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Preface
Streaming data is the new top technology to watch in the field of data science and 
machine learning. As business needs become more demanding, many use cases require 
real-time analysis as well as real-time machine learning. This book will allow you to get up 
to speed with data analytics for streaming data and focuses strongly on adapting machine 
learning and other analytics to the case of streaming data.

You will first learn about the architecture for streaming and real-time machine learning. 
You will then look at the state-of-the-art frameworks for streaming data such as River.

You will learn about various industrial use cases for streaming data, such as online 
anomaly detection. Then, you will deep dive into challenges and how you will mitigate 
them. You will then learn the best practices that will help you use streaming data to 
generate real-time insights.

Upon completion of the book, you will be confident about using streaming data in your 
machine learning models.

Who this book is for
Data scientists and machine learning engineers who have a basis in machine learning, are 
practice- and technology-oriented, and want to learn how to apply machine learning to 
streaming data through practical examples with modern technologies will benefit from 
this book. You will need to understand basic Python and machine learning concepts but 
require no prior knowledge of streaming.

What this book covers
Chapter 1, Introduction to Streaming Data, explains what streaming data is and why it is 
different from batch data. This chapter also explains the challenges that we should expect 
to encounter as well as the advantages of using streaming data.

Chapter 2, Architectures for Streaming and Real-Time Machine Learning, describes various 
architectures that can be used to set up streaming, and how they can be utilized.
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Chapter 3, Data Analysis on Streaming Data, explores data analysis on streaming data, 
which includes real-time insights, real-time descriptive statistics, real-time visualizations, 
and basic alerting systems.

Chapter 4, Online Learning with River, covers the core concepts of online learning and also 
introduces you to the River library, which is a fundamental part of streaming.

Chapter 5, Online Anomaly Detection, covers online anomaly detection, explains how 
it is useful, and also provides a use case that involves building a program for detecting 
anomalies in streaming data.

Chapter 6, Online Classification, covers online classification, explains how it is useful, and 
also provides a use case that involves building a program for classifying streaming data.

Chapter 7, Online Regression, covers online regression, how it is useful, and also provides a 
use case that involves building a program for detecting regression in streaming data.

Chapter 8, Reinforcement Learning, introduces you to reinforcement learning. We will 
explore some of the key algorithms and also explore some use cases for it using Python.

Chapter 9, Drift and Drift Detection, focuses on helping us understand drift in online 
learning and learning how to build solutions to detect drift.

Chapter 10, Feature Transformation and Scaling, shows us how to build a feature 
transformation pipeline that works with real-time and streaming data.

Chapter 11, Catastrophic Forgetting, explores what catastrophic forgetting is, and shows us 
how we can deal with it using example use cases.

Chapter 12, Conclusion and Best Practices, acts as a review of the book and combines all 
the concepts explored throughout the book for us to revise and revisit as needed.

To get the most out of this book
For following along with this book, you can use online notebook environments like Google 
Colab, Kaggle Notebooks, or your own local Jupyter Notebook environment with Python 3. 
Also, a (free) AWS account would be needed for a small number of exercises.
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If you are using the digital version of this book, we advise you to type the code yourself 
or access the code from the book's GitHub repository (a link is available in the next 
section). Doing so will help you avoid any potential errors related to the copying and 
pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Machine-Learning-for-Streaming-
Data-with-Python. If there's an update to the code, it will be updated in the  
GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at 
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used in 
this book. You can download it here: https://packt.link/6rZ0m.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, 
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. 
Here is an example: "There is no predict_many function here, so it is necessary to do a 
loop with predict_one repeatedly."

A block of code is set as follows:

def self _ made _ decision _ tree(observation): 

    if observation.can _ speak: 

        if not observation.has _ feathers: 

            return 'human'     

    return 'not human'  

for i,row in data.iterrows(): 

    print(self _ made _ decision _ tree(row)) 

https://github.com/PacktPublishing/Machine-Learning-for-Streaming-Data-with-Python
https://github.com/PacktPublishing/Machine-Learning-for-Streaming-Data-with-Python
https://github.com/PacktPublishing/Machine-Learning-for-Streaming-Data-with-Python
https://github.com/PacktPublishing/
https://packt.link/6rZ0m
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When we wish to draw your attention to a particular part of a code block, the relevant 
lines or items are set in bold:

from sklearn.datasets import make _ blobs 

X,y=make _ blobs(shuffle=True,centers=2,n _ samples=2000) 

Bold: Indicates a new term, an important word, or words that you see onscreen. For 
instance, words in menus or dialog boxes appear in bold. Here is an example: "Select 
System info from the Administration panel."

Tips or important notes 
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us  
at customercare@packtpub.com and mention the book title in the subject  
of your message.

Errata: Although we have taken every care to ensure the accuracy of our content,  
mistakes do happen. If you have found a mistake in this book, we would be grateful  
if you would report this to us. Please visit www.packtpub.com/support/errata 
and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, 
we would be grateful if you would provide us with the location address or website name. 
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have  
expertise in and you are interested in either writing or contributing to a book,  
please visit authors.packtpub.com.

https://www.packtpub.com/support/errata
https://authors.packtpub.com
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Share Your Thoughts
Once you've read Machine Learning for Streaming Data with Python, we'd love to hear 
your thoughts! Please click here to go straight to the Amazon review page for this book 
and share your feedback.

Your review is important to us and the tech community and will help us make sure we're 
delivering excellent quality content.

https://packt.link/r/1-803-24836-X




Part 1:  
Introduction and  
Core Concepts of 

Streaming Data

In this introductory part of the book, we will be introduced to the basic concept and 
principles surrounding streaming data. We will explore the various architectures that can 
be used to implement streaming data for machine learning. Finally, we will learn how to 
do data analysis on streaming data, along with various other functions. 

This section comprises the following chapters:

• Chapter 1, An Introduction to Streaming Data

• Chapter 2, Architectures for Streaming and Real-Time Machine Learning

• Chapter 3, Data Analysis on Streaming Data





1
An Introduction to 

Streaming Data
Streaming analytics is one of the new hot topics in data science. It proposes an alternative 
framework to the more standard batch processing, in which we are no longer dealing with 
datasets on a fixed time of treatment, but rather we are handling every individual data 
point directly upon reception.

This new paradigm has important consequences for data engineering, as it requires much 
more robust and, particularly, much faster data ingestion pipelines. It also imposes a big 
change in data analytics and machine learning.

Until recently, machine learning and data analytics methods and algorithms were mainly 
designed to work on entire datasets. Now that streaming has become a hot topic, it 
becomes more and more common to see use cases in which entire datasets just do not 
exist anymore. When a continuous stream of data is being ingested into a data storage 
source, there is no natural moment to relaunch an analytics batch job.

Streaming analytics and streaming machine learning models are models that are designed 
to work specifically with streaming data sources. A part of the solution, for example,  
is in the updating. Streaming analytics and machine learning need to update all the time  
as new data is being received. When updating, you may also want to forget the much  
older data. 
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This and other problems that are introduced by moving from batch analytics to streaming 
analytics need a different approach to analytics and machine learning. This book will lay 
out the basis for getting you started with data analytics and machine learning on data that 
is received as a continuous stream.

In this first chapter, you'll get a more solid understanding of the differences between 
streaming and batch data. You'll see some example use cases that showcase the importance 
of working with streaming rather than converting back into batch. You'll also start 
working with a first Python example to get a feel for the type of work that you'll be doing 
throughout this book.

In later chapters, you'll see some more background notions on architecture and, then, 
you'll go into a number of data science and analytics use cases and how they can be 
adapted to the new streaming paradigm.

In this chapter, you will discover the following topics:

• A short history of data science

• Working with streaming data

• Real-time data formats and importing an example dataset in Python

Technical requirements
You can find all the code for this book on GitHub at the following link: https://
github.com/PacktPublishing/Machine-Learning-for-Streaming-
Data-with-Python. If you are not yet familiar with Git and GitHub, the easiest  
way to download the notebooks and code samples is the following:

1. Go to the link of the repository.
2. Go to the green Code button.
3. Select Download ZIP:

https://github.com/PacktPublishing/Machine-Learning-for-Streaming-Data-with-Python
https://github.com/PacktPublishing/Machine-Learning-for-Streaming-Data-with-Python
https://github.com/PacktPublishing/Machine-Learning-for-Streaming-Data-with-Python
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Figure 1.1 – GitHub interface example

When you download the ZIP file, you unzip it in your local environment, and you will be 
able to access the code through your preferred Python editor.

Setting up a Python environment
To follow along with this book, you can download the code in the repository and execute 
it using your preferred Python editor. 

If you are not yet familiar with Python environments, I would advise you to check out 
Anaconda (https://www.anaconda.com/products/individual), which comes 
with the Jupyter Notebook and JupyterLab, which are both great for executing notebooks. 
It also comes with Spyder and VSCode for editing scripts and programs.

If you have difficulty installing Python or the associated programs on your machine, you 
can check out Google Colab (https://colab.research.google.com/) or Kaggle 
Notebooks (https://www.kaggle.com/code), which both allow you to run Python 
code in online notebooks for free, without any setup to do.

Note
The code in the book will generally use Colab and Kaggle Notebooks with 
Python version 3.7.13 and you can set up your own environment to mimic this. 

https://www.anaconda.com/products/individual
https://colab.research.google.com/
https://www.kaggle.com/code
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A short history of data science
Over the last few years, new technology domains have quickly taken over a lot of parts of 
the world. Machine learning, artificial intelligence, and data science are new fields that 
have entered our daily life, both in our personal lives and in our professional lives.

The topics that data scientists work on today are not new. The absolute foundation of 
the field is in mathematics and statistics, two fields that have existed for centuries. As an 
example, least squares regression was first published in 1805. With time, mathematicians 
and statisticians have continued working on finding other methods and models. 

In the following timeline, you can see how the recent boom in technology has been able to 
take place. In the 1600s and 1700s, very smart people were already laying the foundations 
for what we still do in statistics and mathematics today. However, it was not until the 
invention and popularization of computing power that the field became booming.

Figure 1.2 – A timeline of the history of data

Personal computer and internet accessibility is an important reason for data science's 
popularity today. Almost everyone has a computer that is performant enough for fairly 
complex machine learning. This strongly helps computer literacy, but also, online 
documentation accessibility is a big booster for learning.

The availability of big data tools such as Hadoop and Spark is also an important part of 
the popularization of data science, as they allow practitioners to work with datasets that 
are larger than anyone could ever imagine before.

Lastly, cloud computing is allowing data scientists from all over the world to access very 
powerful hardware at low prices. Especially for big data tools, the hardware needed is 
still priced in a way that most students would not be able to buy it for training purposes. 
Cloud computing gives access to those use cases for many.
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In this book, you will learn how to work with streaming data. It is important to have 
this short history of data science in mind, as streaming data is one of those technologies 
that has been disadvantaged by the need for difficult hardware and setup requirements. 
Streaming data is currently gaining popularity quickly in many domains and has the 
potential to be a big hit in the coming period. Let's now have a deeper look into the 
definition of streaming data.

Working with streaming data
Streaming data is data that is streamed. You may know the term streaming from online 
video services on which you can stream video. When doing this, the video streaming 
service will continue sending the next parts of the video to you while you are already 
watching the first part of the video.

The concept is the same when working with streaming data. The data format is not 
necessarily video and can be any data type that is useful for your use case. One of the  
most intuitive examples is that of an industrial production line, in which you have 
continuous measurements from sensors. As long as your production line doesn't pause, 
you will continue to generate measurements. We will check out the following overview of 
the data streaming process:

Figure 1.3 – The data streaming process
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The important notion is that you have a continuous flow of data that you need to treat 
in real time. You cannot wait until the production line stops to do your analysis, as you 
would need to detect potential problems right away.

Streaming data versus batch data
Streaming data is generally not among the first use cases that new data scientists tend to 
start with. The type of problem that is usually introduced first is batch use cases. Batch 
data is the opposite of streaming data, as it works in phases: you collect a bunch of data, 
and then you treat a bunch of data.

If you see streaming data as streaming a video online, you could see batch data as 
downloading the entire video first and then watching it when the downloading is finished. 
For analytical purposes, this would mean that you get the analysis of a bunch of data when 
the data generating process is finished rather than whenever a problem occurs.

For some use cases, this is not a problem. Yet, you can understand that streaming can 
deliver great added value in those use cases where fast analytics can have an impact. It 
also has added value in use cases where data is ingested in a streaming method, which 
is becoming more and more common. In practice, many use cases that would get added 
value through streaming are still solved with batch treatment, just because these methods 
are better known and more widespread. 

The following overview shows the batch treatment process:

Figure 1.4 – The batch process
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Advantages of streaming data
Let's now look at some advantages of using streaming analytics rather than other 
approaches in the following subsections.

Data generating processes are in real time
The first advantage of building streaming data analytics rather than batch systems is that 
many data generating processes are actually in real time. You will discover a number of 
use cases later, but in general, it is rare that data collection is done in batches.

Although most of us are used to building batch systems around real-time data generating 
systems, it often makes more sense to build streaming analytics directly.

Of course, batch analytics and streaming analytics can co-exist. Yet, adding a batch 
treatment to a streaming analytics service is often much easier than adding streaming 
functionality into a system that is designed for batches. It simply makes the most sense to 
start with streaming.

Real-time insights have value
When designing data science solutions, streaming does not always come to mind first. 
However, when solutions or tools are built in real time, it is rare that the real-time 
functionality is not appreciated.

Many analytical solutions of today are built in real time and the tools are available. In 
many problems, real-time information will be used at some point. Maybe it will not be 
used from the start, but the day that anomalies happen, you will find a great competitive 
advantage in having the analytics straight away, rather than waiting till the next hour or 
the next morning.

Examples of successful implementation of streaming 
analytics
Let's talk about some examples of companies that have implemented real-time analytics 
successfully. The first example is Shell. They have been able to implement real-time 
analytics of their security cameras on their gas stations. An automated and real-time 
machine learning pipeline is able to detect whether people are smoking.

Another example is the use of sensor data in connected sports equipment. By measuring 
heart rate and other KPIs in real time, they are able to alert you when anything is wrong 
with your body.
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Of course, the big players such as Facebook and Twitter also analyze a lot of data in real 
time, for example, when detecting fake news or bad content. There are many successful 
use cases of streaming analytics, yet at the same time, there are some common challenges 
that streaming data brings with them. Let's have a look at them now.

Challenges of streaming data
Streaming data analytics are currently less widespread than batch data analytics. Although 
this is slowly changing, it is good to understand where the challenges are when working 
with streaming data.

Knowledge of streaming analytics
One simple reason for streaming analytics being less widespread is a question of 
knowledge and know-how. Setting up streaming analytics is often not taught in schools 
and is definitely not taught as the go-to method. There are also fewer resources available 
on the internet to get started with it. As there are much more resources on machine 
learning and analytics for batch treatment, and the batch methods do not apply to 
streaming data, people tend to start with batch applications for data science.

Understanding the architecture
A second difficulty when working on streaming data is architecture. Although some data 
science practitioners have knowledge of architecture, data engineering, and DevOps, this 
is not always the case. To set up a streaming analytics proof of concept or a minimum 
viable product (MVP), all those skills are needed. For batch treatment, it is often enough 
to work with scripts.

Architectural difficulties are inherent to streaming, as it is necessary to work with real-
time processes that send individually collected records to an analytical treatment process 
that will update in real time. If there is no architecture that can handle this, it does not 
make much sense to start with streaming analytics.

Financial hurdles
Another challenge when working with streaming data is the financial aspect. Although 
working with streaming is not necessarily more expensive in the long run, it can be more 
expensive to set up the infrastructure needed to get started. Working on a local developer 
PC for an MVP is unlikely to succeed as the data needs to be treated in real time.
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Risks of runtime problems
Real-time processes also have a larger risk of runtime problems. When building software, 
bugs and failures happen. If you are on a daily batch process, you may be able to repair the 
process, rerun the failed batch, and solve the problem.

If a streaming tool is down, there are risks of losing data. As the data should be  
ingested in real time, the data that is generated during a time-out of your process  
may not be recuperable. If your process is very important, you will need to set up 
extensive monitoring day and night and have more quality checks before pushing your 
solutions to production. Of course, this is also important in batch processes, but even 
more so in streaming.

Smaller analytics (fewer methods easily available)
The last challenge of streaming analytics is that the common methods are generally 
developed for batch data first. There are currently many solutions out there for analytics 
on real time and streaming data, but still not as many as for batch data.

Also, since the streaming analysis has to be done very quickly to respect real-time delivery, 
streaming use cases tend to end up with much less interesting analytical methodologies 
and stay at the basic level of descriptive or basic analyses.

How to get started with streaming data
For companies to get started with streaming data, the first step is often to start by putting 
in place simple applications that collect real-time data and make that real-time data 
accessible in real time. Common use cases to start with are log data, website visits data,  
or sensor data.

A next step would often be to build reporting tools on top of the real-time data source. 
You can think about KPI dashboards that update in real time, or small and simple alerting 
tools based on high or low threshold values based on business rules.

When such systems are in place, this leads the way to replace those business rules, or add 
on top of them. You can think about more advanced analytics tools including real-time 
machine learning for anomaly detection and more.

The most complex step is to add automated feedback loops between your real-time 
machine learning and your process. After all, there is no reason to stop at analytics for 
business insights if there is potential to automate and improve decision-making as well.
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Common use cases for streaming data
Let's see a few of the most common use cases for streaming data so that you can  
get a better feel of the use cases that can benefit from streaming techniques. This will  
cover three use cases that are relatively accessible for anyone, but of course, there are  
many more.

Sensor data and anomaly detection
A common use case for streaming data is the analysis of sensor data. Sensor data can 
occur in a multitude of use cases, such as industry production lines and IoT use cases. 
When companies decide to collect sensor data, it is often treated in real time.

For a production line, there is great value in detecting anomalies in real time. When 
too many anomalies occur, the production line can be shut down or the problem can be 
solved before a number of faulty products are delivered.

A good example of streaming analytics for monitoring humidity for artwork can be found 
here: https://azure.github.io/iot-workshop-asset-tracking/step-
003-anomaly-detection/.

Finance and regression forecasting
Finance data is another great use case for streaming data. For example, in the world of 
stock trading, timing is important. The faster you can detect up or downtrends in the 
stock market, the faster a trader (or algorithm) can react by selling or buying stocks and 
making money.

A great example is described in the following paper by K.S Umadevi et al (2018): 
https://ieeexplore.ieee.org/document/8554561.

Clickstream for websites and classification
Websites or apps are a third common use case for real-time insights. If you can track and 
analyze your visitors in real time, you can propose a personalized experience for them on 
your website. By proposing products or services that match with a website visitor, you can 
increase your online sales.

The following paper by Ramanna Hanamanthrao and S Thejaswini (2017) gives a great use 
case for this technology applied to clickstream data: https://ieeexplore.ieee.
org/abstract/document/8256978.

https://azure.github.io/iot-workshop-asset-tracking/step-003-anomaly-detection/
https://azure.github.io/iot-workshop-asset-tracking/step-003-anomaly-detection/
https://ieeexplore.ieee.org/document/8554561
https://ieeexplore.ieee.org/abstract/document/8256978
https://ieeexplore.ieee.org/abstract/document/8256978
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Streaming versus big data
It is important to understand different definitions of streaming that you may encounter. 
One distinction to make is between streaming and big data. Some definitions will consider 
streaming mainly in a big data (Hadoop/Spark) context, whereas others do not.

Streaming solutions often have a large volume of data, and big data solutions can be the 
appropriate choice. However, other technologies, combined with a well-chosen hardware 
architecture, may also be able to do the analytics in real time and, therefore, build 
streaming solutions without big data technologies.

Streaming versus real-time inference
Real-time inference of models is often built and made accessible via an API. As we  
define streaming as the analysis of data in real time without batches, such predictions in 
real time can be considered streaming. You will see more about real-time architectures in 
a later chapter.

Real-time data formats and importing an 
example dataset in Python
To finalize this chapter, let's have a look at how to represent streaming data in  
practice. After all, when building analytics, we will often have to implement test  
cases and example datasets.

The simplest way to represent streaming data in Python would be to create an iterable 
object that contains the data and to build your analytics function to work with an iterable.

The following code creates a DataFrame using pandas. There are two columns, 
temperature and pH:

Code block 1-1

import pandas as pd

data_batch = pd.DataFrame({

'temperature': [10, 11, 10, 11, 12, 11, 10, 9, 10, 11, 12, 11, 
 9, 12, 11],

    ‹pH›: [5, 5.5, 6, 5, 4.5, 5, 4.5, 5, 4.5, 5, 4, 4.5, 5,  
4.5, 6]

})

print(data_batch)
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When showing the DataFrame, it will look as follows. The pH is around 4.5/5 but is 
sometimes higher. The temperature is generally around 10 or 11.

Figure 1.5 – The resulting DataFrame

This dataset is a batch dataset; after all, you have all the rows (observations) at the  
same time. Now, let's see how to convert this dataset to a streaming dataset by making  
it iterable.

You can do this by iterating through the data's rows. When doing this, you set up a code 
structure that allows you to add more building blocks to this code one by one. When your 
developments are done, you will be able to use your code on a real-time stream rather 
than on an iteration of a DataFrame.
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The following code iterates through the rows of the DataFrame and converts the rows 
to JSON format. This is a very common format for communication between different 
systems. The JSON of the observation contains a value for temperature and a value for pH. 
Those are printed out as follows:

Code block 1-2

data_iterable = data_batch.iterrows()

for i,new_datapoint in data_iterable:

  print(new_datapoint.to_json())

After running this code, you should obtain a print output that looks like the following:

Figure 1.6 – The resulting print output

Let's now define a super simple example of streaming data analytics. The function that 
is defined in the following code block will print an alert whenever the temperature gets 
below 10:

Code block 1-3

def super_simple_alert(datapoint):

  if datapoint[‹temperature›] < 10:

    print('this is a real time alert. temp too low')



16     An Introduction to Streaming Data

You can now add this alert into your simulated streaming process simply by calling the 
alerting test at every data point. You can use the following code to do this:

Code block 1-4

data_iterable = data_batch.iterrows()

for i,new_datapoint in data_iterable:

  print(new_datapoint.to_json())

  super_simple_alert(new_datapoint)

When executing this code, you will notice that alerts will be given as soon as the 
temperature goes below 10:

Figure 1.7 – The resulting print output with alerts on temperature

This alert works only on the temperature, but you could easily add the same type of alert 
on pH. The following code shows how this can be done. The alert function could be 
updated to include a second business rule as follows:

Code block 1-5

def super_simple_alert(datapoint):

  if datapoint[‹temperature›] < 10:

    print('this is a real time alert. temp too low')
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  if datapoint[‹pH›] > 5.5:

    print('this is a real time alert. pH too high')

Executing the function would still be done in exactly the same way:

Code block 1-6

data_iterable = data_batch.iterrows()

for i,new_datapoint in data_iterable:

  print(new_datapoint.to_json())

  super_simple_alert(new_datapoint)

You will see several alerts being raised throughout the execution on the example 
streaming data, as follows:

Figure 1.8 – The resulting print output with alerts on temperature and pH
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With streaming data, you have to decide without seeing the complete data but just  
on those data points that have been received in the past. This means that there is a  
need for a different approach to redeveloping algorithms that are similar to batch 
processing algorithms.

Throughout this book, you will discover methods that apply to streaming data. The 
difficulty, as you may understand, is that a statistical method is generally developed to 
compute things using all the data. 

Summary
In this introductory chapter on streaming data and streaming analytics, you have first 
seen some definitions of what streaming data is, and how it is opposed to batch data 
processing. In streaming data, you need to work with a continuous stream of data, and 
more traditional (batch) data science solutions need to be adapted to make things work 
with this newer and more demanding method of data treatment.

You have seen a number of example use cases, and you should now understand that there 
can be much-added value for businesses and advanced technology use cases to have data 
science and analytics calculated on the fly rather than wait for a fixed moment. Real-time 
insights can be a game-changer, and autonomous machine learning solutions often need 
real-time decision capabilities.

You have seen an example in which a data stream was created and a simple  
real-time alerting system was developed. In the next chapter, you will get a much  
deeper introduction to a number of streaming solutions. In practice, data scientists  
and analysts will generally not be responsible for putting streaming data ingestion  
in place, but they will be constrained by the limits of those systems. It is, therefore, 
important to have a good understanding of streaming and real-time architecture:  
this will be the goal of the next chapter.
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Further reading
• What is streaming data? (by AWS): https://aws.amazon.com/streaming-

data/

• The 8 Best Examples of Real-Time Data Analytics, by Bernard Marr: https://
www.linkedin.com/pulse/8-best-examples-real-time-data-
analytics-bernard-marr/

• How to Build a Strong Business Case For Streaming Analytics, Forbes https://
www.forbes.com/sites/forbestechcouncil/2021/10/26/
how-to-build-a-strong-business-case-for-streaming-
analytics/?sh=314e2b8a465d

• 7 enterprise use cases for real-time streaming analytics: https://
searchbusinessanalytics.techtarget.com/feature/7-
enterprise-use-cases-for-real-time-streaming-analytics

• From batch to online/stream, by RiverML: https://riverml.xyz/dev/
examples/batch-to-online/

• Anaconda: https://www.anaconda.com/products/individual

• Google Colab: https://colab.research.google.com/

• Kaggle Notebooks: https://www.kaggle.com/code

https://aws.amazon.com/streaming-data/
https://aws.amazon.com/streaming-data/
https://www.linkedin.com/pulse/8-best-examples-real-time-data-analytics-bernard-marr/
https://www.linkedin.com/pulse/8-best-examples-real-time-data-analytics-bernard-marr/
https://www.linkedin.com/pulse/8-best-examples-real-time-data-analytics-bernard-marr/
https://www.forbes.com/sites/forbestechcouncil/2021/10/26/how-to-build-a-strong-business-case-for-streaming-analytics/?sh=314e2b8a465d
https://www.forbes.com/sites/forbestechcouncil/2021/10/26/how-to-build-a-strong-business-case-for-streaming-analytics/?sh=314e2b8a465d
https://www.forbes.com/sites/forbestechcouncil/2021/10/26/how-to-build-a-strong-business-case-for-streaming-analytics/?sh=314e2b8a465d
https://www.forbes.com/sites/forbestechcouncil/2021/10/26/how-to-build-a-strong-business-case-for-streaming-analytics/?sh=314e2b8a465d
https://searchbusinessanalytics.techtarget.com/feature/7-enterprise-use-cases-for-real-time-streaming-analytics
https://searchbusinessanalytics.techtarget.com/feature/7-enterprise-use-cases-for-real-time-streaming-analytics
https://searchbusinessanalytics.techtarget.com/feature/7-enterprise-use-cases-for-real-time-streaming-analytics
https://riverml.xyz/dev/examples/batch-to-online/
https://riverml.xyz/dev/examples/batch-to-online/
https://www.anaconda.com/products/individual
https://colab.research.google.com/
https://www.kaggle.com/code
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Architectures  
for Streaming  
and Real-Time 

Machine Learning
Streaming architectures are an essential component of solutions for real-time machine 
learning and streaming analytics. Even if you have a model or other analytics tools that 
can treat data in real time, update, and respond straight away, this will be of no use if there 
is no architecture to support your solution.

The first important consideration is making sure that your models and analytics can 
function on each data point; there needs to be an update function and/or a predict function 
that can update the solution on each new observation being received by the system.

Another important consideration for real-time and streaming architectures is data ingress: 
how to make sure that data can be received on an observation per observation basis, 
rather than the more traditional batch approach with daily database updates, for example. 
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Besides that, it will be important that you understand how to make different software 
systems communicate. For example, data has to flow very fast from your data generating 
process, maybe go through a data storage solution, a data quality tool, or a security layer, 
and then be received by your analytics program. The analytics program will do its work 
and send the result back to the source, or maybe forward the treated data points to a 
visualization solution, an alerting system, or similar.

In this chapter, you will get an introduction to architectures for streaming and real-time 
machine learning. The central focus of this book will remain on the analytics and machine 
learning part of the pipeline. The goal of this chapter is to give you enough elements to 
imagine and implement rough working architectures, while some of the highly-specialized 
parts on performance, availability, and security will be left out.

This chapter covers the following topics:

1. Defining your analytics as a function
2. Understanding microservices architecture
3. Communicating between services through APIs
4. Demystifying the HTTP protocol
5. Building a simple API on AWS
6. Big data tools for real-time streaming
7. Calling a big data environment in real time

Technical requirements
You can find all the code for this book on GitHub at the following link: https://
github.com/PacktPublishing/Machine-Learning-for-Streaming-
Data-with-Python. If you are not yet familiar with Git and GitHub, the easiest  
way to download the notebooks and code samples is the following:

1. Go to the link of the repository.
2. Go to the green Code button.
3. Select Download ZIP.

When you download the ZIP file, you unzip it in your local environment, and you will be 
able to access the code through your preferred Python editor.

https://github.com/PacktPublishing/Machine-Learning-for-Streaming-Data-with-Python
https://github.com/PacktPublishing/Machine-Learning-for-Streaming-Data-with-Python
https://github.com/PacktPublishing/Machine-Learning-for-Streaming-Data-with-Python
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Python environment
To follow along with this book, you can download the code in the repository and execute 
it using your preferred Python editor.

If you are not yet familiar with Python environments, I would advise you to check out 
Anaconda (https://www.anaconda.com/products/individual), which comes 
with the Jupyter Notebook and JupyterLab, which are both great for executing notebooks. 
It also comes with Spyder and VSCode for editing scripts and programs.

If you have difficulty installing Python or the associated programs on your machine, you 
can check out Google Colab (https://colab.research.google.com/) or Kaggle 
Notebooks (https://www.kaggle.com/code), which both allow you to run Python 
code in online notebooks for free, without any setup to do.

Note
The code in the book will generally use Colab and Kaggle Notebooks with 
Python version 3.7.13, and you can set up your own environment to mimic 
this. 

Defining your analytics as a function
In order to get started with architecture, let's build an idea from the ground up using the 
different building blocks that are necessary to make this a minimal working product.

The first thing that you need to have for this is an understanding of the type of real-time 
analytics that you want to execute.

For now, let's go with the same example as in the previous chapter: a real-time business 
rule that prints an alert when the temperature or acidity of our production line is out of 
the acceptable limits.

In the previous chapter, this alert was coded as follows:

Code block 2-1

def super_simple_alert(datapoint):

  if datapoint['temperature'] < 10:

    print('this is a real time alert. temp too low')

  if datapoint['pH'] > 5.5:

    print('this is a real time alert. pH too high')

https://www.anaconda.com/products/individual
https://colab.research.google.com/
https://www.kaggle.com/code
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In the previous chapter, you used an iteration over a DataFrame to test out this code. 
In reality, you will always need an idea of architecture so that you can make your code 
actually receive data in real time from a data generating process. This building block will 
be covered in this chapter.

In the following schematic drawing, you see a high-level architectural schema for our 
streaming solution:

Figure 2.1 – A high-level architectural schema for a streaming solution

In this schematic drawing, you clearly see that writing code will give you some of the key 
components of your solution. However, you need to build an architecture around this 
to make the solution come to life. The darker pieces are still missing from the example 
implementation.

While the goal of this book is not to give a full in-depth course on architecture,  
you will discover some tools and building blocks here that will allow you to deliver  
an MVP real-time use case. To get your building blocks cleanly organized, you will 
need to choose an architectural structure for your solutions. Microservices are an 
architectural pattern that will allow you to build clean, small building blocks and have 
them communicate with each other.
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Understanding microservices architecture
The concept of microservices is important to understand when working on architectures. 
Although there are other ways to architecture software projects, microservices are quite 
popular for a good reason. They help teams be flexible and effective, and help to keep 
software flexible and clearly structured.

The idea behind microservices is in the name: software is represented as many small 
services that operate individually. When looking at the overall architecture, each of 
the microservices is inside a small, black box with clearly defined inputs and outputs. 
Processes are put in place to call the right black box at the right time.

Microservice architecture is loosely coupled. This means that there is no fixed 
communication between the different microservices. Instead, each microservice can be 
called, or not called, by any other services or code.

If a change needs to be made to one of the microservices, the scope of the change is fairly 
local, thereby not affecting other microservices. As input and output are predefined, this 
also helps in keeping the foundational structure of the program in order, without it being 
fixed in any way.

To allow different microservices to communicate, an often-chosen solution is to use 
Application Programming Interfaces (APIs). Let's deep dive into those now.

Communicating between services through 
APIs
A central component in microservice architectures is the use of APIs. An API is a part 
that allows you to connect two microservices (or other pieces of code) together.

APIs are much like websites. Just like a website, an API is built behind a website-like link 
or an IP address. When you go to a website, the server of the website sends you the code 
that represents the website. Your internet browser then interprets this code and shows you 
a web page.

When you call an API, the API will receive your request. The request triggers your code 
to be run on the server and generates a response that is sent back to you. If something 
goes wrong (maybe your request was not as expected or an error occurs), you may not 
receive any response, or receive an error code such as request not authorized or 
internal server error.
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The following figure shows a flow chart that covers this. A computer or user sends an 
HTTP request, and the API server sends back the response according to the code that 
runs on the API server:

Figure 2.2 – A high-level architectural schema for a streaming solution

You can call APIs with a lot of different tools. Sometimes, you can even use your internet 
browser, otherwise, tools such as cURL do the job on the command line. You can 
use tools such as Postman or Insomnia for calling APIs with a user interface. All the 
communication is covered in fixed rules and practices, which, together, are called the 
HTTP protocol, which we will explore in the next section.

Demystifying the HTTP protocol
Interaction between services (or websites) uses the HTTP protocol. When working with 
APIs and building communicating microservices, it is important to understand the basics 
of the HTTP protocol.

The most important thing to know is how to send and format requests and responses.

The GET request
The simplest HTTP request is the GET request. You use this when you need to get 
something from a server or a service. For example, when going to a website, your browser 
sends a GET request to the website's IP address to obtain the website's layout code.



Demystifying the HTTP protocol     27

A GET request can simply be sent from Python using the following code:

Code block 2-2

import requests

import json

response = requests.get('http://www.google.com')

print(response.status_code)

print(response.text)

This code uses the requests library in Python to send a GET request to the Google 
home page. This is technically the same process as going to your internet browser and 
going to the Google home page. You'll obtain all the code that is needed for your web 
browser to show you the Google home page. Although many of you are very familiar with 
the look of the Google home page in your browser, it is much less recognizable in this 
code response. It is important to understand that it is actually exactly the same thing, just 
in a different format. 

The POST request
The POST request is another request that you'll encounter very often. It allows you to  
send some data with your request. This is often necessary, especially in analytics APIs,  
as the analytics are likely to happen on this data. By adding the data in the body of the 
POST request, you make sure that your analytics code received your data.

The syntax in Python will be something like the following code block. For now, this code 
doesn't work as you have not built a server that is able to do something with this data. 
However, just keep in mind that the POST request allows you to send your data point to 
an API with the goal of obtaining a response:

Code block 2-3

import requests

import json

data = {'temperature': 10, 'pH': 5.5}

response = requests.post('http://www.example.com',data=data)

print(response.status_code)

print(response.text)



28     Architectures for Streaming and Real-Time Machine Learning

JSON format for communication between systems
The most common format for interaction between services is the JavaScript Object 
Notation (JSON) format. It is a data type that very strongly resembles the dictionary 
format in Python. In effect, it is a key-value object that is surrounded by accolades.

An example of a JSON payload is as follows:

Code block 2-4

{

     'name': 'your name',

     'address': 'your address',

     'age': 'your age'

}

This data format is fairly easy to understand and very commonly used. It is, therefore, 
important to understand how it works. You'll see its use later on in the chapter as well.

RESTful APIs
While API development is out of scope for this book, it will be useful to have some 
pointers and best practices. The most used API structure is the Representational State 
Transfer (REST) API.

The REST API works just like other APIs, but it follows a certain set of style rules that 
make it recognizable as a REST API, also called the RESTful API.

There are six guiding constraints in REST APIs:

• Client-server architecture

• Statelessness

• Cacheability

• Layered system

• Code on demand (optional)

• Uniform interface
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If you want to go further on this, some further reading resources are provided at the end 
of the chapter. Now that we have learned about the HTTP protocol, let's build an API on 
Amazon Web Services (AWS).

Building a simple API on AWS
In order to do something practical, let's build a super simple API on AWS. This will allow 
you to understand how different services can communicate together. It can also serve as a 
good testing environment for putting the examples in the rest of the book to the test.

You will use the following components of the AWS framework.

API Gateway in AWS
This is an AWS service that handles API requests for you. You specify the type of request 
that you expect to receive, and you specify the action that should be taken upon reception 
of a request. When building an API using API Gateway, this will automatically generate an 
IP address or link to which you can send your API requests.

Lambda in AWS
Lambda is a serverless execution environment for code. This means that you can write 
Python code, plug it to the API Gateway, and not think about how to set up servers, 
firewalls, and all that. This is great for decoupling systems, and it is fast enough for many 
real-time systems.

Data-generating process on a local machine
As the last component, you will build a separate data-generating process in Python. You 
can execute this code in a notebook. Every time a new data point is generated, the code 
will call the API with the analytics service and reply with an alert if needed.
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A schematic overview of this architecture can be seen in the following figure:

Figure 2.3 – Detailed architecture schema for AWS

Implementing the example
In order to implement the example, we will use the following step-by-step instructions. If 
you have an AWS account, you can skip Step 0.

Step 0 – Creating an account on AWS
If you do not yet have an account on AWS, it is easy to create one. You will have to set it 
up with a credit card, but the services that we will use here all have a free tier. As long as 
you shut down the resources at the end of your test, you are unlikely to incur any fees. 
However, be careful, because mistakes happen, and if you use a lot of resources on AWS, 
you will end up paying.

To set up an account, you can simply follow the steps on aws.amazon.com.

Step 1 – Setting up a Lambda function
Upon receipt of the POST request, a Lambda function has to be called to execute our alert 
and send back the response.

Go to Lambda in the Services menu and click on Create function. You will see the 
following screen:

http://aws.amazon.com
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Figure 2.4 – Creating a Lambda function

Make sure to select Python and to give the appropriate name to your function.

When you have finished creating the function, it is time to code it. You can use the 
following code for this:

Code block 2-5

import json

def super_simple_alert(datapoint):    

    answer = ''

    if datapoint['temperature'] < 10:

        answer += 'temp too low ' 

    if datapoint['pH'] > 5.5:

        answer += 'pH too high '

    if answer == '':
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        answer = 'all good'

    return answer

def lambda_handler(event, context):

    answer = super_simple_alert(event)

    return {

        'statusCode': 200,

        'body': json.dumps({'status': answer}),

    }

This code has two functions. The super_simple_alert function takes a datapoint 
and returns an answer (an alarm in string format). The lambda_handler function is 
the code that deals with the incoming API calls. The event contains the datapoint,  
so the event is passed to the super_simple_alert function in order to analyze 
whether an alert should be launched. This is stored in the answer variable. Finally,  
the lambda_handler function returns a Python dictionary with the status code 200 
and a body that contains the answer.

The window should now look as follows:

Figure 2.5 – The Lambda function window
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Step 2 – Set up API Gateway
As a first step, let's set up API Gateway to receive a POST request. The POST request will 
contain a body in which there is JSON that has a value for temperature and pH, just like in 
the alerting example.

To set up API Gateway, you have to go to the API Gateway menu, which is accessible 
through the Services menu. The Management console looks as follows:

Figure 2.6 – The AWS Management console
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You should end up on the API Gateway menu, which looks as follows:

Figure 2.7 – The API Gateway menu

When you are in the API Gateway menu, you can go to Create API to set up your  
first API.

Inside Create API, do the following steps:

1. Select REST API.
2. Choose the REST protocol.
3. Build the API as a new API.
4. Create an API name, for example, streamingAPI.

You will obtain an empty API configuration menu, as follows:

Figure 2.8 – Adding a method in API Gateway
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We want to add a POST method, so go to Actions | Create Method. Select POST in the 
dropdown and click on the small v character next to the word POST to create the POST 
method. The following menu will appear for setting up the POST method:

Figure 2.9 – The POST setup
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Step 3 – Deploy the API
Still in the API Gateway menu, click on Actions | Deploy API. You can create a new stage 
called test to deploy to. You can use the default setup for this stage, but it is important 
to take the URL that is on top here to be able to call your API from your data generation 
process. You will need to set the settings as shown in the following screenshot:

Figure 2.10 – More details for the API

Step 4 – Calling your API from another Python environment
Now, you can call your API from another Python environment, such as a notebook on 
your own computer, or from a Google Colab notebook.

You can use the following code to do that:

Code block 2-6

import requests

import json

data = {'temperature': 8, 'pH': 4}
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response = requests.post('YOUR_URL', data = json.dumps(data))

print(json.loads(response.text))

You will obtain the following answer:

Code block 2-7

{'statusCode': 200, 'body': '{"status": "temp too low "}'}

Now, you can imagine how a real-time data-generating process would simply call the API 
at each new data point and alerts would be generated right away!

More architectural considerations
Although this is a great first try at building an API, you should be aware that there is 
much more to think about when you want to build this in a reliable and secure way. There 
is a reason that data science and software engineering are different jobs, and it takes time 
to learn all the skills necessary to manage an API from A to Z. In general, this will not be 
asked of a data scientist.

Some of the things that were not covered in this example are as follows:

• Performance: scaling, load balancing, and latency

• DDoS attacks

• Security and hacking

• Financial aspects of API invocation

• Dependency on a cloud provider versus being cloud provider agnostic

At the end of the chapter, there are some resources for further reading, which you can 
check out.

Other AWS services and other services in general that 
have the same functionality
The current example used API Gateway and a Lambda function to build an API. The 
advantages of this method are the easiness of access and setup, which makes it great as a 
method to present in this book. However, you should be aware that there are many other 
tools and technologies for building APIs. 
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AWS is one of the most used cloud providers, and most things that can be done on AWS 
can be done on the other cloud providers' platforms as well. Examples of other big players 
are Google's GCP and Microsoft's Azure. Even on AWS, there are many alternatives.

You can also build APIs in local environments. When doing this, you'll again have a 
large choice of tools and providers. Now that you have seen how to build an API using 
standard programming in Python and using a microservices approach, you will next see 
some alternatives using the big data environment. Big data environments generally have a 
steeper learning curve and may often be made for a specific use case, but they can be very 
powerful and absolutely necessary when working with high volume and velocity.

Big data tools for real time streaming
There are many big data tools that do real-time streaming analytics. They can be great 
alternatives for regular real-time systems, especially when volumes are large and high 
speeds are required.

As a reminder, the term big data is generally used to regroup tools that solve problems 
that are too complex to fit in memory The problems solved have three core characteristics: 
volume, variety, and velocity.

Big data tools are generally known for doing a lot of work in parallel computing. When 
writing non-optimized, regular Python code, the code will often pass data points one by 
one. Big data solutions solve this by treating data points in parallel on multiple servers. 
This approach makes big data tools faster whenever there is a lot of data, but slower when 
there is little data (due to the overhead of managing the different workers).

Big data tools are often relatively specific; they should only be used for use cases that have 
vast amounts of data. It does not make sense to start working on big data tools for every 
problem at hand.

Numerous such solutions are made for working with streaming data. Let's have a look at 
some commonly used tools:

• Spark Streaming: Spark Streaming is an addition to Spark, one of the main tools 
for big data nowadays. Spark Streaming can be plugged into sources such as Kafka, 
Flume, and Amazon Kinesis, thereby making streaming data accessible in a Spark 
environment.

• Apache Kafka: Kafka is an open source tool managed by Apache. It is a framework 
that is made for delivering real-time data feeds. It is used by many companies to 
deliver data pipelines and streaming analytics. Even some cloud providers have 
integrated Kafka into their solutions.
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• Apache Flume: Apache Flume is another open source tool managed by Apache, 
which also focuses on streaming data. Flume is specifically used for treating large 
amounts of log data in a big data environment.

• Apache Beam: Another tool in the Apache streaming family is Apache Beam. This 
tool can handle both batch and streaming data. It is best known for building ETL 
and data processing pipelines.

• Apache Storm: Apache Storm is a stream processing computation framework 
that allows doing distributed computation. It is used to process data streams with 
Hadoop in real time.

• Apache NiFi: Apache NiFi is a tool that focuses on ETL. It gives its users the 
possibility to automate and manage data flows between systems. It can work 
together with Kafka.

• Google Cloud DataFlow: Google Cloud DataFlow is a tool proposed by Google 
Cloud Platform. It is developed specifically for tackling streaming use cases. It 
allows users to execute Apache Beam pipelines in a fully managed service.

• Amazon Kinesis: Amazon Kinesis is strongly based on open source Apache Kafka, 
which was discussed earlier. The advantage of using Kinesis over Kafka is that 
it comes with a lot of things that are managed for you, whereas if you use Kafka 
directly, you spend more effort on managing the service. Of course, in return, you 
must use the AWS platform to access it.

• Azure Stream Analytics: Azure Stream Analytics is the main streaming analytics 
service proposed on Microsoft's cloud platform, Azure. It is a real-time analytics 
service that is based on Trill.

• IBM Streams: IBM Streams is a streaming analytics tool that is proposed on the 
IBM cloud. Just like Kinesis, it is based on the open source Kafka project.

Calling a big data environment in real time
If your real-time analytics service is managed by a big data or specific streaming tool, 
you cannot always follow the API method for connecting your real-time process to your 
analytics process.

In most cases, you'll need to look into the documentation of the tool of your choice and 
make sure that you understand how to make the connections work. At this point, you are 
often going to need a specialized profile to work with you, as this level of architecture and 
data engineering is generally considered out of scope for most data scientists.
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A general difference between the microservice system and the big data system is that in a 
microservice approach, we are generally considering that there must be a response coming 
from the API that is taken into account by the calling service.

In big data environments, it is much more common for a service such as a website to send 
data to a big data environment but not need a response. You could imagine a website 
that writes out every interaction by a user to a fixed location as JSON files. The big data 
streaming tool is then plugged onto this data storage location to read in the data in a 
streaming fashion and converts this into an analysis, a visualization, or something else.

Let's build a minimal example that will show how to do this:

1. First, create a JSON file called example.json, in which you write only the 
following data:

Code block 2-8
{'value':'hello'}

2. You can now write a very short piece of Spark Streaming code that reads this data in 
a streaming way:

from pyspark.sql import SparkSession

from pyspark.sql.types import *

spark = SparkSession \

    .builder \

    .appName("quickexample") \

    .getOrCreate()

schema = StructType([ StructField("value", String-
Type(), True) ])

streamingDF = (

  spark

    .readStream

    .schema(schema)

    .json('example.json')

)

display(streamingDF)
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In short, this code starts by creating a spark session. Once the session is created, 
a schema is defined for the example.json file. As it has only one key (called 
value), the schema is quite short. The data type for the value is string.

You then see that the data is imported using the .readStream method, which actually 
does a lot of the heavy lifting in streaming for you. If you'd like to go further with this 
example, you could write all kinds of analytical Spark functions using the streamingDF 
library and you will have streaming analytics using the well-known big data tool PySpark.

Summary
In this chapter, you have started to discover the field of architecture. You have built  
your own API on AWS, and you have seen the basic foundation of communication 
between systems. You should now understand that data is key in communication between 
systems and that good communication between systems is essential for delivering value 
through analytics.

This is especially true in the case of real-time and streaming analytics. The high speed 
and often large size of data can easily pose problems if architectural bottlenecks are not 
identified early enough in the project.

There are other topics that you must remember to take into account, including security, 
availability, and compliance. Those topics are best left to someone who makes it their  
full-time responsibility to take care of such data architecture problems.

In the following chapter, we'll go back to the core of this book, as you'll discover how to 
build analytics use cases on streaming data.

Further reading
• Microservices Architecture: https://cloud.google.com/learn/what-is-

microservices-architecture

• API: https://www.redhat.com/en/topics/api/what-are-
application-programming-interfaces

• HTTP: https://developer.mozilla.org/en-US/docs/Web/HTTP

• Top 10 real-time data streaming tools: https://ipspecialist.net/top-10-
real-time-data-streaming-tools/

• Spark Streaming: https://spark.apache.org/docs/latest/
streaming-programming-guide.html

• Kafka: https://kafka.apache.org/

https://cloud.google.com/learn/what-is-microservices-architecture
https://cloud.google.com/learn/what-is-microservices-architecture
https://www.redhat.com/en/topics/api/what-are-application-programming-interfaces
https://www.redhat.com/en/topics/api/what-are-application-programming-interfaces
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://ipspecialist.net/top-10-real-time-data-streaming-tools/
https://ipspecialist.net/top-10-real-time-data-streaming-tools/
https://spark.apache.org/docs/latest/streaming-programming-guide.html
https://spark.apache.org/docs/latest/streaming-programming-guide.html
https://kafka.apache.org/
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• Flume: https://flume.apache.org/

• Beam: https://beam.apache.org/

• Storm: https://storm.apache.org/

• NiFi: https://nifi.apache.org/

• Google Cloud Dataflow: https://cloud.google.com/dataflow

• Amazon Kinesis: https://aws.amazon.com/kinesis/

• Azure Stream Analytics: https://azure.microsoft.com/en-us/
services/stream-analytics/

• IBM Streams: https://www.ibm.com/docs/en/streams

• Capturing Web Page Scroll Progress with Amazon Kinesis, by AWS: https://
docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/
kinesis-examples-capturing-page-scrolling.html

https://flume.apache.org/
https://beam.apache.org/
https://storm.apache.org/
https://nifi.apache.org/
https://cloud.google.com/dataflow
https://aws.amazon.com/kinesis/
https://azure.microsoft.com/en-us/services/stream-analytics/
https://azure.microsoft.com/en-us/services/stream-analytics/
https://www.ibm.com/docs/en/streams
https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/kinesis-examples-capturing-page-scrolling.html
https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/kinesis-examples-capturing-page-scrolling.html
https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/kinesis-examples-capturing-page-scrolling.html


3
Data Analysis on 
Streaming Data

Now that you have seen an introduction to streaming data and streaming use cases, as well 
as an introduction to streaming architecture, it is time to enter into the core of this book: 
analytics and machine learning.

As you probably know, descriptive statistics and data analysis are the entry points into 
machine learning, but they are also often used as a standalone use case. In this chapter, 
you will first discover descriptive statistics from a traditional statistics viewpoint. Some 
parts of traditional statistics focus on making correct estimations of descriptive statistics 
when only part of the data is available.

In streaming, you will encounter such problems in an even more impacting manner than 
in batch data. Through a continuous data collection process, your descriptive statistics will 
continue changing on every new data point. This chapter will propose some solutions for 
dealing with this.

You will also build a data visualization based on those descriptive statistics. After all, the 
human brain is wired in such a way that visual presentations are much easier to read than 
data matrices. Data visualization is an important tool to master and comes with some 
additional reflections to take into account when working on streaming data.
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The chapter will conclude with a short introduction to statistical process control. This 
subdomain of statistics focuses on analyzing a continuous stream of measurements. 
Although streaming analytics was not yet a thing when process control was invented, it 
became a new, important use case for those analytical methods.

This chapter covers the following topics:

• Descriptive statistics on streaming data

• Introduction to sampling theory

• Overview of the main descriptive statistics

• Real-time visualizations

• Basic alerting systems

Technical requirements
You can find all the code for this book on GitHub at the following link: https://
github.com/PacktPublishing/Machine-Learning-for-Streaming-
Data-with-Python. If you are not yet familiar with Git and GitHub, the easiest  
way to download the notebooks and code samples is the following:

1. Go to the link of the repository.
2. Click the green Code button.
3. Select Download ZIP.

When you download the ZIP file, unzip it in your local environment and you will be able 
to access the code through your preferred Python editor.

Python environment
To follow along with this book, you can download the code in the repository and execute 
it using your preferred Python editor.

If you are not yet familiar with Python environments, I would advise you to check out 
Anaconda (https://www.anaconda.com/products/individual), which comes 
with Jupyter Notebook and JupyterLab, which are both great for executing notebooks. It 
also comes with Spyder and VSCode for editing scripts and programs.

https://github.com/PacktPublishing/Machine-Learning-for-Streaming-Data-with-Python
https://github.com/PacktPublishing/Machine-Learning-for-Streaming-Data-with-Python
https://github.com/PacktPublishing/Machine-Learning-for-Streaming-Data-with-Python
https://www.anaconda.com/products/individual
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If you have difficulty installing Python or the associated programs on your machine, you 
can check out Google Colab (https://colab.research.google.com/) or Kaggle 
Notebooks (https://www.kaggle.com/code), which both allow you to run Python 
code in online notebooks for free, without any setup to do.

Note
The code in the book will generally use Colab and Kaggle Notebooks with 
Python version 3.7.13 and you can set up your own environment to mimic this. 

Descriptive statistics on streaming data
Computing descriptive statistics is generally one of the first things covered in statistics and 
data analytics courses. Descriptive statistics are measurements that data practitioners are 
very familiar with, as they allow you to summarize a dataset in a small set of indicators.

Why are descriptive statistics different on streaming 
data?
On regular datasets, you can use almost any statistical software to easily obtain descriptive 
statistics using well-known formulas. On streaming datasets, unfortunately, this is much 
less obvious. 

The problem with applying descriptive statistics on streaming data is that the formulas 
are made for finding fixed measurements. In streaming data, you continue to receive new 
data, which unfortunately may alter your values. When you do not have all the data of a 
variable, you cannot be certain about its value. In the following section, you will get an 
introduction to sampling theory, the domain that deals with estimating parameters from 
data samples.

Introduction to sampling theory
Before diving into descriptive statistics in streaming data, it is important to understand 
the basics of descriptive statistics in regular data. The domain that deals with the 
estimation of descriptive statistics using samples of the data is called sampling theory.

https://colab.research.google.com/
https://www.kaggle.com/code
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Comparing population and sample
In regular statistics, the concept of population and sample is very important. Let's have a 
look at the definitions before diving into it further:

• Individual: Individuals are the individual objects or people that are included in a 
study. If your study looks at products on a production line and you measure the 
characteristics of a product, then the individual is the product. If you are doing 
a study on website sales and you track data on each website visitor, then your 
individual is the website visitor.

• Population: A statistical population is generally defined as the pool of individuals 
from which a sample is drawn. The population contains any individual that would 
theoretically qualify to participate in a study. In the production line example, the 
population would be all the products. In the website example, the population would 
be all the website visitors.

• Sample: A sample is defined as a subset of the population on which you are going 
to execute your study. In most statistical studies, you work with a sample; you do 
not have data on all possible individuals in the world, but rather, you have a subset, 
which you hope is large enough. There are numerous statistical tools that help you 
to decide whether this is the case.

Population parameters and sample statistics
When computing descriptive statistics on a sample, they are called sample statistics. 
Sample statistics are based on a sample, and although they are generally reliable estimates 
of the population, they are not perfect about the population.

For the population, the term used is population parameters. They are accurate, and there 
is no measurement error here. However, they are, in most cases, impossible to measure, as 
you'll never have enough time and money to measure every individual in the population.

Sample statistics allow you to estimate population parameters.

Sampling distribution
The sampling distribution is the distribution of the statistics. Imagine that a population 
of website customers spends, on average, 300 seconds (5 minutes) on your website. If you 
were drawing 100 random samples of your website visitors, and you computed the mean 
of each of those samples, you'd probably end up with 100 different estimates.
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The distribution of those estimates is called the sampling distribution. It will follow a 
normal distribution in which the mean should be relatively close to the population mean. 
The standard deviation of the sampling distribution is called the standard error. The 
standard error is used to estimate the stability or representativeness of your samples.

Sample size calculations and confidence level
In traditional statistics, sample size calculations can be used to define the number of 
elements that you need to have in a sample for the sample to be reliable. You need to 
define a confidence level and a sample size calculation formula for your specific statistic. 
Together, they will allow you to identify the sample size needed for reliably estimating 
your population parameters using sample statistics.

Rolling descriptive statistics from streaming
In streaming analytics, you will have more and more data as time goes on. It would be 
possible to recompute the overall statistics at the reception of a new data point. At some 
point, new data points will have very little impact compared to a large number of data 
points in the past. If a change occurs in the stream, it will take time for this change to be 
reflected in the descriptive statistic, and this is, therefore, not generally the best approach.

The general approach for descriptive statistics on streaming data is to use a rolling window 
for computing and recomputing the descriptive statistics. Once you have decided on  
a definition of your window, you compute the statistics for all observations that are in 
your window.

An example can be to choose a window of the last 25 products. This way, every time a new 
product measurement comes into your analytical application, you compute the average of 
this product together with the 24 preceding products.

The more observations you have in your window, the less impact your last observation 
has. This can be great if you want to avoid false alarms, but it can be dangerous if you 
need every single product to be perfect. Choosing small numbers of individuals in your 
window will make your descriptive statistics vary heavily if a variation is present in your 
descriptive statistics.

Tuning the window period is a good exercise to do when trying to fine-tune your 
descriptive statistics. By trying out different approaches, you can find the method that 
works best for your use case.
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Exponential weight
Another tool that you can use for fine-tuning your descriptive statistics on streaming data 
is exponential weighting. Exponential weighting puts exponentially more weight on recent 
observations and less on past observations. This allows you to take in more historical 
observations without affecting the importance of recent observations.

Tracking convergence as an additional KPI
When tracking descriptive statistics on a stream of data, it is a possibility to report 
multiple time windows of your measurements. For example, you could build a dashboard 
that informs your clients of the averages of the day, but at the same time, you can report 
the averages of the last hour and the averages of the last 15 minutes.

By doing this, you may, for example, give your client the information that the day and 
hour went well in general (day and hour averages are according to specification), but 
in the last 15 minutes, your product starts to present problems, and the last 15 minutes' 
average is not according to specification. With this information, the operators can 
intervene quickly and stop or change the process according to their needs, without having 
to worry about the production earlier on in the day.

Overview of the main descriptive statistics
Let's now have a look at the most used descriptive statistics and see how you can adapt 
them to use a rolling window on any data stream. Of course, as you have seen in the 
previous chapter, streaming analytics can be executed on a multitude of tools. The 
important takeaway is to understand which descriptive analytics to use and to have a basis 
that can be adapted to different streaming input tools.

The mean
The first descriptive statistic that will be covered is the mean. The mean is the most 
commonly used measure of centrality.

Interpretation and use
Together with other measures of centrality, such as the median and the mode, its goal 
is to describe the center of the distribution of a variable. If the distribution is perfectly 
symmetrical, the mean, median, and mode will be equal. If there is a skewed distribution, 
the mean will be affected by the outliers and move in the direction of the skew or  
the outliers.
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Formula
The formula for the sample mean is the following:

In this formula, n is the sample size and x is the value of the variable in the sample.

Code
There are many Python functions that you can use for the mean. One of those is the 
numpy function called mean. You can see an example of it used here:

Code block 3-1

values = [10,8,12,11,7,10,8,9,12,11,10]

import numpy as np

np.mean(values)

You should obtain a result of 9.8181.

The median
The median is the second measure of the centrality of a variable or a distribution.

Interpretation and use
Like the mean, the median is used to indicate the center. However, a difference from the 
mean is that the median is not sensitive to outliers and is much less sensitive to skewed 
distributions.

An example where this is important is when studying the salaries of a country's 
population. Salaries are known to follow a strongly skewed distribution. Most people 
make between a minimum wage and an average wage. Few people make very high 
amounts of money. When computing the mean, it will be too high to represent the overall 
population, as it gets boosted upward by the high earners. Using the median is more 
sensible as it will more closely represent a lot of people.

The median represents the point where 50% of the people will earn less than this amount 
and 50% will earn more than this amount.

�̅�𝑥 =
∑ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1  
𝑛𝑛  
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Formula
The formula for the median is relatively complex to read, as it does not work with the 
actual values, but rather, it takes the middle value after ordering all the values from low to 
high. If there is an even number of values, there is no middle, so it will take the average of 
the two middle values:

Here, x is an ordered list and the brackets indicate indexing on this list.

Code
You can compute the median as follows:

Code block 3-2

values = [10,8,12,11,7,10,8,9,12,11,10]

import numpy as np

np.median(values)

The result of this computation should be 10.

The mode
The mode is the third commonly used measure of centrality in descriptive statistics. This 
section will explain its use and implementation in Python.

Interpretation and use
The mode represents the value that was present the most often in the data. If you have a 
continuous (numeric) variable, then you generally create bins to regroup your data before 
computing the mode. This way, you can make sure that it is representative.

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥) =

{ 
 
  𝑥𝑥 [𝑚𝑚 + 12 ] 𝑚𝑚𝑖𝑖 𝑚𝑚 𝑚𝑚𝑖𝑖 𝑜𝑜𝑚𝑚𝑚𝑚

𝑥𝑥 [𝑚𝑚2] + 𝑥𝑥 [
𝑚𝑚
2 + 1]

2 𝑚𝑚𝑖𝑖 𝑚𝑚 𝑚𝑚𝑖𝑖 𝑚𝑚𝑒𝑒𝑚𝑚𝑚𝑚
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Formula
The easiest way to find the mode is to count the number of occurrences per group or per 
value and take the value with the highest occurrences as the mode. This will work for 
categorical as well as numerical variables.

Code
You can use the following code to find the mode in Python:

Code block 3-3

values = [10,8,12,11,7,10,8,9,12,11,10]

import statistics

statistics.mode(values)

The obtained result should be 10.

Standard deviation
You will now see a number of descriptive statistics for variability, starting with the 
standard deviation.

Interpretation and use
The standard deviation is a commonly used measure for variability. Measures for 
variability show the spread around the center that is present in your data. For example, 
where the mean can indicate the average salary of your population, it does not tell you 
whether everyone is close to this value or whether everyone is very far away. Measures of 
variability allow you to obtain this information.

Formula
The sample standard deviation can be computed as follows:

𝑠𝑠 = √∑ (𝑥𝑥𝑖𝑖-�̅�𝑥)2𝑛𝑛
𝑖𝑖=1
𝑛𝑛 − 1  
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Code
You can compute the sample standard deviation as follows:

Code block 3-4

values = [10,8,12,11,7,10,8,9,12,11,10]

import numpy as np

np.std(values, ddof=1)

You should obtain a result of 1.66.

Variance
The variance is another measure of variability, and it is closely related to the standard 
deviation. Let's see how it works.

Interpretation and use
The variance is simply the square of the standard deviation. It is sometimes easier to work 
with the formula of variance, as it does not involve taking the square root. It is, therefore, 
easier to handle in some mathematical operations. The standard deviation is generally 
easier to use for interpretation.

Formula
The formula for variance is the following:

Code
You can use the following code for computing the sample variance:

Code block 3-5

values = [10,8,12,11,7,10,8,9,12,11,10]

import numpy as np

np.var(values, ddof=1)

𝑠𝑠2 =
∑ (𝑥𝑥𝑖𝑖-�̅�𝑥)2𝑛𝑛
𝑖𝑖=1
𝑛𝑛 − 1  
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The obtained result should be 2.76.

Quartiles and interquartile range
The third measure of variability that will be covered is the interquartile range (IQR). This 
will conclude the statistics for describing variability.

Interpretation and use
The IQR is a measure that is related to the median in some way. If you remember, the 
median is the point where 50% of the values are lower than it and 50% of the values are 
higher; it is really a middle point.

The same can be done with a 25/75% split instead of a 50/50% split. In that case, they  
are called quartiles. By computing the first quartile (25% is lower and 75% is higher)  
and the third quartile (75% is lower and 25% is higher), you can get an idea of the 
variability of your data as well. The difference between the third quartile and the first 
quartile is called the IQR.

Formula
The formula for the IQR is simply the difference between the third and first quartiles,  
as follows:

Code
You can use the following Python code to compute the IQR:

Code block 3-6

values = [10,8,12,11,7,10,8,9,12,11,10]

import scipy.stats

scipy.stats.iqr(values)

You should find an IQR of 2.5.
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Correlations
Correlation is a descriptive statistic for describing relations hips between multiple 
variables. Let's see how it works.

Interpretation and use
Now that you have seen multiple measures of centrality and variability, you will now 
discover a descriptive statistic that allows you to study relations hips between two 
variables. The main descriptive statistic for this is correlation. There are multiple  
formulas and definitions of correlation, but here, you will see the most common one: 
Pearson correlation.

The correlation coefficient will be -1 for strong negative correlation, 1 for strong positive 
correlation, 0 for no correlation, or somewhere in between.

Formula
The formula for Pearson's correlation coefficient is shown here:

Code
You can compute it easily in Python using the following code:

Code block 3-7

values_x = [10,8,12,11,7,10,8,9,12,11,10]

values_y = [12,9,11,11,8,11,9,10,14,10,9]

import numpy as np

np.corrcoef(values_x,values_y)

You should obtain a correlation matrix in which you can read that the correlation 
coefficient is 0.77. This indicates a positive correlation between the two variables.

Now that you have seen some numerical ways to describe data, it will be useful to discover 
some methods for visualizing this data in a more user-friendly way. The following section 
goes deeper into this.

𝑟𝑟 =
∑(𝑥𝑥𝑖𝑖-�̅�𝑥)(𝑦𝑦𝑖𝑖-�̅�𝑦)

√∑(𝑥𝑥𝑖𝑖-�̅�𝑥)2 ∑(𝑦𝑦𝑖𝑖-�̅�𝑦)2
 



Real-time visualizations     55

Real-time visualizations
In this part, you will see how to set up a simple real-time visualization using Plotly's Dash. 
This tool is a great dashboarding tool for data scientists, as it is easy to learn and does not 
require much except for a Python environment.

The code is a little bit too long to show in the book, but you can find the Python file 
(called ch3-realtimeviz.py) in the GitHub repository.

In the code, you can see how a simple real-time graph is built. The general setup of the 
code is to have an app. You define the layout in the app using HTML-like building blocks. 
In this case, the layout contains one div (one block of content) in which there is a graph.

The main component is the use of the Interval function in this layout. Using this 
will make the dashboard update automatically at a given frequency. It is fast enough to 
consider these as real-time updates.

The callback decorates the function that is written just below it (update_graph). By 
decorating it this way, the app knows that it has to call this function every time an update 
is done (triggered by Interval in the layout). The update_graph function returns an 
updated graph.

Opening the dashboard
Once you run the code on your local machine, you will see the following information:

Figure 3.1 – Output of Dash
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This link will give you access to the dashboard that is being updated in real time. It looks 
something like this:

Figure 3.2 – The Plotly dashboard

Comparing Plotly's Dash and other real-time 
visualization tools
There are many other data visualization tools out there. Popular examples are Power BI, 
QlikView, and Tableau. The great thing about Plotly's Dash is that it is super easy to  
get started with if you are already in a Python environment. It is free and does not  
require installation.

If you want to be a pro in business intelligence (BI), it is worth checking out other tools. 
Many of them have capacities for real-time updates, and the specific documentation of 
each tool will guide you to it.

When building dashboarding or data visualization systems, it is also important to consider 
your overall architecture. As discussed in the previous chapter, in many cases, you will 
have a data-generating system and an architecture that is able to manage this in real 
time. Just like any other analytics building block, you will need to make sure that your 
dashboard can be plugged into your data generating process, or you may need to build  
an in-between data store or data communication layer.

We will now move on to the next use case of descriptive statistics: building basic  
alerting systems.
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Building basic alerting systems
In the previous parts of this chapter, you have seen an introduction to descriptive statistics 
and visualization.

Basic alerting systems will be covered as the last data analysis use case. In this part, you 
will see how you can use basic alerting systems on streaming data. For this, you will see 
how you can leverage descriptive statistics together with business rules to automatically 
generate alerts in real time. Example methods for alerting systems are as follows:

• Alerting systems on extreme values

• Alerting systems on process stability

• Alerting systems on constant variability

• Statistical process control and Lean Six Sigma control charts

Alerting systems on extreme values
The first example for alerting and monitoring systems on streaming data is the use case 
that you have seen in earlier chapters: coding a business rule that sends an alert once 
observed values are outside of hardcoded boundaries.

This example was coded in previous chapters as follows:

Code block 3-9

import pandas as pd

data_batch = pd.DataFrame({

    'tempera-
ture': [10, 11, 10, 11, 12, 11, 10, 9, 10, 11, 12, 11, 9, 12, 
11],

    'pH': [5, 5.5, 6, 5, 4.5, 5, 4.5, 5, 4.5, 5, 4, 4.5, 5, 4.
5, 6]

})

data_batch
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You will see the following data being printed:

Figure 3.3 – The data batch

Let's now write the function and loop through the data to execute the function on each 
data point:

Code block 3-10

def super_simple_alert(datapoint):

  if datapoint['temperature'] < 10:

    print('this is a real time alert. Temp too low')

  if datapoint['pH'] > 5.5:

    print('this is a real time alert. pH too high')

data_iterable = data_batch.iterrows()

for i,new_datapoint in data_iterable:

  print(new_datapoint.to_json())

  super_simple_alert(new_datapoint)
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The resulting print output shows that a number of alerts have been launched:

Figure 3.4 – The printed results of your alerting system

This example is a great first step into alerting and monitoring systems: a common use case 
for streaming data. Let's see how you can build on this example to add more and more 
complex static logic to this.

Alerting systems on process stability (mean and 
median)
Rather than applying business logic to individual values, it may be better in some cases 
to add logic for averages. In many cases, it will not be necessary to send alerts if just one 
observation is out of specification. However, when the average of several products gets out 
of specification, you are likely to have a structural problem that needs to be solved.

You could think of coding such an example as follows:

Code block 3-11

import numpy as np

def super_simple_alert(hist_datapoints):

  print(hist_datapoints)

  if np.mean(hist_datapoints['temperature']) < 10:

    print('this is a real time alert. temp too low')
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  if np.mean(hist_datapoints['pH']) > 5.5:

    print('this is a real time alert. pH too high')

data_iterable = data_batch.iterrows()

# create historization for window

hist_temp = []

hist_ph = []

for i,new_datapoint in data_iterable:

  hist_temp.append([new_datapoint['temperature']])

  hist_ph.append([new_datapoint['pH']])

  hist_datapoint = {

      'temperature': hist_temp[-3:],

      'pH': hist_ph[-3:]

  }

  super_simple_alert(hist_datapoint)

In this example, you see that there is a windowed average computed on the last 10 
observations. This allows you to alert as soon as the average of the last three observations 
reaches a hardcoded alerting threshold. You should observe the following output:

Figure 3.5 – Improved print output
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You can observe that the fact of using the average of three observations makes it much less 
likely to receive an alert. If you were to use even more observations in your window, this 
would be reduced even more. Fine-tuning should depend on the business case.

Alerting systems on constant variability (std and 
variance)
You can do the same with variability. As discussed in the section on descriptive statistics, 
a process is often described by centrality and variability. Even if your average is within 
specifications, there may be a large variability; if variability is large, this may be a problem 
for you as well.

You can do alerting systems on variability using windowed computations of the mean. 
This can be used for a dashboard, but also for alerting systems and more.

You can code this as follows:

Code block 3-12

import numpy as np

def super_simple_alert(hist_datapoints):

  print(hist_datapoints)

  if np.std(hist_datapoints['temperature']) > 1:

    print('this is a real time alert. temp varia-
tions too high')

  if np.std(hist_datapoints['pH']) > 1:

    print('this is a real time alert. pH variations too high')

data_iterable = data_batch.iterrows()

# create historization for window

hist_temp = []

hist_ph = []

for i,new_datapoint in data_iterable:

  hist_temp.append([new_datapoint['temperature']])

  hist_ph.append([new_datapoint['pH']])

  hist_datapoint = {

      'temperature': hist_temp[-3:],

      'pH': hist_ph[-3:]

  }

  super_simple_alert(hist_datapoint)
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Note that the alerts are now not based on the average value, but on variability. You will 
receive the following output for this example:

Figure 3.6 – Even further improved print output

Basic alerting systems using statistical process control
If you want to go a step further with this type of alert system, you can use methods from 
statistical process control. This domain of statistics focuses on controlling a process or a 
production method. The main tool that stems from this domain is called control charts.

In control charts, you plot a statistic over time, but you add control limits. A standard 
control chart is the one in which you plot the sample average over time, and you add 
control limits based on standard deviation. You then count and observe a number of 
extreme values and when a certain number of repetitive events occur, you launch an alert.

You will find a link in the Further reading section for more details on control charts and 
statistical process control.

Summary
In this chapter, you have learned the basics of doing data analysis on streaming data. You 
have seen that doing descriptive statistics on data streams does not work the same as when 
doing descriptive statistics on batch data. Estimation theory from batch data can be used, 
but you have to window over data to get a larger or smaller window of historical data.
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Windowing settings can have a strong impact on your results. Larger windows will 
take into account more data and will be taking into account data further back in time. 
They will, however, be much less sensitive to the new data point. After all, the larger the 
window, the lesser impact one new data point has.

You have also learned how to build data visualizations using Plotly's Dash. This tool is 
great, as it is quite powerful and can still be used from a Python environment. Many other 
visualization tools exist, but the most important thing is to master at least one of them. 
This chapter has shown you the functional requirements for visualizing streaming data, 
and you'll be able to reproduce this on other data visualization tools if needed.

The last part of the chapter introduced statistical process control. Until now, you have 
been working with static rules or descriptive statistics for building simple alerting systems. 
Statistical process control is an interesting domain for building more advanced alerting 
systems that are still relatively easy to comprehend and implement.

In the next chapter, you will start discovering online machine learning. Once you get 
familiarized with online machine learning in general, you'll see, in later chapters, how 
you can replace static decision rules for alerting systems with machine learning-based 
anomaly detection models. The data analysis methods that you have seen in this chapter 
are an important first step in that direction.

Further reading 
• Estimation theory: https://en.wikipedia.org/wiki/Estimation_

theory

• Sampling: https://en.wikipedia.org/wiki/Sampling_(statistics)

• Windowing: https://softwaremill.com/windowing-in-big-data-
streams-spark-flink-kafka-akka/

• Plot live graphs using Python Dash and Plotly: https://www.geeksforgeeks.
org/plot-live-graphs-using-python-dash-and-plotly/

• Plotly Dash documentation: https://plotly.com/

• Control charts: https://en.wikipedia.org/wiki/Control_chart

• Engineering Statistics Handbook, Chapter 6.3 Univariate and Multivariate 
Control Charts: https://www.itl.nist.gov/div898/handbook/pmc/
section3/pmc3.htm

https://en.wikipedia.org/wiki/Estimation_theory
https://en.wikipedia.org/wiki/Estimation_theory
https://en.wikipedia.org/wiki/Sampling_(statistics)
https://softwaremill.com/windowing-in-big-data-streams-spark-flink-kafka-akka/
https://softwaremill.com/windowing-in-big-data-streams-spark-flink-kafka-akka/
https://www.geeksforgeeks.org/plot-live-graphs-using-python-dash-and-plotly/
https://www.geeksforgeeks.org/plot-live-graphs-using-python-dash-and-plotly/
https://plotly.com/
https://en.wikipedia.org/wiki/Control_chart
https://www.itl.nist.gov/div898/handbook/pmc/section3/pmc3.htm
https://www.itl.nist.gov/div898/handbook/pmc/section3/pmc3.htm




Part 2:  
Exploring Use Cases  
for Data Streaming

This section covers different machine learning techniques for streaming data, including  
a lot of online models as well as reinforcement learning.

This section comprises the following chapters:

• Chapter 4, Online Learning with River

• Chapter 5, Online Anomaly Detection

• Chapter 6, Online Classification

• Chapter 7, Online Regression

• Chapter 8, Reinforcement Learning





4
Online Learning 

with River
In this and the coming three chapters, you will learn how to work with a library for online 
machine learning called River. Online machine learning is a part of machine learning in 
which models are designed in such a way that they can update their learned model on the 
reception of any new data point.

Online machine learning is the opposite of offline machine learning, which is the regular 
machine learning that you are probably already aware of. In general, in machine learning, 
a model will try to learn a mathematical rule that can perform a certain task. This task is 
learned on the basis of a number of data points. The mathematics behind these tasks is 
based on statistics and algorithmics.

In this chapter, you will discover how to work with online machine learning, and you will 
discover multiple types of online machine learning. You will go more in depth into the 
differences between online and offline machine learning. You will also see how to build 
online machine learning models using River in Python.



68     Online Learning with River

This chapter covers the following topics:

• What is online machine learning?

• River for online learning

• A super simple example with River

• A second example with River

Technical requirements
You can find all the code for this book on GitHub at the following link: https://
github.com/PacktPublishing/Machine-Learning-for-Streaming-
Data-with-Python. If you are not yet familiar with Git and GitHub, the easiest  
way to download the notebooks and code samples is the following:

1. Go to the link of the repository.
2. Go to the green Code button.
3. Select Download ZIP.

When you download the ZIP file, unzip it in your local environment, and you will be able 
to access the code through your preferred Python editor.

Python environment
To follow along with this book, you can download the code in the repository and execute 
it using your preferred Python editor.

If you are not yet familiar with Python environments, I would advise you to check out 
Anaconda (https://www.anaconda.com/products/individual), which comes 
with the Jupyter Notebook and JupyterLabs, which are both great for executing notebooks. 
It also comes with Spyder and VSCode for editing scripts and programs.

If you have difficulty installing Python or the associated programs on your machine, you 
can check out Google Colab (https://colab.research.google.com/) or Kaggle 
Notebooks (https://www.kaggle.com/code), which both allow you to run Python 
code in online notebooks for free, without any setup to do.

Note
The code in the book will generally use Colab and Kaggle notebooks with 
Python version 3.7.13 and you can set up your own environment to mimic this. 

https://github.com/PacktPublishing/Machine-Learning-for-Streaming-Data-with-Python
https://github.com/PacktPublishing/Machine-Learning-for-Streaming-Data-with-Python
https://github.com/PacktPublishing/Machine-Learning-for-Streaming-Data-with-Python
https://www.anaconda.com/products/individual
https://colab.research.google.com/
https://www.kaggle.com/code
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What is online machine learning?
In machine learning, the most common way to train a model is to do a single training 
pass. The general steps in this approach are as follows:

1. Data preparation.
2. Create a train-test split.
3. Do model benchmarking and hyperparameter tuning.
4. Select the best model.
5. Move this model to production.

This approach is called offline learning.

With streaming data, you can often use this type of model very well. You can build the 
model once, deploy it, and use it for predicting your input stream. You can probably track 
the performance metrics of your model, and when the performance starts to change, you 
can do an update or retraining of your model, deploy the new version, and let it set in the 
production environment as long as it works.

Online machine learning is a branch of machine learning that contains models that 
work very differently. They do not learn a full dataset at once, but rather, update the 
learned model (the decision rules for prediction) through sequential steps. Using such an 
approach, you can automatically update your model that is in production; it continues to 
learn on new data.

How is online learning different from regular learning?
The practice of building online learning systems takes a different angle at the machine 
learning problem than the offline machine learning approach. With offline learning, there 
is a real possibility to test what a model has learned, whereas, for online learning systems, 
this can change at any moment.

For some use cases, it is impossible to use offline learning. An example is forecasting  
use cases. In general, for forecasting, you predict a value in the future. To do so,  
you use the most recent data available to train and retrain your model. In many 
forecasting applications, machine learning models are retrained every time a new  
forecast must be predicted.

Outlier detection is another example where offline learning can be less appropriate. If 
your model does not integrate each new data point, these data points cannot be used as 
reference cases against new values. This can be solved through offline learning as well, but 
online learning may be the more appropriate solution to tackle this use case.
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Advantages of online learning
Online learning has two main advantages:

• The first main advantage is that online learning algorithms can be updated. They 
can, therefore, learn in multiple passes. This way, a big dataset does not have to pass 
at once in a model but can be passed in multiple steps. This is a big advantage when 
the datasets are large, or when the computing resources are limited.

• The second advantage of online learning is that an online model can adapt to newer 
processes when updating: it is less fixed. Therefore, where an offline model can 
become obsolete when data trends change slightly over time, an online model can 
adapt to these changes and remain performant.

Challenges of online learning
However, there are also disadvantages to using online learning.

First, the concept is less widespread, and it will be a bit harder to find model 
implementations and documentation for online learning use cases.

Second, and more important, online learning has a risk of models learning things that 
you don't want them to learn or things that are wrong. With offline learning, you have 
much more control to validate what a model learns before pushing it to a production 
environment, whereas when pushing online learning to production environments, it may 
well continue to learn and decrease in performance due to the updates that it has learned.

Now that you understand the concept of online learning, let's now discover multiple types 
of online learning.

Types of online learning
Although there is no clearly defined distinction in types of online machine learning, 
it is good to consider at least the following three terms: incremental learning, adaptive 
learning, and reinforcement learning.

Incremental learning
Incremental learning methods are models that can be updated with a single observation 
at a time. As described previously, one of the main added values of online machine 
learning is this, as this is something that is not possible with standard offline learning.
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Adaptive learning
Just updating the model, however, may not be enough for the second important added 
value of online learning that was cited before. If you want a model to adapt well to more 
recent data, you will have to choose an adaptive online learning method. These methods 
deal well with any situation that would need a model to adapt, for example, new trends 
that appear in the underlying data before people even become aware of them.

Reinforcement learning
Reinforcement learning is not necessarily considered a subfield of online learning. 
Although the approach of reinforcement learning is different than the previously cited 
online learning approaches, it can be used for the same business problems. It is, therefore, 
important to learn about reinforcement learning as well. It will be covered in more depth 
in a later chapter. In the coming section, you will see how to use the River package in 
Python to build online machine learning models.

Using River for online learning
In this section, you will discover the River library for online learning. River is a Python 
library that is made specifically for online machine learning. Its code base is a result of the 
combination of the creme and the scikit-multiflow libraries. The goal of River is to 
become the go-to library for machine learning on streaming data.

In this example, you'll see how to train an online model on a well-known dataset. The 
steps that you will take throughout this example are the following:

1. Import the data.
2. Reclassify the data to obtain a binary classification problem.
3. Fit an online model for binary classification.
4. Improve the model evaluation using a train-test split.
5. Fit an online multiclass classification model using one-vs-rest.

Training an online model with River
For this example, you will use the well-known iris dataset. You can download it from the 
UCI machine learning repository, but you can also use the following code to download it 
directly into pandas.
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The steps to get to our goal are as follows:

1. Importing the data
2. Reclassifying the data into a binary problem
3. Converting the data into a suitable input format
4. Learning the model one data point at a time
5. Evaluating the model

We will get started using the following steps:

1. We will first import the dataset as seen here:

Code Block 4-1
#iris dataset classification example

import pandas as pd

colnames = ['sepal_length','sepal_width','petal_
length','petal_width','class']

data = pd.read_csv('https://archive.ics.uci.
edu/ml/machine-learning-databases/iris/iris.
data', names=colnames)

data.head()

The dataset looks as follows:

Figure 4.1 – The iris dataset
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The iris dataset is very commonly used, mainly in tutorials and examples. The 
dataset contains a number of observations of three different iris species, a type of 
flower. For each flower, you have the length and width of specific parts of the plant. 
You can use the four variables to predict the species of iris.

2. For this first model, you will need to convert the class column into a binary column, 
as you will use the LogisticRegression model from River, which does not 
support multiclass:

Code Block 4-2
data['setosa'] = data['class'] == 'Iris-setosa'

data['setosa']

This results in the following output:

Figure 4.2 – The series with Boolean data type

3. As a next step, we will write code to loop through the data to simulate a streaming 
data input. The X data should be in dictionary format, and y can be string, int, or 
Boolean. In the following code, you see a loop that stops after the first iteration, so 
that it prints one X and one y:

Code Block 4-3
# convert to streaming dataset

for i,row in data.sample(1).iterrows():

    X = row[['sepal_length', 'sepal_width', 'petal_
length', 'petal_width']]

    X = X.to_dict()

    

    y = row['setosa']
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    print(X)

    print(y)

    break

You can see that X has to be in a dictionary format, which is relatively uncommon 
for those who are familiar with offline learning. Then, y can be either Boolean, a 
string, or an int. This will look as follows:

Figure 4.3 – The x and y inputs for the model

4. Now, let's fit the model one by one. It is important to add .sample(frac=1) to 
avoid getting the data in order. If you do not add this, the model would first receive 
all the data from one class and then from the other classes. The model has a hard 
time dealing with that, so a random order should be introduced using the sample 
function:

Code Block 4-4
!pip install river

from river import linear_model

model =  linear_model.LogisticRegression()

for i,row in data.sample(frac=1).iterrows():

    X = row[['sepal_length', 'sepal_width', 'petal_
length', 'petal_width']]

    X = X.to_dict()

    y = row['setosa']

        

    model.learn_one(X, y)

5. Let's see how the predictions can be made on the training data. You can use 
predict_many to predict on a data frame, or else you can use predict_one:

Code Block 4-5
preds = model.predict_many(data[['sepal_length', 'sepal_
width', 'petal_length', 'petal_width']])

print(preds)
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The result looks as follows:

Figure 4.4 – The 150 Boolean observations

6. You can use the scikit-learn accuracy score to estimate the training accuracy 
of this model:

Code Block 4-6
from sklearn.metrics import accuracy_score

accuracy_score(data['setosa'], preds)

The obtained training accuracy, in this case, is 1, indicating that the model has perfectly 
learned the training data. Although the model has learned perfect prediction on the data 
that it has seen during the learning process, it is unlikely that the performance would 
be as good on new, unseen data points. In the next section, we will improve our model 
evaluation so that we avoid having overestimated performance metrics.

Improving the model evaluation
In the first example, there was no real relearning and updating.

In this example, we will update and track the accuracy throughout the learning process. 
You will also see how to keep a training and separate test set. You can use each data point 
for learning once it arrives, and you will use the updated model for the prediction of the 
next data point to arrive. This more closely resembles a streaming use case.

The steps to get there are as follows:

1. Train-test split.
2. Fit the model on the training data.
3. Check out the learning curve.
4. Compute performance metrics on the test data.
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We will get started as follows:

1. Let's start with a stratified train-test split on the data:

Code Block 4-7
# add a stratified train test split

from sklearn.model_selection import train_test_split

train,test = train_test_
split(data, stratify =data['setosa'])

2. You can now redo the same learning loop as before but on the training data. You can 
see that there is a list called correct to track how the learning has gone over time:

Code Block 4-8
from river import linear_model,metrics

model =  linear_model.LogisticRegression()

correct = []

for i,row in train.sample(frac=1).iterrows():

    X = row[['sepal_length', 'sepal_width', 'petal_
length', 'petal_width']]

    X = X.to_dict()

    

    y = row['setosa']

    

    model.predict_one(X)

    correct.append(y == model.predict_one(X))

    

    model.learn_one(X,y)



Using River for online learning     77

3. Let's plot the cumulative sum of correct scores over time, to see whether the 
model learned well from the beginning, or whether the model had fewer errors at 
the end of the learning curve:

Code Block 4-9
# this model is learning quite stable from the start

import matplotlib.pyplot as plt

import numpy as np

plt.plot(np.cumsum(correct))

You can see that the learning curve is quite linear; the accuracy stays more or less 
constant over time. It would have been expected to see an improvement in accuracy 
over time (more correct responses over time, with an exponential-like curve) if the 
ml was actually improving with training. You can check out the learning curve in 
the following graph:

Figure 4.5 – The learning curve

4. Finally, let's compute the accuracy on the test score to see how well the model 
generates out-of-sample data:

Code Block 4-10
# model was not so good on out of sample

accuracy_score(test['setosa'],model.predict_
many(test[['sepal_length', 'sepal_width', 'petal_
length', 'petal_width']]))
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The score that this obtained is 0.94, which is slightly lower than the 1.0 obtained 
on the train set. This teaches us that the model learned quite well.

In the coming chapters, you'll see more tricks and tools that can help improve models  
and accuracy.

Building a multiclass classifier using one-vs-rest
In the previous example, you have seen how to build a binary classifier. To do this, you 
reclassified the target variable into setosa-vs-rest. However, you would want to build one 
model that allows you to do all of the three classes at the same time. This can be done 
using River's OneVsRest classifier. Let's now see an example of this:

1. You can start with the same train-test split as before, except that now, you can 
stratify on the class:

Code Block 4-11
# add a stratified train test split

from sklearn.model_selection import train_test_split

train,test = train_test_
split(data, stratify =data['class'])

2. You then fit the model on the training data. The code is almost the same, except that 
you use OneVsRestClassifier around the call to LogisticRegression:

Code Block 4-12
from river import linear_model,metrics,multiclass

model =  multiclass.OneVsRestClassifier(linear_model.
LogisticRegression())

correct = []

for i,row in train.sample(frac=1).iterrows():

    X = row[['sepal_length', 'sepal_width', 'petal_
length', 'petal_width']]

    X = X.to_dict()

    

    y = row['class']

    

    model.predict_one(X)
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    correct.append(y == model.predict_one(X))

    model.learn_one(X,y)

3. When looking at the learning over time, you can see that the model has started 
learning better after around 40 observations. Before 40 observations, it had much 
fewer correct predictions than after:

Code Block 4-13
# this model predicts better after 40 observations

import matplotlib.pyplot as plt

import numpy as np

plt.plot(np.cumsum(correct))

The plot looks as follows. It clearly has a less steep slope in the first 40 observations 
and accuracy improves after that:

Figure 4.6 – A better learning curve

4. You can again use predict_many to see whether the predictions are any good. 
When doing predict, you will now not have True/False, but instead, have the 
string values of each of the iris types:

Code Block 4-14
model.predict_many(test[['sepal_length', 'sepal_
width', 'petal_length', 'petal_width']])
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This results in the following output:

Figure 4.7 – The multiclass target

5. The test accuracy of the model can be computed using the following code:

Code Block 4-15
# model scores 0.63 on the test data

from sklearn.metrics import accuracy_score

accuracy_score(test['class'],model.predict_
many(test[['sepal_length', 'sepal_width', 'petal_
length', 'petal_width']]))

The model obtains an accuracy score of 0.63 on the test data.

Summary
In this chapter, you have learned the basics of online machine learning in both theory and 
practice. You have seen different types of online machine learning, including incremental, 
adaptive, and reinforcement learning. 

You have seen a number of advantages and disadvantages of online machine learning. 
Among other reasons, you may be almost obliged to refer to online methods if quick 
relearning is required. A disadvantage is that fewer methods are commonly available, as 
batch learning remains the industry standard for now.
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Finally, you have started practicing and implementing online machine learning through  
a Python example on the well-known iris dataset. 

In the coming chapter, you'll go much deeper into online machine learning, focusing on 
anomaly detection. You'll see how machine learning can be used to replace the fixed rule 
alerting system that was built in previous chapters. In the chapters after that, you'll learn 
more about online classification and regression using River with examples that continue 
the learnings from the iris classification model from the current chapter.

Further reading
• UCI Machine Learning Repository: https://archive.ics.uci.edu/ml/

index.php

• River ML: https://riverml.xyz/latest/

• Online Machine Learning: https://en.wikipedia.org/wiki/Online_
machine_learning

• Incremental Learning: https://en.wikipedia.org/wiki/Incremental_
learning

• Reinforcement Learning: https://en.wikipedia.org/wiki/
Reinforcement_learning

• Logistic Regression: https://www.statisticssolutions.com/free-
resources/directory-of-statistical-analyses/what-is-
logistic-regression/

• One vs Rest: https://stats.stackexchange.com/questions/167623/
understanding-the-one-vs-the-rest-classifier

• Multiclass classification: https://en.wikipedia.org/wiki/Multiclass_
classification

• scikit-learn metrics: https://scikit-learn.org/stable/modules/
model_evaluation.html

https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php
https://riverml.xyz/latest/
https://en.wikipedia.org/wiki/Online_machine_learning
https://en.wikipedia.org/wiki/Online_machine_learning
https://en.wikipedia.org/wiki/Incremental_learning
https://en.wikipedia.org/wiki/Incremental_learning
https://en.wikipedia.org/wiki/Reinforcement_learning
https://en.wikipedia.org/wiki/Reinforcement_learning
https://www.statisticssolutions.com/free-resources/directory-of-statistical-analyses/what-is-logistic-regression/
https://www.statisticssolutions.com/free-resources/directory-of-statistical-analyses/what-is-logistic-regression/
https://www.statisticssolutions.com/free-resources/directory-of-statistical-analyses/what-is-logistic-regression/
https://stats.stackexchange.com/questions/167623/understanding-the-one-vs-the-rest-classifier
https://stats.stackexchange.com/questions/167623/understanding-the-one-vs-the-rest-classifier
https://en.wikipedia.org/wiki/Multiclass_classification
https://en.wikipedia.org/wiki/Multiclass_classification
https://scikit-learn.org/stable/modules/model_evaluation.html
https://scikit-learn.org/stable/modules/model_evaluation.html
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Online Anomaly 

Detection
Anomaly detection is a good starting point for machine learning on streaming data. As 
streaming data delivers a continuous stream of data points, use cases of monitoring live 
solutions are among the first that come to mind.

There are many domains in which monitoring is essential. In IT solutions, there is 
generally continuous logging of what happens in the systems, and those logs can be 
analyzed as streaming data. 

In the Internet of Things (IoT), sensor data is being collected on sometimes a large 
number of sensors. This data is then analyzed and used in real time.

Real-time and online anomaly detection can be of great added value in such use cases 
by finding values that are far from the expected range of measurements, or otherwise 
unexpected. Detecting them on time can have great value.

In this chapter, you will first get an in-depth overview of anomaly detection and the 
theoretical considerations to take into account when implementing it. You will then see 
how to implement online anomaly detection using the River package in Python.
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This chapter covers the following topics:

• Defining anomaly detection

• Use cases of anomaly detection

• Comparing anomaly detection and imbalanced classification

• Algorithms for detecting anomalies in River

• Going further with anomaly detection

Technical requirements
You can find all the code for this book on GitHub at the following link: https://
github.com/PacktPublishing/Machine-Learning-for-Streaming-
Data-with-Python. If you are not yet familiar with Git and GitHub, the easiest  
way to download the notebooks and code samples is the following:

1. Go to the link of the repository.
2. Go to the green Code button.
3. Select Download ZIP.

When you download the ZIP file, unzip it in your local environment, and you will be able 
to access the code through your preferred Python editor.

Python environment
To follow along with this book, you can download the code in the repository and execute 
it using your preferred Python editor.

If you are not yet familiar with Python environments, I would advise you to check out 
Anaconda (https://www.anaconda.com/products/individual), which comes 
with Jupyter Notebooks and JupyterLabs, which are both great for executing notebooks. It 
also comes with Spyder and VSCode for editing scripts and programs.

If you have difficulty installing Python or the associated programs on your machine, you 
can check out Google Colab (https://colab.research.google.com/) or Kaggle 
Notebooks (https://www.kaggle.com/code), which both allow you to run Python 
code in online notebooks for free, without any setup to do.

https://github.com/PacktPublishing/Machine-Learning-for-Streaming-Data-with-Python
https://github.com/PacktPublishing/Machine-Learning-for-Streaming-Data-with-Python
https://github.com/PacktPublishing/Machine-Learning-for-Streaming-Data-with-Python
https://www.anaconda.com/products/individual
https://colab.research.google.com/
https://www.kaggle.com/code
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Defining anomaly detection
Let's start by creating an understanding of what anomaly detection is. Also called outlier 
detection, anomaly detection is the process of identifying rare observations in a dataset. 
Those rare observations are called outliers or anomalies.

The goal of anomaly detection is to build models that can automatically detect outliers 
using statistical methods and/or machine learning. Such models can use multiple variables 
to see whether an observation should be considered an outlier or not.

Are outliers a problem?
Outliers occur in many datasets. After all, if you consider a variable that follows a normal 
distribution, it is normal to see data points far away from the mean. Let's consider a standard 
normal distribution (a normal distribution with mean 0 and standard deviation 1):

Code Block 5-1

import matplotlib.pyplot as plt

import numpy as np

import scipy.stats as stats

x = np.linspace(-4,4, 100)

plt.plot(x, stats.norm.pdf(x, 0, 1))

You can see the resulting figure as follows:

Figure 5.1 – The normal distribution
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This standard normal distribution has most of its observations around 0. However, it is 
normal to observe some observations in the tails of the distribution. If you have a variable 
that really follows this distribution, and your sample size is big enough, having some 
observations far away from the center cannot really be considered something bad.

In the following code, you see how a sample of 10 million observations is drawn from  
a standard normal distribution:

Code Block 5-2

import numpy as np

import matplotlib.pyplot as plt

data = np.random.normal(size=10000000)

plt.hist(data, bins=25)

The data follows the normal curve quite well. You can see this in the following graph:

Figure 5.2 – The normal distribution histogram

Now, let's see what the highest and lowest values of this sample are by using the  
following code:

Code Block 5-3

min(data), max(data)

In the current draw, a minimum of 5.11 and a maximum of 5.12 were observed. Now, 
are those outliers or not? The answer is complicated. Of course, the two values are perfectly 
within the range of the normal distribution. On the other hand, they are extreme values. 
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This example illustrates that defining an outlier is not always easy, and needs careful 
consideration for your specific use case. We will now see a number of use cases of  
anomaly detection.

Exploring use cases of anomaly detection
Before moving on to some specific algorithms for anomaly detection, let's first consider 
some use cases that are often done with anomaly detection.

Fraud detection in financial institutions
A very common use case for anomaly detection is the detection of fraud in financial 
institutions. Banks generally have a lot of data, as almost everyone has one or more bank 
accounts that are used on a regular basis. All these usages generate a huge amount of data 
that can help banks to improve their services and their profits. Fraud detection is a key 
component of data science applications in banks, together with many other use cases.

A common use case for fraud detection is to automatically detect credit card fraud. 
Imagine that your card or card details have been stolen and someone is fraudulently using 
them. This leads to fraudulent transactions, which could be automatically detected by a 
machine learning algorithm. The bank could then automatically block your card and ask 
you to validate whether it was you, or someone fraudulently making these payments.

This is both in the interest of the bank and of the user, so it is a great use case for anomaly 
detection. Other companies that work with credit card and payment data may also use 
these methods.

Streaming models are great for fraud detection. There is generally a huge amount of data 
that comes in in a continuous stream of payments and other data. Streaming models allow 
you to take action directly when a fraud situation occurs, rather than waiting for the next 
batch to be launched.

If you want to read more about fraud detection in financial institutions, you can check out 
the following links:

• https://www.miteksystems.com/blog/how-does-machine-
learning-help-with-fraud-detection-in-banks 

• https://www.sas.com/en_us/software/detection-
investigation-for-banking.html

https://www.miteksystems.com/blog/how-does-machine-learning-help-with-fraud-detection-in-banks
https://www.miteksystems.com/blog/how-does-machine-learning-help-with-fraud-detection-in-banks
https://www.sas.com/en_us/software/detection-investigation-for-banking.html
https://www.sas.com/en_us/software/detection-investigation-for-banking.html
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Anomaly detection on your log data
A second use case for anomaly detection is log analysis. Many software applications 
generate huge amounts of logs containing all types of information on the execution of 
programs. These logs are often stored temporarily or long-term for further analysis. In 
some cases, these analyses may be manual searches of specific information about what 
happened at some point in software, but at other times they may be automated log 
treatment programs.

One of the difficulties with anomaly detection in logs is that log data is generally very 
unstructured. Often, they are just a bunch of printed statements one after the other in a 
text file. It is very hard to make sense of this data.

If you succeed in the challenge of structuring and categorizing your log data correctly, 
you can then use machine learning techniques to automatically detect problems with the 
execution of your software. This allows you to take action straight away.

Using streaming analysis rather than batch analysis is important here as well. Some 
software is mission-critical, and downtime often means problems for the company. These 
can be different types of problems, including contractual problems and loss of revenue. If 
a company can automatically detect bugs, this allows them to move fast and quickly repair 
the problems. The faster a problem is repaired, the fewer problems for the company.

For deeper use case literature on anomaly detection on log data, you can have a look at the 
following links:

• https://www.zebrium.com/blog/using-machine-learning-to-
detect-anomalies-in-logs

• https://arxiv.org/abs/2202.04301

Fault detection in manufacturing and production lines
An example of fault detection in production lines is the business of industrial food 
production. Many production lines are almost fully automated, meaning that there is 
almost no human intervention between the input of raw products and the output of 
finalized products. The risk of this is that defects might be occurring that cannot be 
accepted as final products.

The use of sensor data on production lines can strongly help in detecting anomalies in 
production. When a production line has some parameters that go wrong, sensors, in 
combination with streaming systems and real-time alerting systems, can allow you to stop 
the production of faulty products immediately. This can save a lot of money, as producing 
waste is very costly.

https://www.zebrium.com/blog/using-machine-learning-to-detect-anomalies-in-logs
https://www.zebrium.com/blog/using-machine-learning-to-detect-anomalies-in-logs
https://arxiv.org/abs/2202.04301
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Using streaming and real-time analytics here is also important. The longer you take to 
respond to a problem, the more waste you produce and the more money is lost. There is a 
huge return on investment to gain from implementing real-time and streaming analytics 
systems in manufacturing and production lines.

The following links will allow you to learn more about this use case:

• https://www.scienced irect.com/science/article/pii/
S2212827119301908

• https://www.merl.com/publications/docs/TR2018-097.pdf

Hacking detection in computer networks (cyber 
security)
Automated threat detection for cyber security is another great use case of anomaly 
detection. Just like the other use cases, positive occurrences are very rare compared to 
negative cases. The importance of those positive cases, however, is far more impactful than 
the negative ones.

With recent developments, there is a much higher impact of cyber security problems and 
leaks for companies than before. Personal data can be sold for a large amount of money 
and hackers often try to steal this information thinking that they can remain anonymous 
behind their computers.

Threat and anomaly detection systems are automated systems using machine learning to 
detect behavior that is not normal and that may represent intrusions. If companies can 
react quickly to such events happening, they can avoid large public shaming campaigns 
and potential lawsuits costing lots of money.

Streaming and real-time systems are crucial here as well, as leaving as little time as 
possible for intruders to act will strongly reduce the risk of any cyber criminality 
happening in your organization.

The following two articles give a good deep dive into such use cases:

• https://securityboulevard.com/2021/07/what-is-anomaly-
detection-in-cybersecurity/

• https://www.xenonstack.com/insights/cyber-network-security

https://www.scienced irect.com/science/article/pii/S2212827119301908
https://www.scienced irect.com/science/article/pii/S2212827119301908
https://www.merl.com/publications/docs/TR2018-097.pdf
https://securityboulevard.com/2021/07/what-is-anomaly-detection-in-cybersecurity/
https://securityboulevard.com/2021/07/what-is-anomaly-detection-in-cybersecurity/
https://www.xenonstack.com/insights/cyber-network-security
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Medical risks in health data
The medical world has seen a large number of inventions over the last years. Part of this is 
in personal tools such as smart watches and other connected health devices that allow you 
to measure your own health KPIs in real time. Other use cases can be found in hospitals 
and other professional health care applications.

When anomalies occur in your health KPIs, it is often of utmost importance to intervene 
straight away. Health KPI signals can often occur even before we, as humans, start to 
notice that our health is deteriorating. Even if it is shortly after an event happens, the 
information will be able to get you the right care without spending much time looking for 
resources on the causes of your problem.

In general, most of your health metrics will be good, or at least acceptable, until that one 
metric tells you that something is really going wrong and you need help. In such scenarios, 
it is important to work with streaming analytics rather than batch analytics. After all, if the 
data arrives the next hour or the next day, it may well be too late for you. This is another 
strong argument for using streaming analytics rather than batch analytics.

You can read more about this over here:

• https://medinform.jmir.org/2021/5/e27172/

• https://arxiv.org/pdf/2012.02364.pdf

Predictive maintenance and sensor data
The last use case that will be discussed here is the use case of predictive maintenance. 
Many companies have critical systems that need preventive maintenance; if something 
breaks, this will cost a lot of money or even worse.

An example is the aviation industry. If an airplane crashes, this costs a lot of lives. Of 
course, no company can predict all anomalies, but any anomaly that could be detected 
before a crash happens would be a great win.

Anomaly detections can be used for predictive maintenance in many sectors that have 
comparable problems; if you can predict that your critical system will fail soon, you can have 
just enough time to do maintenance on the part that needs it and avoid larger problems.

Predictive maintenance can sometimes be done in batch, but it can also benefit from 
streaming. It all depends on the amount of time you have between detecting an anomaly 
and the intervention being needed.

https://medinform.jmir.org/2021/5/e27172/
https://arxiv.org/pdf/2012.02364.pdf
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If you have a predictive maintenance model that predicts airplane engine failure between 
now and 30 minutes, you have a large need to get this data to your pilot as soon as 
possible. If you have predictive systems that tell you that a part needs changing in the 
coming month, you can probably use batch analytics as well.

To read more about this use case, you can check out the following links:

• https://www.knime.com/blog/anomaly-detection-for-
predictive-maintenance-EDA

• https://www.e3s-conferences.org/articles/e3sconf/
pdf/2020/30/e3sconf_evf2020_02007.pdf

In the next section, you will see how anomaly detection models compare to imbalanced 
classification.

Comparing anomaly detection and imbalanced 
classification
For detecting positive cases against negative cases, the standard go-to family of methods 
would be classification. For the problems described, as long as you have historical data 
on at least a few positive and negative cases, you can use classification algorithms. 
However, you have a very common problem: there are only very few observations that are 
anomalies. This is a problem that is generally known as the problem of imbalanced data.

The problem of imbalanced data
Imbalanced datasets are datasets in which the target class has very unevenly distributed 
occurrences. An often-occurring example is website sales: among 1,000 visitors, you often 
have at least 900 visitors that are just watching and browsing, as opposed to maybe 100 
who actually buy something.

Using classification methods carelessly on imbalanced data is prone to errors. Imagine 
that you fit a classification model that needs to predict for each website visitor whether 
they will buy something. If you create a very bad model that only predicts non-buying for 
every visitor, then you will still be right for 900 out of the 1,000 visitors and your accuracy 
metric will be 90%.

There are a number of standard approaches against this imbalanced data, including using 
the F1 score and using SMOTE oversampling.

https://www.knime.com/blog/anomaly-detection-for-predictive-maintenance-EDA
https://www.knime.com/blog/anomaly-detection-for-predictive-maintenance-EDA
https://www.e3s-conferences.org/articles/e3sconf/pdf/2020/30/e3sconf_evf2020_02007.pdf
https://www.e3s-conferences.org/articles/e3sconf/pdf/2020/30/e3sconf_evf2020_02007.pdf
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The F1 score
The F1 score is a great replacement for the accuracy score in cases of unbalanced data. 
Accuracy is computed as the number of correct predictions divided by the total number of 
predictions made.

This is the formula for accuracy:

The F1 score, however, takes into account the precision and recall of your model. The 
precision of a model is the percentage of predicted positives that are actually correct. The 
recall of your model shows the percentage of positives that you were actually able to detect.

This is the formula of precision:

This is the formula of recall:

The F1 score combines those two into one metric, using the following formula:

Using this metric for evaluation, you will avoid interpreting very bad models as good 
models, especially in the case of imbalanced data.

SMOTE oversampling
SMOTE oversampling is the second method that you can use for counteracting imbalance 
in your data. It is a method that will create fake data points that strongly resemble the data 
points in your positive class. By creating a number of data points, your model will be able 
to learn much better about the positive class, and by using the original positives as the 
source, you guarantee that the newly generated data points are not too far off.

Anomaly detection versus classification
Although imbalanced classification problems can sometimes work well for anomaly 
detection problems, there is a reason that anomaly detection is treated as a separate 
category of machine learning.

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = # 𝑜𝑜𝑜𝑜 𝐴𝐴𝑜𝑜𝐴𝐴𝐴𝐴𝑟𝑟𝐴𝐴𝑟𝑟 𝑝𝑝𝐴𝐴𝑟𝑟𝑝𝑝𝑝𝑝𝐴𝐴𝑟𝑟𝑝𝑝𝑜𝑜𝑝𝑝𝑝𝑝
# 𝑜𝑜𝑜𝑜 𝑟𝑟𝑜𝑜𝑟𝑟𝐴𝐴𝑡𝑡 𝑝𝑝𝐴𝐴𝑟𝑟𝑝𝑝𝑝𝑝𝐴𝐴𝑟𝑟𝑝𝑝𝑜𝑜𝑝𝑝𝑝𝑝  

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = # 𝑃𝑃𝑜𝑜 𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
# 𝑃𝑃𝑜𝑜 𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + # 𝑃𝑃𝑜𝑜 𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = # 𝑜𝑜𝑜𝑜 𝑇𝑇𝑇𝑇𝑇𝑇𝑅𝑅 𝑃𝑃𝑜𝑜𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃
# 𝑜𝑜𝑜𝑜 𝑇𝑇𝑇𝑇𝑇𝑇𝑅𝑅 𝑃𝑃𝑜𝑜𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃 + # 𝑜𝑜𝑜𝑜 𝐹𝐹𝑅𝑅𝑅𝑅𝑃𝑃𝑅𝑅 𝑁𝑁𝑅𝑅𝑁𝑁𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃 

𝐹𝐹1 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 2 ∗ 𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑃𝑃 ∗ 𝑅𝑅𝑆𝑆𝑆𝑆𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑃𝑃 + 𝑅𝑅𝑆𝑆𝑆𝑆𝑅𝑅𝑅𝑅𝑅𝑅 
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The main difference is in the importance of understanding what the positive (anomaly) 
class looks like. In classification models, you want a model that is easily able to distinguish 
between two (positives and negatives) or more classes. For this to work, you want your 
model to learn what each class looks like. The model will search for variables that describe 
one class, and for other variables or values that describe the other class.

In anomaly detection, you don't really care what the anomaly class looks like. What you 
need much more, is your model to learn what is normal. As long as your model has a very 
good understanding of the normal, negative class, it will be able to state normal versus 
abnormal quite well. This can be an anomaly in any direction and in any sense of the 
word. It is not needed for the model to have seen such a type of anomaly before, just to 
know that it is not normal.

In the case of a first anomaly, a standard classification model would not know what this 
observation should be classified into. If you're lucky, it could go into the anomaly class,  
but you have no reason to believe it will. However, an anomaly detection model that 
focuses on what it knows versus what it does not know would be able to detect this 
anomaly as something that it has not seen before and, therefore, class it as an anomaly.

In the next section, you will see a number of algorithms for anomaly detection that are 
available in Python's River package.

Algorithms for detecting anomalies in River
In this chapter, you will again use River for online machine learning algorithms. There 
are other libraries out there, but River is a very promising candidate for being the go-to 
Python package for online learning (except for reinforcement learning).

You will see two of the online machine learning algorithms for anomaly detection that 
River currently (version 0.9.0) contains, as follows:

• OneClassSVM: An online adaptation of the offline version of One-Class SVM

• HalfSpaceTrees: An online adaptation of Isolation Forests

You will also see how to work with the constant thresholder and the quantile thresholder.

The use of thresholders in River anomaly detection
Let's first look at the use of thresholders, as they will be wrapped around the actual 
anomaly detection algorithms. 
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Anomaly detection algorithms will generally return a score between 0 and 1 to indicate to 
the model to what extent the observation is an anomaly. Scores closer to 1 are more likely 
to be an outlier, and scores closer to 0 are considered more normal.

In practice, you need to decide on a threshold to state for each observation whether you 
expect it to be an outlier. To convert the continuous 0 to 1 scale into a yes/no answer, you 
use a thresholder. 

Constant thresholder
The constant thresholder is the simplest approach that you would intuitively come up 
with. You will give a constant value that will split observations with a continuous (0 to 1) 
anomaly score into yes/no anomalies based on being higher or lower than the constant.

As an example, if you specify a value of 0.95 to be your constant threshold, every 
observation with an anomaly higher than that will be considered an anomaly, and every 
data point that is scored lower than that is not considered an anomaly.

Quantile thresholder
The quantile thresholder is slightly more advanced. Rather than a constant, you specify 
a quantile. You have seen quantiles before in the chapter on descriptive statistics. A 
0.95 quantile means that 95% of the observations are below this value and 5% of the 
observations are above it.

Imagine that you used a constant threshold of 0.95, but the model has detected no points 
above 0.95. In this case, the constant thresholder would split no observations at all into 
the anomaly class. The quantile thresholder of 0.95 would still give you exactly 5% of 
your observations as anomalies.

The preferred behavior will depend on your use case, but at least you have the two options 
at the ready for your anomaly detection in River.

Anomaly detection algorithm 1 – One-Class SVM
Let's now move on to the first anomaly detection algorithm: One-Class SVM. You'll first 
see a general overview of how One-Class SVM works for anomaly detection. After that, 
you'll see how it is adapted for an online context in River and you'll do a Python use case 
using One-Class SVM in Python.
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General use of One-Class SVM on anomaly detection
One-Class SVM is an unsupervised outlier detection algorithm based on the Support 
Vector Machine (SVM) classification algorithm.

SVMs are commonly used models for classification or other supervised learning. In 
supervised learning, they are known to be great for using the kernel trick, which maps  
the inputs into high-dimensional feature spaces. With this process, SVMs are able to 
generate non-linear classification.

As described earlier, anomaly detection algorithms need to understand what is normal, 
but they don't have to understand the non-normal classes. The One-Class SVM is, 
therefore, an adaptation of the regular SVMs. In regular, supervised SVMs, you need to 
specify the classes (target variable), but in One-Class SVM, you act like all the data is in  
a single class.

Basically, the One-Class SVM will just fit an SVM in which it tries to fit a model that 
best predicts all of the variables as the same target class. When the model fits well, the 
maximum of individuals will have a low error in their prediction. 

Individuals with a high error score for the best-fitting model are difficult to predict using 
the same model as for the other individuals. You could consider that they may need 
another model and, therefore, hypothesize that the individuals do not come from the same 
data-generating process. They may well, therefore, be anomalies.

The error is used as a thresholding score to split individuals. Individuals with a high 
error score can be classified as anomalies and individuals with a low error score can be 
considered normal. This split is generally done with a quantile threshold, which was 
introduced earlier.

Online One-Class SVM in River
The OneClassSVM model in River is described in the documentation as a stochastic 
implementation of the One-Class SVM and it will not, unfortunately, perfectly match the 
offline definition of the algorithm. If it is important for your use case to find exact results, 
you could try out online and offline implementations and see how much they differ. 

In general, outlier detection is an unsupervised task, and it is hard to be totally sure 
about the final answer and precision of your models. This is not a problem as long as you 
monitor results and take KPI selection and tracking of your business results seriously.
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Application on a use case
Let's now apply the online training process of a One-Class SVM using River.

For this example, let's create our own dataset so that we can be sure of the data that should 
be considered an outlier or not:

1. Let's create a uniform distribution variable with 1,000 observations between 0 and 1:

Code Block 5-4
import numpy as np

normal_data = np.random.rand(1000)

2. The histogram of the current run can be prepared as follows, but it will change due 
to randomness:

Code Block 5-5
import matplotlib.pyplot as plt

plt.hist(normal_data)

The resulting plot will show the following histogram:

Figure 5.3 – Plot of the normal data
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3. As we know this distribution very well, we know what to expect: any data point 
between 0 and 1 is normal and every data point outside 0 to 1 is an outlier. Let's 
now add 1% of outliers to the data. Let's make 0.5% of easy-to-detect outliers 
(random int between 2 and 3 and between -1 and -2), which is very far away from 
our normal distribution. Let's also make 0.5% of our outliers a bit harder to detect 
(between 0 and -1 and between 1 and 2).

This way we can challenge the model and see how well it performs:

Code Block 5-6
hard_to_detect = list(np.random.
uniform(1,2,size=int(0.005*1000))) + \

                  list(np.random.uniform(0,-
1,size=int(0.005*1000)))

easy_to_detect = list(np.random.
uniform(2,3,size=int(0.005*1000))) + \

                  list(np.random.uniform(-1,-
2,size=int(0.005*1000)))

4. Let's put all that data together and write code to deliver it to the model in a 
streaming fashion, as follows:

Code Block 5-7
total_data = list(normal_data) + hard_to_detect + easy_
to_detect

import random

random.shuffle(total_data)

for datapoint in total_data:

  pass
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5. Now, the only thing remaining to do is to add the model into the loop:

Code Block 5-8
# Anomaly percentage for the quantile thresholder

expected_percentage_anomaly = 20/1020

expected_percentage_normal = 1 - expected_percentage_
anomaly

6. Here, you can fit the model:

Code Block 5-9
!pip install river

from river import anomaly

model = anomaly.QuantileThresholder(

    anomaly.OneClassSVM(),

    q=expected_percentage_normal

    )

for datapoint in total_data:

    model = model.learn_one({'x': datapoint})

When running this code, you have now trained an online One-Class SVM on our 
synthetic data points! 

7. Let's try to get an idea of how well it worked. In this following code, you see how to 
obtain the scores of each individual and the assignment to the classes:

Code Block 5-10
scores = []

for datapoint in total_data:

    scores.append(model.score_one({'x': datapoint}))
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8. As we know the actual result, we can now compare whether the answers were right. 
You can use the following code for that:

Code Block 5-11
import pandas as pd

results = pd.DataFrame({'data': total_data 
, 'score': scores})

results['actual_ 
outlier'] = (results['data'] > 1 ) | (results 
['data'] < 0)

# there are 20 actual outliers

results['actual_outlier'].value_counts()

The results are shown here:

Figure 5.4 – The results of Code Block 5-11

9. The following code block will compute the value counts of what the algorithm  
has detected:

Code Block 5-12
# the algo detected 22 outliers

results['score'].value_counts()

The following figure shows that 22 outliers were detected:

Figure 5.5 – The results of Code Block 5-12
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10. We should now compute how many of the detected outliers are actual outliers and 
how many are not actual outliers. This is done in the following code block:

Code Block 5-13
# in the 22 detected otuliuers,  
10 are actual outliers, but 12  
are not actually outliers

results.groupby('actual_outlier') 
['score'].sum()

The result is that out of the 22 detected outliers, 10 are actual outliers, but 12 are not 
actually outliers. This can be seen in the following figure:

Figure 5.6 – The results of Code Block 5-13

The obtained result is not too bad: at least some of the outliers were detected correctly,  
and this could be a good minimum viable product to start automating anomaly detection 
for this particular use case. Let's see whether we can beat it with a different anomaly 
detection algorithm!

Anomaly detection algorithm 2 – Half-Space-Trees
The second main anomaly detection algorithm that you'll see here is the online alternative 
to Isolation Forests, a commonly used and performant outlier detection algorithm.

General use of Isolation Forests in anomaly detection
Isolation Forests work a bit differently than most anomaly detection algorithms. 
As described throughout this chapter, many models do anomaly detection by first 
understanding the normal data points and then deciding whether a data point is relatively 
similar to the other normal points or not. If not, it is considered an outlier.

Isolation Forests are a great invention, as they work the other way around. They try to 
model everything that is not normal, and they try to isolate those points from the rest.

In order to isolate observations, the Isolation Forest will randomly select features and  
then split the feature between the minimum and the maximum. The number of splits 
required to isolate a sample is considered a good description of the isolation score of  
an observation. 
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If it is easy to isolate it (short path to isolation, equivalent to having little splits to  
isolate the point), then it is probably a relatively isolated data point, and we could  
class it as an outlier.

How does it change with River?
In River, the model has to train online, and they had to make some adaptations to make  
it work. The fact that some adaptations have been made is the reason for callling the 
model HalfSpaceTrees in River.

As something to keep in mind, the anomalies have to be spread out in the dataset in order 
for the model to work well. Also, the model needs all values to be between 0 and 1.

Application of Half-Space-Trees on an anomaly detection use case
We will implement this as follows:

1. Let's now apply Half-Space-Trees to the same, univariate use case and see  
what happens:

Code Block 5-14
from river import anomaly

model2 = anomaly.QuantileThresholder(

    anomaly.HalfSpaceTrees(),

    q=expected_percentage_normal

    )

for datapoint in total_data:

    model2 = model2.learn_one({'x': 
 datapoint})

scores2 = []

for datapoint in total_data:

    scores2.append(model2.score_one({'x' 
: datapoint}))

    

import pandas as pd

results2 = pd.DataFrame({'data': total_ 
data, 'score': scores2})

results2['actual_outlier'] = (results2 
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['data'] > 1 ) | (results2['data'] < 0)

# there are 20 actual outliers

results2['actual_outlier'].value_counts()

The results of this code block can be seen in the following figure. It appears that 
there are 20 actual outliers:

Figure 5.7 – The results of Code Block 5-14

2. You can now compute how many outliers the model detected using the  
following code:

Code Block 5-15
# the algo detected 29 outliers

results2['score'].value_counts()

It appears that the algorithm detected 29 outliers. This can be seen in the  
following figure:

Figure 5.8 – The results of Code Block 5-15

3. We will now compute how many of those 29 detected outliers were actually outliers 
to see whether our model is any good:

Code Block 5-16
# the 29 detected outliers are not actually outliers

results2.groupby('actual_outlier')['score'].sum()

The results show that our 29 detected outliers were not really outliers, indicating 
that this model is not a good choice for this task. There is really no problem with 
that. After all, this is the exact reason to do model benchmarking:

Figure 5.9 – The results of Code Block 5-16
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As you can see, this model is less performant in the current use case. In conclusion, the 
One-Class SVM performed better at identifying anomalies in our sample of 1,000 draws 
of a uniform distribution on the interval 0 to 1.

Going further with anomaly detection
To go further with anomaly detection use cases, you can try out using different datasets 
or even a dataset of your own use case. As you have seen in the example, data points are 
inputted as a dictionary. In the current example, you used univariate data points: only one 
entry in the dictionary.

In practice, you generally have multivariate problems, and you would have multiple 
variables in your input. Models may be able to fit better in such use cases.

Summary
In this chapter, you have learned how anomaly detection works, both in streaming and 
non-streaming contexts. This category of machine learning models takes a number of 
variables about a situation and uses this information to detect whether specific data points 
or observations are likely to be different from the others.

You have gotten an overview of different use cases for this. Some of those are the 
monitoring of IT systems, or production line sensor data in manufacturing. Whenever  
it is problematic to have a data point that is too different from the others, anomaly 
detection is of great added value.

You have finished the chapter by implementing a model benchmark in which you have 
benchmarked two online anomaly detection models from the River library. You have seen 
one model being able to detect a part of the anomalies, and the other model having much 
worse performances. This has introduced you not only to anomaly detection but also to 
model benchmarking and model evaluation.

In the next chapter, you will see even more on those topics. You will be working on online 
classification models, and you will again see how to implement model benchmarking and 
metrics, but this time, for classification rather than anomaly detection. As you have seen 
in this chapter, classification can sometimes be used for anomaly detection as well, making 
the two use cases related to each other.
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Further reading
• Anomaly Detection: https://en.wikipedia.org/wiki/Anomaly_

detection

• River ML Constant Thresholder: https://riverml.xyz/latest/api/
anomaly/ConstantThresholder/

• River ML Quantile Thresholder: https://riverml.xyz/latest/api/
anomaly/QuantileThresholder/

• Support Vector Machine: https://en.wikipedia.org/wiki/Support-
vector_machine

• Scikit Learn One Class SVM: https://scikit-learn.org/stable/
modules/generated/sklearn.svm.OneClassSVM.html

• River ML One Class SVM: https://riverml.xyz/latest/api/anomaly/
OneClassSVM/

• Isolation Forest: https://en.wikipedia.org/wiki/Isolation_forest

• River ML Half-Space Trees: https://riverml.xyz/latest/api/anomaly/
HalfSpaceTrees/

https://en.wikipedia.org/wiki/Anomaly_detection
https://en.wikipedia.org/wiki/Anomaly_detection
https://riverml.xyz/latest/api/anomaly/ConstantThresholder/
https://riverml.xyz/latest/api/anomaly/ConstantThresholder/
https://riverml.xyz/latest/api/anomaly/QuantileThresholder/
https://riverml.xyz/latest/api/anomaly/QuantileThresholder/
https://en.wikipedia.org/wiki/Support-vector_machine
https://en.wikipedia.org/wiki/Support-vector_machine
https://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html
https://riverml.xyz/latest/api/anomaly/OneClassSVM/
https://riverml.xyz/latest/api/anomaly/OneClassSVM/
https://en.wikipedia.org/wiki/Isolation_forest
https://riverml.xyz/latest/api/anomaly/HalfSpaceTrees/
https://riverml.xyz/latest/api/anomaly/HalfSpaceTrees/


6
Online Classification

In the previous two chapters, you were introduced to some basic notions of classification. 
You first saw a use case in which online classification models in River were used to build a 
model that can identify an iris species based on a number of characteristics of a plant. This 
iris dataset is one of the best-known datasets in the world and is a very common starting 
point for classification.

After that, you looked at anomaly detection. We discussed how classification models can 
be used for anomaly detection for those cases where we can label anomalies as one class 
and non-anomalies as another class. Specific anomaly detection models are often better at 
the task, as they strive to understand only the non-anomalies. Classification models will 
strive to understand each of the classes.

In this chapter, you'll go much deeper into classification. The chapter will start by posing 
definitions of what classification is and what it can be used for. You will then see a number 
of classification models, of which you'll learn the differences between their online and 
offline counterparts. You will also implement multiple examples in Python using the River 
package. This will, in the end, result in a model benchmarking study for the use case that 
will be introduced later on.

This chapter will cover the following topics:

• Defining classification

• Identifying use cases of classification

• Classification algorithms in River
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Technical requirements
You can find all the code for this book on GitHub at the following link: https://
github.com/PacktPublishing/Machine-Learning-for-Streaming-
Data-with-Python. If you are not yet familiar with Git and GitHub, the easiest  
way to download the notebooks and code samples is the following:

1. Go to the link of the repository.
2. Click the green Code button.
3. Select Download ZIP.

When you download the ZIP file, unzip it in your local environment, and you will be able 
to access the code through your preferred Python editor.

Python environment
To follow along with this book, you can download the code in the repository and execute 
it using your preferred Python editor.

If you are not yet familiar with Python environments, I would advise you to check out 
Anaconda (https://www.anaconda.com/products/individual), which comes 
with Jupyter Notebook and JupyterLab, which are both great for executing notebooks. It 
also comes with Spyder and VSCode for editing scripts and programs.

If you have difficulty installing Python or the associated programs on your machine, you 
can check out Google Colab (https://colab.research.google.com/) or Kaggle 
Notebooks (https://www.kaggle.com/code), which both allow you to run Python 
code in online notebooks for free, without any setup to do.

Defining classification
In this chapter, you will discover classification. Classification is a supervised machine 
learning task in which a model is constructed that assigns observations to a category.

The simplest types of classification models that everybody tends to know are  
decision trees. Let's consider a super simple example of how a decision tree  
could be used for classification.

Imagine that we have a dataset in which we have observations about five humans and five 
animals. The goal is to use this data to build a decision tree that can be used on any new, 
unseen animal or human.

https://github.com/PacktPublishing/Machine-Learning-for-Streaming-Data-with-Python
https://github.com/PacktPublishing/Machine-Learning-for-Streaming-Data-with-Python
https://github.com/PacktPublishing/Machine-Learning-for-Streaming-Data-with-Python
https://www.anaconda.com/products/individual
https://colab.research.google.com/
https://www.kaggle.com/code
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The data can be imported as follows:

Code Block 6-1

import pandas as pd

# example to classify human vs animal

#dataset with one variable

can _ speak = [True,True,True,True,True,True,True,False,False,False]

has _ feathers = [False,False,False,False,False,True,True,False, 
False,False]

is _ human = 
[True,True,True,True,True,False,False,False,False,False]

data = pd.DataFrame({'can _ speak': can _ speak, 'has _ feathers': 
has _ feathers, 'is _ human': is _ human})

data

The data is shown in the following figure:

Figure 6.1 – The data
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Now, to construct the decision tree, you would generally use machine learning, as that 
is far more efficient than constructing the tree by hand. Yet, for this example, let's do a 
simple decision tree that works as the following graph indicates:

Figure 6.2 – The example decision tree

Of course, this is a model, so it is only a partial representation of the truth. It works quite 
well for the current dataset of 10 observations, but with more data points, you would 
encounter all types of anomalies, so you'd need more variables.

You could code this model for a human versus not human classification in Python  
as follows:

Code Block 6-2

def self _ made _ decision _ tree(observation):

    if observation.can _ speak:

        if not observation.has _ feathers:

            return 'human'

    

    return 'not human'

for i,row in data.iterrows():

    print(self _ made _ decision _ tree(row))
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The result is the following:

Figure 6.3 – The predicted outcomes

The general idea behind this is that a classification model is any machine learning model 
that uses the data to generate decision rules to assign observations to specific classes. In 
the next section, we'll be going into some use cases of classification to get a better idea of 
what it can be used for in practice.

Identifying use cases of classification
The use cases of classification are huge; it is a very commonly used method in many 
projects. Still, let's see some examples to get a better idea of the different types of use cases 
that can benefit from classification methods.

Use case 1 – email spam classification
The first use case that is generally built on classification is spam detection in email. Spam 
emails have been around for a long time. The business model of sending fake emails to 
generally steal people's money is a big problem, and receiving many spam emails can 
negatively impact your emailing experience.

Email service providers have come a long way in detecting spam emails automatically and 
sending them to your spam/junk box. Nowadays, this is all done automatically and relies 
heavily on machine learning.

If you compare this to our super-small classification example, you could imagine that the 
decision tree (or any other model) can take several information types about every received 
email and use that to decide whether or not the email should be classified as spam. This 
has to be done in real time, as nobody wants to wait for a spam detection service to finally 
send their email through.
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You can read more about this use case in the following resources:

• https://www.sciencedirect.com/science/article/pii/
S2405844018353404

• https://www.enjoyalgorithms.com/blog/email-spam-and-non-
spam-filtering-using-machine-learning

Use case 2 – face detection in phone camera
The second example of classification is face detection when you want to unlock your 
phone. Your phone has to make a split-second decision whether the face it's seeing is the 
face of its owner or not.

This decision is a classification decision, as it comes down to a yes/no decision: it is the 
owner, or it is not the owner. This decision will generally be made by machine learning, as 
the rules would be very complex and hard to write down as if/else statements. Machine 
learning algorithms are, nowadays, relatively good at such use cases.

For other more detailed examples of this use case, you can check out the following links:

• https://www.xfinity.com/hub/mobile/facial-recognition-on-
phone

• https://www.nytimes.com/wirecutter/blog/how-facial-
recognition-works/

Use case 3 – online marketing ad selection
A final example to add to the previous two is online marketing ad selection. Many 
websites nowadays display personalized ads. This means that you will see an 
advertisement that matches you as a customer.

Personalized ad systems do not invent ads though; they have to make a decision and 
choose between multiple available ads to know which one fits you best. In this way,  
it is a classification, as it has to decide between multiple choices.

As you can understand, page loads have to be fast and, therefore, ad selection has to be 
done in a split second as well. Real-time responses are key for the model to provide any 
value at all.

https://www.sciencedirect.com/science/article/pii/S2405844018353404
https://www.sciencedirect.com/science/article/pii/S2405844018353404
https://www.enjoyalgorithms.com/blog/email-spam-and-non-spam-filtering-using-machine-learning
https://www.enjoyalgorithms.com/blog/email-spam-and-non-spam-filtering-using-machine-learning
https://www.xfinity.com/hub/mobile/facial-recognition-on-phone
https://www.xfinity.com/hub/mobile/facial-recognition-on-phone
https://www.nytimes.com/wirecutter/blog/how-facial-recognition-works/
https://www.nytimes.com/wirecutter/blog/how-facial-recognition-works/
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The following links talk in more depth about this use case:

• https://www.owox.com/blog/articles/machine-learning-in-
marketing/

• https://www.ibm.com/watson-advertising/thought-leadership/
benefits-of-machine-learning-in-advertising

In the next section, you'll see a more practical side to doing classification, as you will 
discover several classification algorithms in the River Python library.

Overview of classification algorithms in River
There is a large number of online classification models available in the River online 
machine learning package.

A selection of relevant ones is as follows:

• LogisticRegression

• Perceptron

• AdaptiveRandomForestClassifier

• ALMAClassifier

• PAClassifier

Classification algorithm 1 – LogisticRegression
Logistic regression is one of the most basic statistical classification models. It models a 
dependent variable (target variable) that has two classes (1 or 0) and can use multiple 
independent variables to make the prediction.

The model combines each of the independent variables as log-odds; you can see this as the 
coefficients in linear regression, except that they are log-odds for each variable. The split 
in the model is based on the logistic function.

https://www.owox.com/blog/articles/machine-learning-in-marketing/
https://www.owox.com/blog/articles/machine-learning-in-marketing/
https://www.ibm.com/watson-advertising/thought-leadership/benefits-of-machine-learning-in-advertising
https://www.ibm.com/watson-advertising/thought-leadership/benefits-of-machine-learning-in-advertising
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You can see a simplified schematic of the idea as follows:

Figure 6.4 – The logistic curve

Logistic regression in River
For online logistic regression, you can use the LogisticRegression class in River's 
linear_model section. Let's now see an example of that:

1. First, you can start by making a classification dataset using sklearn's inbuilt  
make_blobs function, which makes classification datasets. You can use the 
following code for this:

Code Block 6-3
from sklearn.datasets import make _ blobs

X,y=make _ blobs(shuffle=True,centers=2,n _ samples=2000)

2. To see what this dataset looks like, it is important to make a plot. You can use the 
following matplotlib code for this:

Code Block 6-4
import matplotlib.pyplot as plt

plt.scatter(X[:,0], X[:,1], c=y)
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You should obtain the following plot, or something resembling it:

Figure 6.5 – The data

3. To make sure that your model evaluation will be fair, it is important to make  
a train-test split in the data. You can do this with sklearn's train_test_split, 
as shown here:

Code Block 6-5
from sklearn.model _ selection import train _ test _ split

X _ train, X _ test, y _ train, y _ test = train _ test _
split(X, y, test _ size=0.33, random _ state=42)

4. Let's now move on to the application of the logistic regression model. The following 
code shows how to fit the model one data point at a time. Note that you should be 
using a JSON conversion of the input data for x, as this is required by River:

Code Block 6-6
!pip install river

from river import linear _ model

model=linear _ model.LogisticRegression()

for x _ i,y _ i in zip(X _ train,y _ train):  

    x _ json = {'val1': x _ i[0], 'val2': x _ i[1]}

    print(x _ json, y _ i)

    model.learn _ one(x _ json,y _ i)
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The printed data will look something like this:

Figure 6.6 – The output of Code Block 6-6

5. You can do predictions one by one as well, or you can use predict_many to make 
all the predictions on the test set at once. There will not be any difference in the 
result. In the following code, predict_many is used:

Code Block 6-7
import pandas as pd

preds = model.predict _ many(pd.DataFrame(X _
test,columns=['val1', 'val2']))

6. To get a quality metric on this prediction, let's use the accuracy score by  
scikit-learn. As you can see in the following code block, the model has 
obtained 100% accuracy on the blob data example. It must be stated that this  
blob data example is a simple prediction task as the data is perfectly separable  
by a straight line, as can be seen in the plot shown earlier:

Code Block 6-8
from sklearn.metrics import accuracy _ score

accuracy _ score(y _ test, preds)
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This should result in the following output:

Figure 6.7 – The output of Code Block 6-8

Classification algorithm 2 – Perceptron
The perceptron is another algorithm for supervised learning on classification problems. It 
takes inputs, multiplies them by weights, and puts the sum of those through an activation 
function. The output is the resulting classification. The following graph shows an example:

Figure 6.8 – Schematic overview of a perceptron

Perceptron in River
Like logistic regression, the perceptron is a commonly used offline model that has been 
reworked into an online model for River. In River, the perceptron has been implemented 
as a special case of logistic regression.

You can use the perceptron just like logistic regression. You can use the same code 
example as in the previous case, as follows:

Code Block 6-9

# make data

from sklearn.datasets import make _ blobs

X,y=make _ blobs(shuffle=True,centers=2,n _ samples=2000)
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# train test split

from sklearn.model _ selection import train _ test _ split

X _ train, X _ test, y _ train, y _ test = train _ test _ split(X, y, 
test _ size=0.33, random _ state=42)

# build the model

from river import linear _ model

model=linear _ model.Perceptron()

# fit the model

for x _ i,y _ i in zip(X _ train,y _ train):

    x _ json = {'val1': x _ i[0], 'val2': x _ i[1]}

    model.learn _ one(x _ json,y _ i)

    

# predict on the test set

import pandas as pd

preds = model.predict _ many(pd.DataFrame(X _ test,columns=['val1', 
'val2']))

# compute accuracy

from sklearn.metrics import accuracy _ score

accuracy _ score(y _ test, preds) 

The result is 1.0, which is, unsurprisingly, the same as the logistic regression result.

Classification algorithm 3 – 
AdaptiveRandomForestClassifier
In the introduction, you already saw the general idea behind a decision tree. Random 
Forests are an ensemble model that improves decision trees.

The idea behind Random Forests is that they reduce the error of single decision trees by 
making a large number of slightly different decision trees. The most common prediction 
among a large number of decision trees is retained as the final prediction.

The decision trees are made slightly differently by fitting each of them on a slightly 
different dataset, which is created by resampling the observations. There is also a  
subset of variables used for creating the decision tree splits.
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Random Forest in River
For online learning, the data needs to be fitted one by one into the Random Forest, which 
is not an easy task. River's implementation is based on the two key elements of Random 
Forests, which are the resampling and the variable subsets. They have also added drift 
detection for each single decision tree:

1. Let's use an alternative data creation function, which creates data that is  
harder to separate than the blobs. This function from sklearn is called  
make_classification:

Code Block 6-10
# make data

from sklearn.datasets import make _ classification

X,y=make _ classification(shuffle=True,n _ samples=2000)

pd.DataFrame(X).head()

The data is shown in the following figure:

Figure 6.9 – The new data

2. There is a total of 20 variables generated by default, of which a number are 
automatically made more relevant and some are mostly irrelevant. Let's do a train-
test split just like before:

Code Block 6-11
# train test split

from sklearn.model _ selection import train _ test _ split

X _ train, X _ test, y _ train, y _ test = train _ test _
split(X, y, test _ size=0.33, random _ state=42)
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3. Using this train-test split, we can move on to building the model:

Code Block 6-12
from river import ensemble

model = ensemble.AdaptiveRandomForestClassifier()

# fit the model

for x _ i,y _ i in zip(X _ train,y _ train):

    x _ json = {'val'+str(i): x for i,x in enumerate(x _ i)}

    model.learn _ one(x _ json,y _ i)

4. Now that the model is fit, we can make predictions on the test set. There  
is no predict_many function here, so it is necessary to do a loop with  
predict_one repeatedly:

Code Block 6-13
# predict on the test set

import pandas as pd

preds = []

for x _ i in X _ test:

    x _ json = {'val'+str(i): x for i,x in enumerate(x _ i)}

    preds.append(model.predict _ one(x _ json))

5. As a final step, let's compute the accuracy of this model:

Code Block 6-14
# compute accuracy

from sklearn.metrics import accuracy _ score

accuracy _ score(y _ test, preds)
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6. The result is 0.86. Of course, the dataset was more difficult to predict, so that 
is not to be mistaken for a bad score. As an additional metric, we can look at the 
classification report for more information:

Code Block 6-15
# classification report

from sklearn.metrics import classification _ report

print(classification _ report(y _ test, preds))

The result is shown in the following figure:

Figure 6.10 – The output of Code Block 6-15

In this classification report, you see that the precision and recall and the scores for 
positives and negatives are all relatively equal. This shows that there is no imbalance in the 
classifier, which is important when relying on the accuracy score.

Classification algorithm 4 – ALMAClassifier
Now that you have seen some commonly used machine learning models for classification 
in a way adapted to accommodate online learning, it is time to see some more specific 
models as well. The first of these is the ALMA classifier.

The approximate large margin algorithm (ALMA) classifier is an incremental 
implementation of support vector machines (SVMs), a commonly used machine 
learning model for classification.

You saw the adaptation of SVMs in the previous chapter: a one-class SVM is often used for 
anomaly detection. For classification, you'd use a regular (two-class) SVM.
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ALMAClassifier in River
Let's see how ALMAClassifier compares to the adaptive Random Forest, by executing it on 
the same data:

1. We start by applying the same code that we already defined before:

Code Block 6-16
# make data

from sklearn.datasets import make _ classification

X,y=make _ classification(shuffle=True,n _ samples=2000)

# train test split

from sklearn.model _ selection import train _ test _ split

X _ train, X _ test, y _ train, y _ test = train _ test _
split(X, y, test _ size=0.33, random _ state=42)

from river import linear _ model

model = linear _ model.ALMAClassifier()

# fit the model

for x _ i,y _ i in zip(X _ train,y _ train):

    x _ json = {'val'+str(i): x for i,x in enumerate(x _ i)}

    model.learn _ one(x _ json,y _ i) 

# predict on the test set

import pandas as pd

preds = []

for x _ i in X _ test:

    x _ json = {'val'+str(i): x for i,x in enumerate(x _ i)}

    preds.append(model.predict _ one(x _ json))

# compute accuracy

from sklearn.metrics import accuracy _ score

accuracy _ score(y _ test, preds)

2. The result is 0.77, not as good as the Random Forest. Let's also check the 
classification report to see whether anything changed there:

Code Block 6-17
# classification report

from sklearn.metrics import classification _ report

print(classification _ report(y _ test, preds))



Overview of classification algorithms in River     121

3. The result is shown in the following figure:

Figure 6.11 – The output of Code Block 6-17

There is a little more variation here, but nothing that seems too shocking. In general, the 
Random Forest was just better overall for this data.

Classification algorithm 5 – PAClassifier
The passive-aggressive (PA) classifier is an online machine learning model that is not 
related to any existing offline model. It is based on the idea of updating the model at each 
step and thereby solving the following problem:

The update of the classifier is performed by solving a constrained optimization problem: we 
would like the new classifier to remain as close as possible to the current one while achieving 
at least a unit margin on the most recent example.

This quote has been taken from the following paper on PA algorithms, which is also an 
interesting reference for further reading: https://jmlr.csail.mit.edu/papers/
volume7/crammer06a/crammer06a.pdf.

The name passive-aggressive comes from the idea that an algorithm that learns too quickly 
from each new data point is considered too aggressive. PA is less aggressive.

PAClassifier in River
Let's see how the PA classifier performs on the same task as the two previous models:

Code Block 6-18

# make data

from sklearn.datasets import make _ classification

X,y=make _ classification(shuffle=True,n _ samples=2000)

# train test split

from sklearn.model _ selection import train _ test _ split

X _ train, X _ test, y _ train, y _ test = train _ test _ split(X, y, 
test _ size=0.33, random _ state=42)
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from river import linear _ model

model = linear _ model.PAClassifier()

# fit the model

for x _ i,y _ i in zip(X _ train,y _ train):

    x _ json = {'val'+str(i): x for i,x in enumerate(x _ i)}

    model.learn _ one(x _ json,y _ i)

# predict on the test set

import pandas as pd

preds = []

for x _ i in X _ test:

    x _ json = {'val'+str(i): x for i,x in enumerate(x _ i)}

    preds.append(model.predict _ one(x _ json))

# compute accuracy

from sklearn.metrics import accuracy _ score

accuracy _ score(y _ test, preds)

The obtained score is 0.85. The following section summarizes all the scores that we  
have obtained.

Evaluating benchmark results
This leaves us with the following accuracy scores for the past three models:

Table 6.1 – The table with the results

The best result was obtained by AdaptiveRandomForest and PAClassifier came in second 
place. ALMAClassifier was less performant with a score of 0.77.

Summary
In this chapter, you have first seen a general overview of classification and its use 
cases. You have understood how it is different from anomaly detection, but how it can 
sometimes still be applied to anomaly detection use cases.
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You have learned about five models for online classification of which some are mainly 
adaptations of offline models, and others are specifically designed for working in an  
online manner. Both types exist, and it is important to have the tools to benchmark  
model performance before making a choice for a final model.

The model benchmark that you executed in Python was done in such a way as to find 
the best model in terms of the accuracy of the model on a test set. You have seen clear 
differences between the benchmarked models, and this is a great showcase for the 
importance of model benchmarking.

In the following chapter, you will do the same type of model benchmarking exercise, 
but this time, you will be focusing on a regression use case, which has a goal that is 
fundamentally different from classification. This comes with some changes with respect  
to measuring errors and benchmarking, but from a high-level perspective, also has a  
lot in common with the classification benchmarking use case that you worked with in  
this chapter.

Further reading
• LogisticRegression: https://riverml.xyz/latest/api/linear-model/

LogisticRegression/

• Perceptron: https://riverml.xyz/latest/api/linear-model/
Perceptron/

• AdaptiveRandomForestClassifier: https://riverml.xyz/latest/api/
ensemble/AdaptiveRandomForestClassifier/

• ALMA: https://riverml.xyz/latest/api/linear-model/
ALMAClassifier/

• ALMA: https://www.jmlr.org/papers/volume2/gentile01a/
gentile01a.pdf

• PAClassifier: https://riverml.xyz/latest/api/linear-model/
PAClassifier/

• PAClassifier: https://jmlr.csail.mit.edu/papers/volume7/
crammer06a/crammer06a.pdf

• make_classification: https://scikit-learn.org/stable/modules/
generated/sklearn.datasets.make_classification.htm

• make_blobs: https://scikit-learn.org/stable/modules/
generated/sklearn.datasets.make_blobs.html

https://riverml.xyz/latest/api/linear-model/LogisticRegression/
https://riverml.xyz/latest/api/linear-model/LogisticRegression/
https://riverml.xyz/latest/api/linear-model/Perceptron/
https://riverml.xyz/latest/api/linear-model/Perceptron/
https://riverml.xyz/latest/api/ensemble/AdaptiveRandomForestClassifier/
https://riverml.xyz/latest/api/ensemble/AdaptiveRandomForestClassifier/
https://riverml.xyz/latest/api/linear-model/ALMAClassifier/
https://riverml.xyz/latest/api/linear-model/ALMAClassifier/
https://www.jmlr.org/papers/volume2/gentile01a/gentile01a.pdf
https://www.jmlr.org/papers/volume2/gentile01a/gentile01a.pdf
https://riverml.xyz/latest/api/linear-model/PAClassifier/
https://riverml.xyz/latest/api/linear-model/PAClassifier/
https://jmlr.csail.mit.edu/papers/volume7/crammer06a/crammer06a.pdf
https://jmlr.csail.mit.edu/papers/volume7/crammer06a/crammer06a.pdf
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.htm
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.htm
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html
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Online Regression

After looking at online anomaly detection and online classification throughout the 
previous chapters, there is one large category of online machine learning that remains to 
be seen. Regression is the family of supervised machine learning models that applies to 
use cases in which the target variable is numerical.

In anomaly detection and classification, you have seen how to build models to predict 
categorical targets (yes/no and iris species), but you have not yet seen how to work with a 
target that is numerical. Working with numerical data requires having methods that work 
differently, both in the deeper layers of model training and model definition and also in 
our use of metrics. 

Imagine being a weather forecaster trying to forecast the temperature (Celsius) for 
tomorrow. Maybe you expect a sunny day, and you have a model that you use to predict a 
temperature of 25 degrees Celsius. Imagine if the next day, you observe that it is cold and 
only 18 degrees; you were clearly wrong. 

Now, imagine that you predicted 24 degrees. In a classification use case, you may tend  
to say that 25 is not 24, so the result is wrong. However, the result of 24 is less wrong  
than the result of 18.

In regression, one single prediction can be more or less wrong. In practice, you will rarely 
be entirely right. In classification, you are either wrong or right, so this is different. This 
introduces a need for new metrics and a change in the model benchmarking process.
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In this chapter, you will first get a deeper introduction to regression models, focusing  
on online regression models in River. After that, you'll be working on a regression  
model benchmark.

This chapter covers the following topics:

• Defining regression

• Use cases of regression

• Overview of regression algorithms in River

Technical requirements
You can find all the code for this book on GitHub at the following link: https://
github.com/PacktPublishing/Machine-Learning-for-Streaming-
Data-with-Python. If you are not yet familiar with Git and GitHub, the easiest  
way to download the notebooks and code samples is the following:

1. Go to the link of the repository.
2. Go to the green Code button.
3. Select Download ZIP.

When you download the ZIP file, unzip it in your local environment, and you will be able 
to access the code through your preferred Python editor.

Python environment
To follow along with this book, you can download the code in the repository and execute 
it using your preferred Python editor.

If you are not yet familiar with Python environments, I would advise you to check out 
Anaconda (https://www.anaconda.com/products/individual), which comes 
with Jupyter Notebook and JupyterLab, which are both great for executing notebooks. It 
also comes with Spyder and VS Code for editing scripts and programs.

If you have difficulty installing Python or the associated programs on your machine, you 
can check out Google Colab (https://colab.research.google.com/) or Kaggle 
Notebooks (https://www.kaggle.com/code), which both allow you to run Python 
code in online notebooks for free, without any setup required.

https://github.com/PacktPublishing/Machine-Learning-for-Streaming-Data-with-Python
https://github.com/PacktPublishing/Machine-Learning-for-Streaming-Data-with-Python
https://github.com/PacktPublishing/Machine-Learning-for-Streaming-Data-with-Python
https://www.anaconda.com/products/individual
https://colab.research.google.com/
https://www.kaggle.com/code
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Defining regression
In this chapter, you will discover regression. Regression is a supervised machine learning 
task in which a model is constructed that predicts or estimates a numerical target variable 
based on numerical or categorical independent variables.

The simplest type of regression model is linear regression. Let's consider a super simple 
example of how a linear regression could be used for regression.

Imagine that we have a dataset in which we have observations of 10 people. Based  
on the number of hours they study per week, we have to estimate their average grade  
(on a 1 to 10 scale). Of course, this is a strongly oversimplified problem.

The data looks as follows:

Code Block 7-1

import pandas as pd

nb_hrs_studies = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

avg_grade = [5.5, 5.8, 6.8, 7.2, 7.4, 7.8, 8.2, 8.8, 9.3, 9.4]

data = pd.DataFrame({'nb_hrs_studies': nb_hrs_studies, 'avg_
grade': avg_grade})

data

You will obtain the following data frame:

Figure 7.1 – The dataset
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Let's plot the data to see how this can be made into a regression problem:

Code Block 7-2

import matplotlib.pyplot as plt

plt.scatter(data['nb_hrs_studies'], data['avg_grade'])

plt.xlabel('nb_hrs_studies')

plt.ylabel('avg_grades')

This results in the following output:

Figure 7.2 – A scatter plot of the data

Now, the goal of linear regression is to fit the line (or hyperplane) that best goes through 
these points and is able to predict an estimated avg_grades for any nb_hrs_studies. 
Other regression models each have their specific way to construct the prediction function, 
but eventually have the same goal: creating the best fitting formula to predict a numerical 
target variable using one or more independent variables.

In the next section, you'll discover some example use cases in which regression can  
be used.

Use cases of regression
The use cases of regression are huge: it is a very commonly used method in many projects. 
Still, let's see some examples to get a better idea of the different types of use cases that can 
benefit from regression models.
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Use case 1 – Forecasting
A very common use case for regression algorithms is forecasting. In forecasting, the goal 
is to predict future values of a variable that is measured over time. Such variables are 
called time series. Although a number of specific methods exist for time series modeling, 
regression models are also great contenders for obtaining good performance on future 
prediction performance.

In some forecasting use cases, real-time responses are very important. An example is stock 
trading, in which the datapoints of stock prices arrive at a huge velocity and forecasts have 
to be adapted straight away to use the best possible information for stock trades. Even 
automated stock trading algorithms exist, and they need to react fast in order to make the 
most profit on their trades as possible.

For further reading on this topic, you could start by checking out the following links:

• https://www.investopedia.com/articles/financial-theory/09/
regression-analysis-basics-business.asp

• https://www.mathworks.com/help/econ/time-series-
regression-vii-forecasting.html

Use case 2 – Predicting the number of faulty products 
in manufacturing
The second example of real-time and streaming regression models being used in practice 
is the application of predictive maintenance models in manufacturing. For example, 
you could use a real-time prediction of the number of faulty products per hour in a 
production line. This would be a regression model as well, as the outcome is a number 
rather than a categorical variable.

The production line could use this prediction for a real-time alerting system, for  
example, once a threshold of faulty products is predicted to be reached. Real-time data 
integration is important for this, as having the wrong products being produced is a large 
waste of resources.

The following two resources will allow you to read more about this use case:

• https://www.sciencedirect.com/science/article/pii/
S2405896316308084

• https://www.researchgate.net/publication/315855789_
Regression_Models_for_Lean_Production

https://www.investopedia.com/articles/financial-theory/09/regression-analysis-basics-business.asp
https://www.investopedia.com/articles/financial-theory/09/regression-analysis-basics-business.asp
https://www.mathworks.com/help/econ/time-series-regression-vii-forecasting.html
https://www.mathworks.com/help/econ/time-series-regression-vii-forecasting.html
https://www.sciencedirect.com/science/article/pii/S2405896316308084
https://www.sciencedirect.com/science/article/pii/S2405896316308084
https://www.researchgate.net/publication/315855789_Regression_Models_for_Lean_Production
https://www.researchgate.net/publication/315855789_Regression_Models_for_Lean_Production
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Now that we have explored some use cases of regression, let's get started with the various 
algorithms that we have for regression.

Overview of regression algorithms in River
There is a large number of online regression models available in the River online machine 
learning package.

A selection of relevant ones are as follows:

• LinearRegression

• HoeffdingAdaptiveTreeRegressor

• SGTRegressor

• SRPRegressor

Regression algorithm 1 – LinearRegression
Linear regression is one of the most basic regression models. A simple linear regression 
is a regression model that fits a straight line through the datapoints. The following graph 
illustrates this:

Figure 7.3 – A linear model in a scatter plot
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This orange line is a result of the following formula:

Here, y represents avg_grades and x represents nb_hrs_studies. When fitting the 
model, the a and b coefficients are estimates. The b coefficient in this formula is called the 
intercept. It indicates the value of y when x equals 0. The a coefficient represents the slope 
of the line. For each additional step in x, a indicates the amount that is added to y.

This is a version of linear regression, but there is also a version called multiple linear 
regression, in which there are multiple x variables. In this case, the model does not 
represent a line but rather a hyperplane, in which a slope coefficient is added for each 
additional x variable.

Linear regression in River
Let's now move on to build an example of online linear regression using River ML  
in Python:

1. If you remember from the previous example, we used a function called make_
classification from scikit-learn. The same can be done for regression 
problems using make_regression:

Code Block 7-3
from sklearn.datasets import make_regression

X,y = make_regression(n_samples=1000,n_features=5,n_
informative=5,noise=100)

2. To get a better idea of what has resulted from this make_regression function, 
let's inspect X of this dataset. You can use the following code to get a quick overview 
of the data:

Code Block 7-4
pd.DataFrame(X).describe()

𝑦𝑦 = 𝑎𝑎𝑎𝑎 + 𝑏𝑏 
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The describe() method will put out a data frame with descriptive statistics of the 
variables, as follows:

Figure 7.4 – Descriptive statistics
There are five columns in the X data, and there are 1,000 observations.

3. Now, to look at the y variable, also called the target variable, we can make a 
histogram as follows:

Code Block 7-5
pd.Series(y).hist()

The resulting histogram can be seen in the following figure:

Figure 7.5 – The resulting histogram



Overview of regression algorithms in River     133

There is much more exploratory data analysis that could be done here, but that 
would be out of scope for this book. 

4. Let's now move on to the creation of a train and test set to create a fair model 
validation approach. In the following code, you can see how to create the  
train_test_split function from scikit-learn to create a train-test split:

Code Block 7-6
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, 
test_size=0.33, random_state=42)

5. You can create the linear regression in River using the following code:

Code Block 7-7
!pip install river

from river.linear_model import LinearRegression

model = LinearRegression()

6. This model then has to be fitted to the training data. We use the same loop as you 
have seen earlier on in the book. This loop goes through the individual datapoints 
(X and y) and converts the X values into a dictionary, as required by River. The 
model is then updated datapoint by datapoint using the learn_one method:

Code Block 7-8
# fit the model

for x_i,y_i in zip(X_train,y_train):

    x_json = {'val'+str(i): x for i,x in enumerate(x_i)}

    model.learn_one(x_json,y_i)

7. Once the model has learned from the training data, it needs to be evaluated on the 
test set. This can be done by looping through the test data and making a prediction 
for the X values of each datapoint. The y values are stored in a list for evaluation 
against the actual y values of the test dataset:

Code Block 7-9
# predict on the test set

import pandas as pd
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preds = []

for x_i in X_test:

    x_json = {'val'+str(i): x for i,x in enumerate(x_i)}

    preds.append(model.predict_one(x_json))

8. We can now compute the metric of our choice for this regression model, for 
example, the r2 score. This can be done using the following code:

Code Block 7-10
# compute accuracy

from sklearn.metrics import r2_score

r2_score(y_test, preds)

The obtained result is 0.478. 
Let's find out whether other models are more performant at this task in the next section.

Regression algorithm 2 – 
HoeffdingAdaptiveTreeRegressor
The second online regression model that we'll cover is a much more specific model 
for online regression. Whereas the LinearRegression model, just like many other 
models, is an online adaptation of an essentially offline model, many other models are 
developed specifically for online models. HoeffdingAdaptiveTreeRegressor is 
one of those.

The Hoeffding Adaptive Tree regressor (HATR) is a regression model that is based on 
the Hoeffding Adaptive Tree Classifier (HATC). HATC is a tree-based model that uses 
the adaptive windowing (ADWIN) methodology to monitor the performance of the 
different branches of a tree. The HATC methodology replaces the branches with new 
branches when their time is due. This is determined by observing the better performance 
of the new branches by the old branches. HATC is also available in River.

The HATR regression version is based on the HATC approach and uses an ADWIN 
concept-drift detector at each decision node. This allows the method to detect possible 
changes in the underlying data, which is called drift. Drift detection will be covered in 
more detail in a further chapter.
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HoeffdingAdaptiveTreeRegressor in River
We will check out an example as follows:

1. Let's get started with fitting the model on the same data as we used in the  
previous model:

Code Block 7-11
from river.tree import HoeffdingAdaptiveTreeRegressor

model = HoeffdingAdaptiveTreeRegressor(seed=42)

# fit the model

for x_i,y_i in zip(X_train,y_train):

    x_json = {'val'+str(i): x for i,x in enumerate(x_i)}

    model.learn_one(x_json,y_i)

# predict on the test set

import pandas as pd

preds = []

for x_i in X_test:

    x_json = {'val'+str(i): x for i,x in enumerate(x_i)}

    preds.append(model.predict_one(x_json))

# compute accuracy

from sklearn.metrics import r2_score

r2_score(y_test, preds)

2. This model obtains an r2 score that is a little worse than the linear regression: 
0.437. Let's see if we can do something to make it work better. Let's write a grid 
search to see whether a number of hyperparameters can help to improve the model.

For this, let's write the model as a function that takes values for the hyperparameters 
and that returns the r2 score:

Code Block 7-12
def evaluate_HATR(grace_period, leaf_prediction, model_
selector_decay):

    # model pipeline

    model = (
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        HoeffdingAdaptiveTreeRegressor(

            grace_period=grace_period,

            leaf_prediction=leaf_prediction,

            model_selector_decay=model_selector_decay,

            seed=42)

    )

    # fit the model

    for x_i,y_i in zip(X_train,y_train):

        x_json = {'val'+str(i): x for i,x in 
enumerate(x_i)}

        model.learn_one(x_json,y_i)

    # predict on the test set

    preds = []

    for x_i in X_test:

        x_json = {'val'+str(i): x for i,x in 
enumerate(x_i)}

        preds.append(model.predict_one(x_json))

    # compute accuracy

    return r2_score(y_test, preds)

3. Let's specify the hyperparameters to tune as follows:

Code Block 7-13
grace_periods=[0,5,10,]

leaf_predictions=['mean','adaptive']

model_selector_decays=[ 0.3, 0.8,  0.95]

4. We then loop through the data as follows:

Code Block 7-14
results = []

i = 0

for grace_period in grace_periods:

    for leaf_prediction in leaf_predictions:

        for model_selector_decay in model_selector_
decays:

            print(i)
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            i = i+1

            results.append([grace_period, leaf_
prediction, model_selector_decay,evaluate_HATR(grace_
period, leaf_prediction, model_selector_decay)])

5. The results can then be obtained as follows:

Code Block 7-15
pd.DataFrame(results, columns=['grace_period', 'leaf_
prediction', 'model_selector_decay', 'r2_score' ]).sort_
values('r2_score', ascending=False)

The obtained result is slightly disappointing, as none of the tested values were able 
to generate a better result. Unfortunately, this is part of data science, as not all 
models work well on each use case. 

Figure 7.6 – The resulting output of Code Block 7-15

Let's move on to the next model and see whether it fits better.



138     Online Regression

Regression algorithm 3 – SGTRegressor
SGTRegressor is a stochastic gradient tree for regression. It is another decision tree-
based model that can learn with new data arriving. It is an incremental decision tree that 
minimizes the mean squared error by minimizing the loss function.

SGTRegressor in River
We'll check this out using the following example:

1. Let's test whether this model can improve the performance of this regression task:

Code Block 7-16
from river.tree import SGTRegressor

# model pipeline

model = SGTRegressor()

# fit the model

for x_i,y_i in zip(X_train,y_train):

    x_json = {'val'+str(i): x for i,x in enumerate(x_i)}

    model.learn_one(x_json,y_i)

# predict on the test set

preds = []

for x_i in X_test:

    x_json = {'val'+str(i): x for i,x in enumerate(x_i)}

    preds.append(model.predict_one(x_json))

# compute accuracy

r2_score(y_test, preds)

2. The result is worse than the previous models, as it is 0.07. Let's again see whether it 
can be optimized using hyperparameter tuning:

Code Block 7-17
from river.tree import SGTRegressor

def evaluate_SGT(delta, lambda_value, grace_period):

    # model pipeline 

    model = SGTRegressor(delta=delta,

                        lambda_value=lambda_value,

                        grace_period=grace_period,)
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    # fit the model

    for x_i,y_i in zip(X_train,y_train):

        x_json = {'val'+str(i): x for i,x in 
enumerate(x_i)}

        model.learn_one(x_json,y_i)

    # predict on the test set

    preds = []

    for x_i in X_test:

        x_json = {'val'+str(i): x for i,x in 
enumerate(x_i)}

        preds.append(model.predict_one(x_json))

    # compute accuracy

    return r2_score(y_test, preds)

3. For this trial, we'll optimize the grace_period, lambda_value, and delta 
hyperparameters:

Code Block 7-18
grace_periods=[0,10,25]

lambda_values=[0.5, 0.8, 1.]

deltas=[0.0001, 0.001, 0.01, 0.1]

4. You can run the optimization loop using the following code:

Code Block 7-19
results = []

i = 0

for grace_period in grace_periods:

    for lambda_value in lambda_values:

        for delta in deltas:

            print(i)

            i = i+1

            result = evaluate_SGT(delta, lambda_value, 
grace_period)

            print(result)

            results.append([delta, lambda_value, grace_
period,result])
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5. The best results can be shown using the following line of code:

Code Block 7-20
pd.DataFrame(results, columns=['delta', 'lambda_value', 
'grace_period', 'r2_score' ]).sort_values('r2_score', 
ascending=False)

The result is shown in the following:

Figure 7.7 – The resulting output of Code Block 7-20

The result is better than the non-tuned SGTRegressor, but much worse than the 
previous two models. The model could be optimized further, but it does not seem the best 
go-to for the current data.

Regression algorithm 4 – SRPRegressor
SRPRegressor, or Streaming Random Patches regressor, is an ensemble method that 
trains an ensemble of base learners on subsets of the input data. These subsets are called 
patches and are both subsets of features and subsets of observations. This is the same 
approach as the random forest that was seen in the previous chapter.
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SRPRegressor in River
We will check this out using the following example:

1. In this example, let's use linear regression as a base learner, as this model has had 
the best performance compared to the other models tested in this chapter:

Code Block 7-21
from river.ensemble import SRPRegressor

# model pipeline 

base_model = LinearRegression()

model = SRPRegressor(

    model=base_model,

    n_models=3,

    seed=42

)

# fit the model

for x_i,y_i in zip(X_train,y_train):

    x_json = {'val'+str(i): x for i,x in enumerate(x_i)}

    model.learn_one(x_json,y_i)

# predict on the test set

preds = []

for x_i in X_test:

    x_json = {'val'+str(i): x for i,x in enumerate(x_i)}

    preds.append(model.predict_one(x_json))

# compute accuracy

r2_score(y_test, preds)

2. The resulting score is 0.34. Let's try and tune the number of models used to see 
whether this can improve performance:

Code Block 7-22
def evaluate_SRP(n_models):

    # model pipeline 

    base_model = LinearRegression()

    model = SRPRegressor(

        model=base_model,
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        n_models=n_models,

        seed=42

    )

    # fit the model

    for x_i,y_i in zip(X_train,y_train):

        x_json = {'val'+str(i): x for i,x in 
enumerate(x_i)}

        model.learn_one(x_json,y_i)

    # predict on the test set

    preds = []

    for x_i in X_test:

        x_json = {'val'+str(i): x for i,x in 
enumerate(x_i)}

        preds.append(model.predict_one(x_json))

    # compute accuracy

    return r2_score(y_test, preds)

3. You can execute the tuning loop with the following code:

Code Block 7-23
results = []

for n_models in range(1, 50):

    results.append([n_models, evaluate_SRP(n_models)])

4. The following line shows the results for each value of n_models:

Code Block 7-24
pd.DataFrame(results,columns=['n_models', 'r2_score']).
sort_values('r2_score', ascending=False)
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The result is shown in the following:

Figure 7.8 – The resulting output of Code Block 7-24

Apparently, the result at 12 models has found a sweet spot at which the performance is 
0.457. Compared to the simple LinearRegression model with a score of 0.478, 
this is a worse result. This indicates that the LinearRegression model has the best 
score of the four models tested in this dataset. 

Of course, this result is strongly related to the data-generating process that is behind the 
make_regression function. If the make_regression function were to add anything 
such as time trends, the adaptive models would probably have been more performant than 
the simple linear model.

Summary
In this chapter, you have seen the basics of regression modeling. You have learned that 
there are some similarities between classification and anomaly detection models, but that 
there are also some fundamental differences.

The main difference in regression is that the target variables are numeric, whereas they are 
categorical in classification. This introduces a difference in metrics, but also in the model 
definition and the way the models work deep down.
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You have seen several traditional, offline regression models and their adaptation to 
working in an online training manner. You have also seen some online regression models 
that are made specifically for online training and streaming.

As in the previous chapters, you have seen how to implement a modeling benchmark 
using a train-test set. The field of ML does not stop evolving, and newer and better models 
are published regularly. This introduces the need for practitioners to be solid in their skills 
to evaluate models. 

Mastering model evaluation is often even more important than knowing the largest  
list of models. You need to know a large number of models to start modeling, but it  
is the evaluation that will allow you to avoid pushing erroneous or overfitted models  
into production.

Although this is generally true for ML, the next chapter will introduce a category of 
models that has a fundamentally different take on this. Reinforcement learning is a 
category of online ML in which the focus is on model updating. Online models have the 
capacity to learn on each piece of data that gets into the system as well, but reinforcement 
learning is focused even more on having almost autonomous learning. This will be the 
scope of the next chapter.

Further reading
• LinearRegression: https://riverml.xyz/latest/api/linear-model/

LinearRegression/

• Make_regression: https://scikit-learn.org/stable/modules/
generated/sklearn.datasets.make_regression.html

• HoeffdingAdaptiveTreeRegressor: https://riverml.xyz/latest/api/
tree/HoeffdingAdaptiveTreeRegressor/

• HoeffdingAdaptiveTreeClassifier: https://riverml.xyz/latest/api/
tree/HoeffdingAdaptiveTreeClassifier/

• Adaptive learning and mining for data streams and frequent patterns: https://
dl.acm.org/doi/abs/10.1145/1656274.1656287

• SGTRegressor: https://riverml.xyz/latest/api/tree/
SGTRegressor/

• SRPRegressor: https://riverml.xyz/latest/api/ensemble/
SRPRegressor/

https://riverml.xyz/latest/api/linear-model/LinearRegression/
https://riverml.xyz/latest/api/linear-model/LinearRegression/
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_regression.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_regression.html
https://riverml.xyz/latest/api/tree/HoeffdingAdaptiveTreeRegressor/
https://riverml.xyz/latest/api/tree/HoeffdingAdaptiveTreeRegressor/
https://riverml.xyz/latest/api/tree/HoeffdingAdaptiveTreeClassifier/
https://riverml.xyz/latest/api/tree/HoeffdingAdaptiveTreeClassifier/
https://dl.acm.org/doi/abs/10.1145/1656274.1656287
https://dl.acm.org/doi/abs/10.1145/1656274.1656287
https://riverml.xyz/latest/api/tree/SGTRegressor/
https://riverml.xyz/latest/api/tree/SGTRegressor/
https://riverml.xyz/latest/api/ensemble/SRPRegressor/
https://riverml.xyz/latest/api/ensemble/SRPRegressor/


8
Reinforcement 

Learning
The reinforcement learning paradigm is very different than standard machine learning 
and even the online machine learning methods that we have covered in earlier chapters. 
Although reinforcement learning will not always be a better choice than "regular"  
learning for many use cases, it is a powerful tool for tackling re-learning and the 
adaptation of models.

In reinforcement learning, we give the model a lot of decisive power to do its re-learning 
and to update the rules of its decision-making process. Rather than letting the model 
make a prediction and hardcode the action to take for this prediction, the model will 
directly decide on the action to take.

For automated machine learning pipelines in which actions are effectively automated, 
this can be a great choice. Of course, this must be complemented with different types of 
logging, monitoring, and more. For cases in which we need a prediction rather than an 
action, reinforcement learning will not be appropriate.

Although very powerful in the right use case, reinforcement learning is currently not a 
standard choice with respect to regular machine learning. In the future, reinforcement 
learning may very well gain popularity for a larger number of use cases.
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In this chapter, you will first be thoroughly introduced to the different concepts behind 
reinforcement learning. You will then see an implementation of reinforcement learning  
in Python.

This chapter covers the following topics:

• Defining reinforcement learning

• The main steps of reinforcement learning models

• Exploring Q-learning

• Deep Q-learning

• Using reinforcement learning for streaming data

• Use cases of reinforcement learning

• Implementing reinforcement learning in Python

Technical requirements
You can find all the code for this book on GitHub at the following link: https://
github.com/PacktPublishing/Machine-Learning-for-Streaming-
Data-with-Python. If you are not yet familiar with Git and GitHub, the easiest  
way to download the notebooks and code samples is the following:

1. Go to the link of the repository.
2. Go to the green Code button.
3. Select Download zip.

When you download the ZIP file, you unzip it in your local environment, and you will be 
able to access the code through your preferred Python editor.

Python environment
To follow along with this book, you can download the code in the repository and execute 
it using your preferred Python editor.

If you are not yet familiar with Python environments, I would advise you to check out 
either Anaconda (https://www.anaconda.com/products/individual), which 
comes with the Jupyter Notebook and JupyterLab, which are both great for executing 
notebooks. It also comes with Spyder and VSCode for editing scripts  
and programs.

https://github.com/PacktPublishing/Machine-Learning-for-Streaming-Data-with-Python
https://github.com/PacktPublishing/Machine-Learning-for-Streaming-Data-with-Python
https://github.com/PacktPublishing/Machine-Learning-for-Streaming-Data-with-Python
https://www.anaconda.com/products/individual
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If you have difficulty installing Python or the associated programs on your machine,  
you can check out Google Colab (https://colab.research.google.com/)  
or Kaggle Notebooks (https://www.kaggle.com/code), which both allow you  
to run Python code in online notebooks for free, without any setup.

Note
The code in the book will generally use Colab and Kaggle notebooks with 
Python version 3.7.13 and you can set up your own environment to mimic this. 

Defining reinforcement learning
Reinforcement learning is a subdomain of machine learning that focuses on creating 
machine learning models that make decisions. Sometimes, the models are not referred to 
as models, but rather as intelligent agents.

When looking from a distance, you could argue that reinforcement learning is very 
close to machine learning. We could say that both of them are methods inside artificial 
intelligence that try to deliver intelligent black boxes, which are able to learn specific tasks 
just like a human would – often better.

If we look closer, however, we start to see important differences. In previous chapters, 
you have seen machine learning models such as anomaly detection, classification, 
and regression. All of them use a number of variables and are able to make real-time 
predictions on a target variable based on those. 

You have seen a number of metrics that allow us data scientists to decide whether a model 
is any good. The online models are also able to adapt to changing data by relearning and 
continuously taking into account their own error metrics.

Reinforcement learning goes further than that. RL models not only make predictions but 
also take action. You could say that offline models do not take any autonomy in relearning 
from their mistakes, online models do take into account mistakes right away, and 
reinforcement learning models are designed to make mistakes and learn from them. 

Online models can adapt to their mistakes, just like reinforcement learning. However, 
when you build the first version of an online model, you do expect it to have acceptable 
performance in the beginning, and you would train it on some historical data. It can then 
adapt in the case of data drift or other changes.

https://colab.research.google.com/
https://www.kaggle.com/code
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The reinforcement learning model, on the other hand, starts out totally naïve and 
unknowing. It will try out actions, make some mistakes, and then by pure hazard at some 
point, it will make some good decisions as well. At this point, the reinforcement model 
will receive rewards and start to remember those.

Comparing online and offline reinforcement learning
Reinforcement learning is generally online learning: the intelligent agent learns through 
repeated action taking with rewards for good predictions. This can continue indefinitely, 
at least as long as feedback on the decision keeps getting fed into the model. 

However, reinforcement learning can also be offline. In this case, the model would learn 
for a given period of time, and then at some point, the feedback loop is cut off so that the 
model (the decision rules) stays the same after that point.

In general, when reinforcement learning is used, it is because we are interested in 
continuous relearning. So, the online variant is the most common.

A more detailed overview of feedback loops in 
reinforcement learning
Now, let's go more into the details of reinforcement learning. To start, it is important to 
understand how the feedback loop of a general reinforcement learning model works. The 
following schema shows the logic of a model learning through a feedback loop.

Figure 8.1 – Feedback loops in RL
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In this schema, you observe the following elements:

• The RL agent: Our model that is continuously learning and making decisions.

• The environment: A fixed environment in which the agent can make a specific set 
of decisions.

• The action: Every time the agent makes a decision, this will alter the environment.

• The reward: If the decision yields a good result, then a reward will be given to  
the agent.

• The state: The information about the environment that the agent needs to make  
its decisions.

As a simplified example, imagine that the agent is a human baby learning to walk. At each 
point in time, the baby is trying out stuff that could get them to walk. More specifically, 
they are activating several muscles in their body.

While doing this, the baby is observing that they are or are not walking. Also, their 
parents cheer them on when they are getting closer to walking correctly. This is a reward 
being sent to the baby that indicates to them that they are learning in the right way.

The baby will then again try to walk by using almost the same muscles, but with a little 
variation. If it's better, they'll see that as a positive thing and continue to move in that way.

Let's now cover the remaining steps that are necessary for all of this to work.

The main steps of a reinforcement learning 
model
The actions of the agent are the decisions that it can make. This is a limited set of 
decisions. As you will understand, the agent is just a piece of code, so all its decisions will 
need to be programmed controls of its own behavior.

If we think of it as a computer game, then you understand that the actions that you as a 
player can execute are limited by the buttons that you can press on your game console. 
All of the combinations together still allow for a very wide range of options, but they are 
limited in some way.

The same is true for our human baby learning to walk. They only have control over their 
own body, so they would not be able to execute any actions beyond this. This gives a huge 
number of things that can be done by humans, but still, it is a fixed set of actions.
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Making the decisions
Now, as your reinforcement agent is receiving information about its environment  
(the state), it will need to convert this information into a decision. This is the same  
idea as a machine learning model that needs to map independent variables into a  
target variable.

This decision mapping is generally called the policy in the case of reinforcement learning. 
The policy will generally decide on the best action by estimating the expected rewards and 
then executing the action with the highest expected reward.

Updating the decision rules
The last part of this big picture description of reinforcement learning is the update of the 
policy: basically, the learning itself. There are many models, and they all have their own 
specificities, but let's try to get a general idea anyway.

At this point, you have seen that an agent takes an action from a set of fixed actions. The 
agent has estimated which is most likely to maximize rewards. After the execution of this 
task, the model will receive a certain reward. This will be used to alter the policy, in a way 
that depends on the exact method of reinforcement learning that you use.

In the next section, you will see how this can be done in more detail by exploring the 
Q-learning algorithm.

Exploring Q-learning
Although there are many variants of reinforcement learning, the previous  
explanation should have given you a good general overview of how most reinforcement 
models work. It is now time to move deeper into a specific model for reinforcement 
learning: Q-learning.

Q-learning is a reinforcement learning algorithm that is, so-called, model free. Model-
free reinforcement learning algorithms can be seen as pure trial-and-error algorithms: 
they have no prior notion of the environment, but merely just try out actions and learn 
whether their actions yield the correct outcome. 

Model-based algorithms, on the other hand, use a different theoretical approach. Rather 
than just learning the outcome based on the actions, they try to understand their 
environment through some form of a model. Once the agent learns how the environment 
works, it can take actions that will optimize the reward according to this knowledge.

Although the model-based approach may seem more intuitively likely to perform, model-
free approaches such as Q-learning are actually quite good.
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The goal of Q-learning
The goal of the Q-learning algorithm is to find a policy that maximizes the expected 
reward obtained from a number of successive steps starting at the current state. 

In regular language, this means that Q-learning looks at the current state (the variables of 
its environment) and then uses this information to take the best steps in the future. The 
model does not look at past happenings, only the future.

The model uses the Q-value as a calculation for the quality of a state-action combination: 
that is, for each state, there is a list of potential actions. Each combination of a potential 
state and a potential action is called a state-action combination. The Q-value indicates the 
quality of this action when the state is the given one.

At the beginning of the reinforcement learning process, the value of Q is initialized in 
some way (randomly or fixed) and then updates every time that a reward is received. The 
agent handles the model according to the Q-values, and when rewards (feedback on the 
actions) start to come in, those Q values change. The agent still continues to follow the 
Q-values, but as they update, the behavior of the agent changes.

The core of this algorithm is the Bellman equation: an update rule for Q-values that  
uses a weighted average of older and new Q-values. Therefore, old information is  
forgotten at some point, when a lot of learning has happened. This avoids getting "stuck" 
in previous behaviors.

The formula of the Bellman equation is the following:

Parameters of the Q-learning algorithm
In this Bellman equation, there are a few important parameters that you can tune. Let's 
briefly cover those:

• The learning rate is a very commonly used hyperparameter in machine learning 
algorithms. It generally defines the step size of an optimizer in which large steps 
may make you move around faster in the optimization space, but too large steps 
may also cause a problem to go into narrow optimums.

• The discount factor is a concept that is very often used in finance and economics. 
In reinforcement learning, it indicates at which rate the model needs to prioritize 
short-term or long-term rewards.

After this overview of Q-learning, the next section will introduce a more complex 
alternative version of this approach called Deep Q-learning.

𝑄𝑄𝑛𝑛𝑛𝑛𝑛𝑛(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) = 𝑄𝑄(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) +  𝛼𝛼 ∗ (𝑟𝑟𝑡𝑡 +  𝛾𝛾 ∗ max 𝑄𝑄(𝑠𝑠𝑡𝑡+1, 𝑎𝑎) − 𝑄𝑄(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) 
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Deep Q-learning
Now that you have seen the basics of reinforcement learning and the most basic 
reinforcement learning model, Q-learning, it is time to move on to a more performant 
and more commonly used model called Deep Q-learning.

Deep Q-learning is a variant of Q-learning in which the Q-values are not just a list  
of expected Q-values for each combination of state and actions, updated by the  
Bellman equation. Rather, in Deep Q-learning, this estimation is done using a (deep) 
neural network.

If you are not familiar, neural networks are a class of machine learning models that are 
amongst the state of the art in terms of performance. Neural networks are largely used for 
many use cases in artificial intelligence, machine learning, and data science in general. 
Deep neural networks are the technology that allows many data science use cases such as 
Natural Language Processing (NLP), computer vision, and much more.

The idea behind the neural network is to pass an input data point through a network of 
nodes, called neurons, that each do a very simple operation. The fact that there are many 
such simple operations being done, and weights applied in between, means that the neural 
network is a powerful learning algorithm for mapping input data into a target variable.

The following example shows a standard depiction of a neural network. The models can 
be as simple or as complex as you want. You can go to huge numbers of hidden layers and 
add as many nodes per hidden layer as you want. Each arrow is a coefficient and needs to 
be estimated. So, it must be kept in mind that a large quantity of data will be necessary for 
estimating such models.

The example schematic of a neural network is shown here:

Figure 8.2 – Neural network architecture
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For reinforcement learning, this has to be applied inside the Q-learning paradigm. 
In essence, the deep learning model is just a better way to estimate Q-values than the 
standard Q-learning approach (or at least that's what it aspires to be).

You could see the analogy as follows. In standard Q-learning, there is a relatively simple 
storage and update mechanism for new rewards coming in and updating the policy. You 
could see it as depicted as a table, as follows:

Figure 8.3 – Example table format

In Deep Q-learning, the input and output processes are mostly the same, yet the state 
is transcribed as a number of variables that are input into a neural network. The neural 
network then outputs the estimated Q-values for each action.

The following graph shows how the state is added as input to the neural network.

Figure 8.4 – Adding the state as input to the neural network
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Now that you understand the theory behind reinforcement learning, the next section will 
be more applied as it presents a number of example use cases for reinforcement learning 
on streaming data.

Using reinforcement learning for streaming 
data
As discussed throughout earlier chapters, the challenge of building models on streaming 
data is to find models that are able to learn incrementally and that are able to adapt in the 
case of model drift or data drift.

Reinforcement learning is a potential candidate that could respond well to those  
two challenges. After all, reinforcement learning has a feedback loop that allows it to 
change policy when many mistakes are made. It is therefore able to adapt itself in the 
event of changes.

Reinforcement learning can be seen as a subcase of online learning. At the same time, 
the second specificity of reinforcement learning is its focus on learning actions, whereas 
regular online models are focused on making accurate predictions.

The split between the two fields is present in practice in the types of use cases and 
domains of application, but many streaming use cases have the potential to benefit from 
reinforcement learning and it is a great toolset to master.

If you are looking for more depth and examples, you can look at the following insightful 
article: https://www.researchgate.net/publication/337581742_
Machine_learning_for_streaming_data_state_of_the_art_
challenges_and_opportunities.

In the next section, we will explore a few key use cases where reinforcement learning 
proves crucial.

Use cases of reinforcement learning
The use cases of reinforcement learning are almost as numerous as online learning. It is a 
less often used technology when compared to standard offline and online models, but with 
the changes in the machine learning domain over the last years, it is still a great candidate 
that could become huge in the coming years.

https://www.researchgate.net/publication/337581742_Machine_learning_for_streaming_data_state_of_the_art_challenges_and_opportunities
https://www.researchgate.net/publication/337581742_Machine_learning_for_streaming_data_state_of_the_art_challenges_and_opportunities
https://www.researchgate.net/publication/337581742_Machine_learning_for_streaming_data_state_of_the_art_challenges_and_opportunities
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Let's look at some use cases to get a better feel of the types of use cases that can be suitable 
for reinforcement learning. Among the types of examples, there are some that are more 
traditional reinforcement learning use cases, and others that are more specific streaming 
data use cases.

Use case one – trading system
As a first use case of reinforcement learning, let's talk about stock market trading. The 
stock market use case was already discussed in the forecasting use case of the regression 
chapter. Reinforcement learning is an alternative solution to it.

In regression, online models are used to build forecasting tools. Using these forecasting 
tools, a stock trader could predict the price developments of specific stocks in the near 
future and use those predictions to decide on buying or selling the stocks.

Using reinforcement learning, the use case would be developed slightly differently. The 
intelligent agent would learn how to make decisions rather than to predict prices. As 
an example, you could give the agent three actions: sell, buy, or hold (hold meaning do 
nothing/ignore).

The agent would receive information about its environment, which could include past 
stock prices, macroeconomic information, and much more. This information would be 
used together with a policy and this policy decides when to buy, sell, or hold.

By training this agent for a long period of time, and with a lot of data including all types 
of market scenarios, the agent could learn pretty well how to trade markets. You would 
then obtain a profitable "trading robot," making money without much intervention. If 
successful, this is clearly an advantage over regression models as they only predict price 
and do not take any action.

For more information on this topic, you could start by checking out the following links:

• https://arxiv.org/pdf/1911.10107.pdf

• http://cslt.riit.tsinghua.edu.cn/mediawiki/images/a/
aa/07407387.pdf

Use case two – social network ranking system
A second use case for reinforcement learning is the ranking of posts on social networks. 
The general idea of what happens behind this is a number of posts being created and the 
most relevant has to be shown to each specific user, based on their preference.

https://arxiv.org/pdf/1911.10107.pdf
http://cslt.riit.tsinghua.edu.cn/mediawiki/images/a/aa/07407387.pdf
http://cslt.riit.tsinghua.edu.cn/mediawiki/images/a/aa/07407387.pdf
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There are many machine learning approaches that could be leveraged for this, and 
reinforcement learning is one of them. Basically, the model would end up making 
decisions on the posts to show to the user, so in this way, it is a real action that is taken. 

This action also generates feedback. If the user likes, comments, shares, clicks, pauses, or 
interacts in other ways with the post, the agent will be rewarded and learns that this type 
of post does interest the user.

By trial and error, the agent can publish different types of posts to each user and learn 
which decisions are good and which are bad.

Real-time response is very important here, as well as learning rapidly from mistakes. 
If a user receives a number of irrelevant posts, this would be detrimental to their user 
experience and the model should learn as soon as possible that its predictions are not 
correct. Online learning or reinforcement learning is therefore great for this use case.

For more information about such use cases, you can find some materials here:

• https://arxiv.org/abs/1601.00667

• https://rbcdsai.iitm.ac.in/blogs/finding-influencers-in-
social-networks-reinforcement-learning-shows-the-way/

Use case three – a self-driving car
Reinforcement learning has also been proposed for the use case of self-driving cars. As 
you probably know, self-driving cars have been increasingly gaining attention over the last 
few years. The goal is to make machine learning or artificial intelligence models that can 
replace the behavior of human drivers.

It is easy to understand that the essential part of this model will be to take actions: 
accelerate, slow down, brake, turn, and so on. If a good enough reinforcement learning 
model could be built to obtain all those skills, it would be a great candidate for building 
self-driving cars.

Self-driving cars need to respond to a large stream of data about the environment.  
For example, they need to detect cars, roads, road signs, and much more on a  
continuous video stream that is being filmed on multiple cameras, together with other 
sensors potentially. 

https://arxiv.org/abs/1601.00667
https://rbcdsai.iitm.ac.in/blogs/finding-influencers-in-social-networks-reinforcement-learning-shows-the-way/
https://rbcdsai.iitm.ac.in/blogs/finding-influencers-in-social-networks-reinforcement-learning-shows-the-way/
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Real-time responses are key in this scenario. Retraining the model in real time might  
be more problematic, as you would want to make sure that the model is not applying  
a trial-and-error methodology while on the road.

More information on this can be found at the following links:

• https://arxiv.org/ftp/arxiv/papers/1901/1901.00569.pdf

• https://www.ingentaconnect.com/
contentone/ist/ei/2017/00002017/00000019/
art00012?crawler=true&mimetype=application/pdf

Use case four – chatbots
Another very different but also very advanced use case of machine learning is the 
development of chatbots. Intelligent chatbots are still rare, but we can expect to see 
chatbots become more intelligent in the near future.

Chatbots need to be able to generate a response to a person while treating the information 
that was given to it by a user. The chatbot is therefore performing a sort of action: replying 
to the human.

Reinforcement learning in combination with other techniques from the domain of natural 
language processing can be a good solution for such problems. By letting the chatbot 
talk with users, a reward can be given by the human user in the form of, for example, 
an evaluation of the usefulness of their interaction. This reward can then help the 
reinforcement learning agent adapt its policy and make replies more appropriate in  
future interactions.

Chatbots need to be able to respond in real time, as no one wants to wait for an answer 
from a chatbot interaction. Learning can be done in an online or an offline fashion, but 
reinforcement learning is definitely one of the suitable alternatives.

You can read more on this use case here:

• https://arxiv.org/abs/1709.02349

• https://arxiv.org/pdf/1908.10331.pdf

https://arxiv.org/ftp/arxiv/papers/1901/1901.00569.pdf
https://www.ingentaconnect.com/contentone/ist/ei/2017/00002017/00000019/art00012?crawler=true&mimetype=application/pdf
https://www.ingentaconnect.com/contentone/ist/ei/2017/00002017/00000019/art00012?crawler=true&mimetype=application/pdf
https://www.ingentaconnect.com/contentone/ist/ei/2017/00002017/00000019/art00012?crawler=true&mimetype=application/pdf
https://arxiv.org/abs/1709.02349
https://arxiv.org/pdf/1908.10331.pdf
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Use case five – learning games
As a final use case example for reinforcement learning, let's talk about the use case of 
learning games. It may be less valuable for business, but it is still an interesting use case of 
reinforcement learning.

Over the past years, reinforcement learning agents have learned to play a number of 
games, including chess and Go. There is a clear set of moves that can be made at each 
step, and by playing many simulated (or real) games, the models can learn which policy 
(decision rules for the step to take) are the best.

In the end, the agent has such a powerful policy that it can often beat the best human 
players in the world at such games.

You can find more examples of this at the following links:

• https://www.science.org/doi/10.1126/science.aar6404

• https://arxiv.org/pdf/1912.10944.pdf

Now that we have explored some of the use cases for reinforcement learning, let's 
implement it using Python, in the next section.

Implementing reinforcement learning in 
Python
Let's now move on to an example in which streaming data is used for Q-Learning. The 
data that we will be using is simulated data of stock prices: 

1. The data is generated in the following block of code.

The list of values that is first generated is a list of 30,000 consecutive values that 
represent stock prices. The data generating process is the starting point of 0 and at 
every time step, there is a random value added to this. The random normal values 
are centered around 0, which indicates that prices would go up or down by a step 
size based on a standard deviation of 1.

https://www.science.org/doi/10.1126/science.aar6404
https://arxiv.org/pdf/1912.10944.pdf
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This process is often referred to as a random walk and it can go quite far  
up or down. After that, the values are standardized to be within a normal 
distribution again.

Code Block 8-1
import numpy as np

import matplotlib.pyplot as plt

import random

starting = 0

values = [starting]

for i in range(30000):

    values.append(values[-1] + np.random.normal())

values = (values - np.mean(values)) / np.std(values)

plt.plot(values)

The resulting plot can be seen in the following:

Figure 8.5 – The resulting plot from the preceding code block 
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2. Now, for a reinforcement problem, it is necessary to have a finite number of states. 
Of course, if we consider stock prices, we could collect up to an infinite number  
of decimals. The data is rounded to 1 decimal to limit the number of possible state 
data points:

Code Block 8-2
rounded_values = []

for value in values:

    rounded_values.append(round(value, 1))

plt.plot(rounded_values)

The resulting graph is shown in the following figure:

Figure 8.6 – The graph resulting from the preceding code block 

3. We can now set the states' potential values to all of the values that have happened in 
the past. We can also initiate a policy.

As seen in the theoretical part of this chapter, the policy represents the rules  
of the reinforcement learning agent. In some cases, there is a very specific ruleset, 
but in Q-learning, there is only a Q-value (quality) for each combination of state 
and action.
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In our example, let's consider a stock trading bot that can only do two things at a 
time t. Either the trading bot buys at time t and sells at t+1, or it sells at time t and 
closes the sell position at time t+1. Without going into stock trading too much, the 
important things to understand about this are the following:

 � When the agent buys, it should do so because it expects the stock market to go up.

 � When the agent opens a sell order, it should do so because it expects the stock 
market to go down.

As information, our stock trader will be very limited. The only data point in 
the state is the price at time t. The goal here is not to make a great model, but to 
show the principles of building a reinforcement learning agent on a stock trading 
example. In reality, you'd need much more information in the state to decide on 
your action:

Code Block 8-3
states = set(rounded_values)

import pandas as pd

policy = pd.DataFrame(0, index=states, columns=['buy', 
'sell'])

4. The function defined hereafter is how to obtain an action (sell or buy) based on 
the Q-table. It is not entirely correct to refer to the Q table as the policy, but it does 
make it more understandable.

The action chosen is that with the highest Q value for a given state (state is the 
current value of the stock):

Code Block 8-4
def find_action(policy, current_value):

    

    if policy.loc[current_value,:].sum() == 0:

        return random.choice([ 'buy', 'sell'])

    return policy.columns[policy.loc[current_value,:].
argmax()]
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5. It is also necessary to define an update rule. In this example, the update rule is 
based on the Bellman equation that was explained earlier on. However, keep in 
mind that the agent is fairly simple, and the discounting part is not really relevant. 
Discounting is useful to make an agent prefer short-term gains over long-term 
gains. The current agent always makes its gains in one time step, so discounting is 
of no added value. In a real stock-trading bot, this would be very important: you 
wouldn't put your money on a stock that will double over 20 years if you could 
double it in 1 year instead:

Code Block 8-5
def update_policy(reward, current_state_value, action):

    

    LEARNING_RATE = 0.1

    MAX_REWARD = 10

    DISCOUNT_FACTOR = 0.05

    

    return LEARNING_RATE * (reward + DISCOUNT_FACTOR * 
MAX_REWARD - policy.loc[current_state_value,action])

6. We now get to the execution of the model. We start by setting past_state to 0 
and past_action to buy. The total reward is initialized at 0 and an accumulator 
list for rewards is instantiated.

The code will then loop through the rounded values. This is a process that copies a 
data stream. If the data arrived one by one, the agent would be able to learn  
in exactly the same manner. The essence is an update of the Q table at every  
learning step.

Within each iteration, the model will execute the best action, where the best is 
based on the Q values of the Q values table (policy). The model will also receive 
the reward from time step t-1, as this was defined as the only option for the stock 
trading bot. Those rewards will be used to update the Q table so that the next round 
can have updated information:

Code Block 8-6
past_state_value = 0

past_action = 'buy'

total_reward = 0.

rewards = []
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for i, current_state_value in enumerate(rounded_values):

    

    # do the action

    action = find_action(policy, current_state_value)

    

    

    # also compute reward from previous action and update 
state

    if past_action == 'buy':

        reward = current_state_value - past_state_value

        

    if past_action == 'sell':

        reward = past_state_value - current_state_value

    

    total_reward = total_reward + float(reward)

    

    policy.loc[current_state_value, action] = policy.
loc[current_state_value, action] + update_policy(reward, 
current_state_value,action)

    

    #print(policy)

    rewards.append(total_reward)

    

    past_action = action

    past_state_value = current_state_value

7. In the following plot, you see how the model is getting its rewards. In the beginning, 
total rewards are negative for a long time, and then they are positive at the end. 
Keep in mind that we are learning on input data that is hypothetical and that 
represents a random walk. If we wanted an actual intelligent stock trading bot, we'd 
need to give it much more and much better data:

Code Block 8-7
plt.plot(rewards)
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The resulting graph is shown hereafter:

Figure 8.7 – The graph resulting from the preceding code block 

8. The following plot shows a heat map of the Q values against the policy. The values at 
the top of the table are the preferred action when stock prices are low, and the values 
at the bottom are preferred actions when stock prices are high. The color light 
yellow means high-quality actions, and the color black means low-quality actions:

Code Block 8-8
import seaborn as sns

sns.heatmap(policy.sort_index())

The resulting heatmap is shown here:

Figure 8.8 – The heatmap resulting from the preceding code block 
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It is interesting to see that the model seems to have started to learn a basic rule in stock 
trading: buy low, sell high. This can be seen by more yellow in selling at high prices 
and more yellow in buying at low prices. Apparently, this rule is even true on simulated 
random walk data.

To learn more advanced rules, the agent would need to have more data in the state, and 
therefore the Q table would also become much heavier. An example of what you could  
add is a rolling history of prices so that the agent knows whether you are in an uptrend  
or a downtrend. You could also add macro-economic factors, sentiment estimations, or 
any other data.

You could also make the action structure much more advanced. Rather than having only 
one-day sell or buy trades, it would be much more interesting to have a model that can 
buy or sell any equity in its portfolio at any time that the agent decides to.

Of course, you would also need to provide enough data to allow the model to make 
estimations for all these scenarios. The more scenarios you take into account, the more 
time it will take the agent to learn how to behave correctly.

Summary
In this chapter, you were first introduced to the underlying foundations of reinforcement 
learning. You saw that reinforcement learning models are focused on taking actions rather 
than on making predictions.

You also saw two widely known algorithms for reinforcement learning. This started with 
Q-learning, which is the foundational algorithm of reinforcement learning, and its more 
powerful improvement, Deep Q-learning.

Reinforcement learning is often used for more advanced use cases such as chatbots or 
self-driving cars, but can also be used for numerical data streams very well. Through a use 
case, you saw how to apply reinforcement learning to streaming data for finance.

With this chapter, you have come to the end of discovering the most relevant machine 
learning models for online learning. In the coming chapters, you will discover a number 
of additional tools that you will need to take into account in online learning and that have 
no real counterpart in traditional ML. You will first have a deep dive into all types of data 
and model drift and then discover how to deal with models that go totally in the wrong 
direction through catastrophic forgetting.
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Further reading
• Reinforcement learning applications: https://neptune.ai/blog/

reinforcement-learning-applications

• Q-learning: https://en.wikipedia.org/wiki/Q-learning

• Deep Q-learning: https://en.wikipedia.org/wiki/Deep_
reinforcement_learning

https://neptune.ai/blog/reinforcement-learning-applications
https://neptune.ai/blog/reinforcement-learning-applications
https://en.wikipedia.org/wiki/Q-learning
https://en.wikipedia.org/wiki/Deep_reinforcement_learning
https://en.wikipedia.org/wiki/Deep_reinforcement_learning


Part 3:  
Advanced Concepts 

and Best Practices 
around Streaming Data

This part will cover some of the advanced topics around streaming data, including  
drift and feature transformation. We will use examples to learn about each of these 
concepts. Finally, we will wrap up everything we learned in the last chapter, as a summary 
of all the topics.

This section comprises the following chapters:

• Chapter 9, Drift and Drift Detection

• Chapter 10, Feature Transformation and Scaling

• Chapter 11, Catastrophic Forgetting

• Chapter 12, Conclusion and Best Practices





9
Drift and Drift 

Detection
Throughout the previous chapters, you have discovered plenty of ways to build machine 
learning (ML) models that work in an online manner. They are able to update their 
learned decision rules from one single observation rather than having to retrain 
completely as is common in most ML models.

One reason that this is great is streaming, as these models will allow you to work and 
learn continuously. However, we could argue that a traditional ML model can also predict 
on a single observation. Even batch learning and offline models can predict a single new 
observation at a time. To get more insight into the added value of online ML, this chapter 
will go in depth into drift and drift detection.

To get to an improved understanding of those concepts, the chapter will start with an 
in-depth description of what drift is. You will then see different types of drift, including 
concept drift, data drift, and retraining strategy issues. 

After that, you will be exposed to a number of methods to detect both data drift and 
concept drift. You will also see a number of methods to counteract drift and will be 
introduced to model explicability and retraining strategies.

For now, let's get started with the basics by having a deeper look at a definition of drift.
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This chapter will cover the following topics:

• Defining drift

• Introducing model explicability

• Measuring drift

• Measuring drift in Python

• Counteracting drift

Technical requirements
You can find all the code for this book on GitHub at the following link: https://
github.com/PacktPublishing/Machine-Learning-for-Streaming-
Data-with-Python. If you are not yet familiar with Git and GitHub, the easiest  
way to download the notebooks and code samples is by doing the following:

1. Go to the link of the repository.
2. Go to the green Code button.
3. Select Download zip.

When you download the ZIP file, you unzip it in your local environment, and you will be 
able to access the code through your preferred Python editor.

Python environment
To follow along with this book, you can download the code in the repository and execute 
it using your preferred Python editor.

If you are not yet familiar with Python environments, I would advise you to check  
out Anaconda (https://www.anaconda.com/products/individual), which 
comes with Jupyter Notebook and JupyterLab, which are both great for executing 
notebooks. It also comes with Spyder and Visual Studio Code (VS Code) for editing 
scripts and programs.

If you have difficulty installing Python or the associated programs on your machine, you 
can check out Google Colabatory (Google Colab) (https://colab.research.
google.com/) or Kaggle Notebooks (https://www.kaggle.com/code),  
which both allow you to run Python code in online notebooks for free, without  
any setup required.

https://github.com/PacktPublishing/Machine-Learning-for-Streaming-Data-with-Python
https://github.com/PacktPublishing/Machine-Learning-for-Streaming-Data-with-Python
https://github.com/PacktPublishing/Machine-Learning-for-Streaming-Data-with-Python
https://www.anaconda.com/products/individual
https://colab.research.google.com/
https://colab.research.google.com/
https://www.kaggle.com/code
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Note
The code in the book will generally use Colab and Kaggle Notebooks  
with Python version 3.7.13, and you can set up your own environment to 
mimic this. 

Defining drift
It is a well-known and commonly observed problem that models tend to start performing 
worse with time. Whether your metric is accuracy, R2 score, F1 score, or anything else, 
you will see a slow but steady decrease in performance over time if you put models into 
production and do not update them.

Depending on your use case, this decrease may become problematic quickly or slowly. 
Some use cases need to have continuous, near-perfect predictions. In some use cases— for 
example, for specialized ML in which the models have a direct impact on life—you would 
be strongly shocked if you observed a 1 percent decrease. In other use cases, ML is used 
more as automation than as prediction, and the business partners may not even notice a 5 
percent decrease.

Whether it is going to impact you is not the question here. What is sure, is that in general, 
you will see your models decreasing. The goal for this chapter is to make sure to find out 
why model performance is decreasing, how you can measure it, and what can be done 
about it if you decide that it is too problematic for your use case.

In the next section, we will start by presenting three different types of drift that you may 
encounter in streaming use cases.

Three types of drift
There are two reasons for drift that are generally considered with streaming data: concept 
drift and data drift. In this part, you will first discover concept and data drift, but you will 
also see how retraining strategies can have an impact on your model drifting away from 
the data rather than the opposite.

Concept drift
In concept drift, we try to explain worsening model performance by a change in the 
concept that we are modeling. This means that the statistical properties of the target 
variable are changing, and therefore the model is no longer adequate for our use case.
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A simplified example of concept change is a model that tries to forecast hot chocolate sales 
of a certain bar. Maybe the model was perfect for a certain while, but at some point, a 
competing bar got installed in the area. The underlying demand process has changed, and 
this was logically not included in the model, as the competition was not relevant when the 
model was built.

When the concept changes, the model needs to be updated to take into account the 
most recent processes, as the model is no longer adequate for the use case. The following 
schematic diagram shows what goes wrong in the case of concept drift:

Figure 9.1 – Concept drift

Now that you have seen the theory behind concept drift, the next section will present data 
drift—a second important type of drift.

Data drift
When we talk about data drift, we talk about a change in the statistical properties of 
independent variables. This is mainly relevant when we have worked with a sample of data 
(maybe just based on what we had available), but then we start to realize that the sample is 
no longer representative of the data that we are receiving at the current moment.
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Examples include changes in measurement machines, where a new measurement device 
may give slightly different measurements than the old material. Imagine we change the 
thermometer and our new thermometer measures about 0.5 degrees higher than the old 
one. You can understand that the model is not able to take this type of information into 
account and will make wrong predictions as the model takes the temperature higher than 
it should.

The following schematic diagram shows what goes wrong in the case of data drift:

Figure 9.2 – Data drift

Having covered two important causes of drift, the next section will present model decay 
and misspecification—a third drift-related problem.

Model decay and misspecification
Although not generally considered a problem of drift in the literature, I find it important 
to also mention problems with the model as one of the problems behind drifting and 
decaying performance. In real-life situations, humans are imperfect and make mistakes. 
Theoretically, we should expect models to be well specified and therefore not be the 
reasons for any problems.

In practice, however, retraining of models may be wrongly automated, thereby 
introducing small problems that slowly, with time, add up to large problems,  
and this may be an important reason for model decay and lowering performance.



174     Drift and Drift Detection

The following schematic diagram shows what goes wrong in the case of model problems, 
due to any reason such as misspecification or retraining problems:

Figure 9.3 – Model-induced problems

Having seen three potential reasons for drift in streaming models, the next section will 
explain how model explicability can be used as a solution against drift.

Introducing model explicability
When models are learning in an online fashion, they are repeatedly relearning. This 
relearning process is happening automatically, and it is often impossible for a human user 
to keep an eye on the models continuously. In addition, this would go against the main 
goal of doing ML as the goal is to let machines—or models—take over, rather than having 
continuous human intervention.

When models learn or relearn, data scientists are generally faced with programmatic 
model-building interfaces. Imagine a random forest, in which hundreds of decision trees 
are acting at the same time to predict a target variable for a new observation. Even the task 
of printing out and looking at all those decisions would be a huge task.

Model explicability is a big topic in recent advances in ML. By throwing black-box models 
at data-science use cases, big mistakes are occurring. An example is that when self-driving 
cars were trained on a biased sample containing too many white people, the cars were 
measured to have more accidents with black people, just because of a data-science error. 
Understanding what happens in your model can have a life-saving impact.



Measuring drift     175

When considering drift in models, it is also important to understand what happens in 
your model. The first model that you deploy is likely to be quite close to your expectation. 
After that, the model will relearn from every data point it encounters. If there are biases in 
the data, or if biases are occurring from over- or underfitting (and this happens when the 
model is running in autonomy), then at some point, you are likely to miss out on  
those trends.

You need to make sure to set up an initial method for model explicability as well as 
continue to investigate the topic. In the current chapter, we'll be focusing on data drift  
and concept drift, but keep in mind that model misspecification can also be a huge 
contributor to decreasing accuracy. This will be covered in more depth in Chapter 11.

For now, let's move on to some methods for measuring drift.

Measuring drift
There are two important things to consider for drift. We should first be able to measure 
drift, as we cannot counteract something that we are not aware of. Secondly, once we 
become aware of drift, we should define the right strategies for counteracting it. Let's 
discuss measurements for drift first.

Measuring data drift
As described earlier, data drift means that the measurements are slowly changing over 
time, whereas the underlying concepts stay the same. To measure this, descriptive 
statistics can be very useful. As you have seen a lot of descriptive statistics in earlier 
chapters, we will not repeat the theory behind this.

To apply descriptive statistics to measure data drift, we could simply set up a number  
of descriptive statistics and track them over time. For each variable, you could set up  
the following:

• Measurements of centrality (mean, median, mode)

• Measurements of variation (standard deviation, variance, interquartile range,  
or IQR)

• Event correlation between the variables

Besides this, it would be necessary to track drift on specific time scales. If you expect  
drift on very long periods, you could compute these descriptive statistics on a monthly  
or even yearly basis, but for quicker detection, it could be weekly, daily, or even hourly  
or more frequent. 
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The comparison of these metrics over time would allow you to detect a change in the data, 
which would be a common cause for drift in your model.

Measuring concept drift
When measuring concept drift, the best thing to do is to set up a thorough tracking of 
model performance over time. The performance metric that you use will depend on your 
use case and on the type of model you use but may include an R2 score for regression, 
accuracy, an F1 score for validation, or even more.

When measuring model performance over time, you are likely to see a decrease if no 
model updating is done. With online models that relearn on every data point, this 
should theoretically be less of an issue. When you do see your performance decrease, this 
indicates that something is off somewhere in your system.

If you are already measuring data drift, this would be a good first thing to look at, as data 
drift is likely to cause decreasing model performance. If data drift is not occurring, you are 
likely to have a concept drift in your system.

It is important to keep in mind that measuring model drift and data drift are closely 
linked together in practice: it is hard to attribute decreasing performance to one specific 
root cause. The goal should be to keep your model performance high and find solutions 
for this if things are off. Measuring both performance and individual statistics and even 
more metrics together is what will make your strategy powerful against drift.

Let's now see some Python examples of how to detect drift in modeling.

Measuring drift in Python
When measuring drift, the first thing to do is to make sure that your model is writing 
out logs or results in some way. For the following example, you'll use a dataset in which 
each prediction was logged so that we have for each prediction the input variables, the 
prediction, the ground truth, and the absolute differences between prediction and ground 
truth as an indicator of error.

Logging your model's behavior is an absolute prerequisite if you want to work on drift 
detection. Let's start with some basic measurements that could help you to detect drift 
using Python.
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A basic intuitive approach to measuring drift
In this section, you will discover an intuitive approach to measuring drift. Here are the 
steps we'll follow:

1. To get started measuring drift on our logged results data, we start by importing the 
data as a pandas DataFrame. This is done in the following code block:

Code block 9-1
import pandas as pd

data = pd.read_excel('chapter9datafile.xlsx')

data

You will obtain a table that looks like the one shown here:

Figure 9.4 – The data
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2. Now that you have the drift-detection data, let's have a look at the development of 
the error over time by doing a groupby operation on the day and looking at the 
average error, as follows:

Code Block 9-2
data.groupby('Day')['Error'].mean()

You will obtain the following result:

Figure 9.5 – The result
You can clearly see that the error is strongly increasing over time, so we can be  
quite certain that we have a problem with model drift here. Now, of course, it is  
not yet defined whether this problem is caused by a problem in the data or a 
problem in the concept. 

3. Let's do an analysis with the target variable to see whether the target has 
experienced large changes over time. The following code does an average  
of the ground-truth value per day, to see whether there was a clear drift in  
the target variable:

Code block 9-3
data.groupby('Day')['Ground Truth'].mean()

The result looks like this:

Figure 9.6 – The result (continued)
We do see a quite important change on average over this period. 
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4. Let's take our inspection further and also do this analysis for each of the 
independent variables. The following code does an average of the three independent 
variables per day to see if there is any obvious shift in there:

Code block 9-4
data.groupby('Day')[['X1', 'X2', 'X3']].mean()

You will obtain the following result:

Figure 9.7 – The groupby result

We see a very clear change happening in the third explanatory variable, X3. It is highly 
probable that this is the cause of our model shift.

Measuring drift with robust tools
If you are working on small use cases and you do not want to integrate with large external 
platforms, the previous examples are really good. However, if you are working at a 
company where you are limited in resources, it may not be possible or not worth it to 
develop code for common use cases from scratch. 

Drift detection is a use case that is getting quite some popularity at the moment, so more 
and more robust solutions are being presented to the public—be it paid programs, cloud 
programs, or open source solutions.

Next, I will present a number of useful solutions that you could look at if you are 
interested in taking on external platforms for doing your model performance follow-ups 
and your drift-detection use cases. As those platforms are owned by companies and are 
sometimes paid, I do not want to go into much depth here, but it is good to give you some 
pointers in case this is of interest to you.
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Soda SQL
One solution that is interesting to look at is Soda SQL. This is a tool that is specific  
for data quality, so it is not necessarily tuned for ML use cases. However, data quality 
issues will almost necessarily result in problematic models, so I find it valuable to  
discuss this solution. 

You can find full information here: https://docs.soda.io/. Soda SQL is a tool  
that is really oriented toward data engineering, so I won't go too much into detail here,  
but I do recommend keeping it in mind for your use cases.

MLflow with whylogs
A tool that is much more oriented toward ML models in production is the whylogs open 
source Python library, which integrates with the WhyLabs app (whylabsapp.com). If 
you sign up for an account with WhyLabs, you can use their application programming 
interface (API) and send your model logging directly to their databases, where it will be 
analyzed and made accessible to you.

Neptune
A comparable tool is being delivered by Neptune (neptune.ai). The goal of Neptune is 
also to present an ML operations (MLOps) platform to which you can send your logging 
data from basically any Python (or other) model environment. After that, you can access 
the performance on their web platform, and all the heavy lifting for drift detection is taken 
off your shoulders.

You have now seen some theoretical methods for measuring and detecting drift, and some 
start-up platforms that are proposing to do this type of work for you if you do not have the 
capacity to deliver it. Still, we have not talked about something equally important, which is 
counteracting drift.

Counteracting drift
As discussed in the introduction, model drift is bound to happen. Maybe it happens very 
slowly or maybe it occurs quickly, but it is something that cannot really be avoided if we 
don't try to actively counteract it.

What you will realize in the coming section is that online learning, which has been 
covered extensively in this book, is actually a very performant method against drift. 
Although we had not yet clearly defined drift, you will now come to understand that 
online learning has a strong added value here.

https://docs.soda.io/
http://whylabsapp.com
http://neptune.ai
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We will now recapitulate two approaches for counteracting drift, depending on the type of 
work you are doing, as follows:

• Retraining for offline learning

• Online learning

Let's start with the most traditional case, which is offline learning with retraining 
strategies implemented against model decay.

Offline learning with retraining strategies against drift
Offline learning is still the most commonly used method for ML. In offline learning, the 
model is trained once and then used only for prediction. The following schematic diagram 
depicts the offline learning process: 

Figure 9.8 – Schematic diagram of offline learning

To update the model, it is generally necessary to retrain the full model and deploy a new 
version to your production environment. This is shown in Figure 9.9.

The advantages of this approach are that the model builder has complete control over their 
model. There is no risk of the model learning new—wrong—processes. This comes at the 
cost of not updating when data or concept drift occurs. In this way, its advantages and 
disadvantages are the opposite of online learning. 
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Online learning against drift
As you have seen throughout this book, online learning is an alternative to offline learning 
and allows the model to update whenever a new data point arrives. The following diagram 
illustrates how a retraining strategy works:

Figure 9.9 – Schematic diagram of online learning

Using online learning, the model has some autonomy in updating and will theoretically 
stay closer to the data: less drift should occur. However, this comes at a cost of the model 
builder not having full control over the theory model. Learning may go in the wrong 
direction, and unwanted decision rules are learned by the model.

The advantages are the opposite of offline learning, and it will really depend on the 
business case whether to choose online or offline learning.

Summary
In this chapter, you have first been introduced to the underlying foundations of model 
drift. You have seen that model drift and a decrease in model performance over time are 
to be expected in ML models in a real-life environment.

Decreasing performance can generally be attributed to drifting data, drifting concepts,  
or model-induced problems. Drifting data occurs when data measurements change  
over time, but the underlying theoretical concept behind the model stays the same. 
Concept drift captures problems of those theoretical underlying foundations of the 
learned processes.
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Model- and model retraining-related problems are generally not considered standard 
reasons for drift, but they should still be monitored and taken seriously. Depending on 
your business case, relearning—especially if monitoring is lacking—can introduce large 
problems with ML systems.

Data drift can generally be measured well by using descriptive statistics. Concept drift is 
often harder to measure, but its presence can be deduced from an otherwise inexplicable 
decrease in model performance. In general, the importance here is not in attributing the 
decreasing performance to a specific cause, but rather in solving the problem using one of 
the provided solutions.

Retraining strategies can often be used for offline models. They are a way to update 
models, without giving up control of learned decision rules. Online models, as thoroughly 
presented throughout the earlier chapters of this book, are a great alternative to retraining 
offline models. The great advantage of using online models is that online models are made 
specifically for retraining. These models allow for a larger degree of autonomy and will 
prove useful in many business cases, as long as monitoring of both data and models is 
implemented correctly.

In the next chapter, you will see how to adapt feature transformation (FT) and scaling 
to the online modeling case. FT and scaling are standard practice in many ML use cases, 
but due to drift in data—and bias in windowing—it poses some theoretical difficulties that 
need to be taken into account.

Further reading
• Model drift: https://www.ibm.com/cloud/watson-studio/drift

• Data drift: https://docs.microsoft.com/en-us/azure/machine-
learning/how-to-monitor-datasets?tabs=python

• Concept drift: https://www.iguazio.com/blog/concept-drift-deep-
dive-how-to-build-a-drift-aware-ml-system/

• Dealing with concept drift: https://neptune.ai/blog/concept-drift-
best-practices

• Retraining strategies: https://www.kdnuggets.com/2019/12/ultimate-
guide-model-retraining.html

https://www.ibm.com/cloud/watson-studio/drift
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-monitor-datasets?tabs=python
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-monitor-datasets?tabs=python
https://www.iguazio.com/blog/concept-drift-deep-dive-how-to-build-a-drift-aware-ml-system/
https://www.iguazio.com/blog/concept-drift-deep-dive-how-to-build-a-drift-aware-ml-system/
https://neptune.ai/blog/concept-drift-best-practices
https://neptune.ai/blog/concept-drift-best-practices
https://www.kdnuggets.com/2019/12/ultimate-guide-model-retraining.html
https://www.kdnuggets.com/2019/12/ultimate-guide-model-retraining.html
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Transformation  
and Scaling

In the previous chapter, you have seen how to manage drift and drift detection in 
streaming and online machine learning models. Drift detection, although not the  
main concept in machine learning, is a very important accessory aspect of machine 
learning in production.

Although many secondary topics are important in machine learning, some of the 
accessory topics are especially important with online models. Drift detection is 
particularly important, as the model's autonomy in relearning makes it slightly more 
black-box to the developer or data scientist. This has great advantages only as long as the 
retraining process is correctly managed by drift detection and comparable methods.

In this chapter, you will see another secondary machine learning topic that has important 
implications for online machine learning and streaming. Feature transformation and 
scaling are practices that are relatively well defined in traditional, batch machine learning. 
They do not generally pose any theoretical difficulty.
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In online machine learning, scaling and feature transformation is not as straightforward.  
It is necessary to adapt the practice to the possibility that new data is not exactly 
comparable to the original data. This causes questions as to whether or not to refit  
feature transformations and scalers on every new piece of data arriving, but also on 
whether such practices will introduce bias into your already trained and continuously 
re-training models.

The topics that are covered in this chapter are as follows:

• Challenges of data preparation with streaming data

• Scaling data for streaming

• Transforming features in a streaming context

Technical requirements
You can find all the code for this book on GitHub at the following link: https://
github.com/PacktPublishing/Machine-Learning-for-Streaming-
Data-with-Python. If you are not yet familiar with Git and GitHub, the easiest  
way to download the notebooks and code samples is the following:

1. Go to the link of the repository.
2. Go to the green Code button.
3. Select Download ZIP.

When you download the ZIP file, unzip it in your local environment, and you will be able 
to access the code through your preferred Python editor.

Python environment
To follow along with this book, you can download the code in the repository and execute 
it using your preferred Python editor.

If you are not yet familiar with Python environments, I would advise you to check out 
Anaconda (https://www.anaconda.com/products/individual), which comes 
with Jupyter Notebook and JupyterLabs, which are both great for executing notebooks. It 
also comes with Spyder and VSCode for editing scripts and programs.

If you have difficulty installing Python or the associated programs on your machine, you 
can check out Google Colab (https://colab.research.google.com/) or Kaggle 
Notebooks (https://www.kaggle.com/code), which both allow you to run Python 
code in online notebooks for free, without any setup required.

https://github.com/PacktPublishing/Machine-Learning-for-Streaming-Data-with-Python
https://github.com/PacktPublishing/Machine-Learning-for-Streaming-Data-with-Python
https://github.com/PacktPublishing/Machine-Learning-for-Streaming-Data-with-Python
https://www.anaconda.com/products/individual
https://colab.research.google.com/
https://www.kaggle.com/code
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Note
The code in the book will generally use Colab and Kaggle Notebooks  
with Python version 3.7.13, and you can set up your own environment  
to mimic this. 

Challenges of data preparation with  
streaming data
Before deep-diving into specific algorithms and solutions, let's first have a general 
discussion of why data preparation may be different when working with data that arrives 
in a streaming fashion. Multiple reasons can be identified, such as the following:

• The first, obvious issue is data drift. As discussed in much detail in the previous 
chapter, trends and descriptive statistics of your data can slowly change over time 
due to data drift. If your feature engineering or data preparation processes are too 
dependent on your data following certain distributions, you may run into problems 
when data drift occurs. As many solutions for this have been proposed in the 
previous chapter, this topic will be left out of consideration in the current chapter.

• The second issue is that population parameters are unknown. When observing  
data in a streaming fashion, it is possible, and even likely, that your estimates of  
the population parameters are slowly going to improve over time. As seen in 
Chapter 3, precision in your estimates of descriptive statistics will improve with  
the amount of data you have. When the descriptive statistic estimates are improving, 
the fact that they are changing over time does not make it easy to fix your formulas 
for data preparation, feature engineering, scaling, and the like:

 � As the first example of this, consider the range. The range represents the  
minimum and maximum values of the data that you observe. This is used 
extensively in data scaling and also in other algorithms. Now, imagine that the 
range (minimum and maximum values) in a batch can be different from the 
global range (global minimum and global maximum) of the data. After all, 
when new data arrives, you may observe a value that is higher or lower than 
anything observed in your historical data, just by the process of random sampling. 
Observing an observation that is higher than your maximum may cause an issue 
in scaling if you do not treat it right.
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 � Another example of this is when scaling with a normal distribution. The standard 
deviation and average in your batch may be different from the population 
standard deviation and population average. This may cause your scaler to behave 
differently after some time, which is a sort of data drift that is induced by your 
own scaling algorithm. Clearly, this must be avoided.

• Many other cases of such problems exist, including observing new categories in  
a categorical value, which will lead to problems with your one-hot encoder or your 
models that use categorical variables. You can also imagine that occurring new types 
of values in your data such as NAs and InFs need to be managed well, rather than 
having them cause bugs. This is true in general, but when working with streaming, 
this tends to cause even more trouble than with regular data. 

In the next section, we will learn what scaling is and how to work with it.

Scaling data for streaming
In the first part of this section, let's start by looking at some solutions for streaming  
scaling data. Before going into the solutions, let's do a quick recap of what scaling is  
and how it works.

Introducing scaling
Numerical variables can be of any scale, meaning they can have very high average values 
or low average values, for example. Some machine learning algorithms are not at all 
impacted by the scale of a variable, whereas other machine learning algorithms can be 
strongly impacted.

Scaling is the practice of taking a numerical variable and reducing its range, and 
potentially its standard deviation, to a pre-specified range. This will allow all machine 
learning algorithms to learn from the data without problems.

Scaling with MinMaxScaler
To achieve this goal, a commonly used method is the Min-Max scaler. The Min-Max 
scaler will take an input variable in any range and reduce all of the values to fall in 
between the range (0 to 1), meaning that the minimum value of the scaled variable will be 
0 and the maximum of the scaled variable will be 1. Sometimes, an alternative is used in 
which the minimum is not 0, but -1.
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The mathematical formula for Min-Max scaling is the following:

Scaling with StandardScaler
Another very common approach to scaling is standardizing. Standardizing is a method 
strongly based on statistics, which allows you to take any variable and take it back to a 
standard normal distribution. The standard normal distribution has an average of 0 and a 
standard deviation of 1. 

The mathematical formula for the StandardScaler is the following:

The values of the scaled variable will not be in any specific range; the new value of the 
scaled variable represents the number of standard deviations that the original value 
is away from the original mean. A very extreme value (imagine four or five standard 
deviations away from the mean) would have a value of four or five, which by the way can 
be both positive and negative.

Choosing your scaling method
The choice of scaling algorithm depends on the use case, and it is generally a good idea to 
do tuning of your machine learning pipeline in which different scaling methods are used 
with different algorithms. After all, the choice of scaling method has an impact on the 
performance of the training of the method.

The Min-Max scaler is known to have difficulty with outliers. After all, a very extreme 
outlier would be set to the maximum value, that is, to 1. Then, this may cause the other 
values to be reduced to a much smaller range.

The StandardScaler deals with this in a better way, as the outliers would still be outliers 
and simply take on high values in the scaled variable. This can be a disadvantage at the 
same time, mainly when you are using machine learning algorithms that need the values 
to be between 0 and 1.

𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
X − 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚

𝑋𝑋𝑚𝑚𝑠𝑠𝑚𝑚 − 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚
 

𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
X −𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑋𝑋)
𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠(𝑋𝑋)  
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Adapting scaling to a streaming context
Let's now have a look at how we can adapt each of those approaches to the case of 
streaming data. We'll start with the Min-Max scaler.

Adapting the MinMaxScaler to streaming
The MinMaxScaler works perfectly on a fixed dataset. It guarantees that the values of 
the scaled data will be between 0 and 1, just as required by some machine learning 
algorithms. However, in the case of streaming data, this is much less easy to manage.

When new data arrives one by one (in a stream), it is impossible to decide on the 
minimum or maximum value. After all, you cannot expect one value to be both minimum 
and maximum. The same problem occurs when batching: there is no guarantee that the 
batch maximum is higher than the global maximum, and the same for the minimum.

You could use the training data to decide on the minimum and the maximum, but  
then the problem is that your new data could be above the training maximum or  
below the training minimum. This would result in the scaled values being outside  
of the range (0 to 1).

A solution for this is to use a running minimum and a running maximum. This means 
that you continue updating the MinMaxScaler so that every time a lower minimum is 
observed, you update the minimum in the MinMaxScaler formula, and every time a 
higher maximum is observed, you update the maximum.

The advantage of this method is that it guarantees that your scaled data will always be 
between 0 and 1. A disadvantage is that the first values for training the MinMaxScaler  
will be scaled quite badly. This is easily solved by using some training data to initialize  
the MinMaxScaler. Outliers can also be a problem, as having one very extreme value  
will strongly affect the MinMaxScaler's formula, and scores will be very different after  
that. This could be solved by using an outlier detection method as described extensively  
in Chapter 5.

Let's now move on to a Python implementation of an adaptive MinMaxScaler: 

1. For this, we will use the implementation of the MinMaxScaler in the Python library, 
River. We will use the following data for this example:

Code Block 10-1
import numpy as np

data = np.random.randint(0, 100, size=1000)
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2. The histogram of this data can be created using the following code:

Code Block 10-2
import matplotlib.pyplot as plt

plt.hist(data)

The resulting histogram looks like the following:

Figure 10.1 – Resulting histogram of Code Block 10-2

3. Now, to scale this data, let's use the MinMaxScaler function from River. Looping 
through the data will simulate the data arriving in a streaming fashion, and the use 
of the learn_one method shows that the data is updated step by step:

Code Block 10-3
!pip install river

from river import preprocessing

# convert the data to required format

data_stream = [{'x':float(x)} for x in list(data)]

# initialize list for scaled values

data_scaled = []

# initialize scaler

my_scaler = preprocessing.MinMaxScaler()
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# streaming

for observation in data_stream:

  # learn (update)

  my_scaler.learn_one(observation)

  # scale the observation

  scaled_obs = my_scaler.transform_one(observation)

  

  # store the scaled result

  data_scaled.append(scaled_obs['x'])

4. Now, it will be interesting to see the histogram of the scaled data. It can be created 
as follows:

Code Block 10-4
import matplotlib.pyplot as plt

plt.hist(data_scaled)

The histogram is shown in the following:

Figure 10.2 – Resulting histogram of Code Block 10-4

This histogram clearly shows that we have been successful in scaling the data into the  
0 to 1 range. 

Now that you have seen the theory and implementation of the MinMaxScaler, let's now 
see the StandardScaler, a common alternative to this method.
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Adapting the Standard Scaler to streaming
The problem that may occur in standard scaling when observing more extreme data in the 
future, is not exactly the same problem as the one that is seen in Min-Max scaling. Where 
the Min-Max scaler uses the minimum and the maximum to compute the scaling method, 
the standard scaler uses the mean and standard deviation.

The reason why this is very different is that the minimum and maximum are relatively 
likely to be surpassed at one point in time. This would result in the scaled values  
being higher than 1 or lower than 0, which may pose real problems for your machine 
learning algorithms.

In the standard scaler, any extreme values occurring in the future will impact your 
estimate of the global mean and standard deviation, but they are much less likely to 
impact them very severely. After all, the mean and the standard deviation are much less 
sensitive to the observation of a small number of extreme values.

Given this theoretical consideration, you may conclude that it isn't really necessary  
to update the standard scaler. However, it may be best to update it anyway, as this is  
a good way to keep your machine learning methods up to date. The added value of this 
will be less impacting than when using the Min-Max scaler, but it is a best practice to do  
it anyway.

One solution that you can use is to use the AdaptiveStandardScaler in the Riverml 
package. It uses an exponentially-weighted running mean and variance to make 
sure that slight drifts of the normal distribution of your data are taken into account 
without having it weigh too strongly. Let's see a Python example of how to use the 
AdaptiveStandardScaler:

1. We will use the following data for this example:

Code Block 10-5
import numpy as np

data = np.random.normal(12, 15, size=1000)

2. This data follows a normal distribution, as you can see from the histogram. You can 
create a histogram as follows:

Code Block 10-6
import matplotlib.pyplot as plt

plt.hist(data)
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The resulting histogram is shown here:

Figure 10.3 – Resulting histogram of Code Block 10-6
The data clearly follows a normal distribution, but it is not centered around 0 and it 
is not standardized to a standard deviation of 1.

3. Now, to scale this data, let's use StandardScaler from River. Again, we will loop 
through the data to simulate streaming. Also, we again use the learn_one method 
to update the data step by step:

Code Block 10-7
from river import preprocessing

# convert the data to required format

data_stream = [{'x':float(x)} for x in list(data)]

# initialize list for scaled values

data_scaled = []

# initialize scaler

my_scaler = preprocessing.StandardScaler()

# streaming

for observation in data_stream:

  # learn (update)
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  my_scaler.learn_one(observation)

  # scale the observation

  scaled_obs = my_scaler.transform_one(observation)

  

  # store the scaled result

  data_scaled.append(scaled_obs['x'])

4. To verify that it has worked correctly, let's redo the histogram using the  
following code:

Code Block 10-8
plt.hist(data_scaled)

The histogram is shown here:

Figure 10.4 – Resulting histogram of Code Block 10-8

As you can see, the data is clearly centered around 0, and the new, scaled value indicates 
the number of standard deviations that each data point is away from the mean.

In the next section, you will see how to adapt feature transformation in a  
streaming context.
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Transforming features in a streaming context
Scaling data is a way of pre-processing data for machine learning, but many other 
statistical methods can be used for data preparation. In this second part of this chapter 
let's deep dive into the principal component analysis (PCA) method, a much-used 
method for preparing data at the beginning of any machine learning.

Introducing PCA
PCA is a machine learning method that can be used for multiple applications.  
When working with highly multivariate data, PCA can be used in an interpretative  
way, where you use it to make sense of and analyze multivariate datasets. This is a use  
of PCA in data analysis.

Another way to use PCA is to prepare data for machine learning. From a high-level 
point of view, PCA could be seen as an alternative to scaling that reduces the number of 
variables of your data to make it easier for the model to fit. This is the use of PCA that is 
most relevant for the current chapter, and this is how it will be used in the example.

Mathematical definition of PCA
PCA works on multivariate data (or data with multiple columns). These columns generally 
have a business definition. The goal of PCA is to keep all information in the data but 
change the current variable definitions into variables with different interpretations.

The new variables are called the principal components, and they are found in such a way 
that the first component contains the most possible variation, and the second component 
is the component that is orthogonal to the first one and explains the most variation 
possible while being orthogonal.

A schematical overview is shown here:

Figure 10.5 – Schematic overview of PCA
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This example clearly shows how the original data on the left is transformed into principal 
components on the right. The first principal component has much more value in terms  
of information than any of the original variables. When working with hundreds of 
variables, you can imagine that you will need to retain only a limited number of 
components (based on different criteria and your use case), which may make it easier  
for your machine learning algorithm to learn from the data.

Regular PCA in Python
To have a good comparison between regular and incremental PCA, it is good to get 
everybody up to speed and do a quick example of a regular PCA first:

1. To do this, let's create some simulated sample data to work on the example. We can 
make a small example dataset as follows:

Code Block 10-9
import numpy as np

import pandas as pd

X1 = np.random.normal(5, 1, size=100)

X2 = np.random.normal(5, 0.5, size=100)

data = pd.DataFrame({'X1': X1, 'X2': X1 + X2})

data.head()

The data looks like this:

Figure 10.6 – The resulting data
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2. You can make a plot of this data as follows:

Code Block 10-10
import matplotlib.pyplot as plt

plt.scatter(data['X1'], data['X2'])

The scatter plot shows a plot that is quite similar to the sketch in the earlier 
schematic drawing:

 

Figure 10.7 – The resulting image of Code Block 10-10

3. Let's now use a regular PCA to identify the components and transform the data. The 
following block of code shows how to fit a PCA using scikit-learn:

Code Block 10-11
from sklearn.decomposition import PCA

my_pca = PCA()

transformed_data = my_pca.fit_transform(data)

transformed_data = pd.DataFrame(transformed_
data, columns = ['PC1', 'PC2'])

transformed_data.head()
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The transformed data looks as follows:

Figure 10.8 – The transformed data

4. We can plot it just like we did with the previous data. This can be done using the 
following code:

Code Block 10-12
plt.scatter(transformed_data['PC1'], transformed_
data['PC2'])

plt.xlim(-4, 4)

plt.ylim(-4, 4)

plt.show()

The plot looks as follows:

Figure 10.9 – Plot of the transformed data
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You can clearly see that this looks a lot like the resulting plot in the earlier theoretical 
introduction. This PCA has successfully identified the first principal component to be the 
component that explains the largest part of the data. The second component explains the 
largest part of the remaining data (after the first component).

Incremental PCA for streaming
PCA, in a streaming context, cannot be easily calculated on individual data points. After 
all, you can imagine that it is impossible to determine the standard deviation of a single 
data point, and therefore, there is no possible way to determine the best components.

The proposed solution is to do this through batches and to compute your PCA in 
batches rather than all at once. The scikit-learn package has a functionality called 
IncrementalPCA, which allows you to fit PCA in batches. Let's use the following code 
for fitting IncrementalPCA on the same data as before and compare the results. The 
code to fit and transform using IncrementalPCA is shown in the following:

Code Block 10-13

from sklearn.decomposition import IncrementalPCA

my_incremental_pca = IncrementalPCA(batch_size = 10)

transformed_data_2 = my_incremental_pca.fit_transform(data)

transformed_data_2 = pd.DataFrame(transformed_
data_2, columns = ['PC1', 'PC2'])

transformed_data_2.head()

The transformed data using this second method looks as follows:

Figure 10.10 – The transformed data using incremental PCA
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Now, let's also make a plot of this data to see whether this batch-wise PCA was successful 
in fitting the real components, or whether it is far away from the original PCA:

Code Block 10-14

plt.scatter(transformed_data_2['PC1'], transformed_
data_2['PC2'])

plt.xlim(-4, 4)

plt.ylim(-4, 4)

plt.show()

The resulting scatter plot is shown in the following:

Figure 10.11 – The scatter plot of the transformed data using incremental PCA

This scatter plot shows that the PCA has been correctly fitted. Do not be confused by the 
fact that the incremental PCA has inversed the first component (the image is mirrored 
left to right compared to the preceding one). This is not wrong but just mirrored. This 
incremental PCA has captured the two components very well.
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Summary
In this chapter, you have seen some common methods for data preparation being adapted 
to streaming and online data. For streaming data, it is important to have easily refitting or 
re-estimating models.

In the first part of the chapter, you have seen two methods for scaling. The MinMaxScaler 
scales the data to the 0 to 1 range and, therefore, needs to make sure that none of the new 
data points get outside of this range. The StandardScaler uses a statistical normalization 
process using the mean and standard deviation.

The second part of the chapter demonstrated a regular PCA and a new, incremental 
version called IncrementalPCA. This incremental method allows you to fit PCA in 
batches, which can help you when fitting PCA on streaming data.

With scaling and feature transformation in this chapter, and drift detection in the previous 
chapter, you have already seen a good part of the auxiliary tasks of machine learning 
on streaming. In the coming chapter, you will see the third and last secondary topic to 
machine learning and streaming, which is catastrophic forgetting: an impactful problem 
that can occur in online machine learning, causing the model to forget important learned 
trends. The chapter will explain how to detect and avoid it.

Further reading
• MinMaxScaler in River: https://riverml.xyz/latest/api/

preprocessing/MinMaxScaler/

• StandardScaler in River: https://riverml.xyz/latest/api/
preprocessing/StandardScaler/

• PCA in scikit-learn: https://scikit-learn.org/stable/modules/
generated/sklearn.decomposition.PCA.html 

• Incremental PCA in scikit-learn: https://scikit-learn.org/stable/
modules/generated/sklearn.decomposition.IncrementalPCA.
html

https://riverml.xyz/latest/api/preprocessing/MinMaxScaler/
https://riverml.xyz/latest/api/preprocessing/MinMaxScaler/
https://riverml.xyz/latest/api/preprocessing/StandardScaler/
https://riverml.xyz/latest/api/preprocessing/StandardScaler/
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.IncrementalPCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.IncrementalPCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.IncrementalPCA.html
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Catastrophic 

Forgetting
In the previous two chapters, we started to look at a number of auxiliary tasks for online 
machine learning and working with streaming data. Chapter 9 covered drift detection 
and solutions and Chapter 10 covered feature transformation and scaling in a streaming 
context. The current chapter introduces a third and final topic to this list of auxiliary tasks, 
namely catastrophic forgetting.

Catastrophic forgetting, also known as catastrophic interference, is the tendency of 
machine learning models to forget what they have learned upon new updates, wrongly 
de-learning correctly learned older tendencies as new tendencies are learned from  
new data.

As you have seen a lot of examples of online models throughout this book, you will 
understand that continuous updating of the models creates a large risk of this learning 
going wrong. It has already been touched upon briefly, in the chapter on drift and  
drift detection, that model learning going wrong can also be seen as a real risk of 
performance degradation. 
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Drift, however, tends to be used for pointing out drift in either the independent variables 
(data drift) or in the relations between independent variables and dependent variables 
(concept drift). As catastrophic forgetting is really a problem inside the coefficients of the 
model, we could not really consider catastrophic forgetting to be a part of drift.

Machine learning models, especially online machine learning models, are often used 
in a relatively black-box manner, meaning that we look at their outcomes but do not 
necessarily spend much time looking at the inside mechanisms. This becomes a problem 
when detecting wrongly learned patterns. Machine learning explicability is therefore also 
related to the topic of catastrophic forgetting and will be covered as well.

This chapter will cover the problem of machine learning models updating in the wrong 
manner, which we call catastrophic forgetting or catastrophic inference, with the following 
chapters being covered:

• Defining catastrophic forgetting

• Detection of catastrophic forgetting

• Model explicability versus catastrophic forgetting

Technical requirements
You can find all the code for this book on GitHub at the following link: https://
github.com/PacktPublishing/Machine-Learning-for-Streaming-
Data-with-Python. If you are not yet familiar with Git and GitHub, the easiest  
way to download the notebooks and code samples is the following:

1. Go to the link of the repository.
2. Go to the green Code button.
3. Select Download zip.

When you download the ZIP file, you unzip it in your local environment, and you will be 
able to access the code through your preferred Python editor.

https://github.com/PacktPublishing/Machine-Learning-for-Streaming-Data-with-Python
https://github.com/PacktPublishing/Machine-Learning-for-Streaming-Data-with-Python
https://github.com/PacktPublishing/Machine-Learning-for-Streaming-Data-with-Python
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Python environment
To follow along with this book, you can download the code in the repository and execute 
it using your preferred Python editor.

If you are not yet familiar with Python environments, I would advise you to check out 
either Anaconda (https://www.anaconda.com/products/individual), which 
comes with the Jupyter Notebook and JupyterLab, which are both great for executing 
notebooks. It also comes with Spyder and VS Code for editing scripts and programs.

If you have difficulty installing Python or the associated programs on your machine, you 
can check out Google Colab (https://colab.research.google.com/) or Kaggle 
Notebooks (https://www.kaggle.com/code), which both allow you to run Python 
code in online notebooks for free, without any setup.

Note
The code in the book will generally use Colab and Kaggle Notebooks with 
Python version 3.7.13 and you can set up your own environment to mimic this. 

Introducing catastrophic forgetting
Catastrophic forgetting was initially defined as a problem that occurs on (deep) neural 
networks. Deep neural networks are a set of very complex machine learning models that, 
thanks to their extreme complexity, are able to learn very complex patterns. Of course, this 
is the case only when there is enough data.

Neural networks have been studied for multiple decades. They used to be mathematically 
interesting but practically infeasible to execute due to the lack of computing power. The 
current-day progress in computing power has made it possible for neural networks to gain 
the popularity that they are currently observing.

https://www.anaconda.com/products/individual
https://colab.research.google.com/
https://www.kaggle.com/code
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The complexity of neural networks also makes them sensitive to the problem of 
catastrophic forgetting. The way a neural network learns (from a high point of view)  
is by making many update passes to the coefficients and at every update, the model  
should fit a little bit better to the data. A schematic overview of a neural network's 
parameters can be seen here:

Figure 11.1 – Schematic overview of the number of coefficients in a neural network

In this schematic drawing, you see that even for a very small neural network there are 
many coefficients. The larger the number of nodes becomes, the larger the number of 
parameters to estimate. When comparing this to traditional statistical methods, you can 
see that the idea of making so many passes is relatively different and causes different 
problems than those that were common in traditional statistics. 

Catastrophic forgetting is one such problem. It was first observed in a study in 1989, in 
which an experiment was presented. This experiment trained neural networks on the 
task of doing additions (from 1 + 1 = 2 to 1 + 9 = 10). A sequential method was tested, in 
which the model first learned only the first task, and then a new task was added once the 
first one was mastered. 

The conclusion of this and other experiments was that adding new tasks after the first one 
has been learned will cause interference with the original learned model. They observed 
that the newer information has to be learned, the larger this disruption will be. Finally, 
they found out that the problem occurs in sequential learning only. If you learn all tasks  
at the same time, there is not really any re-learning happening so forgetting cannot  
really happen.
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For more detailed, scientific resources on catastrophic forgetting in the specific case of 
online learning using neural networks, I recommend checking out the two links here:

• https://proceedings.neurips.cc/paper/2021/file/54ee290e805
89a2a1225c338a71839f5-Paper.pdf

• https://www.cs.uic.edu/~liub/lifelong-learning/continual-
learning.pdf

Let's now see how catastrophic forgetting affects online models in general.

Catastrophic forgetting in online models
Although catastrophic forgetting was initially identified as a problem for neural networks, 
you can imagine that online machine learning has the same problem of continuous 
re-learning. The problem of catastrophic forgetting, or catastrophic inference, is therefore 
also present and needs to be mastered.

If models are updated at every new data point, it is expected that coefficients will change 
over time. Yet as modern-day machine learning algorithms are very complex and have 
huge numbers of coefficients or trees, it is a fairly difficult task to keep a close eye on them.

In an ideal world, the most beneficial goal would probably be to try and avoid any wrong 
learning in your machine learning at all. One way to do this is to keep a close eye on 
model performance and keep tight versioning systems in place to make sure that even if 
your model is wrongly learning anything, it does not get deployed in a production system. 
We will go into this topic shortly.

Another solution that is possible is to work with drift detection methods, as you saw in 
Chapter 9. When you closely follow your model's performance and the distributions of 
your data, and other KPIs and descriptive statistics, you should be able to detect problems 
rather soon, which will allow you to intervene rapidly.

As a third tool for managing catastrophic forgetting, you will see more tools for model 
explicability in this chapter. One of the problems of catastrophic forgetting is that the 
models are too much of a black box. Using tools from the domain of model explicability 
will help you to have a peek inside those black-box models. This will allow you to detect 
catastrophic forgetting and catastrophic inference based more on business logic rather 
than technical logic. The combination of business and technical logic together will be a 
strong combination to prepare against catastrophic forgetting.

https://proceedings.neurips.cc/paper/2021/file/54ee290e80589a2a1225c338a71839f5-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/54ee290e80589a2a1225c338a71839f5-Paper.pdf
https://www.cs.uic.edu/~liub/lifelong-learning/continual-learning.pdf
https://www.cs.uic.edu/~liub/lifelong-learning/continual-learning.pdf
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Detecting catastrophic forgetting
In this chapter, we are going to look at two different approaches that you could use to 
detect catastrophic forgetting. The first approach is to implement a system that can detect 
problems with a model just after it has learned something. To do this, we are going to 
implement a Python example in multiple steps:

1. Develop a model training loop with online learning.
2. Add direct evaluation to this model.
3. Add longer-term evaluation to this model.
4. Add a system to avoid model updating in case of wrong learning.

Using Python to detect catastrophic forgetting
To work through this example, let's start by implementing an online regression model,  
just like you have already seen earlier on in this book: 

1. To do this, we first need to generate some data. The code to generate the data for 
this example is shown here:

Code Block 11-1
import random

X = [

     1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 

     6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10

]

y = [

     x + random.random() for x in X[:15]] + 

    [x * 2 + random.random() for x in X[15:]

]

If you look at this code, you can see that there is a shift occurring in the pattern. In 
the first 15 observations, y is defined as x + random.randint(), meaning just 
the same value as x but with some random variation. After the 15th observation, 
this shift changes and becomes x * 2 + random.randint, meaning the double 
of x with some added random variation. This example will be perfect to see how a 
model needs to update with time.
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2. Let's now make a quick plot of this data to have a better idea of what this shift 
actually looks like. This can be done with the code that is shown here:

Code Block 11-2
import matplotlib.pyplot as plt

plt.scatter(X, y)

The resulting graph is shown here:

Figure 11.2 – The scatter plot resulting from the preceding code block 
The first linear trend clearly holds from x = 1 to x = 5, but a different, steeper 
function starts at x = 6 and goes on to x = 10.

3. We are going to use River in this example, so it will be necessary to get the data in 
the right format. You should by now have mastered the data formats for the River 
library, but you can refer to the following code if necessary:

Code Block 11-3
X_dict = [{'X': x} for x in X]

for X_i, y_i in zip(X_dict, y):

  print(X_i, y_i)
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The result of this code block should be something like the following:

Figure 11.3 – The output resulting from the preceding code block 

4. Now, let's add a KNNRegressor function from the River library to this loop, and at 
each new data point, use the learn_one method to update the model. This is done 
using the following code:

Code Block 11-4
!pip install river

from river.neighbors import KNNRegressor

my_knn = KNNRegressor(window_size=3)

X_dict = [{'X': x} for x in X]
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for X_i, y_i in zip(X_dict, y):

  my_knn.learn_one(X_i, y_i)

5. We can compute the final training error of this model to have a general idea of the 
amount of errors that we should expect. The following code does exactly that:

Code Block 11-4
preds = []

for X_i in X_dict:

  preds.append(my_knn.predict_one(X_i))

sum_absolute_error = 0

for pred, real in zip(preds, y):

  sum_absolute_error += abs(pred - real)

mean_absolute_error = sum_absolute_error / len(preds)

print(mean_absolute_error)

In the current example, this computes a mean absolute error of 10.
6. Let's now have a more detailed look into the step-by-step learning quality of the 

model. We can do this by using continuous evaluation. This means that every time 
we learn, we will evaluate the model:

Code Block 11-5
my_knn = KNNRegressor(window_size=3)

X_dict = [{'X': x} for x in X]

step_by_step_error = []

for i in range(len(X_dict)):

  my_knn.learn_one(X_dict[i], y[i])

  abs_error = abs(my_knn.predict_one(X_dict[i]) - y[i])

  step_by_step_error.append(abs_error)
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7. The following code will plot those errors over time to see how the model is learning:

Code Block 11-6
plt.plot(step_by_step_error)

The following plot results from this code:

Figure 11.4 – The plot resulting from the preceding code block 
Interestingly, the model seems to obtain a perfect score every time that we see a new 
value for x, then the second time that the same x value occurs, we have a perfect 
score again, but the third time, we have a larger error!

8. It would be great to compare this with the final error, which was not computed step 
by step but just at once, using the following code:

Code Block 11-7
preds = []

for X_i in X_dict:

  preds.append(my_knn.predict_one(X_i))

all_errors = []

for pred, real in zip(preds, y):

  all_errors.append(abs(pred - real))

plt.plot(step_by_step_error)
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plt.plot(all_errors)

plt.show()

The output from this code block is shown hereafter:

Figure 11.5 – The plot resulting from the preceding code block 
You can clearly observe that when evaluating the model step by step, the error on 
each data point does not seem too big. However, when evaluating all at the end, you 
see that the model has actually forgotten the first data points! This is a good example 
of how catastrophic forgetting can be observed in practice.

9. As a final step, let's add a small evaluation to the model loop to help you in realizing 
that the model has forgotten your first scores:

Code Block 11-8
my_knn = KNNRegressor(window_size=3)

X_dict = [{'X': x} for x in X]

step_by_step_error = []

for i in range(len(X_dict)):

  my_knn.learn_one(X_dict[i], y[i])

  abs_error = abs(my_knn.predict_one(X_dict[i]) - y[i])

  step_by_step_error.append(abs_error)

  all_errors_recomputed = []
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  for j in range(i):

    orig_error = step_by_step_error[j]

    after_error = abs(my_knn.predict_one(X_
dict[j]) - y[j])

    if after_error > orig_error:

      print(f'At learn-
ing step {i}, data point {j} was partly forgotten')

In this code block, a rule was made to detect forgetting as soon as the error was 
larger than the original error. Of course, this is a really severe detection mechanism, 
and you could imagine other approaches in the place of this one. For example, this 
could be a percentage change or an absolute number that must not be surpassed. 
This all depends on your business case.

Now that you have seen an approach for detecting catastrophic forgetting using alarm 
mechanisms based on model performance, let's go on to the next part of this chapter, in 
which you'll see how to use model explicability to detect catastrophic forgetting.

Model explicability versus catastrophic 
forgetting
Looking at model performance is generally a good way to keep track of your model and 
it will definitely help you to detect that something, somewhere in the model, has gone 
wrong. Generally, this will be enough of an alerting mechanism and will help you to 
manage your models in production.

If you want to understand exactly what has gone wrong, however, you'll need to dig deeper 
into your model. Looking at performance only is more of a black-box approach, whereas 
we can also extract things such as trees, coefficients, variable importance, and the like to 
see what has actually changed inside the model.

There is no one-size-fits-all method for deep diving into models. All model categories 
have their own specific method for fitting the data, and an inspection of their fit would 
therefore be strongly dependent on the model itself. In the remainder of this section, 
however, we will look at two very common structures in machine learning: linear models 
with coefficients and trees.
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Explaining models using linear coefficients
In this first example, we'll build a linear regression on some sample data and extract 
coefficients of the model to give an interpretation of them:

1. You can create the data for this example using the following code:

Code Block 11-9
import pandas as pd

ice_cream_sales = [10, 9, 8, 7, 6, 5, 4, 3, 2 , 1]

degrees_celsius = [30, 25, 20, 19, 18, 17, 15, 13, 10, 5]

price  = [2,2, 3, 3, 4, 4, 5, 5, 6, 6]

data = pd.DataFrame({

    'ice_cream_sales': ice_cream_sales,

    'degrees_celsius': degrees_celsius,

    'price': price

})

data

The data is shown here in a dataframe format:

Figure 11.6 – The plot resulting from the preceding code block 
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2. Let's create two scatter plots to have a better visual idea of how ice cream sales are 
related to temperature and price (in this fictitious example). The following code 
shows how to create the first scatter plot:

Code Block 11-10
plt.scatter(data['degrees_celsius'], data['ice_cream_
sales'])

This results in the following graph:

Figure 11.7 – The plot resulting from the preceding code block 

3. The second scatter plot can be created as follows:

Code Block 11-11
plt.scatter(data['price'], data['ice_cream_sales'])

This results in the following graph:
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Figure 11.8 – The plot resulting from the preceding code block 
You can clearly see that sales are higher when the temperature is higher, and sales 
are lower when the temperature is lower. Also, higher prices are correlated with 
lower sales, and lower prices are correlated with higher sales. 

4. These are two logical and explainable factors in ice cream sales, but this is not yet 
a model. Let's use a LinearRegression function to model this straightforward 
linear relationship:

Code Block 11-12
from sklearn.linear_model import LinearRegression

my_lr = LinearRegression()

my_lr.fit(X = data[['degrees_
celsius', 'price']], y = data['ice_cream_sales'])

5. We can evaluate the (in-sample) fit of this model as follows:

Code Block 11-13
from sklearn.metrics import r2_score

r2_score(data['ice_cream_sales'], my_
lr.predict(data[['degrees_celsius', 'price']]))

This model yields a training R2 score of 0.98, meaning that the model fits really well 
to the training data.
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6. We are now at the step where we need to go deeper into the model than just  
looking at performance. With the linear regression, we need to look at coefficients 
to be able to interpret what they have fitted. The coefficients are extracted in the 
following code:

Code Block 11-14
pd.DataFrame({'variable': ['degrees_
celsius', 'price'], 'coefficient': my_lr.coef_})

This gives the following output:

Figure 11.9 – The coefficients resulting from the preceding code block 
You can interpret this as follows:

 � Every additional degree Celsius will increase ice cream sales by 0.15, given a 
constant price.

 � Every euro added to the price will decrease ice cream sales by 1.3, given a  
constant temperature.

Explaining models using dendrograms
While looking at coefficients is great for linear models, some models do not have any 
coefficients. Examples of this are basically any models that use trees. Trees have nodes and 
these nodes are split based on yes/no questions. Although you cannot extract coefficients 
from trees, the advantage is that you can simply print out the entire tree as a graph! We'll 
look at that in the next example:

1. To get started, we need to fit a DecisionTreeRegressor function on the same 
data as the one we used before, using the following code:

Code Block 11-15
from sklearn.tree import DecisionTreeRegressor

my_dt = DecisionTreeRegressor()

my_dt.fit(X = data[['degrees_
celsius', 'price']], y = data['ice_cream_sales'])
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2. To get a general idea whether the model fits, let's compute an R2 score on the 
training set, just like we did before:

Code Block 11-16
r2_score(data['ice_cream_sales'], my_
dt.predict(data[['degrees_celsius', 'price']]))

The result is 1.0, which means that the decision tree has obtained a perfect fit on the 
training data. Nothing guarantees that this will generalize out-of-sample, but that is 
not necessarily a problem for explaining the model.

3. To extract the tree as an image, you can simply use the code here:

Code Block 11-17
import sklearn

plt.figure(figsize=(15,15))

sklearn.tree.plot_tree(my_dt)

plt.show()

This will print out the entire tree and give you perfect insight into how the 
predictions have been made:

Figure 11.10 – The resulting dendrogram from the preceding code block 
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Explaining models using variable importance
As a third and final method for explaining models, you can look at variable importance. 
Again, this is something that will not work for all machine learning models. Yet, for rather 
complex models it is often too difficult to look at all dendrograms and variable importance 
estimates are a great replacement for this.

Let's extract the variable importance from the decision tree model that was built 
previously. This can be done using the following code:

Code Block 11-18

pd.DataFrame({'variable': ['degrees_
celsius', 'price'], 'importance': my_dt.feature_importances_})

The resulting dataframe looks as follows:

Figure 11.11 – The importance value

This tells us that the decision tree has used degrees Celsius more than it has used the price 
as a predictor variable.

Summary
In this chapter, you have seen how catastrophic forgetting can cause bad performance in 
your model, especially when data arrives in a sequential manner. Especially when one 
trend is learned first and a second trend follows, the risk of forgetting the first trend is real 
and needs to be controlled.

Although there is no one-stop solution for these issues, there are many things that can 
be done to avoid bad models from going into production systems. You have seen how to 
implement continuous evaluation metrics and you have seen how you would be able to 
detect that some trends have been forgotten.
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Performance-based metrics are great for detecting problems but are not able to tell you 
what exactly has gone wrong inside the model. You have seen three methods of model 
explanation that can help you deep-dive further into most models. By extracting from the 
model which trends or relationships the model has learned, you can identify whether this 
corresponds to an already known business logic or common sense.

In the next and final chapter of this book, we will conclude the different topics that have 
been presented and consider a number of best practices to keep in mind while working on 
online models and streaming data.

Further reading
• KNNRegressor: https://riverml.xyz/latest/api/neighbors/

KNNRegressor/

• LinearRegression: https://scikit-learn.org/stable/modules/
generated/sklearn.linear_model.LinearRegression.html

• DecisionTree: https://scikit-learn.org/stable/modules/
generated/sklearn.tree.DecisionTreeRegressor.html

• Tree_plot: https://scikit-learn.org/stable/modules/generated/
sklearn.tree.plot_tree.html 

https://riverml.xyz/latest/api/neighbors/KNNRegressor/
https://riverml.xyz/latest/api/neighbors/KNNRegressor/
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.plot_tree.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.plot_tree.html
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Conclusion and  

Best Practices
Throughout the chapters of this book, you have been introduced to the field of machine 
learning on streaming data, using mainly online models. In this last chapter, it is time for  
a recapitulative overview of all that has been seen throughout the eleven earlier chapters  
of the book.

This chapter will cover the following:

• Best practices to keep in mind

• Next steps for your learning journey

• Best practices
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Practice is always different from theory. You have seen a lot of theoretical knowledge 
throughout this book. In this final section, you will see a number of best practices that 
always need to be kept in mind while applying the theory in real-life use cases:

1. Clean data/data quality

Data quality and problems with data understanding are daily problems in most 
companies. The famous saying goes: "Garbage in, garbage out," implying that 
when you do machine learning on garbage data, your outputs will also be useless. 
Thorough data exploration needs to be done on any new business case that comes 
to you, allowing you to identify potential problems. Data quality processes are often 
needed but not yet in place. Although out of scope for the data scientist, you can 
advise on the need and added value of such processes.

2. Business needs before tech needs

Many data scientists have a mathematics, statistics, or programming background 
and often have an operational mindset. Something that regularly goes wrong in 
business cases is that technical people start doing what is technically the best and 
start sidetracking the lines defined by business projects. Although this is very 
understandable, it is important to always keep in mind why companies are investing 
in a specific technology, which is, 99% of the time, to make a return on investing. 
When working in tech, it is important to keep in mind whether your technical 
topics are helping the company to reach its objectives, as you may lose funding 
quickly in the opposite case.

3. Business metrics are key to a project succeeding 

Helping a company reach its goals is often not even enough. You must also be able 
to prove to your company's leaders that you are indeed making them money or 
reaching their goals. To prove this, metrics are your best friend. As long as you 
define your project's key performance indicators from the outset and throughout, 
you can assure continuing support for your project, allowing you to work on 
cutting-edge technology.

4. Be compatible and make company guidelines your own guidelines

Long-term successful projects will at some point be evaluated in terms of your 
company's best practices. If you want to ensure you have long-term relevance to 
your company, you need to make sure to keep in mind what your company is doing 
on a general level and make sure that what you do is compatible with this. Allowing 
incompatibility with the overall architecture is to set yourself up for failure.
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5. Technical metrics are great for avoiding problems

When projects become large, it may become difficult to maintain a full overview 
of everything that is running in your production environment. In the same way, 
as business metrics are used, you can set up technical metrics that help you keep 
a quick and easy overview of all the things you have and how they are doing. The 
larger your projects become, the more important monitoring will be, but the harder 
it will be to implement. The best practice is therefore to implement monitoring as 
soon as possible.

6. Don't reinvent the wheel

Many data scientists and machine learning engineers are technology enthusiasts 
with our own ideas and vision on how to implement certain functionalities. One 
thing to keep in mind, though, is to avoid reinventing the wheel. When solutions 
already exist, be it in the company or outside, it is often useful to investigate whether 
it is possible to reuse them instead of "re-inventing the wheel" by developing the 
exact same functionality again.

The next section will guide you in furthering your knowledge and skills in the field of 
streaming analytics.

Going further
The focus of this book has been on giving you the tools necessary to get a quick 
introduction to the field of streaming analytics and has relatively quickly moved on to 
online machine learning algorithms for data science.

If you want to go further in streaming analytics, there are generally two directions in 
which you could start your journey: depth-first or breadth-first.

The depth-first approach consists of going even more in depth into online machine 
learning than the current book has been able to do. Although you should now have a 
solid basis in online machine learning, there is always more to learn. A number of useful 
resources for this follow:

• Keeping up with the general field of machine learning on the scientific side:

 � https://paperswithcode.com/

 � https://arxiv.org/list/stat.ML/recent

https://paperswithcode.com/
https://arxiv.org/list/stat.ML/recent
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• Keeping up with a lot of practitioners that love sharing what they do:

 � https://towardsdatascience.com/

 � https://neptune.ai/blog

 � https://www.kdnuggets.com/

• Follow influential data scientists and machine learning practitioners on social 
networks such as the following:

 � LinkedIn

 � Twitter

• Practice your skills with tools such as the following:

 � Kaggle and other machine learning competitions

 � Hackathons

The breadth-first approach would suggest that you focus on auxiliary domains first, to 
have an all-around mastery of the architecture topics, data engineering, code efficiency, 
and the like. The following resources may be helpful for a journey in this direction:

• Look into cloud architecture and obtain certifications for the most popular ones:

 � https://aws.amazon.com/certification/

 � https://cloud.google.com/certification

• Improve your coding skills:

 � Codewars, HackerRank, and other competitive coding tools

 � Open source contributions

https://towardsdatascience.com/
https://neptune.ai/blog
https://www.kdnuggets.com/
https://aws.amazon.com/certification/
https://cloud.google.com/certification
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• Learn new tools and environments:

 � Learn machine learning in PySpark.

 � Learn machine learning in R.

 � Learn machine learning in Julia.

 � Databricks.

 � Dataiku.

 � AWS SageMaker.

The focus is quite different between the two directions. At the end of your journey, you 
may want to consider your insight into both directions. The direction that is most relevant 
for you will always depend on your personal objectives.

Summary
In this final chapter, you have seen a list of best practices that will help you to be successful 
and efficient while implementing this theory in practice. Finally, you have seen two 
potential learning paths that you may want to follow when continuing your learning 
journey into streaming analytics and online models. 

With this, we have come to the end of this book. I hope that the book has been useful to 
you and that you will be successful in applying the topics in practice. It was a pleasure 
writing about this topic, which I am sure is going to gain a lot of traction soon. It will be 
one of the topics to look out for in the next trends of data science and machine learning. 
Of course, feel free to follow the publisher and me online for many new materials on 
streaming, data science, and more related topics to be published soon.
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