have
mentioned the installation steps for PowerBI and utilization of this platform will be
presented in the upcoming chapters for data visualization. The step to download
and installation of PowerBI is given below.

74 Practical Machine Learning with Spark

1. Open the link https://powerbi.microsoft.com/en-us/desktop/ in the
browser, as shown in Figure 2.80 and click on Download Free:

Figure 2.80: The download page for PowerBI

2. As shown in Figure 2.81, a dialog box pops up. Then, tick on the checkbox
and click on Open Microsoft Store that will take you to the official page
of Microsoft Store:

Figure 2.81: A dialog box after clicking on Download free in the previous step

3. In the Microsoft Store window, click on the Get option. This option will open
a dialog box which will ask the credentials for Sign-In, as shown in Figure
2.82:

Figure 2.82: The PowerBI Desktop application in Microsoft store

Apache Spark Environment Setup and Configuration 75

4. Figure 2.83 shows the Sign-In dialog-box for PowerBI:

Figure 2.83: The Sign-in dialog box

5. Once it is download and installed successfully in the system, as shown in
Figure 2.84, double click on the PowerBI icon:

Figure 2.84: PowerBI Icon

6. After double clicking on the PowerBI Icon, the landing screen of the tool
will be opened as shown in Figure 2.85. Various pre-built connectors will be
displayed while you click on the Get Data option:

Figure 2.85: Landing screen of PowerBI

76 Practical Machine Learning with Spark

DBeaver Installation for Accessing the
Data from the Persistence Layer
DBeaver is an open-source multi-platform and SQL-based universal database
management tool for developers, database administrators, analysts, and all
people who need to work with databases. DBeaver can be directly integrated with
the persistence layer like Apache Spark and Apache Hive for analyzing the data
related to ML, DL, and other business KPIs. It supports 80+ databases and provides
direct integration with them. DBeaver covers both cloud and on-premise popular
databases like MySQL, PostgreSQL, SQLite, Oracle, DB2, SQL Server, Sybase, Spark,
Big Query, MS Access, Teradata, Firebird, Apache Hive, Phoenix, Presto, and so on.
Let us see the steps to install DBeaver in the system to analyze the decisive insights
from data which is difficult through Spark and Hive terminals:

1. Open the link dbeaver.io in the browser, as shown in Figure 2.86. Download
the compatible version and extension of the DBeaver universal software
from the community page:

Figure 2.86: The home page to download the DBeaver Software

 2. As shown in Figure 2.87, double click on the downloaded .exe file of the
DBeaver universal software. It will open the main screen in which the
Database Navigator shows the connection history built within DBeaver
Software:

Apache Spark Environment Setup and Configuration 77

Figure 2.87: Landing screen of DBeaver software

 3. Click on Plug Sign at the extreme left-hand side of the main menu bar. A
dialog box Connect to database pops up to show the different database
connectors. Choose any needed database and click on Next for installation,
as shown in Figure 2.88:

Figure 2.88: Displaying the list of pre-built database connectors

78 Practical Machine Learning with Spark

Apache Spark Installation on Google Colab
Google Colab is a cloud-based notebook that provides the support of CPU, GPU, and
TPU configurations for performing all steps of analytics and intelligence operations
such as ingestion, massaging, persistence, modelling, training, validating, and
testing of ML/DL models over the data. The steps to install Apache Spark on Google
Colab are as follows:
!apt-get install openjdk-8-jdk-headless -qq > /dev/null
!wget -q https://apache.osuosl.org/spark/spark-2.4.8/spark-2.4.8-bin-
hadoop2.7.tgz
!tar xf /content/spark-2.4.8-bin-hadoop2.7.tgz
!pip install -q findspark
import os
os.environ["JAVA_HOME"] = "/usr/lib/jvm/java-8-openjdk-amd64"
os.environ["SPARK_HOME"] = "/content/spark-2.4.8-bin-hadoop2.7"
import findspark
findspark.init()
from pyspark.sql import SparkSession
spark = SparkSession.builder.master("local[*]").getOrCreate()

Figure 2.89 shows the screenshot of all the required steps to install Spark on Google
Colab:

Figure 2.89: Screenshot to install Apache Spark on Colab

Conclusion
This chapter includes different ways to configure and install Apache Spark and
Apache Hadoop frameworks on both on-premises and cloud platforms for practical
implementation. In addition, different notebooks, or editors of Python such as
Sublime, Google Colab, and Jupyter are clearly elucidated step-by-step for installation

Apache Spark Environment Setup and Configuration 79

and configuration on any environment. Apart from these, authors have mentioned
installation steps for Microsoft PowerBI and DBeaver for better understanding of
features through an Exploratory Data Analysis (EDA) and insightful/ decisive
visualization on raw or processed input and output dataset. This book helps
the audience to understand the installation and configuration of all the required
components which need to be used in the implementation of distributed processing
by leveraging Apache Spark. The next chapter (Apache Spark) will act like a bridge
for creating an efficient data pipeline to ingest, process, and feed the meaningful
data as an input to the ML model from raw data.

80 Practical Machine Learning with Spark

Apache Spark 81

Chapter 3
Apache

Spark

“Success seems to be connected with action. Successful people keep
moving. They make mistakes, but they don’t quit.”

-Conrad Hilton

Introduction
Apache Spark is a real-time and batch mode application of Machine Learning
(ML). Leveraging the concept of a distributed framework like Apache Spark will
always enhance the computation efficiency and hence, the processing speed will be
more efficient. Though, diving deep into the concept of Apache Spark gives more
theoretical clarity, but it still has a big crevasse towards implementation. So, in this
chapter, authors strive to fill-up the crevasse and help the readers to make a strong
bridge for easily transitioning from conceptual scenarios to practical implementation.
Here, authors discuss several techniques to read and manipulate with heterogenous
formats of data, detailed explanation of Spark architecture, optimization of a Spark
Job, interactive monitoring of a Spark’s job through Apache Livy, and Workflow
management through various frameworks.

Structure
This chapter presents comprehensive discussions on the following topics:

82 Practical Machine Learning with Spark

•	 Need of Apache Spark

•	 Detailed architecture of Apache Spark

•	 Evolution and key components of Apache Spark

•	 RDD, DataFrame, and datasets in Apache Spark with comparison

•	 DAG and Lazy evaluation in Apache Spark

•	 Accumulator and Broadcast

•	 Memory storage level(s): cache and persist

•	 Transformation and action of Apache Spark

•	 Spark’s job optimization techniques

•	 Different storage levels in Apache Spark

•	 SQL or DataFrame-related manipulations using Apache Spark

•	 Different ways to read the various formats of data using PySpark

•	 Scheduling or workflow creation using Apache Oozie

•	 Applications of Apache Spark

Objectives
After reading this chapter, readers will be able to:

•	 Get an understanding about Apache Spark and its internal working of the
architecture

•	 Do manipulation on any format of data using PySpark

•	 Understand the difference between RDD, DataFrame, and datasets

•	 Do Spark’s job tuning for optimizing the processing efficiency

•	 Do scheduling or binding-up of the Spark jobs into one thread

Need of Apache Spark
In the era of digitalization, the volume of data generating from various digital
platforms have been continuously growing. A rapid spike in the volume of data
creates a serious challenge among world wide researchers to handle and store this
heavy data. Since 2010, several IT industries have been using an Apache MapReduce
framework for batch processing data. In addition, many organizations have started
loading more data in Apache Hadoop and wanted to run rich applications. Moreover,

Apache Spark 83

users wanted to run iterative algorithms and interactive ad-hoc queries to explore
the data that is common in ML and graph processing. Even though there are many
advantages of Apache MapReduce, there are still some gaps where MapReduce
does not perform efficiently as both multi-pass and interactive applications need
to exchange data across multiple MapReduce steps, and this can only be done by
writing it to a distributed file system, which adds substantial overhead due to data
replication and disk I/O. This overhead takes more than 90% of the running time of
ML algorithms implemented on Hadoop.

To overcome this hassle, in 2012, Apache Spark was introduced to handle and
processing the heavy data using the concept of distributed processing and in-
memory computation. Extension towards multiple language support and seamless
integration with various components make it the best choice to data dealers for
processing. Spark is an inexpensive method, in this to write a program. The user
needs to combine different processing types such as an iterative algorithm, an
interactive query, streaming, graph queries, and batch queries. Apache Spark can be
deployed and work perfectly on cloud or a on-premises cluster.

Figure 3.1 shows the different deployment frameworks to run a Spark application:

Figure 3.1: Disparate deployment mode to run a Spark services

Evolution of Apache Spark
The first egg of Apache Spark was incubated in 2009 at UC Berkeley’s AMP Lab by
Matei Zaharia which later, got open sourced under a Berkeley Software Distribution
(BSD) license in 2010. This study overcomes the major glitches of Hadoop MapReduce
by providing a new storage called as Resilient Distributed Data sets (RDDs). RDDs
can be read and written up to 40x faster than Hadoop which translates directly into
faster applications and has the rich integration with various persistence objects like
Amazon Simple Storage Service (AWS S3) and Hadoop Distributed File System
(HDFS). In late 2012, it was first released with the version mentioned 0.5.1 for the
commercial purpose. After that, multiple contributors have been started to improve
this framework; hence, that releases various versions accordingly. Now, the current

84 Practical Machine Learning with Spark

version of Apache Spark, that is, 3.1.2 is released out in June 2021. The following
mentioned Table 3.1 depicts the annual-wise evolution that has been done in Apache
Spark:

Version Original release date Latest version Release date

0.5 2012-06-12 0.5.1 2012-10-07
0.6 2012-10-14 0.6.2 2013-02-07
0.7 2013-02-27 0.7.3 2013-07-16
0.8 2013-09-25 0.8.1 2013-12-19
0.9 2014-02-02 0.9.2 2014-07-23
1.0 2014-05-26 1.0.2 2014-08-05
1.1 2014-09-11 1.1.1 2014-11-26
1.2 2014-12-18 1.2.2 2015-04-17
1.3 2015-03-13 1.3.1 2015-04-17
1.4 2015-06-11 1.4.1 2015-07-15
1.5 2015-09-09 1.5.2 2015-11-09
1.6 2016-01-04 1.6.3 2016-11-07
2.0 2016-07-26 2.0.2 2016-11-14
2.1 2016-12-28 2.1.3 2018-06-26
2.2 2017-07-11 2.2.3 2019-01-11
2.3 2018-02-28 2.3.4 2019-09-09

2.4 LTS 2018-11-02 2.4.7 2020-10-12
3.0 2020-06-18 3.0.3 2021-06-23
3.1 2021-03-02 3.1.2 2021-06-01
3.2 2021-10-13 3.2.0 2021-10-13

Table 3.1: Year-wise evolution in Apache Spark

Apache Spark Components
This section introduces the components of spark that provide the ease to users to
play around the data according to their needs. Figure 3.2 presents the ecosystem
of Apache Spark containing the various components of Apache Spark which are
helpful for making the data meaningful:

Apache Spark 85

Figure 3.2: Apache Spark ecosystem with its core components

Spark Core
Spark Core is a home terminal in an Apache Spark package to the API which defines
RDDs task dispatching, scheduling, memory management, fault-tolerance, and
storage systems interaction.

Spark SQL
The older version, that is, SQL-on-Spark has now been replaced by Spark SQL. Spark
SQL is mainly concerned with structured data. It allows fetching data via SQL and
Hive Query Language (HQL) and supports variety of data sources like Hive tables,
Parquet, and JSON. Additionally, it allows developers to intermix SQL queries in
Python, Java, and Scala supported by RDDs.

Spark Streaming
It is an extension of the core Spark API that enables the functionality like scalable,
high throughput to the data, and provides APIs to manipulate data streams which
match the Spark core RDD API. It allows a continuous stream of data through a
high-level abstraction known as DStream.

MLlib
MLlib is an accessible machine learning library in spark that leverages a distributed
framework for training and testing a ML model. MLlib encloses various pre-built
ML algorithms, including clustering, regression, classification, and collaborative
filtering. DataFrame-based ML APIs are more comprehensible as it includes spark
Data sources, SQL DataFrame queries, Tungsten optimization, Catalyst optimization,

86 Practical Machine Learning with Spark

and uniform APIs across languages. Also, it has a linear algebra package named as
Breeze for numerical computing and machine learning.

GraphX
GraphX is an API for graphs that requires data in the reorientations of vertexes and
edges. The main features of GraphX are clustering, classification, traversal, searching,
and pathfinding. Moreover, GraphX supports fundamental necessary operators for
computation purposes.

SparkR
R is a language that provides the ease to do statistical analysis for a given dataset.
Similarly, SparkR is a library in Spark for processing the data and performs statistical
functions on the refined data.

Architecture of Apache Spark

Figure 3.3: An architecture of Apache Spark

Figure 3.3 delineates an architecture of Apache Spark that consists of five components,
namely, Task Runner, Spark Driver, Worker Node, Executor, and Cluster Manager;
these can help to run a Spark’s application impeccably. The first and foremost step
is the execution flow initiated from the Spark Driver that calls the main program

Apache Spark 87

and generates a SparkContext. A SparkContext is a cockpit of an application which
generally consists of all the indispensable functionalities. On the other hand, the
Spark Driver has many other important Schedulers and Managers such as DAG
Scheduler, Task Scheduler, Backend Scheduler, and Block Manager. These preceding-
mentioned components are useful for translating the user-written code into a job that
executes within the cluster. Moreover, the monitoring and resource allocating can be
possible with the help of Spark Driver and SparkContext. There are two pertinent
ways to get allocated the resource within the cluster using Mesos and Yarn. When
an RDD is created, it can be fed to many worker nodes to execute the tasks assigned
by the Cluster Manager and send back the response to the Spark Context. Lastly, the
executor takes care of the responsibility to execute the tasks that reside at the worker
node.

Resilient Distributed Dataset (RDD)
RDD is a radical and rational unit of Apache Spark to distribute the collection of
objects immutably. Each and every data value in RDD is segmented into logical
partitions and the partitioned RDDs can be handled in a parallel manner across the
nodes of the cluster with the help of transformations and actions. RDDs support any
type of programming languages such as Python, Java, Scala, and R along with their
user-defined classes.

There are three paths to write a RDD: the first path to create RDDs is to take the
reference of the existing collection from the RDDs or driver program; the second
path takes the reference of an explicit dataset or persistence layer such as an external
file system, HDFS, Apache Hive, Hbase, and many more sources which offer a
Hadoop suitability, and the third path to create a RDD is by parallelizing new data
values within the spark environment.

The following details show the indispensable scenarios where we can implement
RDDs:

•	 To deal with the low cardinality transformation and actions.

•	 To process the un-structured format like streams of messages from the social
platform.

•	 To enhance and deal with complex functions with DataFrames and datasets
that can be either a structured or semi-structured data.

Direct Acyclic Graph (DAG) in Spark
In Apache Spark, the DAG helps to maintain the record of each operation through
the arrangement of vertices and edges of a job which is going to be submitted.

88 Practical Machine Learning with Spark

When any job is submitted using the Spark framework for processing the data, it calls
the assigned action along with its DAG graph by default and starts keeping track
of operations which need to be triggered for executing the process in a sequential
manner.

In MapReduce, readers need to keep down the steps of the MapReduce process flow
through grouping the operations and making them as a single execution graph for
each operation. But the DAG graph already tracks the records of all the operations
and it binds up the several operations in one. Thus, this depicts the key difference
between Hadoop MapReduce and Apache Spark framework. Furthermore, the
DAG draws the operational flow of any execution job and provides the ease to
rearrange the operations for emerging out the performance of execution and boosts
the efficiency.

Lazy Evaluation
The lazy evaluation executes transformation operations, until and unless an action
is triggered. In spark, it is important to have a lazy evaluation as a functionality to
execute the transformation while it is needed in the process. By leveraging it, the
users are free to organize the smaller and manageable operations. In addition, Spark
can execute the small part of your program by running an action like count().
But in MapReduce, it is not possible to test the small part of codebase to see the
intermediate outcome and it requires more time for developers to decide relevant
group operations to minimize the number of passes.

Figure 3.4 shows the various advantages to incorporate lazy evaluation in Spark
to reduce time and space complexities, enhance optimization, help to develop
better transformation manageability, and increase the speed process. The detailed
information is given as follows:

Figure 3.4: Advantages of Lazy Evaluation in Apache Spark

Apache Spark 89

Reduced Complexities
The time and space complexities can be alleviated with the help of lazy evaluation
as the action is triggered when the data is required.

Optimization
It helps to fold down the number of queries for executing a spark job. Thus, the
system works more efficiently with fewer configurations.

Develops Manageability
It decreases the number of passes on data by grouping operation. So, the users can
handle large operations without any hurdles.

Increased Speed
In this concept, users do not need to perform the entire calculation at the instance.
Due to this mechanism, it saves the communicating time between the driver and
cluster; hence, speeds up the process.

DataFrames
DataFrames is an immutable distributed collection of data which extends the
integration with Scala, Java, Python, and R to organize the data in the tabular
orientation of rows and columns. Some of the ideal examples of tabular representation
resemble with the data orientation in Relational Databases and DataFrame in
pandas. DataFrames can process large dataset impeccably with more efficiency.
There are multiple trails to create a DataFrame in Spark using the relational data
files or databases, Apache Hive tables, any other SQL or NoSQL databases, and
already created RDDs. In the updated version of Spark, the DataFrame functionality
got merged with datasets APIs for providing the unification of data processing
capabilities across libraries. With the help of this unification, developers will have
less burden to remember the various concepts.

Datasets
A dataset is a branch which is added to Spark’s family to organize the data in an
efficient manner and provide more advantages such as strong typing, lambda
functions integration and flexibility to stitch the concept of Object-Oriented
Programming (OOPs) flavors along with existing merits of SparkSQL’s optimized
execution engine. The dataset can be created from the heterogenous data sources and
serves data manipulations using transformations such as map, flat-map, filter, and
so on. The dataset supports Scala and Java programming languages except Python.
The following points highlight the need of a dataset or DataFrame:

90 Practical Machine Learning with Spark

•	 To provide good semantics, high-level abstractions, and domain specific
APIs.

•	 To handle high-level expressions, transformation functions such as filters,
aggregation, and mathematical functions.

•	 To provide direct integration with SQL queries to process the data and
handling of semi-structured data using lambda functions.

•	 Need of type-safety at compile time which can be achieved by leveraging the
Tungsten’s optimizer.

•	 Need of unification of APIs within the Spark libraries.

Table 3.2 delineates the key benchmarking comparison between RDD, DataFrame
(DF), and dataset.

Features RDD DataFrame Dataset
Definition RDDs is a read-

only partition
collection
of data and
process using
In-memory
computation.

The representation
of data in DF is a
collection of rows
and columns that is
similar to RDBMS.

It is an advanced level
extension of DF that
can provide the type-
safe and flavor of OOPs
concept.

Release Version 1.0 Spark 1.3 Spark 1.6
Data Formats
Handling

Structured and
un-structured

Structured and semi-
structured data.

Structured and un-
structured data.

Data Sources API Yes, it can allow
with different
sources such as
text file, RDBMS,
CSV, and Excel
file.

Yes, it allows to
process the data
from heterogenous
sources such as Avro,
CSV, JSON, HDFS,
Hive, Impala, HBase,
and MySQL

Yes, different sources
such as HDFS, Text file,
CSV, and RDBMS.

Compile-time type
safety

Yes No Yes

Optimization No Yes, it can be
achieved using
Catalyst Optimizer.

Yes, consists of Catalyst
optimizer.

Serialization Yes, through
Java
serialization.

Yes, through
Tungsten.

Yes, through Tungsten.

Apache Spark 91

Lazy Evolution Yes Yes Yes
Programming
Language Support

Java, Scala,
Python, and R
languages.

Java, Python, Scala,
and R.

Scala and Java.

Schema Projection The Schema
projection is
being used
explicitly.

There is no need to
explicitly define the
schema because it
has auto-discovering
functionality that can
find schema from
any source.

Auto-discovering of
schema is available.

Aggregation
Performance

Slow in simple
both grouping
and aggregation
operation.

Too fast for doing the
exploratory analysis
and performing
aggregation
operation.

Faster than RDDs and
DF.

Table 3.2: Comparison between RDD, DataFrame, and dataset

Accumulator and Broadcast
Apache Spark has two types of shared variables, namely, Accumulator and Broadcast.
They are scattered across multiple nodes to support the read and write operations
like lookup and summation.

Detailed information on both shared variables is mentioned next.

Accumulator
It is an imperative shared variable to update data points, counting, and summing
up related operations across the executors which can be added through associative
and commutative operations. Moreover, it can be created with or without a name
in Spark. When the accumulator is created with a name, then the name of the
accumulator can be viewed in Spark’s UI. Thus, users can sequentially check and
monitor the progress of the executing stages of a job. An attribute named value
stores and returns the accumulator’s value which is usable in a driver program.

The following codebase shows an accumulator which is being executed to add the
elements of an array:
“accum = sc.accumulator(0)
accum
sc.parallelize([5, 2, 6, 4]).foreach(lambda x: accum.add(x))
accum.value”

92 Practical Machine Learning with Spark

Broadcast
It is a read-only variable that needs to be cached in all the available executors, in
spite of sharing every time with the task. Mainly, the broadcast variable can avoid
the network input/output overhead by keeping a local copy of data in each executor.
Hence, minimize the communication cost that can ameliorate the query performance
using lookup or join operations. In addition, the broadcast is preferred most when
the tasks across the multiple stages need the identical data for optimization.

The following code shows a Broadcast class within PySpark:
from pyspark import SparkContext
sc = SparkContext(“local”, “Broadcast”)
words_new = sc.broadcast([“Big Data”, “Machine learning”, “Analytics”,
“Deep Learning”, “Artificial Intelligence”])
data = words_new.value
print “Stored data -> %s” % (data)
elem = words_new.value[2]
print “Printing a particular element in RDD -> %s” % (elem)

Apache Spark Optimization and its
Techniques
The key feature of Apache Spark optimization is to provide flexibility to re-tune the
job’s configurations of spark dynamically in the run-time manner for ameliorating the
overall performance through in-memory computations. Majorly, the big crevasse in
terms of the spark optimization computations can be CPU, memory, or any resource
allocation in the cluster. However, running heavy-loaded spark jobs efficiently need
good knowledge on how a spark job’s works and several ways to optimize the jobs
for better performance characteristics. A well-tuned job’s configuration should be
used to eliminate the time-consumption in a heavy job, correct the execution engine,
and hence, improves performance time by managing the allocation of resources in
the right manner. The different approaches to optimize the Spark job is mentioned
as below:

•	 File Format Selection
Apache Spark adapts several formats such as Comma Separated Validation
(CSV), JavaScript Object Notation (JSON), Extensible Markup Language
(XML), PARQUET, Optimized Row Columnar (ORC), and AVRO. But
choosing of an appropriate file format of data or value can alleviate the
challenges related to cumbersome while processing the massive data and
hence, enhance the overall optimization of Spark application. In Spark, the

Apache Spark 93

parquet file with snappy compression is the most promising format which
gives high performance.

•	 Accumulators
Readers know the benefits of an accumulator by leveraging it through
associative and commutative operations. Most of the time, accumulators can
be used as counters and it also ensures that the update on each task will
be applied once to the accumulator variables. During the transformation
operations, the coders are already known about all the updates of each task
to take care of the number of jobs which can be more than once if job stages
are re-executed in a Spark application.

•	 Hive Bucketing Performance
The bucketing technique in hive provides a fixed number of data consisting
shelves in the form of files and the number of buckets is based on the number
that passes to the table schema script during the creation of a table by the
coder. Moreover, Hive takes the field and feeds into the hash function for
assigning the right record to the respective bucket. Bucketing becomes more
imperative when the cardinality of data is too high, needs to handle or
manipulate massive dataset, and the cardinality of the partitioning field is
low to process the records which are scattered among all buckets.

•	 Predicate Pushdown Optimization
It is a technique to process only the indispensable data. Predicates is an
optimization technique that is applied on the top of SparkSQL by defining the
specific filters using “where” condition. Through the explain command, the
programmer will be able to check all stages of query processing. The query is
well optimized and selects the required data only if the any query consists of
PushedFilter. This technique can reduce disk I/O by introducing in-memory
analytics which limits the number of files and partitions. Querying on data
in buckets with predicate pushdowns produce comparatively better results
with less shuffle. If there is no PushedFilter found in the query plan, then it
is better to cast the where condition.

•	 Zero Data Serialization/Deserialization using Apache Arrow
Apache Arrow provides the in-memory format to interact with the analytical
query engine that can alleviate the overhead for SerializationDeserialization
(SerDe) operations for shuffling data using shared memory. Arrow can
handle and process the heavy datasets across the network without the need
of any shuffling operations. In addition, it has its own file format named
as Arrow File Format that ensures zero-copy random access to data on the
disk.

94 Practical Machine Learning with Spark

•	 Garbage Collection Tuning
In Spark, all jobs need the JVM environment to successfully execute the
program. Due to this JVM requirement, it turns out to be a problematic
Garbage Collection (GC) when we need to deal with the massive amount
of dataset for processing. To overcome this hurdle, readers need to re-tune
the GC of objects by observing and gathering the indispensable statistics by
submitting the job using Verbose. To be on a safer side, developers always
recommend to keep the GC memory less than 10% of heap memory.

•	 Memory Management and Tuning
Shuffling and sorting are the most time-consuming operations which can
take more execution memory, whereas the cached jobs require less memory.
In Spark, the spark.memory.fraction is a standard way to check how
much of JVM heap space is being utilized by spark; by default, it usually
takes 60%. To mitigate this delay of JVM GC, it is recommended to keep the
less executor memory.

•	 Data Locality
In Apache Spark, the data movements among disks are costly and takes more
time while computing an application. To take this concern, it is important to
perform most of the computations at the place where data resides. So, the
developers keep placing the codebase near the refined data for optimizing
the processing and enhance the overall benchmarking efficacy. The task shall
wait to be executed until the data is not available.

•	 Using Collocated Joins
Redistribution and broadcasting of data can be possible with the help of
collocated joins. The small chunks of data generally reside into multiple
blocks of memory that are used for broadcasting. At the instance to apply
the joins on two datasets, spark first sorts the data of both datasets by keys
and then merges.

•	 Caching in Spark
Leveraging Spark with Graphical Processing Unit (GPU) with the caching
technique is the most ideal way to optimize a Spark’s job if there is a need of
the same data multiple times. Generally, the caching technique is preferred
more in Machine Learning algorithms where the program needs the same
data repeatedly to train a model.

•	 Executor Size
In Apache Spark, running of executors with high memory will show the
excessive delays in the garbage collection, hence lower down the optimization
as a result. Due to this, it is recommended to have five core per executors.

Apache Spark 95

The detailed calculation to use the appropriate number of executor memory
and its related configurations are mentioned as follows:

o Number of nodes = 10, Number of cores = 16 cores per node, and
RAM = 64GB per Node

o Let us assign 5 cores per executor: --executor-cores = 5

o 1 core per node to be left for Hadoop/Yarn daemons => Number of
cores available per node = 16-1 = 15

o Total available of cores in cluster = Number of nodes * number of
core available per node = 15 x 10 = 150

o Total number of available executors = (Total available of cores /
Number of cores per executor) = 150/5 = 30

o 1 executor to be left for Application Manager: --num-executors = 29

o Total number of executors per node = 30/10 = 3

o Memory per executor = 64GB/3 = 21 GB

o Off heap overhead = 7% of 21GB = 3 GB. So, the executor-memory
would be = 21 – 3 = 18 GB

Thus, the recommended configurations are: 29 executors, 18 GB memory
each, and 5 cores each.

•	 Spark Windowing Function
A Spark window function defines a frame through which we can calculate
input rows of a table and can-do comparison operations on multiple rows in
that same data frame.

•	 Data Serialization
Apache Spark optimizes the movement or arrangement of data. So, analytics
can be performed better and with the optimized manner if data resides in the
right serialized format. Due to aforementioned concern, the Apache Spark
aids data serialization to manage the data formats that is required at source
or destination operations effectively. Natively, Spark has Java Serialization;
although, it can also use Kryo Serialization. In detail, Spark supports the
Kryo Serialization library (v4) that can be 10x faster than Java Serialization
and more compactness than Java.

Memory Storage Levels: Cache and Persist
The memory storage levels are useful to optimize the overall process of any spark
application. Mainly, cache and persist are two types of memory storage levels in

96 Practical Machine Learning with Spark

spark. Persist is an indispensable functionality of spark that stores the executed
intermediate RDD across the multiple nodes to get an efficient access while the readers
need it the next time. By implementing the right memory storage level, readers can
save several hours of cumbersome computation. Generally, it uses the persist and
Cache mechanism to store and re-use the data multiple times if the program needs
this. The function “RDD.cache()” will always store the data in memory, whereas
the function “RDD.persist()” can store some segments of data in the memory and
rest on the disk.

The following is detailed information about the various storage levels to persist a
RDDs in Apache Spark:

•	 STORAGELEVEL.MEMORY_ONLY: RDD is stored as a deserialized Java object in
the Java Virtual Machine. It does not store few partitions into a memory if the
RDDs size greater than a memory.

•	 STORAGELEVEL.MEMORY_AND_DISK: RDD is stored as a deserialized Java
object in the Java Virtual Machine. It stores the remaining RDDs into the disk
instead of the memory if the RDDs’ size is larger than memory.

•	 STORAGELEVEL.MEMORY_ONLY_SER: Here, the RDD can be stored as a
serialized object in the Java Virtual Machine.

•	 STORAGELEVEL.MEMORY_AND_DISK_SER: The RDD can be stored as a
serialized object in the Java Virtual Machine and disk.

•	 STORAGELEVEL.DISK_ONLY: The RDD can be stored only on the disk.

Spark Submit
There are two approaches for executing a PySpark program. In the first approach,
users can run or execute the PySpark code sequentially through the terminal and
the second approach extends the functionality to runtime by passing of parameters
through spark-submit. In this approach, readers can execute a .py format file which
will have the complete executable PySpark code. By running this .py script, it
processes the data; in addition, the readers can get the more option to dynamically
tune the spark job using –option while submitting the Spark Job.

Here is the syntax to submit a job of spark:
spark-submit –driver-class-path “path of class drive of jars” –jars
“path of jar file” python “file in .py format”

Additionally, the different runtime parameters can be passed with –option while
submitting a spark’s job which are mentioned below:

•	 class: It is a full class name of the class containing the main method of the
application.

Apache Spark 97

•	 conf: It has the property of the Spark configuration which is in the key=value
format.

•	 deploy-mode: Cluster and client are the two modes to run a Spark application.
In the cluster mode, the driver runs on worker hosts whereas in the client
mode, the driver runs locally as an external client. It is always recommended
to have the cluster mode for production jobs and client mode for stagging
purposes.

•	 driver-class-path: It includes the configuration and class-path
information. JARs added with the –jars parameter are automatically
enclosed in the class-path.

•	 driver-cores: It is a dynamic and runtime functionality of Spark to assign
the number of cores to be used to execute a job. By default, it requires 1 core
to launch any spark job.

•	 driver-memory: It is a way to assign the heap size which needs to be
allocated to the driver and the driver-memory value can also be updated
through the spark.driver.memory property.

•	 files: It is a comma-separated list of files to be put in the working directory
of each executor.

•	 jars: With the help of the jars option, the user can load additional JARs in
the class-path.

•	 master: It provides four ways to launch a Spark application using various
environments which are given as follows:

o local: Run Spark locally with one worker thread.

o local[K]: Run Spark locally with K worker threads.

o local [*]: Run Spark locally with as many worker threads.

o Yarn: Run with YARN cluster manager. The cluster location is
determined by HADOOP_CONF_DIR or YARN_CONF_DIR.

•	 packages: It is a comma-separated list of Maven coordinates of JARs.

•	 py-files: It is a comma-separated list of .py files.

Spark Monitoring
In Apache Spark, the submitted job can be monitored to provide key information
about the application which can help the coders to understand the flow and complex
steps in the entire design of DAG. To consider this functionality, every SparkContext
launches a WebUI that is redirected to port 4040. Readers can use this interface by

98 Practical Machine Learning with Spark

opening http://<driver-node>:4040 in a web browser. The beneficial information
of a running job can be gathered from Spark WebUI that is given as follows:

•	 About scheduler stages and tasks.
•	 Details of RDDs related to their size and memory allocation.
•	 Environmental and configurational information.
•	 Knowledge about the running executors.

Apache Livy: An Easy Interaction With a
Spark Cluster Over a REST Interface
In 2017, Cloudera named a Big Data Company launched Apache Livy to solve a
problem of interface accessibility to explicitly submit and monitor the spark jobs
through Rest API(s). Thereafter, Hortonworks decided to support and merge
with Cloudera to enhance the Apache Livy adaptability and features with other
applications such as Apache NiFi, Security channel among data movements through
Kerberos, and Apache Zeppelin, etc. Basically, Apache Livy is a service that interacts
with an Apache Spark cluster over a REST interface for handling the job. Prior to
this, Spark did not have any integration with other external services to manage the
Spark job through APIs rather than the submission through a command line option
in Apache Spark. But now, Livy can easily access the terminal to submit a Spark job,
synchronous or asynchronous query retrieval, and Spark Context management by
leveraging the layer of the REST interface. Apache Livy also provides the ease in the
linkage between Apache Spark and application servers. Hence, extend the feature
of Rest APIs to call a Spark job through an interactive web or mobile application.
In addition, it also extends the capabilities of Spark for including the multi-tenancy
and security features. In the newer version of Apache Livy, it extends the scope of
integration with various tools to incorporate the inherit functionality of Apache Livy
for quickly accessing the Spark jobs and secure handling of data pipelines. It majorly
supports integration with Azure HDInsight, Jupyter Notebook, and Apache Zeppelin
to interact and access the Spark terminal. Moreover, Apache NiFi engrosses towards
the functionality of Livy for submitting the Spark job and, the LDAP authentication
through Apache Knox is now possible using Apache Livy. Features of Apache Livy
are discussed as follows:

•	 Ease to submit and monitoring of Spark job using the REST API(s).

•	 Livy supports user impersonation; it means multiple users can share the
same server.

•	 Share cached RDDs or Datasets across multiple jobs and clients can be
possible through Apache Livy.

•	 Jobs can be submitted via Java/Scala client API.

Apache Spark 99

•	 Livy supports security features through Kerberos authentication.

•	 Use an interactive notebook like Apache Zeppelin, Anaconda, and Jupyter
Notebook to access Apache Spark through Livy.

•	 The Livy REST API supports functionality like SparkSession, and
SparkSession with Hive enabled.

•	 More suitable to submit and monitor the batch mode applications to Spark.

Job Scheduling
Job Scheduling and workflow wrapping is also playing an important role in spark for
unification of analytics pipeline. In the previous sections of this chapter, authors had
covered the different ways to run a spark job or code snippets within the Hadoop
environment. These different ways also work for the standalone environment and
are also necessary for running the active instances of Apache Spark. For running a
spark, readers need to manually execute the PySpark application either through the
terminal or by submitting the .py file, which is not recommended for the production
environment. To overcome the preceding discussed concern, there is a need of a
workflow or scheduling framework to bind-up the silo’s tasks into a unified
processing pipeline. Moreover, the workflow frameworks also help to provide the
ease to monitor, schedule, trigger alerts, and trigger jobs based on data availability
and frequency. In this section, readers will know the basic definition of various
workflow tools along with the Oozie workflow in detail.

Figure 3.5 depicts various workflow and monitoring frameworks to schedule a spark
job:

Figure 3.5: Various workflow frameworks for scheduling an Apache Spark application

100 Practical Machine Learning with Spark

Apache Oozie is a workflow engine that binds-up the silos tasks and executes them
in sequences of actions followed by the execution structure as Directed Acyclic
Graphs (DAGs). Each action represents an individual task of work and is strongly
integrated with the Hadoop landscape, especially as it is tight coupled with YARN.
Apache Oozie supports several Big Data tools such as MapReduce, Hive, Spark,
and Apache Sqoop to schedule the prepared workflow. In addition, Apache Oozie
provides ease and great flexibility to unify the scattered or silos jobs in a single
wrapper and makes it easier to repeat those jobs at the predefined frequency and
retry options.

There are three basic components of Oozie jobs:

•	 Oozie Workflow: It specifies a sequence of actions to be executed by
leveraging the concept of DAG.

•	 Oozie Coordinator: It is used to manage the scheduling of a workflow by
considering the frequency and data availability.

•	 Job Properties: It contains the vital property to run an Oozie workflow
successfully.

This section will help the reader to go through the practical implementation of
Apache Oozie for scheduling a PySpark script. Here, the authors draw a workflow
for manipulation.py through workflow.xml and job.properties. The following
is the codebase of Oozie for wrapping up the PySpark task:

workflow.xml
The workflow.xml is used to bind-up the individual tasks or actions to be executed
within a data pipeline as a single workflow. This .xml provides the flexibility to
weave the multiple actions of heterogenous tools such as Spark, Shell Script, Python,
Java, Hive, and Sqoop in a unify workflow:

<workflow-app xmlns=’uri:oozie:workflow:0.5’ name=’MLPySpark’>

<start to=’spark-node’/>

<action name=’spark-node’>

<spark xmlns=”uri:oozie:spark-action:0.1”>

<job-tracker>${jobTracker}</job-tracker>

<name-node>${nameNode}</name-node>

<master>${master}</master>

<name>Python-Spark-Pi</name>

<jar>manipulation.py</jar>

</spark>

<ok to=”end”/>

Apache Spark 101

<error to=”fail”/>

</action>

<kill name=”fail”>

<message>Workflow failed, error message
[${wf:errorMessage(wf:lastErrorNode())}]</message>

</kill>

<end name=’end’/>

</workflow-app>

job.properties
This property file contains the configuration details, path of script, and other implicit
parameters which are passed to the workflow.xml to execute a job successfully:

nameNode=hdfs://host:8020

jobTracker=host:8050

queueName=default

examplesRoot=examples

oozie.use.system.libpath=true

oozie.wf.application.path=${nameNode}/user/${user.name}/${examplesRoot}/
apps/pyspark

master=yarn-cluster

oozie.action.sharelib.for.spark=spark2

manipulation.py
This section of code shows the PySpark program that needs to be executed and
scheduled in the Oozie workflow:

import pyspark

from pyspark.sql import SparkSession

from pyspark.sql.functions import col, lit

from pyspark.sql.types import StructType, StructField,
StringType,IntegerType

dataframe = sqlContext.read.format(‘com.databricks.spark.csv’) \

.options(header=’true’, inferschema=’true’) \

.load(‘/home /Gourav/chap3/wage_table3.csv’)

dataframe.show()

print(type(dataframe))

102 Practical Machine Learning with Spark

Alternate of Apache Oozie to Manage Tasks Workflow
Instead of Apache Oozie, there are two options for wrapping-up of tasks workflow
into a unified sequence.

Apache Airflow
Apache Airflow is an open-source workflow management platform started by
Airbnb in 2014 for managing an organization’s complex workflows. It is written
in python language, and its workflow is created using python scripts that support
to programmatically schedule their workflows and monitor them via the built-in
Airflow user interface.

Luigi
Luigi is a python package used to build complex pipelines of batch jobs. It deals with
dependency resolution, workflow management, visualization, handling failures,
command line integration, and so on. The goal of Luigi is to address all the plumbing
typically combined with long-running batch processes.

Cron Job
Cron jobs are used for scheduling tasks to run on the server. It is an automating
system maintenance or administration method for scheduling any tasks. However,
it is the same as the web application development when a web application may need
certain tasks to run periodically.

Azkaban
Azkaban is a distributed workflow manager which implements at LinkedIn to solve
the problem of Hadoop job dependencies.

Spark RDD Operations: Transformation
and Action
Apache Spark RDD operations are of two types, that is, transformations and actions.
These are used for doing the manipulation and computation operations on RDD to
obtain the desired output. A transformation is a function which obtains a new RDD
from the existing RDDs but when dealing with the actual dataset, at that point an
action is performed. When the action is triggered after the output, a new RDD is
not created like the transformation. In this section, readers will get a detailed view
of the transformation in Spark RDD along with various RDD transformations and
action operations in Spark with examples. Apache Spark RDD supports two types
of operations.

Apache Spark 103

Transformations
Spark transformation is a function that creates a new RDD from the existing one
when any transformation is applied to it. Generally, it considers the RDD as input
and produces one or more RDD as the output that will be immutable in nature.
Multiple transformations on the dataset of the same program provide an RDD
lineage, which is information about all the applied transformations and actions from
parent RDDs to the final RDD(s).

There are two types of transformations:

•	 Narrow Transformation: In narrow transformation, all the elements that are
required to compute the records in single partition live in the single partition
of the parent RDD; for example, map(),and filter().

•	 Wide Transformation: In wide transformation, all the elements that
are required to compute the records in the single partition may live in
many partitions of the parent RDD; for example, groupbyKey(), and
reducebyKey().

Let us see the various transformations in Spark RDDs sequentially to understand the
practical execution.

Map Transformation
The Spark Map function takes one element as the input and processes it according to
the custom code and returns one element at a time. The Map transforms an RDD of
length N into another RDD of length N, typically with the same number of records.

The following program shows the way to perform the map transformation in Apache
Spark:

from pyspark.sql import SQLContext

sqlContext = SQLContext(sc)

df = sqlContext.read.format(‘com.databricks.spark.csv’).
options(header=’true’, inferschema=’true’).load(‘/home /Gourav/chap3/us-
500.csv’) # this is your csv file

df.show()

get_map_transform = df.select(df.columns[0]).rdd.map(lambda x: (x,1))

get_map_transform.take(10)

104 Practical Machine Learning with Spark

Figure 3.6 shows the codebase to execute the map transformation on the existing
RDD:

Figure 3.6: Program of map transformation on existing RDD

FlatMap Transformation
FlatMap is like a map transformation because it applies a function to all elements
in an RDD. But the FlatMap flattens the results. Also, the function in FlatMap can
return a list of elements (0 or more).

The following program shows the way to perform FlatMap transformation in
Apache Spark:

get_flatmap_transform = df.select(df,columns[0]).rdd.flatMap(lambda x:
(x,1))
get_map_transform.take(10)

Figure 3.7 shows the codebase to execute the FlatMap transformation on the existing
RDD:

Figure 3.7: Program of FlatMap transformation on existing RDD

Filter Transformation
The filter function helps to create a new RDD when the exact pattern or conditions
satisfy the existing RDD.

The following program shows the way to perform the filter transformation in
Apache Spark:

get_map_transform = df.select(df.columns[9]).rdd.filter(lambda x: x not
in [‘856-264-4130’]).toDF()

Apache Spark 105

Union Transformation
The union function helps to generate a new RDD which will have all the numbers
presented in the existing two RDDs.

The following program shows the way to perform the union transformation on the
existing RDD in Apache Spark:

DD1 = sc.parallelize(range(1,10))
RDD2 = sc.parallelize(range(10,21))
RDD1.union(RDD2).collect()

Figure 3.8 shows the codebase to execute the union transformation on the existing
RDD:

Figure 3.8: Program of Union transformation on existing RDD

Union Transformation in DataFrame
The following program shows the way to perform the union transformation on two
DataFrames in Apache Spark:

Dataframe1 = sqlContext.read.format(‘com.databricks.spark.csv’) \

.options(header=’true’, inferschema=’true’) \

.load(‘/home /Gourav/chap3/wage_table.csv’)

Dataframe2 = sqlContext.read.format(‘com.databricks.spark.csv’) \

.options(header=’true’, inferschema=’true’) \

.load(‘/home /Gourav/chap3/wage_table2.csv’)

outcome_df = Dataframe1.union(Dataframe2)

outcome_df.show()

106 Practical Machine Learning with Spark

Figure 3.9 shows the codebase to display the values of two DataFrames:

Figure 3.9: Program of union transformation on existing two RDDs

Figure 3.10 shows the codebase to execute the union function on two DataFrames:

Figure 3.10: Output of Union transformation on existing two RDDs

Apache Spark 107

Union on DataFrame Through using Temporary Table View (TTV)
The following program shows the way to perform the union transformation on two
DataFrames using TTV in Apache Spark:

df1.createOrReplaceTempView(“df1”)

df1.createOrReplaceTempView(“df2”)

df3 = df2.union(df1)

df3.createOrReplaceTempView(“df3”)

df4 = spark.sql(“select Item_ID, Item_Name, sum(Quantity) as Quantity
from df3 group by Item_ID, Item_Name”)

df4.show(10)

Distinct Transformation
In Spark, the distinct transformation returns the distinct or unique elements from
the RDDs.

The following program shows the way to perform the distinct transformation on
two RDDs in Apache Spark:

RDD1 = sc.parallelize(range(1,13))

RDD2 = sc.parallelize(range(7,20))

RDD1.union(RDD2).distinct().collect()

Figure 3.11 shows the code to execute the distinct transformation on two existing
RDDs in Spark:

Figure 3.11: Program of distinct transformation on existing RDD

Distinct Transformation on DataFrame
The following program shows the way to perform the distinct transformation on
two DataFrames in Apache Spark:

Dataframe1 = sqlContext.read.format(‘com.databricks.spark.csv’) \

.options(header=’true’, inferschema=’true’) \

.load(‘/home /Gourav/chap3/wage_table3.csv’)

Dataframe1.show()

108 Practical Machine Learning with Spark

Distinct_DF = Dataframe1.distinct()

Distinct_DF.show()

Figure 3.12 shows the snapshot to display the value of DataFrame1:

Figure 3.12: Program to create and display the value on existing Dataframe

Figure 3.13 shows the code to execute the distinct transformation on existing
DataFrames in Spark:

Figure 3.13: Output of distinct transformation on existing Dataframe

Apache Spark 109

Figure 3.14 shows the code to execute the distinct transformation on existing
DataFrames using drop_duplicates(func):

Figure 3.14: Program of drop duplicate function on existing Dataframe to remove the duplicity

Intersection Transformation
In Spark, the intersection transformation helps to create a RDD which will have the
common variables between the two RDDs.

Intersection Transformation on RDD
The following program shows the intersection transformation on two existing RDDs
in Apache Spark:

RDD1 = sc.parallelize(range(1,10))

RDD2 = sc.parallelize(range(5,15))

RDD1.intersection(RDD2).collect()

[5, 6, 7, 8, 9]

Figure 3.15 shows the code to execute the intersection transformation on existing
RDDs in Spark:

Figure 3.15: Program of intersection transformation on existing RDD

Intersection on DataFrame
The following program shows the intersection transformation on two existing
DataFrames in Apache Spark:

110 Practical Machine Learning with Spark

Dataframe1 = sqlContext.read.format(‘com.databricks.spark.csv’) \

.options(header=’true’, inferschema=’true’) \

.load(‘/home /Gourav/chap3/wage_table3.csv’)

Dataframe2 = sqlContext.read.format(‘com.databricks.spark.csv’) \

.options(header=’true’, inferschema=’true’) \

.load(‘/home /Gourav/chap3/wage_table2.csv’)

outcome_df = Dataframe1.intersect(Dataframe2)

outcome_df.show()

Figure 3.16 shows the code to execute the intersection transformation on existing
DataFrames in Spark:

Figure 3.16: Program of intersection transformation on existing Dataframe

Sample Transformation
Sample transformation can take the small samples instead of execution on full data
that will return a new RDD.

Sample Transformation on RDD
The following program shows the sample transformation on existing RDDs:

get_rdd = sc.parallelize([‘This’,’book’,’will’,’help’,’all’,’the’,’Big’,
’Data’,’and’,’Machine’,’Learning’,’aspirants’])

get_rdd.collect()

[‘This’, ‘book’, ‘will’, ‘help’, ‘all’, ‘the’, ‘Big’, ‘Data’, ‘and’,
‘Machine’, ‘Learning’, ‘aspirants’]

print(type(get_rdd))

Apache Spark 111

<class ‘pyspark.rdd.RDD’>

get_sampled = get_rdd.sample(False, 0.6)

get_sampled.collect()

[‘book’, ‘will’, ‘help’, ‘all’, ‘Data’, ‘and’, ‘Machine’, ‘Learning’,
‘aspirants’]

Figure 3.17 shows the code to execute the sample transformation on existing RDDs:

Figure 3.17: Program of sample transformation on existing RDD

Sample Transformation on DataFrame
The following program shows the sample transformation on the existing DataFrame:

Dataframe = sqlContext.read.format(‘com.databricks.spark.csv’) \

.options(header=’true’, inferschema=’true’) \

.load(‘/home /Gourav/chap3/wage_table2.csv’)

Dataframe.show()

Dataframe_sampled = Dataframe.sample(False, 0.7)

Dataframe_sampled.show()

Figure 3.18 shows the code to execute the sample transformation on the existing
DataFrame:

Figure 3.18: Program of sample transformation on existing dataframe

112 Practical Machine Learning with Spark

GroupByKey
GroupByKey transformations work on the mechanism of key, value
pairs of RDD. The GroupByKey will group the values for each key in the original
RDD. It will create a new pair, where the original key corresponds to this collected
group of values.

The following program shows the GroupByKey transformation in Spark:

Dataframe1 = sqlContext.read.format(‘com.databricks.spark.csv’) \

.options(header=’true’, inferschema=’true’) \

.load(‘/home /Gourav/chap3/wage_table3.csv’)

Dataframe1.show()

DataFrame1.createOrReplaceTempView(“new_df”)

transformed_DF = spark.sql(“select Department, sum(Wage) from new_df
group by Department”)

transformed_DF.show()

Or
Dataframe1.groupBy(“Department”).sum(“Wage”).show(false)

Figure 3.19 shows the code to execute the GroupByKey Transformation on the
existing DataFrame:

Figure 3.19: Program of GroupByKey transformation

Sort Transformation
This transformation returns the sorted data according to the elements in the RDD.
The following program shows the sort transformation:

from pyspark.sql.functions import col

Dataframe = sqlContext.read.format(‘com.databricks.spark.csv’) \

Apache Spark 113

.options(header=’true’, inferschema=’true’) \

.load(‘/home /Gourav/chap3/wage_table2.csv’)

selected_df=Dataframe.select(“Department”).sort(“Wage”).show()

get_sorted = Dataframe.sort(col(“Age”)).show(truncate=False)

Figure 3.20 shows the code to execute the sort transformation on a DataFrame:

Figure 3.20: Program to sort the value of dataframe by department

Figure 3.21 shows the code to sort a DataFrame by the Age column:

Figure 3.21: Program to sort the value of dataframe by Age

Actions
Actions are Spark RDD operations that do not generate any new RDDs but give the
result from that respective operation. The values of action are stored to drivers or to
the external storage system.

Reduce Action
The reduce function returns the sum-up of all the values of RDD. The following
program shows the reduce action:

get_rdd = sc.parallelize(range(1,5000))
get_rdd.reduce(lambda x,y: x+y)

114 Practical Machine Learning with Spark

Figure 3.22 shows the code to execute the reduce action on a RDD:

Figure 3.22: Program to reduce the RDD

Count Action
The count action will count the number of elements in RDD. The following program
shows the count action:
get_rdd = sc.parallelize(range(1,5000))
get_rdd.count()

Figure 3.23 shows the code to execute the count action on an RDD:

Figure 3.23: Program to count the value of an RDD

Max Action
The max action will return the max number of elements in RDD. The following
program shows the max action:

get_rdd = sc.parallelize(range(1,5000))
get_rdd.max()

Figure 3.24 shows the code to execute the max action on an RDD:

Figure 3.24: Program to return the maximum value in the RDD

Apache Spark 115

Min Action
The min action will return the min number of elements in RDD. The following
program shows the min action:

get_rdd = sc.parallelize(range(1,5000))
get_rdd.min()

Figure 3.25 shows the code to execute the min action on an RDD:

Figure 3.25: Program to return the minimum value in the RDD

Sum Action
The sum action will return the sum of elements in RDD. The following program
shows the sum action:

get_rdd = sc.parallelize(range(1,5000))
get_rdd.sum()

Figure 3.26 shows the code to execute the sum action on an RDD:

Figure 3.26: Program to return the sum value in the RDD

SQL or DataFrame Operations in PySpark
Apache Spark supports SQL-like query capability using DF which helps to provide
the ease to non-coder and reduce the line of code for processing the data. There are
various operations can be possible on the DF to process the data without the need of
a programmer. In this section, readers will see the various operations on DF.

Creating a DataFrame using the CreateDataframe Function
The following program shows to create a DF in Spark:

import pyspark

from pyspark.sql import SparkSession

from pyspark.sql.functions import col, lit

from pyspark.sql.types import StructType, StructField,
StringType,IntegerType

116 Practical Machine Learning with Spark

spark = SparkSession.builder.appName(‘Quick Start With SQL’).
getOrCreate()

data = [(‘Andrew’,’’,’Smith’,’1991-04-01’,’M’,3000),

(‘Johnson’,’Anala’,’’,’2000-05-19’,’M’,4000),

(‘Robert’,’’,’Williams’,’1978-09-05’,’M’,4000),

(‘Maria’,’Anne’,’Jones’,’1967-12-01’,’F’,4000),

(‘Jen’,’Mary’,’Brown’,’1980-02-17’,’F’,-1)]

columns = [“firstname”,”middlename”,”lastname”,”dob”,”gender”,”salary”]

df = spark.createDataFrame(data=data, schema = columns)

df.show()

Figure 3.27 shows the execution code and output of CreateDataFrame:

Figure 3.27: PySpark code to create a dataframe from the given inputs

To Create a DataFrame Through Excel File
The following program shows how to create a DF from excel file in a spark:

import pyspark

from pyspark.sql import SparkSession

from pyspark.sql.functions import col, lit

from pyspark.sql.types import StructType, StructField,

Apache Spark 117

StringType,IntegerType

dataframe = sqlContext.read.format(‘com.databricks.spark.csv’) \

.options(header=’true’, inferschema=’true’) \

.load(‘/home /Gourav/chap3/wage_table3.csv’)

dataframe.show()

print(type(dataframe))

Figure 3.28 shows the screenshot of the output and code to create a DF from an Excel
file:

Figure 3.28: PySpark code to create a dataframe from an Excel file

To Change the Datatype of a Single Column
The following program shows how to change the data type of a column in a DF:

dataframe.show()
dataframe.printSchema()
changed_dataframe = dataframe.withColumn(“Wage”,col(“Wage”).

118 Practical Machine Learning with Spark

cast(“string”))

changed_dataframe.printSchema()

Figure 3.29 shows the screenshot of the output and code to change the datatype of a
column:

Figure 3.29: Pyspark code to change the datatype of single column

To Change the Datatype of all the Columns to String Type

The following program shows how to change the datatype all the columns in a DF:

all_changed_datatypes=dataframe.select([col(c).cast(“string”) for c in
dataframe.columns])

Figure 3.30 shows the screenshot of the output and code to change datatypes of all
the columns:

Figure 3.30: Pyspark code to change the datatype of all the columns to a string datatype

Apache Spark 119

Figure 3.31 shows the screenshot of datatypes of columns:

Figure 3.31: Output of changed datatypes of all the columns of a dataframe

Update the Value of an Existing Column
The following program shows how to update an existing column in a DF:

updated_dataframe = dataframe.withColumn(“Wage”,col(“Wage”)*2)
updated_dataframe.show()
updated_dataframe.printSchema()

Figure 3.32 shows the screenshot of the code to update the value of an existing DF:

Figure 3.32: PySpark code to update the value of an existing column

To Create a New Column from an Existing Column
The following program shows how to create a new column from an existing DF:
new_column = dataframe.withColumn(“New Column”,col(“Age”)* 3)

120 Practical Machine Learning with Spark

new_column.printSchema()
new_column.show(10)

OR

Adding a New Column using the Constant Value using the lit function is
Mentioned as Below:
integrated_litfunc = dataframe.withColumn(“lit_column”, lit(“200”))
integrated.show(10)

Figure 3.33 shows the screenshot of the code to add a new column in an existing DF:

Figure 3.33: PySpark code to create a new column from an existing column

Registering a Temporary Table from a DF for Querying Like SQL
The following program shows how to register a temporary table from an existing DF
for querying like a SQL framework:

import pyspark
from pyspark.sql import SparkSession

from pyspark.sql.functions import col, lit

from pyspark.sql.types import StructType, StructField,
StringType,IntegerType

dataframe = sqlContext.read.format(‘com.databricks.spark.csv’) \

.options(header=’true’, inferschema=’true’) \

Apache Spark 121

.load(‘/home /Gourav/chap3/wage_table3.csv’)

dataframe.show(5)

dataframe.registerTempTable(“get_table”)

sqlContext.sql(“select * from get_table”).show(5)

Figure 3.34 shows the screenshot of the code and output to register a temporary table:

Figure 3.34: PySpark code to register a temporary table from a Dataframe

Appending the Sequence ID Column with the Existing Dataframe
using the lit() function
The following program shows how to append a sequence ID from an existing DF
using the lit() function:

from pyspark.sql.functions import lit

import pyspark

from pyspark.sql import SparkSession

from pyspark.sql.functions import col, lit

122 Practical Machine Learning with Spark

from pyspark.sql.types import StructType, StructField,
StringType,IntegerType

dataframe = sqlContext.read.format(‘com.databricks.spark.csv’) \

.options(header=’true’, inferschema=’true’) \

.load(‘/home /Gourav/chap3/wage_table3.csv’)

dataframe_schema = dataframe.withColumn(“index”, lit(1))

dataframe_schema.printSchema()

Figure 3.35 shows the screenshot of the code and output to append a sequence ID
from an existing DF using the lit() function:

Figure 3.35: PySpark code to append a sequence id column with an existing dataframe using lit() function

Appending a Sequence ID Column with an Existing DF using the
zipWithIndex() function
The following program shows how to append a sequence ID with an existing DF
using the zipWithIndex() function:

schema_rdd = dataframe.rdd.zipWithIndex().map(lambda (row,rowId): (
list(row) + [rowId+1]))

indexed_df = sqlContext.createDataFrame(schema_rdd, schema=dataframe_
schema.schema)

indexed_df.printSchema()

indexed_df.show(10)

or

indexed_df.registerTempTable(“registered_table”)

sqlContext.sql(“select * from registered_table”).show(10)

Apache Spark 123

Figure 3.36 shows the screenshot of the code and output to append a sequence ID
with an existing DF using the zipWithIndex() function:

Figure 3.36: PySpark code to append a sequence ID column with an existing
dataframe using the zipWithIndex() function

Figure 3.37 shows the screenshot of the code and output to display the query result
using the temporary table:

Registering into a Temporary Table to Display DF Values

Figure 3.37: Displaying the output of the registered table using SQL query

124 Practical Machine Learning with Spark

Using monotonically(func) to Append an Index Column with the
Existing DF
The following program shows how to append an index column with an existing DF
using monotonically (func):

from pyspark.sql.functions import monotonically_increasing_id
dataframe = sqlContext.read.format(‘com.databricks.spark.csv’) \
.options(header=’true’, inferschema=’true’) \
.load(‘/home /Gourav/chap3/wage_table3.csv’)
get_dataframe =dataframe.withColumn(“index”,monotonically_increasing_id())

Figure 3.38 shows the screenshot of the code and output to append an index column
with an existing DF using the monotonically (func):

Figure 3.38: PySpark code to append a sequence ID column with
an existing dataframe using the monotonically() func

Rename Column Name of an Existing DF
The following program shows how to rename the column of an existing DF:

renamed_df = dataframe.withColumnRenamed(“gender”,”sex”).
show(truncate=False)

renamed_df.printSchema()

Figure 3.39 shows the screenshot of the code and output to rename the column of an
existing DF:

Apache Spark 125

Figure 3.39: PySpark code to rename the column name of an existing dataframe

Dropping a Column from an Existing DF
The following program shows how to drop a column in an existing DF:

dropped_column = dataframe.drop(“Wage”).show(truncate=False)
dropped_column.show()

Figure 3.40 shows the screenshot of the code and output to drop a column in an
existing DF:

Figure 3.40: PySpark code to drop a column from an existing dataframe

126 Practical Machine Learning with Spark

Select a Single Column from PySpark for Displaying the Content
of a DF
The following program shows how to display the output of a column in an existing
DF:

selected_column = dataframe.select(“Department”).show(truncate=False)

Figure 3.41 shows the screenshot of code and output to display the output of a column in an
existing DF:

Figure 3.41: PySpark code to select a particular column from a dataframe

Select all Columns of a DataFrame to Display the Content
The following program shows how to display the value of all columns in an existing
DF:

all_columns =dataframe.select([col(c) for c in dataframe.columns])
all_columns.show()

Figure 3.42 shows the screenshot of the code and output to display the value of all
columns in an existing DF:

Apache Spark 127

Figure 3.42: PySpark code to select all the columns from a dataframe

Select Multiple Columns from PySpark for Displaying the Content
The following program shows how to display the value of multiple columns in an
existing DF:
multiple_columns = dataframe.select(“Department”,”Wage”).
show(truncate=False)

or

from pyspark.sql.functions import col

dataframe.select(col(“Department”),col(“Age”)).show()

Figure 3.43 shows the screenshot of the code and output to display the value of
multiple columns in an existing DF:

Figure 3.43: PySpark code to select multiple columns from a dataframe

128 Practical Machine Learning with Spark

Figure 3.44 shows the screenshot of the code and output to display the value of
multiple columns in an existing DF using the col() function.

The following program shows how to select the respective columns from the DF to
display the data using the col() function:

Figure 3.44: PySpark code to select multiple columns from a dataframe using the col() function

Retrieving into Array using collect ()
The following program shows how to retrieve the result into an Array from the DF
using the collect function:

dataframe = sqlContext.read.format(‘com.databricks.spark.csv’) \

.options(header=’true’, inferschema=’true’) \

.load(‘/home /Gourav/chap3/wage_table3.csv’)

dfto_array = dataframe.collect()

print(type(dfto_array))

>> dfto_array

Figure 3.45 shows the screenshot of the code and output to retrieve the result into an
Array from the DF using the collect function:

Apache Spark 129

Figure 3.45: Output of the collect function on a dataframe

Filter () to Filter out the Data by Passing Some Conditions
The following program shows how to filter the value by passing some condition in
an existing DF:
filtered_df = dataframe.filter(dataframe.Age > 35).show(truncate=False)

OR
filtered_df = dataframe.filter(col(“Age”) > 35).show(truncate=False)

Figure 3.46 shows the screenshot of the code and output of the filter function to filter
out the value by passing some condition in an existing DF:

Figure 3.46: Displaying the output of the filter function on a dataframe

130 Practical Machine Learning with Spark

Figure 3.47 shows the screenshot to display the result of a DF after applying the filter
condition:

Figure 3.47: Displaying the output of the filter function on a dataframe using the col() function

Filter() in an Existing DF with Multiple Conditions
The following program shows how to filter the value by passing multiple conditions
in an existing DF:

multiple_cond_filtered = dataframe.filter((dataframe.Wage > 35) &
(dataframe.Gender == “M”)).show(truncate=False)

Figure 3.48 shows the screenshot to display the result of a DF after applying multiple
filter conditions:

Figure 3.48: Displaying the output of multiple filter operations on a dataframe using the col() function

PySpark Distinct of Multiple Columns
The following program shows how to get the distinct values in an existing DF:
dataframe = sqlContext.read.format(‘com.databricks.spark.csv’) \

Apache Spark 131

.options(header=’true’, inferschema=’true’) \

.load(‘/home /Gourav/chap3/wage_table3.csv’)

dropMulDF = dataframe.dropDuplicates([“Department”,”Age”])

print(“Distinct count of department & Name : “+str(dropMulDF.count()))

dropMulDF.show(truncate=False)

Figure 3.49 shows the screenshot to display the result of a DF after applying the
distinct operation:

Figure 3.49: Displaying the output of a distinct operation on a dataframe

Count of the Total Number of Rows in an Existing DF
The following program shows how to get the count of the total number of rows in
an existing DF:
dataframe = sqlContext.read.format(‘com.databricks.spark.csv’) \

.options(header=’true’, inferschema=’true’) \

.load(‘/home /Gourav/chap3/wage_table3.csv’)

print(“Total count of dataframe: “+str(dataframe.count()))

Figure 3.50 shows the screenshot to display the result of a DF after the count operation:

Figure 3.50: Displaying the output of the count operation on a dataframe

132 Practical Machine Learning with Spark

GroupBy Operation in an Existing DF
The following program shows the GroupBy operation in an existing DF:

aggregated_df = dataframe.groupBy(“Department”).sum(“Age”).
show(truncate=False)

Aggregate Functions with filter and group By
dataframe.groupBy().sum(“Wage”).filter(F.col(“Wage”) >= 35).
show(truncate=False)
dataframe.groupBy(“Department”).sum(“Wage”).show(truncate=False)

Figure 3.51 shows the screenshot to display the result of a DF after the GroupBy
operation:

Figure 3.51: Displaying the output of the groupBy operation on a dataframe

Inner Join in Two Dataframes
The following program shows the Inner join operation in an existing DF:

dataframe1 = sqlContext.read.format(‘com.databricks.spark.csv’) \

.options(header=’true’, inferschema=’true’) \

.load(‘/home /Gourav/chap3/wage_table.csv’)

dataframe2 = sqlContext.read.format(‘com.databricks.spark.csv’) \

.options(header=’true’, inferschema=’true’) \

.load(‘/home /Gourav/chap3/wage_table2.csv’)

Join_DF = dataframe1.join(dataframe2, on=[‘Department’], how=’inner’).
show()

Figure 3.52 shows the screenshot to display the result of a DF after the Inner join
operation:

Apache Spark 133

Figure 3.52: Displaying the output of the Inner join operation on two dataframes

Outer Join in Two DFs
The following program shows the Outer join operation in an existing DF:

dataframe1 = sqlContext.read.format(‘com.databricks.spark.csv’) \

.options(header=’true’, inferschema=’true’) \

.load(‘/home /Gourav/chap3/wage_table.csv’)

dataframe2 = sqlContext.read.format(‘com.databricks.spark.csv’) \

.options(header=’true’, inferschema=’true’) \

.load(‘/home /Gourav/chap3/wage_table2.csv’)

Join_DF = dataframe1.join(dataframe2, on=[‘Department’], how=’outer’).
show()

Figure 3.53 shows the screenshot to display the result of a DF after the Outer join
operation:

Figure 3.53: Displaying the output of the Outer join operation on two dataframes

134 Practical Machine Learning with Spark

Left Join in Two Dataframes
The following program shows the Left join operation in an existing DF:

 dataframe1 = sqlContext.read.format(‘com.databricks.spark.csv’) \

.options(header=’true’, inferschema=’true’) \

.load(‘/home /Gourav/chap3/wage_table.csv’)

dataframe2 = sqlContext.read.format(‘com.databricks.spark.csv’) \

.options(header=’true’, inferschema=’true’) \

.load(‘/home /Gourav/chap3/wage_table2.csv’)

Join_DF = dataframe1.join(dataframe2, on=[‘Department’], how=’left’).show()

Figure 3.54 shows the screenshot to display the result of a DF after the Left join
operation:

Figure 3.54: Displaying the output of the left join operation on two dataframes

Right Join in two DFs
The following program shows the Right join operation in an existing DF:

dataframe1 = sqlContext.read.format(‘com.databricks.spark.csv’) \

.options(header=’true’, inferschema=’true’) \

.load(‘/home /Gourav/chap3/wage_table.csv’)

dataframe2 = sqlContext.read.format(‘com.databricks.spark.csv’) \

.options(header=’true’, inferschema=’true’) \

.load(‘/home /Gourav/chap3/wage_table2.csv’)

Join_DF = dataframe1.join(dataframe2, on=[‘Department’], how=’right’).show()

Figure 3.55 shows the screenshot to display the result of a DF after the Right join
operation:

Apache Spark 135

Figure 3.55: Displaying the output of right join operation on two dataframes

Cross join in Two Dataframes
The following program shows the Cross join operation in an existing DF:
dataframe1 = sqlContext.read.format(‘com.databricks.spark.csv’) \

.options(header=’true’, inferschema=’true’) \

.load(‘/home /Gourav/chap3/wage_table.csv’)

dataframe2 = sqlContext.read.format(‘com.databricks.spark.csv’) \

.options(header=’true’, inferschema=’true’) \

.load(‘/home /Gourav/chap3/wage_table2.csv’)

dataframe1.crossJoin(dataframe2).show()

Figure 3.56 shows the screenshot to display the result of a DF after the cross join
operation:

Figure 3.56: Displaying the output of the cross join operation on two dataframes

136 Practical Machine Learning with Spark

User Defined Function (UDF) in PySpark
This program shows how to convert the upper word into lower word of a column
of a DF:

from pyspark.sql import SQLContext

from pyspark.sql.types import *

from pyspark.sql.functions import udf

from pyspark.sql import Row

def new_udf(x):

 new_row = x.lower()

 return new_row

dataframe1 = sqlContext.read.format(‘com.databricks.spark.csv’) \

.options(header=’true’, inferschema=’true’) \

.load(‘/home /Gourav/chap3/wage_table.csv’)

updated_udf = udf(new_udf, StringType())

updated_df = dataframe1.withColumn(‘Department’, updated_
udf(dataframe1[‘Department’]))

Figure 3.57 shows the screenshot to display the result of a DF after applying UDF:

Figure 3.57: Displaying the output of UDF

Pivot(func) on an Existing DF
This program shows how to execute the Pivot function in an existing DF:

pivotDF = dataframe.groupBy().pivot(“Department”).sum(“Wage”)
pivotDF.show()

Apache Spark 137

Figure 3.58 shows the screenshot to display the result of a DF after the Pivot()
operation:

Figure 3.58: Displaying the output of the Pivot() operation.

Data Ingestion in Apache Spark
In Apache Spark, the flexibility to read the data from disparate heterogenous sources
is the one of best features of Spark. Using the different connectors and customized
data bridges, make Spark more robust to ingest any format of data for processing. In
this section, readers will be able to get a comprehensive walk through the codebase
to read the data from different sources. Figure 3.59 shows the capability of Apache
Spark to read different types of data formats:

Figure 3.59: Different disparate sources to be ingested through Apache Spark

138 Practical Machine Learning with Spark

Here, the readers need to install WinSCP for transferring the file from the local
system to the Hadoop cluster either on cloud or on-premises. The landing screen of
WinSCP is given to access to the server as follows.

Figure 3.60 depicts the launching screen of WinSCP to access the server or cloud:

Figure 3.60: The Main Page of WinSCP to log-in into the cluster

Figure 3.61 depicts the connecting screen of the server on WinSCP:

Figure 3.61: Displaying the screenshot of the connected cluster

Apache Spark 139

From Excel
Microsoft Corporation provides an application to organize the data such that the
user can perform mathematical equations, formulas, and other functions in multiple
spreadsheets. It represents the data in a tabular manner; it is possible to read the data
from Excel or the reader can read multiple excels at a time.

Code to Read an Excel file through PySpark
The following program depicts the way to read the Excel file using the PySpark
framework:

import pyspark

from pyspark.sql import SparkSession

from pyspark.sql.functions import col, lit

from pyspark.sql.types import StructType, StructField,
StringType,IntegerType

dataframe = sqlContext.read.format(‘com.databricks.spark.csv’) \

.options(header=’true’, inferschema=’true’) \

.load(‘/home /Gourav/chap3/wage_table3.csv’)

dataframe.show()

print(type(dataframe))

Figure 3.62 displays the content of a DF by fetching the data from an Excel file using
PySpark:

Figure 3.62: Displaying the output of a successful connection of PySpark-Excel bridge for fetching the data

140 Practical Machine Learning with Spark

From JSON
JSON means JavaScript Object Notation. It is a lightweight format for storing and
transporting data, which is represented in the key-value schema. Mostly, every web
crawling data from any of sources give you data in the JSON format such as crawling
of LinkedIn, Facebook, and Twitter. Apache Spark can read this JSON file through
PySpark.

Code to Read a JSON file Through PySpark
The following program depicts the way to read the JSON data using the PySpark
framework:

from pyspark.sql import SparkSession

from pyspark.sql import Row

spark = SparkSession.builder.appName(“JSON INTEGRATION”).getOrCreate()

df = spark.read.option(“multiline”,”true”).json(“Gourav/chap3/total-
pounds-of-food-produced-locally-96-17-json.json”)

df.show()

Figure 3.63 displays the content of a DF by fetching the data from a JSON file using
PySpark:

Figure 3.63: Displaying the output of successful connection of PySpark-JSON bridge for fetching the data

From Parquet
Parquet is a column-oriented file format to store the data in the Hadoop ecosystem
for efficient processing and retrieving than row-based files like CSV or TSV files.
The following program depicts the way to read the Parquet file using the PySpark
framework:

from pyspark.sql import SparkSession

from pyspark.sql import Row

Apache Spark 141

spark = SparkSession.builder.appName(“PARQUET-PYSPARK BRIDGE1”).
getOrCreate()

get_parquet= spark.read.parquet(“/home /Gourav/chap3/userdata1.parquet”)

#Display content of table

get_parquet.show(10)

#Getting Datatype information of table

get_parquet.printSchema()

#Registering into a temporary table

get_parquet.registerTempTable(“parquet_table”)

#Group By transformation on country column

get_transformation = spark.sql(“SELECT country,count(1) as count FROM
parquet_table GROUP BY country”)

#Write into the directory after the transformation

get_transformation.write.mode(‘overwrite’).parquet(“Sales.parquet”)

Figure 3.64 displays the content of a DF by fetching the data from a Parquet file using
PySpark:

Figure 3.64: Displaying the output of a successful connection of the
PySpark-Parquet file bridge for fetching the data

142 Practical Machine Learning with Spark

Figure 3.65 displays the schema of a DF:

Figure 3.65: Displaying the schema of a DF

From CSV file Format
A Comma Separated Value (CSV) file is a light-weighted plain text file that contains
a list of data which is separated by commas. It is the best way for exchanging data
among different applications.

Code to Read a csv file Through PySpark
The following program depicts the way to read the CSV file using the PySpark
framework:

from pyspark.sql import SQLContext

sqlContext = SQLContext(sc)

df_csv = sqlContext.read.format(‘com.databricks.spark.csv’) \

.options(header=’true’, inferschema=’true’) \

.load(‘/home /Gourav/chap3/us-500.csv’) # this is path of csv file

df_csv.show(5)

Figure 3.66 displays the content of a DF by fetching the data from a CSV file using
PySpark:

Apache Spark 143

Figure 3.66: Displaying the output of a successful
connection of PySpark-CSV file bridge for fetching the data

From Apache Hive
Apache Hive is a data warehouse infrastructure tool to process structured data in
Hadoop. It resides on top of Hadoop to summarize Big Data and makes querying
and analyzing easy. Hive supports the SerDe functionality and SQL-based queries
called HiveQL.

The following program depicts the way to read the data from Hive using the PySpark
framework:

from pyspark.sql import SparkSession

from pyspark.sql import Row

spark = SparkSession.builder.appName(“Python Spark SQL Hive integration
example”).config(“hive.metastore.uris”, “thrift://*******:9083”).
enableHiveSupport().getOrCreate()

spark.sql(‘show tables’).show()

Figure 3.67 displays the content of a DF by fetching the data from a Hive database
using PySpark:

Figure 3.67: Displaying the output of a successful connection of PySpark-Apache Hive bridge for fetching the data

144 Practical Machine Learning with Spark

From MongoDB
MongoDB is a cross-platform document-oriented NoSQL database. MongoDB uses
JSON-like documents with optional schemas and it is developed by MongoDB
Inc. There are two pipelines to read the data from MongoDB, that is, Mongo-Hive-
PySpark integration and MongoDB-PySpark bridge. Let us discuss both ways one
by one in detail.

Reading Data from MongoDB-Hive-PySpark Integration
In MongoDB-Hive-PySpark Integration, readers need to create a collection and
document inside the MongoDB instance. After that, an external table needs to be
created at the Hive instance which will create the “JSON Serialization” bridge with
the help of loading few indispensable jars. The details of JARS need to be mentioned
in the following execution steps, and lastly, Hive-PySpark integration can read that
external table which must be mapped with MongoDB.

The following program depicts the way to read the data from MongoDB and create
integration between MongoDB-Hive using the PySpark framework:

Inserting Data into MongoDB (Through the Terminal or with the
export command)
db.get_insights.insert([

 {

 title: “Deep Learning”,

 description: “Explainable Intelligence”,

 by: “Intelligence”,

 url: “http://www.ai.com”,

 likes: 100,

 },

 {

 title: “Big Data Analytics”,

 description: “Big Data insights and all”,

 by: “Big Data”,

 url: “http://www.bigdata.com”,

 likes: 200,

}

])

Apache Spark 145

Figure 3.68 displays the list of databases in MongoDB:

Figure 3.68: Displaying the existing databases in MongoDB

Figure 3.69 displays the content of a collection in MongoDB:

Figure 3.69: Displaying the content of a collection in MongoDB

Through the --import command
In the Mongo database, the import utility imports the data from the Extended JSON.
The mongoimport command restores the documents from the JSON file into the
Mongo collection.

146 Practical Machine Learning with Spark

Mongo Database Import Syntax
mongoimport --host <host_name> --username <user_name> --password
<password> --db <database_name> --collection <collection_name> --file
<input_file>

Where:

•	 --host: This is an optional parameter that specifies the remote server Mongo
database instance.

•	 --username and --password: These are the optional parameters that
specify the authentication details of a user.

•	 --db: This specifies the database name.

•	 --collection: This specifies the collection name.

•	 --file: This specifies the path of the input file.

Figure 3.70 displays the list of collections in a database:

Figure 3.70: Displaying the existing collections in a database

Hive-MongoDB Mapping through the hive External Table
In this step, readers need to create an external table in Apache Hive by taking the
exact column reference of MongoDB data. This integration will create a serialization-
deserialization property mapping for providing the access of a collection of MongoDB
through Apache Hive. The following program shows the Hive-MongoDB mapping
with the help of the Hive external table:

create external table hive_mongo (title string,

description string,

`by` string,

url string,

likes int)

stored by ‘com.mongodb.hadoop.hive.MongoStorageHandler’
with serdeproperties(‘mongo.columns.
mapping’=’{“title”:”title”,”description”:”description”,”by”:”by”,

Apache Spark 147

“url”:”url”,”likes”:”likes”}’)tblproperties(‘mongo.uri’=’mongodb://
localhost:27017/analytics.get_insights’);

Figure 3.71 displays the schema of an external table:

Figure 3.71: Terminal shows a created external table at the Hive terminal

Adding jars at Apache Hive
Hive-MongoDB integration needs 3 jars such as mongo-hadoop-1.5.2.jar, mongo-
hadoop-hive-1.5.2.jar, and mongo-java-driver-3.2.1.jar at the hive terminal prior to
execute the program to fetch the data through the hive table.

Figure 3.72 shows the way to add multiple jars at the hive terminal:

Figure 3.72: Adding of indispensable jars to create a successful bridge between MongoDB-Hive

Figure 3.73 shows the way to access the MongoDB data from Hive-MongoDB
integration:

Figure 3.73: Displaying the data accessed through the MongoDB-Hive bridge

148 Practical Machine Learning with Spark

Reading Data from MongoDB-PySpark Integration
In this approach, readers can directly fetch the data from MongoDB by passing the
MongoDB credentials as a connection string in the PySpark program. The step-by-
step implementation with the codebase is mentioned next.

Open the PySpark terminal with the --package command
Figure 3.74 shows the terminal screen of a spark session by loading a required
package:

Figure 3.74: Open a spark session by loading a required package

Figure 3.75 shows the main terminal spark session:

Figure 3.75: Main terminal of Apache Spark

Apache Spark 149

PySpark Code to Read MongoDB Data Directly through
StringConnection
The following code shows how to read the MongoDB data directly using
StringConnection in PySpark:
Spark_Initiate = SparkSession.builder.appName(‘Mongo-Spark Bridge’) \

 .config(‘spark.mongodb.input.uri’, ‘mongodb://127.0.0.1/analytics.get_
insights’) \

.getOrCreate()

df = spark.read.format(‘com.mongodb.spark.sql.DefaultSource’).load()

df.createOrReplaceTempView(‘get_insights’)

getDF = spark.sql(‘select * from get_insights’)

get_DF.show()

Figure 3.76 shows the successful connection with MongoDB using PySpark:

Figure 3.76: Successfully connected to MongoDB’s collection through PySpark

From AWS S3
S3 bucket is a storage space provided by Amazon Web Services. It can be easily
integrated with various analytics frameworks for storing and accessing the data.
For making the connection with s3 from the any cluster, it must require a credentials
mapping step. Once the AWS credentials get registered onto the cluster, readers will
be able to check the data and bucket details using the following command:

aws s3 ls s3://mybucket

The following codebase is used to read the data from S3 using PySpark:

Spark_Initiate = SparkSession.builder.appName(‘Mongo-Spark Bridge’) \

 .config(‘spark.mongodb.input.uri’, ‘mongodb://127.0.0.1/analytics.get_
insights’) \

150 Practical Machine Learning with Spark

.getOrCreate()

df = spark.read.format(‘com.mongodb.spark.sql.DefaultSource’).load()

df.createOrReplaceTempView(‘get_insights’)

getDF = spark.sql(‘select * from get_insights’)

get_DF.show()

Figure 3.77 shows the successful connection with AWS S3 using PySpark:

Figure 3.77: Successfully connected to AWS S3 through PySpark

Read Data from ORC
Optimized Row Columnar (Apache ORC) is an open-source column-oriented data
storage format of the Apache Hadoop ecosystem. It is like other columnar-storage
file formats available in the Hadoop ecosystem such as RCFile and Parquet. The
following codebase is used to read the data from the ORC file format using PySpark:

from pyspark.sql import SparkSession

from pyspark.sql import Row

spark = SparkSession.builder.appName(“ORC-PYSPARK BRIDGE”).getOrCreate()

read_ORC= spark.read.option(“header”,”true”).orc(“/home /Gourav/chap3/
userdata1_orc”)

#Display content of table

read_ORC.show(5)

#Getting Datatype information of table

read_ORC.printSchema()

Figure 3.78 shows the successful connection with the ORC file using PySpark:

Apache Spark 151

Figure 3.78: Successfully connected to an ORC file through PySpark

From RDBMS (MariaDB)
MariaDB is an open-source software and as a relational database, it provides an
SQL interface for accessing data. The updated versions of MariaDB includes GIS
and JSON features. Nowadays, MariaDB is also known as one of the best databases
which can replace MYSQL. The following codebase is used to read the data from
RDBMS using PySpark:

Code to read data from MariaDB using PySpark

from pyspark import SparkContext

from pyspark.sql import SQLContext

sc = SparkContext(appName=”MariaDB-PySpark Bridge”)

sqlContext = SQLContext(sc)

source_df = sqlContext.read.format(‘jdbc’).options(

 url=’jdbc:mysql://localhost/test’,

 driver=’com.mysql.jdbc.Driver’,

 dbtable=’processed_data’,

 user=’cdh’).load()

source_df.show(3)

152 Practical Machine Learning with Spark

Figure 3.79 shows the successful connection with MariaDB using PySpark:

Figure 3.79: Successfully connected to MariaDB through PySpark

Submit the .py file with the –jars command
The following code shows how to submit a Spark job with jars and the .py file:

spark-submit --jars /home/cdh@psnet.com/Gourav/chap3/mysql-connector-
java-5.1.49/mysql-connector-java-5.1.49.jar mariadb-spark.py

Figure 3.80 shows how to submit a Spark job:

Figure 3.80: Submitting a spark job with the jars command for creating a successful connection

Reading the Data from Apache HBase
HBase is a column-oriented based NoSQL system that is like Google’s big table to
provide quick random access to a huge amount of structured data. The step-by-step
implementation with the codebase is mentioned as follows:

1. Open the given link mvnrepository.com/artifact/org.apache.hive/
hive-hbase-handler and download hive-hbase-handler.jar.

Figure 3.81 displays the snapshot of website where the reader can download
Hive-HBase Handler Jar.

Apache Spark 153

Figure 3.81: Web Page where to download Hive-HBase Handler jar

2. Create a table and insert records into the Hbase table:

create ‘books’, ‘info’, ‘analytics’

put ‘books’, ‘In Search of Lost Time’, ‘info:author’, ‘Name’

put ‘books’, ‘In Search of Lost Time’, ‘info:year’, ‘1982’

Figure 3.82 shows the snapshot of data inserted into a HBase table:

Figure 3.82: Inserting records into Hbase table

154 Practical Machine Learning with Spark

3. Creating an external table in hive to access the same table through HBase-
Hive integration. Figure 3.83 shows the snapshot of a created external table
in Hive for accessing the data of HBase.

Figure 3.83: Created an external table in Hive for accessing the data of HBase

Code to Read the Data from Apache Hive
The following codebase is used to read the data from Apache Hive using PySpark:

from pyspark.sql import SparkSession

from pyspark.sql import Row

spark = SparkSession.builder.appName(“IMPALA INTEGRATION”).getOrCreate()

spark.sql(“show tables”).show()

Figure 3.84 shows the snapshot for accessing the PySpark code with the help of the
Hive-HBase bridge:

Figure 3.84: Accessing data through a PySpark code from an external table (Hive-HBase Bridge)

Apache Spark 155

Submitting the PySpark program to fetch the data of Hbase from Hbase-Hive
integration:

spark-submit --driver-class-path /home /Gourav/chap3/hive-hbase-
handler-2.1.1.jar --jars /home /Gourav/chap3/hive-hbase-handler-
2.1.1.jar hbase-pyspark.py

Figure 3.85 shows how to submit a PySpark job:

Figure 3.85: Submit command to submit a PySpark job to fetch the data from Hbase-Hive bridge

Application of Apache Spark
In this era of digitalization, the 5Vs of Big Data will be increasing tremendously
with time. Due to increase in the generation of Big Data, there is a massive challenge
that arises in front of data engineers, data architects, and researchers to enhance
the capabilities to manage and process the complex data efficiently. Here, Apache
Spark gets the opportunity to overcome the data processing and managing issues in
addition to improve overall performance.

Batch and Real-Time Analytics
Apache Spark provides an analytical framework to process batch mode and real-
time mode data. It is an essential practice for all MNCs to manage stream or batch
analysis because the cumbersome volume of data is being processed daily. It stitches
the disparate data processing capabilities and provides ease to developers to perform
Extract, Transform, and Load over data for making it decisive and meaningful.

Machine Learning
Apache Spark can be powered as an analytics framework like components of MLlib
for performing the advanced analytics through which readers will get the futuristic
insight over the data. Normally, there is no distributed framework available for
training and testing the machine learning models. Due to this standalone mode, the
time efficiency while training and testing the model may increase; hence, degrade
the overall performance of the model. On the other hand, Apache Spark leverages
the distributed processing of data, which help to enhance time efficiency and model
performance. Most of the time, machine learning recommends Apache Spark to be
an efficient processing framework.

156 Practical Machine Learning with Spark

Interactive Analysis
Interactive analytics is one of the most imperative features of Apache Spark for
ameliorating the efficiency. MapReduce (MR) can provide both batch and SQL-
on-Hadoop processing through Apache Hive and Apache Pig. But MR is slow for
interactive analysis. On the flip side, Apache Spark is fast and efficient to deal with
complex queries. In addition, with the integration of visualization tools of Apache
Spark, data can be processed with high complexity and visualized using the import
or direct mode. In addition, Spark can be also directly connected with third-party
business intelligence tools such as MS PowerBI and Tableau for fast retrieving and
visualizing the insightful data.

Fog/Edge Computing
Apache Spark can also be utilized for centralized and decentralized computing such
as fog computing, edge computing, and Internet of Things (IoT) for analyzing the
bulky and complex data. Leveraging Spark with decentralized computing extends
the capabilities to manage and process real-time mode data for making out the
decisive analytics. Furthermore, the conglomeration of key components with Apache
Spark such as Spark Streaming, SparkSQL, a machine learning library (MLib), and a
graph analysis engine (GraphX) provides more ease and flexibility to be opted for a
fog computing solution.

Conclusion
This chapter deals with a comprehensive study of Apache Spark and various trails
for reading the data from heterogenous sources and formats. In addition, detailed
focus has been given on job optimization, Spark workflow scheduling, and exposing
of the rest API for calling the Spark application through the Apache Livy framework.
Apart from these, authors have implemented various transformations to understand
the use case of Data Frame in Spark in a better way. The next chapter will address the
readers how to climb up the Machine Leaning ladder in spark.

Apache Spark MLlib 157

Chapter 4
Apache Spark

MLlib

“Great minds discuss ideas; average minds discuss events; small minds
discuss people.”

—Eleanor Roosevelt

Introduction
Nowadays, Application of machine learning with Apache Spark has been
contineously increasing due to the sudden fold increase in the volume of data.
Moreover, handling, training, and finding out of decisive insights from the raw data
have been getting difficult while working on the standalone framework. Generally,
a machine learning algorithm involves several steps such as pre-processing, feature
extraction, model fitting, and evaluation metrics. Usually, a programmer creates a
unify pipeline for binding-up the multiple individual tasks but still it is resisted
to the standalone framework. Due to standalone processing, the execution time
often surpasses the memory and processing loads up to 95%; hence, there is a high
probability of high time consumption at training and testing stages. To overcome
this issue and provide an impeccable productization pipeline, many organizations
have been choosing the trail of Apache Spark and its main component, that is, Spark
MLlib (also known as MLlib) for providing the distributed framework to process and
train a model. This chapter presents an in-depth study on the different components

158 Practical Machine Learning with Spark

of ML pipelines, selections, transformations, and feature extractors for making the
unify ML pipeline using Apache Spark.

Structure
In this chapter, we will discuss the following topics:

•	 Introduction to Apache Spark MLlib

•	 ML pipelines and its components

•	 Main algorithms in Spark MLlib

•	 Datatypes of Spark MLlib

•	 Feature extraction, transformation, and selection

Objectives
After studying this chapter, readers will be able to:

•	 Gain awareness about the distributed ML (Spark MLlib)

•	 Get an understanding of the different components in MLlib

•	 Apply the knowledge of different types of ML and its algorithms

•	 Implement the flow of ML pipelines

Spark MLlib Algorithms
Spark MLlib consists of myriad of ML algorithms for achieving the decisive insights
that could be intended towards statistics analysis, predictive analysis, and decisive
analysis over the datasets. Some of the frequently used algorithms in ML are being
delineated as follows. A detailed study on each algorithm will be covered in Chapter
5, Supervised Learning with Apache Spark and Chapter 6, Unsupervised Learning with
Apache Spark.

Classification Category
The following points highlight the classification-based ML algorithms in Apache
Spark:

•	 Binomial Logistic Regression (BLR) and Multinomial Logistic Regression
(MLR)

•	 Decision Tree Classifier (DTC)

Apache Spark MLlib 159

•	 Random Forest Classifier (RFC)

•	 Gradient-Boosted Tree Classifier (GBTC)

•	 Multilayer Perceptron Classifier (MPC)

•	 Linear Support Vector Machine Classifier (LSVMC)

•	 Naïve Bayes Classifier (NBC)

•	 Multilayer Perceptron Classifier (MPC)

•	 One-vs-Rest Classifier

•	 Factorization Machines Classifier (FMC)

Regression Category
The following points highlight the Regression-based ML algorithms in Apache
Spark:

•	 Linear Regression (LR)

•	 Decision Tree Regression (DTR)

•	 Random Forest Regression (RFR)

•	 Gradient-Boosted Tree Regression (GBTR)

•	 Survival Regression (SR)

•	 Isotonic Regression (IR)

•	 Lasso Regression (LR)

•	 Ridge Regression (RR)

•	 Generalized Linear Regression (GLR)

•	 Factorization Machines Regression (FMR)

Clustering Category
The following points highlight the clustering-based ML algorithms in Apache Spark:

•	 K-Means Clustering (KC)

•	 Gaussian Mixture Model (GMM)

•	 Latent Dirichlet Allocation (LDA)

•	 Alternating Least Square (ALS)

160 Practical Machine Learning with Spark

•	 Frequent Pattern Mining (FPP)

•	 Power Iteration Clustering (PIC)

ML Components/Pipelines
ML components provide high-level APIs that are strongly coupled with DataFrame
to create or re-tune ML execution pipelines. Basically, the conglomeration of these
components can wrap up multiple ML algorithms into a unify pipeline for executing
the processes simultaneously. In the early version of Spark, the Spark came with
RDD-based ML APIs which has been deprecated with Spark2.0 released by
DataFrame-based APIs. The new API is strong enough to unify the multiple tasks of
ML as the seamless ML workflow or pipeline. For example, processing of a simple
text document might be included in many stages: In the first stage, it will split the
text of each document into words. Then, the second stage helps to convert the words
of each document into a numerical feature vector. Lastly, the prediction model is to
be implemented using feature vector and labels.

The following seven main components are being used to implement a ML pipeline
concept:

•	 DataFrame

•	 Transformer

•	 Estimator

•	 Pipeline

•	 Parameter

•	 CrossValidator

•	 Evaluator

DataFrame
SparkML supports a wide range of data types such as DataFrame, Vectors, Text,
images, and structured data. DataFrame is one of the data types which offers the
SparkSQL wrapper to train and test a ML model in Spark. A DataFrame can be
created either implicitly or explicitly from a regular RDD.

Transformer
A transformer can add, delete, or update any existing features in the DataFrame.
Every transformer has a transform() method which gets called when the pipeline
is executed. Vector Assembler is a transformer as it takes the input DataFrame

Apache Spark MLlib 161

and returns the transformed DataFrame with a new column which is the vector
representation of all the features.

Estimator
An Estimator returns a model and the returned model transforms the DataFrame in
accordance with the parameters which are learned during the fitting learning phase.
Technically, an Estimator implements a method fit() which accepts a DataFrame
produces a model, which is a transformer. For example, a learning algorithm such
as Logistic Regression is an Estimator and calling fit() trains a Logistic Regression
Model, which is a Model and hence a Transformer.

Pipeline
Pipeline is mainly used for unification of different stages of a transformer and
estimator. In SparkML, the execution of multiple transformations through a single
call can be possible by leveraging the functionality of the pipeline component. There
is a parameter named as stages, where the name of needed transformations is
assigned according to the sequential flow of a transformer.

In the following code, there are two transformations applied on the vector datasets.
Here, the pipeline component is used to create an order wise list of specific
transformers and estimators of ML using the stages parameter and run them
sequentially. Thus, it provides the easiness and robustness workflow to handle
multiple tasks of ML.

>>from pyspark.ml import Pipeline

>>from pyspark.ml.feature import VectorIndexer, VectorAssembler

>>create_df = spark.createDataFrame([

 (0, Vectors.dense([3.0, 6.0, -4.0]), 18.0),

 (1, Vectors.dense([3.0, 2.0, 10.0]), 30.0)

], [“unique_id”, “get_features”, “user_age”])

>>vector_indexer = VectorIndexer(inputCol=”get_features”,
outputCol=”get_result”)

>>assembler = VectorAssembler(inputCols=[“unique_id”,”get_
features”,”get_result”], outputCol=”get_output”)

>>pipeline = Pipeline(stages=[vector_indexer, assembler])

>>model = pipeline.fit(create_df).transform(create_df)

>>model.show()

162 Practical Machine Learning with Spark

Figure 4.1 shows the codebase of the Pipeline component with its output for
wrapping up two transformers in a single ML workflow:

Figure 4.1: Codebase of Pipeline and its output

Parameter
It is a uniform API to specify the values to estimators and transformers by defining
a parameter named as Param. For example, splits in Bucketizer shows the feature of
a parameter.

CrossValidator
A CrossValidator cross-evaluates fitted ML models and outputs the best one by trying
to fit the underlying estimator with user-specified combinations of hyperparameters.
Model selection is performed with the CrossValidator or TrainValidationSplit
estimators.

Evaluator
It is used to calculate the performance of a trained ML model in terms of precision
and recall.

Generally, Binary Classification Evaluator and Multiclass Classification Evaluator
are being used for binary and multiclass classification. Similarly, there is one more
evaluator, that is, Regression Evaluator is being used for regression tasks.

Spark MLlib’s Datatypes
Every dataset or value needs an identity. On these datasets, the manipulations are
taken place for performing further transformations and estimations. Generally,

Apache Spark MLlib 163

the MLlib supports four types of Datatypes such as Local Vector, Labelled Point,
Local Matrix, and Distributed Matrix. These preceding datatypes leverage two most
indispensable libraries of linear algebra operations like Breeze and JBLAS. The brief
explanation about these datatypes is mentioned next.

Local Vector
A LocalVector contains integer-typed, 0-based indices, and double-typed values.
There are two ways to use LocalVector in the MLlib such as DenseVector and
SparseVector. With the help of dense and sparse vectors, the programmer can easily
convert it into a DataFrame.

Sparse Vector
The SparseVector is implemented by two parallel arrays that is, indices and value.

Syntax of SparseVector
>>get_sparse = vector.sparse(length, index_of_non-zero_values, non-zero_
values)

DenseVector
DenseVector has the backbone of a double array which is mainly preferred when
most of the numbers are supposed to be zero.

Syntax of DenseVector
>>get_sparse = vector.dense(values)

The following code demonstrates how to create a Dense Vector in Spark MLlib:

>>from pyspark.mllib.linalg import Vectors

>>dense_vec = Vectors.dense([1,2,3,4])

>>print(type(dense_vec))

Figure 4.2 shows the codebase how to create a DenseVector and display the value of
DenseVector:

Figure 4.2: DenseVector and its output

164 Practical Machine Learning with Spark

The following code explains how to create a Sparse Vector in Spark MLlib:

>>sparse_vec = Vectors.sparse(10, [0,1,2,4,5], [1.0,5.0,3.0,5.0,7])
>>print(type(sparse_vec))

Figure 4.3 shows the codebase how to create a SparseVector and display the value of
SparseVector:

Figure 4.3: Creating SparseVector and its output

The following code explains how to save a vector into an array:

>>get_array = Vectors.sparse(10, [0,1,2,4,5], [1.0,5.0,3.0,5.0,7]).
toArray()
>>get_array

Figure 4.4 shows the code how to convert an existing vector into an array:

Figure 4.4: Conversion of Vector into an array

LabelPoint
LabelPoint is a way to assign a label to each vector, either dense or sparse. Mainly,
it is implemented in the supervised learning algorithms. For example, the Binary
Classification can classify the negative and positive by assuming the label values as
0 (negative) or 1(positive). The LabelPoint has two parameters such as features and
label. The following code demonstrates how to create a LabelPoint:

>>from pyspark.mllib.regression import LabeledPoint

>>get_densevec = Vectors.dense([1,2,3,4,5])

>>get_labeled_point = LabeledPoint(2,get_densevec)

To display the Features

>>print(get_labeled_point.features)

Apache Spark MLlib 165

To display the Label

>>print(get_labeled_point.label)”

Figure 4.5 shows an illustration of the code and output of LabelPoint:

Figure 4.5: Code and output of LabelPoint

Local Matrix
A Local Matrix has an integer-typed collection of values. It can be created through
dense and sparse vectors. In a sparse Matrix, non-zero entry values are stored in
the Compressed Sparse Column (CSC) format in the column-major order. The
following code demonstrates how to create a Local Matrix:

>>from pyspark.mllib.linalg import Matrix, Matrices
>>get_dense_matrix = Matrices.dense(2, 3, [1, 3, 5, 2, 4, 6])
>>print(get_dense_matrix.toArray())

Figure 4.6 shows an illustration of the code and output of LocalMatrix:

Figure 4.6: Code and output of LocalMatrix

Distributed Matrix
A distributed matrix has long-typed column indices and double-typed values. There
are four types of distributed matrices to store the values in one or more RDDs. The
name of types is as follows:

•	 RowMatrix

•	 IndexedRowMatrix

166 Practical Machine Learning with Spark

•	 CoordinateMatrix

•	 BlockMatrix

The following code demonstrates how to create a Distributed Matrix using
RowMatrix:

>>from pyspark.mllib.linalg.distributed import RowMatrix

>>rowsRDD = sc.parallelize([[11,12], [22, 33], [33, 55], [19, 18]])

>>get_distributed_mat = RowMatrix(rowsRDD)

>>print(get_distributed_mat)

>>print(type(get_distributed_mat))

>>m_rows = get_distributed_mat.numRows()

>>m_rows

>>n_cols = get_distributed_mat.numCols()

>>n_cols”

Figure 4.7 shows an illustration of the code and output of RowMatrix:

Figure 4.7: Code and output of RowMatrix

Extracting, Transforming, and Selecting
Features
In this section, the readers will walk-through the different types of feature extractors
and transformations in Spark for dealing with the several operations on the dataset.

Apache Spark MLlib 167

Term Frequency-Inverse Document Frequency
(TF-IDF)
TFIDF used in numerical analysis highlights the imperativeness of a word in a
document. Generally, it deals with a weighting factor for searching the information,
text-mining, and user modeling. In TF-IDF, the overall value increases proportionally
to frequency of the word appears in the document. TF-IDF is one of the most
promising ways to design the text-based recommendation system.

Term-Frequency (TF)
TF is a simple way to count the number of times a word comes to a document. So, the
number of lines a term occurs in a document is called its term frequency. HashingTF
and CountVectorizer are two methods to generate the term frequency vector.

Inverse Document Frequency (IDF)
In IDF, it will eliminate the most common words from the corpus of a document
like the and a. Hence, an IDF is used to diminish the weight of terms that occur very
often and increases the weight of terms that occur rarely in the document.

In the following code, we split each element of words and create them into a
DataFrame. After that, the HashingTF is applied to scale them into a feature vector
and then, IDF is used to rescale the feature vectors for improving the performance.
The refined feature vector will be passed through a specific ML algorithm for getting
the result.

>>from pyspark.ml.feature import HashingTF

>>from pyspark.ml.feature import HashingTF, IDF, Tokenizer

>>Gen_DF = spark.createDataFrame([

 (0, “DataScience,MachineLearning,ApacheSpark,MachineLearning”.
split(“,”)),

 (1, “ApacheMLlib,MachineLearning,DataScience”.split(“,”))

], [“id”, “words”])

>>gen_HF = HashingTF(inputCol=”words”, outputCol=”features”,
numFeatures=100)

>>get_HTF = gen_HF.transform(Gen_DF)

>>idf_function = IDF(inputCol=”features”, outputCol=”get_idf_feature”)

>>train_model = idf_function.fit(get_HTF)

>>outcome = train_model.transform(get_HTF)

>>outcome.show(truncate=False)”

168 Practical Machine Learning with Spark

Figure 4.8 shows an illustration of the code and output of TF-IDF:

Figure 4.8: Code and output of TF-IDF

Word2Vec
Word2Vec is given by Spark MLlib which feeds sequences of words as in the form
of documents or sentences for training. That trained model maps each word to a
unique fixed-size vector. Then, it transforms each sentence or a document into a
vector using the average of words the document and is well-known Estimation to
calculate document similarity. The following program shows the implementation of
Word2Vec extractor on a dataframe:

>>from pyspark.ml.feature import Word2Vec

>>Gen_DF = spark.createDataFrame([

 (0, “DataScience,MachineLearning,ApacheSpark,MachineLearning”.
split(“,”)),

 (1, “ApacheMLlib,MachineLearning,DataScience”.split(“,”))], [“id”,
“words”])

>>func_word2Vec = Word2Vec(vectorSize=3, minCount=0, inputCol=”words”,
outputCol=”get_result”)

>>model = func_word2Vec.fit(Gen_DF)

>>get_result = model.transform(Gen_DF)

>>get_result.show(truncate=False)

Apache Spark MLlib 169

Figure 4.9 is an illustration of the code and output of Word2Vec:

Figure 4.9: Code and output of Word2Vec

CountVectorizer
CountVectorizer is a function whose input is a sequence of documents or words and
generates an output as a vector of tokens. The output of the CountVectorizer extractor
has three parts, namely, Vector Length, Vector Indices, and Vector Frequencies. Also,
it will produce a sparse vector which can be passed to the other ML algorithms.

Figure 4.10 highlights the three parts of the feature vector:

Figure 4.10: Three parts of feature Vector of a CountVectorizer output

>>from pyspark.ml.feature import CountVectorizer

>>Gen_DF = spark.createDataFrame([

 (0, “DataScience,MachineLearning,ApacheSpark,MachineLearning”.
split(“,”)),

 (1, “ApacheMLlib,MachineLearning,DataScience”.split(“,”))

], [“id”, “words”])

>>counter_vectorized = CountVectorizer(inputCol=”words”, outputCol=”get_

170 Practical Machine Learning with Spark

features”)

>>getmodel = counter_vectorized.fit(Gen_DF)

>>get_result = getmodel.transform(Gen_DF)

>>get_result.show(truncate=False)”

Figure 4.11 shows an illustration of the code and output of CountVectorizer:

Figure 4.11: Code and output of CountVectorizer

HashingTF
HashingTF generates documents or sentences into fixed size vectors; the default
dimension of vector set to 262,144. Here, it uses the hash function. that is,
MurmurHash3 for mapping to indices and term frequencies are calculated with
respect to indices.

The following code shows that the default value is always set to 262,144, and other
terms like ApacheSpark should be mapped to the respective index like 12242 with
frequency equal to 1. This mechanism needs to be applied on all the documents or
sentences in the dataframe:

>>from pyspark.ml.feature import HashingTF

>>Gen_DF = spark.createDataFrame([

 (0, “DataScience,MachineLearning,ApacheSpark,MachineLearning”.
split(“,”)),

 (1, “ApacheMLlib,MachineLearning,DataScience”.split(“,”))

], [“id”, “words”])

Apache Spark MLlib 171

>>gen_HF = HashingTF(inputCol=”words”, outputCol=”features”)

>>get_result = gen_HF.transform(Gen_DF)

>>get_result.show(truncate=False)

Figure 4.12 shows an illustration of the code and output of HashingTF:

Figure 4.12: Code and output of HashingTF

FeatureHasher
FeatureHasher is a technique for rescaling the high-dimensional features into low-
dimensional features vector. Likewise, HashingTF, it also uses MurmurHash3 to
map features to indices and the numFeatures parameter intends to set a feature
range to the indices. The following code indicates to generate a column of feature
vectors using FeatureHasher:

>>from pyspark.ml.feature import FeatureHasher

>>createDF = spark.createDataFrame([

 (10, “100”, True, “Data Science”),

 (20, “200”, False, “Big Data”),

 (30, “300”, True, “Machine Learning with Spark”),

 (40, “400”, False, “Deep Learning”)

], [“col1”, “col2”, “col3”, “col4”])

>>get_hasher = FeatureHasher(inputCols=[“col1”, “col2”, “col3”, “col4”],

 outputCol=”features”, numFeatures = 10)

>>get_result = get_hasher.transform(createDF)

>>get_result.show(truncate=False)

172 Practical Machine Learning with Spark

Figure 4.13 shows an illustration of the code and output of FeatureHasher:

Figure 4.13: Code and output of FeatureHasher

Feature Transformers
This section explains several ways to transform the features in Apache Spark which
are used while training and testing the ML-based distributed processing models.

Tokenizer
Tokenization is a mechanism which can feed the text or sentences and break them
into small individual words. It can be implemented by using the functionality of
“Tokenizer class”. Also, there is a RegexTokenizer class that makes the splitting up
of the sentences in an advanced manner based on some regular expression matches.
The following code takes the sentences through a dataframe and applies Tokenizer
for converting it into a list of tokens. Also, these sequences of tokens can be persisted
as Parquet or JSON formats. The following code indicates how to implement the
Tokenizer transformer:

>>from pyspark.ml.feature import Tokenizer, RegexTokenizer

>>from pyspark.sql.functions import col, udf

>>from pyspark.sql.types import IntegerType

>>generate_df = spark.createDataFrame([

 (0, “This Book Is For All The Big Data And Data Science Lovers”),

 (1, “This Is Our Chapter-4 Which Has Content Related To Spark MLlib
“)], [“unique_id”, “generate_df”])

>>get_tokenizers = Tokenizer(inputCol=”generate_df”, outputCol=”get_
tokens”)

Apache Spark MLlib 173

>>get_tokenized = get_tokenizers.transform(generate_df)

#Display Outcome

>>get_tokenized.select(“generate_df”, “get_tokens”).show(truncate=False)

#Save into Parquet Format

>>get_tokenized.select(“generate_df”, “get_tokens”).write.
save(“parquetfileformat”)

#Save Outcome Into a JSON Format

>>get_tokenized.select(“generate_df”, “get_tokens”).write.
json(“JsonSave.json”)”

Figure 4.14 shows an illustration of the code and output of the Tokenizer transformer:

Figure 4.14: Code and output of Tokenizer transformer

Figure 4.15 shows an illustration of the code how to persist a list of tokens into the
Parquet or JSON format:

Figure 4.15: Code and output to save lists of tokens into Parquet or JSON format

StopWordsRemover
StopWordsRemover is used in text mining for refining the unwanted words from
the corpus in Natural Language Processing (NLP). The working mechanism of
StopWordsRemover starts from feeding-up the input as a sequence of string and

174 Practical Machine Learning with Spark

returns the meaningful words as in tokens. The following code illustrates the
conversion of sentences into sequences of tokens. Later, the StopWordsRemover class
applies on those tokens for getting the refined sequences of tokens after removing
the most common or unwanted words:
>>from pyspark.ml.feature import Tokenizer, RegexTokenizer

>>from pyspark.sql.functions import col, udf

>>from pyspark.sql.types import IntegerType

>>generate_df = spark.createDataFrame([

 (0, “This Book Is For All The Big Data And Data Science Lovers”),

 (1, “This Is Our Chapter-4 Which Has Content Related To Spark MLlib
“)], [“id”, “create_df”])

>>get_tokenizers = Tokenizer(inputCol=”create_df”, outputCol=”get_
tokens”)

>>get_tokenized = get_tokenizers.transform(generate_df)

>>remover = StopWordsRemover(inputCol=”get_tokens”, outputCol=”row”)

>>remover.transform(get_tokenized).select(“get_tokens”, “row”).
show(truncate=False)”

Figure 4.16 shows an illustration of the code and output of StopWordsRemover:

Figure 4.16: Code and output of StopWordsRemover

N-Gram
An N-Gram generates a sequence of n number of words by concatenating the
consecutive words in the token. The N-Gram transforms the sequence of words as

Apache Spark MLlib 175

input and produces a sequence of n-grams as output. The parameter n is used to
determine the number of terms which to be delimited by space with the consecutive
sequence of words in each n-gram. The following code shows the example of N-Gram
with the parameter value n set to 2:

>>from pyspark.ml.feature import NGram
>>generate_df = spark.createDataFrame([
 (0, [“This” ,”Book”, “Is”, “For”, “All”, “The”, “Big” , “Data”
,”And” ,”Data” ,”Science”, “Lovers”]),
 (1, [“This” ,”Is” ,”Our”, “Chapter-4” ,”Which” ,”Has”, “Content”,
“Related”, “To”, “Spark”, “MLlib”])], [“id”, “create_df”])
>>get_ngram = NGram(n=2, inputCol=”create_df”, outputCol=”get_ngram_
out”)
>>get_ngram_DataFrame = get_ngram.transform(generate_df)
>>get_ngram_DataFrame.select(“get_ngram_out”).show(truncate=False)”

Figure 4.17 shows an illustration of the code and output of N-Gram:

Figure 4.17: Code and output of N-Gram

Binarizer
In Spark MLlib, the Binarization function helps to convert the numerical features to
binary form features giving a particular thresholding value. Generally, the Binarizer
class takes three parameters such as inputCol, outputCol, and threshold for
binarization. The parameter threshold helps in converting the numerical vector into
a binarized form. For example, the value will be binarized to 0.0, if the threshold
value is less than the feature value and 1.0 when the threshold value is greater
than the feature value. The following code shows an example of Binarizer with the
threshold parameter value threshold set to 3:

176 Practical Machine Learning with Spark

>>from pyspark.ml.feature import Binarizer

>>from pyspark.ml.feature import StringIndexer

>>create_df = spark.createDataFrame(

 [(0, “Hello”), (1, “All”), (2, “This”), (3, “is”), (4, “a”), (5,
“new”), (6, “Day”)],

 [“unique_id”, “words”])

>>stage1_output = StringIndexer(inputCol=”words”, outputCol=”Conversion_
outcome”)

>>get_finalized_df = stage1_output.fit(create_df).transform(create_df)

>>binarizer_value = Binarizer(threshold=3, inputCol=”Conversion_
outcome”, outputCol=”get_binarized_feature”)

>>binarizedDF = binarizer_value.transform(get_finalized_df)

>>binarizedDF.show()”

Figure 4.18 shows an illustration of the code and output of Binarizer:

Figure 4.18: Code and output of Binarizer

Principal Component Analysis (PCA)
PCA is a technique used for doing the Exploratory Data Analysis (EDA) using the
concept of orthogonal transformation. The PCA class in Spark MLlib provides the
support to convert the higher level of dimension into lower-dimensional data by

Apache Spark MLlib 177

setting the parameter k and give the fair idea for ameliorating the futuristic analysis.
The following code shows the dimension reduction of the vector from 5-dimensional
principal components to 2-dimensional principal components:
>>from pyspark.ml.feature import PCA

>>from pyspark.ml.linalg import Vectors

>>dataset = [(Vectors.dense([2.0, 0.0, 3.0, 4.0, 5.0]),),

 (Vectors.dense([4.0, 0.0, 0.0, 6.0, 7.0]),)]

>>df_created = spark.createDataFrame(dataset, [“vector_space”])

>>get_pca = PCA(k=2, inputCol=”vector_space”, outputCol=”PCA_Outcome”)

>>train_model = get_pca.fit(df_created)

>>model_result = train_model.transform(df_created).select(“PCA_Outcome”)

>>model_result.show(truncate=False)”

Figure 4.19 shows an illustration of the code and output of PCA:

Figure 4.19: Code and output of PCA

Polynomial Expansion
The Polynomial Expansion expands the vector features into n-degree polynomial
space. The following code shows the expansion of the feature vector into 2-degree
polynomial space by giving the value to the parameter degree as 2. The mathematical
expression to expand 2-degree polynomial is mentioned here:

>>from pyspark.ml.feature import PolynomialExpansion
>>from pyspark.ml.linalg import Vectors
>>create_df = spark.createDataFrame([
 (Vectors.dense([5.0, 7.0]),),

178 Practical Machine Learning with Spark

 (Vectors.dense([3.0, 1.0]),)
], [“indispensable_features”])
>>polyfunc = PolynomialExpansion(degree=2, inputCol=”indispensable_
features”, outputCol=”get_Features”)
>>polyfuncDF = polyfunc.transform(create_df)
>>polyfuncDF.show(truncate=False)

Figure 4.20 shows an illustration of the code and output of PolynomialExpansion:

Figure 4.20: Code and output of PolynomialExpansion

Discrete Cosine Transform (DCT)
DCT was first proposed in 1972 by Nasir Ahmed which was used for image
compression. Later, other applications were intended towards DCT such as digital
signal processing, telecommunication devices, reducing network bandwidth usage,
and spectral methods for the numerical solution of partial differential equations.
In ML, DCT is mainly used to transform the time domain into frequency domain,
where space values are length of N real-valued sequences. In Spark MLlib, DCT-II
is used with scaling the outcome by to represent the matrix to the transfer is unitary.
The following code shows the implementation of DCT:

>>from pyspark.ml.feature import DCT

>>from pyspark.ml.linalg import Vectors

>>create_df = spark.createDataFrame([

 (Vectors.dense([5.0, 7.0]),),

 (Vectors.dense([3.0, 1.0]),)

], [“indispensable_features”])

>>get_dctfunc = DCT(inverse=False, inputCol=”indispensable_features”,
outputCol=”get_features”)

Apache Spark MLlib 179

>>dctDataFrame = get_dctfunc.transform(create_df)

>>dctDataFrame.select(“get_features”).show(truncate=False)”

Figure 4.21 shows an illustration of the code and output of DCT:

Figure 4.21: Code and output of DCT

StringIndexer
StringIndexer transforms a string consisting of columns into label indices columns.
The range of indices are in between [0, number_of_Lables] and it can be
applied to all or multiple columns. It supports four “ordering functions” such as
frequencyDesc, frequencyAsc, alphabetDesc, and alphabetDesc. The user can
encode a string column into an index column based on label frequency and alphabet
counts. By default, it uses frequencyDesc for encoding the string in a label column.
The following code shows the implementation of StringIndexer for converting a
string column into a label index column:

>>from pyspark.ml.feature import StringIndexer

>create_df = spark.createDataFrame(

 [(0, “Hello”), (1, “All”), (2, “This”), (3, “is”), (4, “a”), (5,
“new”), (6, “Day”)],

 [“unique_id”, “words”])

>>stage1_output = StringIndexer(inputCol=”words”, outputCol=”Conversion_
outcome”)

>>get_finalized = stage1_output.fit(create_df).transform(create_df)

>>get_finalized.show()

180 Practical Machine Learning with Spark

Figure 4.22 shows an illustration of the code and output of StringIndexer:

Figure 4.22: Code and output of StringIndexer

IndexToString
IndexToString is recommended to use this transformation for retrieving back the
actual labels after getting the output from a trained model. The following code
shows the implementation of IndexToString:

>>from pyspark.ml.feature import StringIndexer

>>create_df = spark.createDataFrame(

 [(0, “Hello”), (1, “All”), (2, “This”), (3, “is”), (4, “a”), (5,
“new”), (6, “Day”)],

 [“unique_id”, “words”])

>>stage1_output = StringIndexer(inputCol=”words”, outputCol=”Conversion_
outcome”)

>>get_finalized = stage1_output.fit(create_df).transform(create_df)

>>get_finalized.show()”

Apache Spark MLlib 181

Figure 4.23 shows an illustration of the code and output of IndexToString:

Figure 4.23: Code and output of IndexToStringr

VectorIndexer
VectorIndexer maps indexes of categorical features corresponding to the datasets
of Vectors. It feeds an input column of vector type with a parameter named as
maxCategories. It can ameliorate the performance of Decision Tree and Tree
Ensembles by leveraging the concept of index categorical features. The following
code shows the implementation of VectorIndexer:

>>from pyspark.ml.feature import ChiSqSelector

>>from pyspark.ml.linalg import Vectors

>>from pyspark.ml.feature import VectorIndexer, VectorAssembler

>>create_df = spark.createDataFrame([

 (0, Vectors.dense([3.0, 6.0, -4.0]), 18.0),

 (1, Vectors.dense([3.0, 2.0, 10.0]), 30.0)

], [“unique_id”, “get_features”, “user_age”])

>>vector_ind = VectorIndexer(inputCol=”get_features”, outputCol=”get_
result”)

>>encode = vector_ind.fit(create_df).transform(create_df)

>>encode.show()

182 Practical Machine Learning with Spark

Figure 4.24 shows an illustration of the code and output of VectorIndexer:

Figure 4.24: Code and output of VectorIndexer

Normalizer
The Normalizer usually is used to standardize the input dataset and ameliorate the
way of learning an algorithm. It transforms a dataset of vector rows and normalizes
each vector to have a unit norm by passing a parameter p for normalization.
By default, the value of p is 2. The following code shows the implementation of
Normalizer:

>>from pyspark.ml.feature import Normalizer

>>from pyspark.ml.linalg import Vectors

>>create_df = spark.createDataFrame([

 (Vectors.dense([4.0, 2.0]),),

 (Vectors.dense([3.0, 1.0]),)

], [“indispensable_features”])

>>get_normalized = Normalizer(inputCol=”indispensable_features”,
outputCol=”Get_Features”, p=1.0)

>>NormDataDF = get_normalized.transform(create_df)

>>NormDataDF.show()

Apache Spark MLlib 183

Figure 4.25 shows an illustration of the code and output of Normalizer:

Figure 4.25: Code and output of Normalizer

StandardScaler
StandaredScaler provides the normalization mechanism to generate a flat feature of
a VectorRow which tends to have unit standard deviation. It keeps two parameters
named as withStd and withMean for performing the StandardScaler normalization.
In addition, the StandardScalerModel function shows the computing summary
with their important statistics. In general, it returns 0.0. value if dataset has zero
value. The following code shows the implementation of StandardScaler:

>>from pyspark.ml.feature import StandardScaler

>>create_df = spark.createDataFrame([

 (0, Vectors.dense([3.0, 6.0, -4.0]), 18),

 (1, Vectors.dense([3.0, 8.1, 10.0]), 30),

 (2, Vectors.dense([0.0, 19.1, 16.0]), 60)

], [“unique_id”, “get_features”, “user_age”])

>>get_scaler = StandardScaler(inputCol=”get_features”,
outputCol=”scaled_ouput”, withStd=True, withMean=False)

>>train_model = get_scaler.fit(create_df)

>>output_scaledD = train_model.transform(create_df)

>>output_scaledD.show(truncate=False)”

184 Practical Machine Learning with Spark

Figure 4.26 shows an illustration of the code and output of StandardScaler:

Figure 4.26: Code and output of StandardScaler

MinMaxScaler
MinMaxScaler rescales each feature to a range varies between [0,1]. It transforms
the dataset by assuming the min value as 0.0 and maximum value as 1.0 by default.
Also, the transformations perform on zero values will be transformed into a nonzero
value. The following code shows the implementation of MinMaxScaler:

>>from pyspark.ml.feature import MinMaxScaler

>>from pyspark.ml.linalg import Vectors

>>create_df = spark.createDataFrame([

 (0, Vectors.dense([3.0, 6.0, -4.0]),),

 (1, Vectors.dense([3.0, 8.1, 10.0]),)

], [“unique_id”, “get_features”])

>>get_scaler = MinMaxScaler(inputCol=”get_features”, outputCol=”feature_
outcome”)

>Train_Model = get_scaler.fit(create_df)

>>scaled_result = Train_Model.transform(create_df)

>>scaled_result.select(“get_features”, “feature_outcome”).show()

Apache Spark MLlib 185

Figure 4.27 shows an illustration of the code and output of MinMaxScaler:

Figure 4.27: Code and output of MinMaxScaler

MaxAbsScaler
MaxAbsScaler rescales each feature of dataset into the range of [-1,1] by dividing
through the maximum absolute value in each feature. It provides the statistics on
a dataset and trained a MaxAbsScalerModel which can transform each feature in
the preceding-mentioned range. The following code shows the implementation of
MaxAbsScaler:

>>from pyspark.ml.feature import MaxAbsScaler

>>from pyspark.ml.linalg import Vectors

>>create_df = spark.createDataFrame([

 (0, Vectors.dense([3.0, 6.0, -4.0]),),

 (1, Vectors.dense([3.0, 8.1, 10.0]),)

], [“unique_id”, “get_features”])

>>get_scaler = MaxAbsScaler(inputCol=”get_features”, outputCol=”feature_
outcome”)

>>Train_Model = get_scaler.fit(create_df)

>>scaled_result = Train_Model.transform(create_df)

>>scaled_result.select(“get_features”, “feature_outcome”).show()”

186 Practical Machine Learning with Spark

Figure 4.28 shows an illustration of the code and output of MaxAbsScaler:

Figure 4.28: Code and output of MaxAbsScaler

Bucketizer
Bucketizer is a way for transforming a column of continuous features into a column
of feature buckets, where the buckets are specified by users. Mapping of buckets
with the continuous features are done by using a parameter named as splits,
where values in splits should be in the increasing order and ranges between [-inf,
inf] that covers all the double values. The following code shows the implementation
of Bucketizer:

>>from pyspark.ml.feature import Bucketizer

>>splits = [-float(“inf”), -0.5, 0.0, 0.5, 1.0, 2.0, float(“inf”)]

>>create_df = spark.createDataFrame([(-0.5,), (-0.3,), (0.0,),
(1.0,),(0.2,), (100.0,)], [“get_features”])

>>apply_func_bucketizer = Bucketizer(splits=splits, inputCol=”get_
features”, outputCol=”buckfeatures”)

>>get_data = apply_func_bucketizer.transform(create_df)

>>get_data.show()

Apache Spark MLlib 187

Figure 4.29 shows an illustration of the code and output of Bucketizer:

Figure 4.29: Code and output of Bucketizer

ElementwiseProduct
ElementwiseProduct multiplies each element of a vector by a provided vector, like
multiplication of two matrices in mathematics. The following code demonstrates
how to transform vectors using a transforming vector value:

>>from pyspark.ml.feature import ElementwiseProduct

>>from pyspark.ml.linalg import Vectors

>>create_df = spark.createDataFrame([

 (Vectors.dense([5.0, 7.0, 9.0]),),

 (Vectors.dense([3.0, 1.0, 6.0]),)

], [“indispensable_features”])

>>get_transformer = ElementwiseProduct(scalingVec=Vectors.dense([0.0,
1.0, 2.0]),

 inputCol=”indispensable_features”,
outputCol=”NewVector”)

>>get_transformer.transform(create_df).show()

188 Practical Machine Learning with Spark

Figure 4.30 shows an illustration of the code and output of ElementwiseProduct:

Figure 4.30: Code and output of ElementwiseProduct

SQLTransformer
SQLTransformer in Spark MLlib supports SQL-like statements to perform the
transformations. It can also leverage Spark SQL built-in function and UDF for
transforming the SQL statements. The basic syntax is given as follows:

“SELECT (* or column names) FROM __THIS__ ...where (conditions or
filters)”, where __THIS__ represents the underlying table of the input
dataset.

The following code demonstrates how to perform SQLTransformer:

>>from pyspark.ml.feature import SQLTransformer

>>create_df = spark.createDataFrame([

 (0, Vectors.dense([3.0, 6.0, -4.0]), 18),

 (1, Vectors.dense([3.0, 8.1, 10.0]), 30),

 (2, Vectors.dense([0.0, 19.1, 16.0]), 60)

], [“unique_id”, “get_features”, “user_age”])

>>sqlTrfunc = SQLTransformer(statement=”SELECT get_features from __
THIS__ where user_age <= 30”)

>>sqlTrfunc.transform(create_df).show()”

Apache Spark MLlib 189

Figure 4.31 shows an illustration of the code and output of SQLTransformer:

Figure 4.31: An illustration of the code and output of SQLTransformer

VectorAssembler
VectorAssembler is a transformer that stitches the given list of columns into a
single vector feature. Mostly, this transformer is used in Logistic Regression and
Decision Tree algorithms for training them. It supports numeric, Boolean, and
vector type columns in a vector. The following code delineates how to execute
the VectorAssembler transformer for concatenating a list of columns into a single
column:

>>from pyspark.ml.linalg import Vectors

>>from pyspark.ml.feature import VectorAssembler

>>create_df = spark.createDataFrame([

 (0, Vectors.dense([3.0, 6.0, -4.0]), 18),

 (1, Vectors.dense([3.0, 8.1, 10.0]), 30)

], [“unique_id”, “get_features”, “user_age”])

>>get_assembler = VectorAssembler(inputCols=[“get_features”, “user_
age”], outputCol=”features”)

>>result = get_assembler.transform(create_df)

>>result.show(truncate=False)”

190 Practical Machine Learning with Spark

Figure 4.32 shows an illustration of the code and output of VectorAssembler:

Figure 4.32: An illustration of the code and output of VectorAssembler

VectorSizeHint
VectorSizeHint is a special type of transformation which can explicitly specify the
size of vector columns for filtering out the invalid or valid VectorType by passing the
parameters such as “skip”, “optimistic”, and “error” in the handle Invalid. Here, the
parameter “error” is used to indicate an exception when it occurs, the skip is used to
cater the invalid values; hence, eliminate those vector rows from the result, and the
last “optimistic” is used when there is no need to check the validity of column values.
The following code demonstrates how to execute VectorSizeHint transformer:

>>from pyspark.ml.linalg import Vectors

>>from pyspark.ml.feature import (VectorSizeHint, VectorAssembler)

create_df = spark.createDataFrame([

 (0, Vectors.dense([3.0, 6.0, -4.0]), 18),

 (1, Vectors.dense([3.0, 10.0]), 30)

], [“unique_id”, “get_features”, “user_age”])

>>get_assembler = VectorAssembler(inputCols=[“get_features”, “user_
age”], outputCol=”features”)

>>Vec_Si_Hi = VectorSizeHint(

 inputCol=”get_features”,

 handleInvalid=”error”,

 size=3)

>>get_dataset= Vec_Si_Hi.transform(create_df)

>>get_dataset.show(truncate=False)

Apache Spark MLlib 191

Figure 4.33 shows an illustration of the code and output of VectorSizeHint:

Figure 4.33: Code and output of VectorSizeHint

Quantile Discretizer (QD)
QD feeds a column with the continuous values and generates a column with mapped
categorical distribution. The number of categories is set by the parameter named as
numBuckets. In QD, the NaN values can be handled with the help of handleInvalid
parameters, but it is ignored and mitigated in general QD transformation. The
following code delineates how to execute QD transformer:

>>from pyspark.ml.feature import QuantileDiscretizer

>>create_df = spark.createDataFrame([(1001, 180000.0), (1003, 190000.0),
(1004, 800000.0), (3002, 500000.0), (4871, 7000000.0)], [“employee_id”,
“salary”])

>>quant_discretizer = QuantileDiscretizer(numBuckets=3,
inputCol=”salary”, outputCol=”result”)

>>get_result = quant_discretizer.fit(create_df).transform(create_df)

>>get_result.show()

192 Practical Machine Learning with Spark

Figure 4.34 shows an illustration of the code and output of QD:

Figure 4.34: Code and output of QD

Imputer
The Imputer function aids to fill-up the missing or void values in a vector or
dataframe. Mostly, it may use mean, median, and custom value of columns in which
the void values are found. The Imputer class supports only numeric datatype, and
it treats all the null values in the columns as missing values by default. Moreover,
Imputer can replace other values than NaN by executing. Set the Missing value
(any_custom_value). The following code delineates how to execute the Imputer
transformer:

>>from pyspark.ml.feature import Imputer

>>create_df = spark.createDataFrame([

 (0, Vectors.dense([3.0, 6.0, -4.0]), 18.0),

 (1, Vectors.dense([3.0, 8.1, 10.0]), 30.0),

 (2, Vectors.dense([0.0, 19.1, 16.0]), float(“nan”))

], [“unique_id”, “get_features”, “user_age”])

>>get_imputer = Imputer(inputCols=[“user_age”], outputCols=[“Result_a”])

>>get_model = get_imputer.fit(create_df)

>>get_model.transform(create_df).show()

Apache Spark MLlib 193

Figure 4.35 shows an illustration of the code and output of Imputer:

Figure 4.35: Code and output of Imputer

Feature Selectors
This section explains the several types of feature selectors in Apache Spark which is
used while training and testing the ML-based distributed processing models.

VectorSlicer
Vector Slicer helps to produce a sub-array as the output from the input array or
re-arrangement of columns by passing a value into the parameter indices. The
following code shows the implementation of re-arrangement of columns as a new
output:

>>from pyspark.ml.feature import VectorSlicer

>>from pyspark.ml.linalg import Vectors

>>from pyspark.sql.types import Row

>>df = spark.createDataFrame([

 (0, Vectors.dense([3.0, 6.0, -4.0]),),

 (1, Vectors.dense([3.0, 8.1, 10.0]),)

], [“unique_id”, “get_features”])

>>slicer = VectorSlicer(inputCol=”get_features”, outputCol=”features”,
indices=[0,2,1])

>>output = slicer.transform(df)

>>output.show(truncate=False)”

194 Practical Machine Learning with Spark

Figure 4.36 shows an illustration of the code and output of VectorSlicer:

Figure 4.36: Code and output of VectorSlicer

ChiSqSelector
CSST is an abbreviation of Chi-Square Selection Test . It helps to perform selected
operations named as numTopFeatures, percentile, fpr, fdr, and few on the
labelled data. It is also used to calculate the pvalues, degreeOfFreedom, and
statistic by passing input columns to the ChiSquareTest function. The following
code shows the implementation of ChiSqSelector:

>>from pyspark.ml.feature import ChiSqSelector

>>from pyspark.ml.linalg import Vectors

>>create_df = spark.createDataFrame([

 (0, Vectors.dense([3.0, 6.0, 4.0]),5.0),

 (1, Vectors.dense([3.0, 8.1, 10.0]),7.0,)

], [“unique_id”, “get_features”, “label”])

>>selector = ChiSqSelector(numTopFeatures=2, featuresCol=”get_features”,

 outputCol=”selectedFeatures”, labelCol=”label”)

>>get_result = selector.fit(create_df).transform(create_df)

>>get_result.show()”

Apache Spark MLlib 195

Figure 4.37 shows an illustration of the code and output of ChiSqSelector:

Figure 4.37: Code and output of ChiSqSelector

Conclusion
This chapter covers an immense adaptability of distributed processing in the
domain of ML and DL. Generally, training and testing phases consume abundance
of time and space during a model processing to get desired outputs. So, this chapter
leverages the concept of Spark MLlib and embodies textual information along
with their implementation. The next chapter will focus on the detailed studies on
Supervised learning using Spark MLlib.

196 Practical Machine Learning with Spark

Supervised Learning with Spark 197

“Good, better, best. Never let it rest. ‘Till your good is better and your
better is best.”

 - St. Jerome

Introduction
In this current era of digital innovation, a human being has been getting more
dependent on automation for making quick and right decisions. Due to high
adoption rate of AI in daily routines, AI becomes a lucrative asset to empower
the futuristic applications. For making the decisive automation, it observes the
features and key behaviors based on the historical experience of events. To prove
the ideology of futuristic learning as a reality, the algorithm of Supervised Learning
(SL) plays an imperative role. This chapter gives an introduction to SL on the
distributed framework. In the first chapter of this book, the basic excerpt on SL and
its related taxonomy has already been discussed. Here, the authors will discuss all
the technical aspects of SL along with their implementation. It also covers regression
and classification-based performance metrics to check the accuracy of the trained
model on the test dataset. The entire codebase has been implemented using the
Google Colab notebook with Apache Spark as a distributed framework for efficient
processing.

Chapter 5
Supervised

Learning with
Spark

198 Practical Machine Learning with Spark

Structure
This chapter will cover a comprehensive study of the following topics:

•	 The concept of SL and its variants

•	 In-depth explanation of regression-based as well as classification-based SL
algorithms with their implementation

•	 Advancement of trees by leveraging Classification and Regression Trees
(CART) and ensembling learning

•	 Several evaluation metrics for calculating the precision rate of classification
and regression models

•	 Explanation of the Churn Prediction Model and its implementation

Objectives
After reading the chapter, readers will be able to:

•	 Understand about supervised learning and its several types

•	 Implement classification and regression algorithms on a distributed
framework

•	 Grasp the knowledge about different types of CART and their implementation
using Apache Spark

•	 Understand how to improve trees by integrating CART and ensembling
techniques

•	 Check the performance metrics of any classification- and regression-based
SL model

•	 Learn the concept of the Churn prediction model and how to implement it
in the real world

Definition of Supervised Learning
SL is a subset of the ML technique to train a model from full-set data that contains
output labels (y) with respect to input labels (x) for predicting the response values.
In simple words, the output values are already given with respect to input values
in an SL-based model. Generally, there are two types of SL algorithms to deal with
continuous and discrete problems. The classification algorithm is used to solve
discrete problems and regression algorithm for continuous problems by predicting
and classifying the response values with respect to input labels. From the last series
of trailing chapters, authors assumed that the readers had already been familiar

Supervised Learning with Spark 199

about the concept of SL and Apache Spark’s libraries to perform any actions and
transformations on the dataset. These libraries are necessary for implementation of
different types of regression algorithms, classification algorithms, and ensembling
algorithms using Spark. Figure 5.1 shows the taxonomy of SL to classify the different
algorithms which are being used in real-case scenarios:

Figure 5.1: Taxonomy of different types of supervised learning

Regression and its Types
Regression is an SL-based statistical technique for forecasting the value of
continuous target variables (responses) based on the values of predictor variables.
Regression problems are generally present in bivariate and multi-variate settings.
Analysis of response values with respect to predictor variables using regression
can help the intermediate level insights for predicting the decision-making results.
In other words, it finds out the relationship between a dependent variable and an
independent variable. There are several types of regression algorithms such as linear
regression, decision tree regression, random forest regression, lasso regression, ridge
regression, elastic-net regression, isotonic regression, and gradient-boosted tree
regression which can be used to predict the target values with respect to predictor
values. The detailed explanation along with their respective codebase are as follows.

Linear Regression (LR)
LR represents a linear relationship between two variables such as dependent variables
and independent variables. It draws a decision line between the two variables and

200 Practical Machine Learning with Spark

the standard mathematical equation is as shown in Figure 5.2, where m is the slope
of a line and c is the y-intercept. If all the targeted values tend to be approaching
towards the decision line, then the model seems to be best fit. In other words, errors
should be minimum that determine how far the targeted variables reside from the
straight line. Generally, the least square method is used to find the best fit line in
the graph. The accuracy of the LR model is affected when the outliers are highly
fluctuating and, it is not recommended for big data when the outliers and non-
linearity in data is high. The distance of the actual data point from the decision line
is known as a residual error. There are two types of linear regression such as simple
linear regression (one dependent and one independent variable) and ,multiple linear
regression (one dependent and more than one independent variables).

Figure 5.2: Graphical representation of linear regression

In this section, the readers will get to know about the detailed working of the
regression algorithm with the help of a graphical representation. Figure 5.3 shows
the scattering of n number of data points in the xy-plane. The following figure shows
the LR mapping between the given data (Height and Weight) of healthy persons
living in a smart city. Here, height is taken as a feature along x-axis and weight as
a predictor along y-axis. This relationship draws a decision line that predicts the
weight of a person at a particular height.

Supervised Learning with Spark 201

Figure 5.3: Graphical representation of key attributes of linear regression

The following codebase shows the implementation of LR by leveraging the
distributed framework using Google Colab:

>>%pip install pyspark==3.1.1

>>from pyspark.sql import SparkSession

>>from pyspark.sql import SQLContext

>>from pyspark.ml.feature import StringIndexer

>>from pyspark.ml.evaluation import RegressionEvaluator

>>from pyspark.ml.linalg import Vectors

>>from pyspark.ml.feature import VectorAssembler

>>from pyspark.ml.regression import LinearRegression

>>import seaborn as sns

>>import matplotlib.pyplot as plt

>>import pandas as pd

>>import numpy as np

#Creating Spark application and loading of dataset

>>spark = SparkSession.builder.appName(‘Linear Regression’).

202 Practical Machine Learning with Spark

getOrCreate()

>>load_data = spark.read.csv(‘/content/sample_data/weight-height.
csv’,inferSchema=True, header=True)

Figure 5.4 depicts the implementation of the preceding code in Google Colab. This
code initializes the required modules, creates the spark’s application, and reads the
CSV file in a dataframe:

Figure 5.4: Illustration of implemented code to initialize, create spark’s application, and read in dataframe

#To show the loaded dataframe

>>load_data.show()

#Converting into VectorFeature

>>get_assembler =
VectorAssembler(inputCols=[‘Height’],outputCol=’feature’)

>>assembled_data = get_assembler.transform(load_data)

>>assembled_data.show()

>>finalized_data = assembled_data.select(“feature”, “Weight”)

#To show the finalized dataframe

>>finalized_data.show()

#Splitting into training and testing dataset

>>training_data,testing_data = finalized_data.randomSplit([0.7,0.3])

#Calling of LinearRegression function

>>lr = LinearRegression(featuresCol=”feature”, labelCol=”Weight”,)

>>lr_model = lr.fit(training_data)

Supervised Learning with Spark 203

#Evaluating the model on testing dataset to check the residue of each
point

>>test_results = lr_model.evaluate(testing_data)

>>test_results.residuals.show()

Figure 5.5 delineates the code in Colab to display, convert into VectorFeature, split
the dataset into the training and testing portion, call the Linear Regression function
on the training dataset, and evaluate the testing data from the trained model:

Figure 5.5: Illustration to convert normal df into VectorFeature,
split the dataset, and implement the Linear Regression function

#Testing dataset on lr_model

>>get_prediction = lr_model.transform(testing_data)

>>get_prediction.show()

#Get_training_insights

>>training_data.describe().show()

>>train = training_data.select(“feature”,”Weight”).toPandas()

>>train_get_feature = train[‘feature’]

>>train_get_feature = list(train_get_feature)

>>train_get_salary = train[‘Weight’]

204 Practical Machine Learning with Spark

#Training_Prediciton Insights

get_training_prediction = lr_model.transform(training_data)

#converting into Spark’s df to Pandas’s df for data visualization

>>train_pred = get_training_prediction.select(“prediction”).toPandas()

>>prediction_train = train_pred[‘prediction’]

>>prediction_list = list(prediction_train)

>>print(prediction_list)

Figure 5.6 shows the snapshot of the code in Colab to transform the testing data
using the trained LR model for getting the prediction. After getting the prediction,
the dataframe is converted into pandas’s dataframe for easily plotting the decision
line of LR:

Figure 5.6: Illustration of transformation operation of
testing data and conversion of Spark’s df to Pandas’s data frame for visualization

#Testing Insights

>>x = testing_data.select(“feature”,”Weight”).toPandas()

>>x_get = x[‘feature’]

>>y_get = x[‘Weight’]

#Get summary of the model

>>print(“Summary of model is here:”)

>>lr_model.summary

Supervised Learning with Spark 205

#Getting coefficients and intercept

>>print(“Coefficients: “ + str(lr_model.coefficients))

>>print(“Intercept: “ + str(lr_model.intercept))

Figure 5.7 delineates the code in Google Colab to convert the spark’s dataframe of
testing data into pandas. Also, it calculates the coefficient and intercept of the trained
LR model:

Figure 5.7: Illustration to convert the spark’s dataframe to pandas’s dataframe and calculate the model insights

#Visualization

>>plt.scatter(list(x_get), list(y_get), color = ‘red’)

>>plt.plot(train_get_feature, prediction_list, color = ‘blue’)

>>plt.title(‘Weight vs Height (Test set)’)

>>plt.xlabel(‘Height’)

>>plt.ylabel(‘Weight’)

>>plt.show()

#Evaluation Metrics

>>eval = RegressionEvaluator(labelCol=”Weight”,
predictionCol=”prediction”, metricName=”rmse”)

Root Mean Square Error

>>rmse = eval.evaluate(get_prediction)

>>print(“RMSE: %.3f” % rmse)

Mean Square Error

>>mse = eval.evaluate(get_prediction, {eval.metricName: “mse”})

>>print(“MSE: %.3f” % mse)

206 Practical Machine Learning with Spark

Mean Absolute Error

>>mae = eval.evaluate(get_prediction, {eval.metricName: “mae”})

>>print(“MAE: %.3f” % mae)

r2 - coefficient of determination

>>r2 = eval.evaluate(get_prediction, {eval.metricName: “r2”})

>>print(“r2: %.3f” %r2)

Figure 5.8 illustrates the implemented code in Google Colab to plot the curve of
a straight line for LR and calculate the performance of the model using predicted
values:

Figure 5.8: Illustration of visualization and evaluation of the LR model

Output Snippet of the LR Model
This section contains the output snippet of the preceding executed program for
plotting the decision line of the LR model. Figure 5.9 delineates the data of dataframe
after reading the CSV:

Supervised Learning with Spark 207

Figure 5.9: Illustration of code to display the content of dataframe

Figure 5.10 shows the content of the dataframe after applying the VectorAssembler
transformation for generating the features that need to be fed to the model as input:

Figure 5.10: Delineation of code to display the content after applying VectorAssembler

208 Practical Machine Learning with Spark

Figure 5.11 shows the content of the dataframe of the dependent variable and
independent variable. The feature and weight columns are fed to the model for
predicting the weight of the person.

Figure 5.11: Illustration of content of the dependent variable and independent variable

Figure 5.12 displays the residue error of each data point by taking the difference from
the decision line:

Figure 5.12: Illustration of residual error of each data point

Supervised Learning with Spark 209

Figure 5.13 displays the data of predicted values from the trained LR model:

Figure 5.13: Illustration to show the data of predicted values

Figure 5.14 displays the indispensable insights of the LR model:

Figure 5.14: Illustration of the summary of the trained LR model

210 Practical Machine Learning with Spark

Figure 5.15 shows the plotting of the decision line of the LR model using the MapPlot
library. The red dots represent the actual points and the decision line in blue color
represents the predicted points.

Figure 5.15: Plotting of decision line of LR model

Table 5.1 shows the data related to the evaluation metrics of the trained LR model.
This is an important step that helps to determine the performance of the trained
model on the testing dataset.

Evaluation metrics Results
RMSE 11.912
MSE 141.905
MAE 9.493

R2 0.860

Table 5.1: Illustrate the evaluation metrics of the LR model

Multi-Linear Regression (MLR)
It estimates the relationship between one dependent variable and more than one
independent variables. MLR works like linear regression, the standard mathematical
equation is y = ∑i=1

n mi xi+ c +∈, where (y, mi, xi c) have the usual meaning, n is number
of observations, and ∈ is the residual error. The following program depicts step
by step implementation of MLR in PySpark using Google Colab as a distributed
processing framework:

Supervised Learning with Spark 211

>>%pip install pyspark==3.1.1

>>from pyspark.sql import SparkSession

>>from pyspark.sql import SQLContext

>>from pyspark.ml.feature import VectorAssembler

>>from pyspark.ml.feature import StringIndexer

>>from pyspark.ml.evaluation import RegressionEvaluator

>>from pyspark.ml.feature import VectorIndexer

>>from pyspark.ml.linalg import Vectors

>>from pyspark.ml.regression import LinearRegression

>>import matplotlib.pyplot as plt

>>import pandas as pd

>>import numpy as np

#Loading and creation of Spark’s application

>>spark = SparkSession.builder.appName(‘MultiLinearRegression’).
getOrCreate()

>>loaded_data = spark.read.csv(‘/content/sample_data/weatherHistory.
csv’,inferSchema=True, header=True)

Figure 5.16 delineates the implemented code to initialize, create spark application,
and read CSV into the dataframe:

Figure 5.16: Illustration of implemented code to initialize,
create spark application, and read a CSV into the dataframe

212 Practical Machine Learning with Spark

#To check the columns of dataframe

>>loaded_data.columns

#Converting into the single Vector

>>get_assembler = VectorAssembler(inputCols=[‘Temperature (C)’,

 ‘Apparent Temperature (C)’,

 ‘Humidity’,

 ‘Wind Speed (km/h)’,

 ‘Wind Bearing (degrees)’,

 ‘Visibility (km)’,

 ‘Loud Cover’,

 ‘Pressure (millibars)’],outputCol=’get_feature’)

>>op_assembler = get_assembler.transform(loaded_data)

>>op_assembler.show()

>>get_indexer = StringIndexer(inputCol=’Summary’, outputCol=’summary_
index’)

>>finalized_data = get_indexer.fit(op_assembler).transform(op_assembler)

>>finalized_data = finalized_data.select(“get_feature”, “summary_index”)

>>training_data, testing_data = finalized_data.randomSplit([0.7,0.3])

#Linear Regression function on multi-variant dataset

>>lr = LinearRegression(featuresCol=”get_feature”, labelCol=”summary_
index”,)

>>lr_model = lr.fit(training_data)

Supervised Learning with Spark 213

Figure 5.17 shows the snapshot of the code in Colab to display, convert into
VectorFeature, split the dataset into the training and testing portion, and call the
linear regression function on the multi-variant featured training dataset:

Figure 5.17: Illustration to convert the normal df into VectorFeature,
splitting into training and testing dataset, and implementation of the Linear Regression function

#Evaluating the model on testing dataset to check the residue of each
point

>>test_results = lr_model.evaluate(testing_data)

>>test_results.residuals.show()

#Testing dataset on lr_model

>>get_prediction = lr_model.transform(testing_data)

>>get_prediction.show()

#Get_training_insights

>>training_data.describe().show()

>>train = training_data.select(“get_feature”,”summary_index”).toPandas()

>>train_get_feature = train[‘get_feature’]

>>train_get_feature = list(train_get_feature)

>>train_get_salary = train[‘summary_index’]

214 Practical Machine Learning with Spark

Figure 5.18 delineates this code that implemented to find the residue error, transform
the trained multi-variant LR on the testing data and get model insights:

Figure 5.18: Illustration of code for finding of residue,
transformation operation on the testing dataset, and get the model insights

#Training_Prediciton Insights

>>get_training_prediction = lr_model.transform(training_data)

#converting into Spark’s df to Pandas’s df for data visualization

>>train_pred = get_training_prediction.select(“prediction”).toPandas()

>>prediction_train = train_pred[‘prediction’]

>>prediction_list = list(prediction_train)

>>print(prediction_list)

#Testing Insights

>>x = testing_data.select(“get_feature”,”summary_index”).toPandas()

>>x_get = x[‘get_feature’]

>>y_get = x[‘summary_index’]

#Get summary of the model

>>print(“Summary of model is here:”)

>>lr_model.summary

Supervised Learning with Spark 215

Figure 5.19 elucidates the implemented code is to find the residue error, transform
the trained multivariant LR on the testing data and get model insights:

Figure 5.19: Illustration of code for finding of residue, transformation
operation on testing dataset, and getting the model insights

#Getting coefficients and intercept

>>print(“Coefficients: “ + str(lr_model.coefficients))

>>print(“Intercept: “ + str(lr_model.intercept))

#Evalutaion Metrics

>>eval = RegressionEvaluator(labelCol=”summary_index”,
predictionCol=”prediction”, metricName=”rmse”)

Root Mean Square Error

>>rmse = eval.evaluate(get_prediction)

>>print(“RMSE: %.3f” % rmse)

Mean Square Error

>>mse = eval.evaluate(get_prediction, {eval.metricName: “mse”})

>>print(“MSE: %.3f” % mse)

216 Practical Machine Learning with Spark

Figure 5.20 displays the screenshot of this implemented code to find the coefficient,
intercept, and evaluate metrics for the trained multivariant LR:

Figure 5.20: Illustration of code to determine the value of coefficient,
intercept, and calculate performance metrics

Mean Absolute Error

>>mae = eval.evaluate(get_prediction, {eval.metricName: “mae”})

>>print(“MAE: %.3f” % mae)

r2 - coefficient of determination

>>r2 = eval.evaluate(get_prediction, {eval.metricName: “r2”})

>>print(“r2: %.3f” %r2)

Figure 5.21 shows the implemented code to find the evaluation metrics for the trained
multivariant LR:

Figure 5.21: Illustration of evaluation metrics

Supervised Learning with Spark 217

Output Snippet of the Multi-linear Regression Model
This section contains the output snippet of the preceding executed program for
plotting the decision line of the multi-linear regression model. Figure 5.22 displays
the data of the dataframe after reading the CSV:

Figure 5.22: Screenshot of code to display the content of dataframe

Figure 5.23 displays the predicted data in the dataframe format after transforming
the testing dataset:

Figure 5.23: Illustration to show the data of predicted values

218 Practical Machine Learning with Spark

Figure 5.24 shows the screenshot of the summary of the trained MLR model, and its
evaluation metrics:

Figure 5.24: Illustration of summary and evaluation metrics of the trained model

Regularization in Linear Regression
In data science, training a good performance model is one of the key steps, which
is affected by two terminologies, such as under-fitting and over-fitting. Under-fitting
refers to a situation where the error rate is maximized due to a model’s lack of training,
irrelevant selection of features, lack of selection of features, high noise in training
data, and less regularization while training a model on an actual dataset. This kind
of scenario may cause poor performance in terms of the accuracy of the model. To
be recapitulated, the variance is low, and the biasness is high in such a situation. For
example, applying a regression model to a non-linear dataset may often cause the issue
of under-fitting. On the flip side, over-fitting is another situation that arises due to over-
learning of mode and a high number of feature selections. In over-fitting, the variance
is high and the biasness is low. Such an over-fitting issue while training a model can
be mitigated by adapting the concept of regularization. Regularization is a technique
to simplify the complexity of a regression model which helps to alleviate the challenge
of overfitting by penalizing the coefficient to zero. Generally, it neglects the smaller
weights by assuming to generate un-effective changes in the model and penalizes
them towards zero, which helps to avoid the issue of overfitting on the testing part. In
SparkML, the LR function contains two important parameters to switch a ML model
between lasso regression (L1 regularization) and ridge regression (L2 regularization),
such as elasticNetParam and regParam, where elasticNetParam is denoted by α
and regParam is denoted by 𝜆. When a LR model is trained with the α set to 1, then it
is equivalent to a Lasso model. On the flip side, if α set to 0, it is equivalent to a ridge
regression model. Regularizations are of three types, which are as follows.

Least Absolute Shrinkage and Selection
Operator (Lasso Regression)/L1 Regularization
Lasso regression is a regression technique that was introduced by Professor
Robert Tibshirani at Stanford University. Just like ridge regression As discussed

Supervised Learning with Spark 219

under next heading, it uses regularization to estimate the results and it also uses
variable selection to design the efficient and high precision equipped LR model. The
following codebase shows the implementation of lasso regression by leveraging the
distributed framework using Google Colab:

>>%pip install pyspark==3.1.1

>>from pyspark.sql import SparkSession

>>from pyspark.sql import SQLContext

>>from pyspark.ml.feature import StringIndexer

>>from pyspark.ml.evaluation import RegressionEvaluator

>>from pyspark.ml.linalg import Vectors

>>from pyspark.ml.feature import VectorAssembler

>>from pyspark.ml.regression import LinearRegression

>>import seaborn as sns

>>import matplotlib.pyplot as plt

>>import pandas as pd

>>import numpy as np

#Creating Spark application and loading of dataset

>>spark = SparkSession.builder.appName(‘Ridge Linear Regression’).
getOrCreate()

>>load_data = spark.read.csv(‘/content/sample_data/weight-height.
csv’,inferSchema=True, header=True)

#To show the loaded dataframe

>>load_data.show()

#Converting into VectorFeature

>>get_assembler =
VectorAssembler(inputCols=[‘Height’],outputCol=’feature’)

>>assembled_data = get_assembler.transform(load_data)

>>assembled_data.show()

>>finalized_data = assembled_data.select(“feature”, “Weight”)

#To show the finalized dataframe

>>finalized_data.show()

#Splitting into training and testing dataset

>>training_data,testing_data = finalized_data.randomSplit([0.7,0.3])

220 Practical Machine Learning with Spark

#Calling of LinearRegression function

>>lr = LinearRegression(featuresCol=”feature”, labelCol=”Weight”,
elasticNetParam=1.0,regParam=0.5,maxIter=50,solver=’normal’)

>>lr_model = lr.fit(training_data)

#Evaluating the model on testing dataset to check the residue of each
point

>>test_results = lr_model.evaluate(testing_data)

>>test_results.residuals.show()

#Testing dataset on lr_model

>>get_prediction = lr_model.transform(testing_data)

>>get_prediction.show()

#Get_training_insights

>>training_data.describe().show()

>>train = training_data.select(“feature”,”Weight”).toPandas()

>>train_get_feature = train[‘feature’]

>>train_get_feature = list(train_get_feature)

>>train_get_salary = train[‘Weight’]

#Training_Prediciton Insights

>>get_training_prediction = lr_model.transform(training_data)

#converting into Spark’s df to Pandas’s df for data visualization

>>train_pred = get_training_prediction.select(“prediction”).toPandas()

>>prediction_train = train_pred[‘prediction’]

>>prediction_list = list(prediction_train)

>>print(prediction_list)

#Testing Insights

>>x = testing_data.select(“feature”,”Weight”).toPandas()

>>x_get = x[‘feature’]

>>y_get = x[‘Weight’]

#Get summary of the model

>>print(“Summary of model is here:”)

>>lr_model.summary

#Getting coefficients and intercept

Supervised Learning with Spark 221

>>print(“Coefficients: “ + str(lr_model.coefficients))

>>print(“Intercept: “ + str(lr_model.intercept))

#Visualization

>>plt.scatter(list(x_get), list(y_get), color = ‘red’)

>>plt.plot(train_get_feature, prediction_list, color = ‘blue’)

>>plt.title(‘Weight vs Height (Test set)’)

>>plt.xlabel(‘Height’)

>>plt.ylabel(‘Weight’)

>>plt.show()

#Evalutaion Metrics

>>eval = RegressionEvaluator(labelCol=”Weight”,
predictionCol=”prediction”, metricName=”rmse”)

Root Mean Square Error

>>rmse = eval.evaluate(get_prediction)

>>print(“RMSE: %.3f” % rmse)

Mean Square Error

>>mse = eval.evaluate(get_prediction, {eval.metricName: “mse”})

>>print(“MSE: %.3f” % mse)

Mean Absolute Error

>>mae = eval.evaluate(get_prediction, {eval.metricName: “mae”})

>>print(“MAE: %.3f” % mae)

r2 - coefficient of determination

>>r2 = eval.evaluate(get_prediction, {eval.metricName: “r2”})

>>print(“r2: %.3f” %r2)

Output Snippet of the Lasso Regression Model
This section contains the output snippet of this program that is executed for
implementing the lasso regression algorithm on training and testing data. Figure

222 Practical Machine Learning with Spark

5.25 shows the data of the dataframe after reading a CSV and applying the
VectorAssembler transformation:

Figure 5.25: Output screenshot to display the data of dataframe after applying VectorAssembler

Figure 5.26 displays the predicted data in the dataframe format after transforming
the lasso regression model on the testing dataset:

Figure 5.26: Illustration to display the predicted values

Supervised Learning with Spark 223

Figure 5.27 displays the summary insights, coefficient, and intercept of the trained
model:

Figure 5.27: Illustration of summary insights, coefficient, and intercept of the trained model

Figure 5.28 shows the decision line of the lasso regression model:

Figure 5.28: Plotting of decision line of lasso regression model

Table 5.2 shows the data related to evaluate the metrics of the trained lasso regression
model. This is an important step which helps to determine the performance of the
trained model on testing dataset.

Evaluation metrics Results
RMSE 12.458
MSE 155.191
MAE 9.898

R2 0.846

Table 5.2: Illustrate the evaluation metrics of the Lasso Regression model

224 Practical Machine Learning with Spark

Ridge Regression/L2 Regularization
To overcome the problem of underperforming at the testing phase of LR, it adds a
penalty L2 which is equal to the square of coefficients. Generally, in LR the “residual
of sum” gets minimized, but in ridge regression a penalty is applied on coefficient
values to regularize with the tuning parameters (λ). Where (λ=0), the penalty has no
impact and ridge/lasso produces the same results as linear regression. The following
program depicts the step-by-step implementation of ridge regression in PySpark
using Google Colab as a distributed processing framework:

>>%pip install pyspark==3.1.1

>>from pyspark.sql import SparkSession

>>from pyspark.sql import SQLContext

>>from pyspark.ml.feature import StringIndexer

>>from pyspark.ml.evaluation import RegressionEvaluator

>>from pyspark.ml.linalg import Vectors

>>from pyspark.ml.feature import VectorAssembler

>>from pyspark.ml.regression import LinearRegression

>>import seaborn as sns

>>import matplotlib.pyplot as plt

>>import pandas as pd

>>import numpy as np

#Creating Spark application and loading of dataset

>>spark = SparkSession.builder.appName(‘Ridge Linear Regression’).
getOrCreate()

>>load_data = spark.read.csv(‘/content/sample_data/weight-height.
csv’,inferSchema=True, header=True)

#To show the loaded dataframe

>>load_data.show()

#Converting into VectorFeature

>>get_assembler =
VectorAssembler(inputCols=[‘Height’],outputCol=’feature’)

>>assembled_data = get_assembler.transform(load_data)

>>assembled_data.show()

>>finalized_data = assembled_data.select(“feature”, “Weight”)

#To show the finalized dataframe

Supervised Learning with Spark 225

>>finalized_data.show()

#Splitting into training and testing dataset

>>training_data,testing_data = finalized_data.randomSplit([0.7,0.3])

#Calling of LinearRegression function

>>lr = LinearRegression(featuresCol=”feature”, labelCol=”Weight”,
elasticNetParam=0.0,regParam=0.5,maxIter=50,solver=’normal’)

>>lr_model = lr.fit(training_data)

#Evaluating the model on testing dataset to check the residue of each
point

>>test_results = lr_model.evaluate(testing_data)

>>test_results.residuals.show()

#Testing dataset on lr_model

>>get_prediction = lr_model.transform(testing_data)

>>get_prediction.show()

#Get_training_insights

>>training_data.describe().show()

>>train = training_data.select(“feature”,”Weight”).toPandas()

>>train_get_feature = train[‘feature’]

>>train_get_feature = list(train_get_feature)

>>train_get_salary = train[‘Weight’]

#Training_Prediciton Insights

>>get_training_prediction = lr_model.transform(training_data)

#converting into Spark’s df to Pandas’s df for data visualization

>>train_pred = get_training_prediction.select(“prediction”).toPandas()

>>prediction_train = train_pred[‘prediction’]

>>prediction_list = list(prediction_train)

>>print(prediction_list)

#Testing Insights

>>x = testing_data.select(“feature”,”Weight”).toPandas()

>>x_get = x[‘feature’]

>>y_get = x[‘Weight’]

#Get summary of the model

226 Practical Machine Learning with Spark

>>print(“Summary of model is here:”)

>>lr_model.summary

#Getting coefficients and intercept

>>print(“Coefficients: “ + str(lr_model.coefficients))

>>print(“Intercept: “ + str(lr_model.intercept))

#Visualization

>>plt.scatter(list(x_get), list(y_get), color = ‘red’)

>>plt.plot(train_get_feature, prediction_list, color = ‘blue’)

>>plt.title(‘Weight vs Height (Test set)’)

>>plt.xlabel(‘Height’)

>>plt.ylabel(‘Weight’)

>>plt.show()

#Evalutaion Metrics

>>eval = RegressionEvaluator(labelCol=”Weight”,
predictionCol=”prediction”, metricName=”rmse”)

Root Mean Square Error

>>rmse = eval.evaluate(get_prediction)

>>print(“RMSE: %.3f” % rmse)

Mean Square Error

>>mse = eval.evaluate(get_prediction, {eval.metricName: “mse”})

>>print(“MSE: %.3f” % mse)

Mean Absolute Error

>>mae = eval.evaluate(get_prediction, {eval.metricName: “mae”})

>>print(“MAE: %.3f” % mae)

r2 - coefficient of determination

>>r2 = eval.evaluate(get_prediction, {eval.metricName: “r2”})

>>print(“r2: %.3f” %r2)

Output Snippet of the Ridge Regression Model
This section contains the output snippet of the preceding executed program for
plotting the decision line of ridge regression model. Figure 5.29 displays the data of
dataframe after applying the VectorAsssembler transformation:

Supervised Learning with Spark 227

Figure 5.29: Illustration of data of featureVector

Figure 5.30 displays the predicted value in the form of dataframe:

Figure 5.30: Illustration to show the values of prediction

228 Practical Machine Learning with Spark

Figure 5.31 displays the summary insights, coefficient, and intercept of the trained
model:

Figure 5.31: Illustration of summary insights, coefficient, and intercept of the trained model

Figure 5.32 depicts the graph of the decision line for the ridge regression. This
decision line explains about best fit model based on the minimum residue:

Figure 5.32: Plotting of the decision line of the ridge regression model

Table 5.3 shows the evaluation metrics of the trained ridge regression model. This is
an important step which helps to determine the performance of the trained model
on the testing dataset.

Evaluation metrics Results
RMSE 12.436
MSE 152.654
MAE 9.914

R2 0.849

Table 5.3: Illustrate the evaluation metrics of ridge regression model

Supervised Learning with Spark 229

Elastic-net Regression/L1+L2 Regularization
Elastic-net regression is an outperformed model in terms of accuracy than ridge
and lasso regression. It combines both L1 (lasso) and L2 (ridge) regularization
that correlates the independent variables. The following codebase shows the
implementation of elastic-net regression by leveraging the distributed framework
using Google Colab:

>>%pip install pyspark==3.1.1

>>from pyspark.sql import SparkSession

>>from pyspark.sql import SQLContext

>>from pyspark.ml.feature import StringIndexer

>>from pyspark.ml.evaluation import RegressionEvaluator

>>from pyspark.ml.linalg import Vectors

>>from pyspark.ml.feature import VectorAssembler

>>from pyspark.ml.regression import LinearRegression

>>import seaborn as sns

>>import matplotlib.pyplot as plt

>>import pandas as pd

>>import numpy as np

#Creating Spark application and loading of dataset

>>spark = SparkSession.builder.appName(‘Linear Regression’).
getOrCreate()

>>load_data = spark.read.csv(‘/content/sample_data/weight-height.
csv’,inferSchema=True, header=True)

#To show the loaded dataframe

>>load_data.show()

#Converting into VectorFeature

>>get_assembler =
VectorAssembler(inputCols=[‘Height’],outputCol=’feature’)

>>assembled_data = get_assembler.transform(load_data)

>>assembled_data.show()

>>finalized_data = assembled_data.select(“feature”, “Weight”)

#To show the finalized dataframe

>>finalized_data.show()

#Splitting into training and testing dataset

230 Practical Machine Learning with Spark

>>training_data,testing_data = finalized_data.randomSplit([0.7,0.3])

#Calling of LinearRegression function

>>lr = LinearRegression(featuresCol=”feature”, labelCol=”Weight”,
elasticNetParam=0.5,regParam=0.5,maxIter=50,solver=’normal’)

>>lr_model = lr.fit(training_data)

#Evaluating the model on testing dataset to check the residue of each
point

>>test_results = lr_model.evaluate(testing_data)

>>test_results.residuals.show()

#Testing dataset on lr_model

>>get_prediction = lr_model.transform(testing_data)

>>get_prediction.show()

#Get_training_insights

>>training_data.describe().show()

>>train = training_data.select(“feature”,”Weight”).toPandas()

>>train_get_feature = train[‘feature’]

>>train_get_feature = list(train_get_feature)

>>train_get_salary = train[‘Weight’]

#Training_Prediciton Insights

>>get_training_prediction = lr_model.transform(training_data)

#converting into Spark’s df to Pandas’s df for data visualization

>>train_pred = get_training_prediction.select(“prediction”).toPandas()

>>prediction_train = train_pred[‘prediction’]

>>prediction_list = list(prediction_train)

>>print(prediction_list)

#Testing Insights

>>x = testing_data.select(“feature”,”Weight”).toPandas()

>>x_get = x[‘feature’]

>>y_get = x[‘Weight’]

#Get summary of the model

>>print(“Summary of model is here:”)

>>lr_model.summary

#Getting coefficients and intercept

>>print(“Coefficients: “ + str(lr_model.coefficients))

Supervised Learning with Spark 231

>>print(“Intercept: “ + str(lr_model.intercept))

#Visualization

>>plt.scatter(list(x_get), list(y_get), color = ‘red’)

>>plt.plot(train_get_feature, prediction_list, color = ‘blue’)

>>plt.title(‘Weight vs Height (Test set)’)

>>plt.xlabel(‘Height’)

>>plt.ylabel(‘Weight’)

>>plt.show()

#Evalutaion Metrics

>>eval = RegressionEvaluator(labelCol=”Weight”,
predictionCol=”prediction”, metricName=”rmse”)

Root Mean Square Error

>>rmse = eval.evaluate(get_prediction)

>>print(“RMSE: %.3f” % rmse)

Mean Square Error

>>mse = eval.evaluate(get_prediction, {eval.metricName: “mse”})

>>print(“MSE: %.3f” % mse)

Mean Absolute Error

>>mae = eval.evaluate(get_prediction, {eval.metricName: “mae”})

>>print(“MAE: %.3f” % mae)

r2 - coefficient of determination

>>r2 = eval.evaluate(get_prediction, {eval.metricName: “r2”})

>>print(“r2: %.3f” %r2)

Output Snippet of the Elastic-Net Regression Model
This section contains the output snippet of the preceding executed program for
implementing the elastic-net regression algorithm on training and testing data.
Figure 5.33 displays the summary insights of the trained model:

Figure 5.33: Illustration of summary insights, coefficient, and intercept of the trained model

232 Practical Machine Learning with Spark

Figure 5.34 depicts the graph of the decision line for the elastic-net regression. This
decision line explains about best fit model based on the minimum residue.

Figure 5.34: Plotting of the decision line of the elastic-net regression model

Table 5.4 shows evaluation metrics of the trained elastic-net regression model. This
is an important step which helps to determine the performance of the trained model
on the testing dataset.

Evaluation metrics Results
RMSE 12.246
MSE 149.964
MAE 9.785

R2 0.853

Table 5.4: Illustrate the evaluation metrics of the elastic-net regression model

Generalized Linear Regression (GLR)
In 1972, the term GLR was first described by Nelder and Weduber to understand the
relationship of various distributions with Linear Regression. GLR is an upgraded
version of LR that leverages the functionality of the exponential family of distributions
in the output stage. In SparkML, the GeneralizedLinearRegression() class

Supervised Learning with Spark 233

supports the functionality of GLR where the response variable follows several
distributions such as Poisson, Gaussian, Tweedie, Binomial, and Gamma distribution.
The following codebase explains the way to implement GLR on the distributing
framework using Spark:

>>%pip install pyspark==3.1.1

>>from pyspark.sql import SparkSession

>>from pyspark.sql import SQLContext

>>from pyspark.ml.feature import StringIndexer

>>from pyspark.ml.evaluation import RegressionEvaluator

>>from pyspark.ml.regression import GeneralizedLinearRegression

>>from pyspark.ml.linalg import Vectors

>>from pyspark.ml.feature import VectorAssembler

>>from pyspark.ml.regression import LinearRegression

>>import seaborn as sns

>>import matplotlib.pyplot as plt

>>import pandas as pd

>>import numpy as np

#Creating Spark application and loading of dataset

>>spark = SparkSession.builder.appName(‘Generalized Linear Regression’).
getOrCreate()

>>load_data = spark.read.csv(‘/content/sample_data/weight-height.
csv’,inferSchema=True, header=True)

#Converting into VectorFeature

>>get_assembler =
VectorAssembler(inputCols=[‘Height’],outputCol=’feature’)

>>assembled_data = get_assembler.transform(load_data)

>>finalized_data = assembled_data.select(“feature”, “Weight”)

>>finalized_data = finalized_data.selectExpr(“feature as features”,
“Weight as label”)

234 Practical Machine Learning with Spark

Figure 5.35 displays the implemented code is to initialize, create spark application,
and read a CSV into dataframe:

Figure 5.35: Screenshot of implemented code to initialize,
create spark application, and read a CSV into dataframe

#Splitting into training and testing dataset

>>training_data,testing_data = finalized_data.randomSplit([0.7,0.3])

>>glr = GeneralizedLinearRegression(family=”poisson”, link=”identity”,
maxIter=10, regParam=0.3)

Fit the model

>>glr_model = glr.fit(training_data)

#Evaluating the model on testing dataset to check the residue of each
point

>>test_results = glr_model.evaluate(testing_data)

>>print(test_results)

#Testing dataset on lr_model

>>get_prediction = glr_model.transform(testing_data)

>>get_prediction.show()

#Get_training_insights

>>train = training_data.select(“features”,”label”).toPandas()

>>train_get_feature = train[‘features’]

Supervised Learning with Spark 235

>>train_get_feature = list(train_get_feature)

>>train_get_salary = train[‘label’]

#Training_Prediciton Insights

>>get_training_prediction = glr_model.transform(training_data)

Figure 5.36 shows the way to implement GLR on training and testing dataset:

Figure 5.36: Delineation of implemented code to call GLR, fit, and transform on training and testing dataset

#Converting into Spark’s df to Pandas’s df for data visualization

>>train_pred = get_training_prediction.select(“prediction”).toPandas()

>>prediction_train = train_pred[‘prediction’]

>>prediction_list = list(prediction_train)

>>print(prediction_list)

#Testing Insights

>>x = testing_data.select(“features”,”label”).toPandas()

>>x_get = x[‘features’]

>>y_get = x[‘label’]

#Get summary of the model

>>print(“Summary of model is here:”)

>>glr_model.summary

236 Practical Machine Learning with Spark

Print the coefficients and intercept for generalized linear regression
model

>>print(“Coefficients: “ + str(glr_model.coefficients))

>>print(“Intercept: “ + str(glr_model.intercept))

Figure 5.37 shows the way to convert the Spark’s dataframe into Pandas’s dataframe
for plotting the decision line graph. Also, it shows the summary insights, coefficient,
and intercept of the trained model.

Figure 5.37: Delineation of implemented code to convert dataframe,
get summary, coefficient, and intercept of the trained model

#Visualization

>>plt.scatter(list(x_get), list(y_get), color = ‘red’)

>>plt.plot(train_get_feature, prediction_list, color = ‘blue’)

>>plt.title(‘Weight vs Height (Test set)’)

>>plt.xlabel(‘Height’)

>>plt.ylabel(‘Weight’)

>>plt.show()

#Evalutaion Metrics

>>eval = RegressionEvaluator(labelCol=”label”,
predictionCol=”prediction”, metricName=”rmse”)

Root Mean Square Error

>>rmse = eval.evaluate(get_prediction)

Supervised Learning with Spark 237

>>print(“RMSE: %.3f” % rmse)

Mean Square Error

>>mse = eval.evaluate(get_prediction, {eval.metricName: “mse”})

>>print(“MSE: %.3f” % mse)

Mean Absolute Error

>>mae = eval.evaluate(get_prediction, {eval.metricName: “mae”})

>>print(“MAE: %.3f” % mae)

r2 - coefficient of determination

>>r2 = eval.evaluate(get_prediction, {eval.metricName: “r2”})

>>print(“r2: %.3f” %r2)

Figure 5.38 shows the way to visualize and get the values of evaluation metrics for
the trained model:

Figure 5.38: Illustration of implemented code for visualizing and getting the performance insight

Summarizing the model

summary = glr_model.summary

>>print(“Coefficient Standard Errors: “ + str(summary.
coefficientStandardErrors))

>>print(“T Values: “ + str(summary.tValues))

238 Practical Machine Learning with Spark

>>print(“P Values: “ + str(summary.pValues))

>>print(“Dispersion: “ + str(summary.dispersion))

>>print(“Null Deviance: “ + str(summary.nullDeviance))

>>print(“Residual Degree Of Freedom Null: “ + str(summary.
residualDegreeOfFreedomNull))

>>print(“Deviance: “ + str(summary.deviance))

>>print(“Residual Degree Of Freedom: “ + str(summary.
residualDegreeOfFreedom))

>>print(“AIC: “ + str(summary.aic))

>>print(“Deviance Residuals: “)

>>summary.residuals().show()

Figure 5.39 shows the way to get the summary of the trained model:

Figure 5.39: Implemented code to get the summary insights for the trained model

Output Snippet of the Generalized Linear Regression Model

This section contains the output snippet of the previous program that is executed for
implementing the Generalized Linear Regression algorithm on training and testing
data. Figure 5.40 displays the predicted values in the form of the dataframe:

Supervised Learning with Spark 239

Figure 5.40: Illustration to show the values of prediction

Figure 5.41 highlights the output of coefficient and intercept of the trained model:

Figure 5.41: Illustration of summary insights, coefficient, and intercept of the trained model

Figure 5.42 depicts the graph of the decision line for the Generalized Linear
Regression. This decision line explains about the best fit model based on minimum
residue.

Figure 5.42: Plotting of decision line of GLR model

240 Practical Machine Learning with Spark

Table 5.5 shows evaluation metrics of the trained GLR model. This is an important
step which helps to determine the performance of the trained model on testing
dataset.

Evaluation metrics Results
RMSE 12.440
MSE 154.749
MAE 9.964

R2 0.850

Table 5.5: Illustrate the evaluation metrics of GLR model

Figure 5.43 shows the data related to various metrics of this trained model. This is an
important step which helps to determine the performance of the trained model on
testing dataset.

Figure 5.43: Illustration to display various metrics of the trained model

Supervised Learning with Spark 241

Isotonic Regression/Monotonic Non-Decreasing
Regression/Equal Stretch Regression
The word isotonic comes from the combination of two Greek words iso and tonic,
where iso means equal or the same and tonic means stretching. The isotonic
regression is slightly different from the simple linear regression, as it generates the
monotonic non-decreasing trends among the data points. It is also called as a free
form of linear regression that is used to predict the output based on observations.
SparkML enables a “pool adjacent violators algorithm” which uses an approach
to parallelize the isotonic regression. For training an isotonic regression model,
SparkML requires three columns such as label, features, and weight. The following
codebase explains the way to implement isotonic regression on the distributing
framework using Spark:

>>%pip install pyspark==3.1.1

>>from pyspark.ml.regression import IsotonicRegression

>>from pyspark.sql import SparkSession

>>from pyspark.sql import SQLContext

>>from pyspark.ml.feature import StringIndexer

>>from pyspark.ml.feature import VectorIndexer

>>from pyspark.ml.evaluation import RegressionEvaluator

>>from pyspark.ml.linalg import Vectors

>>from pyspark.ml.feature import VectorAssembler

>>import matplotlib.pyplot as plt

>>import pandas as pd

>>import numpy as np

#Creating Spark application and loading of dataset

>>spark = SparkSession.builder.appName(‘Generalized Linear Regression’).
getOrCreate()

>>load_data = spark.read.csv(‘/content/sample_data/weight-height.
csv’,inferSchema=True, header=True)

#Converting into VectorFeature

>>get_assembler =
VectorAssembler(inputCols=[‘Height’],outputCol=’feature’)

>>assembled_data = get_assembler.transform(load_data)

>>finalized_data = assembled_data.select(“feature”, “Weight”)

242 Practical Machine Learning with Spark

>>finalized_data = finalized_data.selectExpr(“feature as features”,
“Weight as label”)

#Splitting into training and testing dataset

>>training_data,testing_data = finalized_data.randomSplit([0.7,0.3])

>>iso_reg = IsotonicRegression()

Fit the model

>>iso_model = iso_reg.fit(training_data)

#Testing dataset on lr_model

>>get_prediction = iso_model.transform(testing_data)

>>get_prediction.show()

#Get_training_insights

>>train = training_data.select(“features”,”label”).toPandas()

>>train_get_feature = train[‘features’]

>>train_get_feature = list(train_get_feature)

>>train_get_salary = train[‘label’]

#Training_Prediciton Insights

>>get_training_prediction = iso_model.transform(training_data)

#converting into Spark’s df to Pandas’s df for data visualization

>>train_pred = get_training_prediction.select(“prediction”).toPandas()

>>prediction_train = train_pred[‘prediction’]

>>prediction_list = list(prediction_train)

>>print(prediction_list)

#Testing Insights

>>x = testing_data.select(“features”,”label”).toPandas()

>>x_get = x[‘features’]

>>y_get = x[‘label’]

#Visualization

>>plt.scatter(list(x_get), list(y_get), color = ‘red’)

>>plt.plot(train_get_feature, prediction_list, color = ‘blue’)

>>plt.title(‘Weight vs Height (Test set)’)

>>plt.xlabel(‘Height’)

>>plt.ylabel(‘Weight’)

Supervised Learning with Spark 243

>>plt.show()

#Evalutaion Metrics

>>eval = RegressionEvaluator(labelCol=”label”,
predictionCol=”prediction”, metricName=”rmse”)

Root Mean Square Error

>>rmse = eval.evaluate(get_prediction)

>>print(“RMSE: %.3f” % rmse)

Mean Square Error

>>mse = eval.evaluate(get_prediction, {eval.metricName: “mse”})

>>print(“MSE: %.3f” % mse)

Mean Absolute Error

>>mae = eval.evaluate(get_prediction, {eval.metricName: “mae”})

>>print(“MAE: %.3f” % mae)

r2 - coefficient of determination

>>r2 = eval.evaluate(get_prediction, {eval.metricName: “r2”})

>>print(“r2: %.3f” %r2)

Output Snippet of the Isotonic Regression Model
This section contains the output snippet of the preceding program that is executed
for implementing the isotonic regression algorithm on training and testing data.
Figure 5.44 displays the predicted values in the form of the dataframe:

Figure 5.44: Illustration to show the values of prediction

244 Practical Machine Learning with Spark

Figure 5.45 depicts the graph of the decision line for the isotonic regression. This
decision line explains the best fit model based on minimum residue:

Figure 5.45: Plotting of decision line of Isotonic Regression model

Table 5.6 shows the data related to evaluation metrics of the trained isotonic regression
model. This is an important step which helps to determine the performance of the
trained model on the testing dataset.

Evaluation metrics Results
RMSE 12.248
MSE 150.017
MAE 9.803

R2 0.852

Table 5.6: Illustrate the evaluation metrics of the Isotonic Regression model

Classification and its Types
Classification is used for grouping of objects based on the understanding of object
patterns with respective classes or categories. In other words, it is a special type
of classification-based supervised learning that returns the discreate outputs
(prediction) based on the actual observations. The most common example of
classification is filtering e-mails into spam or non-spam classes. Also, it is being

Supervised Learning with Spark 245

implemented for classification of image patterns or objects from the images/videos.
There are several types of classification algorithms such as logistic regression, naïve
bayes, support vector machine, multilayer perceptron classifier, and one-versus-rest
classifier. The detailed explanation on each algorithm is given as follows.

Naive Bayes Classifier
It is a particular type of classification algorithm in which the class features are
independent to each other. In other words, the feature present within the class is
unrelated to the presence of other features in other classes. This approach is driven
out from the probabilistic problem based on bayes theory. It is a very promising
algorithm that works efficiently and produces high precision output, a part of other
classification algorithms. SparkML supports four model types for training the data
using the Naïve Bayes theorem such as Multinomial Naive Bayes, Complement
naive bayes, Bernoulli Naive Bayes, and Gaussian Naive Bayes. Also, it extends the
intrinsic functionality to add the additive smoothing parameter by setting the value
of λ. The standard mathematical formula of the naïve bayes algorithm is given as
follows:

Where P(c|x) is the posterior probability, P(c) is the prior probability of class, P(x|c)
is the likelihood which is the probability of the predictor given class and P(x) is the
marginal likelihood.

Explanation of Naïve Bayes
This section explains the working mechanism of the naïve bayes algorithm by taking
a real-world example. The entire working is divided into 4 steps which are given as
follows:

1. In Figure 5.46, there are two classes of 27 balls in which the red balls are 9 and
the rest green balls are 18. Also, these groups are distinguished based on the

246 Practical Machine Learning with Spark

different weight and size. The size and weight represent along X-axis and
Y-axis, respectively.

Figure 5.46: Representation of two classes of data points in xy-plane

2. Figure 5.47 shows the challenge to add a new ball to the cluster of existing
balls which is unknown about color and other distinguished parameters.
Here, the new ball is represented by grey color and for finding the likelihood
of this ball between green and red classification is explained in the next step.

Figure 5.47: Adding a new ball in the existing cluster of two classes

Supervised Learning with Spark 247

3. For that purpose, draw a circle taking new ball as a center. Inside the drawn
circle, there are two green balls and three red balls excluding the new ball as
shown in Figure 5.48. The posterior probability will be calculated by naïve
bayes formula as given here.

Figure 5.48: Drawing a circle by taking the center of a new ball

Posterior probability for red balls:

Posterior probability for green balls:

248 Practical Machine Learning with Spark

4. By the comparison of posterior probability of both balls, the posterior
probability of red color is greater than the posterior probability of green
color. Thus, the color of the new ball is red as shown in Figure 5.49:

Figure 5.49: Representing the color of the new ball

The following codebase explains the way to implement the naïve bayes classifier on
the distributing framework using Apache Spark:

>>%pip install pyspark==3.1.1

>>from pyspark.ml.classification import NaiveBayes

>>from pyspark.ml.evaluation import MulticlassClassificationEvaluator

>>from pyspark.sql import SparkSession

>>from pyspark.sql import SQLContext

>>from pyspark.ml.feature import StringIndexer

>>from pyspark.ml.evaluation import RegressionEvaluator

>>from pyspark.ml.linalg import Vectors

>>from pyspark.ml.feature import VectorAssembler

>>import matplotlib.pyplot as plt

>>import pandas as pd

>>import numpy as np

#Creating Spark application and loading of dataset

Supervised Learning with Spark 249

>>spark = SparkSession.builder.appName(‘Naive Bayes Regression’).
getOrCreate()

>>load_data = spark.read.csv(‘/content/sample_data/weight-height.
csv’,inferSchema=True, header=True)

#To show the loaded dataframe

>>load_data.show(5)

>>indexer = StringIndexer(inputCol=’Gender’, outputCol=’label’)

>>load_data = indexer.fit(load_data).transform(load_data)

#Converting into VectorFeature

>>get_assembler = VectorAssembler(inputCols=[‘Height’,
‘Weight’],outputCol=’features’)

>>assembled_data = get_assembler.transform(load_data)

>>assembled_data.show(5)

>>finalized_data = assembled_data.select(“features”, “label”)

#To show the finalized dataframe

>>finalized_data.show(5)

#Splitting into training and testing dataset

>>training_data,testing_data = finalized_data.randomSplit([0.7,0.3])

create the trainer and set its parameters

>>nb = NaiveBayes(smoothing=1.0, modelType=”multinomial”)

train the model

>>model = nb.fit(training_data)

select example rows to display.

>>predictions = model.transform(testing_data)

>>predictions.show(5)

compute accuracy on the test set

>>evaluator = MulticlassClassificationEvaluator(labelCol=”label”,
predictionCol=”prediction”, metricName=”accuracy”)

>>accuracy = evaluator.evaluate(predictions)

>>print(“Accuracy = “ + str(accuracy))

Output Snippet of the Naïve Bayes Model
This section contains the output snippet of the preceding executed program for
implementing the naïve bayes classifier algorithm on training and testing data.

250 Practical Machine Learning with Spark

Figure 5.50 displays the data of the dataframe after reading the CSV and applying
the VectorAssembler transformation:

Figure 5.50: Illustration to show data of dataframe

Figure 5.51 displays the prediction value of the trained naïve bayes algorithm:

Figure 5.51: Illustration to show predicted values

Supervised Learning with Spark 251

Logistic Regression
Logistic Regression is a SL-based binary classification algorithm for classifying the
classes by using the Sigmoid function. The continuous output of sigmoid function
is classified into binary classes/multiple classes by applying a specific threshold
value as shown in Figure 5.53. The output probability above that threshold should be
marked as class 1 and rest of the probability will fall in class 0. This method was first
implemented in the domain of biology in 20th century; after that implementation, this
method became popular for being a promising approach for classifying the events
in every vertical. The following equation is used to represent a logistic regression
model:

Here Y is the probability of an event to happen which readers want to predict (Yi),
where i = 1,2,3...n. are the independent variables which determine the occurrence of
an event. B0 is the constant term which will be the probability of the event happening
when no other factors are considered and Bi where i = 1,2, 3,…,n are the regression
coefficients. There are two types of logistic regression algorithms.

•	 Binary Logistic Regression: This algorithm is used when the Y variable is
comprised two categories.

•	 Multinomial Logistic Regression: When the Y variable comprises three or
more than three categories, this logistic regression version is used.

Explanation of Logistic Regression
This section explains the working mechanism of the logistic regression algorithm by
taking a real-world example. The entire working is divided into 2 steps which are
given as follows:

1. Figure 5.52 represents binary prediction classes such as Employees who left
the Company and Employees did not leave the Company by considering two
parameters that are Experience and Probability of promotion lying along X- and
Y-axis, respectively. The dotted LR line cuts two horizontal lines at 11 (y=0)
and 12 (y=1) assuming the point l1 shows 5 years and the point 12 shows 25
years of working experience. From the given figure, it is quite clear that the
left side of data points of point l1 and right side of data points of point l2 are

252 Practical Machine Learning with Spark

unable to find the prediction values because those values don’t fall between
the probability value of 0 and 1.

Figure 5.52: Logistic regression representation to show two parameters on xy plane

2. To overcome the problem discussed earlier, the sigmoid function is used to
find the prediction of all the outliers which were missing in the preceding
figure. By taking the mean of the probability as shown in Figure 5.53 is used
to increase the accuracy during classification. If the probability of any data
points ranges between 0 to 0.5, then the model will fall that point in class 0
and the probability above 0.5 of any data points will fall in class 1. With the
help both classes, that is, 0 and 1 classify the employee whether not left or
left the organization.

Figure 5.53: Sigmoid function in the logistic regression for classifying the binary classes

Supervised Learning with Spark 253

The following codebase explains the way to implement logistic regression on the
distributing framework using Spark:

>>%pip install pyspark==3.1.1

>>from pyspark.ml.classification import LogisticRegression

>>from pyspark.sql import SparkSession

>>from pyspark.sql import SQLContext

>>from pyspark.ml.feature import StringIndexer

>>from pyspark.ml.evaluation import RegressionEvaluator

>>from pyspark.ml.linalg import Vectors

>>from pyspark.ml.feature import VectorAssembler

>>from pyspark.ml.regression import LinearRegression

>>import seaborn as sns

>>import matplotlib.pyplot as plt

>>import pandas as pd

>>import numpy as np

#Creating Spark application and loading of dataset

>>spark = SparkSession.builder.appName(‘Logistic Regression’).
getOrCreate()

>>load_data = spark.read.csv(‘/content/sample_data/weight-height.
csv’,inferSchema=True, header=True)

#To show the loaded dataframe

>>load_data.show(5)

#To convert stringintovector

>>indexer = StringIndexer(inputCol=’Gender’, outputCol=’label’)

>>final_data = indexer.fit(load_data).transform(load_data)

#Converting into VectorFeature

>>get_assembler = VectorAssembler(inputCols=[‘Height’,
‘Weight’],outputCol=’features’)

>>assembled_data = get_assembler.transform(final_data)

>>assembled_data.show(5)

>>finalized_data = assembled_data.select(“features”, “label”)

#To show the finalized dataframe

>>finalized_data.show(5)

#Splitting into training and testing dataset

>>training_data,testing_data = finalized_data.randomSplit([0.7,0.3])

254 Practical Machine Learning with Spark

Load training data

>>lr = LogisticRegression(maxIter=150, regParam=0.3,
elasticNetParam=0.4)

Fit the model

>>lrModel = lr.fit(training_data)

>>get_result = lrModel.transform(testing_data)

>>get_result.show(5)

Print the coefficients and intercept for multinomial logistic
regression

>>print(“Coefficients: \n” + str(lrModel.coefficientMatrix))

>>print(“Intercept: “ + str(lrModel.interceptVector))

>>trainingSummary = lrModel.summary

Obtain the objective per iteration

>>ObjHist = trainingSummary.objectiveHistory

>>print(“ObjHist:”)

>>for obj in ObjHist:

>> print(obj)

for multiclass, we can inspect metrics on a per-label basis

>>print(“False positive rate by label:”)

>>for i, rate in enumerate(trainingSummary.falsePositiveRateByLabel):

>> print(“label %d: %s” % (i, rate))

>>print(“True positive rate by label:”)

>>for i, rate in enumerate(trainingSummary.truePositiveRateByLabel):

 >> print(“label %d: %s” % (i, rate))

>>print(“Precision by label:”)

>>for i, prec in enumerate(trainingSummary.precisionByLabel):

>> print(“label %d: %s” % (i, prec))

>>print(“Recall by label:”)

for i, rec in enumerate(trainingSummary.recallByLabel):

 print(“label %d: %s” % (i, rec))

print(“F-measure by label:”)

for i, f in enumerate(trainingSummary.fMeasureByLabel()):

 print(“label %d: %s” % (i, f))

accuracy = trainingSummary.accuracy

falsePositiveRate = trainingSummary.weightedFalsePositiveRate

Supervised Learning with Spark 255

truePositiveRate = trainingSummary.weightedTruePositiveRate

fMeasure = trainingSummary.weightedFMeasure()

precision = trainingSummary.weightedPrecision

recall = trainingSummary.weightedRecall

print(“Accuracy: %s\nFPR: %s\nTPR: %s\nF-measure: %s\nPrecision: %s\
nRecall: %s”

 % (accuracy, falsePositiveRate, truePositiveRate, fMeasure,
precision, recall))

#Visualize ROC Curve

import matplotlib.pyplot as plt

plt.figure(figsize=(5,5))

plt.plot([0, 1], [0, 1], ‘r--’)

plt.plot(lrModel.summary.roc.select(‘FPR’).collect(),

 lrModel.summary.roc.select(‘TPR’).collect())

plt.xlabel(‘FPR’)

plt.ylabel(‘TPR’)

plt.show()

Output Snippet of the Logistic Regression Model

This section contains the output snippet of the preceding executed program for
implementing the logistic regression on training and testing data. Figure 5.54 displays
the data of the dataframe after reading the CSV and applying the VectorAssembler
transformation:

Figure 5.54: Illustration to show the data of dataframe by reading a CSV and transforming VectorAssembler

256 Practical Machine Learning with Spark

Figure 5.55 displays the data of predicted values against each label row:

Figure 5.55: Illustration to value of prediction

Figure 5.56 shows the summary insights of this trained logistic regression model:

Figure 5.56: Summary insight of the trained model

Supervised Learning with Spark 257

Figure 5.57 shows the evaluation metrics of this trained logistic regression model:

Figure 5.57: Illustration of evaluation metrics of the trained logistic regression model

Figure 5.58 shows the AUC curve of the trained model. It represents the performance
of logistic regression to classify the two classes by plotting against TPR and FPR.

Figure 5.58: AUC curve of the trained model

258 Practical Machine Learning with Spark

Support Vector Machine (SVM)
SVM can be used for both regression and classification problems but majorly
recommended to handle the classification problems by using the concept hyperplane
based on maximum margin. The hyperplane can be found in an N-dimensional space
for classifying the input data points in different classes. The subset of SVM is called
Support Vector Regressor (SVR) for solving the regression problems. There are four
types of SVMs such as Linear Support Vector Machine (LSVM), Quadratic Support
Vector Machine (QSVM), Radial Basis Function Kernel (RBFK), and Kernel
Support Vector Machine (KSVM) for handling the linear and non-linear problems
to separate the classes. But in this section, authors have catered two sub-types such
as LSVM and KSVM. In LSVM, it draws a linear hyperplane to classify the events
and in KSVM, it draws a non-linear hyperplane to provide the better accuracy-based
classification. SparkML support Linear SVC to support binary classification with
linear SVM which optimizes the Hinge Loss using Orthant-Wise Limited-Memory
Quasi-Newton (OWLQN) optimizer.

The following codebase explains the way to implement SVM on the distributing
framework using Spark:

>>%pip install pyspark==3.1.1
>>from pyspark.ml.classification import LinearSVC
>>from pyspark.ml.evaluation import MulticlassClassificationEvaluator
>>from pyspark.sql import SparkSession
>>from pyspark.sql import SQLContext
>>from pyspark.ml.feature import StringIndexer
>>from pyspark.ml.evaluation import RegressionEvaluator
>>from pyspark.ml.linalg import Vectors
>>from pyspark.ml.feature import VectorAssembler
>>import matplotlib.pyplot as plt
>>import pandas as pd
>>import numpy as np
#Creating Spark application and loading of dataset
>>spark = SparkSession.builder.appName(‘LSVM Regression’).getOrCreate()
>>load_data = spark.read.csv(‘/content/sample_data/weight-height.
csv’,inferSchema=True, header=True)
#To show the loaded dataframe
>>load_data.show()
>>indexer = StringIndexer(inputCol=’Gender’, outputCol=’label’)
>>load_data = indexer.fit(load_data).transform(load_data)
#Converting into VectorFeature

Supervised Learning with Spark 259

>>get_assembler = VectorAssembler(inputCols=[‘Height’,
‘Weight’],outputCol=’features’)
>>assembled_data = get_assembler.transform(load_data)
>>assembled_data.show(5)
>>finalized_data = assembled_data.select(“features”, “label”)
#To show the finalized dataframe
>>finalized_data.show(5)
#Splitting into training and testing dataset
>>training_data,testing_data = finalized_data.randomSplit([0.7,0.3])
create the trainer and set its parameters
>>svmc = LinearSVC(maxIter=200, regParam=0.7)
train the model
>>svmc_model = svmc.fit(training_data)
select example rows to display.
>>predictions = svmc_model.transform(testing_data)
>>predictions.show(5)
compute accuracy on the test set
>>evaluator = MulticlassClassificationEvaluator(labelCol=”label”,
predictionCol=”prediction”, metricName=”accuracy”)
>>accuracy = evaluator.evaluate(predictions)
>>print(“Accuracy = “ + str(accuracy))

Output Snippet of the SVM Model
This section contains the output snippet of the preceding executed program for
implementing the SVM on training and testing data. Figure 5.59 displays the data of
dataframe after reading the CSV:

Figure 5.59: Illustration to show the data of created dataframe after reading a CSV

260 Practical Machine Learning with Spark

Figure 5.60 displays the feature data after applying the VectorAssembler
transformation:

Figure 5.60: Illustration to display the data after applying the VectorAssembler transformation

Figure 5.61 displays the predicted values of the trained SVM model:

Figure 5.61: Illustration to show the predicted value

Multilayer Perceptron Classifier (MLPC)
The Multilayer Perceptron Classifier is a feed-forward based NN classifier for
classifying the classes of data points by observing the labels assigned to them.
Generally, it consists of the input layer, multiple hidden layers, output layer, and few
parametric components such as weights, biases, and activation functions for making
the decision. SparkML provides the Multilayer Perceptron Classifier class to
extend the functionality of NN-based classification on the distributed processing.
In MPLC, the first parameter of the layer represents the number of features and

Supervised Learning with Spark 261

the last parameter shows the number of classes to be used for prediction. Between
the first and last layer of NN, the intermediate layers are interlinked to each other
and used to feed-forward propagation. The following codebase explains the way to
implement the multilayer perceptron classifier on the distributing framework using
Spark:

>>%pip install pyspark==3.1.1

>>from pyspark.ml.classification import MultilayerPerceptronClassifier

>>from pyspark.ml.evaluation import MulticlassClassificationEvaluator

>>from pyspark.ml.classification import GBTClassifier

>>from pyspark.sql import SparkSession

>>from pyspark.sql import SQLContext

>>from pyspark.ml.feature import VectorAssembler

>>from pyspark.ml.feature import StringIndexer

>>from pyspark.ml.feature import VectorIndexer

>>from pyspark.ml.evaluation import BinaryClassificationEvaluator

>>from pyspark.ml.evaluation import MulticlassClassificationEvaluator

>>import pandas as pd

>>import numpy as np

>>import matplotlib.pyplot as plt

>>import io

#Spark’s application and loading of dataset

>>spark = SparkSession.builder.appName(‘Gradient Boosted Tree
Classifier’).getOrCreate()

>>data = spark.read.csv(‘/content/sample_data/cancerdata.
csv’,inferSchema=True, header=True)

#Dropping the rows that contains “Null Value”

>>data = data.dropna()

#Show the columns of dataframe

>>data.columns

#Converting the datatype into double or int

>>converteddata = data.selectExpr(“cast(age as int) age”,

 “cast(education as int) education”,

 “cast(currentSmoker as double) currentSmoker”,

 “cast(TenYearCHD as double) TenYearCHD”,

262 Practical Machine Learning with Spark

 “cast(male as int) gender”,

 “cast(cigsPerDay as double) cigsPerDay”,

 “cast(BPMeds as double) BPMeds”,

 “cast(prevalentStroke as double) prevalentStroke”,

 “cast(prevalentHyp as double) prevalentHyp”,

 “cast(diabetes as double) diabetes”,

 “cast(totChol as double) totChol”,

 “cast(sysBP as double) sysBP”,

 “cast(diaBP as double) diaBP”,

 “cast(BMI as double) BMI”,

 “cast(eartrate as double) eartrate”,

 “cast(glucose as double) glucose”)

#Key features selection and converting into vectors

>>converteddata.dropna()

>>assembler = VectorAssembler(inputCols=[‘age’, ‘education’,
‘currentSmoker’, ‘gender’,’glucose’,’diabetes’],outputCol=’features’)

>>get_output = assembler.transform(converteddata)

>>get_output.printSchema()

>>finalized_data = get_output.select(“features”, “TenYearCHD”)

>>finalized_data = finalized_data.selectExpr(“features”, “TenYearCHD as
label”)

>>training_data, testing_data = finalized_data.randomSplit([0.7,0.3])

#The input represents the number of features to be used for training a
model

Last element in layers represents the number of classes to be used for
output

Between first and last elements of layers must be for intermediate
processing

>>trainer = MultilayerPerceptronClassifier(maxIter=150, layers=[6, 5 , 4,
6, 4, 2], blockSize=64, seed=50)

training and testing of the model

>>model = trainer.fit(training_data)

>>result = model.transform(testing_data)

>>result.show(5)

Supervised Learning with Spark 263

#Evaluation

>>predictionAndLabels = result.select(“prediction”, “label”)

>>evaluator = MulticlassClassificationEvaluator(metricName=”accuracy”)

>>print(“Test set accuracy = “ + str(evaluator.
evaluate(predictionAndLabels)))

Output Snippet of the MLPC Model
This section contains the output snippet of this program that is executed for
implementing the MLPC on training and testing data. Figure 5.62 displays the data
of the dataframe after reading the CSV:

Figure 5.62: Illustration to show the schema of dataframe after reading the CSV

Figure 5.63 displays the data of predicted values against each label row:

Figure 5.63: Illustration to show the predicted values

One versus Rest Classifier/Multi-classification Logistic Regression
One versus rest classifier is also known as multi-classification logistic regression. As
the name suggests that this classification algorithm is used to classify the multi-class

264 Practical Machine Learning with Spark

labels from the categorical datasets. It is similar to the logistic regression, but this is
capable to classify more than two classes of different labels. For distinguishing the n
multiple classes, it trains a binary classification-based model for each of the n classes
by assuming one class as the positive category and all the other classes as negative
category. For instance, if the input dataset has four types of labels to classify the
classes, then one vs rest classifier algorithm trains four binary classification models
by applying the several combinations of positive and negative classes. This algorithm
considers one class as positive and the other three classes as negative and performs
the same for each combination. After training the four models, the prediction is made
by considering the best confident model. The following codebase explains the way
to implement one versus rest classifier on the distributing framework using Spark:

>>%pip install pyspark==3.1.1

>>from pyspark.ml.classification import LogisticRegression, OneVsRest

>>from pyspark.ml.evaluation import MulticlassClassificationEvaluator

>>from pyspark.sql import SparkSession

>>from pyspark.sql import SQLContext

>>from pyspark.ml.feature import VectorAssembler

#Spark’s application and loading of dataset

>>spark = SparkSession.builder.appName(‘Gradient Boosted Tree
Classifier’).getOrCreate()

>>data = spark.read.csv(‘/content/sample_data/cancerdata.
csv’,inferSchema=True, header=True)

#Dropping the rows that contains “Null Value”

>>data = data.dropna()

#Show the columns of dataframe

>>data.columns

#Converting the datatype into double or int

>>converteddata = data.selectExpr(“cast(age as int) age”,

 “cast(education as int) education”,

 “cast(currentSmoker as double) currentSmoker”,

 “cast(TenYearCHD as double) TenYearCHD”,

 “cast(male as int) gender”,

 “cast(cigsPerDay as double) cigsPerDay”,

 “cast(BPMeds as double) BPMeds”,

 “cast(prevalentStroke as double) prevalentStroke”,

Supervised Learning with Spark 265

 “cast(prevalentHyp as double) prevalentHyp”,

 “cast(diabetes as double) diabetes”,

 “cast(totChol as double) totChol”,

 “cast(sysBP as double) sysBP”,

 “cast(diaBP as double) diaBP”,

 “cast(BMI as double) BMI”,

 “cast(heartRate as double) heartRate”,

 “cast(glucose as double) glucose”)

#Key features selection and converting into vectors

>>converteddata.dropna()

>>assembler = VectorAssembler(inputCols=[‘age’, ‘education’,
‘currentSmoker’, ‘gender’,’glucose’,’diabetes’],outputCol=’features’)

>>get_output = assembler.transform(converteddata)

>>get_output.printSchema()

>>finalized_data = get_output.select(“features”, “TenYearCHD”)

>>finalized_data = finalized_data.selectExpr(“features”, “TenYearCHD as
label”)

>>training_data, testing_data = finalized_data.randomSplit([0.7,0.3])

Initializing the classifier base

>>lr_base = LogisticRegression(maxIter=100, tol=1E-6, fitIntercept=True,
elasticNetParam=0.6)

Initializing the One Vs Rest Classifier

>>ovr_base = OneVsRest(classifier=lr_base,featuresCol=’features’,
labelCol=’label’)

>>print(type(ovr_base))

train the multiclass model.

>>trained_model_ovr = ovr.fit(training_data)

tranforming operation on testing dataset

>>get_predictions = trained_model_ovr.transform(testing_data)

>>get_data = get_predictions.select(“features”,”label”, “prediction”)

>>get_data.show(5)

Evaluating the model

>>evaluator = MulticlassClassificationEvaluator(metricName=”accuracy”)

266 Practical Machine Learning with Spark

Accuracy calculation on testing dataset

>>accuracy = evaluator.evaluate(get_predictions)

>>print(“Test Error = %g”,(accuracy))

Output Snippet of the One versus Rest Classifier Model
This section contains the output snippet of the preceding executed program for
implementing the one versus rest classifier on training and testing data. Figure 5.64
displays the schema of the dataframe after reading the CSV:

Figure 5.64: Illustration to show the schema of dataframe after reading the CSV

Figure 5.65 displays the data of predicted values against each label row and error of
this model:

Figure 5.65: Illustration to show the predicted values and test error

Supervised Learning with Spark 267

Classification and Regression Tree (CART)
The statistician Leo Breiman filled the big crevasse in the integration of statistics
and computer interface. He suggested the decision tree and other improved version
of decision trees which are being implemented on classification and regression
problems. This concept provided the foundation stone to develop other imperative
algorithms in the series of trees like bagged decision, random forest, and boosted
decision tree. The CART model works on the mechanism of binary tree. In which,
each root node represents a single input value (x) and the leaf nodes of the tree
contain an output variable(y) that should be used for prediction.

Terminology in CART
Generally, there are seven indispensable terminologies which are being used for
designing and implementing the CART such as root node, splitting mechanism, leaf
or terminal node, pruning, branch or sub-tree, parent, and child node. The deep dive
explanation on these terminologies is given as follows:

•	 Root Node: The decision tree starts with the first node.

•	 Splitting: It is a division process to split the parent node into child nodes
using the Gini Impurity mechanism. Gini Impurity is a splitting approach
which is usually used in decision tree for optimal splitting of nodes from the
root.

•	 Leaf/Terminal Node: The last node which can’t be split further.

•	 Pruning: It is an optimization technique to alleviate the complexity of the DT
by eliminating extra sub-nodes to curtail the issue of overfitting. Hence, this
step can boost the performance of the DT in terms of accuracy.

•	 Branch/Sub-tree: The subsection of parent node is called branch or sub-tree.

•	 Parent Node: A node that can be divided into further nodes.

•	 Child Node: The sub-nodes from the parent node.

Decision Tree (DT)
Basically, the DT is a binary and non-parametric approach in supervised learning.
DT can be implemented as classification and regression trees by leveraging the
concept of Gini Impurity during the splitting process of the dataset into further sub-
trees. There are so many algorithms for creating the decision tree such as Iterative
Dichotomiser 3 (ID3), C4.5, Classification And Regression Tree (CART), Chi-Square
Automatic Interaction Detector (CHAID), and Multivariate Adaptive Regression
Splines (MARS).

268 Practical Machine Learning with Spark

Decision Tree Classification (DTC) in CART
DTC is used predict the label of each class based on their classification score and
returns the discreate output. The splitting of the dataset into the decision tree
can be possible by leveraging the several splitting criteria such as Gini Impurity
(GI), Entropy, and Misclassification Error (ME). The splitting of DT is based on
Information Gain (IG), that is, the difference of the parent node’s impurity and
impurities of the sum of the child nodes. Therefore, the IG is large if the impurity
of child nodes is less. The following code shows the implementation of DTC on the
distributed framework using Google Colab:

>>%pip install pyspark==3.1.1

>>from pyspark.ml.classification import RandomForestClassifier

>>from spark_tree_plotting import plot_tree

>>from pyspark.sql import SparkSession

>>from pyspark.sql import SQLContext

>>from pyspark.ml.feature import VectorAssembler

>>from pyspark.ml.feature import StringIndexer

>>from pyspark.ml.regression import DecisionTreeRegressor

>>from pyspark.ml.feature import VectorIndexer

>>from pyspark.ml.evaluation import RegressionEvaluator

>>from pyspark.ml.classification import DecisionTreeClassifier

>>from pyspark.ml.evaluation import BinaryClassificationEvaluator

>>from pyspark.ml.evaluation import MulticlassClassificationEvaluator

>>from spark_tree_plotting import plot_tree

>>from spark_tree_plotting import export_graphviz

>>from PIL import Image

>>import pandas as pd

>>import numpy as np

>>import matplotlib.pyplot as plt

>>import io

Figure 5.66 depicts the implementation of the previous code in Google Colab to
initialize the required SparkML modules:

Supervised Learning with Spark 269

Figure 5.66: Illustration to show the way to initialize all the important SparkML modules

#Spark’s application and loading of dataset
>>spark = SparkSession.builder.appName(‘trees’).getOrCreate()
>>data = spark.read.csv(‘/content/sample_data/cancerdata.
csv’,inferSchema=True, header=True)
#Dropping the rows that contains “Null Value”
>>data = data.dropna()
#Show the columns of dataframe
>>data.columns
#Converting the datatype into double or int
>>converteddata = data.selectExpr(“cast(age as int) age”,
 “cast(education as int) education”,
 “cast(currentSmoker as double) currentSmoker”,
 “cast(TenYearCHD as double) TenYearCHD”,
 “cast(male as int) gender”,
 “cast(cigsPerDay as double) cigsPerDay”,
 “cast(BPMeds as double) BPMeds”,
 “cast(prevalentStroke as double) prevalentStroke”,
 “cast(prevalentHyp as double) prevalentHyp”,
 “cast(diabetes as double) diabetes”,
 “cast(totChol as double) totChol”,
 “cast(sysBP as double) sysBP”,

270 Practical Machine Learning with Spark

 “cast(diaBP as double) diaBP”,
 “cast(BMI as double) BMI”,
 “cast(eartrate as double) eartrate”,
 “cast(glucose as double) glucose”)
#Key features selection and converting into vectors
>>converteddata.dropna()
>>assembler = VectorAssembler(inputCols=[‘age’, ‘education’,
‘currentSmoker’, ‘gender’,’glucose’,’diabetes’],outputCol=’get_feature’)
>>get_output = assembler.transform(converteddata)
>>get_output.printSchema()
>>finalized_data = get_output.select(“get_feature”, “TenYearCHD”)
>>training_data, testing_data = finalized_data.randomSplit([0.7,0.3])
>>dtc = DecisionTreeClassifier(labelCol=”TenYearCHD”, featuresCol=”get_
feature”)
>>dtc_model = dtc.fit(training_data)
>>dtc_preds = dtc_model.transform(testing_data)
>>dtc_preds.show()

Figure 5.67 depicts the implementation of the preceding code in Google Colab to
create the application, read a CSV into dataframe, and convert into datatype into a
vector format as a feature:

Figure 5.67: Illustration to show create the spark application and
convert the datatype into VectorFeature

Supervised Learning with Spark 271

Figure 5.68 depicts the implementation of this code in Google Colab to train and test
the DTC model:

Figure 5.68: Illustration to show the training and testing of the model

#evaluation Matrix

>>evaluator = MulticlassClassificationEvaluator(labelCol=”TenYearCHD”,
predictionCol=”prediction”, metricName=”accuracy”)

>>accuracy = evaluator.evaluate(dtc_preds)

>>print(“Accuracy:”, accuracy)

#Get summary of model and tree structure

>>treeModel = dtc_model

>>print(treeModel)

>>print(dtc_model.toDebugString)

Visualising the graph

>>dec_tree = plot_tree(dtc_model, featureNames = [‘age’, ‘education’,
‘currentSmoker’, ‘gender’,’glucose’,’diabetes’], classNames=[0,1], filled
= True)

>>image = Image.open(io.BytesIO(dec_tree))

>>path_for_image = “/content/output”

>>image_name = path_for_image + “_” + “.png”

>>image.save(image_name)

272 Practical Machine Learning with Spark

Figure 5.69 depicts the implementation of this code in Google Colab to evaluate the
trained model:

Figure 5.69: Illustration to show the evaluation of this trained DTC model

Output Snippet of the DTC Model

This section contains the output snippet of this program that is executed for
implementing the DTC on the training and testing data. Figure 5.70 displays the
schema of the dataframe after reading the CSV:

Figure 5.70: Illustration to show the schema of dataframe after reading the CSV

Supervised Learning with Spark 273

Figure 5.71 displays the data of predicted values against each label row:

Figure 5.71: Illustration to show the predicted values

Figure 5.72 displays key summaries of the trained DTC model:

Figure 5.72: Illustration to summary of the trained DTC model

274 Practical Machine Learning with Spark

Figure 5.73 displays the tree diagram of the trained DTC model for classifying the
data points:

Figure 5.73: The tree diagram of the trained DTC model

Decision Tree Regression (DTR)
DTR is used to predict the labels for the target dataset and returns the continuous
output. The splitting of the dataset into the decision tree regression can be possible
by leveraging the several splitting criteria such as least squares and least absolute
deviations. The following code shows the implementation of DTR on the distributed
framework using Google Colab:

>>%pip install pyspark==3.1.1

>>from pyspark.ml.regression import DecisionTreeRegressor

>>from pyspark.sql import SparkSession

>>from pyspark.sql import SQLContext

>>from pyspark.ml.feature import StringIndexer

>>from pyspark.ml.linalg import Vectors

>>from pyspark.ml.regression import GBTRegressor

>>from pyspark.ml.feature import VectorIndexer

>>from pyspark.ml.evaluation import RegressionEvaluator

>>from pyspark.ml.feature import VectorAssembler

>>import matplotlib.pyplot as plt

Supervised Learning with Spark 275

>>import pandas as pd

>>import numpy as np

#Creating Spark application and loading of dataset

>>spark = SparkSession.builder.appName(‘Linear Regression’).
getOrCreate()

>>load_data = spark.read.csv(‘/content/sample_data/weight-height.
csv’,inferSchema=True, header=True)

#To show the loaded dataframe

>>load_data.show()

#Converting into VectorFeature

>>get_assembler =
VectorAssembler(inputCols=[‘Weight’],outputCol=’features’)

>>assembled_data = get_assembler.transform(load_data)

>>assembled_data.show()

>>finalized_data = assembled_data.selectExpr(“features”, “Height as
label”)

>>finalized_data = finalized_data.select(“features”, “label”)

#To show the finalized dataframe

>>finalized_data.show()

>>training_data,testing_data = finalized_data.randomSplit([0.7,0.3])

>>dtr = DecisionTreeRegressor(featuresCol=”features”, maxDepth=30)

train the model

>>dtr_model = dtr.fit(training_data)

select example rows to display.

>>predictions = dtr_model.transform(testing_data)

>>predictions.show(100)

compute accuracy on the test set

>>evaluator = RegressionEvaluator(labelCol=”label”,
predictionCol=”prediction”, metricName=”rmse”)

>>rmse = evaluator.evaluate(predictions)

>>print(“RMSE= %g” % rmse)

276 Practical Machine Learning with Spark

Output Snippet of the DTR Model
This section contains the output snippet of this executed program for implementing
the DTR on the training and testing data. Figure 5.74 displays the schema of the
dataframe after reading the CSV:

Figure 5.74: Illustration to show the schema of the dataframe after reading the CSV

Figure 5.75 displays the data of the created dataframe after applying the
VectorAssembler transformation. This step is used to generate the feature in the
Vector format for training the DTR model:

Figure 5.75: Illustration to display the data after transformation

Supervised Learning with Spark 277

Figure 5.76 displays the feature and label data that can be used for training the DTR
model:

Figure 5.76: Illustration of feature and label

Figure 5.77 displays the predicted values of the trained model after applying the test
data:

Figure 5.77: Outcome screenshot to display the predicted values

278 Practical Machine Learning with Spark

Figure 5.78 displays the RMSE value of the trained model:

Figure 5.78: Illustration to show the RMSE value

Ensemble Learning (EL)
Ensemble Learning or EL is an advanced method to enhance the prediction accuracy
of the ML model by combining the average outputs from several ML algorithms. In
other words, it provides the robustness and high stability to the ML model that gets
the capability to be applied on any testing dataset with better precision. Generally,
there are two approaches through which a ML model can use the functionality of EL
during live production such as bootstrap aggregation (bagging) and boosting. These
two ways are usually used to decrease issue of variance and decrease the pain of
overfitting. Figure 5.79 shows the working of EL by considering three important steps
which are explained as follows. In step 1, the full-set dataset is divided into different
subsets and fed into different model such as D1.Model1, D2.Model2, D3.Model3,
D4.Model4, and D5.Model5. This splitting process takes place by leveraging the
concept of bootstrapping. In step 2, the outcome/result of different models get
aggregated by taking the average of all the outputs and then in step 3, it generates
the prediction for each class.

Figure 5.79: Flow diagram of ensembling learning in ML

Supervised Learning with Spark 279

Bootstrap Aggregation (Bagging)
Bagging is a method to adopt the concept of EL which helps to reduce the high
variance issue that can be seen in DT. In bagging, the subset of the dataset is fed
to the multiple decision tree; this data splitting step is known as bootstrap. After
generating the prediction from each trained DT, the voting classifier can be applied
for taking the majority decision. In other words, it is used to aggregate the multiple
result into a single result based on majority known as aggregation. Random Forest
works on the mechanism of bagging which helps to eradicate the issue of DT like
high computation, overfitting, and high variance.

Random Forest Tree (RFT)
Random Forest Tree is an improved version to mitigate the challenges of DT and
boost the overall performance of the ML model. As the name suggests, a RFT is
amalgamation of several DTs that follows the internal procedure of bagging technique
for better prediction. While training of RFT, all the trees are run in parallel without
having any weights interaction with each other. Also, it is an effective approach to
estimate the dodge/missing data for making the similar regularity in large portion of
the dataset. The spark.ml extends the RFT functionality for implementing the binary
and multiclass classification and regression. With massive dataset, the RFT doesn’t
work well in terms of computation, hence it becomes a challenge while deploying
at production environment. Generally, RFT is of two types such as Random Forest
Classifier (RFC) and Random Forest Regression (RFR).

Internal Working of Random Forest
Figure 5.80 shows how a random forest does work to make the more accurate
prediction than the decision tree. In random forest, the test data is split into small
data chunks such as D1, D2,…, DN and then fed to the several DTs by using the
concept of bootstrapping. The bootstrapping process makes the parallel training of
multiple DTs without any dependency to each other. Once all the DTs are trained,
the concept of voting classifier needs to be applied to get the aggregated output

280 Practical Machine Learning with Spark

from the several DTs. This aggregation step helps to predict the value using the
mechanism of random forest.

Figure 5.80: Flow diagram of random forest in ML

Random Forest Classifier
This section contains the codebase to implement the random forest classifier on
training and testing data using Apache Spark. The distributed processing is being
applied on the CPU hardware configuration by using Google:

>>%pip install pyspark==3.1.1

>>from pyspark.ml.classification import RandomForestClassifier

>>from pyspark.sql import SparkSession

>>from pyspark.sql import SQLContext

>>from pyspark.ml.feature import VectorAssembler

>>from pyspark.ml.feature import StringIndexer

>>from pyspark.ml.regression import DecisionTreeRegressor

>>from pyspark.ml.feature import VectorIndexer

>>from pyspark.ml.evaluation import RegressionEvaluator

>>from pyspark.ml.classification import DecisionTreeClassifier

>>from pyspark.ml.evaluation import BinaryClassificationEvaluator

Supervised Learning with Spark 281

>>from pyspark.ml.evaluation import MulticlassClassificationEvaluator

>>import pandas as pd

>>import numpy as np

>>import matplotlib.pyplot as plt

>>import io

#Spark’s application and loading of dataset

>>spark = SparkSession.builder.appName(‘trees’).getOrCreate()

>>data = spark.read.csv(‘/content/sample_data/cancerdata.
csv’,inferSchema=True, header=True)

#Dropping the rows that contains “Null Value”

>>data = data.dropna()

#Show the columns of dataframe

>>data.columns

#Converting the datatype into double or int

>>converteddata = data.selectExpr(“cast(age as int) age”,

 “cast(education as int) education”,

 “cast(currentSmoker as double) currentSmoker”,

 “cast(TenYearCHD as double) TenYearCHD”,

 “cast(male as int) gender”,

 “cast(cigsPerDay as double) cigsPerDay”,

 “cast(BPMeds as double) BPMeds”,

 “cast(prevalentStroke as double) prevalentStroke”,

 “cast(prevalentHyp as double) prevalentHyp”,

 “cast(diabetes as double) diabetes”,

 “cast(totChol as double) totChol”,

 “cast(sysBP as double) sysBP”,

 “cast(diaBP as double) diaBP”,

 “cast(BMI as double) BMI”,

 “cast(heartRate as double) heartRate”,

 “cast(glucose as double) glucose”)

#Key features selection and converting into vectors

>>converteddata.dropna()

282 Practical Machine Learning with Spark

>>assembler = VectorAssembler(inputCols=[‘age’, ‘education’,
‘currentSmoker’, ‘gender’,’glucose’,’diabetes’],outputCol=’get_feature’)

>>get_output = assembler.transform(converteddata)

>>get_output.printSchema()

>>finalized_data = get_output.select(“get_feature”, “TenYearCHD”)

>>training_data, testing_data = finalized_data.randomSplit([0.7,0.3])

>>rfc = RandomForestClassifier(labelCol=”TenYearCHD”, featuresCol=”get_
feature”, numTrees=100, seed=50)

>>rfc_model = rfc.fit(training_data)

>>rfc_preds = rfc_model.transform(testing_data)

>>rfc_preds.show(5)

#evaluation Matrix

>>evaluator = MulticlassClassificationEvaluator(labelCol=”TenYearCHD”,
predictionCol=”prediction”, metricName=”accuracy”)

>>accuracy = evaluator.evaluate(rfc_preds)

>>print(“Accuracy:”, accuracy)

#Get summary of model and tree structure

>>treeModel = rfc_model

>>print(treeModel)

>>print(rfc_model.toDebugString)

Output Snippet of the RFC Model

Figure 5.81 depicts the schema of data after reading the CSV in the dataframe:

Figure 5.81: Illustration to show the schema of dataframe

Supervised Learning with Spark 283

Figure 5.82 depicts the predicted values and accuracy of the trained model:

Figure 5.82: Illustration to show predicted values and accuracy of the model

Random Forest Regression (RFR)
This section contains the codebase to implement random forest regression on training
and testing data using Apache Spark. The distributed processing is being applied on
the CPU hardware configuration by using Google:

>>%pip install pyspark==3.1.1

>>from pyspark.ml.regression import RandomForestRegressor

>>from pyspark.sql import SparkSession

>>from pyspark.sql import SQLContext

>>from pyspark.ml.feature import StringIndexer

>>from pyspark.ml.linalg import Vectors

>>from pyspark.ml.regression import GBTRegressor

>>from pyspark.ml.feature import VectorIndexer

>>from pyspark.ml.evaluation import RegressionEvaluator

>>from pyspark.ml.feature import VectorAssembler

>>import matplotlib.pyplot as plt

>>import pandas as pd

>>import numpy as np

#Creating Spark application and loading of dataset

284 Practical Machine Learning with Spark

>>spark = SparkSession.builder.appName(‘Linear Regression’).
getOrCreate()

>>load_data = spark.read.csv(‘/content/sample_data/weight-height.
csv’,inferSchema=True, header=True)

#To show the loaded dataframe

>>load_data.show()

#Converting into VectorFeature

>>get_assembler =
VectorAssembler(inputCols=[‘Weight’],outputCol=’features’)

>>assembled_data = get_assembler.transform(load_data)

>>assembled_data.show()

>>finalized_data = assembled_data.selectExpr(“features”, “Height as
label”)

>>finalized_data = finalized_data.select(“features”, “label”)

#To show the finalized dataframe

>>finalized_data.show()

#Splitting into training and testing dataset

>>training_data,testing_data = finalized_data.randomSplit([0.7,0.3])

>>rfr = RandomForestRegressor(featuresCol=”features”,
maxDepth=30,numTrees=200)

train the model

>>rfr_model = rfr.fit(training_data)

select example rows to display.

>>predictions = rfr_model.transform(testing_data)

>>predictions.show(100)

compute accuracy on the test set

>>evaluator = RegressionEvaluator(labelCol=”label”,
predictionCol=”prediction”, metricName=”rmse”)

>>rmse = evaluator.evaluate(predictions)

>>print(“Root Mean Squared Error (RMSE) = %g” % rmse)

Output Snippet of the RFR Model
This section contains the output snippet of the preceding executed program for
implementing the RFR on the training and testing data. Figure 5.83 displays the data
of the dataframe after reading the CSV and transforming into the VectorFeactures:

Supervised Learning with Spark 285

Figure 5.83: Illustration to show data of dataframe

Figure 5.84 depicts the predicted values and accuracy of the trained model:

Figure 5.84: Illustration to show predicted values and accuracy of the model

286 Practical Machine Learning with Spark

Boosting
The boosting algorithms work on the ideation of strengthening the individual
learners by applying the weighted averages among the several models. As the name
suggests, it is a smart way to make a strong learner from a weak one by sharing
the weights from one model to other models. Gradient-Boosted Trees (GBTs) are
regression methods that consist of ensembles of decision trees. These iteratively
train decision trees to minimize a loss function. GBTs handle categorical features
which is extended to the multiclass classification setting which do not require feature
scaling. In SparkML, it adapts the functionality of GBTs for binary classification and
regression by calling the GBTRegressor and GBTClassifier. GradientBoostedTree
(GBT) gives the prediction error ten times lower than boosting or RF. Light GBM is
almost 7 times faster than GBT on large datasets.

Gradient Boosted Tree Classifier (GBTC)
This section contains the codebase to implement GBTC on the training and testing
data using Apache Spark. The distributed processing is being applied on the CPU
hardware configuration by using Google:

>>%pip install pyspark==3.1.1

>>from pyspark.ml.classification import GBTClassifier

>>from pyspark.sql import SparkSession

>>from pyspark.sql import SQLContext

>>from pyspark.ml.feature import VectorAssembler

>>from pyspark.ml.feature import StringIndexer

>>from pyspark.ml.feature import VectorIndexer

>>from pyspark.ml.evaluation import BinaryClassificationEvaluator

>>from pyspark.ml.evaluation import MulticlassClassificationEvaluator

>>import pandas as pd

>>import numpy as np

>>import matplotlib.pyplot as plt

>>import io

#Spark’s application and loading of dataset

>>spark = SparkSession.builder.appName(‘Gradient Boosted Tree
Classifier’).getOrCreate()

>>data = spark.read.csv(‘/content/sample_data/cancerdata.
csv’,inferSchema=True, header=True)

#Dropping the rows that contains “Null Value”

Supervised Learning with Spark 287

>>data = data.dropna()

#Show the columns of dataframe

>>data.columns

#Converting the datatype into double or int

>>converteddata = data.selectExpr(“cast(age as int) age”,

 “cast(education as int) education”,

 “cast(currentSmoker as double) currentSmoker”,

 “cast(TenYearCHD as double) TenYearCHD”,

 “cast(male as int) gender”,

 “cast(cigsPerDay as double) cigsPerDay”,

 “cast(BPMeds as double) BPMeds”,

 “cast(prevalentStroke as double) prevalentStroke”,

 “cast(prevalentHyp as double) prevalentHyp”,

 “cast(diabetes as double) diabetes”,

 “cast(totChol as double) totChol”,

 “cast(sysBP as double) sysBP”,

 “cast(diaBP as double) diaBP”,

 “cast(BMI as double) BMI”,

 “cast(heartRate as double) heartRate”,

 “cast(glucose as double) glucose”)

#Key features selection and converting into vectors

>>converteddata.dropna()

>>assembler = VectorAssembler(inputCols=[‘age’, ‘education’,
‘currentSmoker’, ‘gender’,’glucose’,’diabetes’],outputCol=’get_feature’)

>>get_output = assembler.transform(converteddata)

>>get_output.printSchema()

>>finalized_data = get_output.select(“get_feature”, “TenYearCHD”)

>>training_data, testing_data = finalized_data.randomSplit([0.7,0.3])

>>gbtc = GBTClassifier(labelCol=”TenYearCHD”, featuresCol=”get_feature”)

>>gbtc_model = gbtc.fit(training_data)

>>gbtc_preds = gbtc_model.transform(testing_data)

>>gbtc_preds.show(5)

288 Practical Machine Learning with Spark

#evaluation Matrix

>>evaluator = MulticlassClassificationEvaluator(labelCol=”TenYearCHD”,
predictionCol=”prediction”, metricName=”accuracy”)

>>accuracy = evaluator.evaluate(gbtc_preds)

>>print(“Accuracy:”, accuracy)

#Get summary of model and tree structure

>>treeModel = gbtc_model

>>print(treeModel)

>>print(gbtc_model.toDebugString)

Output Snippet of the GBTC Model
This section contains the output snippet of the previous program that is executed
for implementing the GBTC on training and testing data. Figure 5.85 displays the
schema of the dataframe after reading the CSV:

Figure 5.85: Illustration to show schema of dataframe

Supervised Learning with Spark 289

Figure 5.86 depicts the predicted values and accuracy of the trained model:

Figure 5.86: Illustration to show predicted values with accuracy of the model

Gradient Boosting Tree Regression (GBTR)
This section contains the codebase to implement GBTR on training and testing
data using Apache Spark. The distributed processing is being applied on the CPU
hardware configuration by using Google:

>>%pip install pyspark==3.1.1

>>from pyspark.ml.classification import LinearSVC

>>from pyspark.ml.evaluation import MulticlassClassificationEvaluator

>>from pyspark.sql import SparkSession

>>from pyspark.sql import SQLContext

>>from pyspark.ml.feature import StringIndexer

>>from pyspark.ml.evaluation import RegressionEvaluator

>>from pyspark.ml.linalg import Vectors

>>from pyspark.ml.regression import DecisionTreeRegressor

>>from pyspark.ml.regression import GBTRegressor

>>from pyspark.ml.feature import VectorIndexer

>>from pyspark.ml.evaluation import RegressionEvaluator

>>from pyspark.ml.feature import VectorAssembler

>>import matplotlib.pyplot as plt

>>import pandas as pd

>>import numpy as np

290 Practical Machine Learning with Spark

#Creating Spark application and loading of dataset

>>spark = SparkSession.builder.appName(‘Gradient Boosted Tree
Regression’).getOrCreate()

>>load_data = spark.read.csv(‘/content/sample_data/weight-height.
csv’,inferSchema=True, header=True)

#To show the loaded dataframe

>>load_data.show(5)

>>indexer = StringIndexer(inputCol=’Gender’, outputCol=’label’)

>>load_data = indexer.fit(load_data).transform(load_data)

#Converting into VectorFeature

>>get_assembler = VectorAssembler(inputCols=[‘Height’,
‘Weight’],outputCol=’features’)

>>assembled_data = get_assembler.transform(load_data)

>>assembled_data.show(5)

>>finalized_data = assembled_data.select(“features”, “label”)

#To show the finalized dataframe

>>finalized_data.show(5)

#Splitting into training and testing dataset

>>training_data,testing_data = finalized_data.randomSplit([0.7,0.3])

>>dtr = GBTRegressor(featuresCol=”features”, maxDepth=15,
seed=40,labelCol=”label”,stepSize=0.7)

train the model

>>dtr_model = dtr.fit(training_data)

select example rows to display.

>>predictions = dtr_model.transform(testing_data)

>>predictions.show(5)

compute accuracy on the test set

>>evaluator = RegressionEvaluator(labelCol=”label”,
predictionCol=”prediction”, metricName=”rmse”)

>>rmse = evaluator.evaluate(predictions)

>>print(“Root Mean Squared Error (RMSE) = %g” % rmse)

Supervised Learning with Spark 291

Output Snippet of the GBTR Model
This section contains the output snippet of the preceding executed program for
implementing the GBTR on training and testing data. Figure 5.87 displays the data
of the dataframe after reading the CSV and transforming into the VectorFeatures:

Figure 5.87: Illustration to show data of SparkDF after reading a CSV

Figure 5.88 displays the predicted values of the trained model against each label:

Figure 5.88: Illustration to show the predicted values of the dataframe

292 Practical Machine Learning with Spark

Figure 5.89 displays the RMSE value of the trained model:

Figure 5.89: Illustration to show the RMSE value

Performance Metrics/Evaluation Metrics (EM)
Once the model is trained, it is necessary to check the effectiveness of that model on the
testing dataset. The effectiveness on the trained model can be tested by implementing
several performances or evaluation metrices based on classification and regression
algorithms. EM is an evaluation phase to monitor and measure the accuracy of the
trained model on the unseen dataset or testing dataset. In classification metrices,
it consists of several performance metrics such as Confusion Matrix, F1-Score,
Area Under the Receiver Operating Characteristics (AUROC), Log-Loss, Recall,
Precision, Sensitivity, and Specificity. On the other hand, Regression metrices consist
of Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared
Error (RMSE), and R-Squared (R2). Mostly, the ML model without evaluation may
cause the issue biasness in term of accuracy. So, it is recommended to evaluate the
performance of a model prior to the production level deployment.

Classification Metrices
Presently, the problems based on classification algorithms are most engrossing
research domains to the world’s researchers for enhancing the applicability of
intelligence-based automation and overall performance of a system for better
decision making such as production-level or industrial-level deployment in speech
recognition, face recognition, face detection, text classification, and sentimental
analysis. Here, the metrics predict a discreate target value for each class. For
evaluating the performance of the model, it provides several approaches to check
how well a model will work on the unseen dataset. The classification metrics are
frequently used in the ML model such as SVM, Logistic Regression, Decision Tree
Classifier, Random Forest Classifier, Gradient-Boost Tree Classifier, and so on. The
detailed explanation about the classification metrics is as follows.

Confusion Matrix (CM)
CM is a matrix representation between the number of classes of actual labels and the
number of classes of predicted labels. The order of the matrix must always be 2 x 2, as
it is used to evaluate the performance of a binary classification model. Furthermore,
it has four dimensions that can be used for evaluating the accuracy, such as True
Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN).

Supervised Learning with Spark 293

Figure 5.96 represents more in-depth details about these dimensions:

Figure 5.90: Taxonomy of different types of Supervised Learning

•	 True Positive (TP): This represents the case when the actual label and
predicted label both are true (1,1).

•	 True Negative (TN): This represents the case when the actual label is false (0)
and predicted label is false (0).

•	 False Positive (FP): This represents the case when the actual label is false (0)
and predicted label is true (1).

•	 False Negative (FN): This represents the case when the actual label is true (1)
and predicted label is false (0).

Accuracy
Accuracy is defined as the ratio of number of correct observations/predictions to
total observations/predictions. It has no unit and doesn’t work well on unbalanced
classes. The accuracy metric is calculated using the confusion matrix with the help
of the following formula:

Precision
Precision is an updated version of accuracy metric which works well when the class
distribution is unbalanced. For example, retrieving of correct documents generated
by any ML models. Universally, it is ratio of True Prediction (TP) and total true
predictions (TP + FP) as:

A

294 Practical Machine Learning with Spark

True Positive Rate (TPRs) / Recall/ Sensitivity/ Hit-Rate
Recall is defined as the ratio of TPs to the total number of true values (TP + FN).
In other words, it returns the number of true events by using any ML models. The
mathematical formula is given here:

Specificity
Specificity is just opposite of recall metric that defines the total number of TNs
generated by any ML models. The mathematic formula is given as follows:

Moreover, False Positive Rate (FPR)/fallout can be derived from specificity metric
as:

FPR = 1- Specificity

F1 score
F1-Score is the harmonic mean of precision and recall values. If the F1-score of
any model intends towards 1, then the model is a good classifier. But the F1-Score
intends towards 0, then the model is not a good classifier. The formula for F1-Score
is as follows:

Area Under the Curve - Receiver Operating Characteristics Curve
(AUC-ROC)/Area Under the Receiver Operating Characteristics
(AUROC)
It is the most promising way to measure the performance of any classification model in
ML, at various thresholds. In AUROC, the term ROC represents the probability curve
and AUC represents the degree of separability of any model. The amalgamation of
AUC-ROC extends the functionality to distinguish the classes more accurately along
with area under the curve. The accuracy/performance factor of a model depends on

P

R

S

Supervised Learning with Spark 295

the value of AUC. The higher the value of AUC, the higher the rate of precision of
a model. This curve is plotted between TPR and FPR, taking TPR along Y-axis and
FPR along X-axis. The area under the curve is known as AUC-ROC.

Regression Metrics
The classification metrics are used to evaluate the performance of any ML model
based on discreate output, but Regression metrics works on continuous output for
measuring the performance of the model. There are several methods to calculate the
metric (distance) of outliers/residue to the intercept line such as Mean Absolute
Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and
R-Squared (R2) error.

Mean Squared Error (MSE)
MSE is used to calculate the mean of the squared difference between the ground-
truth values and the predicted values. The mathematical formula is:

Where represents ground-truth value, represents predicted value, and n is number
of observations. MSE is a differentiable function, hence it optimizes the model
precisely than others. Lower the value of MSE means the model will predict the
values with more accuracy. Where yi, y ̂i, and n have usual meaning.

Mean Absolute Error (MAE)
MAE is a non-differentiable metric for measuring the performance of any regression
model. It is the mean of the absolute difference between the ground-truth values and
the predicted values. The mathematical formula is:

Root Mean Squared Error (RMSE)
It is a square root of the mean of the squared difference between the ground-truth
values and the predicted values of the regression model. The mathematical formula is:

296 Practical Machine Learning with Spark

R-Squared/Coefficient of Determination
It is the most common metric to measure the performance of the model by taking
the ratio of the variance for a dependent variable and independent variable. The
mathematical formula is:

Where yi, y ̂i, n have usual meaning and y ̅ represents mean of the ground-truth
values.

Churn Prediction Model
The churn prediction model is also known as the attrition prediction model that
helps the organization about the percentage of employees that may leave during
a particular time of period. This is a binary classification problem in which the
output either be 0 or 1. This type of people analytics supports the organization to
maintain the ideal strength in the office. Also, it provides the insight about when
the senior management will leave the organization, through that the impact could
be minimum. For training an attrition model, it is important to understand key
behaviors of the customer, based on that the key features are to be fed as input.
Mainly, the classification trees are most recommended to understand the key features
and calculating the probability when the employee will leave the organization.
The following code shows the implementation churn prediction model using the
decision tree:

%pip install pyspark==3.1.1

>>from pyspark.sql import SparkSession

>>from pyspark.sql import SQLContext

>>from pyspark.ml.feature import VectorAssembler

>>from pyspark.ml.feature import StringIndexer

>>from pyspark.ml import Pipeline

>>from pyspark.ml.regression import DecisionTreeRegressor

>>from pyspark.ml.feature import VectorIndexer

>>from pyspark.ml.evaluation import RegressionEvaluator

>>from pyspark.ml.classification import DecisionTreeClassifier

>>from pyspark.ml.evaluation import BinaryClassificationEvaluator

>>from pyspark.ml.evaluation import MulticlassClassificationEvaluator

>>import matplotlib.pyplot as plt

Supervised Learning with Spark 297

>>import pandas as pd

#Creating Spark’s application and loading of dataset

>>spark = SparkSession.builder.appName(‘trees’).getOrCreate()

>>get_data = spark.read.csv(‘/content/sample_data/Churn_Modelling.
csv’,inferSchema=True, header=True)

#To check the name of columns of dataframe

>>get_data.columns

#Converting the features into vector space features

>>get_assembler = VectorAssembler(inputCols=[

 ‘CreditScore’,

 ‘Age’,

 ‘Tenure’,

 ‘Balance’,

 ‘NumOfProducts’,

 ‘HasCrCard’,

 ‘IsActiveMember’,

 ‘EstimatedSalary’],outputCol=’get_feature’)

>>assembled_data = get_assembler.transform(get_data)

>>assembled_data.show()

>>finalized_data = assembled_data.select(“get_feature”, “Exited”)

>>training_data, testing_data = finalized_data.randomSplit([0.7,0.3])

#Calling DecisionClassifier class for training the model

>>dtc = DecisionTreeClassifier(labelCol=”Exited”, featuresCol=”get_
feature”)

>>dtc_model = dtc.fit(training_data)

>>dtc_preds = dtc_model.transform(testing_data)

>>dtc_preds.show()

#Evaluation

>>evaluator = MulticlassClassificationEvaluator(labelCol=”Exited”,
predictionCol=”prediction”, metricName=”accuracy”)

>>accuracy = evaluator.evaluate(dtc_preds)

>>print(“Accuracy of the model on testing dataset:”,accuracy)

298 Practical Machine Learning with Spark

#Summary of the model

>>get_tree_summary = dtc_model

>>print(get_tree_summary)

Output Snippet of the Churn Prediction Model
This section contains the output snippet of the preceding executed program for
implementing the churn prediction model on training and testing data. Figure 5.91
illustrates the predicted values to show who is having the high probability to leave
the company:

Figure 5.91: Illustration of predicted output with accuracy of the model

Conclusion
This chapter presents the intuitive understanding about the several supervised
learning algorithms with their implementation on the Google Colab framework
using Apache Spark. The three types of branches in SL provide the flexibility to deal
with continuous and non-continuous (discrete) response values. Also, it explains the
concept of ensemble learning algorithms to improve the overall performance of the
model. In the next chapter, we will cover the NLP and its imperative features.

Un-Supervised Learning with Apache Spark 299

Chapter 6
Un-Supervised
Learning with
Apache Spark

“A mathematician, like a painter or a poet, is a maker of patterns. If his
patterns are more permanent than theirs, it is because they are made with
ideas.”

— G. H. Hardy

Introduction
Unsupervised Learning (USL) techniques are commonly used approaches that
are accepted in various applications such as classification of images, knowing
hidden patterns in the data, finding outliers/anomalies, segmentation of images,
recommendation, and natural language processing problems. USL provides the ease
of implementing various algorithms on the unlabeled data to predict the actual label
of the data as an outcome. This chapter presents comprehensive details about the
different types of identical grouping mechanism like the clustering technique. This
technique is being used for easily distributing of similar item from the random heap
of items along with implementation code base. All the implementations are executed
on the distributed framework of Google Colab with Graphic Processing Unit (GPU)
as a hardware configuration.

300 Practical Machine Learning with Spark

Structure
In this chapter, we will discuss the following topics:

•	 Introduction to clustering and its types

•	 Detailed explanation about K-means and its implementation

•	 Detailed explanation about bisecting K-means (BKM) and its implementation

•	 Explanation of Gaussian Mixture Model (GMM) and its implementation

•	 Laconic view on Latent Dirichlet Allocation (LDA)

Objectives
After studying this chapter, readers will be able to:

•	 Understand the basics of clustering and types of clustering

•	 Implement the distributed processing of K-means, BKM, GMM using Spark

•	 Understand the concept of LDA

Clustering
Clustering is an unsupervised ML method of dividing and identifying large datasets
into small groups of data points known as clusters on the basis of certain criteria;
for instance, similarity. Mathematically, the grouping of data points is such that
the distance between data points within the cluster is minimal. In other words, the
cluster is a region where the density of the similar data points is high. It depends on
the type of algorithms employed to decide how the cluster will be created and does
not concern the outcomes. Generally, there two types of clustering such as hard and
soft clustering. In hard clustering, each data points belong to dis-joint clusters or a
single cluster, whereas in the soft clustering, it belongs to more clusters. K-means is
an example of hard clustering and weighted k-means is ideal for soft clustering. The
brief explanation on the types of clustering is given below:

•	 Partitioning Clustering (PC)
It is an iterative algorithm to minimize the specific objective function for
clustering the given data till an optimal partition is achieved. PC is mostly
used to create clusters and through this user can specify the number of
clusters to be created for the clustering method. These algorithms fall into
three categories.

Un-Supervised Learning with Apache Spark 301

•	 Density-Based Clustering (DBC)
The clusters are created on the density basis of the data points. The region
where the data points are very few known as sparse regions or outlier or
space anomalies. Dimension orientation of DBC is of any type. The Density
Based on Spatial Clustering Applications with Noise (DBSCAN), Ordering
Points to Identity Clustering Structure (OPTICS), and Hierarchical Density
Based Spatial Clustering of Applications with Noise (HDBSCAN) are the
examples of DBC.

In DBSCAN, users can select two parameters such as distance and minimum
points for clustering the data sets. The distance shows how close data
points can be taken as neighbors. However, it cannot form clusters from
heterogeneous density data. OPTICS is a revised form of DBSCAN to avoid
preceding drawbacks. In OPTICS, users can take two more parameters
such as core distance and reachability. HDBSCAN is an extended version
of the DBSCAN technology by converting it to a hierarchical clustering
algorithm.

•	 Hierarchical Clustering (HC)
HC is an algorithm of cluster analysis which shows how to build a high
hierarchy of cluster, that is, a tree type structure. It starts by assuming average
data point as a separate cluster. It can be performed with either a distance
metric or raw data. There are two types of HC such as agglomerative (bottom-
up approach) and divisive (top-down approach). In the agglomerative
approach, initially each point of the dataset acts as one cluster and then,
it groups the cluster one by one. The hierarchy of the cluster is known as
dendrogram of the tree structure. In this divisive approach, the process
starts with total data points as one big cluster and divides them to create
furthermore clusters. The term distance metrics such as such as Minkowski
Distance, Manhattan Distance, Euclidean Distance, Cosine Distance, Jaccard
Distance, and Hamming Distance of the clusters can be used to calculate
the distance of one test observation from all the observations of the training
dataset for finding the nearest k neighbors within the cluster. It is a recurring
process that happens for each and every test observation to find the similarity
in the data. Also, the various linkages (single linkage, complete linkage,
average linkage, and centroid linkage) are a recurring process which apply
in every test observation. HC is deterministic and gives a local solution. The

302 Practical Machine Learning with Spark

in-depth details on different types of linkage in HC is explained as:

	Single Linkage: In Single Linkage, the calculated minimum distance
between two points of the two clusters is the distance between two
clusters.

Figure 6.1: Illustration of Single Linkage in HC

	Complete Linkage: In Complete Linkage, the calculated maximum
distance between two points of the two clusters is the distance
between two clusters.

Figure 6.2: Illustration of Complete Linkage in HC

Un-Supervised Learning with Apache Spark 303

	Average Linkage: In Average Linkage, the calculated average
distance between of all the points of the two clusters is the distance
between two clusters.

Figure 6.3: Illustration of Average Linkage in HC

	Centroid Linkage: In Centroid Linkage, the calculated distance
between two centroids of the two clusters, calculate the distance
between two clusters.

Figure 6.4: Illustration of Centroid Linkage in HC

•	 Fuzzy Clustering (FC)

In FC, one data point can belong to more than one cluster; it gives the outcome
as the probability of the data points belonging to the each of the cluster. One
of the algorithms used in FC is Fuzzy C-means clustering like the K-Means
clustering except parameters like fuzzifier and membership values.

304 Practical Machine Learning with Spark

K-Means under Clustering
K-means is a clustering method based on unsupervised learning used to identify
clusters of similar data points in an unlabeled dataset by passing only one input
vector. K-means method partitions the whole dataset into k-cluster based on distance
metric; for example, Euclidean distance. In K-means, choosing of the right number
of cluster k is the main step. This can be taken care by using the concept of elbow
method, silhouette score, and so on. It is non-deterministic due to the random
choice of initial centroid. In other words, it is an algorithm that tries to minimize the
sum of the distance of the point in the cluster with their centroid. Generally, it fails
when the data contains the outlier, having very far data points from the centroid. It
also suffers from the local minima convergence problem, and which is taken care
in BKM by considering the global minima concept. Also, it cannot identify non-
spherical, different size and density of the cluster. Most of the time, the hierarchy
clustering becomes fast when k is small. The flow of the K-means algorithm is given
as follows.

Flow of K-Means
Figure 6.5 shows the step-by-step inner mechanism of K-means with n number of
data points to identify the clusters of a similar one. In the first step, the user assigns
the number of k to be used for the clustering number. Then, the next step needs to
select the random k points in the n number of data points for assigning the centroids.
In the third step, the data points needs to be assigned to the closest centroid and then,
again compute the new centroid by considering the mean density of data points. In
the last step, the whole process is iterated again and again until all the data points
get assigned to the closest centroid.

Figure 6.5: Flow procedure of internal working of k-means

Un-Supervised Learning with Apache Spark 305

In this section, the reader will get to know the detailed working of the K-means
algorithm through the graphical concept. The graphical representation of K-means
is highlighted as follows. Figure 6.6 shows the scattering of n number of data points
in X-Y plane. Here, we assume n =10:

Figure 6.6: Random sampling of n number of data points in X-Y plane

Figure 6.7 shows the assigning of k=2 for clustering the given data points in X-Y
plane:

Figure 6.7: Assigning of k number of centroids for clustering

306 Practical Machine Learning with Spark

Figure 6.8 shows the computing of the perpendicular distance between the two
centroids and assigning of data points to the closest centroid in X-Y plane:

Figure 6.8: Computing and assigning of data points closest to each centroid.

Figure 6.9 shows the re-computing of centroids space by considering the mean of the
data points, then re-compute the perpendicular distance between the two centroids
and assigning of data points to the closet centroid in X-Y plane. This step will be
iterated until all the data points to be assigned to the closest centroids.

Figure 6.9: Re-computing and re-assigning of data points closest to each centroid

Un-Supervised Learning with Apache Spark 307

Figure 6.10 shows a full clustered stage where the data points are separated into k=2
clusters:

Figure 6.10: Full clustered stage to distribute two classes of data points

Figure 6.11 shows two spherical-shaped clusters (k=2) for distinguishing the two
classes among n number of data points:

Figure 6.11: Two spherical shaped clusters, k=2.

308 Practical Machine Learning with Spark

The following code base shows the implementation of the elbow method for getting
the ideal number of k value in clustering of data points using the PySpark framework
of Google Colab. The code illustrates the way to perform the K-means algorithm
on the dataset of customers who visited the mall for the shopping purpose. This
algorithm helps to identify the key insights of customer datapoint and generate the
different clusters on basis of their similarities. The age, income, and spending score
of customers are taken as the features that to be fed as an input to the K-means
model:
!pip install pyspark==2.1.2

import pyspark

conf = pyspark.SparkConf()

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

from pyspark.sql import SparkSession

from pyspark.ml.feature import StandardScaler

from pyspark.ml.clustering import KMeans,KMeansModel,KMeansSummary

from pyspark.ml.linalg import Vectors

from pyspark.ml.feature import VectorAssembler

import pylab as pl

import pandas as pd

import numpy as np

#Create a Spark application

spark = SparkSession.builder.appName(‘KMeans Implementation’).
getOrCreate()

#Reading of dataset

df = spark.read.format(‘com.databricks.spark.csv’).
options(header=’true’, inferschema=’true’).load(‘/content/sample_data/
Mall_Customers.csv’)

#Columns in dataframe

print(df.columns)

#Show dataframe

df.show()

Un-Supervised Learning with Apache Spark 309

Figure 6.12 depicts the implementation of the preceding code in Google Colab. The
preceding code initializes the required modules, creates the spark’s application, and
reads the CSV file in a data frame:

Figure 6.12: Implemented code to initialize, create spark application, and read in dataframe

#Applying VectorAssembler

assembler = VectorAssembler(inputCols = [“Age”,”Annual_
Income”,”SpendingScore”], outputCol = “features”)

output = assembler.transform(df)

output.show(5)

#Applying StandardScaler

scaler = StandardScaler(inputCol=”features”, outputCol=”scaledFeatures”)

scaler_model = scaler.fit(output)

final_data = scaler_model.transform(output)

final_data.show(5)

#Elbow Curve for getting the preferred number of K.

cost_function = np.zeros(10)

for k in range(2,10):

kmeans = KMeans().setK(k).setSeed(1).setFeaturesCol(‘scaledFeatures’)

model = kmeans.fit(final_data)

cost_function[k] = model.computeCost(final_data)

310 Practical Machine Learning with Spark

Figure 6.13 depicts the implementation of the preceding code to apply VectorAssembler
and Standard Scaler transformations. After that, the cost function is calculated from
the fitted model to get the Elbow curve which recommends the ideal number of k
values for clustering the K-means:

Figure 6.13: Code to apply VectorAssembler, StandardScaler, and cost function for drawing the elbow curve

Plot the cost

df_cost_func = pd.DataFrame(cost_function[2:])

df_cost_func.columns = [“cost”]

add_col = [2,3,4,5,6,7,8,9]

df_cost_func.insert(0, ‘cluster’, add_col)

#Ploting Curve

pl.plot(df_cost_func.cluster, df_cost_func.cost)

pl.xlabel(‘Number of Clusters’)

pl.ylabel(‘Score’)

pl.title(‘Elbow Curve’)

pl.show()”

Un-Supervised Learning with Apache Spark 311

Figure 6.14 depicts the implementation of the preceding code to plot the elbow
curve:

Figure 6.14: Code to plot elbow curve

Output of codebase
This section contains the output of the preceding executed program for plotting the
elbow curve. Figure 6.15 depicts the read data from the CSV file as in the data frame:

Figure 6.15: Code to display the content of data frame

312 Practical Machine Learning with Spark

Figure 6.16 depicts the output of the data frame after applying VectorAssembler and
StandardScaler transformations:

Figure 6.16: Screenshot of code to display dataframe after applying
VectorAssembler and StandardScale transformations

Figure 6.17 depicts the elbow curve for choosing the ideal number of k value:

Figure 6.17: Code to draw an elbow curve

The preceding elbow curve helps the reader to choose the ideal number of k value to
cluster down the data points with more accuracy. The following program will give
an idea how to implement the K-means algorithm on the distributed framework
using Google Colab:

Un-Supervised Learning with Apache Spark 313

!pip install pyspark==2.1.2

import pyspark

conf = pyspark.SparkConf()

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

from pyspark.sql import SparkSession

from pyspark.ml.feature import StandardScaler

from pyspark.ml.clustering import KMeans,KMeansModel,KMeansSummary

from pyspark.ml.linalg import Vectors

from pyspark.ml.feature import VectorAssembler

import seaborn as sns

from mpl_toolkits.mplot3d import Axes3D

spark = SparkSession.builder.appName(‘KMeans’).getOrCreate()

df = spark.read.format(‘com.databricks.spark.csv’).
options(header=’true’, inferschema=’true’).load(‘/content/sample_data/
Mall_Customers.csv’)

assembler = VectorAssembler(inputCols = [“Age”, “Annual_
Income”,”SpendingScore”], outputCol = “features”)

output = assembler.transform(df)

output.show(5)

Figure 6.18 depicts the implementation to initialize the required modules, creates the
spark’s application, reads the CSV file in a data frame, and applies VectorAssembler
on the data frame:

Figure 6.18: Code initializing modules and reading of csv file into data frame

314 Practical Machine Learning with Spark

The following code shows the implementation to apply StandardScaler, K-means,
Set Sum of Squared Errors (SSSE), centre of centroids, and conversion of spark’s
data frame into pandas’s data frame for plotting 3D scattering plot:
scaler = StandardScaler(inputCol=”features”, outputCol=”scaledFeatures”)
scaler_model = scaler.fit(output)
print(scaler_model)
final_data = scaler_model.transform(output)
final_data.show(5)
#Clustering
KMeans = KMeans(featuresCol=”scaledFeatures”, k=4,
predictionCol=”prediction”)
model = KMeans.fit(final_data)
cost = model.computeCost(final_data)
print(“Within Set Sum of Squared Errors = “,cost)
centers = model.clusterCenters()
print(“Computing Cluster Centers”)
for center in centers:
print(center)
model = model.transform(final_data)
model.show(5)
#Converting into Pandas
model = model.toPandas()

Figure 6.19 depicts the implementation of this code for implementing StandardScaler,
K-means, Sum of Squared Error (SSE), centroids centre, and conversion of spark’s
data frame into pandas’s data frame:

Figure 6.19: Code for training a K-means model

Un-Supervised Learning with Apache Spark 315

The following code shows the implementation to draw a 3D scattering plot of
K-means clusters:
#Scatter Plot

sc_plt = plt.figure(figsize=(17,12)).gca(projection=’3d’)

sc_plt.scatter(model.Age,model.SpendingScore, model.Annual_Income,
c=model.prediction)

sc_plt.set_xlabel(‘x’)

sc_plt.set_ylabel(‘y’)

sc_plt.set_zlabel(‘z’)

plt.show()

Figure 6.20 depicts the executed code for drawing a 3D scattering plot of K-means
clustering:

Figure 6.20: Code to draw a 3D scatter plot for K-means

Output of Codebase
This section contains the output of the preceding executed program for implementing
the K-means algorithm on a data frame and plotting of the 3D scatter graph of the
result to show the datapoints grouped into clusters. Figure 6.21 depicts the output of
the data frame after applying VectorAssembler and StandardScaler transformations:

Figure 6.21: Code to display output of data frame after applying transformations

316 Practical Machine Learning with Spark

Figure 6.22 shows the SSSE, three centers of centroids, and output of K-means model
on the testing dataset:

Figure 6.22: Prediction output of K-means

Figure 6.23 shows the plotting of the 3D scatter graph for showing the datapoints
based on its prediction values that is generated by K-means:

Figure 6.23: Output to draw an 3D scatter for K-means

Un-Supervised Learning with Apache Spark 317

Bisecting K-means Algorithm (BKM)
It is a modified version of K-means to overcome the limitation of the K-means
algorithm. For entropy measurement, it is better than K-means. In BKM, first
initialize the K centroids randomly and by other methods like elbow curve, and so
on. The process in BKM starts with one cluster considering all the random points
into one. After that, it uses a K-means on the dataset to bisect the cluster into two
clusters in each iteration. Perform the bisecting process for a fixed number of trails
and at last, choose the best cluster with minimum SSSE.

Flow of BKM
Figure 6.24 shows the step-by-step inner mechanism of BKM with n number of data
points to identify the clusters of similar data points. In the first step, the user considers
all the random datapoints as a whole cluster. In the next step, this algorithm bisects
the single cluster into two clusters as k=2. Then, the SSSE is to be computed which
helps further classifying of datapoints where the SSSE is maximum. In the last step,
the whole process is iterated again and again until the desirable k value would be
achieved:

Figure 6.24: Flow procedure of internal working of BKM

318 Practical Machine Learning with Spark

In this section, the reader will get to know the detailed working of the BKM algorithm
through the graphical concept. The graphical representation of BKM is highlighted
as follows. Figure 6.25 shows the scattering of n numbers of data points in X-Y plane
and then, considering all the datapoints as one cluster:

Figure 6.25: Random number of datapoints and consideration them as one cluster

Figure 6.26 shows the bisecting of the cluster using K-means for achieving the
desirable number of k value, here k =3:

Figure 6.26: Bisecting of cluster into two parts, k=2

Un-Supervised Learning with Apache Spark 319

Figure 6.27 shows the splitting of one into two clusters and further it will be separated
on the basis of computed SSSE:

Figure 6.27: Splitting of one cluster into two clusters

Figure 6.28 shows the further splitting of the cluster based of the computed SSSE. It
will split the cluster into further which has the maximum computed SSSE:

Figure 6.28: Further splitting of cluster using computed maximum SSSE

320 Practical Machine Learning with Spark

 Figure 6.29 shows the three clusters which are classified into a specific number of k
value that is, k=3:

Figure 6.29: Final clustering step, where k=3 is achieved

The following code shows the implementation of bisecting the K-means algorithm
to classify the datapoints into the same group clusters. The first part of code is
used to install and import the indispensable modules or packages. Then, the data
which is read in the form of spark’s data frame is fed to the VectorAssembler and
StandardScaler transformations.

!pip install pyspark==2.1.2

import pyspark

conf = pyspark.SparkConf()

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

from pyspark.sql import SparkSession

from pyspark.ml.feature import StandardScaler

from pyspark.ml.clustering import KMeans,KMeansModel,KMeansSummary

from pyspark.ml.linalg import Vectors

from pyspark.ml.feature import VectorAssembler

import seaborn as sns

from mpl_toolkits.mplot3d import Axes3D

from pyspark.ml.clustering import BisectingKMeans

Un-Supervised Learning with Apache Spark 321

spark = SparkSession.builder.appName(‘KMeans’).getOrCreate()

df = spark.read.format(‘com.databricks.spark.csv’).
options(header=’true’, inferschema=’true’).load(‘/content/sample_data/
Mall_Customers.csv’)

assembler = VectorAssembler(inputCols = [“Age”, “Annual_
Income”,”SpendingScore”], outputCol = “features”)

output = assembler.transform(df)

output.show(5)

scaler = StandardScaler(inputCol=”features”, outputCol=”scaledFeatures”)

scaler_model = scaler.fit(output)

print(scaler_model)

final_data = scaler_model.transform(output)

final_data.show(5)

Figure 6.30 shows the executed code for applying multiple operations such as
package installation, modules initialization, reading of CSV into dataframe, and
transformations:

Figure 6.30: Executed code for reading and implementing transformations on dataframe

The following part of the code is used to apply the bisecting algorithm, computation
of SSSE, and conversion of spark’s data frame to pandas’s data frame:

#Clustering

bkm = BisectingKMeans().setK(4).setSeed(1)

model = bkm.fit(final_data)

322 Practical Machine Learning with Spark

cost = model.computeCost(final_data)

print(“Within Set Sum of Squared Errors = “,cost)

centers = model.clusterCenters()

print(“Computing Cluster Centers”)

for center in centers:

 print(center)

model = model.transform(final_data)

model.show(5)

#Converting into Pandas

model = model.toPandas()

Figure 6.31 shows the executed code for BKM, computation of SSSE, computation of
centroids centers, and conversion of spark’s data frame into the Python version of
the data frame for plotting the 3D scattering graph:

Figure 6.31: Executed code for implementing BKM

The last part of the code shows the way to draw a 3D scatter plot for displaying the
clustering result of BKM in the graphical mode:
#Scatter Plot

sc_plt = plt.figure(figsize=(17,12)).gca(projection=’3d’)

sc_plt.scatter(model.Age,model.SpendingScore, model.Annual_Income,
c=model.prediction)

sc_plt.set_xlabel(‘x’)

sc_plt.set_ylabel(‘y’)

Un-Supervised Learning with Apache Spark 323

sc_plt.set_zlabel(‘z’)

plt.show()

Figure 6.32 shows the executed code for plotting the 3D scattering graph:

Figure 6.32: Code to plot a 3D scatter graph

Output of Codebase
This section contains the output of the preceding executed program for implementing
BKM on a data frame and plotting of the 3D scatter graph of the result to show the
same datapoints grouped together into clusters. Figure 6.33 depicts the output of the
data frame after applying VectorAssembler and StandardScaler transformations:

Figure 6.33: Data frame after applying VectorAssembler and StandardScaler

324 Practical Machine Learning with Spark

Figure 6.34 depicts the output of SSSE, cluster centers, and prediction data frame
after applying BKM:

Figure 6.34: Prediction output of BKM

Figure 6.35 shows the plotting of the 3D scatter graph for showing the datapoints
based on its prediction values that is generated by BKM:

Figure 6.35: Illustration of code to draw an 3D scatter for BKM

Un-Supervised Learning with Apache Spark 325

Gaussian Mixture Model (GMM)
There are some limitations of the K-means algorithm such as non-accountability
for variance, no scope for non-spherical clusters, and failure to handle soft
classification related problems. To overcome the earlier mentioned hurdles, a GMM
is recommended to handle both types of clustering such as soft clustering and hard
clustering for the unlabeled dataset. Moreover, it performs much better than any
other cluster method on oblong and overlapping clusters, especially in Statistical
Modelling (SM) or Probabilistic Model (PM) from the normal distribution. The
PM leverages the codes of statistics to examine or test the data for providing the idea
about the uncertainty in predictions. Generally, the GMM known as a probabilistic
model to deal the problems related to the soft clustering approach for distributing
the n number of datapoints in different clusters by leveraging their Gaussian
distribution. Also, Gaussian Mixture implements Expectation-Maximization (EM)
algorithm for fitting a mixture-of-Gaussian models. The number of clusters among
the datapoints can be assessed by drawing confidence ellipsoids for multivariate
models and compute the Bayesian Information Criterion. EM is a technique to
determine the mean and variance values for each Gaussian distribution when the
total data are not available. The missing variables are known as latent variables. In
GMM, each point belongs to cluster of as given data it depends on its probability.
(For computing in the binary system, probability values can be taken as 0 and 1).
Using a fix probability below and above, respectively. In unsupervised learning,
readers will need to assume the number of clusters first. Then, the readers can find
optimum values for latent variables using existing data by EM. Those values will
help to determine the model parameters. Based on these parameters, the reader can
go back and update the values of the latent variables. This process is repeated to
maximize the function.

The following code shows the implementation of the GMM algorithm to classify the
datapoints into the same group together into specific clusters. The first part of the
code is used to install and import the indispensable modules or packages. Then, the
data which is read in the form of spark’s data frame is fed to the VectorAssembler
and StandardScaler transformations.

!pip install pyspark==2.1.2

import pyspark

conf = pyspark.SparkConf()

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

from pyspark.sql import SparkSession

from pyspark.ml.feature import StandardScaler

from pyspark.ml.clustering import KMeans,KMeansModel,KMeansSummary

326 Practical Machine Learning with Spark

from pyspark.ml.linalg import Vectors

from pyspark.ml.feature import VectorAssembler

from pyspark.ml.clustering import GaussianMixture

>>import seaborn as sns

from mpl_toolkits.mplot3d import Axes3D

spark = SparkSession.builder.appName(‘KMeans’).getOrCreate()

df = spark.read.format(‘com.databricks.spark.csv’).
options(header=’true’, inferschema=’true’).load(‘/content/sample_data/
Mall_Customers.csv’)

assembler = VectorAssembler(inputCols = [“Age”, “Annual_
Income”,”SpendingScore”], outputCol = “features”)

output = assembler.transform(df)

output.show(5)

Figure 6.36 shows the executed code for applying multiple operations such as
package installation, modules initialization, reading of CSV into data frame, and
transformations:

Figure 6.36: Executed code for reading and implementing transformations on data frame

The following part of the code is used to apply the StandardScaler transformation,
GMM, and conversion of the data frame from spark version to pandas’s version for
plotting the 3D scatter graph:

scaler = StandardScaler(inputCol=”features”, outputCol=”scaledFeatures”)

scaler_model = scaler.fit(output)

print(scaler_model)

final_data = scaler_model.transform(output)

Un-Supervised Learning with Apache Spark 327

final_data.show(5)

#Clustering

gmm = GaussianMixture().setK(4).setSeed(538009335)

model = gmm.fit(final_data)

model = model.transform(final_data)

model.show(5)

#Converting into Pandas

model = model.toPandas()

#Scatter Plot

sc_plt = plt.figure(figsize=(17,12)).gca(projection=’3d’)

sc_plt.scatter(model.Age,model.SpendingScore, model.Annual_Income,
c=model.prediction)

sc_plt.set_xlabel(‘x’)

sc_plt.set_ylabel(‘y’)

sc_plt.set_zlabel(‘z’)

plt.show()

Figure 6.37 shows the executed code to apply StandardScaler, GMM, and 3D Scatter
plot:

Figure 6.37: Executed code for applying GMM and 3D scatter plot

328 Practical Machine Learning with Spark

This section contains the output of the preceding executed program for implementing
GMM on a data frame and plotting of the 3D scatter graph of the result to show the
same datapoints grouped together into clusters. Figure 6.38 depicts the output of the
data frame after applying VectorAssembler and StandardScaler transformations:

Figure 6.38: The output of data frame after applying VectorAssembler and StandardScaler

Figure 6.39 depicts the output of the prediction data frame after applying GMM:

Figure 6.39: The output of GMM as a data frame

Un-Supervised Learning with Apache Spark 329

Figure 6.40 shows the plotting of the 3D scatter graph for showing the datapoints
based on its prediction values that is generated by GM:

Figure 6.40: Code to draw an 3D scatter for GMM

Latent Dirichlet Allocation (LDA)
LDA is an unsupervised learning-based classification for performing the topic
modeling. Topic Modeling is a well-known method to classify the words in a stack of
a document and assign the topic to give the flexibility to see the often-used insights
such as top n topics in a document, importance of each word in a document, and
classification of a sentence or a document based on its intent of the content. It works
on the mechanism of soft clustering, where a document can belong to more than
one topic. In the general words, LDA is a statistical method to be used to search the
hidden pattern behavior or intent in a collection of texts. The detailed implementation
of LDA is shown in “Natural Language Processing with Apache Spark” chapter. In
the market of Natural Language Processing (NLP), there are several algorithms to
perform the topic modeling:

330 Practical Machine Learning with Spark

•	 Latent Semantic Analysis (LSA)

•	 Probabilistic Latent Semantic Analysis (PLSA)

Conclusion
Unsupervised learning is the way to classify and cluster the similar characteristics by
analyzing the hidden or unseen patterns from the unlabeled data by using various
mathematical methods such as K-means, BKM, LDA, and GMM. Mainly, it enhances
the ease to handle a massive dataset which is having unlabeled information into a
similar group, or a similar cluster. This chapter helps the reader to understand the
concept of distributed unsupervised learning and its code base for implementation in
a better way. As we know, the distributed flavor within a ML or DL related problems,
it helps to train and test the model with less time. The next chapter will focus on the
detailed studies on how to design a distributed Natural Language Processing.

Natural Language Processing with Apache Spark 331

Chapter 7
Natural Language

Processing with
Apache Spark

“Every language is a world. Without translation, we would inhabit
parishes bordering on silence.”

— George Steiner

Introduction
In the present era, we can see a rapid increase in the volume of digital data in
every vertical such as social media, e-news, e-magazine, e-translation, e-banking,
e-marketing, and e-shopping. In 2020, due to the tremendous jolt of COVID-19
pandemic, the volume of e-content has been making a long leap and that will
remain and continue in the coming years. The term Natural Language Processing
(NLP) has been introduced as a new branch of AI and DL to analyze this massive
volume of multi-lingual textual content and convert them into a meaningful insight.
By adopting the features of NLP, it provides the ease and extends the feasibility
to understand complex languages as a human mind does. This chapter presents a
comprehensive summary about the evolution of NLP and distributed processing
in NLP using the SparkNLP library. Main components, features, embeddings,
various standalone NLP libraries, and emerging applications with future scope are
also mentioned in this chapter. In addition, the implementation of topic modeling,
text-classification, and sentimental analysis have been duly presented in a simple
manner for the better understanding of the readers. Moreover, a laconic discussion

332 Practical Machine Learning with Spark

on alternate distributed framework and advanced enhancement has been given in
this chapter.

Structure
In this chapter, we will discuss the following topics:

•	 Introduction and evolution of NLP

•	 SparkNLP and its relevance

•	 Components and features of NLP

•	 Various embeddings techniques in NLP

•	 Most often used NLP libraries

•	 Topic modeling and text classification

•	 Sentimental analysis

•	 Comparison between NLP, NLU, and NLG

•	 Alternate framework to deal with distributed NLP

•	 Future enhancement in NLP

•	 Applications of NLP

Objectives
After studying this chapter, readers will be able to:

•	 Gain awareness about the legacy of NLP

•	 Understand the distributed processing of SparkNLP and its core features

•	 Grasp the knowledge of different components and embeddings of NLP

•	 Have awareness about most often used NLP libraries

•	 Understand the concept of topic modeling, text classification, and sentimental
analysis with their codebase

•	 Know the future scope and key applications of NLP

•	 Grasp the knowledge about another distributed framework for NLP

Natural Language Processing with Apache Spark 333

Evolution of Natural Language Processing
In 1950, the term NLP first came into existence when Alan Turing, an AI pioneer
published a research paper entitled Machine and Intelligence. In his published paper,
he discussed a test for a machine, in which he claimed that if a machine can be part of
a conversation using a teleprinter, then it can also be taught how to imitate a human.
In addition, he also mentioned that repeated patterns would allow a machine to
learn like the same, after which it could be considered capable of thinking.

Thereafter in 1954, the Georgetown University and IBM were the first who had
successfully translated six Russian language sentences into English language. They
showed for the first time the possibility of NLP in the real world. However, NLP
had not fully matured till the late 1980s when the first statistical machine translation
system (translations generated through a statistical model) was developed.

In the same decade, the Chomsky and other researchers had worked on the formal
language theory and generative syntax. In mid 1960s, an early natural language
processing computer program (ELIZA) took the center stage of that decade which
was developed at the MIT Artificial Intelligence Laboratory by Joseph Weizenbaum
to elucidate the superficiality of communication between humans and machines. It
revealed that communication with machines did not involve contextualizing events
and only followed a script. ELIZA also paved the way for today’s chatbots (also
known as chatterbots).

After that, 1970s was the decade of creating structured real-world information into
computer-understandable data. In this decade, several programs improved on the
available technology. Notable progress had been noticed at the start of the year 1972
that had included PARRY chatbot or simply PARRY developed by Professor Kenneth
Colby at Stanford University. An ELIZA was developed to speak as a doctor while
PARRY was developed to simulate a patient with Schizophrenia.

The 1980s were the historical decade in the field of NLP, when machine learning
algorithms were used for language processing. There was a surge in computational
power and the gradual simplification of linguistics.

In 1983, Racter, a tongue-in-cheek chatbot was created by mindscape. It was
developed by William Chamberlain and Thomas Ettera and used to generate
English language prose at random. The program of this chatbot was written in
complied BASIC language having 64K of RAM. After a year, in 1984 an interactive
version of Racter was developed by Inrac Corporation for Apple II computer, IBM
PC computer, and Amiga. Thereafter, in 1984 a British programmer Rollo carpenter
created a Jabberwacky chatbot. It was aimed to simulate a human conversation in
an entertaining way.

334 Practical Machine Learning with Spark

In 1990, several researchers had spilled out their legs towards probabilistic and
data-driven approach to deal with complex languages. In 2000, a large amount of
spoken and textual data became available for testing and implementation purpose
for enhancing the capabilities of NLP.

Currently, the 21st century is an era of automatic feature learning and deep neural
network-style machine learning. These include word embeddings to capture
semantics and higher-level questions and answers for giving birth to Neural
Machine Translation (NMT). It uses an artificial neural network to predict a
sequence of words, modeling an entire sentence in a single integrated model. This
advancement has opened the door for some latest important applications such as
intelligent keyboards and email response suggestions to speech-enabled assistance
by machines.

NLP and its Types
NLP is a branch of AI that makes machines capable of understanding, interpreting,
and manipulating human-speaking languages like English, Hindi, and so on,
into meaningful languages or compatible embeddings. It is a process in which
machines decode human languages and teach the model according to the decoded
instructions. For example, Google Voice Search (Speech Recognition), sentiment
analysis, and search engines (online hotel and flight booking apps), question
answering, paraphrasing, or summarizing, natural language business intelligence,
language modeling, disambiguation, and social website feeds. Traditionally, the text
mining-related work was entirely based on rules and patterns through programming
languages like Prolog. Later, it was incorporated with ML, DL, and statistical-based
models. Typically, NLP is divided into three levels such as low-level, mid-level,
and high-level. The low-level text functions adapts the rudimentary processes
steps to make the text format which is understandable to system like conversion
of unstructured data into structured data. This level consists of various processing
steps such as tokenization, Part-of-speech tagging, chunking, sentence boundaries,
and syntax analysis. In mid-level, it involves extracting the meaningful content that
can be further used in other insights such as entities, themes, topics, summaries, and
intentions. The last level is used for deep analysis of text for making the decisive
insight like sentimental analysis.

Due to increase in the demand, we need to have an advanced AI system which
can facilitate the functionality of NLP for enhancing the machine tendency to
read, understand, and interpret the content. The input for NLP may be structured,
un-structured, and semi-structured data that can be extracted from social media,
raw documents, News APIs, journal papers, and magazines. There are two ways
to achieve or cater the functionality of NLP in any system. Firstly, the researchers
started with the condition or rule based approach; later, they upgraded to machine

Natural Language Processing with Apache Spark 335

learning and deep learning-based approach for NLP. Let us discuss both approaches
one by one.

Artificial Intelligence-Based Approach
In AI-based approach, the NLP pipeline leverages the components of ML algorithms
and conceptualization of Data Science such as supervised, un-supervised, and
Exploratory Data Analysis (EDA). Figure 7.1 depicts the NLP workflow of the AI/
ML-based model in which the entire process is segmented into three phases. In the
first phase, the documentation or rows of sentences are read as an input and then
fed to the second phase for pre-processing the content into numerical values which
is understandable to the machine. In the third phase, the features pass through the
ML pipeline, which trains a model for predicting the outcome while applying on the
testing dataset.

Figure 7.1: ML workflow to train an NLP model

Deep Learning or The Neural Network Approach
DL or NN-based approach provides the ease to train efficient NLP models for big data,
integrates faster configuration at the processing time using Graphical Processing
Unit (GPU)/Tensor Processing Unit (TPU), reusing the pre-trained weights to new
problems using Transfer Learning (TL), better regularization, and optimization
methods. In DL, the automatic recursive self-learning of features can be done
from the source inputs and intermediate weighted layers, which is a big difference
between the ML-based NLP pipeline and DL-based NLP pipeline. However, feature
learning and extracting are easy to adapt and fast to grasp; leveraging that user can
improve the model accuracy and get easiness when deploying the same. Currently,
there are several models based out of NN such as Window-based NN, Long-Short-

336 Practical Machine Learning with Spark

Term-Memory Model (LSTM), Recurrent Neural Network (RNN), Graph Neural
Network (GNN) and Convolutional Neural Network (CNN). Figure 7.2 shows the
workflow of the DL-based NLP model; the phases incorporated in this workflow are
like the ones in the ML-based workflow. Only, the ML phase is replaced by the DL
mechanism which includes activation functions, hidden layers, output layer, input
layer, optimizer, loss functions, regularizations, and many more components.

Figure 7.2: DL workflow to train an NLP model

A Laconic View on SparkNLP
Currently, there are myriad of open-source libraries such as scikit-learn, Gensim,
Vader, SpaCy, Blob, AllenNLP, NLTK, StanfordNLP, Hugging Face, Rasa NLU,
and FastText which empower NLP to create a robust pipeline. But these preceding
outlined libraries are designed to run on standalone mode, instead of a distributed
pattern. Hence, these are outperformed with small datasets and take more time
when dealing with complex or cumbersome datasets. However, Spark MLlib has
strived to become a reason to fulfil the need of distributed processing in NLP by
clinching the most of ML models like Linear Regression, Logistic Regression, SVM,
Random Forest, K-means, and LDA. But still, it has some flaws like no integration
with DL and NN; hence, it is not entirely recommended for NLP use cases.

Due to preceding limitations, a research team from John Snow Labs in USA has
developed a distributed NLP library named as SparkNLP. It is an advanced
layer which floats over a distributed framework using Spark ML. It provides the
ease and flexibility to simple, robust, relevance, and tailor-based NLP pipelines
to train and test the model in a distributed manner. Generally, it caters about
1100+ pretrained pipelines and models in more than 192+ languages. It also extends
their functionality towards NN and DL by adopting various advanced NN models
such as BERT, XLNet, ELMO, ALBERT, and Universal Sentence Encoder. SparkNLP
performs all the indispensable features like other libraries do, including tokenization,

Natural Language Processing with Apache Spark 337

word segmentation, part-of-speech tagging, named entity recognition, dependency
parsing, spell checking, multi-class text classification, multi-class sentiment analysis,
machine translation, summarization, and question answering.

Advantages of SparkNLP
SparkNLP has many advantages other than other standalone and distributed
frameworks. Few key strengths of SparkNLP is listed down with detailed explanation:

•	 An unify wrapper to meet all the NLP requirements

SparkNLP provides a unify library for providing the high-precision, high-
availability and scalability by integrating the various components of NLP
such as sentence detection, tokenization, stemming, lemmatization, part-
of-speech tagger, bag-of-words, text matcher, data matcher, spell checker,
chunking, pre-trained models, reinforcement in models, transfer learning in
models, and sentimental analysis.

Thus, it can act as a bridge among the different component’s named
mountains to easy walk through the journey of NLP with no hassle. Mainly,
SparkNLP consists of all the indispensable steps, including loading of
training data, various transformations, NLP annotators, building features,
training, evaluating, and testing of models with hyperparameter tuning.

•	 Provide ease and more precision by leveraging DL, NN, and Transfer
Learning (TL)

Due to the big enhancements in the field of DL, there is an option of using a
pre-trained model by taking the key features of a source dataset and employ
it for different sources of the dataset through the concept of TL. Generally,
the transfer learning and DL approaches are used to improve the accuracy
in the result and create a robust model with high scalability. It is quite
challenging to get a high accuracy in NLP when training a model on a small
dataset. With the help of transfer learning, a user can handle this challenge
by transferring the extracted features to learn or fine-tune a new model for
task at hand. Thus, SparkNLP provides a good solution which can connect
all the dots in a single pipeline and provide the ease to the user to run the
model effectively on a production framework. There are several open-source
pre -trained models such as ELMo, BERT, RoBERTa, ALBERT, XLNet, Ernie,
ULMFiT, OpenAI transformer, which are all open-source, which adopt the
advantages of the transfer learning concept. Through the aforesaid models,
the user can easily deploy, train, evaluate, and test the modes on any custom
datasets.

338 Practical Machine Learning with Spark

•	 Full-fledged distributed in-memory processing framework

The SparkNLP library runs on top of the Apache Spark framework to
provide the taste of distributed processing in NLP. We are familiar with
the advantages of SparkML regarding the heterogenous ML algorithms to
deal with different problem sets. But due to less integration scope of DL and
NN in SparkML, we cannot say it is a full-fledged remedy for handling all
kinds of operations of NLP. To overcome this hassle, SparkNLP is being run
as a refinement layer that is integrated with Spark for providing all-in-one
kinds of solutions of NLP in an effective manner by using the distributed
framework.

Core Execution Blocks of NLP
SparkNLP introduces NLP annotators that merge within this framework and its
algorithms are meant to predict in parallel. Now, let us start by explaining each
component in detail as shown in Figure 7.3:

Figure 7.3: Core Execution Blocks of NLP

Annotators
As we discussed estimators or transformations in chapter: Apache Spark MLlib the
annotators also perform the same operation in SparkNLP. It can be applied directly
to a dataframe or transform a dataframe to produce a new dataframe with respective
predictions.

Natural Language Processing with Apache Spark 339

An annotator returns the following given values:

Annotation (annotatorType, begin, end, result, meta-data, embeddings) when apply
on the DataFrame. There are several annotators which are being used in SparkNLP
such as BigTextMatcher, Chunk2Doc, ChunkEmbeddings, ChunkTokenizer, Chunker,
ClassifierDL, ContextSpellChecker, DateMatcher, DependencyParser, Doc2Chunk,
Doc2Vec, DocumentAssembler, DocumentNormalizer, EntityRuler, EmbeddingsFinisher,
Finisher, GraphExtraction, GraphFinisher, LanguageDetectorDL, Lemmatizer,
MultiClassifierDL, MultiDateMatcher, NGramGenerator, NerConverter, NerCrf,
NerDL, NerOverwriter, Normalizer, NorvigSweeting Spellchecker, POSTagger (part of
speech tagger), RecursiveTokenizer, RegexMatcher, RegexTokenizer, SentenceDetector,
SentenceDetectorDL, SentenceEmbeddings, SentimentDL, SentimentDetector, Stemmer,
StopWordsCleaner, SymmetricDelete Spellchecker, TextMatcher, Token2Chunk,
TokenAssembler, Tokenizer, TypedDependencyParser, ViveknSentiment,
WordEmbeddings, Word2Vec, WordSegmenter, YakeKeywordExtraction.

There are two types of annotators in SparkNLP named as AnnotatorApproach and
AnnotatorModel. In AnnotatorApproach, the annotator applies on a DataFrame and
produces a model like an Estimator. On the flip side, when the annotator applies
on DataFrame and that produces another DataFrame like Transformer is known
as AnnotatorModel. In addition, the AnnotatorModel should be recognized by a
Model suffix.

Pre-Trained Models
In SparkNLP, there are several pre-trained State-Of-The-Art (SOTA) models that
leverage the concept of transfer learning for applying these models on any custom
dataset. With the help of pre-trained models, users do not need to worry about the
training of a model from scratch because it provides the feasibility to transfer the
pre-trained weights while training a model. In addition, pre-trained models can also
save a lot of time and provide better accuracy; thus, it has become a crucial role in
SparkNLP.

Pipeline
As we are already familiar about the uses of pipeline in the previous chapter, similarly,
we can create an unify pipeline for performing different tasks of NLP. By using the
method of pipeline, the user can stitch SparkNLP annotators and transformers tasks
in one wrapper.

Components of NLP
Generally, in NLP, there are five main components which are given as follows:

•	 Morphological analysis

340 Practical Machine Learning with Spark

•	 Lexical analysis

•	 Syntactic analysis

•	 Semantic analysis

•	 Discourse integration

•	 Pragmatic analysis

Figure 7.4 shows the stepwise explanation of each component to understand the
intend of any documents or sentences in NLP:

Figure 7.4: Core components of NLP

Morphological Analysis
It is a linguistic study of words with respect to its structures and formations in any
sentences or documents. The most prominent part of morphological analysis is to
find each meaningful detail within the words named as morpheme.

Natural Language Processing with Apache Spark 341

Figure 7.5: morphemes of word undesirable

For example, the word ‘undesirable’ contains three morphemes as shown in the
preceding Figure 7.5 (“un”: prefix, “desire”: stem, and “able”: suffix) having specific
meaning such as: the prefix un refers to not being, the suffix able refers to a state of
ability to do something, and the desire refers to stem. Bound morphemes are known
as affixes: a combination of prefixes and suffixes which don’t consider it as a word.

Generally, it is used to retrieve the information or to do some query from any
document needing a stemmed word for matching it with morphological analysis
variants. For example, desire is a singular word, and it can be used to extract out the
matching information from the document having the word or information but in the
plural form or others like desires and undesirable. It is mainly used to increase the
recall and precision terms.

Lexical Analysis
Lexical analysis is a study of words with respect to their expressions and Part-
of-Speech (POS). Here, POS provides the unit level information of each word,
including its grammatical observations. It elucidates the process of analyzing and
identifying the description of the structure of words which often can improve the
precision while searching for any similar words or sentences through a query.

Syntax Analysis
The output of the part-of-speech tagging of lexical analysis step is passed to the
syntax analysis process which converts the group of words into more related word
phrases. Generally, it involves processing of individual words using the grammatical
structure of sentences that refers to the sentence’s formation principles and rules. It is
a powerful step to extract out the meaningful phrases which can give more detailed
information when to compare to the individual group of words from a document.

342 Practical Machine Learning with Spark

The process of the information retrieval from any document can improve the precision
in extracting out the more related sentences to the similar parsed information by
leveraging the concept of syntactical phrasing of more identical words.

Semantic Analysis
Semantic analysis is a process to assign the meaning to the output of the syntactic
step. Generally, it takes the linear sequences of words and shows the meaning of
words when associated with each other. This analysis step only briefs the actual
meaning from the given sentences or context.

For example, the sentence “Water is Odorless, so it has good smell.” would be
rejected by Semantic analysis due to the word ‘odorless’ because smell does not
make any sense.

Pragmatic Analysis
It analyses the way of delivery of dialogues to understand the content and impact
of contextual dimension what is being communicated in a better way. Pragmatic
analysis interprets the actual meaning from what was said during the conversation
and in what context.

In the recommendation system or sentimental analysis, it plays a vital role in sending
back the right or related response of the queried or asked questions by understanding
the historical chat conversations and other social contents. Nowadays, it is being
effectively implemented in conversation AI system.

For example, the sentence Give a glass of water will be interpreted either as a request
or an order to the user.

Discourse Integration
Discourse integration is a process to analyze the flavor or sense of the context. It
creates a bi-directional relationship with the dependent sentences in a document
which helps to know the user about dependencies of each sentence with other
sentences within a document. The following Anaphora Resolution shows an example
of dependency relationship with illustrations.

Natural Language Processing with Apache Spark 343

Comparison among Natural Language
Processing (NLP), Natural Language
Understanding (NLU), and Natural
Language Generation (NLG)
The NLG and NLU are the branches of NLP as shown in Figure 7.6. We know
that NLG produces meaningful sentences in Natural Language (NL) and NLU is
responsible to understand the machine language to take the decision.

Figure 7.6: Branches of NLP

Table 7.1 Explains the key differences between NLU, NLG, and NLP:

NLU NLG NLP
It is a narrow concept
which deals only for text
understanding.

It is a narrow concept
which generates a human-
like text response.

NLP is a wider concept
which is a combination of
NLU and NLG.

It is a branch of NLP. It is a branch of NLP. It is a root concept for
handling the textual-related
problems by using AI.

It helps to correct the
grammatical errors in
spoken and written text.

It generates relevant
responses and text
which will be human-
understandable.

It takes the overall decision
related to textual content
and perform the actions
according using the NLP
system.

It feeds data of any formats
and converts them into a
structured format.

It generates and writes only
the structured data.

It can convert unstructured
data to structured data.

Table 7.1: Explains the key differences between NLU, NLG, and NLP

344 Practical Machine Learning with Spark

Widely Used Libraries of NLP
Recently, the hot-balloon of NLP has been continuously lifting-up by leveraging the
concept of AI and DL. It attracts worldwide researchers to build more open-source
NLP libraries for dealing with complex multi-lingual languages. The following
timeline Figure 7.7 shows the year-wise popular NLP libraries that have been
implemented in various verticals:

Figure 7.7: Timeline to show most often used libraries of NLP

Types of NLP
In this section, the authors will touch upon different types of learning through which
a user can train an NLP model. Generally, the supervised and unsupervised learning
are most commonly used learning ways to train an NLP pipeline. The applications
rely on spam detection, sentiment analysis, intent classification, multi-label, and
multi-class text classification are waded in the category of supervised learning. On
the other side, the topic modeling and keyword extraction-related applications fall
in the category of un-supervised learning. Topic modeling and text classification
both are the most important and famous applications of SL and USL. The detailed
explanation with implementation code for the same is mentioned as follows.

Text Classification
It helps to assign labels to a text for evaluating the meaning of each word in a sentence
by using the concept of supervised learning techniques. In text classification, each
word needs to be labeled with some values or weights through the reference of pre-
defined corpus of words and the trained model will be used to classify and identify
the sentiments.

Topic Modeling
In NLP, the topic modeling is a process to discover the hidden patterns of words
in a document or sentence. Let us take an example of a bunch of books, where the

Natural Language Processing with Apache Spark 345

users want to categorize the books according to their intent without the need to
read them. To handle this challenge, an unsupervised learning approach named as
Latent Dirichlet Allocation (LDA) can be used to extract and analyze the nascent
information from the text. Although, the Probabilistic Latent Semantic Analysis
(PLSA) and Latent Semantic Analysis (LSA) are also used to implement topic
modeling in NLP. Through this approach, the user can classify the category of
different books and easily sort out the bookshelves accordingly. The following code
base shows the implementation of LDA on a sample dataset:

>>from pyspark.ml import Pipeline

>>from pyspark.ml.feature import StopWordsRemover, CountVectorizer, IDF

>>from pyspark.ml.clustering import LDA

>>from pyspark.sql.functions import col, lit, concat, regexp_replace

>>from pyspark.sql.utils import AnalysisException

>>from pyspark.ml.feature import Tokenizer, RegexTokenizer

>>from pyspark.sql.functions import col, udf

>>from pyspark.sql.types import IntegerType

>>from pyspark.ml.clustering import LDA

>>from pyspark.ml.feature import StopWordsRemover

>>from pyspark.ml.feature import Normalizer

>>from pyspark.ml.linalg import Vectors

>>dataset = spark.read.format(‘com.databricks.spark.csv’) \

.options(header=’true’, inferschema=’true’) \

.load(‘/home/cdh@psnet.com/Gourav/chap3/abcnews-date-text.csv’)

>>get_tokenizers = Tokenizer(inputCol=”headline_text”, outputCol=”get_
tokens”)

>>get_tokenized = get_tokenizers.transform(dataset)

>>remover = StopWordsRemover(inputCol=”get_tokens”, outputCol=”row”)

>>get_remover = remover.transform(get_tokenized)

>>counter_vectorized = CountVectorizer(inputCol=”row”, outputCol=”get_
features”)

>>getmodel = counter_vectorized.fit(get_remover)

>>get_result = getmodel.transform(get_remover)

>>idf_function = IDF(inputCol=”get_features”, outputCol=”get_idf_
features”)

>>train_model = idf_function.fit(get_result)

346 Practical Machine Learning with Spark

>>outcome = train_model.transform(get_result)

>>training,test = outcome.randomSplit([0.7,0.3])

>>lda = LDA(featuresCol=’get_idf_features’, k=10, maxIter=10)

>>model = lda.fit(training)

>>transformed = model.transform(test)

>>transformed.show(truncate=False)

Describe topics.

>>topics = model.describeTopics(10)

>>print(“The topics described by their top-weighted terms:”)

>>topics.show(truncate=False)

Shows the result

>>transformed = model.transform(test)

>>transformed.show(truncate=False)

Figure 7.8 shows the screenshot of code and output of DataFrame after reading a file:

Figure 7.8: Importing needed modules for implementing LDA and output of DataFrame

Natural Language Processing with Apache Spark 347

Figure 7.9 shows the screenshot of code to pre-process the DataFrame using different
features of NLP:

Figure 7.9: Pre-processing steps of NLP on DataFrame

Figure 7.10 shows the screenshot of code to train a LDA on training dataset:

Figure 7.10: Training a LDA model on training dataset

Figure 7.11 shows the output to show the topicDistribution of each word with their
weights:

Figure 7.11: Output to show the topicDistribution with their weights

Features in NLP
There are various features that have been provided by SparkNLP which are as
follows:

•	 Tokenization.
•	 Word segmentation
•	 Stop words removal.
•	 Normalizer

348 Practical Machine Learning with Spark

•	 Stemmer

•	 Lemmatizer

•	 NGrams

•	 Regex matching

•	 Text matching

•	 Chunking

•	 Date matcher

•	 POS tagging

•	 Sentence detector using DL

•	 Dependency parsing

•	 Sentiment detection

•	 Spell checker using ML and DL

•	 Word embeddings

•	 BERT embeddings

•	 ELMO embeddings

•	 Universal sentence encoder

•	 BERT sentence embeddings

•	 Sentence embeddings

•	 Chunk embeddings

•	 Neural machine translation

•	 Text-to-text transfer transformer

•	 Unsupervised keywords extraction

•	 Language detection and identification

•	 Multi-class text classification

•	 Multi-label text classification

•	 Multi-class sentiment analysis

•	 Named entity recognition

Natural Language Processing with Apache Spark 349

Sentiment Analysis using Spark NLP
Sentimental analysis on the textual content is one of the most widely used techniques
in the industry. It generates a sentiment score which helps to rate the customer
surveys, reviews, customer calls after speech-to-text conversion, feedback, and intent
of social media. It scales the range of rating on three categories such as positive,
neutral, and negative with their respective numerical values. The sentimental
analysis task can be achieved by using supervised as well as unsupervised learning.
Often, Naïve Bayes in supervised and lexicon-based sentimental in un-supervised
learning are being implemented in many applications. The following code base
shows the implementation of sentimental analysis using Naïve Bayes and logistic
regression on a sample dataset:

>>from pyspark.sql import SparkSession

>>from pyspark.ml import Pipeline

>>from pyspark.ml.feature import StopWordsRemover, CountVectorizer, IDF,
StringIndexer

>>from pyspark.ml.clustering import LDA

>>from pyspark.sql.functions import col, lit, concat, regexp_replace

>>from pyspark.sql.utils import AnalysisException

>>from pyspark.ml.feature import Tokenizer, RegexTokenizer

>>from pyspark.sql.functions import col, udf

>>from pyspark.sql.types import IntegerType

>>from pyspark.ml.clustering import LDA

>>from pyspark.ml.feature import StopWordsRemover

>>from pyspark.ml.feature import Normalizer

>>from pyspark.ml.linalg import Vectors

>>from pyspark.ml.feature import VectorAssembler

>>from pyspark.ml.classification import NaiveBayes

>>from pyspark.ml import Pipeline

>>from pyspark.sql.functions import length

#Read data from a CSV

>>spark = SparkSession.builder.appName(‘nlp’).getOrCreate()

dataset = spark.read.format(‘com.databricks.spark.csv’) \

.options(header=’true’, inferschema=’true’) \

.load(‘/home/cdh@psnet.com/Gourav/chap3/Review.csv’)

350 Practical Machine Learning with Spark

#DataRefining

>>dataset_refined = dataset.withColumn(‘Liked’, dataset.Liked.
cast(‘integer’))

>>dataset_refined = dataset_refined.selectExpr(“Review as review”, “Liked
as label”)

>>data_length = dataset_refined.withColumn(‘length’, length(dataset_
refined[‘review’]))

>>tokenizer = Tokenizer(inputCol=’review’, outputCol=(‘token_text’))

>>stop_remove = StopWordsRemover(inputCol=’token_text’, outputCol=’stop_
token’)

>>count_vec = CountVectorizer(inputCol=’stop_
token’,outputCol=’CountVect’)

>>idf = IDF(inputCol=’CountVect’,outputCol=’features’)

>>data_prepare = Pipeline(stages=[tokenizer, stop_remove, count_
vec,idf])

>>cleaner = data_prepare.fit(dataset_refined)

>>clean_data = cleaner.transform(dataset_refined)

>>clean_data = clean_data.select(‘label’,’features’,’review’).dropna()

>>training,test = clean_data.randomSplit([0.7,0.3])

>>training = training.dropna()

>>get_naive = NaiveBayes()

>>model = get_naive.fit(training)

>>test_results = model.transform(test)

>>test_results.show()

>>test_results.select(‘label’,’review’,’prediction’).write.csv(‘/home/
cdh@psnet.com/Gourav/sentiments/’)

The following code is used to evaluate the performance of a trained model on a
testing dataset:

>>from pyspark.ml.evaluation import MulticlassClassificationEvaluator
>>get_eval= MulticlassClassificationEvaluator()
>>get_eval = get_eval.evaluate(test_results)
>>print(get_eval)

Natural Language Processing with Apache Spark 351

The following code is used to show the implementation of logistic regression for
predicting the sentiments of sentences. This code will be stitched after splitting the
training and testing dataset in the preceding code:

>>from pyspark.ml.classification import LogisticRegression

>>my_model = LogisticRegression()

>>fitted_lg = my_model.fit(training)

>>log_summary = fitted_lg.summary

>>log_summary.predictions.show()

>>predictions = fitted_lg.evaluate(test)

>>my_eval = BinaryClassificationEvaluator()

>>test_result = my_eval.evaluate(predictions.predictions)

>>test_result

Figure 7.12 shows the screenshot to launch a SparkNLP terminal in Spark through
–package option:

Figure 7.12: Launching of SparkNLP terminal

352 Practical Machine Learning with Spark

Figure 7.13 shows the screenshot to import the important modules to take care of the
operations of NLP:

Figure 7.13: Importing important modules for NLP operations

Figure 7.14 shows the screenshot of the output after reading the input file:

Figure 7.14: Output of dataset

Natural Language Processing with Apache Spark 353

Figure 7.15 shows the screenshot of the code for showing the steps applied for pre-
processing a DataFrame:

Figure 7.15: Pre-processing steps for performing an NLP model

Figure 7.16 shows the screenshot of the code to show how to initialize the multiple
stages of pre-processing steps in the pipeline:

Figure 7.16: Stages defined in an NLP pipeline

354 Practical Machine Learning with Spark

Figure 7.17 shows the screenshot of the code to show the implementation of the
Naïve Bayes algorithm on the feature set and the output of a model while applying
it on the testing dataset:

Figure 7.17: Implementation of Naïve Bayes and output of a model on test data

Figure 7.18 shows the screenshot of the code to evaluate the performance of a model:

Figure 7.18: Implementation of the evaluation function on test result

Natural Language Processing with Apache Spark 355

Logistic Regression
Figure 7.19 shows the implementation of logistic regression for predicting the
sentiments of sentences:

Figure 7.19: Implementation of logistic regression and its predicted values

Figure 7.20 shows the implementation to check the accuracy of a model using
BinaryClassificationEvaluator:

Figure 7.20: Implementation of evaluation function on test result

356 Practical Machine Learning with Spark

Figure 7.21 shows the dashboard on sentiments which is crafted using PowerBI to
perform a deep dive analysis on the predicted and actual numbers of sentiments
from the raw dataset. This dashboard helps to narrate a story about the data and
informative quick walk over each trend on the predicted result:

Figure 7.21: Dashboard for detail analysis on data

Enhancement in NLP
For enhancing the ability of NLP, several universities and research groups have been
working on integration of novel concepts like few-shot learning, zero-shot learning,
and meta-learning. In these approaches, the pre-trained models can learn or train
a new model about NLP by incorporating prior knowledge. Mainly, it deals with
such problems where the raw dataset is small, and the users want to apply the DL-
based model for NLP on the custom datasets. With the help of few-shot learning,
the user can learn the new tasks taking the prior knowledge on a label. In zero-
shot learning, it can achieve the functionality of NLP with high precision by parsing
the known and unknown classes about the text. Currently, these are active research
topics within the NLP domain.

Alternate of SparkNLP
HiveMall is an alternate and scalable ML library that runs on Apache Hive/Pig/
Spark for getting the functionality of NLP. It executes the different ML algorithms
through User Define Function (UDF) by calling these algorithms on SparkSQL,
HiveUDF, and Pig. It has a wide variety of algorithms such as regression, classification,

Natural Language Processing with Apache Spark 357

recommendation, anomaly detection, k-nearest neighbor, and feature engineering
for ML which the user can use for NLP and other problem sets. Figure 7.22 shows
the features of HiveMall to perform distributed NLP and other ML functionalities:

Figure 7.22: Features of Apache HiveMall

Applications of NLP
There are several following applications in different fields where NLP is advantageous:

•	 Part of speech tagging in a document or sentences.

•	 Sentimental analysis to find the emotions from any document or text.

•	 To understand the machine language to convert it into meaningful translation.

•	 Automatic question and answering through advanced chatbots.

•	 Automatic extraction of text or words from a document or sentence through
a desired query.

•	 Automatic summarization of lengthy documents like Journal’s research
paper.

358 Practical Machine Learning with Spark

•	 Name-entity recognition from a document.

•	 Semantic role labeling.

•	 Word relationship or similar sentences detector from a document.

•	 Classifying the various documents by considering the content or intent.

•	 Identifying the fake news from social media or others e-news sources.

•	 Finding and extracting the text from a document.

•	 Spell check and auto-correction of words in a document.

•	 Detecting unwanted content from the documents or comments.

•	 Evaluating and detecting the sentence grammar of a text document.

•	 Splitting and cleaning of text in a document.

•	 Detecting toxic and sarcastic language from a document.

•	 Detecting the specific language from a document.

•	 Simplifying the multi-lingual documents into a unify language.

•	 Converting PDF into a text formatted document.

•	 Target-based advertisement by understanding the content and emotion of a
user.

•	 E-mail filtering based on different category of words tagging.

•	 Voice assistant and detection.

•	 Text refinement applications

Conclusion
Use of NLP in different domains and applications show the importance and wide
scope for understanding the behavior and intent of any content. NLP can reduce
the burden of expensive manpower and chances of human/manual errors when
to deal with the text analytics. To cover all the details of the NLP trail, this chapter
delivers the knowledge to the readers about the need of NLP and components of
NLP with detailed history. It also includes different libraries of NLP, DL and ML-
based approaches for NLP, future enhancement, and alternate of SparkNLP. The code
implementation for topic modeling and sentimental analysis are also mentioned
in this chapter. In the next chapter, we will focus on the detailed study on how to
design a distributed recommendation system.

Recommendation Engine with Spark 359

Chapter 8
Recommendation

Engine with
Spark

“Any sufficiently advanced technology is equivalent to magic.”
 - Arthur C. Clarke

Introduction
A Recommendation Engine (RE) is an advanced system that gives the
recommendations of products, services, and information that a user might wish to
know from a system based on analysis of data like a user’s interest, behavior, and
browsing history. RE always strives to know more about the items or services using
digital information such as history of search, user profile through their suggestions,
and the information such as information about user’s past activities, ratings, reviews,
age, gender, or other meaningful key features. Generally, the working mechanism of
the RE is based on the principle of finding the meaningful patterns in the consumer
behavior data such as the devices to be accessed, clicks on a link, locations, and
dates, which can be collected implicitly or explicitly. A recommendation engine
can significantly boost revenues and other essential metrics. This chapter presents
a comprehensive detail about the evolution of RE, different types, information
collection phases, various techniques, limitations, and key applications along with
their implementation codebase. The codebase is executed on a distributed framework
using Apache Spark with the CPU as a hardware configuration.

360 Practical Machine Learning with Spark

Structure
In this chapter, we will discuss the following topics:

•	 Evolution of a recommendation engine

•	 Types of recommendation engines

•	 Approaches to collect information from various phases

•	 Real-time pipeline of a recommendation engine

•	 Different approaches to design a recommendation engine

•	 Limitations of a recommendation engine

•	 Applications of a recommendation engine

•	 Implementation of a recommendation engine on a distributed framework

Objectives
After studying this chapter, readers will be able to:

•	 Learn about the history of a recommendation engine

•	 Get an understanding about the different types of recommendation engines

•	 Grasp the knowledge of various phases to collect information

•	 Get an understanding to manage real-time pipeline

•	 Gain knowledge to design a recommendation engine

•	 Know the limitations of a recommendation engine

•	 Understand the application of a recommendation engine in various fields

Evolution of a Recommendation Engine
Ideation of this recommendation concept can be seen in small creatures like ants.
As the ants use a genetically indulged marker for other ants through which they
all follow on a particular path that is left behind by the leading ant. Those followed
steps for finding of food by ants adapt the concept of recommendation to other
ants (https://www.sciencedirect.com/science/article/pii/S0304397505003798). After
the colonization evolution of civilization, the concept recommendations fulfil the
purpose of a decision-making process to choose something better and beneficial to
their lifestyles. They started taking opinions from their beloved family members
and friends for making the right choice among different options. But this process

Recommendation Engine with Spark 361

becomes challenging while the volume of generated data is growing at a high
exponential rate. Due to this reason, it becomes a tedious task to the user to analyze
the heavy data and extract out the accurate recommendation of products or items to
a user. Moreover, users will have to spend more time for making the right decision
or choices regarding the product recommendation based on the historical eternal
behavior of a user. To overcome these hurdles, several researchers and research
groups have been working to develop a recommendation baseline which can predict
the best items that can be recommended to the end user.

In our daily routine, many times the human being faces dilemma in making a decision.
With the advancement of a computing process in the statistics or observation-based
systems, all the unnoticeable and noticeable decisions started to get observed.
Initially, the ideation seed of the recommendation system was planted in 1960 by
a team of researchers at the University of Cornwall. They designed a model which
automatically indexed the contents of documents for finding the similarities between
the two documents. This implementation helped to incubate the concept of the text
mining process in the data world.

In the mid-1970s, researchers from the Duke University categorized the content
based on the newsgroups and subgroups. This recommendation engine helped
users to share the relevant textual content to each other based on their interest of
categorized groups.

In 1979, the computer librarian Grundy implemented the concept of RE by taking
interviews of several users and based on their preferences for suggesting the books
to the users for reading. This solution had put the foundation stone towards the
concept of RE and motivated other researchers to enhance the adaptivity of RE in
the universal domain.

The architecture for a large-scale information system was developed in 1985 by
D.K. Gifford. Moving further, Prof. Pollock proposed a rule-based message filtering
system in 1988. In 1990, another scientist named Lutz developed a smart system for
filtering the mail based on an intelligent document processing support.

In the late 1990s, the content-based filtering RE had picked a rise to divide the retrieval
of information. In 1992, the Xerox Palo Alto Research Centre developed the first
fully automated collaborative filtering based RE named Tapestry1 as the first head
into the existence of the RE series. The main inspiration of that development was to
handle the growing volume of emails and then, classifying them based on genuine
and spam emails. This system used to move the emails into the spam category if the
content of the email seemed to be unwanted or irrelevant.

In 1994, GroupLens developed the first recommendation system based on users’
rating to make automated recommendations for the articles if the user had already
evaluated some articles in the system. In the same year, the students of Standford
University developed a combined solution by integrating the methodology of

362 Practical Machine Learning with Spark

collaborative and content-based filtering techniques named as Fab. They have
suggested a hybrid model to overcome the challenge of both content-based filtering
and collaborative-based filtering. The model incorporated two phases: it gathered
the content for a particular topic, especially on the financial domain, and then
analyzed the highly likely items related to a user. At last, the meaningful contents
were recommended to a user to read. In 1997, MovieLens named recommendation
system was used to recommend the most preference-able movie to a user based on
the rating.

In 1998, John S. Breese had done an empirical analysis of predictive algorithms for
collaborative filtering. This system evaluated user-based collaborative filtering to
recommend the products to a user. In 1999, Thomas Hofmann proposed Probabilistic
Latent Semantic Analysis (PLSA) and applied this method on collaborative
filtering. In the same year, the Music Genome project was used to understand the
music and accordingly, the system started to capture the similar music with the help
of its properties.

In early 2000s, CineMatch was being used the best RE for suggesting the sales
for an online movie. In 2006, the Netflix Award’s challenge gave an effective and
outperform recommender algorithm which was 10% better than the CineMatch.
Soon RE became more popular and plays an imperative role when it gets linked with
the Internet sites such as Amazon, Pandora, Netflix, Matrimonial sites, LinkedIn,
Facebook, Instagram, Snapchat, YouTube, Yahoo, and News applications, and so on.
RE doesn’t travel the journey alone, but it leverages AI, DL, Big Data, and Human-
computer interaction to make the journey trail more insightful and decision making.

RE has evolved right from suggesting a simple row of items to suggesting a
cumbersome volume of content with a snap of fingers by stitching the existing
conventional system with the advanced intelligent system. During 2017 to 2021, the
integration of chatbots with RE leverage the concept of voice enablement and NLP
for accessing the system information through the voice and text pattern.

Types of Recommendation Engines
A recommendation engine deals with the behavior of customers based on the
previous trends and historical search observation of purchased items. The accuracy
of the recommendation model is dependent on how well a system analyzes the
meaningful and decision-making information based on the customer journey. There
are six techniques such as content-based filtering, collaborative filtering, hybrid
filtering, knowledge-based, demographic based, and community-based techniques
to design a high throughput and efficiency of RE. Figure 8.1 shows the hierarchy
diagram to design the recommendation engine:

Recommendation Engine with Spark 363

Figure 8.1: Hierarchy diagram to show the different ways to design Recommendation System

Content-Based Filtering (CBF)
Content-Based Filtering works on the mechanism to observe the historical journey
and interaction observations of a single user. On the other hand, it predicts the next
most recommended item or likelihood action based on the behavior of a targeted
user. In CBF, it collects the meaningful preference information from a targeted user
and the accuracy criteria of a model increases when more information is provided
by the user. Thus, all the needful recommendations are made from the decisive
metadata which is gathered from the user by observing the patterns of choices,
behaviors, comments, views, likes, and historical search journeys. This kind of
recommendation approach may give an accurate recommendation for a targeted
user, but it does not work fine if the item has no keywords in common with any item
the user has rated; hence, the item will never be recommended.

In this approach, the recommendation system checks the similarity between products
based on its context or description. The user’s previous history is considered to find
similar products the user may like. For example, if a user likes music such as ‘happy

364 Practical Machine Learning with Spark

category’, then the system might recommend other songs that are related to the
‘happy category’ as mentioned in Figure 8.2:

Figure 8.2: Graphical representation to design a CBF-based RE

The working of CBF needs two vectors such as the “user vector” which contains the
user’s metadata and the “item vector” which shows the information related to the
product. The item vector contains the main features to be used to recommend a user
based on the historical observation. The cosine similarity method is an ideal way to
calculate the similarity matrix between the user vector and item vector. Generally, CBF
is the best technique when web pages, publications, documentations, and news need
to be recommended. CBF uses different types of models such as Term Frequency/
Inverse Document Frequency (TF/IDF), Statistical Methods, Probabilistic Methods
(Naïve Bayes Classifier, Support Vector Machine, and Decision Trees), and NN to
classify and analyze the documents for generating meaningful recommendations.

Collaborative Filtering (CF)
Collaborative Filtering is a technique used in RE to predict the similar interest
from many users, preferences, and test information. CF is a domain-independent
recommendation technique which is a complementary approach in CBF. This
technique forms (n)x(m) number of matrices of n users and m items with their
calculated similarities formulation. If any user matches with the interest towards
any item, then the similarity would be increased for those cases. But the similarity
score will be decreased if the user does not match with the interested item. In that

Recommendation Engine with Spark 365

scenario, CF will recommend the item to the user based on the others positively
rated by users in their (n)x(m) matrices. The technique of collaborative filtering can
be divided into two categories: memory-based and model-based. The key concept in
collaborative filtering methods is collaborativeness, that is, it leverages other user’s
ratings. Using this technique, the system might guess either the targeted user like
sad or classical songs based on the taste or ratings given by the other users. CF is a
time-consuming algorithm because it involves complex calculations to predict the
similarity score of each user. Figure 8.3 shows the graphical representation to design
a CF-based RE:

Figure 8.3: Graphical representation to design a CF based RE

For example, if user A likes classical, hip-pop, and romantic songs and user B likes
hip-hop, classical, and rock category of songs. The like lists of both of the users are
having almost similar categories of songs, based on their interest and with the help
of a collaborative matrix, the system can easily recommend that the user A should
like rock songs.

Memory-Based Collaborative Filtering Techniques (MBCFT)
The memory-based collaborative filtering technique is a way to combine and
understand the rating and preferences of the users to suggest the most recommended
item by taking the help of neighborhood weights. There are two types of Memory-
based collaborative filtering techniques such as user-based and item-based technique.

366 Practical Machine Learning with Spark

In user-based collaborative filtering, it makes a matrix of similar users and averages
of their ratings of the target item by users. It calculates the similarity between the
users by comparing their ratings on the same item for predicting the rating for an
item by the active/target user based on their similar taste.

In item-based collaborative filtering, it creates a matrix of similar items and averages
of the target user’s ratings of those items. It contains the computed predictions by
observing the similarities between the items and users. Cosine similarity and Pearson
correlation coefficient are the best similarity metrics to calculate the similarities
between the two vectors and two variates.

Model-Based Technique (MBT)
The model-based technique improves the existing features of collaborative filtering
by leveraging the ML-based probabilistic modeling such as decision trees, latent-
factor models, and NNs as classification. This model uses the previous ratings of
the users to learn an existing system to enhance the overall performance of CBF.
It recommends the set of items or services to produce the recommendations using
neighborhood-based recommender techniques. There are other algorithms being
used to increase the efficiency of a model such as Singular Value Decomposition
(SVD), Matrix Completion Technique (MCT), Latent Semantic Methods (LSMs),
Regression, ANN, Bayesian Classifier and Clustering. Usually, it analyses the user-
item matrix to iron out the relations among the different items or services for finding
a list of top-N recommendations. This type of model is used to resolve the issue of
sparsity problems that come while processing a RE.

Knowledge-Based Recommender Engines (KBREs)
It is an improved version of the content-based filtering technique which can handle
the major issues caused by the cold start problem. In CBF, the system gets confused
when it faces a cold start related situation; hence, the system generates a wrong
recommendation for a user. But in knowledge-based RE, a user can explicitly state
their preferences through a series of requirements, rather than using the history of
ratings of the user.

Hybrid Recommendation Engines (HREs)
A hybrid recommendation engine can be built by combining several models based
on their weighted averages. This system helps to enhance the accuracy factor when
it recommends the items or services other than monolithic models. Netflix is the best
example of a hybrid system which leverages the conglomeration of both CF and
CBF. Comparing, viewing, and searching the observations of similar users fall in the
category of CF and suggesting songs that the user has rated highly falls in CBF.

Recommendation Engine with Spark 367

Demographic-Based Engines (DBEs)
A demographic-based engine makes the recommendation based on the demography
of a user. The basic idea of this type of system is to understand the behavior of a
user in each region. Often, it has been observed that recommendation of the users
is different when the demography or region gets changed. For example, Walmart’s
recommends the item on their website according to the region.

Community-Based Engines (CBEs)
A community-based engine recommends the services to a user related to the best
option based on preferences of friends and specific community of the user. So, the
recommendation must be made using the similarity with the user’s preferences like
friends and society. Social media and professional sites such as Facebook, Instagram,
and LinkedIn use a similar system to suggest adding someone in your profile.
Relatively, this system has more accuracy for a particular user if looking out within
a community.

Information Collection Phases in RE
A recommendation engine deals with a collection of users’ summaries such as
meaningful user’s attributes, behaviors, intents, and contents of the user’s activity
to create a well-defined profile for predicting tasks. Without having the well-defined
information or details of a user, it cannot work well for predicting an accurate
outcome. There are various ways to accumulate the user information’s intrinsically
or explicitly within the RE. Generally, the accuracy of a RE depends on the quality
and quantity of information which needs to be gathered from the users. It includes
three types of feedback such as implicit feedback, explicit feedback, and hybrid
feedback to collect the information and become an indispensable input for the
system. For example, tracking the activity of the user in any e-commerce portal
gives us a great idea and approach to collect the behavior and historical journey
of their search items. Mainly, it tracks and analyses the cognitive skills, interests,
search items, items buying history, and personal details of a user. The precision of a
model can be enhanced by adapting more meaningful information and leveraging of
new DL approaches such as self-learning or reinforcement learning. The deep dive
explanation about the three feedbacks is mentioned as follows.

Explicit Feedback
The information collected from the rating or some external reviewing framework
through a user comes in the category of explicit feedback. This reviewing or rating
interface enhances the performance and accuracy of a system. If the model has more
number of ratings by the user, the system generates more accurate results in terms
of recommendation. The only drawback of this approach is that it requires a manual

368 Practical Machine Learning with Spark

entry from the user; hence, it becomes a boring and time-consuming task. But still it
has been considered as a more accurate and relevant approach to get the collected
information from the user. Like SurveyMonkey, it provides the prompt, accurate,
and decision-based results to the clients. Moreover, it extends the transparency at a
higher level for achieving the high through-put and perceiving a higher quality in
the recommendation process, which helps to build a great faith on the user to follow
the decision of any recommendation system.

Implicit Feedback
In implicit feedback, it monitors the journey plan of purchases and trails where the
users click to visit or see the items on the portal or site, then feed that data into
the RE for better accuracy. This monitoring mechanism automatically grasps the
indispensable information of a user such as history of purchases, click navigations,
organic or inorganic time spend, site visited through which browsers, direct or indirect
following of links, tracking the trail of e-mails, and monitoring all the activities on
the site. On the other hand, it has more bias-ness as compared to explicit feedback,
so there is a chance of getting unwanted or meaningless information of the user. To
overcome this issue, self-learning and advanced DL will be used to compare every
walk-through of a user with their previous result; hence, mark a scoring system for
a high precision.

Hybrid Feedback
Hybrid feedback is a combination of both implicit and explicit feedback to overcome
the challenges that persist in the feedbacks discussed earlier; hence, it enhances the
overall performance of the system.

Real-Time Pipeline of a Recommendation
Engine
Figure 8.4 highlights the real-time architecture to design a production-level pipeline
for implementing a RE. The following architecture is separated into five layers,
in which the first layer contains the several data sources such as the batch data
source and streaming data source for providing the raw information to a system.
The second layer is used to refine the data, capture the heterogenous data, and
data standardization/profiling which needs to be fed to the persistence layer. The
third layer provides the flexibility to persist the data as in on-premises framework,
NoSQL databases, HDFS, and cloud-based framework such as AWS, AZURE, and
GCP. The fourth layer must be used for indexing, processing, and retrieving of
information to sync-up with recommendation components such as NLP, and other
recommendation algorithms. The final layer is used to display the dashboards

Recommendation Engine with Spark 369

based on the data coming up from the system for recommendation. It will be used to
provide insightful and meaningful interactive visualization using which a user can
take the decision in a pinch. The overall framework can be deployed on a container
of docker and Continuous Integration/Continuous Development (CI/CD) that
needs to be implemented through the integration of GitHub and Jenkins/Bamboo.
Each module of program or tasks needs to be stitched together in a single workflow
using Airflow, Oozie, Azkaban, and Apache NiFi, and so on.

Figure 8.4: Architectural flow to design a real-time pipeline for recommendation engine

Ant Colony Optimization in a
Recommendation Engine
In a tedious optimization problem of a recommendation engine, the Ant Colony
Optimization (ACO) method is used to find an approximate solution for designing
an efficient backbone-based recommendation engine. ACO is a group of heuristic
optimization algorithms which are based on the ant food seeking theory. In ACO,
a set of software mimic like an artificial ant needs to be given the various tasks to
search a good solution. ACO uses the concept of a graph theory for finding the best
path. In the graph, the edges represent paths and weights of an edge represent the
disposed pheromone (disposable genetic liquid). Using these optimization findings,
we can find the best path on a weighted graph. The artificial ants build solutions by
moving on the graph using a pheromone that works on updating the mechanism;
each ant tries to find the shortest way in the path. The recommendation system

370 Practical Machine Learning with Spark

based on the Ant Colony theory (AntSRec) developed a semantic relativeness in
ontology to improve the electronic commerce producers. The main components of
ACO include graphs, nodes, distance between nodes, pheromones, and the selection
functions. In the AntSRec algorithm, it designs a graph representation, in which each
node indicates a product, and each node has a unique identity. The weight of the
edge represents a similarity of products in which the state changes from 0 and 1.

Hidden Markov Chain Model (HMCM)
In the early 1970s, the Russian mathematician Andrey Andreyevich Markov
developed a statistical model named “Hidden Markov Chain Model”. The model
can determine the observable events based on few internal factors which are difficult
to observe directly. The first implementation of this model was in speech recognition
and later it was adapted in several domains such as weather forecasting, avalanche
forecasting, optical character recognition, computational biology, and so on. In
HMCM, the observed event is denoted by a `symbol’ and the invisible factor within
the observation named as a state. Generally, it has two stochastic processes such as
an invisible process based on hidden states and a visible process based on observable
symbols. The hidden states incorporate a markov chain along with the probability
distribution of the observed symbol depend on the underlying state, that is why
it is also known as a doubly embedded stochastic process. Due to the wide range
of application of HMCM in various verticals, the researchers started to leverage
this algorithm towards the recommendation engine, especially for the collaborative
filtering technique. Often, it takes unobserved user preference as an HMCM sequence
and observe the static pattern of items based on users for recommending the best
suitable option in terms of item.

Market Basket Algorithm (MBA)
In the phase of digital transitioning from the conventional techniques, the
recommendation system has a myriad of applications that can uplift the standard
and financial aspects like business too. Market Basket Algorithm (MBA) is one of
the core applications that has been observed on the basis of its futile behavior to
betterment the people’s life. This analysis helps to demystify the relationship or
association among the items at retailer shops to buy a product by the customer.
On the flip side, it is a technique to create a relationship network based on the
combination of products which must be in high possibility to be bought by the
customer. The Beer-diapers case study is the best example to understand the need
of MBA in the daily transaction; this study was analyzed at Walmart to find out that
the customers who are buying the diapers will also buy the beers on Friday night.
So, this study helped a 35% increase when the showroom arranges the beer stall near
the diaper stall. It uses an association rule to simplify the transaction data and strives
to form a rule to be discovered in transaction data based on all items bought by

Recommendation Engine with Spark 371

customers in a single purchase. This rule operates on the support of several hundred
transactions and statistical significance and datasets often contain millions and
billions of transactions. It has three main rules incorporated within the algorithm
such as support, confidence, and lift. Mainly, it is used in retail, telecommunication,
banks, insurance, and medical, and so on.

Implementation of a Recommendation
Engine
The following code base shows the implementation of a recommendation engine
using the distributed DL with Apache Spark. This recommends the movies to the
user based on the rating and interest:

>>from pyspark.sql import SparkSession

>>spark = SparkSession.builder.appName(“recommendation”).getOrCreate()

>>from pyspark.ml.recommendation import ALS

>>from pyspark.ml.evaluation import RegressionEvaluator

>>from pyspark.ml.feature import StringIndexer

>>dataset = spark.read.format(‘com.databricks.spark.csv’) \

.options(header=’true’, inferschema=’true’) \

.load(‘/home/cdh@psnet.com/Gourav/ml-25m/ratings.csv’)

>>dataset_refined = dataset.withColumn(‘rating’, dataset.rating.
cast(‘integer’)).dropna()

>>training, testing = dataset_refined.randomSplit([0.7,0.3])

>>als = ALS(maxIter=10,regParam=0.05,userCol=’userId’,itemCol=’movieId’,
ratingCol=’rating’)

>>model = als.fit(training)

>>predictions = model.transform(training).show()

>>predictions = model.transform(training)

#validation of the model

>>test_prediction = model.transform(testing).show()

>>test_prediction = model.transform(testing)

#saving the result

>>test_prediction.select(‘userId’,’movieId’, ‘rating’, ‘prediction’).
write.csv(‘/home/cdh@psnet.com/Gourav/recommendation/’)

>>evaluator = RegressionEvaluator(metricName=’rmse’, labelCol=’rating’,
predictionCol=’prediction’)

>>rmse = evaluator.evaluate(test_prediction)

372 Practical Machine Learning with Spark

Implemented Code
Figure 8.5 shows the screenshot of the implementation code of a recommendation
engine on the sublime editor using Apache Spark:

Figure 8.5: Screenshot to implement a recommendation engine code on sublime using Apache Spark.

Dashboard
Figure 8.6 depicts the insightful graphical representation of predictions for making
the quick and meaningful decision making. The dashboard is crafted by leveraging
the functionality of Microsoft PowerBI:

Figure 8.6: Screenshot of the PowerBI dashboard on the predicted output from the implementation of RE

Recommendation Engine with Spark 373

Limitations of Recommender Systems
Since 1970s, the great enhancement has been done by several researchers or research
groups to ameliorate the overall performance of the recommendation engine.
Moreover, the application scope for the RE is getting wider as it has plethora of
advantages to improve the daily needs of humans and machines. But still it has
a scope to the researchers to overcome the challenges while implementing a
recommendation engine. This problem usually can be seen in a collaborative
filtering-based recommendation system; hence, there is a great scope to researchers
to overcome these challenges. Some of the major challenges are as follows.

Cold-Start Problem
It is an ambiguous situation for the recommendation engine to make the decision
when the user is a new or a new item is added in the system for the first time.
There are two types of cold start problems in the RE such as the new user cold start
problem and new item cold start problems. In both the problems, the predicting
accuracy becomes quite low corresponding to the new user or new items as the
system has very less informative details related to the new added items or users.

Sparsity
In a collaborative filtering-based recommendation engine, the sparsity or scattering
is one of the major challenges which affect the overall performance of the system.
This problem mainly occurs due to negligence of the user when the application asks
for the rating or high varying ratings by the user. Due to preceding mentioned issues,
it creates irregularity in the recommendation matrix which degrades the predicting
accuracy and raises the dilemma situation at the time of prediction.

Scalability
Most of the recommendation engines work perfectly when the volume of data is
small. But the performance of a system retrogrades when it starts dealing with
big data. This cumbersome task is a new research scope for the researcher for
ameliorating the performance and precision of the system.

Privacy Protection
Data and system privacy is another imperative aspect to create a secured
recommendation engine. Nowadays, the RE works for all the users who want to get
the recommendation around any perspectives. But there is a great need for the RE to
be worked or predicted the items based on the row-level security, i.e., authentication
and key agreement (aka) user-based security. This proposed implementation can
provide the recommendation information for that specific user who wants to get the
recommendation from the system.

374 Practical Machine Learning with Spark

Model Obsolete
This is another kind of problem when the system is not upgraded and the user
receives similar recommendation based on past behavior. Due to this issue, the
model gets obsolete and does not make sense to get insightful suggestion from the
system.

Shilling Attacks
Shilling attacks are of two types such as push attacks and nuke attack through
which the fraudulent profile gives the false rating to demolish the accuracy of the
system. Attackers can affect the system performance by dodging the information
of the system using attacks related to probe, random, average, popular, segment,
sentiment, sampling, and perfect knowledge, and so on.

Applications of a Recommendation Engine
•	 Movie Recommendation: It helps the user to suggest the movie based on the

rating and his/her historical analysis of watched movies.

•	 Song Recommendation: This system recommends and shuffles the songs
playlist by observing the past watched/listened list of songs in the format
of audio or video. Also, several recommendation systems shuffle the song
playlist by observing the weather and mood of the user.

•	 Human Resource (HR) Recommendation: Many several recommendation
systems are being used to recommend the HR-related information to the
employee by leveraging the power of chatbots.

•	 Weather Forecast and Avalanche Forecast: It can be used to predict the rainy,
sunny, and cold days by incorporating the statistical-based RS.

•	 Jewelry Selection: It also recommends the user to suggest the jewelry based
on their choices and requirements.

•	 Product Recommendation: This can be used to modernize engine capabilities
for relevant product and service offerings which can generate incremental
revenue.

•	 Dynamic Price Optimization of Product: Offers/Promo codes can be
released on the basis of advanced analytics to maintain the sales.

•	 Call Distribution and Rating Recommendation: With help of topic
modeling classifiers and NLP, system would be capable to automatically
recommend the call classification and set the rating based on product and
customer satisfaction.

Recommendation Engine with Spark 375

Conclusion
This chapter shows the several techniques to alleviate the issue to handle the
cumbersome volume of information while recommending the services or items. The
chapter covers the basic to advance levels of information to design different types
of recommendation engines by leveraging the concept of distributed computing for
efficient execution. Also, the readers will gain knowledge of history, applications,
and major limitations of a recommendation engine. Usually, it opens a wide range
of applicability towards several domains to enhance the automation and overall
performance to retrieve decisive information. In the next chapter, readers will learn
about the concept of deep learning and its implementation using Google Colab.

376 Practical Machine Learning with Spark

Deep Learning with Spark 377

Chapter 9
Deep

Learning with
Spark

“Learning always occurs in a context of taking action, and they value
engagement and experience as the most effective strategies for deep
learning.”

— Richard DuFour

Introduction
Since the last decade, the application of DL has become an engrossing point for
all the researchers across the world. Because of this dominancy of DL towards the
AI community, all the MNCs have started to adopt this emerging technology by
leveraging the standalone AI wrappers such as TensorFlow, Keras, PyTorch, and
MxNet. But the working with the standalone DL framework remains an ideal one
until and unless, when not to deal with heavy data and heavy batch size. To overcome
these challenges, users need to increase the system configurations, or train the model
with smaller batch sizes. Moreover, incorporating the flavor of distribution in the DL
process helps to improve the performance of computation and ultimately, reduces
the time consumption and cost reduction. From the trailing series of chapters,
authors have already discussed the basic concept and developed the history of DL
in brief. In this chapter, the readers will walk-through the green meadows of basic
DL and get started to do acclimatization using distributed DL to climb the mountain
of advanced DL for seeing the better views. This chapter consists of basic, evolution,

378 Practical Machine Learning with Spark

detailed components explanation, methods of feature selection, and advancement in
DL by leveraging Spark along with its implementation.

Structure
 In this chapter, we will discuss the following topics:

•	 Introduction and evolution of NN

•	 Methodologies and terminologies in NN

•	 Different methods of feature selection in ML/DL

•	 Different architectures of NN

•	 Different activation functions in NN

•	 Different types of loss functions in NN

•	 Different types of optimizers in NN

•	 Working with cloud notebooks for ML and DL

•	 Several standalone DL frameworks and distributed DL frameworks

•	 Understanding the concept of DLOps in a robust pipeline

•	 Implementation of distributed DL on Google Colab using Elephas

Objectives
After studying this chapter, readers will be able to:

•	 Gain awareness about the legacy of NN

•	 Understand the distributed processing of DL and its core terminologies

•	 Have in-depth knowledge about the different methods of Feature Selection

•	 Grasp the knowledge about several architectures in NN

•	 Comprehend the knowledge of different optimizers, activation functions,
and loss functions in NN

•	 Gain awareness about the most often used standalone DL frameworks

•	 Understand the concept of DLOps and cloud notebooks

•	 Implement the distributed DL frame with code base

Deep Learning with Spark 379

Evolution of the Neural Network
Recently, the application of DL has spilled out in every industry and business
domains. The timeline of DL is divided into three excerpts of machine intelligence
advancement. These three excerpts are: I) Cybernetics (1940–1960), II) Connectionism
(1980-1999), and Deep Learning (DL) (2000 onwards). In this section, authors will try
to explain the evolutions of DL by highlighting the advancement done with time.

Cybernetics
The first ideation in Cybernetics towards DL began from the concept of biological
learning which mimics the working behavior of a human brain. In 1943, the
collaborated work of Warren McCulloch (neuroscientist) and Walter Pitts (logician)
created a mathematical model based on NN. They used a linear model that takes
various inputs , for each input the model consists of some weights , and the output
is . This model results in binary formats like false and true based on the respective
weights and inputs in the NN.

In 1947, Alan Turning a British mathematician materialized the possibility of ML
and forwarded it further to propose a machine hinting at genetic algorithms. In 1952,
Arthur Samuel, known as the father of ML because of his big contribution in the
early stage of ML, coded the first computer learning program to play the game of
checkers. In 1957, Rosenblatt, a psychologist, designed an electrical machine, that
is, the Perceptron model that intended the work on automatic learning of weights.
After that, Frank built Perceptron for image recognition that helped to plant a seed
of DL. In 1959, David H. Hubel (a Nobel Laureate) and Torsten Wiesel discovered
simple cells which were complex in the primary visual cortex. These biological
observations inspired other NNs to extend the functionality of DL.

In 1960, Kelley, a professor of aerospace and ocean engineering at Virginia, published
Gradient Theory of Optimal Flight Paths. The idea behind this study was to control
the behavior of systems with inputs and to observe how the behavior changed by
feedback. In 1960, ADALINE (Adaptive Linear Neuron or later Adaptive Linear
Element), a physical device was developed by Professor Bernard Windrow and
his student Ted Hoff at Stanford University that implemented artificial neural
network that used memistors based on a bias and a summation function. Generally,
the learning function of ADALINE is identical to stochastic gradient descent used
in LR. In 1960, another study was noted by Henry J. Kelley towards a continuous
backpropagation model. In 1962, Stuart Dreyfus came up with a research on chain
rule. The utilization of back propagation existed in the early 1960s but was a mystery
in implementation until 1985.

380 Practical Machine Learning with Spark

Connectionism
The era of connectionism was based on cognitive sciences where the mathematical
model intended a decision by observing the sense or behavior of any model. But
these kinds of cumbersome codes needed an ergonomic framework or method to
implement the program to decide the best fit features. Thus, to fulfil the concern of
implementation, the concept of Artificial Neural Network (ANN) was introduced.
The main idea of ANNs was to fabricate an intelligent network of individual units
that can be programmed to interact with each layer for predicting the value and at
the same time, it also introduced the concept of hidden layers.

During the back to back enhancement in the era of connectionism, several models
such as Long Short Term Memory (LSTM) and backpropagation for training a
complex NN that became a key step in the enhancement ladder of DL. In 1965, A.
G. Ivakhnenko and V. G. Lapa used models with polynomial activation functions to
analyze them statistically. They also developed a Group Method of Data Handling
(GMDH) to define a computer-based mathematical modeling of multi-parametric
datasets that help to feature the fully automatic structural and parameter-based
optimization of models. He used the deep feedforward multilayer perceptron by
integrating the statistical methods at each layer of network to find the best ideal
features and pass them forward to the next layer in the network. In 1971, he
demonstrated the learning mechanism named Alpha on 8-layer deep network with
the help of GMDH.

In 1970, Seppo Linnainmaa developed a backpropagation-based FORTRAN
programming mechanism to check the error in the model for re-training the network
to get more precision, but it could not be applied till 1985. In 1979, Kunihiko
Fukushima used the CNN architecture for the first time, including multiple pooling
and convolution layers. Also, he developed ANN named as Neocognitron which
consists of a multi-layered and hierarchical design. In 1982, Hopfield created Hopfield
Networks that served as a content addressable memory system and became a tool
for DL.

In 1985, Terry Sejnowski created NETtalk to pronounce English words in the
same way a child does and improved it over time by converting text to speech. In
1986, D. Rumelhart, G. Hinton and R.J. Williams focused more on the research of
backpropagation and showed how to improve the existing NN for shape recognition
and word prediction. Moving further, in 1989, Yann LeCun explained the first
practical demonstration combining CNN to read hand-written digits at Bell Lab. In
the same year, Watkins introduced the concept of Q-learning which improved the
feasibility of reinforcement learning in machines. It was possible to learn optimal
control directly from the transition probabilities of the Markov decision process.

 In 1993, Cortes and Vapnik designed a standard model of Support Vector Machines
(SVMs) for recognizing and mapping similar data and presented in 1995. It can

Deep Learning with Spark 381

be used in text categorization, handwritten character recognition and image
classification. In 1977, Schmidhuber and Hochreiter proposed two frameworks such
as Recurrent Neural Network (RNN) Framework and Long Short-Term Memory
(LSTM) for improving the efficacy of RNN by mitigating the long-term dependency
problem. On the flip side, LSTM networks were improved to remember the long-
lasting information of any error passing to its last layer which would be required in
the process of backpropagation.

In 1998, LeCun developed a stochastic gradient descent algorithm which was a
successful approach when it was combined with the backpropagation algorithm in
DL. In 1999s, the DL computation framework was fueled-up by adopting the speed
of GPU processing. GPU powered became a lucrative herb to cure any intermittent
or slowness-related computation ailments while processing of any DL models.

Deep Learning (DL)
In the beginning of 2000s, the tremendous leap waves in the DL ocean were seen to
enhance the utility of DL in various fields. G. Hinton used the Greedy layer-wise
training to train Deep Belief Networks (DBN) and Boltzmann Machines is one of
the simplest implementation of DBN.

In 2009, Professor F. F. Li at Stanford University launched ImageNet which had
massive free database of images with their labeling details for training a cumbersome
model of DL. This approach helped to improve the accuracy of a model. As we know
that accuracy of any ML/DL-based model, somehow is directly proportional to its
databases. More labeled images can extract exact information in terms of features
of any object within the image; hence, it is used as an emergence activity in DL.
Currently, ImageNet has more than 14 million (14,197,122) labeled images available
to the research community.

In 2011, Alex Krizhevsky developed a CNN-based AlexNet which had five
convolutional followed by three fully connected layers using rectified linear units.
In 2012, Google Brain released the results of the cat experiment which revealed the
challenges of unsupervised learning. Prior, DL worked efficiently when the training
datasets was supervised (images with labels). From that year onwards, unsupervised
learning became a new hot topic to researchers in the field of DL.

In 2014, a new model came which was named DeepFace that used the complex NN
to identify the human faces with 97.35% of precision. Parallelly, a research team
led by Ian Goodfellow introduced Generative Adversarial Network (GAN) for
handling the previous challenges of unsupervised learning. It works by pixel by
pixel mapping of images and manipulates them accordingly.

In 2016, a competition was started among GPU fabricating MNCs to boost up the
computation speed of ML/DL by leveraging the concept of GPU. For example,

382 Practical Machine Learning with Spark

Microsoft’s NN software, that is, XC50 supercomputers started to provide 1,000
Nvidia Tesla P100 graphic processing units to increase the speed of computation
and perform any DL tasks on data in a single click of pinch. After 2017, more
enhancements have been recorded to speed up the intelligence and computation in
DL for getting more accurate results with less time.

Definition of Deep Learning (DL)
DL is a subset of AI which is used to teach a machine in such a manner that it mimics
like a human mind. DL deals with the concept of NN. There are several models
that come under the hood of DL such as ANN, Autoencoder, RNN, GAN, and
CNN. Nowadays, CNN has become the most promising and often implemented
algorithms to analyze the wide range of images in terms of classification, localization,
segmentation, video, and audio analysis. The term ‘convolution’ in CNN is derived
from a mathematical function of convolution which is a special kind of linear
operation where two functions are multiplied to produce a third function which
expresses how the shape of one function is modified by others.

Neural Network and its Model Representations
Neural network is a branch of AI to mimic the behavior of a human brain and take the
decision which must be based on intelligence through their internal computations.
Generally, it consists of the input layer, multiple hidden layers, output layer, and few
parametric components which we will discuss in the next section.

Figure 9.1: Model representations of NN

Figure 9.1 delineates the model presentation of NN. In the first step, it includes the
execution of NN which receives the input data in the form of features. Then, the
model will start learning these features to make a prediction. Error is a difference
between the prediction value and label value. This error is calculated using the loss

Deep Learning with Spark 383

function. After calculating the loss function, the model uses an optimizer which will
penalize the value of the loss function which means to find out the minimum value
of the loss function. The optimizer function is used to compute the new weights
with a new error and feed it to NN. The cycle continues until this error becomes
minimum.

Various Terminologies Used in DL
Underfitting
Underfitting is a one of the core terminologies to check the model performance using
a statistical observation. It refers to training a model which shows poor performance
on the training data as well as on the testing data. Generally, it happens due to limited
capacity of the network or limited features as the input to the network or explicit
noises in the network related to data. This problem can be eliminated by testing of
different architectures of DL or increasing the epochs during the training of a model
or increasing the hidden layers or removing the noise from the input data.

Furthermore, selecting the number of hidden layers is an important step while
designing a DL model. Although, the model with a few neural nodes along with
other noises in the network, generally gives low accuracy and poor predictive
insights.

Overfitting
Overfitting is a phenomenon when the network tries to learn exuberance details than
needed from the training data along with noises, which results in a poor performance
on the testing data. Mostly, the graph plotted between the error and iteration helps
to depict the clear view about how a NN overfits on the training data. In overfitting,
the error on the test data is inversely proportional to the error on the training data.

Many researchers observed that the main reason behind the overfitting of network
when the training dataset is small for training a model. Due to overabundance
learning of features from a small chunk of training data, the network fails to
memorize the general trend in the data. There are several ways to overcome this
problem which are given as follows:

•	 Decrease the Network Complexity

We can decrease the network complexity by eliminating the few layers or
decreasing the proportion of neurons that causes downhill the number of
parameters within the network. This approach can help to minimize the
chances of overfitting.

384 Practical Machine Learning with Spark

•	 Data Augmentation
It is a well-known image technique to avoid the pain of overfitting through
which the user can increase the size of the training dataset by leveraging
the concept of data augmentation. It performs different manipulations over
the image to generate more fabricated number of images through rotation,
horizontal flipping, vertical flipping, color spacing conversion, and intensity
manipulations.

•	 Weight Regularization
It alleviates the issue of overfitting by adding a constraint to the loss function.
There are two types of weight regularizations such as L1 and L2, in which
L1 adds the sum of absolute values of the weights in the network as the
weight penalty. On the other hand, L2 adds the squared values of weights as
the weight penalty. With these regularizations, the optimization algorithm
can be used to minimize the loss function in addition to minimize the error
between the predicted value and actual value.

•	 Dropouts
It is a way to deactivate a certain number of neurons at a layer prior to the
training. Usually, it reduces overfitting problems like image classification,
image segmentation, and word embedding.

Hidden Layers
It is an intermediate layer that lies between the input layer and output layer of any
neural network. It acts as a bridge where neurons take a set of weighted inputs and
generate an output using an activation function. In NN, the number of hidden layers
may depend on the complexity of a model.

Weights and Bias
These are the learnable parameters which create an interlinking between each
neuron of a layer to each neuron of the next layer in ANN. In the transmission of
inputs among neurons, the weights must be applied to the inputs along with the
biases as shown in Figure 9.2:

Figure 9.2: Flow of transmission of neurons
y = ∑(weight * input) + bias

Deep Learning with Spark 385

In other words, weights are responsible to control the signal between two neurons
for deciding the influence of the input on the output. Biases act as an additional
input in the next layer that will always have the value of 1. The preceding equation
shows the flow of inputs from one layer to the next layer enclosing weights and
biases in between.

Activation Function
The activation function also known as the transfer function or decisive function
which decides the active state of a neuron. Mainly, it introduces non-linearity
transformation in the output of a neuron. It helps to control how well a model learns
the training dataset by selecting the specific activation function in the hidden layer.
In the output layer, the selection of the activation function will also show the type of
classifications in the model.

In the other words, the working mechanism of neurons in NN is dependent on weight,
bias, and their respective activation function. With the help of backpropagation,
we can update the weights and biases of neurons for minimizing the error in the
network by passing the error update using the activation function.

Figure 9.3 shows the working codebase to cater an activation function in NN using
Keras:

Figure 9.3: Codebase for activation function in NN

Loss Function
The loss function is a special kind of function that calculates the error in the neural
network. In NN, an error occurs when the difference is recorded between the actual
observation and predicted observation. There are several loss functions in the
umbrella of NN, which we will discuss in detail in the section of loss function.

386 Practical Machine Learning with Spark

Figure 9.4 shows the working codebase to cater a loss function in NN using Keras:

Figure 9.4: Codebase for loss function in NN

Optimizer/Optimization
Optimization is the process of minimizing the losses by changing the indispensable
attributes in the NN such as weights and learning rate. Further in this chapter,
readers will walk through the several optimizers of NN to the reduce errors. Figure
9.5 shows the working codebase to cater an optimizer in NN using Keras:

Figure 9.5: Codebase for loss function in NN

Deep Learning with Spark 387

Forward Propagation
Forward propagation is the process to generate an output within the NN in a single
forward direction. In forward propagation, the error minimization between the
estimated output and actual output is not possible through updating the biases and
weights. Hence, it produces high rate of biasness on the testing dataset.

Back Propagation
Back propagation is a bi-directional process for updating the biases and weights in
NN which propagates back into previous layers and updates the new minimized
error to all layers in the forward direction. Gradient Descent is one of the most used
statistical formulae to perform a backpropagation.

Epochs
One complete rotation of forward propagation and backpropagation is known as
Epochs. Figure 9.6 shows the working codebase to cater an epoch in NN using Keras:

Figure 9.6: Codebase for epochs in NN

388 Practical Machine Learning with Spark

Learning Rate
The learning rate controls how quickly or slowly a NN model learns a problem.
In simple words, it shows the rate to complete one rotation of backpropagation
and forward propagation in NN. Figure 9.7 shows the working codebase to cater a
learning rate in NN using Keras:

Figure 9.7: Codebase for learning rate in NN

Metrics
It is used to analyze the performance of a DL model. There are various categories of
metrics in NNs; few categories are given as follows:

•	 Accuracy Metrics

•	 Probabilistic Metrics

•	 Regression Metrics

•	 Classification Metrics Based on True or False and Positive or Negative

•	 Image Segmentation Metrics

•	 Hinge Metrics

Deep Learning with Spark 389

Figure 9.8 shows the working codebase to cater a metric in NN using Keras:

Figure 9.8: Codebase for metrics in NN

Feature Engineering (FE)/Feature Selection
(FS)
For implementing the intelligence-based applications, the performance and
overall efficiency of the model are directly proportional to the quality of the input
dataset. In the digital era, the volume of data increases rapidly, which creates a
major problem in choosing decisive features and transforming the raw data into
meaningful information while training a ML/DL model. Whatever data feeds into
the model as an input, the quality of output would be determined according to the
selection of independent features like Garbage In, Garbage Out. Generally, the term
Feature Engineering or Feature Selection improves the precision rate and overall
performance by transforming the raw data into key or core features with several
other data handling approaches, such as data profiling, handling missing values,
and so on. Therefore, FS is used to clean up noisy and irrelevant data and find the
important features which are compatible for training and testing of ML algorithms.
Mainly, there are four methods are being used to perform FS such as generalized
method, filter method, wrapper method, and embedded method as shown in Figure

390 Practical Machine Learning with Spark

9.9. In-depth explanations of the various methods for performing feature engineering
are as follows:

Figure 9.9: Different approaches to perform feature selection

Filter Method (FM)
In FM, features are selected based on statistical measurements such as Information
Gain (IG), chi-square test, fisher score, correlation coefficient, and variance threshold.
It is free from the algorithms of ML or DL and requires less computational time
than other approaches or methods. The methods for performing FM are followed as
follows.

Information Gain (IG)
Before explaining the term IG, readers should know about two terms such as
entropy and surprise. Entropy quantifies the information in an event and a random
variable based on probability. Events having equal probability have a large entropy.
In terms of the surprise of an event, low-probability events are more surprising as
they have a large amount of information. Hence, events that are equally likely to be
more surprising and have large entropy. So, IG is used to measure the reduction in
entropy or surprise caused by spilling a dataset based on a given value of a random
variable. Therefore, IG is a useful tool in ML or DL and is used for techniques such
as feature selection, fitting classification, and tree-based algorithms.

Chi-Square Test
It is a statistical method used for feature selection with categorical data based on
testing relationship between the features. The mathematical formula for chi-square
is:

Deep Learning with Spark 391

where is the observed value of ith variable and is expected values of ith variable. It
is used to test independence of two events such as observed value (O) and expected
value (E). In independent features, O and E both are nearly equal and the value of is
very small, near to zero. If the value of is higher than hypothesis, it is rejected.

Z-Test
It is again a statistical method to find out whether two sample means are the same or
different for known variance. Mathematical formula for z-test is:

Where z is z-test, is sample mean (average), is mean, and s is the standard deviation.

T-Test
It is like a z-test but can only be used when population (> sample) standard deviation
is not known. It is used to estimate the population means for hypothesis testing of
population mean. Its mathematical formula is:

Where t is student t-test, m is mean, is theoretical value of mean, s is standard
deviation, and n is number of variables in the dataset. This test gives whether the
difference between the means of two groups which is due to chance or reliable.

P-Test or Probability Value
It is used as the statistical approach for checking the significance of the observed
result or test static by using the hypothesis test. The value of P is used to accept
or reject the hypothesis. Mathematically, the p-values are calculated using integral
calculus.

Analysis of Variance (ANOVA)
This test is used for linear or non-linear models. It is parametric statistical hypothesis
test for determining whether the means from two or more sample data. In other
words, ANOVA is used to find the significance of experimental results.

Analysis of Covariance (ANCOVA)
It is an advance form of ANOVA. It can be used for both categorical and a metric
independent variable. This test is the mid-point between ANOVA and regression
analysis. It is used to compare one variable in two or more population. It is used for

392 Practical Machine Learning with Spark

only linear models. Here, co-variant is used instead of means; it means it is used for
analysis of co-variance.

Fisher Score
It is a statical method widely used for supervised features selection because of its
good performance. Here, ranks of the variables are found in a descending order for
selecting the variables independently. The mathematical formula for calculating the
score is:

Where is the mean of the ith feature in jth class, is variance of ith feature in jth class,
is number of instances in the jth feature, and is mean of the ith feature.

Variance Threshold
In this method, readers can remove all features that the variance does not meet some
threshold. It removes features that have the same value in all samples. Features with
a higher variance contain more useful information. Here, readers do not consider
the relationship between features and target variables which is the drawbacks of
this method.

Karl Pearson’s Coefficient of Correlation (KPCC)
It measures the statistical linear relationship of two continuous variables. It also
gives the knowledge of magnitude as well as direction of the relationship between
bivariate. Its mathematical formula is:

Where r is Karl Pearson’s coefficient of correlation, mean of the variable x, mean
of the y variable. It is based on raw data. In other words, KPCC calculates the effect
of change in one variable when the other variable changes. Its numerical value lies
between +1 and -1. In Karl Pearson’s, both variables should be normally distributed,
the relation should be linear between two variables, and the data should be equally
distributed about the regression line. It is mostly used with real data but can be
challenging when working with categorical data.

Spearman’s Rank Correlation Coefficient (SRCC)
It is based on ranked values for each variable and non-linear parameter test which is
used to measure the degree of association between two variables. The mathematical
formula for Spearman rank correlation is:

Deep Learning with Spark 393

Where is spearman’s rank correlation coefficient, is difference between the two
ranks of each observation, and n is number of observations. It is a non-parametric
correlation statistical method that measures the degree of association between two
variables, in which variables should be monotonically related.

Kendall Rank Correlation
It is a non-parametric test that measures the strength of dependence between two
variables. The mathematical formula is:

where is number of concordant, is number of discordant, and n is number of sample
size. Concordant means ordered in the same way and discordant means ordered
differently.

Generalized Method (GM)
This method is used to remove the irregularities and noise from the raw dataset
and converts them into meaningful dataset which can be fed into the model for
training. GM compatibles the input dataset according to the ML/DL algorithms,
which improves the accuracy rate and optimizes the overall computation of the
model during training. The most common methods are given as follows.

Binning
Binning is a technique to fit the data value according to their range into the bin.
It is recommended to generate the continuous values into the categorical values.
This type of approach optimizes computational efficiency, enhances robustness, and
avoids overfitting kind of situation. Figure 9.10 shows the splitting of price of item
values based on the range brackets or bin table:

Figure 9.10: Assigning of data values into bin based on ranges

394 Practical Machine Learning with Spark

Imputation
Imputation is a technique to handle the issues of missing values in records. Most
of the ML frameworks drop those rows which are having blank or missing values.
This type of dropping mechanism increases the performance of the model. But
sometimes, this technique doesn’t apply in such cases where the percentage of
missing values are more than 75%. For the mitigating challenge, imputation becomes
most recommended to handle the situation.

The steps to achieve “Imputation” are follows as:

•	 Filling with NA if the datatype of the missing value column is a string and 0
when the datatype is numeric.

•	 Replacing the missing values with the mean and median in the entire column.

•	 Replacing the missing values with the maximum occurred value in a column
is a good option for handling categorical columns.

Figure 9.11 shows the example to handle missing values by replacing them with NA:

Figure 9.11: Illustration to handle missing values in raw dataset

Feature Split or Regex Operation
The regex operation or the feature Split is a string extracting technique using the split
method or passing the regex to deal with raw data within a column and convert it into
an insightful feature. These extracted values in the column will help to enhance the
performance of the ML/DL method. The best use case of this approach is extracting
the date, year, or any other numeric details from the free-text column. Figure 9.12
depicts the splitting value by applying SplitFunction in the addition column of the
table:

Deep Learning with Spark 395

Figure 9.12: Illustration of applying split function on raw data for extracting out indispensable details

Grouping Operation
Group operation is a way to aggregate the values of columns by leveraging the
concept of the Pivot function that is like Microsoft Excel. Generally, there are two
approaches to group the detail data into a group snapshot format such as categorical
column grouping and numerical column grouping. Figure 9.13 shows the categorical
grouping operation on raw table which is having three columns such as Employee
ID, Department, and Interview_taken by the department. By applying Grouping
Operation, it generates a flat-based pivot data:

Figure 9.13: Illustration of grouping operation on raw dataset

Scaling
In many problems, the numerical features of the dataset have a different range, like
tenure of service and wages. In such types of datasets, it becomes a challenging task
to compare two or more features in the respective ranges. One of the promising
approaches to resolve this issue is the scaling technique. Generally, there are two
approaches that have been mitigating the changes, such as normalization and
standardization. Figure 9.14 illustrates the scaling function which is applied to the
Salary Hike column:

Figure 9.14: Illustration of a scaling function on raw dataset

396 Practical Machine Learning with Spark

Extracting Date
In a raw dataset, the Date column can be stored in many ways or formats, which
confuses the ML/DL algorithms while reading the date column. Most of the time,
the date format comes with character sentences or invalid syntax. In particular,
in a seasonal-based time series analysis, the extracting date approach is used to
enhance the overall accuracy of the model if the date column is not read-able by
ML/DL algorithms. Figure 9.15 shows the extraction of dates from the raw data and
their conversion into standard date formats in the addition column for making the
compatible date syntax for training an ML model:

Figure 9.15: Illustration of extracting date from the string column

One-hot Encoding
It is a technique to generate an insightful embedding by converting the label or string
value into numeric values for making the raw data read-able by ML/DL algorithms.
It is implemented by the label encoder and the one-hot encoder. Figure 9.16 depicts
the tabular data having two columns, such as Employee ID and Department. This
type of data is not compatible for feeding into the ML model. Due to this concern,
the reader needs to apply any of the encoding techniques to convert the string value
of the column into a categorical value, which can be used as an embedding to the
model.

Figure 9.16: Illustration of applying an encoding operation for converting labels into a numeric dataset

Deep Learning with Spark 397

Handling Outlier or Outlier Detection
Outlier detection is a method to detect the outlier from the random dataset and
fix them with the help of different approaches such as standard deviation and
percentiles.

Wrapper Method
The wrapper method depends on the classifier. The best subset of features is selected
based on the results of the classifier. These methods are more expensive than the
filter method but are more accurate than the filter method. The most commonly used
techniques are as follows.

Forward Selection
The reader starts with a null model (having no features) and then, fitting the model
with each individual features one at a time and selecting the minimum p-value of
the feature. After that, again fit a model with two features (keep one feature from
earlier selected while fitting a model at very first time and second all other features
from remaining list of features). Repeat this process until a set of selected features
with p-value of individual features which is less than the significance level. It is an
iterative method.

Backward Elimination
In backward elimination, the reader starts with all the features and removes the least
significant feature at each iteration, which improves the performance of the model.
The reader can repeat until no improvement is observed on the removal of features.
It is a process of selecting the most significant and relevant features from a vast set
of features in the data set.

Recursive Feature Elimination
It is an optimization algorithm which aims to find the best performing feature subset.
At each iteration, best or worst performing features are chosen and keep aside. The
next iteration will start with left features. After this, ranks are given the features
based on the order of their elimination.

Embedded Method
It is the combination of filter and wrapper methods. It is implemented by algorithms
that have their own build in the feature selection method. There are two main
examples of this method such as LASSO and RIDGE regression which penalize the
function to reduce overfitting.

398 Practical Machine Learning with Spark

Different networks in DL
Several neural networks are being used and applied for designing the decision-based
intelligence model for ameliorating the precision and computational performance of
a model. Some of key neural networks are explained next.

Perceptron Neural Network (PNN)
Perceptron Neural Network is an oldest and never be going outdated NN architecture.
It is also known as the dense layer which is commonly seen in the designing phase of
any model from scratch. PNN is developed in 1957 by Frank Rosenbalt (1928-1971)
to detect features or intelligence insights about the business in the input data. It has
a neuron parameter which is a combination of biases and a set of weighted sums. β
represents the activation function that takes the input vector X to produce a binary
values Y as output. There are two types of PNN such as a single layer PNN and
multi-layer PNN.

Single Layer Perceptron Neural Network (SL-PNN)

Figure 9.17: Overview of a Single layer PNN architecture

Generally, the SL-PNN adapts a supervised learning of binary classifiers, and
the process begins by multiplication of inputs and their weights. Then, all the
multiplication set of inputs and their weights get added, hence create a weighted
sum. After this, the weighted sum plus bias is fed to the activation function to get
the output from a neuron. By presence of this binary classification property in PNN,
the model is capable to decide which input falls to which specific class as shown in
Figure 9.17. The curious role is played by the activation function which classifies the
classes in terms of values such as (0,1) or (-1,1).

Deep Learning with Spark 399

Multi-Layer Perceptron Neural Network (ML-PNN)
ML-PNN is the first seed towards the journey of designing of a complex DL model. It
composes of multiple perceptrons to deal with non-linearity capabilities within NN.
An ML-PNN consists of multiple layers called Hidden layers that are sandwiched
between the input layer and the output layer. Figure 9.18 depicts the architecture
overview of ML-PNN:

Figure 9.18: Overview of ML- PNN architecture

The first layer is started from the input layer, then passes to the hidden layer, and
lastly feeds to the output layer to get the result. This model trains on a set of input-
output layers and learns the correlation between them. To minimize the error that
occurred due to the difference of predicted values and ground truth values, a special
process named back-propagation can be used. ML-PNN consists of two types of
passes such as forward ward pass and backward pass. In the forward pass, the
flow moves from the input layer to the hidden layer and then passes to the output
layer. On the other hand, backward pass facilities backpropagation and some other
chain rules to minimize the error. Backpropagation uses decent gradient-based
optimization to alleviate the error in the NN.

Deep Belief Network (DBN)
DBN firstly came in 2007 by a joint work of Larochelle, Erhan, Courville, Bergstra,
and Bengio. It provides a joint probability distribution over input data and labels as
a probabilistic generative model. Generally, DBNs are composed of unsupervised
networks like Restricted Boltzmann Machines (RBMs) in which each of them is

400 Practical Machine Learning with Spark

restricted to a single visible layer and an invisible layer (hidden layer). In DBN, the
hidden layer of each sub-network is the visible layer to the next layer:

Figure 9.19: Overview of the DBN architecture

The process of performing RBN training is known as Gibb’s sampling where a vector
is presenting to the visible units that intended forwarding the values to the hidden
units within the network. Likewise, the reverse engineering helps to reconstruct
the original input from the visible unit inputs. It is a single-layer network where
each layer of DBN acts like a bi-conditional layer, in which it serves as the hidden
layer to the nodes that come before it, and as the visible layer to the nodes that
come after except the first and last layer. The top layer of RBMs might always be
configured with a SoftMax layer to classify the result as shown in Figure 9.19. This
type of network is mainly used in recognizing, clustering, and generating images,
video, and motion-captured datasets.

Deep Learning with Spark 401

Generative Adversarial Network (GAN)
GAN is a generative model that creates new data instances which resemble the
training dataset. The best use case of GANs is DeepFake. DeepFake is a technique to
create a fabricated or fake image that seems to be realistic as well and can identify
the pristine images from the bulk of mixed datasets. Generative modeling uses
CNN to learn from the pattern in input datasets and generates output images
which resemble the original images but still the bona-fide ones. The image-to-image
translation technique in GANs helps to convert images from winter to summer, day
to night, and DeepFake generation:

Figure 9.20: Overview of the GAN architecture

There are two NNs available in the architecture such as generator and discriminator.
The generator is used to generate plausible or realistic data from the original datasets.
On the other side, discrimination is used to distinguish the fake data from the bundle
of raw images. Figure 9.20 explains the working of GANs architecture. In which, the
generator generates the fabricated images, and then passes to the Discriminator as
an input to classify fake and pristine images.

Recurrent Neural Network (RNN)
It is an extension of feedforward NNs in which the RNN uses their internal state
(memory) to process variable length sequences of inputs. RNN remembers the
historical values and its decisions are influenced by what it has learnt from the past.
Still, RNN has been gaining popularity in the field of ML/DL since 1980s because
of its internal memory. RNN is also known as a recurrent network as it performs the
similar kind of task for every element of a sequence, where the output is dependent
on the previous result. It uses recognition of speech, time-series based forecasting,

402 Practical Machine Learning with Spark

recognition of handwritten documents, composition of music, and sentimental
analysis of textual content.

Figure 9.21: Overview of the RNN architecture

In feedforward, the flow of transition of information is linear that starts from the
input layers, further feeds to the hidden layer, and last ends at the output layer. But
RNN uses a recurrent mechanism because of its memory; the output is dependent
on the current input and previous information of the computed layer as shown in
Figure 9.21. The computation becomes slow in RNN as the training part is needed
more time due to its complex architecture. There are four types of RNN which are
given as follows:

•	 One to one RNN

•	 One to many RNN

•	 Many to one RNN

•	 Many to many RNN

Graph Neural Network (GNN)
Graph Neural Network brings the power of NNs within the data structure that
comprises nodes and edges. There are two types of graphics in the concept of graph
theory such as directed and undirected graphs. In GNN, it passes the message
between the nodes or neurons of graphs. In recent, ground-breaking study on
different variants of neural graphs such as Graph Convolutional Network (GCN),
Graph Attention Network (GAT), and Graph Recurrent Network (GRN). There are
several approaches to apply to the node-level, edge-level, and graph-level prediction
task. Figure 9.22 depicts the transition of a simple graph into a GNN by applying the
characteristics of NN:

Deep Learning with Spark 403

Figure 9.22: Overview of the GNN architecture

Convolutional Neural Network (CNN)

Figure 9.23: Overview of CNN architecture

CNN consists of multi-layer NNs for incorporating the recognition and analysis of
visual patterns from the pixel of images. It uses a convolutional process to apply on
two functions that generate a new function from them as shown in Figure 9.23. The
detail overview about CNN will be discussed in the next chapter Computer Vision
with Deep Learning. It has several layers which perform the working of convolution
in NN; few of them are given as follows:

•	 Convolutional Layer

•	 Pooling Layer

404 Practical Machine Learning with Spark

•	 Fully Connected Layer

•	 Dropout

•	 Activation Functions

Different Activation Functions
The activation function is a mathematical equation that consists of conditional
gates which decides whether a neuron should be activated or not; accordingly, the
output of a neuron passes to the next layer. Moreover, it also helps to normalize the
output of any input in the range such as (1, -1) or (0, 1). There are various activation
functions in NN for reducing the computation time and decisiveness to a neuron for
its activation.

Linear Function or Identity Activation Function
(IAF)
IAF is a linear function which is similar to the mathematical equation of a straight
line as:

y = f(x) = ax

Due to the linearity nature in the equation, the activation function of the last layer
becomes the activation function of the first layer. The derivative of the linear function
is constant. Hence, it is not used in the backpropagation process of NN. Its range
varies between ().

Binary Step Activation Function (BSAF)
BSAF is a linear binary step function whose mathematical equation is:

Its range is {0, 1} and the derivative of BSAF is always zero. Hence, it is not suitable
for the backpropagation process in NN. It has two output values that is 0 and 1,
therefore, it is known as a binary step activation function.

Sigmoid Activation Function/Logistic/Soft Step
It is a S-shaped curved non-linear activation function which is often used in NN. Its
mathematical equation is:

f(x) = 1⁄1 + e-x

Deep Learning with Spark 405

Where, x is weighted sum and range of this function is (0, 1). Its derivative is:

f'(x) = e-x ⁄ (1+ e-x)2

Hyperbolic Tangent Activation Function
(HTAF) / Tanh AF
HTAF is a monotonic non-linear function like a sigmoid function, but it is symmetrical
about the origin. Its range is (-1, 1) and defined as:

f(x)=tanh(x)

f'(x) = sech2 (x)

The graph of a derivative is also symmetric about y-axis and the sign of value is not
the same from the layer to the next layer as [-1, 1]. Its convergence is slow:

SoftSign Activation Function
It is an alternative of the Tanh function which is mainly used in regression and
DNN problems. The SoftSign converges polynomial, although Tanh converges
exponentially and is defined as:

f(x) = x⁄(1+) |x|

And its derivative is:

f'(x) = 1 ⁄ (1+|x|2

Its range is (- 1, 1).

Swish Activation Function
It is an alternate function of ReLU which is developed by Google and shows better
computation performance than any other linear Unit function. Its range is () and its
mathematical equation is:

 f(x) = x⁄ 1 + e-x

And its derivative is:

406 Practical Machine Learning with Spark

Rectified Linear Unit Activation Function
(RLUAF) / ReLU / Maximum Function
ReLU is an improved version of a non-linear activation function whose mathematical
equation is:

f(x) = max (0 ,x)

And its derivative is:

At the negative side of the graph, the derivative value is zero. So, there are high
chances to get the dead neurons which are not activated due to gradient’s zero while
in the backpropagation process. Its range is [0, ∞).

Leaky Rectified Linear Unit (Leaky ReLU)
Leaky ReLU is an extended version of ReLU to mitigate the issue of zero’s gradient
at the negative side of the axis. Its mathematical equation is:

And its derivative is:

Its range is (-∞, ∞).

Parametric Rectified Linear Unit Activation
Function (PRLUAF)
PRLUAF is another way to deal with the problem of the gradient’s becoming zero at
the negative axis. Its mathematical expression is:

And its derivative is:

Deep Learning with Spark 407

. It introduces the extra negative slope in the curve of PRLUAF to solve the issue of
the zero gradient at the negative axis. Its range is (-∞, ∞).

Exponential Linear Unit Activation Function
(ELUAF)
ELUAF introduces the log curve at the negative side of the axis to overcome the
problem of the zero gradient of ReLU. Its mathematical equation is:

And its derivative is:

Where, its range is [-a, ∞).

SoftPlus Activation Function (SPAF)
SPAF is another way to deal with the problem of the gradient zero at the negative
axis to overcome from dead neurons. It is used in the NN. Its mathematical equation
is:

f(x) = log (1+ex)

And its derivative is:

f'(x) = 1 ⁄ 1 + e-x

Its range is (0, ∞)

SoftMax Activation Function (SMAF)
SMAF deals with multiclass classification problems in which the SoftMax function
itself is a combination of multiple sigmoid functions. This function gives the
probability of the output point to a particular class. Hence, the sum of all class
probability is always equal to 1. Its mathematical equation is:

408 Practical Machine Learning with Spark

Scaled Exponential Linear Unit Activation
Function (SELUAF)
SELUAF is a scaled version of ReLU in which the output of ReLU is multiplied by
some pre-defined scale for vanishing the issue of the gradient problem:

And its derivative is:

Different Types of Loss Functions
As already discussed about the loss function in the preceding section, it is one of
the core components of NN while designing a new model from scratch. It is a way
to evaluate how well a model is performing on a given set of data. Generally, it
calculates the error produced when comparing the real value to a predicted value.
By applying the specific optimization function with respect to the error which is
calculated through the loss function can help to reduce the error in the NN.

Basically, there are two types of loss functions such as the regression loss function
and classification loss function depending on the type of learning task. In the
classification loss function, it predicts the output from a set of finite categorical
values. On the other side, the regression loss function predicts a continuous value.
In this section, readers will elicit about the several loss functions based on two
categories which are given next.

Regression Loss Function
Mean Square Error Loss (MSEL)/ L2 Loss
MSEL is a mean of squared difference between predicted and actual observations. It
measures only the average magnitude of errors without take care of direction.

In MSEL, if the difference between predicted and actual observations is large, the
model will penalize it as we are computing the squared difference.

Where, n denotes the total number of observations denotes the actual observation
and denotes the predicted observations. Also, MSE is recommended for calculating
the gradients.

Deep Learning with Spark 409

Root Mean Square Error Loss (RMSEL)
RMSEL is the square root of the MSEL. Its mathematical formula is:

Where i denotes variable, n denotes total number of observations, denotes actual
observations and denotes predicted observations.

Mean Absolute Error Loss (MAEL)/ L1 loss
MAEL measures the average of the absolute difference between the actual and
predicted observations when the outlier is more, then this MAEL is best suited for
error predication. Its mathematical formula is:

Mean Squared Logarithmic Error (MSLE)
It is the mean of square differences of logarithmic values of actual and predicted
values. It helps to reduce the difference between the actual and predicted variables
which is possessed in MSEL.

The preceding function is not defined if . To handle this issue, adding 1 in the actual
values and predicted values in the formula of MSLE.

Mean Absolute Percentage Error Loss (MAPEL)/
Mean Absolute Percentage Deviation Loss (MAPDL)
It measures the prediction accuracy of a forecasting method in statistics. It usually
expresses the accuracy as a ratio defined by the formula:

Where i, n, and y ̂i have usual meanings.

410 Practical Machine Learning with Spark

Mean Bias Error Loss (MBEL)
MBEL measures the average of the difference between the actual and predicted
observations for determining the positive bias or negative bias of a model. Its
mathematical formula is:

Where i, n, and y ̂i have usual meaning.

Huber Loss (HL) / Smooth Mean Absolute Error Loss
It is a less sensitive version of a squared error loss function towards the outlier and
mainly used to solve the problems related to regression. Moreover, Huber loss is
a conglomeration of MSEL and MAEL. If the difference is small between actual
observations and predicted observation, then the Huber loss function is non-linear
otherwise it would be linear. Its mathematical formula is:

Where i denotes variable, n denotes total number of observations, denotes actual
observations, denotes predicted observations, and denotes the point where the
function transition from non-linear to linear.

LogCosh Loss
LogCosh is a sum of logarithmic of the hyperbolic cosine of the difference of predicted
and actual values, which is much smoother than MSEL. Its mathematical formula is:

Where i, n, have usual meaning.

Classification Loss Function
Hinge Loss/Multi Class SVM Loss
It is a convex function for maximum margin classification generally for SVM.

Deep Learning with Spark 411

The mathematical formula of hinge loss is:
Hinge Loss = max (0,1 - y î.yi)

Where denotes the actual observations and denotes predicted observations.

Squared Hinge Loss Function (SHLF)
It is a square of the output of the hinge’s max() function to get a smooth curve of
error. In this loss, the larger errors are penalized more significantly than with the
normal hinge loss function. Moreover, the smaller errors are punished slighter.

Where i, n, yi, and y ̂i have usual meaning.

Categorical Hinge Loss Function(CHF)
The traditional and square hinge loss functions do not accommodate on multi-class
binary classification. This problem is overcome by introducing an upgraded version
of a function in the lobby of the hinge function that is CHF.

Cross Entropy Loss (CEL)/Negative Log Likelihood
The CEL is a classification loss continuous function to evaluate the performance of
a model. In CEL, if the predicted values are equal to the actual value of a model,
then cross entropy becomes zero; hence, it is a perfect outcome. Whenever the cross-
entropy increases, then the predicted values diverge to actual values. To reduce the
loss value of cross entropy, the specific optimization function to be implemented is
to get the cross entropy which tends to be zero.

CEL = -(yi log (y ̂i) + (1-yi) log (1-y ̂i))

Where i, n, yi, and y ̂i have usual meaning.

Binary Cross Entropy Loss (BCEL)
BCEL is an advanced version of cross-entropy to classify two target classes either 0 or
1. In NN, the sigmoid function is used to achieve this kind of prediction. BCEL also
known as sigmoid cross-entropy loss which an amalgamation of sigmoid activation
and a cross-entropy loss.

Categorical Cross Entropy Loss (CCEL)
CCEL is a loss function that is used in multi-class classification tasks. It is like a
BCEL, the only difference it deals with many classes.

412 Practical Machine Learning with Spark

Where i, yi, and y ̂i have usual meaning.

Kullback Leibler Divergence Loss (KLDL)/ Relative
Entropy
KLDL is a method to calculate how one probability distribution is far away from a
true probability distribution. Mainly, it is being used in autoencoder to study the
dense feature representation. The mathematical expression is:

Where is a KL(p||q) is a KLDL between two distributions p and q. x is a random
variable.

Sparse Categorical Cross Entropy Loss (SCCEL)
There is a similar loss function represents in SCCEL and CCEL. In CCEL, the classes
are encoded using one-hot encoder like [1,0,0] and [0,1,0] for two classes. But, in
SCCEL the integers are used instead of one-hot encoder like [1] and [2] for two
classes. However, it depends on the way to read the inputs in the model, according
to readers can use the losses. In addition, it is the best approach for labeling the
classes with less need of computation and memory.

Focal Loss (FL)
FL is a revised version of CEL provided by Facebook that alleviates the problem of
imbalance classes by assigning extra weighs to hard (background with noises) and
easy (background with objects) misclassified examples.

Focal Loss = -∑i yi (1-yi)γ ln yi

Different Optimizers
The readers are already familiar with the concept and role of optimizer in NN.
Generally, it is used to minimize the error by putting the value of the optimizer in the
backpropagation process. Here, in this section, readers will elicit about the different
type of optimization methods which are being utilized in NN.

Deep Learning with Spark 413

Gradient Descent (GD)
GD is a convex function-based optimization algorithm to deal with the parameters
of NN to minimize a given function to its local minima. In a simple word, GD is an
optimization algorithm that finds the minimum of loss function for improving the
NN performance in terms of accuracy. For finding the minima of the loss function, it
moves opposite of the slope and increases from the given point by step by step until
the tangent is parallel to the initial point.

Batch Gradient Descent (BGD)
In BGD, all the training data is taken as a single step and then, we need to take the
mean of gradients of all the training datasets to find the parameters. Also, it is used
for smooth curves and converges directly to minima.

Stochastic Gradient Descent (SGD)/full batch
gradient descent
SGD is one of the best techniques for training a DNN. In each iteration, SGD only
performs one parameter update on a mini batch of training datasets. It is simple and
has proved to be efficient for tasks on large datasets. It is the improved version of BGD.

Mini Batch Gradient Descent (MBGD)
MBGD is a special type of GD algorithm that splits the training data set into small
batches to calculate the model error and update model coefficients. It is the most
common implementation of GD used in the field of DL. It is a balance between SGD
and the efficiency of BGD.

Momentum Based Gradient Descent (MBGD)
MBGD is an extension of SGD to provide the fast process. GD with momentum is a
way to accelerate the gradient vectors in the right directions, thus leading to faster
converging.

Nesterov Accelerated Gradient (NAG)
In 1983, Yurii Nesterov introduced a new concept named as NAG which is an
extension of SGD. This concept has been sidetracked since 2013, when the research
group started training NN with SGD. In NAG, the evaluation of the gradient is
computed after the current velocity is applied and it can be added a correction factor
to the momentum. Moreover, the Nesterov momentum is a simple and small change
to the standard momentum.

414 Practical Machine Learning with Spark

Adaptive Gradient (Adagrad)
It performs gradient-based updates using the history of gradients. The adaptive
learning rate method is an optimization of gradient decent method with the goal
of minimizing the objective function and the parameters of the network. There are
several versions of these algorithms such as momentum and NAG.

Adaptive Moment Estimation (Adam)
It is also a stochastic optimization and an adaptive learning rate optimization
algorithm that utilizes both momentum and scaling. Adam is best suited for non-
stationary objectives dealing with problems that has high noise and spare gradients.
Adam does not converge where rarely encountered large gradient information
quickly dies out to the short memory problem of exponential moving average.

AdaDelta
AdaDelta is an extension of Adagrad that alleviates the monotonically decreasing
learning rate. It restricts the window of accumulated past gradient to a fixed size
window. ADAM computes adaptive learning rate for each parameter; hence,
exponentially decaying average of the past gradients like momentum. It also allows
the adaptive techniques for hyperparameter tunning.

Cloud Notebooks for ML and DL
Generally, the notebook is used to easily manage and write the code base of DL or
others in an interactive manner. It runs on all the platforms and supports several
languages to provide an editor for programming. There are two ways to install
and work on notebooks such as on-premises and cloud-based. But the cloud-based
notebooks provide the ease access and share functionality of code base. In this
section, readers will walk through the Google Colab notebook.

Google Colab
Google Colab is an open-source Jupyter notebook environment that runs on cloud
servers of Google. It provides the option to choose a processing unit within the Colab
environment such as CPUs, GPUs, and TPUs. With the help of Colab, a user can
get better environment to develop DL applications using popular libraries such as
PyTorch, TensorFlow, Keras, and OpenCV. Colab supports only Python 2.7 and 3.6
which helps to improve the programming skills on Python for initiating notebooks,
uploading datasets implicitly or explicitly of Google environment, mounting of
Google Drive.

Deep Learning with Spark 415

Figure 9.24 shows the screenshot how to open a new notebook in Google Colab for
DL:

Figure 9.24: Home page to open a new notebook

Figure 9.25 shows the screenshot how to choose hardware configurations in Google
Colab:

Figure 9.25: The way to toggling with hardware configurations in Google Colab

416 Practical Machine Learning with Spark

Figure 9.26 shows the screenshot how to install modules in Python using Google
Colab:

Figure 9.26: Illustration to install modules of python in Google Colab

Figure 9.27 shows the screenshot how to import modules in Python using Google
Colab:

Figure 9.27: Illustration to import modules of python in Google Colab

Deep Learning with Spark 417

Deep Learning Frameworks
TensorFlow
It is an open-source numerical computation library for performing ML and DL-
related tasks such as training and testing of a model. It was developed by the
Google Brain Team at Google Research Lab on ML and DL. The first version that is
1.0 came in February 2017. TensorFlow is a cross platform for a framework that runs
on different flavors of processing units such as GPU, CPU, and TPU. It has a web
application named as TensorBoard for inspecting, visualizing, and understanding
the TensorFlow runs and graphs. Also, it can help the researchers to monitor
the model loss, accordingly they re-tune the hyperparameter of DL for better
precision. TensorFlow can bind with any other open-source notebook for interactive
visualization and better representation.

It is an end-to-end open-source platform for ML and DL to provide ease to build
complex model, create a robust pipeline for ML/DL production, and to integrate with
various open-source notebooks like Jupyter. The internal working of TensorFlow is
based on movements of data flows of graphs through which data can be transitioned
from one graph to other graph or nodes. Then, each data node within the graph
represents a mathematical operation and edges between two nodes represent
multi-dimensional data array or tensor data. TensorFlow has various bindings with
different programming languages such as Python, C#, Java, C, and .Net.

PyTorch
PyTorch is a Python-based framework developed by Facebook for DL and scientific
computing. With the help of this framework, researchers, and data scientists have
got great flexibility and better efficiency in designing and hyperparameter tuning of
neural models. It can run on cross platform and adapting different processing units
such as GPU and CPU.

Keras
Keras is an open-source NN wrapper built on top of TensorFlow to provide an
ergonomic framework to easily develop and deploy the production level ML and
DL model from the scratch. It was developed by a Google Engineer named François
Chollet for extending the ease to define a neural model by writing the small piece
of code. It is a cross platform and cross-language neural library which leverages the
computation of CPU, GPU, and TPU for defining and processing the multiple layers
while designing a complex NN model. Keras models can run directly on browser,
iOS, Android, and edge devices.

418 Practical Machine Learning with Spark

Caffe
Caffe is a DLwrapper that allows various language compatibility like C, C++,
Python, and MATLAB. This DL framework is developed by Berkeley AI Research
(BAIR) and by innovative minds of community contributors. It incorporates a pre-
trained deep net repository Caffe Model named as Zoo for speeding up the process
to deploy any CNN. Caffe is recommended to do visual recognition using DNN.

MxNet
It is a highly efficient DL framework to support Long Short-Term Memory (LTSM),
RNN and CNN architecture for handling the real-world complex problems with
good precision. It understands the ML and DL codes written on Python, R, C++, and
Julia. This DL framework can be scaled-up to handle the complex and cumbersome
computation for execution an entire phase of a model. This DL framework has the
capability to recognize image, audio, video, human speech, and human handwriting
by leveraging the applications of NN.

Chainer
Chainer is a Python native DL framework to help the coders or modelers to simply
re-tune the parameters of model during run-time impeccably. It supports a myriad
of GPUs for working on core applications of DL such as speech recognition, text
analysis, and machine translation.

DeepLearning4J
DeepLearning4J is a Java-based DL wrapper to extend the actionable functionalities,
such as parallel training, distributed framework, adapts the microservices
architecture and directly integrates with big data landscape, especially Spark and
Hadoop-MapReduce. It also supports the Scala language in developing of models,
which are relatively faster than other Python frameworks like Caffe. The native DL
libraries in DeepLearing4J make it robust and a simple framework to import the
imperative neural architecture such as RBM, DBN, CNN, RNN, and LTSM.

Microsoft Cognitive Toolkit (CNTK)
CNTK is an open-source DL framework to perform efficient CNNs. It supports a
myriad of interfaces such as Python, C++, and the command line interface. This
framework is mainly known for implementing Reinforcement Learning (RL) or
Generative Adversarial Networks (GANs) models on the image, speech, and text-
based data.

Deep Learning with Spark 419

Distributed DL Processing using Elephas
As the readers are already familiar with different DL/ML frameworks that provide
the standalone mode to train and test a model. With the ease to integrate the processing
unit migrating from Central Processing Unit (CPU) to Solid State Drives (SSD) or
Graphical Processing Unit (GPU) or Tensor Processing Unit (TPU), through that
the researchers can boost the model execution performance with cost reduction.
Leveraging of the preceding-mentioned advanced processing units help the users to
adapt the shipment in a day approach, which means someone can train and test a DL
model in a day. Prior, it was a lengthy approach where users needed to go through a
long waiting period due to the slowness of CPU. Moreover, the advanced processing
units improve the overall efficiency to easily deal with cumbersome amount of data
impeccably while in training and testing phase; previously that was a big challenge
in CPU. Due to this tremendous merit of these advanced processing units, many
researcher groups started engrossing towards its further enhancement. But still these
frameworks are side-tracked from enigmatic benefits of distributed processing. To
consider this challenge, the lack of flavour of distributed framework, a team leading
by Max Pumperla developed a distributed framework named as Elephas that runs
on top of Apache Spark.

Elephas is a promising distributed DL framework which stitches the core
functionalities of two different frameworks named as Keras and Apache Spark for
running a model on massive datasets. Moving further deep in Elephas, it is a class
of data-parallel algorithms of Keras that execute with the help of Spark ecosystems.

Training and testing part of Keras is initialized on the driver of Spark, and then
starts serializing and shipping of data to workers with model parameters. In the
next step, the Spark workers started deserializing the model and train the small
blocks of data, then send the gradients back to the driver. At driver of Apache Spark,
the master model starts getting updated by an optimizer which takes the gradients
either synchronously or asynchronously. Elephas has a model named as SparkModel
which helps to initialize the distributed framework by passing the compiled model
of Keras. The following code base shows the implementation of linear regression
using the distributed DL using Elephas on Google Colab:

>>import pandas as pd

>>from tensorflow import keras

>>from tensorflow.keras import layers

>>import pyspark

>>from pyspark import SparkContext, SparkConf

>>from elephas.utils.rdd_utils import to_simple_rdd

>>from sklearn.metrics import confusion_matrix

420 Practical Machine Learning with Spark

>>from elephas.spark_model import SparkModel

>>from elephas.utils.rdd_utils import to_simple_rdd

>>from sklearn.model_selection import train_test_split

>>import elephas

>>import pyspark

>>import tensorflow as tf

>>import keras

>>from keras import layers

>>from keras.models import Sequential

>>from keras.layers import Dense, Activation

>>from keras.optimizers import SGD

>>import numpy as np

>>import matplotlib.pyplot as plt

>>import pandas as pd

>>conf = SparkConf().setAppName(‘distributed-framework-Elephas’).
setMaster(‘local[9]’)

>>sc = SparkContext(conf=conf)

>>dataset = pd.read_csv(‘/content/drive/MyDrive/Salary_Data.csv’)

>>X = dataset.iloc[:, :-1].values

print(X)

>>y = dataset.iloc[:, -1].values

print(y)

Splitting the dataset into the Training set and Test set

>>X_train, X_test, y_train, y_test = train_test_split(X, y, test_size =
1/4, random_state = 0)

>>model = keras.Sequential()

>>model.add(layers.Dense(128, activation=”relu”, input_dim=1))#, input_
dim=1))

>>model.add(layers.Dense(128, activation=”relu”))

>>model.add(layers.Dense(128, activation=”relu”))

>>model.add(layers.Dense(64, activation=”relu”))

>>model.add(layers.Dense(64, activation=”relu”))

>>model.add(layers.Dense(32, activation=”relu”))

Deep Learning with Spark 421

>>model.add(layers.Dense(32, activation=”relu”))

>>model.add(layers.Dense(1))

>>model.compile(optimizer=”adam”, loss=”mse”, metrics=[“mae”])

>>model.sumarry()

>>rdd = to_simple_rdd(sc, X_train, y_train)

>>spark_model = SparkModel(model, frequency=’epoch’,
mode=’asynchronous’)

>>spark_model.fit(rdd, epochs=20, batch_size=32, verbose=0, validation_
split=0.1)

>>spark_model.save(‘/content/drive/MyDrive/’)

>>predictions = spark_model.predict(X_test)

>>score = spark_model.master_network.evaluate(X_test, y_test, verbose=2)

print(‘Test accuracy: ‘, score[1]/1000)

Figure 9.28 shows the screenshot how to install Keras, TensorFlow, and Elephas
using Google Colab:

Figure 9.28: Illustration to install TensorFlow, Keras, and Elephas in Google Colab

422 Practical Machine Learning with Spark

Figure 9.29 shows the screenshot of initializing the required modules in Python on
Google Colab:

Figure 9.29: Illustration to import indispensable modules in Google Colab

Figure 9.30 shows the screenshot to read the inputs from the csv file and initializing
the NN:

Figure 9.30: Illustration to read the input and initializing neural network

Deep Learning with Spark 423

Figure 9.31 shows the screenshot to display the values of the csv file to be used in the
training phase:

Figure 9.31: Illustration to display the read datasets from the csv

Figure 9.32 shows the screenshot to display the summary of a neural network:

Figure 9.32: Illustration to display the summary of NN

424 Practical Machine Learning with Spark

Figure 9.33 shows the screenshot to display the distributed flavour of DL using
Elephas in Google Colab:

Figure 9.33: Illustration of a distributed mode of DL using Google Colab

Figure 9.34 shows the screenshot to display the accuracy of a model using Elephas:

Figure 9.34: Illustration to show the accuracy of a model

Figure 9.35 shows the way how to mount a Google Drive in Colab for direct reading
of dataset into the codebase:

Deep Learning with Spark 425

Figure 9.35: Illustration to depict how to mount Google Drive in Colab

Alternate Framework for Distributed Deep
Learning
Distributed Keras
Distributed Keras is a distributed DL framework-built on top of Apache Spark and
Keras. This framework is designed in such a way where the distributed optimizer
is implemented using the approach of data parallel methods. It supports several
distributed optimization algorithms such as ADAG, Dynamic SGD, Asynchronous
Elastic Averaging SGD (AEASGD), Asynchronous Elastic Averaging, Momentum
SGD (AEAMSGD), and Downpour SGD.

TensorFlowOnSpark
TensorFlowOnSpark was developed by Yahoo to bring a flavour of distributed
DL by leveraging Hadoop clusters. It supports all TensorFlow functionalities such
as synchronous/asynchronous training, model/data parallelism, inferencing,
and TensorBoard. With the access of all the dependencies of TensorFlow with
in this wrapper, so it can migrate existing Tensorflow written programs into
TensorFlowOnSpark’s compatible. Reading of input datasets or features are done
through Spark and pulled by TensorFlow. It can be easily deployed either on-
premises or cloud with CPUs or GPUs.

426 Practical Machine Learning with Spark

BigDL
BigDL is a distributed DL library for Apache Spark to introduce the parallelism or
distributed processing while designing a DL model from scratch. It feeds the data
from disparate heterogenous data sources such as HDFS, HBase, Hive, Parquet and
executes a neural network by using the pre-trained DL models of caffe or Torch. It
also provides a great ease to customize the DL module or functionalities by stitching
new codebase using Spark program. BigDL is highly recommended to use the high-
level APIs provided by Analytics Zoo.

DeepLearning Pipelines
It is introduced by Databricks which supports Keras and TensorFlow backend with
the integration of Apache Spark MLlib pipeline for scaling out on a distributed
framework using the Hadoop environment. It also includes the special package for
tuning hyperparameters and transfer learning in NN.

Zoo-Analytics
Analytics Zoo is an open-source high level API for implementing the big data
AI framework for scaling end-to-end AI to distributed big data. It has several
integrations with Python-based libraries for performing the distributed DL such as
Orca (TensorFlow, PyTorch, and Spark), RayOnSpark (Spark based ML/DL), BigDL
Extensions (Keras based DL with big data clusters), and Zouwu (AutoML).

Deep Learning Operations (DLOps)
Deep Learning operations is a way to emulate a plethora of individual capabilities of
manpower or team efforts to build a robust DL solution such as data scientists, data
engineers, data architect, platform engineers, cloud experts, administration, and IT
operations in a single workflow. DLOps facilitates the deployment of a DL model
either through on-premises, semi-cloud, and Software as a Service (SaaS) based.
With the help of DLOps, any team can transition a DL model from an initial phase
to the production phase on the very same with minimum cost. It also minimizes the
challenges of faults in the DL pipeline and finding of root cause is so easy, thus can
be tackled effectively. Mainly, its integration with DevOps supports the Continuous
Integration (CI), Continuous Development (CD), and releasing ML/DL models
into the production phase with minimum error.

Deep Learning with Spark 427

Figure 9.36: Overview of flow of DLOps for making a robust pipeline

Figure 9.36 delineates a simple workflow of DLOps that capture the inputs and feeds
to others for making a robust DL pipeline. First and foremost, the cloud notebook
takes the data and codebase by leveraging AWS S3 and GitHub. When any changes
or amendments in the module happen, then Jenkins comes in the picture to monitor
the changes and does the required actions on top of the docker image. After this
phase, Jenkins pushes the updated docker into the Amazon Web Services - Elastic
MapReduce (AWS EMR) or Amazon Web Services - Elastic Compute Cluster
(AWS EC2) where the DL model is configured and deployed. Once, the model starts
executing the training step and the output after the testing phase stores back into
AWS S3 in a specific bucket. At last, the BI tool integrates to pump-up data from the
bucket and creates insightful dashboards for better understanding.

There is a myriad of benefits to enhance the overall performance of a DL which are
given as follows:

•	 It reduces data preprocessing and profiling time.

•	 It works on a policy of shipment in a day; it means the DL model is always
on ready-to-go mode and single day deliverable offering can be possible.

•	 Provides a more secured and robust DL pipeline.

•	 Easy integration of Business Intelligence (BI) tool with the model’s result
for better visualization and understanding.

428 Practical Machine Learning with Spark

•	 Fully automatic and self-heal architecture to make the DL process impeccable.

•	 It can accelerate the validation process and testing phase.

•	 Ease in monitoring and re-training of DL.

•	 It supports disparate heterogenous of data sources and on-fly conversion of
data formats for making the data compatible to a DL model.

Conclusion
In this chapter, all the readers would have deep dived into the knowledge about
the journey of DL and familiarized themselves about the plethora of applications
in DL. Authors have put a great strive to collect all the pertinent details from
the basic DL to advance DL. This chapter also contains a detailed explanation
on various indispensable topics such as loss functions for both regression and
classification, activation functions, optimizers, different architecture, standalone DL
frameworks, cloud notebooks, DLOps, distributed frameworks for DL along with
their implementation. The next chapter will focus on the detailed studies on how
to design a DL model for segmentation, classification, detection, localization, and
image manipulations in the domain of computer vision.

Computer Vision with Apache Spark 429

Chapter 10
Computer

Vision with
Apache Spark

“Every language is a world. Without translation, we would inhabit
parishes bordering on silence.”

— George Steiner

Introduction
Due to the rapid leap in the adaptability and volume of multimodal content in
various domains such as healthcare, banking, security, space, military, retail,
manufacturing, education, and many more, images and videos have become a
core part of the lives of human beings. Even though many countries also strive
to implement digital systems to increase automation, many automation systems
in the verticals of vision can read the information from the images and videos to
convert into machine readable format for performing a particular task. Some
applications of automatic vision-based systems are face recognition, segmentation,
Optical Character Recognition (OCR) reading, classification, fraudulent detection,
object localization, object tracking, object labeling, and realistic art graphics. This
chapter presents comprehensive details about the evolution of Computer Vision
(CV) and its pertinent vision-based libraries in main core components, annotations,
data augmentation, and image formats. In addition, the application of CV is also
mentioned in this chapter. The working mechanism and its timeline have been duly
presented in a simple manner for a better understanding of the readers. This chapter

430 Practical Machine Learning with Spark

also includes a practical implementation and a concise view of building a real-time
CV-based pipeline.

Structure
In this chapter, we will discuss the following topics:

•	 Introduction and evolution of CV

•	 Image and types/formats of image

•	 Various CV annotations and libraries

•	 Definition of core components of CV

•	 CNN and its working mechanism

•	 Timeline of NN-based CNN

•	 Data augmentation and its ways

•	 Futuristic advancement in CV

•	 Real-time production level CV pipeline

•	 Applications of CV

Objectives
After studying this chapter, readers will be able to:

•	 Gain awareness about the legacy of CV

•	 Grasp the knowledge about the image and its different formats

•	 Grasp the knowledge of different components of CV

•	 Understand the concept of data augmentation, CNN, and annotations of CV

•	 Understand the distributed processing of image classification problem using
a CNN-based model

•	 Gain awareness about the timelines of CV

•	 Know the future scope and key applications of CV

Evolution of Computer Vision
The computer vision technique was first developed in 1950s by Larry Roberts; that
research mainly concerned with recognition tasks and dealt with two dimensional

Computer Vision with Apache Spark 431

images. In 1960, many researchers started to use this concept for robotic vision for
measuring the distance. In mid 1970s, research groups started this idea to deal with
time sequences of images and the first course on computer vision at MIT’s Artificial
Intelligence Lab. From 1980 onwards, this concept emerged and started integration
with Artificial Neural Network and the first Single Neural Network Algorithm was
developed by Eigenface in 1987 and used by Turk et al. in face classification. In 1990,
researchers showed great interest for detecting the human faces using statistical
techniques. Paul Viola and Michael Jones introduced the first real time face detection
framework in 2001. Since then many researchers have been trying to improve the
computer efficiency like haar cascading, integral images, feature extractors (SIFT,
SURF, ORB, and so on), and adapting adaboost, and so on. After 2005, the deep
learning concept was integrated with computer vision for object classification, object
labeling, semantic segmentation, instant segmentation, object localization, and object
tracking. Initially, the CV concept was much before 2010 but it started to be easily
applicable after 2010 because of cheaper hardware. In 2014, the new concept, that
is, Generative Adversarial Network (GAN) was introduced by Ian Good fellow.
Recently, many research labs are set up to work on new concepts of computer vision
like encoders-decoders of images, reinforcement in CV, transfer learning (meta-
learning, few-shot learning, and zero-shot learning), and contrastive learning.

Defining an Image
An image or a video frame is a combination of multiple pixels. A pixel is the smallest
and core unit for generating a digital image. There are three ways to represent an
image such as Black & White (B/W), Colored Space, and Spectral. The B/W image
refers to a 2-D array to represent an image and the pixel value ranges between 0-255.
Where 0 represents dark black, 255 as white, and between 1-254 shows the range
of grayscale. In addition, the B/W image consists of only one channel along with
height and width as attributes. On the other hand, the colored space image consists
of three channels for representing red, green, and blue color in the image. It uses a
3-D array to represent an image. In a spectral image, a technique in which multiple
bands of electromagnetic spectrums are used. It gives spectroscopic information and
imaging information.

Different Formats of Image
In CV, there are several formats of images that can be processed by the vision-based
libraries such as OpenCV, Pillow, Samples, and so on. This section helps the readers
to understand the various formats of images which are given next.

Joint Photographic Experts Group (JPEG)
The JPEG file format is generated by efforts of two groups such as Joint Photographic
Experts Group and ISO/IEC group. The JPEG2000 format is recommended as the

432 Practical Machine Learning with Spark

best file format for compressing the size of the image by degrading the resolution
quality, and the extension of JPEG image is .jpg.

Graphics Interchange Format (GIF)
The GIF uses 2D raster data type and encoded in binary. GIF files generally have the
.gif extension. The upgraded version of GIF is GIF89a which is an animated GIF
image. It is one of the best moving and animation images which can be applied on
any page or framework by the viewer.

Portable Network Graphics (PNG)
PNG is an improved version of the GIF file format for image compression. The
compressed images are in lossless manner which restores all the image details and
information. PNG uses .png extension for viewing the image.

Scalable Vector Graphics (SVG)
SVG defines vector-based graphics for the web in the XML format. This format is
recommended by the W3C in which all attributes and elements can be animated
on any screen resolution such as web browser, mobile view, and tablet view. The
extension of SVG is .svg.

Tag Image File Format (TIFF)
TIFF is a file format which is mainly used in the printing and scanning of images.
It extends the functionality to store the large raster graphics with different image
depths. The extension of TIFF is .tiff or .tif.

Digital Imaging and Communications in Medicine (DICOM)
DICOM is a well-recognized international standard format for medical images
and its related information. It exchanges the clinical and medical data without any
loss in the quality while intervention. The main verticals where this format play
a vital role in storing and exchanging the clinical-based confidential information
such as radiology, cardiology imaging, X-ray, Computed Tomography Scanner
(CTS), Magnetic Resonance Imaging (MRI), Ultrasound, and Ophthalmology.
This file format is recognized and accoladed by the International Organization for
Standardization as the ISO 12052 standards.

Annotation ways in CV
The need of Annotation Techniques (AT) in image processing has been rapidly
increasing due to plethora of applications of AI and DL. This technique is being used
to label different types of images or video frames for understanding their behaviors

Computer Vision with Apache Spark 433

and features. Generally, the well annotated/labeled-based image database is
relatively more accurate while training a DL model. In other words, it is a technique
to label or classify the image using text, color, and other annotation tools. Basically,
this annotation labels the object or feature from the image and stores into some other
file formats for using that metadata in the training phase.

Bounding Boxes (BB)
A bounding box is frequently used in AT for labeling the image dataset in CV.
Usually, these are the rectangular boxes to define the location of the target object in
the image or video frame. The BB uses (x, y) coordinates of the rectangular corners
such as top-left (x_min, y_max), top-right (x_max, y_max), bottom-left (x_min, y_min)
and, bottom-right (x_max, y_min). It is generally used to label the object for detection
and localization tasks. In addition, there are types of BB techniques such as two-
dimensional (2-D) or three-dimensional (3-D). Figure 10.1 shows the BB annotation
to label the face and half part of the body:

Figure 10.1: Rectangular Box to represent the BB annotation

3D Cuboids
It is very similar to BB, but the only difference is that it considers the depth of the
target object also. This type of annotation technique is used to distinguish the key
features like volume and position in a three-dimensional space. In addition, this type

434 Practical Machine Learning with Spark

of annotation overcomes the issue of project orientation and includes the background
pixels that sometimes affect the performance of the model while training.

Polygons-Based Annotation
Polygons-based annotation tool is used to label the irregular object in the image like
an eye and a mouth in the face. It draws a polygon by following the path between
the two points. Figure 10.2 shows the labeling of an irregular object like a face by
connecting the two dots until it doesn’t create a closed loop:

Figure 10.2: Labeling of irregular object using polygon annotation

Lines and Splines
As the name suggests, it labels the straight lines, straight strips, and the straight
boundaries by leveraging the lines and splines-based annotation technique. Mainly,
it is used in autonomous driving to annotate the roads and sidewalks-related image
database for recognizing the straight pattern from the image. Figure 10.3 depicts the
labeling of a straight lane on the road using the LabelMe annotation tool:

Computer Vision with Apache Spark 435

Figure 10.3: Labeling of boundaries and white strip on the roads using line and splines annotation

Semantic Segmentation
In semantic segmentation-based annotation, each pixel in an image is assigned to a
single class. This annotation technique is used to get the high accuracy in classification
and segmentation of the object by distinguishing the different colors for each class in
an image. The outcome of this annotation technique uses the concept of masking for
each class and this technique is mainly recommended for segmentation annotation
such as semantic segmentation, instance segmentation, panoptic segmentation. In
Figure 10.4, the segmentation annotation shows the different colors to pixels for each
class and draws a mask around the object:

 10.4 (a) 10.4 (b)
Figure 10.4 (a): Original image without annotation, and

Figure 10.4 (b): Labeling of semantic segmentation annotation to classify the different classes.

436 Practical Machine Learning with Spark

Key-Point and Landmark
It is used to describe and plot the main characteristics of an object in an image.
Mainly, it is used to create the facial landmarks for observing the emotional, age,
sex, expressions, and other facial features of the person. Also, it can be used for
the alignment of any object, especially the body movements of the person. Figure
10.5 shows the facial landmark of the person by using the landmark annotation
technique:

Figure 10.5: Landmark annotation for plotting the key facial features of the person

Circle
This type of annotation technique is used to label the circular objects from the images
or videos. Figure 10.6 depicts the circle annotation to label the internal seed part of
a sunflower:

Figure 10.6: Circular annotation for labeling the seed portion of a sunflower

Computer Vision with Apache Spark 437

Computer Vision Libraries
In this digital innovation era, the demand of CV-based libraries have been
rapidly increasing day by day with the involvement of multidisciplinary verticals
such as security, facial detection, space exploration, manufacturing, banking,
retail, augmentation intelligence, and so on. The CV-based libraries are used for
understanding and analyzing the meaningful patterns or features of an object in
the images or video frames. Due to the high adoption rate of CV, it becomes an
interesting and novel research topic among the research groups and MNCs to
enhance the functionalities of vision-related libraries. These libraries are used for
reading, manipulating, feature extracting, and processing of image metrics for
further transformation over the images and video frames. Most of the libraries are
supported by Python language because of its robustness and quick integration with
the Linux flavor. There are several computer vision libraries and some of the main
libraries are explained in the upcoming sections.

Open-source Computer Vision Library (OpenCV)
It is an open source-based vision library which provides a wide range of different
image processing functions. In 2000, Intel Corporation released the first version of
this library having several mathematical-based image algorithms to perform different
kinds of tasks such as facial detection, facial recognition, object localization, object
tracking, OCR, reading of heterogeneous formats of images, camera calibration, 3D
reconstruction, and other image manipulation functions. OpenCV is an independent
library which supports different operating systems such as Windows, Android,
Mac OS, and Linux. Also, it provides the multiple language interfaces to build the
codebase such as C++, Java Python, and MATLAB.

Imutils
It is a CV-based library that includes the functionality of OpenCV and other basic
image processing functions like rotation, flipping, resizing, translation, colour
spacing, detecting edges, dealing with .mat formats, and skeletonization, and so on.

Note: The OpenCV is installed using the pip install opencv-python command
on the Linux terminal. The Imutils is installed using the pip install imutils
command on the Linux terminal.

Scikit-Image
It is one of most popular and open-source computer vision libraries for performing
the different operations using the inbuilt collection of algorithms.

438 Practical Machine Learning with Spark

Note: The Scikit-image is installed using the “pip install scikit-image” command
on the Linux terminal.

Python-Tesseract (Pytessarct)
It is an OCR-based tool written on the Python language for recognizing and ex-
tracting out the important features from the textual information contained images.
It uses the Google’s Tesseract-OCR Engine as a backend for recognizing the text in
an image. Mainly, it is used to parse the textual and tabular information from the
marksheet, resume, and other textual documents. It helps to create a unified auto-
matic OCR pipeline to recognize the textual information and store into the database
for further analysis. It also supports Pillow and Leptonica imaging libraries for easy
reading and manipulating of image operations.

PyTorchCV
It is a PyTorch-based framework for providing the number of image processing
libraries and algorithms. It extends the capability to handle multiple operations such
as image classification, segmentation, detection, localization, and pose estimation.
Also, consists of many inbuilt CNN-based implemented models like AlexNet,
ResNet, ResNeXt, PyramidNet, SparseNet, DRN-C/DRN-D for quick deployment
and configuration of training and testing part of the model.

Note: The PyTorchCV is installed using the pip install pytorchcv command on
the Linux terminal.

SimpleCV
It is another vision-based library which is written in Python for accessing and
building the CV applications. It provides the flexibility to apply these CV libraries
on image and stream videos as well. It is used to perform any image processing-
related functions such as manipulation, extraction, translation, and conversion.
Also, it supports multiple OS like Mac, Windows, and Linux.

Note: The SimpleCV is installed using the pip install SimpleCV command on
the Linux terminal.

BoofCV
It is an open-source library which is built specially for the need of stream-line
based video analysis pipeline in CV. It performs different CV functions such as
feature detection, tracking, camera calibration, fisher-eye effect, pixels-based object

Computer Vision with Apache Spark 439

extraction, extraction of features from 2D and 3D geometry. The BoofCV is installed
using the pip install PyBoof command on the Linux terminal.

Note: The SimpleCV is installed using the pip install SimpleCV command on
the Linux terminal

IPSDK
It is an image processing library written in C++ and Python. This library extends the
flexibility to leverage different types of image processing features for analysis the
image matrix. It automatically allocates the processor and memory with CPU while
processing an image.

Python-Tesseract (Pytessarct)
It is an OCR-based tool written on Python language for recognizing and extracting
out the important features from the textual information contained images. It uses the
Google’s Tesseract-OCR Engine as a backend for recognizing the text in an image.
Mainly, it is used to parse the textual and tabular information from the marksheet,
resume, and other textual documents. It helps to create a unified automatic OCR
pipeline to recognize the textual information and store into the database for further
analysis. It also supports Pillow and Leptonica imaging libraries for easy reading
and manipulating of image operations.

Note: The Pytessarct is installed using the pip install pytesseract command on
the Linux terminal.

Components of Computer Vision
The CV has a variety of applications in the field of image processing. Mainly, there
are four components in CV such as classification, detection, segmentation, and
tracking of objects which are highlighted by many research groups and industry
experts. This section highlights the aforesaid components in detail.

Object Classification
Classification is one of the core techniques in the field of image processing to classify
or predict the objects or classes in the images or video frames. This technique extracts
out the key features from the real image and travels cross the pixels of the target
image stride by stride to check the same pattern of extracted feature appears or not
appears on the target images. When the feature matches on the target image, then
this classification algorithm generates a label of the class or category on the images.

440 Practical Machine Learning with Spark

Generally, there are two types of classification in computer vision such as single
label classification and multi-label classification. Figure 10.7 shows the classification
of objects in city using the concept of a CNN-based vision classification model:

Figure 10.7: Multi-label city objects classification using object classification technique

Single Label Classification
In Single Label classification, the model is capable to classify a single object or
identify from the image or video frame. To be recapitulated, the classification model
predicts one class in an image. For example, a cat in an image.

Multi-label Classification
In multi-label classification, the model is capable of classifying multiple objects or
items from an image. To be more in-depth, if any image contains two or more than
two objects, and the classification model also predicts two or more objects in an
image, For example, a cat and dog classification in an image.

Object Detection
Object detection is a technique to detect objects in an image or video frames. It is like
a classification technique, but the only difference is the bounding box. The object
detection technique creates a rectangular bounding box around the object with the
respective label. The bounding box concept helps to determine the localization of an
object in the image or video frames. There are four coordinates of the bounding box
such as and Figure 10.8 shows the detection of persons using the concept of a CNN-
based vision detection model. The object detection algorithm can be possible using
deep learning and machine learning techniques.

Computer Vision with Apache Spark 441

Figure 10.8: Single label-based detection using CNN-based detection technique

Object Segmentation
Segmentation is a technique to group together attributes of the same class to generate
a mask of the objects. This technique helps to generate different mask segments based
on the characteristics of the object. It assigns the same labels to pixels which fall under
the same class. The segmentation technique is mainly used in the clinical purpose
for tumor classification, anomalies detection in the body, recognizing the tissue, and
iris pattern. It has a variety of applications such as ailment detection or classification,
robotics, 'Robotic Process Automation (RPA), autonomous vehicles, security images.
There are three types of segmentation techniques which are explained in detail in the
upcoming sections.

Semantic Segmentation
In semantic segmentation, all the pixels belonging to a specific class are assigned by
the same color. This is an example of semantic segmentation. There are prior works
using classical ML but in 2012, AlexNet had put the foundation stone towards the
semantic-based segmentation using deep neural network. Later, many other CNN

442 Practical Machine Learning with Spark

architectures successfully implemented the concept of semantic segmentation with
high precision. Figure 10.9 shows the semantic segmentation of oranges and leaves
in which the same color is assigned to the pixels that falls under the same classes.
For example, the class oranges would always be masked with white color and leaves
in red color.

 (a) (b)
Figure 10.9: (a): Original image without annotation; (b) Semantic segmentation of orange tree

Instance Segmentation
In instance segmentation, it assigns different colors for different objects of the same
class. Figure 10.10 shows the instance segmentation of many kites in which different
colors are assigned to the pixels that fall under the same classes. For example, the
class Person would always be masked with different colors:

Figure 10.10: Instance Segmentation of different kites

Computer Vision with Apache Spark 443

Panoptic Segmentation
It is a mixture of semantic and instance segmentation in which the training-set is
labeled for both background (semantic) and object (instance). The pattern recognition
on the planet surface (solar planets are in the foreground and cosmic environment in
background) is one of the best real-world examples of Panoptic segmentation.

Object Tracking
The main goal of object tracking is to capture the feature of an object and track that
object with respect to time. The tracking between each video frame is performed by
comparing the captured feature of an object from the previous frame with the next
video frame to be captured feature of the object. Livestock and football monitoring
is the best example of object tracking. Generally, it consumes a lot of memory and
core utilization because it needs to store the previous frame object information when
comparing with the next frame object information. There are two approaches to
track the object movement in the video frames such as tracking with object detection
and tracking without object detection. Figure 10.11 shows the tracking of livestock
walking on pastureland using different tracking algorithms:

Figure 10.11: Tracking of livestock using a CNN-based model

Convolution Neural Network (CNN) and
its Working
Convoluted Network is one of the pertinent NN for dealing with the image, video,
and text dataset to understand the various patterns or features. The extracted

444 Practical Machine Learning with Spark

information collected from images using CNN is used to classify, recognize, mask
segment, localize, and label the object in the image. Usually, it uses the concept of
the mathematical convoluted theory that helps to extract the key features from the
image and feed into the ANN for leveraging the mechanism of NN. Convolutional
Neural Network uses a mathematical concept (convolution function is a product
of elements of an image array and kernel matrix). Basically, it consists of six steps
written in Figure 10.12 to generate a prediction in the CNN. The shifting of pixels
over the input matrix is based on the value of stride. If the value of stride is 1,
then the pixel would be moving over the input matrix by skipping one pixel. The
first layer of CNN is a core building block and performs most of the cumbersome
computation for extracting out the meaningful features from the image dataset. The
image or its related data is convoluted by applying the filters or kernels which slides
over the raw image for generating the feature map. Figure 10.12 depicts the working
overview of CNN on the input image set:

Figure 10.12: Simplified overview of CNN

Convolution Operation
Convolution step is a product of input matrix and feature detector for generating a
feature map. The Feature Map (FM) is used to extract out the indispensable attributes
from the input image. The feature detector is also known as kernel or filter. Any N*
M size of matrix of filters or kernels slide over the actual image according to the
stride input. This step generates N number of FMs and the training step is used to
check which FM is important for processing and having maximum features.

Rectified Linear Unit (ReLu)
The second layer named as the activation layer applies the Rectified Linear Unit
(ReLu) function to increase non-linearity in the CNN while training the model.

Computer Vision with Apache Spark 445

Pooling
The pooling layer is also known as the down sampling layer which involves the
method to down sample the features. Generally, a pooling layer uses 2 * 2 max-
filter with a stride of 2. The filter may return MAX, MIN, and MEAN values within
the batch or region according to pooling types. The filter follows the pattern of a
sliding window over the feature map by skipping the width and height using the
stride value. The three types of pooling operations such as max pooling (when the
maximum pixel value is selected), min pooling (when the minimum pixel value is
selected), and average/mean pooling (when the average value is selected).

Flattening
It is used to convert the entire pooled feature map matrix into a single column matrix
which is then fed to the NN for further training.

Full Connection
The last layer combines the features together and NN mechanism to create a CNN
model for making the decision on the image dataset. After that, it leverages the
activation function such as SoftMax or sigmoid to classify the output.

SoftMax and Cross-Entropy
Leveraging SoftMax after the fully connected layer helps to convert the probabilistic-
based accuracy into the classes such as 0 and 1. This step is used to strictly classify
the objects based on their probability.

Timeline of the CNN Architecture
Currently, the hot-balloon of computer vision has been consistently lifting-up by
leveraging the concept of AI and DL. It attracts worldwide researchers to build more
neural networks for enhancing the grasp of CV in other domains. The following

446 Practical Machine Learning with Spark

timeline Figure 10.13 shows the annual-wise most popular CNN architectures that
have been implementing for extracting the features from the image precisely:

Figure 10.13: Legacy timeline of CNN

Implementation of Distributed Processing
in Image Classification using Google Colab
This section shows the implementation of a CNN model for classifying the images
of database named as Fashion-MNIST which are downloaded from https://github.
com/zalandoresearch/fashion-mnist. The example Table 10.1 shows label-wise
description of 10 classes of fashion clothes. Fashion-MNIST is a dataset of Zalando’s
article images having 60,000 image samples in the training set and 10,000 image
samples in the testing set. The size of the image-set is 28×28 in grayscale space and
size should remain identical for training and testing splits.

Label Description
0 T-Shirt/top
1 Trouser
2 Pullover
3 Dress
4 Coat
5 Sandal
6 Shirt
7 Sneaker
8 Bag
9 Ankle Boot

Table 10.1: Label-wise description of Fashion-MNIST classes

Computer Vision with Apache Spark 447

The following code base shows the implementation of CNN to train and test a
classification-based vision model for analyzing the Fashion-MNIST using distributed
DL of Elephas-Keras on Google Colab:

>>%pip install elephas==0.4.3

>>%pip install tensorflow==1.14.0

>>%pip install keras==2.2.0

>>import matplotlib.pyplot as plt

>>from keras.models import Sequential

>>from keras.layers import Dense, Conv2D, Dropout, Flatten, MaxPooling2D

>>from elephas.spark_model import SparkModel

>>from elephas.utils.rdd_utils import to_simple_rdd

>>from pyspark import SparkContext, SparkConf

>>from keras.utils import np_utils

>>import keras

>>import cv2

>>from google.colab.patches import cv2_imshow

>>from keras import optimizers

>>from pyspark.sql.functions import rand

>>from pyspark.mllib.evaluation import MulticlassMetrics

>>from elephas.ml_model import ElephasEstimator

>>from keras.datasets import fashion_mnist

>>from tensorflow.keras.utils import to_categorical

>>conf = SparkConf().setAppName(‘distributed-framework-Elephas’).
setMaster(‘local’)

>>sc = SparkContext(conf=conf)

>>(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()

>>x_train = x_train.reshape(x_train.shape[0], 28, 28, 1)

>>x_test = x_test.reshape(x_test.shape[0], 28, 28, 1)

>>x_train = x_train.astype(‘float32’)/255

>>x_test = x_test.astype(‘float32’)/255

>>y_train = keras.utils.to_categorical(y_train, 10)

448 Practical Machine Learning with Spark

>>y_test = keras.utils.to_categorical(y_test, 10)

>>model = Sequential()

>>model.add(Conv2D(28, kernel_size=(3,3), input_shape= (28,28,1),
name=”convlayer1”))

>>model.add(MaxPooling2D(pool_size=(2, 2)))

>>model.add(Conv2D(28, kernel_size=(3,3), name=”convlayer2”))

>>model.add(MaxPooling2D(pool_size=(2, 2)))

>>model.add(Flatten())

>>model.add(Dense(128, activation=”relu”,name=’fclayer1’))

>>model.add(Dropout(0.2))

>>model.add(Dense(10,activation=’softmax’, name=”output”))

>>model.compile(optimizer=’adam’, loss=”categorical_crossentropy”,
metrics=[‘accuracy’])

>>_create_rdd = to_simple_rdd(sc, x_train, y_train)

>>spark_model = SparkModel(model, frequency=”epoch”,
mode=”asynchronous”)

>>spark_model.fit(_create_rdd, epochs=10, batch_size=128,
verbose=1,validation_split=0.3)

>>model.layers

>>post_image_index = 100

>>for index, get_image_id in enumerate(range(100)):

 plt.imshow(x_test[get_image_id].reshape(28, 28),cmap=’viridis’)

 pred = spark_model.predict(x_test[get_image_id].reshape(1, 28,
28, 1))

 get_pred = str(pred.argmax())

>>get_prediction = spark_model.master_network.evaluate(x_test, y_test,
verbose=2)

>>print(get_prediction[1]*100)

Flow Chart of the Codebase
Figure 10.14 shows the screenshot of the code executed to install and import the
required modules and libraries of Apache Spark, Elephas, Tensorflow, Keras, and
OpenCV. Also, it executes the command to initialize the SparkContext and Spark
Application:

Computer Vision with Apache Spark 449

Figure 10.14: Illustration for importing and initializing the required libraries

Figure 10.15 shows the screenshot of the code to design the CNN-based architecture
to classify the object. Also, it contains detailed information about each model layer
and calling of Elephas function on the training dataset for distributed processing.

Figure 10.15: Image shows the designing, training, and compiling of model

Figure 10.16 shows an image to show the predicted output on the test dataset:

Figure 10.16: Illustration to show the code to get the predicted output

450 Practical Machine Learning with Spark

Figure 10.17 shows an image to show the code to get the accuracy of the model:

Figure 10.17: Illustration to show the code to get the accuracy of the model

Output Snippet
This section contains the output snippet of the preceding executed program for
showing the output of classification-based CNN model. Figure 10.18 displays the
detailed information about the designing of CNN model:

Figure 10.18: Illustrations the detailed information of model

Figure 10.19 displays output of the model on the testing dataset:

Figure 10.19: Predicted output of the model on test dataset

Computer Vision with Apache Spark 451

Figure 10.20 shows the accuracy of the model on the full-set image:

Figure 10.20: Illustration to show the accuracy of this classification model

Real-Time Computer Vision Pipeline
From aforesaid detailed discussion in the chapter about the theoretical concept on
CV and its key components for designing a CNN-based model is well represented
for the readers. Still, there is a big lacuna how to bind-up all the conceptualized
concepts into a real time production level CV-based pipeline. Therefore, this section
helps to understand how to design an optimized architecture by leveraging the
concept of big data, internet of things, and computer vision.

Figure 10.21: Model representations of NN

Figure 10.21 depicts the six phases such as data collection, data ingestion, DL and
Intelligence layer, data processing layer, data persistence layer, and visualization
layer. In the step phase, the data can be collected from disparate vision-based devices
like CCTV, mobile camera, DSLR, digital camera, and so on. The image data from
the various devices can be gathered by configuring the Raspberry Pi or Arduino kit.
These electronic kits are used to run the services of MiNiFi, MQTT protocol, and
OpenCV to collect, light-image process, and transfer the image data from Raspberry
Pi to other large, configured clusters. Although, the integration of Raspberry provides

452 Practical Machine Learning with Spark

the flavor of edge or fog computing as it can manage decentralized manipulation
before transferring into the large cluster. In the second phase, the several data bus
components to be used for reading the image data from raspberry over the new
cluster and create the data pipeline workflow. In the third phase, the DL and CV
libraries to be used to train and test the image data which further feeds the outcome
into the data processing layer. The fourth layer acts like an accountant which marks
the important data from the pipeline and persist over the storage layer for archival
analysis. The fifth layer helps to get the Insight, Hindsight, and foresight on the
image data which is being captured by data pipeline. At last, the visualization layer
is used to graphical representation of the outcome if needed.

Advancement in CV
The adoption rate of CV in the various verticals confirms the strong capability to
integrate with the several applications for better mankind. Many research groups
have been consistently working in the domain of CV and its futuristic amelioration.
The key research topic for spilling up the feature stream of CV application are
explained in detail in the upcoming section.

Generative Adversarial Network (GAN)
GAN is a generative model that creates new data instances which resemble to the
training dataset. The best use case of GANs is DeepFake. DeepFake is a technique to
create a fabricated or fake image that seems to be realistic as well and can identify
the pristine images from the bulk of mixed datasets. Generative modeling uses CNN
to learn from the pattern in the input datasets and generates output images which
resemble to original images but still the bona-fide ones. Generally, it uses the concept
of pixel-to-pixel translation and mapping between the two images. The image-
to-image translation technique in GANs helps to convert images from winter to
summer, day to night, and DeepFake generation. There are two types of generative
models named as Explicit density models and Implicit density models.

Zero-Shot Learning (ZSL)
Most of supervised-based DL models work with high performance and accuracy
if the training data is perfectly labeled and available in large collection. So, the
performance for classifying and segmenting of any image model is directly
proportional to the availability of the labeled training data. That’s why the term zero-
shot learning has picked a great interest among the several researchers to overcome
the aforesaid challenge. The zero-shot learning works on the mechanism of seen and
unseen classes of the objects and uses the model unseen classes of the image while
training the recognition or classification models. Zero-shot learning consists of three
classes such as seen classes (image-set is labeled during the training phase), unseen

Computer Vision with Apache Spark 453

class (the labeled image-set is not present during the training phase), and auxiliary
information (when the description is given for both seen and unseen classes during
training phase).

Contrastive Learning (CL)
CL is a learning in which the models are trained by learning the general features
of the image database without having the labels of them. This technique doesn’t
require any annotation workload for classifying and labeling the key feature or
object from the image. The best example of this type of learning is observation of a
new-born baby.

Data Augmentation (DA) in CV
DA is a technique to generate the artificial fabricated images from the small database
of real images to expand the quantity of images for training a CNN model efficiently.
This method is mainly used to overcome the challenge of underfitting and enhance
the precision in the testing phase. Most of the computer vision libraries like Keras
use the inbuilt functionality to augment the dataset by applying various techniques.
Generally, there are several effective methods to provide the augmentation
transformation on the original dataset. This section explains various augmentation
techniques.

Flipping
It is a technique to flip the real image dataset into horizontal or vertical direction for
generating the digital fabricated images. Generally, the horizontal axis flipping is
mostly used than vertical axis flipping.

Color Space
Digital image is a third order tensor having height, width, and color channels as
attributes in the image. Changing the intensity of an image, variation in the brightness,
and color conversion from HSV to RGB, YCbCr to RGB, and HSV to YCbCr, and so
on are the best methods to perform the data augmentation. Also, converting into
grayscale space from any color space always generates single channel in which the
value range varies between 0-255 in B/W.

Cropping
Random cropping is also one of the best techniques to generate high batch of data
from the small database of images.

454 Practical Machine Learning with Spark

Rotation
It incorporates the rotation of image right or left on any axis between 1 and 359.
The acute rotation between the range of 1 and 20 or − 1 to − 20 is used to recognition
digits and text from the image. On the other side, if the rotation degree increases, the
label of the data is no longer preserved post-transformation.

Noise Injection
It is the way to inject the matrix of random noise or values with the help of variety of
frequency distributions such as Gaussian distribution. Adding noise to images can
help the CNN to generate new images for performing the DA.

Kernel Filters and Mixing Images (MI)
It is a technique in CV for sharpening and blurring of images by sliding the filters
size of n x n matrix over the original image to generate a new image. Gaussian filters
and pyramidal filters are the best ways to perform DA. Similarly, MI is another
method to perform DA by blending the images together by averaging their pixel
values for generating the new image set.

Random Erasing
It works on the mechanism of dropout regularization by randomly selecting an s × r
patch of an image and feed into the masking translation with either 0s, 255s, mean
pixel values, or random values. This type of DA prevents overfitting by altering the
input space. By eliminating the certain patches from the input, the model is turned to
find the descriptive characteristics. This DA technique also overcomes the challenge-
related to occlusion.

Adversarial Training and GAN-based DA
Adversarial training is a deliberation technique to inject the adversarial attacks and
other adversarial noise to perform the DA. Basically, it is a framework in which
the two or more networks with contrasting/similar objectives encoded in their loss
functions for generating the fabricated image-set. Sometimes, the experiments of
injections of adversarial attacks in the image-set increase the resolution of image.
Similarly, Generative modeling or GAN is a new method to perform the DA on the
image-set by generating the artificial images which have the similar behavior and
characteristics to the original image-set.

Computer Vision with Apache Spark 455

Neural Style Transfer (NST)
Neural Style Transfer is used to manipulate the representation of images created
in CNNs for achieving the requirement of data augmentation. It manipulates the
sequential representations across a CNN in such a way that the patterns or textures of
one image are transferred to another image while preserving its original information
or characteristic of image.

Smart Augmentation (SA)
The working of SA is like the implementation mechanism of the NA technique.
SA is like meta-learning augmentation that uses the concept of two networks such
as network-X and network-Y. The first network takes two or more than two input
images map into a new image to train network-Y. It considers the error rate in the
second network and then backpropagates to update the first network. In addition,
one more loss function is introduced into the first network to ensure that its outputs
are similar to others within the class.

Applications of CV
•	 Predictive learning in the automobile and chip manufacturing for early

detecting fault or flaws while fabricating.

•	 Smart HealthCare to detect the early anomalies and tumors in the human
being by analyzing the radiologist image.

•	 Smart cameras for security purpose which helps to analyze the real stream
frame of the video.

•	 Smart agriculture and livestock detection.

•	 E-inventory management to improve the supply chain.

•	 Smart high-resolution cameras for detecting the patterns of the universe in
the space domain.

•	 Traffic management and vehicle detection.

•	 Integration with augment reality or mixed reality opens the new verticals
toward augmented CV.

Conclusion
The CV has already spilled out the functionality in several domains because of its
wide range of extendibility into heterogeneous applications. Basically, it acts like
an artificial intelligence equipped brain for sensing the intent and behavior of the

456 Practical Machine Learning with Spark

image. To consider the advantages and futuristic scope of CV, this chapter elicits
the readers about the evolution of CV and components of CV with detailed history.
Also, it includes different libraries, annotation techniques, and data augmentation
of CV. In addition, this chapter presents the CNN workflow, timeline of vision-
based neural networks, and future enhancement of CV. The code implementation
for classifying the object by leveraging distributed NN processing is also mentioned
in this chapter.

Index 457

Index

Symbols
3D cuboid 433
.ppk file

generating from .pem, PuTTY and
PuTTYgen used 46, 47

A
accumulator 91
actions, Spark RDD operations

count action 114
max action 114
min action 115
reduce action 113, 114
sum action 115

activation function 385, 404
activation functions, in NN

Binary Step Activation Function
(BSAF) 404

Exponential Linear Unit Activation
Function (ELUAF) 407

Hyperbolic Tangent Activation
Function (HTAF) 405

Identity Activation Function (IAF) 404
Leaky ReLU 406
Parametric Rectified Linear Unit

Activation Function (PRLUAF)
406

Rectified Linear Unit Activation
Function (RLUAF) 406

Scaled Exponential Linear Unit
Activation Function (SELUAF)
408

Sigmoid Activation Function 404
SoftMax Activation Function (SMAF)

407
SoftPlus Activation Function (SPAF

407

458 Practical Machine Learning with Spark

SoftSign Activation Function 405
Swish Activation Function 405

AdaDelta 414
Adaptive Gradient (Adagrad) 414
Adaptive Moment Estimation

(Adam) 414
advancement, in CV

contrastive learning (CL) 453
Generative Adversarial Network

(GAN) 452
zero-shot learning (ZSL) 452

AI-based approach, NLP 335
Alternate Least Square (ALS)

Algorithm 17
Amazon EC2 instance

accessing, through public IP
address 46, 47

creating 42-46
Amazon Elastic Compute Cloud

(Amazon EC2) 39
Amazon Simple Storage Service

(AWS S3) 83, 149
Analytics Zoo 426
Annotation Techniques (AT),

in CV 432, 433
3D cuboid 433
bounding box 433
circle annotation 436
landmark annotation 436
lines and splines-based

annotation 434
polygons-based annotation 434
semantic segmentation-based

annotation 435
Ant Colony Optimization

(ACO) method 369
Apache Airflow 102

Apache Ambari, on Amazon EC2
Hadoop services, installing 51-60
installation 50
iptables, disabling 50, 51
password-less SSH, setting up 51
repository, installing 51-60

Apache Hadoop 26
setting up, on AWS 39

Apache Hive 143
jars, adding 147

Apache Livy 98
features 98

Apache Oozie 100
Apache Spark 26, 81

accumulator 91
architecture 86, 87
broadcast 91, 92
components 84
DAG 87, 88
Data Ingestion 137
evolution 83, 84
feature selectors 193
feature transformers 172
installing, on Google Colab 78
laconic view 27
monitoring 97, 98
need for 82, 83
optimization 92
setting up, on AWS 39

Apache Spark installation, with
Hortonworks Sandbox

ClouderaVM installation,
for HDP 33-38

performing 28
VMware Workstation Player

installation 28-33

Index 459

Apache Spark optimization techniques
accumulators 93
caching in Spark 94
collocated joins, using 94
data locality 94
data serialization 95
executor size 94, 95
file format selection 92
Garbage Collection tuning 94
Hive bucketing performance 93
memory management tuning 94
Predicate Pushdown optimization 93
Spark window function 95
Zero Data Deserialization, with

Apache Arrow 93
Zero Data Serialization, with

Apache Arrow 93
application, of Apache Spark 155

batch and real-time analytics 155
fog/edge computing 156
interactive analysis 156
Machine Learning 155

Application Programming Interface
(APIs) 27

applications, of Machine Learning 16
face recognition 18
financial services 17, 18
healthcare 18, 19
recommendation engine 17
sentiment analysis 19
social media 18
video surveillance 19

architecture, Apache Spark
Cluster Manager 86
Executor 86
Spark Driver 86

Task Runner 86
Worker Node 86

Area Under the Receiver Operating
Characteristics (AUROC) 292

Artificial Intelligence (AI) 1
versus Machine Learning (ML) 9, 10

Asynchronous Elastic Averaging,
Momentum SGD 425

Asynchronous Elastic Averaging
SGD (AEASGD) 425

attributes 5
attrition prediction model 296
AWS Account

creating 39-42
AWS EC2 427
AWS EMR 427
Azkaban 102

B
back propagation 387
Batch Gradient Descent (BGD) 413
Batch Learning (BL) 11, 16
BigDL 426
Binarizer 175, 176
Binary Step Activation Function

(BSAF) 404
Bisecting K-means Algorithm

(BKM) 317
flow 317- 324

BoofCV 438
boosting algorithms 286
Bootstrap Aggregation (Bagging) 279
bounding box (BB) 433
branch node 267
broadcast 92
Bucketizer 186, 187
Business Intelligence (BI) tool 427

460 Practical Machine Learning with Spark

C
cache 95
Caffe 418
Central Processing Unit (CPU) 4
Chainer 418
challenges, RE

cold-start problem 373
model obsolete 374
privacy protection 373
scalability 373
shilling attacks 374
sparsity 373

child node 267
ChiSqSelector

implementation 194, 195
Chi-Square Automatic Interaction

Detector (CHAID) 267
Chi-Square Selection Test 194
churn prediction model 296

output snippet 298
class 7
Classification and Regression Tree

(CART) 267
Decision Tree Classification

(DTC) 268-272
Decision Tree (DT) 267
Decision Tree Regression (DTR) 274
Ensemble Learning (EL) 278
terminologies 267

classification-based CNN model
implementing 446-450

classification-based ML
algorithms 158, 244, 245

Logistic Regression 251
Naive Bayes Classifier 245

classification-based supervised learning
13

algorithms 13
classification loss function

Binary Cross Entropy Loss (BCEL) 411
Categorical Cross Entropy Loss

(CCEL) 411
Categorical Hinge Loss Function

(CHF) 411
Cross Entropy Loss (CEL) 411
Focal Loss (FL) 412
Hinge Loss 410
Kullback Leibler Divergence Loss

(KLDL) 412
Multi Class SVM Loss 410
Sparse Categorical Cross Entropy

Loss (SCCEL) 412
Squared Hinge Loss Function (SHLF)

411
classification metrics 292

accuracy 293
AUC-ROC 294
AUROC 294
confusion matrix (CM) 292, 293
F1-score 294
precision 293
recall 294
specificity 294

classifier 6
ClouderaVM (HDP) installation 33-38
cloud notebooks, for ML and DL

Google Colab 414
clustering 300

Density-Based Clustering (DBC) 301
Fuzzy Clustering (FC) 303
Hierarchical Clustering (HC) 301
K-means clustering 304
Partitioning Clustering (PC) 300

clustering-based ML algorithms 159

Index 461

CNN architecture
timeline 445, 446

CNTK 418
cold-start problem, RE 373
Collaborative Filtering (CF) 364, 365
Comma Separated Validation 92
Comma Separated Value (CSV) file 142
Community-Based Engines (CBEs) 367
components, Apache Spark

GraphX 86
MLlib 85
Spark Core 85
SparkR 86
Spark SQL 85
Spark Streaming 85

components, Computer Vision
object classification 439
object detection 440
object segmentation 441
object tracking 443

components, NLP 339, 340
discourse integration 342
lexical analysis 341
morphological analysis 340, 341
pragmatic analysis 342
Semantic analysis 342
syntax analysis 341

Compressed Sparse Column
(CSC) format 165

Computed Tomography Scanner (CTS)
432

Computer Vision (CV)
advancement 452
Annotation Techniques (AT) 432
applications 455
Data Augmentation (DA) 453

evolution 430, 431
real-time Computer Vision

pipeline 451, 452
Computer Vision libraries 437

BoofCV 438
Imutils 437
IPSDK 439
OpenCV 437
Python-Tesseract (Pytessarct) 438, 439
PyTorchCV 438
Scikit-Image 437
SimpleCV 438

connectionism 380
Content-Based Filtering (CBF) 363

working 364
Continuous Development (CD) 426
Continuous Integration (CI) 426
Convolution Neural Network

(CNN) 403, 443
convolution operation 444
cross-entropy, leveraging 445
flattening 445
full connection 445
pooling layer 445
Rectified Linear Unit (ReLu) 444
SoftMax, leveraging 445
working 444

Core Execution Blocks of NLP 338
annotators 338, 339
pipeline 339
pre-trained models 339

CountVectorizer 169, 170
cron jobs 102
CrossValidator 162
Cybernetics 379

462 Practical Machine Learning with Spark

D
Data Augmentation (DA), in CV 453

adversarial training 454
color space 453
cropping 453
flipping 453
GAN-based DA 454
kernel filters 454
mixing images (MI) 454
Neural Style Transfer (NST) 455
noise injection 454
random erasing 454
rotation 454
Smart Augmentation (SA) 455

DataFrames 89, 160
Data Ingestion, in Apache Spark 137,

138
CSV file, reading through PySpark 142
data, inserting into MongoDB 144, 145
data, inserting into MongoDB with

import command 145
data, reading from Apache Hive 154,

155
data, reading from MongoDB-Hive-

PySpark Integration 144
data, reading from MongoDB-PySpark

Integration 148
data, reading from ORC 150
Excel file, reading with PySpark 139
from Apache HBase 152-154
from Apache Hive 143
from AWS S3 149, 150
from CSV file format 142
from Excel 139
from JSON 140
from MongoDB 144
from Parquet 140-142

from RDBMS 151
Hive-MongoDB mapping, through

Hive external table 146, 147
jars, adding Apache Hive 147
JSON file, reading through PySpark

140
MongoDB data, reading directly

through StringConnection 149
.py file, submitting with

jars command 152
PySpark terminal, opening with

package command 148
dataset 6, 89

need for 89, 90
versus DataFrame 90
versus RDD 90

DBeaver 76
installing, for accessing data from

persistence layer 76, 77
Decision Tree Classification (DTC) 268

implementing 270, 271
output snippet 272, 273
tree diagram 274

Decision Tree (DT) 267
Decision Tree Regression (DTR) 274

implementation 274
output snippet 276-278

Deep Belief Network (DBN) 381, 399,
400

DeepLearning4J 418
Deep Learning (DL) 1, 4, 381, 382

activation function 385
back propagation 387
Epochs 387
forward propagation 387
hidden layers 384
learning rate 388

Index 463

loss function 385, 386
metrics 388, 389
optimization 386
overfitting 383
underfitting 383
weights and bias 384, 385

Deep Learning frameworks
Caffe 418
Chainer 418
CNTK 418
DeepLearning4J 418
Keras 417
MxNet 418
PyTorch 417
TensorFlow 417

Deep Learning Operations
(DLOps) 426

benefits 427, 428
workflow 427

DeepLearning Pipelines 426
Deep Neural Network (DNN) 3
Demographic-Based Engines (DBEs)

367
DenseVector 163

creating 163
syntax 163

Density-Based Clustering (DBC) 301
DICOM 432
dimension 6
Direct Acyclic Graph (DAG), in

Spark 87, 88
Directed Acyclic Graphs (DAGs) 100
discourse integration 342
Discrete Cosine Transform (DCT) 178,

179
distributed DL

alternate framework 425
processing, with Elephas 419-424

distributed Keras 425
distributed matrices

creating 166
types 165, 166

distributed processing
implementing in image classification,

Google Colab used 446-450
Distributed Processing Framework

(DPF) 25
DL or NN-based approach, NLP 335,

336
down sampling layer 445
DStream 85

E
Edge Computing

with ML 21
elastic-net regression 229

output snippet 231, 232
ElementwiseProduct 187, 188
Elephas 419

using, for distributed DL 419-424
embedded method 397
Ensemble Learning (EL) 278

Bootstrap Aggregation (Bagging) 279
flow diagram 278
Random Forest Classifier 280
Random Forest Regression (RFR) 283
Random Forest Tree (RFT) 279

Epochs 387
Estimator 161
evaluation dataset 6
evaluation metrics (EM) 292
Evaluator 162
Expectation-Maximization (EM) 325

464 Practical Machine Learning with Spark

Exploratory Data Analysis (EDA) 176,
335

Exponential Linear Unit Activation
Function (ELUAF) 407

Extensible Markup Language (XML) 92

F
face recognition 18
featured vector 6
Feature Engineering (FE) 389

embedded method 397
Filter Method (FM) 390
Generalized Method (GM) 393
performing 390
wrapper method 397

FeatureHasher 171, 172
Feature Map (FM) 444
features 5
Feature Selection (FS) 389
feature selectors 193

ChiSqSelector 194, 195
VectorSlicer 193, 194

feature transformers 172
Binarizer 175, 176
Bucketizer 186, 187
Discrete Cosine Transform

(DCT) 178, 179
ElementwiseProduct 187, 188
Imputer 192, 193
IndexToString 180, 181
MaxAbsScaler 185
MinMaxScaler 184, 185
N-Gram 174, 175
Normalizer 182, 183
Polynomial Expansion 177, 178
Principal Component Analysis

(PCA) 176, 177

Quantile Discretizer (QD) 191, 192
SQLTransformer 188, 189
StandardScaler 183, 184
StopWordsRemover 173, 174
StringIndexer 179, 180
Tokenizer 172, 173
VectorAssembler 189, 190
VectorIndexer 181, 182
VectorSizeHint 190, 191

Filter Method (FM) 390
analysis of covariance (ANCOVA) 391
analysis of variance (ANOVA) 391
Chi-Square Test 390
fisher score 392
Information Gain (IG) 390
Karl Pearson’s Coefficient of

Correlation (KPCC) 392
Kendall Rank Correlation 393
p-test 391
Spearman’s Rank Correlation

Coefficient (SRCC) 392
t-test 391
variance threshold 392
z-test 391

financial services 17, 18
Flight Management System (FMS) 23
forward propagation 387
future scope, Machine Learning (ML) 20

Autonomous Transportation 23
Edge Computing, with ML 21
enhanced healthcare, AI used 23
Improved Cognitive Services 21
Intelligence Augmentation (IA) 20, 21
ML, in space exploration 22
Quantum Computing, with ML 21
robotics 22

Index 465

self-driving car 23
Fuzzy Clustering (FC) 303

G
Garbage Collection (GC) 94
Gaussian Mixture Model

(GMM) 325-329
Generalized Linear Regression

(GLR) 232
implementing 233-237
output snippet 238-240

Generalized Method (GM) 393
binning 393
date extraction 396
feature split 394
group operation 395
imputation 394
one-hot encoding 396
outlier detection 397
regex operation 394
scaling 395

Generative Adversarial Network
(GAN) 381, 401

Gini Impurity 267, 268
Global Positioning System (GPS) 23
Google Colab 78, 414

Apache Spark installation 78
working with 415, 416

Google Compute Platform (GCP) 27
Gradient Boosted Tree Classifier (GBTC)

implementing 286
output snippet 288

Gradient-Boosted Trees (GBTs) 286
Gradient Boosting Tree Regression

(GBTR)
implementing 289
output snippet 291

Gradient Descent (GD) 413
Graph Attention Network (GAT) 402
Graph Convolutional Network (GCN)

402
Graphical Processing Unit (GPU) 94,

335
Graphics Interchange Format (GIF) 432
Graphics Processing Unit (GPU) 4
Graph Neural Network (GNN) 402
Graph Recurrent Network (GRN) 402
GraphX 86
Group Method of Data Handling

(GMDH) 380

H
Hadoop Distributed File System

(HDFS) 83
HashingTF 170, 171
HBase 152
healthcare industry 18, 19
hidden layers 384
Hidden Markov Chain Model

(HMCM) 370
Hierarchical Clustering (HC) 301

linkage, types 302
HiveMall 356, 357
Hive-MongoDB mapping

through Hive external table 146, 147
Hive Query Language (HQL) 85
Hybrid Learning Problem (HLP) 10, 15

Multi-Instance Learning (MIP) 15
Self-Supervised Learning (Self-SL) 15
Semi-Supervised Learning (SSL) 15

Hybrid Recommendation Engines
(HREs) 366

Hyperbolic Tangent Activation Function
(HTAF) 405

466 Practical Machine Learning with Spark

I
Identity Activation Function (IAF) 404
image

defining 431
image formats 431

DICOM 432
Graphics Interchange Format

(GIF) 432
Joint Photographic Experts Group

(JPEG) 431
Portable Network Graphics

(PNG) 432
Scalable Vector Graphics

(SVG) 432
Tag Image File Format (TIFF) 432

Improved Cognitive Services 21
Imputer 192, 193
Imutils 437
IndexToString 180, 181
information 6
information collection phases, RE 367

explicit feedback 367, 368
hybrid feedback 368
implicit feedback 368

Information Gain (IG) 268
In-Memory Computation 27
instance segmentation 442
Intelligence Augmentation (IA) 20
Intelligent System (IS) 2
Internet of Things (IoT) 156
Inverse Document Frequency

(IDF) 167
IPSDK 439
isotonic regression

implementing 241
output snippet 243, 244

J
JavaScript Object Notation

(JSON) 92, 140
Job Scheduling 99, 100
JPEG file format 431
Jupyter Notebook 67

installation, through PIP 71-73
pre-requisites 67

K
Keras 417
K-means clustering 304

code, for plotting 3D scattering
plot 314-316

code for plotting elbow curve 311-313
flow 304-311

Knowledge-Based Recommender
Engines (KBREs) 366

L
L1+L2 Regularization 229
LabelPoint 164, 165
Lasso Regression/L1 Regularization

218
Lasso Regression model

output snippet 221-223
Latent Dirichlet Allocation (LDA) 329
lazy evaluation 88

advantages 88
increased speed 89
manageability 89
optimization 89
reduced complexities 89

leaf node 267
Leaky ReLU 406
Learning Problem (LP) 10
learning rate 388
lexical analysis 341

Index 467

Linear Regression (LR) 199
graphical representation 200, 201
Multi-Linear Regression

(MLR) 210-216
regularization 218

linkage in HC
Average Linkage 303
Centroid Linkage 303
Complete Linkage 302
Single Linkage 302

Local Matrix 165
LocalVector 163
Logistic Regression 251

Binary Logistic Regression 251
implementing 253
Multinomial Logistic Regression 251
output snippet 255-257
working 251, 252

Long Short-Term Memory (LSTM) 4
loss function 385, 408

classification loss function 410
regression loss function 408

LR model
decision line, plotting 210
indispensable insights 209
output snippet 206-208

Luigi 102

M
Machine Learning (ML) 1

applications 16
batch learning 16
definitions 5
evolution 2, 3
execution phase 9
fundamentals 4
future scope 20

Hybrid Learning Problem (HLP) 15
in space exploration 22
online learning 16
process flow 7, 8
Reinforcement Learning (RL) 10
Semi-Supervised Learning (SSL) 10
Supervised Learning (SL) 10
terminologies 5
testing phase 9
training phase 9
types 10
Unsupervised Learning (USL) 10
working 8

Magnetic Resonance Imaging
(MRI) 432

MapReduce (MR) 156
MariaDB 151
Market Basket Algorithm (MBA) 370
MaxAbsScaler 185, 186
Mean Absolute Error (MAE) 292
Mean Squared Error (MSE) 292
Memory-Based Collaborative Filtering

Techniques (MBCFT) 365, 366
memory storage levels 95

cache 95
persist 95, 96

metrics 388
Microsoft PowerBI installation

for data visualization 73-75
Mini Batch Gradient Descent (MBGD)

413
MinMaxScaler 184, 185
Misclassification Error (ME) 268
ML components 160

CrossValidator 162
DataFrame 160
Estimator 161

468 Practical Machine Learning with Spark

Evaluator 162
parameter 162
Pipeline 161, 162
transformer 160

MLlib 85
ML pipeline 160
model 6
Model-Based Technique (MBT) 366
Momentum Based Gradient Descent

(MBGD) 413
Mongo Database import syntax 146
MongoDB 144
MongoDB-Hive-PySpark Integration

144
mongoimport command 145
morphological analysis 340, 341
multi-classification logistic regression

263
Multi-Instance Learning (MIL) 11
Multilayer Perceptron Classifier

(MLPC) 260, 261
output snippet 263

Multi-Layer Perceptron Neural
Network (ML-PNN) 399

Multi-Linear Regression
(MLR) 210-216

Multi-linear Regression Model
output snippet 217, 218

multiple transformations 103
Multivariate Adaptive Regression

Splines (MARS) 267
MxNet 418

N
Naive Bayes Classifier 245

working 245-250
narrow transformation 103

Natural Language Processing (NLP) 19,
331

AI-based approach 335
comparison, with NLU and NLG 344
DL or NN-based approach 335
evolution 333, 334
popular libraries 343
types 334, 344

Nesterov Accelerated Gradient (NAG)
413

Neural Machine Translation (NMT 334
Neural Network 5

evolution 379
model representations 382, 383

Neural Networks, in DL 398
Convolutional Neural Network

(CNN) 403
Deep Belief Network (DBN) 399, 400
Generative Adversarial Network

(GAN) 401
Graph Neural Network (GNN) 402
Perceptron Neural Network (PNN)

398
Recurrent Neural Network

(RNN) 401, 402
N-Gram 174, 175
NLP, types

text classification 344
topic modeling 344-347

Normalizer 182, 183

O
object classification 439, 440

multi-label classification 440
single label classification 440

object detection 440
Object-Oriented Programming

(OOPs) 89

Index 469

object segmentation 441
instance segmentation 442
Panoptic segmentation 443
semantic segmentation 441, 442

object tracking 443
one versus rest classifier 263

implementing 264
output snippet 266

online learning 16
Online Learning (OL) 11
Oozie, for scheduling PySpark

alternative 102
job.properties 101
manipulation.py 101
workflow.xml 100

Oozie jobs
components 100
Job Properties 100
Oozie Coordinator 100
Oozie Workflow 100

OpenCV 437
Operating System (OS) 39
optimization 386
Optimized Row Columnar

(ORC) 92, 150
optimizers 412

AdaDelta 414
Adaptive Gradient (Adagrad) 414
Adaptive Moment Estimation

(Adam) 414
Batch Gradient Descent (BGD) 413
full batch gradient descent 413
Gradient Descent (GD) 413
Mini Batch Gradient Descent

(MBGD) 413
Momentum Based Gradient

Descent (MBGD) 413

Nesterov Accelerated Gradient (NAG)
413

Stochastic Gradient Descent (SGD)
413

Orthant-Wise Limited-Memory
Quasi-Newton (OWLQN) 258

overfitting 383, 384

P
Panoptic segmentation 443
parameter 162
Parametric Rectified Linear Unit

Activation Function (PRLUAF)
406

parent node 267
Parquet 140
PARQUET 92
Partitioning Clustering (PC) 300
Part-of-Speech (POS) 341
pattern 6
Perceptron Neural Network (PNN) 398

ML-PNN 399
SL-PNN 398

performance metrics 6, 292
persist 96
Pipeline 161, 162
Polynomial Expansion 177, 178
Portable Network Graphics (PNG) 432
pragmatic analysis 342
prediction 6
Principal Component Analysis

(PCA) 176, 177
Probabilistic Latent Semantic

Analysis (PLSA) 362
Probabilistic Model (PM) 325
pruning 267
PuTTY 46

installing 48

470 Practical Machine Learning with Spark

landing screen 49
PuTTYgen 46

installing 47
URL 46

Python
installation, on Windows OS 67-70
PIP installation 70, 71

Python editors, for Spark Programming
Framework 60, 61

Python-Tesseract (Pytessarct) 438
PyTorch 417
PyTorchCV 438

Q
Quantile Discretizer (QD) 191, 192
Quantum Computing (QC)

with ML 21

R
Random Forest Classifier

implementing 280
output snippet 282

Random Forest Regression (RFR)
implementing 283
output snippet 284, 285

Random Forest Tree (RFT) 279
working 279, 280

Recommendation Engine (RE) 17, 359
Ant Colony Optimization

(ACO) 369, 370
applications 374
Collaborative Filtering (CF) 364, 365
Community-Based Engines (CBEs)

367
Content-Based Filtering (CBF) 363, 364
Demographic-Based Engines

(DBEs) 367
evolution 360-362

Hybrid Recommendation Engines
(HREs) 366

implementation 371, 372
information collection phases 367
Knowledge-Based Recommender

Engines (KBREs) 366
limitations 373
Memory-Based Collaborative Filtering

Techniques (MBCFT) 365, 366
Model-Based Technique (MBT) 366
real-time pipeline 368, 369
types 362

Recurrent Neural Network
(RNN) 381, 401, 402

regression 199
Linear Regression (LR) 199-206

regression algorithms 199
Regression-based ML algorithms 159
regression-based supervised learning 12

algorithms 12
regression loss function

Huber Loss (HL) 410
L1 Loss 409
L2 Loss 408
LogCosh 410
Mean Absolute Error Loss (MAEL)

409
Mean Absolute Percentage Deviation

Loss (MAPDL) 409
Mean Absolute Percentage Error Loss

(MAPEL) 409
Mean Bias Error Loss (MBEL) 410
Mean Squared Logarithmic Error

(MSLE) 409
Mean Square Error Loss (MSEL) 408
Root Mean Square Error Loss

(RMSEL) 409

Index 471

Smooth Mean Absolute Error Loss 410
regression metrics 295

coefficient of determination 296
Mean Absolute Error (MAE) 295
Mean Squared Error (MSE) 295
Root Mean Squared Error (RMSE) 295
R-Squared 296

regularization, in Linear Regression 218
elastic-net regression 229
Generalized Linear Regression

(GLR) 232
isotonic regression 241
L1+L2 Regularization 229
Lasso Regression 218, 219
Ridge Regression 224

Reinforcement Learning (RL) 5, 15, 418
ReLU 406
Resilient Distributed Dataset (RDD) 83,

87
paths, writing 87
scenarios, for implementation 87

Restricted Boltzmann Machines
(RBMs) 399

Ridge Regression/L2 Regularization
224

Ridge Regression model
output snippet 226-228

robotics 22
Root Mean Squared Error (RMSE) 292
root node 267
R-Squared 292

S
Scalable Vector Graphics (SVG) 432
Scaled Exponential Linear Unit

Activation Function (SELUAF)
408

Scikit-Image 437
Self-Supervised Learning (Self-SL) 11
Semantic analysis 342
semantic segmentation 441, 442
Semi-Supervised Learning (SSL) 5
sentiment analysis 19
Sigmoid Activation Function 404
SimpleCV 438
Simple File Transfer Protocol

(SFTP) 65
Single Layer Perceptron Neural

Network (SL-PNN) 398
Singular Value Decomposition

(SVD) 366
Smart Augmentation (SA) 455
social media 18
SoftMax Activation Function (SMAF)

407
SoftPlus Activation Function (SPAF) 407
SoftSign Activation Function 405
Software as a Services (SaaS) 39
SparkContext 87
Spark Core 85
Spark MLlib 157
Spark MLlib algorithms 158

Classification category 158, 159
Clustering category 159
Regression category 159

Spark MLlib’s datatypes 162, 163
DenseVector 163
distributed matrix 165
LabelPoint 164
Local Matrix 165
LocalVector 163
SparseVector 163

SparkNLP
advantages 337, 338

472 Practical Machine Learning with Spark

alternative 356
applications 357, 358
components 339
Core Execution Blocks 338
enhancement 356
features 347
laconic view 336, 337
logistic regression, implementing 355,

356
sentimental analysis 349-354

SparkR 86
Spark RDD operations 102

actions 113
output 102
SQL or DataFrame operations,

in PySpark 115
transformations 102

Spark SQL 85
Spark Streaming 85
Spark Submit 96

runtime parameters 96, 97
Spark transformation 103
SparseVector 163

creating 164
splitting 267
SQL or DataFrame operations, in

PySpark
aggregate functions with filter and

GroupBy 132
all columns from PySpark, selecting to

display DF content 126
Array, retrieving into with collect()

128
column, creating from existing

column 119, 120
count of total number of rows,

obtaining 131

Cross join operation 135
DataFrame, creating through

Excel file 116, 117
DataFrame, creating with

CreateDataFrame function 115,
116

datatype of all columns, changing
to string type 118, 119

datatype of single column,
changing 117, 118

distinct values of multiple columns,
obtaining 130, 131

existing DF column, dropping 125
existing DF column, renaming 124
GroupBy operation 132
index column appending with existing

DF, monotonically(func) used 124
Inner join operation 132
Left join operation 134
multiple columns from PySpark,

selecting to display DF content
127, 128

Outer join operation 133
Pivot function, executing 136, 137
Right join operation 134
sequence ID column appending

with existing DF,
lit() function used 121, 122

sequence ID column appending
with existing DF, zipWithIndex()
function used 122, 123

single column from PySpark, selecting
to display DF content 126

temporary table, registering to display
DF values 123

temporary table registration from DF,
for querying like SQL 120, 121

Index 473

User Defined Function (UDF), in
PySpark 136

value filtering, by passing multiple
condition 130

value filtering, by passing
some condition 129

value of existing column, updating
119

SQLTransformer 188, 189
StandardScaler 183, 184
State-Of-The-Art (SOTA) models 339
Statistical Modelling (SM) 1, 325
Stochastic Gradient Descent (SGD) 413
StopWordsRemover 173, 174
StringIndexer 179, 180
Structured Query Language (SQL) 27
Sublime editor 61

home screen 64
installing 61-63

sub-tree 267
Supervised Learning (SL) 5, 11, 198, 199

classification 13
regression 12, 199
versus Unsupervised Learning (USL)

14
Support Vector Machine (SVM) 258

implementing 258
Kernel Support Vector Machine

(KSVM) 258
Linear Support Vector Machine

(LSVM) 258
output snippet 259, 260
Quadratic Support Vector

Machine (QSVM) 258
Radial Basis Function Kernel

(RBFK) 258
Support Vector Regressor (SVR) 258

Swish Activation Function 405
sync-up configuration, of codebase

reverse 65-67
setting up 65-67

syntax analysis 341

T
Tag Image File Format (TIFF) 432
target (label) 6
TensorFlow 417
TensorFlowOnSpark 425
Tensor Processing Unit (TPU) 335
Term Frequency-Inverse Document

Frequency (TF-IDF) 167
output 168

Term-Frequency (TF) 167
terminal node 267
testing dataset 6
Tokenizer 172, 173
traditional programming

process flow 7, 8
training dataset 6
transfer function 385
Transfer Learning (TL) 335
transformation 102
transformations, in Spark RDDs

distinct transformation 107
distinct transformation, on

DataFrame 107-109
filter transformation 104
FlatMap transformation 104
GroupByKey transformations 112
intersection transformation 109
intersection transformation,

on RDD 109, 110
map transformation 103, 104
narrow transformation 103

474 Practical Machine Learning with Spark

sample transformation 110
sample transformation, on

DataFrame 111
sample transformation, on

RDD 110, 111
sort transformations 112, 113
union transformation 105
union transformation, in

DataFrame 105, 106
union transformation on DataFrame,

TTV used 107
wide transformation 103

transformer 160
tuple 6

U
underfitting 383
unlabeled data 6
Unsupervised Learning (USL) 5, 13

clustering 13, 300
techniques 299

V
validating dataset 6
variables 5
VectorAssembler 189, 190
VectorIndexer 181, 182
VectorSizeHint 190, 191
VectorSlicer 193, 194
video surveillance 19
VMware Workstation Player

installing 28-33

W
wide transformation 103
Word2Vec 168

implementation 168, 169
wrapper method 397

backward elimination 397
forward selection 397
recursive feature elimination 397

	1
	2

